Design and simulation of the surface shape control system for membrane mirror
NASA Astrophysics Data System (ADS)
Zhang, Gengsheng; Tang, Minxue
2009-11-01
The surface shape control is one of the key technologies for the manufacture of membrane mirror. This paper presents a design of membrane mirror's surface shape control system on the basis of fuzzy logic control. The system contains such function modules as surface shape design, surface shape control, surface shape analysis, and etc. The system functions are realized by using hybrid programming technology of Visual C# and MATLAB. The finite element method is adopted to simulate the surface shape control of membrane mirror. The finite element analysis model is established through ANSYS Parametric Design Language (APDL). ANSYS software kernel is called by the system in background running mode when doing the simulation. The controller is designed by means of controlling the sag of the mirror's central crosssection. The surface shape of the membrane mirror and its optical aberration are obtained by applying Zernike polynomial fitting. The analysis of surface shape control and the simulation of disturbance response are performed for a membrane mirror with 300mm aperture and F/2.7. The result of the simulation shows that by using the designed control system, the RMS wavefront error of the mirror can reach to 142λ (λ=632.8nm), which is consistent to the surface accuracy of the membrane mirror obtained by the large deformation theory of membrane under the same condition.
Multi-Scale Surface Descriptors
Cipriano, Gregory; Phillips, George N.; Gleicher, Michael
2010-01-01
Local shape descriptors compactly characterize regions of a surface, and have been applied to tasks in visualization, shape matching, and analysis. Classically, curvature has be used as a shape descriptor; however, this differential property characterizes only an infinitesimal neighborhood. In this paper, we provide shape descriptors for surface meshes designed to be multi-scale, that is, capable of characterizing regions of varying size. These descriptors capture statistically the shape of a neighborhood around a central point by fitting a quadratic surface. They therefore mimic differential curvature, are efficient to compute, and encode anisotropy. We show how simple variants of mesh operations can be used to compute the descriptors without resorting to expensive parameterizations, and additionally provide a statistical approximation for reduced computational cost. We show how these descriptors apply to a number of uses in visualization, analysis, and matching of surfaces, particularly to tasks in protein surface analysis. PMID:19834190
Surface shape analysis with an application to brain surface asymmetry in schizophrenia.
Brignell, Christopher J; Dryden, Ian L; Gattone, S Antonio; Park, Bert; Leask, Stuart; Browne, William J; Flynn, Sean
2010-10-01
Some methods for the statistical analysis of surface shapes and asymmetry are introduced. We focus on a case study where magnetic resonance images of the brain are available from groups of 30 schizophrenia patients and 38 controls, and we investigate large-scale brain surface shape differences. Key aspects of shape analysis are to remove nuisance transformations by registration and to identify which parts of one object correspond with the parts of another object. We introduce maximum likelihood and Bayesian methods for registering brain images and providing large-scale correspondences of the brain surfaces. Brain surface size-and-shape analysis is considered using random field theory, and also dimension reduction is carried out using principal and independent components analysis. Some small but significant differences are observed between the the patient and control groups. We then investigate a particular type of asymmetry called torque. Differences in asymmetry are observed between the control and patient groups, which add strength to other observations in the literature. Further investigations of the midline plane location in the 2 groups and the fitting of nonplanar curved midlines are also considered.
NASA Technical Reports Server (NTRS)
Yao, Tse-Min; Choi, Kyung K.
1987-01-01
An automatic regridding method and a three dimensional shape design parameterization technique were constructed and integrated into a unified theory of shape design sensitivity analysis. An algorithm was developed for general shape design sensitivity analysis of three dimensional eleastic solids. Numerical implementation of this shape design sensitivity analysis method was carried out using the finite element code ANSYS. The unified theory of shape design sensitivity analysis uses the material derivative of continuum mechanics with a design velocity field that represents shape change effects over the structural design. Automatic regridding methods were developed by generating a domain velocity field with boundary displacement method. Shape design parameterization for three dimensional surface design problems was illustrated using a Bezier surface with boundary perturbations that depend linearly on the perturbation of design parameters. A linearization method of optimization, LINRM, was used to obtain optimum shapes. Three examples from different engineering disciplines were investigated to demonstrate the accuracy and versatility of this shape design sensitivity analysis method.
Quasi-static shape adjustment of a 15 meter diameter space antenna
NASA Technical Reports Server (NTRS)
Belvin, W. Keith; Herstrom, Catherine L.; Edighoffer, Harold H.
1987-01-01
A 15 meter diameter Hoop-Column antenna has been analyzed and tested to study shape adjustment of the reflector surface. The Hoop-Column antenna concept employs pretensioned cables and mesh to produce a paraboloidal reflector surface. Fabrication errors and thermal distortions may significantly reduce surface accuracy and consequently degrade electromagnetic performance. Thus, the ability to adjust the surface shape is desirable. The shape adjustment algorithm consisted of finite element and least squares error analyses to minimize the surface distortions. Experimental results verified the analysis. Application of the procedure resulted in a reduction of surface error by 38 percent. Quasi-static shape adjustment has the potential for on-orbit compensation for a variety of surface shape distortions.
NASA Astrophysics Data System (ADS)
Slezak, Thomas Joseph; Radebaugh, Jani; Christiansen, Eric
2017-10-01
The shapes of craterform morphology on planetary surfaces provides rich information about their origins and evolution. While morphologic information provides rich visual clues to geologic processes and properties, the ability to quantitatively communicate this information is less easily accomplished. This study examines the morphology of craterforms using the quantitative outline-based shape methods of geometric morphometrics, commonly used in biology and paleontology. We examine and compare landforms on planetary surfaces using shape, a property of morphology that is invariant to translation, rotation, and size. We quantify the shapes of paterae on Io, martian calderas, terrestrial basaltic shield calderas, terrestrial ash-flow calderas, and lunar impact craters using elliptic Fourier analysis (EFA) and the Zahn and Roskies (Z-R) shape function, or tangent angle approach to produce multivariate shape descriptors. These shape descriptors are subjected to multivariate statistical analysis including canonical variate analysis (CVA), a multiple-comparison variant of discriminant analysis, to investigate the link between craterform shape and classification. Paterae on Io are most similar in shape to terrestrial ash-flow calderas and the shapes of terrestrial basaltic shield volcanoes are most similar to martian calderas. The shapes of lunar impact craters, including simple, transitional, and complex morphology, are classified with a 100% rate of success in all models. Multiple CVA models effectively predict and classify different craterforms using shape-based identification and demonstrate significant potential for use in the analysis of planetary surfaces.
NASA Astrophysics Data System (ADS)
Hong, Sungmin; Fishbaugh, James; Rezanejad, Morteza; Siddiqi, Kaleem; Johnson, Hans; Paulsen, Jane; Kim, Eun Young; Gerig, Guido
2017-02-01
Modeling subject-specific shape change is one of the most important challenges in longitudinal shape analysis of disease progression. Whereas anatomical change over time can be a function of normal aging, anatomy can also be impacted by disease related degeneration. Anatomical shape change may also be affected by structural changes from neighboring shapes, which may cause non-linear variations in pose. In this paper, we propose a framework to analyze disease related shape changes by coupling extrinsic modeling of the ambient anatomical space via spatiotemporal deformations with intrinsic shape properties from medial surface analysis. We compare intrinsic shape properties of a subject-specific shape trajectory to a normative 4D shape atlas representing normal aging to isolate shape changes related to disease. The spatiotemporal shape modeling establishes inter/intra subject anatomical correspondence, which in turn enables comparisons between subjects and the 4D shape atlas, and also quantitative analysis of disease related shape change. The medial surface analysis captures intrinsic shape properties related to local patterns of deformation. The proposed framework jointly models extrinsic longitudinal shape changes in the ambient anatomical space, as well as intrinsic shape properties to give localized measurements of degeneration. Six high risk subjects and six controls are randomly sampled from a Huntington's disease image database for qualitative and quantitative comparison.
NASA Astrophysics Data System (ADS)
Lestari, W. D.; Ismail, R.; Jamari, J.; Bayuseno, A. P.
2017-05-01
Surface texture is a common method for improving wear properties of a tribo-pair of soft and hard bearing material. The reduction of wear rates on the contacting surface material is becoming important issues. In the present study, analysis of the contact pressure on the flat surface of UHMWPE (Ultra High Molecular Weight Polyethylene) under the static- and rolling motion with the surface of steel ball used the 3D finite element method (FEM) (the ABAQUS software version 6.12). Five shaped-texture models (square, circle, ellipse, triangle, and chevron) were presented on the flat surface for analysis. The normal load of 17, 30 and 50 N was deliberately set-up for static and rolling contact analysis. The contact pressure was determined to predict the wear behavior of the shaped-texture on the flat surface of UHMWPE. The results have shown that the static normal load yielded the lowest von-Mises stress distribution on the shaped-texture of the ellipse for all values applied a load, while the square shape experienced the highest stress distribution. Under rolling contact, however, the increasing load yielded the increasing von Mises stress distribution for the texture with a triangle shape. Moreover, the texture shapes for circle, ellipse, and chevron respectively, may undergo the lowest stress distribution for all load. The wear calculation provided that the circle and square shape may undergo the highest wear rates. Obviously, the surface texture of circle, ellipse, and chevron may experience the lowest wear rates and is potential for use in the surface engineering of bearing materials.
Shape-based diffeomorphic registration on hippocampal surfaces using Beltrami holomorphic flow.
Lui, Lok Ming; Wong, Tsz Wai; Thompson, Paul; Chan, Tony; Gu, Xianfeng; Yau, Shing-Tung
2010-01-01
We develop a new algorithm to automatically register hippocampal (HP) surfaces with complete geometric matching, avoiding the need to manually label landmark features. A good registration depends on a reasonable choice of shape energy that measures the dissimilarity between surfaces. In our work, we first propose a complete shape index using the Beltrami coefficient and curvatures, which measures subtle local differences. The proposed shape energy is zero if and only if two shapes are identical up to a rigid motion. We then seek the best surface registration by minimizing the shape energy. We propose a simple representation of surface diffeomorphisms using Beltrami coefficients, which simplifies the optimization process. We then iteratively minimize the shape energy using the proposed Beltrami Holomorphic flow (BHF) method. Experimental results on 212 HP of normal and diseased (Alzheimer's disease) subjects show our proposed algorithm is effective in registering HP surfaces with complete geometric matching. The proposed shape energy can also capture local shape differences between HP for disease analysis.
Lin, Jie; Zheng, Zhiqiang; Shinya, Akikazu; Matinlinna, Jukka Pekka; Botelho, Michael George; Shinya, Akiyoshi
2015-09-01
The purpose of this in vitro study was to compare the stress distribution and natural frequency of different shape and thickness retainer designs for maxillary posterior resin-bonded prostheses using finite element (FE) method. A 3D FE model of a three unit posterior resin-bonded prosthesis analysis model was generated. Three different shaped retainer designs, viz. C-shaped (three axial surface wraparounds), D-shaped (three axial surface wraparounds with central groove) and O-shaped (360° wraparounds), and three different thicknesses, viz., 0.4, 0.8, and 1.2 mm, resin-bonded prostheses were used in this study. The resin-bonded prosthesis analysis model was imported into an FE analysis software (ANSYS 10.0, ANSYS, USA) and attribution of material properties. The nodes at the bottom surface of the roots were assigned fixed zero displacement in the three spatial dimensions. A simulated angle of 45° loading of a 100 N force was applied to the node of the pontic lingual cusp surface. The stress distributions and corresponding natural frequencies were analyzed and resolved. The C-shaped retainer for 0.4 mm thickness recorded the greatest von Mises stresses of 71.4 MPa for all three groups. C-shaped, D-shaped and O-shaped retainer presented natural frequencies 3,988, 7,754, and 10,494 Hz, respectively. D-shaped retainer and O-shaped retainer increased natural frequencies and structural rigidity over the traditional C-shaped retainer. The maximum von Mises stresses values of the remaining tooth and prosthesis decreased with greater retainer thickness. D-shaped retainer and O-shaped retainer increased natural frequencies and structural rigidity over the traditional C-shaped retainer.
Lateral ventricle morphology analysis via mean latitude axis.
Paniagua, Beatriz; Lyall, Amanda; Berger, Jean-Baptiste; Vachet, Clement; Hamer, Robert M; Woolson, Sandra; Lin, Weili; Gilmore, John; Styner, Martin
2013-03-29
Statistical shape analysis has emerged as an insightful method for evaluating brain structures in neuroimaging studies, however most shape frameworks are surface based and thus directly depend on the quality of surface alignment. In contrast, medial descriptions employ thickness information as alignment-independent shape metric. We propose a joint framework that computes local medial thickness information via a mean latitude axis from the well-known spherical harmonic (SPHARM-PDM) shape framework. In this work, we applied SPHARM derived medial representations to the morphological analysis of lateral ventricles in neonates. Mild ventriculomegaly (MVM) subjects are compared to healthy controls to highlight the potential of the methodology. Lateral ventricles were obtained from MRI scans of neonates (9-144 days of age) from 30 MVM subjects as well as age- and sex-matched normal controls (60 total). SPHARM-PDM shape analysis was extended to compute a mean latitude axis directly from the spherical parameterization. Local thickness and area was straightforwardly determined. MVM and healthy controls were compared using local MANOVA and compared with the traditional SPHARM-PDM analysis. Both surface and mean latitude axis findings differentiate successfully MVM and healthy lateral ventricle morphology. Lateral ventricles in MVM neonates show enlarged shapes in tail and head. Mean latitude axis is able to find significant differences all along the lateral ventricle shape, demonstrating that local thickness analysis provides significant insight over traditional SPHARM-PDM. This study is the first to precisely quantify 3D lateral ventricle morphology in MVM neonates using shape analysis.
Finite element solution of low bond number sloshing
NASA Technical Reports Server (NTRS)
Wohlen, R. L.; Park, A. C.; Warner, D. M.
1975-01-01
The dynamics of liquid propellant in a low Bond number environment which are critical to the design of spacecraft systems with respect to orbital propellant transfer and attitude control system were investigated. Digital computer programs were developed for the determination of liquid free surface equilibrium shape, lateral slosh natural vibration mode shapes, and frequencies for a liquid in a container of arbitrary axisymmetric shape with surface tension forces the same order of magnitude as acceleration forces. A finite volume element representation of the liquid was used for the vibration analysis. The liquid free surface equilibrium shapes were computed for several tanks at various contact angles and ullage volumes. A configuration was selected for vibration analysis and lateral slosh mode shapes and natural frequencies were obtained. Results are documented.
Drop shape visualization and contact angle measurement on curved surfaces.
Guilizzoni, Manfredo
2011-12-01
The shape and contact angles of drops on curved surfaces is experimentally investigated. Image processing, spline fitting and numerical integration are used to extract the drop contour in a number of cross-sections. The three-dimensional surfaces which describe the surface-air and drop-air interfaces can be visualized and a simple procedure to determine the equilibrium contact angle starting from measurements on curved surfaces is proposed. Contact angles on flat surfaces serve as a reference term and a procedure to measure them is proposed. Such procedure is not as accurate as the axisymmetric drop shape analysis algorithms, but it has the advantage of requiring only a side view of the drop-surface couple and no further information. It can therefore be used also for fluids with unknown surface tension and there is no need to measure the drop volume. Examples of application of the proposed techniques for distilled water drops on gemstones confirm that they can be useful for drop shape analysis and contact angle measurement on three-dimensional sculptured surfaces. Copyright © 2011 Elsevier Inc. All rights reserved.
Shape analysis of corpus callosum in autism subtype using planar conformal mapping
NASA Astrophysics Data System (ADS)
He, Qing; Duan, Ye; Yin, Xiaotian; Gu, Xianfeng; Karsch, Kevin; Miles, Judith
2009-02-01
A number of studies have documented that autism has a neurobiological basis, but the anatomical extent of these neurobiological abnormalities is largely unknown. In this study, we aimed at analyzing highly localized shape abnormalities of the corpus callosum in a homogeneous group of autism children. Thirty patients with essential autism and twenty-four controls participated in this study. 2D contours of the corpus callosum were extracted from MR images by a semiautomatic segmentation method, and the 3D model was constructed by stacking the contours. The resulting 3D model had two openings at the ends, thus a new conformal parameterization for high genus surfaces was applied in our shape analysis work, which mapped each surface onto a planar domain. Surface matching among different individual meshes was achieved by re-triangulating each mesh according to a template surface. Statistical shape analysis was used to compare the 3D shapes point by point between patients with autism and their controls. The results revealed significant abnormalities in the anterior most and anterior body in essential autism group.
NASA Astrophysics Data System (ADS)
Nadolny, K.; Kapłonek, W.
2014-08-01
The following work is an analysis of flatness deviations of a workpiece made of X2CrNiMo17-12-2 austenitic stainless steel. The workpiece surface was shaped using efficient machining techniques (milling, grinding, and smoothing). After the machining was completed, all surfaces underwent stylus measurements in order to obtain surface flatness and roughness parameters. For this purpose the stylus profilometer Hommel-Tester T8000 by Hommelwerke with HommelMap software was used. The research results are presented in the form of 2D surface maps, 3D surface topographies with extracted single profiles, Abbott-Firestone curves, and graphical studies of the Sk parameters. The results of these experimental tests proved the possibility of a correlation between flatness and roughness parameters, as well as enabled an analysis of changes in these parameters from shaping and rough grinding to finished machining. The main novelty of this paper is comprehensive analysis of measurement results obtained during a three-step machining process of austenitic stainless steel. Simultaneous analysis of individual machining steps (milling, grinding, and smoothing) enabled a complementary assessment of the process of shaping the workpiece surface macro- and micro-geometry, giving special consideration to minimize the flatness deviations
Kim, Won Hwa; Chung, Moo K; Singh, Vikas
2013-01-01
The analysis of 3-D shape meshes is a fundamental problem in computer vision, graphics, and medical imaging. Frequently, the needs of the application require that our analysis take a multi-resolution view of the shape's local and global topology, and that the solution is consistent across multiple scales. Unfortunately, the preferred mathematical construct which offers this behavior in classical image/signal processing, Wavelets, is no longer applicable in this general setting (data with non-uniform topology). In particular, the traditional definition does not allow writing out an expansion for graphs that do not correspond to the uniformly sampled lattice (e.g., images). In this paper, we adapt recent results in harmonic analysis, to derive Non-Euclidean Wavelets based algorithms for a range of shape analysis problems in vision and medical imaging. We show how descriptors derived from the dual domain representation offer native multi-resolution behavior for characterizing local/global topology around vertices. With only minor modifications, the framework yields a method for extracting interest/key points from shapes, a surprisingly simple algorithm for 3-D shape segmentation (competitive with state of the art), and a method for surface alignment (without landmarks). We give an extensive set of comparison results on a large shape segmentation benchmark and derive a uniqueness theorem for the surface alignment problem.
Reuter, Martin; Wolter, Franz-Erich; Shenton, Martha; Niethammer, Marc
2009-01-01
This paper proposes the use of the surface based Laplace-Beltrami and the volumetric Laplace eigenvalues and -functions as shape descriptors for the comparison and analysis of shapes. These spectral measures are isometry invariant and therefore allow for shape comparisons with minimal shape pre-processing. In particular, no registration, mapping, or remeshing is necessary. The discriminatory power of the 2D surface and 3D solid methods is demonstrated on a population of female caudate nuclei (a subcortical gray matter structure of the brain, involved in memory function, emotion processing, and learning) of normal control subjects and of subjects with schizotypal personality disorder. The behavior and properties of the Laplace-Beltrami eigenvalues and -functions are discussed extensively for both the Dirichlet and Neumann boundary condition showing advantages of the Neumann vs. the Dirichlet spectra in 3D. Furthermore, topological analyses employing the Morse-Smale complex (on the surfaces) and the Reeb graph (in the solids) are performed on selected eigenfunctions, yielding shape descriptors, that are capable of localizing geometric properties and detecting shape differences by indirectly registering topological features such as critical points, level sets and integral lines of the gradient field across subjects. The use of these topological features of the Laplace-Beltrami eigenfunctions in 2D and 3D for statistical shape analysis is novel. PMID:20161035
NASA Technical Reports Server (NTRS)
Ko, William L.; Fleischer, Van Tran
2015-01-01
Variable-Domain Displacement Transfer Functions were formulated for shape predictions of complex wing structures, for which surface strain-sensing stations must be properly distributed to avoid jointed junctures, and must be increased in the high strain gradient region. Each embedded beam (depth-wise cross section of structure along a surface strain-sensing line) was discretized into small variable domains. Thus, the surface strain distribution can be described with a piecewise linear or a piecewise nonlinear function. Through discretization, the embedded beam curvature equation can be piece-wisely integrated to obtain the Variable-Domain Displacement Transfer Functions (for each embedded beam), which are expressed in terms of geometrical parameters of the embedded beam and the surface strains along the strain-sensing line. By inputting the surface strain data into the Displacement Transfer Functions, slopes and deflections along each embedded beam can be calculated for mapping out overall structural deformed shapes. A long tapered cantilever tubular beam was chosen for shape prediction analysis. The input surface strains were analytically generated from finite-element analysis. The shape prediction accuracies of the Variable- Domain Displacement Transfer Functions were then determined in light of the finite-element generated slopes and deflections, and were fofound to be comparable to the accuracies of the constant-domain Displacement Transfer Functions
Computational Analysis of Arc-Jet Wedge Tests Including Ablation and Shape Change
NASA Technical Reports Server (NTRS)
Goekcen, Tahir; Chen, Yih-Kanq; Skokova, Kristina A.; Milos, Frank S.
2010-01-01
Coupled fluid-material response analyses of arc-jet wedge ablation tests conducted in a NASA Ames arc-jet facility are considered. These tests were conducted using blunt wedge models placed in a free jet downstream of the 6-inch diameter conical nozzle in the Ames 60-MW Interaction Heating Facility. The fluid analysis includes computational Navier-Stokes simulations of the nonequilibrium flowfield in the facility nozzle and test box as well as the flowfield over the models. The material response analysis includes simulation of two-dimensional surface ablation and internal heat conduction, thermal decomposition, and pyrolysis gas flow. For ablating test articles undergoing shape change, the material response and fluid analyses are coupled in order to calculate the time dependent surface heating and pressure distributions that result from shape change. The ablating material used in these arc-jet tests was Phenolic Impregnated Carbon Ablator. Effects of the test article shape change on fluid and material response simulations are demonstrated, and computational predictions of surface recession, shape change, and in-depth temperatures are compared with the experimental measurements.
Optimal Mass Transport for Shape Matching and Comparison
Su, Zhengyu; Wang, Yalin; Shi, Rui; Zeng, Wei; Sun, Jian; Luo, Feng; Gu, Xianfeng
2015-01-01
Surface based 3D shape analysis plays a fundamental role in computer vision and medical imaging. This work proposes to use optimal mass transport map for shape matching and comparison, focusing on two important applications including surface registration and shape space. The computation of the optimal mass transport map is based on Monge-Brenier theory, in comparison to the conventional method based on Monge-Kantorovich theory, this method significantly improves the efficiency by reducing computational complexity from O(n2) to O(n). For surface registration problem, one commonly used approach is to use conformal map to convert the shapes into some canonical space. Although conformal mappings have small angle distortions, they may introduce large area distortions which are likely to cause numerical instability thus resulting failures of shape analysis. This work proposes to compose the conformal map with the optimal mass transport map to get the unique area-preserving map, which is intrinsic to the Riemannian metric, unique, and diffeomorphic. For shape space study, this work introduces a novel Riemannian framework, Conformal Wasserstein Shape Space, by combing conformal geometry and optimal mass transport theory. In our work, all metric surfaces with the disk topology are mapped to the unit planar disk by a conformal mapping, which pushes the area element on the surface to a probability measure on the disk. The optimal mass transport provides a map from the shape space of all topological disks with metrics to the Wasserstein space of the disk and the pullback Wasserstein metric equips the shape space with a Riemannian metric. We validate our work by numerous experiments and comparisons with prior approaches and the experimental results demonstrate the efficiency and efficacy of our proposed approach. PMID:26440265
Tian; Holt; Apfel
1997-03-01
The experimental results of droplet shape oscillations are reported and applied to the analysis of surface rheological properties of surfactant solutions. An acoustic levitation technique is used to suspend the test drop in air and excite it into quadrupole shape oscillations. The equilibrium surface tension, Gibbs elasticity, and surface dilatational viscosity are determined from the measurements of droplet static shape under different levitation sound pressure, oscillation frequency, and free damping constant. Aqueous solutions of sodium dodecyl sulfate, dodecyltrimethylammonium bromide, and n-octyl beta-d-glucopyranoside are tested with this system. The concentrations of the solutions are below the critical micelle concentration. For these solutions it is found that the surface Gibbs elasticity approaches a maximum at a moderate concentration, and its value is less than that directly calculated from the state equation of a static liquid surface. The surface dilatational viscosity is found to be in a range around 0.1 cps.
Classification of mathematics deficiency using shape and scale analysis of 3D brain structures
NASA Astrophysics Data System (ADS)
Kurtek, Sebastian; Klassen, Eric; Gore, John C.; Ding, Zhaohua; Srivastava, Anuj
2011-03-01
We investigate the use of a recent technique for shape analysis of brain substructures in identifying learning disabilities in third-grade children. This Riemannian technique provides a quantification of differences in shapes of parameterized surfaces, using a distance that is invariant to rigid motions and re-parameterizations. Additionally, it provides an optimal registration across surfaces for improved matching and comparisons. We utilize an efficient gradient based method to obtain the optimal re-parameterizations of surfaces. In this study we consider 20 different substructures in the human brain and correlate the differences in their shapes with abnormalities manifested in deficiency of mathematical skills in 106 subjects. The selection of these structures is motivated in part by the past links between their shapes and cognitive skills, albeit in broader contexts. We have studied the use of both individual substructures and multiple structures jointly for disease classification. Using a leave-one-out nearest neighbor classifier, we obtained a 62.3% classification rate based on the shape of the left hippocampus. The use of multiple structures resulted in an improved classification rate of 71.4%.
Global spectral graph wavelet signature for surface analysis of carpal bones
NASA Astrophysics Data System (ADS)
Masoumi, Majid; Rezaei, Mahsa; Ben Hamza, A.
2018-02-01
Quantitative shape comparison is a fundamental problem in computer vision, geometry processing and medical imaging. In this paper, we present a spectral graph wavelet approach for shape analysis of carpal bones of the human wrist. We employ spectral graph wavelets to represent the cortical surface of a carpal bone via the spectral geometric analysis of the Laplace-Beltrami operator in the discrete domain. We propose global spectral graph wavelet (GSGW) descriptor that is isometric invariant, efficient to compute, and combines the advantages of both low-pass and band-pass filters. We perform experiments on shapes of the carpal bones of ten women and ten men from a publicly-available database of wrist bones. Using one-way multivariate analysis of variance (MANOVA) and permutation testing, we show through extensive experiments that the proposed GSGW framework gives a much better performance compared to the global point signature embedding approach for comparing shapes of the carpal bones across populations.
Global spectral graph wavelet signature for surface analysis of carpal bones.
Masoumi, Majid; Rezaei, Mahsa; Ben Hamza, A
2018-02-05
Quantitative shape comparison is a fundamental problem in computer vision, geometry processing and medical imaging. In this paper, we present a spectral graph wavelet approach for shape analysis of carpal bones of the human wrist. We employ spectral graph wavelets to represent the cortical surface of a carpal bone via the spectral geometric analysis of the Laplace-Beltrami operator in the discrete domain. We propose global spectral graph wavelet (GSGW) descriptor that is isometric invariant, efficient to compute, and combines the advantages of both low-pass and band-pass filters. We perform experiments on shapes of the carpal bones of ten women and ten men from a publicly-available database of wrist bones. Using one-way multivariate analysis of variance (MANOVA) and permutation testing, we show through extensive experiments that the proposed GSGW framework gives a much better performance compared to the global point signature embedding approach for comparing shapes of the carpal bones across populations.
Optomechanical integrated simulation of Mars medium resolution lens with large field of view
NASA Astrophysics Data System (ADS)
Yang, Wenqiang; Xu, Guangzhou; Yang, Jianfeng; Sun, Yi
2017-10-01
The lens of Mars detector is exposed to solar radiation and space temperature for long periods of time during orbit, so that the ambient temperature of the optical system is in a dynamic state. The optical and mechanical change caused by heat will lead to camera's visual axis drift and the wavefront distortion. The surface distortion of the optical lens includes the displacement of the rigid body and the distortion of the surface shape. This paper used the calculation method based on the integrated optomechanical analysis, to explore the impact of thermodynamic load on image quality. Through the analysis software, established a simulation model of the lens structure. The shape distribution and the surface characterization parameters of the lens in some temperature ranges were analyzed and compared. the PV / RMS value, deformation cloud of the lens surface and quality evaluation of imaging was achieved. This simulation has been successfully measured the lens surface shape and shape distribution under the load which is difficult to measure on the experimental conditions. The integrated simulation method of the optical machine can obtain the change of the optical parameters brought by the temperature load. It shows that the application of Integrated analysis has play an important role in guiding the designing the lens.
Schmitt, Michael; Heib, Florian
2013-10-07
Drop shape analysis is one of the most important and frequently used methods to characterise surfaces in the scientific and industrial communities. An especially large number of studies, which use contact angle measurements to analyse surfaces, are characterised by incorrect or misdirected conclusions such as the determination of surface energies from poorly performed contact angle determinations. In particular, the characterisation of surfaces, which leads to correlations between the contact angle and other effects, must be critically validated for some publications. A large number of works exist concerning the theoretical and thermodynamic aspects of two- and tri-phase boundaries. The linkage between theory and experiment is generally performed by an axisymmetric drop shape analysis, that is, simulations of the theoretical drop profiles by numerical integration onto a number of points of the drop meniscus (approximately 20). These methods work very well for axisymmetric profiles such as those obtained by pendant drop measurements, but in the case of a sessile drop onto real surfaces, additional unknown and misunderstood effects on the dependence of the surface must be considered. We present a special experimental and practical investigation as another way to transition from experiment to theory. This procedure was developed to be especially sensitive to small variations in the dependence of the dynamic contact angle on the surface; as a result, this procedure will allow the properties of the surface to be monitored with a higher precession and sensitivity. In this context, water drops onto a 111 silicon wafer are dynamically measured by video recording and by inclining the surface, which results in a sequence of non-axisymmetric drops. The drop profiles are analysed by commercial software and by the developed and presented high-precision drop shape analysis. In addition to the enhanced sensitivity for contact angle determination, this analysis technique, in combination with innovative fit algorithms and data presentations, can result in enhanced reproducibility and comparability of the contact angle measurements in terms of the material characterisation in a comprehensible way.
NASA Astrophysics Data System (ADS)
Schmitt, Michael; Heib, Florian
2013-10-01
Drop shape analysis is one of the most important and frequently used methods to characterise surfaces in the scientific and industrial communities. An especially large number of studies, which use contact angle measurements to analyse surfaces, are characterised by incorrect or misdirected conclusions such as the determination of surface energies from poorly performed contact angle determinations. In particular, the characterisation of surfaces, which leads to correlations between the contact angle and other effects, must be critically validated for some publications. A large number of works exist concerning the theoretical and thermodynamic aspects of two- and tri-phase boundaries. The linkage between theory and experiment is generally performed by an axisymmetric drop shape analysis, that is, simulations of the theoretical drop profiles by numerical integration onto a number of points of the drop meniscus (approximately 20). These methods work very well for axisymmetric profiles such as those obtained by pendant drop measurements, but in the case of a sessile drop onto real surfaces, additional unknown and misunderstood effects on the dependence of the surface must be considered. We present a special experimental and practical investigation as another way to transition from experiment to theory. This procedure was developed to be especially sensitive to small variations in the dependence of the dynamic contact angle on the surface; as a result, this procedure will allow the properties of the surface to be monitored with a higher precession and sensitivity. In this context, water drops onto a 111 silicon wafer are dynamically measured by video recording and by inclining the surface, which results in a sequence of non-axisymmetric drops. The drop profiles are analysed by commercial software and by the developed and presented high-precision drop shape analysis. In addition to the enhanced sensitivity for contact angle determination, this analysis technique, in combination with innovative fit algorithms and data presentations, can result in enhanced reproducibility and comparability of the contact angle measurements in terms of the material characterisation in a comprehensible way.
High-precision surface analysis of the roughness of Michelangelo's David
NASA Astrophysics Data System (ADS)
Fontana, Raffaella; Gambino, Maria Chiara; Greco, Marinella; Marras, Luciano; Materazzi, Marzia; Pampaloni, Enrico; Pezzati, Luca
2003-10-01
The knowledge of the shape of an artwork is an important element for its study and conservation. When dealing with a statue, roughness measurement is a very useful contribution to document its surface conditions, to assess either changes due to restoration intervention or surface decays due to wearing agents, and to monitor its time-evolution in terms of shape variations. In this work we present the preliminary results of the statistical analysis carried out on acquired data relative to six areas of the Michelangelo"s David marble statue, representative of differently degraded surfaces. Determination of the roughness and its relative characteristic wavelength is shown.
Estimation of surface curvature from full-field shape data using principal component analysis
NASA Astrophysics Data System (ADS)
Sharma, Sameer; Vinuchakravarthy, S.; Subramanian, S. J.
2017-01-01
Three-dimensional digital image correlation (3D-DIC) is a popular image-based experimental technique for estimating surface shape, displacements and strains of deforming objects. In this technique, a calibrated stereo rig is used to obtain and stereo-match pairs of images of the object of interest from which the shapes of the imaged surface are then computed using the calibration parameters of the rig. Displacements are obtained by performing an additional temporal correlation of the shapes obtained at various stages of deformation and strains by smoothing and numerically differentiating the displacement data. Since strains are of primary importance in solid mechanics, significant efforts have been put into computation of strains from the measured displacement fields; however, much less attention has been paid to date to computation of curvature from the measured 3D surfaces. In this work, we address this gap by proposing a new method of computing curvature from full-field shape measurements using principal component analysis (PCA) along the lines of a similar work recently proposed to measure strains (Grama and Subramanian 2014 Exp. Mech. 54 913-33). PCA is a multivariate analysis tool that is widely used to reveal relationships between a large number of variables, reduce dimensionality and achieve significant denoising. This technique is applied here to identify dominant principal components in the shape fields measured by 3D-DIC and these principal components are then differentiated systematically to obtain the first and second fundamental forms used in the curvature calculation. The proposed method is first verified using synthetically generated noisy surfaces and then validated experimentally on some real world objects with known ground-truth curvatures.
NASA Astrophysics Data System (ADS)
Lestari, W. D.; Jamari, J.; Bayuseno, A. P.
2017-04-01
The texture shapes play a key role in the tribological performance of the surface material. This paper presents a study on the use of the 3D finite element method for surface stress analysis on the different texture shape under load and dry sliding contact. The five texture-shaped model was investigated in this work, namely square, circle, ellipse, triangle, and chevron. The result shown that the square shape has the highest value of von Mises resultant stress under static load. In contrast, the dry sliding contact on the triangle shape provided the highest von Mises stress distribution. The lowest value of von Mises stress can be found in the texture pattern of circle, square, and chevron under influence of load for 17 N, 30 N, and 50 N, respectively. Those texture patterns applied to surface of Ultra High Molecular Weight Polyethylene (UHMWPE) may have a strong effect on the reduction of wear rate and enhance tribological performance.
Flow analysis and design optimization methods for nozzle-afterbody of a hypersonic vehicle
NASA Technical Reports Server (NTRS)
Baysal, O.
1992-01-01
This report summarizes the methods developed for the aerodynamic analysis and the shape optimization of the nozzle-afterbody section of a hypersonic vehicle. Initially, exhaust gases were assumed to be air. Internal-external flows around a single scramjet module were analyzed by solving the 3D Navier-Stokes equations. Then, exhaust gases were simulated by a cold mixture of Freon and Ar. Two different models were used to compute these multispecies flows as they mixed with the hypersonic airflow. Surface and off-surface properties were successfully compared with the experimental data. The Aerodynamic Design Optimization with Sensitivity analysis was then developed. Pre- and postoptimization sensitivity coefficients were derived and used in this quasi-analytical method. These coefficients were also used to predict inexpensively the flow field around a changed shape when the flow field of an unchanged shape was given. Starting with totally arbitrary initial afterbody shapes, independent computations were converged to the same optimum shape, which rendered the maximum axial thrust.
Flow analysis and design optimization methods for nozzle afterbody of a hypersonic vehicle
NASA Technical Reports Server (NTRS)
Baysal, Oktay
1991-01-01
This report summarizes the methods developed for the aerodynamic analysis and the shape optimization of the nozzle-afterbody section of a hypersonic vehicle. Initially, exhaust gases were assumed to be air. Internal-external flows around a single scramjet module were analyzed by solving the three dimensional Navier-Stokes equations. Then, exhaust gases were simulated by a cold mixture of Freon and Argon. Two different models were used to compute these multispecies flows as they mixed with the hypersonic airflow. Surface and off-surface properties were successfully compared with the experimental data. In the second phase of this project, the Aerodynamic Design Optimization with Sensitivity analysis (ADOS) was developed. Pre and post optimization sensitivity coefficients were derived and used in this quasi-analytical method. These coefficients were also used to predict inexpensively the flow field around a changed shape when the flow field of an unchanged shape was given. Starting with totally arbitrary initial afterbody shapes, independent computations were converged to the same optimum shape, which rendered the maximum axial thrust.
Application of CAD/CAE class systems to aerodynamic analysis of electric race cars
NASA Astrophysics Data System (ADS)
Grabowski, L.; Baier, A.; Buchacz, A.; Majzner, M.; Sobek, M.
2015-11-01
Aerodynamics is one of the most important factors which influence on every aspect of a design of a car and car driving parameters. The biggest influence aerodynamics has on design of a shape of a race car body, especially when the main objective of the race is the longest distance driven in period of time, which can not be achieved without low energy consumption and low drag of a car. Designing shape of the vehicle body that must generate the lowest possible drag force, without compromising the other parameters of the drive. In the article entitled „Application of CAD/CAE class systems to aerodynamic analysis of electric race cars” are being presented problems solved by computer analysis of cars aerodynamics and free form modelling. Analysis have been subjected to existing race car of a Silesian Greenpower Race Team. On a basis of results of analysis of existence of Kammback aerodynamic effect innovative car body were modeled. Afterwards aerodynamic analysis were performed to verify existence of aerodynamic effect for innovative shape and to recognize aerodynamics parameters of the shape. Analysis results in the values of coefficients and aerodynamic drag forces. The resulting drag forces Fx, drag coefficients Cx(Cd) and aerodynamic factors Cx*A allowed to compare all of the shapes to each other. Pressure distribution, air velocities and streams courses were useful in determining aerodynamic features of analyzed shape. For aerodynamic tests was used Ansys Fluent CFD software. In a paper the ways of surface modeling with usage of Realize Shape module and classic surface modeling were presented. For shapes modeling Siemens NX 9.0 software was used. Obtained results were used to estimation of existing shapes and to make appropriate conclusions.
NASA Technical Reports Server (NTRS)
Smith, Michael D.; Bandfield, Joshua L.; Christensen, Philip R.
2000-01-01
We present two algorithms for the separation of spectral features caused by atmospheric and surface components in Thermal Emission Spectrometer (TES) data. One algorithm uses radiative transfer and successive least squares fitting to find spectral shapes first for atmospheric dust, then for water-ice aerosols, and then, finally, for surface emissivity. A second independent algorithm uses a combination of factor analysis, target transformation, and deconvolution to simultaneously find dust, water ice, and surface emissivity spectral shapes. Both algorithms have been applied to TES spectra, and both find very similar atmospheric and surface spectral shapes. For TES spectra taken during aerobraking and science phasing periods in nadir-geometry these two algorithms give meaningful and usable surface emissivity spectra that can be used for mineralogical identification.
TU-CD-207-09: Analysis of the 3-D Shape of Patients’ Breast for Breast Imaging and Surgery Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agasthya, G; Sechopoulos, I
2015-06-15
Purpose: Develop a method to accurately capture the 3-D shape of patients’ external breast surface before and during breast compression for mammography/tomosynthesis. Methods: During this IRB-approved, HIPAA-compliant study, 50 women were recruited to undergo 3-D breast surface imaging during breast compression and imaging for the cranio-caudal (CC) view on a digital mammography/breast tomosynthesis system. Digital projectors and cameras mounted on tripods were used to acquire 3-D surface images of the breast, in three conditions: (a) positioned on the support paddle before compression, (b) during compression by the compression paddle and (c) the anterior-posterior view with the breast in its natural,more » unsupported position. The breast was compressed to standard full compression with the compression paddle and a tomosynthesis image was acquired simultaneously with the 3-D surface. The 3-D surface curvature and deformation with respect to the uncompressed surface was analyzed using contours. The 3-D surfaces were voxelized to capture breast shape in a format that can be manipulated for further analysis. Results: A protocol was developed to accurately capture the 3-D shape of patients’ breast before and during compression for mammography. Using a pair of 3-D scanners, the 50 patient breasts were scanned in three conditions, resulting in accurate representations of the breast surfaces. The surfaces were post processed, analyzed using contours and voxelized, with 1 mm{sup 3} voxels, converting the breast shape into a format that can be easily modified as required. Conclusion: Accurate characterization of the breast curvature and shape for the generation of 3-D models is possible. These models can be used for various applications such as improving breast dosimetry, accurate scatter estimation, conducting virtual clinical trials and validating compression algorithms. Ioannis Sechopoulos is consultant for Fuji Medical Systems USA.« less
A Finger-Shaped Tactile Sensor for Fabric Surfaces Evaluation by 2-Dimensional Active Sliding Touch
Hu, Haihua; Han, Yezhen; Song, Aiguo; Chen, Shanguang; Wang, Chunhui; Wang, Zheng
2014-01-01
Sliding tactile perception is a basic function for human beings to determine the mechanical properties of object surfaces and recognize materials. Imitating this process, this paper proposes a novel finger-shaped tactile sensor based on a thin piezoelectric polyvinylidene fluoride (PVDF) film for surface texture measurement. A parallelogram mechanism is designed to ensure that the sensor applies a constant contact force perpendicular to the object surface, and a 2-dimensional movable mechanical structure is utilized to generate the relative motion at a certain speed between the sensor and the object surface. By controlling the 2-dimensional motion of the finger-shaped sensor along the object surface, small height/depth variation of surface texture changes the output charge of PVDF film then surface texture can be measured. In this paper, the finger-shaped tactile sensor is used to evaluate and classify five different kinds of linen. Fast Fourier Transformation (FFT) is utilized to get original attribute data of surface in the frequency domain, and principal component analysis (PCA) is used to compress the attribute data and extract feature information. Finally, low dimensional features are classified by Support Vector Machine (SVM). The experimental results show that this finger-shaped tactile sensor is effective and high accurate for discriminating the five textures. PMID:24618775
A finger-shaped tactile sensor for fabric surfaces evaluation by 2-dimensional active sliding touch.
Hu, Haihua; Han, Yezhen; Song, Aiguo; Chen, Shanguang; Wang, Chunhui; Wang, Zheng
2014-03-11
Sliding tactile perception is a basic function for human beings to determine the mechanical properties of object surfaces and recognize materials. Imitating this process, this paper proposes a novel finger-shaped tactile sensor based on a thin piezoelectric polyvinylidene fluoride (PVDF) film for surface texture measurement. A parallelogram mechanism is designed to ensure that the sensor applies a constant contact force perpendicular to the object surface, and a 2-dimensional movable mechanical structure is utilized to generate the relative motion at a certain speed between the sensor and the object surface. By controlling the 2-dimensional motion of the finger-shaped sensor along the object surface, small height/depth variation of surface texture changes the output charge of PVDF film then surface texture can be measured. In this paper, the finger-shaped tactile sensor is used to evaluate and classify five different kinds of linen. Fast Fourier Transformation (FFT) is utilized to get original attribute data of surface in the frequency domain, and principal component analysis (PCA) is used to compress the attribute data and extract feature information. Finally, low dimensional features are classified by Support Vector Machine (SVM). The experimental results show that this finger-shaped tactile sensor is effective and high accurate for discriminating the five textures.
3D shape decomposition and comparison for gallbladder modeling
NASA Astrophysics Data System (ADS)
Huang, Weimin; Zhou, Jiayin; Liu, Jiang; Zhang, Jing; Yang, Tao; Su, Yi; Law, Gim Han; Chui, Chee Kong; Chang, Stephen
2011-03-01
This paper presents an approach to gallbladder shape comparison by using 3D shape modeling and decomposition. The gallbladder models can be used for shape anomaly analysis and model comparison and selection in image guided robotic surgical training, especially for laparoscopic cholecystectomy simulation. The 3D shape of a gallbladder is first represented as a surface model, reconstructed from the contours segmented in CT data by a scheme of propagation based voxel learning and classification. To better extract the shape feature, the surface mesh is further down-sampled by a decimation filter and smoothed by a Taubin algorithm, followed by applying an advancing front algorithm to further enhance the regularity of the mesh. Multi-scale curvatures are then computed on the regularized mesh for the robust saliency landmark localization on the surface. The shape decomposition is proposed based on the saliency landmarks and the concavity, measured by the distance from the surface point to the convex hull. With a given tolerance the 3D shape can be decomposed and represented as 3D ellipsoids, which reveal the shape topology and anomaly of a gallbladder. The features based on the decomposed shape model are proposed for gallbladder shape comparison, which can be used for new model selection. We have collected 19 sets of abdominal CT scan data with gallbladders, some shown in normal shape and some in abnormal shapes. The experiments have shown that the decomposed shapes reveal important topology features.
Determining Tooth Occlusal Surface Relief Indicator by Means of Automated 3d Shape Analysis
NASA Astrophysics Data System (ADS)
Gaboutchian, A. V.; Knyaz, V. A.
2017-05-01
Determining occlusal surface relief indicator plays an important role in odontometric tooth shape analysis. An analysis of the parameters of surface relief indicators provides valuable information about closure of dental arches (occlusion) and changes in structure of teeth in lifetime. Such data is relevant for dentistry or anthropology applications. Descriptive techniques commonly used for surface relief evaluation have limited precision which, as a result, does not provide for reliability of conclusions about structure and functioning of teeth. Parametric techniques developed for such applications need special facilities and are time-consuming which limits their spread and ease to access. Nevertheless the use of 3D models, obtained by photogrammetric techniques, allows attaining required measurements accuracy and has a potential for process automation. We introduce new approaches for determining tooth occlusal surface relief indicator and provide data on efficiency in use of different indicators in natural attrition evaluation.
Human eyeball model reconstruction and quantitative analysis.
Xing, Qi; Wei, Qi
2014-01-01
Determining shape of the eyeball is important to diagnose eyeball disease like myopia. In this paper, we present an automatic approach to precisely reconstruct three dimensional geometric shape of eyeball from MR Images. The model development pipeline involved image segmentation, registration, B-Spline surface fitting and subdivision surface fitting, neither of which required manual interaction. From the high resolution resultant models, geometric characteristics of the eyeball can be accurately quantified and analyzed. In addition to the eight metrics commonly used by existing studies, we proposed two novel metrics, Gaussian Curvature Analysis and Sphere Distance Deviation, to quantify the cornea shape and the whole eyeball surface respectively. The experiment results showed that the reconstructed eyeball models accurately represent the complex morphology of the eye. The ten metrics parameterize the eyeball among different subjects, which can potentially be used for eye disease diagnosis.
Optical Characterization of Deep-Space Object Rotation States
2014-09-01
surface bi-directional reflectance distribution function ( BRDF ), and then estimate the asteroid’s shape via a best-fit parameterized model . This hybrid...approach can be used because asteroid BRDFs are relatively well studied, but their shapes are generally unknown [17]. Asteroid shape models range...can be accomplished using a shape-dependent method that employs a model of the shape and reflectance characteristics of the object. Our analysis
Computational Geometry and Computer-Aided Design
NASA Technical Reports Server (NTRS)
Fay, T. H. (Compiler); Shoosmith, J. N. (Compiler)
1985-01-01
Extended abstracts of papers addressing the analysis, representation, and synthesis of shape information are presented. Curves and shape control, grid generation and contouring, solid modelling, surfaces, and curve intersection are specifically addressed.
Kim, Won Hwa; Singh, Vikas; Chung, Moo K.; Hinrichs, Chris; Pachauri, Deepti; Okonkwo, Ozioma C.; Johnson, Sterling C.
2014-01-01
Statistical analysis on arbitrary surface meshes such as the cortical surface is an important approach to understanding brain diseases such as Alzheimer’s disease (AD). Surface analysis may be able to identify specific cortical patterns that relate to certain disease characteristics or exhibit differences between groups. Our goal in this paper is to make group analysis of signals on surfaces more sensitive. To do this, we derive multi-scale shape descriptors that characterize the signal around each mesh vertex, i.e., its local context, at varying levels of resolution. In order to define such a shape descriptor, we make use of recent results from harmonic analysis that extend traditional continuous wavelet theory from the Euclidean to a non-Euclidean setting (i.e., a graph, mesh or network). Using this descriptor, we conduct experiments on two different datasets, the Alzheimer’s Disease NeuroImaging Initiative (ADNI) data and images acquired at the Wisconsin Alzheimer’s Disease Research Center (W-ADRC), focusing on individuals labeled as having Alzheimer’s disease (AD), mild cognitive impairment (MCI) and healthy controls. In particular, we contrast traditional univariate methods with our multi-resolution approach which show increased sensitivity and improved statistical power to detect a group-level effects. We also provide an open source implementation. PMID:24614060
Rekik, Islem; Li, Gang; Lin, Weili; Shen, Dinggang
2016-02-01
Longitudinal neuroimaging analysis methods have remarkably advanced our understanding of early postnatal brain development. However, learning predictive models to trace forth the evolution trajectories of both normal and abnormal cortical shapes remains broadly absent. To fill this critical gap, we pioneered the first prediction model for longitudinal developing cortical surfaces in infants using a spatiotemporal current-based learning framework solely from the baseline cortical surface. In this paper, we detail this prediction model and even further improve its performance by introducing two key variants. First, we use the varifold metric to overcome the limitations of the current metric for surface registration that was used in our preliminary study. We also extend the conventional varifold-based surface registration model for pairwise registration to a spatiotemporal surface regression model. Second, we propose a morphing process of the baseline surface using its topographic attributes such as normal direction and principal curvature sign. Specifically, our method learns from longitudinal data both the geometric (vertices positions) and dynamic (temporal evolution trajectories) features of the infant cortical surface, comprising a training stage and a prediction stage. In the training stage, we use the proposed varifold-based shape regression model to estimate geodesic cortical shape evolution trajectories for each training subject. We then build an empirical mean spatiotemporal surface atlas. In the prediction stage, given an infant, we select the best learnt features from training subjects to simultaneously predict the cortical surface shapes at all later timepoints, based on similarity metrics between this baseline surface and the learnt baseline population average surface atlas. We used a leave-one-out cross validation method to predict the inner cortical surface shape at 3, 6, 9 and 12 months of age from the baseline cortical surface shape at birth. Our method attained a higher prediction accuracy and better captured the spatiotemporal dynamic change of the highly folded cortical surface than the previous proposed prediction method. Copyright © 2015 Elsevier B.V. All rights reserved.
Failure rate and reliability of the KOMATSU hydraulic excavator in surface limestone mine
NASA Astrophysics Data System (ADS)
Harish Kumar N., S.; Choudhary, R. P.; Murthy, Ch. S. N.
2018-04-01
The model with failure rate function of bathtub-shaped is helpful in reliability analysis of any system and particularly in reliability associated privative maintenance. The usual Weibull distribution is, however, not capable to model the complete lifecycle of the any with a bathtub-shaped failure rate function. In this paper, failure rate and reliability analysis of the KOMATSU hydraulic excavator/shovel in surface mine is presented and also to improve the reliability and decrease the failure rate of each subsystem of the shovel based on the preventive maintenance. The model of the bathtub-shaped for shovel can also be seen as a simplification of the Weibull distribution.
Diffeomorphic Sulcal Shape Analysis on the Cortex
Joshi, Shantanu H.; Cabeen, Ryan P.; Joshi, Anand A.; Sun, Bo; Dinov, Ivo; Narr, Katherine L.; Toga, Arthur W.; Woods, Roger P.
2014-01-01
We present a diffeomorphic approach for constructing intrinsic shape atlases of sulci on the human cortex. Sulci are represented as square-root velocity functions of continuous open curves in ℝ3, and their shapes are studied as functional representations of an infinite-dimensional sphere. This spherical manifold has some advantageous properties – it is equipped with a Riemannian metric on the tangent space and facilitates computational analyses and correspondences between sulcal shapes. Sulcal shape mapping is achieved by computing geodesics in the quotient space of shapes modulo scales, translations, rigid rotations and reparameterizations. The resulting sulcal shape atlas preserves important local geometry inherently present in the sample population. The sulcal shape atlas is integrated in a cortical registration framework and exhibits better geometric matching compared to the conventional euclidean method. We demonstrate experimental results for sulcal shape mapping, cortical surface registration, and sulcal classification for two different surface extraction protocols for separate subject populations. PMID:22328177
NASA Technical Reports Server (NTRS)
Bachtell, E. E.; Thiemet, W. F.; Morosow, G.
1987-01-01
To demonstrate the design and integration of a reflective mesh surface to a deployable truss structure, a mesh reflector was installed on a 15 foot box truss cube. The specific features demonstrated include: (1) sewing seams in reflective mesh; (2) mesh stretching to desired preload; (3) installation of surface tie cords; (4) installation of reflective surface on truss; (5) setting of reflective surface; (6) verification of surface shape/accuracy; (7) storage and deployment; (8) repeatability of reflector surface; and (9) comparison of surface with predicted shape using analytical methods developed under a previous task.
NASA Astrophysics Data System (ADS)
Cheng, Liangliang; Busca, Giorgio; Cigada, Alfredo
2017-07-01
Modal analysis is commonly considered as an effective tool to obtain the intrinsic characteristics of structures including natural frequencies, modal damping ratios, and mode shapes, which are significant indicators for monitoring the health status of engineering structures. The complex mode indicator function (CMIF) can be regarded as an effective numerical tool to perform modal analysis. In this paper, experimental strain modal analysis based on the CMIF has been introduced. Moreover, a distributed fiber-optic sensor, as a dense measuring device, has been applied to acquire strain data along a beam surface. Thanks to the dense spatial resolution of the distributed fiber optics, more detailed mode shapes could be obtained. In order to test the effectiveness of the method, a mass lump—considered as a linear damage component—has been attached to the surface of the beam, and damage detection based on strain mode shape has been carried out. The results manifest that strain modal parameters can be estimated effectively by utilizing the CMIF based on the corresponding simulations and experiments. Furthermore, damage detection based on strain mode shapes benefits from the accuracy of strain mode shape recognition and the excellent performance of the distributed fiber optics.
Koshiyama, Kenichiro; Nishimoto, Keisuke; Ii, Satoshi; Sera, Toshihiro; Wada, Shigeo
2018-01-20
The pulmonary acinus is a dead-end microstructure that consists of ducts and alveoli. High-resolution micro-CT imaging has recently provided detailed anatomical information of a complete in vivo acinus, but relating its mechanical response with its detailed acinar structure remains challenging. This study aimed to investigate the mechanical response of acinar tissue in a whole acinus for static inflation using computational approaches. We performed finite element analysis of a whole acinus for static inflation. The acinar structure model was generated based on micro-CT images of an intact acinus. A continuum mechanics model of the lung parenchyma was used for acinar tissue material model, and surface tension effects were explicitly included. An anisotropic mechanical field analysis based on a stretch tensor was combined with a curvature-based local structure analysis. The airspace of the acinus exhibited nonspherical deformation as a result of the anisotropic deformation of acinar tissue. A strain hotspot occurred at the ridge-shaped region caused by a rod-like deformation of acinar tissue on the ridge. The local structure becomes bowl-shaped for inflation and, without surface tension effects, the surface of the bowl-shaped region primarily experiences isotropic deformation. Surface tension effects suppressed the increase in airspace volume and inner surface area, while facilitating anisotropic deformation on the alveolar surface. In the lungs, the heterogeneous acinar structure and surface tension induce anisotropic deformation at the acinar and alveolar scales. Further research is needed on structural variation of acini, inter-acini connectivity, or dynamic behavior to understand multiscale lung mechanics. Copyright © 2018 Elsevier Ltd. All rights reserved.
Quantitative assessment of human body shape using Fourier analysis
NASA Astrophysics Data System (ADS)
Friess, Martin; Rohlf, F. J.; Hsiao, Hongwei
2004-04-01
Fall protection harnesses are commonly used to reduce the number and severity of injuries. Increasing the efficiency of harness design requires the size and shape variation of the user population to be assessed as detailed and as accurately as possible. In light of the unsatisfactory performance of traditional anthropometry with respect to such assessments, we propose the use of 3D laser surface scans of whole bodies and the statistical analysis of elliptic Fourier coefficients. Ninety-eight male and female adults were scanned. Key features of each torso were extracted as a 3D curve along front, back and the thighs. A 3D extension of Elliptic Fourier analysis4 was used to quantify their shape through multivariate statistics. Shape change as a function of size (allometry) was predicted by regressing the coefficients onto stature, weight and hip circumference. Upper and lower limits of torso shape variation were determined and can be used to redefine the design of the harness that will fit most individual body shapes. Observed allometric changes are used for adjustments to the harness shape in each size. Finally, the estimated outline data were used as templates for a free-form deformation of the complete torso surface using NURBS models (non-uniform rational B-splines).
Fracture surface analysis of a quenched (α+β)-metastable titanium alloy
NASA Astrophysics Data System (ADS)
Illarionov, A. G.; Stepanov, S. I.; Demakov, S. L.
2017-12-01
Fracture surface analysis is conducted by means of SEM for VT16 titanium alloy specimens solution-treated at temperatures ranging from 700 to 875 °C, water-quenched and subjected to tensile testing. A cup and cone shape failure and dimple microstructure of the fracture surface indicates the ductile behavior of the alloy. Dimple dimensions correlated with the β-grain size of the alloy in quenched condition. The fracture area (namely, the size; the cup and cone shape) depends on the volume fraction of the primary α-phase in the quenched sample. However, the fracture surface changes considerably when the strain-induced β-αʺ-transformation takes place during tensile testing, resulting in the increase of alloy ductility.
The effect of texture on the shaft surface on the sealing performance of radial lip seals
NASA Astrophysics Data System (ADS)
Guo, Fei; Jia, XiaoHong; Gao, Zhi; Wang, YuMing
2014-07-01
On the basis of elastohydrodynamic model, the present study numerically analyzes the effect of various microdimple texture shapes, namely, circular, square, oriented isosceles triangular, on the pumping rate and the friction torque of radial lip seals, and determines the microdimple texture shape that can produce positive pumping rate. The area ratio, depth and shape dimension of a single texture are the most important geometric parameters which influence the tribological performance. According to the selected texture shape, parameter analysis is conducted to determine the optimal combination for the above three parameters. Simultaneously, the simulated performances of radial lip seal with texture on the shaft surface are compared with those of the conventional lip seal without any texture on the shaft surface.
Microcinematographic analysis of tethered Leptospira illini.
Charon, N W; Daughtry, G R; McCuskey, R S; Franz, G N
1984-01-01
A model of Leptospira motility was recently proposed. One element of the model states that in translating cells the anterior spiral-shaped end gyrates counterclockwise and the posterior hook-shaped end gyrates clockwise. We tested these predictions by analyzing cells tethered to a glass surface. Leptospira illini was incubated with antibody-coated latex beads (Ab-beads). These beads adhered to the cells, and subsequently some cells became attached to either the slide or the cover glass via the Ab-beads. As previously reported, these cells rapidly moved back and forth across the surface of the beads. In addition, a general trend was observed: cells tethered to the cover glass rotated clockwise around the Ab-bead; cells tethered to the slide rotated counterclockwise around the Ab-bead. A computer-aided microcinematographic analysis of tethered cells indicated that the direction of rotation of cells around the Ab-bead was a function of both the surface of attachment and the shape of the cell ends. The results can best be explained by assuming that the gyrating ends interact with the glass surface to cause rotation around the Ab-beads. The analysis obtained indicates that the hook- and spiral-shaped ends rotate in the directions predicted by the model. In addition, the tethered cell assay permitted detection of rapid, coordinated reversals of the cell ends, e.g., cells rapidly switched from a hook-spiral configuration to a spiral-hook configuration. These results suggest the existance of a mechanism which coordinates the shape of the cell ends of L. illini. Images PMID:6501226
NASA Astrophysics Data System (ADS)
Miyata, Y.; Suzuki, T.; Takechi, M.; Urano, H.; Ide, S.
2015-07-01
For the purpose of stable plasma equilibrium control and detailed analysis, it is essential to reconstruct an accurate plasma boundary on the poloidal cross section in tokamak devices. The Cauchy condition surface (CCS) method is a numerical approach for calculating the spatial distribution of the magnetic flux outside a hypothetical surface and reconstructing the plasma boundary from the magnetic measurements located outside the plasma. The accuracy of the plasma shape reconstruction has been assessed by comparing the CCS method and an equilibrium calculation in JT-60SA with a high elongation and triangularity of plasma shape. The CCS, on which both Dirichlet and Neumann conditions are unknown, is defined as a hypothetical surface located inside the real plasma region. The accuracy of the plasma shape reconstruction is sensitive to the CCS free parameters such as the number of unknown parameters and the shape in JT-60SA. It is found that the optimum number of unknown parameters and the size of the CCS that minimizes errors in the reconstructed plasma shape are in proportion to the plasma size. Furthermore, it is shown that the accuracy of the plasma shape reconstruction is greatly improved using the optimum number of unknown parameters and shape of the CCS, and the reachable reconstruction errors in plasma shape and locations of strike points are within the target ranges in JT-60SA.
Skin injury model classification based on shape vector analysis
2012-01-01
Background: Skin injuries can be crucial in judicial decision making. Forensic experts base their classification on subjective opinions. This study investigates whether known classes of simulated skin injuries are correctly classified statistically based on 3D surface models and derived numerical shape descriptors. Methods: Skin injury surface characteristics are simulated with plasticine. Six injury classes – abrasions, incised wounds, gunshot entry wounds, smooth and textured strangulation marks as well as patterned injuries - with 18 instances each are used for a k-fold cross validation with six partitions. Deformed plasticine models are captured with a 3D surface scanner. Mean curvature is estimated for each polygon surface vertex. Subsequently, distance distributions and derived aspect ratios, convex hulls, concentric spheres, hyperbolic points and Fourier transforms are used to generate 1284-dimensional shape vectors. Subsequent descriptor reduction maximizing SNR (signal-to-noise ratio) result in an average of 41 descriptors (varying across k-folds). With non-normal multivariate distribution of heteroskedastic data, requirements for LDA (linear discriminant analysis) are not met. Thus, shrinkage parameters of RDA (regularized discriminant analysis) are optimized yielding a best performance with λ = 0.99 and γ = 0.001. Results: Receiver Operating Characteristic of a descriptive RDA yields an ideal Area Under the Curve of 1.0for all six categories. Predictive RDA results in an average CRR (correct recognition rate) of 97,22% under a 6 partition k-fold. Adding uniform noise within the range of one standard deviation degrades the average CRR to 71,3%. Conclusions: Digitized 3D surface shape data can be used to automatically classify idealized shape models of simulated skin injuries. Deriving some well established descriptors such as histograms, saddle shape of hyperbolic points or convex hulls with subsequent reduction of dimensionality while maximizing SNR seem to work well for the data at hand, as predictive RDA results in CRR of 97,22%. Objective basis for discrimination of non-overlapping hypotheses or categories are a major issue in medicolegal skin injury analysis and that is where this method appears to be strong. Technical surface quality is important in that adding noise clearly degrades CRR. Trial registration: This study does not cover the results of a controlled health care intervention as only plasticine was used. Thus, there was no trial registration. PMID:23497357
The generation and use of numerical shape models for irregular Solar System objects
NASA Technical Reports Server (NTRS)
Simonelli, Damon P.; Thomas, Peter C.; Carcich, Brian T.; Veverka, Joseph
1993-01-01
We describe a procedure that allows the efficient generation of numerical shape models for irregular Solar System objects, where a numerical model is simply a table of evenly spaced body-centered latitudes and longitudes and their associated radii. This modeling technique uses a combination of data from limbs, terminators, and control points, and produces shape models that have some important advantages over analytical shape models. Accurate numerical shape models make it feasible to study irregular objects with a wide range of standard scientific analysis techniques. These applications include the determination of moments of inertia and surface gravity, the mapping of surface locations and structural orientations, photometric measurement and analysis, the reprojection and mosaicking of digital images, and the generation of albedo maps. The capabilities of our modeling procedure are illustrated through the development of an accurate numerical shape model for Phobos and the production of a global, high-resolution, high-pass-filtered digital image mosaic of this Martian moon. Other irregular objects that have been modeled, or are being modeled, include the asteroid Gaspra and the satellites Deimos, Amalthea, Epimetheus, Janus, Hyperion, and Proteus.
Mindboggling morphometry of human brains
Bao, Forrest S.; Giard, Joachim; Stavsky, Eliezer; Lee, Noah; Rossa, Brian; Reuter, Martin; Chaibub Neto, Elias
2017-01-01
Mindboggle (http://mindboggle.info) is an open source brain morphometry platform that takes in preprocessed T1-weighted MRI data and outputs volume, surface, and tabular data containing label, feature, and shape information for further analysis. In this article, we document the software and demonstrate its use in studies of shape variation in healthy and diseased humans. The number of different shape measures and the size of the populations make this the largest and most detailed shape analysis of human brains ever conducted. Brain image morphometry shows great potential for providing much-needed biological markers for diagnosing, tracking, and predicting progression of mental health disorders. Very few software algorithms provide more than measures of volume and cortical thickness, while more subtle shape measures may provide more sensitive and specific biomarkers. Mindboggle computes a variety of (primarily surface-based) shapes: area, volume, thickness, curvature, depth, Laplace-Beltrami spectra, Zernike moments, etc. We evaluate Mindboggle’s algorithms using the largest set of manually labeled, publicly available brain images in the world and compare them against state-of-the-art algorithms where they exist. All data, code, and results of these evaluations are publicly available. PMID:28231282
An Elliptic PDE Approach for Shape Characterization
Haidar, Haissam; Bouix, Sylvain; Levitt, James; McCarley, Robert W.; Shenton, Martha E.; Soul, Janet S.
2009-01-01
This paper presents a novel approach to analyze the shape of anatomical structures. Our methodology is rooted in classical physics and in particular Poisson's equation, a fundamental partial differential equation [1]. The solution to this equation and more specifically its equipotential surfaces display properties that are useful for shape analysis. We present a numerical algorithm to calculate the length of streamlines formed by the gradient field of the solution to this equation for 2D and 3D objects. The length of the streamlines along the equipotential surfaces was used to build a new function which can characterize the shape of objects. We illustrate our method on 2D synthetic and natural shapes as well as 3D medical data. PMID:17271986
Potential flow analysis of glaze ice accretions on an airfoil
NASA Technical Reports Server (NTRS)
Zaguli, R. J.
1984-01-01
The results of an analytical/experimental study of the flow fields about an airfoil with leading edge glaze ice accretion shapes are presented. Tests were conducted in the Icing Research Tunnel to measure surface pressure distributions and boundary layer separation reattachment characteristics on a general aviation wing section to which was affixed wooden ice shapes which approximated typical glaze ice accretions. Comparisons were made with predicted pressure distributions using current airfoil analysis codes as well as the Bristow mixed analysis/design airfoil panel code. The Bristow code was also used to predict the separation reattachment dividing streamline by inputting the appropriate experimental surface pressure distribution.
Profiles of electrified drops and bubbles
NASA Technical Reports Server (NTRS)
Basaran, O. A.; Scriven, L. E.
1982-01-01
Axisymmetric equilibrium shapes of conducting drops and bubbles, (1) pendant or sessile on one face of a circular parallel-plate capacitor or (2) free and surface-charged, are found by solving simultaneously the free boundary problem consisting of the augmented Young-Laplace equation for surface shape and the Laplace equation for electrostatic field, given the surface potential. The problem is nonlinear and the method is a finite element algorithm employing Newton iteration, a modified frontal solver, and triangular as well as quadrilateral tessellations of the domain exterior to the drop in order to facilitate refined analysis of sharply curved drop tips seen in experiments. The stability limit predicted by this computer-aided theoretical analysis agrees well with experiments.
Moire technique utilization for detection and measurement of scoliosis
NASA Astrophysics Data System (ADS)
Zawieska, Dorota; Podlasiak, Piotr
1993-02-01
Moire projection method enables non-contact measurement of the shape or deformation of different surfaces and constructions by fringe pattern analysis. The fringe map acquisition of the whole surface of the object under test is one of the main advantages compared with 'point by point' methods. The computer analyzes the shape of the whole surface and next user can selected different points or cross section of the object map. In this paper a few typical examples of an application of the moire technique in solving different medical problems will be presented. We will also present to you the equipment the moire pattern analysis is done in real time using the phase stepping method with CCD camera.
Bruse, Jan L; McLeod, Kristin; Biglino, Giovanni; Ntsinjana, Hopewell N; Capelli, Claudio; Hsia, Tain-Yen; Sermesant, Maxime; Pennec, Xavier; Taylor, Andrew M; Schievano, Silvia
2016-05-31
Medical image analysis in clinical practice is commonly carried out on 2D image data, without fully exploiting the detailed 3D anatomical information that is provided by modern non-invasive medical imaging techniques. In this paper, a statistical shape analysis method is presented, which enables the extraction of 3D anatomical shape features from cardiovascular magnetic resonance (CMR) image data, with no need for manual landmarking. The method was applied to repaired aortic coarctation arches that present complex shapes, with the aim of capturing shape features as biomarkers of potential functional relevance. The method is presented from the user-perspective and is evaluated by comparing results with traditional morphometric measurements. Steps required to set up the statistical shape modelling analyses, from pre-processing of the CMR images to parameter setting and strategies to account for size differences and outliers, are described in detail. The anatomical mean shape of 20 aortic arches post-aortic coarctation repair (CoA) was computed based on surface models reconstructed from CMR data. By analysing transformations that deform the mean shape towards each of the individual patient's anatomy, shape patterns related to differences in body surface area (BSA) and ejection fraction (EF) were extracted. The resulting shape vectors, describing shape features in 3D, were compared with traditionally measured 2D and 3D morphometric parameters. The computed 3D mean shape was close to population mean values of geometric shape descriptors and visually integrated characteristic shape features associated with our population of CoA shapes. After removing size effects due to differences in body surface area (BSA) between patients, distinct 3D shape features of the aortic arch correlated significantly with EF (r = 0.521, p = .022) and were well in agreement with trends as shown by traditional shape descriptors. The suggested method has the potential to discover previously unknown 3D shape biomarkers from medical imaging data. Thus, it could contribute to improving diagnosis and risk stratification in complex cardiac disease.
The shape of a hole and that of the surface-with-hole cannot be analyzed separately.
Bertamini, Marco; Helmy, Mai Salah
2012-08-01
Figure-ground organization has a central role in visual perception, since it creates the regions to which properties, such as shape descriptions, are then assigned. However, there is disagreement on how much shape analysis is independent of figure-ground. The reversal of figure-ground of a single closed region is the purest form of figure-ground organization, and the two resulting percepts are that of an object and that of a hole. Both object and hole are nonaccidental regions and can share an identical outline. We devised a test of how figure-ground and contour ownership dramatically affect how shape is processed. Observers judged the shape of a contour that could be either the same as or different from an irrelevant surrounding contour. We report that different (incongruent) inside and outside contours produce a stronger interference effect when they form a single object-with-hole, as compared with a hierarchical set of surfaces or a single hole separating different surfaces (a trench). We conclude that (1) which surface owns the contour constrains the interference between shapes and that (2) despite some recent claims, holes do not display objectlike properties.
Liquid jet impingement normal to a disk in zero gravity. Ph.D. Thesis Toledo Univ.
NASA Technical Reports Server (NTRS)
Labus, T. L.
1977-01-01
The free surface shapes of circular liquid jets impinging normal to sharp-edged disks in zero gravity are determined. Zero gravity drop tower experiments yielded three distinct flow patterns that were classified in terms of the relative effects of surface tension and inertial forces. An order of magnitude analysis was conducted that indicated regions where viscous forces were not significant in the computation of free surface shapes. The free surface analysis was simplified by transforming the governing potential flow equations and boundary conditions into the inverse plane, where the stream function and velocity potential became the coordinates. The resulting nonlinear equations were solved by standard finite difference methods, and comparisons were made with the experimental data for the inertia dominated regime.
NASA Technical Reports Server (NTRS)
Ko, William L.; Fleischer, Van Tran
2014-01-01
To eliminate the need to use finite-element modeling for structure shape predictions, a new method was invented. This method is to use the Displacement Transfer Functions to transform the measured surface strains into deflections for mapping out overall structural deformed shapes. The Displacement Transfer Functions are expressed in terms of rectilinearly distributed surface strains, and contain no material properties. This report is to apply the patented method to the shape predictions of non-symmetrically loaded slender curved structures with different curvatures up to a full circle. Because the measured surface strains are not available, finite-element analysis had to be used to analytically generate the surface strains. Previously formulated straight-beam Displacement Transfer Functions were modified by introducing the curvature-effect correction terms. Through single-point or dual-point collocations with finite-elementgenerated deflection curves, functional forms of the curvature-effect correction terms were empirically established. The resulting modified Displacement Transfer Functions can then provide quite accurate shape predictions. Also, the uniform straight-beam Displacement Transfer Function was applied to the shape predictions of a section-cut of a generic capsule (GC) outer curved sandwich wall. The resulting GC shape predictions are quite accurate in partial regions where the radius of curvature does not change sharply.
Deciphering the shape and deformation of secondary structures through local conformation analysis
2011-01-01
Background Protein deformation has been extensively analysed through global methods based on RMSD, torsion angles and Principal Components Analysis calculations. Here we use a local approach, able to distinguish among the different backbone conformations within loops, α-helices and β-strands, to address the question of secondary structures' shape variation within proteins and deformation at interface upon complexation. Results Using a structural alphabet, we translated the 3 D structures of large sets of protein-protein complexes into sequences of structural letters. The shape of the secondary structures can be assessed by the structural letters that modeled them in the structural sequences. The distribution analysis of the structural letters in the three protein compartments (surface, core and interface) reveals that secondary structures tend to adopt preferential conformations that differ among the compartments. The local description of secondary structures highlights that curved conformations are preferred on the surface while straight ones are preferred in the core. Interfaces display a mixture of local conformations either preferred in core or surface. The analysis of the structural letters transition occurring between protein-bound and unbound conformations shows that the deformation of secondary structure is tightly linked to the compartment preference of the local conformations. Conclusion The conformation of secondary structures can be further analysed and detailed thanks to a structural alphabet which allows a better description of protein surface, core and interface in terms of secondary structures' shape and deformation. Induced-fit modification tendencies described here should be valuable information to identify and characterize regions under strong structural constraints for functional reasons. PMID:21284872
Deciphering the shape and deformation of secondary structures through local conformation analysis.
Baussand, Julie; Camproux, Anne-Claude
2011-02-01
Protein deformation has been extensively analysed through global methods based on RMSD, torsion angles and Principal Components Analysis calculations. Here we use a local approach, able to distinguish among the different backbone conformations within loops, α-helices and β-strands, to address the question of secondary structures' shape variation within proteins and deformation at interface upon complexation. Using a structural alphabet, we translated the 3 D structures of large sets of protein-protein complexes into sequences of structural letters. The shape of the secondary structures can be assessed by the structural letters that modeled them in the structural sequences. The distribution analysis of the structural letters in the three protein compartments (surface, core and interface) reveals that secondary structures tend to adopt preferential conformations that differ among the compartments. The local description of secondary structures highlights that curved conformations are preferred on the surface while straight ones are preferred in the core. Interfaces display a mixture of local conformations either preferred in core or surface. The analysis of the structural letters transition occurring between protein-bound and unbound conformations shows that the deformation of secondary structure is tightly linked to the compartment preference of the local conformations. The conformation of secondary structures can be further analysed and detailed thanks to a structural alphabet which allows a better description of protein surface, core and interface in terms of secondary structures' shape and deformation. Induced-fit modification tendencies described here should be valuable information to identify and characterize regions under strong structural constraints for functional reasons.
Three-dimensional analysis of facial shape and symmetry in twins using laser surface scanning.
Djordjevic, J; Jadallah, M; Zhurov, A I; Toma, A M; Richmond, S
2013-08-01
Three-dimensional analysis of facial shape and symmetry in twins. Faces of 37 twin pairs [19 monozygotic (MZ) and 18 dizygotic (DZ)] were laser scanned at the age of 15 during a follow-up of the Avon Longitudinal Study of Parents and Children (ALSPAC), South West of England. Facial shape was analysed using two methods: 1) Procrustes analysis of landmark configurations (63 x, y and z coordinates of 21 facial landmarks) and 2) three-dimensional comparisons of facial surfaces within each twin pair. Monozygotic and DZ twins were compared using ellipsoids representing 95% of the variation in landmark configurations and surface-based average faces. Facial symmetry was analysed by superimposing the original and mirror facial images. Both analyses showed greater similarity of facial shape in MZ twins, with lower third being the least similar. Procrustes analysis did not reveal any significant difference in facial landmark configurations of MZ and DZ twins. The average faces of MZ and DZ males were coincident in the forehead, supraorbital and infraorbital ridges, the bridge of the nose and lower lip. In MZ and DZ females, the eyes, supraorbital and infraorbital ridges, philtrum and lower part of the cheeks were coincident. Zygosity did not seem to influence the amount of facial symmetry. Lower facial third was the most asymmetrical. Three-dimensional analyses revealed differences in facial shapes of MZ and DZ twins. The relative contribution of genetic and environmental factors is different for the upper, middle and lower facial thirds. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Marras, L.; Fontana, R.; Gambino, M. C.; Greco, M.; Materazzi, M.; Pampaloni, E.; Pezzati, L.; Poggi, P.
The knowledge of the shape of an artwork is an important element for its study and conservation. When dealing with a stone statue, roughness measurement is a very useful contribution to document its surface conditions, to assess either changes due to restoration intervention or surface decays due to weathering agents, and to monitor its time-evolution in terms of shape variations. In this work we present the preliminary results of the statistical analysis carried out on acquired data relative to six areas of the Michelangelo's David marble statue, representative of differently degraded surfaces. Determination of the roughness and its relative characteristic wavelength is shown.
Statistical 3D shape analysis of gender differences in lateral ventricles
NASA Astrophysics Data System (ADS)
He, Qing; Karpman, Dmitriy; Duan, Ye
2010-03-01
This paper aims at analyzing gender differences in the 3D shapes of lateral ventricles, which will provide reference for the analysis of brain abnormalities related to neurological disorders. Previous studies mostly focused on volume analysis, and the main challenge in shape analysis is the required step of establishing shape correspondence among individual shapes. We developed a simple and efficient method based on anatomical landmarks. 14 females and 10 males with matching ages participated in this study. 3D ventricle models were segmented from MR images by a semiautomatic method. Six anatomically meaningful landmarks were identified by detecting the maximum curvature point in a small neighborhood of a manually clicked point on the 3D model. Thin-plate spline was used to transform a randomly selected template shape to each of the rest shape instances, and the point correspondence was established according to Euclidean distance and surface normal. All shapes were spatially aligned by Generalized Procrustes Analysis. Hotelling T2 twosample metric was used to compare the ventricle shapes between males and females, and False Discovery Rate estimation was used to correct for the multiple comparison. The results revealed significant differences in the anterior horn of the right ventricle.
Rapid B-rep model preprocessing for immersogeometric analysis using analytic surfaces
Wang, Chenglong; Xu, Fei; Hsu, Ming-Chen; Krishnamurthy, Adarsh
2017-01-01
Computational fluid dynamics (CFD) simulations of flow over complex objects have been performed traditionally using fluid-domain meshes that conform to the shape of the object. However, creating shape conforming meshes for complicated geometries like automobiles require extensive geometry preprocessing. This process is usually tedious and requires modifying the geometry, including specialized operations such as defeaturing and filling of small gaps. Hsu et al. (2016) developed a novel immersogeometric fluid-flow method that does not require the generation of a boundary-fitted mesh for the fluid domain. However, their method used the NURBS parameterization of the surfaces for generating the surface quadrature points to enforce the boundary conditions, which required the B-rep model to be converted completely to NURBS before analysis can be performed. This conversion usually leads to poorly parameterized NURBS surfaces and can lead to poorly trimmed or missing surface features. In addition, converting simple geometries such as cylinders to NURBS imposes a performance penalty since these geometries have to be dealt with as rational splines. As a result, the geometry has to be inspected again after conversion to ensure analysis compatibility and can increase the computational cost. In this work, we have extended the immersogeometric method to generate surface quadrature points directly using analytic surfaces. We have developed quadrature rules for all four kinds of analytic surfaces: planes, cones, spheres, and toroids. We have also developed methods for performing adaptive quadrature on trimmed analytic surfaces. Since analytic surfaces have frequently been used for constructing solid models, this method is also faster to generate quadrature points on real-world geometries than using only NURBS surfaces. To assess the accuracy of the proposed method, we perform simulations of a benchmark problem of flow over a torpedo shape made of analytic surfaces and compare those to immersogeometric simulations of the same model with NURBS surfaces. We also compare the results of our immersogeometric method with those obtained using boundary-fitted CFD of a tessellated torpedo shape, and quantities of interest such as drag coefficient are in good agreement. Finally, we demonstrate the effectiveness of our immersogeometric method for high-fidelity industrial scale simulations by performing an aerodynamic analysis of a truck that has a large percentage of analytic surfaces. Using analytic surfaces over NURBS avoids unnecessary surface type conversion and significantly reduces model-preprocessing time, while providing the same accuracy for the aerodynamic quantities of interest. PMID:29051678
NASA Astrophysics Data System (ADS)
Yamaguchi, R.; Suga, T.
2016-12-01
Recent observational studies show that, during the warming season, a large amount of heat flux is penetrated through the base of thin mixed layer by vertical eddy diffusion, in addition to penetration of solar radiation [1]. In order to understand this heat penetration process due to vertical eddy diffusivity and its contribution to seasonal variation of sea surface temperature, we investigated the evolution of thermal stratification below the summertime thin mixed layer (i.e. evolution of seasonal thermocline) and its vertical structure in the North Pacific using high vertical resolution temperature profile observed by Argo floats. We quantified the vertical structure of seasonal thermocline as deviations from the linear structure where the vertical gradient of temperature is constant, that is, "shape anomaly". The shape anomaly is variable representing the extent of the bend of temperature profiles. We found that there are larger values of shape anomaly in the region where the seasonal sea surface temperature warming is relatively faster. To understand the regional difference of shape anomalies, we investigated the relationship between time changes in shape anomalies and net surface heat flux and surface kinetic energy flux. From May to July, the analysis indicated that, in a large part of North Pacific, there's a tendency for shape anomalies to develop strongly (weakly) under the conditions of large (small) downward net surface heat flux and small (large) downward surface kinetic energy flux. Since weak (strong) development of shape anomalies means efficient (inefficient) downward heat transport from the surface, these results suggest that the regional difference of the downward heat penetration below mixed layer is explained reasonably well by differences in surface heat forcing and surface wind forcing in a vertical one dimensional framework. [1] Hosoda et al. (2015), J. Oceanogr., 71, 541-556.
Automated Droplet Manipulation Using Closed-Loop Axisymmetric Drop Shape Analysis.
Yu, Kyle; Yang, Jinlong; Zuo, Yi Y
2016-05-17
Droplet manipulation plays an important role in a wide range of scientific and industrial applications, such as synthesis of thin-film materials, control of interfacial reactions, and operation of digital microfluidics. Compared to micron-sized droplets, which are commonly considered as spherical beads, millimeter-sized droplets are generally deformable by gravity, thus introducing nonlinearity into control of droplet properties. Such a nonlinear drop shape effect is especially crucial for droplet manipulation, even for small droplets, at the presence of surfactants. In this paper, we have developed a novel closed-loop axisymmetric drop shape analysis (ADSA), integrated into a constrained drop surfactometer (CDS), for manipulating millimeter-sized droplets. The closed-loop ADSA generalizes applications of the traditional drop shape analysis from a surface tension measurement methodology to a sophisticated tool for manipulating droplets in real time. We have demonstrated the feasibility and advantages of the closed-loop ADSA in three applications, including control of drop volume by automatically compensating natural evaporation, precise control of surface area variations for high-fidelity biophysical simulations of natural pulmonary surfactant, and steady control of surface pressure for in situ Langmuir-Blodgett transfer from droplets. All these applications have demonstrated the accuracy, versatility, applicability, and automation of this new ADSA-based droplet manipulation technique. Combining with CDS, the closed-loop ADSA holds great promise for advancing droplet manipulation in a variety of material and surface science applications, such as thin-film fabrication, self-assembly, and biophysical study of pulmonary surfactant.
Surface analysis by laser beam scanning and stereophotogrammetry
NASA Astrophysics Data System (ADS)
Aliverti, Andrea; Ferrigno, Giancarlo; Pedotti, Antonio
1993-10-01
The possibility to describe mathematically the body surfaces could improve diagnosis and objective evaluation of deformities, the follow up of progressive diseases and could represent a useful tool for other medical sectors as prosthetic and plastic surgery as well as for industrial applications where a real shape needs to be digitized and analyzed or modified mathematically. The approach here presented is based on the acquisition of a surface scanned by a laser beam. The 3D coordinates of the spot generated on the surface by the beam are obtained by an automatic image analyzer (ELITE system), originally developed for human motion analysis. The 3D coordinates are obtained by stereo-photogrammetry starting from at least two different view of the subject. A software package for graphic representation of the obtained surfaces has been developed and some preliminary results about some body shapes will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyata, Y.; Suzuki, T.; Takechi, M.
2015-07-15
For the purpose of stable plasma equilibrium control and detailed analysis, it is essential to reconstruct an accurate plasma boundary on the poloidal cross section in tokamak devices. The Cauchy condition surface (CCS) method is a numerical approach for calculating the spatial distribution of the magnetic flux outside a hypothetical surface and reconstructing the plasma boundary from the magnetic measurements located outside the plasma. The accuracy of the plasma shape reconstruction has been assessed by comparing the CCS method and an equilibrium calculation in JT-60SA with a high elongation and triangularity of plasma shape. The CCS, on which both Dirichletmore » and Neumann conditions are unknown, is defined as a hypothetical surface located inside the real plasma region. The accuracy of the plasma shape reconstruction is sensitive to the CCS free parameters such as the number of unknown parameters and the shape in JT-60SA. It is found that the optimum number of unknown parameters and the size of the CCS that minimizes errors in the reconstructed plasma shape are in proportion to the plasma size. Furthermore, it is shown that the accuracy of the plasma shape reconstruction is greatly improved using the optimum number of unknown parameters and shape of the CCS, and the reachable reconstruction errors in plasma shape and locations of strike points are within the target ranges in JT-60SA.« less
Structure and Dynamics of Interfaces: Drops and Films
NASA Technical Reports Server (NTRS)
Mann, J. Adin, Jr.; Mann, Elizabeth K.; Meyer, William V.; Neumann, A. Wilhelm; Tavana, Hossein
2015-01-01
We aim to acquire measurements of the structure and dynamics of certain liquid-fluid interfaces using an ensemble of techniques in collaboration: (1) Total internal reflection (TIR) Surface light scattering spectroscopy (SLSS), (2) Brewster angle microscopy (BAM), and (3) Drop-shape analysis. SLSS and BAM can be done on a shared interfacial footprint. Results using a 50-50 mixture of pentane-isohexane, which extends the range of NASA's Confined Vapor Bubble (CVB) experiment, yield surface tension results that differ from the expected Langmuir Fit. These results were confirmed using both the SLSS and drop-shape analysis approaches.
Shaded-Color Picture Generation of Computer-Defined Arbitrary Shapes
NASA Technical Reports Server (NTRS)
Cozzolongo, J. V.; Hermstad, D. L.; Mccoy, D. S.; Clark, J.
1986-01-01
SHADE computer program generates realistic color-shaded pictures from computer-defined arbitrary shapes. Objects defined for computer representation displayed as smooth, color-shaded surfaces, including varying degrees of transparency. Results also used for presentation of computational results. By performing color mapping, SHADE colors model surface to display analysis results as pressures, stresses, and temperatures. NASA has used SHADE extensively in sign and analysis of high-performance aircraft. Industry should find applications for SHADE in computer-aided design and computer-aided manufacturing. SHADE written in VAX FORTRAN and MACRO Assembler for either interactive or batch execution.
Fluid-structure interaction analysis of deformation of sail of 30-foot yacht
NASA Astrophysics Data System (ADS)
Bak, Sera; Yoo, Jaehoon; Song, Chang Yong
2013-06-01
Most yacht sails are made of thin fabric, and they have a cambered shape to generate lift force; however, their shape can be easily deformed by wind pressure. Deformation of the sail shape changes the flow characteristics over the sail, which in turn further deforms the sail shape. Therefore, fluid-structure interaction (FSI) analysis is applied for the precise evaluation or optimization of the sail design. In this study, fluid flow analyses are performed for the main sail of a 30-foot yacht, and the results are applied to loading conditions for structural analyses. By applying the supporting forces from the rig, such as the mast and boom-end outhaul, as boundary conditions for structural analysis, the deformed sail shape is identified. Both the flow analyses and the structural analyses are iteratively carried out for the deformed sail shape. A comparison of the flow characteristics and surface pressures over the deformed sail shape with those over the initial shape shows that a considerable difference exists between the two and that FSI analysis is suitable for application to sail design.
Nonlinear oscillations of inviscid free drops
NASA Technical Reports Server (NTRS)
Patzek, T. W.; Benner, R. E., Jr.; Basaran, O. A.; Scriven, L. E.
1991-01-01
The present analysis of free liquid drops' inviscid oscillations proceeds through solution of Bernoulli's equation to obtain the free surface shape and of Laplace's equation for the velocity potential field. Results thus obtained encompass drop-shape sequences, pressure distributions, particle paths, and the temporal evolution of kinetic and surface energies; accuracy is verified by the near-constant drop volume and total energy, as well as the diminutiveness of mass and momentum fluxes across drop surfaces. Further insight into the nature of oscillations is provided by Fourier power spectrum analyses of mode interactions and frequency shifts.
Absolute shape measurements using high-resolution optoelectronic holography methods
NASA Astrophysics Data System (ADS)
Furlong, Cosme; Pryputniewicz, Ryszard J.
2000-01-01
Characterization of surface shape and deformation is of primary importance in a number of testing and metrology applications related to the functionality, performance, and integrity of components. In this paper, a unique, compact, and versatile state-of-the-art fiber-optic-based optoelectronic holography (OEH) methodology is described. This description addresses apparatus and analysis algorithms, especially developed to perform measurements of both absolute surface shape and deformation. The OEH can be arranged in multiple configurations, which include the three-camera, three-illumination, and in-plane speckle correlation setups. With the OEH apparatus and analysis algorithms, absolute shape measurements can be made, using present setup, with a spatial resolution and accuracy of better than 30 and 10 micrometers , respectively, for volumes characterized by a 300-mm length. Optimizing the experimental setup and incorporating equipment, as it becomes available, having superior capabilities to the ones utilized in the present investigations can further increase resolution and accuracy in the measurements. The particular feature of this methodology is its capability to export the measurements data directly into CAD environments for subsequent processing, analysis, and definition of CAD/CAE models.
20 Meter Solar Sail Analysis and Correlation
NASA Technical Reports Server (NTRS)
Taleghani, B.; Lively, P.; Banik, J.; Murphy, D.; Trautt, T.
2005-01-01
This presentation discusses studies conducted to determine the element type and size that best represents a 20-meter solar sail under ground-test load conditions, the performance of test/Analysis correlation by using Static Shape Optimization Method for Q4 sail, and system dynamic. TRIA3 elements better represent wrinkle patterns than do QUAD3 elements Baseline, ten-inch elements are small enough to accurately represent sail shape, and baseline TRIA3 mesh requires a reasonable computation time of 8 min. 21 sec. In the test/analysis correlation by using Static shape optimization method for Q4 sail, ten parameters were chosen and varied during optimization. 300 sail models were created with random parameters. A response surfaces for each targets which were created based on the varied parameters. Parameters were optimized based on response surface. Deflection shape comparison for 0 and 22.5 degrees yielded a 4.3% and 2.1% error respectively. For the system dynamic study testing was done on the booms without the sails attached. The nominal boom properties produced a good correlation to test data the frequencies were within 10%. Boom dominated analysis frequencies and modes compared well with the test results.
NASA Astrophysics Data System (ADS)
Ibrahim, MH Wan; Hadi, MN Abdul; Hooi Min, Yee
2018-04-01
Tensioned fabric structure with different surface form could be realized. Their variations as possible choice form of minimal surface for tensioned fabric structure have been studied. The form of used in TFS is Handkerchief Surface. Handkerchief Surface used in TFS because Handkerchief Surface is the form of minimal surface and Handkerchief Surface has not been studied by other researcher. Besides, no other work on Handkerchief Surface as idea in tensioned fabric structure has been found. The aim of the study is to propose converged shape of Handkerchief Surface with variable u=v=0.4 and u=v=1.0. The method used for Form-Finding is nonlinear analysis method. From the result, the surface of Handkerchief TFS model, u=v=0.4 and u=v=1.0 show the total warp and fill stress deviation is less than 0.01. The initial equilibrium shape of Handkerchief tensioned fabric structure model, u=v=0.4 and u=v=1.0 is corresponding to equal tension surface. Tensioned fabric structure in the form of Handikerchief Surface is a structurally viable surface form to be considered by engineer.
Lambeth, Christopher; Amatoury, Jason; Wang, Ziyu; Foster, Sheryl; Amis, Terence; Kairaitis, Kristina
2017-03-01
Macroscopic pharyngeal anatomical abnormalities are thought to contribute to the pathogenesis of upper airway (UA) obstruction in obstructive sleep apnea (OSA). Microscopic changes in the UA mucosal lining of OSA subjects are reported; however, the impact of these changes on UA mucosal surface topography is unknown. This study aimed to 1 ) develop methodology to measure UA mucosal surface topography, and 2 ) compare findings from healthy and OSA subjects. Ten healthy and eleven OSA subjects were studied. Awake, gated (end expiration), head and neck position controlled magnetic resonance images (MRIs) of the velopharynx (VP) were obtained. VP mucosal surfaces were segmented from axial images, and three-dimensional VP mucosal surface models were constructed. Curvature analysis of the models was used to study the VP mucosal surface topography. Principal, mean, and Gaussian curvatures were used to define surface shape composition and surface roughness of the VP mucosal surface models. Significant differences were found in the surface shape composition, with more saddle/spherical and less flat/cylindrical shapes in OSA than healthy VP mucosal surface models ( P < 0.01). OSA VP mucosal surface models were also found to have more mucosal surface roughness ( P < 0.0001) than healthy VP mucosal surface models. Our novel methodology was utilized to model the VP mucosal surface of OSA and healthy subjects. OSA subjects were found to have different VP mucosal surface topography, composed of increased irregular shapes and increased roughness. We speculate increased irregularity in VP mucosal surface may increase pharyngeal collapsibility as a consequence of friction-related pressure loss. NEW & NOTEWORTHY A new methodology was used to model the upper airway mucosal surface topography from magnetic resonance images of patients with obstructive sleep apnea and healthy adults. Curvature analysis was used to analyze the topography of the models, and a new metric was derived to describe the mucosal surface roughness. Increased roughness was found in the obstructive sleep apnea vs. healthy group, but further research is required to determine the functional effects of the measured difference on upper airway airflow mechanics. Copyright © 2017 the American Physiological Society.
Thalamus surface shape deformity in obsessive-compulsive disorder and schizophrenia.
Kang, Do-Hyung; Kim, Sun Hyung; Kim, Chi-Won; Choi, Jung-Seok; Jang, Joon Hwan; Jung, Myung Hun; Lee, Jong-Min; Kim, Sun I; Kwon, Jun Soo
2008-04-16
The authors performed a three-dimensional shape deformation analysis to clarify the various patterns of specific thalamic nuclei abnormality using three age-matched and sex-matched groups of 22 patients with obsessive-compulsive disorder (OCD), 22 patients with schizophrenia and 22 control participants. Compared with the healthy volunteers, the anterior, lateral outward surface deformities of the thalamus were significant in OCD patients, whereas the posterior, medial outward deformities of the thalamus were prominent in schizophrenia patients. In terms of thalamic asymmetry, both OCD and schizophrenia patients exhibited the loss of a leftward pattern of asymmetry on the posterior, medial surface of the thalamus. Different patterns of shape abnormality of specific thalamic nuclei may be related to the different phenomenology of OCD and schizophrenia.
Tree-shaped fractal meta-surface with left-handed characteristics for absorption application
NASA Astrophysics Data System (ADS)
Faruque, M. R. I.; Hasan, M. M.; Islam, M. T.
2018-02-01
A tri-band fractal meta-surface absorber composed of metallic branches of a tree connected with a straight metal strip has been presented in this paper for high absorption application. The proposed tree-shaped structure shows resonance in C-, X-, and Ku-bands and left-handed characteristics in 14.15 GHz. The dimension of the tree-shaped meta-surface single unit cell structure is 9 × 9 mm2 and the effective medium ratio is 5.50. In addition, the designed absorber structure shows absorption above 84%, whereas the absorber structure printed on epoxy resin fiber substrate material. The FIT-based CST-MWS has been utilized for the design, simulation, and analysis purposes. Fabrication is also done for the experimental validation.
Study on Dynamic Development of Three-dimensional Weld Pool Surface in Stationary GTAW
NASA Astrophysics Data System (ADS)
Huang, Jiankang; He, Jing; He, Xiaoying; Shi, Yu; Fan, Ding
2018-04-01
The weld pool contains abundant information about the welding process. In particular, the type of the weld pool surface shape, i. e., convex or concave, is determined by the weld penetration. To detect it, an innovative laser-vision-based sensing method is employed to observe the weld pool surface of the gas tungsten arc welding (GTAW). A low-power laser dots pattern is projected onto the entire weld pool surface. Its reflection is intercepted by a screen and captured by a camera. Then the dynamic development process of the weld pool surface can be detected. By observing and analyzing, the change of the reflected laser dots reflection pattern, for shape of the weld pool surface shape, was found to closely correlate to the penetration of weld pool in the welding process. A mathematical model was proposed to correlate the incident ray, reflected ray, screen and surface of weld pool based on structured laser specular reflection. The dynamic variation of the weld pool surface and its corresponding dots laser pattern were simulated and analyzed. By combining the experimental data and the mathematical analysis, the results show that the pattern of the reflected laser dots pattern is closely correlated to the development of weld pool, such as the weld penetration. The concavity of the pool surface was found to increase rapidly after the surface shape was changed from convex to concave during the stationary GTAW process.
NASA Astrophysics Data System (ADS)
Fripp, Jurgen; Crozier, Stuart; Warfield, Simon K.; Ourselin, Sébastien
2006-03-01
Subdivision surfaces and parameterization are desirable for many algorithms that are commonly used in Medical Image Analysis. However, extracting an accurate surface and parameterization can be difficult for many anatomical objects of interest, due to noisy segmentations and the inherent variability of the object. The thin cartilages of the knee are an example of this, especially after damage is incurred from injuries or conditions like osteoarthritis. As a result, the cartilages can have different topologies or exist in multiple pieces. In this paper we present a topology preserving (genus 0) subdivision-based parametric deformable model that is used to extract the surfaces of the patella and tibial cartilages in the knee. These surfaces have minimal thickness in areas without cartilage. The algorithm inherently incorporates several desirable properties, including: shape based interpolation, sub-division remeshing and parameterization. To illustrate the usefulness of this approach, the surfaces and parameterizations of the patella cartilage are used to generate a 3D statistical shape model.
Computation of stress on the surface of a soft homogeneous arbitrarily shaped particle.
Yang, Minglin; Ren, Kuan Fang; Wu, Yueqian; Sheng, Xinqing
2014-04-01
Prediction of the stress on the surface of an arbitrarily shaped particle of soft material is essential in the study of elastic properties of the particles with optical force. It is also necessary in the manipulation and sorting of small particles with optical tweezers, since a regular-shaped particle, such as a sphere, may be deformed under the nonuniform optical stress on its surface. The stress profile on a spherical or small spheroidal soft particle trapped by shaped beams has been studied, however little work on computing the surface stress of an irregular-shaped particle has been reported. We apply in this paper the surface integral equation with multilevel fast multipole algorithm to compute the surface stress on soft homogeneous arbitrarily shaped particles. The comparison of the computed stress profile with that predicted by the generalized Lorenz-Mie theory for a water droplet of diameter equal to 51 wavelengths in a focused Gaussian beam show that the precision of our method is very good. Then stress profiles on spheroids with different aspect ratios are computed. The particles are illuminated by a Gaussian beam of different waist radius at different incidences. Physical analysis on the mechanism of optical stress is given with help of our recently developed vectorial complex ray model. It is found that the maximum of the stress profile on the surface of prolate spheroids is not only determined by the reflected and refracted rays (orders p=0,1) but also the rays undergoing one or two internal reflections where they focus. Computational study of stress on surface of a biconcave cell-like particle, which is a typical application in life science, is also undertaken.
3D morphometry of red blood cells by digital holography.
Memmolo, Pasquale; Miccio, Lisa; Merola, Francesco; Gennari, Oriella; Netti, Paolo Antonio; Ferraro, Pietro
2014-12-01
Three dimensional (3D) morphometric analysis of flowing and not-adherent cells is an important aspect for diagnostic purposes. However, diagnostics tools need to be quantitative, label-free and, as much as possible, accurate. Recently, a simple holographic approach, based on shape from silhouette algorithm, has been demonstrated for accurate calculation of cells biovolume and displaying their 3D shapes. Such approach has been adopted in combination with holographic optical tweezers and successfully applied to cells with convex shape. Nevertheless, unfortunately, the method fails in case of specimen with concave surfaces. Here, we propose an effective approach to achieve correct 3D shape measurement that can be extended in case of cells having concave surfaces, thus overcoming the limit of the previous technique. We prove the new procedure for healthy red blood cells (RBCs) (i.e., discocytes) having a concave surface in their central region. Comparative analysis of experimental results with a theoretical 3D geometrical model of RBC is discussed in order to evaluate accuracy of the proposed approach. Finally, we show that the method can be also useful to classify, in terms of morphology, different varieties of RBCs. © 2014 International Society for Advancement of Cytometry.
Shape abnormalities of the striatum in Alzheimer's disease.
de Jong, Laura W; Ferrarini, Luca; van der Grond, Jeroen; Milles, Julien R; Reiber, Johan H C; Westendorp, Rudi G J; Bollen, Edward L E M; Middelkoop, Huub A M; van Buchem, Mark A
2011-01-01
Postmortem studies show pathological changes in the striatum in Alzheimer's disease (AD). Here, we examine the surface of the striatum in AD and assess whether changes of the surface are associated with impaired cognitive functioning. The shape of the striatum (n. accumbens, caudate nucleus, and putamen) was compared between 35 AD patients and 35 individuals without cognitive impairment. The striatum was automatically segmented from 3D T1 magnetic resonance images and automatic shape modeling tools (Growing Adaptive Meshes) were applied for morphometrical analysis. Repeated permutation tests were used to identify locations of consistent shape deformities of the striatal surface in AD. Linear regression models, corrected for age, gender, educational level, head size, and total brain parenchymal volume were used to assess the relation between cognitive performance and local surface deformities. In AD patients, differences of shape were observed on the medial head of the caudate nucleus and on the ventral lateral putamen, but not on the accumbens. The head of the caudate nucleus and ventral lateral putamen are characterized by extensive connections with the orbitofrontal and medial temporal cortices. Severity of cognitive impairment was associated with the degree of deformity of the surfaces of the accumbens, rostral medial caudate nucleus, and ventral lateral putamen. These findings provide evidence for the hypothesis that in AD primarily associative and limbic cerebral networks are affected.
Siqueira, José F; Alves, Flávio R F; Versiani, Marco A; Rôças, Isabela N; Almeida, Bernardo M; Neves, Mônica A S; Sousa-Neto, Manoel D
2013-08-01
This ex vivo study evaluated the disinfecting and shaping ability of 3 protocols used in the preparation of mesial root canals of mandibular molars by means of correlative bacteriologic and micro-computed tomographic (μμCT) analysis. The mesial canals of extracted mandibular molars were contaminated with Enterococcus faecalis for 30 days and assigned to 3 groups based on their anatomic configuration as determined by μCT analysis according to the preparation technique (Self-Adjusting File [ReDent-Nova, Ra'anana, Israel], Reciproc [VDW, Munich, Germany], and Twisted File [SybronEndo, Orange, CA]). In all groups, 2.5% NaOCl was the irrigant. Canal samples were taken before (S1) and after instrumentation (S2), and bacterial quantification was performed using culture. Next, mesial roots were subjected to additional μCT analysis in order to evaluate shaping of the canals. All instrumentation protocols promoted a highly significant intracanal bacterial reduction (P < .001). Intergroup quantitative and qualitative comparisons disclosed no significant differences between groups (P > .05). As for shaping, no statistical difference was observed between the techniques regarding the mean percentage of volume increase, the surface area increase, the unprepared surface area, and the relative unprepared surface area (P > .05). Correlative analysis showed no statistically significant relationship between bacterial reduction and the mean percentage increase of the analyzed parameters (P > .05). The 3 instrumentation systems have similar disinfecting and shaping performance in the preparation of mesial canals of mandibular molars. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
A volumetric conformal mapping approach for clustering white matter fibers in the brain
Gupta, Vikash; Prasad, Gautam; Thompson, Paul
2017-01-01
The human brain may be considered as a genus-0 shape, topologically equivalent to a sphere. Various methods have been used in the past to transform the brain surface to that of a sphere using harmonic energy minimization methods used for cortical surface matching. However, very few methods have studied volumetric parameterization of the brain using a spherical embedding. Volumetric parameterization is typically used for complicated geometric problems like shape matching, morphing and isogeometric analysis. Using conformal mapping techniques, we can establish a bijective mapping between the brain and the topologically equivalent sphere. Our hypothesis is that shape analysis problems are simplified when the shape is defined in an intrinsic coordinate system. Our goal is to establish such a coordinate system for the brain. The efficacy of the method is demonstrated with a white matter clustering problem. Initial results show promise for future investigation in these parameterization technique and its application to other problems related to computational anatomy like registration and segmentation. PMID:29177252
NASA Astrophysics Data System (ADS)
Potter, Jennifer L.
2011-12-01
Noise and vibration has long been sought to be reduced in major industries: automotive, aerospace and marine to name a few. Products must be tested and pass certain levels of federally regulated standards before entering the market. Vibration measurements are commonly acquired using accelerometers; however limitations of this method create a need for alternative solutions. Two methods for non-contact vibration measurements are compared: Laser Vibrometry, which directly measures the surface velocity of the aluminum plate, and Nearfield Acoustic Holography (NAH), which measures sound pressure in the nearfield, and using Green's Functions, reconstructs the surface velocity at the plate. The surface velocity from each method is then used in modal analysis to determine the comparability of frequency, damping and mode shapes. Frequency and mode shapes are also compared to an FEA model. Laser Vibrometry is a proven, direct method for determining surface velocity and subsequently calculating modal analysis results. NAH is an effective method in locating noise sources, especially those that are not well separated spatially. Little work has been done in incorporating NAH into modal analysis.
NASA Technical Reports Server (NTRS)
Whitcomb, R. T. (Inventor)
1976-01-01
An airfoil is examined that has an upper surface shaped to control flow accelerations and pressure distribution over the upper surface and to prevent separation of the boundary layer due to shock wave formulation at high subsonic speeds well above the critical Mach number. A highly cambered trailing edge section improves overall airfoil lifting efficiency. Diagrams illustrating supersonic flow and shock waves over the airfoil are shown.
Shape Classification Using Wasserstein Distance for Brain Morphometry Analysis.
Su, Zhengyu; Zeng, Wei; Wang, Yalin; Lu, Zhong-Lin; Gu, Xianfeng
2015-01-01
Brain morphometry study plays a fundamental role in medical imaging analysis and diagnosis. This work proposes a novel framework for brain cortical surface classification using Wasserstein distance, based on uniformization theory and Riemannian optimal mass transport theory. By Poincare uniformization theorem, all shapes can be conformally deformed to one of the three canonical spaces: the unit sphere, the Euclidean plane or the hyperbolic plane. The uniformization map will distort the surface area elements. The area-distortion factor gives a probability measure on the canonical uniformization space. All the probability measures on a Riemannian manifold form the Wasserstein space. Given any 2 probability measures, there is a unique optimal mass transport map between them, the transportation cost defines the Wasserstein distance between them. Wasserstein distance gives a Riemannian metric for the Wasserstein space. It intrinsically measures the dissimilarities between shapes and thus has the potential for shape classification. To the best of our knowledge, this is the first. work to introduce the optimal mass transport map to general Riemannian manifolds. The method is based on geodesic power Voronoi diagram. Comparing to the conventional methods, our approach solely depends on Riemannian metrics and is invariant under rigid motions and scalings, thus it intrinsically measures shape distance. Experimental results on classifying brain cortical surfaces with different intelligence quotients demonstrated the efficiency and efficacy of our method.
Shape Classification Using Wasserstein Distance for Brain Morphometry Analysis
Su, Zhengyu; Zeng, Wei; Wang, Yalin; Lu, Zhong-Lin; Gu, Xianfeng
2015-01-01
Brain morphometry study plays a fundamental role in medical imaging analysis and diagnosis. This work proposes a novel framework for brain cortical surface classification using Wasserstein distance, based on uniformization theory and Riemannian optimal mass transport theory. By Poincare uniformization theorem, all shapes can be conformally deformed to one of the three canonical spaces: the unit sphere, the Euclidean plane or the hyperbolic plane. The uniformization map will distort the surface area elements. The area-distortion factor gives a probability measure on the canonical uniformization space. All the probability measures on a Riemannian manifold form the Wasserstein space. Given any 2 probability measures, there is a unique optimal mass transport map between them, the transportation cost defines the Wasserstein distance between them. Wasserstein distance gives a Riemannian metric for the Wasserstein space. It intrinsically measures the dissimilarities between shapes and thus has the potential for shape classification. To the best of our knowledge, this is the first work to introduce the optimal mass transport map to general Riemannian manifolds. The method is based on geodesic power Voronoi diagram. Comparing to the conventional methods, our approach solely depends on Riemannian metrics and is invariant under rigid motions and scalings, thus it intrinsically measures shape distance. Experimental results on classifying brain cortical surfaces with different intelligence quotients demonstrated the efficiency and efficacy of our method. PMID:26221691
Reflow dynamics of thin patterned viscous films
NASA Astrophysics Data System (ADS)
Leveder, T.; Landis, S.; Davoust, L.
2008-01-01
This letter presents a study of viscous smoothening dynamics of a nanopatterned thin film. Ultrathin film manufacturing processes appearing to be a key point of nanotechnology engineering and numerous studies have been recently led in order to exhibit driving parameters of this transient surface motion, focusing on time scale accuracy method. Based on nanomechanical analysis, this letter shows that controlled shape measurements provided much more detailed information about reflow mechanism. Control of reflow process of any complex surface shape, or measurement of material parameter as thin film viscosity, free surface energy, or even Hamaker constant are therefore possible.
Influence of surface rectangular defect winding layer on burst pressure of CNG-II composite cylinder
NASA Astrophysics Data System (ADS)
You, H. X.; Peng, L.; Zhao, C.; Ma, K.; Zhang, S.
2018-01-01
To study the influence of composite materials’ surface defect on the burst pressure of CNG-II composite cylinder, the surface defect was simplified as a rectangular slot of certain size on the basis of actually investigating the shape of cylinder’s surface defect. A CNG-II composite cylinder with a rectangular slot defect (2mm in depth) was used for burst test, and the numerical simulation software ANSYS was used to calculate its burst pressure. Through comparison between the burst pressure in the test and the numerical analysis result, the correctness of the numerical analysis method was verified. On this basis, the numerical analysis method was conducted for composite cylinders with surface defect in other depth. The result showed that surface defect in the form of rectangular slot had no significant effect on the liner stress of composite cylinder. Instead, it had a great influence on the stress of fiber-wrapped layer. The burst pressure of the composite cylinder decreased as the defect depth increasing. The hoop stress at the bottom of the defect in the shape of rectangular slot exceeded the maximum of the composite materials’ tensile strength, which could result in the burst pressure of composite cylinders decreasing.
NASA Astrophysics Data System (ADS)
Procháska, F.; Vít, T.; Matoušek, O.; Melich, R.
2016-11-01
High demands on the final surfaces micro-roughness as well as great shape accuracy have to be achieved under the manufacturing process of the precise mirrors for Metis orbital coronagraph. It is challenging engineering task with respect to lightweight design of the mirrors and resulting objectionable optical surface shape stability. Manufacturing of such optical elements is usually affected by number of various effects. Most of them are caused by instability of temperature field. It is necessary to explore, comprehend and consequently minimize all thermo - mechanical processes which take place during mirror cementing, grinding and polishing processes to minimize the optical surface deformation. Application of FEM simulation was proved as a useful tool to help to solve this task. FEM simulations were used to develop and virtually compare different mirror holders to minimize the residual stress generated by temperature changes and to suppress the shape deformation of the optical surface below the critical limit of about 100 nm.
Miyake, Masahiro; Yamashiro, Kenji; Akagi-Kurashige, Yumiko; Oishi, Akio; Tsujikawa, Akitaka; Hangai, Masanori; Yoshimura, Nagahisa
2014-01-01
Purpose To evaluate fundus shape in highly myopic eyes using color maps created through optical coherence tomography (OCT) image analysis. Methods We retrospectively evaluated 182 highly myopic eyes from 113 patients. After obtaining 12 lines of 9-mm radial OCT scans with the fovea at the center, the Bruch’s membrane line was plotted and its curvature was measured at 1-µm intervals in each image, which was reflected as a color topography map. For the quantitative analysis of the eye shape, mean absolute curvature and variance of curvature were calculated. Results The color maps allowed staphyloma visualization as a ring of green color at the edge and as that of orange-red color at the bottom. Analyses of mean and variance of curvature revealed that eyes with myopic choroidal neovascularization tended to have relatively flat posterior poles with smooth surfaces, while eyes with chorioretinal atrophy exhibited a steep, curved shape with an undulated surface (P<0.001). Furthermore, eyes with staphylomas and those without clearly differed in terms of mean curvature and the variance of curvature: 98.4% of eyes with staphylomas had mean curvature ≥7.8×10−5 [1/µm] and variance of curvature ≥0.26×10−8 [1/µm]. Conclusions We established a novel method to analyze posterior pole shape by using OCT images to construct curvature maps. Our quantitative analysis revealed that fundus shape is associated with myopic complications. These values were also effective in distinguishing eyes with staphylomas from those without. This tool for the quantitative evaluation of eye shape should facilitate future research of myopic complications. PMID:25259853
Statistical Analyses of Brain Surfaces Using Gaussian Random Fields on 2-D Manifolds
Staib, Lawrence H.; Xu, Dongrong; Zhu, Hongtu; Peterson, Bradley S.
2008-01-01
Interest in the morphometric analysis of the brain and its subregions has recently intensified because growth or degeneration of the brain in health or illness affects not only the volume but also the shape of cortical and subcortical brain regions, and new image processing techniques permit detection of small and highly localized perturbations in shape or localized volume, with remarkable precision. An appropriate statistical representation of the shape of a brain region is essential, however, for detecting, localizing, and interpreting variability in its surface contour and for identifying differences in volume of the underlying tissue that produce that variability across individuals and groups of individuals. Our statistical representation of the shape of a brain region is defined by a reference region for that region and by a Gaussian random field (GRF) that is defined across the entire surface of the region. We first select a reference region from a set of segmented brain images of healthy individuals. The GRF is then estimated as the signed Euclidean distances between points on the surface of the reference region and the corresponding points on the corresponding region in images of brains that have been coregistered to the reference. Correspondences between points on these surfaces are defined through deformations of each region of a brain into the coordinate space of the reference region using the principles of fluid dynamics. The warped, coregistered region of each subject is then unwarped into its native space, simultaneously bringing into that space the map of corresponding points that was established when the surfaces of the subject and reference regions were tightly coregistered. The proposed statistical description of the shape of surface contours makes no assumptions, other than smoothness, about the shape of the region or its GRF. The description also allows for the detection and localization of statistically significant differences in the shapes of the surfaces across groups of subjects at both a fine and coarse scale. We demonstrate the effectiveness of these statistical methods by applying them to study differences in shape of the amygdala and hippocampus in a large sample of normal subjects and in subjects with attention deficit/hyperactivity disorder (ADHD). PMID:17243583
Axi-symmetric patterns of active polar filaments on spherical and composite surfaces
NASA Astrophysics Data System (ADS)
Srivastava, Pragya; Rao, Madan
2014-03-01
Experiments performed on Fission Yeast cells of cylindrical and spherical shapes, rod-shaped bacteria and reconstituted cylindrical liposomes suggest the influence of cell geometry on patterning of cortical actin. A theoretical model based on active hydrodynamic description of cortical actin that includes curvature-orientation coupling predicts spontaneous formation of acto-myosin rings, cables and nodes on cylindrical and spherical geometries [P. Srivastava et al, PRL 110, 168104(2013)]. Stability and dynamics of these patterns is also affected by the cellular shape and has been observed in experiments performed on Fission Yeast cells of spherical shape. Motivated by this, we study the stability and dynamics of axi-symmetric patterns of active polar filaments on the surfaces of spherical, saddle shaped and conical geometry and classify the stable steady state patterns on these surfaces. Based on the analysis of the fluorescence images of Myosin-II during ring slippage we propose a simple mechanical model for ring-sliding based on force balance and make quantitative comparison with the experiments performed on Fission Yeast cells. NSF Grant DMR-1004789 and Syracuse Soft Matter Program.
Saito, Toshikuni; Suzuki, Naoki; Hattori, Asaki; Suzuki, Shigeyuki; Hayashibe, Mitsuhiro; Otake, Yoshito
2006-01-01
We have been developing a DSVC (Dynamic Spatial Video Camera) system to measure and observe human locomotion quantitatively and freely. A 4D (four-dimensional) human model with detailed skeletal structure, joint, muscle, and motor functionality has been built. The purpose of our research was to estimate skeletal movements from body surface shapes using DSVC and the 4D human model. For this purpose, we constructed a body surface model of a subject and resized the standard 4D human model to match with geometrical features of the subject's body surface model. Software that integrates the DSVC system and the 4D human model, and allows dynamic skeletal state analysis from body surface movement data was also developed. We practically applied the developed system in dynamic skeletal state analysis of a lower limb in motion and were able to visualize the motion using geometrically resized standard 4D human model.
Evaluation Of Back Shape Using The ISIS Scanner
NASA Astrophysics Data System (ADS)
Turner-Smith, Alan R.; Thomas, David C.
1989-04-01
The Integrated Shape Investigation System (ISIS) is a structured light scanner and shape analysis system, developed as a safe alternative to follow-up radiographs for the clinical assessment of deformities of the human back. The system is described and results presented of several clinic studies. These show a significant correlation between ISIS measures and conventional radiographic measures of spinal curvature, such as the Cobb angle. The development of a predictor for deterioration in adolescent idiopathic scoliosis, based on surface shape weasures, is discussed.
3D shape measurement of automotive glass by using a fringe reflection technique
NASA Astrophysics Data System (ADS)
Skydan, O. A.; Lalor, M. J.; Burton, D. R.
2007-01-01
In automotive and glass making industries, there is a need for accurately measuring the 3D shapes of reflective surfaces to speed up and ensure product development and manufacturing quality by using non-contact techniques. This paper describes a technique for the measurement of non-full-field reflective surfaces of automotive glass by using a fringe reflection technique. Physical properties of the measurement surfaces do not allow us to apply optical geometries used in existing techniques for surface measurement based upon direct fringe pattern illumination. However, this property of surface reflectivity can be used to implement similar ideas from existing techniques in a new improved method. In other words, the reflective surface can be used as a mirror to reflect illuminated fringe patterns onto a screen behind. It has been found that in the case of implementing the reflective fringe technique, the phase-shift distribution depends not only on the height of the object but also on the slope at each measurement point. This requires the solving of differential equations to find the surface slope and height distributions in the x and y directions and development of the additional height reconstruction algorithms. The main focus has been made on developing a mathematical model of the optical sub-system and discussing ways for its practical implementation including calibration procedures. A number of implemented image processing algorithms for system calibration and data analysis are discussed and two experimental results are given for automotive glass surfaces with different shapes and defects. The proposed technique showed the ability to provide accurate non-destructive measurement of 3D shapes of the reflective automotive glass surfaces and can be used as a key element for a glass shape quality control system on-line or in a laboratory environment.
Global point signature for shape analysis of carpal bones
NASA Astrophysics Data System (ADS)
Chaudhari, Abhijit J.; Leahy, Richard M.; Wise, Barton L.; Lane, Nancy E.; Badawi, Ramsey D.; Joshi, Anand A.
2014-02-01
We present a method based on spectral theory for the shape analysis of carpal bones of the human wrist. We represent the cortical surface of the carpal bone in a coordinate system based on the eigensystem of the two-dimensional Helmholtz equation. We employ a metric—global point signature (GPS)—that exploits the scale and isometric invariance of eigenfunctions to quantify overall bone shape. We use a fast finite-element-method to compute the GPS metric. We capitalize upon the properties of GPS representation—such as stability, a standard Euclidean (ℓ2) metric definition, and invariance to scaling, translation and rotation—to perform shape analysis of the carpal bones of ten women and ten men from a publicly-available database. We demonstrate the utility of the proposed GPS representation to provide a means for comparing shapes of the carpal bones across populations.
Analysis of Curved Target-Type Thrust Reversers
1974-06-07
methods f-or two -dimensional cases, the Levi - Civita method provides a \\ariet> t>l bucket shapes and enables one to round off the sharp corners of...surface In the present work three methods arc employed to investigate the deflection of mviscid. incompressible curved surfaces: Levi - Civitas ...shapes are shown in Fig. V A special case for (T, =0 31416 and fr2= 0.47124, and A = 0. ,*46, (/< = 6X ), is shown in Fig 4. Fvidently, Levi - Civita "s
Liquid jet impingement normal to a disk in zero gravity. Ph.D. Thesis - Toledo Univ.
NASA Technical Reports Server (NTRS)
Labus, T. L.
1976-01-01
An experimental and analytical investigation was conducted to determine the free surface shapes of circular liquid jets impinging normal to sharp-edged disks under both normal and zero gravity conditions. An order of magnitude analysis was conducted indicating regions where viscous forces were not significant when computing free surface shapes. The demarcation between the viscous and inviscid region was found to depend upon the flow Reynolds number and the ratio between the jet and disk radius.
Li, Hai-juan; Zhao, Xin; Jia, Qing-fei; Li, Tian-lai; Ning, Wei
2012-08-01
The achenes morphological and micro-morphological characteristics of six species of genus Taraxacum from northeastern China as well as SRAP cluster analysis were observed for their classification evidences. The achenes were observed by microscope and EPMA. Cluster analysis was given on the basis of the size, shape, cone proportion, color and surface sculpture of achenes. The Taraxacum inter-species achene shape characteristic difference is obvious, particularly spinulose distribution and size, achene color and achene size; with the Taraxacum plant achene shape the cluster method T. antungense Kitag. and the T. urbanum Kitag. should combine for the identical kind; the achene morphology cluster analysis and the SRAP tagged molecule systematics's cluster result retrieves in the table with "the Chinese flora". The class group to divide the result is consistent. Taraxacum plant achene shape characteristic stable conservative, may carry on the inter-species division and the sibship analysis according to the achene shape characteristic combination difference; the achene morphology cluster analysis as well as the SRAP tagged molecule systematics confirmation support dandelion classification result of "the Chinese flora".
Primal-dual methods of shape sensitivity analysis for curvilinear cracks with nonpenetration
NASA Astrophysics Data System (ADS)
Kovtunenko, V. A.
2006-10-01
Based on a level-set description of a crack moving with a given velocity, the problem of shape perturb-ation of the crack is considered. Nonpenetration conditions are imposed between opposite crack surfaces which result in a constrained minimization problem describing equilibrium of a solid with the crack. We suggest a minimax formulation of the state problem thus allowing curvilinear (nonplanar) cracks for the consideration. Utilizing primal-dual methods of shape sensitivity analysis we obtain the general formula for a shape derivative of the potential energy, which describes an energy-release rate for the curvilinear cracks. The conditions sufficient to rewrite it in the form of a path-independent integral (J-integral) are derived.
Lunar Regolith Particle Shape Analysis
NASA Technical Reports Server (NTRS)
Kiekhaefer, Rebecca; Hardy, Sandra; Rickman, Douglas; Edmunson, Jennifer
2013-01-01
Future engineering of structures and equipment on the lunar surface requires significant understanding of particle characteristics of the lunar regolith. Nearly all sediment characteristics are influenced by particle shape; therefore a method of quantifying particle shape is useful both in lunar and terrestrial applications. We have created a method to quantify particle shape, specifically for lunar regolith, using image processing. Photomicrographs of thin sections of lunar core material were obtained under reflected light. Three photomicrographs were analyzed using ImageJ and MATLAB. From the image analysis measurements for area, perimeter, Feret diameter, orthogonal Feret diameter, Heywood factor, aspect ratio, sieve diameter, and sieve number were recorded. Probability distribution functions were created from the measurements of Heywood factor and aspect ratio.
Generalized Models for Rock Joint Surface Shapes
Du, Shigui; Hu, Yunjin; Hu, Xiaofei
2014-01-01
Generalized models of joint surface shapes are the foundation for mechanism studies on the mechanical effects of rock joint surface shapes. Based on extensive field investigations of rock joint surface shapes, generalized models for three level shapes named macroscopic outline, surface undulating shape, and microcosmic roughness were established through statistical analyses of 20,078 rock joint surface profiles. The relative amplitude of profile curves was used as a borderline for the division of different level shapes. The study results show that the macroscopic outline has three basic features such as planar, arc-shaped, and stepped; the surface undulating shape has three basic features such as planar, undulating, and stepped; and the microcosmic roughness has two basic features such as smooth and rough. PMID:25152901
Profiling charge complementarity and selectivity for binding at the protein surface.
Sulea, Traian; Purisima, Enrico O
2003-05-01
A novel analysis and representation of the protein surface in terms of electrostatic binding complementarity and selectivity is presented. The charge optimization methodology is applied in a probe-based approach that simulates the binding process to the target protein. The molecular surface is color coded according to calculated optimal charge or according to charge selectivity, i.e., the binding cost of deviating from the optimal charge. The optimal charge profile depends on both the protein shape and charge distribution whereas the charge selectivity profile depends only on protein shape. High selectivity is concentrated in well-shaped concave pockets, whereas solvent-exposed convex regions are not charge selective. This suggests the synergy of charge and shape selectivity hot spots toward molecular selection and recognition, as well as the asymmetry of charge selectivity at the binding interface of biomolecular systems. The charge complementarity and selectivity profiles map relevant electrostatic properties in a readily interpretable way and encode information that is quite different from that visualized in the standard electrostatic potential map of unbound proteins.
Optimization of the Upper Surface of Hypersonic Vehicle Based on CFD Analysis
NASA Astrophysics Data System (ADS)
Gao, T. Y.; Cui, K.; Hu, S. C.; Wang, X. P.; Yang, G. W.
2011-09-01
For the hypersonic vehicle, the aerodynamic performance becomes more intensive. Therefore, it is a significant event to optimize the shape of the hypersonic vehicle to achieve the project demands. It is a key technology to promote the performance of the hypersonic vehicle with the method of shape optimization. Based on the existing vehicle, the optimization to the upper surface of the Simplified hypersonic vehicle was done to obtain a shape which suits the project demand. At the cruising condition, the upper surface was parameterized with the B-Spline curve method. The incremental parametric method and the reconstruction technology of the local mesh were applied here. The whole flow field was been calculated and the aerodynamic performance of the craft were obtained by the computational fluid dynamic (CFD) technology. Then the vehicle shape was optimized to achieve the maximum lift-drag ratio at attack angle 3°, 4° and 5°. The results will provide the reference for the practical design.
Schwiedrzik, J J; Zysset, P K
2015-01-21
Microindentation in bone is a micromechanical testing technique routinely used to extract material properties related to bone quality. As the analysis of microindentation data is based on assumptions about the contact between sample and surface, the aim of this study was to quantify the topological variability of indentations in bone and examine its relationship with mechanical properties. Indentations were performed in dry human and ovine bone in axial and transverse directions and their topology was measured by atomic force microscopy. Statistical shape modeling of the residual imprint allowed to define a mean shape and to describe the variability in terms of 21 principal components related to imprint depth, surface curvature and roughness. The indentation profile of bone was found to be highly consistent and free of any pile up while differing mostly by depth between species and direction. A few of the topological parameters, in particular depth, showed significant but rather weak and inconsistent correlations to variations in mechanical properties. The mechanical response of bone as well as the residual imprint shape was highly consistent within each category. We could thus verify that bone is rather homogeneous in its micromechanical properties and that indentation results are not strongly influenced by small deviations from an ideally flat surface. Copyright © 2014 Elsevier Ltd. All rights reserved.
Stacking and T-shape competition in aromatic-aromatic amino acid interactions.
Chelli, Riccardo; Gervasio, Francesco Luigi; Procacci, Piero; Schettino, Vincenzo
2002-05-29
The potential of mean force of interacting aromatic amino acids is calculated using molecular dynamics simulations. The free energy surface is determined in order to study stacking and T-shape competition for phenylalanine-phenylalanine (Phe-Phe), phenylalanine-tyrosine (Phe-Tyr), and tyrosine-tyrosine (Tyr-Tyr) complexes in vacuo, water, carbon tetrachloride, and methanol. Stacked structures are favored in all solvents with the exception of the Tyr-Tyr complex in carbon tetrachloride, where T-shaped structures are also important. The effect of anchoring the two alpha-carbons (C(alpha)) at selected distances is investigated. We find that short and large C(alpha)-C(alpha) distances favor stacked and T-shaped structures, respectively. We analyze a set of 2396 protein structures resolved experimentally. Comparison of theoretical free energies for the complexes to the experimental analogue shows that Tyr-Tyr interaction occurs mainly at the protein surface, while Phe-Tyr and Phe-Phe interactions are more frequent in the hydrophobic protein core. This is confirmed by the Voronoi polyhedron analysis on the database protein structures. As found from the free energy calculation, analysis of the protein database has shown that proximal and distal interacting aromatic residues are predominantly stacked and T-shaped, respectively.
Jennane, Rachid; Aufort, Gabriel; Benhamou, Claude Laurent; Ceylan, Murat; Ozbay, Yüksel; Ucan, Osman Nuri
2012-04-01
Curve and surface thinning are widely-used skeletonization techniques for modeling objects in three dimensions. In the case of disordered porous media analysis, however, neither is really efficient since the internal geometry of the object is usually composed of both rod and plate shapes. This paper presents an alternative to compute a hybrid shape-dependent skeleton and its application to porous media. The resulting skeleton combines 2D surfaces and 1D curves to represent respectively the plate-shaped and rod-shaped parts of the object. For this purpose, a new technique based on neural networks is proposed: cascade combinations of complex wavelet transform (CWT) and complex-valued artificial neural network (CVANN). The ability of the skeleton to characterize hybrid shaped porous media is demonstrated on a trabecular bone sample. Results show that the proposed method achieves high accuracy rates about 99.78%-99.97%. Especially, CWT (2nd level)-CVANN structure converges to optimum results as high accuracy rate-minimum time consumption.
Multiscale 3-D shape representation and segmentation using spherical wavelets.
Nain, Delphine; Haker, Steven; Bobick, Aaron; Tannenbaum, Allen
2007-04-01
This paper presents a novel multiscale shape representation and segmentation algorithm based on the spherical wavelet transform. This work is motivated by the need to compactly and accurately encode variations at multiple scales in the shape representation in order to drive the segmentation and shape analysis of deep brain structures, such as the caudate nucleus or the hippocampus. Our proposed shape representation can be optimized to compactly encode shape variations in a population at the needed scale and spatial locations, enabling the construction of more descriptive, nonglobal, nonuniform shape probability priors to be included in the segmentation and shape analysis framework. In particular, this representation addresses the shortcomings of techniques that learn a global shape prior at a single scale of analysis and cannot represent fine, local variations in a population of shapes in the presence of a limited dataset. Specifically, our technique defines a multiscale parametric model of surfaces belonging to the same population using a compact set of spherical wavelets targeted to that population. We further refine the shape representation by separating into groups wavelet coefficients that describe independent global and/or local biological variations in the population, using spectral graph partitioning. We then learn a prior probability distribution induced over each group to explicitly encode these variations at different scales and spatial locations. Based on this representation, we derive a parametric active surface evolution using the multiscale prior coefficients as parameters for our optimization procedure to naturally include the prior for segmentation. Additionally, the optimization method can be applied in a coarse-to-fine manner. We apply our algorithm to two different brain structures, the caudate nucleus and the hippocampus, of interest in the study of schizophrenia. We show: 1) a reconstruction task of a test set to validate the expressiveness of our multiscale prior and 2) a segmentation task. In the reconstruction task, our results show that for a given training set size, our algorithm significantly improves the approximation of shapes in a testing set over the Point Distribution Model, which tends to oversmooth data. In the segmentation task, our validation shows our algorithm is computationally efficient and outperforms the Active Shape Model algorithm, by capturing finer shape details.
Multiscale 3-D Shape Representation and Segmentation Using Spherical Wavelets
Nain, Delphine; Haker, Steven; Bobick, Aaron
2013-01-01
This paper presents a novel multiscale shape representation and segmentation algorithm based on the spherical wavelet transform. This work is motivated by the need to compactly and accurately encode variations at multiple scales in the shape representation in order to drive the segmentation and shape analysis of deep brain structures, such as the caudate nucleus or the hippocampus. Our proposed shape representation can be optimized to compactly encode shape variations in a population at the needed scale and spatial locations, enabling the construction of more descriptive, nonglobal, nonuniform shape probability priors to be included in the segmentation and shape analysis framework. In particular, this representation addresses the shortcomings of techniques that learn a global shape prior at a single scale of analysis and cannot represent fine, local variations in a population of shapes in the presence of a limited dataset. Specifically, our technique defines a multiscale parametric model of surfaces belonging to the same population using a compact set of spherical wavelets targeted to that population. We further refine the shape representation by separating into groups wavelet coefficients that describe independent global and/or local biological variations in the population, using spectral graph partitioning. We then learn a prior probability distribution induced over each group to explicitly encode these variations at different scales and spatial locations. Based on this representation, we derive a parametric active surface evolution using the multiscale prior coefficients as parameters for our optimization procedure to naturally include the prior for segmentation. Additionally, the optimization method can be applied in a coarse-to-fine manner. We apply our algorithm to two different brain structures, the caudate nucleus and the hippocampus, of interest in the study of schizophrenia. We show: 1) a reconstruction task of a test set to validate the expressiveness of our multiscale prior and 2) a segmentation task. In the reconstruction task, our results show that for a given training set size, our algorithm significantly improves the approximation of shapes in a testing set over the Point Distribution Model, which tends to oversmooth data. In the segmentation task, our validation shows our algorithm is computationally efficient and outperforms the Active Shape Model algorithm, by capturing finer shape details. PMID:17427745
Belvedere, Claudio; Siegler, Sorin; Ensini, Andrea; Toy, Jason; Caravaggi, Paolo; Namani, Ramya; Giannini, Giulia; Durante, Stefano; Leardini, Alberto
2017-02-28
The mechanical characteristics of the ankle such as its kinematics and load transfer properties are influenced by the geometry of the articulating surfaces. A recent, image-based study found that these surfaces can be approximated by a saddle-shaped, skewed, truncated cone with its apex oriented laterally. The goal of this study was to establish a reliable experimental technique to study the relationship between the geometry of the articular surfaces of the ankle and its mobility and stability characteristics and to use this technique to determine if morphological approximations of the ankle surfaces based on recent discoveries, produce close to normal behavior. The study was performed on ten cadavers. For each specimen, a process based on medical imaging, modeling and 3D printing was used to produce two subject specific artificial implantable sets of the ankle surfaces. One set was a replica of the natural surfaces. The second approximated the ankle surfaces as an original saddle-shaped truncated cone with apex oriented laterally. Testing under cyclic loading conditions was then performed on each specimen following a previously established technique to determine its mobility and stability characteristics under three different conditions: natural surfaces; artificial surfaces replicating the natural surface morphology; and artificial approximation based on the saddle-shaped truncated cone concept. A repeated measure analysis of variance was then used to compare between the three conditions. The results show that (1): the artificial surfaces replicating natural morphology produce close to natural mobility and stability behavior thus establishing the reliability of the technique; and (2): the approximated surfaces based on saddle-shaped truncated cone concept produce mobility and stability behavior close to the ankle with natural surfaces. Copyright © 2017 Elsevier Ltd. All rights reserved.
Global Landslides on Rapidly Spinning Spheroids
NASA Astrophysics Data System (ADS)
Scheeres, Daniel J.; Sanchez, P.
2013-10-01
The angle of repose and conditions for global landslides on the surfaces of small, rapidly spinning, spheroidal asteroids are studied. Applying techniques of soil mechanics, we develop a theory for, and examples of, how regolith will fail and flow in this microgravity environment. Our motivation is to develop an understanding of the "top-shaped" class of asteroids based on analytical soil mechanics. Our analysis transforms the entire asteroid surface into a local frame where we can model it as a conventional granular pile with a surface slope, acceleration and height variations as a function of the body's spin rate, shape and density. A general finding is that the lowest point on a rapidly spinning spheroid is at the equator with the effective height of surface material monotonically increasing towards the polar regions, where the height can be larger than the physical radius of the body. We study the failure conditions of both cohesionless and cohesive regolith, and develop specific predictions of the surface profile as a function of the regolith angle of friction and the maximum spin rate experienced by the body. The theory also provides simple guidelines on what the shape may look like, although we do not analyze gravitationally self-consistent evolution of the body shape. The theory is tested with soft-sphere discrete element method granular mechanics simulations to better understand the dynamical aspects of global asteroid landslides. We find significant differences between failure conditions for cohesive and cohesionless regolith. In the case of cohesive regolith, we show that extremely small values of strength (much less than that found in lunar regolith) can stabilize a surface even at very rapid spin rates. Cohesionless surfaces, as expected, fail whenever their surface slopes exceed the angle of friction. Based on our analysis we propose that global landslides and the flow of material towards the equator on spheroidal bodies are precipitated by exogenous effects such as impact induced seismic shaking or torques during planetary flybys.
Shape analysis of cylindrical micromirrors for angular focusing
NASA Astrophysics Data System (ADS)
Hou, Max Ti-Kuang; Hong, Pei-Yuan; Chen, Rongshun
2001-11-01
In this paper, we analyze the shape of the cylindrical micromirror, which directly defines the profile of the reflecting surface, and is very important for the function on focusing. A cylindrical micromirror can converge incident rays to a real focal line after reflection, namely angular focusing. Therefore, under specific design two cylindrical micromirrors, the primary and secondary, can converge incident rays into a real focal point after twice reflection. The curved shape of micromirror, formed due to the stress-induced bending of the bilayer microstructure upon release, has been theoretically analyzed and numerically simulated. The results show that the reflecting surface, especially at boundaries, is not perfectly cylindrical, while adding longitudinal frames can make some improvement.
An interactive local flattening operator to support digital investigations on artwork surfaces.
Pietroni, Nico; Massimiliano, Corsini; Cignoni, Paolo; Scopigno, Roberto
2011-12-01
Analyzing either high-frequency shape detail or any other 2D fields (scalar or vector) embedded over a 3D geometry is a complex task, since detaching the detail from the overall shape can be tricky. An alternative approach is to move to the 2D space, resolving shape reasoning to easier image processing techniques. In this paper we propose a novel framework for the analysis of 2D information distributed over 3D geometry, based on a locally smooth parametrization technique that allows us to treat local 3D data in terms of image content. The proposed approach has been implemented as a sketch-based system that allows to design with a few gestures a set of (possibly overlapping) parameterizations of rectangular portions of the surface. We demonstrate that, due to the locality of the parametrization, the distortion is under an acceptable threshold, while discontinuities can be avoided since the parametrized geometry is always homeomorphic to a disk. We show the effectiveness of the proposed technique to solve specific Cultural Heritage (CH) tasks: the analysis of chisel marks over the surface of a unfinished sculpture and the local comparison of multiple photographs mapped over the surface of an artwork. For this very difficult task, we believe that our framework and the corresponding tool are the first steps toward a computer-based shape reasoning system, able to support CH scholars with a medium they are more used to. © 2011 IEEE
Sato, Takahiro; Orai, Yoshihisa; Suzuki, Yuya; Ito, Hiroyuki; Isshiki, Toshiyuki; Fukui, Munetoshi; Nakamura, Kuniyasu; Schamp, C T
2017-10-01
To improve the reliability of silicon carbide (SiC) electronic power devices, the characteristics of various kinds of crystal defects should be precisely understood. Of particular importance is understanding the correlation between the surface morphology and the near surface dislocations. In order to analyze the dislocations near the surface of 4H-SiC wafers, a dislocation analysis protocol has been developed. This protocol consists of the following process: (1) inspection of surface defects using low energy scanning electron microscopy (LESEM), (2) identification of small and shallow etch pits using KOH low temperature etching, (3) classification of etch pits using LESEM, (4) specimen preparation of several hundred nanometer thick sample using the in-situ focused ion beam micro-sampling® technique, (5) crystallographic analysis using the selected diffraction mode of the scanning transmission electron microscope (STEM), and (6) determination of the Burgers vector using multi-directional STEM (MD-STEM). The results show a correlation between the triangular terrace shaped surface defects and an hexagonal etch pit arising from threading dislocations, linear shaped surface defects and elliptical shaped etch pits arising from basal plane dislocations. Through the observation of the sample from two orthogonal directions via the MD-STEM technique, a basal plane dislocation is found to dissociate into an extended dislocation bound by two partial dislocations. A protocol developed and presented in this paper enables one to correlate near surface defects of a 4H-SiC wafer with the root cause dislocations giving rise to those surface defects. © The Author 2017. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Numerical Simulation Of Cutting Of Gear Teeth
NASA Technical Reports Server (NTRS)
Oswald, Fred B.; Huston, Ronald L.; Mavriplis, Dimitrios
1994-01-01
Shapes of gear teeth produced by gear cutters of specified shape simulated computationally, according to approach based on principles of differential geometry. Results of computer simulation displayed as computer graphics and/or used in analyses of design, manufacturing, and performance of gears. Applicable to both standard and non-standard gear-tooth forms. Accelerates and facilitates analysis of alternative designs of gears and cutters. Simulation extended to study generation of surfaces other than gears. Applied to cams, bearings, and surfaces of arbitrary rolling elements as well as to gears. Possible to develop analogous procedures for simulating manufacture of skin surfaces like automobile fenders, airfoils, and ship hulls.
Moment Method Solutions for Radiation and Scattering from Arbitrarily Shaped Surfaces.
1981-02-01
IBM -370/168. A. Monopole Antenna on a Disk The study of the monopole antenna on a circular disk is of inter- est since it leads to the understanding...34 . . ._"-", - CHAPTER V ANALYSIS OF MICRUSI- itP ANTL-NNAS This chapter will present an analysis of the microstrip antenna. Surface-patch dipole modes are used to
Nonlinear Analysis of Surface EMG Time Series of Back Muscles
NASA Astrophysics Data System (ADS)
Dolton, Donald C.; Zurcher, Ulrich; Kaufman, Miron; Sung, Paul
2004-10-01
A nonlinear analysis of surface electromyography time series of subjects with and without low back pain is presented. The mean-square displacement and entropy shows anomalous diffusive behavior on intermediate time range 10 ms < t < 1 s. This behavior implies the presence of correlations in the signal. We discuss the shape of the power spectrum of the signal.
Surface displacement based shape analysis of central brain structures in preterm-born children
NASA Astrophysics Data System (ADS)
Garg, Amanmeet; Grunau, Ruth E.; Popuri, Karteek; Miller, Steven; Bjornson, Bruce; Poskitt, Kenneth J.; Beg, Mirza Faisal
2016-03-01
Many studies using T1 magnetic resonance imaging (MRI) data have found associations between changes in global metrics (e.g. volume) of brain structures and preterm birth. In this work, we use the surface displacement feature extracted from the deformations of the surface models of the third ventricle, fourth ventricle and brainstem to capture the variation in shape in these structures at 8 years of age that may be due to differences in the trajectory of brain development as a result of very preterm birth (24-32 weeks gestation). Understanding the spatial patterns of shape alterations in these structures in children who were born very preterm as compared to those who were born at full term may lead to better insights into mechanisms of differing brain development between these two groups. The T1 MRI data for the brain was acquired from children born full term (FT, n=14, 8 males) and preterm (PT, n=51, 22 males) at age 8-years. Accurate segmentation labels for these structures were obtained via a multi-template fusion based segmentation method. A high dimensional non-rigid registration algorithm was utilized to register the target segmentation labels to a set of segmentation labels defined on an average-template. The surface displacement data for the brainstem and the third ventricle were found to be significantly different (p < 0.05) between the PT and FT groups. Further, spatially localized clusters with inward and outward deformation were found to be associated with lower gestational age. The results from this study present a shape analysis method for pediatric MRI data and reveal shape changes that may be due to preterm birth.
NASA Technical Reports Server (NTRS)
Zhang, Ping; Imhoff, Marc L.; Bounoua, Lahouri; Wolfe, Robert E.
2011-01-01
Impervious surface area (ISA) from the National Land Cover Database (NLCD) 2001 and land surface temperature (LST) from MODIS averaged over three annual cycles (2003-2005) are used in a spatial analysis to assess the urban heat island (UHI) signature and its relationship to settlement size and shape, development intensity distribution, and land cover composition for 42 urban settlements embedded in forest biomes in the Northeastern United States. Development intensity zones, based on percent ISA, are defined for each urban area emanating outward from the urban core to nearby rural areas and are used to stratify land surface temperature. The stratification is further constrained by biome type and elevation to insure objective intercomparisons between urban zones within an urban settlement and between settlements. Stratification based on ISA allows the definition of hierarchically ordered urban zones that are consistent across urban settlements and scales. In addition to the surrounding ecological context, we find that the settlement size and shape as well as the development intensity distribution significantly influence the amplitude of summer daytime UHI. Within the Northeastern US temperate broadleaf mixed forest, UHI magnitude is positively related to the logarithm of the urban area size. Our study indicates that for similar urban area sizes, the development intensity distribution is one of the major drivers of UHI. In addition to urban area size and development intensity distribution, this analysis shows that both the shape of the urban area and the land cover composition in the surrounding rural area play an important role in modulating the UHI magnitude in different urban settlements. Our results indicate that remotely sensed urban area size and shape as well as the development intensity distribution influence UHI amplitude across regional scales.
Using tobacco mosaic virus to probe enhanced surface diffusion of molecular glasses.
Zhang, Yue; Potter, Richard; Zhang, William; Fakhraai, Zahra
2016-11-09
Recent studies have shown that diffusion on the surface of organic glasses can be many orders of magnitude faster than bulk diffusion. Developing new probes that can readily measure surface diffusion can help study the effect of parameters such as chemical structure, intermolecular interaction, molecules' shape and size on the enhanced surface diffusion. In this study, we develop a novel probe that significantly simplifies these types of studies. Tobacco mosaic virus (TMV) is used as probe particle to measure surface diffusion coefficient of molecular glass N,N'-bis(3-methylphenyl)-N,N'-diphenylbenzidine (TPD). The evolution of the meniscus formed around TMV is probed as a function of time at various temperatures. TMV has a well-defined, mono-dispersed, cylindrical shape, with a large aspect-ratio (average diameter of 16.6 nm, length of 300 nm). As such, the shape of the meniscus around the center of TMV is semi-two dimensional, which compared to using a nanosphere as probe, increases the driving force for meniscus formation and simplifies the analysis of surface diffusion. We show that under these conditions, after a short transient time the shape of the meniscus is self-similar, allowing accurate determination of the surface diffusion coefficient. Measurements at various temperatures are then performed to investigate the temperature dependence of the surface diffusion coefficient. It is found that surface diffusion is greatly enhanced in TPD and has a lower activation barrier compared to the bulk counterpart. These observations are consistent with previous studies of surface diffusion on molecular glasses, demonstrating the accuracy of this method.
Wavelet-based hierarchical surface approximation from height fields
Sang-Mook Lee; A. Lynn Abbott; Daniel L. Schmoldt
2004-01-01
This paper presents a novel hierarchical approach to triangular mesh generation from height fields. A wavelet-based multiresolution analysis technique is used to estimate local shape information at different levels of resolution. Using predefined templates at the coarsest level, the method constructs an initial triangulation in which underlying object shapes are well...
Fast surface-based travel depth estimation algorithm for macromolecule surface shape description.
Giard, Joachim; Alface, Patrice Rondao; Gala, Jean-Luc; Macq, Benoît
2011-01-01
Travel Depth, introduced by Coleman and Sharp in 2006, is a physical interpretation of molecular depth, a term frequently used to describe the shape of a molecular active site or binding site. Travel Depth can be seen as the physical distance a solvent molecule would have to travel from a point of the surface, i.e., the Solvent-Excluded Surface (SES), to its convex hull. Existing algorithms providing an estimation of the Travel Depth are based on a regular sampling of the molecule volume and the use of the Dijkstra's shortest path algorithm. Since Travel Depth is only defined on the molecular surface, this volume-based approach is characterized by a large computational complexity due to the processing of unnecessary samples lying inside or outside the molecule. In this paper, we propose a surface-based approach that restricts the processing to data defined on the SES. This algorithm significantly reduces the complexity of Travel Depth estimation and makes possible the analysis of large macromolecule surface shape description with high resolution. Experimental results show that compared to existing methods, the proposed algorithm achieves accurate estimations with considerably reduced processing times.
Geometrical shape design of nanophotonic surfaces for thin film solar cells.
Nam, W I; Yoo, Y J; Song, Y M
2016-07-11
We present the effect of geometrical parameters, particularly shape, on optical absorption enhancement for thin film solar cells based on crystalline silicon (c-Si) and gallium arsenide (GaAs) using a rigorous coupled wave analysis (RCWA) method. It is discovered that the "sweet spot" that maximizes efficiency of solar cells exists for the design of nanophotonic surfaces. For the case of ultrathin, rod array is practical due to the effective optical resonances resulted from the optimum geometry whereas parabola array is viable for relatively thicker cells owing to the effective graded index profile. A specific value of thickness, which is the median value of other two devices tailored by rod and paraboloid, is optimized by truncated shape structure. It is therefore worth scanning the optimum shape of nanostructures in a given thickness in order to achieve high performance.
Boundary element based multiresolution shape optimisation in electrostatics
NASA Astrophysics Data System (ADS)
Bandara, Kosala; Cirak, Fehmi; Of, Günther; Steinbach, Olaf; Zapletal, Jan
2015-09-01
We consider the shape optimisation of high-voltage devices subject to electrostatic field equations by combining fast boundary elements with multiresolution subdivision surfaces. The geometry of the domain is described with subdivision surfaces and different resolutions of the same geometry are used for optimisation and analysis. The primal and adjoint problems are discretised with the boundary element method using a sufficiently fine control mesh. For shape optimisation the geometry is updated starting from the coarsest control mesh with increasingly finer control meshes. The multiresolution approach effectively prevents the appearance of non-physical geometry oscillations in the optimised shapes. Moreover, there is no need for mesh regeneration or smoothing during the optimisation due to the absence of a volume mesh. We present several numerical experiments and one industrial application to demonstrate the robustness and versatility of the developed approach.
Novel Spectral Representations and Sparsity-Driven Algorithms for Shape Modeling and Analysis
NASA Astrophysics Data System (ADS)
Zhong, Ming
In this dissertation, we focus on extending classical spectral shape analysis by incorporating spectral graph wavelets and sparsity-seeking algorithms. Defined with the graph Laplacian eigenbasis, the spectral graph wavelets are localized both in the vertex domain and graph spectral domain, and thus are very effective in describing local geometry. With a rich dictionary of elementary vectors and forcing certain sparsity constraints, a real life signal can often be well approximated by a very sparse coefficient representation. The many successful applications of sparse signal representation in computer vision and image processing inspire us to explore the idea of employing sparse modeling techniques with dictionary of spectral basis to solve various shape modeling problems. Conventional spectral mesh compression uses the eigenfunctions of mesh Laplacian as shape bases, which are highly inefficient in representing local geometry. To ameliorate, we advocate an innovative approach to 3D mesh compression using spectral graph wavelets as dictionary to encode mesh geometry. The spectral graph wavelets are locally defined at individual vertices and can better capture local shape information than Laplacian eigenbasis. The multi-scale SGWs form a redundant dictionary as shape basis, so we formulate the compression of 3D shape as a sparse approximation problem that can be readily handled by greedy pursuit algorithms. Surface inpainting refers to the completion or recovery of missing shape geometry based on the shape information that is currently available. We devise a new surface inpainting algorithm founded upon the theory and techniques of sparse signal recovery. Instead of estimating the missing geometry directly, our novel method is to find this low-dimensional representation which describes the entire original shape. More specifically, we find that, for many shapes, the vertex coordinate function can be well approximated by a very sparse coefficient representation with respect to the dictionary comprising its Laplacian eigenbasis, and it is then possible to recover this sparse representation from partial measurements of the original shape. Taking advantage of the sparsity cue, we advocate a novel variational approach for surface inpainting, integrating data fidelity constraints on the shape domain with coefficient sparsity constraints on the transformed domain. Because of the powerful properties of Laplacian eigenbasis, the inpainting results of our method tend to be globally coherent with the remaining shape. Informative and discriminative feature descriptors are vital in qualitative and quantitative shape analysis for a large variety of graphics applications. We advocate novel strategies to define generalized, user-specified features on shapes. Our new region descriptors are primarily built upon the coefficients of spectral graph wavelets that are both multi-scale and multi-level in nature, consisting of both local and global information. Based on our novel spectral feature descriptor, we developed a user-specified feature detection framework and a tensor-based shape matching algorithm. Through various experiments, we demonstrate the competitive performance of our proposed methods and the great potential of spectral basis and sparsity-driven methods for shape modeling.
Particle morphology dependent superhydrophobicity in treated diatomaceous earth/polystyrene coatings
NASA Astrophysics Data System (ADS)
Sedai, Bhishma R.; Alavi, S. Habib; Harimkar, Sandip P.; McCollum, Mark; Donoghue, Joseph F.; Blum, Frank D.
2017-09-01
Superhydrophobic surfaces have been prepared from three different types of diatomaceous earth (DE) particles treated with 3-(heptafluoroisopropoxy)propyltrimethoxysilane (HFIP-TMS) and low molecular mass polystyrene. The untreated particles, consisting of CelTix DE (disk shape), DiaFil DE (rod shape) and EcoFlat DE (irregular), were studied using particle size analysis, bulk density, pore volume and surface area analysis (via Brunauer-Emmett-Teller, BET, methods). The treated particles were characterized with thermogravimetric analysis (TGA), contact angles, scanning electron microscopy, profilometry, and FTIR spectroscopy. The minimum amount of silane coupling agent on the DE surfaces required to obtain superhydrophobicity of the particles was determined and found to be dependent on the particle morphology. In the coatings made from different particles with 2.4 wt% HFIP-TMS, the minimum amounts of treated particles (loadings) for superhydrophobicity was determined with the less dense CelTix DE requiring about 30 wt%, DiaFil DE requiring about 40 wt%, and EcoFlat DE each requiring about 60 wt% loading of treated particles.
Computational Aerodynamic Analysis of Three-Dimensional Ice Shapes on a NACA 23012 Airfoil
NASA Technical Reports Server (NTRS)
Jun, GaRam; Oliden, Daniel; Potapczuk, Mark G.; Tsao, Jen-Ching
2014-01-01
The present study identifies a process for performing computational fluid dynamic calculations of the flow over full three-dimensional (3D) representations of complex ice shapes deposited on aircraft surfaces. Rime and glaze icing geometries formed on a NACA23012 airfoil were obtained during testing in the NASA Glenn Research Centers Icing Research Tunnel (IRT). The ice shape geometries were scanned as a cloud of data points using a 3D laser scanner. The data point clouds were meshed using Geomagic software to create highly accurate models of the ice surface. The surface data was imported into Pointwise grid generation software to create the CFD surface and volume grids. It was determined that generating grids in Pointwise for complex 3D icing geometries was possible using various techniques that depended on the ice shape. Computations of the flow fields over these ice shapes were performed using the NASA National Combustion Code (NCC). Results for a rime ice shape for angle of attack conditions ranging from 0 to 10 degrees and for freestream Mach numbers of 0.10 and 0.18 are presented. For validation of the computational results, comparisons were made to test results from rapid-prototype models of the selected ice accretion shapes, obtained from a separate study in a subsonic wind tunnel at the University of Illinois at Urbana-Champaign. The computational and experimental results were compared for values of pressure coefficient and lift. Initial results show fairly good agreement for rime ice accretion simulations across the range of conditions examined. The glaze ice results are promising but require some further examination.
Computational Aerodynamic Analysis of Three-Dimensional Ice Shapes on a NACA 23012 Airfoil
NASA Technical Reports Server (NTRS)
Jun, Garam; Oliden, Daniel; Potapczuk, Mark G.; Tsao, Jen-Ching
2014-01-01
The present study identifies a process for performing computational fluid dynamic calculations of the flow over full three-dimensional (3D) representations of complex ice shapes deposited on aircraft surfaces. Rime and glaze icing geometries formed on a NACA23012 airfoil were obtained during testing in the NASA Glenn Research Center's Icing Research Tunnel (IRT). The ice shape geometries were scanned as a cloud of data points using a 3D laser scanner. The data point clouds were meshed using Geomagic software to create highly accurate models of the ice surface. The surface data was imported into Pointwise grid generation software to create the CFD surface and volume grids. It was determined that generating grids in Pointwise for complex 3D icing geometries was possible using various techniques that depended on the ice shape. Computations of the flow fields over these ice shapes were performed using the NASA National Combustion Code (NCC). Results for a rime ice shape for angle of attack conditions ranging from 0 to 10 degrees and for freestream Mach numbers of 0.10 and 0.18 are presented. For validation of the computational results, comparisons were made to test results from rapid-prototype models of the selected ice accretion shapes, obtained from a separate study in a subsonic wind tunnel at the University of Illinois at Urbana-Champaign. The computational and experimental results were compared for values of pressure coefficient and lift. Initial results show fairly good agreement for rime ice accretion simulations across the range of conditions examined. The glaze ice results are promising but require some further examination.
NASA Astrophysics Data System (ADS)
Chung, Moo K.; Kim, Seung-Goo; Schaefer, Stacey M.; van Reekum, Carien M.; Peschke-Schmitz, Lara; Sutterer, Matthew J.; Davidson, Richard J.
2014-03-01
The sparse regression framework has been widely used in medical image processing and analysis. However, it has been rarely used in anatomical studies. We present a sparse shape modeling framework using the Laplace- Beltrami (LB) eigenfunctions of the underlying shape and show its improvement of statistical power. Tradition- ally, the LB-eigenfunctions are used as a basis for intrinsically representing surface shapes as a form of Fourier descriptors. To reduce high frequency noise, only the first few terms are used in the expansion and higher frequency terms are simply thrown away. However, some lower frequency terms may not necessarily contribute significantly in reconstructing the surfaces. Motivated by this idea, we present a LB-based method to filter out only the significant eigenfunctions by imposing a sparse penalty. For dense anatomical data such as deformation fields on a surface mesh, the sparse regression behaves like a smoothing process, which will reduce the error of incorrectly detecting false negatives. Hence the statistical power improves. The sparse shape model is then applied in investigating the influence of age on amygdala and hippocampus shapes in the normal population. The advantage of the LB sparse framework is demonstrated by showing the increased statistical power.
Alteration Mineralogy of Adirondack-class Rocks in Gusev Crater, Mars
NASA Astrophysics Data System (ADS)
Hamilton, V. E.; Ruff, S. W.
2009-12-01
The rock Adirondack is the type example of a class of basaltic rocks analyzed by the Mars Exploration Rover Spirit in Gusev crater. Thermal infrared spectra of Adirondack-class rocks acquired by the Mini-TES instrument are distinguishable from spectra of other rock classes by the presence of an emissivity peak at 430 cm-1 and a minimum near 510 cm-1, which are characteristic of olivine. This is the primary spectral class on the plains of Gusev, but spectra of rocks exhibiting similar low wavenumber spectral character have been acquired along the rover traverse in the Columbia Hills, and we have confirmed that these also are Adirondack-class. Linear mixture modeling of their infrared spectra (enabled by applying a correction for dust on the Mini-TES optics) suggests that they are mafic with sulfate minerals present as alteration phases (up to 25%) in the majority of these rocks, broadly consistent with APXS-measured chemistry. The RAT-brushed surface of an unusual plains rock referred to as Mazatzal exhibits a spectral shape and modeled mineralogy consistent with the absence of olivine and the presence of amorphous phases low in silica, and is a coating unlike any other observed on Mars. We have also used a previously-demonstrated factor analysis and target transformation (FATT) technique with Adirondack-class rock spectra to retrieve the spectral shapes of independently-varying components within the data set. Using this approach, we have identified four shapes attributable to two distinct surface components, fine particulate surface dust, and a second dust component similar to downwelling sky radiance and/or dust on the Mini-TES optics. The two surface shapes do not resemble those of the two canonical surface types measured from orbit. One of the surface shapes is very similar to that of the lherzolitic Shergottite ALH A77005. Preliminary linear mixture analysis of this shape shows that it is dominated by olivine (~57%, ~Fo45) and pyroxene (~28%), with minor amounts of oxides and basaltic glass (~15%). This ultramafic composition is similar to that derived from linear mixture modeling of the measured Mini-TES spectra, but differs in detail from the APXS-derived normative mineralogy and Mössbauer ol:px. These differences may be artifacts of the penetration depths and spot sizes of the measurements, or assumptions inherent in the conversions from chemistry and spectra to norms and abundances; work in progress is aimed at explaining these differences. The other shape is modeled with high-silica phases (29%), sulfates (~24%), olivine (~19%), pyroxene (~15%), and oxides (~12%), suggesting it represents a highly altered mineralogy. We linearly modeled the highest-quality measured spectra of Adirondack-class rocks using only the FATT-derived spectral shapes. Surface components are modeled by varying proportions of the two surface shapes, with all containing ≥40% of the ultramafic shape. These preliminary results suggest that Adirondack-class rocks are a single lithology exhibiting sulfate-bearing surface alteration that is variable from rock to rock. We are in the process of converting the mineralogies derived from measured and FATT-derived spectra into bulk oxides and will present quantitative comparisons with APXS data and qualitative comparisons with Mössbauer data.
NASA Astrophysics Data System (ADS)
Sánchez-Guerrero, Guillermo E.; Viera-González, Perla M.; Ceballos-Herrera, Daniel E.; Martínez-Guerra, Edgar
2016-09-01
Extraction light in light-pipes with different specular surfaces was analyzed. In the analysis, the impact of the surface shape in all properties of the extracted light in order to obtain an efficient extraction and a uniform illumination using a LED as light source. Also, several parameters of the specular surface to obtain spatial uniformity inside the light-pipe are considered. In this case, the simulation was made for a rectangular lightpipe. One objective of this work is to compare how the front face shape of the specular surface can affect the extraction of light in the lateral face of the light-pipe, only straight and elliptical front faces were used in this work and the comparison between them at different tilts and lengths were made. The main purpose of the front face was extract the light uniformly at the lateral face and this was done by studying simulations on OpticStudio Zemax. The results show how the extraction length is lower in the elliptical front but its total power performs better than the line front.
NASA Astrophysics Data System (ADS)
Bai, Linge; Widmann, Thomas; Jülicher, Frank; Dahmann, Christian; Breen, David
2013-01-01
Quantifying and visualizing the shape of developing biological tissues provide information about the morphogenetic processes in multicellular organisms. The size and shape of biological tissues depend on the number, size, shape, and arrangement of the constituting cells. To better understand the mechanisms that guide tissues into their final shape, it is important to investigate the cellular arrangement within tissues. Here we present a data processing pipeline to generate 3D volumetric surface models of epithelial tissues, as well as geometric descriptions of the tissues' apical cell cross-sections. The data processing pipeline includes image acquisition, editing, processing and analysis, 2D cell mesh generation, 3D contourbased surface reconstruction, cell mesh projection, followed by geometric calculations and color-based visualization of morphological parameters. In their first utilization we have applied these procedures to construct a 3D volumetric surface model at cellular resolution of the wing imaginal disc of Drosophila melanogaster. The ultimate goal of the reported effort is to produce tools for the creation of detailed 3D geometric models of the individual cells in epithelial tissues. To date, 3D volumetric surface models of the whole wing imaginal disc have been created, and the apicolateral cell boundaries have been identified, allowing for the calculation and visualization of cell parameters, e.g. apical cross-sectional area of cells. The calculation and visualization of morphological parameters show position-dependent patterns of cell shape in the wing imaginal disc. Our procedures should offer a general data processing pipeline for the construction of 3D volumetric surface models of a wide variety of epithelial tissues.
Basal Ganglia Shape Abnormalities in the Unaffected Siblings of Schizophrenia Patients
Mamah, Daniel; Harms, Michael P.; Wang, Lei; Barch, Deanna; Thompson, Paul; Kim, Jaeyun; Miller, Michael I.; Csernansky, John G.
2008-01-01
Objective Abnormalities of basal ganglia structure in schizophrenia have been attributed to the effects of antipsychotic drugs. Our aim was to test the hypothesis that abnormalities of basal ganglia structure are intrinsic features of schizophrenia, by assessing basal ganglia volume and shape in the unaffected siblings of schizophrenia subjects. Method The study involved 25 pairs of schizophrenia subjects and their unaffected siblings and 40 pairs of healthy controls and their siblings. Large deformation, high-dimensional brain mapping was used to obtain surface representations of the caudate, putamen, and globus pallidus. Surfaces were derived from transformations of anatomical templates and shapes were analyzed using reduced-dimensional measures of surface variability (i.e. principal components and canonical analysis). Canonical functions were derived using schizophrenia and control groups, and were then used to compare shapes in the sibling groups. To visualize shape differences, maps of the estimated surface displacement between groups were created. Results In the caudate, putamen and globus pallidus, the degree of shape abnormality observed in the siblings of the schizophrenia subjects was intermediate between the schizophrenia subjects and the controls. In the schizophrenia subjects, significant correlations were observed between measures of caudate, putamen and globus pallidus structure and the selected measures of lifetime psychopathology. Conclusions Attenuated abnormalities of basal ganglia structure are present in the unaffected siblings of schizophrenia subjects. This finding implies that basal ganglia structural abnormalities observed in subjects with schizophrenia are at least in part an intrinsic feature of the illness. PMID:18295189
Shape evolution of a core-shell spherical particle under hydrostatic pressure.
Colin, Jérôme
2012-03-01
The morphological evolution by surface diffusion of a core-shell spherical particle has been investigated theoretically under hydrostatic pressure when the shear modulii of the core and shell are different. A linear stability analysis has demonstrated that depending on the pressure, shear modulii, and radii of both phases, the free surface of the composite particle may be unstable with respect to a shape perturbation. A stability diagram finally emphasizes that the roughness development is favored in the case of a hard shell with a soft core.
HEART Aerothermodynamic Analysis
NASA Technical Reports Server (NTRS)
Mazaheri, Alireza
2012-01-01
This paper presents an assessment of the aerothermodynamic environment around an 8.3 meter High Energy Atmospheric Reentry Test (HEART) vehicle. This study generated twelve nose shape configurations and compared their responses at the peak heating trajectory point against the baseline nose shape. The heat flux sensitivity to the angle of attack variations are also discussed. The possibility of a two-piece Thermal Protection System (TPS) design at the nose is also considered, as are the surface catalytic affects of the aeroheating environment of such configuration. Based on these analyses, an optimum nose shape is proposed to minimize the surface heating. A recommendation is also made for a two-piece TPS design, for which the surface catalytic uncertainty associated with the jump in heating at the nose-IAD juncture is reduced by a minimum of 93%. In this paper, the aeroshell is assumed to be rigid and the inflatable fluid interaction effect is left for future investigations.
High-Energy Atmospheric Reentry Test Aerothermodynamic Analysis
NASA Technical Reports Server (NTRS)
Mazaheri, Alireza
2013-01-01
This paper presents an assessment of the aerothermodynamic environment around an 8.3 meter High Energy Atmospheric Reentry Test (HEART) vehicle. This study generated twelve nose shape configurations and compared their responses at the peak heating trajectory point against the baseline nose shape. The heat flux sensitivity to the angle of attack variations are also discussed. The possibility of a two-piece Thermal Protection System (TPS) design at the nose is also considered, as are the surface catalytic affects of the aeroheating environment of such configuration. Based on these analyses, an optimum nose shape is proposed to minimize the surface heating. A recommendation is also made for a two-piece TPS design, for which the surface catalytic uncertainty associated with the jump in heating at the nose-IAD juncture is reduced by a minimum of 93%. In this paper, the aeroshell is assumed to be rigid and the inflatable fluid interaction effect is left for future investigations
Aging and the haptic perception of 3D surface shape.
Norman, J Farley; Kappers, Astrid M L; Beers, Amanda M; Scott, A Kate; Norman, Hideko F; Koenderink, Jan J
2011-04-01
Two experiments evaluated the ability of older and younger adults to perceive the three-dimensional (3D) shape of object surfaces from active touch (haptics). The ages of the older adults ranged from 64 to 84 years, while those of the younger adults ranged from 18 to 27 years. In Experiment 1, the participants haptically judged the shape of large (20 cm diameter) surfaces with an entire hand. In contrast, in Experiment 2, the participants explored the shape of small (5 cm diameter) surfaces with a single finger. The haptic surfaces varied in shape index (Koenderink, Solid shape, 1990; Koenderink, Image and Vision Computing, 10, 557-564, 1992) from -1.0 to +1.0 in steps of 0.25. For both types of surfaces (large and small), the participants were able to judge surface shape reliably. The older participants' judgments of surface shape were just as accurate and precise as those of the younger participants. The results of the current study demonstrate that while older adults do possess reductions in tactile sensitivity and acuity, they nevertheless can effectively perceive 3D surface shape from haptic exploration.
Practical quality control tools for curves and surfaces
NASA Technical Reports Server (NTRS)
Small, Scott G.
1992-01-01
Curves (geometry) and surfaces created by Computer Aided Geometric Design systems in the engineering environment must satisfy two basic quality criteria: the geometric shape must have the desired engineering properties; and the objects must be parameterized in a way which does not cause computational difficulty for geometric processing and engineering analysis. Interactive techniques are described which are in use at Boeing to evaluate the quality of aircraft geometry prior to Computational Fluid Dynamic analysis, including newly developed methods for examining surface parameterization and its effects.
A multi-topographical-instrument analysis: the breast implant texture measurement
NASA Astrophysics Data System (ADS)
Garabédian, Charles; Delille, Rémi; Deltombe, Raphaël; Anselme, Karine; Atlan, Michael; Bigerelle, Maxence
2017-06-01
Capsular contracture is a major complication after implant-based breast augmentation. To address this tissue reaction, most manufacturers texture the outer breast implant surfaces with calibrated salt grains. However, the analysis of these surfaces on sub-micron scales has been under-studied. This scale range is of interest to understand the future of silicone particles potentially released from the implant surface and the aetiology of newly reported complications, such as Anaplastic Large Cell Lymphoma. The surface measurements were accomplished by tomography and by two optical devices based on interferometry and on focus variation. The robustness of the measurements was investigated from the tissue scale to the cellular scale. The macroscopic pore-based structure of the textured implant surfaces is consistently measured by the three instruments. However, the multi-scale analyses start to be discrepant in a scale range between 50 µm and 500 µm characteristic of a finer secondary roughness regardless of the pore shape. The focus variation and the micro-tomography would fail to capture this roughness regime because of a focus-related optical artefact and of step-shaped artefact respectively.
Karakostis, Fotios Alexandros; Hotz, Gerhard; Scherf, Heike; Wahl, Joachim; Harvati, Katerina
2018-05-01
The purpose of this study was to put forth a precise landmark-based technique for reconstructing the three-dimensional shape of human entheseal surfaces, to investigate whether the shape of human entheses is related to their size. The effects of age-at-death and bone length on entheseal shapes were also assessed. The sample comprised high-definition three-dimensional models of three right hand entheseal surfaces, which correspond to 45 male adult individuals of known age. For each enthesis, a particular landmark configuration was introduced, whose precision was tested both within and between observers. The effect of three-dimensional size, age-at-death, and bone length on shape was investigated through shape regression. The method presented high intra-observer and inter-observer repeatability. All entheses showed significant allometry, with the area of opponens pollicis demonstrating the most substantial relationship. This was particularly due to variation related to its proximal elongated ridge. The effect of age-at-death and bone length on entheses was limited. The introduced methodology can set a reliable basis for further research on the factors affecting entheseal shape. Using both size and shape, variables can provide further information on entheseal variation and its biomechanical implications. The low entheseal variation by age verifies that specimens under 50 years of age are not substantially affected by age-related changes. The lack of correlation between entheseal shape and bone length or age implies that other factors may regulate entheseal surfaces. Future research should focus on multivariate shape patterns among entheses and their association with occupation. © 2018 Wiley Periodicals, Inc.
First-principles atomistic Wulff constructions for an equilibrium rutile TiO2 shape modeling
NASA Astrophysics Data System (ADS)
Jiang, Fengzhou; Yang, Lei; Zhou, Dali; He, Gang; Zhou, Jiabei; Wang, Fanhou; Chen, Zhi-Gang
2018-04-01
Identifying the exposed surfaces of rutile TiO2 crystal is crucial for its industry application and surface engineering. In this study, the shape of the rutile TiO2 was constructed by applying equilibrium thermodynamics of TiO2 crystals via first-principles density functional theory (DFT) and Wulff principles. From the DFT calculations, the surface energies of six low-index stoichiometric facets of TiO2 are determined after the calibrations of crystal structure. And then, combined surface energy calculations and Wulff principles, a geometric model of equilibrium rutile TiO2 is built up, which is coherent with the typical morphology of fully-developed equilibrium TiO2 crystal. This study provides fundamental theoretical guidance for the surface analysis and surface modification of the rutile TiO2-based materials from experimental research to industry manufacturing.
Hirao, Makoto; Sugamoto, Kazuomi; Tamai, Noriyuki; Oka, Kunihiro; Yoshikawa, Hideki; Mori, Yusuke; Sasaki, Takatomo
2005-05-01
Porous coatings have been applied to the surface of prosthetic devices to foster stable device fixation. The coating serves as a source of mechanical interlocking and may stimulate healthy bone growth through osseointegrated load transfer in cementless arthroplasty. Joint arthroplasty by porous-coated prostheses is one of the most common surgical treatments, and has provided painless and successful joint mobility. However, long-term success is often impaired by the loss of fixation between the prosthesis and bone. Porous-coated prostheses are associated with several disadvantages, including metal debris from porous coatings (third body wear particles) and irregular micro-texture of metal surfaces. Consequently, quantitative histological analysis has been very difficult. These issues arise because the porous coating treatment is based on addition of material and is not precisely controllable. We recently developed a precisely controllable porous texture technique based on material removal by yttrium-aluminum-garnet laser. Free shapes can be applied to complex, three-dimensional hard metal surfaces using this technique. In this study, tartan check shapes made by crossing grooves and dot shapes made by forming holes were produced on titanium (Ti6A14V) or cobalt chrome (CoCr) and evaluated with computer-assisted histological analysis and measurement of bone-metal interface shear strength. Width of grooves or holes ranged from 100 to 800 mum (100, 200, 500, and 800 microm), with a depth of 500 microm. When the cylindrical porous-texture-treated metal samples (diameter, 5 mm; height, 15 mm) were implanted into a rabbit femoral condyle, bone tissue with bone trabeculae formed in the grooves and holes after 2 or 4 weeks, especially in 500-microm-wide grooves. Abundant osteoconduction was consistently observed throughout 500-microm-wide grooves in both Ti6A14V and CoCr. Speed of osteoconduction was faster in Ti6A14V than in CoCr, especially in the tartan check shape made of 500-microm-wide grooves. In pushout testing, the tartan check shape made of 500-microm-wide grooves had significantly higher bone-metal interface shear strength than the dot shape or commercial porous coating. These results indicate that the tartan check shape made of 500-microm-wide grooves on metal surfaces has potential for clinical application in artificial prosthesis design.
Cerebral atrophy in elderly with subjective memory complaints.
Palm, Walter M; Ferrarini, Luca; van der Flier, Wiesje M; Westendorp, Rudi G J; Bollen, Eduard L E M; Middelkoop, Huub A M; Milles, Julien R; van der Grond, Jeroen; van Buchem, Mark A
2013-08-01
To evaluate ventricular shape differences along the complete surface of the lateral and third ventricles of persons with subjective memory complaints (MC). We included 28 controls and 21 persons with MC. FLAIR, T2, and PD-weighted brain MRI scans were acquired at 1.5 Tesla, followed by semi-automated segmentation of the lateral and third ventricles, and local shape difference analysis based on growing and adaptive meshes. Ventricular meshes were used to highlight local areas with significant differences between controls and persons with MC, determined by permutation tests with a predefined threshold (P = 0.01). Compared with control subjects, relevant differences were found in the shape of the ventricular surface adjacent to the thalamus and corona radiata in persons with MC. Before correction for multiple comparisons, relevant differences were also found in the shape of the ventricular surface adjacent to the corpus callosum, hippocampus, and amydala. Our findings suggest the presence of localized structural brain differences in patients with subjective memory complaints in the thalamus and the corona radiata. Copyright © 2013 Wiley Periodicals, Inc.
Profiling Charge Complementarity and Selectivity for Binding at the Protein Surface
Sulea, Traian; Purisima, Enrico O.
2003-01-01
A novel analysis and representation of the protein surface in terms of electrostatic binding complementarity and selectivity is presented. The charge optimization methodology is applied in a probe-based approach that simulates the binding process to the target protein. The molecular surface is color coded according to calculated optimal charge or according to charge selectivity, i.e., the binding cost of deviating from the optimal charge. The optimal charge profile depends on both the protein shape and charge distribution whereas the charge selectivity profile depends only on protein shape. High selectivity is concentrated in well-shaped concave pockets, whereas solvent-exposed convex regions are not charge selective. This suggests the synergy of charge and shape selectivity hot spots toward molecular selection and recognition, as well as the asymmetry of charge selectivity at the binding interface of biomolecular systems. The charge complementarity and selectivity profiles map relevant electrostatic properties in a readily interpretable way and encode information that is quite different from that visualized in the standard electrostatic potential map of unbound proteins. PMID:12719221
NASA Astrophysics Data System (ADS)
Li, Y.; Seymour, M.; Chen, G.; Su, C.
2013-12-01
Mechanistic understanding of the transport and retention of nanoparticles in porous media is essential both for environmental applications of nanotechnology and assessing the potential environmental impacts of engineered nanomaterials. Engineered and naturally occurring nanoparticles can be found in various shapes including rod-shape carbon nanotubes that have high aspect ratios. Although it is expected that nonspherical shape could play an important role on their transport and retention behaviors, current theoretical models for particle transport in porous media, however, are mostly based on spherical particle shape. In this work, the effect of particle shape on its transport and retention in porous media was evaluated by stretching carboxylate-modified fluorescent polystyrene spheres into rod shapes with aspect ratios of 2:1 and 4:1. Quartz crystal microbalance with dissipation experiments (QCM-D) were conducted to measure the deposition rates of spherical and rod-shaped nanoparticles to the collector (poly-L-lysine coated silica sensor) surface under favorable conditions. Under unfavorable conditions, the retention of nanoparticles in a microfluidic flow cell packed with glass beads was studied with the use of laser scanning cytometry (LSC). Under favorable conditions, the spherical particles displayed a significantly higher deposition rate compared with that of the rod-shaped particles. Theoretical analysis based on Smoluchowski-Levich approximation indicated that the rod-shaped particles largely counterbalance the attractive energies due to higher hydrodynamic forces and torques experienced during their transport and rotation. Under unfavorable conditions, significantly more attachment was observed for rod-shaped particles than spherical particles, and the attachment rate of the rod-shaped particles showed an increasing trend with the increase in injection volume. Rod-shaped particles were found to be less sensitive to the surface charge heterogeneity change than spherical particles. Increased attachment rate of rod-shaped particles was attributed to surface heterogeneity and possibly enhanced hydrophobicity during the stretching process.
Analysis of Cortical Shape in Children with Simplex Autism
Dierker, Donna L.; Feczko, Eric; Pruett, John R.; Petersen, Steven E.; Schlaggar, Bradley L.; Constantino, John N.; Harwell, John W.; Coalson, Timothy S.; Van Essen, David C.
2015-01-01
We used surface-based morphometry to test for differences in cortical shape between children with simplex autism (n = 34, mean age 11.4 years) and typical children (n = 32, mean age 11.3 years). This entailed testing for group differences in sulcal depth and in 3D coordinates after registering cortical midthickness surfaces to an atlas target using 2 independent registration methods. We identified bilateral differences in sulcal depth in restricted portions of the anterior-insula and frontal-operculum (aI/fO) and in the temporoparietal junction (TPJ). The aI/fO depth differences are associated with and likely to be caused by a shape difference in the inferior frontal gyrus in children with simplex autism. Comparisons of average midthickness surfaces of children with simplex autism and those of typical children suggest that the significant sulcal depth differences represent local peaks in a larger pattern of regional differences that are below statistical significance when using coordinate-based analysis methods. Cortical regions that are statistically significant before correction for multiple measures are peaks of more extended, albeit subtle regional differences that may guide hypothesis generation for studies using other imaging modalities. PMID:24165833
Shape measurement and vibration analysis of moving speaker cone
NASA Astrophysics Data System (ADS)
Zhang, Qican; Liu, Yuankun; Lehtonen, Petri
2014-06-01
Surface three-dimensional (3-D) shape information is needed for many fast processes such as structural testing of material, standing waves on loudspeaker cone, etc. Usually measurement is done from limited number of points using electrical sensors or laser distance meters. Fourier Transform Profilometry (FTP) enables fast shape measurement of the whole surface. Method is based on angled sinusoidal fringe pattern projection and image capturing. FTP requires only one image of the deformed fringe pattern to restore the 3-D shape of the measured object, which makes real-time or dynamic data processing possible. In our experiment the method was used for loudspeaker cone distortion measurement in dynamic conditions. For sound quality issues it is important that the whole cone moves in same phase and there are no partial waves. Our imaging resolution was 1280x1024 pixels and frame rate was 200 fps. Using our setup we found unwanted spatial waves in our sample cone.
3D shape representation with spatial probabilistic distribution of intrinsic shape keypoints
NASA Astrophysics Data System (ADS)
Ghorpade, Vijaya K.; Checchin, Paul; Malaterre, Laurent; Trassoudaine, Laurent
2017-12-01
The accelerated advancement in modeling, digitizing, and visualizing techniques for 3D shapes has led to an increasing amount of 3D models creation and usage, thanks to the 3D sensors which are readily available and easy to utilize. As a result, determining the similarity between 3D shapes has become consequential and is a fundamental task in shape-based recognition, retrieval, clustering, and classification. Several decades of research in Content-Based Information Retrieval (CBIR) has resulted in diverse techniques for 2D and 3D shape or object classification/retrieval and many benchmark data sets. In this article, a novel technique for 3D shape representation and object classification has been proposed based on analyses of spatial, geometric distributions of 3D keypoints. These distributions capture the intrinsic geometric structure of 3D objects. The result of the approach is a probability distribution function (PDF) produced from spatial disposition of 3D keypoints, keypoints which are stable on object surface and invariant to pose changes. Each class/instance of an object can be uniquely represented by a PDF. This shape representation is robust yet with a simple idea, easy to implement but fast enough to compute. Both Euclidean and topological space on object's surface are considered to build the PDFs. Topology-based geodesic distances between keypoints exploit the non-planar surface properties of the object. The performance of the novel shape signature is tested with object classification accuracy. The classification efficacy of the new shape analysis method is evaluated on a new dataset acquired with a Time-of-Flight camera, and also, a comparative evaluation on a standard benchmark dataset with state-of-the-art methods is performed. Experimental results demonstrate superior classification performance of the new approach on RGB-D dataset and depth data.
[The application of Doppler broadening and Doppler shift to spectral analysis].
Xu, Wei; Fang, Zi-shen
2002-08-01
The distinction between Doppler broadening and Doppler shift has analyzed, Doppler broadening locally results from the distribution of velocities of the emitting particles, the line width gives the information on temperature of emitting particles. Doppler shift results when the emitting particles have a bulk non random flow velocity in a particular direction, the drift of central wavelength gives the information on flow velocity of emitting particles, and the Doppler shift only drifts the profile of line without changing the width. The difference between Gaussian fitting and the distribution of chord-integral line shape have also been discussed. The distribution of H alpha spectral line shape has been derived from the surface of limiter in HT-6M Tokamak with optical spectroscope multichannel analysis (OSMA), the result by double Gaussian fitting shows that the line shape make up of two port, the emitting of reflect particles with higher energy and the release particle from the limiter surface. Ion temperature and recycling particle flow velocity have been obtained from Doppler broadening and Doppler shift.
NASA Technical Reports Server (NTRS)
Shantaram, S. Pai; Gyekenyesi, John P.
1989-01-01
The calculation of shape and scale parametes of the two-parameter Weibull distribution is described using the least-squares analysis and maximum likelihood methods for volume- and surface-flaw-induced fracture in ceramics with complete and censored samples. Detailed procedures are given for evaluating 90 percent confidence intervals for maximum likelihood estimates of shape and scale parameters, the unbiased estimates of the shape parameters, and the Weibull mean values and corresponding standard deviations. Furthermore, the necessary steps are described for detecting outliers and for calculating the Kolmogorov-Smirnov and the Anderson-Darling goodness-of-fit statistics and 90 percent confidence bands about the Weibull distribution. It also shows how to calculate the Batdorf flaw-density constants by using the Weibull distribution statistical parameters. The techniques described were verified with several example problems, from the open literature, and were coded in the Structural Ceramics Analysis and Reliability Evaluation (SCARE) design program.
Kalantarian, Ali; Ninomiya, Hiromasa; Saad, Sameh M I; David, Robert; Winklbauer, Rudolf; Neumann, A Wilhelm
2009-02-18
Biological tissues behave in certain respects like liquids. Consequently, the surface tension concept can be used to explain aspects of the in vitro and in vivo behavior of multicellular aggregates. Unfortunately, conventional methods of surface tension measurement cannot be readily applied to small cell aggregates. This difficulty can be overcome by an experimentally straightforward method consisting of centrifugation followed by axisymmetric drop shape analysis (ADSA). Since the aggregates typically show roughness, standard ADSA cannot be applied and we introduce a novel numerical method called ADSA-IP (ADSA for imperfect profile) for this purpose. To examine the new methodology, embryonic tissues from the gastrula of the frog, Xenopus laevis, deformed in the centrifuge are used. It is confirmed that surface tension measurements are independent of centrifugal force and aggregate size. Surface tension is measured for ectodermal cells in four sample batches, and varies between 1.1 and 7.7 mJ/m2. Surface tension is also measured for aggregates of cells expressing cytoplasmically truncated EP/C-cadherin, and is approximately half as large. In parallel, such aggregates show a reduction in convergent extension-driven elongation after activin treatment, reflecting diminished intercellular cohesion.
A method for determining spiral-bevel gear tooth geometry for finite element analysis
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Litvin, Faydor L.
1991-01-01
An analytical method was developed to determine gear tooth surface coordinates of face-milled spiral bevel gears. The method uses the basic gear design parameters in conjunction with the kinematical aspects of spiral bevel gear manufacturing machinery. A computer program, SURFACE, was developed. The computer program calculates the surface coordinates and outputs 3-D model data that can be used for finite element analysis. Development of the modeling method and an example case are presented. This analysis method could also find application for gear inspection and near-net-shape gear forging die design.
Array automated assembly, phase 2
NASA Technical Reports Server (NTRS)
Taylor, W. E.
1978-01-01
An analysis was made of cost tradeoffs for shaping modified square wafers from cylindrical crystals. Tests were conducted of the effectiveness of texture etching for removal of surface damage on sawed wafers. A single step texturing etch appeared adequate for removal of surface damage on wafers cut with multiple blade reciprocating slurry saws.
Foo, Guo Shiou; Hood, Zachary D.; Wu, Zili
2017-12-05
For this research, to gain an in-depth understanding of the surface properties relevant for catalysis using ternary oxides, we report the acid–base pair reactivity of shape-controlled SrTiO 3 (STO) nanocrystals for the dehydrogenation of ethanol. Cubes, truncated cubes, dodecahedra, and etched cubes of STO with varying ratios of (001) and (110) crystal facets were synthesized using a hydrothermal method. Low-energy ion scattering (LEIS) analysis revealed that the (001) surface on cubes of STO is enriched with SrO due to surface reconstruction, resulting in a high ratio of strong base sites. Chemical treatment with dilute nitric acid to form etched cubesmore » of STO resulted in a surface enriched with Ti cations and strong acidity. Furthermore, the strength and distribution of surface acidic sites increase with the ratio of (110) facet from cubes to truncated cubes to dodecahedra for STO. Kinetic, isotopic, and spectroscopy methods show that the dehydrogenation of ethanol proceeds through the facile dissociation of the alcohol group, followed by the cleavage of the C α–H bond, which is the rate-determining step. Co-feeding of various probe molecules during catalysis, such as NH 3, 2,6-di-tert-butylpyridine, CO 2, and SO 2, reveals that a pair of Lewis acid site and basic surface oxygen atom is involved in the dehydrogenation reaction. The surface density of acid–base site pairs was measured using acetic acid as a probe molecule, allowing initial acetaldehyde formation turnover rates to be obtained. Comparison among various catalysts reveals no simple correlation between ethanol turnover rate and the percentage of either surface facet ((001) or (110)) of the STO nanocrystals. Instead, the reaction rate is found to increase with the strength of acid sites but reversely with the strength of base sites. The acid–base property is directly related to the surface composition as a result from different surface reconstruction behaviors of the shaped STO nanocrystals. Lastly, the finding in this work underscores the importance of characterizing the top surface compositions and sites properties when assessing the catalytic performance of shape-controlled complex oxides such as perovskites.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foo, Guo Shiou; Hood, Zachary D.; Wu, Zili
For this research, to gain an in-depth understanding of the surface properties relevant for catalysis using ternary oxides, we report the acid–base pair reactivity of shape-controlled SrTiO 3 (STO) nanocrystals for the dehydrogenation of ethanol. Cubes, truncated cubes, dodecahedra, and etched cubes of STO with varying ratios of (001) and (110) crystal facets were synthesized using a hydrothermal method. Low-energy ion scattering (LEIS) analysis revealed that the (001) surface on cubes of STO is enriched with SrO due to surface reconstruction, resulting in a high ratio of strong base sites. Chemical treatment with dilute nitric acid to form etched cubesmore » of STO resulted in a surface enriched with Ti cations and strong acidity. Furthermore, the strength and distribution of surface acidic sites increase with the ratio of (110) facet from cubes to truncated cubes to dodecahedra for STO. Kinetic, isotopic, and spectroscopy methods show that the dehydrogenation of ethanol proceeds through the facile dissociation of the alcohol group, followed by the cleavage of the C α–H bond, which is the rate-determining step. Co-feeding of various probe molecules during catalysis, such as NH 3, 2,6-di-tert-butylpyridine, CO 2, and SO 2, reveals that a pair of Lewis acid site and basic surface oxygen atom is involved in the dehydrogenation reaction. The surface density of acid–base site pairs was measured using acetic acid as a probe molecule, allowing initial acetaldehyde formation turnover rates to be obtained. Comparison among various catalysts reveals no simple correlation between ethanol turnover rate and the percentage of either surface facet ((001) or (110)) of the STO nanocrystals. Instead, the reaction rate is found to increase with the strength of acid sites but reversely with the strength of base sites. The acid–base property is directly related to the surface composition as a result from different surface reconstruction behaviors of the shaped STO nanocrystals. Lastly, the finding in this work underscores the importance of characterizing the top surface compositions and sites properties when assessing the catalytic performance of shape-controlled complex oxides such as perovskites.« less
NASA Astrophysics Data System (ADS)
Rodríguez-Ruiz, Alejandro; Agasthya, Greeshma A.; Sechopoulos, Ioannis
2017-09-01
To characterize and develop a patient-based 3D model of the compressed breast undergoing mammography and breast tomosynthesis. During this IRB-approved, HIPAA-compliant study, 50 women were recruited to undergo 3D breast surface imaging with structured light (SL) during breast compression, along with simultaneous acquisition of a tomosynthesis image. A pair of SL systems were used to acquire 3D surface images by projecting 24 different patterns onto the compressed breast and capturing their reflection off the breast surface in approximately 12-16 s. The 3D surface was characterized and modeled via principal component analysis. The resulting surface model was combined with a previously developed 2D model of projected compressed breast shapes to generate a full 3D model. Data from ten patients were discarded due to technical problems during image acquisition. The maximum breast thickness (found at the chest-wall) had an average value of 56 mm, and decreased 13% towards the nipple (breast tilt angle of 5.2°). The portion of the breast not in contact with the compression paddle or the support table extended on average 17 mm, 18% of the chest-wall to nipple distance. The outermost point along the breast surface lies below the midline of the total thickness. A complete 3D model of compressed breast shapes was created and implemented as a software application available for download, capable of generating new random realistic 3D shapes of breasts undergoing compression. Accurate characterization and modeling of the breast curvature and shape was achieved and will be used for various image processing and clinical tasks.
NASA Technical Reports Server (NTRS)
Poe, C. C., Jr.
1990-01-01
A study was made to determine the relevance of impacter shape to nonvisible damage and tensile residual strength of a 36 mm (1.4 in.) thick graphite/epoxy motor case. The shapes of the impacters were as follows: 12.7 mm (0.5 in.) and 25.4 mm (1.0 in.) diameter hemispheres, a sharp corner, and a 6.3 mm (0.25 in.) diameter bolt-like rod. The investigation revealed that damage initiated when the contact pressure exceeded a critical level. However, the damage was not visible on the surface until an even higher pressure was exceeded. The damage on the surface consisted of a crater shaped like the impacter, and the damage below the surface consisted of broken fibers. The impact energy to initiate damage or cause visible damage on the surface increased approximately with impacter diameter to the third power. The reduction in strength for nonvisible damage increased with increasing diameter, 9 and 30 percent for the 12.7 mm (0.5 in.) and 25.4 mm (1.0 in.) diameter hemispheres, respectively. The corner impacter made visible damage on the surface for even the smallest impact energy. The rod impacter acted like a punch and sliced through the composite. Even so, the critical level of pressure to initiate damage was the same for the rod and hemispherical impacters. Factors of safety for nonvisible damage increased with increasing kinetic energy of impact. The effects of impacter shape on impact force, damage size, damage visibility, and residual tensile strength were predicted quite well assuming Hertzian contact and using maximum stress criteria and a surface crack analysis.
Moon manned missions radiation safety analysis
NASA Astrophysics Data System (ADS)
Tripathi, R. K.; Wilson, J. W.; de Anlelis, G.; Badavi, F. F.
An analysis is performed on the radiation environment found on the surface of the Moon, and applied to different possible lunar base mission scenarios. An optimization technique has been used to obtain mission scenarios minimizing the astronaut radiation exposure and at the same time controlling the effect of shielding, in terms of mass addition and material choice, as a mission cost driver. The optimization process has been realized through minimization of mass along all phases of a mission scenario, in terms of time frame (dates, transfer time length and trajectory, radiation environment), equipment (vehicles, in terms of shape, volume, onboard material choice, size and structure), location (if in space, on the surface, inside or outside a certain habitats), crew characteristics (number, gender, age, tasks) and performance required (spacecraft and habitat volumes), radiation exposure annual and career limit constraint (from NCRP 132), and implementation of the ALARA principle (shelter from the occurrence of Solar Particle Events). On the lunar surface the most important contribution to radiation exposure is given by background Galactic Cosmic Rays (GCR) particles, mostly protons, alpha particles, and some heavy ions, and by locally induced particles, mostly neutrons, created by the interaction between GCR and surface material and emerging from below the surface due to backscattering processes. In this environment manned habitats are to host future crews involved in the construction and/or in the utilization of moon based infrastructure. Three different kinds of lunar missions are considered in the analysis, Moon Base Construction Phase, during which astronauts are on the surface just to build an outpost for future resident crews, Moon Base Outpost Phase, during which astronaut crews are resident but continuing exploration and installation activities, and Moon Base Routine Phase, with long-term shifting resident crews. In each scenario various kinds of habitats, from very simple shelters to more complex bases, are considered in full detail (e.g., shape, thickness, materials, etc) with considerations of various shielding strategies. In this first analysis all the shape considered are cylindrical or composed of combination of cylinders. Moreover, a radiation safety analysis of more future possible habitats like lava tubes has been also performed.
Evaluation of handle design characteristics in a maximum screwdriving torque task.
Kong, Y-K; Lowe, B D; Lee, S-J; Krieg, E F
2007-09-01
The purpose of this study was to evaluate the effects of screwdriver handle shape, surface material and workpiece orientation on torque performance, finger force distribution and muscle activity in a maximum screwdriving torque task. Twelve male subjects performed maximum screw-tightening exertions using screwdriver handles with three longitudinal shapes (circular, hexagonal and triangular), four lateral shapes (cylindrical, double frustum, cone and reversed double frustum) and two surfaces (rubber and plastic). The average finger force contributions to the total hand force were 28.1%, 39.3%, 26.5% and 6.2%, in order from index to little fingers; the average phalangeal segment force contributions were 47.3%, 14.0%, 20.5% and 18.1% for distal, middle, proximal and metacarpal phalanges, respectively. The plastic surface handles were associated with 15% less torque output (4.86 Nm) than the rubber coated handles (5.73 Nm). In general, the vertical workpiece orientation was associated with higher torque output (5.9 Nm) than the horizontal orientation (4.69 Nm). Analysis of handle shapes indicates that screwdrivers designed with a circular or hexagonal cross-sectional shape result in greater torque outputs (5.49 Nm, 5.57 Nm), with less total finger force (95 N, 105 N). In terms of lateral shape, reversed double frustum handles were associated with less torque output (5.23 Nm) than the double frustum (5.44 Nm) and cone (5.37 Nm) handles. Screwdriver handles designed with combinations of circular or hexagonal cross-sectional shapes with double frustum and cone lateral shapes were optimal in this study.
NASA Astrophysics Data System (ADS)
Zhang, Shuqing; Wang, Yongquan; Zhi, Xiyang
2017-05-01
A method of diminishing the shape error of membrane mirror is proposed in this paper. The inner inflating pressure is considerably decreased by adopting the pre-shaped membrane. Small deformation of the membrane mirror with greatly reduced shape error is sequentially achieved. Primarily a finite element model of the above pre-shaped membrane is built on the basis of its mechanical properties. Then accurate shape data under different pressures can be acquired by iteratively calculating the node displacements of the model. Shape data are applicable to build up deformed reflecting surfaces for the simulative analysis in ZEMAX. Finally, ground-based imaging experiments of 4-bar targets and nature scene are conducted. Experiment results indicate that the MTF of the infrared system can reach to 0.3 at a high spatial resolution of 10l p/mm, and texture details of the nature scene are well-presented. The method can provide theoretical basis and technical support for the applications in lightweight optical components with ultra-large apertures.
Acoustic Levitation and its Applications in the Study of Liquid Surface Rheology.
NASA Astrophysics Data System (ADS)
Tian, Yuren
Due to its non-contact manipulation and requirement of small amounts of test sample, acoustical levitation has been used to investigate the interfacial dynamics of liquids. In this current work, the surface rheology of liquid drops levitated in air has been studied. The surrounding of a gaseous medium simplifies the theoretical analysis and the interpretation of experimental results. For a ground-based experiment, the effect of gravity and the levitation sound field can change a levitated drop into a nonspherical shape. A theory which involves the multiple interactions between the drop and the sound field, the acoustic scattering by a nonspherical object and the limitation of droplet volume variation is developed. The droplet aspect ratio is determined as a function of the sound pressure, frequency (or wavelength) and the surface tension of liquid under both zero and nonzero gravity environments. The dynamics of a liquid drop of surfactant solution is also theoretically analyzed by including the different surfactant transfer processes at the droplet surface. The approximate solutions of the resonance frequency and damping constant of droplet free quadrupole shape oscillation are derived analytically and verified with the exact numerical solutions. The phase relationship between the driving force and the droplet response is established for the case of forced droplet shape oscillation. The surface viscoelasticity of liquid has shown a strong effect on the droplet dynamics. An acoustic levitation apparatus is constructed and used to levitate a liquid drop in air. By gauging the static shape of the drop versus its spatial location, the equilibrium surface tension of the liquid can be determined. The surface elasticity and viscosity are evaluated from the measurements of the resonance frequency, damping constant and phase relationship of the droplet quadrupole shape oscillation. Different kind of liquids are tested. For surfactant solutions, the experimental results illustrate the existence of surface viscoelasticities.
NASA Astrophysics Data System (ADS)
Wang, Li; Yang, Xiaonan; Wang, Quandai; Yang, Zhiqiang; Duan, Hui; Lu, Bingheng
2017-07-01
The construction of stable hydrophobic surfaces has increasingly gained attention owing to its wide range of potential applications. However, these surfaces may become wet and lose their slip effect owing to insufficient hydrophobic stability. Pillars with a mushroom-shaped tip are believed to enhance hydrophobicity stability. This work presents a facile method of manufacturing mushroom-shaped structures, where, compared with the previously used method, the modulation of the cap thickness, cap diameter, and stem height of the structures is more convenient. The effects of the development time on the cap diameter and overhanging angle are investigated and well-defined mushroom-shaped structures are demonstrated. The effect of the microstructure geometry on the contact state of a droplet is predicted by taking an energy minimization approach and is experimentally validated with nonvolatile ultraviolet-curable polymer with a low surface tension by inspecting the profiles of liquid-vapor interface deformation and tracking the trace of the receding contact line after exposure to ultraviolet light. Theoretical and experimental results show that, compared with regular pillar arrays having a vertical sidewall, the mushroom-like structures can effectively enhance hydrophobic stability. The proposed manufacturing method will be useful for fabricating robust hydrophobic surfaces in a cost-effective and convenient manner.
Three-dimensional CTOA and constraint effects during stable tearing in a thin-sheet material
NASA Technical Reports Server (NTRS)
Dawicke, D. S.; Newman, J. C., Jr.; Bigelow, C. A.
1995-01-01
A small strain theory, three-dimensional elastic-plastic finite element analysis was used to simulate fracture in thin sheet 2024-T3 aluminum alloy in the T-L orientation. Both straight and tunneled cracks were modeled. The tunneled crack front shapes as a function of applied stress were obtained from the fracture surface of tested specimens. The stable crack growth behavior was measured at the specimen surface as a function of applied stress. The fracture simulation modeled the crack tunneling and extension as a function of applied stress. The results indicated that the global constraint factor, alpha(sub g), initially dropped during stable crack growth. After peak applied stress was achieved, alpha(sub g) began to increase slightly. The effect of crack front shape on alpha(sub g) was small, but the crack front shape did greatly influence the local constraint and through-thickness crack-tip opening angle (CTOA) behavior. The surface values of CTOA for the tunneled crack front model agreed well with experimental measurements, showing the same initial decrease from high values during the initial 3mm of crack growth at the specimen's surface. At the same time, the interior CTOA values increased from low angles. After the initial stable tearing region, the CTOA was constant through the thickness. The three-dimensional analysis appears to confirm the potential of CTOA as a two-dimensional fracture criterion.
NASA Astrophysics Data System (ADS)
Seo, Hyunju; Han, Jeong-Yeol; Kim, Sug-Whan; Seong, Sehyun; Yoon, Siyoung; Lee, Kyungmook; Lee, Haengbok
2015-09-01
Today, CVD SiC mirrors are readily available in the market. However, it is well known to the community that the key surface fabrication processes and, in particular, the material removal characteristics of the CVD SiC mirror surface varies sensitively depending on the shop floor polishing and figuring variables. We investigated the material removal characteristics of CVD SiC mirror surfaces using a new and patented polishing tool called orthogonal velocity tool (OVT) that employs two orthogonal velocity fields generated simultaneously during polishing and figuring machine runs. We built an in-house OVT machine and its operating principle allows for generation of pseudo Gaussian shapes of material removal from the target surface. The shapes are very similar to the tool influence functions (TIFs) of other polishing machine such as IRP series polishing machines from Zeeko. Using two CVD SiC mirrors of 150 mm in diameter and flat surface, we ran trial material removal experiments over the machine run parameter ranges from 12.901 to 25.867 psi in pressure, 0.086 m/sec to 0.147 m/sec in tool linear velocity, and 5 to 15 sec in dwell time. An in-house developed data analysis program was used to obtain a number of Gaussian shaped TIFs and the resulting material removal coefficient varies from 3.35 to 9.46 um/psi hour m/sec with the mean value to 5.90 ± 1.26(standard deviation). We report the technical details of the new OVT machine, of the data analysis program, of the experiments and the results together with the implications to the future development of the OVT machine and process for large CVD SiC mirror surfaces.
NASA Astrophysics Data System (ADS)
Mukhtar, Husneni; Montgomery, Paul; Gianto; Susanto, K.
2016-01-01
In order to develop image processing that is widely used in geo-processing and analysis, we introduce an alternative technique for the characterization of rock samples. The technique that we have used for characterizing inhomogeneous surfaces is based on Coherence Scanning Interferometry (CSI). An optical probe is first used to scan over the depth of the surface roughness of the sample. Then, to analyse the measured fringe data, we use the Five Sample Adaptive method to obtain quantitative results of the surface shape. To analyse the surface roughness parameters, Hmm and Rq, a new window resizing analysis technique is employed. The results of the morphology and surface roughness analysis show micron and nano-scale information which is characteristic of each rock type and its history. These could be used for mineral identification and studies in rock movement on different surfaces. Image processing is thus used to define the physical parameters of the rock surface.
Lu, Yuan-Chiao; Untaroiu, Costin D
2013-09-01
During car collisions, the shoulder belt exposes the occupant's clavicle to large loading conditions which often leads to a bone fracture. To better understand the geometric variability of clavicular cortical bone which may influence its injury tolerance, twenty human clavicles were evaluated using statistical shape analysis. The interior and exterior clavicular cortical bone surfaces were reconstructed from CT-scan images. Registration between one selected template and the remaining 19 clavicle models was conducted to remove translation and rotation differences. The correspondences of landmarks between the models were then established using coordinates and surface normals. Three registration methods were compared: the LM-ICP method; the global method; and the SHREC method. The LM-ICP registration method showed better performance than the global and SHREC registration methods, in terms of compactness, generalization, and specificity. The first four principal components obtained by using the LM-ICP registration method account for 61% and 67% of the overall anatomical variation for the exterior and interior cortical bone shapes, respectively. The length was found to be the most significant variation mode of the human clavicle. The mean and two boundary shape models were created using the four most significant principal components to investigate the size and shape variation of clavicular cortical bone. In the future, boundary shape models could be used to develop probabilistic finite element models which may help to better understand the variability in biomechanical responses and injuries to the clavicle. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Torrance, Jaimie S; Wincenciak, Joanna; Hahn, Amanda C; DeBruine, Lisa M; Jones, Benedict C
2014-01-01
Although many studies have investigated the facial characteristics that influence perceptions of others' attractiveness and dominance, the majority of these studies have focused on either the effects of shape information or surface information alone. Consequently, the relative contributions of facial shape and surface characteristics to attractiveness and dominance perceptions are unclear. To address this issue, we investigated the relationships between ratings of original versions of faces and ratings of versions in which either surface information had been standardized (i.e., shape-only versions) or shape information had been standardized (i.e., surface-only versions). For attractiveness and dominance judgments of both male and female faces, ratings of shape-only and surface-only versions independently predicted ratings of the original versions of faces. The correlations between ratings of original and shape-only versions and between ratings of original and surface-only versions differed only in two instances. For male attractiveness, ratings of original versions were more strongly related to ratings of surface-only than shape-only versions, suggesting that surface information is particularly important for men's facial attractiveness. The opposite was true for female physical dominance, suggesting that shape information is particularly important for women's facial physical dominance. In summary, our results indicate that both facial shape and surface information contribute to judgments of others' attractiveness and dominance, suggesting that it may be important to consider both sources of information in research on these topics.
Quantitative analysis of osteoblast behavior on microgrooved hydroxyapatite and titanium substrata.
Lu, Xiong; Leng, Yang
2003-09-01
The effects of implant surface topography and chemistry on osteoblast behavior have been a research focus because of their potential importance in orthopedic and dental applications. This work focused on the topographic effects of hydroxyapatite (HA) and titanium (Ti) surface that had identical micropatterns to determine whether there was synergistic interaction between surface chemistry and surface topography. Surface microgrooves with six different groove widths (4, 8, 16, 24, 30, and 38 microm) and three different groove depths (2, 4, and 10 microm) were made on single crystalline silicon wafers using microfabrication techniques. Ti and HA thin films were coated on the microgrooves by radio-frequency magnetron sputtering. After that, human osteoblast-like cells were seeded and cultured on the microgrooved surfaces for up to 7 days. The cells' behavior was examined using scanning electron microscopy after cells were fixed and dehydrated. Statistical analysis was based on quantitative data of orientation angle, evaluating the contact guidance, and form index, describing cell shape or cell morphology changes. The contact guidance and cell shape changes were observed on the HA and Ti microgrooves. No difference in orientation angle between HA and Ti microgrooves was found. This might suggest that surface chemistry was not a significant influence on cell guidance. However, the form index analysis indicated an interaction between topographic effects and surface chemistry. Thus, conclusions about surface topographic effects on cell behavior drawn from one type of material cannot simply be applied to another type of material. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 66A: 677-687, 2003
Contributions of feature shapes and surface cues to the recognition of facial expressions.
Sormaz, Mladen; Young, Andrew W; Andrews, Timothy J
2016-10-01
Theoretical accounts of face processing often emphasise feature shapes as the primary visual cue to the recognition of facial expressions. However, changes in facial expression also affect the surface properties of the face. In this study, we investigated whether this surface information can also be used in the recognition of facial expression. First, participants identified facial expressions (fear, anger, disgust, sadness, happiness) from images that were manipulated such that they varied mainly in shape or mainly in surface properties. We found that the categorization of facial expression is possible in either type of image, but that different expressions are relatively dependent on surface or shape properties. Next, we investigated the relative contributions of shape and surface information to the categorization of facial expressions. This employed a complementary method that involved combining the surface properties of one expression with the shape properties from a different expression. Our results showed that the categorization of facial expressions in these hybrid images was equally dependent on the surface and shape properties of the image. Together, these findings provide a direct demonstration that both feature shape and surface information make significant contributions to the recognition of facial expressions. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lu, Yuzhen; Lu, Renfu
2017-05-01
Three-dimensional (3-D) shape information is valuable for fruit quality evaluation. This study was aimed at developing phase analysis techniques for reconstruction of the 3-D surface of fruit from the pattern images acquired by a structuredillumination reflectance imaging (SIRI) system. Phase-shifted sinusoidal patterns, distorted by the fruit geometry, were acquired and processed through phase demodulation, phase unwrapping and other post-processing procedures to obtain phase difference maps relative to the phase of a reference plane. The phase maps were then transformed into height profiles and 3-D shapes in a world coordinate system based on phase-to-height and in-plane calibrations. A reference plane-based approach, coupled with the curve fitting technique using polynomials of order 3 or higher, was utilized for phase-to-height calibrations, which achieved superior accuracies with the root-mean-squared errors (RMSEs) of 0.027- 0.033 mm for a height measurement range of 0-91 mm. The 3rd-order polynomial curve fitting technique was further tested on two reference blocks with known heights, resulting in relative errors of 3.75% and 4.16%. In-plane calibrations were performed by solving a linear system formed by a number of control points in a calibration object, which yielded a RMSE of 0.311 mm. Tests of the calibrated system for reconstructing the surface of apple samples showed that surface concavities (i.e., stem/calyx regions) could be easily discriminated from bruises from the phase difference maps, reconstructed height profiles and the 3-D shape of apples. This study has laid a foundation for using SIRI for 3-D shape measurement, and thus expanded the capability of the technique for quality evaluation of horticultural products. Further research is needed to utilize the phase analysis techniques for stem/calyx detection of apples, and optimize the phase demodulation and unwrapping algorithms for faster and more reliable detection.
Xing, Juan; Ma, Yufei; Lin, Manping; Wang, Yuanliang; Pan, Haobo; Ruan, Changshun; Luo, Yanfeng
2016-10-01
Programming such as stretching, compression and bending is indispensible to endow polyurethanes with shape memory effects. Despite extensive investigations on the contributions of programming processes to the shape memory effects of polyurethane, less attention has been paid to the nanostructures of shape memory polyurethanes surface during the programming process. Here we found that stretching could induce the reassembly of hard domains and thereby change the nanostructures on the film surfaces with dependence on the stretching ratios (0%, 50%, 100%, and 200%). In as-cast polyurethane films, hard segments sequentially assembled into nano-scale hard domains, round or fibrillar islands, and fibrillar apophyses. Upon stretching, the islands packed along the stretching axis to form reoriented fibrillar apophyses along the stretching direction. Stretching only changed the chemical patterns on polyurethane films without significantly altering surface roughness, with the primary composition of fibrillar apophyses being hydrophilic hard domains. Further analysis of osteoblasts morphology revealed that the focal adhesion formation and osteoblasts orientation were in accordance with the chemical patterns of the underlying stretched films, which corroborates the vital roles of stretching-induced nanostructures in regulating osteoblasts morphology. These novel findings suggest that programming might hold great potential for patterning polyurethane surfaces so as to direct cellular behavior. In addition, this work lays groundwork for guiding the programming of shape memory polyurethanes to produce appropriate nanostructures for predetermined medical applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Failure analysis of an aluminum alloy material framework component induced by casting defects
NASA Astrophysics Data System (ADS)
Li, Bo; Hu, Weiye
2017-09-01
Failure analysis on a fractured radome framework component was carried out through visual observations, metallographic examination using optical microscope, fractog-raphy inspections using scanning electron microscope and chemical composition analysis. The failed frame was made of casting Al-Si7-Mg0.4 aluminum alloy. It had suffered a former vi-bration performance tests. It was indicated that the fractures were attributed to fatigue cracks which were induced by casting porosities at the outer surfaces of frame. Failure analysis was carefully conducted for the semi-penetrating crack appearing on the framework. According to the fractography inspected by scanning electron microscope, it was indicated that numerous casting porosities at the outer surface of the framework played the role of multiple fracture sources due to some applied stresses. Optical microstructure observations suggested that the dendrite-shaped casting porosities largely contributed to the crack-initiation. The groove-shaped structure at roots of spatial convex-bodies on the edge of casting porosities supplied the preferred paths of the crack-propagation. Besides, the brittle silicon eutectic particles distrib-uting along grain boundaries induced the intergranular fracture mode in the region of the over-load final fracture surface.
Kinetic Shapes: Analysis, Verification, and Applications.
Handz̆ić, Ismet; Reed, Kyle B
2014-06-01
A circular shape placed on an incline will roll; similarly, an irregularly shaped object, such as the Archimedean spiral, will roll on a flat surface when a force is applied to its axle. This rolling is dependent on the specific shape and the applied force (magnitude and location). In this paper, we derive formulas that define the behavior of irregular 2D and 3D shapes on a flat plane when a weight is applied to the shape's axle. These kinetic shape (KS) formulas also define and predict shapes that exert given ground reaction forces when a known weight is applied at the axle rotation point. Three 2D KS design examples are physically verified statically with good correlation to predicted values. Motion simulations of unrestrained 2D KS yielded expected results in shape dynamics and self-stabilization. We also put forth practical application ideas and research for 2D and 3D KS such as in robotics and gait rehabilitation.
Validation of a Novel Technique and Evaluation of the Surface Free Energy of Food
Senturk Parreidt, Tugce; Schmid, Markus; Hauser, Carolin
2017-01-01
Characterizing the physical properties of a surface is largely dependent on determining the contact angle exhibited by a liquid. Contact angles on the surfaces of rough and irregularly-shaped food samples are difficult to measure using a contact angle meter (goniometer). As a consequence, values for the surface energy and its components can be mismeasured. The aim of this work was to use a novel contact angle measurement method, namely the snake-based ImageJ program, to accurately measure the contact angles of rough and irregular shapes, such as food samples, and so enable more accurate calculation of the surface energy of food materials. In order to validate the novel technique, the contact angles of three different test liquids on four different smooth polymer films were measured using both the ImageJ software with the DropSnake plugin and the widely used contact angle meter. The distributions of the values obtained by the two methods were different. Therefore, the contact angles, surface energies, and polar and dispersive components of plastic films obtained using the ImageJ program and the Drop Shape Analyzer (DSA) were interpreted with the help of simple linear regression analysis. As case studies, the superficial characteristics of strawberry and endive salad epicarp were measured with the ImageJ program and the results were interpreted with the Drop Shape Analyzer equivalent according to our regression models. The data indicated that the ImageJ program can be successfully used for contact angle determination of rough and strongly hydrophobic surfaces, such as strawberry epicarp. However, for the special geometry of droplets on slightly hydrophobic surfaces, such as salad leaves, the program code interpolation part can be altered. PMID:28425932
A framework for longitudinal data analysis via shape regression
NASA Astrophysics Data System (ADS)
Fishbaugh, James; Durrleman, Stanley; Piven, Joseph; Gerig, Guido
2012-02-01
Traditional longitudinal analysis begins by extracting desired clinical measurements, such as volume or head circumference, from discrete imaging data. Typically, the continuous evolution of a scalar measurement is estimated by choosing a 1D regression model, such as kernel regression or fitting a polynomial of fixed degree. This type of analysis not only leads to separate models for each measurement, but there is no clear anatomical or biological interpretation to aid in the selection of the appropriate paradigm. In this paper, we propose a consistent framework for the analysis of longitudinal data by estimating the continuous evolution of shape over time as twice differentiable flows of deformations. In contrast to 1D regression models, one model is chosen to realistically capture the growth of anatomical structures. From the continuous evolution of shape, we can simply extract any clinical measurements of interest. We demonstrate on real anatomical surfaces that volume extracted from a continuous shape evolution is consistent with a 1D regression performed on the discrete measurements. We further show how the visualization of shape progression can aid in the search for significant measurements. Finally, we present an example on a shape complex of the brain (left hemisphere, right hemisphere, cerebellum) that demonstrates a potential clinical application for our framework.
Inverse design of a proper number, shapes, sizes, and locations of coolant flow passages
NASA Technical Reports Server (NTRS)
Dulikravich, George S.
1992-01-01
During the past several years we have developed an inverse method that allows a thermal cooling system designer to determine proper sizes, shapes, and locations of coolant passages (holes) in, say, an internally cooled turbine blade, a scram jet strut, a rocket chamber wall, etc. Using this method the designer can enforce a desired heat flux distribution on the hot outer surface of the object, while simultaneously enforcing desired temperature distributions on the same hot outer surface as well as on the cooled interior surfaces of each of the coolant passages. This constitutes an over-specified problem which is solved by allowing the number, sizes, locations and shapes of the holes to adjust iteratively until the final internally cooled configuration satisfies the over-specified surface thermal conditions and the governing equation for the steady temperature field. The problem is solved by minimizing an error function expressing the difference between the specified and the computed hot surface heat fluxes. The temperature field analysis was performed using our highly accurate boundary integral element code with linearly varying temperature along straight surface panels. Examples of the inverse design applied to internally cooled turbine blades and scram jet struts (coated and non-coated) having circular and non-circular coolant flow passages will be shown.
The perception of 3-D shape from shadows cast onto curved surfaces.
Norman, J Farley; Lee, Young-lim; Phillips, Flip; Norman, Hideko F; Jennings, L RaShae; McBride, T Ryan
2009-05-01
In a natural environment, cast shadows abound. Objects cast shadows both upon themselves and upon background surfaces. Previous research on the perception of 3-D shape from cast shadows has only examined the informativeness of shadows cast upon flat background surfaces. In outdoor environments, however, background surfaces often possess significant curvature (large rocks, trees, hills, etc.), and this background curvature distorts the shape of cast shadows. The purpose of this study was to determine the extent to which observers can "discount" the distorting effects of curved background surfaces. In our experiments, observers viewed deforming or static shadows of naturally shaped objects, which were cast upon flat and curved background surfaces. The results showed that the discrimination of 3-D object shape from cast shadows was generally invariant over the distortions produced by hemispherical background surfaces. The observers often had difficulty, however, in identifying the shadows cast onto saddle-shaped background surfaces. The variations in curvature which occur in different directions on saddle-shaped background surfaces cause shadow distortions that lead to difficulties in object recognition and discrimination.
Lee, Sangyeop; Choi, Junghyun; Chen, Lingxin; Park, Byungchoon; Kyong, Jin Burm; Seong, Gi Hun; Choo, Jaebum; Lee, Yeonjung; Shin, Kyung-Hoon; Lee, Eun Kyu; Joo, Sang-Woo; Lee, Kyeong-Hee
2007-05-08
A rapid and highly sensitive trace analysis technique for determining malachite green (MG) in a polydimethylsiloxane (PDMS) microfluidic sensor was investigated using surface-enhanced Raman spectroscopy (SERS). A zigzag-shaped PDMS microfluidic channel was fabricated for efficient mixing between MG analytes and aggregated silver colloids. Under the optimal condition of flow velocity, MG molecules were effectively adsorbed onto silver nanoparticles while flowing along the upper and lower zigzag-shaped PDMS channel. A quantitative analysis of MG was performed based on the measured peak height at 1615 cm(-1) in its SERS spectrum. The limit of detection, using the SERS microfluidic sensor, was found to be below the 1-2 ppb level and this low detection limit is comparable to the result of the LC-Mass detection method. In the present study, we introduce a new conceptual detection technology, using a SERS microfluidic sensor, for the highly sensitive trace analysis of MG in water.
NASA Astrophysics Data System (ADS)
Ko, Won-Seok; Grabowski, Blazej; Neugebauer, Jörg
2018-03-01
Martensitic transformations in nanoscaled shape-memory alloys exhibit characteristic features absent for the bulk counterparts. Detailed understanding is required for applications in micro- and nanoelectromechanical systems, and experimental limitations render atomistic simulation an important complementary approach. Using a recently developed, accurate potential we investigate the phase transformation in freestanding Ni-Ti shape-memory nanoparticles with molecular-dynamics simulations. The results confirm that the decrease in the transformation temperature with decreasing particle size is correlated with an overstabilization of the austenitic surface energy over the martensitic surface energy. However, a detailed atomistic analysis of the nucleation and growth behavior reveals an unexpected difference in the mechanisms determining the austenite finish and martensite start temperature. While the austenite finish temperature is directly affected by a contribution of the surface energy difference, the martensite start temperature is mostly affected by the transformation strain, contrary to general expectations. This insight not only explains the reduced transformation temperature but also the reduced thermal hysteresis in freestanding nanoparticles.
Automatic recognition of surface landmarks of anatomical structures of back and posture
NASA Astrophysics Data System (ADS)
Michoński, Jakub; Glinkowski, Wojciech; Witkowski, Marcin; Sitnik, Robert
2012-05-01
Faulty postures, scoliosis and sagittal plane deformities should be detected as early as possible to apply preventive and treatment measures against major clinical consequences. To support documentation of the severity of deformity and diminish x-ray exposures, several solutions utilizing analysis of back surface topography data were introduced. A novel approach to automatic recognition and localization of anatomical landmarks of the human back is presented that may provide more repeatable results and speed up the whole procedure. The algorithm was designed as a two-step process involving a statistical model built upon expert knowledge and analysis of three-dimensional back surface shape data. Voronoi diagram is used to connect mean geometric relations, which provide a first approximation of the positions, with surface curvature distribution, which further guides the recognition process and gives final locations of landmarks. Positions obtained using the developed algorithms are validated with respect to accuracy of manual landmark indication by experts. Preliminary validation proved that the landmarks were localized correctly, with accuracy depending mostly on the characteristics of a given structure. It was concluded that recognition should mainly take into account the shape of the back surface, putting as little emphasis on the statistical approximation as possible.
Somatotyping using 3D anthropometry: a cluster analysis.
Olds, Tim; Daniell, Nathan; Petkov, John; David Stewart, Arthur
2013-01-01
Somatotyping is the quantification of human body shape, independent of body size. Hitherto, somatotyping (including the most popular method, the Heath-Carter system) has been based on subjective visual ratings, sometimes supported by surface anthropometry. This study used data derived from three-dimensional (3D) whole-body scans as inputs for cluster analysis to objectively derive clusters of similar body shapes. Twenty-nine dimensions normalised for body size were measured on a purposive sample of 301 adults aged 17-56 years who had been scanned using a Vitus Smart laser scanner. K-means Cluster Analysis with v-fold cross-validation was used to determine shape clusters. Three male and three female clusters emerged, and were visualised using those scans closest to the cluster centroid and a caricature defined by doubling the difference between the average scan and the cluster centroid. The male clusters were decidedly endomorphic (high fatness), ectomorphic (high linearity), and endo-mesomorphic (a mixture of fatness and muscularity). The female clusters were clearly endomorphic, ectomorphic, and the ecto-mesomorphic (a mixture of linearity and muscularity). An objective shape quantification procedure combining 3D scanning and cluster analysis yielded shape clusters strikingly similar to traditional somatotyping.
Enhanced chiral response from the Fabry-Perot cavity coupled meta-surfaces
NASA Astrophysics Data System (ADS)
Yang, Ze-Jian; Hu, De-Jiao; Gao, Fu-Hua; Hou, Yi-Dong
2016-08-01
The circular dichroism (CD) signal of a two-dimensional (2D) chiral meta-surface is usually weak, where the difference between the transmitted (or reflected) right and left circular polarization is barely small. We present a general method to enhance the reflective CD spectrum, by adding a layer of reflective film behind the meta-surface. The light passes through the chiral meta-surface and propagates towards the reflector, where it is reflected back and further interacts with the chiral meta-surface. The light is reflected back and forth between these two layers, forming a Fabry-Perot type resonance, which interacts with the localized surface plasmonic resonance (LSPR) mode and greatly enhances the CD signal of the light wave leaving the meta-surface. We numerically calculate the CD enhancing effect of an L-shaped chiral meta-surface on a gold film in the visible range. Compared with the single layer meta-surface, the L-shaped chiral meta-surface has a CD maximum that is dramatically increased to 1. The analysis of reflection efficiency reveals that our design can be used to realize a reflective circular polarizer. Corresponding mode analysis shows that the huge CD originates from the hybrid mode comprised of FP mode and LSPR. Our results provide a general approach to enhancing the CD signal of a chiral meta-surface and can be used in areas like biosensing, circular polarizer, integrated photonics, etc. Project supported by the National Natural Science Foundation of China (Grant No. 61377054).
CFD Analysis of Flexible Thermal Protection System Shear Configuration Testing in the LCAT Facility
NASA Technical Reports Server (NTRS)
Ferlemann, Paul G.
2014-01-01
This paper documents results of computational analysis performed after flexible thermal protection system shear configuration testing in the LCAT facility. The primary objectives were to predict the shear force on the sample and the sensitivity of all surface properties to the shape of the sample. Bumps of 0.05, 0.10,and 0.15 inches were created to approximate the shape of some fabric samples during testing. A large amount of information was extracted from the CFD solutions for comparison between runs and also current or future flight simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takao, Seishin, E-mail: takao@mech-me.eng.hokudai.ac.jp; Tadano, Shigeru; Taguchi, Hiroshi
2011-11-01
Purpose: To establish a method for the accurate acquisition and analysis of the variations in tumor volume, location, and three-dimensional (3D) shape of tumors during radiotherapy in the era of image-guided radiotherapy. Methods and Materials: Finite element models of lymph nodes were developed based on computed tomography (CT) images taken before the start of treatment and every week during the treatment period. A surface geometry map with a volumetric scale was adopted and used for the analysis. Six metastatic cervical lymph nodes, 3.5 to 55.1 cm{sup 3} before treatment, in 6 patients with head and neck carcinomas were analyzed inmore » this study. Three fiducial markers implanted in mouthpieces were used for the fusion of CT images. Changes in the location of the lymph nodes were measured on the basis of these fiducial markers. Results: The surface geometry maps showed convex regions in red and concave regions in blue to ensure that the characteristics of the 3D tumor geometries are simply understood visually. After the irradiation of 66 to 70 Gy in 2 Gy daily doses, the patterns of the colors had not changed significantly, and the maps before and during treatment were strongly correlated (average correlation coefficient was 0.808), suggesting that the tumors shrank uniformly, maintaining the original characteristics of the shapes in all 6 patients. The movement of the gravitational center of the lymph nodes during the treatment period was everywhere less than {+-}5 mm except in 1 patient, in whom the change reached nearly 10 mm. Conclusions: The surface geometry map was useful for an accurate evaluation of the changes in volume and 3D shapes of metastatic lymph nodes. The fusion of the initial and follow-up CT images based on fiducial markers enabled an analysis of changes in the location of the targets. Metastatic cervical lymph nodes in patients were suggested to decrease in size without significant changes in the 3D shape during radiotherapy. The movements of the gravitational center of the lymph nodes were almost all less than {+-}5 mm.« less
Theoretical analysis for the optical deformation of emulsion droplets.
Tapp, David; Taylor, Jonathan M; Lubansky, Alex S; Bain, Colin D; Chakrabarti, Buddhapriya
2014-02-24
We propose a theoretical framework to predict the three-dimensional shapes of optically deformed micron-sized emulsion droplets with ultra-low interfacial tension. The resulting shape and size of the droplet arises out of a balance between the interfacial tension and optical forces. Using an approximation of the laser field as a Gaussian beam, working within the Rayleigh-Gans regime and assuming isotropic surface energy at the oil-water interface, we numerically solve the resulting shape equations to elucidate the three-dimensional droplet geometry. We obtain a plethora of shapes as a function of the number of optical tweezers, their laser powers and positions, surface tension, initial droplet size and geometry. Experimentally, two-dimensional droplet silhouettes have been imaged from above, but their full side-on view has not been observed and reported for current optical configurations. This experimental limitation points to ambiguity in differentiating between droplets having the same two-dimensional projection but with disparate three-dimensional shapes. Our model elucidates and quantifies this difference for the first time. We also provide a dimensionless number that indicates the shape transformation (ellipsoidal to dumbbell) at a value ≈ 1.0, obtained by balancing interfacial tension and laser forces, substantiated using a data collapse.
Theoretical Analysis for the Optical Shaping of Emulsion Droplets
NASA Astrophysics Data System (ADS)
Tapp, David; Taylor, Jonathan; Lubanksy, Alex; Bain, Colin; Chakrabarti, Buddhapriya
2014-03-01
Motivated by recent experimental observations, I discuss a theoretical framework to predict the three-dimensional shapes of optically deformed micron-sized emulsion droplets with ultra-low interfacial tension. The resulting shape and size of the droplet arises out of a balance between the interfacial tension and optical forces. Using an approximation of the laser field as a Gaussian beam, working within the Rayleigh-Gans regime and beyond, and assuming isotropic surface energy at the oil-water interface, the resulting shape equations are numerically solved to elucidate the three-dimensional droplet geometry. A plethora of shapes as a function of the number of optical tweezers, their laser powers and positions, surface tension, initial droplet size and geometry are obtained. Experimentally, two-dimensional emulsion droplet silhouettes have been imaged from above, but their full side-on view has not been observed and reported for current optical configurations. This experimental limitation points to ambiguity in differentiating between droplets having the same two-dimensional projection but with disparate three-dimensional shapes. The model I present elucidates and quantifies this difference for the first time. Supported by funding from EPSRC via grant EP/I013377/1.
Investigation of Primary Mirror Segment's Residual Errors for the Thirty Meter Telescope
NASA Technical Reports Server (NTRS)
Seo, Byoung-Joon; Nissly, Carl; Angeli, George; MacMynowski, Doug; Sigrist, Norbert; Troy, Mitchell; Williams, Eric
2009-01-01
The primary mirror segment aberrations after shape corrections with warping harness have been identified as the single largest error term in the Thirty Meter Telescope (TMT) image quality error budget. In order to better understand the likely errors and how they will impact the telescope performance we have performed detailed simulations. We first generated unwarped primary mirror segment surface shapes that met TMT specifications. Then we used the predicted warping harness influence functions and a Shack-Hartmann wavefront sensor model to determine estimates for the 492 corrected segment surfaces that make up the TMT primary mirror. Surface and control parameters, as well as the number of subapertures were varied to explore the parameter space. The corrected segment shapes were then passed to an optical TMT model built using the Jet Propulsion Laboratory (JPL) developed Modeling and Analysis for Controlled Optical Systems (MACOS) ray-trace simulator. The generated exit pupil wavefront error maps provided RMS wavefront error and image-plane characteristics like the Normalized Point Source Sensitivity (PSSN). The results have been used to optimize the segment shape correction and wavefront sensor designs as well as provide input to the TMT systems engineering error budgets.
Design and Analysis Tools for Supersonic Inlets
NASA Technical Reports Server (NTRS)
Slater, John W.; Folk, Thomas C.
2009-01-01
Computational tools are being developed for the design and analysis of supersonic inlets. The objective is to update existing tools and provide design and low-order aerodynamic analysis capability for advanced inlet concepts. The Inlet Tools effort includes aspects of creating an electronic database of inlet design information, a document describing inlet design and analysis methods, a geometry model for describing the shape of inlets, and computer tools that implement the geometry model and methods. The geometry model has a set of basic inlet shapes that include pitot, two-dimensional, axisymmetric, and stream-traced inlet shapes. The inlet model divides the inlet flow field into parts that facilitate the design and analysis methods. The inlet geometry model constructs the inlet surfaces through the generation and transformation of planar entities based on key inlet design factors. Future efforts will focus on developing the inlet geometry model, the inlet design and analysis methods, a Fortran 95 code to implement the model and methods. Other computational platforms, such as Java, will also be explored.
Gould, Francois D. H.
2014-01-01
Improvements in three-dimensional imaging technologies have renewed interest in the study of functional and ecological morphology. Quantitative approaches to shape analysis are used increasingly to study form-function relationships. These methods are computationally intensive, technically demanding, and time-consuming, which may limit sampling potential. There have been few side-by-side comparisons of the effectiveness of such approaches relative to more traditional analyses using linear measurements and ratios. Morphological variation in the distal femur of mammals has been shown to reflect differences in locomotor modes across clades. Thus I tested whether a geometric morphometric analysis of surface shape was superior to a multivariate analysis of ratios for describing ecomorphological patterns in distal femoral variation. A sample of 164 mammalian specimens from 44 genera was assembled. Each genus was assigned to one of six locomotor categories. The same hypotheses were tested using two methods. Six linear measurements of the distal femur were taken with calipers, from which four ratios were calculated. A 3D model was generated with a laser scanner, and analyzed using three dimensional geometric morphometrics. Locomotor category significantly predicted variation in distal femoral morphology in both analyses. Effect size was larger in the geometric morphometric analysis than in the analysis of ratios. Ordination reveals a similar pattern with arboreal and cursorial taxa as extremes on a continuum of morphologies in both analyses. Discriminant functions calculated from the geometric morphometric analysis were more accurate than those calculated from ratios. Both analysis of ratios and geometric morphometric surface analysis reveal similar, biologically meaningful relationships between distal femoral shape and locomotor mode. The functional signal from the morphology is slightly higher in the geometric morphometric analysis. The practical costs of conducting these sorts of analyses should be weighed against potentially slight increases in power when designing protocols for ecomorphological studies. PMID:24633081
Thermodynamic Stability of Low- and High-Index Spinel LiMn 2 O 4 Surface Terminations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warburton, Robert E.; Iddir, Hakim; Curtiss, Larry A.
2016-05-04
Density functional theory calculations are performed within the generalized gradient approximation (GGA+U) to determine stable terminations of both low- and high-index spinel LiMn2O4 (LMO) surfaces. A grand canonical thermodynamic approach is employed, permitting a direct comparison of offstoichiometric surfaces with previously reported stoichiometric surface terminations at various environmental conditions. Within this formalism, we have identified trends in the structure of the low-index surfaces as a function of the Li and O chemical potentials. The results suggest that, under a range of chemical potentials for which bulk LMO is stable, Li/O and Li-rich (111) surface terminations are favored, neither of whichmore » adopts an inverse spinel structure in the subsurface region. This thermodynamic analysis is extended to identify stable structures for certain high-index surfaces, including (311), (331), (511), and (531), which constitute simple models for steps or defects that may be present on real LMO particles. The low- and high-index results are combined to determine the relative stability of each surface facet under a range of environmental conditions. The relative surface energies are further employed to predict LMO particle shapes through a Wulff construction approach, which suggests that LMO particles will adopt either an octahedron or a truncated octahedron shape at conditions in which LMO is thermodynamically stable. These results are in agreement with the experimental observations of LMO particle shapes.« less
NASA Astrophysics Data System (ADS)
Breeson, Andrew C.; Sankar, Gopinathan; Goh, Gregory K. L.; Palgrave, Robert G.
2017-11-01
A method of quantitative phase analysis using valence band X-ray photoelectron spectra is presented and applied to the analysis of TiO2 anatase-rutile mixtures. The valence band spectra of pure TiO2 polymorphs were measured, and these spectral shapes used to fit valence band spectra from mixed phase samples. Given the surface sensitive nature of the technique, this yields a surface phase fraction. Mixed phase samples were prepared from high and low surface area anatase and rutile powders. In the samples studied here, the surface phase fraction of anatase was found to be linearly correlated with photocatalytic activity of the mixed phase samples, even for samples with very different anatase and rutile surface areas. We apply this method to determine the surface phase fraction of P25 powder. This method may be applied to other systems where a surface phase fraction is an important characteristic.
Tsai, Tsung-Yuan; Li, Jing-Sheng; Wang, Shaobai; Li, Pingyue; Kwon, Young-Min; Li, Guoan
2013-01-01
The statistical shape model (SSM) method that uses 2D images of the knee joint to predict the 3D joint surface model has been reported in literature. In this study, we constructed a SSM database using 152 human CT knee joint models, including the femur, tibia and patella and analyzed the characteristics of each principal component of the SSM. The surface models of two in vivo knees were predicted using the SSM and their 2D bi-plane fluoroscopic images. The predicted models were compared to their CT joint models. The differences between the predicted 3D knee joint surfaces and the CT image-based surfaces were 0.30 ± 0.81 mm, 0.34 ± 0.79 mm and 0.36 ± 0.59 mm for the femur, tibia and patella, respectively (average ± standard deviation). The computational time for each bone of the knee joint was within 30 seconds using a personal computer. The analysis of this study indicated that the SSM method could be a useful tool to construct 3D surface models of the knee with sub-millimeter accuracy in real time. Thus it may have a broad application in computer assisted knee surgeries that require 3D surface models of the knee. PMID:24156375
Fast and robust shape diameter function.
Chen, Shuangmin; Liu, Taijun; Shu, Zhenyu; Xin, Shiqing; He, Ying; Tu, Changhe
2018-01-01
The shape diameter function (SDF) is a scalar function defined on a closed manifold surface, measuring the neighborhood diameter of the object at each point. Due to its pose oblivious property, SDF is widely used in shape analysis, segmentation and retrieval. However, computing SDF is computationally expensive since one has to place an inverted cone at each point and then average the penetration distances for a number of rays inside the cone. Furthermore, the shape diameters are highly sensitive to local geometric features as well as the normal vectors, hence diminishing their applications to real-world meshes which often contain rich geometric details and/or various types of defects, such as noise and gaps. In order to increase the robustness of SDF and promote it to a wide range of 3D models, we define SDF by offsetting the input object a little bit. This seemingly minor change brings three significant benefits: First, it allows us to compute SDF in a robust manner since the offset surface is able to give reliable normal vectors. Second, it runs many times faster since at each point we only need to compute the penetration distance along a single direction, rather than tens of directions. Third, our method does not require watertight surfaces as the input-it supports both point clouds and meshes with noise and gaps. Extensive experimental results show that the offset-surface based SDF is robust to noise and insensitive to geometric details, and it also runs about 10 times faster than the existing method. We also exhibit its usefulness using two typical applications including shape retrieval and shape segmentation, and observe a significant improvement over the existing SDF.
Effect of milling on particle shape and surface energy heterogeneity of needle-shaped crystals.
Ho, Raimundo; Naderi, Majid; Heng, Jerry Y Y; Williams, Daryl R; Thielmann, Frank; Bouza, Peter; Keith, Adam R; Thiele, Greg; Burnett, Daniel J
2012-10-01
Milling and micronization of particles are routinely employed in the pharmaceutical industry to obtain small particles with desired particle size characteristics. The aim of this study is to demonstrate that particle shape is an important factor affecting the fracture mechanism in milling. Needle-shaped crystals of the β polymorph of D-mannitol were prepared from recrystallization in water. A portion of the recrystallized materials was ball-milled. Unmilled and milled sieved fractions of recrystallized D-mannitol were analyzed by dynamic image analysis (DIA) and inverse gas chromatography (IGC) at finite concentration to explain the breakage/fracture behavior. In the process of ball-milling, D-mannitol preferentially fractured along their shortest axis, exposing (011) plane with increased hydrophilicity and increased bounding rectangular aspect ratio. This is in contrary to attachment energy modeling which predicts a fracture mechanism across the (010) plane with increased hydrophobicity, and small change in particle shape. Crystal size, and more importantly, crystal shape and facet-specific mechanical properties, can dictate the fracture/cleavage behavior of organic crystalline materials. Thorough understanding of the crystal slip systems, combining attachment energy prediction with particle shape and surface characterization using DIA and IGC, are important in understanding fracture behavior of organic crystalline solids in milling and micronization.
NASA Technical Reports Server (NTRS)
Ehlmann, Bethany L.; Viles, Heather A.; Bourke, Mary C.
2008-01-01
Boulder morphology reflects both lithology and climate and is dictated by the combined effects of erosion, transport, and weathering. At present, morphologic information at the boulder scale is underutilized as a recorder of environmental processes, partly because of the lack of a systematic quantitative parameter set for reporting and comparing data sets. We develop such a parameter set, incorporating a range of measures of boulder form and surface texture. We use standard shape metrics measured in the field and fractal and morphometric classification methods borrowed from landscape analysis and applied to laser-scanned molds. The parameter set was pilot tested on three populations of basalt boulders with distinct breakdown histories in the Channeled Scabland, Washington: (1) basalt outcrop talus; (2) flood-transported boulders recently excavated from a quarry; and (3) flood-transported boulders, extensively weathered in situ on the Ephrata Fan surface. Size and shape data were found to distinguish between flood-transported and untransported boulders. Size and edge angles (approximately 120 degrees) of flood-transported boulders suggest removal by preferential fracturing along preexisting columnar joints, and curvature data indicate rounding relative to outcrop boulders. Surface textural data show that boulders which have been exposed at the surface are significantly rougher than those buried by fan sediments. Past signatures diagnostic of flood transport still persist on surface boulders, despite ongoing overprinting by processes in the present breakdown environment through roughening and fracturing in situ. Further use of this quantitative boulder parameter set at other terrestrial and planetary sites will aid in cataloging and understanding morphologic signatures of environmental processes.
Kremer, J; Kilzer, A; Petermann, M
2018-01-01
Oscillations of small liquid drops around a spherical shape have been of great interest to scientists measuring physical properties such as interfacial tension and viscosity, over the last few decades. A powerful tool for contactless positioning is acoustic levitation, which has been used to simultaneously determine the surface tension and viscosity of liquids at ambient pressure. In order to extend this acoustic levitation measurement method to high pressure systems, the method is first evaluated under ambient pressure. To measure surface tension and viscosity using acoustically levitated oscillating drops, an image analysis method has to be developed and factors which may affect measurement, such as sound field or oscillation amplitude, have to be analyzed. In this paper, we describe the simultaneous measurement of surface tension and viscosity using freely decaying shape oscillations of acoustically levitated droplets of different liquids (silicone oils AK 5 and AK 10, squalane, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, and 1-octanol) in air. These liquids vary in viscosity from 2 to about 30 mPa s. An acoustic levitation system, including an optimized standing wave acoustic levitator and a high-speed camera, was used for this study. An image analysis was performed with a self-written Matlab® code. The frequency of oscillation and the damping constant, required for the determination of surface tension and viscosity, respectively, were calculated from the evolution of the equatorial and polar radii. The results and observations are compared to data from the literature in order to analyze the accuracy of surface tension and viscosity determination, as well as the effect of non-spherical drop shape or amplitude of oscillation on measurement.
NASA Astrophysics Data System (ADS)
Kremer, J.; Kilzer, A.; Petermann, M.
2018-01-01
Oscillations of small liquid drops around a spherical shape have been of great interest to scientists measuring physical properties such as interfacial tension and viscosity, over the last few decades. A powerful tool for contactless positioning is acoustic levitation, which has been used to simultaneously determine the surface tension and viscosity of liquids at ambient pressure. In order to extend this acoustic levitation measurement method to high pressure systems, the method is first evaluated under ambient pressure. To measure surface tension and viscosity using acoustically levitated oscillating drops, an image analysis method has to be developed and factors which may affect measurement, such as sound field or oscillation amplitude, have to be analyzed. In this paper, we describe the simultaneous measurement of surface tension and viscosity using freely decaying shape oscillations of acoustically levitated droplets of different liquids (silicone oils AK 5 and AK 10, squalane, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, and 1-octanol) in air. These liquids vary in viscosity from 2 to about 30 mPa s. An acoustic levitation system, including an optimized standing wave acoustic levitator and a high-speed camera, was used for this study. An image analysis was performed with a self-written Matlab® code. The frequency of oscillation and the damping constant, required for the determination of surface tension and viscosity, respectively, were calculated from the evolution of the equatorial and polar radii. The results and observations are compared to data from the literature in order to analyze the accuracy of surface tension and viscosity determination, as well as the effect of non-spherical drop shape or amplitude of oscillation on measurement.
Mechanical Effects of the Surface Ectoderm on Optic Vesicle Morphogenesis in the Chick Embryo
Hosseini, Hadi S.; Beebe, David C.; Taber, Larry A.
2014-01-01
Precise shaping of the eye is crucial for proper vision. Here, we use experiments on chick embryos along with computational models to examine the mechanical factors involved in the formation of the optic vesicles (OVs), which grow outward from the forebrain of the early embryo. First, mechanical dissections were used to remove the surface ectoderm (SE), a membrane that contacts the outer surfaces of the OVs. Principal components analysis of OV shapes suggests that the SE exerts asymmetric loads that cause the OVs to flatten and shear caudally during the earliest stages of eye development and later to bend in the caudal and dorsal directions. These deformations cause the initially spherical OVs to become pear-shaped. Exposure to the myosin II inhibitor blebbistatin reduced these effects, suggesting that cytoskeletal contraction controls OV shape by regulating tension in the SE. To test the physical plausibility of these interpretations, we developed 2-D finite-element models for frontal and transverse cross-sections of the forebrain, including frictionless contact between the SE and OVs. With geometric data used to specify differential growth in the OVs, these models were used to simulate each experiment (control, SE removed, no contraction). For each case, the predicted shape of the OV agrees reasonably well with experiments. The results of this study indicate that differential growth in the OV and external pressure exerted by the SE are suffcient to cause the global changes in OV shape observed during the earliest stages of eye development. PMID:25458577
Analysis of the DFP/AFCS Systems for Compensating Gravity Distortions on the 70-Meter Antenna
NASA Technical Reports Server (NTRS)
Imbriale, William A.; Hoppe, Daniel J.; Rochblatt, David
2000-01-01
This paper presents the theoretical computations showing the expected performances for both systems. The basic analysis tool is a Physical Optics reflector analysis code that was ported to a parallel computer for faster execution times. There are several steps involved in computing the RF performance of the various systems. 1 . A model of the RF distortions of the main reflector is required. This model is based upon measured holography maps of the 70-meter antenna obtained at 3 elevation angles. The holography maps are then processed (using an appropriate gravity mechanical model of the dish) to provide surface distortion maps at all elevation angles. 2. From the surface distortion maps, ray optics is used to determine the theoretical shape of the DFP that will exactly phase compensate the distortions. 3. From the theoretical shape and a NASTRAN mechanical model of the plate, the actuator positions that generate a surface that provides the best RMS fit to the theoretical model are selected. Using the actuator positions and the NASTRAN model provides an accurate description of the actual mirror shape. 4. Starting from the mechanical drawings of the feed, a computed RF feed pattern is generated. This pattern is expanded into a set of spherical wave modes so that a complete near field analysis of the reflector system can be obtained. 5. For the array feed, the excitation coefficients that provide the maximum gain are computed using a phase conjugate technique. The basic experimental geometry consisted of a dual shaped 70-meter antenna system; a refocusing ellipse, a DFP and an array feed system. To provide physical insight to the systems performance, focal plane field plots are presented at several elevations. Curves of predicted performance are shown for the DFP system, monopulse tracking system, AFCS and combined DFP/AFCS system. The calculated results show that the combined DFP/AFCS system is capable of recovering the majority of the gain lost due to gravity distortion.
Percent area coverage through image analysis
NASA Astrophysics Data System (ADS)
Wong, Chung M.; Hong, Sung M.; Liu, De-Ling
2016-09-01
The notion of percent area coverage (PAC) has been used to characterize surface cleanliness levels in the spacecraft contamination control community. Due to the lack of detailed particle data, PAC has been conventionally calculated by multiplying the particle surface density in predetermined particle size bins by a set of coefficients per MIL-STD-1246C. In deriving the set of coefficients, the surface particle size distribution is assumed to follow a log-normal relation between particle density and particle size, while the cross-sectional area function is given as a combination of regular geometric shapes. For particles with irregular shapes, the cross-sectional area function cannot describe the true particle area and, therefore, may introduce error in the PAC calculation. Other errors may also be introduced by using the lognormal surface particle size distribution function that highly depends on the environmental cleanliness and cleaning process. In this paper, we present PAC measurements from silicon witness wafers that collected fallouts from a fabric material after vibration testing. PAC calculations were performed through analysis of microscope images and compare them to values derived through the MIL-STD-1246C method. Our results showed that the MIL-STD-1246C method does provide a reasonable upper bound to the PAC values determined through image analysis, in particular for PAC values below 0.1.
Specimen preparation for x-ray fluorescence analysis of solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eksperiandova, L.P.; Spolnik, Z.M.; Blank, A.B.
1995-12-31
Specimens for x-ray fluorescence analysis (XRFA) were prepared by adding dry gelatine (10%) to the analysis solution, homogenizing the mixture and cooling for 20 minutes. Thus, a compact resilient mass could be formed with the required shape and size; the roughness of the surface was determined by the roughness of the surface on which the specimen was formed, much the same as highly polished. Various calibration methods can be applied in the XRFA of a variety of materials if such specimens are used. 12 refs., 1 fig., 2 tabs.
NASA Technical Reports Server (NTRS)
Strekalov, Dmitry V.
2012-01-01
Ring Image Analyzer software analyzes images to recognize elliptical patterns. It determines the ellipse parameters (axes ratio, centroid coordinate, tilt angle). The program attempts to recognize elliptical fringes (e.g., Newton Rings) on a photograph and determine their centroid position, the short-to-long-axis ratio, and the angle of rotation of the long axis relative to the horizontal direction on the photograph. These capabilities are important in interferometric imaging and control of surfaces. In particular, this program has been developed and applied for determining the rim shape of precision-machined optical whispering gallery mode resonators. The program relies on a unique image recognition algorithm aimed at recognizing elliptical shapes, but can be easily adapted to other geometric shapes. It is robust against non-elliptical details of the image and against noise. Interferometric analysis of precision-machined surfaces remains an important technological instrument in hardware development and quality analysis. This software automates and increases the accuracy of this technique. The software has been developed for the needs of an R&TD-funded project and has become an important asset for the future research proposal to NASA as well as other agencies.
NASA Technical Reports Server (NTRS)
Pai, Shantaram S.; Gyekenyesi, John P.
1988-01-01
The calculation of shape and scale parameters of the two-parameter Weibull distribution is described using the least-squares analysis and maximum likelihood methods for volume- and surface-flaw-induced fracture in ceramics with complete and censored samples. Detailed procedures are given for evaluating 90 percent confidence intervals for maximum likelihood estimates of shape and scale parameters, the unbiased estimates of the shape parameters, and the Weibull mean values and corresponding standard deviations. Furthermore, the necessary steps are described for detecting outliers and for calculating the Kolmogorov-Smirnov and the Anderson-Darling goodness-of-fit statistics and 90 percent confidence bands about the Weibull distribution. It also shows how to calculate the Batdorf flaw-density constants by uing the Weibull distribution statistical parameters. The techniques described were verified with several example problems, from the open literature, and were coded. The techniques described were verified with several example problems from the open literature, and were coded in the Structural Ceramics Analysis and Reliability Evaluation (SCARE) design program.
Dall'Asta, Andrea; Schievano, Silvia; Bruse, Jan L; Paramasivam, Gowrishankar; Kaihura, Christine Tita; Dunaway, David; Lees, Christoph C
2017-07-01
The antenatal detection of facial dysmorphism using 3-dimensional ultrasound may raise the suspicion of an underlying genetic condition but infrequently leads to a definitive antenatal diagnosis. Despite advances in array and noninvasive prenatal testing, not all genetic conditions can be ascertained from such testing. The aim of this study was to investigate the feasibility of quantitative assessment of fetal face features using prenatal 3-dimensional ultrasound volumes and statistical shape modeling. STUDY DESIGN: Thirteen normal and 7 abnormal stored 3-dimensional ultrasound fetal face volumes were analyzed, at a median gestation of 29 +4 weeks (25 +0 to 36 +1 ). The 20 3-dimensional surface meshes generated were aligned and served as input for a statistical shape model, which computed the mean 3-dimensional face shape and 3-dimensional shape variations using principal component analysis. Ten shape modes explained more than 90% of the total shape variability in the population. While the first mode accounted for overall size differences, the second highlighted shape feature changes from an overall proportionate toward a more asymmetric face shape with a wide prominent forehead and an undersized, posteriorly positioned chin. Analysis of the Mahalanobis distance in principal component analysis shape space suggested differences between normal and abnormal fetuses (median and interquartile range distance values, 7.31 ± 5.54 for the normal group vs 13.27 ± 9.82 for the abnormal group) (P = .056). This feasibility study demonstrates that objective characterization and quantification of fetal facial morphology is possible from 3-dimensional ultrasound. This technique has the potential to assist in utero diagnosis, particularly of rare conditions in which facial dysmorphology is a feature. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Honghai; Abiose, Ademola K.; Campbell, Dwayne N.; Sonka, Milan; Martins, James B.; Wahle, Andreas
2010-03-01
Quantitative analysis of the left ventricular shape and motion patterns associated with left ventricular mechanical dyssynchrony (LVMD) is essential for diagnosis and treatment planning in congestive heart failure. Real-time 3D echocardiography (RT3DE) used for LVMD analysis is frequently limited by heavy speckle noise or partially incomplete data, thus a segmentation method utilizing learned global shape knowledge is beneficial. In this study, the endocardial surface of the left ventricle (LV) is segmented using a hybrid approach combining active shape model (ASM) with optimal graph search. The latter is used to achieve landmark refinement in the ASM framework. Optimal graph search translates the 3D segmentation into the detection of a minimum-cost closed set in a graph and can produce a globally optimal result. Various information-gradient, intensity distributions, and regional-property terms-are used to define the costs for the graph search. The developed method was tested on 44 RT3DE datasets acquired from 26 LVMD patients. The segmentation accuracy was assessed by surface positioning error and volume overlap measured for the whole LV as well as 16 standard LV regions. The segmentation produced very good results that were not achievable using ASM or graph search alone.
NASA Technical Reports Server (NTRS)
Poe, Clarence C., Jr.
1991-01-01
A study was made to determine the relevance of impacter shape to nonvisible damage and tensile residual strength of a 36 mm thick graphite/epoxy motor case. The shapes of the impacters were as follows: 12.7 mm and 25.4 mm diameter hemispheres, a sharp corner, and a 6.3 mm diameter bolt-like rod. The investigation revealed that damage initiated when the contact pressure exceeded a critical level. However, the damage was not visible on the surface until an even higher pressure was exceeded. The impact energy to initiate damage or cause visible damage on the surface increased approximately with impacter diameter to the third power. The reduction in strength for nonvisible damage increased with increasing diameter, 9 and 30 percent for the 12.7 mm and 25.4 mm diameter hemispheres, respectively. The corner impacter made visible damage on the surface for even the smallest impact energy. The rod impacter acted like a punch and sliced through the composite. Even so, the critical level of pressure to initiate damage was the same for the rod and hemispherical impacters. Factors of safety for nonvisible damage increased with increasing kinetic energy of impact. The effects of impacter shape on impact force, damage size, damage visibility, and residual tensile strength were predicted quite well assuming Hertzian contact and using maximum stress criteria and a surface crack analysis.
Scaling of size distributions of C60 and C70 fullerene surface islands
NASA Astrophysics Data System (ADS)
Dubrovskii, V. G.; Berdnikov, Y.; Olyanich, D. A.; Mararov, V. V.; Utas, T. V.; Zotov, A. V.; Saranin, A. A.
2017-06-01
We present experimental data and a theoretical analysis for the size distributions of C60 and C70 surface islands deposited onto In-modified Si(111)√3 × √3-Au surface under different conditions. We show that both fullerene islands feature an analytic Vicsek-Family scaling shape where the scaled size distributions are given by a power law times an incomplete beta-function with the required normalization. The power exponent in this distribution corresponds to the fractal shape of two-dimensional islands, confirmed by the experimentally observed morphologies. Quite interestingly, we do not see any significant difference between C60 and C70 fullerenes in terms of either scaling parameters or temperature dependence of the diffusion constants. In particular, we deduce the activation energy for surface diffusion of ED = 140 ± 10 meV for both types of fullerenes.
Thermal-capillary analysis of small-scale floating zones Steady-state calculations
NASA Technical Reports Server (NTRS)
Duranceau, J. L.; Brown, R. A.
1986-01-01
Galerkin finite element analysis of a thermal-capillary model of the floating zone crystal growth process is used to predict the dependence of molten zone shape on operating conditions for the growth of small silicon boules. The model accounts for conduction-dominated heat transport in the melt, feed rod and growing crystal and for radiation between these phases, the ambient and a heater. Surface tension acting on the shape of the melt/gas meniscus counteracts gravity to set the shape of the molten zone. The maximum diameter of the growing crystal is set by the dewetting of the melt from the feed rod when the crystal radius is large. Calculations with small Bond number show the increased zone lengths possible for growth in a microgravity environment. The sensitivity of the method to the shape and intensity of the applied heating distribution is demonstrated. The calculations are compared with experimental observations.
Koike, Narihiko; Ii, Satoshi; Yoshinaga, Tsukasa; Nozaki, Kazunori; Wada, Shigeo
2017-11-07
This paper presents a novel inverse estimation approach for the active contraction stresses of tongue muscles during speech. The proposed method is based on variational data assimilation using a mechanical tongue model and 3D tongue surface shapes for speech production. The mechanical tongue model considers nonlinear hyperelasticity, finite deformation, actual geometry from computed tomography (CT) images, and anisotropic active contraction by muscle fibers, the orientations of which are ideally determined using anatomical drawings. The tongue deformation is obtained by solving a stationary force-equilibrium equation using a finite element method. An inverse problem is established to find the combination of muscle contraction stresses that minimizes the Euclidean distance of the tongue surfaces between the mechanical analysis and CT results of speech production, where a signed-distance function represents the tongue surface. Our approach is validated through an ideal numerical example and extended to the real-world case of two Japanese vowels, /ʉ/ and /ɯ/. The results capture the target shape completely and provide an excellent estimation of the active contraction stresses in the ideal case, and exhibit similar tendencies as in previous observations and simulations for the actual vowel cases. The present approach can reveal the relative relationship among the muscle contraction stresses in similar utterances with different tongue shapes, and enables the investigation of the coordination of tongue muscles during speech using only the deformed tongue shape obtained from medical images. This will enhance our understanding of speech motor control. Copyright © 2017 Elsevier Ltd. All rights reserved.
Govindarajan, Tina; Shandas, Robin
2018-01-01
Shape Memory Polymers (SMPs) are smart materials that can recall their shape upon the application of a stimulus, which makes them appealing materials for a variety of applications, especially in biomedical devices. Most prior SMP research has focused on tuning bulk properties; studying surface effects of SMPs may extend the use of these materials to blood-contacting applications, such as cardiovascular stents, where surfaces that support rapid endothelialization have been correlated to stent success. Here, we evaluate endothelial attachment onto the surfaces of a family of SMPs previously developed in our group that have shown promise for biomedical devices. Nine SMP formulations containing varying amounts of tert-Butyl acrylate (tBA) and Poly(ethylene glycol) dimethacrylate (PEGDMA) were analyzed for endothelial cell attachment. Dynamic mechanical analysis (DMA), contact angle studies, and atomic force microscopy (AFM) were used to verify bulk and surface properties of the SMPs. Human umbilical vein endothelial cell (HUVEC) attachment and viability was verified using fluorescent methods. Endothelial cells preferentially attached to SMPs with higher tBA content, which have rougher, more hydrophobic surfaces. HUVECs also displayed an increased metabolic activity on these high tBA SMPs over the course of the study. This class of SMPs may be promising candidates for next generation blood-contacting devices. PMID:29707382
NASA Astrophysics Data System (ADS)
Bandeira, Lourenço; Ding, Wei; Stepinski, Tomasz F.
2012-01-01
Counting craters is a paramount tool of planetary analysis because it provides relative dating of planetary surfaces. Dating surfaces with high spatial resolution requires counting a very large number of small, sub-kilometer size craters. Exhaustive manual surveys of such craters over extensive regions are impractical, sparking interest in designing crater detection algorithms (CDAs). As a part of our effort to design a CDA, which is robust and practical for planetary research analysis, we propose a crater detection approach that utilizes both shape and texture features to identify efficiently sub-kilometer craters in high resolution panchromatic images. First, a mathematical morphology-based shape analysis is used to identify regions in an image that may contain craters; only those regions - crater candidates - are the subject of further processing. Second, image texture features in combination with the boosting ensemble supervised learning algorithm are used to accurately classify previously identified candidates into craters and non-craters. The design of the proposed CDA is described and its performance is evaluated using a high resolution image of Mars for which sub-kilometer craters have been manually identified. The overall detection rate of the proposed CDA is 81%, the branching factor is 0.14, and the overall quality factor is 72%. This performance is a significant improvement over the previous CDA based exclusively on the shape features. The combination of performance level and computational efficiency offered by this CDA makes it attractive for practical application.
Shape-dependent surface magnetism of Co-Pt and Fe-Pt nanoparticles from first principles
NASA Astrophysics Data System (ADS)
Liu, Zhenyu; Wang, Guofeng
2017-12-01
In this paper, we have performed the first-principles density functional theory calculations to predict the magnetic properties of the CoPt and FePt nanoparticles in cuboctahedral, decahedral, and icosahedral shapes. The modeled alloy nanoparticles have a diameter of 1.1 nm and consist of 31 5 d Pt atoms and 24 3 d Co (or Fe) atoms. For both CoPt and FePt, we found that the decahedral nanoparticles had appreciably lower surface magnetic moments than the cuboctahedral and icosahedral nanoparticles. Our analysis indicated that this reduction in the surface magnetism was related to a large contraction of atomic spacing and high local Co (or Fe) concentration in the surface of the decahedral nanoparticles. More interestingly, we predicted that the CoPt and FePt cuboctahedral nanoparticles exhibited dramatically different surface spin structures when noncollinear magnetism was taken into account. Our calculation results revealed that surface anisotropy energy decided the fashion of surface spin canting in the CoPt and FePt nanoparticles, confirming previous predictions from atomistic Monte Carlo simulations.
Simple scattering analysis and simulation of optical components created by additive manufacturing
NASA Astrophysics Data System (ADS)
Rank, M.; Horsak, A.; Heinrich, A.
2017-10-01
Additive manufacturing of optical elements is known but still new to the field of optical fabrication. In 3D printers, the parts are deposited layer-by-layer approximating the shape defined in optics design enabling new shapes, which cannot be manufactured using conventional methods. However, the layered structure also causes surface roughness and subsurface scattering, which decrease the quality of optical elements. Illuminating a flat sample with a laser beam, different light distributions are generated on a screen depending on the printing orientation of the sample. Whereas the laser beam is mainly diffused by the samples, a line shaped light distribution can be achieved for a special case in which the laser light goes parallel to the layer structure. These optical effects of 3D printed parts are analyzed using a goniometric setup and fed back into the optics simulation with the goal to improve the design considering the characteristics of the real sample. For a detailed look on the effect, the total scattering is split up into surface contributions and subsurface scattering using index matching techniques to isolate the effects from each other. For an index matched sample with negligible surface effects the line shaped distribution turns into a diffraction pattern which corresponds to the layer thickness of the printer. Finally, an optic simulation with the scattering data is set up for a simple curved sample. The light distribution measured with a robot-based goniophotometer differs from the simulation, because the curvature is approximated by the layer structure. This makes additional analysis necessary.
A new concept for active bistable twisting structures
NASA Astrophysics Data System (ADS)
Schultz, Marc R.
2005-05-01
A novel type of morphing structure capable of a large change in shape with a small energy input is discussed in this paper. The considered structures consist of two curved shells that are joined in a specific manner to form a bistable airfoil-like structure. The two stable shapes have a difference in axial twist, and the structure may be transformed between the stable shapes by a simple snap-through action. The benefit of a bistable structure of this type is that, if the stable shapes are operational shapes, power is needed only to transform the structure from one shape to another. The discussed structures could be used in aerodynamic applications such as morphing wings, or as aerodynamic control surfaces. The investigation discussed in this paper considers both experiment and finite-element analysis. Several graphite-epoxy composite and one steel device were created as proof-of-concept models. To demonstrate active control of these structures, piezocomposite actuators were applied to one of the composite structures and used to transform the structure between stable shapes. The analysis was used to compare the predicted shapes with the experimental shapes, and to study how changes to the geometric input values affected the shape and operational characteristics of the structures. The predicted shapes showed excellent agreement with the experimental shapes, and the results of the parametric study suggest that the shapes and the snap-through characteristics can be easily tailored to meet specific needs.
NASA Astrophysics Data System (ADS)
Jamshed, Wasim; Aziz, Asim
2018-06-01
In the present research, a simplified mathematical model is presented to study the heat transfer and entropy generation analysis of thermal system containing hybrid nanofluid. Nanofluid occupies the space over an infinite horizontal surface and the flow is induced by the non-linear stretching of surface. A uniform transverse magnetic field, Cattaneo-Christov heat flux model and thermal radiation effects are also included in the present study. The similarity technique is employed to reduce the governing non-linear partial differential equations to a set of ordinary differential equation. Keller Box numerical scheme is then used to approximate the solutions for the thermal analysis. Results are presented for conventional copper oxide-ethylene glycol (CuO-EG) and hybrid titanium-copper oxide/ethylene glycol ({TiO}_2 -CuO/EG) nanofluids. The spherical, hexahedron, tetrahedron, cylindrical, and lamina-shaped nanoparticles are considered in the present analysis. The significant findings of the study is the enhanced heat transfer capability of hybrid nanofluids over the conventional nanofluids, greatest heat transfer rate for the smallest value of the shape factor parameter and the increase in Reynolds number and Brinkman number increases the overall entropy of the system.
Shaping off-axis metallic membrane reflectors using optimal boundary shapes and inelastic strains
NASA Technical Reports Server (NTRS)
White, C. V.; Dragovan, M.
2004-01-01
This paper will describe a novel concept for constructing off-axis membrane reflector surfaces. Membrane reflectors have been extensively studied, including investigations into inflated lenticular architectures, shaping by spin casting, shaping using electrostatic forces, and shaping by evacuating behind a membrane surface stretched between circular or annular-shaped supports.
Three-dimensional aerodynamic shape optimization of supersonic delta wings
NASA Technical Reports Server (NTRS)
Burgreen, Greg W.; Baysal, Oktay
1994-01-01
A recently developed three-dimensional aerodynamic shape optimization procedure AeSOP(sub 3D) is described. This procedure incorporates some of the most promising concepts from the area of computational aerodynamic analysis and design, specifically, discrete sensitivity analysis, a fully implicit 3D Computational Fluid Dynamics (CFD) methodology, and 3D Bezier-Bernstein surface parameterizations. The new procedure is demonstrated in the preliminary design of supersonic delta wings. Starting from a symmetric clipped delta wing geometry, a Mach 1.62 asymmetric delta wing and two Mach 1. 5 cranked delta wings were designed subject to various aerodynamic and geometric constraints.
Modeling elastic anisotropy in strained heteroepitaxy
NASA Astrophysics Data System (ADS)
Krishna Dixit, Gopal; Ranganathan, Madhav
2017-09-01
Using a continuum evolution equation, we model the growth and evolution of quantum dots in the heteroepitaxial Ge on Si(0 0 1) system in a molecular beam epitaxy unit. We formulate our model in terms of evolution due to deposition, and due to surface diffusion which is governed by a free energy. This free energy has contributions from surface energy, curvature, wetting effects and elastic energy due to lattice mismatch between the film and the substrate. In addition to anisotropy due to surface energy which favors facet formation, we also incorporate elastic anisotropy due to an underlying crystal lattice. The complicated elastic problem of the film-substrate system subjected to boundary conditions at the free surface, interface and the bulk substrate is solved by perturbation analysis using a small slope approximation. This permits an analysis of effects at different orders in the slope and sheds new light on the observed behavior. Linear stability analysis shows the early evolution of the instability towards dot formation. The elastic anisotropy causes a change in the alignment of dots in the linear regime, whereas the surface energy anisotropy changes the dot shapes at the nonlinear regime. Numerical simulation of the full nonlinear equations shows the evolution of the surface morphology. In particular, we show, for parameters of the Ge0.25 Si0.75 on Si(0 0 1), the surface energy anisotropy dominates the shapes of the quantum dots, whereas their alignment is influenced by the elastic energy anisotropy. The anisotropy in elasticity causes a further elongation of the islands whose coarsening is interrupted due to < 1 0 5 > facets on the surface.
Modeling elastic anisotropy in strained heteroepitaxy.
Dixit, Gopal Krishna; Ranganathan, Madhav
2017-09-20
Using a continuum evolution equation, we model the growth and evolution of quantum dots in the heteroepitaxial Ge on Si(0 0 1) system in a molecular beam epitaxy unit. We formulate our model in terms of evolution due to deposition, and due to surface diffusion which is governed by a free energy. This free energy has contributions from surface energy, curvature, wetting effects and elastic energy due to lattice mismatch between the film and the substrate. In addition to anisotropy due to surface energy which favors facet formation, we also incorporate elastic anisotropy due to an underlying crystal lattice. The complicated elastic problem of the film-substrate system subjected to boundary conditions at the free surface, interface and the bulk substrate is solved by perturbation analysis using a small slope approximation. This permits an analysis of effects at different orders in the slope and sheds new light on the observed behavior. Linear stability analysis shows the early evolution of the instability towards dot formation. The elastic anisotropy causes a change in the alignment of dots in the linear regime, whereas the surface energy anisotropy changes the dot shapes at the nonlinear regime. Numerical simulation of the full nonlinear equations shows the evolution of the surface morphology. In particular, we show, for parameters of the [Formula: see text] [Formula: see text] on Si(0 0 1), the surface energy anisotropy dominates the shapes of the quantum dots, whereas their alignment is influenced by the elastic energy anisotropy. The anisotropy in elasticity causes a further elongation of the islands whose coarsening is interrupted due to [Formula: see text] facets on the surface.
Analysis Of Scoliosis By Back Shape Topography
NASA Astrophysics Data System (ADS)
Turner-Smith, Alan R.; Harris, John D.
1983-07-01
The use of surface topography for the assessment of scoliotic deformity in the clinic depends firstly on the quality of measures which reliably characterise deformity of the back, and secondly on the ease and speed with which these measures can be applied. A method of analysis of back shape measurements is presented which can be applied to any topographic measurement system. Measures presented are substantially independent of minor changes in the patient's posture in rotation and flexion from one clinic to the next, and yet sensitive enough to indicate significant improvement or degeneration of the disease. The presentation shows (1) horizontal cross-sections at ten levels up the back from sacrum to vertebra prominens, (2) angles of rotation of the surface over a small region about the spine, (3) three vertical profiles following the line of the spine, and (4) measures of maximum kyphosis and lordosis. Dependence on the operator has been reduced to a minimum. Extreme care in positioning the patient is unnecessary and those spinous processes which are easily palpable, the vertebra prominens and the two dimples over the posterior superior iliac spines are marked. Analysis proceeds entirely automatically once the basic shape data have been supplied. Applications of the technique to indirect moire topography and a television topographic measurement system are described.
Surface shape analysis of rough lumber for wane detection
Sang-Mook Lee; A. Lynn Abbott; Daniel L. Schmoldt
2003-01-01
The initial breakdown of hardwood logs into lumber produces boards with rough surfaces. These boards contain wane (missing wood that emanates from the log exterior, often containing residual bark) that is removed by edge and trim cuts prior to sale. Because hardwood lumber value is determined based on board size and quality, knowledge of wane position and defects is...
Shape optimisation of an underwater Bernoulli gripper
NASA Astrophysics Data System (ADS)
Flint, Tim; Sellier, Mathieu
2015-11-01
In this work, we are interested in maximising the suction produced by an underwater Bernoulli gripper. Bernoulli grippers work by exploiting low pressure regions caused by the acceleration of a working fluid through a narrow channel, between the gripper and a surface, to provide a suction force. This mechanism allows for non-contact adhesion to various surfaces and may be used to hold a robot to the hull of a ship while it inspects welds for example. A Bernoulli type pressure analysis was used to model the system with a Darcy friction factor approximation to include the effects of frictional losses. The analysis involved a constrained optimisation in order to avoid cavitation within the mechanism which would result in decreased performance and damage to surfaces. A sensitivity based method and gradient descent approach was used to find the optimum shape of a discretised surface. The model's accuracy has been quantified against finite volume computational fluid dynamics simulation (ANSYS CFX) using the k- ω SST turbulence model. Preliminary results indicate significant improvement in suction force when compared to a simple geometry by retaining a pressure just above that at which cavitation would occur over as much surface area as possible. Doctoral candidate in the Mechanical Engineering Department of the University of Canterbury, New Zealand.
Gutman, Boris A.; Jahanshad, Neda; Ching, Christopher R.K.; Wang, Yalin; Kochunov, Peter V.; Nichols, Thomas E.; Thompson, Paul M.
2015-01-01
We present a multi-cohort shape heritability study, extending the fast spherical demons registration to subcortical shapes via medial modeling. A multi-channel demons registration based on vector spherical harmonics is applied to medial and curvature features, while controlling for metric distortion. We registered and compared seven subcortical structures of 1480 twins and siblings from the Queensland Twin Imaging Study and Human Connectome Project: Thalamus, Caudate, Putamen, Pallidum, Hippocampus, Amygdala, and Nucleus Accumbens. Radial distance and tensor-based morphometry (TBM) features were found to be highly heritable throughout the entire basal ganglia and limbic system. Surface maps reveal subtle variation in heritability across functionally distinct parts of each structure. Medial Demons reveals more significantly heritable regions than two previously described surface registration methods. This approach may help to prioritize features and measures for genome-wide association studies. PMID:26413211
Gutman, Boris A; Jahanshad, Neda; Ching, Christopher R K; Wang, Yalin; Kochunov, Peter V; Nichols, Thomas E; Thompson, Paul M
2015-04-01
We present a multi-cohort shape heritability study, extending the fast spherical demons registration to subcortical shapes via medial modeling. A multi-channel demons registration based on vector spherical harmonics is applied to medial and curvature features, while controlling for metric distortion. We registered and compared seven subcortical structures of 1480 twins and siblings from the Queensland Twin Imaging Study and Human Connectome Project: Thalamus, Caudate, Putamen, Pallidum, Hippocampus, Amygdala, and Nucleus Accumbens . Radial distance and tensor-based morphometry (TBM) features were found to be highly heritable throughout the entire basal ganglia and limbic system. Surface maps reveal subtle variation in heritability across functionally distinct parts of each structure. Medial Demons reveals more significantly heritable regions than two previously described surface registration methods. This approach may help to prioritize features and measures for genome-wide association studies.
Paqué, Frank; Peters, Ove A
2011-04-01
The aim of this study was to assess the shaping potential of a novel nickel-titanium instrument, the self-adjusting file (SAF), in long oval root canals in distal roots in mandibular molars. Twenty mandibular molars with long oval distal root canals were selected and scanned preoperatively and postoperatively by using micro-computed tomography at an original resolution of 20 μm. Canals were shaped with the SAF, three-dimensionally reconstructed, and evaluated for volume, surface area, canal transportation, and prepared surface. Data were statistically contrasted by using paired t tests and regression analysis. Preoperatively, canal volume was 7.73 ± 2.13 mm(3), and canal area was 42.83 ± 8.14 mm(2). Volumes and surface areas increased significantly (P < .001) by 4.84 ± 1.73 mm(3) and 3.34 ± 1.73 mm(2), respectively, and no gross preparation errors were detected. Unprepared canal surface varied between individual canals, and mean unprepared surface was 23.5% ± 8.9%. Prepared areas were significantly larger compared with rotary canal preparation done in a previous study. Canal transportation scores were higher in the coronal root canal third (106 ± 50 μm) compared with the apical third (81 ± 49 μm). In vitro, preparation of long oval-shaped root canals in mandibular molars with the SAF was effective and safe. Moreover, shapes generated with the SAF were more complete compared with rotary canal preparation. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sasaki, Masashi; Tanimoto, Koshi; Kohno, Kazukiyo; Takahashi, Sadamu; Kometani, Hideo; Hashimoto, Hiromu
High-speed winding of paper web sometimes leads the winding system into unstable states, interlayer slippage of wound roll, paper breakage and so on, due to the excessive air-entrainment at the roll-inlet of nip contact region. These phenomena are more frequently observed on coated paper or plastic film comparing with newspaper, because the former allows little permeation of air and their surface roughness is small. Therefore, it is of vital importance to clarify the in-roll stress of wound roll considering the effect of air-entrainment. Generally, it is known that the amount of air-entrainment is affected by grooving shape of nip roll surface. In this paper, we focused on the grooving shape and investigated the relationship with the air-entrainment into two rolls being pressed each other and the grooving shape in order to achieve stable winding at high speed. We conducted experiments using small sized test machine. Entrained air-film thickness was evaluated applying the solution of the elasto-hydrodynamic lubrication for foil bearing with the consideration of nip profile at the grooved area. Air film thickness was measured to ensure the applicability of the above theory. Consequently, we found that the air film thickness can be estimated considering the effect of grooves on the nip roll surface, and that the validity of the above estimations was ensured from experimental investigations. Furthermore, it became to be able to propose the optimal shape of grooves on nip roll surface to maintain the stable winding at high speed and at large-diameter in reel.
NASA Astrophysics Data System (ADS)
Oki, Sae; Natsui, Shungo; Suzuki, Ryosuke O.
2018-01-01
System design of a thermoelectric (TE) power generation module is pursued in order to improve the TE performance. Square truncated pyramid shaped P-N pairs of TE elements are connected electronically in series in the open space between two flat insulator boards. The performance of the TE module consisting of 2-paired elements is numerically simulated using commercial software and original TE programs. Assuming that the heat radiating into the hot surface is regulated, i.e., the amount of heat from the hot surface to the cold one is steadily constant, as it happens for solar radiation heating, the performance is significantly improved by changing the shape and the alignment pattern of the elements. When the angle θ between the edge and the base is smaller than 72°, and when the cold surface is kept at a constant temperature, two patterns in particular, amongst the 17 studied, show the largest TE power and efficiency. In comparison to other geometries, the smarter square truncated pyramid shape can provide higher performance using a large cold bath and constant heat transfer by heat radiation.
NASA Astrophysics Data System (ADS)
Oki, Sae; Natsui, Shungo; Suzuki, Ryosuke O.
2018-06-01
System design of a thermoelectric (TE) power generation module is pursued in order to improve the TE performance. Square truncated pyramid shaped P-N pairs of TE elements are connected electronically in series in the open space between two flat insulator boards. The performance of the TE module consisting of 2-paired elements is numerically simulated using commercial software and original TE programs. Assuming that the heat radiating into the hot surface is regulated, i.e., the amount of heat from the hot surface to the cold one is steadily constant, as it happens for solar radiation heating, the performance is significantly improved by changing the shape and the alignment pattern of the elements. When the angle θ between the edge and the base is smaller than 72°, and when the cold surface is kept at a constant temperature, two patterns in particular, amongst the 17 studied, show the largest TE power and efficiency. In comparison to other geometries, the smarter square truncated pyramid shape can provide higher performance using a large cold bath and constant heat transfer by heat radiation.
Tumor Burden Analysis on Computed Tomography by Automated Liver and Tumor Segmentation
Linguraru, Marius George; Richbourg, William J.; Liu, Jianfei; Watt, Jeremy M.; Pamulapati, Vivek; Wang, Shijun; Summers, Ronald M.
2013-01-01
The paper presents the automated computation of hepatic tumor burden from abdominal CT images of diseased populations with images with inconsistent enhancement. The automated segmentation of livers is addressed first. A novel three-dimensional (3D) affine invariant shape parameterization is employed to compare local shape across organs. By generating a regular sampling of the organ's surface, this parameterization can be effectively used to compare features of a set of closed 3D surfaces point-to-point, while avoiding common problems with the parameterization of concave surfaces. From an initial segmentation of the livers, the areas of atypical local shape are determined using training sets. A geodesic active contour corrects locally the segmentations of the livers in abnormal images. Graph cuts segment the hepatic tumors using shape and enhancement constraints. Liver segmentation errors are reduced significantly and all tumors are detected. Finally, support vector machines and feature selection are employed to reduce the number of false tumor detections. The tumor detection true position fraction of 100% is achieved at 2.3 false positives/case and the tumor burden is estimated with 0.9% error. Results from the test data demonstrate the method's robustness to analyze livers from difficult clinical cases to allow the temporal monitoring of patients with hepatic cancer. PMID:22893379
Electro-optic holography method for determination of surface shape and deformation
NASA Astrophysics Data System (ADS)
Furlong, Cosme; Pryputniewicz, Ryszard J.
1998-06-01
Current demanding engineering analysis and design applications require effective experimental methodologies for characterization of surface shape and deformation. Such characterization is of primary importance in many applications, because these quantities are related to the functionality, performance, and integrity of the objects of interest, especially in view of advances relating to concurrent engineering. In this paper, a new approach to characterization of surface shape and deformation using a simple optical setup is described. The approach consists of a fiber optic based electro-optic holography (EOH) system based on an IR, temperature tuned laser diode, a single mode fiber optic directional coupler assembly, and a video processing computer. The EOH can be arranged in multiple configurations which include, the three-camera, three- illumination, and speckle correlation modes.In particular, the three-camera mode is described, as well as a brief description of the procedures for obtaining quantitative 3D shape and deformation information. A representative application of the three-camera EOH system demonstrates the viability of the approach as an effective engineering tool. A particular feature of this system and the procedure described in this paper is that the 3D quantitative data are written to data files which can be readily interfaced to commercial CAD/CAM environments.
NASA Astrophysics Data System (ADS)
Newman, Peter; Galenano-Niño, Jorge Luis; Graney, Pamela; Razal, Joselito M.; Minett, Andrew I.; Ribas, João; Ovalle-Robles, Raquel; Biro, Maté; Zreiqat, Hala
2016-12-01
The topography of a biomaterial regulates cellular interactions and determine stem cell fate. A complete understanding of how topographical properties affect cell behavior will allow the rational design of material surfaces that elicit specified biological functions once placed in the body. To this end, we fabricate substrates with aligned or randomly organized fibrous nanostructured topographies. Culturing adipose-derived stem cells (ASCs), we explore the dynamic relationship between the alignment of topography, cell shape and cell differentiation to osteogenic and myogenic lineages. We show aligned topographies differentiate cells towards a satellite cell muscle progenitor state - a distinct cell myogenic lineage responsible for postnatal growth and repair of muscle. We analyze cell shape between the different topographies, using fluorescent time-lapse imaging over 21 days. In contrast to previous work, this allows the direct measurement of cell shape at a given time rather than defining the morphology of the underlying topography and neglecting cell shape. We report quantitative metrics of the time-based morphological behaviors of cell shape in response to differing topographies. This analysis offers insights into the relationship between topography, cell shape and cell differentiation. Cells differentiating towards a myogenic fate on aligned topographies adopt a characteristic elongated shape as well as the alignment of cells.
Zhang, Lin; Sánchez del Río, Manuel; Monaco, Giulio; Detlefs, Carsten; Roth, Thomas; Chumakov, Aleksandr I.; Glatzel, Pieter
2013-01-01
X-ray crystal monochromators exposed to white-beam X-rays in third-generation synchrotron light sources are subject to thermal deformations that must be minimized using an adequate cooling system. A new approach was used to measure the crystal shape profile and slope of several cryogenically cooled (liquid nitrogen) silicon monochromators as a function of beam power in situ and under heat load. The method utilizes multiple angular scans across the Bragg peak (rocking curve) at various vertical positions of a narrow-gap slit downstream from the monochromator. When increasing the beam power, the surface of the liquid-nitrogen-cooled silicon crystal deforms from a concave shape at low heat load to a convex shape at high heat load, passing through an approximately flat shape at intermediate heat load. Finite-element analysis is used to calculate the crystal thermal deformations. The simulated crystal profiles and slopes are in excellent agreement with experiments. The parameters used in simulations, such as material properties, absorbed power distribution on the crystal and cooling boundary conditions, are described in detail as they are fundamental for obtaining accurate results. PMID:23765298
Regiospecific Nucleation and Growth of Silane Coupling Agent Droplets onto Colloidal Particles
2017-01-01
Nucleation-and-growth processes are used extensively in the synthesis of spherical colloids, and more recently regiospecific nucleation-and-growth processes have been exploited to prepare more complex colloids such as patchy particles. We demonstrate that surface geometry alone can be made to play the dominant role in determining the final particle geometry in such syntheses, meaning that intricate chemical surface patternings are not required. We present a synthesis method for “lollipop”-shaped colloidal heterodimers (patchy particles), combining a recently published nucleation-and-growth technique with our recent findings that particle geometry influences the locus of droplet adsorption onto anisotropic template particles. Specifically, 3-methacryloxypropyl trimethoxysilane (MPTMS) is nucleated and grown onto bullet-shaped and nail-shaped colloids. The shape of the template particle can be chosen such that the MPTMS adsorbs regiospecifically onto the flat ends. In particular, we find that particles with a wider base increase the range of droplet volumes for which the minimum in the free energy of adsorption is located at the flat end of the particle compared with bullet-shaped particles of the same aspect ratio. We put forward an extensive analysis of the synthesis mechanism and experimentally determine the physical properties of the heterodimers, supported by theoretical simulations. Here we numerically optimize, for the first time, the shape of finite-sized droplets as a function of their position on the rod-like silica particle surface. We expect that our findings will give an impulse to complex particle creation by regiospecific nucleation and growth. PMID:29057028
Photogrammetry research for FAST eleven-meter reflector panel surface shape measurement
NASA Astrophysics Data System (ADS)
Zhou, Rongwei; Zhu, Lichun; Li, Weimin; Hu, Jingwen; Zhai, Xuebing
2010-10-01
In order to design and manufacture the Five-hundred-meter Aperture Spherical Radio Telescope (FAST) active reflector measuring equipment, measurement on each reflector panel surface shape was presented, static measurement of the whole neutral spherical network of nodes was performed, real-time dynamic measurement at the cable network dynamic deformation was undertaken. In the implementation process of the FAST, reflector panel surface shape detection was completed before eleven-meter reflector panel installation. Binocular vision system was constructed based on the method of binocular stereo vision in machine vision, eleven-meter reflector panel surface shape was measured with photogrammetry method. Cameras were calibrated with the feature points. Under the linearity camera model, the lighting spot array was used as calibration standard pattern, and the intrinsic and extrinsic parameters were acquired. The images were collected for digital image processing and analyzing with two cameras, feature points were extracted with the detection algorithm of characteristic points, and those characteristic points were matched based on epipolar constraint method. Three-dimensional reconstruction coordinates of feature points were analyzed and reflective panel surface shape structure was established by curve and surface fitting method. The error of reflector panel surface shape was calculated to realize automatic measurement on reflector panel surface shape. The results show that unit reflector panel surface inspection accuracy was 2.30mm, within the standard deviation error of 5.00mm. Compared with the requirement of reflector panel machining precision, photogrammetry has fine precision and operation feasibility on eleven-meter reflector panel surface shape measurement for FAST.
Novel types of surface acoustic wave microreflectors - Performance analysis and simulations
NASA Astrophysics Data System (ADS)
Golan, G.; Griffel, G.; Seidman, A.; Croitoru, N.
1990-06-01
Surface acoustic waves for micrograting reflectors have been characterized. Based on the perturbation theory, eight different types of structures on an acoustic waveguide were analyzed. Results of simulations of all eight types of corrugation structures were evaluated in order to find the least leaky waveguide, the most efficient reflector (with minimum necessary perturbations), and the optimal mode shape for improved performances. General design curves are presented in order to illustrate the behavior of the incident and reflected waves under a variety of structural conditions. Analytic expressions for the calculations of the mode amplitude and mode shape, and for general acoustic corrugations are derived and then the simulations results are presented.
Tsai, Tsung-Yuan; Li, Jing-Sheng; Wang, Shaobai; Li, Pingyue; Kwon, Young-Min; Li, Guoan
2015-01-01
The statistical shape model (SSM) method that uses 2D images of the knee joint to predict the three-dimensional (3D) joint surface model has been reported in the literature. In this study, we constructed a SSM database using 152 human computed tomography (CT) knee joint models, including the femur, tibia and patella and analysed the characteristics of each principal component of the SSM. The surface models of two in vivo knees were predicted using the SSM and their 2D bi-plane fluoroscopic images. The predicted models were compared to their CT joint models. The differences between the predicted 3D knee joint surfaces and the CT image-based surfaces were 0.30 ± 0.81 mm, 0.34 ± 0.79 mm and 0.36 ± 0.59 mm for the femur, tibia and patella, respectively (average ± standard deviation). The computational time for each bone of the knee joint was within 30 s using a personal computer. The analysis of this study indicated that the SSM method could be a useful tool to construct 3D surface models of the knee with sub-millimeter accuracy in real time. Thus, it may have a broad application in computer-assisted knee surgeries that require 3D surface models of the knee.
NASA Astrophysics Data System (ADS)
Feshchenko, R. M.; Vinogradov, A. V.; Artyukov, I. A.
2018-04-01
Using the method of Laplace transform the field amplitude in the paraxial approximation is found in the two-dimensional free space using initial values of the amplitude specified on an arbitrary shaped monotonic curve. The obtained amplitude depends on one a priori unknown function, which can be found from a Volterra first kind integral equation. In a special case of field amplitude specified on a concave parabolic curve the exact solution is derived. Both solutions can be used to study the light propagation from arbitrary surfaces including grazing incidence X-ray mirrors. They can find applications in the analysis of coherent imaging problems of X-ray optics, in phase retrieval algorithms as well as in inverse problems in the cases when the initial field amplitude is sought on a curved surface.
NASA Astrophysics Data System (ADS)
Newman, James Charles, III
1997-10-01
The first two steps in the development of an integrated multidisciplinary design optimization procedure capable of analyzing the nonlinear fluid flow about geometrically complex aeroelastic configurations have been accomplished in the present work. For the first step, a three-dimensional unstructured grid approach to aerodynamic shape sensitivity analysis and design optimization has been developed. The advantage of unstructured grids, when compared with a structured-grid approach, is their inherent ability to discretize irregularly shaped domains with greater efficiency and less effort. Hence, this approach is ideally suited for geometrically complex configurations of practical interest. In this work the time-dependent, nonlinear Euler equations are solved using an upwind, cell-centered, finite-volume scheme. The discrete, linearized systems which result from this scheme are solved iteratively by a preconditioned conjugate-gradient-like algorithm known as GMRES for the two-dimensional cases and a Gauss-Seidel algorithm for the three-dimensional; at steady-state, similar procedures are used to solve the accompanying linear aerodynamic sensitivity equations in incremental iterative form. As shown, this particular form of the sensitivity equation makes large-scale gradient-based aerodynamic optimization possible by taking advantage of memory efficient methods to construct exact Jacobian matrix-vector products. Various surface parameterization techniques have been employed in the current study to control the shape of the design surface. Once this surface has been deformed, the interior volume of the unstructured grid is adapted by considering the mesh as a system of interconnected tension springs. Grid sensitivities are obtained by differentiating the surface parameterization and the grid adaptation algorithms with ADIFOR, an advanced automatic-differentiation software tool. To demonstrate the ability of this procedure to analyze and design complex configurations of practical interest, the sensitivity analysis and shape optimization has been performed for several two- and three-dimensional cases. In twodimensions, an initially symmetric NACA-0012 airfoil and a high-lift multielement airfoil were examined. For the three-dimensional configurations, an initially rectangular wing with uniform NACA-0012 cross-sections was optimized; in addition, a complete Boeing 747-200 aircraft was studied. Furthermore, the current study also examines the effect of inconsistency in the order of spatial accuracy between the nonlinear fluid and linear shape sensitivity equations. The second step was to develop a computationally efficient, high-fidelity, integrated static aeroelastic analysis procedure. To accomplish this, a structural analysis code was coupled with the aforementioned unstructured grid aerodynamic analysis solver. The use of an unstructured grid scheme for the aerodynamic analysis enhances the interaction compatibility with the wing structure. The structural analysis utilizes finite elements to model the wing so that accurate structural deflections may be obtained. In the current work, parameters have been introduced to control the interaction of the computational fluid dynamics and structural analyses; these control parameters permit extremely efficient static aeroelastic computations. To demonstrate and evaluate this procedure, static aeroelastic analysis results for a flexible wing in low subsonic, high subsonic (subcritical), transonic (supercritical), and supersonic flow conditions are presented.
Trend-surface analysis of morphometric parameters: A case study in southeastern Brazil
NASA Astrophysics Data System (ADS)
Grohmann, Carlos Henrique
2005-10-01
Trend-surface analysis was carried out on data from morphometric parameters isobase and hydraulic gradient. The study area, located in the eastern border of Quadrilátero Ferrífero, southeastern Brazil, presents four main geomorphological units, one characterized by fluvial dissection, two of mountainous relief, with a scarp of hundreds of meters of fall between them, and a flat plateau in the central portion of the fluvially dissected terrains. Morphometric maps were evaluated in GRASS-GIS and statistics were made on R statistical language, using the spatial package. Analysis of variance (ANOVA) was made to test the significance of each surface and the significance of increasing polynomial degree. The best results were achieved with sixth-order surface for isobase and second-order surface for hydraulic gradient. Shape and orientation of residual maps contours for selected trends were compared with structures inferred from several morphometric maps, and a good correlation is present.
Impact of physical confinement on nuclei geometry and cell division dynamics in 3D spheroids.
Desmaison, Annaïck; Guillaume, Ludivine; Triclin, Sarah; Weiss, Pierre; Ducommun, Bernard; Lobjois, Valérie
2018-06-08
Multicellular tumour spheroids are used as a culture model to reproduce the 3D architecture, proliferation gradient and cell interactions of a tumour micro-domain. However, their 3D characterization at the cell scale remains challenging due to size and cell density issues. In this study, we developed a methodology based on 3D light sheet fluorescence microscopy (LSFM) image analysis and convex hull calculation that allows characterizing the 3D shape and orientation of cell nuclei relative to the spheroid surface. By using this technique and optically cleared spheroids, we found that in freely growing spheroids, nuclei display an elongated shape and are preferentially oriented parallel to the spheroid surface. This geometry is lost when spheroids are grown in conditions of physical confinement. Live 3D LSFM analysis of cell division revealed that confined growth also altered the preferential cell division axis orientation parallel to the spheroid surface and induced prometaphase delay. These results provide key information and parameters that help understanding the impact of physical confinement on cell proliferation within tumour micro-domains.
Shahedi, Maysam; Halicek, Martin; Guo, Rongrong; Zhang, Guoyi; Schuster, David M; Fei, Baowei
2018-06-01
Prostate segmentation in computed tomography (CT) images is useful for treatment planning and procedure guidance such as external beam radiotherapy and brachytherapy. However, because of the low, soft tissue contrast of CT images, manual segmentation of the prostate is a time-consuming task with high interobserver variation. In this study, we proposed a semiautomated, three-dimensional (3D) segmentation for prostate CT images using shape and texture analysis and we evaluated the method against manual reference segmentations. The prostate gland usually has a globular shape with a smoothly curved surface, and its shape could be accurately modeled or reconstructed having a limited number of well-distributed surface points. In a training dataset, using the prostate gland centroid point as the origin of a coordination system, we defined an intersubject correspondence between the prostate surface points based on the spherical coordinates. We applied this correspondence to generate a point distribution model for prostate shape using principal component analysis and to study the local texture difference between prostate and nonprostate tissue close to the different prostate surface subregions. We used the learned shape and texture characteristics of the prostate in CT images and then combined them with user inputs to segment a new image. We trained our segmentation algorithm using 23 CT images and tested the algorithm on two sets of 10 nonbrachytherapy and 37 postlow dose rate brachytherapy CT images. We used a set of error metrics to evaluate the segmentation results using two experts' manual reference segmentations. For both nonbrachytherapy and post-brachytherapy image sets, the average measured Dice similarity coefficient (DSC) was 88% and the average mean absolute distance (MAD) was 1.9 mm. The average measured differences between the two experts on both datasets were 92% (DSC) and 1.1 mm (MAD). The proposed, semiautomatic segmentation algorithm showed a fast, robust, and accurate performance for 3D prostate segmentation of CT images, specifically when no previous, intrapatient information, that is, previously segmented images, was available. The accuracy of the algorithm is comparable to the best performance results reported in the literature and approaches the interexpert variability observed in manual segmentation. © 2018 American Association of Physicists in Medicine.
Lee, Wei Li; Low, Hong Yee
2016-01-01
Micro- and nanoscale surface textures, when optimally designed, present a unique approach to improve surface functionalities. Coupling surface texture with shape memory polymers may generate reversibly tuneable surface properties. A shape memory polyetherurethane is used to prepare various surface textures including 2 μm- and 200 nm-gratings, 250 nm-pillars and 200 nm-holes. The mechanical deformation via stretching and recovery of the surface texture are investigated as a function of length scales and shapes. Results show the 200 nm-grating exhibiting more deformation than 2 μm-grating. Grating imparts anisotropic and surface area-to-volume effects, causing different degree of deformation between gratings and pillars under the same applied macroscopic strain. Full distribution of stress within the film causes the holes to deform more substantially than the pillars. In the recovery study, unlike a nearly complete recovery for the gratings after 10 transformation cycles, the high contribution of surface energy impedes the recovery of holes and pillars. The surface textures are shown to perform a switchable wetting function. This study provides insights into how geometric features of shape memory surface patterns can be designed to modulate the shape programming and recovery, and how the control of reversibly deformable surface textures can be applied to transfer microdroplets. PMID:27026290
Experimental analysis of surface finish in normal conducting cavities
NASA Astrophysics Data System (ADS)
Zarrebini-Esfahani, A.; Aslaninejad, M.; Ristic, M.; Long, K.
2017-10-01
A normal conducting 805 MHz test cavity with an in built button shaped sample is used to conduct a series of surface treatment experiments. The button enhances the local fields and influences the likelihood of an RF breakdown event. Because of their smaller sizes, compared to the whole cavity surface, they allow practical investigations of the effects of cavity surface preparation in relation to RF breakdown. Manufacturing techniques and steps for preparing the buttons to improve the surface quality are described in detail. It was observed that even after the final stage of the surface treatment, defects on the surface of the cavities still could be found.
Enhancements to NURBS-Based FEA Airfoil Modeler: SABER
NASA Technical Reports Server (NTRS)
Saleeb, A. F.; Trowbridge, D. A.
2003-01-01
NURBS (Non-Uniform Rational B-Splines) have become a common way for CAD programs to fit a smooth surface to discrete geometric data. This concept has been extended to allow for the fitting of analysis data in a similar manner and "attaching" the analysis data to the geometric definition of the structure. The "attaching" of analysis data to the geometric definition allows for a more seamless sharing of data between analysis disciplines. NURBS have become a useful tool in the modeling of airfoils. The use of NURBS has allowed for the development of software that easily and consistently generates plate finite element models of the midcamber surface of a given airfoil. The resulting displacements can then be applied to the original airfoil surface and the deformed shape calculated.
Effects of surface characteristics on the plantar shape of feet and subjects' perceived sensations.
Witana, Channa P; Goonetilleke, Ravindra S; Xiong, Shuping; Au, Emily Y L
2009-03-01
Orthotics and other types of shoe inserts are primarily designed to reduce injury and improve comfort. The interaction between the plantar surface of the foot and the load-bearing surface contributes to foot and surface deformations and hence to perceived comfort, discomfort or pain. The plantar shapes of 16 participants' feet were captured when standing on three support surfaces that had different cushioning properties in the mid-foot region. Foot shape deformations were quantified using 3D laser scans. A questionnaire was used to evaluate the participant's perceptions of perceived shape and perceived feeling. The results showed that the structure in the mid-foot could change shape, independent of the rear-foot and forefoot regions. Participants were capable of identifying the shape changes with distinct preferences towards certain shapes. The cushioning properties of the mid-foot materials also have a direct influence on perceived feelings. This research has strong implications for the design and material selection of orthotics, insoles and footwear.
Andrews, Timothy J; Baseler, Heidi; Jenkins, Rob; Burton, A Mike; Young, Andrew W
2016-10-01
A full understanding of face recognition will involve identifying the visual information that is used to discriminate different identities and how this is represented in the brain. The aim of this study was to explore the importance of shape and surface properties in the recognition and neural representation of familiar faces. We used image morphing techniques to generate hybrid faces that mixed shape properties (more specifically, second order spatial configural information as defined by feature positions in the 2D-image) from one identity and surface properties from a different identity. Behavioural responses showed that recognition and matching of these hybrid faces was primarily based on their surface properties. These behavioural findings contrasted with neural responses recorded using a block design fMRI adaptation paradigm to test the sensitivity of Haxby et al.'s (2000) core face-selective regions in the human brain to the shape or surface properties of the face. The fusiform face area (FFA) and occipital face area (OFA) showed a lower response (adaptation) to repeated images of the same face (same shape, same surface) compared to different faces (different shapes, different surfaces). From the behavioural data indicating the critical contribution of surface properties to the recognition of identity, we predicted that brain regions responsible for familiar face recognition should continue to adapt to faces that vary in shape but not surface properties, but show a release from adaptation to faces that vary in surface properties but not shape. However, we found that the FFA and OFA showed an equivalent release from adaptation to changes in both shape and surface properties. The dissociation between the neural and perceptual responses suggests that, although they may play a role in the process, these core face regions are not solely responsible for the recognition of facial identity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Surface Aesthetics and Analysis.
Çakır, Barış; Öreroğlu, Ali Rıza; Daniel, Rollin K
2016-01-01
Surface aesthetics of an attractive nose result from certain lines, shadows, and highlights with specific proportions and breakpoints. Analysis emphasizes geometric polygons as aesthetic subunits. Evaluation of the complete nasal surface aesthetics is achieved using geometric polygons to define the existing deformity and aesthetic goals. The relationship between the dome triangles, interdomal triangle, facet polygons, and infralobular polygon are integrated to form the "diamond shape" light reflection on the nasal tip. The principles of geometric polygons allow the surgeon to analyze the deformities of the nose, define an operative plan to achieve specific goals, and select the appropriate operative technique. Copyright © 2016 Elsevier Inc. All rights reserved.
Automatic generation of endocardial surface meshes with 1-to-1 correspondence from cine-MR images
NASA Astrophysics Data System (ADS)
Su, Yi; Teo, S.-K.; Lim, C. W.; Zhong, L.; Tan, R. S.
2015-03-01
In this work, we develop an automatic method to generate a set of 4D 1-to-1 corresponding surface meshes of the left ventricle (LV) endocardial surface which are motion registered over the whole cardiac cycle. These 4D meshes have 1- to-1 point correspondence over the entire set, and is suitable for advanced computational processing, such as shape analysis, motion analysis and finite element modelling. The inputs to the method are the set of 3D LV endocardial surface meshes of the different frames/phases of the cardiac cycle. Each of these meshes is reconstructed independently from border-delineated MR images and they have no correspondence in terms of number of vertices/points and mesh connectivity. To generate point correspondence, the first frame of the LV mesh model is used as a template to be matched to the shape of the meshes in the subsequent phases. There are two stages in the mesh correspondence process: (1) a coarse matching phase, and (2) a fine matching phase. In the coarse matching phase, an initial rough matching between the template and the target is achieved using a radial basis function (RBF) morphing process. The feature points on the template and target meshes are automatically identified using a 16-segment nomenclature of the LV. In the fine matching phase, a progressive mesh projection process is used to conform the rough estimate to fit the exact shape of the target. In addition, an optimization-based smoothing process is used to achieve superior mesh quality and continuous point motion.
Analysis of Long Bone and Vertebral Failure Patterns
1985-02-14
have disc-shaped epiphyses on the surfaces of the vertebral bodies (Schmorl and Junghanns, 1959). Humans, ]< orangutans , gorillas...The annular epiphysis has been previously reported in humans, orangutans , gorillas, and marmosets (Schmorl and Junghanns, 1959; Bernick, et al
Cauchy integral method for two-dimensional solidification interface shapes
NASA Astrophysics Data System (ADS)
Siegel, R.; Sosoka, D. J.
1982-07-01
A method is developed to determine the shape of steady state solidification interfaces formed when liquid above its freezing point circulates over a cold surface. The solidification interface, which is at uniform temperature, will form in a shape such that the non-uniform energy convected to it is locally balanced by conduction into the solid. The interface shape is of interest relative to the crystal structure formed during solidification; regulating the crystal structure has application in casting naturally strengthened metallic composites. The results also pertain to phase-change energy storage devices, where the solidified configuration and overall heat transfer are needed. The analysis uses a conformal mapping technique to relate the desired interface coordinates to the components of the temperature gradient at the interface. These components are unknown because the interface shape is unknown. A Cauchy integral formulation provides a second relation involving the components, and a simultaneous solution yields the interface shape.
Pavement cells and the topology puzzle.
Carter, Ross; Sánchez-Corrales, Yara E; Hartley, Matthew; Grieneisen, Verônica A; Marée, Athanasius F M
2017-12-01
D'Arcy Thompson emphasised the importance of surface tension as a potential driving force in establishing cell shape and topology within tissues. Leaf epidermal pavement cells grow into jigsaw-piece shapes, highly deviating from such classical forms. We investigate the topology of developing Arabidopsis leaves composed solely of pavement cells. Image analysis of around 50,000 cells reveals a clear and unique topological signature, deviating from previously studied epidermal tissues. This topological distribution is established early during leaf development, already before the typical pavement cell shapes emerge, with topological homeostasis maintained throughout growth and unaltered between division and maturation zones. Simulating graph models, we identify a heuristic cellular division rule that reproduces the observed topology. Our parsimonious model predicts how and when cells effectively place their division plane with respect to their neighbours. We verify the predicted dynamics through in vivo tracking of 800 mitotic events, and conclude that the distinct topology is not a direct consequence of the jigsaw piece-like shape of the cells, but rather owes itself to a strongly life history-driven process, with limited impact from cell-surface mechanics. © 2017. Published by The Company of Biologists Ltd.
3D face recognition under expressions, occlusions, and pose variations.
Drira, Hassen; Ben Amor, Boulbaba; Srivastava, Anuj; Daoudi, Mohamed; Slama, Rim
2013-09-01
We propose a novel geometric framework for analyzing 3D faces, with the specific goals of comparing, matching, and averaging their shapes. Here we represent facial surfaces by radial curves emanating from the nose tips and use elastic shape analysis of these curves to develop a Riemannian framework for analyzing shapes of full facial surfaces. This representation, along with the elastic Riemannian metric, seems natural for measuring facial deformations and is robust to challenges such as large facial expressions (especially those with open mouths), large pose variations, missing parts, and partial occlusions due to glasses, hair, and so on. This framework is shown to be promising from both--empirical and theoretical--perspectives. In terms of the empirical evaluation, our results match or improve upon the state-of-the-art methods on three prominent databases: FRGCv2, GavabDB, and Bosphorus, each posing a different type of challenge. From a theoretical perspective, this framework allows for formal statistical inferences, such as the estimation of missing facial parts using PCA on tangent spaces and computing average shapes.
Pavement cells and the topology puzzle
2017-01-01
D'Arcy Thompson emphasised the importance of surface tension as a potential driving force in establishing cell shape and topology within tissues. Leaf epidermal pavement cells grow into jigsaw-piece shapes, highly deviating from such classical forms. We investigate the topology of developing Arabidopsis leaves composed solely of pavement cells. Image analysis of around 50,000 cells reveals a clear and unique topological signature, deviating from previously studied epidermal tissues. This topological distribution is established early during leaf development, already before the typical pavement cell shapes emerge, with topological homeostasis maintained throughout growth and unaltered between division and maturation zones. Simulating graph models, we identify a heuristic cellular division rule that reproduces the observed topology. Our parsimonious model predicts how and when cells effectively place their division plane with respect to their neighbours. We verify the predicted dynamics through in vivo tracking of 800 mitotic events, and conclude that the distinct topology is not a direct consequence of the jigsaw piece-like shape of the cells, but rather owes itself to a strongly life history-driven process, with limited impact from cell-surface mechanics. PMID:29084800
Allometric shape change and heterochrony in the freeliving coral Trachyphyllia bilobata (Duncan)
NASA Astrophysics Data System (ADS)
Foster, Ann Budd; Johnson, Kenneth G.; Schultz, Lori L.
1988-05-01
Regression analysis has been used to study the relationship between age, size, shape, and surface area in two ancestral-descendant populations of the Neogene Caribbean coral Trachyphyllia bilobata. Analyses of the relationship between size and age show that the relationship is isometric and that little difference occurs between populations in mean corallite length or height and in their rates of growth. Onset of columella growth is significantly earlier, however, in the descendant population. Studies of the relationship between size and shape show that growth is allometric, with shape change occurring in both corallum elongation and pinching of the corallite wall during ontogeny. In the descendant population, pinching and elongation initiate earlier in the ontogeny of the coral. These results suggest that the evolutionary development of the meandroid form in freeliving corals has been accomplished by heterochrony, involving a complex set of disassociated peramorphic changes in ontogeny accompanied by paedomorphic changes in astogeny. Further analyses show that the observed heterochronic changes serve to decrease corallum surface area which may in turn enhance sediment removal and nutrition in unstable habitats.
NASA Astrophysics Data System (ADS)
Armas, Jay; Bhattacharya, Jyotirmoy; Jain, Akash; Kundu, Nilay
2017-06-01
Developing on a recent work on localized bubbles of ordinary relativistic fluids, we study the comparatively richer leading order surface physics of relativistic superfluids, coupled to an arbitrary stationary background metric and gauge field in 3 + 1 and 2 + 1 dimensions. The analysis is performed with the help of a Euclidean effective action in one lower dimension, written in terms of the superfluid Goldstone mode, the shape-field (characterizing the surface of the superfluid bubble) and the background fields. We find new terms in the ideal order constitutive relations of the superfluid surface, in both the parity-even and parity-odd sectors, with the corresponding transport coefficients entirely fixed in terms of the first order bulk transport coefficients. Some bulk transport coefficients even enter and modify the surface thermodynamics. In the process, we also evaluate the stationary first order parity-odd bulk currents in 2 + 1 dimensions, which follows from four independent terms in the superfluid effective action in that sector. In the second part of the paper, we extend our analysis to stationary surfaces in 3 + 1 dimensional Galilean superfluids via the null reduction of null superfluids in 4 + 1 dimensions. The ideal order constitutive relations in the Galilean case also exhibit some new terms similar to their relativistic counterparts. Finally, in the relativistic context, we turn on slow but arbitrary time dependence and answer some of the key questions regarding the time-dependent dynamics of the shape-field using the second law of thermodynamics. A linearized fluctuation analysis in 2 + 1 dimensions about a toy equilibrium configuration reveals some new surface modes, including parity-odd ones. Our framework can be easily applied to model more general interfaces between distinct fluid-phases.
1983-01-01
concentration, poten- tial sweep rate, rotation speed, deposition potential and other parameters -on the shape and height of the stripping peaks have...concentration, potential sweep rate, rotation speed, deposition potential and other parameters on the shape and height of the stripping peaks have been...of the greater surface area of a solid electrode compared to a dropping mercury electrode. Cathodic stripping voltametry at a rotating silver disk
Park, Ko Woon; Kim, Seong Hyun; Choi, Seong Ho; Lee, Won Jae
2010-01-01
To evaluate useful computed tomographic features to differentiate nonneoplastic and neoplastic gallbladder polyps 1 cm or bigger. Thirty-one patients with 32 nonneoplastic polyps and 67 patients with 73 neoplastic polyps 1 cm or bigger underwent unenhanced and dual-phase (arterial and portal venous phases) multi-detector row computed tomography. Gallbladder polyps were diagnosed by cholecystectomy. Computed tomographic features including size (
NASA Astrophysics Data System (ADS)
Wu, Huaying; Wang, Li Zhong; Wang, Yantao; Yuan, Xiaolei
2018-05-01
The blade or surface grinding blade of the hypervelocity grinding wheel may be damaged due to too high rotation rate of the spindle of the machine and then fly out. Its speed as a projectile may severely endanger the field persons. Critical thickness model of the protective plate of the high-speed machine is studied in this paper. For easy analysis, the shapes of the possible impact objects flying from the high-speed machine are simplified as sharp-nose model, ball-nose model and flat-nose model. Whose front ending shape to represent point, line and surface contacting. Impact analysis based on J-C model is performed for the low-carbon steel plate with different thicknesses in this paper. One critical thickness computational model for the protective plate of high-speed machine is established according to the damage characteristics of the thin plate to get relation among plate thickness and mass, shape and size and impact speed of impact object. The air cannon is used for impact test. The model accuracy is validated. This model can guide identification of the thickness of single-layer outer protective plate of a high-speed machine.
Hackenberg, Lars; Hierholzer, Eberhard; Bullmann, Viola; Liljenqvist, Ulf; Götze, Christian
2006-07-01
The forward bending test according to Adams and rib hump quantification by scoliometer are common clinical examination techniques in idiopathic scoliosis, although precise data about the change of axial surface rotation in forward bending posture are not available. In a pilot study the influence of leg length inequalities on the back shape of five normal subjects was clarified. Then 91 patients with idiopathic scoliosis with Cobb-angles between 20 degrees and 82 degrees were examined by rasterstereography, a 3D back surface analysis system. The axial back surface rotation in standing posture was compared with that in forward bending posture and additionally with a scoliometer measurement in forward bending posture. The changes of back shape in forward bending posture were correlated with the Cobb-angle, the level of the apex of the scoliotic primary curve and the age of the patient. Averaged over all patients, the back surface rotation amplitude increased from 23.1 degrees in standing to 26.3 degrees in forward bending posture. The standard deviation of this difference was high (6.1 degrees ). The correlation of back surface rotation amplitude in standing with that in forward bending posture was poor (R (2)=0.41) as was the correlation of back surface rotation in standing posture with the scoliometer in forward bending posture measured rotation (R (2)=0.35). No significant correlation could be found between the change of back shape in forward bending and the degree of deformity (R (2)=0.07), likewise no correlation with the height of the apex of the scoliosis (R (2)=0.005) and the age of the patient (R (2)=0.001). Before forward bending test leg length inequalities have to be compensated accurately. Compared to the standing posture, forward bending changes back surface rotation. However, this change varies greatly between patients, and is independent of the type and degree of scoliosis. Furthermore remarkable differences were found between scoliometer measurement of the rib hump and rasterstereographic measurement of the vertebral rotation. Therefore the forward bending test and the identification of idiopathic scoliosis rotation by scoliometer can be markedly different compared to rasterstereographic surface measurement in the standing posture.
NASA Astrophysics Data System (ADS)
Smeltzer, C. D.; Wang, Y.; Koshak, W. J.
2014-12-01
Vertical profiles and emission lifetimes of lightning nitrogen oxides (LNOx) are derived using the Ozone Monitoring Instrument (OMI). Approximately 200 million flashes, over a 10 year climate period, from the United States National Lighting Detection Network (NLDN), are aggregated with OMI cloud top height to determine the vertical LNOx structure. LNOx lifetime is determined as function of LNOx signal in a 36 kilometer vertical column from the time of the last known flash to depletion of the LNOx signal. Environmental Protection Agency (EPA) Air Quality Station (AQS) surface data further support these results by demonstrating as much as a 200% increase in surface level NO2 during strong thunderstorm events and a lag as long as 5 to 8 hours from the lightning event to the peak surface event, indicating a evolutional process. Analysis of cloud resolving chemical transport model (REAM Cloud) demonstrates that C-shaped LNOx profiles, which agree with OMI vertical profile observations, evolve due to micro-scale convective meteorology given inverted C-shaped LNOx emission profiles as determined from lightning radio telemetry. It is shown, both in simulations and in observations, that the extent to which the LNOx vertical distribution is C-shaped and the lifetime of LNOx is proportional to the shear-strength of the thunderstorm. Micro-scale convective meteorology is not adequately parameterized in global scale and regional scale chemical transport models (CTM). Therefore, these larger scale CTMs ought to use a C-shape emissions profile to best reproduce observations until convective parameterizations are updated. These findings are used to simulate decadal LNOx and lightning ozone climatology over the Continental United States (CONUS) from 2004-2014.
Shape optimization of three-dimensional stamped and solid automotive components
NASA Technical Reports Server (NTRS)
Botkin, M. E.; Yang, R.-J.; Bennett, J. A.
1987-01-01
The shape optimization of realistic, 3-D automotive components is discussed. The integration of the major parts of the total process: modeling, mesh generation, finite element and sensitivity analysis, and optimization are stressed. Stamped components and solid components are treated separately. For stamped parts a highly automated capability was developed. The problem description is based upon a parameterized boundary design element concept for the definition of the geometry. Automatic triangulation and adaptive mesh refinement are used to provide an automated analysis capability which requires only boundary data and takes into account sensitivity of the solution accuracy to boundary shape. For solid components a general extension of the 2-D boundary design element concept has not been achieved. In this case, the parameterized surface shape is provided using a generic modeling concept based upon isoparametric mapping patches which also serves as the mesh generator. Emphasis is placed upon the coupling of optimization with a commercially available finite element program. To do this it is necessary to modularize the program architecture and obtain shape design sensitivities using the material derivative approach so that only boundary solution data is needed.
NASA Astrophysics Data System (ADS)
Pecháček, Pavel; Stella, David; Keil, Petr; Kleisner, Karel
2014-12-01
The males of the Brimstone butterfly ( Gonepteryx rhamni) have ultraviolet pattern on the dorsal surfaces of their wings. Using geometric morphometrics, we have analysed correlations between environmental variables (climate, productivity) and shape variability of the ultraviolet pattern and the forewing in 110 male specimens of G. rhamni collected in the Palaearctic zone. To start with, we subjected the environmental variables to principal component analysis (PCA). The first PCA axis (precipitation, temperature, latitude) significantly correlated with shape variation of the ultraviolet patterns across the Palaearctic. Additionally, we have performed two-block partial least squares (PLS) analysis to assess co-variation between intraspecific shape variation and the variation of 11 environmental variables. The first PLS axis explained 93 % of variability and represented the effect of precipitation, temperature and latitude. Along this axis, we observed a systematic increase in the relative area of ultraviolet colouration with increasing temperature and precipitation and decreasing latitude. We conclude that the shape variation of ultraviolet patterns on the forewings of male Brimstones is correlated with large-scale environmental factors.
NASA Astrophysics Data System (ADS)
Enneti, Ravi Kumar
2005-07-01
Powder metallurgy technology involves manufacturing of net shape or near net shape components starting from metal powders. Polymers are used to provide lubrication during shaping and handling strength to the shaped component. After shaping, the polymers are removed from the shaped components by providing thermal energy to burnout the polymers. Polymer burnout is one of the most critical step in powder metal processing. Improper design of the polymer burnout cycle will result in formation of defects, shape loss, or carbon contamination of the components. The effect of metal particles on polymer burnout and shape loss were addressed in the present research. The study addressing the effect of metal powders on polymer burnout was based on the hypothesis that metal powders act to catalyze polymer burnout. Thermogravimetric analysis (TGA) on pure polymer, ethylene vinyl acetate (EVA), and on admixed powders of 316L stainless steel and 1 wt. % EVA were carried out to verify the hypothesis. The effect of metal powders additions was studied by monitoring the onset temperature for polymer degradation and the temperature at which maximum rate of weight loss occurred from the TGA data. The catalytic behavior of the powders was verified by varying the particle size and shape of the 316L stainless powder. The addition of metal particles lowered the polymer burnout temperatures. The onset temperature for burnout was found to be sensitive to the surface area of the metal particle as well as the polymer distribution. Powders with low surface area and uniform distribution of polymer showed a lower burnout temperature. The evolution of shape loss during polymer burnout was based on the hypothesis that shape loss occurs during the softening of the polymer and depends on the sequence of chemical bonding in the polymer during burnout. In situ observation of shape loss was carried out on thin beams compacted from admixed powders of 316L stainless steel and 1 wt. % ethylene vinyl acetate (EVA). The results showed that shape loss primarily occurs by viscous creep during the softening of the polymer. At the onset of burnout of EVA, a recovery in shape loss was observed. The recovery occurred primarily during the first stage burnout of EVA and was attributed to the formation of polyethylene co-polyacetylene which forms with a carbon double bond. The in situ strength was also found to increase during the formation of polyethylene co-polyacetylene. No recovery of shape loss was observed during burnout of polymers (polyethylene and polypropylene) which convert to yield hydrocarbons without forming carbon double bonds. (Abstract shortened by UMI.)
NASA Technical Reports Server (NTRS)
Taylor, Arthur C., III; Newman, James C., III; Barnwell, Richard W.
1997-01-01
A three-dimensional unstructured grid approach to aerodynamic shape sensitivity analysis and design optimization has been developed and is extended to model geometrically complex configurations. The advantage of unstructured grids (when compared with a structured-grid approach) is their inherent ability to discretize irregularly shaped domains with greater efficiency and less effort. Hence, this approach is ideally suited for geometrically complex configurations of practical interest. In this work the nonlinear Euler equations are solved using an upwind, cell-centered, finite-volume scheme. The discrete, linearized systems which result from this scheme are solved iteratively by a preconditioned conjugate-gradient-like algorithm known as GMRES for the two-dimensional geometry and a Gauss-Seidel algorithm for the three-dimensional; similar procedures are used to solve the accompanying linear aerodynamic sensitivity equations in incremental iterative form. As shown, this particular form of the sensitivity equation makes large-scale gradient-based aerodynamic optimization possible by taking advantage of memory efficient methods to construct exact Jacobian matrix-vector products. Simple parameterization techniques are utilized for demonstrative purposes. Once the surface has been deformed, the unstructured grid is adapted by considering the mesh as a system of interconnected springs. Grid sensitivities are obtained by differentiating the surface parameterization and the grid adaptation algorithms with ADIFOR (which is an advanced automatic-differentiation software tool). To demonstrate the ability of this procedure to analyze and design complex configurations of practical interest, the sensitivity analysis and shape optimization has been performed for a two-dimensional high-lift multielement airfoil and for a three-dimensional Boeing 747-200 aircraft.
Round versus rectangular: Does the plot shape matter?
NASA Astrophysics Data System (ADS)
Iserloh, Thomas; Bäthke, Lars; Ries, Johannes B.
2016-04-01
Field rainfall simulators are designed to study soil erosion processes and provide urgently needed data for various geomorphological, hydrological and pedological issues. Due to the different conditions and technologies applied, there are several methodological aspects under review of the scientific community, particularly concerning design, procedures and conditions of measurement for infiltration, runoff and soil erosion. Extensive discussions at the Rainfall Simulator Workshop 2011 in Trier and the Splinter Meeting at EGU 2013 "Rainfall simulation: Big steps forward!" lead to the opinion that the rectangular shape is the more suitable plot shape compared to the round plot. A horizontally edging Gerlach trough is installed for sample collection without forming unnatural necks as is found at round or triangle plots. Since most research groups did and currently do work with round plots at the point scale (<1m²), a precise analysis of the differences between the output of round and square plots are necessary. Our hypotheses are: - Round plot shapes disturb surface runoff, unnatural fluvial dynamics for the given plot size such as pool development especially directly at the plot's outlet occur. - A square plot shape prevent these problems. A first comparison between round and rectangular plots (Iserloh et al., 2015) indicates that the rectangular plot could indeed be the more suitable, but the rather ambiguous results make a more elaborate test setup necessary. The laboratory test setup includes the two plot shapes (round, square), a standardised silty substrate and three inclinations (2°, 6°, 12°). The analysis of the laboratory test provide results on the best performance concerning undisturbed surface runoff and soil/water sampling at the plot's outlet. The analysis of the plot shape concerning its influence on runoff and erosion shows that clear methodological standards are necessary in order to make rainfall simulation experiments comparable. Reference: Iserloh, T., Pegoraro, D., Schlösser, A., Thesing, H., Seeger, M., Ries, J.B. (2015): Rainfall simulation experiments: Influence of water temperature, water quality and plot design on soil erosion and runoff. Geophysical Research Abstracts, Vol. 17, EGU2015-5817.
The Extraction of 3D Shape from Texture and Shading in the Human Brain
Georgieva, Svetlana S.; Todd, James T.; Peeters, Ronald
2008-01-01
We used functional magnetic resonance imaging to investigate the human cortical areas involved in processing 3-dimensional (3D) shape from texture (SfT) and shading. The stimuli included monocular images of randomly shaped 3D surfaces and a wide variety of 2-dimensional (2D) controls. The results of both passive and active experiments reveal that the extraction of 3D SfT involves the bilateral caudal inferior temporal gyrus (caudal ITG), lateral occipital sulcus (LOS) and several bilateral sites along the intraparietal sulcus. These areas are largely consistent with those involved in the processing of 3D shape from motion and stereo. The experiments also demonstrate, however, that the analysis of 3D shape from shading is primarily restricted to the caudal ITG areas. Additional results from psychophysical experiments reveal that this difference in neuronal substrate cannot be explained by a difference in strength between the 2 cues. These results underscore the importance of the posterior part of the lateral occipital complex for the extraction of visual 3D shape information from all depth cues, and they suggest strongly that the importance of shading is diminished relative to other cues for the analysis of 3D shape in parietal regions. PMID:18281304
Solutions on a high-speed wide-angle zoom lens with aspheric surfaces
NASA Astrophysics Data System (ADS)
Yamanashi, Takanori
2012-10-01
Recent development in CMOS and digital camera technology has accelerated the business and market share of digital cinematography. In terms of optical design, this technology has increased the need to carefully consider pixel pitch and characteristics of the imager. When the field angle at the wide end, zoom ratio, and F-number are specified, choosing an appropriate zoom lens type is crucial. In addition, appropriate power distributions and lens configurations are required. At points near the wide end of a zoom lens, it is known that an aspheric surface is an effective means to correct off-axis aberrations. On the other hand, optical designers have to focus on manufacturability of aspheric surfaces and perform required analysis with respect to the surface shape. Centration errors aside, it is also important to know the sensitivity to aspheric shape errors and their effect on image quality. In this paper, wide angle cine zoom lens design examples are introduced and their main characteristics are described. Moreover, technical challenges are pointed out and solutions are proposed.
Shape analysis of H II regions - I. Statistical clustering
NASA Astrophysics Data System (ADS)
Campbell-White, Justyn; Froebrich, Dirk; Kume, Alfred
2018-07-01
We present here our shape analysis method for a sample of 76 Galactic H II regions from MAGPIS 1.4 GHz data. The main goal is to determine whether physical properties and initial conditions of massive star cluster formation are linked to the shape of the regions. We outline a systematic procedure for extracting region shapes and perform hierarchical clustering on the shape data. We identified six groups that categorize H II regions by common morphologies. We confirmed the validity of these groupings by bootstrap re-sampling and the ordinance technique multidimensional scaling. We then investigated associations between physical parameters and the assigned groups. Location is mostly independent of group, with a small preference for regions of similar longitudes to share common morphologies. The shapes are homogeneously distributed across Galactocentric distance and latitude. One group contains regions that are all younger than 0.5 Myr and ionized by low- to intermediate-mass sources. Those in another group are all driven by intermediate- to high-mass sources. One group was distinctly separated from the other five and contained regions at the surface brightness detection limit for the survey. We find that our hierarchical procedure is most sensitive to the spatial sampling resolution used, which is determined for each region from its distance. We discuss how these errors can be further quantified and reduced in future work by utilizing synthetic observations from numerical simulations of H II regions. We also outline how this shape analysis has further applications to other diffuse astronomical objects.
Shape Analysis of HII Regions - I. Statistical Clustering
NASA Astrophysics Data System (ADS)
Campbell-White, Justyn; Froebrich, Dirk; Kume, Alfred
2018-04-01
We present here our shape analysis method for a sample of 76 Galactic HII regions from MAGPIS 1.4 GHz data. The main goal is to determine whether physical properties and initial conditions of massive star cluster formation is linked to the shape of the regions. We outline a systematic procedure for extracting region shapes and perform hierarchical clustering on the shape data. We identified six groups that categorise HII regions by common morphologies. We confirmed the validity of these groupings by bootstrap re-sampling and the ordinance technique multidimensional scaling. We then investigated associations between physical parameters and the assigned groups. Location is mostly independent of group, with a small preference for regions of similar longitudes to share common morphologies. The shapes are homogeneously distributed across Galactocentric distance and latitude. One group contains regions that are all younger than 0.5 Myr and ionised by low- to intermediate-mass sources. Those in another group are all driven by intermediate- to high-mass sources. One group was distinctly separated from the other five and contained regions at the surface brightness detection limit for the survey. We find that our hierarchical procedure is most sensitive to the spatial sampling resolution used, which is determined for each region from its distance. We discuss how these errors can be further quantified and reduced in future work by utilising synthetic observations from numerical simulations of HII regions. We also outline how this shape analysis has further applications to other diffuse astronomical objects.
Shaped platinum nanoparticles directly synthesized inside mesoporous silica supports
NASA Astrophysics Data System (ADS)
Kim, Jiwhan; Bae, Youn-Sang; Lee, Hyunjoo
2014-10-01
It is difficult to deposit shape-controlled nanoparticles into a mesoporous framework while preserving the shape. For shaped platinum nanoparticles, which are typically 5-10 nm in size, capillary inclusion by sonication or the formation of a mesoporous framework around the shaped platinum nanoparticles has been attempted, but the nanoparticles aggregated or their shapes were degraded easily. In this work, we directly nucleated platinum on the surface inside a mesoporous silica support and controlled the overgrowth step, producing cubic shaped nanoparticles. Mercaptopropyltrimethoxysilane was used as an anchoring agent causing nucleation at the silica surface, and it also helped to shape the nanoparticles. Platinum nanocubes, which were synthesized with polymeric capping agents separately, were deposited inside the mesoporous silica by sonication, but most of the nanoparticles were clogged at the entrance to the pores, and the surface of the platinum had very few sites that were catalytically active, as evidenced by the small H2 uptake. Unshaped platinum nanoparticles, which were prepared by conventional wet impregnation, showed a similar amount of H2 uptake as the in situ shaped platinum cubes, but the selectivity for pyrrole hydrogenation was poorer towards the production of pyrrolidine. The mesoporosity and the residual thiol groups on the surface of the in situ shaped Pt nanocubes might cause a high selectivity for pyrrolidine.It is difficult to deposit shape-controlled nanoparticles into a mesoporous framework while preserving the shape. For shaped platinum nanoparticles, which are typically 5-10 nm in size, capillary inclusion by sonication or the formation of a mesoporous framework around the shaped platinum nanoparticles has been attempted, but the nanoparticles aggregated or their shapes were degraded easily. In this work, we directly nucleated platinum on the surface inside a mesoporous silica support and controlled the overgrowth step, producing cubic shaped nanoparticles. Mercaptopropyltrimethoxysilane was used as an anchoring agent causing nucleation at the silica surface, and it also helped to shape the nanoparticles. Platinum nanocubes, which were synthesized with polymeric capping agents separately, were deposited inside the mesoporous silica by sonication, but most of the nanoparticles were clogged at the entrance to the pores, and the surface of the platinum had very few sites that were catalytically active, as evidenced by the small H2 uptake. Unshaped platinum nanoparticles, which were prepared by conventional wet impregnation, showed a similar amount of H2 uptake as the in situ shaped platinum cubes, but the selectivity for pyrrole hydrogenation was poorer towards the production of pyrrolidine. The mesoporosity and the residual thiol groups on the surface of the in situ shaped Pt nanocubes might cause a high selectivity for pyrrolidine. Electronic supplementary information (ESI) available: Fig. S1-S9. See DOI: 10.1039/c4nr03951c
A Parametric Model of Shoulder Articulation for Virtual Assessment of Space Suit Fit
NASA Technical Reports Server (NTRS)
Kim, K. Han; Young, Karen S.; Bernal, Yaritza; Boppana, Abhishektha; Vu, Linh Q.; Benson, Elizabeth A.; Jarvis, Sarah; Rajulu, Sudhakar L.
2016-01-01
Suboptimal suit fit is a known risk factor for crewmember shoulder injury. Suit fit assessment is however prohibitively time consuming and cannot be generalized across wide variations of body shapes and poses. In this work, we have developed a new design tool based on the statistical analysis of body shape scans. This tool is aimed at predicting the skin deformation and shape variations for any body size and shoulder pose for a target population. This new process, when incorporated with CAD software, will enable virtual suit fit assessments, predictively quantifying the contact volume, and clearance between the suit and body surface at reduced time and cost.
Özdemir, Hatice; Özdoğan, Alper
2018-01-30
The aim of this study was to investigate that heat treatments with different numbers applied to superstructure porcelain whether effects microstructure and mechanical properties of lithium disilicate ceramic (LDC). Eighty disc-shaped specimens were fabricated from IPS e.max Press. Specimens were fired at heating values of porcelain in different numbers and divided four groups (n=5). Initial Vickers hardness were measured and X-ray diffraction (XRD) analysis was performed. Different surface treatment were applied and then Vickers hardness, surface roughness and environmental scanning electron microscopy (ESEM) analysis were performed. Data were analyzed with Varyans analysis and Tukey HSD test (α=0.05). Initial hardness among groups was no significant different (p>0.05), but hardness and surface roughness after surface treatments were significant different (p<0.05). Lithium disilicate (LD) peaks decrease depended on firing numbers. ESEM observations showed that firing number and surface treatments effect microstructure of LDC. Increasing firing numbers and surface treatments effect the microstructure of LDC.
Analytical study on the thermal performance of a partially wet constructal T-shaped fin
NASA Astrophysics Data System (ADS)
Hazarika, Saheera Azmi; Zeeshan, Mohd; Bhanja, Dipankar; Nath, Sujit
2017-07-01
The present paper addresses the thermal analysis of a T-shaped fin under partially wet condition by adopting a cubic variation of the humidity ratio of saturated air with the corresponding fin surface temperature. The point separating the dry and wet parts may lie either in the flange or stem part of the fin and so, two different cases having different governing equations and boundary conditions are analyzed in this paper. Since the governing equations are highly non-linear, they are solved by using an analytical technique called the Differential Transform Method and subsequently, the dry fin length, temperature distribution and fin performances are evaluated and analyzed for a wide range of the various psychometric, geometric and thermo-physical parameters. Finally, it can be highlighted that relative humidity has a pronounced effect on the performance parameters when the fin surface is partially wet whereas this effect is marginally small for fully wet surface.
NASA Technical Reports Server (NTRS)
Ko, William L.; Fleischer, Van Tran
2011-01-01
The Ko displacement theory originally developed for shape predictions of straight beams is extended to shape predictions of curved beams. The surface strains needed for shape predictions were analytically generated from finite-element nodal stress outputs. With the aid of finite-element displacement outputs, mathematical functional forms for curvature-effect correction terms are established and incorporated into straight-beam deflection equations for shape predictions of both cantilever and two-point supported curved beams. The newly established deflection equations for cantilever curved beams could provide quite accurate shape predictions for different cantilever curved beams, including the quarter-circle cantilever beam. Furthermore, the newly formulated deflection equations for two-point supported curved beams could provide accurate shape predictions for a range of two-point supported curved beams, including the full-circular ring. Accuracy of the newly developed curved-beam deflection equations is validated through shape prediction analysis of curved beams embedded in the windward shallow spherical shell of a generic crew exploration vehicle. A single-point collocation method for optimization of shape predictions is discussed in detail
Effect of planar cuts' orientation on the perceived surface layout and object's shape.
Bocheva, Nadejda
2009-07-01
The effect of the orientation of the cutting planes producing planar curves over the surface of an object on its perceived pose and shape was investigated for line drawings representing three-dimensional objects. The results suggest that the orientational flow produced by the surface curves introduces an apparent object rotation in depth and in the image plane and changes in its perceived elongation. The apparent location of the nearest points is determined by the points of maximal view-dependent unsigned curvature of the surface curves. The data are discussed in relation to the interaction of the shape-from-silhouette system and shape-from-contour system and its effect on the interpretation of the surface contours with respect to the surface geometry.
Effect of Surface Treatments on Electron Beam Freeform Fabricated Aluminum Structures
NASA Technical Reports Server (NTRS)
Taminger, Karen M. B.; Hafley, Robert A.; Fahringer, David T.; Martin, Richard E.
2004-01-01
Electron beam freeform fabrication (EBF3) parts exhibit a ridged surface finish typical of many layer-additive processes. This, post-processing is required to produce a net shape with a smooth surface finish. High speed milling wire electrical discharge machining (EDM), electron beam glazing, and glass bead blasting were performed on EBF3-build 2219 aluminum alloy parts to reduce or eliminate the ridged surface features. Surface roughness, surface residual stress state, and microstructural characteristics were examined for each of the different surface treatment to assess the quality and effect of the surface treatments on the underlying material. The analysis evaluated the effectivenes of the different surface finishing techniques for achieving a smooth surface finish on an electron beam freeform fabricated part.
Automatic anatomical structures location based on dynamic shape measurement
NASA Astrophysics Data System (ADS)
Witkowski, Marcin; Rapp, Walter; Sitnik, Robert; Kujawinska, Malgorzata; Vander Sloten, Jos; Haex, Bart; Bogaert, Nico; Heitmann, Kjell
2005-09-01
New image processing methods and active photonics apparatus have made possible the development of relatively inexpensive optical systems for complex shape and object measurements. We present dynamic 360° scanning method for analysis of human lower body biomechanics, with an emphasis on the analysis of the knee joint. The anatomical structure (of high medical interest) that is possible to scan and analyze, is patella. Tracking of patella position and orientation under dynamic conditions may lead to detect pathological patella movements and help in knee joint disease diagnosis. The processed data is obtained from a dynamic laser triangulation surface measurement system, able to capture slow to normal movements with a scan frequency between 15 and 30 Hz. These frequency rates are enough to capture controlled movements used e.g. for medical examination purposes. The purpose of the work presented is to develop surface analysis methods that may be used as support of diagnosis of motoric abilities of lower limbs. The paper presents algorithms used to process acquired lower limbs surface data in order to find the position and orientation of patella. The algorithms implemented include input data preparation, curvature description methods, knee region discrimination and patella assumed position/orientation calculation. Additionally, a method of 4D (3D + time) medical data visualization is proposed. Also some exemplary results are presented.
NASA Astrophysics Data System (ADS)
Ryashin, N. S.; Malikov, A. G.; Shikalov, V. S.; Gulyaev, I. P.; Kuchumov, B. M.; Klinkov, S. V.; Kosarev, V. F.; Orishich, A. M.
2017-10-01
The paper presents results of the cold spraying of aluminum bronze coatings on substrates profiled with WC/Ni tracks obtained by laser cladding. Reinforcing cermet frames shaped as grids with varied mesh sizes were clad on stainless steel substrates using a CO2 laser machine "Siberia" (ITAM SB RAS, Russia). As a result, surfaces/substrates with heterogeneous shape, composition, and mechanical properties were obtained. Aluminum bronze coatings were deposited from 5lF-NS powder (Oerlikon Metco, Switzerland) on those substrates using cold spraying equipment (ITAM SB RAS). Data of profiling, microstructure diagnostics, EDS analysis, and mechanical tests of obtained composites is reported. Surface relief of the sprayed coatings dependence on substrate structure has been demonstrated.
Bidinosti, C P; Kravchuk, I S; Hayden, M E
2005-11-01
We provide an exact expression for the magnetic field produced by cylindrical saddle-shaped coils and their ideal shield currents in the low-frequency limit. The stream function associated with the shield surface current is also determined. The results of the analysis are useful for the design of actively shielded radio-frequency (RF) coils. Examples pertinent to very low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are presented and discussed.
One-Dimensional Analysis of Hall Thruster Operating Modes
2001-08-01
Hall thruster structure with no screens or other control surfaces makes it difficult to understand the interrelationships which, in the end, localize and shape the various plasma regions existing in the accelerating channel. Since the radial magnetic field is usually shaped with a peak near the channel exit, the plasma structure has often been explained as simply a reflection of the magnetic field distribution. However, this is inadequate to explain the plasma dynamics inside the accelerating channel. We develop a macroscopic model gathering reliability and clarity.
Numerical approach for ECT by using boundary element method with Laplace transform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enokizono, M.; Todaka, T.; Shibao, K.
1997-03-01
This paper presents an inverse analysis by using BEM with Laplace transform. The method is applied to a simple problem in the eddy current testing (ECT). Some crack shapes in a conductive specimen are estimated from distributions of the transient eddy current on its sensing surface and magnetic flux density in the liftoff space. Because the transient behavior includes information on various frequency components, the method is applicable to the shape estimation of a comparative small crack.
NASA Astrophysics Data System (ADS)
Slooff, J. W.
1985-05-01
The physical mechanisms governing the hydrodynamics of sailing yacht keels and the parameters that, through these mechanisms, determine keel performance are discussed. It is concluded that due to the presence of the free water surface optimum keel shapes differ from optimum shapes for aircraft wings. Utilizing computational fluid dynamics analysis and optimization it is found that the performance of conventional keels can be improved significantly by reducing taper or even applying inverse taper (upside-down keel) and that decisive improvements in performance can be realized through keels with winglets.
Zhu, Liangjia; Gao, Yi; Appia, Vikram; Yezzi, Anthony; Arepalli, Chesnal; Faber, Tracy; Stillman, Arthur; Tannenbaum, Allen
2014-01-01
The left ventricular myocardium plays a key role in the entire circulation system and an automatic delineation of the myocardium is a prerequisite for most of the subsequent functional analysis. In this paper, we present a complete system for an automatic segmentation of the left ventricular myocardium from cardiac computed tomography (CT) images using the shape information from images to be segmented. The system follows a coarse-to-fine strategy by first localizing the left ventricle and then deforming the myocardial surfaces of the left ventricle to refine the segmentation. In particular, the blood pool of a CT image is extracted and represented as a triangulated surface. Then, the left ventricle is localized as a salient component on this surface using geometric and anatomical characteristics. After that, the myocardial surfaces are initialized from the localization result and evolved by applying forces from the image intensities with a constraint based on the initial myocardial surface locations. The proposed framework has been validated on 34-human and 12-pig CT images, and the robustness and accuracy are demonstrated. PMID:24723531
Collapse of Capillary Flows in Wedge-Shaped Channels
NASA Astrophysics Data System (ADS)
Klatte, Jörg; Dreyer, Michael E.
The low gravity environment of the Bremen Drop Tower has been used to study free surface channel flows for different flow rates. In general the flow is dominated by inertia and surface-tension effects. The analysis of inertia-dominated free surface flows is of major interest because flow rate is limited due to a collapse of the free surface, which is one major design limit e.g. for propellant management devices in space. High-Resolution Experiments with convective dominated systems have been performed where the flow rate was increased up to the maximum value. In comparison to this we present unique three-dimensional computations to determine important characteristics of the flow, such as the free surface shape, the limiting flow rate and the developing flow profiles. The excellent agreement validates the capabilities of the numerical solver. Finally, the results of an para-metric study with a unique scaling which captures both inertia and viscous-dominated collapse behavior will be presented. The support for this research by the German Federal Ministry of Education and Research (BMBF) through the German Aerospace Center (DLR) under grant number 50WM0535/845 is gratefully acknowledged.
Laser shock wave assisted patterning on NiTi shape memory alloy surfaces
NASA Astrophysics Data System (ADS)
Seyitliyev, Dovletgeldi; Li, Peizhen; Kholikov, Khomidkhodza; Grant, Byron; Karaca, Haluk E.; Er, Ali O.
2017-02-01
An advanced direct imprinting method with low cost, quick, and less environmental impact to create thermally controllable surface pattern using the laser pulses is reported. Patterned micro indents were generated on Ni50Ti50 shape memory alloys (SMA) using an Nd:YAG laser operating at 1064 nm combined with suitable transparent overlay, a sacrificial layer of graphite, and copper grid. Laser pulses at different energy densities which generates pressure pulses up to 10 GPa on the surface was focused through the confinement medium, ablating the copper grid to create plasma and transferring the grid pattern onto the NiTi surface. Scanning electron microscope (SEM) and optical microscope images of square pattern with different sizes were studied. One dimensional profile analysis shows that the depth of the patterned sample initially increase linearly with the laser energy until 125 mJ/pulse where the plasma further absorbs and reflects the laser beam. In addition, light the microscope image show that the surface of NiTi alloy was damaged due to the high power laser energy which removes the graphite layer.
Electrostatics-driven shape transitions in soft shells.
Jadhao, Vikram; Thomas, Creighton K; Olvera de la Cruz, Monica
2014-09-02
Manipulating the shape of nanoscale objects in a controllable fashion is at the heart of designing materials that act as building blocks for self-assembly or serve as targeted drug delivery carriers. Inducing shape deformations by controlling external parameters is also an important way of designing biomimetic membranes. In this paper, we demonstrate that electrostatics can be used as a tool to manipulate the shape of soft, closed membranes by tuning environmental conditions such as the electrolyte concentration in the medium. Using a molecular dynamics-based simulated annealing procedure, we investigate charged elastic shells that do not exchange material with their environment, such as elastic membranes formed in emulsions or synthetic nanocontainers. We find that by decreasing the salt concentration or increasing the total charge on the shell's surface, the spherical symmetry is broken, leading to the formation of ellipsoids, discs, and bowls. Shape changes are accompanied by a significant lowering of the electrostatic energy and a rise in the surface area of the shell. To substantiate our simulation findings, we show analytically that a uniformly charged disc has a lower Coulomb energy than a sphere of the same volume. Further, we test the robustness of our results by including the effects of charge renormalization in the analysis of the shape transitions and find the latter to be feasible for a wide range of shell volume fractions.
Laser beam shaping design based on micromirror array
NASA Astrophysics Data System (ADS)
Fang, Han; Su, Bida; Liu, Jiaguo; Fan, Xiaoli; Jing, Wang
2017-10-01
In the practical application of the laser, it is necessary to use the laser beam shaping technology to shape the output beam of laser device to the uniform light intensity distribution. The shaping divergent optical system of compound eye integrator way is composed of beam expanding mirror group and lens array. Its working principle is to expand the output laser to a certain size of caliber, and then divide the beam with lens array into multiple sub beam, where the lens unit of lens array can control the divergence angle of sub beam through the design of focal length, with mutual superposition of the sub beam in far field, to make up for the nonuniformity of beam, so that the radiant exitance on the radiated surface may become uniform. In this paper, we use a reflective microlens array to realize the laser beam shaping. By through of the practical optical path model established, the ray tracing is carried out and the simulation results for single-mode Gaussian beam with noise circumstance is provided. The analysis results show that the laser beam shaping under different inputs can be effectively realized by use of microlens array. All the energy is within the signal window, with a high energy efficiency of more than 90%; The measured surface has a better uniformity, and the uniformity is better than 99.5% at 150m.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, Michael D.; Dater, Manasi; Whitaker, Ross
In this study, statistical shape modeling (SSM) was used to quantify three-dimensional (3D) variation and morphologic differences between femurs with and without cam femoroacetabular impingement (FAI). 3D surfaces were generated from CT scans of femurs from 41 controls and 30 cam FAI patients. SSM correspondence particles were optimally positioned on each surface using a gradient descent energy function. Mean shapes for control and patient groups were defined from the resulting particle configurations. Morphological differences between group mean shapes and between the control mean and individual patients were calculated. Principal component analysis was used to describe anatomical variation present in bothmore » groups. The first 6 modes (or principal components) captured statistically significant shape variations, which comprised 84% of cumulative variation among the femurs. Shape variation was greatest in femoral offset, greater trochanter height, and the head-neck junction. The mean cam femur shape protruded above the control mean by a maximum of 3.3 mm with sustained protrusions of 2.5-3.0 mm along the anterolateral head-neck junction and distally along the anterior neck, corresponding well with reported cam lesion locations and soft-tissue damage. This study provides initial evidence that SSM can describe variations in femoral morphology in both controls and cam FAI patients and may be useful for developing new measurements of pathological anatomy. SSM may also be applied to characterize cam FAI severity and provide templates to guide patient-specific surgical resection of bone.« less
Analytical and Photogrammetric Characterization of a Planar Tetrahedral Truss
NASA Technical Reports Server (NTRS)
Wu, K. Chauncey; Adams, Richard R.; Rhodes, Marvin D.
1990-01-01
Future space science missions are likely to require near-optical quality reflectors which are supported by a stiff truss structure. This support truss should conform closely with its intended shape to minimize its contribution to the overall surface error of the reflector. The current investigation was conducted to evaluate the planar surface accuracy of a regular tetrahedral truss structure by comparing the results of predicted and measured node locations. The truss is a 2-ring hexagonal structure composed of 102 equal-length truss members. Each truss member is nominally 2 meters in length between node centers and is comprised of a graphite/epoxy tube with aluminum nodes and joints. The axial stiffness and the length variation of the truss components were determined experimentally and incorporated into a static finite element analysis of the truss. From this analysis, the root mean square (RMS) surface error of the truss was predicted to be 0.11 mm (0004 in). Photogrammetry tests were performed on the assembled truss to measure the normal displacements of the upper surface nodes and to determine if the truss would maintain its intended shape when subjected to repeated assembly. Considering the variation in the truss component lengths, the measures rms error of 0.14 mm (0.006 in) in the assembled truss is relatively small. The test results also indicate that a repeatable truss surface is achievable. Several potential sources of error were identified and discussed.
Size- and shape-dependent surface thermodynamic properties of nanocrystals
NASA Astrophysics Data System (ADS)
Fu, Qingshan; Xue, Yongqiang; Cui, Zixiang
2018-05-01
As the fundamental properties, the surface thermodynamic properties of nanocrystals play a key role in the physical and chemical changes. However, it remains ambiguous about the quantitative influence regularities of size and shape on the surface thermodynamic properties of nanocrystals. Thus by introducing interface variables into the Gibbs energy and combining Young-Laplace equation, relations between the surface thermodynamic properties (surface Gibbs energy, surface enthalpy, surface entropy, surface energy and surface heat capacity), respectively, and size of nanocrystals with different shapes were derived. Theoretical estimations of the orders of the surface thermodynamic properties of nanocrystals agree with available experimental values. Calculated results of the surface thermodynamic properties of Au, Bi and Al nanocrystals suggest that when r > 10 nm, the surface thermodynamic properties linearly vary with the reciprocal of particle size, and when r < 10 nm, the effect of particle size on the surface thermodynamic properties becomes greater and deviates from linear variation. For nanocrystals with identical equivalent diameter, the more the shape deviates from sphere, the larger the surface thermodynamic properties (absolute value) are.
The Impact Of Surface Shape Of Chip-Breaker On Machined Surface
NASA Astrophysics Data System (ADS)
Šajgalík, Michal; Czán, Andrej; Martinček, Juraj; Varga, Daniel; Hemžský, Pavel; Pitela, David
2015-12-01
Machined surface is one of the most used indicators of workpiece quality. But machined surface is influenced by several factors such as cutting parameters, cutting material, shape of cutting tool or cutting insert, micro-structure of machined material and other known as technological parameters. By improving of these parameters, we can improve machined surface. In the machining, there is important to identify the characteristics of main product of these processes - workpiece, but also the byproduct - the chip. Size and shape of chip has impact on lifetime of cutting tools and its inappropriate form can influence the machine functionality and lifetime, too. This article deals with elimination of long chip created when machining of shaft in automotive industry and with impact of shape of chip-breaker on shape of chip in various cutting conditions based on production requirements.
Digital Holographic Interferometry and Speckle Correlation
NASA Astrophysics Data System (ADS)
Yamaguchi, Ichirou
2010-04-01
Relations and combinations between holographic interferometry and speckle correlation in contouring by phase-shifting digital holography are discussed. Three-dimensional distributions of correlations of the complex amplitudes and intensities before and after the laser wavelength shift are calculated in numerical simulations where a rough surface is modeled with random numbers. Fringe localization related to speckle displacement as well as speckle suppression in phase analysis are demonstrated for general surface shape and recording conditions.
Simulation of aspheric tolerance with polynomial fitting
NASA Astrophysics Data System (ADS)
Li, Jing; Cen, Zhaofeng; Li, Xiaotong
2018-01-01
The shape of the aspheric lens changes caused by machining errors, resulting in a change in the optical transfer function, which affects the image quality. At present, there is no universally recognized tolerance criterion standard for aspheric surface. To study the influence of aspheric tolerances on the optical transfer function, the tolerances of polynomial fitting are allocated on the aspheric surface, and the imaging simulation is carried out by optical imaging software. Analysis is based on a set of aspheric imaging system. The error is generated in the range of a certain PV value, and expressed as a form of Zernike polynomial, which is added to the aspheric surface as a tolerance term. Through optical software analysis, the MTF of optical system can be obtained and used as the main evaluation index. Evaluate whether the effect of the added error on the MTF of the system meets the requirements of the current PV value. Change the PV value and repeat the operation until the acceptable maximum allowable PV value is obtained. According to the actual processing technology, consider the error of various shapes, such as M type, W type, random type error. The new method will provide a certain development for the actual free surface processing technology the reference value.
Lv, Tong; Cheng, Zhongjun; Zhang, Dongjie; Zhang, Enshuang; Zhao, Qianlong; Liu, Yuyan; Jiang, Lei
2016-09-21
Recently, superhydrophobic surfaces with tunable wettability have aroused much attention. Noticeably, almost all present smart performances rely on the variation of surface chemistry on static micro/nanostructure, to obtain a surface with dynamically tunable micro/nanostructure, especially that can memorize and keep different micro/nanostructures and related wettabilities, is still a challenge. Herein, by creating micro/nanostructured arrays on shape memory polymer, a superhydrophobic surface that has shape memory ability in changing and recovering its hierarchical structures and related wettabilities was reported. Meanwhile, the surface was successfully used in the rewritable functional chip for droplet storage by designing microstructure-dependent patterns, which breaks through current research that structure patterns cannot be reprogrammed. This article advances a superhydrophobic surface with shape memory hierarchical structure and the application in rewritable functional chip, which could start some fresh ideas for the development of smart superhydrophobic surface.
Method for deploying and recovering a wave energy converter
Mundon, Timothy R
2017-05-23
A system for transporting a buoy and a heave plate. The system includes a buoy and a heave plate. An outer surface of the buoy has a first geometrical shape. A surface of the heave plate has a geometrical shape complementary to the first geometrical shape of the buoy. The complementary shapes of the buoy and the heave plate facilitate coupling of the heave plate to the outer surface of the buoy in a transport mode.
Trends in biomedical engineering: focus on Smart Bio-Materials and Drug Delivery.
Tanzi, Maria Cristina; Bozzini, Sabrina; Candiani, Gabriele; Cigada, Alberto; De Nardo, Luigi; Farè, Silvia; Ganazzoli, Fabio; Gastaldi, Dario; Levi, Marinella; Metrangolo, Pierangelo; Migliavacca, Francesco; Osellame, Roberto; Petrini, Paola; Raffaini, Giuseppina; Resnati, Giuseppe; Vena, Pasquale; Vesentini, Simone; Zunino, Paolo
2011-01-01
The present article reviews on different research lines, namely: drug and gene delivery, surface modification/modeling, design of advanced materials (shape memory polymers and biodegradable stents), presently developed at Politecnico di Milano, Italy. For gene delivery, non-viral polycationic-branched polyethylenimine (b-PEI) polyplexes are coated with pectin, an anionic polysaccharide, to enhance the polyplex stability and decrease b-PEI cytotoxicity. Perfluorinated materials, specifically perfluoroether, and perfluoro-polyether fluids are proposed as ultrasound contrast agents and smart agents for drug delivery. Non-fouling, self-assembled PEG-based monolayers are developed on titanium surfaces with the aim of drastically reducing cariogenic bacteria adhesion on dental implants. Femtosecond laser microfabrication is used for selectively and spatially tuning the wettability of polymeric biomaterials and the effects of femtosecond laser ablation on the surface properties of polymethylmethacrylate are studied. Innovative functionally graded Alumina-Ti coatings for wear resistant articulating surfaces are deposited with PLD and characterized by means of a combined experimental and computational approach. Protein adsorption on biomaterials surfaces with an unlike wettability and surface-modification induced by pre-adsorbed proteins are studied by atomistic computer simulations. A study was performed on the fabrication of porous Shape Memory Polymeric structures and on the assessment of their potential application in minimally invasive surgical procedures. A model of magnesium (alloys) degradation, in a finite element framework analysis, and a bottom-up multiscale analysis for modeling the degradation mechanism of PLA matrices was developed, with the aim of providing valuable tools for the design of bioresorbable stents.
Self-similarity of solitary waves on inertia-dominated falling liquid films.
Denner, Fabian; Pradas, Marc; Charogiannis, Alexandros; Markides, Christos N; van Wachem, Berend G M; Kalliadasis, Serafim
2016-03-01
We propose consistent scaling of solitary waves on inertia-dominated falling liquid films, which accurately accounts for the driving physical mechanisms and leads to a self-similar characterization of solitary waves. Direct numerical simulations of the entire two-phase system are conducted using a state-of-the-art finite volume framework for interfacial flows in an open domain that was previously validated against experimental film-flow data with excellent agreement. We present a detailed analysis of the wave shape and the dispersion of solitary waves on 34 different water films with Reynolds numbers Re=20-120 and surface tension coefficients σ=0.0512-0.072 N m(-1) on substrates with inclination angles β=19°-90°. Following a detailed analysis of these cases we formulate a consistent characterization of the shape and dispersion of solitary waves, based on a newly proposed scaling derived from the Nusselt flat film solution, that unveils a self-similarity as well as the driving mechanism of solitary waves on gravity-driven liquid films. Our results demonstrate that the shape of solitary waves, i.e., height and asymmetry of the wave, is predominantly influenced by the balance of inertia and surface tension. Furthermore, we find that the dispersion of solitary waves on the inertia-dominated falling liquid films considered in this study is governed by nonlinear effects and only driven by inertia, with surface tension and gravity having a negligible influence.
Peikert, Tobias; Duan, Fenghai; Rajagopalan, Srinivasan; Karwoski, Ronald A; Clay, Ryan; Robb, Richard A; Qin, Ziling; Sicks, JoRean; Bartholmai, Brian J; Maldonado, Fabien
2018-01-01
Optimization of the clinical management of screen-detected lung nodules is needed to avoid unnecessary diagnostic interventions. Herein we demonstrate the potential value of a novel radiomics-based approach for the classification of screen-detected indeterminate nodules. Independent quantitative variables assessing various radiologic nodule features such as sphericity, flatness, elongation, spiculation, lobulation and curvature were developed from the NLST dataset using 726 indeterminate nodules (all ≥ 7 mm, benign, n = 318 and malignant, n = 408). Multivariate analysis was performed using least absolute shrinkage and selection operator (LASSO) method for variable selection and regularization in order to enhance the prediction accuracy and interpretability of the multivariate model. The bootstrapping method was then applied for the internal validation and the optimism-corrected AUC was reported for the final model. Eight of the originally considered 57 quantitative radiologic features were selected by LASSO multivariate modeling. These 8 features include variables capturing Location: vertical location (Offset carina centroid z), Size: volume estimate (Minimum enclosing brick), Shape: flatness, Density: texture analysis (Score Indicative of Lesion/Lung Aggression/Abnormality (SILA) texture), and surface characteristics: surface complexity (Maximum shape index and Average shape index), and estimates of surface curvature (Average positive mean curvature and Minimum mean curvature), all with P<0.01. The optimism-corrected AUC for these 8 features is 0.939. Our novel radiomic LDCT-based approach for indeterminate screen-detected nodule characterization appears extremely promising however independent external validation is needed.
NASA Astrophysics Data System (ADS)
Matras, A.; Kowalczyk, R.
2014-11-01
The analysis results of machining accuracy after the free form surface milling simulations (based on machining EN AW- 7075 alloys) for different machining strategies (Level Z, Radial, Square, Circular) are presented in the work. Particular milling simulations were performed using CAD/CAM Esprit software. The accuracy of obtained allowance is defined as a difference between the theoretical surface of work piece element (the surface designed in CAD software) and the machined surface after a milling simulation. The difference between two surfaces describes a value of roughness, which is as the result of tool shape mapping on the machined surface. Accuracy of the left allowance notifies in direct way a surface quality after the finish machining. Described methodology of usage CAD/CAM software can to let improve a time design of machining process for a free form surface milling by a 5-axis CNC milling machine with omitting to perform the item on a milling machine in order to measure the machining accuracy for the selected strategies and cutting data.
NASA Technical Reports Server (NTRS)
Rao, P. V.; Young, S. G.; Buckley, D. H.
1984-01-01
Impulsive versus steady jet impingement of spherical glass bead particles on metal surfaces was studied using a gas gun facility and a commercial sand blasting apparatus. Crushed glass particles were also used in the sand blasting apparatus as well as glass beads. Comparisons of the different types of erosion patterns were made. Scanning electron microscopy, surface profilometry and energy dispersive X-ray spectroscopy analysis were used to characterize erosion patterns. The nature of the wear can be divided into cutting and deformation, each with its own characteristic features. Surface chemistry analysis indicates the possiblity of complex chemical and/or mechanical interactions between erodants and target materials.
A study of the nature of solid particle impact and shape on the erosion morphology of ductile metals
NASA Technical Reports Server (NTRS)
Rao, P. V.; Young, S. G.; Buckley, D. H.
1982-01-01
Impulsive versus steady jet impingement of spherical glass bead particles on metal surfaces was studied using a gas gun facility and a commercial sand blasting apparatus. Crushed glass particles were also used in the sand blasting apparatus as well as glass beads. Comparisons of the different types of erosion patterns were made. Scanning electron microscopy, surface profilometry and energy dispersive X-ray spectroscopy analysis were used to characterize erosion patterns. The nature of the wear can be divided into cutting and deformation, each with its own characteristic features. Surface chemistry analysis indicates the possibility of complex chemical and/or mechanical interactions between erodants and target materials.
Tissue Cartography: Compressing Bio-Image Data by Dimensional Reduction
Heemskerk, Idse; Streichan, Sebastian J
2017-01-01
High data volumes produced by state-of-the-art optical microscopes encumber research. Taking advantage of the laminar structure of many biological specimens we developed a method that reduces data size and processing time by orders of magnitude, while disentangling signal. The Image Surface Analysis Environment that we implemented automatically constructs an atlas of 2D images for arbitrary shaped, dynamic, and possibly multi-layered “Surfaces of Interest”. Built-in correction for cartographic distortion assures no information on the surface is lost, making it suitable for quantitative analysis. We demonstrate our approach by application to 4D imaging of the D. melanogaster embryo and D. rerio beating heart. PMID:26524242
Prabhakar, Amit; Mukherji, Soumyo
2010-12-21
In this study, a novel embedded optical waveguide based sensor which utilizes localized surface plasmon resonance of gold nanoparticles coated on a C-shaped polymer waveguide is being reported. The sensor, as designed, can be used as an analysis chip for detection of minor variations in the refractive index of its microenvironment, which makes it suitable for wide scale use as an affinity biosensor. The C-shaped waveguide coupled with microfluidic channel was fabricated by single step patterning of SU8 on an oxidized silicon wafer. The absorbance due to the localized surface plasmon resonance (LSPR) of SU8 waveguide bound gold nano particle (GNP) was found to be linear with refractive index changes between 1.33 and 1.37. A GNP coated C-bent waveguide of 200 μ width with a bend radius of 1 mm gave rise to a sensitivity of ~5 ΔA/RIU at 530 nm as compared to the ~2.5 ΔA/RIU (refractive index units) of the same dimension bare C-bend SU8 waveguide. The resolution of the sensor probe was ~2 × 10(-4) RIU.
Reconstructing liver shape and position from MR image slices using an active shape model
NASA Astrophysics Data System (ADS)
Fenchel, Matthias; Thesen, Stefan; Schilling, Andreas
2008-03-01
We present an algorithm for fully automatic reconstruction of 3D position, orientation and shape of the human liver from a sparsely covering set of n 2D MR slice images. Reconstructing the shape of an organ from slice images can be used for scan planning, for surgical planning or other purposes where 3D anatomical knowledge has to be inferred from sparse slices. The algorithm is based on adapting an active shape model of the liver surface to a given set of slice images. The active shape model is created from a training set of liver segmentations from a group of volunteers. The training set is set up with semi-manual segmentations of T1-weighted volumetric MR images. Searching for the optimal shape model that best fits to the image data is done by maximizing a similarity measure based on local appearance at the surface. Two different algorithms for the active shape model search are proposed and compared: both algorithms seek to maximize the a-posteriori probability of the grey level appearance around the surface while constraining the surface to the space of valid shapes. The first algorithm works by using grey value profile statistics in normal direction. The second algorithm uses average and variance images to calculate the local surface appearance on the fly. Both algorithms are validated by fitting the active shape model to abdominal 2D slice images and comparing the shapes, which have been reconstructed, to the manual segmentations and to the results of active shape model searches from 3D image data. The results turn out to be promising and competitive to active shape model segmentations from 3D data.
Development of an integrated BEM approach for hot fluid structure interaction
NASA Technical Reports Server (NTRS)
Dargush, G. F.; Banerjee, P. K.; Shi, Y.
1990-01-01
A comprehensive boundary element method is presented for transient thermoelastic analysis of hot section Earth-to-Orbit engine components. This time-domain formulation requires discretization of only the surface of the component, and thus provides an attractive alternative to finite element analysis for this class of problems. In addition, steep thermal gradients, which often occur near the surface, can be captured more readily since with a boundary element approach there are no shape functions to constrain the solution in the direction normal to the surface. For example, the circular disc analysis indicates the high level of accuracy that can be obtained. In fact, on the basis of reduced modeling effort and improved accuracy, it appears that the present boundary element method should be the preferred approach for general problems of transient thermoelasticity.
Metagenomic analysis of microbial communities yields insight into impacts of nanoparticle design
NASA Astrophysics Data System (ADS)
Metch, Jacob W.; Burrows, Nathan D.; Murphy, Catherine J.; Pruden, Amy; Vikesland, Peter J.
2018-01-01
Next-generation DNA sequencing and metagenomic analysis provide powerful tools for the environmentally friendly design of nanoparticles. Herein we demonstrate this approach using a model community of environmental microbes (that is, wastewater-activated sludge) dosed with gold nanoparticles of varying surface coatings and morphologies. Metagenomic analysis was highly sensitive in detecting the microbial community response to gold nanospheres and nanorods with either cetyltrimethylammonium bromide or polyacrylic acid surface coatings. We observed that the gold-nanoparticle morphology imposes a stronger force in shaping the microbial community structure than does the surface coating. Trends were consistent in terms of the compositions of both taxonomic and functional genes, which include antibiotic resistance genes, metal resistance genes and gene-transfer elements associated with cell stress that are relevant to public health. Given that nanoparticle morphology remained constant, the potential influence of gold dissolution was minimal. Surface coating governed the nanoparticle partitioning between the bioparticulate and aqueous phases.
The design research of the test support structure for a large-diameter main mirror
NASA Astrophysics Data System (ADS)
Shi, Jiao-hong; Luo, Shi-kui; Ren, Hai-pei; Tang, Lu; Luo, Ting-yun; Mao, Yi-feng
2018-01-01
The accuracy of the main mirror surface shape measurement on ground is vital because of the importance of the main mirror in a optical remote sensor. Generally speaking, the main effects of the mirror surface shape measurement accuracy are due to the optical measurement system and support structure. The aim of this thesis is researching the design of the mirror shape measurement support structure. The main mirror discussed in this paper equipped with 650mm diameter. The requirements of PV and RMS for surface shape are no more than 0.136λ and 0.017λ respectively while λ is determined as 632.8nm. At present, the on ground adjustment methods of camera lens are optical axis horizontal and gravity discharging. In order to make the same condition between camera lens adjustment and main mirror operating, the surface shape measurement of main mirror should keep optical axis horizontal condition for mirror either. The support structure of the mirror introduced in this paper is able to extremely reduce the surface shape distortion caused by the effects of support structure mostly. According to the simulating calculation, the variation of main mirror surface shape is no more than 0.001λ. The result is acceptable for camera adjustment. Based on the measurement support structure mentioned before, the main mirror could rotate 360-degree under the condition of optical axis horizontal; the four-direction measurement for mirror is achieved. Eliminate the effects of ground gravity for surface shape measurement data, the four-direction mirror shape error is controlled no more than 0.001λ on this support structure which calculated by simulation.
Optimal Multiple Surface Segmentation With Shape and Context Priors
Bai, Junjie; Garvin, Mona K.; Sonka, Milan; Buatti, John M.; Wu, Xiaodong
2014-01-01
Segmentation of multiple surfaces in medical images is a challenging problem, further complicated by the frequent presence of weak boundary evidence, large object deformations, and mutual influence between adjacent objects. This paper reports a novel approach to multi-object segmentation that incorporates both shape and context prior knowledge in a 3-D graph-theoretic framework to help overcome the stated challenges. We employ an arc-based graph representation to incorporate a wide spectrum of prior information through pair-wise energy terms. In particular, a shape-prior term is used to penalize local shape changes and a context-prior term is used to penalize local surface-distance changes from a model of the expected shape and surface distances, respectively. The globally optimal solution for multiple surfaces is obtained by computing a maximum flow in a low-order polynomial time. The proposed method was validated on intraretinal layer segmentation of optical coherence tomography images and demonstrated statistically significant improvement of segmentation accuracy compared to our earlier graph-search method that was not utilizing shape and context priors. The mean unsigned surface positioning errors obtained by the conventional graph-search approach (6.30 ± 1.58 μm) was improved to 5.14 ± 0.99 μm when employing our new method with shape and context priors. PMID:23193309
Performance analysis and evaluation of direct phase measuring deflectometry
NASA Astrophysics Data System (ADS)
Zhao, Ping; Gao, Nan; Zhang, Zonghua; Gao, Feng; Jiang, Xiangqian
2018-04-01
Three-dimensional (3D) shape measurement of specular objects plays an important role in intelligent manufacturing applications. Phase measuring deflectometry (PMD)-based methods are widely used to obtain the 3D shapes of specular surfaces because they offer the advantages of a large dynamic range, high measurement accuracy, full-field and noncontact operation, and automatic data processing. To enable measurement of specular objects with discontinuous and/or isolated surfaces, a direct PMD (DPMD) method has been developed to build a direct relationship between phase and depth. In this paper, a new virtual measurement system is presented and is used to optimize the system parameters and evaluate the system's performance in DPMD applications. Four system parameters are analyzed to obtain accurate measurement results. Experiments are performed using simulated and actual data and the results confirm the effects of these four parameters on the measurement results. Researchers can therefore select suitable system parameters for actual DPMD (including PMD) measurement systems to obtain the 3D shapes of specular objects with high accuracy.
Surface Plasmon Damping Quantified with an Electron Nanoprobe
Bosman, Michel; Ye, Enyi; Tan, Shu Fen; Nijhuis, Christian A.; Yang, Joel K. W.; Marty, Renaud; Mlayah, Adnen; Arbouet, Arnaud; Girard, Christian; Han, Ming-Yong
2013-01-01
Fabrication and synthesis of plasmonic structures is rapidly moving towards sub-nanometer accuracy in control over shape and inter-particle distance. This holds the promise for developing device components based on novel, non-classical electro-optical effects. Monochromated electron energy-loss spectroscopy (EELS) has in recent years demonstrated its value as a qualitative experimental technique in nano-optics and plasmonic due to its unprecedented spatial resolution. Here, we demonstrate that EELS can also be used quantitatively, to probe surface plasmon kinetics and damping in single nanostructures. Using this approach, we present from a large (>50) series of individual gold nanoparticles the plasmon Quality factors and the plasmon Dephasing times, as a function of energy/frequency. It is shown that the measured general trend applies to regular particle shapes (rods, spheres) as well as irregular shapes (dendritic, branched morphologies). The combination of direct sub-nanometer imaging with EELS-based plasmon damping analysis launches quantitative nanoplasmonics research into the sub-nanometer realm. PMID:23425921
Shape control of slack space reflectors using modulated solar pressure.
Borggräfe, Andreas; Heiligers, Jeannette; Ceriotti, Matteo; McInnes, Colin R
2015-07-08
The static deflection profile of a large spin-stabilized space reflector because of solar radiation pressure acting on its surface is investigated. Such a spacecraft consists of a thin reflective circular film, which is deployed from a supporting hoop structure in an untensioned, slack manner. This paper investigates the use of a variable reflectivity distribution across the surface to control the solar pressure force and hence the deflected shape. In this first analysis, the film material is modelled as one-dimensional slack radial strings with no resistance to bending or transverse shear, which enables a semi-analytic derivation of the nominal deflection profile. An inverse method is then used to find the reflectivity distribution that generates a specific, for example, parabolic deflection shape of the strings. Applying these results to a parabolic reflector, short focal distances can be obtained when large slack lengths of the film are employed. The development of such optically controlled reflector films enables future key mission applications such as solar power collection, radio-frequency antennae and optical telescopes.
Effect of manufacturing defects on optical performance of discontinuous freeform lenses.
Wang, Kai; Liu, Sheng; Chen, Fei; Liu, Zongyuan; Luo, Xiaobing
2009-03-30
Discontinuous freeform lens based secondary optics are essential to LED illumination systems. Surface roughness and smooth transition between two discrete sub-surfaces are two of the most common manufacturing defects existing in discontinuous freeform lenses. The effects of these two manufacturing defects on the optical performance of two discontinuous freeform lenses were investigated by comparing the experimental results with the numerical simulation results based on Monte Carlo ray trace method. The results demonstrated that manufacturing defects induced surface roughness had small effect on the light output efficiency and the shape of light pattern of the PMMA lens but significantly affected the uniformity of light pattern, which declined from 0.644 to 0.313. The smooth transition surfaces with deviation angle more than 60 degrees existing in the BK7 glass lens, not only reduced the uniformity of light pattern, but also reduced the light output efficiency from 96.9% to 91.0% and heavily deformed the shape of the light pattern. Comparing with the surface roughness, the smooth transition surface had a much more adverse effect on the optical performance of discontinuous freeform lenses. Three methods were suggested to improve the illumination performance according to the analysis and discussion.
NASA Technical Reports Server (NTRS)
Chao, David F.; Zhang, Neng-Li
2002-01-01
As one of the basic elements of the shadowgraphy optical system, the image of the far field from the droplet implicates plentiful information on the droplet profile. An analysis of caustics by wave theory shows that a droplet with a cylindrically symmetric Gaussian-hill-type profile produces a circular directional caustic in far field, which arises from the singularities (inflection line on the surface). The sessile liquid droplets, which profiles are restricted by surface tension, usually have a 'protruding foot' where the surface inflects. Simple geometrical optics indicates that the circular caustic stemming from the surface inflection at the protruding-foot takes the shape of the outmost ring on the image of the far field. It is the diameter of the outmost ring that is used as one of the key parameters in the measurements of contact angle through the laser shadowgraphic method. Different surface characteristics of the droplets produce different type of caustics, and therefore, the shape of the caustics can be used to determine the surface property of the sessile droplets. The present paper describes the measurement method of contact angIe using the circular caustics and the estimation of the protruding-foot height through the caustic interference.
3D Surface Reconstruction for Lower Limb Prosthetic Model using Radon Transform
NASA Astrophysics Data System (ADS)
Sobani, S. S. Mohd; Mahmood, N. H.; Zakaria, N. A.; Razak, M. A. Abdul
2018-03-01
This paper describes the idea to realize three-dimensional surfaces of objects with cylinder-based shapes where the techniques adopted and the strategy developed for a non-rigid three-dimensional surface reconstruction of an object from uncalibrated two-dimensional image sequences using multiple-view digital camera and turntable setup. The surface of an object is reconstructed based on the concept of tomography with the aid of performing several digital image processing algorithms on the two-dimensional images captured by a digital camera in thirty-six different projections and the three-dimensional structure of the surface is analysed. Four different objects are used as experimental models in the reconstructions and each object is placed on a manually rotated turntable. The results shown that the proposed method has successfully reconstruct the three-dimensional surface of the objects and practicable. The shape and size of the reconstructed three-dimensional objects are recognizable and distinguishable. The reconstructions of objects involved in the test are strengthened with the analysis where the maximum percent error obtained from the computation is approximately 1.4 % for the height whilst 4.0%, 4.79% and 4.7% for the diameters at three specific heights of the objects.
Contribution of the hydrostatic pressure to the shape of silver island particles
NASA Astrophysics Data System (ADS)
Anno, E.; Hoshino, R.
1984-09-01
We have investigated the shape change of silver island particles caused by the surface energy reduction. When the surface energy was reduced by the reaction with hydrogen sulfide, the flattening of the particles was observed. As is well known, the similar shape change takes place when the particle size increases. Therefore, the particle shape is considered to depend both on the surface energy and the particle size. From this consideration, we predict the contribution of the hydrostatic pressure P to the particle shape. As evidence of this contribution, we consider the existence of the critical size below which P is larger than the adhesive force FA between deposit and substrate surface. Investigating the influence of the flattening due to the surface energy reduction on the size distribution, the critical size is found and estimated to be about 80 Å in diameter. This value is comparable with that estimated from the condition P = FA.
van Manen, Teunis; Janbaz, Shahram
2017-01-01
Materials and devices with advanced functionalities often need to combine complex 3D shapes with functionality-inducing surface features. Precisely controlled bio-nanopatterns, printed electronic components, and sensors/actuators are all examples of such surface features. However, the vast majority of the refined technologies that are currently available for creating functional surface features work only on flat surfaces. Here we present initially flat constructs that upon triggering by high temperatures change their shape to a pre-programmed 3D shape, thereby enabling the combination of surface-related functionalities with complex 3D shapes. A number of shape-shifting materials have been proposed during the last few years based on various types of advanced technologies. The proposed techniques often require multiple fabrication steps and special materials, while being limited in terms of the 3D shapes they could achieve. The approach presented here is a single-step printing process that requires only a hobbyist 3D printer and inexpensive off-the-shelf materials. It also lends itself to a host of design strategies based on self-folding origami, instability-driven pop-up, and ‘sequential’ shape-shifting to unprecedentedly expand the space of achievable 3D shapes. This combination of simplicity and versatility is a key to widespread applications. PMID:29308207
Differential surface models for tactile perception of shape and on-line tracking of features
NASA Technical Reports Server (NTRS)
Hemami, H.
1987-01-01
Tactile perception of shape involves an on-line controller and a shape perceptor. The purpose of the on-line controller is to maintain gliding or rolling contact with the surface, and collect information, or track specific features of the surface such as edges of a certain sharpness. The shape perceptor uses the information to perceive, estimate the parameters of, or recognize the shape. The differential surface model depends on the information collected and on the a priori information known about the robot and its physical parameters. These differential models are certain functionals that are projections of the dynamics of the robot onto the surface gradient or onto the tangent plane. A number of differential properties may be directly measured from present day tactile sensors. Others may have to be indirectly computed from measurements. Others may constitute design objectives for distributed tactile sensors of the future. A parameterization of the surface leads to linear and nonlinear sequential parameter estimation techniques for identification of the surface. Many interesting compromises between measurement and computation are possible.
Gradient-Based Aerodynamic Shape Optimization Using ADI Method for Large-Scale Problems
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Baysal, Oktay
1997-01-01
A gradient-based shape optimization methodology, that is intended for practical three-dimensional aerodynamic applications, has been developed. It is based on the quasi-analytical sensitivities. The flow analysis is rendered by a fully implicit, finite volume formulation of the Euler equations.The aerodynamic sensitivity equation is solved using the alternating-direction-implicit (ADI) algorithm for memory efficiency. A flexible wing geometry model, that is based on surface parameterization and platform schedules, is utilized. The present methodology and its components have been tested via several comparisons. Initially, the flow analysis for for a wing is compared with those obtained using an unfactored, preconditioned conjugate gradient approach (PCG), and an extensively validated CFD code. Then, the sensitivities computed with the present method have been compared with those obtained using the finite-difference and the PCG approaches. Effects of grid refinement and convergence tolerance on the analysis and shape optimization have been explored. Finally the new procedure has been demonstrated in the design of a cranked arrow wing at Mach 2.4. Despite the expected increase in the computational time, the results indicate that shape optimization, which require large numbers of grid points can be resolved with a gradient-based approach.
Shen, Simon; Syal, Karan; Tao, Nongjian; Wang, Shaopeng
2015-12-01
We present a Single-Cell Motion Characterization System (SiCMoCS) to automatically extract bacterial cell morphological features from microscope images and use those features to automatically classify cell motion for rod shaped motile bacterial cells. In some imaging based studies, bacteria cells need to be attached to the surface for time-lapse observation of cellular processes such as cell membrane-protein interactions and membrane elasticity. These studies often generate large volumes of images. Extracting accurate bacterial cell morphology features from these images is critical for quantitative assessment. Using SiCMoCS, we demonstrated simultaneous and automated motion tracking and classification of hundreds of individual cells in an image sequence of several hundred frames. This is a significant improvement from traditional manual and semi-automated approaches to segmenting bacterial cells based on empirical thresholds, and a first attempt to automatically classify bacterial motion types for motile rod shaped bacterial cells, which enables rapid and quantitative analysis of various types of bacterial motion.
MicroCT Analysis of Micro-Nano Titanium Implant Surface on the Osseointegration.
Ban, Jaesam; Kang, Seongsoo; Kim, Jihyun; Lee, Kwangmin; Hyunpil, Lim; Vang, Mongsook; Yang, Hongso; Oh, Gyejeong; Kim, Hyunseung; Hwang, Gabwoon; Jung, Yongho; Lee, Kyungku; Park, Sangwon; Yunl, Kwidug
2015-01-01
This study was to investigate the effects of micro-nano titanium implant surface on the osseointegration. A total of 36 screw-shaped implants were used. The implant surfaces were classified into 3 groups (n = 12): machined surface (M group), nanosurface which is nanotube formation on the machined surface (MA group) and nano-micro surface which is nanotube formation on the RBM surface (RA group). Anodic oxidation was performed at a 20 V for 10 min with 1 M H3PO4 and 1.5 wt% HF solutions. The implants were installed on the humerus on 6 beagles. After 4 and 12 weeks, the morphometric analysis with micro CT (skyscan 1172, SKYSCAN, Antwerpen, Belgium) was done. The data were statistically analyzed with two-way ANOVA. Bone mineral density and bone volume were significantly increased depending on time. RA group showed the highest bone mineral density and bone volume at 4 weeks and 12 weeks significantly. It indicated that nano-micro titanium implant surface showed faster and more mature osseointegration.
NASA Astrophysics Data System (ADS)
Quan, Lulin; Yang, Zhixin
2010-05-01
To address the issues in the area of design customization, this paper expressed the specification and application of the constrained surface deformation, and reported the experimental performance comparison of three prevail effective similarity assessment algorithms on constrained surface deformation domain. Constrained surface deformation becomes a promising method that supports for various downstream applications of customized design. Similarity assessment is regarded as the key technology for inspecting the success of new design via measuring the difference level between the deformed new design and the initial sample model, and indicating whether the difference level is within the limitation. According to our theoretical analysis and pre-experiments, three similarity assessment algorithms are suitable for this domain, including shape histogram based method, skeleton based method, and U system moment based method. We analyze their basic functions and implementation methodologies in detail, and do a series of experiments on various situations to test their accuracy and efficiency using precision-recall diagram. Shoe model is chosen as an industrial example for the experiments. It shows that shape histogram based method gained an optimal performance in comparison. Based on the result, we proposed a novel approach that integrating surface constrains and shape histogram description with adaptive weighting method, which emphasize the role of constrains during the assessment. The limited initial experimental result demonstrated that our algorithm outperforms other three algorithms. A clear direction for future development is also drawn at the end of the paper.
Absolute surface reconstruction by slope metrology and photogrammetry
NASA Astrophysics Data System (ADS)
Dong, Yue
Developing the manufacture of aspheric and freeform optical elements requires an advanced metrology method which is capable of inspecting these elements with arbitrary freeform surfaces. In this dissertation, a new surface measurement scheme is investigated for such a purpose, which is to measure the absolute surface shape of an object under test through its surface slope information obtained by photogrammetric measurement. A laser beam propagating toward the object reflects on its surface while the vectors of the incident and reflected beams are evaluated from the four spots they leave on the two parallel transparent windows in front of the object. The spots' spatial coordinates are determined by photogrammetry. With the knowledge of the incident and reflected beam vectors, the local slope information of the object surface is obtained through vector calculus and finally yields the absolute object surface profile by a reconstruction algorithm. An experimental setup is designed and the proposed measuring principle is experimentally demonstrated by measuring the absolute surface shape of a spherical mirror. The measurement uncertainty is analyzed, and efforts for improvement are made accordingly. In particular, structured windows are designed and fabricated to generate uniform scattering spots left by the transmitted laser beams. Calibration of the fringe reflection instrument, another typical surface slope measurement method, is also reported in the dissertation. Finally, a method for uncertainty analysis of a photogrammetry measurement system by optical simulation is investigated.
Origin of collapsed pits and branched valleys surrounding the Ius chasma on Mars
NASA Astrophysics Data System (ADS)
Vamshi, G. T.; Martha, T. R.; Vinod Kumar, K.
2014-11-01
Chasma is a deep, elongated and steep sided depression on planetary surfaces. Several hypothesis have been proposed regarding the origin of chasma. In this study, we analysed morphological features in north and south of Ius chasma. Collapsed pits and branched valleys alongwith craters are prominent morphological features surrounding Ius Chasma, which forms the western part of the well known Valles Marineris chasma system on Martian surface. Analysis of images from the High Resolution Stereo Camera (HRSC) in ESA's Mars Express (MEX) with a spatial resolution of 10 m shows linear arrangement of pits north of the Ius chasma. These pits were initially developed along existing narrow linear valleys parallel to Valles Merineris and are conical in shape unlike flat floored impact craters found adjacent to them. The width of conical pits ranges 1-10 km and depth ranges 1-2 km. With more subsidence, size of individual pits increased gradually and finally coalesced together to create a large depression forming a prominent linear valley. Arrangement of pits in this particular fashion can be attributed to collapse of the surface due to l arge hollows created in the subsurface because of the withdrawal of either magma or dry ice. Branched valleys which are prominent morphologic features south of the Ius chasma could have been formed due to groundwater sapping mechanism as proposed by previous researchers. Episodic release of groundwater in large quantity to the surface could have resulted in surface runoff creating V-shaped valleys, which were later modified into U-shaped valleys due to mass wasting and lack of continued surface runoff.
Anisotropic superconductivity in β-(BDA-TTP)2SbF6: STM spectroscopy
NASA Astrophysics Data System (ADS)
Nomura, K.; Muraoka, R.; Matsunaga, N.; Ichimura, K.; Yamada, J.
2009-03-01
We have investigated the gap symmetry in the superconducting phase of β-(BDA-TTP)2SbF6 with use of the scanning tunneling microscope (STM). The tunneling spectra obtained on the conducting surface show a clear superconducting gap structure. Its functional form is of V-shaped similarly to κ-(BEDT-TTF)2X and suggests the anisotropic superconducting gap with line nodes. For lateral surfaces the shape of tunneling spectra varies from the U-shape with relatively large gap to the V-shape with small gap depending on the tunneling direction alternately twice between directional angle 0 and π. From the analysis of conductance curve taking the k dependence of the tunneling probability into account, it is found that the gap has maximum near the a* and c* axes and the nodes appear along near a*+c* and the a-c* directions. These indicate that the d like superconducting pair is formed in this system as the case of κ-(BEDT-TTF)2X. This node direction is consistent with the theoretical prediction based on the spin fluctuation mechanism. However, the zero-bias conductance peak has not been observed yet.
Amoroso-Silva, P; Alcalde, M P; Hungaro Duarte, M A; De-Deus, G; Ordinola-Zapata, R; Freire, L G; Cavenago, B C; De Moraes, I G
2017-06-01
To assess the effect of 90°-oscillatory instrumentation with hand files on several morphological parameters (volume, surface area and uninstrumented surface) in C-shaped root canals after instrumentation using a single-file reciprocation system (Reciproc; VDW, Munich, Germany) and a Self-Adjusting File System (SAF; ReDent Nova, Ra'anana, Israel). Twenty mandibular second molars with C-shaped canals and C1 canal configurations were divided into two groups (n = 10) and instrumented with Reciproc and SAF instruments. A size 30 NiTi hand K-file attached to a 90°-oscillatory motion handpiece was used as final instrumentation in both groups. The specimens were scanned using micro-computed tomography after all procedures. Volume, surface area increase and uninstrumented root canal surface were analysed using CTAn software (Bruker-microCT, Kontich, Belgium). Also, the uninstrumented root canal surface was calculated for each canal third. All values were compared between groups using the Mann-Whitney test and within groups using the Wilcoxon's signed-rank test. Instrumentation with Reciproc significantly increased canal volume compared with instrumentation with SAF. Additionally, the canal volumes were significantly increased after 90°-oscillatory instrumentation (between and within group comparison; (P < 0.05)). Regarding the increase in surface area after all instrumentation protocols, statistical analysis only revealed significant differences in the within groups comparison (P < 0.05). Reciproc and SAF instrumentation yielded an uninstrumented root canal surface of 28% and 34%, respectively, which was not significantly different (P > 0.05). Final oscillatory instrumentation significantly reduced the uninstrumented root canal surface from 28% to 9% (Reciproc) and from 34% to 15% (SAF; P < 0.05). The apical and middle thirds exhibited larger uninstrumented root canal surfaces after the first instrumentation that was significantly reduced after oscillatory instrumentation (P < 0.05). The Reciproc and SAF system were associated with similar morphological parameters after instrumentation of mandibular second molars with C-shaped canals except for a higher canal volume increase in the Reciproc group compared to the SAF. Furthermore, the final use of 90°-oscillatory instrumentation using NiTi hand files significantly decreased the uninstrumented canal walls that remained after Reciproc and SAF instrumentation. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Cortinovis, Silvia; Balsamo, Fabrizio; Storti, Fabrizio
2017-04-01
The study of the microstructural and petrophysical evolution of cataclasites and gouges has a fundamental impact on both hydraulic and frictional properties of fault zones. In the last decades, growing attention has been payed to the characterization of carbonate fault core rocks due to the nucleation and propagation of coseismic ruptures in carbonate successions (e.g., Umbria-Marche 1997, L'Aquila 2009, Amatrice 2016 earthquakes in Central Apennines, Italy). Among several physical parameters, grain size and shape in fault core rocks are expected to control the way of sliding along the slip surfaces in active fault zones, thus influencing the propagation of coseismic ruptures during earthquakes. Nevertheless, the role of grain size and shape distribution evolution in controlling the weakening or strengthening behavior in seismogenic fault zones is still not fully understood also because a comprehensive database from natural fault cores is still missing. In this contribution, we present a preliminary study of seismogenic extensional fault zones in Central Apennines by combining detailed filed mapping with grain size and microstructural analysis of fault core rocks. Field mapping was aimed to describe the structural architecture of fault systems and the along-strike fault rock distribution and fracturing variations. In the laboratory we used a Malvern Mastersizer 3000 granulometer to obtain a precise grain size characterization of loose fault rocks combined with sieving for coarser size classes. In addition, we employed image analysis on thin sections to quantify the grain shape and size in cemented fault core rocks. The studied fault zones consist of an up to 5-10 m-thick fault core where most of slip is accommodated, surrounded by a tens-of-meters wide fractured damage zone. Fault core rocks consist of (1) loose to partially cemented breccias characterized by different grain size (from several cm up to mm) and variable grain shape (from very angular to sub-rounded), and (2) very fine-grained gouges (< 1 mm) localized along major and minor mirror-like slip surfaces. Damage zones mostly consist of fractured rocks and, locally, pulverized rocks. Collectively, field observations and laboratory analyses indicate that within the fault cores of the studied fault zones, grain size progressively decreases approaching the master slip surfaces. Furthermore, grain shape changes from very angular to sub-rounded clasts moving toward the master slip surfaces. These features suggest that the progressive evolution of grain size and shape distributions within fault cores may have determined the development of strain localization by the softening and cushioning effects of smaller particles in loose fault rocks.
Scaling analysis and SE simulation of the tilted cylinder-interface capillary interaction
NASA Astrophysics Data System (ADS)
Gao, S. Q.; Zhang, X. Y.; Zhou, Y. H.
2018-06-01
The capillary interaction induced by a tilted cylinder and interface is the basic configuration of many complex systems, such as micro-pillar arrays clustering, super-hydrophobicity of hairy surface, water-walking insects, and fiber aggregation. We systematically analyzed the scaling laws of tilt angle, contact angle, and cylinder radius on the contact line shape by SE simulation and experiment. The following in-depth analysis of the characteristic parameters (shift, stretch and distortion) of the deformed contact lines reveals the self-similar shape of contact line. Then a general capillary force scaling law is proposed to incredibly grasp all the simulated and experimental data by a quite straightforward ellipse approximation approach.
Comparison of different photoresist buffer layers in SPR sensors based on D-shaped POF and gold film
NASA Astrophysics Data System (ADS)
Cennamo, Nunzio; Pesavento, Maria; De Maria, Letizia; Galatus, Ramona; Mattiello, Francesco; Zeni, Luigi
2017-04-01
A comparative analysis of two optical fiber sensing platforms is presented. The sensors are based on surface plasmon resonance (SPR) in a D-shaped plastic optical fiber (POF) with a photoresist buffer layer between the exposed POF core and the thin gold film. We show how the sensor's performances change when the photoresist layer changes. The photoresist layers proposed in this analysis are SU-8 3005 and S1813. The experimental results are congruent with the numerical studies and it is instrumental for chemical and bio-chemical applications. Usually, the photoresist layer is required in order to increase the performance of the SPR-POF sensor.
Effect of dispersion forces on the capillary-wave fluctuations of liquid surfaces.
Chacón, Enrique; Fernández, Eva M; Tarazona, Pedro
2014-04-01
We present molecular dynamics evidence for the nonanalytic effects of the long-range dispersion forces on the capillary waves fluctuations of a Lennard-Jones liquid surface. The results of the intrinsic sampling method, for the analysis of the instantaneous interfacial shape, are obtained in large systems for several cut-off distances of the potential tail, and they show good agreement with the theoretical prediction by Napiórkowski and Dietrich, based on a density functional analysis. The enhancement of the capillary waves is quantified to be within 1% for a simple liquid near its triple point.
Optical second harmonic generation from V-shaped chromium nanohole arrays
NASA Astrophysics Data System (ADS)
Khoa Quang, Ngo; Miyauchi, Yoshihiro; Mizutani, Goro; Charlton, Martin D.; Chen, Ruiqi; Boden, Stuart; Rutt, Harvey
2014-02-01
We observed rotational anisotropy of optical second harmonic generation (SHG) from an array of V-shaped chromium nanoholes fabricated by electron beam lithography. Phenomenological analysis indicated that the effective nonlinear susceptibility element \\chi _{313}^{(2)} had a characteristic contribution to the observed anisotropic SHG intensity patterns. Here, coordinate 1 is in the direction of the tip of V shapes in the substrate plane, and 3 indicates the direction perpendicular to the sample surface. The SHG intensity for the S-polarized output light was very weak, probably owing to the cancellation effect of the image dipoles generated at the metal-air boundary. The possible origin of the observed nonlinearity is discussed in terms of the susceptibility elements obtained.
Rime ice accretion and its effect on airfoil performance. Ph.D. Thesis. Final Report
NASA Technical Reports Server (NTRS)
Bragg, M. B.
1982-01-01
A methodology was developed to predict the growth of rime ice, and the resulting aerodynamic penalty on unprotected, subcritical, airfoil surfaces. The system of equations governing the trajectory of a water droplet in the airfoil flowfield is developed and a numerical solution is obtained to predict the mass flux of super cooled water droplets freezing on impact. A rime ice shape is predicted. The effect of time on the ice growth is modeled by a time-stepping procedure where the flowfield and droplet mass flux are updated periodically through the ice accretion process. Two similarity parameters, the trajectory similarity parameter and accumulation parameter, are found to govern the accretion of rime ice. In addition, an analytical solution is presented for Langmuir's classical modified inertia parameter. The aerodynamic evaluation of the effect of the ice accretion on airfoil performance is determined using an existing airfoil analysis code with empirical corrections. The change in maximum lift coefficient is found from an analysis of the new iced airfoil shape. The drag correction needed due to the severe surface roughness is formulated from existing iced airfoil and rough airfoil data. A small scale wind tunnel test was conducted to determine the change in airfoil performance due to a simulated rime ice shape.
Balzeau, Antoine; Gilissen, Emmanuel
2010-07-01
Brain shape asymmetries or petalias consist of the extension of one cerebral hemisphere beyond the other. A larger frontal or caudal projection is usually coupled with a larger lateral extent of the more projecting hemisphere relative to the other. The concurrence of these petalial components is characteristic of hominins. Studies aimed at quantifying petalial asymmetries in human and great ape endocasts rely on the definition of the midline of the endocranial surface. Studies of brain material show that, at least in humans, most of the medial surface of the left occipital lobe distorts along the midline and protrudes on to the right side, making it difficult for midline and corresponding left and right reference point identification. In order to accurately quantify and compare brain shape asymmetries in extant hominid species, we propose here a new protocol based on the objective definition of cranial landmarks. We describe and quantify for the first time in three dimensions the positions of frontal and occipital protrusions in large samples of Pan paniscus, Pan troglodytes and Gorilla gorilla. This study confirms the existence of frontal and occipital petalias in African apes. Moreover, the detailed analysis of the 3D structure of these petalias reveals shared features, as well as features that are unique to the different great ape species.
NASA Astrophysics Data System (ADS)
Tian, W. H.; Hu, S. L.; Fan, A. L.; Wang, Z.
2002-01-01
Transmission electron microscopy (TEM) observations were carried out for examining the as-formed and post-deformed microstructures in a variety of electroformed copper liners of shaped charges. The deformation was carried out at an ultra-high strain rate. Specifically, the electron backscattering Kikuchi pattern (EBSP) technique was utilized to examine the micro-texture of these materials. TEM observations revealed that these electroformed copper liners of shaped charges have a grain size of about 1-3 mum, EBSP analysis demonstrated that the as-grown copper liners of shaped charges exhibit a l 10) fiber micro-texture which is parallel to the normal direction of the surface of the liners of shaped charges. Having undergone plastic deformation at ultra-high strain rate (10(7) s(-1)), the specimens which were recovered from the copper slugs were found to have grain size of the same order as that before deformation. EBSP analysis revealed that the (110) fiber texture existed in the as-formed copper liners disappears in the course of deformation. TEM examination results indicate that dynamic recovery and recrystallization play a significant role in this deformation process.
A full potential inverse method based on a density linearization scheme for wing design
NASA Technical Reports Server (NTRS)
Shankar, V.
1982-01-01
A mixed analysis inverse procedure based on the full potential equation in conservation form was developed to recontour a given base wing to produce density linearization scheme in applying the pressure boundary condition in terms of the velocity potential. The FL030 finite volume analysis code was modified to include the inverse option. The new surface shape information, associated with the modified pressure boundary condition, is calculated at a constant span station based on a mass flux integration. The inverse method is shown to recover the original shape when the analysis pressure is not altered. Inverse calculations for weakening of a strong shock system and for a laminar flow control (LFC) pressure distribution are presented. Two methods for a trailing edge closure model are proposed for further study.
Lv, Kang; Li, Yinfeng
2018-06-21
Understanding the interaction of graphene with cell membranes is crucial to the development of graphene-based biological applications and the management of graphene safety issues. To help reveal the key factors controlling the interaction between graphene and cell membranes, here we adopt the dissipative particle dynamics method to analyze the evolution of interaction force and free energy as the graphene-covered atomic force microscopy (AFM) probe indents across a lipid bilayer. The simulation results show that the graphene-covered AFM probe can cause severe deformation of the cell membrane which drives the lipid molecule to adsorb and diffuse at the surface of graphene. The breakthrough force and free energy are calculated to study the effects of the tip shape, size, and surface hydrophobicity on the piercing behaviors of graphene-covered AFM. In addition, the deformation of cell membrane can decrease the dependency of the breakthrough force on the tip shape. The analysis of surface functionalization suggests that the horizontal patterns on graphene can change the preferred orientation in the penetration process, but the vertical patterns on graphene may disrupt the cell membrane. What's more, the bending stiffness of graphene has little influence on the penetration process as graphene pierces into the cell membrane. These results provide useful guidelines for the molecular design of graphene materials with controllable cell penetrability.
Giannini, Vincenzo; Maier, Stefan A.; Craster, Richard V.
2016-01-01
According to the hydrodynamic Drude model, surface plasmon resonances of metallic nanostructures blueshift owing to the non-local response of the metal’s electron gas. The screening length characterizing the non-local effect is often small relative to the overall dimensions of the metallic structure, which enables us to derive a coarse-grained non-local description using matched asymptotic expansions; a perturbation theory for the blueshifts of arbitrary-shaped nanometallic structures is then developed. The effect of non-locality is not always a perturbation and we present a detailed analysis of the ‘bonding’ modes of a dimer of nearly touching nanowires where the leading-order eigenfrequencies and eigenmode distributions are shown to be a renormalization of those predicted assuming a local metal permittivity. PMID:27493575
Vaughan, Patrick E; Vogelsberg, Caitlin C M; Vollner, Jennifer M; Fenton, Todd W; Haut, Roger C
2016-09-01
The forensic literature suggests that when adolescents fall onto edged and pointed surfaces, depressed fractures can occur at low energy levels. This study documents impact biomechanics and fracture characteristics of infant porcine skulls dropped onto flat, curved, edged, and focal surfaces. Results showed that the energy needed for fracture initiation was nearly four times higher against a flat surface than against the other surfaces. While characteristic measures of fracture such as number and length of fractures did not vary with impact surface shape, the fracture patterns did depend on impact surface shape. While experimental impacts against the flat surface produced linear fractures initiating at sutural boundaries peripheral to the point of impact (POI), more focal impacts produced depressed fractures initiating at the POI. The study supported case-based forensic literature suggesting cranial fracture patterns depend on impact surface shape and that fracture initiation energy is lower for more focal impacts. © 2016 American Academy of Forensic Sciences.
Resolution-independent surface rendering using programmable graphics hardware
Loop, Charles T.; Blinn, James Frederick
2008-12-16
Surfaces defined by a Bezier tetrahedron, and in particular quadric surfaces, are rendered on programmable graphics hardware. Pixels are rendered through triangular sides of the tetrahedra and locations on the shapes, as well as surface normals for lighting evaluations, are computed using pixel shader computations. Additionally, vertex shaders are used to aid interpolation over a small number of values as input to the pixel shaders. Through this, rendering of the surfaces is performed independently of viewing resolution, allowing for advanced level-of-detail management. By individually rendering tetrahedrally-defined surfaces which together form complex shapes, the complex shapes can be rendered in their entirety.
Ankhelyi, Madeleine V; Wainwright, Dylan K; Lauder, George V
2018-05-29
Shark skin is covered with numerous placoid scales or dermal denticles. While previous research has used scanning electron microscopy and histology to demonstrate that denticles vary both around the body of a shark and among species, no previous study has quantified three-dimensional (3D) denticle structure and surface roughness to provide a quantitative analysis of skin surface texture. We quantified differences in denticle shape and size on the skin of three individual smooth dogfish sharks (Mustelus canis) using micro-CT scanning, gel-based surface profilometry, and histology. On each smooth dogfish, we imaged between 8 and 20 distinct areas on the body and fins, and obtained further comparative skin surface data from leopard, Atlantic sharpnose, shortfin mako, spiny dogfish, gulper, angel, and white sharks. We generated 3D images of individual denticles and measured denticle volume, surface area, and crown angle from the micro-CT scans. Surface profilometry was used to quantify metrology variables such as roughness, skew, kurtosis, and the height and spacing of surface features. These measurements confirmed that denticles on different body areas of smooth dogfish varied widely in size, shape, and spacing. Denticles near the snout are smooth, paver-like, and large relative to denticles on the body. Body denticles on smooth dogfish generally have between one and three distinct ridges, a diamond-like surface shape, and a dorsoventral gradient in spacing and roughness. Ridges were spaced on average 56 µm apart, and had a mean height of 6.5 µm, comparable to denticles from shortfin mako sharks, and with narrower spacing and lower heights than other species measured. We observed considerable variation in denticle structure among regions on the pectoral, dorsal, and caudal fins, including a leading-to-trailing edge gradient in roughness for each region. Surface roughness in smooth dogfish varied around the body from 3 to 42 microns. © 2018 Wiley Periodicals, Inc.
Simulation Analysis of Tilted Polyhedron-Shaped Thermoelectric Elements
NASA Astrophysics Data System (ADS)
Meng, Xiangning; Suzuki, Ryosuke O.
2015-06-01
The generation of thermoelectricity is considered a promising approach to harness the waste heat generated in industries, automobiles, gas fields, and other man-made processes. The waste heat can be converted to electricity via a thermoelectric (TE) generator. In this light, the generator performance depends on the geometric configuration of its constituent elements as well as their material properties. Our previous work reported TE behaviors for modules consisting of parallelogram-shaped elements, because elements with tilted laminate structures provide increased mechanical stability and efficient heat-transferring ability from the hot surface to the cold surface. Here, we study TE elements in the shape of a polyhedron that is obtained by mechanically truncating the edges of a parallelogram element in order to further enhance the generator performance and reduce TE material usage. The TE performance of the modules consisting of these polyhedron elements is numerically simulated by using the finite-volume method. The output power, voltage, and current of the polyhedral TE module are greater than those of the parallelogram-element module. The polyhedron shape positively affects heat transfer and the flow of electric charges in the light of increasing the efficiency of conversion from heat to electricity. By varying the shape of the truncated portions, we determine the optimal shape that enables homogeneous heat flux distribution and slow diffusion of thermal energy to obtain the better efficiency of conversion of heat into electricity. We believe that the findings of our study can significantly contribute to the design policy in TE generation.
Atypical face shape and genomic structural variants in epilepsy
Chinthapalli, Krishna; Bartolini, Emanuele; Novy, Jan; Suttie, Michael; Marini, Carla; Falchi, Melania; Fox, Zoe; Clayton, Lisa M. S.; Sander, Josemir W.; Guerrini, Renzo; Depondt, Chantal; Hennekam, Raoul; Hammond, Peter
2012-01-01
Many pathogenic structural variants of the human genome are known to cause facial dysmorphism. During the past decade, pathogenic structural variants have also been found to be an important class of genetic risk factor for epilepsy. In other fields, face shape has been assessed objectively using 3D stereophotogrammetry and dense surface models. We hypothesized that computer-based analysis of 3D face images would detect subtle facial abnormality in people with epilepsy who carry pathogenic structural variants as determined by chromosome microarray. In 118 children and adults attending three European epilepsy clinics, we used an objective measure called Face Shape Difference to show that those with pathogenic structural variants have a significantly more atypical face shape than those without such variants. This is true when analysing the whole face, or the periorbital region or the perinasal region alone. We then tested the predictive accuracy of our measure in a second group of 63 patients. Using a minimum threshold to detect face shape abnormalities with pathogenic structural variants, we found high sensitivity (4/5, 80% for whole face; 3/5, 60% for periorbital and perinasal regions) and specificity (45/58, 78% for whole face and perinasal regions; 40/58, 69% for periorbital region). We show that the results do not seem to be affected by facial injury, facial expression, intellectual disability, drug history or demographic differences. Finally, we use bioinformatics tools to explore relationships between facial shape and gene expression within the developing forebrain. Stereophotogrammetry and dense surface models are powerful, objective, non-contact methods of detecting relevant face shape abnormalities. We demonstrate that they are useful in identifying atypical face shape in adults or children with structural variants, and they may give insights into the molecular genetics of facial development. PMID:22975390
Memory color of natural familiar objects: effects of surface texture and 3-D shape.
Vurro, Milena; Ling, Yazhu; Hurlbert, Anya C
2013-06-28
Natural objects typically possess characteristic contours, chromatic surface textures, and three-dimensional shapes. These diagnostic features aid object recognition, as does memory color, the color most associated in memory with a particular object. Here we aim to determine whether polychromatic surface texture, 3-D shape, and contour diagnosticity improve memory color for familiar objects, separately and in combination. We use solid three-dimensional familiar objects rendered with their natural texture, which participants adjust in real time to match their memory color for the object. We analyze mean, accuracy, and precision of the memory color settings relative to the natural color of the objects under the same conditions. We find that in all conditions, memory colors deviate slightly but significantly in the same direction from the natural color. Surface polychromaticity, shape diagnosticity, and three dimensionality each improve memory color accuracy, relative to uniformly colored, generic, or two-dimensional shapes, respectively. Shape diagnosticity improves the precision of memory color also, and there is a trend for polychromaticity to do so as well. Differently from other studies, we find that the object contour alone also improves memory color. Thus, enhancing the naturalness of the stimulus, in terms of either surface or shape properties, enhances the accuracy and precision of memory color. The results support the hypothesis that memory color representations are polychromatic and are synergistically linked with diagnostic shape representations.
An Unified Multiscale Framework for Planar, Surface, and Curve Skeletonization.
Jalba, Andrei C; Sobiecki, Andre; Telea, Alexandru C
2016-01-01
Computing skeletons of 2D shapes, and medial surface and curve skeletons of 3D shapes, is a challenging task. In particular, there is no unified framework that detects all types of skeletons using a single model, and also produces a multiscale representation which allows to progressively simplify, or regularize, all skeleton types. In this paper, we present such a framework. We model skeleton detection and regularization by a conservative mass transport process from a shape's boundary to its surface skeleton, next to its curve skeleton, and finally to the shape center. The resulting density field can be thresholded to obtain a multiscale representation of progressively simplified surface, or curve, skeletons. We detail a numerical implementation of our framework which is demonstrably stable and has high computational efficiency. We demonstrate our framework on several complex 2D and 3D shapes.
Bjørndal, L; Carlsen, O; Thuesen, G; Darvann, T; Kreiborg, S
1999-01-01
The aim of this study was to perform a qualitative analysis of the relationship between the external and internal macromorphology of the root complex and to use fractal dimension analysis to determine the correlation between the shape of the outer surface of the root and the shape of the root canal. On the basis of X-ray computed transaxial microtomography, a qualitative and quantitative analysis of the external and internal macromorphology of the root complex in permanent maxillary molars was performed using well-defined macromorphological variables and fractal dimension analysis. Five maxillary molars were placed between a microfocus X-ray tube with a focal spot size of 0.07 mm, a Thomson-SCF image intensifier, and a CCD camera compromising a detector for the tomograph. Between 100 and 240 tomographic 2D slices were made of each tooth. Assembling slices for 3D volume was carried out with subsequent median noise filtering. Segmentation into enamel, dentine and pulp space was achieved through thresholding followed by morphological filtering. Surface representations were then constructed. A useful visualization of the tooth was created by making the dental hard tissues transparent and the pulp chamber and root-canal system opaque. On this basis it became possible to assess the relationship between the external and internal macromorphology of the crown and root complex. There was strong agreement between the number, position and cross-section of the root canals and the number, position and degree of manifestation of the root complex macrostructures. Data from a fractal dimension analysis also showed a high correlation between the shape of the root canals and the corresponding roots. It is suggested that these types of 3D volumes constitute a platform for preclinical training in fundamental endodontic procedures.
Method for a Leading Edge Slat on a Wing of an Aircraft
NASA Technical Reports Server (NTRS)
Pitt, Dale M. (Inventor); Eckstein, Nicholas Stephen (Inventor)
2016-01-01
A method for managing a flight control surface system. A leading edge device is moved on a leading edge from an undeployed position to a deployed position. The leading edge device has an outer surface, an inner surface, and a deformable fairing attached to the leading edge device such that the deformable fairing covers at least a portion of the inner surface. The deformable fairing changes from a deformed shape to an original shape when the leading edge device is moved to the deployed position. The leading edge device is then moved from the deployed position to the undeployed position, wherein the deformable fairing changes from the original shape to the deformed shape.
Zhi, Keke; Wang, Lulu; Zhang, Yagang; Jiang, Yingfang; Zhang, Letao; Yasin, Akram
2018-05-11
The influence of various silica gel supports with different shapes and sizes on the recognition properties of surface molecular imprinted polymers (MIPs) was investigated. MIPs for selective recognition and adsorption of gossypol were synthesized via the sol⁻gel process with a surface imprinting technique on silica gel substrates. 3-aminopropyltriethoxysilane (APTES) and tetraethoxysilane (TEOS) were chosen as the functional monomer and the cross-linker. The morphology and structure of the gossypol-MIPs were characterized using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and a standard Brunauer⁻Emett⁻Teller (BET) analysis. Results indicated that the surface imprinted polymer layer facilitated the removal and rebinding of the template, and thus, achieved fast binding kinetics. Compared with the MIPs prepared on irregularly shaped silica with a broad particle size distribution, the MIPs using regularly-shaped silica of uniform size showed higher imprinting factor (IF), and the MIP made with a relatively larger sized (60 μm) spherical silica, demonstrated higher adsorption capacity compared to the MIPs made with smaller sized, spherical silica. The MIP prepared with 60 μm spherically shaped silica, featured a fast adsorption kinetic of 10 min, and a saturated adsorption capacity of 204 mg·g −1 . The gossypol-MIP had higher selectivity (IF = 2.20) for gossypol over its structurally-similar analogs ellagic acid (IF = 1.13) and quercetin (IF = 1.20). The adsorption data of the MIP correlated well with the pseudo-second-order kinetic model and the Freundlich isotherm model, which implied that chemical adsorption dominated, and that multilayer adsorption occurred. Furthermore, the MIP exhibited an excellent regeneration performance, and the adsorption capacity of the MIP for gossypol only decreased by 6% after six reused cycles, indicating good application potential for selective adsorption of gossypol.
NASA Astrophysics Data System (ADS)
Azhar, Ehtsham; Maraj, E. N.; Iqbal, Z.
2018-03-01
The present paper provides a comparative analysis between nano and hybrid nanofluid axisymmetric flow towards a radially stretching porous surface along with heat transfer mechanism in the presence of magnetic force and internal heat source/sink. The effect of various shapes of nanoparticles is also taken into account. The physical flow problem is modeled and presented in cylindrical coordinates. Governing nonlinear equations are converted into a system of differential equations by using the similarity approach. Numerical results are computed by means of a well-established and stable numerical procedure. The main implication of this research is the influence of nanoparticle shapes, internal heating and applied magnetic field on fluid flow and heat transfer. Computational results are extracted out with the help of mathematics software MATLAB. One of the key findings of the present analysis is the fact that the maximum temperature is achieved for lamina-shaped SiO2 and MoS2-SiO2 nanoparticles and the lowest temperature is attained in the case of sphere-shaped nanoparticles.
NASA Astrophysics Data System (ADS)
Majumder, Himadri; Maity, Kalipada
2018-03-01
Shape memory alloy has a unique capability to return to its original shape after physical deformation by applying heat or thermo-mechanical or magnetic load. In this experimental investigation, desirability function analysis (DFA), a multi-attribute decision making was utilized to find out the optimum input parameter setting during wire electrical discharge machining (WEDM) of Ni-Ti shape memory alloy. Four critical machining parameters, namely pulse on time (TON), pulse off time (TOFF), wire feed (WF) and wire tension (WT) were taken as machining inputs for the experiments to optimize three interconnected responses like cutting speed, kerf width, and surface roughness. Input parameter combination TON = 120 μs., TOFF = 55 μs., WF = 3 m/min. and WT = 8 kg-F were found to produce the optimum results. The optimum process parameters for each desired response were also attained using Taguchi’s signal-to-noise ratio. Confirmation test has been done to validate the optimum machining parameter combination which affirmed DFA was a competent approach to select optimum input parameters for the ideal response quality for WEDM of Ni-Ti shape memory alloy.
NASA Astrophysics Data System (ADS)
Han, Xue-Feng; Liu, Xin; Nakano, Satoshi; Harada, Hirofumi; Miyamura, Yoshiji; Kakimoto, Koichi
2018-02-01
In FZ growth processes, the stability of the free surface is important in the production of single crystal silicon with high quality. To investigate the shape of the free surface in the FZ silicon crystal growth, a 3D numerical model that included gas and liquid phases was developed. In this present study, 3D Young-Laplacian equations have been solved using the Volume of Fluid (VOF) Model. Using this new model, we predicted the 3D shape of the free surface in FZ silicon crystal growth. The effect of magnetic pressure on shape of free surface has been considered. In particular, the free surface of the eccentric growth model, which could not be previously solved using the 2D Young-Laplacian equations, was solved using the VOF model. The calculation results are validated by the experimental results.
Symmetry analysis of talus bone: A Geometric morphometric approach.
Islam, K; Dobbe, A; Komeili, A; Duke, K; El-Rich, M; Dhillon, S; Adeeb, S; Jomha, N M
2014-01-01
The main object of this study was to use a geometric morphometric approach to quantify the left-right symmetry of talus bones. Analysis was carried out using CT scan images of 11 pairs of intact tali. Two important geometric parameters, volume and surface area, were quantified for left and right talus bones. The geometric shape variations between the right and left talus bones were also measured using deviation analysis. Furthermore, location of asymmetry in the geometric shapes were identified. Numerical results showed that talus bones are bilaterally symmetrical in nature, and the difference between the surface area of the left and right talus bones was less than 7.5%. Similarly, the difference in the volume of both bones was less than 7.5%. Results of the three-dimensional (3D) deviation analyses demonstrated the mean deviation between left and right talus bones were in the range of -0.74 mm to 0.62 mm. It was observed that in eight of 11 subjects, the deviation in symmetry occurred in regions that are clinically less important during talus surgery. We conclude that left and right talus bones of intact human ankle joints show a strong degree of symmetry. The results of this study may have significance with respect to talus surgery, and in investigating traumatic talus injury where the geometric shape of the contralateral talus can be used as control. Cite this article: Bone Joint Res 2014;3:139-45.
Symmetry analysis of talus bone
Islam, K.; Dobbe, A.; Komeili, A.; Duke, K.; El-Rich, M.; Dhillon, S.; Adeeb, S.; Jomha, N. M.
2014-01-01
Objective The main object of this study was to use a geometric morphometric approach to quantify the left-right symmetry of talus bones. Methods Analysis was carried out using CT scan images of 11 pairs of intact tali. Two important geometric parameters, volume and surface area, were quantified for left and right talus bones. The geometric shape variations between the right and left talus bones were also measured using deviation analysis. Furthermore, location of asymmetry in the geometric shapes were identified. Results Numerical results showed that talus bones are bilaterally symmetrical in nature, and the difference between the surface area of the left and right talus bones was less than 7.5%. Similarly, the difference in the volume of both bones was less than 7.5%. Results of the three-dimensional (3D) deviation analyses demonstrated the mean deviation between left and right talus bones were in the range of -0.74 mm to 0.62 mm. It was observed that in eight of 11 subjects, the deviation in symmetry occurred in regions that are clinically less important during talus surgery. Conclusions We conclude that left and right talus bones of intact human ankle joints show a strong degree of symmetry. The results of this study may have significance with respect to talus surgery, and in investigating traumatic talus injury where the geometric shape of the contralateral talus can be used as control. Cite this article: Bone Joint Res 2014;3:139–45. PMID:24802391
NASA Astrophysics Data System (ADS)
Flynn, Clare Marie; Pickering, Kenneth E.; Crawford, James H.; Weinheimer, Andrew J.; Diskin, Glenn; Thornhill, K. Lee; Loughner, Christopher; Lee, Pius; Strode, Sarah A.
2016-12-01
To investigate the variability of in situ profile shapes under a variety of meteorological and pollution conditions, results are presented of an agglomerative hierarchical cluster analysis of the in situ O3 and NO2 profiles for each of the four campaigns of the NASA DISCOVER-AQ mission. Understanding the observed profile variability for these trace gases is useful for understanding the accuracy of the assumed profile shapes used in satellite retrieval algorithms as well as for understanding the correlation between satellite column observations and surface concentrations. The four campaigns of the DISCOVER-AQ mission took place in Maryland during July 2011, the San Joaquin Valley of California during January-February 2013, the Houston, Texas, metropolitan region during September 2013, and the Denver-Front Range region of Colorado during July-August 2014. Several distinct profile clusters emerged for the California, Texas, and Colorado campaigns for O3, indicating significant variability of O3 profile shapes, while the Maryland campaign presented only one distinct O3 cluster. In contrast, very few distinct profile clusters emerged for NO2 during any campaign for this particular clustering technique, indicating the NO2 profile behavior was relatively uniform throughout each campaign. However, changes in NO2 profile shape were evident as the boundary layer evolved through the day, but they were apparently not significant enough to yield more clusters. The degree of vertical mixing (as indicated by temperature lapse rate) associated with each cluster exerted an important influence on the shapes of the median cluster profiles for O3, as well as impacted the correlations between the associated column and surface data for each cluster for O3. The correlation analyses suggest satellites may have the best chance to relate to surface O3 under the conditions encountered during the Maryland campaign Clusters 1 and 2, which include deep, convective boundary layers and few interruptions to this connection from complex meteorology, chemical environments, or orography. The regional CMAQ model captured the shape factors for O3, and moderately well captured the NO2 shape factors, for the conditions associated with the Maryland campaign, suggesting that a regional air quality model may adequately specify a priori profile shapes for remote sensing retrievals. CMAQ shape factor profiles were not as well represented for the other regions.
Using Fractal And Morphological Criteria For Automatic Classification Of Lung Diseases
NASA Astrophysics Data System (ADS)
Vehel, Jacques Levy
1989-11-01
Medical Images are difficult to analyze by means of classical image processing tools because they are very complex and irregular. Such shapes are obtained for instance in Nuclear Medecine with the spatial distribution of activity for organs such as lungs, liver, and heart. We have tried to apply two different theories to these signals: - Fractal Geometry deals with the analysis of complex irregular shapes which cannot well be described by the classical Euclidean geometry. - Integral Geometry treats sets globally and allows to introduce robust measures. We have computed three parameters on three kinds of Lung's SPECT images: normal, pulmonary embolism and chronic desease: - The commonly used fractal dimension (FD), that gives a measurement of the irregularity of the 3D shape. - The generalized lacunarity dimension (GLD), defined as the variance of the ratio of the local activity by the mean activity, which is only sensitive to the distribution and the size of gaps in the surface. - The Favard length that gives an approximation of the surface of a 3-D shape. The results show that each slice of the lung, considered as a 3D surface, is fractal and that the fractal dimension is the same for each slice and for the three kind of lungs; as for the lacunarity and Favard length, they are clearly different for normal lungs, pulmonary embolisms and chronic diseases. These results indicate that automatic classification of Lung's SPECT can be achieved, and that a quantitative measurement of the evolution of the disease could be made.
Guo, Fuqiang; Shang, Jiajia; Zhao, Hai; Lai, Kangrong; Li, Yang; Fan, Zhongxiong; Hou, Zhenqing; Su, Guanghao
2017-12-01
As one of nanomedicine delivery systems (NDSs), drug nanocrystals exhibited an excellent anticancer effect. Recently, differences of internalization mechanisms and subcellular localization of both drug nanocrystals and small molecular free drug have drawn much attention. In this paper, paclitaxel (PTX) as a model anticancer drug was directly labeled with 4-chloro-7-nitro-1, 2, 3-benzoxadiazole (NBD-Cl) (a drug-fluorophore conjugate Ma et al. (2016) and Wang et al. (2016) [1,2] (PTX-NBD)). PTX-NBD was synthesized by nucleophilic substitution reaction of PTX with NBD-Cl in high yield and characterized by fluorescence, XRD, ESI-MS, and FT-IR analysis. Subsequently, the cube-shaped PTX-NBD nanocrystals were prepared with an antisolvent method followed by surface functionalization of SPC and MPEG-DSPE. The obtained specific shaped PTX-NBD@PC-PEG NCs had a hydrodynamic particle size of ∼50nm, excellent colloidal stability, and a high drug-loading content of ∼64%. Moreover, in comparison with free PTX-NBD and the sphere-shaped PTX-NBD nanocrystals with surface functionalization of SPC and MPEG-DSPE (PTX-NBD@PC-PEG NSs), PTX-NBD@PC-PEG NCs remarkably reduced burst release and improved cellular uptake efficiency and in vitro cancer cell killing ability. In a word, the work highlights the potential of theranostic prodrug nanocrystals based on the drug-fluorophore conjugates for cell imaging and chemotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.
Proximal metatarsal articular surface shape and the evolution of a rigid lateral foot in hominins.
Proctor, Daniel J
2013-12-01
This study quantifies the proximal articular surface shape of metatarsal (MT) 4 and MT 5 using three-dimensional morphometrics. Humans and apes are compared to test whether they have significantly different shapes that are skeletal correlates to comparative lateral foot function. In addition, shod and unshod humans are compared to test for significant differences in surface shape. The MT 4 fossils OH 8, Stw 628, and AL 333-160, and the MT 5 fossils AL 333-13, AL 333-78, OH 8, and Stw 114/115 are compared with humans and apes to assess whether they bear greater similarities to humans, which would imply a relatively stable lateral foot, or to apes, which would imply a flexible foot with a midfoot break. Apes have a convex curved MT 4 surface, and humans have a flat surface. The MT 4 fossils show greater similarity to unshod humans, suggesting a stable lateral foot. Unshod humans have a relatively flatter MT 4 surface compared with shod humans. There is much overlap in MT 5 shape between humans and apes, with more similarity between humans and Gorilla. The fossil MT 5 surfaces are generally flat, most similar to humans and Gorilla. Because of the high degree of shape overlap between humans and apes, one must use caution in interpreting lateral foot function from the proximal MT 5 surface alone. Copyright © 2013 Elsevier Ltd. All rights reserved.
Gliding locomotion of manta rays, killer whales and swordfish near the water surface.
Zhan, Jie-Min; Gong, Ye-Jun; Li, Tian-Zeng
2017-03-24
The hydrodynamic performance of the locomotive near the water surface is impacted by its geometrical shape. For marine animals, their geometrical shape is naturally selective; thus, investigating gliding locomotion of marine animal under the water surface may be able to elucidate the influence of the geometrical shape. We investigate three marine animals with specific geometries: the killer whale is fusiform shaped; the manta ray is flat and broad-winged; and the swordfish is best streamlined. The numerical results are validated by the measured drag coefficients of the manta ray model in a towing tank. The friction drag of the three target models are very similar; the body shape affected form drag coefficient is order as swordfish < killer whale < manta ray; the induced wave breaking upon the body of the manta ray performs different to killer whale and swordfish. These bio-inspired observations provide a new and in-depth understanding of the shape effects on the hydrodynamic performances near the free surface.
Local shape of pictorial relief
Koenderink, Jan; van Doorn, Andrea; Wagemans, Johan
2014-01-01
How is pictorial relief represented in visual awareness? Certainly not as a “depth map,” but perhaps as a map of local surface attitudes (Koenderink & van Doorn, 1995). Here we consider the possibility that observers might instead, or concurrently, represent local surface shape, a geometrical invariant with respect to motions. Observers judge local surface shape, in a picture of a piece of sculpture, on a five-point categorical scale. Categories are cap–ridge–saddle–rut–cup–flat, where “flat” denotes the absence of shape. We find that observers readily perform such a task, with full resolution of a shape index scale (cap–ridge–saddle–rut–cup), and with excellent self-consistency over days. There exist remarkable inter-observer differences. Over a group of 10 naive observers we find that the dispersion of judgments peaks at the saddle category. There may be a relation of this finding to the history of the topic—Alberti's (1827) omission of the saddle category in his purportedly exhaustive catalog of local surface shapes. PMID:25469225
Koenderink, Jan; van Doorn, Andrea
2015-01-01
Local solid shape applies to the surface curvature of small surface patches—essentially regions of approximately constant curvatures—of volumetric objects that are smooth volumetric regions in Euclidean 3-space. This should be distinguished from local shape in pictorial space. The difference is categorical. Although local solid shape has naturally been explored in haptics, results in vision are not forthcoming. We describe a simple experiment in which observers judge shape quality and magnitude of cinematographic presentations. Without prior training, observers readily use continuous shape index and Casorati curvature scales with reasonable resolution. PMID:27648217
Aging and the discrimination of 3-D shape from motion and binocular disparity.
Norman, J Farley; Holmin, Jessica S; Beers, Amanda M; Cheeseman, Jacob R; Ronning, Cecilia; Stethen, Angela G; Frost, Adam L
2012-10-01
Two experiments evaluated the ability of younger and older adults to visually discriminate 3-D shape as a function of surface coherence. The coherence was manipulated by embedding the 3-D surfaces in volumetric noise (e.g., for a 55 % coherent surface, 55 % of the stimulus points fell on a 3-D surface, while 45 % of the points occupied random locations within the same volume of space). The 3-D surfaces were defined by static binocular disparity, dynamic binocular disparity, and motion. The results of both experiments demonstrated significant effects of age: Older adults required more coherence (tolerated volumetric noise less) for reliable shape discrimination than did younger adults. Motion-defined and static-binocular-disparity-defined surfaces resulted in similar coherence thresholds. However, performance for dynamic-binocular-disparity-defined surfaces was superior (i.e., the observers' surface coherence thresholds were lowest for these stimuli). The results of both experiments showed that younger and older adults possess considerable tolerance to the disrupting effects of volumetric noise; the observers could reliably discriminate 3-D surface shape even when 45 % of the stimulus points (or more) constituted noise.
The effect of particle morphology on the physical stability of pharmaceutical powder mixtures
NASA Astrophysics Data System (ADS)
Swaminathan, Vidya
Pharmaceutical powder mixtures are composed of particles that physically interact, precluding the formation of random mixtures. Mixtures based on particle interactions are termed ordered mixtures. The objective of this study was to determine the effect of the morphological characteristics of the components, surface texture and shape, along with size, on the formation of stable mixtures. Morphological parameters were obtained from image analysis measurements. Surface roughness was quantified using the ratio of the perimeter of the particle to that of an ideal shape (circle or square) having the same area; shape was described using the aspect ratio. The stability of mixtures of micronized aspirin with carriers of different surface roughness was determined by measuring the extent of drug adhering to the carrier after subjecting the mixtures to vibration. A lesser extent of segregation of drug from highly textured carriers relative to smoother textured carriers was observed. This was postulated to be due to a larger concentration of surface asperities on the coarser carriers which constitute potentially strong adhesion sites. The electrostatic charge on the powders was measured; differences in the response of the mixtures to the addition of magnesium stearate were attributed to electrostatic charge effects. The effect of varying the aspect ratio of the carrier and drug on segregation in polydisperse mixtures was determined from the coefficient of variation of the drug in the mixture as a function of mixing time. Reducing the size of the carrier resulted in poor homogeneity due to weak carrier-drug interactions. The variation in drug content resulting from a change in the shape of the carriers was smaller than that caused by size differences. The segregation rate constant in mixtures having dissimilarly shaped components was larger than in mixtures having components of similar shape. The effects of magnesium stearate concentration and lubrication time on the content uniformity of polydisperse mixtures were evaluated from a full factorial experiment. The segregation response of ordered and random mixtures to the addition of magnesium stearate was compared. The moisture sorption behavior of commercial magnesium stearate and the resulting morphological changes were evaluated.
NASA Astrophysics Data System (ADS)
Schunk, P. R.; Hurd, A. J.; Brinker, C. J.
Dip coating is the primary means of depositing sol-gel films for precision optical coatings. Sols are typically multicomponent systems consisting of an inorganic phase dispersed in a solvent mixture, with each component differing in volatility and surface tension. This, together with slow coating speeds (less than 1cm/s), makes analysis of the coating process complicated; unlike most high-speed coating methods, solvent evaporation, evolving rheology, and surface tension gradients alter significantly the fluid mechanics of the deposition stage. These phenomena were studied with computer-aided predictions of the flow and species transport fields. The underlying theory involves mass, momentum, and species transport on a domain of unknown shape, with models and constitutive equations for vapor-liquid equilibria and surface tension. Due accounting is made for the unknown position of the free surface, which locates according to the capillary hydrodynamic forces and solvent loss by evaporation. Predictions of the effects of mass transfer, hydrodynamics, and surface tension gradients on final film thickness are compared with ellipsometry measurements of film thickness on a laboratory pilot coater. Although quantitative agreement is still lacking, both experiment and theory reveal that the film profile near the drying line takes on a parabolic shape.
Surface characteristics of isopod digestive gland epithelium studied by SEM.
Millaku, Agron; Leser, Vladka; Drobne, Damjana; Godec, Matjaz; Torkar, Matjaz; Jenko, Monika; Milani, Marziale; Tatti, Francesco
2010-05-01
The structure of the digestive gland epithelium of a terrestrial isopod Porcellio scaber has been investigated by conventional scanning electron microscopy (SEM), focused ion beam-scanning electron microscopy (FIB/SEM), and light microscopy in order to provide evidence on morphology of the gland epithelial surface in animals from a stock culture. We investigated the shape of cells, extrusion of lipid droplets, shape and distribution of microvilli, and the presence of bacteria on the cell surface. A total of 22 animals were investigated and we found some variability in the appearance of the gland epithelial surface. Seventeen of the animals had dome-shaped digestive gland "normal" epithelial cells, which were densely and homogeneously covered by microvilli and varying proportions of which extruded lipid droplets. On the surface of microvilli we routinely observed sparsely distributed bacteria of different shapes. Five of the 22 animals had "abnormal" epithelial cells with a significantly altered shape. In three of these animals, the cells were much smaller, partly or completely flat or sometimes pyramid-like. A thick layer of bacteria was detected on the microvillous border, and in places, the shape and size of microvilli were altered. In two animals, hypertrophic cells containing large vacuoles were observed indicating a characteristic intracellular infection. The potential of SEM in morphological investigations of epithelial surfaces is discussed.
Active shape models incorporating isolated landmarks for medical image annotation
NASA Astrophysics Data System (ADS)
Norajitra, Tobias; Meinzer, Hans-Peter; Stieltjes, Bram; Maier-Hein, Klaus H.
2014-03-01
Apart from their robustness in anatomic surface segmentation, purely surface based 3D Active Shape Models lack the ability to automatically detect and annotate non-surface key points of interest. However, annotation of anatomic landmarks is desirable, as it yields additional anatomic and functional information. Moreover, landmark detection might help to further improve accuracy during ASM segmentation. We present an extension of surface-based 3D Active Shape Models incorporating isolated non-surface landmarks. Positions of isolated and surface landmarks are modeled conjoint within a point distribution model (PDM). Isolated landmark appearance is described by a set of haar-like features, supporting local landmark detection on the PDM estimates using a kNN-Classi er. Landmark detection was evaluated in a leave-one-out cross validation on a reference dataset comprising 45 CT volumes of the human liver after shape space projection. Depending on the anatomical landmark to be detected, our experiments have shown in about 1/4 up to more than 1/2 of all test cases a signi cant improvement in detection accuracy compared to the position estimates delivered by the PDM. Our results encourage further research with regard to the combination of shape priors and machine learning for landmark detection within the Active Shape Model Framework.
Anatomical curve identification
Bowman, Adrian W.; Katina, Stanislav; Smith, Joanna; Brown, Denise
2015-01-01
Methods for capturing images in three dimensions are now widely available, with stereo-photogrammetry and laser scanning being two common approaches. In anatomical studies, a number of landmarks are usually identified manually from each of these images and these form the basis of subsequent statistical analysis. However, landmarks express only a very small proportion of the information available from the images. Anatomically defined curves have the advantage of providing a much richer expression of shape. This is explored in the context of identifying the boundary of breasts from an image of the female torso and the boundary of the lips from a facial image. The curves of interest are characterised by ridges or valleys. Key issues in estimation are the ability to navigate across the anatomical surface in three-dimensions, the ability to recognise the relevant boundary and the need to assess the evidence for the presence of the surface feature of interest. The first issue is addressed by the use of principal curves, as an extension of principal components, the second by suitable assessment of curvature and the third by change-point detection. P-spline smoothing is used as an integral part of the methods but adaptations are made to the specific anatomical features of interest. After estimation of the boundary curves, the intermediate surfaces of the anatomical feature of interest can be characterised by surface interpolation. This allows shape variation to be explored using standard methods such as principal components. These tools are applied to a collection of images of women where one breast has been reconstructed after mastectomy and where interest lies in shape differences between the reconstructed and unreconstructed breasts. They are also applied to a collection of lip images where possible differences in shape between males and females are of interest. PMID:26041943
Numerical Procedures for Analysis of Structural Shells.
1981-03-01
40 freedoms. The basic freedom pattern contains two freedoms at each of 16 shell surface nodes and one freedom at each of 8 midsurface nodes, again for...schene it is possible to make the midsurface strain vanish at all integration points if the inplane displacemnts are represented by cubic shape
NASA Astrophysics Data System (ADS)
Jain, Shefali; Chawla, Parul; Sharma, Shailesh Narain; Singh, Dinesh; Vijayan, N.
2018-07-01
This work reports the synthesis of varied shaped Cu2ZnSnS4 (CZTS) nano inks in a most stable kesterite phase via a hot injection colloidal route. CZTS nanoparticles of varied shape were synthesized by using various capping ligands with the introduction of butylamine as a new capping ligand and two different sulfur precursors respectively. The shape of the as-synthesized kesterite CZTS nanocrystals can be well controlled in the form of nanofibers, spherical nanoparticles, nano hexagons, nanotriangles, and nanodiscs. A detailed analysis of the effects of various capping ligand and sulfur source on reaction conditions to obtain pure phase kesterite CZTS nanocrystals for different shapes is explained using LaMer's diagram. It has been found that the choice of sulfur precursor also plays an important role in determining the symmetry and orientation of the plane of the CZTS nanocrystals. Due to different morphology and capping ligands present on the surface, diverse surface properties were obtained which was confirmed by contact angle measurements. The variation in the band gap was also found with changes in morphology of kesterite phased CZTS nanoparticles. Due to variations obtained in band gap, changes in I-V characteristics were also observed which may leads different CZTS nanoparticles to have their potential applications in different regime other than photovoltaics like sensors, photocatalysis etc.
NASA Astrophysics Data System (ADS)
Yi, Faliu; Moon, Inkyu; Lee, Yeon H.
2015-01-01
Counting morphologically normal cells in human red blood cells (RBCs) is extremely beneficial in the health care field. We propose a three-dimensional (3-D) classification method of automatically determining the morphologically normal RBCs in the phase image of multiple human RBCs that are obtained by off-axis digital holographic microscopy (DHM). The RBC holograms are first recorded by DHM, and then the phase images of multiple RBCs are reconstructed by a computational numerical algorithm. To design the classifier, the three typical RBC shapes, which are stomatocyte, discocyte, and echinocyte, are used for training and testing. Nonmain or abnormal RBC shapes different from the three normal shapes are defined as the fourth category. Ten features, including projected surface area, average phase value, mean corpuscular hemoglobin, perimeter, mean corpuscular hemoglobin surface density, circularity, mean phase of center part, sphericity coefficient, elongation, and pallor, are extracted from each RBC after segmenting the reconstructed phase images by using a watershed transform algorithm. Moreover, four additional properties, such as projected surface area, perimeter, average phase value, and elongation, are measured from the inner part of each cell, which can give significant information beyond the previous 10 features for the separation of the RBC groups; these are verified in the experiment by the statistical method of Hotelling's T-square test. We also apply the principal component analysis algorithm to reduce the dimension number of variables and establish the Gaussian mixture densities using the projected data with the first eight principal components. Consequently, the Gaussian mixtures are used to design the discriminant functions based on Bayesian decision theory. To improve the performance of the Bayes classifier and the accuracy of estimation of its error rate, the leaving-one-out technique is applied. Experimental results show that the proposed method can yield good results for calculating the percentage of each typical normal RBC shape in a reconstructed phase image of multiple RBCs that will be favorable to the analysis of RBC-related diseases. In addition, we show that the discrimination performance for the counting of normal shapes of RBCs can be improved by using 3-D features of an RBC.
NASA Astrophysics Data System (ADS)
Romanova, V.; Balokhonov, R.; Batukhtina, E.; Zinovieva, O.; Bezmozgiy, I.
2015-10-01
The results of a numerical analysis of the mesoscale surface roughening in a polycrystalline aluminum alloy exposed to uniaxial tension are presented. A 3D finite-element model taking an explicit account of grain structure is developed. The model describes a constitutive behavior of the material on the grain scale, using anisotropic elasticity and crystal plasticity theory. The effects of the grain shape and texture on the deformation-induced roughening are investigated. Calculation results have shown that surface roughness is much higher and develops at the highest rate in a polycrystal with equiaxed grains where both the micro- and mesoscale surface displacements are observed.
Accuracy in breast shape alignment with 3D surface fitting algorithms.
Riboldi, Marco; Gierga, David P; Chen, George T Y; Baroni, Guido
2009-04-01
Surface imaging is in use in radiotherapy clinical practice for patient setup optimization and monitoring. Breast alignment is accomplished by searching for a tentative spatial correspondence between the reference and daily surface shape models. In this study, the authors quantify whole breast shape alignment by relying on texture features digitized on 3D surface models. Texture feature localization was validated through repeated measurements in a silicone breast phantom, mounted on a high precision mechanical stage. Clinical investigations on breast shape alignment included 133 fractions in 18 patients treated with accelerated partial breast irradiation. The breast shape was detected with a 3D video based surface imaging system so that breathing was compensated. An in-house algorithm for breast alignment, based on surface fitting constrained by nipple matching (constrained surface fitting), was applied. Results were compared with a commercial software where no constraints are utilized (unconstrained surface fitting). Texture feature localization was validated within 2 mm in each anatomical direction. Clinical data show that unconstrained surface fitting achieves adequate accuracy in most cases, though nipple mismatch is considerably higher than residual surface distances (3.9 mm vs 0.6 mm on average). Outliers beyond 1 cm can be experienced as the result of a degenerate surface fit, where unconstrained surface fitting is not sufficient to establish spatial correspondence. In the constrained surface fitting algorithm, average surface mismatch within 1 mm was obtained when nipple position was forced to match in the [1.5; 5] mm range. In conclusion, optimal results can be obtained by trading off the desired overall surface congruence vs matching of selected landmarks (constraint). Constrained surface fitting is put forward to represent an improvement in setup accuracy for those applications where whole breast positional reproducibility is an issue.
Forensic analysis of rockfall scars
NASA Astrophysics Data System (ADS)
de Vilder, Saskia J.; Rosser, Nick J.; Brain, Matthew J.
2017-10-01
We characterise and analyse the detachment (scar) surfaces of rockfalls to understand the mechanisms that underpin their failure. Rockfall scars are variously weathered and comprised of both discontinuity release surfaces and surfaces indicative of fracturing through zones of previously intact rock, known as rock bridges. The presence of rock bridges and pre-existing discontinuities is challenging to quantify due to the difficulty in determining discontinuity persistence below the surface of a rock slope. Rock bridges form an important control in holding blocks onto rockslopes, with their frequency, extent and location commonly modelled from the surface exposure of daylighting discontinuities. We explore an alternative approach to assessing their role, by characterising failure scars. We analyse a database of multiple rockfall scar surfaces detailing the areal extent, shape, and location of broken rock bridges and weathered surfaces. Terrestrial laser scanning and gigapixel imagery were combined to record the detailed texture and surface morphology. From this, scar surfaces were mapped via automated classification based on RGB pixel values. Our analysis of the resulting data from scars on the North Yorkshire coast (UK) indicates a wide variation in both weathering and rock bridge properties, controlled by lithology and associated rock mass structure. Importantly, the proportion of rock bridges in a rockfall failure surface does not increase with failure size. Rather larger failures display fracturing through multiple rock bridges, and in contrast smaller failures fracture occurs only through a single critical rock bridge. This holds implications for how failure mechanisms change with rockfall size and shape. Additionally, the location of rock bridges with respect to the geometry of an incipient rockfall is shown to determine failure mode. Weathering can occur both along discontinuity surfaces and previously broken rock bridges, indicating the sequential stages of progressively detaching rockfall. Our findings have wider implications for hazard assessment where rock slope stability is dependent on the nature of rock bridges, how this is accounted for in slope stability modelling, and the implications of rock bridges on long-term rock slope evolution.
Conveying 3D shape with texture: recent advances and experimental findings
NASA Astrophysics Data System (ADS)
Interrante, Victoria; Kim, Sunghee; Hagh-Shenas, Haleh
2002-06-01
If we could design the perfect texture pattern to apply to any smooth surface in order to enable observers to more accurately perceive the surface's shape in a static monocular image taken from an arbitrary generic viewpoint under standard lighting conditions, what would the characteristics of that texture pattern be? In order to gain insight into this question, our group has developed an efficient algorithm for synthesizing a high resolution texture pattern, derived from a provided 2D sample, over an arbitrary doubly curved surface in such a way that the orientation of the texture is constrained to follow a specified underlying vector field over the surface, at a per-pixel level, without evidence of seams or projective distortion artifacts. In this paper, we report the findings of a recent experiment in which we attempt to use this new texture synthesis method to assess the shape information carrying capacity of two different types of directional texture patterns (unidirectional and bi-directional) under three different orientation conditions (following the first principal direction, following a constant uniform direction, or swirling sinusoidally in the surface). In a four alternative forced choice task, we asked participants to identify the quadrant in which two B-spline surfaces, illuminated from different random directions and simultaneously and persistently displayed, differed in their shapes. We found, after all subjects had gained sufficient training in the task, that accuracy increased fairly consistently with increasing magnitude of surface shape disparity, but that the characteristics of this increase differed under the different texture orientation conditions. Subjects were able to more reliably perceive smaller shape differences when the surfaces were textured with a pattern whose orientation followed one of the principal directions than when the surfaces were textured with a pattern that either gradually swirled in the surface or followed a constant uniform direction in the tangent plane regardless of the surface shape characteristics. These findings appear to support our hypothesis that anisotropic textures aligned with the first principal direction may facilitate shape perception, for a generic view, by making more, reliable information about the extent of the surface curvature explicitly available to the observer than would be available if the texture pattern were oriented in any other way.
Photogrammetric Verification of Fiber Optic Shape Sensors on Flexible Aerospace Structures
NASA Technical Reports Server (NTRS)
Moore, Jason P.; Rogge, Matthew D.; Jones, Thomas W.
2012-01-01
Multi-core fiber (MCF) optic shape sensing offers the possibility of providing in-flight shape measurements of highly flexible aerospace structures and control surfaces for such purposes as gust load alleviation, flutter suppression, general flight control and structural health monitoring. Photogrammetric measurements of surface mounted MCF shape sensing cable can be used to quantify the MCF installation path and verify measurement methods.
Sparse approximation of currents for statistics on curves and surfaces.
Durrleman, Stanley; Pennec, Xavier; Trouvé, Alain; Ayache, Nicholas
2008-01-01
Computing, processing, visualizing statistics on shapes like curves or surfaces is a real challenge with many applications ranging from medical image analysis to computational geometry. Modelling such geometrical primitives with currents avoids feature-based approach as well as point-correspondence method. This framework has been proved to be powerful to register brain surfaces or to measure geometrical invariants. However, if the state-of-the-art methods perform efficiently pairwise registrations, new numerical schemes are required to process groupwise statistics due to an increasing complexity when the size of the database is growing. Statistics such as mean and principal modes of a set of shapes often have a heavy and highly redundant representation. We propose therefore to find an adapted basis on which mean and principal modes have a sparse decomposition. Besides the computational improvement, this sparse representation offers a way to visualize and interpret statistics on currents. Experiments show the relevance of the approach on 34 sets of 70 sulcal lines and on 50 sets of 10 meshes of deep brain structures.
NASA Technical Reports Server (NTRS)
Papadakis, M.; Breer, M.; Craig, N.; Liu, X.
1994-01-01
An experimental method has been developed to determine the water droplet impingement characteristics on two- and three-dimensional aircraft surfaces. The experimental water droplet impingement data are used to validate particle trajectory analysis codes that are used in aircraft icing analyses and engine inlet particle separator analyses. The aircraft surface is covered with thin strips of blotter paper in areas of interest. The surface is then exposed to an airstream that contains a dyed-water spray cloud. The water droplet impingement data are extracted from the dyed blotter paper strips by measuring the optical reflectance of each strip with an automated reflectometer. Experimental impingement efficiency data represented for a NLF (1)-0414 airfoil, a swept MS (1)-0317 airfoil, a Boeing 737-300 engine inlet model, two simulated ice shapes and a swept NACA 0012 wingtip. Analytical impingement efficiency data are also presented for the NLF (1)-0414 airfoil and the Boeing 737-300 engine inlet model.
Ge growth on vicinal si(001) surfaces: island's shape and pair interaction versus miscut angle.
Persichetti, L; Sgarlata, A; Fanfoni, M; Balzarotti, A
2011-10-01
A complete description of Ge growth on vicinal Si(001) surfaces is provided. The distinctive mechanisms of the epitaxial growth process on vicinal surfaces are clarified from the very early stages of Ge deposition to the nucleation of 3D islands. By interpolating high-resolution scanning tunneling microscopy measurements with continuum elasticity modeling, we assess the dependence of island's shape and elastic interaction on the substrate misorientation. Our results confirm that vicinal surfaces offer an additional degree of control over the shape and symmetry of self-assembled nanostructures.
NASA Astrophysics Data System (ADS)
Negi, Deepchand Singh; Pattamatta, Arvind
2015-04-01
The present study deals with shape optimization of dimples on the target surface in multi-jet impingement heat transfer. Bezier polynomial formulation is incorporated to generate profile shapes for the dimple profile generation and a multi-objective optimization is performed. The optimized dimple shape exhibits higher local Nusselt number values compared to the reference hemispherical dimpled plate optimized shape which can be used to alleviate local temperature hot spots on target surface.
High-resolution liquid patterns via three-dimensional droplet shape control.
Raj, Rishi; Adera, Solomon; Enright, Ryan; Wang, Evelyn N
2014-09-25
Understanding liquid dynamics on surfaces can provide insight into nature's design and enable fine manipulation capability in biological, manufacturing, microfluidic and thermal management applications. Of particular interest is the ability to control the shape of the droplet contact area on the surface, which is typically circular on a smooth homogeneous surface. Here, we show the ability to tailor various droplet contact area shapes ranging from squares, rectangles, hexagons, octagons, to dodecagons via the design of the structure or chemical heterogeneity on the surface. We simultaneously obtain the necessary physical insights to develop a universal model for the three-dimensional droplet shape by characterizing the droplet side and top profiles. Furthermore, arrays of droplets with controlled shapes and high spatial resolution can be achieved using this approach. This liquid-based patterning strategy promises low-cost fabrication of integrated circuits, conductive patterns and bio-microarrays for high-density information storage and miniaturized biochips and biosensors, among others.
A novel model for simulating the racing effect in capillary-driven underfill process in flip chip
NASA Astrophysics Data System (ADS)
Zhu, Wenhui; Wang, Kanglun; Wang, Yan
2018-04-01
Underfill is typically applied in flip chips to increase the reliability of the electronic packagings. In this paper, the evolution of the melt-front shape of the capillary-driven underfill flow is studied through 3D numerical analysis. Two different models, the prevailing surface force model and the capillary model based on the wetted wall boundary condition, are introduced to test their applicability, where level set method is used to track the interface of the two phase flow. The comparison between the simulation results and experimental data indicates that, the surface force model produces better prediction on the melt-front shape, especially in the central area of the flip chip. Nevertheless, the two above models cannot simulate properly the racing effect phenomenon that appears during underfill encapsulation. A novel ‘dynamic pressure boundary condition’ method is proposed based on the validated surface force model. Utilizing this approach, the racing effect phenomenon is simulated with high precision. In addition, a linear relationship is derived from this model between the flow front location at the edge of the flip chip and the filling time. Using the proposed approach, the impact of the underfill-dispensing length on the melt-front shape is also studied.
Cho, Sung-Yong; Huh, Yoon-Hyuk; Park, Chan-Jin; Cho, Lee-Ra
2016-01-01
This study investigated stress distribution in four different implant-abutment interface conditions in the internal tapered connection implant system. Four different implant diameters (3.5 mm, 4.0 mm, 4.5 mm, and 5.0 mm) and two abutment types (hexagonal and conical) were simulated. Four unique implant-abutment interface conditions were assumed based on wall thickness, mating surface length, distance to the vertical stop, and abutment shape. Axial and oblique loading was applied during abutment screw preload, and the Von Mises stresses were measured at the implant-abutment and abutment-screw interfaces. The implant-abutment interface stress decreased as the wall thickness increased. As the mating surface increased, the stress distribution trended downward, and when the distance to the implant vertical stop was 0 μm, the Von Mises stress was extremely high at the vertical stop. Despite their different shapes, the abutments showed similar stress distributions. However, the maximum Von Mises stress was higher in the conical connection than in the hexagonal connection, particularly at the contralateral side to loading. To decrease the stress distribution at the implant-abutment interface, the implant wall thickness, mating surface contact length, distance to the vertical stop, and abutment shape should be carefully considered.
Gold nanostar synthesis with a silver seed mediated growth method.
Kereselidze, Zurab; Romero, Victor H; Peralta, Xomalin G; Santamaria, Fidel
2012-01-15
The physical, chemical and optical properties of nano-scale colloids depend on their material composition, size and shape. There is a great interest in using nano-colloids for photo-thermal ablation, drug delivery and many other biomedical applications. Gold is particularly used because of its low toxicity. A property of metal nano-colloids is that they can have a strong surface plasmon resonance. The peak of the surface plasmon resonance mode depends on the structure and composition of the metal nano-colloids. Since the surface plasmon resonance mode is stimulated with light there is a need to have the peak absorbance in the near infrared where biological tissue transmissivity is maximal. We present a method to synthesize star shaped colloidal gold, also known as star shaped nanoparticles or nanostars. This method is based on a solution containing silver seeds that are used as the nucleating agent for anisotropic growth of gold colloids. Scanning electron microscopy (SEM) analysis of the resulting gold colloid showed that 70 % of the nanostructures were nanostars. The other 30 % of the particles were amorphous clusters of decahedra and rhomboids. The absorbance peak of the nanostars was detected to be in the near infrared (840 nm). Thus, our method produces gold nanostars suitable for biomedical applications, particularly for photo-thermal ablation.
NASA Technical Reports Server (NTRS)
Pototzky, Anthony S.
2010-01-01
A methodology is described for generating first-order plant equations of motion for aeroelastic and aeroservoelastic applications. The description begins with the process of generating data files representing specialized mode-shapes, such as rigid-body and control surface modes, using both PATRAN and NASTRAN analysis. NASTRAN executes the 146 solution sequence using numerous Direct Matrix Abstraction Program (DMAP) calls to import the mode-shape files and to perform the aeroelastic response analysis. The aeroelastic response analysis calculates and extracts structural frequencies, generalized masses, frequency-dependent generalized aerodynamic force (GAF) coefficients, sensor deflections and load coefficients data as text-formatted data files. The data files are then re-sequenced and re-formatted using a custom written FORTRAN program. The text-formatted data files are stored and coefficients for s-plane equations are fitted to the frequency-dependent GAF coefficients using two Interactions of Structures, Aerodynamics and Controls (ISAC) programs. With tabular files from stored data created by ISAC, MATLAB generates the first-order aeroservoelastic plant equations of motion. These equations include control-surface actuator, turbulence, sensor and load modeling. Altitude varying root-locus plot and PSD plot results for a model of the F-18 aircraft are presented to demonstrate the capability.
Reconstructing surface wave profiles from reflected acoustic pulses using multiple receivers.
Walstead, Sean P; Deane, Grant B
2014-08-01
Surface wave shapes are determined by analyzing underwater reflected acoustic signals collected at multiple receivers. The transmitted signals are of nominal frequency 300 kHz and are reflected off surface gravity waves that are paddle-generated in a wave tank. An inverse processing algorithm reconstructs 50 surface wave shapes over a length span of 2.10 m. The inverse scheme uses a broadband forward scattering model based on Kirchhoff's diffraction formula to determine wave shapes. The surface reconstruction algorithm is self-starting in that source and receiver geometry and initial estimates of wave shape are determined from the same acoustic signals used in the inverse processing. A high speed camera provides ground-truth measurements of the surface wave field for comparison with the acoustically derived surface waves. Within Fresnel zone regions the statistical confidence of the inversely optimized surface profile exceeds that of the camera profile. Reconstructed surfaces are accurate to a resolution of about a quarter-wavelength of the acoustic pulse only within Fresnel zones associated with each source and receiver pair. Multiple isolated Fresnel zones from multiple receivers extend the spatial extent of accurate surface reconstruction while overlapping Fresnel zones increase confidence in the optimized profiles there.
Pulmonary lobe segmentation based on ridge surface sampling and shape model fitting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, James C., E-mail: jross@bwh.harvard.edu; Surgical Planning Lab, Brigham and Women's Hospital, Boston, Massachusetts 02215; Laboratory of Mathematics in Imaging, Brigham and Women's Hospital, Boston, Massachusetts 02126
2013-12-15
Purpose: Performing lobe-based quantitative analysis of the lung in computed tomography (CT) scans can assist in efforts to better characterize complex diseases such as chronic obstructive pulmonary disease (COPD). While airways and vessels can help to indicate the location of lobe boundaries, segmentations of these structures are not always available, so methods to define the lobes in the absence of these structures are desirable. Methods: The authors present a fully automatic lung lobe segmentation algorithm that is effective in volumetric inspiratory and expiratory computed tomography (CT) datasets. The authors rely on ridge surface image features indicating fissure locations and amore » novel approach to modeling shape variation in the surfaces defining the lobe boundaries. The authors employ a particle system that efficiently samples ridge surfaces in the image domain and provides a set of candidate fissure locations based on the Hessian matrix. Following this, lobe boundary shape models generated from principal component analysis (PCA) are fit to the particles data to discriminate between fissure and nonfissure candidates. The resulting set of particle points are used to fit thin plate spline (TPS) interpolating surfaces to form the final boundaries between the lung lobes. Results: The authors tested algorithm performance on 50 inspiratory and 50 expiratory CT scans taken from the COPDGene study. Results indicate that the authors' algorithm performs comparably to pulmonologist-generated lung lobe segmentations and can produce good results in cases with accessory fissures, incomplete fissures, advanced emphysema, and low dose acquisition protocols. Dice scores indicate that only 29 out of 500 (5.85%) lobes showed Dice scores lower than 0.9. Two different approaches for evaluating lobe boundary surface discrepancies were applied and indicate that algorithm boundary identification is most accurate in the vicinity of fissures detectable on CT. Conclusions: The proposed algorithm is effective for lung lobe segmentation in absence of auxiliary structures such as vessels and airways. The most challenging cases are those with mostly incomplete, absent, or near-absent fissures and in cases with poorly revealed fissures due to high image noise. However, the authors observe good performance even in the majority of these cases.« less
Method and Apparatus for a Leading Edge Slat on a Wing of an Aircraft
NASA Technical Reports Server (NTRS)
Pitt, Dale M. (Inventor); Eckstein, Nicholas Stephen (Inventor)
2013-01-01
A method and apparatus for managing a flight control surface system. A leading edge device is moved on a leading edge from an undeployed position to a deployed position. The leading edge device has an outer surface, an inner surface, and a deformable fairing attached to the leading edge device such that the deformable fairing covers at least a portion of the inner surface. The deformable fairing changes from a deformed shape to an original shape when the leading edge device is moved to the deployed position. The leading edge device is then moved from the deployed position to the undeployed position, wherein the deformable fairing changes from the original shape to the deformed shape.
High-sensitivity four-layer polymer fiber-optic evanescent wave sensor.
Xin, Xin; Zhong, Nianbing; Liao, Qiang; Cen, Yanyan; Wu, Ruohua; Wang, Zhengkun
2017-05-15
We present a novel four-layer structure consisting of bottom, second, third, and surface layers in the sensing region, for a D-shaped step-index fiber-optic evanescent wave (FOEW) sensor. To reduce the background noise, the surface of the longitudinal section in the D-shaped region is coated with a light-absorbing film. We check the morphologies of the second and surface layers, examine the refractive indices (RIs) of the third and surface layers, and analyze the composition of the surface layer. We also investigate the effects of the thicknesses and RIs of the third and surface layers and the LA film on the light transmission and sensitivity of the FOEW sensors. The results highlight the very good sensitivity of the proposed FOEW sensor with a four-layer structure, which reached -0.077 (μg/l) -1 in the detection of the target antibody; the sensitivity of the novel FOEW sensor was 7.60 and 1.52 times better than that of a conventional sensor with a core-cladding structure and an FOEW sensor with a three-layer structure doped with GeO 2 . The applications of this high-sensitivity FOEW sensor can be extended to biodefense, disease diagnosis, and biomedical and biochemical analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Shape Analysis and Deployment of the ExaVolt Antenna
NASA Astrophysics Data System (ADS)
Baginski, Frank; Zhao, Kaiyu; Furer, Joshua; Landay, Justin; Bailoor, Shantanu; Gorham, Peter; Varner, Gary; Miki, Christian; Hill, Brian; Schoorlemmer, Harm; Nguyen, Liem; Romero-Wolf, Andrew; Liewer, Kurt; Sauder, Jonathan; Brakke, Kenneth; Beatty, Jim; Connolly, Amy; Allison, Patrick; Pfendner, Carl; Dailey, Brian; Fairbrother, Debra; Said, Magdi; Lang, Steven; Young, Leyland
The ExaVolt Antenna (EVA) is the next generation balloon-borne ultra-high energy (UHE) particle observatory under development for NASA’s suborbital super-pressure balloon program in Antarctica. Unlike a typical mission where the balloon lifts a gondola that carries the primary scientific instrument, the EVA mission is a first-of-its-kind in that the balloon itself is part of the science instrument. Specifically, a toroidal RF reflector is mounted onto the outside surface of a superpressure balloon (SPB) and a feed antenna is suspended inside the balloon, creating a high-gain antenna system with a synoptic view of the Antarctic ice sheet. The EVA mission presents a number of technical challenges. For example, can a stowed feed antenna be inserted through an opening in the top-plate? Can the feed antenna be deployed during the ascent? Once float altitude is achieved, how might small shape changes in the balloon shape affect the antenna performance over the life of the EVA mission? The EVA team utilized a combination of testing with a 1/20-scale physical model, mathematical modeling and numerical simulations to probe these and related questions. While the problems are challenging, they are solvable with current technology and expertise. Experiments with a 1/20-scale EVA physical model outline a pathway for inserting a stowed feed into a SPB. Analysis indicates the EVA system will ascend, deploy and assume a stable configuration at float altitude. Nominal shape changes in an Antarctic SPB are sufficiently small to allow the use of the surface of the balloon as a high-gain reflector.
Guisbiers, Grégory; Mendoza-Cruz, Rubén; Bazán-Díaz, Lourdes; Velázquez-Salazar, J Jesús; Mendoza-Perez, Rafael; Robledo-Torres, José Antonio; Rodriguez-Lopez, José-Luis; Montejano-Carrizales, Juan Martín; Whetten, Robert L; José-Yacamán, Miguel
2016-01-26
The alloy Au-Ag system is an important noble bimetallic phase, both historically (as "Electrum") and now especially in nanotechnology, as it is applied in catalysis and nanomedicine. To comprehend the structural characteristics and the thermodynamic stability of this alloy, a knowledge of its phase diagram is required that considers explicitly its size and shape (morphology) dependence. However, as the experimental determination remains quite challenging at the nanoscale, theoretical guidance can provide significant advantages. Using a regular solution model within a nanothermodynamic approach to evaluate the size effect on all the parameters (melting temperature, melting enthalpy, and interaction parameters in both phases), the nanophase diagram is predicted. Besides an overall shift downward, there is a "tilting" effect on the solidus-liquidus curves for some particular shapes exposing the (100) and (110) facets (cube, rhombic dodecahedron, and cuboctahedron). The segregation calculation reveals the preferential presence of silver at the surface for all the polyhedral shapes considered, in excellent agreement with the latest transmission electron microscopy observations and energy dispersive spectroscopy analysis. By reviewing the nature of the surface segregated element of different bimetallic nanoalloys, two surface segregation rules, based on the melting temperatures and surface energies, are deduced. Finally, the optical properties of Au-Ag nanoparticles, calculated within the discrete dipole approximation, show the control that can be achieved in the tuning of the local surface plasmon resonance, depending of the alloy content, the chemical ordering, the morphology, the size of the nanoparticle, and the nature of the surrounding environment.
Shape Complementarity of Protein-Protein Complexes at Multiple Resolutions
Zhang, Qing; Sanner, Michel; Olson, Arthur J.
2010-01-01
Biological complexes typically exhibit intermolecular interfaces of high shape complementarity. Many computational docking approaches use this surface complementarity as a guide in the search for predicting the structures of protein-protein complexes. Proteins often undergo conformational changes in order to create a highly complementary interface when associating. These conformational changes are a major cause of failure for automated docking procedures when predicting binding modes between proteins using their unbound conformations. Low resolution surfaces in which high frequency geometric details are omitted have been used to address this problem. These smoothed, or blurred, surfaces are expected to minimize the differences between free and bound structures, especially those that are due to side chain conformations or small backbone deviations. In spite of the fact that this approach has been used in many docking protocols, there has yet to be a systematic study of the effects of such surface smoothing on the shape complementarity of the resulting interfaces. Here we investigate this question by computing shape complementarity of a set of 66 protein-protein complexes represented by multi-resolution blurred surfaces. Complexed and unbound structures are available for these protein-protein complexes. They are a subset of complexes from a non-redundant docking benchmark selected for rigidity (i.e. the proteins undergo limited conformational changes between their bound and unbound states). In this work we construct the surfaces by isocontouring a density map obtained by accumulating the densities of Gaussian functions placed at all atom centers of the molecule. The smoothness or resolution is specified by a Gaussian fall-off coefficient, termed “blobbyness”. Shape complementarity is quantified using a histogram of the shortest distances between two proteins' surface mesh vertices for both the crystallographic complexes and the complexes built using the protein structures in their unbound conformation. The histograms calculated for the bound complex structures demonstrate that medium resolution smoothing (blobbyness=−0.9) can reproduce about 88% of the shape complementarity of atomic resolution surfaces. Complexes formed from the free component structures show a partial loss of shape complementarity (more overlaps and gaps) with the atomic resolution surfaces. For surfaces smoothed to low resolution (blobbyness=−0.3), we find more consistency of shape complementarity between the complexed and free cases. To further reduce bad contacts without significantly impacting the good contacts we introduce another blurred surface, in which the Gaussian densities of flexible atoms are reduced. From these results we discuss the use of shape complementarity in protein-protein docking. PMID:18837463
Low-Temperature Sterilization with Surface-Wave-Excited Oxygen Plasma
NASA Astrophysics Data System (ADS)
Nagatsu, Masaaki; Terashita, Fumie; Koide, Yukio
2003-07-01
Low-temperature plasma sterilization has been experimentally demonstrated using surface-wave plasma excited by a 2.45 GHz microwave. With the spores of Bacillus stearothermophilus and Bacillus subtilis as biological indicators, we have carried out the plasma sterilization experiments by varying the irradiation period of oxygen plasma discharges. It was experimentally confirmed that the spores with a population of 1.5 × 106 were sterilized by irradiating them with oxygen plasma discharges generated with a microwave power of 700 W at a pressure of 60-80 mTorr for 3 min or longer. From the scanning electron microscopy (SEM) analysis of the spores, we found that the sterilized spores clearly had different sizes and shapes compared with those before the plasma irradiation. Furthermore, present experiments suggested that the changes of spore shapes were mainly attributed to the reactive interactions with oxygen radicals.
Frey, W; Brink, J; Schief, W R; Chiu, W; Vogel, V
1998-01-01
Coordination of individual histidine residues located on a protein surface to metal-chelated lipid monolayers is a potentially general method for crystallizing proteins in two dimensions. It was shown recently by Brewster angle microscopy (BAM) that the model protein streptavidin binds via its surface histidines to Cu-DOIDA lipid monolayers, and aggregates into regularly shaped domains that have the appearance of crystals. We have used electron microscopy to confirm that the domains are indeed crystalline with lattice parameters similar to those of the same protein crystallized beneath biotinylated lipid monolayers. Although BAM demonstrates that the two-dimensional protein crystals grown via metal chelation are distinct from the biotin-bound crystals in both microscopic shape and thermodynamic behavior, the two crystal types show similar density projections and the same plane group symmetry. PMID:9591691
Jaferzadeh, Keyvan; Moon, Inkyu
2015-11-01
Quantitative phase information obtained by digital holographic microscopy (DHM) can provide new insight into the functions and morphology of single red blood cells (RBCs). Since the functionality of a RBC is related to its three-dimensional (3-D) shape, quantitative 3-D geometric changes induced by storage time can help hematologists realize its optimal functionality period. We quantitatively investigate RBC 3-D geometric changes in the storage lesion using DHM. Our experimental results show that the substantial geometric transformation of the biconcave-shaped RBCs to the spherocyte occurs due to RBC storage lesion. This transformation leads to progressive loss of cell surface area, surface-to-volume ratio, and functionality of RBCs. Furthermore, our quantitative analysis shows that there are significant correlations between chemical and morphological properties of RBCs.
Dynamic contact guidance of migrating cells
NASA Astrophysics Data System (ADS)
Losert, Wolfgang; Sun, Xiaoyu; Guven, Can; Driscoll, Meghan; Fourkas, John
2014-03-01
We investigate the effects of nanotopographical surfaces on the cell migration and cell shape dynamics of the amoeba Dictyostelium discoideum. Amoeboid motion exhibits significant contact guidance along surfaces with nanoscale ridges or grooves. We show quantitatively that nanoridges spaced 1.5 μm apart exhibit the greatest contact guidance efficiency. Using principal component analysis, we characterize the dynamics of the cell shape modulated by the coupling between the cell membrane and ridges. We show that motion parallel to the ridges is enhanced, while the turning, at the largest spatial scales, is suppressed. Since protrusion dynamics are principally governed by actin dynamics, we imaged the actin polymerization of cells on ridges. We found that actin polymerization occurs preferentially along nanoridges in a ``monorail'' like fashion. The ridges then provide us with a tool to study actin dynamics in an effectively reduced dimensional system.
Rhizoid differentiation of Spirogyra is regulated by substratum.
Ikegaya, Hisato; Sonobe, Seiji; Murakami, Kohei; Shimmen, Teruo
2008-11-01
Some species of Spirogyra can anchor to substratum with rod- or rosette-shaped rhizoid (hapteron). The rhizoid differentiation can be induced by cutting algal filaments in a laboratory. Requirement of contact stimulation for rhizoid differentiation has been reported (Nagata in Plant Cell Physiol 14:531-541, 1973a). However, the control mechanism of rhizoid morphology has not been elucidated. When cut filaments were incubated on the glass surface, start of tip growth, secretion of lectin-binding material and callose synthesis were observed. In the absence of contact to the glass surface, none of above phenomena was induced. Systematic analysis showed that rosette-shaped rhizoid was formed only on the hydrophobic substratum. On the hydrophobic substratum, both Bandeiraea (Griffonia) simplicifolia lectin and jacalin strongly stained the rhizoids. On the hydrophilic substratum, however, only Bandeiraea (Griffonia) simplicifolia lectin strongly stained the rhizoids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niu, Z.; Yang, L.; Kabisatpathy, S.
2009-03-24
A sol-gel process has been developed to incorporate bionanoparticles, such as turnip yellow mosaic virus, cowpea mosaic virus, tobacco mosaic virus, and ferritin into silica, while maintaining the integrity and morphology of the particles. The structures of the resulting materials were characterized by transmission electron microscopy, small angle X-ray scattering, and N{sub 2} adsorption-desorption analysis. The results show that the shape and surface morphology of the bionanoparticles are largely preserved after being embedded into silica. After removal of the bionanoparticles by calcination, mesoporous silica with monodisperse pores, having the shape and surface morphology of the bionanoparticles replicated inside the silica,more » was produced,. This study is expected to lead to both functional composite materials and mesoporous silica with structurally well-defined large pores.« less
A T-shape linear piezoelectric motor with single foot.
Liu, Yingxiang; Chen, Weishan; Yang, Xiaohui; Liu, Junkao
2015-02-01
A new T-shape piezoelectric motor using the hybrid of two orthogonal longitudinal vibrations is proposed in this work. Six pieces of PZT ceramic plates are bonded on the upside and downside surfaces of a T-shape duralumin alloy base respectively to form the proposed motor. Elliptical movement can be generated on the driving tip by applying sine and cosine voltages to the PZT elements. The horizontal displacement of the driving tip will push the runner while the vertical displacement can overcome the preload. Finite element method is used to accomplish the design and analysis process. The resonance frequencies of the two vibration modes are tuned to be close by modal analysis, while the motion trajectory of the driving tip is observed by transient analysis. After the fabrication of a prototype, the vibration characteristics and mechanical output ability are measured. The no-load speed and the maximum output thrust force of the proposed motor are tested to be 718 mm/s and 3.5 N under an exciting frequency of 53.1 kHz. The proposed T-shape piezoelectric motor exhibits merits of simple structure, easy to realize miniaturization, easy to be fabricated, and high power-to-weight ratio. Copyright © 2014 Elsevier B.V. All rights reserved.
Šatkauskienė, Ingrida; Jarusevičiūtė, Simona; Baublys, Vykintas; Maheta, Mansi; Tubelytė, Vaida
2017-01-01
A new hoop shaped three dimensional chitin was obtained successfully from the body segment of a diplopod species (Ommatoiulus sabulosus) by following the procedure decolorization, demineralization and deproteinization. Purity of the hoop shaped three-dimensional chitin was proved by FT-IR analysis and chitinase digestive test. The important bands for α-chitin such as 1654.2, 1619.7 and 1552cm -1 were found after FT-IR analysis. And the chitinase digestive test revealed the purity of chitin (with digestion rate of 94.7%). SEM analysis showed that the chitin surface consisted of highly porous structure with nanofibers. Thermal stability of the hoop shaped chitin was recorded quite high (DTG max =383°C). The nitrogen, carbon and hydrogen contents of the hoop shaped chitin were determined as 6.81%, 46.23% and 6.43% respectively. And also degree of acetylation (DA) of the chitin indicated the purity with 95.85%. Chitin hoops-BSA interaction was conducted at different pH, protein concentration and contact time. This new type of three-dimensional chitin obtained from the diplopod body segments can find more effective applications in further studies comparing to the conventional dust forms. Copyright © 2016 Elsevier B.V. All rights reserved.
A new method for shape and texture classification of orthopedic wear nanoparticles.
Zhang, Dongning; Page, Janet R; Kavanaugh, Aaron E; Billi, Fabrizio
2012-09-27
Detailed morphologic analysis of particles produced during wear of orthopedic implants is important in determining a correlation among material, wear, and biological effects. However, the use of simple shape descriptors is insufficient to categorize the data and to compare the nature of wear particles generated by different implants. An approach based on Discrete Fourier Transform (DFT) is presented for describing particle shape and surface texture. Four metal-on-metal bearing couples were tested in an orbital wear simulator under standard and adverse (steep-angled cups) wear simulator conditions. Digitized Scanning Electron Microscope (SEM) images of the wear particles were imported into MATLAB to carry out Fourier descriptor calculations via a specifically developed algorithm. The descriptors were then used for studying particle characteristics (shape and texture) as well as for cluster classification. Analysis of the particles demonstrated the validity of the proposed model by showing that steep-angle Co-Cr wear particles were more asymmetric, compressed, extended, triangular, square, and roughened at 3 Mc than after 0.25 Mc. In contrast, particles from standard angle samples were only more compressed and extended after 3 Mc compared to 0.25 Mc. Cluster analysis revealed that the 0.25 Mc steep-angle particle distribution was a subset of the 3 Mc distribution.
Equilibrium shape of 4He crystal under zero gravity below 200 mK
Takahashi, Takuya; Ohuchi, Haruka; Nomura, Ryuji; Okuda, Yuichi
2015-01-01
Equilibrium crystal shape is the lowest energy crystal shape that is hardly realized in ordinary crystals because of their slow relaxation. 4He quantum crystals in a superfluid have been expected as unique exceptions that grow extremely fast at very low temperatures. However, on the ground, gravity considerably deforms the crystals and conceals the equilibrium crystal shape, and thus, gravity-free environment is needed to observe the equilibrium shape of 4He. We report the relaxation processes of macroscopic 4He crystals in a superfluid below 200 mK under zero gravity using a parabolic flight of a jet plane. When gravity was removed from a gravity-flattened 4He crystal, the crystal rapidly transformed into a shape with flat surfaces. Although the relaxation processes were highly dependent on the initial condition, the crystals relaxed to a nearly homothetic shape in the end, indicating that they were truly in an equilibrium shape minimizing the interfacial free energy. Thanks to the equilibrium shape, we were able to determine the Wulff’s origin and the size of the c-facet together with the vicinal surface profile next to the c-facet. The c-facet size was extremely small in the quantum crystals, and the facet-like flat surfaces were found to be the vicinal surfaces. At the same time, the interfacial free energy of the a-facet and s-facet was also obtained. PMID:26601315
Assessing breathing motion by shape matching of lung and diaphragm surfaces
NASA Astrophysics Data System (ADS)
Urschler, Martin; Bischof, Horst
2005-04-01
Studying complex thorax breating motion is an important research topic for accurate fusion of functional and anatomical data, radiotherapy planning or reduction of breathing motion artifacts. We investigate segmented CT lung, airway and diaphragm surfaces at several different breathing states between Functional Residual and Total Lung Capacity. In general, it is hard to robustly derive corresponding shape features like curvature maxima from lung and diaphragm surfaces since diaphragm and rib cage muscles tend to deform the elastic lung tissue such that e.g. ridges might disappear. A novel registration method based on the shape context approach for shape matching is presented where we extend shape context to 3D surfaces. The shape context approach was reported as a promising method for matching 2D shapes without relying on extracted shape features. We use the point correspondences for a non-rigid thin-plate-spline registration to get deformation fields that describe the movement of lung and diaphragm. Our validation consists of experiments on phantom and real sheep thorax data sets. Phantom experiments make use of shapes that are manipulated with known transformations that simulate breathing behaviour. Real thorax data experiments use a data set showing lungs and diaphragm at 5 distinct breathing states, where we compare subsets of the data sets and qualitatively and quantitatively asses the registration performance by using manually identified corresponding landmarks.
Equilibrium shape of (4)He crystal under zero gravity below 200 mK.
Takahashi, Takuya; Ohuchi, Haruka; Nomura, Ryuji; Okuda, Yuichi
2015-10-01
Equilibrium crystal shape is the lowest energy crystal shape that is hardly realized in ordinary crystals because of their slow relaxation. (4)He quantum crystals in a superfluid have been expected as unique exceptions that grow extremely fast at very low temperatures. However, on the ground, gravity considerably deforms the crystals and conceals the equilibrium crystal shape, and thus, gravity-free environment is needed to observe the equilibrium shape of (4)He. We report the relaxation processes of macroscopic (4)He crystals in a superfluid below 200 mK under zero gravity using a parabolic flight of a jet plane. When gravity was removed from a gravity-flattened (4)He crystal, the crystal rapidly transformed into a shape with flat surfaces. Although the relaxation processes were highly dependent on the initial condition, the crystals relaxed to a nearly homothetic shape in the end, indicating that they were truly in an equilibrium shape minimizing the interfacial free energy. Thanks to the equilibrium shape, we were able to determine the Wulff's origin and the size of the c-facet together with the vicinal surface profile next to the c-facet. The c-facet size was extremely small in the quantum crystals, and the facet-like flat surfaces were found to be the vicinal surfaces. At the same time, the interfacial free energy of the a-facet and s-facet was also obtained.
Venus surface roughness and Magellan stereo data
NASA Technical Reports Server (NTRS)
Maurice, Kelly E.; Leberl, Franz W.; Norikane, L.; Hensley, Scott
1994-01-01
Presented are results of some studies to develop tools useful for the analysis of Venus surface shape and its roughness. Actual work was focused on Maxwell Montes. The analyses employ data acquired by means of NASA's Magellan satellite. The work is primarily concerned with deriving measurements of the Venusian surface using Magellan stereo SAR. Roughness was considered by means of a theoretical analyses based on digital elevation models (DEM's), on single Magellan radar images combined with radiometer data, and on the use of multiple overlapping Magellan radar images from cycles 1, 2, and 3, again combined with collateral radiometer data.
The Helicoid versus the Catenoid: Geometrically Induced Bifurcations
NASA Astrophysics Data System (ADS)
Boudaoud, Arezki; Patrício, Pedro; Ben Amar, Martine
1999-11-01
The minimal surfaces bounded by a frame formed of a double helix and two horizontal rods are studied. The vibration equation shows that the helicoid is the stable surface when its winding number is small. The catenoid is locally isometric to the helicoid so that their vibration spectra are strongly related. While the catenoid is known to undergo a discontinuous transition to two disks, the helicoid is shown to become unstable through a continuous transition to a ribbon-shaped surface obtained experimentally, numerically, and analytically in the limit of infinite height. The normal forms of the bifurcations confirm the analysis.
Numerical study of aerodynamic effects on road vehicles lifting surfaces
NASA Astrophysics Data System (ADS)
Cernat, Mihail Victor; Cernat Bobonea, Andreea
2017-01-01
The aerodynamic performance analysis of road vehicles depends on the study of engine intake and cooling flow, internal ventilation, tire cooling, and overall external flow as the motion of air around a moving vehicle affects all of its components in one form or another. Due to the complex geometry of these, the aerodynamic interaction between the various body components is significant, resulting in vortex flow and lifting surface shapes. The present study, however focuses on the effects of external aerodynamics only, and in particular on the flow over the lifting surfaces of a common compact car, designed especially for this study.
NASA Astrophysics Data System (ADS)
Godefroy, J. C.; Gageant, C.; Francois, D.
Thin film surface thermometers and thermal gradient fluxmeters developed by ONERA to monitor thermal exchanges in aircraft engines to predict the remaining service life of the components are described. The sensors, less than 80 microns thick, with flexible Kapton dielectric layers and metal substrates, are integrated into the shape of the surface being monitored. Features of Cu-n, Ni-, Au-, and Cr-based films, including mounting and circuitry methods that permit calibration and accurate signal analysis, are summarized. Results are discussed from sample applications of the devices on a symmetric NACA 65(1)-012 airfoil and on a turbine blade.
Point source moving above a finite impedance reflecting plane - Experiment and theory
NASA Technical Reports Server (NTRS)
Norum, T. D.; Liu, C. H.
1978-01-01
A widely used experimental version of the acoustic monopole consists of an acoustic driver of restricted opening forced by a discrete frequency oscillator. To investigate the effects of forward motion on this source, it was mounted above an automobile and driven over an asphalt surface at constant speed past a microphone array. The shapes of the received signal were compared to results computed from an analysis of a fluctuating-mass-type point source moving above a finite impedance reflecting plane. Good agreement was found between experiment and theory when a complex normal impedance representative of a fairly hard acoustic surface was used in the analysis.
Meng, Depeng; Ouyang, Yueping; Hou, Chunlin
2017-12-01
To establish the finite element model of Y-shaped patellar fracture fixed with titanium-alloy petal-shaped poly-axial locking plate and to implement the finite element mechanical analysis. The three-dimensional model was created by software Mimics 19.0, Rhino 5.0, and 3-Matic 11.0. The finite element analysis was implemented by ANSYS Workbench 16.0 to calculate the Von-Mises stress and displacement. Before calculated, the upper and lower poles of the patella were constrained. The 2.0, 3.5, and 4.4 MPa compressive stresses were applied to the 1/3 patellofemoral joint surface of the lower, middle, and upper part of the patella respectively, and to simulated the force upon patella when knee flexion of 20, 45, and 90°. The number of nodes and elements of the finite element model obtained was 456 839 and 245 449, respectively. The max value of Von-Mises stress of all the three conditions simulated was 151.48 MPa under condition simulating the knee flexion of 90°, which was lower than the yield strength value of the titanium-alloy and patella. The max total displacement value was 0.092 8 mm under condition simulating knee flexion of 45°, which was acceptable according to clinical criterion. The stress concentrated around the non-vertical fracture line and near the area where the screws were sparse. The titanium-alloy petal-shaped poly-axial locking plate have enough biomechanical stiffness to fix the Y-shaped patellar fracture, but the result need to be proved in future.
Pamwani, Lavish; Habib, Anowarul; Melandsø, Frank; Ahluwalia, Balpreet Singh; Shelke, Amit
2018-06-22
The main aim of the paper is damage detection at the microscale in the anisotropic piezoelectric sensors using surface acoustic waves (SAWs). A novel technique based on the single input and multiple output of Rayleigh waves is proposed to detect the microscale cracks/flaws in the sensor. A convex-shaped interdigital transducer is fabricated for excitation of divergent SAWs in the sensor. An angularly shaped interdigital transducer (IDT) is fabricated at 0 degrees and ±20 degrees for sensing the convex shape evolution of SAWs. A precalibrated damage was introduced in the piezoelectric sensor material using a micro-indenter in the direction perpendicular to the pointing direction of the SAW. Damage detection algorithms based on empirical mode decomposition (EMD) and principal component analysis (PCA) are implemented to quantify the evolution of damage in piezoelectric sensor material. The evolution of the damage was quantified using a proposed condition indicator (CI) based on normalized Euclidean norm of the change in principal angles, corresponding to pristine and damaged states. The CI indicator provides a robust and accurate metric for detection and quantification of damage.
Integrated three-dimensional shape and reflection properties measurement system.
Krzesłowski, Jakub; Sitnik, Robert; Maczkowski, Grzegorz
2011-02-01
Creating accurate three-dimensional (3D) digitalized models of cultural heritage objects requires that information about surface geometry be integrated with measurements of other material properties like color and reflectance. Up until now, these measurements have been performed in laboratories using manually integrated (subjective) data analyses. We describe an out-of-laboratory bidirectional reflectance distribution function (BRDF) and 3D shape measurement system that implements shape and BRDF measurement in a single setup with BRDF uncertainty evaluation. The setup aligns spatial data with the angular reflectance distribution, yielding a better estimation of the surface's reflective properties by integrating these two modality measurements into one setup using a single detector. This approach provides a better picture of an object's intrinsic material features, which in turn produces a higher-quality digitalized model reconstruction. Furthermore, this system simplifies the data processing by combining structured light projection and photometric stereo. The results of our method of data analysis describe the diffusive and specular attributes corresponding to every measured geometric point and can be used to render intricate 3D models in an arbitrarily illuminated scene.
Shape control of slack space reflectors using modulated solar pressure
Borggräfe, Andreas; Heiligers, Jeannette; Ceriotti, Matteo; McInnes, Colin R.
2015-01-01
The static deflection profile of a large spin-stabilized space reflector because of solar radiation pressure acting on its surface is investigated. Such a spacecraft consists of a thin reflective circular film, which is deployed from a supporting hoop structure in an untensioned, slack manner. This paper investigates the use of a variable reflectivity distribution across the surface to control the solar pressure force and hence the deflected shape. In this first analysis, the film material is modelled as one-dimensional slack radial strings with no resistance to bending or transverse shear, which enables a semi-analytic derivation of the nominal deflection profile. An inverse method is then used to find the reflectivity distribution that generates a specific, for example, parabolic deflection shape of the strings. Applying these results to a parabolic reflector, short focal distances can be obtained when large slack lengths of the film are employed. The development of such optically controlled reflector films enables future key mission applications such as solar power collection, radio-frequency antennae and optical telescopes. PMID:26345083
Analysis of surface EMG spike shape across different levels of isometric force.
Gabriel, David A; Lester, Steven M; Lenhardt, Sean A; Cambridge, Edward D J
2007-01-15
This research evaluated changes in surface electromyographic (SEMG) spike shape across different levels of isometric force. Ninety-six subjects generated three 5-s isometric step contractions of the elbow flexors at 40, 60, 80, and 100% of maximal voluntary contraction (MVC). Force and bipolar SEMG activity were monitored concurrently. The mean spike amplitude (MSA) exhibited a linear increase across the four levels of force. The mean spike frequency (MSF) remained stable from 40 to 80% of MVC; it then decreased from 80 to 100% of MVC. There was a concomitant increase in mean spike slope (MSS) that indicates that the biceps brachii (BB) relied on the recruitment of higher threshold motor units (MUs) from 40 to 80% of MVC. However, there progressive decrease in the mean number of peaks per spike (MNPPS) that suggests that MU synchronization was additionally required to increase force from 80 to 100% of MVC. The spike shape measures, taken together, indicate that the decrease in frequency content of the signal was due to synchronization, not an increased probability of temporal overlap due an increase in rate-coding.
Analysis of the formation mechanism of the slug and jet center hole of axisymmetric shaped charges
NASA Astrophysics Data System (ADS)
Baoxiang, Ren; Gang, Tao; Peng, Wen; Changxing, Du; Chunqiao, Pang; Hongbo, Meng
2018-06-01
In the jet formation process of axisymmetric shaped charges, the slug is also formed. There is always a central hole in the symmetry axis of the jet and slug. The phenomenon was rarely mentioned and analyzed by the classical theory of shaped charges. For this problem, this paper attempts to explain the existence of the central hole in the jet and slug. Based on the analysis of recovery slug, we know that the jet and slug are in solid state in the process of formation. Through the analysis of X-flash radiographs of the stretching jet and particulation fracture, it is confirmed that the center holes in the jet are also present. Meanwhile, through the analysis of the microstructure of the recovered slug, it is found that there is a wave disturbance near the surface of the central hole. It can be speculated that the wave disturbance also exist in the jet. This effect may be one of the reasons for jet breakup. Due to the presence of the central hole in the jet, the density deficit of the jet obtained by other tests is very reasonable.
Reconfigurable Polymer Shells on Shape-Anisotropic Gold Nanoparticle Cores.
Kim, Juyeong; Song, Xiaohui; Kim, Ahyoung; Luo, Binbin; Smith, John W; Ou, Zihao; Wu, Zixuan; Chen, Qian
2018-05-03
Reconfigurable hybrid nanoparticles made by decorating flexible polymer shells on rigid inorganic nanoparticle cores can provide a unique means to build stimuli-responsive functional materials. The polymer shell reconfiguration has been expected to depend on the local core shape details, but limited systematic investigations have been undertaken. Here, two literature methods are adapted to coat either thiol-terminated polystyrene (PS) or polystyrene-poly(acrylic acid) (PS-b-PAA) shells onto a series of anisotropic gold nanoparticles of shapes not studied previously, including octahedron, concave cube, and bipyramid. These core shapes are complex, rendering shell contours with nanoscale details (e.g., local surface curvature, shell thickness) that are imaged and analyzed quantitatively using the authors' customized analysis codes. It is found that the hybrid nanoparticles based on the chosen core shapes, when coated with the above two polymer shells, exhibit distinct shell segregations upon a variation in solvent polarity or temperature. It is demonstrated for the PS-b-PAA-coated hybrid nanoparticles, the shell segregation is maintained even after a further decoration of the shell periphery with gold seeds; these seeds can potentially facilitate subsequent deposition of other nanostructures to enrich structural and functional diversity. These synthesis, imaging, and analysis methods for the hybrid nanoparticles of anisotropically shaped cores can potentially aid in their predictive design for materials reconfigurable from the bottom up. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Shruthi, C.; Ravindrachary, V.; Guruswamy, B.; Lokanath, N. K.; Kumara, Karthik; Goveas, Janet
2018-05-01
Needle shaped single crystal of the title compound was grown by slow evaporation solution growth technique using ethanol as solvent. The grown single crystal was characterized using FT-IR, Single crystal XRD and Thermal analysis. The FT-IR spectrum confirms the molecular structure and identifies the different functional groups present in the compound. Single crystal XRD study reveals that the crystallized compound belongs to the monoclinic crystal system with P21/c space group and the corresponding cell parameters were identified. The thermal stability of the material was determined using both TGA and DTA analysis. The intermolecular interaction of each individual atom in the crystal lattice was estimated using Hirshfeld surface and finger print analysis.
Quantification of surface tension and internal pressure generated by single mitotic cells
NASA Astrophysics Data System (ADS)
Fischer-Friedrich, Elisabeth; Hyman, Anthony A.; Jülicher, Frank; Müller, Daniel J.; Helenius, Jonne
2014-08-01
During mitosis, adherent cells round up, by increasing the tension of the contractile actomyosin cortex while increasing the internal hydrostatic pressure. In the simple scenario of a liquid cell interior, the surface tension is related to the local curvature and the hydrostatic pressure difference by Laplace's law. However, verification of this scenario for cells requires accurate measurements of cell shape. Here, we use wedged micro-cantilevers to uniaxially confine single cells and determine confinement forces while concurrently determining cell shape using confocal microscopy. We fit experimentally measured confined cell shapes to shapes obeying Laplace's law with uniform surface tension and find quantitative agreement. Geometrical parameters derived from fitting the cell shape, and the measured force were used to calculate hydrostatic pressure excess and surface tension of cells. We find that HeLa cells increase their internal hydrostatic pressure excess and surface tension from ~ 40 Pa and 0.2 mNm-1 during interphase to ~ 400 Pa and 1.6 mNm-1 during metaphase. The method introduced provides a means to determine internal pressure excess and surface tension of rounded cells accurately and with minimal cellular perturbation, and should be applicable to characterize the mechanical properties of various cellular systems.
Structural, optical and field emission properties of urchin-shaped ZnO nanostructures.
Al-Heniti, Saleh; Umar, Ahmad
2013-01-01
In this work, well-crystallized urchin-shaped ZnO structures were synthesized on silicon substrate by simple non-catalytic thermal evaporation process by using metallic zinc powder in the presence of oxygen as source materials for zinc and oxygen, respectively. The synthesized ZnO structures were characterized in detail in terms of their morphological, structural, optical and field emission properties. The detailed morphological investigations revealed that the synthesized structures possess urchin-shape and grown in high-density over the substrate surface. The detailed structural and optical characterizations revealed that the synthesized urchin-shaped ZnO structures are well-crystallized and exhibiting good optical properties. The field emission analysis for urchin-shaped ZnO structures exhibits a turn-on field of 4.6 V/microm. The emission current density reached to 0.056 mA/cm2 at an applied electrical field of 6.4 V/microm and shows no saturation. The calculated field enhancement factor 'beta', from the F-N plot, was found to be approximately 2.2 x 10(3).
Natural Erosion of Sandstone as Shape Optimisation.
Ostanin, Igor; Safonov, Alexander; Oseledets, Ivan
2017-12-11
Natural arches, pillars and other exotic sandstone formations have always been attracting attention for their unusual shapes and amazing mechanical balance that leave a strong impression of intelligent design rather than the result of a stochastic process. It has been recently demonstrated that these shapes could have been the result of the negative feedback between stress and erosion that originates in fundamental laws of friction between the rock's constituent particles. Here we present a deeper analysis of this idea and bridge it with the approaches utilized in shape and topology optimisation. It appears that the processes of natural erosion, driven by stochastic surface forces and Mohr-Coulomb law of dry friction, can be viewed within the framework of local optimisation for minimum elastic strain energy. Our hypothesis is confirmed by numerical simulations of the erosion using the topological-shape optimisation model. Our work contributes to a better understanding of stochastic erosion and feasible landscape formations that could be found on Earth and beyond.
Surface features of central North America: a synoptic view from computer graphics
Pike, R.J.
1991-01-01
A digital shaded-relief image of the 48 contiguous United States shows the details of large- and small-scale landforms, including several linear trends. The features faithfully reflect tectonism, continental glaciation, fluvial activity, volcanism, and other surface-shaping events and processes. The new map not only depicts topography accurately and in its true complexity, but does so in one synoptic view that provides a regional context for geologic analysis unobscured by clouds, culture, vegetation, or artistic constraints. -Author
Temperature dependent evolution of wrinkled single-crystal silicon ribbons on shape memory polymers.
Wang, Yu; Yu, Kai; Qi, H Jerry; Xiao, Jianliang
2017-10-25
Shape memory polymers (SMPs) can remember two or more distinct shapes, and thus can have a lot of potential applications. This paper presents combined experimental and theoretical studies on the wrinkling of single-crystal Si ribbons on SMPs and the temperature dependent evolution. Using the shape memory effect of heat responsive SMPs, this study provides a method to build wavy forms of single-crystal silicon thin films on top of SMP substrates. Silicon ribbons obtained from a Si-on-insulator (SOI) wafer are released and transferred onto the surface of programmed SMPs. Then such bilayer systems are recovered at different temperatures, yielding well-defined, wavy profiles of Si ribbons. The wavy profiles are shown to evolve with time, and the evolution behavior strongly depends on the recovery temperature. At relatively low recovery temperatures, both wrinkle wavelength and amplitude increase with time as evolution progresses. Finite element analysis (FEA) accounting for the thermomechanical behavior of SMPs is conducted to study the wrinkling of Si ribbons on SMPs, which shows good agreement with experiment. Merging of wrinkles is observed in FEA, which could explain the increase of wrinkle wavelength observed in the experiment. This study can have important implications for smart stretchable electronics, wrinkling mechanics, stimuli-responsive surface engineering, and advanced manufacturing.
NASA Astrophysics Data System (ADS)
Khoei, A. R.; Samimi, M.; Azami, A. R.
2007-02-01
In this paper, an application of the reproducing kernel particle method (RKPM) is presented in plasticity behavior of pressure-sensitive material. The RKPM technique is implemented in large deformation analysis of powder compaction process. The RKPM shape function and its derivatives are constructed by imposing the consistency conditions. The essential boundary conditions are enforced by the use of the penalty approach. The support of the RKPM shape function covers the same set of particles during powder compaction, hence no instability is encountered in the large deformation computation. A double-surface plasticity model is developed in numerical simulation of pressure-sensitive material. The plasticity model includes a failure surface and an elliptical cap, which closes the open space between the failure surface and hydrostatic axis. The moving cap expands in the stress space according to a specified hardening rule. The cap model is presented within the framework of large deformation RKPM analysis in order to predict the non-uniform relative density distribution during powder die pressing. Numerical computations are performed to demonstrate the applicability of the algorithm in modeling of powder forming processes and the results are compared to those obtained from finite element simulation to demonstrate the accuracy of the proposed model.
The role of nanopore shape in surface-induced crystallization
NASA Astrophysics Data System (ADS)
Diao, Ying; Harada, Takuya; Myerson, Allan S.; Alan Hatton, T.; Trout, Bernhardt L.
2011-11-01
Crystallization of a molecular liquid from solution often initiates at solid-liquid interfaces, and nucleation rates are generally believed to be enhanced by surface roughness. Here we show that, on a rough surface, the shape of surface nanopores can also alter nucleation kinetics. Using lithographic methods, we patterned polymer films with nanopores of various shapes and found that spherical nanopores 15-120 nm in diameter hindered nucleation of aspirin crystals, whereas angular nanopores of the same size promoted it. We also show that favourable surface-solute interactions are required for angular nanopores to promote nucleation, and propose that pore shape affects nucleation kinetics through the alteration of the orientational order of the crystallizing molecule near the angles of the pores. Our findings have clear technological implications, for instance in the control of pharmaceutical polymorphism and in the design of ‘seed’ particles for the regulation of crystallization of fine chemicals.
Plasmon-enhanced optical bending and heating on V-shaped deformation of gold nanorod
NASA Astrophysics Data System (ADS)
Liaw, Jiunn-Woei; Huang, Cheng-Wei; Huang, Mao-Chang; Kuo, Mao-Kuen
2018-01-01
The plasmon-enhanced optical bending and heating on the V-shaped deformation of a straight gold nanorod (GNR), irradiated by a linear polarized light at the longitudinal surface plasmon resonance, are studied theoretically to explain the finding in previous experiment. Multiple multipole method is employed to calculate the optical load and heating numerically, and an elastic beam model is used to analyze the bending moment and stress in the GNR theoretically. According to our analysis, we think, first, the plasmonic heating softens the GNR to reduce the yield strength of gold, and the non-uniform optical load induces a maximum bending moment at the middle cross section of a freestanding GNR. Then an irreversible breakpoint of the plastic hinge at the middle of GNR is developed to form a V-shaped GNR. The photothermal deformation of V-shaped GNR involving multidisciplinary interplay is worth for further investigation.
Fractal serpentine-shaped design for stretchable wireless strain sensors
NASA Astrophysics Data System (ADS)
Dong, Wentao; Cheng, Xiao; Wang, Xiaoming; Zhang, Hailiang
2018-07-01
Stretchable sensors have been widely applied to biological fields due to their unique capacity to integrate with soft materials and curvilinear surfaces. The article presents the fractal serpentine-shaped design for stretchable wireless strain sensor which is operating around 1.6 GHz. The wireless passive LC sensor is formed by a fractal serpentine-shaped inductor coil and a concentric coplanar capacitor. The inductance of the fractal serpentine-shaped coil varies with the deformation of the wireless sensor, and the resonance frequency also varies with the applied strain of the wireless sensor embedded in soft substrate. The 40% stretchability of wireless sensor is verified by finite element analysis (FEA). Strain response of the stretchable wireless sensor has been characterized by experiments and demonstrates high strain responsivity about 6.74 MHz/1%. The stretchable wireless sensor has the potential to be used in biological and wearable applications.
Comparison of Aircraft Icing Growth Assessment Software
NASA Technical Reports Server (NTRS)
Wright, William; Potapczuk, Mark G.; Levinson, Laurie H.
2011-01-01
A research project is underway to produce computer software that can accurately predict ice growth under any meteorological conditions for any aircraft surface. An extensive comparison of the results in a quantifiable manner against the database of ice shapes that have been generated in the NASA Glenn Icing Research Tunnel (IRT) has been performed, including additional data taken to extend the database in the Super-cooled Large Drop (SLD) regime. The project shows the differences in ice shape between LEWICE 3.2.2, GlennICE, and experimental data. The project addresses the validation of the software against a recent set of ice-shape data in the SLD regime. This validation effort mirrors a similar effort undertaken for previous validations of LEWICE. Those reports quantified the ice accretion prediction capabilities of the LEWICE software. Several ice geometry features were proposed for comparing ice shapes in a quantitative manner. The resulting analysis showed that LEWICE compared well to the available experimental data.
Displacement Theories for In-Flight Deformed Shape Predictions of Aerospace Structures
NASA Technical Reports Server (NTRS)
Ko, William L.; Richards, W. L.; Tran, Van t.
2007-01-01
Displacement theories are developed for a variety of structures with the goal of providing real-time shape predictions for aerospace vehicles during flight. These theories are initially developed for a cantilever beam to predict the deformed shapes of the Helios flying wing. The main structural configuration of the Helios wing is a cantilever wing tubular spar subjected to bending, torsion, and combined bending and torsion loading. The displacement equations that are formulated are expressed in terms of strains measured at multiple sensing stations equally spaced on the surface of the wing spar. Displacement theories for other structures, such as tapered cantilever beams, two-point supported beams, wing boxes, and plates also are developed. The accuracy of the displacement theories is successfully validated by finite-element analysis and classical beam theory using input-strains generated by finite-element analysis. The displacement equations and associated strain-sensing system (such as fiber optic sensors) create a powerful means for in-flight deformation monitoring of aerospace structures. This method serves multiple purposes for structural shape sensing, loads monitoring, and structural health monitoring. Ultimately, the calculated displacement data can be visually displayed to the ground-based pilot or used as input to the control system to actively control the shape of structures during flight.
NASA Technical Reports Server (NTRS)
Nguyen, Nhan; Kaul, Upender; Lebofsky, Sonia; Ting, Eric; Chaparro, Daniel; Urnes, James
2015-01-01
This paper summarizes the recent development of an adaptive aeroelastic wing shaping control technology called variable camber continuous trailing edge flap (VCCTEF). As wing flexibility increases, aeroelastic interactions with aerodynamic forces and moments become an increasingly important consideration in aircraft design and aerodynamic performance. Furthermore, aeroelastic interactions with flight dynamics can result in issues with vehicle stability and control. The initial VCCTEF concept was developed in 2010 by NASA under a NASA Innovation Fund study entitled "Elastically Shaped Future Air Vehicle Concept," which showed that highly flexible wing aerodynamic surfaces can be elastically shaped in-flight by active control of wing twist and bending deflection in order to optimize the spanwise lift distribution for drag reduction. A collaboration between NASA and Boeing Research & Technology was subsequently funded by NASA from 2012 to 2014 to further develop the VCCTEF concept. This paper summarizes some of the key research areas conducted by NASA during the collaboration with Boeing Research and Technology. These research areas include VCCTEF design concepts, aerodynamic analysis of VCCTEF camber shapes, aerodynamic optimization of lift distribution for drag minimization, wind tunnel test results for cruise and high-lift configurations, flutter analysis and suppression control of flexible wing aircraft, and multi-objective flight control for adaptive aeroelastic wing shaping control.
Face shape differs in phylogenetically related populations.
Hopman, Saskia M J; Merks, Johannes H M; Suttie, Michael; Hennekam, Raoul C M; Hammond, Peter
2014-11-01
3D analysis of facial morphology has delineated facial phenotypes in many medical conditions and detected fine grained differences between typical and atypical patients to inform genotype-phenotype studies. Next-generation sequencing techniques have enabled extremely detailed genotype-phenotype correlative analysis. Such comparisons typically employ control groups matched for age, sex and ethnicity and the distinction between ethnic categories in genotype-phenotype studies has been widely debated. The phylogenetic tree based on genetic polymorphism studies divides the world population into nine subpopulations. Here we show statistically significant face shape differences between two European Caucasian populations of close phylogenetic and geographic proximity from the UK and The Netherlands. The average face shape differences between the Dutch and UK cohorts were visualised in dynamic morphs and signature heat maps, and quantified for their statistical significance using both conventional anthropometry and state of the art dense surface modelling techniques. Our results demonstrate significant differences between Dutch and UK face shape. Other studies have shown that genetic variants influence normal facial variation. Thus, face shape difference between populations could reflect underlying genetic difference. This should be taken into account in genotype-phenotype studies and we recommend that in those studies reference groups be established in the same population as the individuals who form the subject of the study.
NASA Astrophysics Data System (ADS)
Salkin, Louis; Schmit, Alexandre; Panizza, Pascal; Courbin, Laurent
2014-09-01
Because of surface tension, soap films seek the shape that minimizes their surface energy and thus their surface area. This mathematical postulate allows one to predict the existence and stability of simple minimal surfaces. After briefly recalling classical results obtained in the case of symmetric catenoids that span two circular rings with the same radius, we discuss the role of boundary conditions on such shapes, working with two rings having different radii. We then investigate the conditions of existence and stability of other shapes that include two portions of catenoids connected by a planar soap film and half-symmetric catenoids for which we introduce a method of observation. We report a variety of experimental results including metastability—an hysteretic evolution of the shape taken by a soap film—explained using simple physical arguments. Working by analogy with the theory of phase transitions, we conclude by discussing universal behaviors of the studied minimal surfaces in the vicinity of their existence thresholds.
NASA Astrophysics Data System (ADS)
Huang, Shengzhou; Li, Mujun; Shen, Lianguan; Qiu, Jinfeng; Zhou, Youquan
2018-03-01
A novel fabrication method for high quality aspheric microlens array (MLA) was developed by combining the dose-modulated DMD-based lithography and surface thermal reflow process. In this method, the complex shape of aspheric microlens is pre-modeled via dose modulation in a digital micromirror device (DMD) based maskless projection lithography. And the dose modulation mainly depends on the distribution of exposure dose of photoresist. Then the pre-shaped aspheric microlens is polished by a following non-contact thermal reflow (NCTR) process. Different from the normal process, the reflow process here is investigated to improve the surface quality while keeping the pre-modeled shape unchanged, and thus will avoid the difficulties in generating the aspheric surface during reflow. Fabrication of a designed aspheric MLA with this method was demonstrated in experiments. Results showed that the obtained aspheric MLA was good in both shape accuracy and surface quality. The presented method may be a promising approach in rapidly fabricating high quality aspheric microlens with complex surface.
Programmable thermal emissivity structures based on bioinspired self-shape materials
NASA Astrophysics Data System (ADS)
Athanasopoulos, N.; Siakavellas, N. J.
2015-12-01
Programmable thermal emissivity structures based on the bioinspired self-shape anisotropic materials were developed at macro-scale, and further studied theoretically at smaller scale. We study a novel concept, incorporating materials that are capable of transforming their shape via microstructural rearrangements under temperature stimuli, while avoiding the use of exotic shape memory materials or complex micro-mechanisms. Thus, programmed thermal emissivity behaviour of a surface is achievable. The self-shape structure reacts according to the temperature of the surrounding environment or the radiative heat flux. A surface which incorporates self-shape structures can be designed to quickly absorb radiative heat energy at low temperature levels, but is simultaneously capable of passively controlling its maximum temperature in order to prevent overheating. It resembles a “game” of colours, where two or more materials coexist with different values of thermal emissivity/ absorptivity/ reflectivity. The transformation of the structure conceals or reveals one of the materials, creating a surface with programmable - and therefore, variable- effective thermal emissivity. Variable thermal emissivity surfaces may be developed with a total hemispherical emissivity ratio (ɛEff_H/ɛEff_L) equal to 28.
Programmable thermal emissivity structures based on bioinspired self-shape materials
Athanasopoulos, N.; Siakavellas, N. J.
2015-01-01
Programmable thermal emissivity structures based on the bioinspired self-shape anisotropic materials were developed at macro-scale, and further studied theoretically at smaller scale. We study a novel concept, incorporating materials that are capable of transforming their shape via microstructural rearrangements under temperature stimuli, while avoiding the use of exotic shape memory materials or complex micro-mechanisms. Thus, programmed thermal emissivity behaviour of a surface is achievable. The self-shape structure reacts according to the temperature of the surrounding environment or the radiative heat flux. A surface which incorporates self-shape structures can be designed to quickly absorb radiative heat energy at low temperature levels, but is simultaneously capable of passively controlling its maximum temperature in order to prevent overheating. It resembles a “game” of colours, where two or more materials coexist with different values of thermal emissivity/ absorptivity/ reflectivity. The transformation of the structure conceals or reveals one of the materials, creating a surface with programmable – and therefore, variable- effective thermal emissivity. Variable thermal emissivity surfaces may be developed with a total hemispherical emissivity ratio (εEff_H/εEff_L) equal to 28. PMID:26635316
Russell, Richard; Chatterjee, Garga; Nakayama, Ken
2011-01-01
Face recognition by normal subjects depends in roughly equal proportions on shape and surface reflectance cues, while object recognition depends predominantly on shape cues. It is possible that developmental prosopagnosics are deficient not in their ability to recognize faces per se, but rather in their ability to use reflectance cues. Similarly, super-recognizers’ exceptional ability with face recognition may be a result of superior surface reflectance perception and memory. We tested this possibility by administering tests of face perception and face recognition in which only shape or reflectance cues are available to developmental prosopagnosics, super-recognizers, and control subjects. Face recognition ability and the relative use of shape and pigmentation were unrelated in all the tests. Subjects who were better at using shape or reflectance cues were also better at using the other type of cue. These results do not support the proposal that variation in surface reflectance perception ability is the underlying cause of variation in face recognition ability. Instead, these findings support the idea that face recognition ability is related to neural circuits using representations that integrate shape and pigmentation information. PMID:22192636
Zuo, Pei; Jiang, Lan; Li, Xin; Li, Bo; Xu, Yongda; Shi, Xuesong; Ran, Peng; Ma, Tianbao; Li, Dawei; Qu, Liangti; Lu, Yongfeng; Grigoropoulos, Costas P
2017-03-01
Edge-active site control of MoS 2 is crucial for applications such as chemical catalysis, synthesis of functional composites, and biochemical sensing. This work presents a novel nonthermal method to simultaneously tune surface chemical (edge-active sites) and physical (surface periodic micro/nano structures) properties of MoS 2 using temporally shaped femtosecond pulses, through which shape-controlled gold nanoparticles are in situ and self-assembly grown on MoS 2 surfaces to form Au-MoS 2 hybrids. The edge-active sites with unbound sulfurs of laser-treated MoS 2 drive the reduction of gold nanoparticles, while the surface periodic structures of laser-treated MoS 2 assist the shape-controllable growth of gold nanoparticles. The proposed novel method highlights the broad application potential of MoS 2 ; for example, these Au-MoS 2 hybrids exhibit tunable and highly sensitive SERS activity with an enhancement factor up to 1.2 × 10 7 , indicating the marked potential of MoS 2 in future chemical and biological sensing applications.
An Amino Acid Code to Define a Protein’s Tertiary Packing Surface
Fraga, Keith J.; Joo, Hyun; Tsai, Jerry
2015-01-01
One difficult aspect of the protein-folding problem is characterizing the non-specific interactions that define packing in protein tertiary structure. To better understand tertiary structure, this work extends the knob-socket model by classifying the interactions of a single knob residue packed into a set of contiguous sockets, or a pocket made up of 4 or more residues. The knob-socket construct allows for a symbolic two-dimensional mapping of pockets. The two-dimensional mapping of pockets provides a simple method to investigate the variety of pocket shapes in order to understand the geometry of protein tertiary surfaces. The diversity of pocket geometries can be organized into groups of pockets that share a common core, which suggests that some interactions in pockets are ancillary to packing. Further analysis of pocket geometries displays a preferred configuration that is right-handed in α-helices and left-handed in β-sheets. The amino acid composition of pockets illustrates the importance of non-polar amino acids in packing as well as position specificity. As expected, all pocket shapes prefer to pack with hydrophobic knobs; however, knobs are not selective for the pockets they pack. Investigating side-chain rotamer preferences for certain pocket shapes uncovers no strong correlations. These findings allow a simple vocabulary based on knobs and sockets to describe protein tertiary packing that supports improved analysis, design and prediction of protein structure. PMID:26575337
Grundke, K; Pöschel, K; Synytska, A; Frenzel, R; Drechsler, A; Nitschke, M; Cordeiro, A L; Uhlmann, P; Welzel, P B
2015-08-01
Contact angle hysteresis phenomena on polymer surfaces have been studied by contact angle measurements using sessile liquid droplets and captive air bubbles in conjunction with a drop shape method known as Axisymmetric Drop Shape Analysis - Profile (ADSA-P). In addition, commercially available sessile drop goniometer techniques were used. The polymer surfaces were characterized with respect to their surface structure (morphology, roughness, swelling) and surface chemistry (elemental surface composition, acid-base characteristics) by scanning electron microscopy (SEM), scanning force microscopy (SFM), ellipsometry, X-ray photoelectron spectroscopy (XPS) and streaming potential measurements. Heterogeneous polymer surfaces with controlled roughness and chemical composition were prepared by different routes using plasma etching and subsequent dip coating or grafting of polymer brushes, anodic oxidation of aluminium substrates coated with thin polymer films, deposition techniques to create regular patterned and rough fractal surfaces from core-shell particles, and block copolymers. To reveal the effects of swelling and reorientation at the solid/liquid interface contact angle hysteresis phenomena on polyimide surfaces, cellulose membranes, and thermo-responsive hydrogels have been studied. The effect of different solutes in the liquid (electrolytes, surfactants) and their impact on contact angle hysteresis were characterized for solid polymers without and with ionizable functional surface groups in aqueous electrolyte solutions of different ion concentrations and pH and for photoresist surfaces in cationic aqueous surfactant solutions. The work is an attempt toward the understanding of contact angle hysteresis phenomena on polymer surfaces aimed at the control of wettability for different applications. Copyright © 2014 Elsevier B.V. All rights reserved.
Analysing Normal and Partial Glossectomee Tongues Using Ultrasound
ERIC Educational Resources Information Center
Bressmann, Tim; Uy, Catherine; Irish, Jonathan C.
2005-01-01
The present study aimed at identifying underlying parameters that govern the shape of the tongue. A functional topography of the tongue surface was developed based on three-dimensional ultrasound scans of sustained speech sounds in ten normal subjects. A principal component analysis extracted three components that explained 89.2% of the variance…
In vitro bioactivity of micro metal injection moulded stainless steel with defined surface features.
Bitar, Malak; Friederici, Vera; Imgrund, Philipp; Brose, Claudia; Bruinink, Arie
2012-05-04
Micrometre- and nanometre-scale surface structuring with ordered topography features may dramatically enhance orthopaedic implant integration. In this study we utilised a previously optimised micron metal injection moulding (µ-MIM) process to produce medical grade stainless steel surfaces bearing micrometre scale, protruding, hemispheres of controlled dimensions and spatial distribution. Additionally, the structured surfaces were characterised by the presence of submicrometre surface roughness resulting from metal grain boundary formation. Following cytocompatibility (cytotoxicity) evaluation using 3T3 mouse fibroblast cell line, the effect on primary human cell functionality was assessed focusing on cell attachment, shape and cytoskeleton conformation. In this respect, and by day 7 in culture, significant increase in focal adhesion size was associated with the microstructured surfaces compared to the planar control. The morphological conformation of the seeded cells, as revealed by fluorescence cytoskeleton labelling, also appeared to be guided in the vertical dimension between the hemisphere bodies. Quantitative evaluation of this guidance took place using live cytoplasm fluorescence labelling and image morphometry analysis utilising both, compactness and elongation shape descriptors. Significant increase in cell compactness was associated with the hemisphere arrays indicating collective increase in focused cell attachment to the hemisphere bodies across the entire cell population. Micrometre-scale hemisphere array patterns have therefore influenced cell attachment and conformation. Such influence may potentially aid in enhancing key cellular events such as, for example, neo-osteogenesis on implanted orthopaedic surfaces.
Effect of shape and size of lung and chest wall on stresses in the lung
NASA Technical Reports Server (NTRS)
Vawter, D. L.; Matthews, F. L.; West, J. B.
1975-01-01
To understand better the effect of shape and size of lung and chest wall on the distribution of stresses, strains, and surface pressures, we analyzed a theoretical model using the technique of finite elements. First we investigated the effects of changing the chest wall shape during expansion, and second we studied lungs of a variety of inherent shapes and sizes. We found that, in general, the distributions of alveolar size, mechanical stresses, and surface pressures in the lungs were dominated by the weight of the lung and that changing the shape of the lung or chest wall had relatively little effect. Only at high states of expansion where the lung was very stiff did changing the shape of the chest wall cause substantial changes. Altering the inherent shape of the lung generally had little effect but the topographical differences in stresses and surface pressures were approximately proportional to lung height. The results are generally consistent with those found in the dog by Hoppin et al (1969).
Proctor, Daniel J; Broadfield, Douglas; Proctor, Kristopher
2008-02-01
Multidimensional morphometrics is used to compare the proximal articular surface of the first metatarsal between Homo, Pan, Gorilla, Hylobates, and the hominin fossils A.L. 333-54 (A. afarensis), SKX 5017 (P. robustus), and OH 8 (H. habilis). Statistically significant differences in articular surface morphology exist between H. sapiens and the apes, and between ape groups. Ape groups are characterized by greater surface depth, an obliquely curved articular surface through the dorso-lateral and medio-plantar regions, and a wider medio-lateral surface relative to the dorso-plantar height. The OH 8 articular surface is indistinguishable from H. sapiens, while A.L. 333-54 and SKX 5017 more closely resemble the apes. P. robustus and A. afarensis exhibit ape-like oblique curvature of the articular surface. Copyright 2007 Wiley-Liss, Inc.
Shaping of parabolic cylindrical membrane reflectors for the Dart Precision Test Bed
NASA Technical Reports Server (NTRS)
Morgan, R.; Agnes, Gregory S.; Dragovan, M.; Barber, D.; Marcin, M.; White, C.; Dooley, J.; Hatheway, A.
2004-01-01
The DART is a new telescope architecture consisting of a single aperture formed from two cylindrical parabolic reflectors. The system is ideally suited to using tensioned membranes for the reflective surfaces, owing to the zero Gaussian curvature of a cylindrical parabola. In this paper, we present experimental measurements for shaping the membranes by using curved boundary elements to achieve coarse shaping, and a pair of precision rails shaped by moments and forces at the ends, and lightly pushed into the surface, to provide fine shape control.
Kefal, Adnan; Yildiz, Mehmet
2017-11-30
This paper investigated the effect of sensor density and alignment for three-dimensional shape sensing of an airplane-wing-shaped thick panel subjected to three different loading conditions, i.e., bending, torsion, and membrane loads. For shape sensing analysis of the panel, the Inverse Finite Element Method (iFEM) was used together with the Refined Zigzag Theory (RZT), in order to enable accurate predictions for transverse deflection and through-the-thickness variation of interfacial displacements. In this study, the iFEM-RZT algorithm is implemented by utilizing a novel three-node C°-continuous inverse-shell element, known as i3-RZT. The discrete strain data is generated numerically through performing a high-fidelity finite element analysis on the wing-shaped panel. This numerical strain data represents experimental strain readings obtained from surface patched strain gauges or embedded fiber Bragg grating (FBG) sensors. Three different sensor placement configurations with varying density and alignment of strain data were examined and their corresponding displacement contours were compared with those of reference solutions. The results indicate that a sparse distribution of FBG sensors (uniaxial strain measurements), aligned in only the longitudinal direction, is sufficient for predicting accurate full-field membrane and bending responses (deformed shapes) of the panel, including a true zigzag representation of interfacial displacements. On the other hand, a sparse deployment of strain rosettes (triaxial strain measurements) is essentially enough to produce torsion shapes that are as accurate as those of predicted by a dense sensor placement configuration. Hence, the potential applicability and practical aspects of i3-RZT/iFEM methodology is proven for three-dimensional shape-sensing of future aerospace structures.
An analysis of stepped trapezoidal-shaped microcantilever beams for MEMS-based devices
NASA Astrophysics Data System (ADS)
Ashok, Akarapu; Gangele, Aparna; Pal, Prem; Pandey, Ashok Kumar
2018-07-01
Microcantilever beams are the most widely used mechanical elements in the design and fabrication of MEMS/NEMS-based sensors and actuators. In this work, we have proposed a new microcantilever beam design based on a stepped trapezoidal-shaped microcantilever. Single-, double-, triple- and quadruple-stepped trapezoidal-shaped microcantilever beams along with conventional rectangular-shaped microcantilever beams were analysed experimentally, numerically and analytically. The microcantilever beams were fabricated from silicon dioxide material using wet bulk micromachining in 25 wt% TMAH. The length, width and thickness of the microcantilever beams were fixed at 200, 40 and 0.96 µm, respectively. A laser vibrometer was utilized to measure the resonance frequency and Q-factor of the microcantilever beams in vacuum as well as in ambient conditions. Furthermore, finite element analysis software, ANSYS, was employed to numerically analyse the resonance frequency, maximum deflection and torsional end rotation of all the microcantilever beam designs. The analytical and numerical resonance frequencies are found to be in good agreement with the experimental resonance frequencies. In the stepped trapezoidal-shaped microcantilever beams with an increasing number of steps, the Q-factor, maximum deflection and torsional end rotation were improved, whereas the resonance frequency was slightly reduced. Nevertheless, the resonance frequency is higher than the basic rectangular-shaped microcantilever beam. The observed quality factor, maximum deflection and torsional end rotation for a quadruple-stepped trapezoidal-shaped microcantilever are 38%, 41% and 52%, respectively, which are higher than those of conventional rectangular-shaped microcantilever beams. Furthermore, for an applied concentrated mass of 1 picogram on the cantilever surface, a greater shift in frequency is obtained for all the stepped trapezoidal-shaped microcantilever beam designs compared to the conventional rectangular microcantilever beam.
The gradient structure of the NiTi surface layers subjected to tantalum ion beam alloying
NASA Astrophysics Data System (ADS)
Girsova, S. L.; Poletika, T. M.; Meisner, L. L.; Schmidt, E. Yu
2017-05-01
The NiTi shape memory alloy has been modified by ion implantation with Ta to improve the surface and biological properties. The elemental and phase composition and structure of the surface and near-surface layers of NiTi specimens after the Ta ion implantation with the fluency D = 3 × 1017 cm-2 and D = 6 × 1017 cm-2 are examined. The methods of Auger electron spectroscopy (AES), transmission electron microscopy (TEM), and electron dispersion analysis (EDS) are used. It is found that a nonuniform distribution of elements along the depth of the surface layer after the ion implantation of NiTi specimens, regardless of the regime, is accompanied by the formation of a number of sublayer structures.
A Nonlinear Dynamic Model and Free Vibration Analysis of Deployable Mesh Reflectors
NASA Technical Reports Server (NTRS)
Shi, H.; Yang, B.; Thomson, M.; Fang, H.
2011-01-01
This paper presents a dynamic model of deployable mesh reflectors, in which geometric and material nonlinearities of such a space structure are fully described. Then, by linearization around an equilibrium configuration of the reflector structure, a linearized model is obtained. With this linearized model, the natural frequencies and mode shapes of a reflector can be computed. The nonlinear dynamic model of deployable mesh reflectors is verified by using commercial finite element software in numerical simulation. As shall be seen, the proposed nonlinear model is useful for shape (surface) control of deployable mesh reflectors under thermal loads.
Large Deflection of Ideal Pseudo-Elastic Shape Memory Alloy Cantilever Beam
NASA Astrophysics Data System (ADS)
Cui, Shitang; Hu, Liming; Yan, Jun
This paper deals with the large deflections of pseudo-elastic shape memory alloy cantilever beams subjected to a concentrated load at the free end. Because of the large deflections, geometry nonlinearity arises and this analysis employs the nonlinear bending theory. The exact expression of curvature is used in the moment-curvature relationship. As a vertical force at the tip of cantilever, curvature and bending moment distribution expressions are deduced. The curvature changed distinctly when the surface material undergoes phase transformation. The length of phase transformation region was affected greatly with the force at the free end.
NASA Technical Reports Server (NTRS)
Ko, William L.; Fleischer, Van Tran
2012-01-01
In the formulations of earlier Displacement Transfer Functions for structure shape predictions, the surface strain distributions, along a strain-sensing line, were represented with piecewise linear functions. To improve the shape-prediction accuracies, Improved Displacement Transfer Functions were formulated using piecewise nonlinear strain representations. Through discretization of an embedded beam (depth-wise cross section of a structure along a strain-sensing line) into multiple small domains, piecewise nonlinear functions were used to describe the surface strain distributions along the discretized embedded beam. Such piecewise approach enabled the piecewise integrations of the embedded beam curvature equations to yield slope and deflection equations in recursive forms. The resulting Improved Displacement Transfer Functions, written in summation forms, were expressed in terms of beam geometrical parameters and surface strains along the strain-sensing line. By feeding the surface strains into the Improved Displacement Transfer Functions, structural deflections could be calculated at multiple points for mapping out the overall structural deformed shapes for visual display. The shape-prediction accuracies of the Improved Displacement Transfer Functions were then examined in view of finite-element-calculated deflections using different tapered cantilever tubular beams. It was found that by using the piecewise nonlinear strain representations, the shape-prediction accuracies could be greatly improved, especially for highly-tapered cantilever tubular beams.
Numerical prediction of Pelton turbine efficiency
NASA Astrophysics Data System (ADS)
Jošt, D.; Mežnar, P.; Lipej, A.
2010-08-01
This paper presents a numerical analysis of flow in a 2 jet Pelton turbine with horizontal axis. The analysis was done for the model at several operating points in different operating regimes. The results were compared to the results of a test of the model. Analysis was performed using ANSYS CFX-12.1 computer code. A k-ω SST turbulent model was used. Free surface flow was modelled by two-phase homogeneous model. At first, a steady state analysis of flow in the distributor with two injectors was performed for several needle strokes. This provided us with data on flow energy losses in the distributor and the shape and velocity of jets. The second step was an unsteady analysis of the runner with jets. Torque on the shaft was then calculated from pressure distribution data. Averaged torque values are smaller than measured ones. Consequently, calculated turbine efficiency is also smaller than the measured values, the difference is about 4 %. The shape of the efficiency diagram conforms well to the measurements.
Shape-driven 3D segmentation using spherical wavelets.
Nain, Delphine; Haker, Steven; Bobick, Aaron; Tannenbaum, Allen
2006-01-01
This paper presents a novel active surface segmentation algorithm using a multiscale shape representation and prior. We define a parametric model of a surface using spherical wavelet functions and learn a prior probability distribution over the wavelet coefficients to model shape variations at different scales and spatial locations in a training set. Based on this representation, we derive a parametric active surface evolution using the multiscale prior coefficients as parameters for our optimization procedure to naturally include the prior in the segmentation framework. Additionally, the optimization method can be applied in a coarse-to-fine manner. We apply our algorithm to the segmentation of brain caudate nucleus, of interest in the study of schizophrenia. Our validation shows our algorithm is computationally efficient and outperforms the Active Shape Model algorithm by capturing finer shape details.
Finite Element Analysis of Surface Residual Stress in Functionally Gradient Cemented Carbide Tool
NASA Astrophysics Data System (ADS)
Su, Chuangnan; Liu, Deshun; Tang, Siwen; Li, Pengnan; Qiu, Xinyi
2018-03-01
A component distribution model is proposed for three-component functionally gradient cemented carbide (FGCC) based on electron probe microanalysis results obtained for gradient layer thickness, microstructure, and elemental distribution. The residual surface stress of FGCC-T5 tools occurring during the fabrication process is analyzed using an ANSYS-implemented finite element method (FEM) and X-ray diffraction. A comparison of the experimental and calculated values verifies the feasibility of using FEM to analyze the residual surface stress in FGCC-T5 tools. The effects of the distribution index, geometrical shape, substrate thickness, gradient layer thickness, and position of the cobalt-rich layer on residual surface stress are studied in detail.
NASA Astrophysics Data System (ADS)
Babík, Ondrej; Czán, Andrej; Holubják, Jozef; Kameník, Roman; Pilc, Jozef
2016-12-01
One of the most best-known characteristic and important requirement of dental implant is made of biomaterials ability to create correct interaction between implant and human body. The most implemented material in manufacturing of dental implants is titanium of different grades of pureness. Since most of the implant surface is in direct contact with bone tissue, shape and integrity of said surface has great influence on the successful osseointegration. Among other characteristics of titanium that predetermine ideal biomaterial, it shows a high mechanical strength making precise machining miniature Increasingly difficult. The article is focused on evaluation of the resulting quality, integrity and characteristics of dental implants surface after machining.
Geometric Variational Methods for Controlled Active Vision
2006-08-01
Haker , L. Zhu, and A. Tannenbaum, ``Optimal mass transport for registration and warping’’ Int. Journal Computer Vision, volume 60, 2004, pp. 225-240. G...pp. 119-142. A. Angenent, S. Haker , and A. Tannenbaum, ``Minimizing flows for the Monge-Kantorovich problem,’’ SIAM J. Math. Analysis, volume 35...Shape analysis of structures using spherical wavelets’’ (with S. Haker and D. Nain), Proceeedings of MICCAI, 2005. ``Affine surface evolution for 3D
Hydrodynamic analysis and shape optimization for vertical axisymmetric wave energy converters
NASA Astrophysics Data System (ADS)
Zhang, Wan-chao; Liu, Heng-xu; Zhang, Liang; Zhang, Xue-wei
2016-12-01
The absorber is known to be vertical axisymmetric for a single-point wave energy converter (WEC). The shape of the wetted surface usually has a great influence on the absorber's hydrodynamic characteristics which are closely linked with the wave power conversion ability. For complex wetted surface, the hydrodynamic coefficients have been predicted traditionally by hydrodynamic software based on the BEM. However, for a systematic study of various parameters and geometries, they are too multifarious to generate so many models and data grids. This paper examines a semi-analytical method of decomposing the complex axisymmetric boundary into several ring-shaped and stepped surfaces based on the boundary discretization method (BDM) which overcomes the previous difficulties. In such case, by using the linear wave theory based on eigenfunction expansion matching method, the expressions of velocity potential in each domain, the added mass, radiation damping and wave excitation forces of the oscillating absorbers are obtained. The good astringency of the hydrodynamic coefficients and wave forces are obtained for various geometries when the discrete number reaches a certain value. The captured wave power for a same given draught and displacement for various geometries are calculated and compared. Numerical results show that the geometrical shape has great effect on the wave conversion performance of the absorber. For absorbers with the same outer radius and draught or displacement, the cylindrical type shows fantastic wave energy conversion ability at some given frequencies, while in the random sea wave, the parabolic and conical ones have better stabilization and applicability in wave power conversion.
Seidel, Robin; Bohn, Holger Florian; Speck, Thomas
2012-01-01
Summary Plant surfaces showing hierarchical structuring are frequently found in plant organs such as leaves, petals, fruits and stems. In our study we focus on the level of cell shape and on the level of superimposed microstructuring, leading to hierarchical surfaces if both levels are present. While it has been shown that epicuticular wax crystals and cuticular folds strongly reduce insect attachment, and that smooth papillate epidermal cells in petals improve the grip of pollinators, the impact of hierarchical surface structuring of plant surfaces possessing convex or papillate cells on insect attachment remains unclear. We performed traction experiments with male Colorado potato beetles on nine different plant surfaces with different structures. The selected plant surfaces showed epidermal cells with either tabular, convex or papillate cell shape, covered either with flat films of wax, epicuticular wax crystals or with cuticular folds. On surfaces possessing either superimposed wax crystals or cuticular folds we found traction forces to be almost one order of magnitude lower than on surfaces covered only with flat films of wax. Independent of superimposed microstructures we found that convex and papillate epidermal cell shapes slightly enhance the attachment ability of the beetles. Thus, in plant surfaces, cell shape and superimposed microstructuring yield contrary effects on the attachment of the Colorado potato beetle, with convex or papillate cells enhancing attachment and both wax crystals or cuticular folds reducing attachment. However, the overall magnitude of traction force mainly depends on the presence or absence of superimposed microstructuring. PMID:22428097
Reentry-Vehicle Shape Optimization Using a Cartesian Adjoint Method and CAD Geometry
NASA Technical Reports Server (NTRS)
Nemec, Marian; Aftosmis, Michael J.
2006-01-01
A DJOINT solutions of the governing flow equations are becoming increasingly important for the development of efficient analysis and optimization algorithms. A well-known use of the adjoint method is gradient-based shape. Given an objective function that defines some measure of performance, such as the lift and drag functionals, its gradient is computed at a cost that is essentially independent of the number of design variables (e.g., geometric parameters that control the shape). Classic aerodynamic applications of gradient-based optimization include the design of cruise configurations for transonic and supersonic flow, as well as the design of high-lift systems. are perhaps the most promising approach for addressing the issues of flow solution automation for aerodynamic design problems. In these methods, the discretization of the wetted surface is decoupled from that of the volume mesh. This not only enables fast and robust mesh generation for geometry of arbitrary complexity, but also facilitates access to geometry modeling and manipulation using parametric computer-aided design (CAD). In previous work on Cartesian adjoint solvers, Melvin et al. developed an adjoint formulation for the TRANAIR code, which is based on the full-potential equation with viscous corrections. More recently, Dadone and Grossman presented an adjoint formulation for the two-dimensional Euler equations using a ghost-cell method to enforce the wall boundary conditions. In Refs. 18 and 19, we presented an accurate and efficient algorithm for the solution of the adjoint Euler equations discretized on Cartesian meshes with embedded, cut-cell boundaries. Novel aspects of the algorithm were the computation of surface shape sensitivities for triangulations based on parametric-CAD models and the linearization of the coupling between the surface triangulation and the cut-cells. The accuracy of the gradient computation was verified using several three-dimensional test cases, which included design variables such as the free stream parameters and the planform shape of an isolated wing. The objective of the present work is to extend our adjoint formulation to problems involving general shape changes. Factors under consideration include the computation of mesh sensitivities that provide a reliable approximation of the objective function gradient, as well as the computation of surface shape sensitivities based on a direct-CAD interface. We present detailed gradient verification studies and then focus on a shape optimization problem for an Apollo-like reentry vehicle. The goal of the optimization is to enhance the lift-to-drag ratio of the capsule by modifying the shape of its heat-shield in conjunction with a center-of-gravity (c.g.) offset. This multipoint and multi-objective optimization problem is used to demonstrate the overall effectiveness of the Cartesian adjoint method for addressing the issues of complex aerodynamic design.
The Design of Case Products’ Shape Form Information Database Based on NURBS Surface
NASA Astrophysics Data System (ADS)
Liu, Xing; Liu, Guo-zhong; Xu, Nuo-qi; Zhang, Wei-she
2017-07-01
In order to improve the computer design of product shape design,applying the Non-uniform Rational B-splines(NURBS) of curves and surfaces surface to the representation of the product shape helps designers to design the product effectively.On the basis of the typical product image contour extraction and using Pro/Engineer(Pro/E) to extract the geometric feature of scanning mold,in order to structure the information data base system of value point,control point and node vector parameter information,this paper put forward a unified expression method of using NURBS curves and surfaces to describe products’ geometric shape and using matrix laboratory(MATLAB) to simulate when products have the same or similar function.A case study of electric vehicle’s front cover illustrates the access process of geometric shape information of case product in this paper.This method can not only greatly reduce the capacity of information debate,but also improve the effectiveness of computer aided geometric innovation modeling.
Electromagnetic properties of material coated surfaces
NASA Technical Reports Server (NTRS)
Beard, L.; Berrie, J.; Burkholder, R.; Dominek, A.; Walton, E.; Wang, N.
1989-01-01
The electromagnetic properties of material coated conducting surfaces were investigated. The coating geometries consist of uniform layers over a planar surface, irregularly shaped formations near edges and randomly positioned, electrically small, irregularly shaped formations over a surface. Techniques to measure the scattered field and constitutive parameters from these geometries were studied. The significance of the scattered field from these geometries warrants further study.
Airfoil-shaped micro-mixers for reducing fouling on membrane surfaces
Ho, Clifford K; Altman, Susan J; Clem, Paul G; Hibbs, Michael; Cook, Adam W
2012-10-23
An array of airfoil-shaped micro-mixers that enhances fluid mixing within permeable membrane channels, such as used in reverse-osmosis filtration units, while minimizing additional pressure drop. The enhanced mixing reduces fouling of the membrane surfaces. The airfoil-shaped micro-mixer can also be coated with or comprised of biofouling-resistant (biocidal/germicidal) ingredients.
Agudo-Canalejo, Jaime; Lipowsky, Reinhard
2017-03-15
Biological membranes and lipid vesicles often display complex shapes with non-uniform membrane curvature. When adhesive nanoparticles with chemically uniform surfaces come into contact with such membranes, they exhibit four different engulfment regimes as recently shown by a systematic stability analysis. Depending on the local curvature of the membrane, the particles either remain free, become partially or completely engulfed by the membrane, or display bistability between free and completely engulfed states. Here, we go beyond stability analysis and develop an analytical theory to leading order in the ratio of particle-to-vesicle size. This theory allows us to determine the local and global energy landscapes of uniform nanoparticles that are attracted towards membranes and vesicles. While the local energy landscape depends only on the local curvature of the vesicle membrane and not on the overall membrane shape, the global energy landscape describes the variation of the equilibrium state of the particle as it probes different points along the membrane surface. In particular, we find that the binding energy of a partially engulfed particle depends on the 'unperturbed' local curvature of the membrane in the absence of the particle. This curvature dependence leads to local forces that pull the partially engulfed particles towards membrane segments with lower and higher mean curvature if the particles originate from the exterior and interior solution, respectively, corresponding to endo- and exocytosis. Thus, for partial engulfment, endocytic particles undergo biased diffusion towards the membrane segments with the lowest membrane curvature, whereas exocytic particles move towards segments with the highest curvature. The curvature-induced forces are also effective for Janus particles with one adhesive and one non-adhesive surface domain. In fact, Janus particles with a strongly adhesive surface domain are always partially engulfed which implies that they provide convenient probes for experimental studies of the curvature-induced forces that arise for complex-shaped membranes.
ERIC Educational Resources Information Center
Cook, Robert G.; Qadri, Muhammad A. J.; Kieres, Art; Commons-Miller, Nicholas
2012-01-01
Light is the origin of vision. The pattern of shading reflected from object surfaces is one of several optical features that provide fundamental information about shape and surface orientation. To understand how surface and object shading is processed by birds, six pigeons were tested with differentially illuminated convex and concave curved…
Optical Estimation of the 3D Shape of a Solar Illuminated, Reflecting Satellite Surface
NASA Astrophysics Data System (ADS)
Antolin, J.; Yu, Z.; Prasad, S.
2016-09-01
The spatial distribution of the polarized component of the power reflected by a macroscopically smooth but microscopically roughened curved surface under highly directional illumination, as characterized by an appropriate bi-directional reflectance distribution function (BRDF), carries information about the three-dimensional (3D) shape of the surface. This information can be exploited to recover the surface shape locally under rather general conditions whenever power reflectance data for at least two different illumination or observation directions can be obtained. We present here two different parametric approaches for surface reconstruction, amounting to the recovery of the surface parameters that are either the global parameters of the family to which the surface is known a priori to belong or the coefficients of a low-order polynomial that can be employed to characterize a smoothly varying surface locally over the observed patch.
A Chemical Approach to Understanding Oxide Surface Structure and Reactivity
NASA Astrophysics Data System (ADS)
Enterkin, James Andrew
Transmission electron microscopy and diffraction are powerful tools for solving complex structural problems. They complement other analytical techniques, such as x-ray diffraction, elucidating problems which cannot be solved by other techniques. One area where they are of particularly great value is in the determination of surface structures. The research presented herein uses electron microscopy and diffraction as the primary experimental techniques in the development of a chemistry of surface structures. High-resolution electron microscopy revealed that the La4Cu 3MoO12 structure has turbostratic disorder and a lower symmetry space group (Pm) than was previously found. The refinement of the x-ray data was significantly improved by using a disordered model and the Pm space group. A bond valence analysis confirmed that the disordered structure is the superior model. Strontium titanate, SrTiO3, single crystal surfaces were examined principally via transmission electron diffraction. A homologous series with intergrowths was discovered on the (110) surface of strontium titanate, marking the first time that these important concepts of solid state chemistry have been found at the surface. Atmospheric adsorbates, such as H2O and CO2, were found to help to stabilize undercoordinated surface structures on the (100) surface. It was shown that chemical bonding, bond valence, atomic coordination, and stoichiometry greatly influence the development of surface structures. Additionally, such chemistry based analysis was demonstrated to be able to predict surface structure stability and reactivity. Application of a modified Wulff construction to the observed shape of strontium titanate nanocuboids revealed that the surface structure and particle stoichiometry are interlinked, with control over one allowing equally precise control over the other. Platinum nanoparticles on the strontium titanate nanocuboids were shown via high resolution electron microscopy to have cube-on-cube epitaxy, with the shape of the platinum nanoparticles governed by the Winterbottom construction. Precise modification of the support surface will therefore allow engineering of supported metal particles with precise control over which facets are exposed. These results suggest that control over the support surface chemistry can be used to engineer thermodynamically stable, face selective catalysts.
Effect on injuries of assigning shoes based on foot shape in air force basic training.
Knapik, Joseph J; Brosch, Lorie C; Venuto, Margaret; Swedler, David I; Bullock, Steven H; Gaines, Lorraine S; Murphy, Ryan J; Tchandja, Juste; Jones, Bruce H
2010-01-01
This study examined whether assigning running shoes based on the shape of the bottom of the foot (plantar surface) influenced injury risk in Air Force Basic Military Training (BMT) and examined risk factors for injury in BMT. Data were collected from BMT recruits during 2007; analysis took place during 2008. After foot examinations, recruits were randomly consigned to either an experimental group (E, n=1042 men, 375 women) or a control group (C, n=913 men, 346 women). Experimental group recruits were assigned motion control, stability, or cushioned shoes for plantar shapes indicative of low, medium, or high arches, respectively. Control group recruits received a stability shoe regardless of plantar shape. Injuries during BMT were determined from outpatient visits provided from the Defense Medical Surveillance System. Other injury risk factors (fitness, smoking, physical activity, prior injury, menstrual history, and demographics) were obtained from a questionnaire, existing databases, or BMT units. Multivariate Cox regression controlling for other risk factors showed little difference in injury risk between the groups among men (hazard ratio [E/C]=1.11, 95% CI=0.89-1.38) or women (hazard ratio [E/C]=1.20, 95% CI= 0.90-1.60). Independent injury risk factors among both men and women included low aerobic fitness and cigarette smoking. This prospective study demonstrated that assigning running shoes based on the shape of the plantar surface had little influence on injury risk in BMT even after controlling for other injury risk factors. Published by Elsevier Inc.
Porous micropillar structures for retaining low surface tension liquids.
Agonafer, Damena D; Lee, Hyoungsoon; Vasquez, Pablo A; Won, Yoonjin; Jung, Ki Wook; Lingamneni, Srilakshmi; Ma, Binjian; Shan, Li; Shuai, Shuai; Du, Zichen; Maitra, Tanmoy; Palko, James W; Goodson, Kenneth E
2018-03-15
The ability to manipulate fluid interfaces, e.g., to retain liquid behind or within porous structures, can be beneficial in multiple applications, including microfluidics, biochemical analysis, and the thermal management of electronic systems. While there are a variety of strategies for controlling the disposition of liquid water via capillarity, such as the use of chemically modified porous adhesive structures and capillary stop valves or surface geometric features, methods that work well for low surface tension liquids are far more difficult to implement. This study demonstrates the microfabrication of a silicon membrane that can retain exceptionally low surface tension fluorinated liquids against a significant pressure difference across the membrane via an array of porous micropillar structures. The membrane uses capillary forces along the triple phase contact line to maintain stable liquid menisci that yield positive working Laplace pressures. The micropillars have inner diameters and thicknesses of 1.5-3 μm and ∼1 μm, respectively, sustaining Laplace pressures up to 39 kPa for water and 9 kPa for Fluorinert™ (FC-40). A theoretical model for predicting the change in pressure as the liquid advances along the porous micropillar structure is derived based on a free energy analysis of the liquid meniscus with capped spherical geometry. The theoretical prediction was found to overestimate the burst pressure compared with the experimental measurements. To elucidate this deviation, transient numerical simulations based on the Volume of Fluid (VOF) were performed to explore the liquid pressure and evolution of meniscus shape under different flow rates (i.e., Capillary numbers). The results from VOF simulations reveal strong dynamic effects where the anisotropic expansion of liquid along the outer micropillar edge leads to an irregular meniscus shape before the liquid spills along the micropillar edge. These findings suggest that the analytical prediction of burst Laplace pressure obtained under quasi-static condition (i.e., equilibrium thermodynamic analysis under low capillary number) is not applicable to highly dynamic flow conditions, where the liquid meniscus shape deformation by flow perturbation cannot be restored by surface tension force instantaneously. Therefore, the critical burst pressure is dependent on the liquid velocity and viscosity under dynamic flow conditions. A numerical simulation using Surface Evolver also predicts that surface defects along the outer micropillar edge can yield up to 50% lower Laplace pressures than those predicted with ideal feature geometries. The liquid retention strategy developed here can facilitate the routing and phase management of dielectric working fluids for application in heat exchangers. Further improvements in the retention performance can be realized by optimizing the fabrication process to reduce surface defects. Copyright © 2017 Elsevier Inc. All rights reserved.
Multiscale geometric modeling of macromolecules I: Cartesian representation
NASA Astrophysics Data System (ADS)
Xia, Kelin; Feng, Xin; Chen, Zhan; Tong, Yiying; Wei, Guo-Wei
2014-01-01
This paper focuses on the geometric modeling and computational algorithm development of biomolecular structures from two data sources: Protein Data Bank (PDB) and Electron Microscopy Data Bank (EMDB) in the Eulerian (or Cartesian) representation. Molecular surface (MS) contains non-smooth geometric singularities, such as cusps, tips and self-intersecting facets, which often lead to computational instabilities in molecular simulations, and violate the physical principle of surface free energy minimization. Variational multiscale surface definitions are proposed based on geometric flows and solvation analysis of biomolecular systems. Our approach leads to geometric and potential driven Laplace-Beltrami flows for biomolecular surface evolution and formation. The resulting surfaces are free of geometric singularities and minimize the total free energy of the biomolecular system. High order partial differential equation (PDE)-based nonlinear filters are employed for EMDB data processing. We show the efficacy of this approach in feature-preserving noise reduction. After the construction of protein multiresolution surfaces, we explore the analysis and characterization of surface morphology by using a variety of curvature definitions. Apart from the classical Gaussian curvature and mean curvature, maximum curvature, minimum curvature, shape index, and curvedness are also applied to macromolecular surface analysis for the first time. Our curvature analysis is uniquely coupled to the analysis of electrostatic surface potential, which is a by-product of our variational multiscale solvation models. As an expository investigation, we particularly emphasize the numerical algorithms and computational protocols for practical applications of the above multiscale geometric models. Such information may otherwise be scattered over the vast literature on this topic. Based on the curvature and electrostatic analysis from our multiresolution surfaces, we introduce a new concept, the polarized curvature, for the prediction of protein binding sites.
Role of nanoparticle size, shape and surface chemistry in oral drug delivery.
Banerjee, Amrita; Qi, Jianping; Gogoi, Rohan; Wong, Jessica; Mitragotri, Samir
2016-09-28
Nanoparticles find intriguing applications in oral drug delivery since they present a large surface area for interactions with the gastrointestinal tract and can be modified in various ways to address the barriers associated with oral delivery. The size, shape and surface chemistry of nanoparticles can greatly impact cellular uptake and efficacy of the treatment. However, the interplay between particle size, shape and surface chemistry has not been well investigated especially for oral drug delivery. To this end, we prepared sphere-, rod- and disc-shaped nanoparticles and conjugated them with targeting ligands to study the influence of size, shape and surface chemistry on their uptake and transport across intestinal cells. A triple co-culture model of intestinal cells was utilized to more closely mimic the intestinal epithelium. Results demonstrated higher cellular uptake of rod-shaped nanoparticles in the co-culture compared to spheres regardless of the presence of active targeting moieties. Transport of nanorods across the intestinal co-culture was also significantly higher than spheres. The findings indicate that nanoparticle-mediated oral drug delivery can be potentially improved with departure from spherical shape which has been traditionally utilized for the design of nanoparticles. We believe that understanding the role of nanoparticle geometry in intestinal uptake and transport will bring forth a paradigm shift in nanoparticle engineering for oral delivery and non-spherical nanoparticles should be further investigated and considered for oral delivery of therapeutic drugs and diagnostic materials. Copyright © 2016 Elsevier B.V. All rights reserved.
Effects of the 2016 Kumamoto earthquakes on the Aso volcanic edifice
NASA Astrophysics Data System (ADS)
Tajima, Yasuhisa; Hasenaka, Toshiaki; Torii, Masayuki
2017-05-01
Large earthquakes occurred in the central part of Kumamoto Prefecture on April 14-16, 2016, causing severe damage to the northern segment of the Hinagu faults and the eastern segment of the Futagawa faults. Earthquake surface ruptures appeared along these faults and on the Aso volcanic edifice, which in turn generated landslides. We conducted landform change analysis of the central cones of Aso volcano by using satellite and aerial photographs. First, we categorized the topographical changes as surface scarps, arc-shaped cracks, and linear cracks. Field survey indicated that landslides caused the scarps and arc-shaped cracks, whereas faulting caused the linear cracks. We discovered a surface rupture concentration zone (RCZ) formed three ruptures bands with many surface ruptures and landslides extending from the west foot to the center of the Aso volcanic edifice. The magmatic volcanic vents that formed during the past 10,000 years are located along the north margin of the RCZ. Moreover, the distribution and dip of the core of rupture concentration zone correspond with the Nakadake craters. We conclude that a strong relationship exists between the volcanic vents and fault structures in the central cones of Aso volcano.[Figure not available: see fulltext.
Henseler, Helga; Smith, Joanna; Bowman, Adrian; Khambay, Balvinder S; Ju, Xiangyang; Ayoub, Ashraf; Ray, Arup K
2012-09-01
The latissimus dorsi muscle flap is a common method for the reconstruction of the breast following mastectomy. The study aimed to assess the quality of this reconstruction using a three-dimensional (3D) imaging method. The null hypothesis was that there was no difference in volume between the reconstructed breast and the opposite side. This study was conducted in forty-four patients who had had immediate unilateral breast reconstruction by latissimus dorsi muscle flap. The breast was captured using the 3D imaging system. Ten landmarks were digitised on the 3D images. The volume of each breast was measured by the application of Breast Analysis Tool software. The symmetry of the breast was measured using Procrustes analysis. The impact of breast position, orientation, size and intrinsic shape on the overall breast asymmetry was investigated. The null hypothesis was rejected. The reconstructed breast showed a significantly smaller volume when compared to the opposite side, p < 0.0001, a mean difference of 176.8 cc and 95% CI (103.5, 250.0). The shape and the position of the reconstructed breast were the main contributing factors to the measured asymmetry score. 3D imaging was efficient in evaluating the outcome of breast surgery. The latissimus dorsi muscle flap on its own for breast reconstruction did not restore the volume and shape of the breast fully lost due to complete mastectomy. The modification of this method and the selection of other or additional surgical techniques for breast reconstruction should be considered. The asymmetry analysis through reflection and Procrustes matching was a useful method for the objective shape analysis of the female breast and presented a new approach for breast shape assessment. The intrinsic breast shape and the positioning of the breast were major components of postoperative breast asymmetry. The reconstructed breast was smaller overall than the un-operated breast at a significant level when assessing the breast volume using the surface area. 3D imaging by multiple stereophotogrammetry was a useful tool for volume measurements, shape analysis and the evaluation of symmetry. Copyright © 2012 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Contour of lingual surface in lower complete denture formed by polished surface impression.
Heo, Yu-Ri; Kim, Hee-Jung; Son, Mee-Kyoung; Chung, Chae-Heon
2016-12-01
The aim of this study was to analyze the shapes of lingual polished surfaces in lower complete dentures formed by polished surface impressions and to provide reference data for use when manufacturing edentulous trays and lower complete dentures. Twenty-six patients with mandibular edentulism were studied. After lower wax dentures were fabricated, wax was removed from the lingual side of the wax denture and a lingual polished surface impression was obtained with tissue conditioner. The definitive denture was scanned with a three-dimensional scanner, and scanned images were obtained. At the cross-sections of the lingual frenum, lateral incisors, first premolars, first molars, and anterior border of the retromolar pads, three points were marked and eight measurements were taken. The Kruskal-Wallis test and a post hoc analysis with the Mann-Whitney test were performed. Each patient showed similar values for the same areas on the left and right sides without a statistically significant difference. The height of the contour of the lingual polished surface at the lingual frenum was halfway between the occlusal plane and lingual border, it moved gradually in a downward direction. The angle from the occlusal plane to the height of the contour of the lingual polished surface was increased as it progressed from the lingual frenum towards the retromolar pads. The shape of the mandibular lingual polished surface was convex at the lingual frenum, lateral incisors and gradually flattened towards the first molars and retromolar pads.
Efficient numerical method of freeform lens design for arbitrary irradiance shaping
NASA Astrophysics Data System (ADS)
Wojtanowski, Jacek
2018-05-01
A computational method to design a lens with a flat entrance surface and a freeform exit surface that can transform a collimated, generally non-uniform input beam into a beam with a desired irradiance distribution of arbitrary shape is presented. The methodology is based on non-linear elliptic partial differential equations, known as Monge-Ampère PDEs. This paper describes an original numerical algorithm to solve this problem by applying the Gauss-Seidel method with simplified boundary conditions. A joint MATLAB-ZEMAX environment is used to implement and verify the method. To prove the efficiency of the proposed approach, an exemplary study where the designed lens is faced with the challenging illumination task is shown. An analysis of solution stability, iteration-to-iteration ray mapping evolution (attached in video format), depth of focus and non-zero étendue efficiency is performed.
Rolland, N; Larson, D J; Geiser, B P; Duguay, S; Vurpillot, F; Blavette, D
2015-12-01
An analytical model describing the field evaporation dynamics of a tip made of a thin layer deposited on a substrate is presented in this paper. The difference in evaporation field between the materials is taken into account in this approach in which the tip shape is modeled at a mesoscopic scale. It was found that the non-existence of sharp edge on the surface is a sufficient condition to derive the morphological evolution during successive evaporation of the layers. This modeling gives an instantaneous and smooth analytical representation of the surface that shows good agreement with finite difference simulations results, and a specific regime of evaporation was highlighted when the substrate is a low evaporation field phase. In addition, the model makes it possible to calculate theoretically the tip analyzed volume, potentially opening up new horizons for atom probe tomographic reconstruction. Copyright © 2015 Elsevier B.V. All rights reserved.
DMG-α--a computational geometry library for multimolecular systems.
Szczelina, Robert; Murzyn, Krzysztof
2014-11-24
The DMG-α library grants researchers in the field of computational biology, chemistry, and biophysics access to an open-sourced, easy to use, and intuitive software for performing fine-grained geometric analysis of molecular systems. The library is capable of computing power diagrams (weighted Voronoi diagrams) in three dimensions with 3D periodic boundary conditions, computing approximate projective 2D Voronoi diagrams on arbitrarily defined surfaces, performing shape properties recognition using α-shape theory and can do exact Solvent Accessible Surface Area (SASA) computation. The software is written mainly as a template-based C++ library for greater performance, but a rich Python interface (pydmga) is provided as a convenient way to manipulate the DMG-α routines. To illustrate possible applications of the DMG-α library, we present results of sample analyses which allowed to determine nontrivial geometric properties of two Escherichia coli-specific lipids as emerging from molecular dynamics simulations of relevant model bilayers.
Moghaddam, Mohammadreza Salehi; Latifi, H; Shahraki, Hamidreza; Cheri, Mohammad Sadegh
2015-04-01
Microlenses with tunable focal length have wide applications in optofluidic devices. This work presents a numerical and experimental investigation on a tunable electrowetting-based concave lens. Optical properties such as focal length of the lens and visibility of images were investigated numerically and experimentally. A finite element analysis and a ZEMAX simulation were used for determination of surface profile and focal length of the lens. The results show that the theoretical surface profile and focal length of the lens are in good agreement with the experimental ones. The lens has a wide tuning focal length equal to 6.5 (cm). Because the polydimethylsiloxane (PDMS) layer is wedge shaped (as both the dielectric and hydrophobic layers), lower applied voltage is needed. A commercial program was used to find the focal length of the lens from maximum visibility value by tuning the applied voltage.
NASA Technical Reports Server (NTRS)
Bragg, M. B.
1986-01-01
An experimental study was conducted in the Ohio State University subsonic wind tunnel to measure the detailed aerodynamic characteristics of an airfoil with a simulated glaze ice accretion. A NACA 0012 model with interchangeable leading edges and pressure taps every one percent chord was used. Surface pressure and wake data were taken on the airfoil clean, with forced transition and with a simulated glaze ice shape. Lift and drag penalties due to the ice shape were found and the surface pressure clearly showed that large separation bubbles were present. Both total pressure and split-film probes were used to measure velocity profiles, both for the clean model and for the model with a simulated ice accretion. A large region of flow separation was seen in the velocity profiles and was correlated to the pressure measurements. Clean airfoil data were found to compare well to existing airfoil analysis methods.
Formation of Molecular Networks: Tailored Quantum Boxes and Behavior of Adsorbed CO in Them
NASA Astrophysics Data System (ADS)
Wyrick, Jon; Sun, Dezheng; Kim, Dae-Ho; Cheng, Zhihai; Lu, Wenhao; Zhu, Yeming; Luo, Miaomiao; Kim, Yong Su; Rotenberg, Eli; Kim, Kwangmoo; Einstein, T. L.; Bartels, Ludwig
2011-03-01
We show that the behavior of CO adsorbed into the pores of large regular networks on Cu(111) is significantly affected by their nano-scale lateral confinement and that formation of the networks themselves is directed by the Shockley surface state. Saturation coverages of CO are found to exhibit persistent dislocation lines; at lower coverages their mobility increases. Individual CO within the pores titrate the surface state, providing crucial information for understanding formation of the network as a result of optimization of the number N of electrons bound within each pore. Determination of N is based on quinone-coverage-dependent UPS data and an analysis of states of particles in a pore-shaped box (verified by CO's titration); a wide range of possible pore shapes and sizes has been considered. Work at UCR supported by NSF CHE 07-49949; at UMD by NSF CHE 07-50334 & UMD NSF-MRSEC DMR 05-20471.
Formation mechanism and mechanics of dip-pen nanolithography using molecular dynamics.
Wu, Cheng-Da; Fang, Te-Hua; Lin, Jen-Fin
2010-03-02
Molecular dynamics simulations are used to investigate the mechanisms of molecular transference, pattern formation, and mechanical behavior in the dip-pen nanolithography (DPN) process. The effects of deposition temperature were studied using molecular trajectories, the meniscus characteristic, surface absorbed energy, and pattern formation analysis. At the first transferred stage (at the initial indentation depth), the conformation of SAM molecules lies almost on the substrate surface. The molecules start to stand on the substrate due to the pull and drag forces at the second transferred stage (after the tip is pulled up). According to the absorbed energy behavior, the second transferred stage has larger transferred amounts and the transfer rate is strongly related to temperature. When molecules were deposited at low temperature (e.g., room temperature), the pattern shape was more highly concentrated. The pattern shape at high temperatures expanded and the area increased because of good molecular diffusion.
Microscopic insight into the bilateral formation of carbon spirals from a symmetric iron core
Shiozawa, Hidetsugu; Bachmatiuk, Alicja; Stangl, Andreas; Cox, David C.; Silva, S. Ravi P.; Rümmeli, Mark H.; Pichler, Thomas
2013-01-01
Mirrored carbon-spirals have been produced from pressured ferrocene via the bilateral extrusion of the spiral pairs from an iron core. A parametric plot of the surface geometry displays the fractal growth of the conical helix made with the logarithmic spiral. Electron microscopy studies show the core is a crystalline cementite which grows and transforms its shape from spherical to biconical as it extrudes two spiralling carbon arms. In a cross section along the arms we observe graphitic flakes arranged in a herringbone structure, normal to which defects propagate. Local-wave-pattern analysis reveals nanoscale defect patterns of two-fold symmetry around the core. The data suggest that the bilateral growth originates from a globular cementite crystal with molten surfaces and the nano-defects shape emerging hexagonal carbon into a fractal structure. Understanding and knowledge obtained provide a basis for the controlled production of advanced carbon materials with designed geometries. PMID:23670649
Lu, Chao; Qi, Wei; Li, Le; Sun, Yao; Qin, Tian-Tian; Wang, Na-Na
2012-05-01
Landscape pattern indices are the commonly used tools for the quantitative analysis of landscape pattern. However, the traditional 2D landscape pattern indices neglect the effects of terrain on landscape, existing definite limitations in quantitatively describing the landscape patterns in mountains areas. Taking the Qixia City, a typical mountainous and hilly region in Shandong Province of East China, as a case, this paper compared the differences between 2D and 3D landscape pattern indices in quantitatively describing the landscape patterns and their dynamic changes in mountainous areas. On the basis of terrain structure analysis, a set of landscape pattern indices were selected, including area and density (class area and mean patch size), edge and shape (edge density, landscape shape index, and fractal dimension of mean patch), diversity (Shannon's diversity index and evenness index) , and gathering and spread (contagion index). There existed obvious differences between the 3D class area, mean patch area, and edge density and the corresponding 2D indices, but no significant differences between the 3D landscape shape index, fractal dimension of mean patch, and Shannon' s diversity index and evenness index and the corresponding 2D indices. The 3D contagion index and 2D contagion index had no difference. Because the 3D landscape pattern indices were calculated by using patch surface area and surface perimeter whereas the 2D landscape pattern indices were calculated by adopting patch projective area and projective perimeter, the 3D landscape pattern indices could be relative accurate and efficient in describing the landscape area, density and borderline, in mountainous areas. However, there were no distinct differences in describing landscape shape, diversity, and gathering and spread between the 3D and 2D landscape pattern indices. Generally, by introducing 3D landscape pattern indices to topographic pattern, the description of landscape pattern and its dynamic change would be relatively accurate.
Fermi Surface as a Driver for the Shape-Memory Effect in AuZn
NASA Astrophysics Data System (ADS)
Lashley, Jason
2005-03-01
Martensites are materials that undergo diffusionless, solid-state transitions. The martensitic transition yields properties that depend on the history of the material and if reversible can allow it to recover its previous shape after plastic deformation. This is known as the shape-memory effect (SME). We have succeeded in identifying the operative electronic mechanism responsible for the martensitic transition in the shape-memory alloy AuZn by using Fermi-surface measurements (de Haas-van Alphen oscillations) and band-structure calculations. Our findings suggest that electronic band structure gives rise to special features on the Fermi surface that is important to consider in the design of SME alloys.
Vector vortex beam generation with dolphin-shaped cell meta-surface.
Yang, Zhuo; Kuang, Deng-Feng; Cheng, Fang
2017-09-18
We present a dolphin-shaped cell meta-surface, which is a combination of dolphin-shaped metallic cells and dielectric substrate, for vector vortex beam generation with the illumination of linearly polarized light. Surface plasmon polaritons are excited at the boundary of the metallic cells, then guided by the metallic structures, and finally squeezed to the tips to form highly localized strong electromagnetic fields, which generate the intensity of vector vortex beams at z component. Synchronously, the abrupt phase change produced by the meta-surface is utilized to explain the vortex phase generated by elements. The new kind of structure can be utilized for communication, bioscience, and materiality.
Shape dependence of slip length on patterned hydrophobic surfaces
NASA Astrophysics Data System (ADS)
Gu, Xiaokun; Chen, Min
2011-08-01
The effects of solid-liquid interfacial shape on the boundary velocity slip of patterned hydrophobic surfaces are investigated. The scaling law in literature is extended to demonstrate the role of such shape, indicating a decrease of the effective slip length with increasing interfacial roughness. A patterned surface with horizontally aligned carbon nanotube arrays reaches an effective slip length of 83 nm, by utilizing large intrinsic slippage of carbon nanotube while keeping away from the negative effects of interfacial curvature through the flow direction. The results emphasize the importance of avoiding the solid-liquid interfacial roughness in low-friction patterned surface design and manufacture.
Shape-Driven 3D Segmentation Using Spherical Wavelets
Nain, Delphine; Haker, Steven; Bobick, Aaron; Tannenbaum, Allen
2013-01-01
This paper presents a novel active surface segmentation algorithm using a multiscale shape representation and prior. We define a parametric model of a surface using spherical wavelet functions and learn a prior probability distribution over the wavelet coefficients to model shape variations at different scales and spatial locations in a training set. Based on this representation, we derive a parametric active surface evolution using the multiscale prior coefficients as parameters for our optimization procedure to naturally include the prior in the segmentation framework. Additionally, the optimization method can be applied in a coarse-to-fine manner. We apply our algorithm to the segmentation of brain caudate nucleus, of interest in the study of schizophrenia. Our validation shows our algorithm is computationally efficient and outperforms the Active Shape Model algorithm by capturing finer shape details. PMID:17354875
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhanjadeo, Madhabi M.; Academy of Scientific and Innovative Research; Nayak, Ashok K.
DNA based self-assembled nanostructures and DNA origami has proven useful for organizing nanomaterials with firm precision. However, for advanced applications like nanoelectronics and photonics, large-scale organization of self-assembled branched DNA (bDNA) into periodic lattices is desired. In this communication for the first time we report a facile method of self-assembly of Y-shaped bDNA nanostructures on the cationic surface of Aluminum (Al) foil to prepare periodic two dimensional (2D) bDNA lattice. Particularly those Y-shaped bDNA structures having smaller overhangs and unable to self-assemble in solution, they are easily assembled on the surface of Al foil in the absence of ligase. Fieldmore » emission scanning electron microscopy (FESEM) analysis shows homogenous distribution of two-dimensional bDNA lattices across the Al foil. When the assembled bDNA structures were recovered from the Al foil and electrophoresed in nPAGE only higher order polymeric bDNA structures were observed without a trace of monomeric structures which confirms the stability and high yield of the bDNA lattices. Therefore, this enzyme-free economic and efficient strategy for developing bDNA lattices can be utilized in assembling various nanomaterials for functional molecular components towards development of DNA based self-assembled nanodevices. - Highlights: • Al foil surface-assisted self-assembly of monomeric structures into larger branched DNA lattice. • FESEM study confirms the uniform distribution of two-dimensional bDNA lattice structures across the surface of Al foil. • Enzyme-free and economic strategy to prepare higher order structures from simpler DNA nanostructures have been confirmed by recovery assay. • Use of well proven sequences for the preparation of pure Y-shaped monomeric DNA nanostructure with high yield.« less
Constraints on the size of Asteroid (216) Kleopatra using stress analysis
NASA Astrophysics Data System (ADS)
Hirabayashi, M.; Scheeres, D. J.
2013-12-01
We investigate the stable size of Asteroid (216) Kleopatra by considering structural constraints on this body. Comprehensive radar observations (Ostro et al. 2000, Science) were used to estimate a shape model for this asteroid. Their estimation revealed that the shape looks like a dog-bone, the mean radius is 54.3 km (with uncertainty as large as 25%), and the surface seems similar to lunar surface regolith. However, 10 years later, Descamps et al. (2011, Icarus) performed near-infrared adaptive optics (AO) imaging with the W.M. Keck II telescope and found that although the shape may be consistent with their observation result, their size appeared to be larger than the Ostro size (by a factor of about 1.24). Our motivation in this study is to investigate structural stability constraints on the size of this asteroid. Across the stated range of uncertainty we find significant differences in the necessary angle of friction and cohesion for the body to avoid plastic deformation. We use the following physical parameters as fixed: a mass of 4.64e18 kg (Descamps et al. 2011, Icarus), a rotation period of 5.385 hr (Magnusson 1990, Icarus), and the Ostro et al. shape. We use the Drucker-Prager criterion to describe the rheology of the asteroid's material. Furthermore, we determine the friction angle from the fact that the surface of this asteroid is similar to lunar surface regolith, whose porosity ranges from 33% to 55%. According to Scott (1963), a soil with porosity of 44% (the mean value of the lunar surface porosity) has a friction angle of 32 degrees (which we use as our nominal value). Since the interior structure is unknown, we assume that the body is homogeneous. We first analyze the stable size by using the upper bound theorem from limit analysis on the assumption that this asteroid's materials are cohesionless. Based on this theorem, for any static surface traction and body force, the yield due to a smooth and convex yield envelope associated with the volume average is identical to the upper bound (Holsapple 2008, INT J NONLINEAR MECH). For the average stress, we give total volume (Holsapple, 2008, Icarus) and partial volume (Hirabayashi et al., 2013, ApJ, submitted). This method gives a conservative condition for structural failure. The result shows that if the size is between 1.18 and 1.32 (a scaling factor defined such that the Ostro shape's size has a value of 1.0), (216) Kleopatra is structurally stable, which is consistent with Descamps et al. (2011, Icaurus). Next, we calculate plastic stress solutions to determine possible actual structural failure regimes. For this computation, we use commercial finite element analysis software (ANSYS Academic Teaching Introductory 14.0). To determine structural failure, we search for the condition where a plastic region propagates over the majority of a cross section. Since the zero-cohesion condition leads to large plastic deformations, we evaluate the stable size as a function of cohesion under the constant friction angle 32 degree. The result shows that if the size is 1.24, the necessary cohesion required is 90000 Pa; otherwise, the value dramatically increases up to 1e6 Pa. This technique is robust; therefore, once we obtain accurate physical parameters from more detail observations, our methodology will be able to give stronger constraints (216) Kleopatra, as well as other rubble pile asteroids.
Roles of Shape and Internal Structure in Rotational Disruption of Asteroids
NASA Astrophysics Data System (ADS)
Hirabayashi, Masatoshi; Scheeres, Daniel Jay
2015-08-01
An active research area over the last decade has been to explore configuration changes of rubble pile asteroids due to rotationally induced disruption, initially driven by the remarkable fact that there is a spin period threshold of 2 hr for asteroids larger than a few hundred meters in size. Several different disruption modes due to rapid rotation can be identified, as surface shedding, fission and failure of the internal structure. Relevant to these discussions are many observations of asteroid shapes that have revealed a diversity of forms such as oblate spheroids with equatorial ridges, strongly elongated shapes and contact binaries, to say nothing of multi-body systems. With consideration that rotationally induced deformation is one of the primary drivers of asteroid evolution, we have been developing two techniques for investigating the structure of asteroids, while accounting for their internal mechanical properties through plastic theory. The first technique developed is an analytical model based on limit analysis, which provides rigorous bounds on the asteroid mechanical properties for their shapes to remain stable. The second technique applies finite element model analysis that accounts for plastic deformation. Combining these models, we have explored the correlation between unique shape features and failure modes. First, we have been able to show that contact binary asteroids preferentially fail at their narrow necks at a relatively slow spin period, due to stress concentration. Second, applying these techniques to the breakup event of active asteroid P/2013 R3, we have been able to develop explicit constraints on the cohesion within rubble pile asteroids. Third, by probing the effect of inhomogeneous material properties, we have been able to develop conditions for whether an oblate body will fail internally or through surface shedding. These different failure modes can be tested by measuring the density distribution within a rubble pile body through determination of its gravity field. This talk will explore these different modes of failure and motivate divergent theories of failure that depend on properties of rubble piles.
A virtual reconstruction and comparative analysis of the KNM-ER 42700 cranium.
Bauer, Catherine C; Harvati, Katerina
2015-01-01
The taxonomic attribution of the 1.55 million year old young adult fossil calvaria KNM-ER 42700 from Ileret, Kenya, is subject to ongoing controversy. It has been attributed to H. erectus based on comparative description and linear measurements. However, 3-D geometric morphometric analysis found that this specimen fell outside the range of variation of H. erectus in its cranial shape, which was intermediate between H. erectus and modern humans. One problem is that analyses so far were conducted on the original specimen, which shows slight post-mortem distortion. Here we use a surface scan of a high resolution cast of KNM-ER 42700 to virtually reconstruct the calvaria and conduct a new 3D geometric morphometric analysis of both its original and its reconstructed shape. Our comparative sample included several specimens of H. erectus (s.l., including the subadult KNM-WT 15000), H. habilis, H. heidelbergenis (s.l.) and H. neanderthalensis, as well as early and Upper Paleolithic H. sapiens. Our principal component analysis results showed that, like the original specimen, our virtual reconstruction of KNM-ER 42700 is also intermediate in shape between fossil Homo and modern humans. Taphonomic distortion, therefore, appears to not have been a major factor affecting previous 3-D geometric morphometric analyses. The intermediate shape of KNM-ER 42700 might instead be related to the young developmental age of the specimen. Further work on reconstructing the original specimen or based on computed tomorgraphic scans is needed to confirm these results.
NASA Astrophysics Data System (ADS)
Cao, Lu; Verbeek, Fons J.
2012-03-01
In computer graphics and visualization, reconstruction of a 3D surface from a point cloud is an important research area. As the surface contains information that can be measured, i.e. expressed in features, the application of surface reconstruction can be potentially important for application in bio-imaging. Opportunities in this application area are the motivation for this study. In the past decade, a number of algorithms for surface reconstruction have been proposed. Generally speaking, these methods can be separated into two categories: i.e., explicit representation and implicit approximation. Most of the aforementioned methods are firmly based in theory; however, so far, no analytical evaluation between these methods has been presented. The straightforward way of evaluation has been by convincing through visual inspection. Through evaluation we search for a method that can precisely preserve the surface characteristics and that is robust in the presence of noise. The outcome will be used to improve reliability in surface reconstruction of biological models. We, therefore, use an analytical approach by selecting features as surface descriptors and measure these features in varying conditions. We selected surface distance, surface area and surface curvature as three major features to compare quality of the surface created by the different algorithms. Our starting point has been ground truth values obtained from analytical shapes such as the sphere and the ellipsoid. In this paper we present four classical surface reconstruction methods from the two categories mentioned above, i.e. the Power Crust, the Robust Cocone, the Fourier-based method and the Poisson reconstruction method. The results obtained from our experiments indicate that Poisson reconstruction method performs the best in the presence of noise.
System for closure of a physical anomaly
Bearinger, Jane P; Maitland, Duncan J; Schumann, Daniel L; Wilson, Thomas S
2014-11-11
Systems for closure of a physical anomaly. Closure is accomplished by a closure body with an exterior surface. The exterior surface contacts the opening of the anomaly and closes the anomaly. The closure body has a primary shape for closing the anomaly and a secondary shape for being positioned in the physical anomaly. The closure body preferably comprises a shape memory polymer.
High surface area neodymium phosphate nano particles by modified aqueous sol-gel method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sankar, Sasidharan; Warrier, Krishna Gopakumar, E-mail: wwarrierkgk@yahoo.co.in; Komban, Rajesh
2011-12-15
Graphical abstract: Synthesis of nano rod shaped neodymium phosphate particles with specific surface area as high as 107 m{sup 2} g{sup -1} and particles could be compacted and sintered at as low as 1300 Degree-Sign C to a density of 98.5% (theoretical) with an average grain size of {approx}1 {mu}m. Highlights: Black-Right-Pointing-Pointer Nano size neodymium phosphate is synthesized and characterized using a novel modified aqueous sol gel process. Black-Right-Pointing-Pointer Specific surface area above 100 m{sup 2} g{sup -1} achieved without the addition of any complexing agents. Black-Right-Pointing-Pointer High sintered density reported than the density obtained for powder synthesized through conventionalmore » solid state reaction. Black-Right-Pointing-Pointer The particles are nano sized and have rod shape morphology and are retained at higher temperatures. Black-Right-Pointing-Pointer An average grain size of {approx}1 {mu}m obtained for sintered NdPO{sub 4} after thermal etching at 1400 Degree-Sign C. -- Abstract: Synthesis of nano rod shaped neodymium phosphate (NdPO{sub 4}) particles with specific surface area as high as 107 m{sup 2}g{sup -1} and an average length of 50 nm with aspect ratio 5 was achieved using modified sol gel method. Crystallite size calculated from the X-ray diffraction data by applying Scherer equation was 5 nm for the precursor gel after calcination at 400 Degree-Sign C. NdPO{sub 4} was first precipitated from neodymium nitrate solution using phosphoric acid followed by peptization using dilute nitric acid and further gelation in ammonia atmosphere. The calcined gel powders were further characterized by surface area (Brunauer-Emmet-Teller nitrogen adsorption analysis), Transmission electron microscopy, scanning electron microscopy, UV-vis and FT-IR analysis. Transmission electron microscopy confirms the formation of rod like morphology from the sol, gel and the calcined particles in nano size range. These particles could be compacted and sintered at as low as 1300 Degree-Sign C to a density of 98.5% (theoretical) with an average grain size of {approx}1 {mu}m.« less
Russell, Richard; Chatterjee, Garga; Nakayama, Ken
2012-01-01
Face recognition by normal subjects depends in roughly equal proportions on shape and surface reflectance cues, while object recognition depends predominantly on shape cues. It is possible that developmental prosopagnosics are deficient not in their ability to recognize faces per se, but rather in their ability to use reflectance cues. Similarly, super-recognizers' exceptional ability with face recognition may be a result of superior surface reflectance perception and memory. We tested this possibility by administering tests of face perception and face recognition in which only shape or reflectance cues are available to developmental prosopagnosics, super-recognizers, and control subjects. Face recognition ability and the relative use of shape and pigmentation were unrelated in all the tests. Subjects who were better at using shape or reflectance cues were also better at using the other type of cue. These results do not support the proposal that variation in surface reflectance perception ability is the underlying cause of variation in face recognition ability. Instead, these findings support the idea that face recognition ability is related to neural circuits using representations that integrate shape and pigmentation information. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Leblois, T.; Tellier, C. R.; Messaoudi, T.
1997-03-01
The anisotropic etching behavior of quartz crystal in concentrated ammonium bifluoride solution is studied and analyzed in the framework of a tensorial model. This model allows to simulate bi- or three-dimensional etching shapes from the equation for the representative surface of the dissolution slowness. In this paper, we present experimental results such as surface profile and initially circular cross-sectional profiles of differently singly- or doubly-rotated cuts. The polar diagrams of the dissolution slowness vector in several planes are deduced from experimental data. The comparison between predicted surface and cross-sectional profiles and experimental results is detailed and shows a good agreement. In particular, several examples give evidence that the final etched shapes are correlated to the extrema of the dissolution slowness. However, in several cases, experimental shapes cannot be simply correlated to the presence of extrema. Simulation gives effectively evidence for an important role played by more progressive changes in the curvature of the slowness surface. Consequently, analysis of data merits to be treated carefully. Nous nous proposons d'étudier et d'analyser à l'aide du modèle tensoriel de la dissolution l'attaque chimique anisotrope du cristal de quartz dans une solution concentrée de bifluorure d'ammonium. Ce modèle permet de simuler des formes usinées à deux ou trois dimensions à partir de l'équation de la surface représentative de la lenteur de dissolution du cristal de quartz. Dans cet article, nous présentons des résultats expérimentaux concernant des profils de surface et des sections initialement cylindriques de coupes à simple et double rotation. Les diagrammes polaires du vecteur lenteur de dissolution dans différents plans sont déduits de données expérimentales. La comparaison entre les profils de surface et de section théoriques et les résultats expérimentaux est détaillée et montre un bon accord. En particulier plusieurs exemples montrent que la forme finale est corrélée à la présence d'extrema de la lenteur de dissolution. Cependant, la corrélation entre résultats expérimentaux et théoriques n'est pas toujours simple et mérite une analyse soignée. Pour conclure, le modèle 3D est appliqué pour prévoir la forme usinée d'un trou initialement circulaire dans une coupe tournée autour de l'axe Y. Le résultat théorique est comparé avec la forme usinée expérimentale et montre un parfait accord.
Automatic casting surface defect recognition and classification
NASA Astrophysics Data System (ADS)
Wong, Boon K.; Elliot, M. P.; Rapley, C. W.
1995-03-01
High integrity castings require surfaces free from defects to reduce, if not eliminate, vulnerability to component failure from such as physical or thermal fatigue or corrosion attack. Previous studies have shown that defects on casting surfaces can be optically enhanced from the surrounding randomly textured surface by liquid penetrants, magnetic particle and other methods. However, very little has been reported on recognition and classification of the defects. The basic problem is one of shape recognition and classification, where the shape can vary in size and orientation as well as in actual shape generally within an envelope that classifies it as a particular defect. The initial work done towards this has focused on recognizing and classifying standard shapes such as the circle, square, rectangle and triangle. Various approaches were tried and this led eventually to a series of fuzzy logic based algorithms from which very good results were obtained. From this work fuzzy logic memberships were generated for the detection of defects found on casting surfaces. Simulated model shapes of such as the quench crack, mechanical crack and hole have been used to test the generated algorithm and the results for recognition and classification are very encouraging.