DeFalco, L.A.; Esque, T.C.; Kane, J.M.; Nicklas, M.B.
2009-01-01
We compared seed banks between two contrasting anthropogenic surface disturbances (compacted, trenched) and adjacent undisturbed controls to determine whether site condition influences viable seed densities of perennial and annual Mojave Desert species. Viable seeds of perennials were rare in undisturbed areas (3-4 seeds/m2) and declined to <1 seed/m2 within disturbed sites. Annual seed densities were an order of magnitude greater than those of perennials, were one-third the undisturbed seed densities on compacted sites, but doubled on trenched sites relative to controls. On trenched sites, greater litter cover comprising the infructescences of the dominant spring annuals, and low gravel content, enhanced seed densities of both annuals and perennials. Litter cover and surface ruggedness were the best explanations for viable perennial seed densities on compacted sites, but litter cover and the presence of a common harvester ant explained annual seed densities better than any other surface characteristics that were examined. Surface disturbances can have a varied impact on the condition of the soil surface in arid lands. Nevertheless, the consistently positive relationship between ground cover of litter and viable seed density emphasizes the importance of litter as an indicator of site degradation and recovery potential in arid lands.
Organic and inorganic molecules as probes of mineral surfaces (Invited)
NASA Astrophysics Data System (ADS)
Sverjensky, D. A.
2010-12-01
Although the multi-site nature of mineral surfaces is to be expected based on the underlying crystal structure, definitive evidence of the need to use more than one site in modelling proton surface charge or adsorption of a single adsorbate at the mineral-water interface is lacking. Instead, a single-site approach affords a practical way of averaging over all possible crystal planes and sites in a powdered mineral sample. Extensive analysis of published proton surface charge and adsorption of metals on oxide mineral surfaces can be undertaken with a single site density for each mineral based on tritium exchange or estimation from averages of the site densities of likely exposed surfaces. Even in systems with competing metals (e.g. Cu and Pb on hematite), the same site density as used for proton surface charge can be employed depending on the reaction stoichiometry. All of this indicates that protons and metals can bind to a great variety of sites with the same overall site density. However, simple oxyanions such as carbonate, sulfate, selenate, arsenate and arsenite require a much lower site density for a given mineral. For example, on goethite these oxyanions utilize a site density that correlates with the BET surface area of the goethite. In this way, the oxyanions can be thought of as selectively probing the available sites on the mineral. The correlation probably arises because goethites with different BET surface areas have different proportions of singly and multiply-bonded oxygens, and only the singly-bonded oxygens are useful for inner-sphere surface complexation by the ligand exchange mechanism. Small organic molecules behave in a remarkably similar way. For example, adsorption of oxalate on goethite, and aspartate, glutamate, dihydroxyphenylalanine, lysine and arginine on rutile are all consistent with a much smaller site density than those required for metals such as calcium or neodymium. Overall, these results suggest that both inorganic oxyanions and organic molecules containing carboxylate functional groups serve as much more sensitive probes of the surface structures of minerals than do protons or metals.
Site preparation effects on soil bulk density and pine seedling growth
John J. Stransky
1981-01-01
Soil bulk density was sampled the first and third growing seasons after site preparation and pine planting on three clearcut pine-hardwood forest sites in eastern Texas. Bulk density was measured 10 cm below the surface of mineral soil using a surface moisture-density probe. Plots that had been KG-bladed and chopped had significanlty higher bulk density than those that...
Haghmoradi, Amin; Wang, Le; Chapman, Walter G
2017-02-01
In this manuscript we extend Wertheim's two-density formalism beyond its first order to model a system of fluid molecules with a single association site close to a planar hard wall with association sites on its surface in a density functional theory framework. The association sites of the fluid molecules are small enough that they can form only one bond, while the wall association sites are large enough to bond with more than one fluid molecule. The effects of temperature and of bulk fluid and wall site densities on the fluid density profile, extent of association, and competition between single and double bonding of fluid segments at the wall sites versus distance from the wall are presented. The theory predictions are compared with new Monte Carlo simulation results and they are in good agreement. The theory captures the surface coverage over wide ranges of temperature and bulk density by introducing the effect of steric hindrance in fluid association at a wall site.
Variability in goethite surface site density: evidence from proton and carbonate sorption.
Villalobos, Mario; Trotz, Maya A; Leckie, James O
2003-12-15
Goethite is a representative iron oxide in natural environments due to its abundance and thermodynamic stability and may be responsible for many surface-mediated processes, including ion retention and mobility in aqueous settings. A large variability in morphologies and specific surface areas of goethite crystals exists but little work has been done to compare surface reactivity between them. The present work offers experimental evidence for the existence of an inverse relationship between sorption capacity for protons and carbonate ions and specific surface area of goethite for three synthetic goethite preparations spanning surface area differences by a factor of 2. An explanation for this was found by assuming a variable reactive site density between preparations in direct relationship to their sorption capacity based on congruency of carbonate sorption computed on a per-site basis. Previous evidence of maximum sorption capacities supports this explanation, and site density ratios between the goethites studied here were obtained. Triple layer surface complexation modeling was successful in describing adsorption data for all goethite preparations using equal stoichiometries. A new formulation of standard state for activities of surface species based on a 1.0 mole fraction of sites on the solid allowed transformation of the conventional molar concentration-based affinity constants to values based on site occupancy. In this fashion, by applying the appropriate site density ratios, a single set of affinity constant values was found that described accurately the adsorption data for all preparations.
Passivation effect of Cl, F and H atoms on CuIn0.75Ga0.25Se2 (1 1 2) surface
NASA Astrophysics Data System (ADS)
Qi, Rong-fei; Wang, Zhao-hui; Tang, Fu-ling; Agbonkina, Itohan C.; Xue, Hong-tao; Si, Feng-juan; Ma, Sheng-ling; Wang, Xiao-ka
2018-06-01
Using the first-principles calculations within the density functional-theory (DFT) framework, we theoretically investigated the surface reconstruction, surface states near the Fermi level and their passivation on CuIn0.75Ga0.25Se2 (1 1 2) (CIGS) surface by chlorine, fluorine and hydrogen. Surface reconstruction appears on CIG-terminated CIGS (1 1 2) surface and it is a self-passivation. For the locations of Cl, F and H atoms adsorbing on Se-terminated CIGS (1 1 2) surface, four high symmetry adsorption sites: top sites, bridge sites, hexagonal close-packed (hcp) sites and faced centered cubic (fcc) sites were studied respectively. With the coverage of 0.5 monolayer (ML), Cl, F and H adatoms energetically occupy the top sites on the CIGS (112) surface. The corresponding adsorption energies were -2.20 eV, -3.29 eV, -2.60 eV, respectively. The bond length and electronic properties were analyzed. We found that the surface state density near the Fermi level was markedly diminished for 0.5 ML Cl, F and H adsorption on Se-terminated CIGS (1 1 2) surface at top sites. It was also found that H can more efficiently passivate the surface state density than Cl and F atoms, and the effect of adsorption of Cl atoms is better than that of F.
Liu, Feng; Wang, Lei; Wang, Hongwei; Yuan, Lin; Li, Jingwen; Brash, John Law; Chen, Hong
2015-02-18
The key property of protein-nanoparticle conjugates is the bioactivity of the protein. The ability to accurately modulate the activity of protein on the nanoparticles at the interfaces is important in many applications. In the work reported here, modulation of the activity of protein-gold nanoparticle (AuNP) conjugates by specifically orienting the protein and by varying the surface density of the protein was investigated. Different orientations were achieved by introducing cysteine (Cys) residues at specific sites for binding to gold. We chose Escherichia coli inorganic pyrophosphatase (PPase) as a model protein and used site-directed mutagenesis to generate two mutant types (MTs) with a single Cys residue on the surface: MT1 with Cys near the active center and MT2 with Cys far from the active center. The relative activities of AuNP conjugates with wild type (WT), MT1, and MT2 were found to be 44.8%, 68.8%, and 91.2% of native PPase in aqueous solution. Site-directed orientation with the binding site far from the active center thus allowed almost complete preservation of the protein activity. The relative activity of WT and MT2 conjugates did not change with the surface density of the protein, while that of MT1 increased significantly with increasing surface density. These results demonstrate that site-directed orientation and surface density can both modulate the activity of proteins conjugated to AuNP and that orientation has a greater effect than density. Furthermore, increasing the surface density of the specifically oriented protein MT2, while having no significant effect on the specific activity of the protein, still allowed increased protein loading on the AuNP and thus increased the total protein activity. This is of great importance in the study on the interface of protein and nanoparticle and the applications for enzyme immobilization, drug delivery, and biocatalysis.
Exact density functional theory for ideal polymer fluids with nearest neighbor bonding constraints.
Woodward, Clifford E; Forsman, Jan
2008-08-07
We present a new density functional theory of ideal polymer fluids, assuming nearest-neighbor bonding constraints. The free energy functional is expressed in terms of end site densities of chain segments and thus has a simpler mathematical structure than previously used expressions using multipoint distributions. This work is based on a formalism proposed by Tripathi and Chapman [Phys. Rev. Lett. 94, 087801 (2005)]. Those authors obtain an approximate free energy functional for ideal polymers in terms of monomer site densities. Calculations on both repulsive and attractive surfaces show that their theory is reasonably accurate in some cases, but does differ significantly from the exact result for longer polymers with attractive surfaces. We suggest that segment end site densities, rather than monomer site densities, are the preferred choice of "site functions" for expressing the free energy functional of polymer fluids. We illustrate the application of our theory to derive an expression for the free energy of an ideal fluid of infinitely long polymers.
Adsorption properties of AlN on Si(111) surface: A density functional study
NASA Astrophysics Data System (ADS)
Yuan, Yinmei; Zuo, Ran; Mao, Keke; Tang, Binlong; Zhang, Zhou; Liu, Jun; Zhong, Tingting
2018-04-01
In the process of preparing GaN on Si substrate by MOCVD, an AlN buffer layer is very important. In this study, we conducted density functional theory calculations on the adsorption of AlN molecule on Si(111)-(2 × 2) surface, with the AlN molecule located horizontally or vertically above Si(111) surface at different adsorption sites. The calculations revealed that the lowest adsorption energy was at the N-top-Al-bridge site in the horizontal configuration, with the narrowest band gap, indicating that it was the most preferential adsorption growth status of AlN. In the vertical configurations, N adatom was more reactive and convenient to form bonds with the topmost Si atoms than Al adatom. When the N-end of the AlN molecule was located downward, the hollow site was the preferred adsorption site; when the Al-end was located downward, the bridge site was the most energetically favorable. Moreover, we investigated some electronic properties such as partial density of states, electron density difference, Mulliken populations, etc., revealing the microscale mechanism for AlN adsorption on Si(111) surface and providing theoretical support for adjusting the processing parameters during AlN or GaN production.
The adsorption of NO, NH3, N2 on carbon surface: a density functional theory study.
Wang, Jiayong; Yang, Mo; Deng, Debing; Qiu, Shuxia
2017-08-11
To explore the adsorption mechanism of NO, NH 3 , N 2 on a carbon surface, and the effect of basic and acidic functional groups, density functional theory was employed to investigate the interactions between these molecules and carbon surfaces. Molecular electrostatic potential, Mulliken population analyses, reduced density gradient, and Mayer bond order analyses were used to clarify the adsorption mechanism. The results indicate that van der Waals interactions are responsible for N 2 physisorption, and N 2 is the least likely to adsorb on a carbon surface. Modification of carbon materials to decorate basic or acidic functional groups could enhance the NH 3 physisorption because of hydrogen bonding or electrostatic interactions, however, NO physisorption on a carbon surface is poor. Zig-zag sites are more reactive than armchair sites when these gas molecules absorb on the edge sites of carbon surface. Graphical abstract NH 3 , N 2 , NO adsortion on carbon surface.
ADSORPTION AND DISSOCIATION OF O2 ON Ti3Al (0001) STUDIED BY FIRST-PRINCIPLES
NASA Astrophysics Data System (ADS)
Wei, Li-Jing; Guo, Jian-Xin; Dai, Xiu-Hong; Wang, Ying-Long; Liu, Bao-Ting
2015-05-01
The adsorption and dissociation of oxygen molecule on Ti3Al (0001) surface have been investigated by density functional theory (DFT) with the generalized gradient approximation (GGA). All possible adsorption sites including nine vertical and fifteen parallel sites of O2 are considered on Ti3Al (0001) surface. It is found that all oxygen molecules dissociate except for three vertical adsorption sites after structure optimization. This indicates that oxygen molecules prefer to dissociate on the junction site between Ti and Al atoms. Oxygen atoms coming from dissociation of oxygen molecule tend to occupy the most stable adsorption sites of the Ti3Al (0001) surface. The distance of O-O is related to the surface dissociation distance of Ti3Al (0001) surface. The valence electron localization function (ELF) and projected density of states (DOS) show that the bonds of O-O are breakaway at parallel adsorption end structures.
NASA Astrophysics Data System (ADS)
Dholabhai, Pratik; Atta-Fynn, Raymond; Ray, Asok
2008-03-01
Ab initio total energy calculations within the framework of density functional theory have been performed for atomic hydrogen and oxygen chemisorptions on the (0001) surface of double hexagonal packed americium using a full-potential all-electron linearized augmented plane wave plus local orbitals (FLAPW+lo) method. The three-fold hollow hcp site was found to be the most stable site for H adsorption, while the two-fold bridge adsorption site was found to be the most stable site for O adsorption. Chemisorption energies and adsorption geometries for different adsorption sites will be discussed. The change in work functions, magnetic moments, partial charges inside muffin-tins, difference charge density distributions and density of states for the bare Am slab and the Am slab after adsorption of the adatom will be discussed. The implications of chemisorption on Am 5f electron localization-delocalization will also be discussed.
Sahraie, Nastaran Ranjbar; Kramm, Ulrike I.; Steinberg, Julian; Zhang, Yuanjian; Thomas, Arne; Reier, Tobias; Paraknowitsch, Jens-Peter; Strasser, Peter
2015-01-01
Carbon materials doped with transition metal and nitrogen are highly active, non-precious metal catalysts for the electrochemical conversion of molecular oxygen in fuel cells, metal air batteries, and electrolytic processes. However, accurate measurement of their intrinsic turn-over frequency and active-site density based on metal centres in bulk and surface has remained difficult to date, which has hampered a more rational catalyst design. Here we report a successful quantification of bulk and surface-based active-site density and associated turn-over frequency values of mono- and bimetallic Fe/N-doped carbons using a combination of chemisorption, desorption and 57Fe Mössbauer spectroscopy techniques. Our general approach yields an experimental descriptor for the intrinsic activity and the active-site utilization, aiding in the catalyst development process and enabling a previously unachieved level of understanding of reactivity trends owing to a deconvolution of site density and intrinsic activity. PMID:26486465
A simple method for estimating the size of nuclei on fractal surfaces
NASA Astrophysics Data System (ADS)
Zeng, Qiang
2017-10-01
Determining the size of nuclei on complex surfaces remains a big challenge in aspects of biological, material and chemical engineering. Here the author reported a simple method to estimate the size of the nuclei in contact with complex (fractal) surfaces. The established approach was based on the assumptions of contact area proportionality for determining nucleation density and the scaling congruence between nuclei and surfaces for identifying contact regimes. It showed three different regimes governing the equations for estimating the nucleation site density. Nuclei in the size large enough could eliminate the effect of fractal structure. Nuclei in the size small enough could lead to the independence of nucleation site density on fractal parameters. Only when nuclei match the fractal scales, the nucleation site density is associated with the fractal parameters and the size of the nuclei in a coupling pattern. The method was validated by the experimental data reported in the literature. The method may provide an effective way to estimate the size of nuclei on fractal surfaces, through which a number of promising applications in relative fields can be envisioned.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Daniel P.; Tymińska, Nina; Zurek, Eva, E-mail: ezurek@buffalo.edu
Dispersion corrected Density Functional Theory calculations were employed to study the adsorption of benzenes derivatized with functional groups encompassing a large region of the activated/deactivated spectrum to the Ag(111) surface. Benzenes substituted with weak activating or deactivating groups, such as methyl and fluoro, do not have a strong preference for adsorbing to a particular site on the substrate, with the corrugations in the potential energy surface being similar to those of benzene. Strong activating (N(CH{sub 3}){sub 2}) and deactivating (NO{sub 2}) groups, on the other hand, possess a distinct site preference. The nitrogen in the former prefers to lie abovemore » a silver atom (top site), but in the latter a hollow hexagonal-closed-packed (H{sub hcp}) site of the Ag(111) surface is favored instead. Benzenes derivatized with classic activating groups donate electron density from their highest occupied molecular orbital to the surface, and those functionalized with deactivating groups withdraw electron density from the surface into orbitals that are unoccupied in the gas phase. For benzenes functionalized with two substituents, the groups that are strongly activating or deactivating control the site preference and the other groups assume sites that are, to a large degree, dictated by their positions on the benzene ring. The relative stabilities of the ortho, meta, and para positional isomers of disubstituted benzenes can, in some cases, be modified by adsorption to the surface.« less
Xie, James Y; Wong, Jane C Y; Dumont, Clement P; Goodkin, Nathalie; Qiu, Jian-Wen
2016-07-15
Borehole density on the surface of Porites has been used as an indicator of water quality in the Great Barrier Reef. We assessed the relationship between borehole density on Porites and eight water quality parameters across 26 sites in Hong Kong. We found that total borehole densities on the surface of Porites at 16 of the studied sites were high (>1000individualsm(-2)), with polychaetes being the dominant bioeroders. Sedimentation rate was correlated positively with total borehole density and polychaete borehole density, with the latter relationship having a substantially higher correlation of determination. None of the environmental factors used were significantly correlated with bivalve borehole density. These results provide a baseline for assessing future changes in coral bioerosion in Hong Kong. This present study also indicates that polychaete boreholes can be used as a bioindicator of sedimentation in the South China Sea region where polychaetes are numerically dominant bioeroders. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Chuan; Hu, Mary Y.; Jaegers, Nicholas R.
The metal-support interaction in γ-Al2O3 supported WOX catalysts is investigated by a combination of high field quantitative single pulse (SP) 27Al MAS NMR spectroscopy, 2D MQMAS, 1H-27Al CP/MAS, and electronic structure calculations. NMR allows the observation of at least seven different Al sites, including a pentahedral Al site, three different tetrahedral Al sites, and three octahedral Al sites. It is found that the penta-coordinated Al (AlP) site density decreases monotonically with an increased WOX loading while the octahedral Al (AlO) site density increases concurrently. This suggests that the Alp sites are the preferred surface anchoring positions for the WOX species.more » Importantly, the AlP site isotropic chemical shift observed for the unsupported γ-Al2O3 at about 38 ppm migrates into the octahedral region with a new isotropic chemical shift value appearing near 7 ppm when the Alp site is anchored by WOX species. Density functional theory (DFT) computational modeling of the NMR parameters on proposed cluster models is carried out to accurately interpret the dramatic chemical shift changes from which the detailed anchoring mechanisms are obtained. It is found that tungsten dimers and monomers are the preferred supported surface species on γ-Al2O3, wherein one monomeric and several dimeric structures are identified as the most likely surface anchoring structures.« less
Structural charge site influence on the interlayer hydration of expandable three-sheet clay minerals
Kerns, Raymond L.; Mankin, Charles J.
1968-01-01
Previous investigations have demonstrated the influences of interlayer cation composition, relative humidity, temperature, and magnitude of interlayer surface charge on the interlayer hydration of montmorillonites and vermiculites. It has been suggested that the sites of layer charge deficiencies may also have an influence upon the amount of hydration that can take place in the interlayers of expandable clay minerals. If the interlayer cation-to-layer bonds are considered as ideally electrostatic, the magnitude of the forces resisting expansion may be expressed as a form of Coulomb's law. If this effect is significant, expandable structures in which the charge-deficiency sites are predominantly in the tetrahedral sheet should have less pronounced swelling properties than should structures possessing charge deficiencies located primarily in the octahedral sheet.Three samples that differed in location of layer charge sites were selected for study. An important selection criterion was a non-correlation between tetrahedral charge sites and high surface-charge density, and between octahedral charge sites and low surface-charge density.The effects of differences in interlayer cation composition were eliminated by saturating portions of each sample with the same cations. Equilibrium (001) d values at controlled constant humidities were used as a measure of the relative degree of interlayer hydration.Although no correlation could be made between the degree of interlayer hydration and total surface-charge density, the investigation does not eliminate total surface-charge density as being significant to the swelling properties of three-sheet clay-mineral structures. The results do indicate a correlation between more intense expandability and predominance of charge deficiencies in the octahedral sheet. Conversely, less intense swelling behavior is associated with predominantly tetrahedral charge deficiencies.
Surface Snow Density of East Antarctica Derived from In-Situ Observations
NASA Astrophysics Data System (ADS)
Tian, Y.; Zhang, S.; Du, W.; Chen, J.; Xie, H.; Tong, X.; Li, R.
2018-04-01
Models based on physical principles or semi-empirical parameterizations have used to compute the firn density, which is essential for the study of surface processes in the Antarctic ice sheet. However, parameterization of surface snow density is often challenged by the description of detailed local characterization. In this study we propose to generate a surface density map for East Antarctica from all the filed observations that are available. Considering that the observations are non-uniformly distributed around East Antarctica, obtained by different methods, and temporally inhomogeneous, the field observations are used to establish an initial density map with a grid size of 30 × 30 km2 in which the observations are averaged at a temporal scale of five years. We then construct an observation matrix with its columns as the map grids and rows as the temporal scale. If a site has an unknown density value for a period, we will set it to 0 in the matrix. In order to construct the main spatial and temple information of surface snow density matrix we adopt Empirical Orthogonal Function (EOF) method to decompose the observation matrix and only take first several lower-order modes, because these modes already contain most information of the observation matrix. However, there are a lot of zeros in the matrix and we solve it by using matrix completion algorithm, and then we derive the time series of surface snow density at each observation site. Finally, we can obtain the surface snow density by multiplying the modes interpolated by kriging with the corresponding amplitude of the modes. Comparative analysis have done between our surface snow density map and model results. The above details will be introduced in the paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
K.E. Rasmuson
The U.S. Department of Energy has implemented a program to reclaim lands disturbed by site characterization at Yucca Mountain. Long term goals of the program are to re-establish processes on disturbed sites that will lead to self-sustaining plant communities. The Biological Opinion for Yucca Mountain Site Characterization Studies required that the U.S. Department of Energy develop a Reclamation Standards and Monitoring Plan to evaluate the success of reclamation efforts. According to the Reclamation Standards and Monitoring Plan, reclaimed sites will be monitored periodically, remediated if necessary, and eventually compared to an appropriate reference area to determine whether reclamation goals havemore » been achieved and the site can be released from further monitoring. Plant cover, density, and species richness (success parameters) on reclaimed sites are compared to 60 percent of the values (success criteria) for the same parameters on the reference area. Small sites (less than 0.1 ha) are evaluated for release using qualitative methods while large sites (greater than 0.1 ha) are evaluated using quantitative methods. In the summer of 2000, 31 small sites reclaimed in 1993 and 1994 were evaluated for reclamation success and potential release from further monitoring. Plant density, cover, and species richness were estimated on the C-Well Pipeline, UE-25 Large Rocks test site, and 29 ground surface facility test pits. Evidence of erosion, reproduction and natural recruitment, exotic species abundance, and animal use (key attributes) also were recorded for each site and used in success evaluations. The C-Well Pipeline and ground surface facility test pits were located in a ''Larrea tridentata - Ephedra nevadensis'' vegetation association while the UE-25 Large Rocks test site was located in an area dominated by ''Coleogyne ramosissima and Ephedra nevadensis''. Reference areas in the same vegetation associations with similar slope and aspect were chosen for comparison to the reclaimed sites. Sixty percent of the reference area means for density, cover, and species richness were compared to the estimated means for the reclaimed sites. Plant density, cover, and species richness at the C-Well Pipeline and UE-25 Large Rocks test site were greater than the success criteria and all key attributes indicated the sites were in acceptable condition. Therefore, these two sites were recommended for release from further monitoring. Of the 29 ground surface facility test pits, 26 met the criterion for density, 21 for cover, and 23 for species richness. When key attributes and conditions of the plant community near each pit were taken into account, 27 of these pits were recommended for release. Success parameters and key attributes at ground surface facility test pits 19 and 20 were inadequate for site release. Transplants of native species were added to these two sites in 2001 to improve density, cover, and species richness.« less
Nanoparticle-density-dependent field emission of surface-decorated SiC nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Qizheng; School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo City 315016; State Key Lab of New Fine Ceramics and Fine Processing, Tsinghua University, Beijing City 100084
2016-08-22
Increasing the electron emission site density of nanostructured emitters with limited field screening effects is one of the key issues for improving the field emission (FE) properties. In this work, we reported the Au-nanoparticles-density-dependent field emission behaviors of surface-decorated SiC nanowires. The Au nanoparticles (AuNPs) decorated around the surface of the SiC nanowires were achieved via an ion sputtering technique, by which the densities of the isolated AuNPs could be adjusted by controlling the fixed sputtering times. The measured FE characteristics demonstrated that the turn-on fields of the SiC nanowires were tuned to be of 2.06, 1.14, and 3.35 V/μm withmore » the increase of the decorated AuNPs densities, suggesting that a suitable decorated AuNPs density could render the SiC nanowires with totally excellent FE performances by increasing the emission sites and limiting the field screening effects.« less
Chen, Ching-Tai; Peng, Hung-Pin; Jian, Jhih-Wei; Tsai, Keng-Chang; Chang, Jeng-Yih; Yang, Ei-Wen; Chen, Jun-Bo; Ho, Shinn-Ying; Hsu, Wen-Lian; Yang, An-Suei
2012-01-01
Protein-protein interactions are key to many biological processes. Computational methodologies devised to predict protein-protein interaction (PPI) sites on protein surfaces are important tools in providing insights into the biological functions of proteins and in developing therapeutics targeting the protein-protein interaction sites. One of the general features of PPI sites is that the core regions from the two interacting protein surfaces are complementary to each other, similar to the interior of proteins in packing density and in the physicochemical nature of the amino acid composition. In this work, we simulated the physicochemical complementarities by constructing three-dimensional probability density maps of non-covalent interacting atoms on the protein surfaces. The interacting probabilities were derived from the interior of known structures. Machine learning algorithms were applied to learn the characteristic patterns of the probability density maps specific to the PPI sites. The trained predictors for PPI sites were cross-validated with the training cases (consisting of 432 proteins) and were tested on an independent dataset (consisting of 142 proteins). The residue-based Matthews correlation coefficient for the independent test set was 0.423; the accuracy, precision, sensitivity, specificity were 0.753, 0.519, 0.677, and 0.779 respectively. The benchmark results indicate that the optimized machine learning models are among the best predictors in identifying PPI sites on protein surfaces. In particular, the PPI site prediction accuracy increases with increasing size of the PPI site and with increasing hydrophobicity in amino acid composition of the PPI interface; the core interface regions are more likely to be recognized with high prediction confidence. The results indicate that the physicochemical complementarity patterns on protein surfaces are important determinants in PPIs, and a substantial portion of the PPI sites can be predicted correctly with the physicochemical complementarity features based on the non-covalent interaction data derived from protein interiors. PMID:22701576
NASA Astrophysics Data System (ADS)
Hao, Na; Moysey, Stephen M. J.; Powell, Brian A.; Ntarlagiannis, Dimitrios
2016-12-01
Surface complexation models are widely used with batch adsorption experiments to characterize and predict surface geochemical processes in porous media. In contrast, the spectral induced polarization (SIP) method has recently been used to non-invasively monitor in situ subsurface chemical reactions in porous media, such as ion adsorption processes on mineral surfaces. Here we compare these tools for investigating surface site density changes during pH-dependent sodium adsorption on a silica gel. Continuous SIP measurements were conducted using a lab scale column packed with silica gel. A constant inflow of 0.05 M NaCl solution was introduced to the column while the influent pH was changed from 7.0 to 10.0 over the course of the experiment. The SIP measurements indicate that the pH change caused a 38.49 ± 0.30 μS cm- 1 increase in the imaginary conductivity of the silica gel. This increase is thought to result from deprotonation of silanol groups on the silica gel surface caused by the rise in pH, followed by sorption of Na+ cations. Fitting the SIP data using the mechanistic model of Leroy et al. (Leroyet al., 2008), which is based on the triple layer model of a mineral surface, we estimated an increase in the silica gel surface site density of 26.9 × 1016 sites m- 2. We independently used a potentiometric acid-base titration data for the silica gel to calibrate the triple layer model using the software FITEQL and observed a total increase in the surface site density for sodium sorption of 11.2 × 1016 sites m- 2, which is approximately 2.4 times smaller than the value estimated using the SIP model. By simulating the SIP response based on the calibrated surface complexation model, we found a moderate association between the measured and estimated imaginary conductivity (R2 = 0.65). These results suggest that the surface complexation model used here does not capture all mechanisms contributing to polarization of the silica gel captured by the SIP data.
NASA Astrophysics Data System (ADS)
Khoshechin, Mohsen; Salimi, Farhad; Jahangiri, Alireza
2018-04-01
In this research, the effect of surface roughness and concentration of solution on bubble departing frequency and nucleation site density for pool boiling of water/diethanolamine (DEA) binary solution were investigated experimentally. In this investigation, boiling heat transfer coefficient, bubble departing frequency and nucleation site density have been experimentally investigated in various concentrations and heat fluxes. Microstructured surfaces with a wide range of well-defined surface roughness were fabricated, and a heat flux between 1.5-86 kW/m2 was achieved under atmospheric conditions. The Results indicated that surface roughness and concentration of solution increase the bubble departing frequency and nucleation site density with increasing heat flux. The boiling heat transfer coefficient in mixtures of water/DEA increases with increasing concentration of DEA in water. The experimental results were compared with predictions of several used correlations in the literatures. Results showed that the boiling heat transfer coefficients of this case study are much higher than the predicted values by major existing correlations and models. The excellent agreement for bubble departing frequency found between the models of Jackob and Fritz (1966) and experimental data and also the nucleation site density were in close agreement with the model of Paul (1983) data. f bubble departure frequency, 1/s or Hz N Number of nucleation sites per area per time R c Minimum cavity size, m D c critical diameter, m g gravitational acceleration, m/s2 ρ density, kg/m3 T temperature, °c ΔT temperature difference, °c d d vapor bubble diameter, m h fg enthalpy of vaporization, J/kg R Roughness, μm Ja Jakob number cp specific heat, J/kg °c Pr Prandtl number Ar Archimedes number h Heat transfer coefficient, J/(m2 °c) tg time it takes to grow a bubble, s q/A heat flux (kW/m2) tw time required to heat the layer, s gc Correction coefficient of incompatible units R a Surface roughness A heated surface area d departure ONB onset of nucleate boiling w surface wall s saturation v vapor l liquid θ groove angle (o) γ influence parameter of heating surface material σ surface tension, N/m.
NASA Astrophysics Data System (ADS)
Hiemstra, Tjisse; Van Riemsdijk, Willem H.
2009-08-01
A multisite surface complexation (MUSIC) model for ferrihydrite (Fh) has been developed. The surface structure and composition of Fh nanoparticles are described in relation to ion binding and surface charge development. The site densities of the various reactive surface groups, the molar mass, the mass density, the specific surface area, and the particle size are quantified. As derived theoretically, molecular mass and mass density of nanoparticles will depend on the types of surface groups and the corresponding site densities and will vary with particle size and surface area because of a relatively large contribution of the surface groups in comparison to the mineral core of nanoparticles. The nano-sized (˜2.6 nm) particles of freshly prepared 2-line Fh as a whole have an increased molar mass of M ˜ 101 ± 2 g/mol Fe, a reduced mass density of ˜3.5 ± 0.1 g/cm 3, both relatively to the mineral core. The specific surface area is ˜650 m 2/g. Six-line Fh (5-6 nm) has a molar mass of M ˜ 94 ± 2 g/mol, a mass density of ˜3.9 ± 0.1 g/cm 3, and a surface area of ˜280 ± 30 m 2/g. Data analysis shows that the mineral core of Fh has an average chemical composition very close to FeOOH with M ˜ 89 g/mol. The mineral core has a mass density around ˜4.15 ± 0.1 g/cm 3, which is between that of feroxyhyte, goethite, and lepidocrocite. These results can be used to constrain structural models for Fh. Singly-coordinated surface groups dominate the surface of ferrihydrite (˜6.0 ± 0.5 nm -2). These groups can be present in two structural configurations. In pairs, the groups either form the edge of a single Fe-octahedron (˜2.5 nm -2) or are present at a single corner (˜3.5 nm -2) of two adjacent Fe octahedra. These configurations can form bidentate surface complexes by edge- and double-corner sharing, respectively, and may therefore respond differently to the binding of ions such as uranyl, carbonate, arsenite, phosphate, and others. The relatively low PZC of ferrihydrite can be rationalized based on the estimated proton affinity constant for singly-coordinated surface groups. Nanoparticles have an enhanced surface charge. The charging behavior of Fh nanoparticles can be described satisfactory using the capacitance of a spherical Stern layer condenser in combination with a diffuse double layer for flat plates.
Density functional study of H2O molecule adsorption on α-U(001) surface.
Huang, Shanqisong; Zeng, Xiu-Lin; Zhao, Feng-Qi; Ju, Xuehai
2016-04-01
Periodic density functional theory (DFT) calculations were performed to investigate the adsorption of H2O on U(001) surface. The metallic nature of uranium atom and different adsorption sites of U(001) surface play key roles in the H2O molecular dissociate reaction. The long-bridge site is the most favorable site of H2O-U(001) adsorption configuration. The triangle-center site of the H atom is the most favorable site of HOH-U(001) adsorption configuration. The interaction between H2O and U surface is more evident on the first layer than that on any other two sub-layers. The dissociation energy of one hydrogen atom from H2O is -1.994 to -2.215 eV on U(001) surface, while the dissociating energy decreases to -3.351 to -3.394 eV with two hydrogen atoms dissociating from H2O. These phenomena also indicate that the Oads can promote the dehydrogenation of H2O. A significant charge transfer from the first layer of the uranium surface to the H and O atoms is also found to occur, making the bonding partly ionic.
Exploring the surface reactivity of 3d metal endofullerenes: a density-functional theory study.
Estrada-Salas, Rubén E; Valladares, Ariel A
2009-09-24
Changes in the preferential sites of electrophilic, nucleophilic, and radical attacks on the pristine C60 surface with endohedral doping using 3d transition metal atoms were studied via two useful reactivity indices, namely the Fukui functions and the molecular electrostatic potential. Both of these were calculated at the density functional BPW91 level of theory with the DNP basis set. Our results clearly show changes in the preferential reactivity sites on the fullerene surface when it is doped with Mn, Fe, Co, or Ni atoms, whereas there are no significant changes in the preferential reactivity sites on the C60 surface upon endohedral doping with Cu and Zn atoms. Electron affinities (EA), ionization potentials (IP), and HOMO-LUMO gaps (Eg) were also calculated to complete the study of the endofullerene's surface reactivity. These findings provide insight into endofullerene functionalization, an important issue in their application.
Livi, Kenneth J T; Villalobos, Mario; Leary, Rowan; Varela, Maria; Barnard, Jon; Villacís-García, Milton; Zanella, Rodolfo; Goodridge, Anna; Midgley, Paul
2017-09-12
Two synthetic goethites of varying crystal size distributions were analyzed by BET, conventional TEM, cryo-TEM, atomic resolution STEM and HRTEM, and electron tomography in order to determine the effects of crystal size, shape, and atomic scale surface roughness on their adsorption capacities. The two samples were determined by BET to have very different site densities based on Cr VI adsorption experiments. Model specific surface areas generated from TEM observations showed that, based on size and shape, there should be little difference in their adsorption capacities. Electron tomography revealed that both samples crystallized with an asymmetric {101} tablet habit. STEM and HRTEM images showed a significant increase in atomic-scale surface roughness of the larger goethite. This difference in roughness was quantified based on measurements of relative abundances of crystal faces {101} and {201} for the two goethites, and a reactive surface site density was calculated for each goethite. Singly coordinated sites on face {210} are 2.5 more dense than on face {101}, and the larger goethite showed an average total of 36% {210} as compared to 14% for the smaller goethite. This difference explains the considerably larger adsorption capacitiy of the larger goethite vs the smaller sample and points toward the necessity of knowing the atomic scale surface structure in predicting mineral adsorption processes.
Radar characteristics of Viking 1 landing sites
Tyler, G.L.; Campbell, D.B.; Downs, G.S.; Green, R.R.; Moore, H.J.
1976-01-01
Radar observations of Mars at centimeter wavelengths in May, June, and July 1976 provided estimates of surface roughness and reflectivity in three potential landing areas for Viking 1. Surface roughness is characterized by the distribution of surface landing slopes or tilts on lateral scales of the order of 1 to 10 meters; measurements of surface reflectivity are indicators of bulk surface density in the uppermost few centimeters. By these measures, the Viking 1 landing site at 47.5??W, 22.4??N is rougher than the martian average, although it may be near the martian average for elevations accessible to Viking, and is estimated to be near the Mars average in reflectivity. The AINW site at the center of Chryse Planitia, 43.5??W, 23.4??N, may be an area of anomalous radar characteristics, indicative of extreme, small-scale roughness, very low surface density, or a combination of these two characteristics. Low signal-to-noise ratio observations of the original Chryse site at 34??W, 19.5??N indicate that that area is at least twice as rough as the Mars average.
Skate Bathyraja spp. egg predation in the eastern Bering Sea.
Hoff, G R
2009-01-01
Predation on skate eggs by snails was examined for three skate species at seven nursery sites in three regions (north, middle and south) of the eastern Bering Sea. Mean predation levels were 6.46% for the Alaska skate Bathyraja parmifera, 2.65% for the Aleutian skate Bathyraja aleutica and 22.25% for the Bering skate Bathyraja interrupta. Predation levels were significantly higher at the middle and north sites than the south sites for all species combined. Predation levels decreased with increasing egg-case densities at all nursery sites, and the highest predation levels occurred where egg-case densities were very low. Predated egg-case density increased with increasing snail densities across all nursery sites examined. The Oregon triton Fusitriton oregonensis was the most abundant snail species at all nursery sites and displayed ability to drill holes in the egg case of B. parmifera. Holes left by predatory snails in egg cases of B. parmifera were significantly larger, and of different shape at the middle site compared to the south site. Holes in B. parmifera were also significantly larger than those in egg cases of B. interrupta across all sites examined. Egg cases of B. aleutica possess surface spines that cover the egg case and may inhibit predation by snails at a greater rate than that of the B. parmifera and B. interrupta, which have a smoother egg-case surface.
Adsorption and dissociation of molecular oxygen on α-Pu (0 2 0) surface: A density functional study
NASA Astrophysics Data System (ADS)
Wang, Jianguang; Ray, Asok K.
2011-09-01
Molecular and dissociative oxygen adsorptions on the α-Pu (0 2 0) surface have been systematically studied using the full-potential linearized augmented-plane-wave plus local orbitals (FP-LAPW+lo) basis method and the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional. Chemisorption energies have been optimized for the distance of the admolecule from the Pu surface and the bond length of O-O atoms for four adsorption sites and three approaches of O 2 admolecule to the (0 2 0) surface. Chemisorption energies have been calculated at the scalar relativistic level with no spin-orbit coupling (NSOC) and at the fully relativistic level with spin-orbit coupling (SOC). Dissociative adsorptions are found at the two horizontal approaches (O 2 is parallel to the surface and perpendicular/parallel to a lattice vector). Hor2 (O 2 is parallel to the surface and perpendicular to a lattice vector) approach at the one-fold top site is the most stable adsorption site, with chemisorption energies of 8.048 and 8.415 eV for the NSOC and SOC cases, respectively, and an OO separation of 3.70 Å. Molecular adsorption occurs at the Vert (O 2 is vertical to the surface) approach of each adsorption site. The calculated work functions and net spin magnetic moments, respectively, increase and decrease in all cases upon chemisorption compared to the clean surface. The partial charges inside the muffin-tins, the difference charge density distributions, and the local density of states have been used to investigate the Pu-admolecule electronic structures and bonding mechanisms.
NASA Astrophysics Data System (ADS)
Dholabhai, P. P.; Atta-Fynn, R.; Ray, A. K.
2008-02-01
Ab initio total energy calculations within the framework of density functional theory have been performed for atomic hydrogen and oxygen chemisorption on the (0001) surface of double hexagonal packed americium using a full-potential all-electron linearized augmented plane wave plus local orbitals method. Chemisorption energies were optimized with respect to the distance of the adatom from the relaxed surface for three adsorption sites, namely top, bridge, and hollow hcp sites, the adlayer structure corresponding to coverage of a 0.25 monolayer in all cases. Chemisorption energies were computed at the scalar-relativistic level (no spin-orbit coupling NSOC) and at the fully relativistic level (with spin-orbit coupling SOC). The two-fold bridge adsorption site was found to be the most stable site for O at both the NSOC and SOC theoretical levels with chemisorption energies of 8.204 eV and 8.368 eV respectively, while the three-fold hollow hcp adsorption site was found to be the most stable site for H with chemisorption energies of 3.136 eV at the NSOC level and 3.217 eV at the SOC level. The respective distances of the H and O adatoms from the surface were found to be 1.196 Åand 1.164 Å. Overall our calculations indicate that chemisorption energies in cases with SOC are slightly more stable than the cases with NSOC in the 0.049 0.238 eV range. The work functions and net magnetic moments respectively increased and decreased in all cases compared with the corresponding quantities of bare dhcp Am (0001) surface. The partial charges inside the muffin-tins, difference charge density distributions, and the local density of states have been used to analyze the Am-adatom bond interactions in detail. The implications of chemisorption on Am 5f electron localization-delocalization are also discussed.
WOx supported on γ-Al2O3 with different morphologies as model catalysts for alkanol dehydration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Dachuan; Wang, Huamin; Kovarik, Libor
2018-04-21
The distinctive morphological and surface characteristics of platelet-like γ-Al2O3 were compared to a regular, commercial γ-Al2O3. γ-Al2O3 platelets display dominant (110) surface facets and higher densities of coordinative unsaturated penta-coordinate Al3+ (Al3+penta) sites than regular γ-Al2O3, as measured by solid-state magic-angle spinning nuclear magnetic resonance spectroscopy (MAS NMR). Such Al3+penta sites are also the preferred surface anchoring sites for tungsten oxide (WOx) species consistent with NMR analysis indicating that these sites are consumed upon WOx adsorption. The higher Al3+penta density on γ-Al2O3 platelets leads to greater WOx dispersion (or smaller WOx clusters), as demonstrated by scanning transmission electron microscopy andmore » ultraviolet–visible spectroscopy, and WOx species at intermediate WOx surface concentration are the most active for the probe reaction of 2-butanol dehydration. WOx on γ-Al2O3 platelets approaches the highest turnover rates at higher surface densities than WOx on regular γ-Al2O3, yet with similar highest rate values for both series of catalysts. This indicates that different Al2O3 supports mainly affect the dispersion of supported WOx rather than the intrinsic reactivity of individual WOx clusters with similar size.« less
WO x supported on γ-Al 2 O 3 with different morphologies as model catalysts for alkanol dehydration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Dachuan; Wang, Huamin; Kovarik, Libor
The distinctive morphological and surface characteristics of platelet-like γ-Al2O3 were compared to a regular, commercial γ-Al2O3. γ-Al2O3 platelets display dominant (110) surface facets and higher densities of coordinative unsaturated penta-coordinate Al3+ (Al3+penta) sites than regular γ-Al2O3, as measured by solid-state magic-angle spinning nuclear magnetic resonance spectroscopy (MAS NMR). Such Al3+penta sites are also the preferred surface anchoring sites for tungsten oxide (WOx) species consistent with NMR analysis indicating that these sites are consumed upon WOx adsorption. The higher Al3+penta density on γ-Al2O3 platelets leads to greater WOx dispersion (or smaller WOx clusters), as demonstrated by scanning transmission electron microscopy andmore » ultraviolet–visible spectroscopy, and WOx species at intermediate WOx surface concentration are the most active for the probe reaction of 2-butanol dehydration. WOx on γ-Al2O3 platelets approaches the highest turnover rates at higher surface densities than WOx on regular γ-Al2O3, yet with similar highest rate values for both series of catalysts. This indicates that different Al2O3 supports mainly affect the dispersion of supported WOx rather than the intrinsic reactivity of individual WOx clusters with similar size.« less
Gray, John R.; Peters, Charles A.; ,
1985-01-01
Runoff, sediment transport, and precipitation were measured in three gaged basins composing two-thirds of the 20-acre site, and in a 3. 5-acre basin located 0. 3 mile south of the site. Locations and dimensions of surface collapses at the site were recorded by the site contractor. Volumes of collapsed material were calculated and converted to an equivalent weight of earth material by applying a mean value for the bulk density of soils at the site.
Zinc-blende MnN bilayer formation on the GaN(111) surface
NASA Astrophysics Data System (ADS)
Gutierrez-Ojeda, S. J.; Guerrero-Sánchez, J.; Garcia-Diaz, R.; Ramirez-Torres, A.; Takeuchi, Noboru; H. Cocoletzi, Gregorio
2017-07-01
Atomic layers of manganese nitride, deposited on the cubic gallium nitride (111) surface, are investigated using spin polarized periodic density functional theory calculations. The adsorption of a manganese atom has been evaluated at different high symmetry sites. Incorporation into the GaN substrate by replacing gallium atoms drives the formation of a site in which the displaced Ga atom forms bonds with Ga atoms at the surface. This energetically favorable configuration shows a ferromagnetic alignment. Surface formation energy calculations demonstrate that when a full Mn ML is incorporated into the GaN structure, a Ga ML on top of a MnN bilayer may be formed for very Ga-rich conditions. On the other hand, when a full Mn ML is deposited on top of the nitrogen terminated surface, an epitaxial MnN bilayer is formed with antiferromagnetic characteristics. Density of states and partial density of states are reported to show the antiferromagnetic alignment in both structures. This behavior is mainly induced by the Mn-d orbitals.
Zhao, Wenwen; Tian, Feng Hui; Wang, Xiaobin; Zhao, Linghuan; Wang, Yun; Fu, Aiping; Yuan, Shuping; Chu, Tianshu; Xia, Linhua; Yu, Jimmy C; Duan, Yunbo
2014-09-15
In this paper, density functional theory (DFT) calculation was employed to study the adsorption of nitric oxide (NO) on the highly reactive anatase TiO2 (001) surface. For comparison, the adsorption of NO on the (101) surface was also considered. Different from the physical adsorption on the (101) surface, NO molecules are found to chemisorb on the TiO2 (001) surface. The twofold coordinate oxygen atoms (O2c) on the anatase (001) surface are the active sites. Where NO is oxidized into a nitrite species (NO2(-)) trapping efficiently on the surface, with one of the surface Ti5c-O2c bonds adjacent to the adsorption site broken. Our results, therefore, supply a theoretical guidance to remove NO pollutants using highly reactive anatase TiO2 (001) facets. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Washton, Nancy M.; Brantley, Susan L.; Mueller, Karl T.
2008-12-01
For two suites of volcanic aluminosilicate glasses, the accessible and reactive sites for covalent attachment of the fluorine-containing (3,3,3-trifluoropropyl)dimethylchlorosilane (TFS) probe molecule were measured by quantitative 19F nuclear magnetic resonance (NMR) spectroscopy. The first set of samples consists of six rhyolitic and dacitic glasses originating from volcanic activity in Iceland and one rhyolitic glass from the Bishop Tuff, CA. Due to differences in the reactive species present on the surfaces of these glasses, variations in the rate of acid-mediated dissolution (pH 4) for samples in this suite cannot be explained by variations in geometric or BET-measured surface area. In contrast, the rates scale directly with the surface density of TFS-reactive sites as measured by solid-state NMR. These data are consistent with the inference that the TFS-reactive M-OH species on the glass surface, which are known to be non-hydrogen-bonded Q 3 groups, represent loci accessible to and affected by proton-mediated dissolution. The second suite of samples, originating from a chronosequence in Kozushima, Japan, is comprised of four rhyolites that have been weathered for 1.1, 1.8, 26, and 52 ka. The number of TFS-reactive sites per gram increases with duration of weathering in the laboratory for the "Icelandic" samples and with duration of field weathering for both "Icelandic" and Japanese samples. One hypothesis is consistent with these and published modeling, laboratory, and field observations: over short timescales, dissolution is controlled by fast-dissolving sites, but over long timescales, dissolution is controlled by slower-dissolving sites, the surface density of which is proportional to the number of TFS-reactive Q 3 sites. These latter sites are not part of a hydrogen-bonded network on the surface of the glasses, and measurement of their surface site density allows predictions of trends in reactive surface area. The TFS treatment method, which is easily monitored by quantitative 19F solid-state NMR, therefore provides a chemically specific and quantifiable proxy to understand the nature of how sites on dissolving silicates control dissolution. Furthermore, 27Al NMR techniques are shown here to be useful in identifying clays on the glass surfaces, and these methods are therefore effective for quantifying concentrations of weathering impurities. Our interpretations offer a testable hypothesis for the mechanism of proton-promoted dissolution for low-iron aluminosilicate minerals and glasses and suggest that future investigations of reactive surfaces with high-sensitivity NMR techniques are warranted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goverapet Srinivasan, Sriram; Shivaramaiah, Radha; Kent, Paul R. C.
Bastnäsite, a fluoro-carbonate mineral, is the single largest mineral source of light rare earth elements (REE), La, Ce and Nd. Enhancing the efficiency of separation of the mineral from gangue through froth flotation is the first step towards meeting an ever increasing demand for REE. To design and evaluate collector molecules that selectively bind to bastnäsite, a fundamental understanding of the structure and surface properties of bastnäsite is essential. In our earlier work (J Phys Chem C, 2016, 120, 16767), we carried out an extensive study of the structure, surface stability and water adsorption energies of La-bastnäsite. Here in thismore » work, we make a comparative study of the surface properties of Ce-bastnäsite, La-bastnäsite, and calcite using a combination of density functional theory (DFT) and water adsorption calorimetry. Spin polarized DFT+U calculations show that the exchange interaction between the electrons in Ce 4f orbitals is negligible and that these orbitals do not participate in bonding with the oxygen atom of the adsorbed water molecule. In agreement with calorimetry, DFT calculations predict larger surface energies and stronger water adsorption energies on Ce-bastnäsite than on La-bastnäsite. The order of stabilities for stoichiometric surfaces is as follows: [100] > [101] > [102] > [0001] > [112] > [104] and the most favorable adsorption sites for water molecules are the same as for La-bastnäsite. In agreement with water adsorption calorimetry, at low coverage water molecules are strongly stabilized via coordination to the surface Ce3+ ions, whereas at higher coverage they are adsorbed less strongly via hydrogen bonding interaction with the surface anions. Lastly, due to similar water adsorption energies on bastnäsite [101] and calcite [104] surfaces, the design of collector molecules that selectively bind to bastnäsite over calcite must exploit the structural differences in the predominantly exposed facets of these minerals.« less
Goverapet Srinivasan, Sriram; Shivaramaiah, Radha; Kent, Paul R. C.; ...
2017-02-24
Bastnäsite, a fluoro-carbonate mineral, is the single largest mineral source of light rare earth elements (REE), La, Ce and Nd. Enhancing the efficiency of separation of the mineral from gangue through froth flotation is the first step towards meeting an ever increasing demand for REE. To design and evaluate collector molecules that selectively bind to bastnäsite, a fundamental understanding of the structure and surface properties of bastnäsite is essential. In our earlier work (J Phys Chem C, 2016, 120, 16767), we carried out an extensive study of the structure, surface stability and water adsorption energies of La-bastnäsite. Here in thismore » work, we make a comparative study of the surface properties of Ce-bastnäsite, La-bastnäsite, and calcite using a combination of density functional theory (DFT) and water adsorption calorimetry. Spin polarized DFT+U calculations show that the exchange interaction between the electrons in Ce 4f orbitals is negligible and that these orbitals do not participate in bonding with the oxygen atom of the adsorbed water molecule. In agreement with calorimetry, DFT calculations predict larger surface energies and stronger water adsorption energies on Ce-bastnäsite than on La-bastnäsite. The order of stabilities for stoichiometric surfaces is as follows: [100] > [101] > [102] > [0001] > [112] > [104] and the most favorable adsorption sites for water molecules are the same as for La-bastnäsite. In agreement with water adsorption calorimetry, at low coverage water molecules are strongly stabilized via coordination to the surface Ce3+ ions, whereas at higher coverage they are adsorbed less strongly via hydrogen bonding interaction with the surface anions. Lastly, due to similar water adsorption energies on bastnäsite [101] and calcite [104] surfaces, the design of collector molecules that selectively bind to bastnäsite over calcite must exploit the structural differences in the predominantly exposed facets of these minerals.« less
Goverapet Srinivasan, Sriram; Shivaramaiah, Radha; Kent, Paul R C; Stack, Andrew G; Riman, Richard; Anderko, Andre; Navrotsky, Alexandra; Bryantsev, Vyacheslav S
2017-03-15
Bastnäsite, a fluoro-carbonate mineral, is the single largest mineral source of light rare earth elements (REE), La, Ce and Nd. Enhancing the efficiency of separation of the mineral from gangue through froth flotation is the first step towards meeting an ever increasing demand for REE. To design and evaluate collector molecules that selectively bind to bastnäsite, a fundamental understanding of the structure and surface properties of bastnäsite is essential. In our earlier work (J. Phys. Chem. C, 2016, 120, 16767), we carried out an extensive study of the structure, surface stability and water adsorption energies of La-bastnäsite. In this work, we make a comparative study of the surface properties of Ce-bastnäsite, La-bastnäsite, and calcite using a combination of density functional theory (DFT) and water adsorption calorimetry. Spin polarized DFT+U calculations show that the exchange interaction between the electrons in Ce 4f orbitals is negligible and that these orbitals do not participate in bonding with the oxygen atom of the adsorbed water molecule. In agreement with calorimetry, DFT calculations predict larger surface energies and stronger water adsorption energies on Ce-bastnäsite than on La-bastnäsite. The order of stabilities for stoichiometric surfaces is as follows: [101[combining macron]0] > [101[combining macron]1] > [101[combining macron]2] > [0001] > [112[combining macron]2] > [101[combining macron]4] and the most favorable adsorption sites for water molecules are the same as for La-bastnäsite. In agreement with water adsorption calorimetry, at low coverage water molecules are strongly stabilized via coordination to the surface Ce 3+ ions, whereas at higher coverage they are adsorbed less strongly via hydrogen bonding interaction with the surface anions. Due to similar water adsorption energies on bastnäsite [101[combining macron]1] and calcite [101[combining macron]4] surfaces, the design of collector molecules that selectively bind to bastnäsite over calcite must exploit the structural differences in the predominantly exposed facets of these minerals.
Pope, Misty L.; Bussen, Michelle; Feige, Mary Ann; Shadix, Lois; Gonder, Sharon; Rodgers, Crystal; Chambers, Yildiz; Pulz, Jessica; Miller, Ken; Connell, Kevin; Standridge, Jon
2003-01-01
Escherichia coli is a routinely used microbiological indicator of water quality. To determine whether holding time and storage conditions had an effect on E. coli densities in surface water, studies were conducted in three phases, encompassing 24 sites across the United States and four commonly used monitoring methods. During all three phases of the study, E. coli samples were analyzed at time 0 and at 8, 24, 30, and 48 h after sample collection. During phase 1, when 4°C samples were evaluated by Colilert or by placing a membrane onto mFC medium followed by transfer to nutrient agar containing 4-methylumbelliferyl-β-d-glucuronide (mFC/NA-MUG), three of four sites showed no significant differences throughout the 48-h study. During phase 2, five of seven sites showed no significant difference between time 0 and 24 h by membrane filtration (mFC/NA-MUG). When evaluated by the Colilert method, five of seven sites showed no significant difference in E. coli density between time 0 and 48 h. During phase 3, 8 of 13 sites showed no significant differences in E. coli densities between time 0 and the 48-h holding time, regardless of method. Based on the results of these studies, it appears that if samples are held below 10°C and are not allowed to freeze, most surface water E. coli samples analyzed by commonly used methods beyond 8 h after sample collection can generate E. coli data comparable to those generated within 8 h of sample collection. Notwithstanding this conclusion, E. coli samples collected from surface waters should always be analyzed as soon as possible. PMID:14532081
Lee, Yong Seuk; Yun, Ji Young; Lee, Beom Koo
2014-01-01
An optimally implanted tibial component during unicompartmental knee arthroplasty would be flush with all edges of the cut tibial surface. However, this is often not possible, partly because the tibial component may not be an ideal shape or because the ideal component size may not be available. In such situations, surgeons need to decide between component overhang and underhang and as to which sites must be covered and which sites could be undercovered. The objectives of this study were to evaluate the bone mineral density of the cut surface of the proximal tibia around the cortical rim and to compare the bone mineral density according to the inclusion of the cortex and the site-specific matched evaluation. One hundred and fifty consecutive patients (100 men and 50 women) were enrolled in this study. A quantitative computed tomography was used to determine the bone density of the cut tibial surface. Medial and lateral compartments were divided into anterior, middle, and posterior regions, and these three regions were further subdivided into two regions according to containment of cortex. The site-specific matched comparison (medial vs. lateral) of bone mineral density was performed. In medial sides, the mid-region, including the cortex, showed the highest bone mineral density in male and female patients. The posterior region showed the lowest bone mineral density in male patients, and the anterior and posterior regions showed the lowest bone mineral density in female patients. Regions including cortex showed higher bone mineral density than pure cancellous regions in medial sides. In lateral sides, posterior regions including cortex showed highest bone mineral density with statistical significance in both male and female patients. The anterior region showed the lowest bone mineral density in both male and female patients. The mid-region of the medial side and the posterior region of the lateral side are relatively safe without cortical coverage when the component is not flush with all edges of the tibia. Cortical coverage is strongly recommended for the prevention of subsidence of the tibial component in the posterior region of the medial side, and in the anterior region of the lateral side.
Carmali, Sheiliza; Murata, Hironobu; Cummings, Chad; Matyjaszewski, Krzysztof; Russell, Alan J
2017-01-01
Atom transfer radical polymerization (ATRP) from the surface of a protein can generate remarkably dense polymer shells that serve as armor and rationally tune protein function. Using straightforward chemistry, it is possible to covalently couple or display multiple small molecule initiators onto a protein surface. The chemistry is fine-tuned to be sequence specific (if one desires a single targeted site) at controlled density. Once the initiator is anchored on the protein surface, ATRP is used to grow polymers on protein surface, in situ. The technique is so powerful that a single-protein polymer conjugate molecule can contain more than 90% polymer coating by weight. If desired, stimuli-responsive polymers can be "grown" from the initiated sites to prepare enzyme conjugates that respond to external triggers such as temperature or pH, while still maintaining enzyme activity and stability. Herein, we focus mainly on the synthesis of chymotrypsin-polymer conjugates. Control of the number of covalently coupled initiator sites by changing the stoichiometric ratio between enzyme and the initiator during the synthesis of protein-initiator complexes allowed fine-tuning of the grafting density. For example, very high grafting density chymotrypsin conjugates were prepared from protein-initiator complexes to grow the temperature-responsive polymers, poly(N-isopropylacrylamide), and poly[N,N'-dimethyl(methacryloyloxyethyl) ammonium propane sulfonate]. Controlled growth of polymers from protein surfaces enables one to predictably manipulate enzyme kinetics and stability without the need for molecular biology-dependent mutagenesis. © 2017 Elsevier Inc. All rights reserved.
10 CFR 960.5-2 - Technical guidelines.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., operation, and closure. The first group includes conditions on population density and distribution, site... the surface characteristics of the site, the characteristics of the host rock and surrounding strata...
10 CFR 960.5-2 - Technical guidelines.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., operation, and closure. The first group includes conditions on population density and distribution, site... the surface characteristics of the site, the characteristics of the host rock and surrounding strata...
10 CFR 960.5-2 - Technical guidelines.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., operation, and closure. The first group includes conditions on population density and distribution, site... the surface characteristics of the site, the characteristics of the host rock and surrounding strata...
10 CFR 960.5-2 - Technical guidelines.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., operation, and closure. The first group includes conditions on population density and distribution, site... the surface characteristics of the site, the characteristics of the host rock and surrounding strata...
Adsorption of lactic acid on chiral Pt surfaces—A density functional theory study
NASA Astrophysics Data System (ADS)
Franke, J.-H.; Kosov, D. S.
2013-02-01
The adsorption of the chiral molecule lactic acid on chiral Pt surfaces is studied by density functional theory calculations. First, we study the adsorption of L-lactic acid on the flat Pt(111) surface. Using the optimed PBE - van der Waals (oPBE-vdW) functional, which includes van der Waals forces on an ab initio level, it is shown that the molecule has two binding sites, a carboxyl and the hydroxyl oxygen atoms. Since real chiral surfaces are (i) known to undergo thermal roughening that alters the distribution of kinks and step edges but not the overall chirality and (ii) kink sites and edge sites are usually the energetically most favored adsorption sites, we focus on two surfaces that allow qualitative sampling of the most probable adsorption sites. We hereby consider chiral surfaces exhibiting (111) facets, in particular, Pt(321) and Pt(643). The binding sites are either both on kink sites—which is the case for Pt(321) or on one kink site—as on Pt(643). The binding energy of the molecule on the chiral surfaces is much higher than on the Pt(111) surface. We show that the carboxyl group interacts more strongly than the hydroxyl group with the kink sites. The results indicate the possible existence of very small chiral selectivities of the order of 20 meV for the Pt(321) and Pt(643) surfaces. L-lactic acid is more stable on Pt(321)S than D-lactic acid, while the chiral selectivity is inverted on Pt(643)S. The most stable adsorption configurations of L- and D-lactic acid are similar for Pt(321) but differ for Pt(643). We explore the impact of the different adsorption geometries on the work function, which is important for field ion microscopy.
Evaluation of surface energy and radiation balance systems for FIFE
NASA Technical Reports Server (NTRS)
Fritschen, Leo J.; Qian, Ping
1988-01-01
The energy balance and radiation balance components were determined at six sites during the First International Satellite Land Surface Climatology Project Field Experiment (FIFE) conducted south of Manhattan, Kansas during the summer of 1987. The objectives were: to determine the effect of slope and aspect, throughout a growing season, on the magnitude of the surface energy balance fluxes as determined by the Energy Balance Method (EBM); to investigate the calculation of the soil heat flux density at the surface as calculated from the heat capacity and the thermal conductivity equations; and to evaluate the performance of the Surface Energy and Radiation Balance System (SERBS). A total of 17 variables were monitored at each site. They included net, solar (up and down), total hemispherical (up and down), and diffuse radiation, soil temperature and heat flux density, air and wet bulb temperature gradients, wind speed and direction, and precipitation. A preliminary analysis of the data, for the season, indicate that variables including net radiation, air temperature, vapor pressure, and wind speed were quite similar at the sites even though the sites were as much as 16 km apart and represented four cardinal slopes and the top of a ridge.
Active Free Surface Density Maps
NASA Astrophysics Data System (ADS)
Çelen, S.
2016-10-01
Percolation problems were occupied to many physical problems after their establishment in 1957 by Broadbent and Hammersley. They can be used to solve complex systems such as bone remodeling. Volume fraction method was adopted to set some algorithms in the literature. However, different rate of osteoporosis could be observed for different microstructures which have the same mass density, mechanical stimuli, hormonal stimuli and nutrition. Thus it was emphasized that the bone might have identical porosity with different specific surfaces. Active free surface density of bone refers the used total area for its effective free surface. The purpose of this manuscript is to consolidate a mathematical approach which can be called as “active free surface density maps” for different surface patterns and derive their formulations. Active free surface density ratios were calculated for different Archimedean lattice models according to Helmholtz free energy and they were compared with their site and bond percolation thresholds from the background studies to derive their potential probability for bone remodeling.
The acid-base titration of montmorillonite
NASA Astrophysics Data System (ADS)
Bourg, I. C.; Sposito, G.; Bourg, A. C.
2003-12-01
Proton binding to clay minerals plays an important role in the chemical reactivity of soils (e.g., acidification, retention of nutrients or pollutants). If should also affect the performance of clay barriers for waste disposal. The surface acidity of clay minerals is commonly modelled empirically by assuming generic amphoteric surface sites (>SOH) on a flat surface, with fitted site densities and acidity constant. Current advances in experimental methods (notably spectroscopy) are rapidly improving our understanding of the structure and reactivity of the surface of clay minerals (arrangement of the particles, nature of the reactive surface sites, adsorption mechanisms). These developments are motivated by the difficulty of modelling the surface chemistry of mineral surfaces at the macro-scale (e.g., adsorption or titration) without a detailed (molecular-scale) picture of the mechanisms, and should be progressively incorporated into surface complexation models. In this view, we have combined recent estimates of montmorillonite surface properties (surface site density and structure, edge surface area, surface electrostatic potential) with surface site acidities obtained from the titration of alpha-Al2O3 and SiO2, and a novel method of accounting for the unknown initial net proton surface charge of the solid. The model predictions were compared to experimental titrations of SWy-1 montmorillonite and purified MX-80 bentonite in 0.1-0.5 mol/L NaClO4 and 0.005-0.5 mol/L NaNO3 background electrolytes, respectively. Most of the experimental data were appropriately described by the model after we adjusted a single parameter (silanol sites on the surface of montmorillonite were made to be slightly more acidic than those of silica). At low ionic strength and acidic pH the model underestimated the buffering capacity of the montmorillonite, perhaps due to clay swelling or to the interlayer adsorption of dissolved aluminum. The agreement between our model and the experimental data illustrates the complementarity of molecular and macro-scale descriptions of the clay reactivity.
Wang, Lei; Hasi, Eerdun; Liu, Lian-You; Gao, Shang-Yu
2007-03-01
The study on the density of ambient particles settling upon the leaf surface of six conifers in Beijing, the micro-configurations of the leaf surface, and the mineral and element compositions of the particles showed that at the same sites and for the same tree species, the density of the particles settling upon leaf surface increased with increasing ambient pollution, but for various tree species, it differed significantly, with the sequence of Sabina chinensis and Platycladus orientalis > Cedrus deodara and Pinus bungeana > P. tabulaeformis and Picea koraiensis. Due to the effects of road dust, low height leaf had a larger density of particles. The density of the particles was smaller in summer than in winter because of the rainfall and new leaf growth. The larger the roughness of leaf surface, the larger density of the particles was. In the particles, the overall content of SiO2, CaCO3, CaMg(CO3,), NaCl, 2CaSO4 . H2O, CaSO4 . 2H2O and Fe2O3 was about 10%-30%, and the main minerals were montmorillonite, illite, kaolinite and feldspar. The total content of 21 test elements in the particles reached 16%-37%, among which, Ca, Al, Fe, Mg, K, Na and S occupied 97% or more, while the others were very few and less affected by sampling sites and tree species.
Selective adsorption of toluene-3,4-dithiol on Si(553)-Au surfaces
NASA Astrophysics Data System (ADS)
Suchkova, Svetlana; Hogan, Conor; Bechstedt, Friedhelm; Speiser, Eugen; Esser, Norbert
2018-01-01
The adsorption of small organic molecules onto vicinal Au-stabilized Si(111) surfaces is shown to be a versatile route towards controlled growth of ordered organic-metal hybrid one-dimensional nanostructures. Density functional theory is used to investigate the site-specific adsorption of toluene-3,4-dithiol (TDT) molecules onto the clean Si(553)-Au surface and onto a co-doped surface whose steps are passivated by hydrogen. We find that the most reactive sites involve bonding to silicon at the step edge or on the terraces, while gold sites are relatively unfavored. H passivation and TDT adsorption both induce a controlled charge redistribution within the surface layer, causing the surface metallicity, electronic structure, and chemical reactivity of individual adsorption sites to be substantially altered.
Probing the Active Surface Sites for CO Reduction on Oxide-Derived Copper Electrocatalysts
Verdaguer-Casadevall, Arnau; Li, Christina W.; Johansson, Tobias P.; ...
2015-07-30
CO electroreduction activity on oxide-derived Cu (OD-Cu) was found to correlate with metastable surface features that bind CO strongly. OD-Cu electrodes prepared by H 2 reduction of Cu 2O precursors reduce CO to acetate and ethanol with nearly 50% Faradaic efficiency at moderate overpotential. Temperature-programmed desorption of CO on OD-Cu revealed the presence of surface sites with strong CO binding that are distinct from the terraces and stepped sites found on polycrystalline Cu foil. After annealing at 350 °C, the surface-area corrected current density for CO reduction is 44-fold lower and the Faradaic efficiency is less than 5%. These changesmore » are accompanied by a reduction in the proportion of strong CO binding sites. Here, we propose that the active sites for CO reduction on OD-Cu surfaces are strong CO binding sites that are supported by grain boundaries. Uncovering these sites is a first step toward understanding the surface chemistry necessary for efficient CO electroreduction.« less
NASA Astrophysics Data System (ADS)
Rafique, Muhammad; Shuai, Yong; Hassan, Muhammad
2017-08-01
This paper illustrates the study of stable structural, electronic and optical properties of carbon mono oxide (CO) molecule adsorbed on pure anatase TiO2 (101) surface and CO molecule adsorbed on defective anatase TiO2 (101) surface containing oxygen (O) atom subsurface vacancy using first-principles study calculations based on density functional theory (DFT) method. A foreign molecule CO was added in the interstitial space of anatase TiO2 (101) surface. It was observed that, adsorption of CO molecule is not favorable on pure anatase TiO2 (101) surface, however adsorption process is improved when subsurface contains O atom vacancy defect. In case of anatase TiO2 (101) surface containing subsurface vacancy, adsorption process is exothermic, resulting in stable structures. The adsorption energies calculated for CO molecules adsorbed at O2c site, at defect site and at Ti5c site of anatase surface containing subsurface O vacancy are 0.16 eV (at O2c), 0.32 eV (at defect site) and 0.43 eV (at Ti5c) site. DOS and PDOS plots are calculated for all the structures. Results indicated that CO molecule adsorption introduces surface states at the Fermi energy level (EF) as shown in partial density of states (PDOS) plots. The dielectric matrix and absorption coefficient (α) for defective anatase TiO2 (101) surface, CO adsorbed at O2c site, at defect site and at Ti5C site of anatase TiO2 (101) surface containing O atom subsurface vacancy has been calculated within the random phase approximation (RPA) using VASP (Vienna ab-initio simulation package) code. It was observed that upon CO adsorption at defective anatase surface, real and imaginary dielectric function peaks were shifted towards lower energy level and a small absorption peak was observed at 1.1 eV energy level which is not present in case of defective anatase (101) surface. CO adsorption produces a red shift in the absorption spectrum of anatase TiO2 (101) surface containing subsurface O atom vacancy.
NASA Astrophysics Data System (ADS)
Salazar-Camacho, Carlos; Villalobos, Mario
2010-04-01
We developed a model that describes quantitatively the arsenate adsorption behavior for any goethite preparation as a function of pH and ionic strength, by using one basic surface arsenate stoichiometry, with two affinity constants. The model combines a face distribution-crystallographic site density model for goethite with tenets of the Triple Layer and CD-MUSIC surface complexation models, and is self-consistent with its adsorption behavior towards protons, electrolytes, and other ions investigated previously. Five different systems of published arsenate adsorption data were used to calibrate the model spanning a wide range of chemical conditions, which included adsorption isotherms at different pH values, and adsorption pH-edges at different As(V) loadings, both at different ionic strengths and background electrolytes. Four additional goethite-arsenate systems reported with limited characterization and adsorption data were accurately described by the model developed. The adsorption reaction proposed is: lbond2 FeOH +lbond2 SOH +AsO43-+H→lbond2 FeOAsO3[2-]…SOH+HO where lbond2 SOH is an adjacent surface site to lbond2 FeOH; with log K = 21.6 ± 0.7 when lbond2 SOH is another lbond2 FeOH, and log K = 18.75 ± 0.9, when lbond2 SOH is lbond2 Fe 2OH. An additional small contribution of a protonated complex was required to describe data at low pH and very high arsenate loadings. The model considered goethites above 80 m 2/g as ideally composed of 70% face (1 0 1) and 30% face (0 0 1), resulting in a site density for lbond2 FeOH and for lbond2 Fe 3OH of 3.125/nm 2 each. Below 80 m 2/g surface capacity increases progressively with decreasing area, which was modeled by considering a progressively increasing proportion of faces (0 1 0)/(1 0 1), because face (0 1 0) shows a much higher site density of lbond2 FeOH groups. Computation of the specific proportion of faces, and thus of the site densities for the three types of crystallographic surface groups present in goethite, may be performed for each preparation either by experimental determination of site saturation by an index ion (e.g., chromate), or by achieving congruency of proton adsorption data with those of ideal goethites when plotted as percentage of proton-reactive ( lbond2 FeOH + lbond2 Fe 3OH) sites occupied. The surface arsenate complexes proposed additionally explained: (1) the higher affinity of goethite for As(V) than for Cr(VI) at high pH, and thus the gentle slope of the arsenate pH adsorption edges; and (2) the lower adsorption capacity for As(V) than for Cr(VI) at low pH on low-surface area goethites, through incomplete lbond2 FeOH site occupancy of As(V). The model is very promising as a practical means of predicting the adsorption behavior of arsenate on any goethite preparation, and may extend to predictive capabilities for adsorption behavior of many other relevant oxyanions, as well as for explaining differences in ligand-promoted surface transformation processes on goethite as a function of particle size.
Protonation of Different Goethite Surfaces - Unified Models for NaNO3 and NaCl Media.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lutzenkirchen, Johannes; Boily, Jean F.; Gunneriusson, Lars
2008-01-01
Acid-base titration data for two goethites samples in sodium nitrate and sodium chloride media are discussed. The data are modelled based on various surface complexation models in the framework of the MUlti SIte Complexation (MUSIC) model. Various assumptions with respect to the goethite morphology are considered in determining the site density of the surface functional groups. The results from the various model applications are not statistically significant in terms of goodness of fit. More importantly, various published assumptions with respect to the goethite morphology (i.e. the contributions of different crystal planes and their repercussions on the “overall” site densities ofmore » the various surface functional groups) do not significantly affect the final model parameters. The simultaneous fit of the chloride and nitrate data results in electrolyte binding constants, which are applicable over a wide range of electrolyte concentrations including mixtures of chloride and nitrate. Model parameters for the high surface area goethite sample are in excellent agreement with parameters that were independently obtained by another group on different goethite titration data sets.« less
NASA Astrophysics Data System (ADS)
Zhang, Yuzhong; Wang, Yuhang; Crawford, James; Cheng, Ye; Li, Jianfeng
2018-05-01
Obtaining the full spatial coverage of daily surface ozone fields is challenging because of the sparsity of the surface monitoring network and the difficulty in direct satellite retrievals of surface ozone. We propose an indirect satellite retrieval framework to utilize the information from satellite-measured column densities of tropospheric NO2 and CH2O, which are sensitive to the lower troposphere, to derive surface ozone fields. The method is applicable to upcoming geostationary satellites with high-quality NO2 and CH2O measurements. To prove the concept, we conduct a simulation experiment using a 3-D chemical transport model for July 2011 over the eastern US. The results show that a second order regression using both NO2 and CH2O column densities can be an effective predictor for daily maximum 8-h average ozone. Furthermore, this indirect retrieval approach is shown to be complementary to spatial interpolation of surface observations, especially in regions where the surface sites are sparse. Combining column observations of NO2 and CH2O with surface site measurements leads to an improved representation of surface ozone over simple kriging, increasing the R2 value from 0.53 to 0.64 at a surface site distance of 252 km. The improvements are even more significant with larger surface site distances. The simulation experiment suggests that the indirect satellite retrieval technique can potentially be a useful tool to derive the full spatial coverage of daily surface ozone fields if satellite observation uncertainty is moderate.
DFT studies on H 2O adsorption and its effect on CO oxidation over spinel Co 3O 4 (110) surface
NASA Astrophysics Data System (ADS)
Xu, Xiang Lan; Li, Jun Qian
2011-12-01
Adsorption of H2O and its effect on CO oxidation over spinel Co3O4 (110) surface were studied by density functional theory calculations. H2O is adsorbed favorably at the octahedral cobalt (Cooct) site through O atom on the surface. Hydrogen bonding interaction between 1s orbitals of H atoms in H2O and the 2p orbitals of surface active oxygen sites plays a key role for H2O adsorption. The inhibition effect of H2O adsorption on the CO oxidation over the surfaces is attributed to the competition between H2O and CO molecules for the surface twofold coordinated oxygen site.
NASA Astrophysics Data System (ADS)
Atta-Fynn, Raymond; Ray, Asok K.
2007-05-01
First-principles total-energy calculations within the framework of generalized gradient approximation to density-functional theory have been performed for atomic carbon, nitrogen, and oxygen chemisorption on the (111) surface of δ-Pu . The full-potential all-electron linearized augmented plane wave plus local orbitals method with the Perdew-Burke-Ernzerhof exchange-correlation functional has been employed. Chemisorption energies have been optimized with respect to the distance of the adatom from the Pu surface for four adsorption sites, namely, the top, bridge, hollow fcc, and hollow hcp sites, with the adlayer structure corresponding to a coverage of 0.50 of a monolayer in all cases. Computations were carried out at two theoretical levels, one without spin-orbit coupling (NSOC) and one with spin-orbit coupling (SOC). For NSOC calculations, the hollow fcc adsorption site was found to be the most stable site for C and N with chemisorption energies of 6.272 and 6.504eV , respectively, while the hollow hcp adsorption site was found to be the most stable site for O with chemisorption energy of 8.025eV . For SOC calculations, the hollow fcc adsorption site was found to be the most stable site in all cases with chemisorption energies for C, N, and O being 6.539, 6.714, and 8.2eV , respectively. The respective distances of the C, N, and O adatoms from the surface were found to be 1.16, 1.08, and 1.25Å . Our calculations indicate that SOC has negligible effect on the chemisorption geometries, but energies with SOC are more stable than the cases with NSOC within a range of 0.05-0.27eV . The work function and net magnetic moments, respectively, increased and decreased in all cases upon chemisorption compared with the bare δ-Pu (111) surface. The partial charges inside the muffin tins, difference charge-density distributions, and the local density of states have been used to analyze the Pu-adatom bond interactions.
Xe adsorption site distributions on Pt(111), Pt(221) and Pt(531)
NASA Astrophysics Data System (ADS)
Gellman, Andrew J.; Baker, L.; Holsclaw, B. S.
2016-04-01
The ideal structures of the Pt(111), Pt(221) and Pt(531) surfaces expose adsorption sites that can be qualitatively described as terrace sites on Pt(111), both step and terrace sites on Pt(221), and kink sites on Pt(531). The real surface structures of these surfaces can be complicated by imperfections such as misorientation, reconstruction and thermal roughening, all of which will influence their distributions of adsorption sites. Xe adsorption sites on the Pt(111), Pt(221) and Pt(531) surfaces have been probed using both photoemission of adsorbed Xe (PAX) and temperature programmed desorption (TPD) of Xe. Both PAX and Xe TPD are sensitive to the adsorption sites of the Xe and serve as complementary means of assessing the distributions of adsorption sites on these three Pt surfaces. The adsorption of Xe is sufficiently sensitive to detect the presence of residual steps on the Pt(111) surface at a density of 1.5% step atoms per Pt atom. On the Pt(221) surface, PAX and Xe TPD reveal adsorption at both terrace and step sites simultaneously. Although the ideal structure of the Pt(531) surface has no well-defined steps or terraces, Xe adsorption indicates that its adsorption sites are best described as a distribution of both step and kink sites with roughly twice as many steps sites as kinks.
Jian, Jhih-Wei; Elumalai, Pavadai; Pitti, Thejkiran; Wu, Chih Yuan; Tsai, Keng-Chang; Chang, Jeng-Yih; Peng, Hung-Pin; Yang, An-Suei
2016-01-01
Predicting ligand binding sites (LBSs) on protein structures, which are obtained either from experimental or computational methods, is a useful first step in functional annotation or structure-based drug design for the protein structures. In this work, the structure-based machine learning algorithm ISMBLab-LIG was developed to predict LBSs on protein surfaces with input attributes derived from the three-dimensional probability density maps of interacting atoms, which were reconstructed on the query protein surfaces and were relatively insensitive to local conformational variations of the tentative ligand binding sites. The prediction accuracy of the ISMBLab-LIG predictors is comparable to that of the best LBS predictors benchmarked on several well-established testing datasets. More importantly, the ISMBLab-LIG algorithm has substantial tolerance to the prediction uncertainties of computationally derived protein structure models. As such, the method is particularly useful for predicting LBSs not only on experimental protein structures without known LBS templates in the database but also on computationally predicted model protein structures with structural uncertainties in the tentative ligand binding sites. PMID:27513851
NASA Astrophysics Data System (ADS)
Amdani-Moten, Shafaq; Atta-Fynn, Raymond; Ray, Asok
2010-03-01
As our group have recently shown^+, hybrid density functional theory (HDFT) which replaces a fraction (40%) of approximate DFT exchange with exact Hartree-Fock exchange yield structural, magnetic, and electronic properties for Americium-I that are in excellent agreement with experimental data. As a natural progression, ab initio calculations for atomic adsorptions on the (0001) surface of non-magnetic americium have been performed using HDFT. The americium surface is modeled by a seven-layer slab using inversion symmetry consisting of one atom per layer and non-magnetic ABAC stacking arrangement of these layers. Top, bridge, hcp and fcc chemisorption sites have been investigated with energies optimized with respect to the adatom distance from the surface. Details of the chemisorptions processes as well as comparisons of different sites will be presented. ^+ R. Atta-Fynn and A. K. Ray, Chemical Physics Letters, 482, 223-227 (2009).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Ujjal; Zhang, Guanghui; Hu, Bo
2015-10-28
Amorphous silica (SiO 2) is commonly used as a support in heterogeneous catalysis. However, due to the structural disorder and temperature induced change of surface morphology, the structures of silica supported metal catalysts are difficult to determine. Most studies are primarily focused on understanding the interactions of different types of surface hydroxyl groups with metal ions. In comparison, the effect of siloxane ring size on the structure of silica supported metal catalysts and how it affects catalytic activity is poorly understood. Here, we have used density functional theory calculations to understand the effect of siloxane ring strain on structure andmore » activity of different monomeric Lewis acid metal sites on silica. In particular, we have found that large siloxane rings favor strong dative bonding interaction between metal ion and surface hydroxyls, leading to the formation of high-coordinate metal sites. In comparison, metal-silanol interaction is weak in small siloxane rings, resulting in low-coordinate metal sites. The physical origin of this size dependence is associated with siloxane ring strain, and, a correlation between metal-silanol interaction energy and ring strain energy has been observed. In addition to ring strain, the strength of the metal-silanol interaction also depends on the positive charge density of the cations. In fact, a correlation also exists between metal-silanol interaction energy and charge density of several first-row transition and post-transition metals. The theoretical results are compared with the EXAFS data of monomeric Zn(II) and Ga(III) ions grafted on silica. In conclusion, the molecular level insights of how metal ion coordination on silica depends on siloxane ring strain and cation charge density will be useful in the synthesis of new catalysts.« less
Snow Densification and Recent Accumulation Along the iSTAR Traverse, Pine Island Glacier, Antarctica
NASA Astrophysics Data System (ADS)
Morris, E. M.; Mulvaney, R.; Arthern, R. J.; Davies, D.; Gurney, R. J.; Lambert, P.; De Rydt, J.; Smith, A. M.; Tuckwell, R. J.; Winstrup, M.
2017-12-01
Neutron probe measurements of snow density from 22 sites in the Pine Island Glacier basin have been used to determine mean annual accumulation using an automatic annual layer identification routine. A mean density profile which can be used to convert radar two-way travel times to depth has been derived, and the effect of annual fluctuations in density on estimates of the depth of radar reflectors is shown to be insignificant, except very near the surface. Vertical densification rates have been derived from the neutron probe density profiles and from deeper firn core density profiles available at 9 of the sites. These rates are consistent with the rates predicted by the Herron and Langway model for stage 1 densification (by grain-boundary sliding, grain growth and intracrystalline deformation) and stage 2 densification (predominantly by sintering), except in a transition zone extending from ≈8 to ≈13 m from the surface in which 10-14% of the compaction occurs. Profiles of volumetric strain rate at each site show that in this transition zone the rates are consistent with the Arthern densification model. Comparison of the vertical densification rates and volumetric strain rates indicates that the expected relation to mean annual accumulation breaks down at high accumulation rates even when corrections are made for horizontal ice velocity divergence.
Adsorption and Dissociation of Molecular Hydrogen on the (0001) Surface of DHCP Americium
NASA Astrophysics Data System (ADS)
Dholabhai, Pratik; Ray, Asok
2009-03-01
Hydrogen molecule adsorption on the (0001) surface of double hexagonal closed packed americium has been studied in detail within the framework of density functional theory. Weak molecular hydrogen adsorptions were observed. The most stable configuration corresponded to a Hor2 approach molecular adsorption at the one-fold top site where the molecule's approach is perpendicular to a lattice vector. Adsorption energies and adsorption geometries for different adsorption sites will be discussed. The change in work functions, magnetic moments, partial charges inside muffin-tins, difference charge density distributions and density of states for the bare Am slab and the Am slab after adsorption of the hydrogen molecule will be discussed. Reaction barrier for the dissociation of hydrogen molecule will be presented. The implications of adsorption on Am 5f electron localization-delocalization will be summarized.
Rasmussen, Patrick P.; Ziegler, Andrew C.
2003-01-01
The sanitary quality of water and its use as a public-water supply and for recreational activities, such as swimming, wading, boating, and fishing, can be evaluated on the basis of fecal coliform and Escherichia coli (E. coli) bacteria densities. This report describes the overall sanitary quality of surface water in selected Kansas streams, the relation between fecal coliform and E. coli, the relation between turbidity and bacteria densities, and how continuous bacteria estimates can be used to evaluate the water-quality conditions in selected Kansas streams. Samples for fecal coliform and E. coli were collected at 28 surface-water sites in Kansas. Of the 318 samples collected, 18 percent exceeded the current Kansas Department of Health and Environment (KDHE) secondary contact recreational, single-sample criterion for fecal coliform (2,000 colonies per 100 milliliters of water). Of the 219 samples collected during the recreation months (April 1 through October 31), 21 percent exceeded the current (2003) KDHE single-sample fecal coliform criterion for secondary contact rec-reation (2,000 colonies per 100 milliliters of water) and 36 percent exceeded the U.S. Environmental Protection Agency (USEPA) recommended single-sample primary contact recreational criterion for E. coli (576 colonies per 100 milliliters of water). Comparisons of fecal coliform and E. coli criteria indicated that more than one-half of the streams sampled could exceed USEPA recommended E. coli criteria more frequently than the current KDHE fecal coliform criteria. In addition, the ratios of E. coli to fecal coliform (EC/FC) were smallest for sites with slightly saline water (specific conductance greater than 1,000 microsiemens per centimeter at 25 degrees Celsius), indicating that E. coli may not be a good indicator of sanitary quality for those streams. Enterococci bacteria may provide a more accurate assessment of the potential for swimming-related illnesses in these streams. Ratios of EC/FC and linear regression models were developed for estimating E. coli densities on the basis of measured fecal coliform densities for six individual and six groups of surface-water sites. Regression models developed for the six individual surface-water sites and six groups of sites explain at least 89 percent of the variability in E. coli densities. The EC/FC ratios and regression models are site specific and make it possible to convert historic fecal coliform bacteria data to estimated E. coli densities for the selected sites. The EC/FC ratios can be used to estimate E. coli for any range of historical fecal coliform densities, and in some cases with less error than the regression models. The basin- and statewide regression models explained at least 93 percent of the variance and best represent the sites where a majority of the data used to develop the models were collected (Kansas and Little Arkansas Basins). Comparison of the current (2003) KDHE geometric-mean primary contact criterion for fecal coliform bacteria of 200 col/100 mL to the 2002 USEPA recommended geometric-mean criterion of 126 col/100 mL for E. coli results in an EC/FC ratio of 0.63. The geometric-mean EC/FC ratio for all sites except Rattlesnake Creek (site 21) is 0.77, indicating that considerably more than 63 percent of the fecal coliform is E. coli. This potentially could lead to more exceedances of the recommended E. coli criterion, where the water now meets the current (2003) 200-col/100 mL fecal coliform criterion. In this report, turbidity was found to be a reliable estimator of bacteria densities. Regression models are provided for estimating fecal coliform and E. coli bacteria densities using continuous turbidity measurements. Prediction intervals also are provided to show the uncertainty associated with using the regression models. Eighty percent of all measured sample densities and individual turbidity-based estimates from the regression models were in agreement as exceedi
Self-assembled monolayer and method of making
Fryxell, Glen E [Kennewick, WA; Zemanian, Thomas S [Richland, WA; Liu, Jun [West Richland, WA; Shin, Yongsoon [Richland, WA
2003-03-11
According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry. The present invention has the advantages of greater fraction of oxygen bonds, greater surface density of assembly molecules and reduced time for reaction of about 5 minutes to about 24 hours.
Self-assembled monolayer and method of making
Fryxell, Glen E.; Zemanian, Thomas S.; Liu, Jun; Shin, Yongsoon
2004-05-11
According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry. The present invention has the advantages of greater fraction of oxygen bonds, greater surface density of assembly molecules and reduced time for reaction of about 5 minutes to about 24 hours.
Self-Assembled Monolayer And Method Of Making
Fryxell, Glen E.; Zemanian, Thomas S.; Liu, Jun; Shin, Yongsoon
2004-06-22
According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry. The present invention has the advantages of greater fraction of oxygen bonds, greater surface density of assembly molecules and reduced time for reaction of about 5 minutes to about 24 hours.
Self-Assembled Monolayer And Method Of Making
Fryxell, Glen E.; Zemanian, Thomas S.; Liu, Jun; Shin, Yongsoon
2005-01-25
According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry. The present invention has the advantages of greater fraction of oxygen bonds, greater surface density of assembly molecules and reduced time for reaction of about 5 minutes to about 24 hours.
Thermal characteristics of the lunar surface layer.
NASA Technical Reports Server (NTRS)
Cremers, C. J.; Birkebak, R. C.; White, J. E.
1972-01-01
The thermophysical properties of the fines from the Apollo 12 landing site have been determined as a function of their relevant parameters. These properties include the thermal conductivity, thermal diffusivity, directional reflectance and emittance. The density used was the same as that observed from the returned core-tube samples and so should be close to the true density of the surface layer at the Apollo 12 site. The measured properties are used to calculate the diurnal temperature variation of the moon's surface as well as for several depths below the surface. The maximum surface of 389 K is obtained at lunar noon while the minimum temperature of 86.1 K is obtained at sunrise. It is shown that the most significant effects on temperature, as compared with previous calculations, are caused by using the directional reflectance which controls the amount of solar energy absorption during the day in place of a constant hemispherical reflectance. The results are compared with previous analyses and remote measurements.
NASA Astrophysics Data System (ADS)
Neyman, K. M.; Rösch, N.
1993-11-01
First principles density functional cluster investigations of adsorption at the (001) surface of pure and doped magnesium oxide are carried out to characterize and compare the interaction of CO molecules with main group (Mg 2+) and d metal (Co 2+, Ni 2+, Cu 2+) surface cationic centers of the ionic substrate. The geometry of the adsorption complexes, the binding mechanism and spectroscopic manifestations of the surface species are analyzed. Special attention is payed to vibrational frequencies and intensities. The calculations qualitatively reproduce observed trends in the adsorption-induced frequency shifts for the series of the surface aggregates Mg 5cCO→Ni 5cCO→CO 5cCO and the corresponding change of the infrared intensities of the CO vibrational mode. For the transition metal impurity sites these results are rationalized in terms of a small, but notable Md πCOπ interaction.
Tsai, Keng-Chang; Jian, Jhih-Wei; Yang, Ei-Wen; Hsu, Po-Chiang; Peng, Hung-Pin; Chen, Ching-Tai; Chen, Jun-Bo; Chang, Jeng-Yih; Hsu, Wen-Lian; Yang, An-Suei
2012-01-01
Non-covalent protein-carbohydrate interactions mediate molecular targeting in many biological processes. Prediction of non-covalent carbohydrate binding sites on protein surfaces not only provides insights into the functions of the query proteins; information on key carbohydrate-binding residues could suggest site-directed mutagenesis experiments, design therapeutics targeting carbohydrate-binding proteins, and provide guidance in engineering protein-carbohydrate interactions. In this work, we show that non-covalent carbohydrate binding sites on protein surfaces can be predicted with relatively high accuracy when the query protein structures are known. The prediction capabilities were based on a novel encoding scheme of the three-dimensional probability density maps describing the distributions of 36 non-covalent interacting atom types around protein surfaces. One machine learning model was trained for each of the 30 protein atom types. The machine learning algorithms predicted tentative carbohydrate binding sites on query proteins by recognizing the characteristic interacting atom distribution patterns specific for carbohydrate binding sites from known protein structures. The prediction results for all protein atom types were integrated into surface patches as tentative carbohydrate binding sites based on normalized prediction confidence level. The prediction capabilities of the predictors were benchmarked by a 10-fold cross validation on 497 non-redundant proteins with known carbohydrate binding sites. The predictors were further tested on an independent test set with 108 proteins. The residue-based Matthews correlation coefficient (MCC) for the independent test was 0.45, with prediction precision and sensitivity (or recall) of 0.45 and 0.49 respectively. In addition, 111 unbound carbohydrate-binding protein structures for which the structures were determined in the absence of the carbohydrate ligands were predicted with the trained predictors. The overall prediction MCC was 0.49. Independent tests on anti-carbohydrate antibodies showed that the carbohydrate antigen binding sites were predicted with comparable accuracy. These results demonstrate that the predictors are among the best in carbohydrate binding site predictions to date. PMID:22848404
NASA Astrophysics Data System (ADS)
Qin, Dan; Ge, Xu-Jin; Lü, Jing-Tao
2018-05-01
Through density functional theory based calculations, we study the adsorption and diffusion of tin phthalocyanine (SnPc) molecule on Au(111) and Cu(111) surfaces. SnPc has two conformers with Sn pointing to the vacuum (Sn-up) and substrate (Sn-down), respectively. The binding energies of the two conformers with different adsorption sites on the two surfaces, including top, bridge, fcc, hcp, are calculated and compared. It is found that the SnPc molecule binds stronger on Cu(111) surface, with binding energy about 1 eV larger than that on Au(111). Only the bridge and top adsorption sites are stable on Cu(111), while all the four adsorption sites are stable on Au(111), with small diffusion barriers between them. Moreover, the flipping barrier from Sn-up to Sn-down conformer is of the same magnitude on the two metal surfaces. These results are consistent with a recent experiment [Zhang, et al., Angew. Chem., 56, 11769 (2017)], which shows that conformation change from Sn-up to Sn-down on Cu(111) surface can be induced by a C60-functionalized STM tip, while similar change is difficult to realize on Au(111), due to smaller diffusion barrier on Au(111).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassett, J.M.
1988-01-01
Metal-aquatic biota interactions are important in both natural and engineered systems. In this study, the uptake of cadmium, strontium and lead by the unicellular green alga Chlorella (UTEX 252) was investigated. Variables included metal concentration, pH, and ionic strength. Data gathered included dry weights (mg/l), cell counts (cells/ml), electrophoretic mobilities (EPMs, {mu}m/sec/V/cm) of metal-free and metal-exposed cells, and metal uptake - difference in concentration in filtrate of cell-metal and cell-free metal solutions. Derived data included cell volumes and surface area, uptake on a {mu}M/m{sup 2} basis, {zeta}-potentials, diffuse layer potentials and charge densities. Typical uptake values were 1.1, 5.2, andmore » 6 {mu}M/m{sup 2} for Cd, Pb, and Sr, respectively, from solutions of pH 6, ionic strength 0.02M, and metal concentration 10{sup {minus}4} M. Cell EPMs were insensitive to metal; under certain conditions, however, (pM > 4, pH > 8), cadmium exposed cells exhibited a reversal in surface charge from negative to positive. The chemical equilibrium model MINEQL1 + STANFORD was used to model algal surface properties and metal uptake. Input data included site pK, density, and {Delta}pK, estimated from EPM-pH data. The model described surface properties of Chlorella (UTEX 252) as judged by a close fit of {zeta}-potentials and model-derived diffuse layer potentials. Metal uptake was modelled by adjusting site density and/or metal-surface site equilibrium constants. Attempts to model surface properties and metal uptake simultaneously were not successful.« less
NASA Astrophysics Data System (ADS)
Huda, Muhammad Nurul
Atomic and molecular adsorptions of oxygen and hydrogen on actinide surfaces have been studied within the generalized gradient approximations to density functional theory (GGA-DFT). The primary goal of this work is to understand the details of the adsorption processes, such as chemisorption sites, energies, adsorption configurations and activation energies for dissociation of molecules; and the signature role of the plutonium 5f electrons. The localization of the 5f electrons remains one of central questions in actinides and one objective here is to understand the extent to which localizations plays a role in adsorption on actinide surfaces. We also investigated the magnetism of the plutonium surfaces, given the fact that magnetism in bulk plutonium is a highly controversial issue, and the surface magnetism of it is not a well explored territory. Both the non-spin-polarized and spin-polarized calculations have been performed to arrive at our conclusions. We have studied both the atomic and molecular hydrogen and oxygen adsorptions on plutonium (100) and (111) surfaces. We have also investigated the oxygen molecule adsorptions on uranium (100) surface. Comparing the adsorption on uranium and plutonium (100) surfaces, we have seen that O2 chemisorption energy for the most favorable adsorption site on uranium surface has higher chemisorption energy, 9.492 eV, than the corresponding plutonium site, 8.787 eV. Also degree of localization of 5f electrons is less for uranium surface. In almost all of the cases, the most favorable adsorption sites are found where the coordination numbers are higher. For example, we found center sites are the most favorable sites for atomic adsorptions. In general oxygen reacts more strongly with plutonium surface than hydrogen. We found that atomic oxygen adsorption energy on (100) surface is 3.613 eV more than that of the hydrogen adsorptions, considering only the most favorable site. This is also true for molecular adsorptions, as the oxygen molecules on both (100) and (111) plutonium surfaces dissociate almost spontaneously, whereas hydrogen needs some activation energy to dissociate. From spin-polarized calculations we found both (100) and (111) surfaces have the layer by layer alternating spin-magnetic behavior. In general adsorption of H2 and O2 do not change this behavior.
Electronic damping of anharmonic adsorbate vibrations at metallic surfaces
NASA Astrophysics Data System (ADS)
Tremblay, Jean Christophe; Monturet, Serge; Saalfrank, Peter
2010-03-01
The nonadiabatic coupling of an adsorbate close to a metallic surface leads to electronic damping of adsorbate vibrations and line broadening in vibrational spectroscopy. Here, a perturbative treatment of the electronic contribution to the lifetime broadening serves as a building block for a new approach, in which anharmonic vibrational transition rates are calculated from a position-dependent coupling function. Different models for the coupling function will be tested, all related to embedding theory. The first two are models based on a scattering approach with (i) a jellium-type and (ii) a density functional theory based embedding density, respectively. In a third variant a further refined model is used for the embedding density, and a semiempirical approach is taken in which a scaling factor is chosen to match harmonic, single-site, first-principles transition rates, obtained from periodic density functional theory. For the example of hydrogen atoms on (adsorption) and below (subsurface absorption) a Pd(111) surface, lifetimes of and transition rates between vibrational levels are computed. The transition rates emerging from different models serve as input for the selective subsurface adsorption of hydrogen in palladium starting from an adsorption site, by using sequences of infrared laser pulses in a laser distillation scheme.
Understanding oxygen adsorption on 9.375 at. % Ga-stabilized δ-Pu (111) surface: A DFT study
Hernandez, Sarah C.; Wilkerson, Marianne P.; Huda, Muhammad N.
2015-08-30
Plutonium (Pu) metal reacts rapidly in the presence of oxygen (O), resulting in an oxide layer that will eventually have an olive green rust appearance over time. Recent experimental work suggested that the incorporation of gallium (Ga) as an alloying impurity to stabilize the highly symmetric high temperature δ-phase lattice may also provide resistance against corrosion/oxidation of plutonium. In this paper, we modeled a 9.375 at. % Ga stabilized δ-Pu (111) surface and investigated adsorption of atomic O using all-electron density functional theory. Key findings revealed that the O bonded strongly to a Pu-rich threefold hollow fcc site with amore » chemisorption energy of –5.06 eV. Migration of the O atom to a Pu-rich environment was also highly sensitive to the surface chemistry of the Pu–Ga surface; when the initial on-surface O adsorption site included a bond to a nearest neighboring Ga atom, the O atom relaxed to a Ga deficient environment, thus affirming the O preference for Pu. Only one calculated final on-surface O adsorption site included a Ga-O bond, but this chemisorption energy was energetically unfavorable. Chemisorption energies for interstitial adsorption sites that included a Pu or Pu-Ga environment suggested that over-coordination of the O atom was energetically unfavorable as well. Electronic structure properties of the on-surface sites, illustrated by the partial density of states, implied that the Ga 4p states indirectly but strongly influenced the Pu 6d states strongly to hybridize with the O 2p states, while also weakly influenced the Pu 5f states to hybridize with the O 2p states, even though Ga was not participating in bonding with O.« less
Understanding oxygen adsorption on 9.375 at. % Ga-stabilized δ-Pu (111) surface: A DFT study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez, Sarah C.; Wilkerson, Marianne P.; Huda, Muhammad N.
Plutonium (Pu) metal reacts rapidly in the presence of oxygen (O), resulting in an oxide layer that will eventually have an olive green rust appearance over time. Recent experimental work suggested that the incorporation of gallium (Ga) as an alloying impurity to stabilize the highly symmetric high temperature δ-phase lattice may also provide resistance against corrosion/oxidation of plutonium. In this paper, we modeled a 9.375 at. % Ga stabilized δ-Pu (111) surface and investigated adsorption of atomic O using all-electron density functional theory. Key findings revealed that the O bonded strongly to a Pu-rich threefold hollow fcc site with amore » chemisorption energy of –5.06 eV. Migration of the O atom to a Pu-rich environment was also highly sensitive to the surface chemistry of the Pu–Ga surface; when the initial on-surface O adsorption site included a bond to a nearest neighboring Ga atom, the O atom relaxed to a Ga deficient environment, thus affirming the O preference for Pu. Only one calculated final on-surface O adsorption site included a Ga-O bond, but this chemisorption energy was energetically unfavorable. Chemisorption energies for interstitial adsorption sites that included a Pu or Pu-Ga environment suggested that over-coordination of the O atom was energetically unfavorable as well. Electronic structure properties of the on-surface sites, illustrated by the partial density of states, implied that the Ga 4p states indirectly but strongly influenced the Pu 6d states strongly to hybridize with the O 2p states, while also weakly influenced the Pu 5f states to hybridize with the O 2p states, even though Ga was not participating in bonding with O.« less
NASA Astrophysics Data System (ADS)
Tsujimura, Norio; Yoshida, Tadayoshi; Hoshi, Katsuya
To rationally judge the necessity of the contamination screening measurements required in the decontamination work regulations, a field study of the surface contamination density on the clothing of the workers engaged in decontamination operations was performed. The clothing and footwear of 20 workers was analyzed by high-purity germanium (HPGe) gamma-ray spectroscopy. The maximum radiocesium activities (134Cs + 137Cs) observed were 3600, 1300, and 2100 Bq for the work clothing, gloves, and boots, respectively, and the derived surface contamination densities were below the regulatory limit of 40 Bq/cm2. The results of this field study suggest that the upper bounds of the surface contamination density on the work clothing, gloves, and boots are predictable from the maximum soil loading density on the surface of clothing and footwear and the radioactivity concentration in soil at the site.
Electronic structure and surface properties of MgB2(0001) upon oxygen adsorption
NASA Astrophysics Data System (ADS)
Kim, Chang-Eun; Ray, Keith G.; Bahr, David F.; Lordi, Vincenzo
2018-05-01
We use density-functional theory to investigate the bulk and surface properties of MgB2. The unique bonding structure of MgB2 is investigated by Bader's atoms-in-molecules, charge density difference, and occupancy projected band structure analyses. Oxygen adsorption on the charge-depleted surfaces of MgB2 is studied by a surface potential energy mapping method, reporting a complete map including low-symmetry binding sites. The B-terminated MgB2(0001) demonstrates reconstruction of the graphenelike B layer, and the reconstructed geometry exposes a threefold site of the subsurface Mg, making it accessible from the surface. Detailed reconstruction mechanisms are studied by simulated annealing method based on ab initio molecular dynamics and nudged elastic band calculations. The surface clustering of B atoms significantly modifies the B 2 p states to occupy low energy valence states. The present paper emphasizes that a thorough understanding of the surface phase may explain an apparent inconsistency in the experimental surface characterization of MgB2. Furthermore, these results suggest that the surface passivation can be an important technical challenge when it comes to development of a superconducting device using MgB2.
Atomic and molecular oxygen adsorbed on (111) transition metal surfaces: Cu and Ni
NASA Astrophysics Data System (ADS)
López-Moreno, S.; Romero, A. H.
2015-04-01
Density functional theory is used to investigate the reaction of oxygen with clean copper and nickel [111]-surfaces. We study several alternative adsorption sites for atomic and molecular oxygen on both surfaces. The minimal energy geometries and adsorption energies are in good agreement with previous theoretical studies and experimental data. From all considered adsorption sites, we found a new O2 molecular precursor with two possible dissociation paths on the Cu(111) surface. Cross barrier energies for the molecular oxygen dissociation have been calculated by using the climbing image nudge elastic band method, and direct comparison with experimental results is performed. Finally, the structural changes and adsorption energies of oxygen adsorbed on surface when there is a vacancy nearby the adsorption site are also considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Bin, E-mail: bjiangch@ustc.edu.cn, E-mail: hguo@unm.edu; Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131; Song, Hongwei
The quantum dynamics of water dissociative chemisorption on the rigid Ni(111) surface is investigated using a recently developed nine-dimensional potential energy surface. The quantum dynamical model includes explicitly seven degrees of freedom of D{sub 2}O at fixed surface sites, and the final results were obtained with a site-averaging model. The mode specificity in the site-specific results is reported and analyzed. Finally, the approximate sticking probabilities for various vibrationally excited states of D{sub 2}O are obtained considering surface lattice effects and formally all nine degrees of freedom. The comparison with experiment reveals the inaccuracy of the density functional theory and suggestsmore » the need to improve the potential energy surface.« less
Atomic and molecular oxygen adsorbed on (111) transition metal surfaces: Cu and Ni.
López-Moreno, S; Romero, A H
2015-04-21
Density functional theory is used to investigate the reaction of oxygen with clean copper and nickel [111]-surfaces. We study several alternative adsorption sites for atomic and molecular oxygen on both surfaces. The minimal energy geometries and adsorption energies are in good agreement with previous theoretical studies and experimental data. From all considered adsorption sites, we found a new O2 molecular precursor with two possible dissociation paths on the Cu(111) surface. Cross barrier energies for the molecular oxygen dissociation have been calculated by using the climbing image nudge elastic band method, and direct comparison with experimental results is performed. Finally, the structural changes and adsorption energies of oxygen adsorbed on surface when there is a vacancy nearby the adsorption site are also considered.
Jones, J.W.
2000-01-01
The US Geological Survey is building models of the Florida Everglades to be used in managing south Florida surface water flows for habitat restoration and maintenance. Because of the low gradients in the Everglades, vegetation structural characteristics are very important and greatly influence surface water flow and distribution. Vegetation density is being evaluated as an index of surface resistance to flow. Digital multispectral videography (DMSV) has been captured over several sites just before field collection of vegetation data. Linear regression has been used to establish a relationship between normalized difference vegetation index (NDVI) values computed from the DMSV and field-collected biomass and density estimates. Spatial analysis applied to the DMSV data indicates that thematic mapper (TM) resolution is at the limit required to capture land surface heterogeneity. The TM data collected close to the time of the DMSV will be used to derive a regional sawgrass density map.
Jones, J.W.
2001-01-01
The US Geological Survey is building models of the Florida Everglades to be used in managing south Florida surface water flows for habitat restoration and maintenance. Because of the low gradients in the Everglades, vegetation structural characteristics are very important and greatly influence surface water flow and distribution. Vegetation density is being evaluated as an index of surface resistance to flow. Digital multispectral videography (DMSV) has been captured over several sites just before field collection of vegetation data. Linear regression has been used to establish a relationship between normalized difference vegetation index (NDVI) values computed from the DMSV and field-collected biomass and density estimates. Spatial analysis applied to the DMSV data indicates that thematic mapper (TM) resolution is at the limit required to capture land surface heterogeneity. The TM data collected close to the time of the DMSV will be used to derive a regional sawgrass density map.
NASA Astrophysics Data System (ADS)
Dholabhai, Pratik; Atta-Fynn, Raymond; Ray, Asok
2008-03-01
Oxygen molecule adsorption on (0001) surface of double hexagonal packed americium has been studied in detail within the framework of density functional theory using a full-potential all-electron linearized augmented plane wave plus local orbitals method. The most stable configuration corresponded to molecular dissociation with the oxygen atoms occupying neighboring three-fold hollow h3 sites. Chemisorption energies and adsorption geometries for the adsorbed species, and change in work functions, magnetic moments, partial charges inside muffin-tins, difference charge density distributions and density of states for the bare Am slab and the Am slab after adsorption of the oxygen molecule will be discussed. The effects of chemisorption on Am 5f electron localization-delocalization in the vicinity of the Fermi level and the reaction barrier calculation for the dissociation of oxygen molecule to the most stable h3 sites will be discussed.
A DFT+U investigation of hydrogen adsorption on the LaFeO3(010) surface.
Boateng, Isaac W; Tia, Richard; Adei, Evans; Dzade, Nelson Y; Catlow, C Richard A; de Leeuw, Nora H
2017-03-08
The ABO 3 perovskite lanthanum ferrite (LaFeO 3 ) is a technologically important electrode material for nickel-metal hydride batteries, energy storage and catalysis. However, the electrochemical hydrogen adsorption mechanism on LaFeO 3 surfaces remains under debate. In the present study, we have employed spin-polarized density functional theory calculations, with the Hubbard U correction (DFT+U), to unravel the adsorption mechanism of H 2 on the LaFeO 3 (010) surface. We show from our calculated adsorption energies that the preferred site for H 2 adsorption is the Fe-O bridge site, with an adsorption energy of -1.18 eV (including the zero point energy), which resulted in the formation of FeOH and FeH surface species. H 2 adsorption at the surface oxygen resulted in the formation of a water molecule, which leaves the surface to create an oxygen vacancy. The H 2 molecule is found to interact weakly with the Fe and La sites, where it is only physisorbed. The electronic structures of the surface-adsorption systems are discussed via projected density of state and Löwdin population analyses. The implications of the calculated adsorption strengths and structures are discussed in terms of the improved design of nickel-metal hydride (Ni-MH) battery prototypes based on LaFeO 3 .
The properties of the lunar regolith at Chang'e-3 landing site: A study based on LPR data
NASA Astrophysics Data System (ADS)
Feng, J.; Su, Y.; Xing, S.; Ding, C.; Li, C.
2015-12-01
In situ sampling from surface is difficult in the exploration of planets and sometimes radar sensing is a better choice. The properties of the surface material such as permittivity, density and depth can be obtained by a surface penetrating radar. The Chang'e-3 (CE-3) landed in the northern Mare Imbrium and a Lunar Penetrating Radar (LPR) is carried on the Yutu rover to detect the shallow structure of the lunar crust and the properties of the lunar regolith, which will give us a close look at the lunar subsurface. We process the radar data in a way which consist two steps: the regular preprocessing step and migration step. The preprocessing part includes zero time correction, de-wow, gain compensation, DC removal, geometric positioning. Then we combine all radar data obtained at the time the rover was moving, and use FIR filter to reduce the noise in the radar image with a pass band frequency range 200MHz-600MHz. A normal radar image is obtained after the preprocessing step. Using a nonlinear least squares fitting method, we fit the most hyperbolas in the radar image which are caused by the buried objects or rocks in the regolith and estimate the EM wave propagation velocity and the permittivity of the regolith. For there is a fixed mathematical relationship between dielectric constant and density, the density profile of the lunar regolith is also calculated. It seems that the permittivity and density at the landing site is larger than we thought before. Finally with a model of variable velocities, we apply the Kirchhoff migration method widely used in the seismology to transform the the unfocused space-time LPR image to a focused one showing the object's (most are stones) true location and size. From the migrated image, we find that the regolith depth in the landing site is smaller than previous study and the stone content rises rapidly with depth. Our study suggests that the landing site is a young region and the reworked history of the surface is short, which is consistent with crater density, showing the gradual formation of regolith by rock fracture during impact events.
NASA Astrophysics Data System (ADS)
Deville, S.; Champollion, C.; chery, J.; Doerflinger, E.; Le Moigne, N.; Bayer, R.; Vernant, P.
2011-12-01
The assessment of water storage in the unsaturated zone in karstic areas is particularly challenging. Indeed, water flow path and water storage occur in quite heterogeneous ways through small scale porosity, fractures, joints and large voids. Due to this large heterogeneity, it is therefore difficult to estimate the amount of water circulating in the vadose zone by hydrological means. One indirect method consists to measure the gravity variation associated to water storage and withdrawal. Here, we apply a gravimetric method in which the gravity is measured at the surface and at depth on different sites. Then the time variations of the surface to depth (STD) gravity differences are compared for each site. In this study we attempt to evaluate the magnitude of epikarstic water storage variation in various karst settings using a CG5 portable gravimeter. Surface to depth gravity measurements are performed two times a year since 2009 at the surface an inside caves at different depths on three karst aquifers in southern France : 1. A limestone site on the Larzac plateau with a vadose zone thickness of 300m On this site measurements are done on five locations at different depths going from 0 to 50 m; 2. A dolomitic site on the Larzac plateau (Durzon karst aquifer) with a vadose zone thickness of 200m; Measurements are taken at the surface and at 60m depth 3. A limestone site on the Hortus karst aquifer and "Larzac Septentrional karst aquifer") with a vadose zone thickness of only 35m. Measurements are taken at the surface and at 30m depth Therefore, our measurements are used in two ways : First, the STD differences between dry and wet seasons are used to estimate the capacity of differential storage of each aquifer. Surprisingly, the differential storage capacity of all the sites is relatively invariant despite their variable geological of hydrological contexts. Moreover, the STD gravity variations on site 1 show that no water storage variation occurs beneath 10m depth, suggesting that most of the differential storage is taken by the epikarst. Second, we use STD gravity differences to determine the effective density values for each site. These integrative density values are compared to measured grain densities from core samples in order to obtain the apparent porosity and saturation representative to the investigated volume. We then discuss the relation between the physical characteristic of each non-saturated zone and its water storage capacity. It seems that epikarst water storage variation is only weakly related to lithology. We also discuss the reasons for specific water storage in the epikarst. Because epikarst water storage has been claimed to be a general characteristic of karst system, a gravimetric approach appears to be a promising method to verify quantitatively this hypothesis.
Flexibility of myosin attachment to surfaces influences F-actin motion.
Winkelmann, D A; Bourdieu, L; Ott, A; Kinose, F; Libchaber, A
1995-01-01
We have analyzed the dependence of actin filament sliding movement on the mode of myosin attachment to surfaces. Monoclonal antibodies (mAbs) that bind to three distinct sites were used to tether myosin to nitrocellulose-coated glass. One antibody reacts with an epitope on the regulatory light chain (LC2) located at the head-rod junction. The other two react with sites in the rod domain, one in the S2 region near the S2-LMM hinge, and the other at the C terminus of the myosin rod. This method of attachment provides a means of controlling the flexibility and density of myosin on the surface. Fast skeletal muscle myosin monomers were bound to the surfaces through the specific interaction with these mAbs, and the sliding movement of fluorescently labeled actin filaments was analyzed by video microscopy. Each of these antibodies produced stable myosin-coated surfaces that supported uniform motion of actin over the course of several hours. Attachment of myosin through the anti-S2 and anti-LMM mAbs yielded significantly higher velocities (10 microns/s at 30 degrees C) than attachment through anti-LC2 (4-5 microns/s at 30 degrees C). For each antibody, we observed a characteristic value of the myosin density for the onset of F-actin motion and a second critical density for velocity saturation. The specific mode of attachment influences the velocity of actin filaments and the characteristic surface density needed to support movement. Images FIGURE 1 FIGURE 4 FIGURE 8 PMID:7544167
NASA Technical Reports Server (NTRS)
Moran, M. Susan; Jackson, Ray D.; Raymond, Lee H.; Gay, Lloyd W.; Slater, Philip N.
1989-01-01
Surface energy balance components were evaluated by combining satellite-based spectral data with on-site measurements of solar irradiance, air temperature, wind speed, and vapor pressure. Maps of latent heat flux density and net radiant flux density were produced using Landsat TM data for three dates. The TM-based estimates differed from Bowen-ratio and aircraft-based estimates by less than 12 percent over mature fields of cotton, wheat, and alfalfa.
Density functional theory study of acetaldehyde hydrodeoxygenation on MoO3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mei, Donghai; Karim, Ayman M.; Wang, Yong
2011-04-06
Periodic spin-polarized density functional theory calculations were performed to investigate acetaldehyde (CH3CHO) hydrodeoxygenation on the reduced molybdenum trioxide (MoO3) surface. The perfect O-terminated α-MoO3(010) surface is reduced to generate an oxygen defect site in the presence of H2. H2 dissociatively adsorbs at the surface oxygen sites forming two surface hydroxyls, which can recombine into a water molecule weakly bound at the Mo site. A terminal oxygen (Ot) defect site thus forms after water desorption. CH3CHO adsorbs at the O-deficient Mo site via either the sole O-Mo bond or the O-Mo and the C-O double bonds. The possible reaction pathways ofmore » the adsorbed CH3CHO with these two configurations were thoroughly examined using the dimer searching method. Our results show that the ideal deoxygenation of CH3CHO leading to ethylene (C2H4) on the reduced MoO3(010) surface is feasible. The adsorbed CH3CHO first dehydrogenate into CH2CHO by reacting with a neighboring terminal Ot. The hydroxyl (OtH) then hydrogenates CH2CHO into CH2CH2O to complete the hydrogen transfer cycle with an activation barrier of 1.39 eV. The direct hydrogen transfer from CH3CHO to CH2CH2O is unlikely due to the high barrier of 2.00 eV. The produced CH2CH2O readily decomposes into C2H4 that directly releases to the gas phase, and regenerates the Ot atom on the Mo site. As a result, the reduced MoO3(010) surface is reoxidized to the perfect MoO3(010) surface after CH3CHO deoxygenation. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.« less
Yamanaka; Ino
2000-05-08
In L x-ray emissions from a Si(111)-sqrt[3]xsqrt[3]-In surface induced by electron beam irradiation were measured as functions of the incident glancing angle. Under surface wave resonance conditions, anomalous x-ray intensities were clearly observed. Using dynamical calculations, these intensities are well explained as changes in density of the electron wave field at adatom positions. From these intensities, the adatom site was analyzed, and it was found that the T4 model is better than the H3 model.
Schwing, Patrick T; Romero, Isabel C; Brooks, Gregg R; Hastings, David W; Larson, Rebekka A; Hollander, David J
2015-01-01
Sediment cores were collected from three sites (1000-1200 m water depth) in the northeastern Gulf of Mexico from December 2010 to June 2011 to assess changes in benthic foraminiferal density related to the Deepwater Horizon (DWH) event (April-July 2010, 1500 m water depth). Short-lived radioisotope geochronologies (²¹⁰Pb, ²³⁴Th), organic geochemical assessments, and redox metal concentrations were determined to relate changes in sediment accumulation rate, contamination, and redox conditions with benthic foraminiferal density. Cores collected in December 2010 indicated a decline in density (80-93%). This decline was characterized by a decrease in benthic foraminiferal density and benthic foraminiferal accumulation rate (BFAR) in the surface 10 mm relative to the down-core mean in all benthic foraminifera, including the dominant genera (Bulimina spp., Uvigerina spp., and Cibicidoides spp.). Cores collected in February 2011 documented a site-specific response. There was evidence of a recovery in the benthic foraminiferal density and BFAR at the site closest to the wellhead (45 NM, NE). However, the site farther afield (60 NM, NE) recorded a continued decline in benthic foraminiferal density and BFAR down to near-zero values. This decline in benthic foraminiferal density occurred simultaneously with abrupt increases in sedimentary accumulation rates, polycyclic aromatic hydrocarbon (PAH) concentrations, and changes in redox conditions. Persistent reducing conditions (as many as 10 months after the event) in the surface of these core records were a possible cause of the decline. Another possible cause was the increase (2-3 times background) in PAH's, which are known to cause benthic foraminifera mortality and inhibit reproduction. Records of benthic foraminiferal density coupled with short-lived radionuclide geochronology and organic geochemistry were effective in quantifying the benthic response and will continue to be a valuable tool in determining the long-term effects of the DWH event on a larger spatial scale.
Schwing, Patrick T.; Romero, Isabel C.; Brooks, Gregg R.; Hastings, David W.; Larson, Rebekka A.; Hollander, David J.
2015-01-01
Sediment cores were collected from three sites (1000–1200 m water depth) in the northeastern Gulf of Mexico from December 2010 to June 2011 to assess changes in benthic foraminiferal density related to the Deepwater Horizon (DWH) event (April-July 2010, 1500 m water depth). Short-lived radioisotope geochronologies (210Pb, 234Th), organic geochemical assessments, and redox metal concentrations were determined to relate changes in sediment accumulation rate, contamination, and redox conditions with benthic foraminiferal density. Cores collected in December 2010 indicated a decline in density (80–93%). This decline was characterized by a decrease in benthic foraminiferal density and benthic foraminiferal accumulation rate (BFAR) in the surface 10 mm relative to the down-core mean in all benthic foraminifera, including the dominant genera (Bulimina spp., Uvigerina spp., and Cibicidoides spp.). Cores collected in February 2011 documented a site-specific response. There was evidence of a recovery in the benthic foraminiferal density and BFAR at the site closest to the wellhead (45 NM, NE). However, the site farther afield (60 NM, NE) recorded a continued decline in benthic foraminiferal density and BFAR down to near-zero values. This decline in benthic foraminiferal density occurred simultaneously with abrupt increases in sedimentary accumulation rates, polycyclic aromatic hydrocarbon (PAH) concentrations, and changes in redox conditions. Persistent reducing conditions (as many as 10 months after the event) in the surface of these core records were a possible cause of the decline. Another possible cause was the increase (2–3 times background) in PAH’s, which are known to cause benthic foraminifera mortality and inhibit reproduction. Records of benthic foraminiferal density coupled with short-lived radionuclide geochronology and organic geochemistry were effective in quantifying the benthic response and will continue to be a valuable tool in determining the long-term effects of the DWH event on a larger spatial scale. PMID:25785988
Pope, L.M.
1995-01-01
The 15,300-square-mile lower Kansas River Basin in Kansas and Nebraska was investigated, as one of the pilot study units of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program, to address a variety of water-quality issues. This report describes sanitary quality of streams as defined by concentrations of dissolved oxygen (DO) and densities of a fecal-indicator bacterium, Escherichia coli (E. coli). Sixty-one surface-water sampling sites were chosen for this investigation. Synoptic surveys were conducted in July 1988, November 1988, March 1989, and May 1989 to define the concentrations and diel and seasonal variability in concentrations of DO. Synoptic surveys were conducted in July 1988 and July 1989 to define densities of E. coli. Ancillary data included measurements of specific conductance, pH, water temperature. barometric pressure, and concentrations of nutrients, total organic carbon, chlorophyll, and suspended sediment. Surveys were conducted during stable-flow, dry-weather conditions. During the July 1988 synoptic survey for DO, emphasis was placed on the measurement of DO under maximum stress (high water temperature, low streamflow, and predawn conditions). Of 31 sites sampled just before dawn, 5 had DO concentrations less than the 5.0-milligrams-perliter, l-day minimum warmwater criterion for early life stages as established by the U.S. Environmental Protection Agency (USEPA), and 4 of these 5 sites had concentrations less than the 3.0-milligrams-per-liter criterion for all other life stages. For all four synoptic surveys, a total of 392 DO determinations were made, and 9 (2.3 percent) were less than water-quality criteria. Concentrations of DO less than water-quality criteria in the study unit are localized occurrences and do not reflect regional differences in DO. The most severe DO deficiencies are the result of discharges from wastewater-treatment plants into small tributary streams with inadequate assimilation capacity. Algal respiratory demand in combination with reduced physical reaeration associated with extreme low flow probably also contributes to temporary, localized deficiencies. Densities of E. coli were determined at 57 surface-water sampling sites during the syn- optic survey in July 1988. Results indicate large regional differences in E. coli densities within the study unit. Densities orE. coli in water at 19 sites in the Big Blue River subbasin, exclusive of the Little Blue River subbasin, ranged from 120 to 260,000 col/100 mL (colonies per 100 milliliters), with a median density of 2,400 col/100 mL. Densities at the 11 sites in the Little Blue River ranged from 100 to 30,000 col/100 mL, with a median density of 940 col/100 mL. Densities at the 27 sites in the Kansas River subbasin ranged from less than 1 to 1,000 col/100 mL, with a median density of 88 col/100 mL. Densities at 84 percent of the sites in the Big Blue River subbasin exceeded the USEPA E. coli criterion of 576 col/100 mL for infrequently used full-body contact recreation, and 53 percent exceeded the 2,000 cot/I00 mL fecal coliform criterion for uses other than full-body contact established by the Kansas Department of Health and Environment. Densities at 73 percent of the sites in the Little Blue River subbasin exceeded the 576 col/100 mL E. coli criterion, and 36 percent exceeded the 2,000 col/100 mL fecal coliform criterion. Densities at one of the sites in the Kansas River subbasin exceeded the 576 col/100 mL E. coli criterion, and none exceeded the 2,000 col/100 mL fecal-coliform criterion. The largest densities of E. coli in the study unit were the result of discharges from municipal wastewater-treatment plants; however, densities in the Big Blue and Little Blue River subbasins were generally larger than those in the Kansas River subbasin. These larger densities in the Big Blue and Little Blue River subbasins may have been the result of irrigation return flow from fields where manure was used as a soil
First-principles study of adsorption and diffusion of oxygen on surfaces of TiN, ZrN and HfN
NASA Astrophysics Data System (ADS)
Guo, Fangyu; Wang, Jianchuan; Du, Yong; Wang, Jiong; Shang, Shun-Li; Li, Songlin; Chen, Li
2018-09-01
Using first-principles calculations based on density functional theory, we systematically study the adsorption and diffusion behaviors of single oxygen (O) atom on the (0 0 1) surfaces of TiN, ZrN and HfN nitride coatings. The top of N site (top(N)) is the most energetic favorable site for O atom and followed by the hollow site for all the three nitrides. O atom tends to diffuse on the (0 0 1) surfaces of the nitrides from the top of transition metal top(TM) sites to a neighboring top(TM) sites by avoiding N sites. The adsorption of O on ZrN and HfN is more stable than that on TiN. Our findings could explain the experimental phenomenon that the oxide thickness of TiN is smaller than that of ZrN under the same oxidation conditions.
Motility assays using myosin attached to surfaces through specific binding to monoclonal antibodies.
Winkelmann, D. A.; Bourdieu, L.; Kinose, F.; Libchaber, A.
1995-01-01
We have analyzed the dependence of actin filament movement on the mode of myosin attachment to surfaces. Monoclonal antibodies that bind to three distinct sites were used to tether myosin to nitrocellulose-coated glass. One antibody reacts with an epitope on the regulatory light chain located at the head-rod junction. The other two react with sites in the rod domain, one in the S2 region near the S2-LMM hinge, and the other at the C terminus of the myosin rod. These monoclonal antibodies were used to provide increasing flexibility in the mode of attachment. Fast skeletal muscle myosin monomers were bound to the surfaces through the specific interaction with these monoclonal antibodies and the sliding movement of fluorescently labeled actin filaments analyzed by video microscopy. Each of these antibodies produced stable, myosin-coated surfaces that supported uniform movement of actin over the course of several hours. Attachment of myosin through the anti-S2 and anti-LMM monoclonal antibodies yielded a maximum velocity of 10 microns/s at 30 degrees C, whereas attachment through anti-LC2 produced a lower velocity of 4-5 microns/s. Each antibody showed a characteristic minimum myosin density below which sliding movement was no longer supported and an exponential dependence of actin filament velocity on myosin surface density below Vmax. Maximum sliding velocity was achieved over a range of myosin surface densities. Thus, the specific mode of attachment can influence the characteristic velocity of actin filament movement and the surface density needed to support movement. These data are being used to analyze the dynamics of sliding filament assays and evaluate estimates of the average number of motor molecules per unit length of actin required to support movement. PMID:7787107
Jiang, Zong-You; Zhao, Zong-Yan
2017-08-23
Noble metals supported on TiO 2 surfaces have shown extraordinary photocatalytic properties in many important processes such as hydrogenation, water splitting, degradation of hazards, and so on. Using density functional theory calculations, this work has systematically investigated the microstructure and electronic structure of three different Au 9 isomers loaded on anatase TiO 2 (001) surface. The calculated results show that the interaction between the Au 9 cluster and the TiO 2 support is closely related to the adsorption site and the stability of the Au 9 cluster in the gas phase. The adsorption energy of the 2D configuration is larger than that of the 3D configuration of the Au 9 cluster, owing to the stronger interactions between more adsorption sites. The stable adsorption site for Au 9 clusters deposited on the anatase TiO 2 (001) surface tends to be the O 2c -O 2c hollow site. The presentation of the MIGS of the Au 9 cluster, the disappearance of surface states of the TiO 2 (001) surface, and the shifting of the Fermi level from the top of the valence band to the bottom of the conduction band suggest strong interactions between the Au 9 clusters and the TiO 2 (001) surface. Importantly, the electron transfer from the Au 9 clusters to the TiO 2 support occurs mainly through Au-O 2c interactions, which are mainly localized at the contact layer of the Au 9 clusters. These conclusions are useful to understand various physical and chemical properties of noble metal clusters loaded onto an oxide surface, and helpful to design novel metal/semiconductor functional composite materials and devices.
Spatial variations of the local density of states modified by CDWs in 1 T- TaS2- xSex
NASA Astrophysics Data System (ADS)
Hasegawa, T.; Yamaguchi, W.; Kim, J.-J.; Wei, W.; Nantoh, M.; Ikuta, H.; Kitazawa, K.; Manivannan, A.; Fujishima, A.; Uchinokura, K.
1994-07-01
Spatial variations of the local density of states (LDOS) near the Fermi level have been observed on the layered dichalcogenides 1 T- TaS2- xSex ( x = 0, 0.2, 2) for the first time. The tunneling spectra on the cleaved surfaces were measured by atomic-site tunneling (AST) spectroscopy technique at room temperature. In 1T-TaS 2, the LDOS was substantially different among the three inequivalent Ta atomic sites induced by the CDW formation. However, the surface electronic structure became homogeneous, as the Se content was increased. By substituting Se for S, the minimum position of the LDOS was systematically shifted to a higher energy side above the Fermi level.
A density functional study on adsorption and dissociation of O 2 on Ir(1 0 0) surface
NASA Astrophysics Data System (ADS)
Erikat, I. A.; Hamad, B. A.; Khalifeh, J. M.
2011-06-01
The adsorption and the reaction barrier for the dissociation of O 2 on Ir(1 0 0) surface are studied using periodic self-consistent density functional theory (DFT) calculations. Dissociative adsorption is found to be energetically more favorable compared to molecular adsorption. Parallel approaches Prl1 and Prl2 on a hollow site with the same adsorption energy of -3.93 eV for both of them are found to have the most energetically preferred sites of adsorptions among all the studied cases. Hybridization between p-O 2 and d-metal orbitals is responsible for the dissociative adsorption. The minimum energy path is determined by using the nudge elastic band method (NEB). We found that the dissociation occurs immediately and very early in the dissociation path with a small activation barrier (0.26 eV), which means that molecular adsorption of O 2 on Ir(1 0 0) surface occurs at very low temperatures; this is consistent with previous experimental and theoretical studies on Ir surfaces.
NASA Astrophysics Data System (ADS)
Niedermeier, Dennis; Augustin-Bauditz, Stefanie; Hartmann, Susan; Wex, Heike; Ignatius, Karoliina; Stratmann, Frank
2015-05-01
The immersion freezing behavior of droplets containing size-segregated, monodisperse feldspar particles was investigated. For all particle sizes investigated, a leveling off of the frozen droplet fraction was observed reaching a plateau within the heterogeneous freezing temperature regime (T >- 38°C). The frozen fraction in the plateau region was proportional to the particle surface area. Based on these findings, an asymptotic value for ice active surface site density ns, which we named ns⋆, could be determined for the investigated feldspar sample. The comparison of these results with those of other studies not only elucidates the general feasibility of determining such an asymptotic value but also shows that the value of ns⋆ strongly depends on the method of the particle surface area determination. However, such an asymptotic value might be an important input parameter for atmospheric modeling applications. At least it shows that care should be taken when ns is extrapolated to lower or higher temperature.
Comparison of S-adsorption on (111) and (100) facets of Cu nanoclusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boschen, Jeffery S.; Lee, Jiyoung; Windus, Theresa L.
2016-10-31
In order to gain insight into the nature of chemical bonding of sulfur atoms on coinage metal surfaces, we compare the adsorption energy and structural parameters for sulfur at four-fold hollow (4fh) sites on (100) facets and at three-fold hollow (3fh) sites on (111) facets of Cu nanoclusters. Consistent results are obtained from localized atomic orbital and plane-wave based density functional theory using the same functionals. PBE and its hybrid counterpart (PBE0 or HSE06) also give similar results. 4fh sites are preferred over 3fh sites with stronger bonding by ~0.6 eV for nanocluster sizes above ~280 atoms. However, for smallermore » sizes there are strong variations in the binding strength and the extent of the binding site preference. In addition, we show that suitable averaging over clusters of different sizes, or smearing the occupancy of orbitals, provide useful strategies to aid assessment of the behavior in extended surface systems. From site-projected density of states analysis using the smearing technique, we show that S adsorbed on a 4fh site has similar bonding interactions with the substrate as that on a 3fh site, but with much weaker antibonding interactions.« less
Site impacts associated with biomass removals in lower Alabama
Emily A. Carter; John . Fulton; Brian J. Burton
2005-01-01
A study was initiated during summer 2003 to evaluate site impacts associated with conversion of a slash pine stand to long leaf pine. Site impacts were evaluated by placing 10 transects over a subsection of the harvest tract and classifying the type of soil surface disturbance every 3 meters. Bulk density, gravimetric water content and cone index were measured on...
NASA Astrophysics Data System (ADS)
Zhou, Changsong; Song, Zijian; Zhang, Zhiyue; Yang, Hongmin; Wang, Ben; Yu, Jie; Sun, Lushi
2017-12-01
Density functional theory calculations have been carried out for H2O2 and Hg0 co-interaction on Fe3O4 (111) surface. On the Fetet1-terminated Fe3O4 (111) surface, the most favored configurations are H2O2 decomposition and produce two OH groups, which have strong interaction with Hg atom to form an OHsbnd Hgsbnd OH intermediate. The adsorbed OHsbnd Hgsbnd OH is stable and hardly detaches from the catalyst surface due to the highly endothermic process. A large amount of electron transfer has been found from Hg to the produced OH groups and has little irreversible effect on the Fe3O4 (111) surface. On the Feoct2-terminated Fe3O4 (111) surface, the Feoct2 site is more active than Fetet1 site. H2O2 decomposition and Hg0 oxidation processes are more likely to occur due to that the Feoct2 site both contains Fe2+ and Fe3+ cations. The calculations reveal that Hg0 oxidation by the OH radical produced from H2O2 is energetically favored. Additionally, Hg0 and H2O2 co-interaction mechanism on the Fe3O4 (111) interface has been investigated on the basis of partial local density of state calculation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Raymond H.; Truax, Ryan A.; Lankford, David A.
Solid-phase iron concentrations and generalized composite surface complexation models were used to evaluate procedures in determining uranium sorption on oxidized aquifer material at a proposed U in situ recovery (ISR) site. At the proposed Dewey Burdock ISR site in South Dakota, USA, oxidized aquifer material occurs downgradient of the U ore zones. Solid-phase Fe concentrations did not explain our batch sorption test results,though total extracted Fe appeared to be positively correlated with overall measured U sorption. Batch sorption test results were used to develop generalized composite surface complexation models that incorporated the full genericsorption potential of each sample, without detailedmore » mineralogiccharacterization. The resultant models provide U sorption parameters (site densities and equilibrium constants) for reactive transport modeling. The generalized composite surface complexation sorption models were calibrated to batch sorption data from three oxidized core samples using inverse modeling, and gave larger sorption parameters than just U sorption on the measured solidphase Fe. These larger sorption parameters can significantly influence reactive transport modeling, potentially increasing U attenuation. Because of the limited number of calibration points, inverse modeling required the reduction of estimated parameters by fixing two parameters. The best-fit models used fixed values for equilibrium constants, with the sorption site densities being estimated by the inversion process. While these inverse routines did provide best-fit sorption parameters, local minima and correlated parameters might require further evaluation. Despite our limited number of proxy samples, the procedures presented provide a valuable methodology to consider for sites where metal sorption parameters are required. Furthermore, these sorption parameters can be used in reactive transport modeling to assess downgradient metal attenuation, especially when no other calibration data are available, such as at proposed U ISR sites.« less
Johnson, Raymond H.; Truax, Ryan A.; Lankford, David A.; ...
2016-02-03
Solid-phase iron concentrations and generalized composite surface complexation models were used to evaluate procedures in determining uranium sorption on oxidized aquifer material at a proposed U in situ recovery (ISR) site. At the proposed Dewey Burdock ISR site in South Dakota, USA, oxidized aquifer material occurs downgradient of the U ore zones. Solid-phase Fe concentrations did not explain our batch sorption test results,though total extracted Fe appeared to be positively correlated with overall measured U sorption. Batch sorption test results were used to develop generalized composite surface complexation models that incorporated the full genericsorption potential of each sample, without detailedmore » mineralogiccharacterization. The resultant models provide U sorption parameters (site densities and equilibrium constants) for reactive transport modeling. The generalized composite surface complexation sorption models were calibrated to batch sorption data from three oxidized core samples using inverse modeling, and gave larger sorption parameters than just U sorption on the measured solidphase Fe. These larger sorption parameters can significantly influence reactive transport modeling, potentially increasing U attenuation. Because of the limited number of calibration points, inverse modeling required the reduction of estimated parameters by fixing two parameters. The best-fit models used fixed values for equilibrium constants, with the sorption site densities being estimated by the inversion process. While these inverse routines did provide best-fit sorption parameters, local minima and correlated parameters might require further evaluation. Despite our limited number of proxy samples, the procedures presented provide a valuable methodology to consider for sites where metal sorption parameters are required. Furthermore, these sorption parameters can be used in reactive transport modeling to assess downgradient metal attenuation, especially when no other calibration data are available, such as at proposed U ISR sites.« less
The nature of the Pt(111)/α -Fe2O3(0001) interfaces revealed by DFT calculations
NASA Astrophysics Data System (ADS)
Mahmoud, Agnes; Deleuze, Pierre-Marie; Dupont, Céline
2018-05-01
Density functional theory calculations are performed to give a thorough description of structural, energetic, and electronic properties of Pt(111)/α-Fe2O3(0001) systems by spin-polarized calculations, accounting for the on-site Coulomb interaction. Toward the better understanding of Pt(111)/α-Fe2O3(0001) interfaces, two terminations of α-Fe2O3(0001) surface, namely, the single Fe- and the O3-termination, are considered and coupled with the four possible (top, hcp, fcc, and bridge) sites on Pt(111). The effect of the strain on clean hematite surfaces due to the lattice mismatch between the substrate and the overlayer is included in the analysis. Among the possible adsorption configurations, bridge sites are unstable, while the most favorable configurations are the ones at hollow sites. The stability of the interfaces is not only influenced by the termination of the overlayer but also influenced by the degree of its structural relaxation and the relative position of the first layer of O atoms in hematite with respect to Pt. To elucidate the different nature of the two terminations of the overlayer on Pt, projected density of states and 3D charge density difference plots are also discussed.
Magnetic Memory from Site Isolated Dy(III) on Silica Materials
2017-01-01
Achieving magnetic remanence at single isolated metal sites dispersed at the surface of a solid matrix has been envisioned as a key step toward information storage and processing in the smallest unit of matter. Here, we show that isolated Dy(III) sites distributed at the surface of silica nanoparticles, prepared with a simple and scalable two-step process, show magnetic remanence and display a hysteresis loop open at liquid 4He temperature, in contrast to the molecular precursor which does not display any magnetic memory. This singular behavior is achieved through the controlled grafting of a tailored Dy(III) siloxide complex on partially dehydroxylated silica nanoparticles followed by thermal annealing. This approach allows control of the density and the structure of isolated, “bare” Dy(III) sites bound to the silica surface. During the process, all organic fragments are removed, leaving the surface as the sole ligand, promoting magnetic remanence. PMID:28386602
Magnetic memory from site isolated Dy(III) on silica materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allouche, Florian; Lapadula, Giuseppe; Siddiqi, Georges
Achieving magnetic remanence at single isolated metal sites dispersed at the surface of a solid matrix has been envisioned as a key step toward information storage and processing in the smallest unit of matter. Here, we show that isolated Dy(III) sites distributed at the surface of silica nanoparticles, prepared with a simple and scalable two-step process, show magnetic remanence and display a hysteresis loop open at liquid 4He temperature, in contrast to the molecular precursor which does not display any magnetic memory. This singular behavior is achieved through the controlled grafting of a tailored Dy(III) siloxide complex on partially dehydroxylatedmore » silica nanoparticles followed by thermal annealing. This approach allows control of the density and the structure of isolated, “bare” Dy(III) sites bound to the silica surface. Throughout the process, all organic fragments are removed, leaving the surface as the sole ligand, promoting magnetic remanence.« less
Magnetic memory from site isolated Dy(III) on silica materials
Allouche, Florian; Lapadula, Giuseppe; Siddiqi, Georges; ...
2017-02-22
Achieving magnetic remanence at single isolated metal sites dispersed at the surface of a solid matrix has been envisioned as a key step toward information storage and processing in the smallest unit of matter. Here, we show that isolated Dy(III) sites distributed at the surface of silica nanoparticles, prepared with a simple and scalable two-step process, show magnetic remanence and display a hysteresis loop open at liquid 4He temperature, in contrast to the molecular precursor which does not display any magnetic memory. This singular behavior is achieved through the controlled grafting of a tailored Dy(III) siloxide complex on partially dehydroxylatedmore » silica nanoparticles followed by thermal annealing. This approach allows control of the density and the structure of isolated, “bare” Dy(III) sites bound to the silica surface. Throughout the process, all organic fragments are removed, leaving the surface as the sole ligand, promoting magnetic remanence.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, E.M.; O'Reilly, D.E.; Tsangb), T.
1979-04-01
Proton and deuteron NMR relaxation times of C/sub 6/H/sub 6/, C/sub 6/D/sub 6/, and mixtures of these molecules have been measured on a superpure silica gel (SPSG) and a sample of a Matheson silica gel (MSG) both dehydrated at 600/sup 0/ C and rotational (intramolecular) and translational (intermolecular) correlation times have been computed from the relaxation time data at a statistical coverage theta=0.6. Three kinds of adsorption sites have been observed: (1) A sites, which are probably oxygen vacancies on the surface, (2) B sites which are assigned to paired hydroxyl groups on the surface, and finally (3) C sitesmore » which comprise 80% of the occupied surface and are primarily isolated hydroxyl groups. Rotational and translational motions are highly correlated for the A and B site molecules. The mean number of molecules clustered at the A and B sites are inferred from the intermolecular second moments associated with each of these sites. The surface density of the A sites is 1.1 x 10/sup 12/ cm/sup -2/ for SPSG and 3.1 x 10/sup 12/ cm/sup -2/ for MSG.« less
Moody, John A.; Nyman, Peter
2013-01-01
Wildfire affects hillslope erosion through increased surface runoff and increased sediment availability, both of which contribute to large post-fire erosion events. Relations between soil detachment rate, soil depth, flow and root properties, and fire impacts are poorly understood and not represented explicitly in commonly used post-fire erosion models. Detachment rates were measured on intact soil cores using a modified tilting flume. The cores were mounted flush with the flume-bed and a measurement was made on the surface of the core. The core was extruded upward, cut off, and another measurement was repeated at a different depth below the original surface of the core. Intact cores were collected from one site burned by the 2010 Fourmile Canyon (FMC) fire in Colorado and from one site burned by the 2010 Pozo fire in California. Each site contained contrasting vegetation and soil types. Additional soil samples were collected alongside the intact cores and were analyzed in the laboratory for soil properties (organic matter, bulk density, particle-size distribution) and for root properties (root density and root-length density). Particle-size distribution and root properties were different between sites, but sites were similar in terms of bulk density and organic matter. Soil detachment rates had similar relations with non-uniform shear stress and non-uniform unit stream power. Detachment rates within single sampling units displayed a relatively weak and inconsistent relation to flow variables. When averaged across all clusters, the detachment rate displayed a linear relation to shear stress, but variability in soil properties meant that the shear stress accounted for only a small proportion of the overall variability in detachment rates (R2 = 0.23; R2 is the coefficient of determination). Detachment rate was related to root-length density in some clusters (R2 values up to 0.91) and unrelated in others (R2 values 2 value improved and the range of exponents became narrower by applying a multivariate regression model where boundary shear stress and root-length density were included as explanatory variables. This suggests that an erodibility parameter which incorporates the effects of both flow and root properties on detachment could improve the representation of sediment availability after wildfire.
Mayo, Lawrence R.; Trabant, Dennis C.; March, Rod S.
2004-01-01
Scientific measurements at Wolverine Glacier, on the Kenai Peninsula in south-central Alaska, began in April 1966. At three long-term sites in the research basin, the measurements included snow depth, snow density, heights of the glacier surface and stratigraphic summer surfaces on stakes, and identification of the surface materials. Calculations of the mass balance of the surface strata-snow, new firn, superimposed ice, and old firn and ice mass at each site were based on these measurements. Calculations of fixed-date annual mass balances for each hydrologic year (October 1 to September 30), as well as net balances and the dates of minimum net balance measured between time-transgressive summer surfaces on the glacier, were made on the basis of the strata balances augmented by air temperature and precipitation recorded in the basin. From 1966 through 1995, the average annual balance at site A (590 meters altitude) was -4.06 meters water equivalent; at site B (1,070 meters altitude), was -0.90 meters water equivalent; and at site C (1,290 meters altitude), was +1.45 meters water equivalent. Geodetic determination of displacements of the mass balance stake, and glacier surface altitudes was added to the data set in 1975 to detect the glacier motion responses to variable climate and mass balance conditions. The average surface speed from 1975 to 1996 was 50.0 meters per year at site A, 83.7 meters per year at site B, and 37.2 meters per year at site C. The average surface altitudes were 594 meters at site A, 1,069 meters at site B, and 1,293 meters at site C; the glacier surface altitudes rose and fell over a range of 19.4 meters at site A, 14.1 meters at site B, and 13.2 meters at site C.
Site-Specific Colloidal Crystal Nucleation by Template-enhanced Particle Transport
NASA Astrophysics Data System (ADS)
Mishra, Chandan K.; Sood, A. K.; Ganapathy, Rajesh
The deliberate positioning of nano- and microstructures on surfaces is often a prerequisite for fabricating functional devices. While template-assisted nucleation is a promising route to self-assemble these structures, its success hinges on particles reaching target sites prior to nucleation and for nano/microscale particles, this is hampered by their small surface mobilities. We tailored surface features, which in the presence of attractive depletion interactions not only directed micrometer-sized colloids to specific sites but also subsequently guided their growth into ordered crystalline arrays of well-defined size and symmetry. By following the nucleation kinetics with single-particle resolution, we demonstrate control over nucleation density in a growth regime that has hitherto remained inaccessible. Our findings pave the way towards realizing non-trivial surface architectures composed of complex colloids/nanoparticles as well.
He, Yuanyuan; Ford, Michael E.; Zhu, Minghui; ...
2016-02-02
A series of supported WO 3/TiO 2 catalysts was prepared by a new synthesis procedure involving co-precipitation of an aqueous TiO(OH) 2 and (NH 4) 10W 12O 41*5H 2O slurry under controlled pH conditions. The morphological properties, molecular structures, surface acidity and surface chemistry of the supported WO 3/TiO 2 catalysts were determined with BET, in situ Raman, in situ IR and temperature-programmed surface reaction (TPSR) spectroscopy, respectively. Isotopic 18O- 16O exchange demonstrated that tungsten oxide was exclusively present as surface WO x species on the TiO 2 support with mono-oxo W=O coordination. In contrast to previous studies employing impregnationmore » synthesis that found only surface one mono-oxo O=WO 4 site on TiO 2, the co-precipitation procedure resulted in the formation of two distinct surface WO x species: mono-oxo O=WO 4 (~1010-1017 cm -1) on low defect density patches of TiO 2 and a second mono-oxo O=WO 4 (~983-986 cm -1) on high defect density patches of TiO 2. The concentration of the second WO x surface species increases as a function of solution pH. Both surface WOx sites, however, exhibited the same NO/NH 3 SCR reactivity. The co-precipitated WO 3-TiO 2 catalysts synthesized in alkaline solutions exhibited enhanced performance for the NO/NH 3 SCR reaction that is ascribed to the greater number of surface defects on the resulting TiO2 support. For the co-precipitated catalyst prepared at pH10, surface NH 4 + species on Br nsted acid sites were found to be more reactive than surface NH 3* species on Lewis acid sites for SCR of NO with NH 3.« less
NaK-ATPase pump sites in cultured bovine corneal endothelium of varying cell density at confluence.
Crawford, K M; Ernst, S A; Meyer, R F; MacCallum, D K
1995-06-01
The driving force for ion and water flow necessary for efficient deturgesence of the corneal stroma resides in the ouabain-sensitive sodium (Na) pump of corneal endothelial cells. Using a cell culture model of corneal endothelial cell hypertrophy, the authors examined the expression of Na pumps at the cell surface to see how this central element of the endothelial pump changed as corneal endothelial cell density decreased to a level associated with corneal decompensation in vivo. 3H-ouabain binding to NaK-ATPase at saturating conditions was used to quantitate the number of Na pump sites on cultured bovine corneal endothelial cells as the confluent density decreased from approximately 2750 cells/mm2 to approximately 275 cells/mm2. The mean number of Na pump sites per cell at confluence (1.92 +/- 0.07 x 10(6)) did not change as the cell density decreased 2.7-fold from 2763 cells/mm2 to 1000 cells/mm2. However, pump site expression doubled to approximately 4 x 10(6) sites/cell as the cell density decreased from 1000 cells/mm2 to 275 cells/mm2. Despite the incremental increase in Na pump site expression that occurred as the cells hypertrophied below a density of 1000/mm2 to achieve confluence, this increase was insufficient to prevent a decrease in Na pump site density of the intact monolayer, expressed as pump sites/mm2. The confluent cell density of cultured bovine corneal endothelial cells can be varied from that found in the normal native cornea to that associated with corneal decompensation. In confluent cultures with cell densities ranging from 2750 cells/mm2 to 1000 cells/mm2, the number of pump sites per cell remains relatively unchanged. Below cell densities of 1000 cells/mm2, the number of pump sites per cell progressively increases. The increased Na pump site abundance in markedly hypertrophied endothelial cells cannot adequately compensate for the progressive reduction in the number of transporting cells per unit area within the intact monolayer. Even when considered with the decrease in the size of the paracellular ion conductive pathway that is a consequence of progressive endothelial hypertrophy, the overall pumping capacity of the intact endothelial monolayer declines.
NASA Astrophysics Data System (ADS)
Liu, Jian; Wen, Shuming; Deng, Jiushuai; Chen, Xiumin; Feng, Qicheng
2014-08-01
The interaction among sphalerite (1 1 0) surface, copper and ethyl xanthate (EX) was simulated using the density functional theory (DFT). The results of DFT indicate that four types of stable interaction models exist among sphalerite surface, copper and EX, i.e., EX interacts with the Cu substituted for Zn, Cu adsorbed on the top site of S, Cu adsorbed on the bridge site of S and Cu(OH)2 adsorbed on the sphalerite surface. The four interaction models can result in the activation flotation of sphalerite. Density of states (DOS) analysis shows that the energy level discrepancy of the Zn 3d orbital in ZnS and the bonding S 3p orbital in EX results in the weak adsorption of EX on un-activated sphalerite surface. However, after copper activation, the Cu 3d orbital peak and bonding S 3p orbital peak are just maximally overlapped nearby the Fermi level. This study provides an insight into the nature that sphalerite responds not well to EX and also a comprehensive understanding on the possible interaction cases existing among sphalerite surface, copper and EX.
Laurence, Ted A; Bude, Jeff D; Ly, Sonny; Shen, Nan; Feit, Michael D
2012-05-07
Surface laser damage limits the lifetime of optics for systems guiding high fluence pulses, particularly damage in silica optics used for inertial confinement fusion-class lasers (nanosecond-scale high energy pulses at 355 nm/3.5 eV). The density of damage precursors at low fluence has been measured using large beams (1-3 cm); higher fluences cannot be measured easily since the high density of resulting damage initiation sites results in clustering. We developed automated experiments and analysis that allow us to damage test thousands of sites with small beams (10-30 µm), and automatically image the test sites to determine if laser damage occurred. We developed an analysis method that provides a rigorous connection between these small beam damage test results of damage probability versus laser pulse energy and the large beam damage results of damage precursor densities versus fluence. We find that for uncoated and coated fused silica samples, the distribution of precursors nearly flattens at very high fluences, up to 150 J/cm2, providing important constraints on the physical distribution and nature of these precursors.
Reduction of damage initiation density in fused silica optics via UV laser conditioning
Peterson, John E.; Maricle, Stephen M.; Brusasco, Raymond M.; Penetrante, Bernardino M.
2004-03-16
The present invention provides a method for reducing the density of sites on the surface of fused silica optics that are prone to the initiation of laser-induced damage, resulting in optics which have far fewer catastrophic defects and are better capable of resisting optical deterioration upon exposure for a long period of time to a high-power laser beam having a wavelength of about 360 nm or less. The initiation of laser-induced damage is reduced by conditioning the optic at low fluences below levels that normally lead to catastrophic growth of damage. When the optic is then irradiated at its high fluence design limit, the concentration of catastrophic damage sites that form on the surface of the optic is greatly reduced.
Mitigation of Adverse Effects of Long Branch Lake Project upon the Archaeological Resources. Part 3.
1986-01-01
AREA & WORK UNIT NUMBERS Kirksville, Missouri 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE US Army Engineer District, Kansas City 1986 700...the clearing contract. Although most of the site lies above the level of the clearing, some material was collected from these areas . Material density...was very noor. The area was cleared under the clearing contract. The entire surface of the site was cleared, and surface 0 material was collected from
Uranium(VI) adsorption to ferrihydrite: Application of a surface complexation model
Waite, T.D.; Davis, J.A.; Payne, T.E.; Waychunas, G.A.; Xu, N.
1994-01-01
A study of U(VI) adsorption by ferrihydrite was conducted over a wide range of U(VI) concentrations, pH, and at two partial pressures of carbon dioxide. A two-site (strong- and weak-affinity sites, FesOH and FewOH, respectively) surface complexation model was able to describe the experimental data well over a wide range of conditions, with only one species formed with each site type: an inner-sphere, mononuclear, bidentate complex of the type (FeO2)UO2. The existence of such a surface species was supported by results of uranium EXAFS spectroscopy performed on two samples with U(VI) adsorption density in the upper range observed in this study (10 and 18% occupancy of total surface sites). Adsorption data in the alkaline pH range suggested the existence of a second surface species, modeled as a ternary surface complex with UO2CO30 binding to a bidentate surface site. Previous surface complexation models for U(VI) adsorption have proposed surface species that are identical to the predominant aqueous species, e.g., multinuclear hydrolysis complexes or several U(VI)-carbonate complexes. The results demonstrate that the speciation of adsorbed U(VI) may be constrained by the coordination environment at the surface, giving rise to surface speciation for U(VI) that is significantly less complex than aqueous speciation.
10 CFR 960.5-2-1 - Population density and distribution.
Code of Federal Regulations, 2010 CFR
2010-01-01
... SITES FOR A NUCLEAR WASTE REPOSITORY Preclosure Guidelines Preclosure Radiological Safety § 960.5-2-1... repository operation and closure, (1) the expected average radiation dose to members of the public within any...) Disqualifying conditions. A site shall be disqualified if— (1) Any surface facility of a repository would be...
Arjunan, Naresh Kumar; Kadarkarai, Murugan; Kumar, Shobana; Pari, Madhiyazhagan; Thiyagarajan, Nataraj; Vincent, C Thomas; Barnard, Donald R
2015-12-01
Malaria causes extensive morbidity and mortality in humans and results in significant economic losses in India. The distribution of immature malaria-transmitting Anopheles mosquitoes was studied in 17 villages in Coimbatore District as a prelude to the development and implementation of vector control strategies that are intended to reduce the risk of human exposure to potentially infectious mosquitoes. Eight Anopheles species were recorded. The most numerous species were Anopheles vagus, Anopheles subpictus, and Anopheles hyrcanus. The location of mosquito development sites and the density of larvae in each village was evaluated for correlation with selected demographic, biologic, and land use parameters using remote sensing and geographic information systems (GIS) technology. We found the number of mosquito development sites in a village and the density of larvae in such sites to be positively correlated with human population density but not the surface area (km(2)) of the village. The number of mosquito development sites and the density of larvae in each site were not correlated. Data from this study are being used to construct a GIS-based mapping system that will enable the location of aquatic habitats with Anopheles larvae in the Coimbatore District, Tamil Nadu, India as target sites for the application of vector control. Copyright © 2015 Elsevier B.V. All rights reserved.
Giroire, B; Slostowski, C; Marre, S; Aymonier, C; Aida, T; Hojo, D; Aoki, N; Takami, S; Adschiri, T
2016-01-21
In this work, the solvent effect on the synthesis of CeO2 nanocrystals synthesized in near- and supercritical alcohols is discussed. The materials prepared displayed a unique morphology of small nanocrystals (<10 nm) aggregated into larger nanospheres (∼100-200 nm). In such syntheses, alcohol molecules directly interact with the nanocrystal surface through alkoxide and carboxylate bondings. The grafting density was quantified from the weight loss measured using thermogravimetric analysis. A direct correlation between the grafting density and the alcohol chain length can be established. It was demonstrated that the shorter the alcohol chain length (i.e. methanol), the higher the surface coverage is. This trend is independent of the synthesis mode (batch or continuous). Additionally, an influence of the grafting density on the resulting nanocrystal size was established. It is suggested that the surface coverage has a high influence on the early stages of the nucleation and growth. Indeed, when high surface coverages are reached, all surface active sites are blocked, limiting the growth step and therefore leading to smaller particles. This effect was noticed with the materials prepared in the continuous mode where shorter reaction time was performed.
Prey versus substrate as determinants of habitat choice in a feeding shorebird
NASA Astrophysics Data System (ADS)
Finn, Paul G.; Catterall, Carla P.; Driscoll, Peter V.
2008-11-01
Many shorebirds on their non-breeding grounds feed on macrobenthic fauna which become available at low tide in coastal intertidal flats. The Eastern Curlew Numenius madagascariensis in Moreton Bay Australia, varies greatly in density among different tidal flats. This study asks: how important is the abundance of intertidal prey as a predictor of this variation? We quantified feeding curlews' diet across 12 sites (different tidal flats, each re-visited at least eight times), through 970 focal observations. We also estimated the abundance of total macrobenthic fauna, potential prey taxa and crustacean prey on each tidal flat; measured as the number of individuals and a relative biomass index per unit substrate surface area obtained from substrate core samples. We estimated curlew density at each site using low-tide surveys from every site visit. Curlew density showed a strong positive association with both the density and biomass of fauna and of potential prey ( r values all around 0.70) across the 12 flats. Associations with crustacean density and biomass were also statistically significant (r values both 0.60). However, these variables also showed a strong negative correlation with a measure of substrate resistance (based on the amount of hard material in the substrate core), which was the best predictor of curlew density ( r = -0.82). Curlews were most abundant at sites with the least resistant substrate, and these sites also generally had the highest faunal density and biomass. When the effect of substrate resistance was statistically removed, curlew density was no longer significantly correlated with fauna density and biomass. This suggests that macro-scale habitat choice by Eastern Curlew on their non-breeding grounds is more strongly influenced by prey availability (which is higher when substrate resistance is lower) than by prey density or biomass, although in Moreton Bay a positive correlation across sites meant that these factors were synergistic.
Reexamination of the interaction of atoms with a LiF(001) surface
NASA Astrophysics Data System (ADS)
Miraglia, J. E.; Gravielle, M. S.
2017-02-01
Pairwise additive potentials for multielectronic atoms interacting with a LiF(001) surface are revisited by including an improved description of the electron density associated with the different lattice sites, as well as nonlocal electron density contributions. Within this model, the electron distribution around each ionic site of the crystal is described by means of a so-called "onion" approach that accounts for the influence of the Madelung potential. From such densities, binary interatomic potentials are then derived by using well-known nonlocal functionals. Rumpling and long-range contributions due to projectile polarization and van der Waals forces are also included. We apply this pairwise additive approximation to evaluate the interaction potential between closed-shell (He, Ne, Ar, Kr, and Xe) and open-shell (N, S, and Cl) atoms and the LiF surface, analyzing the relative importance of the different contributions. The performance of the proposed potentials is assessed by contrasting angular positions of rainbow and supernumerary rainbow maxima produced by fast grazing incidence with available experimental data. One important result of our model is that both van der Waals contributions and thermal lattice vibrations play a negligible role for normal energies in the eV range.
Lankford, Miles; Behm, Carolyn Z; Yeh, James; Klibanov, Alexander L; Robinson, Peter; Lindner, Jonathan R
2006-10-01
Molecular imaging with contrast-enhanced ultrasound (CEU) relies on the detection of microbubbles retained in regions of disease. The aim of this study was to determine whether microbubble attachment to cells influences their acoustic signal generation and stability. Biotinylated microbubbles were attached to streptavidin-coated plates to derive density versus intensity relations during low- and high-power imaging. To assess damping from microbubble attachment to solid or cell surfaces, in vitro imaging was performed for microbubbles charge-coupled to methacrylate spheres and for vascular cell adhesion molecule-1-targeted microbubbles attached to endothelial cells. Signal enhancement on plates increased according to acoustic power and microbubble site density up to 300 mm. Microbubble signal was reduced by attachment to solid spheres during high- and low-power imaging but was minimally reduced by attachment to endothelial cells and only at low power. Attachment of targeted microbubbles to rigid surfaces results in damping and a reduction of their acoustic signal, which is not seen when microbubbles are attached to cells. A reliable concentration versus intensity relationship can be expected from microbubble attachment to 2-dimensional surfaces until a very high site density is reached.
Influence of vacancy defect on surface feature and adsorption of Cs on GaN(0001) surface.
Ji, Yanjun; Du, Yujie; Wang, Meishan
2014-01-01
The effects of Ga and N vacancy defect on the change in surface feature, work function, and characteristic of Cs adsorption on a (2 × 2) GaN(0001) surface have been investigated using density functional theory with a plane-wave ultrasoft pseudopotential method based on first-principles calculations. The covalent bonds gain strength for Ga vacancy defect, whereas they grow weak for N vacancy defect. The lower work function is achieved for Ga and N vacancy defect surfaces than intact surface. The most stable position of Cs adatom on Ga vacancy defect surface is at T1 site, whereas it is at B(Ga) site on N vacancy defect surface. The E(ads) of Cs on GaN(0001) vacancy defect surface increases compared with that of intact surface; this illustrates that the adsorption of Cs on intact surface is more stable.
Influence of Vacancy Defect on Surface Feature and Adsorption of Cs on GaN(0001) Surface
Ji, Yanjun; Du, Yujie; Wang, Meishan
2014-01-01
The effects of Ga and N vacancy defect on the change in surface feature, work function, and characteristic of Cs adsorption on a (2 × 2) GaN(0001) surface have been investigated using density functional theory with a plane-wave ultrasoft pseudopotential method based on first-principles calculations. The covalent bonds gain strength for Ga vacancy defect, whereas they grow weak for N vacancy defect. The lower work function is achieved for Ga and N vacancy defect surfaces than intact surface. The most stable position of Cs adatom on Ga vacancy defect surface is at T1 site, whereas it is at BGa site on N vacancy defect surface. The E ads of Cs on GaN(0001) vacancy defect surface increases compared with that of intact surface; this illustrates that the adsorption of Cs on intact surface is more stable. PMID:25126599
Effects of ghost shrimp on zinc and cadmium in sediments from Tampa Bay, FL
Klerks, P.L.; Felder, D.L.; Strasser, K.; Swarzenski, P.W.
2007-01-01
This study investigated the effects that ghost shrimp have on the distribution of metals in sediment. We measured levels of HNO3-extractable zinc and cadmium in surface sediment, in ghost shrimp burrow walls and in sediment ejected by the ghost shrimp from their burrows, at five sandy intertidal sites in Tampa Bay. Ghost shrimp densities and their rate of sediment ejection were also quantified, as were sediment organic content and silt + clay content. Densities of ghost shrimp (Sergio trilobata and Lepidophthalmus louisianensis) averaged 33/m2 at our sites, and they ejected sediment at an average rate of 28 g/burrow/day. Levels of both Zn and Cd were significantly higher in burrow walls than in surface sediments. Sediment ejected by the shrimp from their burrows had elevated levels of Zn (relative to surface sediments) at one of the sites. Sediment organic content and silt + clay content were higher in burrow-wall sediments than in ejected sediment, which in turn tended to have values above those of surface sediments. Differences in levels of HNO3-extractable Zn and Cd among sediment types may be a consequence of these sediments differing in other physiochemical characteristics, though the differences in metal levels remained statistically significant for some sites after correcting for differences in organic content and silt + clay content. We conclude that the presence of ghost shrimp burrows contributes to spatial heterogeneity of sedimentary metal levels, while the ghost shrimp bioturbation results in a significant flux of metals to the sediment surface and is expected to decrease heterogeneity of metal levels in sedimentary depth profiles.
Bilić, Ante; Reimers, Jeffrey R; Hush, Noel S
2005-03-01
The adsorption of phenylthiol on the Au(111) surface is modeled using Perdew and Wang density-functional calculations. Both direct molecular physisorption and dissociative chemisorption via S-H bond cleavage are considered as well as dimerization to form disulfides. For the major observed product, the chemisorbed thiol, an extensive potential-energy surface is produced as a function of both the azimuthal orientation of the adsorbate and the linear translation of the adsorbate through the key fcc, hcp, bridge, and top binding sites. Key structures are characterized, the lowest-energy one being a broad minimum of tilted orientation ranging from the bridge structure halfway towards the fcc one. The vertically oriented threefold binding sites, often assumed to dominate molecular electronics measurements, are identified as transition states at low coverage but become favored in dense monolayers. A similar surface is also produced for chemisorption of phenylthiol on Ag(111); this displays significant qualitative differences, consistent with the qualitatively different observed structures for thiol chemisorption on Ag and Au. Full contours of the minimum potential energy as a function of sulfur translation over the crystal face are described, from which the barrier to diffusion is deduced to be 5.8 kcal mol(-1), indicating that the potential-energy surface has low corrugation. The calculated bond lengths, adsorbate charge and spin density, and the density of electronic states all indicate that, at all sulfur locations, the adsorbate can be regarded as a thiyl species that forms a net single covalent bond to the surface of strength 31 kcal mol(-1). No detectable thiolate character is predicted, however, contrary to experimental results for alkyl thiols that indicate up to 20%-30% thiolate involvement. This effect is attributed to the asymptotic-potential error of all modern density functionals that becomes manifest through a 3-4 eV error in the lineup of the adsorbate and substrate bands. Significant implications are described for density-functional calculations of through-molecule electron transport in molecular electronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Q; Xie, S
This report describes the Atmospheric Radiation Measurement (ARM) Best Estimate (ARMBE) 2-dimensional (2D) gridded surface data (ARMBE2DGRID) value-added product. Spatial variability is critically important to many scientific studies, especially those that involve processes of great spatial variations at high temporal frequency (e.g., precipitation, clouds, radiation, etc.). High-density ARM sites deployed at the Southern Great Plains (SGP) allow us to observe the spatial patterns of variables of scientific interests. The upcoming megasite at SGP with its enhanced spatial density will facilitate the studies at even finer scales. Currently, however, data are reported only at individual site locations at different time resolutionsmore » for different datastreams. It is difficult for users to locate all the data they need and requires extra effort to synchronize the data. To address these problems, the ARMBE2DGRID value-added product merges key surface measurements at the ARM SGP sites and interpolates the data to a regular 2D grid to facilitate the data application.« less
Ellsworth, Craig M.; Tyler, Torrey J.; VanderKooi, Scott P.
2010-01-01
A small irrigation diversion dam near Chiloquin, Oregon, was removed and replaced with a pump station to improve fish passage for Lost River suckers (Deltistes luxatus) and shortnose suckers (Chasmistes brevirostris) entering the Sprague River on their spawning migrations. During the developmental phase of the pump station, a need was identified to better understand the larval drift characteristics of these endangered catostomids in order to reduce entrainment into the irrigation system. The spatial, seasonal, and diel distribution of drifting larvae was measured during the 2004 spawning season at two proposed sites on the Williamson River where the pump station could be located. Larval drift for both species coincided with the irrigation season making them subject to entrainment into the irrigation system. Drift occurred almost exclusively at night with larvae entering the drift at sunset and exiting the drift at sunrise. Nighttime larval densities were concentrated near the surface and at midchannel at both sites. Densities were generally greater on the side of mid-channel with greater flow. During early morning sampling we detected a general shift in larval drift from surface to subsurface drift. We also observed an increase in larval densities towards the shore opposite from the proposed pump station at the upper site whereas larval densities remained high at midchannel at the lower site. During daytime sampling, the few larvae that were collected were distributed throughout the water column at both pump sites. This study found that larvae drifting during all time periods were generally distributed further across the cross section, deeper in the water column, and closer to where the proposed water withdrawal structure would be built at the downstream site when compared to the upstream site. Recommendations were provided to locate the withdrawal facility at the upstream site and operate it in a manner such that larval entrainment would likely be minimized.
Downing, C. A.; Ahmady, B.; Catlow, C. R. A.; de Leeuw, N. H.
2013-01-01
There is no consensus as yet to account for the significant presence of water on the terrestrial planets, but suggested sources include direct hydrogen adsorption from the parent molecular cloud after the planets’ formation, and delivery of hydrous material via comets or asteroids external to the zone of the terrestrial planets. Alternatively, a more recent idea is that water may have directly adsorbed onto the interstellar dust grains involved in planetary formation. In this work, we use electronic structure calculations based on the density functional theory to investigate and compare the bulk and {010} surface structures of the magnesium and iron end-members of the silicate mineral olivine, namely forsterite and fayalite, respectively. We also report our results on the adsorption of atomic hydrogen at the mineral surfaces, where our calculations show that there is no activation barrier to the adsorption of atomic hydrogen at these surfaces. Furthermore, different surface sites activate the atom to form either adsorbed hydride or proton species in the form of hydroxy groups on the same surface, which indicates that these mineral surfaces may have acted as catalytic sites in the immobilization and reaction of hydrogen atoms to form dihydrogen gas or water molecules. PMID:23734054
First-principles study of low Miller index Ni3S2 surfaces in hydrotreating conditions.
Aray, Yosslen; Vega, David; Rodriguez, Jesus; Vidal, Alba B; Grillo, Maria Elena; Coll, Santiago
2009-03-12
Density functional theory (DFT) calculations combined with surface thermodynamic arguments and the Gibbs-Curie-Wulff equilibrium morphology formalism have been employed to explore the effect of the reaction conditions, temperature (T), and gas-phase partial pressures (PH2 and PH2S) on the stability of nickel sulfide (Ni3S2) surfaces. Furthermore, the strength and nature of chemical bonds for selected Ni3S2 surface cuts were investigated with the quantum theory of atoms in molecules methodology. A particular analysis of the electrostatic potential within this theoretical framework is performed to study the potential activity of nickel sulfide nanoparticles as hydrodesulfurization (HDS) catalysts. The calculated thermodynamic surface stabilities and the resulting equilibrium morphology model suggest that unsupported Ni3S2 nanoparticles mainly expose (111) and (111) type surface faces in HDS conditions. Analysis of the electrostatic potential mapped onto a selected electron density isocontour (0.001 au) on those expose surface reveals a poor potential reactivity toward electron-donating reagents (i.e., low Lewis acidity). Consequently, a very low attraction between coordinatively unsaturated active sites (Lewis sites) exposed at the catalytic particles and the S atoms coming from reagent polluting molecules does inactive these kinds of particles for HDS.
The effect of changes in agricultural practices on the density of Dermacentor reticulatus ticks.
Mierzejewska, Ewa J; Alsarraf, Mohammed; Behnke, Jerzy M; Bajer, Anna
2015-07-30
The impact of agricultural practices/ activities on the environment has been falling in many areas of Europe due to the widespread exodus of inhabitants from rural areas. The associated abandonment of agricultural lands has enabled a wide range of wild animals to prosper in the countryside, including birds, ungulates and large carnivores. One consequence has been the increase in ticks and associated tick-borne diseases which now constitute a greater threat for public health than earlier. The aim of the present study was to compare tick densities in different habitats (pasture, meadow, fallow land, post-fire areas) to assess the impact of different agricultural practices on tick densities in vicinities close to human habitation. Between September 2011 and June 2014, 2985 Dermacentor reticulatus ticks were collected by conventional dragging, in the Mazowieckie (Mazovia) and Warmińsko-Mazurskie (Masuria) regions of Poland. In each region, 3 study sites were selected, each situated near surface water sources (i.e., ponds or canals). At each site, three neighboring habitats of surface area 150-600 m(2) were dragged: one on a cattle/horse pasture; the second on meadow; the third on fallow land (abandoned field or meadow), at least twice during each spring and autumn. Additionally, four post-fire areas (one in 2013 and three in 2014) were identified in the Mazowieckie region, and dragging was conducted there in spring and autumn, including in each case a 'control area' comprising intact unburned fallow land situated in close vicinity to the burned areas. Eight hundred D. reticulatus ticks were collected and the densities were compared by multifactorial ANOVA. The highest tick densities were recorded on the fallow lands, and the lowest - on the grazed pastures. Tick densities were up to 10 × times higher on the control sites compared to neighboring post-fire sites. Copyright © 2015 Elsevier B.V. All rights reserved.
Phillips, D.H.; Kumara, M.P.; Jayatissa, L.P.; Krauss, Ken W.; Huxham, M.
2017-01-01
Understanding the effects of seedling density on sediment accretion, biogeochemistry and belowground biomass in mangrove systems can help explain ecological functioning and inform appropriate planting densities during restoration or climate change mitigation programs. The objectives of this study were to examine: 1) impacts of mangrove seedling density on surface sediment accretion, texture, belowground biomass and biogeochemistry, and 2) origins of the carbon (C) supplied to the mangroves in Palakuda, Puttalam Lagoon, Sri Lanka. Rhizophora mucronata propagules were planted at densities of 6.96, 3.26, 1.93 and 0.95 seedlings m−2along with an unplanted control (0 seedlings m−2). The highest seedling density generally had higher sediment accretion rates, finer sediments, higher belowground biomass, greatest number of fine roots and highest concentrations of C and nitrogen (N) (and the lowest C/N ratio). Sediment accretion rates, belowground biomass (over 1370 days), and C and N concentrations differed significantly between seedling densities. Fine roots were significantly greater compared to medium and coarse roots across all plantation densities. Sulphur and carbon stable isotopes did not vary significantly between different density treatments. Isotope signatures suggest surface sediment C (to a depth of 1 cm) is not derived predominantly from the trees, but from seagrass adjacent to the site.
Calculation of fast neutron removal cross sections for different lunar soils
NASA Astrophysics Data System (ADS)
Tellili, B.; Elmahroug, Y.; Souga, C.
2014-01-01
The interaction of galactic cosmic rays (GCRs) and solar energetic particles (SEPs) with the lunar surface produces secondary radiations as neutrons. The study of the production and attenuation of these neutrons in the lunar soil is very important to estimate the annual ambient dose equivalent on the lunar surface and for lunar nuclear spectroscopy. Also, understanding the attenuation of fast neutrons in lunar soils can help in measuring of the lunar neutron density profile and to measure the neutron flux on the lunar surface. In this paper, the attenuation of fast neutrons in different lunar soils is investigated. The macroscopic effective removal cross section (ΣR) of fast neutrons was theoretically calculated from the mass removal cross-section values (ΣR/ρ) for various elements in soils. The obtained values of (ΣR) were discussed according to the density. The results show that the attenuation of fast neutrons is more important in the landing sites of Apollo 12 and Luna 16 than the other landing sites of Apollo and Luna missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jimenez-Orozco, Carlos; Florez, Elizabeth; Moreno, Andres
A comprehensive study of acetylene adsorption on δ-MoC(001), TiC(001) and ZrC(001) surfaces was carried out by means of calculations based on periodic density functional theory, using the Perdew–Burke–Ernzerhof exchange–correlation functional. It was found that the bonding of acetylene was significantly affected by the electronic and structural properties of the carbide surfaces. The adsorbate interacted with metal and/or carbon sites of the carbide. The interaction of acetylene with the TiC(001) and ZrC(001) surfaces was strong (binding energies higher than $-$3.5 eV), while moderate acetylene adsorption energies were observed on δ-MoC(001) ($-$1.78 eV to –0.66 eV). Adsorption energies, charge density difference plotsmore » and Mulliken charges suggested that the binding of the hydrocarbon to the surface had both ionic and covalent contributions. According to the C–C bond lengths obtained, the adsorbed molecule was modified from acetylene-like into ethylene-like on the δ-MoC(001) surface (desired behavior for hydrogenation reactions) but into ethane-like on TiC(001) and ZrC(001). The obtained results suggest that the δ-MoC(001) surface is expected to have the best performance in selective hydrogenation reactions to convert alkynes into alkenes. Another advantage of δ-MoC(001) is that, after C 2H 2 adsorption, surface carbon sites remain available, which are necessary for H 2 dissociation. Furthermore, these sites were occupied when C 2H 2 was adsorbed on TiC(001) and ZrC(001), limiting their application in the hydrogenation of alkynes.« less
NASA Astrophysics Data System (ADS)
Meng, Yanan; Zhang, Xilin; Mao, Jianjun; Xu, Xiaopei; Yang, Zongxian
2018-05-01
The adsorption and dissociation of O2 on the palladium and platinum modified TaC (1 0 0) surfaces were investigated based on the density functional theory calculations. It is found that the adsorption sites of O2 are the Ta-Ta bridge sites on both the partially covered TaC (1 0 0) surfaces by Pd and Pt, M4/TaC (1 0 0) (M = Pd and Pt), while the 4-fold metal hollow sites and the metal-metal bridge sites are preferred on the fully covered TaC (1 0 0) surfaces by Pd and Pt monolayer, MML/TaC (1 0 0), respectively. The deposition of Pd or Pt can enhance the oxidation resistance of TaC (1 0 0). Meanwhile, the TaC (1 0 0) decorated by monolayer Pd still exhibited outstanding catalytic activity for O2 dissociation. Our study might be useful to designing efficient catalysts for the oxygen reduction reaction.
Controlled Fab installation onto polymeric micelle nanoparticles for tuned bioactivity
NASA Astrophysics Data System (ADS)
Chen, Shaoyi; Florinas, Stelios; Teitgen, Abigail; Xu, Ze-Qi; Gao, Changshou; Wu, Herren; Kataoka, Kazunori; Cabral, Horacio; Christie, R. James
2017-12-01
Antibodies and antigen-binding fragments (Fabs) can be used to modify the surface of nanoparticles for enhanced target binding. In our previous work, site-specific conjugation of Fabs to polymeric micelles using conventional methods was limited to approximately 30% efficiency, possibly due to steric hindrance related to macromolecular reactants. Here, we report a new method that enables conjugation of Fabs onto a micelle surface in a controlled manner with up to quantitative conversion of nanoparticle reactive groups. Variation of (i) PEG spacer length in a heterofunctionalized cross-linker and (ii) Fab/polymer feed ratios resulted in production of nanoparticles with a range of Fab densities on the surface up to the theoretical maximum value. The biological impact of variable Fab density was evaluated in vitro with respect to cell uptake and cytotoxicity of a drug-loaded (SN38) targeted polymeric micelle bearing anti-EphA2 Fabs. Fab conjugation increased cell uptake and potency compared with non-targeted micelles, although a Fab density of 60% resulted in decreased uptake and potency of the targeted micelles. Altogether, our findings demonstrate that conjugation strategies can be optimized to allow control of Fab density on the surface of nanoparticles and also that Fab density may need to be optimized for a given cell-surface target to achieve the highest bioactivity.
D'Elia, Noelia L; Gravina, Noel; Ruso, Juan M; Marco-Brown, Jose L; Sieben, Juan M; Messina, Paula V
2017-05-15
The bioactivity of an implant is displayed on its ability to induce heterogeneous nucleation of biogenic apatite onto its surface upon immersion in body fluids; forming, through this layer, a stable bond with the host tissue. The present article evaluates the bioactivity of different nanostructured substrates based on synthetic hydroxyapatite (HA) and titania (TiO 2 ) nanoparticles, where we extend the debate regarding the selective roles played by the presence of albumin on the biogenic apatite coating evolution. The substrates bone-bonding potential was evaluated by keeping the materials in contact with Simulated Body Fluid, while the influence of the presence of Bovine Serum Albumin in bioactivity was analyzed by a spectrophotometric technique. Our results show that materials' surface reactivity and their interfacial hydration are responsible for the bonding-site alteration and surface charge density distribution, which in turn, regulate the protein adsorption process. As a matter of fact, variations on the protein adsorbed density have a directly proportional impact on calcium binding sites, which should be responsible for the initiation of the mineralization process, disturbing the deposition of the interfacial calcium phosphate (Ca-P) mineralized coating. Copyright © 2017 Elsevier Inc. All rights reserved.
Elementary surface processes during reactive magnetron sputtering of chromium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monje, Sascha; Corbella, Carles, E-mail: carles.corbella@rub.de; Keudell, Achim von
2015-10-07
The elementary surface processes occurring on chromium targets exposed to reactive plasmas have been mimicked in beam experiments by using quantified fluxes of Ar ions (400–800 eV) and oxygen atoms and molecules. For this, quartz crystal microbalances were previously coated with Cr thin films by means of high-power pulsed magnetron sputtering. The measured growth and etching rates were fitted by flux balance equations, which provided sputter yields of around 0.05 for the compound phase and a sticking coefficient of O{sub 2} of 0.38 on the bare Cr surface. Further fitted parameters were the oxygen implantation efficiency and the density of oxidationmore » sites at the surface. The increase in site density with a factor 4 at early phases of reactive sputtering is identified as a relevant mechanism of Cr oxidation. This ion-enhanced oxygen uptake can be attributed to Cr surface roughening and knock-on implantation of oxygen atoms deeper into the target. This work, besides providing fundamental data to control oxidation state of Cr targets, shows that the extended Berg's model constitutes a robust set of rate equations suitable to describe reactive magnetron sputtering of metals.« less
NASA Astrophysics Data System (ADS)
Chaudhary, Manchal; Shen, Po-fan; Chang, Sue-min
2018-05-01
Porous tungstated and phosphated TiO2-ZrO2 (TZ) binary oxides with high and strong acidity were successfully prepared by means of sol-gel or impregnation approaches. In addition, the influences of the two types of modifiers on the microstructures and acidity were systematically examined, compared, and clarified. The TZ oxide derived from a surfactant-templating method exhibited a high surface area of 195 m2/g with a pore size of 6.3 nm. Moreover, it had a high acidity of 859 μmol/g with a density of 4.4 μmol/nm2 because of defective surface. Phosphation significantly increased the acidity to 1547 μmol/g and showed the highest acid density of 6.7 μmol/nm2 at a surface P density of 22.7P/nm2. On the other hand, tungstated compounds just showed the highest acidity of 972 μmol/g and the highest acid density of 4.8 μmol/nm2 at 4.7 W/nm2. Compared to tungstate species, phosphate anions are more capable of promoting the acidity because they are able to distort the host network and inhibit elemental rearrangement. While Lewis acidity prevailed in the tungstated compounds, Brønsted acidity was dominant in the phosphated oxides. The Wdbnd O and Psbnd OH groups were responsible for strong acidity in the modified compounds. Phosphated compounds formed strong Brønsted acid sites on the Psbnd OH groups with a particular strength, and tungstation produced Lewis acid sites with a continuous strength on the metal ions adjacent to the tungstate moieties. Cyclic NH3 adsorption-desorption processes revealed that the active sites for NH3 adsorption were stable in both the tungstate and phosphate modified compounds, revealing that these solid acids are promising as the adsorbents for removal of base gases.
Borrok, D.; Turner, B.F.; Fein, J.B.
2005-01-01
Adsorption onto bacterial cell walls can significantly affect the speciation and mobility of aqueous metal cations in many geologic settings. However, a unified thermodynamic framework for describing bacterial adsorption reactions does not exist. This problem originates from the numerous approaches that have been chosen for modeling bacterial surface protonation reactions. In this study, we compile all currently available potentiometric titration datasets for individual bacterial species, bacterial consortia, and bacterial cell wall components. Using a consistent, four discrete site, non-electrostatic surface complexation model, we determine total functional group site densities for all suitable datasets, and present an averaged set of 'universal' thermodynamic proton binding and site density parameters for modeling bacterial adsorption reactions in geologic systems. Modeling results demonstrate that the total concentrations of proton-active functional group sites for the 36 bacterial species and consortia tested are remarkably similar, averaging 3.2 ?? 1.0 (1??) ?? 10-4 moles/wet gram. Examination of the uncertainties involved in the development of proton-binding modeling parameters suggests that ignoring factors such as bacterial species, ionic strength, temperature, and growth conditions introduces relatively small error compared to the unavoidable uncertainty associated with the determination of cell abundances in realistic geologic systems. Hence, we propose that reasonable estimates of the extent of bacterial cell wall deprotonation can be made using averaged thermodynamic modeling parameters from all of the experiments that are considered in this study, regardless of bacterial species used, ionic strength, temperature, or growth condition of the experiment. The average site densities for the four discrete sites are 1.1 ?? 0.7 ?? 10-4, 9.1 ?? 3.8 ?? 10-5, 5.3 ?? 2.1 ?? 10-5, and 6.6 ?? 3.0 ?? 10-5 moles/wet gram bacteria for the sites with pKa values of 3.1, 4.7, 6.6, and 9.0, respectively. It is our hope that this thermodynamic framework for modeling bacteria-proton binding reactions will also provide the basis for the development of an internally consistent set of bacteria-metal binding constants. 'Universal' constants for bacteria-metal binding reactions can then be used in conjunction with equilibrium constants for other important metal adsorption and complexation reactions to calculate the overall distribution of metals in realistic geologic systems.
Tiefenbrunn, Theresa; Forli, Stefano; Happer, Meaghan; Gonzalez, Ana; Tsai, Yingssu; Soltis, Michael; Elder, John H.; Olson, Arthur J.; Stout, C. David
2013-01-01
A library of 68 brominated fragments was screened against a new crystal form of inhibited HIV-1 protease in order to probe surface sites in soaking experiments. Often fragments are weak binders with partial occupancy, resulting in weak, difficult-to-fit electron density. The use of a brominated fragment library addresses this challenge, as bromine can be located unequivocally via anomalous scattering. Data collection was carried out in an automated fashion using AutoDrug at SSRL. Novel hits were identified in the known surface sites: 3-bromo-2,6-dimethoxybenzoic acid (Br6) in the flap site, and 1-bromo-2-naphthoic acid (Br27) in the exosite, expanding the chemistry of known fragments for development of higher affinity potential allosteric inhibitors. At the same time, mapping the binding sites of a number of weaker binding Br-fragments provides further insight into the nature of these surface pockets. PMID:23998903
Controlling the Local Electronic Properties of Si(553)-Au through Hydrogen Doping
NASA Astrophysics Data System (ADS)
Hogan, C.; Speiser, E.; Chandola, S.; Suchkova, S.; Aulbach, J.; Schäfer, J.; Meyer, S.; Claessen, R.; Esser, N.
2018-04-01
We propose a quantitative and reversible method for tuning the charge localization of Au-stabilized stepped Si surfaces by site-specific hydrogenation. This is demonstrated for Si(553)-Au as a model system by combining density functional theory simulations and reflectance anisotropy spectroscopy experiments. We find that controlled H passivation is a two-step process: step-edge adsorption drives excess charge into the conducting metal chain "reservoir" and renders it insulating, while surplus H recovers metallic behavior. Our approach illustrates a route towards microscopic manipulation of the local surface charge distribution and establishes a reversible switch of site-specific chemical reactivity and magnetic properties on vicinal surfaces.
Anti-site defected MoS2 sheet for catalytic application
NASA Astrophysics Data System (ADS)
Sharma, Archana; Husain, Mushahid; Khan, Mohd. Shahid
2018-04-01
To prevent harmful and poisonous CO gas molecules, catalysts are needed for converting them into benign substances. Density functional theory (DFT) calculations have been used to investigate CO oxidation on the surface of MoS2 monolayer with Mo atom embedded at S-vacancy site (anti-site defect). The stronger interaction between Mo metal with O2 molecule as compared with CO molecule suggests high catalytic activity. The complete oxidation of CO is studied in a two-step procedure using Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms with a low overall energy barrier of 0.35 eV. Creation of anti-site defect makes the surface of MoS2 nanosheet catalytically active for the CO oxidation to take place.
Towards identifying the active sites on RuO 2 (110) in catalyzing oxygen evolution
Rao, Reshma R.; Kolb, Manuel J.; Halck, Niels Bendtsen; ...
2017-11-17
While the surface atomic structure of RuO 2 has been well studied in ultra high vacuum, much less is known about the interaction between water and RuO 2 in aqueous solution. In this work, in situ surface X-ray scattering measurements combined with density functional theory (DFT) were used to determine the surface structural changes on single-crystal RuO2(110) as a function of potential in acidic electrolyte. The redox peaks at 0.7, 1.1 and 1.4 V vs. reversible hydrogen electrode (RHE) could be attributed to surface transitions associated with the successive deprotonation of –H 2O on the coordinatively unsaturated Ru sites (CUS)more » and hydrogen adsorbed to the bridging oxygen sites. At potentials relevant to the oxygen evolution reaction (OER), an –OO species on the Ru CUS sites was detected, which was stabilized by a neighboring –OH group on the Ru CUS or bridge site. Combining potential-dependent surface structures with their energetics from DFT led to a new OER pathway, where the deprotonation of the –OH group used to stabilize –OO was found to be rate-limiting.« less
Towards identifying the active sites on RuO 2 (110) in catalyzing oxygen evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Reshma R.; Kolb, Manuel J.; Halck, Niels Bendtsen
While the surface atomic structure of RuO 2 has been well studied in ultra high vacuum, much less is known about the interaction between water and RuO 2 in aqueous solution. In this work, in situ surface X-ray scattering measurements combined with density functional theory (DFT) were used to determine the surface structural changes on single-crystal RuO2(110) as a function of potential in acidic electrolyte. The redox peaks at 0.7, 1.1 and 1.4 V vs. reversible hydrogen electrode (RHE) could be attributed to surface transitions associated with the successive deprotonation of –H 2O on the coordinatively unsaturated Ru sites (CUS)more » and hydrogen adsorbed to the bridging oxygen sites. At potentials relevant to the oxygen evolution reaction (OER), an –OO species on the Ru CUS sites was detected, which was stabilized by a neighboring –OH group on the Ru CUS or bridge site. Combining potential-dependent surface structures with their energetics from DFT led to a new OER pathway, where the deprotonation of the –OH group used to stabilize –OO was found to be rate-limiting.« less
Microstructural studies by TEM of diamond films grown by combustion flame
NASA Astrophysics Data System (ADS)
Ma, G.-H. M.; Hirose, Y.; Amanuma, S.; McClure, M.; Prater, J. T.; Glass, J. T.
Microstructures of diamond films grown in an oxygen-acetylene combustion flame were studied by TEM. The O2/C2H2 gas ratio was fixed and the substrate materials and temperature were varied. High quality diamond films were grown by this method at high growth rates of about 30 micron/hr. A rough surface and high density of secondary nucleation sites and microtwins were observed in the diamond grains grown on molybdenum (Mo) at a substrate temperature of 500 C. When the substrate temperature wass raised to between 500 and 870 C, the defect density was greatly reduced, revealing a low density of stacking faults and dislocations. Diamond films grown on Si substrates did not show the same substrate temperature dependence on defect density, at least not over the same temperature range. However, the same correlation between defect density, secondary nucleation, and surface morphology was observed.
Aeolian transport in the field: A comparison of the effects of different surface treatments
NASA Astrophysics Data System (ADS)
Dong, Zhibao; Lv, Ping; Zhang, Zhengcai; Qian, Guangqiang; Luo, Wanyin
2012-05-01
Aeolian transport represents the result of wind-surface interactions, and therefore depends strongly on variations in the characteristics of the sediment surface. We conducted field observations of aeolian transport of typical dune sand in three 80 m × 80 m plots with different surface treatments: gravel-covered sand, enclosed shifting sand, and open (unprotected) shifting sand. The study was performed at the Shapotou Aeolian Experiment Site in the southeastern part of China's Tengger Desert to compare the effects of these different surface treatments on aeolian transport. To do so, we analyzed the flux density profiles and transport rates above each surface. The flux density profiles for all three treatments followed the exponential decay law that was proposed by most previous researchers to describe the saltation flux density profiles. Coefficients of the exponential decay function were defined as a function of the surface and the wind velocity. The enclosed and open plots with shifting sand had similar flux density profiles, but the flux density above gravel-covered plots showed that transport decayed more slowly with increasing height, producing flux density profiles with a higher average saltation height. The transport rate above the three treatment plots tended to increase proportionally with the cube of the mean wind velocity and with the maximum wind velocity during the observation period, but was more strongly correlated with the square of drift potential. Transport rates above the plot with open shifting sand were greater than those above the plots with enclosed shifting sand and the gravel-covered plot.
Oxygen and sulfur adsorption on vicinal surfaces of copper and silver: Preferred adsorption sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Da-Jiang; Thiel, Patricia A.
We present an extensive density functional theory (DFT) study of adsorption site energetics for oxygen and sulfur adsorbed on two vicinal surfaces of Cu and Ag, with the goal of identifying the most stable adsorption site(s), identifying trends and common themes, and comparing with experimental work in the literature where possible. We also present benchmark calculations for adsorption on the flat (111) and (100) surfaces. The first vicinal surface is the (211), and results are similar for both metals. Here, we find that the step-doubling reconstruction is favored with both adsorbates and is driven by the creation of a specialmore » stable fourfold hollow (4fh) site at the reconstructed step. Zig-zag chain structures consisting of X–M–X units (X = chalcogen, M = metal) at the step edge are considered, in which the special 4fh site is partially occupied. The zig-zag configuration is energetically competitive for oxygen but not sulfur. DFT results for oxygen agree with experiment in terms of the stability of the reconstruction, but contradict the original site assignment. The second vicinal surface is the (410), where again results are similar for both metals. For oxygen, DFT predicts that step sites are filled preferentially even at lowest coverage, followed by terrace sites, consistent with the experiment. For sulfur, in contrast, DFT predicts that terrace sites fill first. Oxygen forms O–M–O rows on the top edge of the step, where it occupies incomplete 4fh sites. This resolves an experimental ambiguity in the site assignment. Finally, for both the (211) and (410) surfaces, the interaction energy that stabilizes the X–M–X chain or row correlates with the linearity of the X–M–X unit, which may explain key differences between oxygen and sulfur.« less
Oxygen and sulfur adsorption on vicinal surfaces of copper and silver: Preferred adsorption sites
Liu, Da-Jiang; Thiel, Patricia A.
2018-03-28
We present an extensive density functional theory (DFT) study of adsorption site energetics for oxygen and sulfur adsorbed on two vicinal surfaces of Cu and Ag, with the goal of identifying the most stable adsorption site(s), identifying trends and common themes, and comparing with experimental work in the literature where possible. We also present benchmark calculations for adsorption on the flat (111) and (100) surfaces. The first vicinal surface is the (211), and results are similar for both metals. Here, we find that the step-doubling reconstruction is favored with both adsorbates and is driven by the creation of a specialmore » stable fourfold hollow (4fh) site at the reconstructed step. Zig-zag chain structures consisting of X–M–X units (X = chalcogen, M = metal) at the step edge are considered, in which the special 4fh site is partially occupied. The zig-zag configuration is energetically competitive for oxygen but not sulfur. DFT results for oxygen agree with experiment in terms of the stability of the reconstruction, but contradict the original site assignment. The second vicinal surface is the (410), where again results are similar for both metals. For oxygen, DFT predicts that step sites are filled preferentially even at lowest coverage, followed by terrace sites, consistent with the experiment. For sulfur, in contrast, DFT predicts that terrace sites fill first. Oxygen forms O–M–O rows on the top edge of the step, where it occupies incomplete 4fh sites. This resolves an experimental ambiguity in the site assignment. Finally, for both the (211) and (410) surfaces, the interaction energy that stabilizes the X–M–X chain or row correlates with the linearity of the X–M–X unit, which may explain key differences between oxygen and sulfur.« less
NASA Astrophysics Data System (ADS)
Dholabhai, Pratik P.; Atta-Fynn, Raymond; Ray, Asok K.
2008-12-01
In our continuing attempts to understand theoretically various surface properties such as corrosion and potential catalytic activity of actinide surfaces in the presence of environmental gases, we report here the first ab initio study of molecular adsorption on the double hexagonal close-packed (dhcp) americium (Am) (0 0 0 1) surface. Specifically, molecular oxygen adsorption on the (0 0 0 1) surface of dhcp Am has been studied in detail within the framework of density functional theory using a full-potential all-electron linearized augmented plane wave plus local orbitals (FP-LAPW+lo) method. Dissociative adsorption is found to be energetically more favorable compared to molecular adsorption. Chemisorption energies were optimized with respect to the distance of adsorbates from the surface for three approach positions at three adsorption sites, namely t1 (one-fold top), b2 (two-fold bridge), and h3 (three-fold hollow) sites. Chemisorption energies were computed at the scalar-relativistic-no-spin-orbit-coupling (SR-NSOC) and at the fully relativistic-with-spin-orbit-coupling (FR-SOC) levels of theory. The most stable configuration corresponds to a horizontal approach molecular dissociation with the oxygen atoms occupying neighboring h3 sites, with chemisorption energies at the NSOC and SOC theoretical levels being 9.395 and 9.886 eV, respectively. The corresponding distances of the oxygen molecule from the surface and oxygen-oxygen distance were found to be 0.953 and 3.731 Å, respectively. Overall our calculations indicate that chemisorption energies in cases with SOC are slightly more stable than those with NSOC in the 0.089-0.493 eV range. The work functions and net magnetic moments, respectively, increased and decreased in all cases compared to corresponding quantities of the bare dhcp-Am (0 0 0 1) surface. Adsorbate-substrate interactions have been analyzed in detail using partial charges inside muffin-tin spheres, difference charge density distributions, and the local density of states. The effects, if any, of chemisorption on Am5f electron localization-delocalization characteristics in the vicinity of the Fermi level are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferguson, R.B.; Tones, P.L.
1978-11-01
Stream sediment and stream water samples were collected from small streams at 980 sites for a nominal density of one site per 18 square kilometers in rural areas. Ground water samples were collected at 1251 sites for a nominal density of one site per 13 square kilometers. Neutron activation analysis results are given for uranium and 16 other elements in sediments, and for uranium and 9 other elements in ground water and surface water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented in tables and maps. Statistical summaries of data and amore » brief description of results are given. A generalized geologic map and a summary of the geology of the area are included.« less
Directing reaction pathways by catalyst active-site selection using self-assembled monolayers.
Pang, Simon H; Schoenbaum, Carolyn A; Schwartz, Daniel K; Medlin, J Will
2013-01-01
One key route for controlling reaction selectivity in heterogeneous catalysis is to prepare catalysts that exhibit only specific types of sites required for desired product formation. Here we show that alkanethiolate self-assembled monolayers with varying surface densities can be used to tune selectivity to desired hydrogenation and hydrodeoxygenation products during the reaction of furfural on supported palladium catalysts. Vibrational spectroscopic studies demonstrate that the selectivity improvement is achieved by controlling the availability of specific sites for the hydrogenation of furfural on supported palladium catalysts through the selection of an appropriate alkanethiolate. Increasing self-assembled monolayer density by controlling the steric bulk of the organic tail ligand restricts adsorption on terrace sites and dramatically increases selectivity to desired products furfuryl alcohol and methylfuran. This technique of active-site selection simultaneously serves both to enhance selectivity and provide insight into the reaction mechanism.
Jimenez-Orozco, Carlos; Florez, Elizabeth; Moreno, Andres; ...
2016-12-06
A comprehensive study of acetylene adsorption on δ-MoC(001), TiC(001) and ZrC(001) surfaces was carried out by means of calculations based on periodic density functional theory, using the Perdew–Burke–Ernzerhof exchange–correlation functional. It was found that the bonding of acetylene was significantly affected by the electronic and structural properties of the carbide surfaces. The adsorbate interacted with metal and/or carbon sites of the carbide. The interaction of acetylene with the TiC(001) and ZrC(001) surfaces was strong (binding energies higher than $-$3.5 eV), while moderate acetylene adsorption energies were observed on δ-MoC(001) ($-$1.78 eV to –0.66 eV). Adsorption energies, charge density difference plotsmore » and Mulliken charges suggested that the binding of the hydrocarbon to the surface had both ionic and covalent contributions. According to the C–C bond lengths obtained, the adsorbed molecule was modified from acetylene-like into ethylene-like on the δ-MoC(001) surface (desired behavior for hydrogenation reactions) but into ethane-like on TiC(001) and ZrC(001). The obtained results suggest that the δ-MoC(001) surface is expected to have the best performance in selective hydrogenation reactions to convert alkynes into alkenes. Another advantage of δ-MoC(001) is that, after C 2H 2 adsorption, surface carbon sites remain available, which are necessary for H 2 dissociation. Furthermore, these sites were occupied when C 2H 2 was adsorbed on TiC(001) and ZrC(001), limiting their application in the hydrogenation of alkynes.« less
The surface stability of Cr 2O 3 (0 0 0 1)
Cao, Shi; Wu, Ning; Echtenkamp, William; ...
2015-05-28
The surface of chromia (Cr 2O 3) has a surface electronic structure distinct from the bulk and a packing density distinct from the bulk. More than a demarcation between the solid and the vacuum, the surface differs from the bulk of chromia, not just because of a partial occupancy of chromium sites, but also because of an increased number of unoccupied surface oxygen sites (vacancy sites), evident in angle-resolved core level photoemission. In spite of the structural differences that exist at the surface, there is, as yet, no evidence that these complications affect the surface Debye temperature beyond the mostmore » simple of assumptions regarding the lower coordination of the surface. Using low-energy electron diffraction (LEED), the effective surface Debye temperature (similar to 490 K) is found to be lower than the bulk (similar to 645 K) Debye temperature of Cr 2O 3(0 0 0 1). This surface effective Debye temperature, indicative of vibrations along the surface normal, uncorrected for anharmonic effects, has a value reduced from the effective bulk Debye temperature yet close to the value root 2 expected from a simple mean field argument.« less
Zhang, Xiaoxing; Chen, Qinchuan; Tang, Ju; Hu, Weihua; Zhang, Jinbin
2014-01-01
The detection of partial discharge by analyzing the components of SF6 gas in gas-insulated switchgears is important to the diagnosis and assessment of the operational state of power equipment. A gas sensor based on anatase TiO2 is used to detect decomposed gases in SF6. In this paper, first-principle density functional theory calculations are adopted to analyze the adsorption of SO2, SOF2, and SO2F2, the primary decomposition by-products of SF6 under partial discharge, on anatase (101) and (001) surfaces. Simulation results show that the perfect anatase (001) surface has a stronger interaction with the three gases than that of anatase (101), and both surfaces are more sensitive and selective to SO2 than to SOF2 and SO2F2. The selection of a defect surface to SO2, SOF2, and SO2F2 differs from that of a perfect surface. This theoretical result is corroborated by the sensing experiment using a TiO2 nanotube array (TNTA) gas sensor. The calculated values are analyzed to explain the results of the Pt-doped TNTA gas sensor sensing experiment. The results imply that the deposited Pt nanoparticles on the surface increase the active sites of the surface and the gas molecules may decompose upon adsorption on the active sites. PMID:24755845
Kreibich, Saskia; Vonaesch, Pascale; Andritschke, Daniel; Rout, Samuel; Weidner, Kerstin; Sormaz, Milos; Songhet, Pascal; Horvath, Peter; Chabria, Mamta; Vogel, Viola; Spori, Doris M.; Jenny, Patrick; Hardt, Wolf-Dietrich
2012-01-01
Targeting of permissive entry sites is crucial for bacterial infection. The targeting mechanisms are incompletely understood. We have analyzed target-site selection by S. Typhimurium. This enteropathogenic bacterium employs adhesins (e.g. fim) and the type III secretion system 1 (TTSS-1) for host cell binding, the triggering of ruffles and invasion. Typically, S. Typhimurium invasion is focused on a subset of cells and multiple bacteria invade via the same ruffle. It has remained unclear how this is achieved. We have studied target-site selection in tissue culture by time lapse microscopy, movement pattern analysis and modeling. Flagellar motility (but not chemotaxis) was required for reaching the host cell surface in vitro. Subsequently, physical forces trapped the pathogen for ∼1.5–3 s in “near surface swimming”. This increased the local pathogen density and facilitated “scanning” of the host surface topology. We observed transient TTSS-1 and fim-independent “stopping” and irreversible TTSS-1-mediated docking, in particular at sites of prominent topology, i.e. the base of rounded-up cells and membrane ruffles. Our data indicate that target site selection and the cooperative infection of membrane ruffles are attributable to near surface swimming. This mechanism might be of general importance for understanding infection by flagellated bacteria. PMID:22911370
NASA Astrophysics Data System (ADS)
Yao, Huichao; Chen, Yu; Wei, Yuechang; Zhao, Zhen; Liu, Zhichang; Xu, Chunming
2012-11-01
The adsorption of ammonia at Brönsted and Lewis acid sites on three low-index (001), (010) and (100) surfaces of V2O5 catalyst was investigated using density functional theory (DFT) method. Three levels of surface relaxation periodic models including top single layer relaxation (S-model), moderately deeper relaxation (M-model) and full relaxation model (F-model) were applied to examine the effect of the surface relaxation on the binding structures and adsorption energies. The results of calculations showed that on the saturated basal plane V2O5 (001), ammonia adsorption at the Brönsted acid sites (VOH) is energetically more favorable. On unsaturated (010) and (100) surfaces, ammonia is adsorbed strongly on both Brönsted (VOH) and Lewis acid sites (V). Surface relaxations have no influence on ammonia adsorption on saturated (001) surface, while a strong dependence on the relaxation models is observed for NH3-adsorption energies on (010) and (100) surfaces, especially at the Lewis acid sites of both side planes. When complete relaxation considered (F-model), ammonia adsorption on the Lewis acid sites (V) dominates for side planes (010) and (100). In the presence of VOH as neighbor, the ammonia adsorption at V sites is however weakened significantly due to steric hindrance. Hydrogen bonds may play a role, although not determining one, in the respect of the adsorption of ammonia on (010) and (100) surfaces. Moderate relaxation and full relaxation are absolutely necessary for the description of both H and NH3 adsorption on unsaturated (100) and (010) surfaces, respectively.
Native gallium adatoms discovered on atomically-smooth gallium nitride surfaces at low temperature.
Alam, Khan; Foley, Andrew; Smith, Arthur R
2015-03-11
In advanced compound semiconductor devices, such as in quantum dot and quantum well systems, detailed atomic configurations at the growth surfaces are vital in determining the structural and electronic properties. Therefore, it is important to investigate the surface reconstructions in order to make further technological advancements. Usually, conventional semiconductor surfaces (e.g., arsenides, phosphides, and antimonides) are highly reactive due to the existence of a high density of group V (anion) surface dangling bonds. However, in the case of nitrides, group III rich growth conditions in molecular beam epitaxy are usually preferred leading to group III (Ga)-rich surfaces. Here, we use low-temperature scanning tunneling microscopy to reveal a uniform distribution of native gallium adatoms with a density of 0.3%-0.5% of a monolayer on the clean, as-grown surface of nitrogen polar GaN(0001̅) having the centered 6 × 12 reconstruction. Unseen at room temperature, these Ga adatoms are strongly bound to the surface but move with an extremely low surface diffusion barrier and a high density saturation coverage in thermodynamic equilibrium with Ga droplets. Furthermore, the Ga adatoms reveal an intrinsic surface chirality and an asymmetric site occupation. These observations can have important impacts in the understanding of gallium nitride surfaces.
Barrier-free subsurface incorporation of 3 d metal atoms into Bi(111) films
Klein, C.; Vollmers, N. J.; Gerstmann, U.; ...
2015-05-27
By combining scanning tunneling microscopy with density functional theory it is shown that the Bi(111) surface provides a well-defined incorporation site in the first bilayer that traps highly coordinating atoms such as transition metals (TMs) or noble metals. All deposited atoms assume exactly the same specific sevenfold coordinated subsurface interstitial site while the surface topography remains nearly unchanged. Notably, 3 d TMs show a barrier-free incorporation. The observed surface modification by barrier-free subsorption helps to suppress aggregation in clusters. Thus, it allows a tuning of the electronic properties not only for the pure Bi(111) surface, but may also be observedmore » for topological insulators formed by substrate-stabilized Bi bilayers.« less
Dittrich, Maria; Sibler, Sabine
2005-06-15
In order to clarify the role of picocyanobacteria in aquatic biogeochemical processes (e.g., calcite precipitation), cell surface properties need to be investigated. An experimental study of the cell surface characteristics of two Synechococcus-type unicellular autotrophic picocyanobacterial strains was carried out. One strain was isolated from Lake Plon and contained phycocyanin, the other strain came from Lago Maggiore and was rich in phycoerythrin. Potentiometric titrations were conducted to determine the different types of sites present on the bacteria cell walls. Infrared spectroscopy allowed characterization of the various functional groups (RNH(2), RCOOH, ROH, RPO(2)) and investigations of zeta potential provided insight into the isoelectrical points of the strains. Titrations reveal three distinct sites on the bacterial surfaces of phycocyanin- and phycoerythrin-rich strains with pK values of 4.8+/-0.3/5.0+/-0.2, 6.6+/-0.2/6.7+/-0.4, and 8.8+/-0.1/8.7+/-0.2, corresponding to carboxyl, phosphate, and amine groups with surface densities of 2.6+/-0.4/7.4+/-1.6 x 10(-4), 1.9+/-0.5/4.4+/-0.8 x 10(-4), and 2.5+/-0.4/4.8+/-0.7 x 10(-4) mol/g of dry bacteria. The deprotonation constants are similar to those of bacterial strains and site densities are also within an order of magnitude of other strains. The phycoerythrin-rich strain had a higher number of binding sites than the phycocyanin-rich strain. The results showed that picocyanobacteria may adsorb either calcium cations or carbonate anions and therefore strongly influence the biogeochemical cycling of calcite in pelagic systems.
Acidity and origin of dissolved organic carbon in different vegetation zones
NASA Astrophysics Data System (ADS)
Hruška, Jakub; Oulehle, Filip; Myška, Oldřích; Chuman, Tomáš
2016-04-01
The acid/base character of aquatic dissolved organic carbon (DOC) has been studied intensively during recent decades with regard to the role of DOC in stream water acidity and the balance between natural acidity and anthropogenic acidification. Recently, DOC has been shown to play an important role in preindustrial surface waters. Studies focused on the acid/base properties of DOC have been carried out in mainly in Europe and North America and paint a conflicting picture. Some studies reported large differences in acid base properties, sometimes between quite similar and nearby localities, or between seasons at the same site. Other studies, however, found similar acid/base properties in waters from a variety of sites, sometimes far from each other as well as stable acid/base properties at the same site through different seasons or runoff events. Site density of DOC (amount of carboxylic groups per milligram of DOC) and SUVA was measured for streams (or small tundra ponds respectively) from the tundra in northern Alaska, boreal zone of Sweden, western Czech Republic (temperate region), and tropical Congo rain forest in central Africa. At least 10 samples from each region were taken from surface waters during the growing season. Titration of carboxylic groups after proton saturation on cation-exchange resin was used for site density determination. Despite very different climatic and vegetation properties and internal variation within a region, there was no statistically significant difference among regions for site density (it varied between 10.2-10.5 ueq/mg DOC) as well as for SUVA (tested by ANOVA). Results suggest that different vegetation and climate produced generally the same DOC in respect of acid/base character and SUVA. It also suggests that use of the one analytical technique was more important than differences between climatic zones itself.
NASA Astrophysics Data System (ADS)
Grodsky, S.; Hernandez, R. R.
2017-12-01
Solar energy development may function as a contemporary, anthropogenic driver of disturbance when sited in natural ecosystems. Orientation and density of solar modules, including heliostats at concentrating solar power (CSP) facilities, may affect soils via shading and altered surface-water flow. Meanwhile, soil attributes like temperature and moisture may affect nutrient cycling, plant germination and growth, and soil biota. We tested effects of CSP heliostats on soil temperature at Ivanpah Solar Electric Generating System (ISEGS) in the Mojave Desert, USA. We implemented experimental treatments based on preconstruction rare plant [e.g., Mojave milkweed (Asclepias nyctaginifolia)] protection areas (hereafter "halos"), site preparation activities, and heliostat density throughout three, replicated CSP blocks (i.e., tower and associated heliostats), including: (1) No Halos (Bladed) - high site preparation intensity, high heliostat density immediately surrounding towers; (2) No Halos (Mowed) - moderate site preparation intensity, moderate to low heliostat density as distance increases from towers; and (3) Halos - no site preparation, no heliostats. We also established control sites within 1,600 km of ISEGS in undisturbed desert. We observed significant differences in soil temperature across treatments. We recorded significantly lower soil temperatures in the No Halos (Bladed) treatments (26.7°C) and No Halos (Mowed) treatments (29.9°C) than in the Halos treatments (32.9°C) and controls (32.1°C). We also determined that soil temperatures in the Halos treatments and controls did not significantly differ. Our results indicated that shading from high-density heliostat configuration significantly reduced soil temperature relative to low-density heliostat configuration and areas without CSP. Shading from heliostats and consequential fluctuation in soil temperatures may affect local-scale distribution of flora and fauna, leading to altered "bottom-up" ecological interactions at ISEGS.
Surface chemistry of ferrihydrite: Part 2. Kinetics of arsenate adsorption and coprecipitation
Fuller, C.C.; Dadis, J.A.; Waychunas, G.A.
1993-01-01
The kinetics of As(V) adsorption by ferrihydrite was investigated in coprecipitation and postsynthesis adsorption experiments conducted in the pH range 7.5-9.0. In coprecipitation experiments, As(V) was present in solution during the hydrolysis and precipitation of iron. In adsorption experiments, a period of rapid (<5 min) As(V) uptake from solution was followed by continued uptake for at least eight days, as As(V) diffused to adsorption sites on ferrihydrite surfaces within aggregates of colloidal particles. The time dependence of As(V) adsorption is well described by a general model for diffusion into a sphere if a subset of surface sites located near the exterior of aggregates is assumed to attain adsorptive equilibrium rapidly. The kinetics of As(V) desorption after an increase in pH were also consistent with diffusion as a rate-limiting process. Aging of pure ferrihydrite prior to As(V) adsorption caused a decrease in adsorption sites on the precipitate owing to crystallite growth. In coprecipitation experiments, the initial As(V) uptake was significantly greater than in post-synthesis adsorption experiments, and the rate of uptake was not diffusion limited because As(V) was coordinated by surface sites before crystallite growth and coagulation processes could proceed. After the initial adsorption, As(V) was slowly released from coprecipitates for at least one month, as crystallite growth caused desorption of As(V). Adsorption densities as high as 0.7 mole As(V) per mole of Fe were measured in coprecipitates, in comparison to 0.25 mole As(V) per mole of Fe in post-synthesis adsorption experiments. Despite the high Concentration of As(V) in the precipitates, EXAFS spectroscopy (Waychunas et al., 1993) showed that neither ferric arsenate nor any other As-bearing surface precipitate or solid solution was formed. The high adsorption densities are possible because the ferrihydrite particles are extremely small, approaching the size of small dioctahedral chains at the highest As(V) adsorption density. The results suggest that the solid solution model proposed by Fox (1989, 1992) for control of arsenate and phosphate concentrations in natural waters may be invalid. ?? 1993.
Self-optimizing, highly surface-active layered metal dichalcogenide catalysts for hydrogen evolution
NASA Astrophysics Data System (ADS)
Liu, Yuanyue; Wu, Jingjie; Hackenberg, Ken P.; Zhang, Jing; Wang, Y. Morris; Yang, Yingchao; Keyshar, Kunttal; Gu, Jing; Ogitsu, Tadashi; Vajtai, Robert; Lou, Jun; Ajayan, Pulickel M.; Wood, Brandon C.; Yakobson, Boris I.
2017-09-01
Low-cost, layered transition-metal dichalcogenides (MX2) based on molybdenum and tungsten have attracted substantial interest as alternative catalysts for the hydrogen evolution reaction (HER). These materials have high intrinsic per-site HER activity; however, a significant challenge is the limited density of active sites, which are concentrated at the layer edges. Here we unravel electronic factors underlying catalytic activity on MX2 surfaces, and leverage the understanding to report group-5 MX2 (H-TaS2 and H-NbS2) electrocatalysts whose performance instead mainly derives from highly active basal-plane sites, as suggested by our first-principles calculations and performance comparisons with edge-active counterparts. Beyond high catalytic activity, they are found to exhibit an unusual ability to optimize their morphology for enhanced charge transfer and accessibility of active sites as the HER proceeds, offering a practical advantage for scalable processing. The catalysts reach 10 mA cm-2 current density at an overpotential of ˜50-60 mV with a loading of 10-55 μg cm-2, surpassing other reported MX2 candidates without any performance-enhancing additives.
Liu, Liuxie; Li, Kai; Chen, Xiao; Liang, Xiaoqin; Zheng, Yan; Li, Laicai
2018-03-29
The adsorption of 20 amino acids (AAs) on the (101) surface of anatase titanium dioxide (TiO 2 ) has been investigated under the scheme of density functional theory. Through the analysis of adsorption geometries, amino group and side chains of AAs have been identified as the major side to adsorb on TiO 2 , while the carboxyl group prefers to stay outside to avoid the repulsion between negatively charged oxygen from TiO 2 and AAs. On the surface, two-coordinated oxygen is the major site to stabilize AAs through O-H interactions. The above conclusion does not change when it is in the aqueous solution based on the calculations with AAs surrounded by explicit water molecules. The above knowledge is helpful in predicting how AAs and even peptides adsorb on inorganic materials. Graphical abstract The adsorption of 20 amino acids (AAs) on the (101) surface of anatase titanium dioxide (TiO 2 ) has been investigated under the scheme of density functional theory.
Voznyy, Oleksandr; Dubowski, Jan J
2006-11-30
Chemisorption of alkanethiols on As-rich GaAs (001) surface under a low coverage condition was studied using first principles density functional calculations in a periodic supercell approach. The thiolate adsorption site, tilt angle and its direction are dictated by the high directionality of As dangling bond and sulfur 3p orbital participating in bonding and steric repulsion of the first three CH2 units from the surface. Small charge transfer between thiolate and surface, strong dependence of total energy on tilt angle, and a relatively short length of 2.28 A of the S-As bond indicate the highly covalent nature of the bonding. Calculated binding energy of 2.1 eV is consistent with the available experimental data.
Recovery of perennial vegetation in military target sites in the eastern Mohave Desert, Arizona
Steiger, John W.; Webb, Robert H.
2000-01-01
The effect of the age of geomorphic surfaces on the recovery of desert vegetation in military target sites was studied in the Mohave and Cerbat Mountains of northwestern Arizona. The target sites were cleared of all vegetation during military exercises in 1942-1943 and have not been subsequently disturbed. The degree of recovery was measured by calculating percentage-similarity (PS) and correlation-coefficient indices on the basis of differences in cover, density, and volume of species growing in and out of each target site. PS values, ranging from 22.7 to 95.1 percent (100 percent = identical composition), indicate a wide range of recovery that is partially controlled by the edaphic properties of the geomorphic surfaces. Statistical analyses show a strong pattern that indicates a greater variability in the degree of recovery for sites on older surfaces than on younger surfaces and a weak pattern that indicates an inverse relation between the degree of recovery and geomorphic age. Comparisons of the different effects of target site construction on the edaphic characteristics of each target site provides an explanation for these patterns and suggests the soil properties critical to the recovery process. Statistically significant negative or positive response to disturbance for most species are independent of the age of the geomorphic surfaces; however, there is strong evidence for a shift in response for the common perennial species Acamptopappus sphaerocephalus, and to a lesser extent, Salazaria mexicana, Encelia farinosa, and Coldenia canescens, among different geomorphic surfaces.
Evaluation of potential site for mineral processing plant
NASA Astrophysics Data System (ADS)
Izwan Ishak, Muhamad Noor; Sipaun, Susan Maria; Mustapha, Ismail; Fahmi Engku Chik, Engku Mohd; Abdullah, Nurliyana; Affandi Mahmood, Airwan
2018-01-01
Nuclear moisture-density gauge is a type of instrument for measuring density and moisture of the material in a relatively thin zone beneath a surface of the material by using low activity of neutron and gamma radiation source. Density and moisture content data of the compacted layers are needed to determine the degree of compaction of soils, aggregate, concrete, asphalt or other materials used in civil engineering works. A gamma radiation source is mounted inside gauge housing with the source rod vertically extended to various depth positions. Direct transmission gamma radiation technique is used to obtain the count reading for the number of photons emitted before it is converted into density reading by microprocessor. This paper presents the inspection technique and results for the measurement of soil moisture and density carried out at potential site for mineral processing plant, Malaysian Nuclear Agency. Primarily, the experiment was conducted to ensure the compaction of ground is suitable for the plant construction. From the calculation, the percentages of soil wet density compaction (%WD Compact) are within acceptable limits with respect to the standard compacted wet soil density measured in the laboratory.
Setyan, Ari; Sauvain, Jean-Jacques; Guillemin, Michel; Riediker, Michael; Demirdjian, Benjamin; Rossi, Michel J
2010-12-17
The complex chemical and physical nature of combustion and secondary organic aerosols (SOAs) in general precludes the complete characterization of both bulk and interfacial components. The bulk composition reveals the history of the growth process and therefore the source region, whereas the interface controls--to a large extent--the interaction with gases, biological membranes, and solid supports. We summarize the development of a soft interrogation technique, using heterogeneous chemistry, for the interfacial functional groups of selected probe gases [N(CH(3))(3), NH(2)OH, CF(3)COOH, HCl, O(3), NO(2)] of different reactivity. The technique reveals the identity and density of surface functional groups. Examples include acidic and basic sites, olefinic and polycyclic aromatic hydrocarbon (PAH) sites, and partially and completely oxidized surface sites. We report on the surface composition and oxidation states of laboratory-generated aerosols and of aerosols sampled in several bus depots. In the latter case, the biomarker 8-hydroxy-2'-deoxyguanosine, signaling oxidative stress caused by aerosol exposure, was isolated. The increase in biomarker levels over a working day is correlated with the surface density N(i)(O3) of olefinic and/or PAH sites obtained from O(3) uptakes as well as with the initial uptake coefficient, γ(0), of five probe gases used in the field. This correlation with γ(0) suggests the idea of competing pathways occurring at the interface of the aerosol particles between the generation of reactive oxygen species (ROS) responsible for oxidative stress and cellular antioxidants.
Local electronic and optical behaviors of a-plane GaN grown via epitaxial lateral overgrowth
NASA Astrophysics Data System (ADS)
Moore, J. C.; Kasliwal, V.; Baski, A. A.; Ni, X.; Özgür, Ü.; Morkoç, H.
2007-01-01
Conductive atomic force microscopy and near-field optical microscopy (NSOM) were used to study the morphology, conduction, and optical properties of a-plane GaN films grown via epitaxial lateral overgrowth (ELO) by metal organic chemical vapor deposition. The AFM images for the coalesced ELO films show undulations, where the window regions appear as depressions with a high density of surface pits. At reverse bias below 12V, very low uniform conduction (2pA) is seen in the window regions. Above 20V, a lower-quality sample shows localized sites inside the window regions with significant leakage, indicating a correlation between the presence of surface pits and leakage sites. Room temperature NSOM studies explicitly showed enhanced optical quality in the wing regions of the overgrown GaN due to a reduced density of dislocations, with the wings and the windows clearly discernible from near-field photoluminescence mapping.
NASA Astrophysics Data System (ADS)
Naderi, Ebadollah; Nanavati, Sachin; Majumder, Chiranjib; Ghaisas, S. V.
2015-01-01
CdTe is one of the most promising semiconductor for thin-film based solar cells. Here we report a computational study of Cd and Te adatom diffusion on the CdTe (111) A-type (Cd terminated) and B-type (Te terminated) surfaces and their migration paths. The atomic and electronic structure calculations are performed under the DFT formalism and climbing Nudge Elastic Band (cNEB) method has been applied to evaluate the potential barrier of the Te and Cd diffusion. In general the minimum energy site on the surface is labeled as Aa site. In case of Te and Cd on B-type surface, the sub-surface site (a site just below the top surface) is very close in energy to the A site. This is responsible for the subsurface accumulation of adatoms and therefore, expected to influence the defect formation during growth. The diffusion process of adatoms is considered from Aa (occupied) to Aa (empty) site at the nearest distance. We have explored three possible migration paths for the adatom diffusion. The adatom surface interaction is highly dependent on the type of the surface. Typically, Te interaction with both type (5.2 eV for A-type and 3.8 eV for B-type) is stronger than Cd interactions(2.4 eV for B-type and 0.39 eV for A-type). Cd interaction with the A-type surface is very weak. The distinct behavior of the A-type and B-type surfaces perceived in our study explain the need of maintaining the A-type surface during growth for smooth and stoichiometric growth.
NASA Astrophysics Data System (ADS)
Motevalli, Benyamin; Taherifar, Neda; Wu, Bisheng; Tang, Wenxin; Liu, Jefferson Zhe
2017-11-01
The adsorption of di-meta-cyano azobenzene (DMC) cis and trans isomers on non-passivated and passivated Si (111) (7 × 7) surfaces is studied using density functional theory (DFT) calculations. Our results reveal that on the non-passivated surface the 12 Si adatoms are accessible to form chemical bonds with DMC molecules. Interestingly, the trans isomer forms two chemical bonds near the corner hole atom in Si (111) (7 × 7) surface, which is not observed in the widely studied metallic surfaces. The DMC isomers show significant structural distortion in the chemisorption case. The strong chemical bonds (and high bonding energy) could be detrimental to conformation switching between these two isomers under external stimuli. The physisorption case is also examined. Monte Carlo (MC) simulations with empirical force fields were employed to search about 106 different adsorption positions and DMC molecule orientations to identify the stable adsorption sites (up to six). The DFT-PBE and DFT-D2 calculations were then carried out to obtain the relaxed atomistic structures and accurate adsorption energy. We find that it is imperative to take van der Waals (vdW) interaction into account in DFT calculations. Our results show that the adsorption sites generally are encompassed by either the Si adatoms or the passivated H atoms, which could enhance the long-range dispersion interaction between DMC molecules and Si surfaces. The molecular structures of both isomers remain unchanged compared with gas phase. The obtained adsorption energy results ΔEads are moderate (0.2-0.8 eV). At some adsorption sites on the passivated surface, both isomers have similar moderate ΔEads (0.4-0.6 eV), implying promises of molecular switching that should be examined in experiments.
Biological properties of disturbed and undisturbed Cerrado sensu stricto from Northeast Brazil.
Araújo, A S F; Magalhaes, L B; Santos, V M; Nunes, L A P L; Dias, C T S
2017-03-01
The aim of this study was to measure soil microbial biomass and soil surface fauna in undisturbed and disturbed Cerrado sensu stricto (Css) from Sete Cidades National Park, Northeast Brazil. The following sites were sampled under Cerrado sensu stricto (Css) at the park: undisturbed and disturbed Css (slash-and-burn agricultural practices). Total organic and microbial biomass C were higher in undisturbed than in disturbed sites in both seasons. However, microbial biomass C was higher in the wet than in the dry season. Soil respiration did not vary among sites but was higher in the wet than in the dry season. The densities of Araneae, Coleoptera, and Orthoptera were higher in the undisturbed site, whereas the densities of Formicidae were higher in the disturbed site. Non-metric multidimensional scaling analysis separated undisturbed from disturbed sites according to soil biological properties. Disturbance by agricultural practices, such as slash-and-burn, probably resulted in the deterioration of the biological properties of soil under native Cerrado sensu stricto in the Sete Cidades National Park.
Effect of particle surface area on ice active site densities retrieved from droplet freezing spectra
NASA Astrophysics Data System (ADS)
Beydoun, Hassan; Polen, Michael; Sullivan, Ryan C.
2016-10-01
Heterogeneous ice nucleation remains one of the outstanding problems in cloud physics and atmospheric science. Experimental challenges in properly simulating particle-induced freezing processes under atmospherically relevant conditions have largely contributed to the absence of a well-established parameterization of immersion freezing properties. Here, we formulate an ice active, surface-site-based stochastic model of heterogeneous freezing with the unique feature of invoking a continuum assumption on the ice nucleating activity (contact angle) of an aerosol particle's surface that requires no assumptions about the size or number of active sites. The result is a particle-specific property g that defines a distribution of local ice nucleation rates. Upon integration, this yields a full freezing probability function for an ice nucleating particle. Current cold plate droplet freezing measurements provide a valuable and inexpensive resource for studying the freezing properties of many atmospheric aerosol systems. We apply our g framework to explain the observed dependence of the freezing temperature of droplets in a cold plate on the concentration of the particle species investigated. Normalizing to the total particle mass or surface area present to derive the commonly used ice nuclei active surface (INAS) density (ns) often cannot account for the effects of particle concentration, yet concentration is typically varied to span a wider measurable freezing temperature range. A method based on determining what is denoted an ice nucleating species' specific critical surface area is presented and explains the concentration dependence as a result of increasing the variability in ice nucleating active sites between droplets. By applying this method to experimental droplet freezing data from four different systems, we demonstrate its ability to interpret immersion freezing temperature spectra of droplets containing variable particle concentrations. It is shown that general active site density functions, such as the popular ns parameterization, cannot be reliably extrapolated below this critical surface area threshold to describe freezing curves for lower particle surface area concentrations. Freezing curves obtained below this threshold translate to higher ns values, while the ns values are essentially the same from curves obtained above the critical area threshold; ns should remain the same for a system as concentration is varied. However, we can successfully predict the lower concentration freezing curves, which are more atmospherically relevant, through a process of random sampling from g distributions obtained from high particle concentration data. Our analysis is applied to cold plate freezing measurements of droplets containing variable concentrations of particles from NX illite minerals, MCC cellulose, and commercial Snomax bacterial particles. Parameterizations that can predict the temporal evolution of the frozen fraction of cloud droplets in larger atmospheric models are also derived from this new framework.
NASA Astrophysics Data System (ADS)
Osterberg, E. C.; Graeter, K.; Hawley, R. L.; Marshall, H. P.; Ferris, D. G.; Lewis, G.; Birkel, S. D.; Meehan, T.; McCarthy, F.
2017-12-01
The Greenland Ice Sheet (GrIS) has been losing mass since at least the early 2000s, mostly due to enhanced surface melt. Approximately 40% of the surface melt currently generated on the GrIS percolates into the snow/firn and refreezes, where it has no immediate impact on GrIS mass balance or sea-level rise. However, in situ observations of surface melt are sparse, and thus it remains unclear how melt water percolation and refreezing are modifying the GrIS percolation zone under recent warming. In addition, understanding the climatic drivers behind the recent increase in melt is critical for accurately predicting future GrIS surface melt rates and contributions to sea-level rise. Here we show that there have been significant increases in melt refreeze and firn density over the past 30-50 years along a 250 km-long region of the Western Greenland percolation zone (2137 - 2218 m elevation). We collected seven shallow firn cores as part of the 2016 Greenland Traverse for Accumulation and Climate Studies (GreenTrACS), analyzed each for melt layer stratigraphy and density, and developed timescales for each based on annual layer counting of seasonal chemical oscillations (e.g. δ18O, dust, and biogenic sulfur). The cores indicate that refrozen melt layers have increased 2- to 9-fold since 1970, with statistically significant (p < 0.05) linear trends at the five southernmost core sites. Comparisons of two GreenTrACS cores to co-located PARCA cores collected in 1998 reveal significant (p < 0.05) increases in density averaged over the top 10 m of firn ranging from 32-42 kg/m3. Recent density increases closely correspond with the locations of refrozen melt water. We use output from the MARv3.7 Regional Climate Model to assess climatic forcing of surface melt at GreenTrACS sites, and find significant summer-to-summer correlations between melt generation and the frequency of blocking high pressure centers over Greenland (represented by the Greenland Blocking Index; GBI), and with North Atlantic sea surface temperatures (represented by the Atlantic Multidecadal Oscillation; AMO). Thus, future surface melt rates in Western Greenland depend on the complex evolution of the GBI and AMO under anthropogenic forcing, both of which remain poorly constrained in 21st century model projections.
Electron transport in ethanol & methanol absorbed defected graphene
NASA Astrophysics Data System (ADS)
Dandeliya, Sushmita; Srivastava, Anurag
2018-05-01
In the present paper, the sensitivity of ethanol and methanol molecules on surface of single vacancy defected graphene has been investigated using density functional theory (DFT). The changes in structural and electronic properties before and after adsorption of ethanol and methanol were analyzed and the obtained results show high adsorption energy and charge transfer. High adsorption happens at the active site with monovacancy defect on graphene surface. Present work confirms that the defected graphene increases the surface reactivity towards ethanol and methanol molecules. The presence of molecules near the active site affects the electronic and transport properties of defected graphene which makes it a promising choice for designing methanol and ethanol sensor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lu-Cun; Friend, C. M.; Fushimi, Rebecca
The activation of molecular O 2as well as the reactivity of adsorbed oxygen species is of central importance in aerobic selective oxidation chemistry on Au-based catalysts. Herein, we address the issue of O 2activation on unsupported nanoporous gold (npAu) catalysts by applying a transient pressure technique, a temporal analysis of products (TAP) reactor, to measure the saturation coverage of atomic oxygen, its collisional dissociation probability, the activation barrier for O 2dissociation, and the facility with which adsorbed O species activate methanol, the initial step in the catalytic cycle of esterification. The results from these experiments indicate that molecular O 2dissociationmore » is associated with surface silver, that the density of reactive sites is quite low, that adsorbed oxygen atoms do not spill over from the sites of activation onto the surrounding surface, and that methanol reacts quite facilely with the adsorbed oxygen atoms. In addition, the O species from O 2dissociation exhibits reactivity for the selective oxidation of methanol but not for CO. The TAP experiments also revealed that the surface of the npAu catalyst is saturated with adsorbed O under steady state reaction conditions, at least for the pulse reaction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lu-Cun; Friend, C. M.; Fushimi, Rebecca
2016-01-01
The activation of molecular O 2as well as the reactivity of adsorbed oxygen species is of central importance in aerobic selective oxidation chemistry on Au-based catalysts. Herein, we address the issue of O 2activation on unsupported nanoporous gold (npAu) catalysts by applying a transient pressure technique, a temporal analysis of products (TAP) reactor, to measure the saturation coverage of atomic oxygen, its collisional dissociation probability, the activation barrier for O 2dissociation, and the facility with which adsorbed O species activate methanol, the initial step in the catalytic cycle of esterification. The results from these experiments indicate that molecular O 2dissociationmore » is associated with surface silver, that the density of reactive sites is quite low, that adsorbed oxygen atoms do not spill over from the sites of activation onto the surrounding surface, and that methanol reacts quite facilely with the adsorbed oxygen atoms. In addition, the O species from O 2dissociation exhibits reactivity for the selective oxidation of methanol but not for CO. The TAP experiments also revealed that the surface of the npAu catalyst is saturated with adsorbed O under steady state reaction conditions, at least for the pulse reaction.« less
Kelly Elder; Don Cline; Glen E. Liston; Richard Armstrong
2009-01-01
A field measurement program was undertaken as part NASA's Cold Land Processes Experiment (CLPX). Extensive snowpack and soil measurements were taken at field sites in Colorado over four study periods during the two study years (2002 and 2003). Measurements included snow depth, density, temperature, grain type and size, surface wetness, surface roughness, and...
Local electronic and optical behavior of ELO a-plane GaN
NASA Astrophysics Data System (ADS)
Baski, A. A.; Moore, J. C.; Ozgur, U.; Kasliwal, V.; Ni, X.; Morkoc, H.
2007-03-01
Conductive atomic force microscopy (CAFM) and near-field optical microscopy (NSOM) were used to study a-plane GaN films grown via epitaxial lateral overgrowth (ELO). The ELO films were prepared by metal organic chemical vapor deposition on a patterned SiO2 layer with 4-μm wide windows, which was deposited on a GaN template grown on r-plane sapphire. The window regions of the coalesced ELO films appear as depressions with a high density of surface pits. At reverse bias below 12 V, very low uniform conduction (2 pA) is seen in the window regions. Above 20 V, a lower-quality sample shows localized sites inside the window regions with significant leakage, indicating a correlation between the presence of surface pits and leakage sites. Room temperature NSOM studies also suggest a greater density of surface terminated dislocations in the window regions, while wing regions explicitly show enhanced optical quality of the overgrown GaN. The combination of CAFM and NSOM data therefore indicates a correlation between the presence of surface pits, localized reverse-bias current leakage, and low PL intensity in the window regions.
Carrieroa, A; Pereirab, A F; Wilson, A J; Castagno, S; Javaheri, B; Pitsillides, A A; Marenzana, M; Shefelbine, S J
2018-06-01
Bone is a dynamic tissue and adapts its architecture in response to biological and mechanical factors. Here we investigate how cortical bone formation is spatially controlled by the local mechanical environment in the murine tibia axial loading model (C57BL/6). We obtained 3D locations of new bone formation by performing 'slice and view' 3D fluorochrome mapping of the entire bone and compared these sites with the regions of high fluid velocity or strain energy density estimated using a finite element model, validated with ex-vivo bone surface strain map acquired ex-vivo using digital image correlation. For the comparison, 2D maps of the average bone formation and peak mechanical stimulus on the tibial endosteal and periosteal surface across the entire cortical surface were created. Results showed that bone formed on the periosteal and endosteal surface in regions of high fluid flow. Peak strain energy density predicted only the formation of bone periosteally. Understanding how the mechanical stimuli spatially relates with regions of cortical bone formation in response to loading will eventually guide loading regime therapies to maintain or restore bone mass in specific sites in skeletal pathologies.
Che, Fanglin; Zhang, Renqin; Hensley, Alyssa J; Ha, Su; McEwen, Jean-Sabin
2014-02-14
To provide a basis for understanding the reactive processes on nickel surfaces at fuel cell anodes, we investigate the influence of an external electric field on the dehydrogenation of methyl species on a Ni(111) surface using density functional theory calculations. The structures, adsorption energies and reaction barriers for all methyl species dissociation on the Ni(111) surface are identified. Our results show that the presence of an external electric field does not affect the structures and favorable adsorption sites of the adsorbed species, but causes the adsorption energies of the CHx species at the stable site to fluctuate around 0.2 eV. Calculations give an energy barrier of 0.692 eV for CH3* → CH2* + H*, 0.323 eV for CH2* → CH* + H* and 1.373 eV for CH* → C* + H*. Finally, we conclude that the presence of a large positive electric field significantly increases the energy barrier of the CH* → C* + H* reaction more than the other two reactions, suggesting that the presence of pure C atoms on Ni(111) are impeded in the presence of an external positive electric field.
Aberson, M J R; Bolam, S G; Hughes, R G
2016-04-15
Stable isotope analyses of the abundant infaunal polychaete Hediste diversicolor, recognised as an indicator of sewage pollution, support the hypothesis that nutrient enrichment promotes surface deposit feeding, over suspension feeding and predation. At sewage-polluted sites in three estuaries in SE England Hediste mainly consumed microphytobenthos, sediment organic matter and filamentous macroalgae Ulva spp. At cleaner sites Hediste relied more on suspension feeding and consumption of Spartina anglica. There were no consistent differences in Hediste densities between the polluted and cleaner sites, probably because of increased densities at the cleaner sites too, facilitated by the planting of Spartina and nitrogen enrichment there too, including from agricultural run-off. Increased nutrient enrichment and the artificial availability of Spartina have probably increased densities of, and deposit-feeding by, Hediste in the past half-century and contributed indirectly to saltmarsh losses, since deposit-feeding by Hediste has been implicated in recent saltmarsh erosion in SE England. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ramzaev, Valery; Mishine, Arkady; Golikov, Vladislav; Brown, Justin Emrys; Strand, Per
2007-01-01
Vertical distributions of 137Cs have been determined in vegetation-soil cores obtained from 30 different locations around two underground nuclear explosion sites--"Crystal" (event year - 1974) and "Kraton-3" (event year - 1978) in the Republic of Sakha (Yakutia), Russia. In 2001-2002, background levels of 137Cs surface contamination densities on control forest plots varied from 0.73 to 0.97 kBq m(-2) with an average of 0.84+/-0.10 kBq m(-2) and a median of 0.82 kBq m(-2). 137Cs ground contamination densities at the "Crystal" site ranged from 1.3 to 64 kBq m(-2); the activity gradually decreased with distance from the borehole. For "Kraton-3", residual surface contamination density of radiocaesium varied drastically from 1.7 to 6900 kBq m(-2); maximal 137Cs depositions were found at a "decontaminated" plot. At all forest plots, radiocaesium activity decreased throughout the whole vertical soil profile. Vertical distributions of 137Cs in soil for the majority of the plots sampled (n=18) can be described using a simple exponential function. Despite the fact that more than 20 years have passed since the main fallout events, more than 80% of the total deposited activity was found in the first 5 cm of the vegetation-soil cores from most of the forested landscapes. The low annual temperatures, clay-rich soil type with neutral pH, and presence of thick lichen-moss carpet are the factors which may hinder 137Cs transport down the soil profile.
Probing surface sites of TiO2: reactions with [HRe(CO)5] and [CH3Re(CO)5].
Lobo-Lapidus, Rodrigo J; Gates, Bruce C
2010-10-04
Two carbonyl complexes of rhenium, [HRe(CO)(5)] and [CH(3)Re(CO)(5)], were used to probe surface sites of TiO(2) (anatase). These complexes were adsorbed from the gas phase onto anatase powder that had been treated in flowing O(2) or under vacuum to vary the density of surface OH sites. Infrared (IR) spectra demonstrate the variation in the number of sites, including Ti(+3)-OH and Ti(+4)-OH. IR and extended X-ray absorption fine structure (EXAFS) spectra show that chemisorption of the rhenium complexes led to their decarbonylation, with formation of surface-bound rhenium tricarbonyls, when [HRe(CO)(5)] was adsorbed, or rhenium tetracarbonyls, when [CH(3)Re(CO)(5)] was adsorbed. These reactions were accompanied by the formation of water and surface carbonates and removal of terminal hydroxyl groups associated with Ti(+3) and Ti(+4) ions on the anatase. Data characterizing the samples after adsorption of [HRe(CO)(5)] or [CH(3)Re(CO)(5)] determined a ranking of the reactivity of the surface OH sites, with the Ti(+3)-OH groups being the more reactive towards the rhenium complexes but the less likely to be dehydroxylated. The two rhenium pentacarbonyl probes provided complementary information, suggesting that the carbonate species originate from carbonyl ligands initially bonded to the rhenium and from hydroxyl groups of the titania surface, with the reaction leading to the formation of water and bridging hydroxyl groups on the titania. The results illustrate the value of using a family of organometallic complexes as probes of oxide surface sites.
Spatially Resolved Quantification of the Surface Reactivity of Solid Catalysts.
Huang, Bing; Xiao, Li; Lu, Juntao; Zhuang, Lin
2016-05-17
A new property is reported that accurately quantifies and spatially describes the chemical reactivity of solid surfaces. The core idea is to create a reactivity weight function peaking at the Fermi level, thereby determining a weighted summation of the density of states of a solid surface. When such a weight function is defined as the derivative of the Fermi-Dirac distribution function at a certain non-zero temperature, the resulting property is the finite-temperature chemical softness, termed Fermi softness (SF ), which turns out to be an accurate descriptor of the surface reactivity. The spatial image of SF maps the reactive domain of a heterogeneous surface and even portrays morphological details of the reactive sites. SF analyses reveal that the reactive zones on a Pt3 Y(111) surface are the platinum sites rather than the seemingly active yttrium sites, and the reactivity of the S-dimer edge of MoS2 is spatially anisotropic. Our finding is of fundamental and technological significance to heterogeneous catalysis and industrial processes demanding rational design of solid catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Negative electron affinity from aluminium on the diamond (1 0 0) surface: a theoretical study
NASA Astrophysics Data System (ADS)
James, Michael C.; Croot, Alex; May, Paul W.; Allan, Neil L.
2018-06-01
Density functional theory calculations were performed to model the adsorption of up to 1 monolayer (ML) of aluminium on the bare and O-terminated (1 0 0) diamond surface. Large adsorption energies of up to ‑6.36 eV per atom are observed for the Al-adsorbed O-terminated diamond surface. Most adsorption sites give a negative electron affinity (NEA), with the largest NEAs ‑1.47 eV on the bare surface (1 ML coverage) and ‑1.36 eV on the O-terminated surface (0.25 ML coverage). The associated adsorption energies per Al atom for these sites are ‑4.11 eV and ‑5.24 eV, respectively. Thus, with suitably controlled coverage, Al on diamond shows promise as a thermally-stable surface for electron emission applications.
Interaction of diamond (111)-(1 × 1) and (2 × 1) surfaces with OH: a first principles study.
Stampfl, C; Derry, T E; Makau, N W
2010-12-01
The properties of hydroxyl groups on C(111)-(1 × 1) and reconstructed (2 × 1) surfaces at different sites and for various coverages are investigated using density functional theory. Out of the adsorption sites considered, i.e. face centred cubic, hexagonal close packed, on-top and bridge sites, the on-top site is the most stable for OH on the C(111)-(1 × 1) surface for all coverages. On the reconstructed (2 × 1) surface the on-top site is the preferred configuration. Adsorption of OH was not stable however at any site on the reconstructed C(111)-(2 × 1) relative to the (1 × 1) surface; thus adsorption of OH leads to the de-reconstruction of the former surface. Both the 0.5 and 1 monolayer (ML) coverages were able to lift the (2 × 1) surface reconstruction. Repulsion between the OH adsorbates on the (1 × 1) surface sets in for coverages greater than 0.5 ML. A general decrease in the work function with increasing OH coverage was observed on both the (1 × 1) and (2 × 1) surfaces relative to the values of their respective clean surfaces. Regarding the electronic structure, O 2p states on the reconstructed (2 × 1) surface are observed at around - 21, - 8.75 , - 5 and - 2.5 eV, while O 2s states are present at - 22.5 eV. On the (1 × 1) surface (for 0.33 ML in the on-top site), O 2p states occurred between - 8 and - 9 eV, - 5 and - 4 eV and at around - 2.5 eV. O 2s states are established between - 22.5 and - 21 eV. The valence band width is 21 eV, and a hybrid 2s/2p state that is characteristic of diamond is located at about 12.5 eV below the valence band minimum.
Subsurface Assessment at McMurdo Station, Antarctica
2017-02-01
collected at the T-site for design and construction of a foundation for a wind turbine (after Oswell et al. 2010...foundation for a wind turbine (after Oswell et al. 2010). 5.3 Surface snowmelt and frost susceptibility The gravelly sand with silts found in this...maximum unfrozen density with low moisture content. Compaction of fill materials for con- structing wind turbine foundations at the T-site commenced
First-principles calculation of adsorption of shale gas on CaCO3 (100) surfaces.
Luo, Qiang; Pan, Yikun; Guo, Ping; Wang, Zhouhua; Wei, Na; Sun, Pengfei; Liu, Yuxiao
2017-06-16
To demonstrate the adsorption strength of shale gas to calcium carbonate in shale matrix, the adsorption of shale gas on CaCO3 (100) surfaces was studied using the first-principles method, which is based on the density functional theory (DFT). The structures and electronic properties of CH4, C2H6, CO2 and N2 molecules were calculated by the generalized gradient approximation (GGA), for a coverage of 1 monolayer (ML). Under the same conditions, the density of states (DOS) of CaCO3 (100) surfaces before and after the adsorption of shale gas molecules at high-symmetry adsorption sites were compared. The results showed that the adsorption energies of CH4, C2H6, CO2 and N2 on CaCO3 (100) surfaces were between 0.2683 eV and -0.7388 eV. When a CH4 molecule was adsorbed at a hollow site and its 2 hydrogen atoms were parallel to the long diagonal (H3) on the CaCO3 (100) surface, it had the most stable adsorption, and the adsorption energy was only -0.4160 eV. The change of adsorption energy of CH4 was no more than 0.0535 eV. Compared with the DOS distribution of CH4 before adsorption, it shifted to the left overall after adsorption. At the same time, the partial density of states (PDOS) curves of CaCO3 (100) surfaces before and after adsorption basically overlapped. This work showed that the adsorption effect of shale gas on calcium carbonate is very weak, and the adsorption is physisorption at the molecular level.
NASA Astrophysics Data System (ADS)
Dholabhai, P. P.; Ray, A. K.
2009-01-01
Hydrogen molecule adsorption on the (0001) surface of double hexagonal packed americium has been studied in detail within the framework of density functional theory using a full-potential all-electron linearized augmented plane wave plus local orbitals method (FP-L/APW+lo). Weak molecular hydrogen adsorptions were observed. Adsorption energies were optimized with respect to the distance of the adsorbates from the surface for three approach positions at three adsorption sites, namely t1 (one-fold top), b2 (two-fold bridge), and h3 (three-fold hollow) sites. Adsorption energies were computed at the scalar-relativistic level (no spin-orbit coupling NSOC) and at the fully relativistic level (with spin-orbit coupling SOC). The most stable configuration corresponds to a horizontal adsorption with the molecular approach being perpendicular to a lattice vector. The surface coverage is equivalent to one-fourth of a monolayer (ML), with the adsorption energies at the NSOC and SOC theoretical levels being 0.0997 eV and 0.1022 eV, respectively. The respective distance of the hydrogen molecule from the surface and hydrogen-hydrogen distance was found to be 2.645 Å and 0.789 Å, respectively. The work functions decreased and the net magnetic moments remained almost unchanged in all cases compared with the corresponding quantities of bare dhcp Am (0001) surface. The adsorbate-substrate interactions have been analyzed in detail using the partial charges inside the muffin-tin spheres, difference charge density distributions, and the local density of states. The effects of adsorption on the Am 5f electron localization-delocalization characteristics have been discussed. Reaction barrier for the dissociation of hydrogen molecule has been presented.
Role of bond adaptability in the passivation of colloidal quantum dot solids.
Thon, Susanna M; Ip, Alexander H; Voznyy, Oleksandr; Levina, Larissa; Kemp, Kyle W; Carey, Graham H; Masala, Silvia; Sargent, Edward H
2013-09-24
Colloidal quantum dot (CQD) solids are attractive materials for photovoltaic devices due to their low-cost solution-phase processing, high absorption cross sections, and their band gap tunability via the quantum size effect. Recent advances in CQD solar cell performance have relied on new surface passivation strategies. Specifically, cadmium cation passivation of surface chalcogen sites in PbS CQDs has been shown to contribute to lowered trap state densities and improved photovoltaic performance. Here we deploy a generalized solution-phase passivation strategy as a means to improving CQD surface management. We connect the effects of the choice of metal cation on solution-phase surface passivation, film-phase trap density of states, minority carrier mobility, and photovoltaic power conversion efficiency. We show that trap passivation and midgap density of states determine photovoltaic device performance and are strongly influenced by the choice of metal cation. Supported by density functional theory simulations, we propose a model for the role of cations, a picture wherein metals offering the shallowest electron affinities and the greatest adaptability in surface bonding configurations eliminate both deep and shallow traps effectively even in submonolayer amounts. This work illustrates the importance of materials choice in designing a flexible passivation strategy for optimum CQD device performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unal, B.; Jenks, C.J.; Thiel, P.A.
From other work, two preferred sites have been suggested for metals and semimetals adsorbed on the fivefold surfaces of icosahedral, Al-based quasicrystals. Because of their appearance in scanning tunneling microscopy (STM) images, these sites are known as dark stars and white flowers. In this paper, we analyze four bulk structural models in physical space to determine the types, chemical decorations, and densities of the dark star - and, to a lesser extent, the white flower - adsorption sites for the fivefold planes of icosahedral Al-Pd-Mn. We find that the chemical decorations of these sites are heterogeneous, even within a singlemore » model. Both features are also structurally heterogeneous, according to STM measurements, and the structural variation is consistent with the bulk structure models. Finally, from the models, the density of dark stars in the planes correlates with the step height. This may explain previous experimental observations of different properties for different terraces.« less
NASA Astrophysics Data System (ADS)
Yilmaz, Gamze
This thesis is essentially oriented to develop low-cost nanostructured transition metal (nickel and vanadium) oxides and sulfides with high energy density, power density and electrochemical stability via strategies of structural design, hybridization, functionalization and surface engineering. Metal oxide and metal oxide/sulfide hybrid nanostructures in several designs, including hierarchical porous nanostructures, hollow polyhedrons, nanocubes, nanoframes, octopod nanoframes, and nanocages, were synthesized to study the contribution of structural design, compositional engineering, functionalization and surface engineering to the electrochemical properties of the materials. Modulated compositional and structural features disclosed the opportunities of large accessible active sites, facile ion transport, robustness and enhanced electrical conductivity. The best electrochemical performance with merits of highest energy density (38.9 Wh kg-1), power density (7.4 kW kg-1) and electrochemical stability (90.9% after 10000 cycles) was obtained for nickel cobalt layered double hydroxide/cobalt sulfide (NiCo-LDH/Co9S8) hybrid hollow polyhedron structure.
Beuming, Thijs; Che, Ye; Abel, Robert; Kim, Byungchan; Shanmugasundaram, Veerabahu; Sherman, Woody
2012-03-01
Water plays an essential role in determining the structure and function of all biological systems. Recent methodological advances allow for an accurate and efficient estimation of the thermodynamic properties of water molecules at the surface of proteins. In this work, we characterize these thermodynamic properties and relate them to various structural and functional characteristics of the protein. We find that high-energy hydration sites often exist near protein motifs typically characterized as hydrophilic, such as backbone amide groups. We also find that waters around alpha helices and beta sheets tend to be less stable than waters around loops. Furthermore, we find no significant correlation between the hydration site-free energy and the solvent accessible surface area of the site. In addition, we find that the distribution of high-energy hydration sites on the protein surface can be used to identify the location of binding sites and that binding sites of druggable targets tend to have a greater density of thermodynamically unstable hydration sites. Using this information, we characterize the FKBP12 protein and show good agreement between fragment screening hit rates from NMR spectroscopy and hydration site energetics. Finally, we show that water molecules observed in crystal structures are less stable on average than bulk water as a consequence of the high degree of spatial localization, thereby resulting in a significant loss in entropy. These findings should help to better understand the characteristics of waters at the surface of proteins and are expected to lead to insights that can guide structure-based drug design efforts. Copyright © 2011 Wiley Periodicals, Inc.
Cheng, Jingsi; Wang, Ping; Hua, Chao; Yang, Yintang; Zhang, Zhiyong
2018-03-12
The structural stability, electronic structure, and optical properties of an iron-adsorbed ZnO (0001) surface with three high-symmetry adsorption sites are investigated with first-principle calculations on the basis of density functional theory and the Hubbard-U method. It is found that the iron adatom in the H₃ adsorption site of ZnO (0001) surface has the lowest adsorption energy of -5.665 eV compared with T₄ and Top sites. For the Top site, compared with the pristine ZnO (0001) surface, the absorption peak located at 1.17 eV has a red shift, and the elevation of the absorption coefficient is more pronounced in the visible-light region, because the Fe-related levels are introduced in the forbidden band and near the Fermi level. The electrostatic potential computation reveals that the work function of the ZnO (0001) surface is significantly decreased from 2.340 to 1.768 eV when iron is adsorbed on the Top site. Furthermore, the degradation mechanism based on the band structure is analyzed. It can be concluded that the adsorption of iron will promote the separation of photoinduced carriers, thus improving the photocatalytic activity of ZnO (0001) surface. Our study benefits research on the photocatalytic activity of ZnO and the utilization rate of solar energy.
Tiefenbrunn, Theresa; Forli, Stefano; Happer, Meaghan; Gonzalez, Ana; Tsai, Yingssu; Soltis, Michael; Elder, John H; Olson, Arthur J; Stout, Charles D
2014-02-01
A library of 68 brominated fragments was screened against a new crystal form of inhibited HIV-1 protease in order to probe surface sites in soaking experiments. Often, fragments are weak binders with partial occupancy, resulting in weak, difficult-to-fit electron density. The use of a brominated fragment library addresses this challenge, as bromine can be located unequivocally via anomalous scattering. Data collection was carried out in an automated fashion using AutoDrug at SSRL. Novel hits were identified in the known surface sites: 3-bromo-2,6-dimethoxybenzoic acid (Br6) in the flap site and 1-bromo-2-naphthoic acid (Br27) in the exosite, expanding the chemistry of known fragments for development of higher affinity potential allosteric inhibitors. At the same time, mapping the binding sites of a number of weaker binding Br-fragments provides further insight into the nature of these surface pockets. © 2013 John Wiley & Sons A/S.
Passive microwave sensing of soil moisture content: Soil bulk density and surface roughness
NASA Technical Reports Server (NTRS)
Wang, J. R.
1982-01-01
Microwave radiometric measurements over bare fields of different surface roughnesses were made at the frequencies of 1.4 GHz, 5 GHz, and 10.7 GHz to study the frequency dependence as well as the possible time variation of surface roughness. The presence of surface roughness was found to increase the brightness temperature of soils and reduce the slope of regression between brightness temperature and soil moisture content. The frequency dependence of the surface roughness effect was relatively weak when compared with that of the vegetation effect. Radiometric time series observation over a given field indicated that field surface roughness might gradually diminish with time, especially after a rainfall or irrigation. This time variation of surface roughness served to enhance the uncertainty in remote soil moisture estimate by microwave radiometry. Three years of radiometric measurements over a test site revealed a possible inconsistency in the soil bulk density determination, which turned out to be an important factor in the interpretation of radiometric data.
NASA Technical Reports Server (NTRS)
Wang, J. R.
1983-01-01
Microwave radiometric measurements over bare fields of different surface roughness were made at frequencies of 1.4 GHz, 5 GHz, and 10.7 GHz to study the frequency dependence, as well as the possible time variation, of surface roughness. An increase in surface roughness was found to increase the brightness temperature of soils and reduce the slope of regression between brightness temperature and soil moisture content. The frequency dependence of the surface roughness effect was relatively weak when compared with that of the vegetation effect. Radiometric time-series observations over a given field indicate that field surface roughness might gradually diminish with time, especially after a rainfall or irrigation. The variation of surface roughness increases the uncertainty of remote soil moisture estimates by microwave radiometry. Three years of radiometric measurements over a test site revealed a possible inconsistency in the soil bulk density determination, which is an important factor in the interpretation of radiometric data.
Humphrey, C P; O'Driscoll, M A; Zarate, M A
2011-01-01
The study goal was to determine if on-site wastewater systems (OSWWS) installed in coastal areas were effective at reducing indicator bacteria densities before discharge to groundwater. Groundwater Escherichia coli (E. coli) densities and groundwater levels adjacent to 16 OSWWS in three different soil groups (sand, sandy loam, and sandy clay loam) were monitored and compared to background groundwater conditions on four occasions between March 2007 and February 2008 in coastal North Carolina. Groundwater beneath OSWWS had significantly (p≤0.05) lower densities of E. coli than septic tank effluent, but significantly higher densities of E. coli than background conditions for each soil type. Twenty three percent of all groundwater samples near OSWWS had E. coli densities that exceeded the EPA freshwater contact standards (single sample 235 cfu/100 mL) for surface waters. Groundwater E. coli densities near OSWWS were highest during shallow water table periods. The results indicate that increasing the required vertical separation distance from drainfield trenches to seasonal high water table could improve shallow groundwater quality.
NASA Astrophysics Data System (ADS)
Delage, Pierre; Karakostas, Foivos; Dhemaied, Amine; Belmokhtar, Malik; Lognonné, Philippe; Golombek, Matt; De Laure, Emmanuel; Hurst, Ken; Dupla, Jean-Claude; Kedar, Sharon; Cui, Yu Jun; Banerdt, Bruce
2017-10-01
In support of the InSight mission in which two instruments (the SEIS seismometer and the HP3 heat flow probe) will interact directly with the regolith on the surface of Mars, a series of mechanical tests were conducted on three different regolith simulants to better understand the observations of the physical and mechanical parameters that will be derived from InSight. The mechanical data obtained were also compared to data on terrestrial sands. The density of the regolith strongly influences its mechanical properties, as determined from the data on terrestrial sands. The elastoplastic compression volume changes were investigated through oedometer tests that also provided estimates of possible changes in density with depth. The results of direct shear tests provided values of friction angles that were compared with that of a terrestrial sand, and an extrapolation to lower density provided a friction angle compatible with that estimated from previous observations on the surface of Mars. The importance of the contracting/dilating shear volume changes of sands on the dynamic penetration of the mole was determined, with penetration facilitated by the ˜1.3 Mg/m3 density estimated at the landing site. Seismic velocities, measured by means of piezoelectric bender elements in triaxial specimens submitted to various isotropic confining stresses, show the importance of the confining stress, with lesser influence of density changes under compression. A power law relation of velocity as a function of confining stress with an exponent of 0.3 was identified from the tests, allowing an estimate of the surface seismic velocity of 150 m/s. The effect on the seismic velocity of a 10% proportion of rock in the regolith was also studied. These data will be compared with in situ data measured by InSight after landing.
The lasting effects of tank maneuvers on desert soils and intershrub flora
Prose, Douglas V.; Wilshire, Howard G.
2000-01-01
Mojave Desert soils and intershrub flora sustained lasting disturbances during military training maneuvers initiated by General George Patton, Jr. in the 1940s, and during Operation Desert Strike in 1964. At six sites, mean desert pavement clast size was significantly smaller by 15% to 50% in single tank tracks compared to undisturbed surfaces. The finer-grained tracks yielded significantly higher surface reflectance values at two of three sites. At one site, Patton era tank tracks cross centuries-old "intaglios" and there was no significant difference in clast size between the disturbances. Full recovery of pavement surfaces may require a change in climate since pavements formed in Pleistocene times under climatic conditions that no longer exist. Tank tracks of both ages exhibited significant levels of soil compaction, as indicated by penetrometer resistance values that were 51% to 120% greater than those in undisturbed soils to 0.3 m depth. Soil bulk density in tracks was 4% to 6% higher than in undisturbed soils. Soil compaction lowered infiltration rates in tank tracks by 24% to 55% in comparison to undisturbed soils. Compaction has prevented the intershrub flora from recovering in tank tracks. Annual and herbaceous perennial plant density was higher by 13% to 56% in tank tracks than in undisturbed soils, but compaction has restricted the growth of individual plants. This was reflected in plant cover values, which were 3% to 16% lower in tank tracks than in undisturbed soils. Soil compaction also altered the species composition. Species with long taproots, such as Chaenactis fremontii, were reduced in density and cover in tank tracks, whereas grass species with shallow, fibrous root systems had large density increases in tracks. Another important element of the intershrub flora, cryptobiotic crust, exhibited a low rate of recovery from the impact of tank travel at one site. The cover of the most well-developed component of the crusts, growing on delicate soil pedicels in undisturbed soils, was reduced by 50% in tank tracks because of destruction and compaction of the uppermost soil layers.
NASA Astrophysics Data System (ADS)
Vasiliev, N. V.; Zeigarnik, Yu A.; Khodakov, K. A.
2017-11-01
Experimentally studying of subcooled water boiling in rectangular channel electrically heated from one side was conducted. Flat surfaces, both smooth and coated by microarc oxidation technology, were used as heating surfaces. The tests were conducted at atmospheric pressure in the range of mass flow rate from 650 to 1300 kg/(m2 s) and water subcooling relative to saturation temperature from 23 to 75 °C. Using high-speed filming a change in the two-phase flow structure and its statistic characteristics (nucleation sites density, vapor bubble distribution by size, etc.) were studied. With an increase in the heat flux density (with the mass flow rate and subcooling being the same) and amount and size of the vapor bubbles increased also. At a relatively high heat flux density, non-spherical vapor agglomerates appeared at the heating surface as a result of coalescence of small bubbles. They originated in chaotic manner in arbitrary points of the heating surface and then after random evolution in form and size collapsed. The agglomerate size reached several millimeters and their duration of life was several milliseconds. After formation of large vapor agglomerates, with a further small increase in heat flux density a burnout of the heating surface occurred. In most cases the same effect took place if the large agglomerates were retained for several minutes.
Wu, Yishang; Liu, Xiaojing; Han, Dongdong; Song, Xianyin; Shi, Lei; Song, Yao; Niu, Shuwen; Xie, Yufang; Cai, Jinyan; Wu, Shaoyang; Kang, Jian; Zhou, Jianbin; Chen, Zhiyan; Zheng, Xusheng; Xiao, Xiangheng; Wang, Gongming
2018-04-12
Metal sulfides for hydrogen evolution catalysis typically suffer from unfavorable hydrogen desorption properties due to the strong interaction between the adsorbed H and the intensely electronegative sulfur. Here, we demonstrate a general strategy to improve the hydrogen evolution catalysis of metal sulfides by modulating the surface electron densities. The N modulated NiCo 2 S 4 nanowire arrays exhibit an overpotential of 41 mV at 10 mA cm -2 and a Tafel slope of 37 mV dec -1 , which are very close to the performance of the benchmark Pt/C in alkaline condition. X-ray photoelectron spectroscopy, synchrotron-based X-ray absorption spectroscopy, and density functional theory studies consistently confirm the surface electron densities of NiCo 2 S 4 have been effectively manipulated by N doping. The capability to modulate the electron densities of the catalytic sites could provide valuable insights for the rational design of highly efficient catalysts for hydrogen evolution and beyond.
Six-dimensional quantum dynamics study for the dissociative adsorption of DCl on Au(111) surface
NASA Astrophysics Data System (ADS)
Liu, Tianhui; Fu, Bina; Zhang, Dong H.
2014-04-01
We carried out six-dimensional quantum dynamics calculations for the dissociative adsorption of deuterium chloride (DCl) on Au(111) surface using the initial state-selected time-dependent wave packet approach. The four-dimensional dissociation probabilities are also obtained with the center of mass of DCl fixed at various sites. These calculations were all performed based on an accurate potential energy surface recently constructed by neural network fitting to density function theory energy points. The origin of the extremely small dissociation probability for DCl/HCl (v = 0, j = 0) fixed at the top site compared to other fixed sites is elucidated in this study. The influence of vibrational excitation and rotational orientation of DCl on the reactivity was investigated by calculating six-dimensional dissociation probabilities. The vibrational excitation of DCl enhances the reactivity substantially and the helicopter orientation yields higher dissociation probability than the cartwheel orientation. The site-averaged dissociation probability over 25 fixed sites obtained from four-dimensional quantum dynamics calculations can accurately reproduce the six-dimensional dissociation probability.
Six-dimensional quantum dynamics study for the dissociative adsorption of DCl on Au(111) surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Tianhui; Fu, Bina, E-mail: bina@dicp.ac.cn, E-mail: zhangdh@dicp.ac.cn; Zhang, Dong H., E-mail: bina@dicp.ac.cn, E-mail: zhangdh@dicp.ac.cn
We carried out six-dimensional quantum dynamics calculations for the dissociative adsorption of deuterium chloride (DCl) on Au(111) surface using the initial state-selected time-dependent wave packet approach. The four-dimensional dissociation probabilities are also obtained with the center of mass of DCl fixed at various sites. These calculations were all performed based on an accurate potential energy surface recently constructed by neural network fitting to density function theory energy points. The origin of the extremely small dissociation probability for DCl/HCl (v = 0, j = 0) fixed at the top site compared to other fixed sites is elucidated in this study. The influence of vibrational excitationmore » and rotational orientation of DCl on the reactivity was investigated by calculating six-dimensional dissociation probabilities. The vibrational excitation of DCl enhances the reactivity substantially and the helicopter orientation yields higher dissociation probability than the cartwheel orientation. The site-averaged dissociation probability over 25 fixed sites obtained from four-dimensional quantum dynamics calculations can accurately reproduce the six-dimensional dissociation probability.« less
NASA Astrophysics Data System (ADS)
Malafsky, Geoffrey P.
1994-04-01
The temperature dependence of vacancy coalescence on an ion bombarded Ni(111) surface is measured by photoemission of adsorbed xenon (PAX). The Ni(111) crystal is sputtered by a low fluence (0.06 ML incident ions) Ar + ion beam with incident kinetic energies of 500-3000 eV. The Xe coverage decreases rapidly with increasing temperature between 88 and 375 K with little additional change from 375 to 775 K. The PAX spectra are acquired with a Xe chamber pressure of 8 × 10 -10 Torr and at a temperature of 88 K. Under these conditions, the Xe is selectively adsorbed at defect sites which would make the Xe coverage proportional to the surface defect density on simple defect structures but the large size of the Xe atom relative to the Ni atom prevents the direct relationship of Xe coverage to the defect density when complex and varying defect structures are present. The decrease in Xe coverage is not attributed to the loss of defect sites by adatom-vacancy recombination but the changing vacancy island shape and size with temperature which alters the ratio of adsorbed Xe atoms to surface vacancy sites. This ratio decreases with increasing temperature as the vacancy islands progress from small and irregularly shaped islands to larger and hexagonally shaped islands. This transition is seen in Monte Carlo simulations of the kinetically driven atomic diffusion on the sputtered surface.
Selective adsorption of a supramolecular structure on flat and stepped gold surfaces
NASA Astrophysics Data System (ADS)
Peköz, Rengin; Donadio, Davide
2018-04-01
Halogenated aromatic molecules assemble on surfaces forming both hydrogen and halogen bonds. Even though these systems have been intensively studied on flat metal surfaces, high-index vicinal surfaces remain challenging, as they may induce complex adsorbate structures. The adsorption of 2,6-dibromoanthraquinone (2,6-DBAQ) on flat and stepped gold surfaces is studied by means of van der Waals corrected density functional theory. Equilibrium geometries and corresponding adsorption energies are systematically investigated for various different adsorption configurations. It is shown that bridge sites and step edges are the preferred adsorption sites for single molecules on flat and stepped surfaces, respectively. The role of van der Waals interactions, halogen bonds and hydrogen bonds are explored for a monolayer coverage of 2,6-DBAQ molecules, revealing that molecular flexibility and intermolecular interactions stabilize two-dimensional networks on both flat and stepped surfaces. Our results provide a rationale for experimental observation of molecular carpeting on high-index vicinal surfaces of transition metals.
Comparison of hydrogen and deuterium adsorption on Pd(100).
Gladys, M J; Kambali, I; Karolewski, M A; Soon, A; Stampfl, C; O'Connor, D J
2010-01-14
Low energy ion recoil spectroscopy is a powerful technique for the determination of adsorbate position on metal surfaces. In this study, this technique is employed to compare the adsorption sites of hydrogen and deuterium on Pd(100) by detection of either H or D recoil ions produced by Ne(+) bombardment. Comparisons of experimental and Kalypso simulated azimuthal yield distributions show that, at room temperature, both hydrogen isotopes are adsorbed in the fourfold hollow site of Pd(100), however, at different heights above the surface (H-0.20 A and D-0.25 A). The adsorbates remain in the hollow site at all temperatures up to 383 K even though they move up to 0.40-0.45 A above the surface. Density functional theory calculations show a similar coverage dependent adsorption height for both H and D and confirm a real difference between the H and D adsorption heights based on zero point energies.
Baltrusaitis, Jonas; Hatch, Courtney; Orlando, Roberto
2012-08-02
The electronic properties of undoped and Ca- or Fe-doped MgO(001) surfaces, as well as their propensity toward atmospheric acidic gas (CO2, SO2, and NO2) uptake was investigated with an emphasis on gas adsorption on the basic MgO oxygen surface sites, O(surf), using periodic density functional theory (DFT) calculations. Adsorption energy calculations show that MgO doping will provide stronger interactions of the adsorbate with the O(surf) sites than the undoped MgO for a given adsorbate molecule. Charge transfer from the iron atom in Fe-doped MgO(001) to NO2 was shown to increase the binding interaction between adsorbate by an order of magnitude, when compared to that of undoped and Ca-doped MgO(001) surfaces. Secondary binding interactions of adsorbate oxygen atoms were observed with surface magnesium sites at distances close to those of the Mg-O bond within the crystal. These interactions may serve as a preliminary step for adsorption and facilitate further adsorbate transformations into other binding configurations. Impacts on global atmospheric chemistry are discussed as these adsorption phenomena can affect atmospheric gas budgets via altered partitioning and retention on mineral aerosol surfaces.
Hatch, Courtney; Orlando, Roberto
2012-01-01
The electronic properties of undoped and Ca or Fe doped MgO (001) surfaces, as well as their propensity towards atmospheric acidic gas (CO2, SO2 and NO2) uptake was investigated with an emphasis on gas adsorption on the basic MgO oxygen surface sites, Osurf, using periodic Density Functional Theory (DFT) calculations. Adsorption energy calculations show that MgO doping will provide stronger interactions of the adsorbate with the Osurf sites than the undoped MgO for a given adsorbate molecule. Charge transfer from the iron atom in Fe doped MgO (001) to NO2 was shown to increase the binding interaction between adsorbate by an order of magnitude, when compared to that of undoped and Ca doped MgO (001) surfaces. Secondary binding interactions of adsorbate oxygen atoms were observed with surface magnesium sites at distances close to those of the Mg-O bond within the crystal. These interactions may serve as a preliminary step for adsorption and facilitate further adsorbate transformations into other binding configurations. Impacts on global atmospheric chemistry are discussed as these adsorption phenomena can affect atmospheric gas budgets via altered partitioning and retention on mineral aerosol surfaces. PMID:22775293
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabyrov, Kairat; Musselwhite, Nathan; Melaet, Gérôme
As the impact of acids on catalytically driven chemical transformations is tremendous, fundamental understanding of catalytically relevant factors is essential for the design of more efficient solid acid catalysts. In this work, we employed a post-synthetic doping method to synthesize a highly selective hydroisomerization catalyst and to demonstrate the effect of acid strength and density, catalyst microstructure, and platinum nanoparticle size on the reaction rate and selectivity. Aluminum doped mesoporous silica catalyzed gas-phase n-hexadecane isomerization with remarkably high selectivity to monobranched isomers (~95%), producing a substantially higher amount of isomers than traditional zeolite catalysts. Mildly acidic sites generated by post-syntheticmore » aluminum grafting were found to be the main reason for its high selectivity. The flexibility of the post-synthetic doping method enabled us to systematically explore the effect of the acid site density on the reaction rate and selectivity, which has been extremely difficult to achieve with zeolite catalysts. We found that a higher density of Brønsted acid sites leads to higher cracking of n-hexadecane presumably due to an increased surface residence time. Furthermore, regardless of pore size and microstructure, hydroisomerization turnover frequency linearly increased as a function of Brønsted acid site density. In addition to strength and density of acid sites, platinum nanoparticle size affected catalytic activity and selectivity. The smallest platinum nanoparticles produced the most effective bifunctional catalyst presumably because of higher percolation into aluminum doped mesoporous silica, generating more 'intimate' metallic and acidic sites. Finally, the aluminum doped silica catalyst was shown to retain its remarkable selectivity towards isomers even at increased reaction conversions.« less
Sabyrov, Kairat; Musselwhite, Nathan; Melaet, Gérôme; ...
2017-01-01
As the impact of acids on catalytically driven chemical transformations is tremendous, fundamental understanding of catalytically relevant factors is essential for the design of more efficient solid acid catalysts. In this work, we employed a post-synthetic doping method to synthesize a highly selective hydroisomerization catalyst and to demonstrate the effect of acid strength and density, catalyst microstructure, and platinum nanoparticle size on the reaction rate and selectivity. Aluminum doped mesoporous silica catalyzed gas-phase n-hexadecane isomerization with remarkably high selectivity to monobranched isomers (~95%), producing a substantially higher amount of isomers than traditional zeolite catalysts. Mildly acidic sites generated by post-syntheticmore » aluminum grafting were found to be the main reason for its high selectivity. The flexibility of the post-synthetic doping method enabled us to systematically explore the effect of the acid site density on the reaction rate and selectivity, which has been extremely difficult to achieve with zeolite catalysts. We found that a higher density of Brønsted acid sites leads to higher cracking of n-hexadecane presumably due to an increased surface residence time. Furthermore, regardless of pore size and microstructure, hydroisomerization turnover frequency linearly increased as a function of Brønsted acid site density. In addition to strength and density of acid sites, platinum nanoparticle size affected catalytic activity and selectivity. The smallest platinum nanoparticles produced the most effective bifunctional catalyst presumably because of higher percolation into aluminum doped mesoporous silica, generating more 'intimate' metallic and acidic sites. Finally, the aluminum doped silica catalyst was shown to retain its remarkable selectivity towards isomers even at increased reaction conversions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eaton, Todd R.; Boston, Andrew M.; Thompson, Anthony B.
2015-06-04
Quantifying specific active sites in supported catalysts improves our understanding and assists in rational design. Supported oxides can undergo significant structural changes as surface densities increase from site-isolated cations to monolayers and crystallites, which changes the number of kinetically relevant sites. Herein, TiO x domains are titrated on TiO x–SiO 2 selectively with phenylphosphonic acid (PPA). An ex situ method quantifies all fluid-accessible TiO x, whereas an in situ titration during cis-cyclooctene epoxidation provides previously unavailable values for the number of tetrahedral Ti sites on which H 2O 2 activation occurs. We use this method to determine the active sitemore » densities of 22 different catalysts with different synthesis methods, loadings, and characteristic spectra and find a single intrinsic turnover frequency for cis-cyclooctene epoxidation of (40±7) h -1. This simple method gives molecular-level insight into catalyst structure that is otherwise hidden when bulk techniques are used.« less
Kinetics of sorption and abiotic oxidation of arsenic(III) by aquifer materials
Amirbahman, A.; Kent, D.B.; Curtis, G.P.; Davis, J.A.
2006-01-01
The fate of arsenic in groundwater depends largely on its interaction with mineral surfaces. We investigated the kinetics of As(III) oxidation by aquifer materials collected from the USGS research site at Cape Cod, MA, USA, by conducting laboratory experiments. Five different solid samples with similar specific surface areas (0.6-0.9 m2 g-1) and reductively extractable iron contents (18-26 ??mol m-2), but with varying total manganese contents (0.5-3.5 ??mol m-2) were used. Both dissolved and adsorbed As(III) and As(V) concentrations were measured with time up to 250 h. The As(III) removal rate from solution increased with increasing solid manganese content, suggesting that manganese oxide is responsible for the oxidation of As(III). Under all conditions, dissolved As(V) concentrations were very low. A quantitative model was developed to simulate the extent and kinetics of arsenic transformation by aquifer materials. The model included: (1) reversible rate-limited adsorption of As(III) onto both oxidative and non-oxidative (adsorptive) sites, (2) irreversible rate-limited oxidation of As(III), and (3) equilibrium adsorption of As(V) onto adsorptive sites. Rate constants for these processes, as well as the total oxidative site densities were used as the fitting parameters. The total adsorptive site densities were estimated based on the measured specific surface area of each material. The best fit was provided by considering one fast and one slow site for each adsorptive and oxidative site. The fitting parameters were obtained using the kinetic data for the most reactive aquifer material at different initial As(III) concentrations. Using the same parameters to simulate As(III) and As(V) surface reactions, the model predictions were compared to observations for aquifer materials with different manganese contents. The model simulated the experimental data very well for all materials at all initial As(III) concentrations. The As(V) production rate was related to the concentrations of the free oxidative surface sites and dissolved As(III), as r As(V) = k???ox [Mn(IV) OH3][AsO3] with apparent second-order rate constants of koxf??? = 6.28 ?? 10-1 and koxs??? = 1.25 ?? 10-2 M-1 s-1 for the fast and the slow oxidative sites, respectively. The As(III) removal rate decreased approximately by half for a pH increase from 4 to 7. The pH dependence was explained using the acid-base behavior of the surface oxidative sites by considering a surface pKa = 6.2 (I = 0). In the presence of excess surface adsorptive and oxidative sites, phosphate diminished the rate of As(III) removal and As(V) production only slightly due to its interaction with the oxidative sites. The observed As(III) oxidation rate here is consistent with previous observations of As(III) oxidation over short transport distances during field-scale transport experiments. The model developed here may be incorporated into groundwater transport models to predict arsenic speciation and transport in chemically heterogeneous systems. ?? 2005 Elsevier Inc. All rights reserved.
Polaron-mediated surface reconstruction in the reduced Rutile TiO2 (110) surface
NASA Astrophysics Data System (ADS)
Reticcioli, Michele; Setvin, Martin; Hao, Xianfeng; Diebold, Ulrike; Franchini, Cesare
The role of polarons is of key importance for the understanding of the fundamental properties and functionalities of TiO2. We use density functional theory with an on-site Coulomb interaction and molecular dynamics to study the formation and dynamics of small polarons in the reduced rutile (110) surface. We show that excess electrons donated by oxygen-vacancies (VO) form mobile small polarons that hop easily in subsurface and surface Ti-sites. The polaron formation becomes more favorable by increasing the VO concentration level (up to 20%) due to the progressively lower energy cost needed to distort the lattice. However, at higher VO concentration the shortening of the averaged polaron-polaron distance leads to an increased Coulomb repulsion among the trapped charges at the Ti-sites, which weakens this trend. This instability is overtaken by means of a structural 1 × 2 surface reconstruction, characterized by a distinctively more favorable polaron distribution. The calculations are validated by a direct comparison with experimental AFM and STM data. Our study identifies a fundamentally novel mechanism to drive surface reconstructions and resolves a long standing issue on the origin of the reconstruction in rutile (110) surface.
Eniola, A Omolola; Krasik, Ellen F; Smith, Lee A; Song, Gang; Hammer, Daniel A
2005-11-01
In their active state, beta(2)-integrins, such as LFA-1, mediate the firm arrest of leukocytes by binding intercellular adhesion molecules (ICAMs) expressed on endothelium. Although the primary function of LFA-1 is assumed to be the ability to mediate firm adhesion, recent work has shown that LFA-1 can contribute to cell tethering and rolling under hydrodynamic flow, a role previously largely attributed to the selectins. The inserted (I) domain of LFA-1 has recently been crystallized in the wild-type (wt) and locked-open conformations and has been shown to, respectively, support rolling and firm adhesion under flow when expressed in alpha(L)beta(2) heterodimers or as isolated domains on cells. Here, we report results from cell-free adhesion assays where wt I-domain-coated polystyrene particles were allowed to interact with ICAM-1-coated surfaces in shear flow. We show that wt I-domain can independently mediate the capture of particles from flow and support their rolling on ICAM-1 surfaces in a manner similar to how carbohydrate-selectin interactions mediate rolling. Adhesion is specific and blocked by appropriate antibodies. We also show that the rolling velocity of I-domain-coated particles depends on the wall shear stress in flow chamber, I-domain site density on microsphere surfaces, and ICAM-1 site density on substrate surfaces. Furthermore, we show that rolling is less sensitive to wall shear stress and ICAM-1 substrate density at high density of I-domain on the microsphere surface. Computer simulations using adhesive dynamics can recreate bead rolling dynamics and show that the mechanochemical properties of ICAM-1-I-domain interactions are similar to those of carbohydrate-selectin interactions. Understanding the biophysics of adhesion mediated by the I-domain of LFA-1 can elucidate the complex roles this integrin plays in leukocyte adhesion in inflammation.
Comparison of Bone Grafts From Various Donor Sites in Human Bone Specimens.
Kamal, Mohammad; Gremse, Felix; Rosenhain, Stefanie; Bartella, Alexander K; Hölzle, Frank; Kessler, Peter; Lethaus, Bernd
2018-05-14
The objective of the current study was to compare the three-dimensional (3D) morphometric microstructure in human cadaveric bone specimens taken from various commonly utilized donor sites for autogenous bone grafting. Autogenous bone grafts can be harvested from various anatomic sites and express heterogeneous bone quality with a specific 3D microstructure for each site. The long-term structural integrity and susceptibility to resorption of the graft depend on the selected donor bone. Micro-computed tomography generates high-resolution datasets of bone structures and calcifications making this modality versatile for microarchitecture analysis and quantification of the bone. Six bone specimens, 10 mm in length, where anatomically possible, were obtained from various anatomical sites from 10 human dentate cadavers (4 men, 6 women, mean age 69.5 years). Specimens were scanned using a micro-computed tomography device and volumetrically reconstructed. A virtual cylindrical inclusion was reconstructed to analyze the bone mineral density and structural morphometric analysis using bone indices: relative bone volume, surface density, trabecular thicknesses, and trabecular separation. Calvarial bone specimens showed the highest mineral density, followed by the chin, then mandibular ramus then the tibia, whereas iliac crest and maxillary tuberosity had lower bone mineral densities. The pairwise comparison revealed statistically significant differences in the bone mineral density and relative bone volume index in the calvaria, mandibular ramus, mandibular symphysis groups when compared with those in the iliac crest and maxillary tuberosity, suggesting higher bone quality in the former groups than in the latter; tibial specimens expressed variable results.
Mengele, R; Sumper, M
1992-04-25
The outer surface of the moderate halophilic archaebacterium Haloferax volcanii (formerly named Halobacterium volcanii) is covered with a hexagonally packed surface (S) layer glycoprotein. The polypeptide (794 amino acid residues) contains 7 N-glycosylation sites. Four of these sites were isolated as glycopeptides and the structure of one of the corresponding saccharides was determined. Oligosaccharides consisting of beta-1,4-linked glucose residues are attached to the protein via the linkage unit asparaginyl-glucose. In the related glycoprotein from the extreme halophile Halobacterium halobium, the glucose residues are replaced by sulfated glucuronic acid residues, causing a drastic increase in surface charge density. This is discussed in terms of a recent model explaining the stability of halophilic proteins.
NASA Astrophysics Data System (ADS)
Lin, Y. H.; Raghunath, P.; Lin, M. C.
2016-01-01
The adsorption and dissociation mechanisms of SiHx(x = 1-4) species on W(1 1 1) surface have been investigated by using the periodic density functional theory with the projector-augmented wave approach. The adsorption of all the species on four surface sites: top (T), bridge (B), shallow (S), and deep (D) sites have been analyzed. For SiH4 on a top site, T-SiH4(a), it is more stable with an adsorption energy of 2.6 kcal/mol. For SiH3, the 3-fold shallow site is most favorable with adsorption energy of 46.0 kcal/mol. For SiH2, its adsorption on a bridge site is most stable with 73.0 kcal/mol binding energy, whereas for SiH and Si the most stable adsorption configurations are on 3-fold deep sites with very high adsorption energies, 111.8 and 134.7 kcal/mol, respectively. The potential energy surfaces for the dissociative adsorption of all SiHx species on the W(1 1 1) surface have been constructed using the CINEB method. The barriers for H-atom migration from SiHx(a) to its neighboring W atoms, preferentially on B-sites, were predicted to be 0.4, 1.0, 4.5 and, 8.0 kcal/mol, respectively, for x = 4, 3, 2, and 1, respectively. The adsorption energy of the H atom on a bridge site on the clean W(1 1 1) surface was predicted to be 65.9 kcal/mol, which was found to be slightly affected by the co-adsorption of SiHx-1 within ± 1 kcal/mol.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanco-Rey, M.; Donostia International Physics Center; Tremblay, J. C.
2015-04-21
Past scanning tunneling microscopy (STM) experiments of H manipulation on Pd(111), at low temperature, have shown that it is possible to induce diffusion of surface species as well as of those deeply buried under the surface. Several questions remain open regarding the role of subsurface site occupancies. In the present work, the interaction potential of H atoms with Pd(111) under various H coverage conditions is determined by means of density functional theory calculations in order to provide an answer to two of these questions: (i) whether subsurface sites are the final locations for the H impurities that attempt to emergemore » from bulk regions, and (ii) whether penetration of the surface is a competing route of on-surface diffusion during depletion of surface H on densely covered Pd(111). We find that a high H coverage has the effect of blocking resurfacing of H atoms travelling from below, which would otherwise reach the surface fcc sites, but it hardly alters deeper diffusion energy barriers. Penetration is unlikely and restricted to high occupancies of hcp hollows. In agreement with experiments, the Pd lattice expands vertically as a consequence of H atoms being blocked at subsurface sites, and surface H enhances this expansion. STM tip effects are included in the calculations self-consistently as an external static electric field. The main contribution to the induced surface electric dipoles originates from the Pd substrate polarisability. We find that the electric field has a non-negligible effect on the H-Pd potential in the vicinity of the topmost Pd atomic layer, yet typical STM intensities of 1-2 VÅ{sup −1} are insufficient to invert the stabilities of the surface and subsurface equilibrium sites.« less
First-principles studies of H₂S adsorption and dissociation on metal surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alfonso, D R
2008-01-01
Density functional theory calculations were employed to investigate the molecular and dissociative adsorption of H₂S on the closed packed surfaces of a number of important noble metals (Ag(1 1 1), Au(1 1 1) and Cu(1 1 1)) and transition metals (Ir(1 1 1), Ni(1 1 1), Pd(1 1 1) and Pt(1 1 1)). Energy minima corresponding to adsorbed states were identified with H₂S binding preferentially at the top sites. The adsorption of other S moieties (SH and S) was also examined. SH and S were found to prefer bridge sites and hollow sites, respectively. The binding of H₂S and itsmore » S-containing dissociated species is stronger on the transition metals. The elementary reactions of abstraction of H from H₂S to form a surface SH intermediate and abstraction of H from SH to form a surface S intermediate as model pathways for the dissociation of H₂S were examined. Our results suggest that H₂S decomposition on the aforementioned transition metal surfaces is more facile, both thermodynamically and kinetically.« less
Grinter, David C.; R. Remesal, Elena; Luo, Si; ...
2016-09-15
Potassium deposition on TiO 2(110) results in reduction of the substrate and formation of loosely bound potassium species that can move easily on the oxide surface to promote catalytic activity. The results of density functional calculations predict a large adsorption energy (~3.2 eV) with a small barrier (~0.25 eV) for diffusion on the oxide surface. In scanning tunneling microscopy images, the adsorbed alkali atoms lose their mobility when in contact with surface OH groups. Furthermore, K adatoms facilitate the dissociation of water on the titania surface. Lastly, the K–(OH) species generated are good sites for the binding of gold clustersmore » on the TiO 2(110) surface, producing Au/K/TiO 2(110) systems with high activity for the water–gas shift.« less
A new temperature and humidity dependent surface site density approach for deposition ice nucleation
NASA Astrophysics Data System (ADS)
Steinke, I.; Hoose, C.; Möhler, O.; Connolly, P.; Leisner, T.
2014-07-01
Deposition nucleation experiments with Arizona Test Dust (ATD) as a surrogate for mineral dusts were conducted at the AIDA cloud chamber at temperatures between 220 and 250 K. The influence of the aerosol size distribution and the cooling rate on the ice nucleation efficiencies was investigated. Ice nucleation active surface site (INAS) densities were calculated to quantify the ice nucleation efficiency as a function of temperature, humidity and the aerosol surface area concentration. Additionally, a contact angle parameterization according to classical nucleation theory was fitted to the experimental data in order to relate the ice nucleation efficiencies to contact angle distributions. From this study it can be concluded that the INAS density formulation is a very useful tool to decribe the temperature and humidity dependent ice nucleation efficiency of ATD particles. Deposition nucleation on ATD particles can be described by a temperature and relative humidity dependent INAS density function ns(T, Sice) with ns(xtherm) = 1.88 × 105 \\centerdot exp(0.2659 \\centerdot xtherm) [m-2] (1) where the thermodynamic variable xtherm is defined as xtherm = -(T - 273.2) + (Sice-1) × 100 (2) with Sice>1 and within a temperature range between 226 and 250 K. For lower temperatures, xtherm deviates from a linear behavior with temperature and relative humidity over ice. Two different approaches for describing the time dependence of deposition nucleation initiated by ATD particles are proposed. Box model estimates suggest that the time dependent contribution is only relevant for small cooling rates and low number fractions of ice-active particles.
Allert, A.L.; DiStefano, R.J.; Fairchild, J.F.; Schmitt, C.J.; McKee, M.J.; Girondo, J.A.; Brumbaugh, W.G.; May, T.W.
2013-01-01
The Big River (BGR) drains much of the Old Lead Belt mining district (OLB) in southeastern Missouri, USA, which was historically among the largest producers of lead–zinc (Pb–Zn) ore in the world. We sampled benthic fish and crayfish in riffle habitats at eight sites in the BGR and conducted 56-day in situ exposures to the woodland crayfish (Orconectes hylas) and golden crayfish (Orconectes luteus) in cages at four sites affected to differing degrees by mining. Densities of fish and crayfish, physical habitat and water quality, and the survival and growth of caged crayfish were examined at sites with no known upstream mining activities (i.e., reference sites) and at sites downstream of mining areas (i.e., mining and downstream sites). Lead, zinc, and cadmium were analyzed in surface and pore water, sediment, detritus, fish, crayfish, and other benthic macro-invertebrates. Metals concentrations in all materials analyzed were greater at mining and downstream sites than at reference sites. Ten species of fish and four species of crayfish were collected. Fish and crayfish densities were significantly greater at reference than mining or downstream sites, and densities were greater at downstream than mining sites. Survival of caged crayfish was significantly lower at mining sites than reference sites; downstream sites were not tested. Chronic toxic-unit scores and sediment probable effects quotients indicated significant risk of toxicity to fish and crayfish, and metals concentrations in crayfish were sufficiently high to represent a risk to wildlife at mining and downstream sites. Collectively, the results provided direct evidence that metals associated with historical mining activities in the OLB continue to affect aquatic life in the BGR.
Fegyveresi, John M.; Alley, R.B.; Spencer, M.K.; Fitzpatrick, J.J.; Steig, E.J.; White, J.W.C.; McConnell, J.R.; Taylor, K.C.
2011-01-01
A surface cooling of ???1.7??C occurred over the ???two millennia prior to ???1700 CE at the West Antarctic ice sheet (WAIS) Divide site, based on trends in observed bubble number-density of samples from the WDC06A ice core, and on an independently constructed accumulation-rate history using annual-layer dating corrected for density variations and thinning from ice flow. Density increase and grain growth in polar firn are both controlled by temperature and accumulation rate, and the integrated effects are recorded in the number-density of bubbles as the firn changes to ice. Numberdensity is conserved in bubbly ice following pore close-off, allowing reconstruction of either paleotemperature or paleo-accumulation rate if the other is known. A quantitative late-Holocene paleoclimate reconstruction is presented for West Antarctica using data obtained from the WAIS Divide WDC06A ice core and a steady-state bubble number-density model. The resultant temperature history agrees closely with independent reconstructions based on stable-isotopic ratios of ice. The ???1.7??C cooling trend observed is consistent with a decrease in Antarctic summer duration from changing orbital obliquity, although it remains possible that elevation change at the site contributed part of the signal. Accumulation rate and temperature dropped together, broadly consistent with control by saturation vapor pressure.
NASA Astrophysics Data System (ADS)
Zhang, Lei; Wang, Qiaoyi
2018-03-01
We report a combined experimental and computational investigation on the structure and photophysics of 4-[(4-pyridinylmethylene)amino]-benzoic acid, a functional molecule bearing two anchoring groups for attachment onto a TiO2 surface and perovskite surface, for potential solar cell application. This molecule possesses interesting adsorption properties in perovskite solar cell because the pyridyl group serves as the Lewis base and targets Lewis acidic sites in the perovskite surface, while the carboxyl group targets TiO2 surface, improving the coupling between the perovskite surface and the TiO2 surface. The electronic structures of the molecule and its photochemistry are revealed by the UV-vis absorption spectra and the fluorescence spectra under visible light irradiation, which are combined with density functional theory (DFT) and time-dependent density functional theory (TDDFT) analysis. Considering the bi-anchoring groups and the conjugated π system embedded in the molecule, we anticipate it can molecular engineer the TiO2/perovskite interface in perovskite solar cell.
Recombination of H atoms on the dust in fusion plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakhtiyari-Ramezani, M., E-mail: mahdiyeh.bakhtiyari@gmail.com; Alinejad, N., E-mail: nalinezhad@aeoi.org.ir; Mahmoodi, J., E-mail: mahmoodi@qom.ac.ir
2015-07-15
We survey a model for theoretical study of the interaction of hydrogen and dust surface and apply our results for dusty plasmas to fusion devices. In this model, considering the mobility of ad-atoms from one physisorbed, or chemisorbed site, to other one by thermal diffusion, we describe the formation of H{sub 2} on grain surfaces. Finally, we calculate the formation rate on the high temperature dust surfaces for a range of temperature and density in typical conditions of divertor of tokamak.
Xiao, Junwu; Kuang, Qin; Yang, Shihe; Xiao, Fei; Wang, Shuai; Guo, Lin
2013-01-01
Catalytic activity is primarily a surface phenomenon, however, little is known about Co3O4 nanocrystals in terms of the relationship between the oxygen reduction reaction (ORR) catalytic activity and surface structure, especially when dispersed on a highly conducting support to improve the electrical conductivity and so to enhance the catalytic activity. Herein, we report a controllable synthesis of Co3O4 nanorods (NR), nanocubes (NC) and nano-octahedrons (OC) with the different exposed nanocrystalline surfaces ({110}, {100}, and {111}), uniformly anchored on graphene sheets, which has allowed us to investigate the effects of the surface structure on the ORR activity. Results show that the catalytically active sites for ORR should be the surface Co2+ ions, whereas the surface Co3+ ions catalyze CO oxidation, and the catalytic ability is closely related to the density of the catalytically active sites. These results underscore the importance of morphological control in the design of highly efficient ORR catalysts. PMID:23892418
Theoretical evidence for unexpected O-rich phases at corners of MgO surfaces
NASA Astrophysics Data System (ADS)
Bhattacharya, Saswata; Berger, Daniel; Reuter, Karsten; Ghiringhelli, Luca M.; Levchenko, Sergey V.
2017-12-01
Realistic oxide materials are often semiconductors, in particular at elevated temperatures, and their surfaces contain undercoordinated atoms at structural defects such as steps and corners. Using hybrid density-functional theory and ab initio atomistic thermodynamics, we investigate the interplay of bond-making, bond-breaking, and charge-carrier trapping at the corner defects at the (100) surface of a p -doped MgO in thermodynamic equilibrium with an O2 atmosphere. We show that by manipulating the coordination of surface atoms, one can drastically change and even reverse the order of stability of reduced versus oxidized surface sites.
Minimizing antibody surface density on liposomes while sustaining cytokine-activated EC targeting.
Almeda, Dariela; Wang, Biran; Auguste, Debra T
2015-02-01
Liposomes may be engineered to target inflamed endothelium by mimicking ligand-receptor interactions between leukocytes and cytokine-activated endothelial cells (ECs). The upregulation and assembly of vascular cell adhesion molecule-1 (VCAM1) and E-selectin on the cell membrane upon exposure to cytokines have shown potential for drug delivery vehicles to target sites of chronic endothelial inflammation, such as atherosclerosis and cancer. Herein, we characterized EC surfaces by measuring the E-selectin and VCAM1 surface densities and adhesion forces of aVCAM1 and aE-selectin to ECs. We quantified the antibody density, ratio, and diffusivity of liposomes to achieve significant binding and internalization. At 1 h, the 1:1 ratio of VCAM1:E-selectin antibodies was significantly higher than 1:0 and 0:1. Significant binding and uptake was achieved at aE-selectin densities as low as 400 molecules/μm(2). The highest levels of binding and uptake were achieved when using a 1:1 ratio of VCAM1:E-selectin antibodies at a density of 1000 molecules/μm(2); this density is 85% lower than previous reports. The binding and uptake of functionalized liposomes were reduced to levels comparable to IgG functionalized liposomes upon a 10-fold reduction in liposome membrane diffusivity. We conclude with a liposomal design that discriminates between healthy and inflamed endothelium while reducing antibody surface presentation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhao, Renjie; Evans, James W.; Oliveira, Tiago J.
2016-04-08
Here, a discrete version of deposition-diffusion equations appropriate for description of step flow on a vicinal surface is analyzed for a two-dimensional grid of adsorption sites representing the stepped surface and explicitly incorporating kinks along the step edges. Model energetics and kinetics appropriately account for binding of adatoms at steps and kinks, distinct terrace and edge diffusion rates, and possible additional barriers for attachment to steps. Analysis of adatom attachment fluxes as well as limiting values of adatom densities at step edges for nonuniform deposition scenarios allows determination of both permeability and kinetic coefficients. Behavior of these quantities is assessedmore » as a function of key system parameters including kink density, step attachment barriers, and the step edge diffusion rate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Renjie; Evans, James W.; Oliveira, Tiago J.
Here, a discrete version of deposition-diffusion equations appropriate for description of step flow on a vicinal surface is analyzed for a two-dimensional grid of adsorption sites representing the stepped surface and explicitly incorporating kinks along the step edges. Model energetics and kinetics appropriately account for binding of adatoms at steps and kinks, distinct terrace and edge diffusion rates, and possible additional barriers for attachment to steps. Analysis of adatom attachment fluxes as well as limiting values of adatom densities at step edges for nonuniform deposition scenarios allows determination of both permeability and kinetic coefficients. Behavior of these quantities is assessedmore » as a function of key system parameters including kink density, step attachment barriers, and the step edge diffusion rate.« less
Modeling pore corrosion in normally open gold- plated copper connectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battaile, Corbett Chandler; Moffat, Harry K.; Sun, Amy Cha-Tien
2008-09-01
The goal of this study is to model the electrical response of gold plated copper electrical contacts exposed to a mixed flowing gas stream consisting of air containing 10 ppb H{sub 2}S at 30 C and a relative humidity of 70%. This environment accelerates the attack normally observed in a light industrial environment (essentially a simplified version of the Battelle Class 2 environment). Corrosion rates were quantified by measuring the corrosion site density, size distribution, and the macroscopic electrical resistance of the aged surface as a function of exposure time. A pore corrosion numerical model was used to predict bothmore » the growth of copper sulfide corrosion product which blooms through defects in the gold layer and the resulting electrical contact resistance of the aged surface. Assumptions about the distribution of defects in the noble metal plating and the mechanism for how corrosion blooms affect electrical contact resistance were needed to complete the numerical model. Comparisons are made to the experimentally observed number density of corrosion sites, the size distribution of corrosion product blooms, and the cumulative probability distribution of the electrical contact resistance. Experimentally, the bloom site density increases as a function of time, whereas the bloom size distribution remains relatively independent of time. These two effects are included in the numerical model by adding a corrosion initiation probability proportional to the surface area along with a probability for bloom-growth extinction proportional to the corrosion product bloom volume. The cumulative probability distribution of electrical resistance becomes skewed as exposure time increases. While the electrical contact resistance increases as a function of time for a fraction of the bloom population, the median value remains relatively unchanged. In order to model this behavior, the resistance calculated for large blooms has been weighted more heavily.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Yuanyuan; Sushko, Peter V.; Melzer, Daniel
A novel pathway of increasing the surface density of catalytically active oxygen radical sites on a MoVTeNb oxide (M1 phase) catalyst during alkane oxidative dehydrogenation is reported. The novel sites form when a fraction of Te4+ is reduced and emitted from the M1 crystals under catalytic operating conditions, without compromising structural integrity of the catalyst framework. Density functional theory calculations show this Te reduction induces multiple inter-related electron transfers, and the associated cooperative effects lead to the formation of O- radicals. The in situ observations identify complex dynamic changes in the catalyst on an atomistic level, highlighting a new waymore » to tailor structure and dynamics for highly active catalysts.« less
A computational ab initio study of surface diffusion of sulfur on the CdTe (111) surface
NASA Astrophysics Data System (ADS)
Naderi, Ebadollah; Ghaisas, S. V.
2016-08-01
In order to discern the formation of epitaxial growth of CdS shell over CdTe nanocrystals, kinetics related to the initial stages of the growth of CdS on CdTe is investigated using ab-initio methods. We report diffusion of sulfur adatom on the CdTe (111) A-type (Cd-terminated) and B-type (Te-terminated) surfaces within the density functional theory (DFT). The barriers are computed by applying the climbing Nudge Elastic Band (c-NEB) method. From the results surface hopping emerges as the major mode of diffusion. In addition, there is a distinct contribution from kick-out type diffusion in which a CdTe surface atom is kicked out from its position and is replaced by the diffusing sulfur atom. Also, surface vacancy substitution contributes to the concomitant dynamics. There are sites on the B- type surface that are competitively close in terms of the binding energy to the lowest energy site of epitaxy on the surface. The kick-out process is more likely for B-type surface where a Te atom of the surface is displaced by a sulfur adatom. Further, on the B-type surface, subsurface migration of sulfur is indicated. Furthermore, the binding energies of S on CdTe reveal that on the A-type surface, epitaxial sites provide relatively higher binding energies and barriers than on B-type.
A computational ab initio study of surface diffusion of sulfur on the CdTe (111) surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naderi, Ebadollah, E-mail: enaderi42@gmail.com; Ghaisas, S. V.
2016-08-15
In order to discern the formation of epitaxial growth of CdS shell over CdTe nanocrystals, kinetics related to the initial stages of the growth of CdS on CdTe is investigated using ab-initio methods. We report diffusion of sulfur adatom on the CdTe (111) A-type (Cd-terminated) and B-type (Te-terminated) surfaces within the density functional theory (DFT). The barriers are computed by applying the climbing Nudge Elastic Band (c-NEB) method. From the results surface hopping emerges as the major mode of diffusion. In addition, there is a distinct contribution from kick-out type diffusion in which a CdTe surface atom is kicked outmore » from its position and is replaced by the diffusing sulfur atom. Also, surface vacancy substitution contributes to the concomitant dynamics. There are sites on the B- type surface that are competitively close in terms of the binding energy to the lowest energy site of epitaxy on the surface. The kick-out process is more likely for B-type surface where a Te atom of the surface is displaced by a sulfur adatom. Further, on the B-type surface, subsurface migration of sulfur is indicated. Furthermore, the binding energies of S on CdTe reveal that on the A-type surface, epitaxial sites provide relatively higher binding energies and barriers than on B-type.« less
Ramírez-Herrejón, Juan P; Mercado-Silva, Norman; Balart, Eduardo F; Moncayo-Estrada, Rodrigo; Mar-Silva, Valentín; Caraveo-Patiño, Javier
2015-09-01
Non-native species are often major drivers of the deterioration of natural ecosystems. The common carp Cyprinus carpio are known to cause major changes in lentic systems, but may not be solely responsible for large scale changes in these ecosystems. We used data from extensive collection efforts to gain insight into the importance of carp as drivers of ecosystem change in Lake Patzcuaro, Mexico. We compared the structure (fish density, biomass, diversity, and evenness) of fish assemblages from six Lake Patzcuaro sites with different habitat characteristics. Intersite comparisons were carried out for both wet and dry seasons. We explored the relationships between non-carp species and carp; and studied multivariate interactions between fish abundance and habitat characteristics. From a biomass perspective, carp was dominant in only four of six sites. In terms of density, carp was not a dominant species in all sites. Further, carp density and biomass were not negatively related to native species density and biomass, even when carp density and biomass were positively correlated to water turbidity levels. Carp dominated fish assemblages in the shallowest sites with the highest water turbidity, plant detritus at the bottom, and floating macrophytes covering the lake surface. These results suggest that the effect of carp on fish assemblages may be highly dependent on habitat characteristics in Lake Patzcuaro. Watershed degradation, pollution, water level loss, and other sources of anthropogenic influence may be more important drivers of Lake Patzcuaro degradation than the abundance of carp.
NASA Astrophysics Data System (ADS)
Ramírez-Herrejón, Juan P.; Mercado-Silva, Norman; Balart, Eduardo F.; Moncayo-Estrada, Rodrigo; Mar-Silva, Valentín; Caraveo-Patiño, Javier
2015-09-01
Non-native species are often major drivers of the deterioration of natural ecosystems. The common carp Cyprinus carpio are known to cause major changes in lentic systems, but may not be solely responsible for large scale changes in these ecosystems. We used data from extensive collection efforts to gain insight into the importance of carp as drivers of ecosystem change in Lake Patzcuaro, Mexico. We compared the structure (fish density, biomass, diversity, and evenness) of fish assemblages from six Lake Patzcuaro sites with different habitat characteristics. Intersite comparisons were carried out for both wet and dry seasons. We explored the relationships between non-carp species and carp; and studied multivariate interactions between fish abundance and habitat characteristics. From a biomass perspective, carp was dominant in only four of six sites. In terms of density, carp was not a dominant species in all sites. Further, carp density and biomass were not negatively related to native species density and biomass, even when carp density and biomass were positively correlated to water turbidity levels. Carp dominated fish assemblages in the shallowest sites with the highest water turbidity, plant detritus at the bottom, and floating macrophytes covering the lake surface. These results suggest that the effect of carp on fish assemblages may be highly dependent on habitat characteristics in Lake Patzcuaro. Watershed degradation, pollution, water level loss, and other sources of anthropogenic influence may be more important drivers of Lake Patzcuaro degradation than the abundance of carp.
A New Vehicle for Planetary Surface Exploration: The Mars Tumbleweed
NASA Technical Reports Server (NTRS)
Antol, Jeffrey
2005-01-01
The surface of Mars is currently being explored with a combination of orbiting spacecraft, stationary landers and wheeled rovers. However, only a small portion of the Martian surface has undergone in-situ examination. Landing sites must be chosen to insure the safety of the vehicles (and human explorers) and provide the greatest opportunity for mission success. While wheeled rovers provide the ability to move beyond the landing sites, they are also limited in their ability to traverse rough terrain; therefore, many scientifically interesting sites are inaccessible by current vehicles. In order to access these sites, a capability is needed that can transport scientific instruments across varied Martian terrain. A new "rover" concept for exploring the Martian surface, known as the Mars Tumbleweed, will derive mobility through use of the surface winds on Mars, much like the Tumbleweed plant does here on Earth. Using the winds on Mars, a Tumbleweed rover could conceivably travel great distances and cover broad areas of the planetary surface. Tumbleweed vehicles would be designed to withstand repeated bouncing and rolling on the rock covered Martian surface and may be durable enough to explore areas on Mars such as gullies and canyons that are currently inaccessible by conventional rovers. Achieving Mars wind-driven mobility; however, is not a minor task. The density of the atmosphere on Mars is approximately 60-80 times less than that on Earth and wind speeds are typically around 2-5 m/s during the day, with periodic winds of 10 m/s to 20 m/s (in excess of 25 m/s during seasonal dust storms). However, because of the Martian atmosphere#s low density, even the strongest winds on Mars equate to only a gentle breeze on Earth. Tumbleweed rovers therefore need to be relatively large (4-6 m in diameter), very lightweight (10-20 kg), and equipped with lightweight, low-power instruments. This paper provides an overview of the Tumbleweed concept, presents several notional design concepts, mission scenarios, and highlights recent tests and analyses of Tumbleweed prototypes.
DFT analysis of the reaction paths of formaldehyde decomposition on silver.
Montoya, Alejandro; Haynes, Brian S
2009-07-16
Periodic density functional theory is used to study the dehydrogenation of formaldehyde (CH(2)O) on the Ag(111) surface and in the presence of adsorbed oxygen or hydroxyl species. Thermodynamic and kinetic parameters of elementary surface reactions have been determined. The dehydrogenation of CH(2)O on clean Ag(111) is thermodynamically and kinetically unfavorable. In particular, the activation energy for the first C-H bond scission of adsorbed CH(2)O (25.8 kcal mol(-1)) greatly exceeds the desorption energy for molecular CH(2)O (2.5 kcal mol(-1)). Surface oxygen promotes the destruction of CH(2)O through the formation of CH(2)O(2), which readily decomposes to CHO(2) and then in turn to CO(2) and adsorbed hydrogen. Analysis of site selectivity shows that CH(2)O(2), CHO(2), and CHO are strongly bound to the surface through the bridge sites, whereas CO and CO(2) are weakly adsorbed with no strong preference for a particular surface site. Dissociation of CO and CO(2) on the Ag(111) surface is highly activated and therefore unfavorable with respect to their molecular desorption.
NASA Astrophysics Data System (ADS)
Häberlen, Oliver D.; Chung, Sai-Cheong; Stener, Mauro; Rösch, Notker
1997-03-01
A series of gold clusters spanning the size range from Au6 through Au147 (with diameters from 0.7 to 1.7 nm) in icosahedral, octahedral, and cuboctahedral structure has been theoretically investigated by means of a scalar relativistic all-electron density functional method. One of the main objectives of this work was to analyze the convergence of cluster properties toward the corresponding bulk metal values and to compare the results obtained for the local density approximation (LDA) to those for a generalized gradient approximation (GGA) to the exchange-correlation functional. The average gold-gold distance in the clusters increases with their nuclearity and correlates essentially linearly with the average coordination number in the clusters. An extrapolation to the bulk coordination of 12 yields a gold-gold distance of 289 pm in LDA, very close to the experimental bulk value of 288 pm, while the extrapolated GGA gold-gold distance is 297 pm. The cluster cohesive energy varies linearly with the inverse of the calculated cluster radius, indicating that the surface-to-volume ratio is the primary determinant of the convergence of this quantity toward bulk. The extrapolated LDA binding energy per atom, 4.7 eV, overestimates the experimental bulk value of 3.8 eV, while the GGA value, 3.2 eV, underestimates the experiment by almost the same amount. The calculated ionization potentials and electron affinities of the clusters may be related to the metallic droplet model, although deviations due to the electronic shell structure are noticeable. The GGA extrapolation to bulk values yields 4.8 and 4.9 eV for the ionization potential and the electron affinity, respectively, remarkably close to the experimental polycrystalline work function of bulk gold, 5.1 eV. Gold 4f core level binding energies were calculated for sites with bulk coordination and for different surface sites. The core level shifts for the surface sites are all positive and distinguish among the corner, edge, and face-centered sites; sites in the first subsurface layer show still small positive shifts.
Feasibility of using backscattered muons for archeological imaging
NASA Astrophysics Data System (ADS)
Bonal, N.; Preston, L. A.
2013-12-01
Use of nondestructive methods to accurately locate and characterize underground objects such as rooms and tools found at archeological sites is ideal to preserve these historic sites. High-energy cosmic ray muons are very sensitive to density variation and have been used to image volcanoes and archeological sites such as the Egyptian and Mayan pyramids. Muons are subatomic particles produced in the upper atmosphere that penetrate the earth's crust up to few kilometers. Their absorption rate depends on the density of the materials through which they pass. Measurements of muon flux rate at differing directions provide density variations of the materials between the muon source (cosmic rays and neutrino interactions) and the detector, much like a CAT scan. Currently, muon tomography can resolve features to the sub-meter scale making it useful for this type of work. However, the muon detector must be placed below the target of interest. For imaging volcanoes, the upper portion is imaged when the detector is placed on the earth's surface at the volcano's base. For sites of interest beneath the ground surface, the muon detector would need to be placed below the site in a tunnel or borehole. Placing the detector underground can be costly and may disturb the historical site. We will assess the feasibility of imaging the subsurface using upward traveling muons, to eliminate the current constraint of positioning the detector below the target. This work consists of three parts 1) determine the backscattered flux rate from theory, 2) distinguish backscattered from forward scattered muons at the detector, and 3) validate the theoretical results with field experimentation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Jaworske, D. A.; Degroh, Kim K.; Podojil, G.; McCollum, T.; Anzic, J.
1992-11-01
Pinholes or other defect sites in a protective oxide coating provide pathways for atomic oxygen in low Earth orbit to reach underlying material. One concept of enhancing the lifetime of materials in low Earth orbit is to apply a leveling coating to the material prior to applying any reflective and protective coatings. Using a surface tension leveling coating concept, a low viscosity epoxy was applied to the surface of several composite coupons. A protective layer of 1000 A of SiO2 was deposited on top of the leveling coating, and the coupons were exposed to an atomic oxygen environment in a plasma asher. Pinhole populations per unit area were estimated by counting the number of undercut sites observed by scanning electron microscopy. Defect density values of 180,000 defects/sq cm were reduced to about 1000 defects/sq cm as a result of the applied leveling coating. These improvements occur at a mass penalty of about 2.5 mg/sq cm.
NASA Technical Reports Server (NTRS)
Jaworske, D. A.; Degroh, K. K.; Podojil, G.; Mccollum, T.; Anzic, J.
1992-01-01
Pinholes or other defect sites in a protective oxide coating provide pathways for atomic oxygen in low Earth orbit to reach underlying material. One concept for enhancing the lifetime of materials in low Earth orbits is to apply a leveling coating to the material prior to applying any reflective and protective coatings. Using a surface tension leveling coating concept, a low viscosity epoxy was applied to the surface of several composite coupons. A protective layer of 1000 A of SiO2 was deposited on top of the leveling coating, and the coupons were exposed to an atomic oxygen environment in a plasma asher. Pinhole populations per unit area were estimated by counting the number of undercut sites observed by scanning electron microscopy. Defect density values of 180,000 defects/sq cm were reduced to about 1000 defects/sq cm as a result of the applied leveling coating. These improvements occur at a mass penalty of about 2.5 mg/sq cm.
NASA Technical Reports Server (NTRS)
Jaworske, D. A.; Degroh, Kim K.; Podojil, G.; Mccollum, T.; Anzic, J.
1992-01-01
Pinholes or other defect sites in a protective oxide coating provide pathways for atomic oxygen in low Earth orbit to reach underlying material. One concept of enhancing the lifetime of materials in low Earth orbit is to apply a leveling coating to the material prior to applying any reflective and protective coatings. Using a surface tension leveling coating concept, a low viscosity epoxy was applied to the surface of several composite coupons. A protective layer of 1000 A of SiO2 was deposited on top of the leveling coating, and the coupons were exposed to an atomic oxygen environment in a plasma asher. Pinhole populations per unit area were estimated by counting the number of undercut sites observed by scanning electron microscopy. Defect density values of 180,000 defects/sq cm were reduced to about 1000 defects/sq cm as a result of the applied leveling coating. These improvements occur at a mass penalty of about 2.5 mg/sq cm.
NASA Astrophysics Data System (ADS)
Sim, Eun Seob; Chung, Yong-Chae
2018-03-01
In this study, the influence of the non-uniform surface of F- and O-functionalized Ti2C on the anchoring behavior of lithium polysulfide (LiPS) is investigated using density functional theory. In order to consider the non-uniform surface, the substitutional, vacancy, and S-trapped sites of F- and O-functionalized Ti2C are designed. The anchoring behavior is investigated considering the adsorption energy of LiPS, reactivity between Li atoms and the substrate, and the reduction state of the S atoms. On the F-substitutional site of the O-functionalized surface, it is confirmed that the suppressing mechanism changes from the neutralization of S atoms to the anchoring of LiPS. However, too strong of an interaction between Ti atoms exposed at the vacancy site and S atoms induces trapping of the S atom at the vacancies of both F- and O-functionalized surfaces. As a result of the trapping of the S atom, the use of active material decreases. In addition, the S-trapped site originated from the vacancy site does not affect the suppressing mechanism. In conclusion, to optimize the Ti2C-based MXene as an anchoring material for Li-S batteries, the preparation process should be focused on eliminating the vacancy of functional groups.
Heaney, Christopher D.; Myers, Kevin; Wing, Steve; Hall, Devon; Baron, Dothula; Stewart, Jill R.
2015-01-01
Swine farming has gone through many changes in the last few decades, resulting in operations with a high animal density known as confined animal feeding operations (CAFOs). These operations produce a large quantity of fecal waste whose environmental impacts are not well understood. The purpose of this study was to investigate microbial water quality in surface waters proximal to swine CAFOs including microbial source tracking of fecal microbes specific to swine. For one year, surface water samples at up- and downstream sites proximal to swine CAFO lagoon waste land application sites were tested for fecal indicator bacteria (fecal coliforms, Escherichia coli and Enterococcus) and candidate swine-specific microbial source-tracking (MST) markers (Bacteroidales Pig-1-Bac, Pig-2-Bac, and Pig-Bac-2, and methanogen P23-2). Testing of 187 samples showed high fecal indicator bacteria concentrations at both up- and downstream sites. Overall, 40%, 23%, and 61% of samples exceeded state and federal recreational water quality guidelines for fecal coliforms, E. coli, and Enterococcus, respectively. Pig-1-Bac and Pig-2-Bac showed the highest specificity to swine fecal wastes and were 2.47 (95% confidence interval [CI] = 1.03, 5.94) and 2.30 times (95% CI = 0.90, 5.88) as prevalent proximal down- than proximal upstream of swine CAFOs, respectively. Pig-1-Bac and Pig-2-Bac were also 2.87 (95% CI = 1.21, 6.80) and 3.36 (95% CI = 1.34, 8.41) times as prevalent when 48 hour antecedent rainfall was greater than versus less than the mean, respectively. Results suggest diffuse and overall poor sanitary quality of surface waters where swine CAFO density is high. Pig-1-Bac and Pig-2-Bac are useful for tracking off-site conveyance of swine fecal wastes into surface waters proximal to and downstream of swine CAFOs and during rain events. PMID:25600418
Heaney, Christopher D; Myers, Kevin; Wing, Steve; Hall, Devon; Baron, Dothula; Stewart, Jill R
2015-04-01
Swine farming has gone through many changes in the last few decades, resulting in operations with a high animal density known as confined animal feeding operations (CAFOs). These operations produce a large quantity of fecal waste whose environmental impacts are not well understood. The purpose of this study was to investigate microbial water quality in surface waters proximal to swine CAFOs including microbial source tracking of fecal microbes specific to swine. For one year, surface water samples at up- and downstream sites proximal to swine CAFO lagoon waste land application sites were tested for fecal indicator bacteria (fecal coliforms, Escherichia coli and Enterococcus) and candidate swine-specific microbial source-tracking (MST) markers (Bacteroidales Pig-1-Bac, Pig-2-Bac, and Pig-Bac-2, and methanogen P23-2). Testing of 187 samples showed high fecal indicator bacteria concentrations at both up- and downstream sites. Overall, 40%, 23%, and 61% of samples exceeded state and federal recreational water quality guidelines for fecal coliforms, E. coli, and Enterococcus, respectively. Pig-1-Bac and Pig-2-Bac showed the highest specificity to swine fecal wastes and were 2.47 (95% confidence interval [CI]=1.03, 5.94) and 2.30 times (95% CI=0.90, 5.88) as prevalent proximal down- than proximal upstream of swine CAFOs, respectively. Pig-1-Bac and Pig-2-Bac were also 2.87 (95% CI=1.21, 6.80) and 3.36 (95% CI=1.34, 8.41) times as prevalent when 48 hour antecedent rainfall was greater than versus less than the mean, respectively. Results suggest diffuse and overall poor sanitary quality of surface waters where swine CAFO density is high. Pig-1-Bac and Pig-2-Bac are useful for tracking off-site conveyance of swine fecal wastes into surface waters proximal to and downstream of swine CAFOs and during rain events. Copyright © 2014 Elsevier B.V. All rights reserved.
Treated carbon fibers with improved performance for electrochemical and chemical applications
Chu, X.; Kinoshita, Kimio
1999-02-23
A treated mesophase carbon fiber is disclosed having a high density of exposed edges on the fiber surface, and a method is described for making such a treated fiber. A carbon electrode is also described which is constructed from such treated mesophase carbon fibers. The resulting electrode, formed from such treated flexible carbon fibers, is characterized by a high density of active sites formed from such exposed edges, low corrosion, and good mechanical strength, and may be fabricated into various shapes. The treated mesophase carbon fibers of the invention are formed by first loading the surface of the mesophase carbon fiber with catalytic metal particles to form catalytic etch sites on a hard carbon shell of the fiber. The carbon fiber is then subject to an etch step wherein portions of the hard carbon shell or skin are selectively removed adjacent the catalytic metal particles adhering to the carbon shell. This exposes the underlying radial edges of the graphite-like layers within the carbon shell of the mesophase carbon fiber, which exposed radial edges then act as active sites of a carbon electrode subsequently formed from the treated mesophase carbon fibers. 14 figs.
Treated carbon fibers with improved performance for electrochemical and chemical applications
Chu, Xi; Kinoshita, Kimio
1999-01-01
A treated mesophase carbon fiber is disclosed having a high density of exposed edges on the fiber surface, and a method of making such a treated fiber. A carbon electrode is also described which is constructed from such treated mesophase carbon fibers. The resulting electrode, formed from such treated flexible carbon fibers, is characterized by a high density of active sites formed from such exposed edges, low corrosion, and good mechanical strength, and may be fabricated into various shapes. The treated mesophase carbon fibers of the invention are formed by first loading the surface of the mesophase carbon fiber with catalytic metal particles to form catalytic etch sites on a hard carbon shell of the fiber. The carbon fiber is then subject to an etch step wherein portions of the hard carbon shell or skin are selectively removed adjacent the catalytic metal particles adhering to the carbon shell. This exposes the underlying radial edges of the graphite-like layers within the carbon shell of the mesophase carbon fiber, which exposed radial edges then act as active sites of a carbon electrode subsequently formed from the treated mesophase carbon fibers.
Seed rain and seed bank of third- and fifth-order streams on the western slope of the Cascade Range.
Janice M. Harmon; Jerry F. Franklin
1991-01-01
We compared the composition and density of the on-site vegetation, seed bank, and seed rain of three geomorphic and successional surfaces along third- and fifth-order streams on the western slope of the central Cascade Range in Oregon.The on-site vegetation generally was dominated by tree species, the seed bank by herb species, and the seed rain by tree and...
NASA Astrophysics Data System (ADS)
Liu, Tianhui; Chen, Jun; Zhang, Zhaojun; Shen, Xiangjian; Fu, Bina; Zhang, Dong H.
2018-04-01
We constructed a nine-dimensional (9D) potential energy surface (PES) for the dissociative chemisorption of H2O on a rigid Ni(100) surface using the neural network method based on roughly 110 000 energies obtained from extensive density functional theory (DFT) calculations. The resulting PES is accurate and smooth, based on the small fitting errors and the good agreement between the fitted PES and the direct DFT calculations. Time dependent wave packet calculations also showed that the PES is very well converged with respect to the fitting procedure. The dissociation probabilities of H2O initially in the ground rovibrational state from 9D quantum dynamics calculations are quite different from the site-specific results from the seven-dimensional (7D) calculations, indicating the importance of full-dimensional quantum dynamics to quantitatively characterize this gas-surface reaction. It is found that the validity of the site-averaging approximation with exact potential holds well, where the site-averaging dissociation probability over 15 fixed impact sites obtained from 7D quantum dynamics calculations can accurately approximate the 9D dissociation probability for H2O in the ground rovibrational state.
NASA Astrophysics Data System (ADS)
Cui, Xingqian; Bianchi, Thomas S.; Hutchings, Jack A.; Savage, Candida; Curtis, Jason H.
2016-03-01
Transport of particles plays a major role in redistributing organic carbon (OC) along coastal regions. In particular, the global importance of fjords as sites of carbon burial has recently been shown to be even more important than previously thought. In this study, we used six surface sediments from Fiordland, New Zealand, to investigate the transport of particles and OC based on density fractionation. Bulk, biomarker, and principle component analysis were applied to density fractions with ranges of <1.6, 1.6-2.0, 2.0-2.5, and >2.5 g cm-3. Our results found various patterns of OC partitioning at different locations along fjords, likely due to selective transport of higher density but smaller size particles along fjord head-to-mouth transects. We also found preferential leaching of certain biomarkers (e.g., lignin) over others (e.g., fatty acids) during the density fractionation procedure, which altered lignin-based degradation indices. Finally, our results indicated various patterns of OC partitioning on density fractions among different coastal systems. We further propose that a combination of particle size-density fractionation is needed to better understand transport and distribution of particles and OC.
Briët, Olivier J T; Dossou-Yovo, Joel; Akodo, Elena; van de Giesen, Nick; Teuscher, Thomas M
2003-05-01
In 13 villages in the savannah zone and 21 villages in the forest zone of Côte d'Ivoire, the biting density of the principal malaria vector, Anopheles gambiae, was studied as a function of rice cultivation in the inland valleys in a 2-km radius around each village. In the savannah villages, during the main season cropping period, surface water on rice-cultivated and to a lesser extent on uncultivated inland valleys seems to contribute strongly to the A. gambiae population density. For the off-season cropping period (which starts after the first light rains in the savannah zone), correlations were weaker. Breeding sites other than in inland valleys may play an important role in the savannah zone. In the forest zone, however, the A. gambiae population density was strongly correlated with the surface water availability (SWA) in the rice-cultivated inland valleys, whereas the correlation with the SWA in other (uncultivated) inland valleys was weak. The requirement of sunlit breeding sites for A. gambiae might explain this difference between zones. In the forest zone, only inland valleys cleared for rice cultivation meet this requirement, whereas all other inland valleys are covered with dense vegetation. In the savannah zone, however, most undergrowth is burnt during the dry season, which permits sunlight to reach puddles resulting from the first rains.
Villalobos, Mario; Pérez-Gallegos, Ayax
2008-10-15
The goethite surface structure has been extensively studied, but no convincing quantitative description of its highly variable surface reactivity as inversely related to its specific surface area (SSA) has been found. The present study adds experimental evidence and provides a unified macroscopic explanation to this anomalous behavior from differences in average adsorption capacities, and not in average adsorption affinities. We investigated the chromate anion and lead(II) cation adsorption behavior onto three different goethites with SSA varying from 50 to 94 m(2)/g, and analyzed an extensive set of published anion adsorption and proton charging data for variable SSA goethites. Maximum chromate adsorption was found to occupy on average from 3.1 to 9.7 sites/nm(2), inversely related to SSA. Congruency of oxyanion and Pb(II) adsorption behavior based on fractional site occupancy using these values, and a site density analysis suggest that: (i) ion binding occurs to singly and doubly coordinated sites, (ii) proton binding occurs to singly and triply coordinated sites (ranging from 6.2 to 8 total sites/nm(2), in most cases), and (iii) a predominance of (210) and/or (010) faces explains the high reactivity of low SSA goethites. The results imply that the macroscopic goethite adsorption behavior may be predicted without a need to investigate extensive structural details of each specific goethite of interest.
Xu, Longhua; Tian, Jia; Wu, Houqin; Deng, Wei; Yang, Yaohui; Sun, Wei; Gao, Zhiyong; Hu, Yuehua
2017-11-01
The anisotropic adsorption of sodium oleate (NaOL) on feldspar surfaces was investigated to elucidate the different flotation properties of feldspar particles of four different size ranges. Microflotation experiments showed that the feldspar flotation recovery of particles with sizes spanning different ranges decreased in the order 0-19>19-38>45-75>38-45μm. Zeta potential and FTIR measurements showed that NaOL was chemically adsorbed on the Al sites of the feldspar surface. The anisotropic surface energies and broken bond densities estimated by density functional theory calculations showed that, although feldspar mostly exposed (010) and (001) surfaces, only the (001) surfaces contained the Al sites needed for NaOL adsorption. The interaction energies calculated by molecular dynamics simulations confirmed the more favorable NaOL adsorption on (001) than (010) surfaces, which may represent the main cause for the anisotropic NaOL adsorption on feldspar particles of different sizes. SEM measurements showed that the main exposed surfaces on coarse and fine feldspar particles were the side (010) and basal (001) ones, respectively. A higher fraction of Al-rich (001) surfaces is exposed on fine feldspar particles, resulting in better floatability compared with coarse particles. XPS and adsorption measurements confirmed that the Al content on the feldspar surface varied with the particle size, explaining the different NaOL flotation of feldspar particles of different sizes. Therefore, the present results suggest that coarsely ground ore should be used for the separation of feldspar gangue minerals. Further improvements in the flotation separation of feldspar from associated valuable minerals can be achieved through selective comminution or grinding processes favoring the exposure of (010) surfaces. Copyright © 2017 Elsevier Inc. All rights reserved.
Foo, Guo Shiou; Hood, Zachary D.; Wu, Zili
2017-12-05
For this research, to gain an in-depth understanding of the surface properties relevant for catalysis using ternary oxides, we report the acid–base pair reactivity of shape-controlled SrTiO 3 (STO) nanocrystals for the dehydrogenation of ethanol. Cubes, truncated cubes, dodecahedra, and etched cubes of STO with varying ratios of (001) and (110) crystal facets were synthesized using a hydrothermal method. Low-energy ion scattering (LEIS) analysis revealed that the (001) surface on cubes of STO is enriched with SrO due to surface reconstruction, resulting in a high ratio of strong base sites. Chemical treatment with dilute nitric acid to form etched cubesmore » of STO resulted in a surface enriched with Ti cations and strong acidity. Furthermore, the strength and distribution of surface acidic sites increase with the ratio of (110) facet from cubes to truncated cubes to dodecahedra for STO. Kinetic, isotopic, and spectroscopy methods show that the dehydrogenation of ethanol proceeds through the facile dissociation of the alcohol group, followed by the cleavage of the C α–H bond, which is the rate-determining step. Co-feeding of various probe molecules during catalysis, such as NH 3, 2,6-di-tert-butylpyridine, CO 2, and SO 2, reveals that a pair of Lewis acid site and basic surface oxygen atom is involved in the dehydrogenation reaction. The surface density of acid–base site pairs was measured using acetic acid as a probe molecule, allowing initial acetaldehyde formation turnover rates to be obtained. Comparison among various catalysts reveals no simple correlation between ethanol turnover rate and the percentage of either surface facet ((001) or (110)) of the STO nanocrystals. Instead, the reaction rate is found to increase with the strength of acid sites but reversely with the strength of base sites. The acid–base property is directly related to the surface composition as a result from different surface reconstruction behaviors of the shaped STO nanocrystals. Lastly, the finding in this work underscores the importance of characterizing the top surface compositions and sites properties when assessing the catalytic performance of shape-controlled complex oxides such as perovskites.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foo, Guo Shiou; Hood, Zachary D.; Wu, Zili
For this research, to gain an in-depth understanding of the surface properties relevant for catalysis using ternary oxides, we report the acid–base pair reactivity of shape-controlled SrTiO 3 (STO) nanocrystals for the dehydrogenation of ethanol. Cubes, truncated cubes, dodecahedra, and etched cubes of STO with varying ratios of (001) and (110) crystal facets were synthesized using a hydrothermal method. Low-energy ion scattering (LEIS) analysis revealed that the (001) surface on cubes of STO is enriched with SrO due to surface reconstruction, resulting in a high ratio of strong base sites. Chemical treatment with dilute nitric acid to form etched cubesmore » of STO resulted in a surface enriched with Ti cations and strong acidity. Furthermore, the strength and distribution of surface acidic sites increase with the ratio of (110) facet from cubes to truncated cubes to dodecahedra for STO. Kinetic, isotopic, and spectroscopy methods show that the dehydrogenation of ethanol proceeds through the facile dissociation of the alcohol group, followed by the cleavage of the C α–H bond, which is the rate-determining step. Co-feeding of various probe molecules during catalysis, such as NH 3, 2,6-di-tert-butylpyridine, CO 2, and SO 2, reveals that a pair of Lewis acid site and basic surface oxygen atom is involved in the dehydrogenation reaction. The surface density of acid–base site pairs was measured using acetic acid as a probe molecule, allowing initial acetaldehyde formation turnover rates to be obtained. Comparison among various catalysts reveals no simple correlation between ethanol turnover rate and the percentage of either surface facet ((001) or (110)) of the STO nanocrystals. Instead, the reaction rate is found to increase with the strength of acid sites but reversely with the strength of base sites. The acid–base property is directly related to the surface composition as a result from different surface reconstruction behaviors of the shaped STO nanocrystals. Lastly, the finding in this work underscores the importance of characterizing the top surface compositions and sites properties when assessing the catalytic performance of shape-controlled complex oxides such as perovskites.« less
Monoatomic and dimer Mn adsorption on the Au(111) surface from first principles
NASA Astrophysics Data System (ADS)
Muñoz, Francisco; Romero, Aldo H.; Mejía-López, Jose; Morán-López, J. L.
2011-05-01
A theoretical study based on the density functional theory of the adsorption of Mn monomers and dimers on a Au-(111) surface is presented. As necessary preliminary steps, the bulk and clean surface electronic structure are calculated, which agree well with previous reports. Then, the electronic structure of the Mn adatom, chemisorbed on four different surface geometries, is analyzed. It is found that the most stable geometry is when the Mn atom is chemisorbed on threefold coordinated sites. Using this geometry for a single adatom a second Mn atom is chemisorbed and the most stable dimer geometrical structure is calculated. The lowest-energy configuration corresponds to the molecule lying parallel to the surface, adsorbed on two topological equivalent threefold coordinated sites. It is also found that the lowest-energy magnetic configuration corresponds to the antiferromagnetic arrangement with individual magnetic moments of 4.64μB. Finally, it is concluded that the dimer is not stable and should fragment at the surface.
Theoretical study of adsorption of organic phosphines on transition metal surfaces
NASA Astrophysics Data System (ADS)
Lou, Shujie; Jiang, Hong
2018-04-01
The adsorption properties of organic phosphines on transition metal (TM) surfaces (Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt, and Au) have been studied to explore the possibility of building novel heterogeneous chiral catalytic systems based on organic phosphines. Preferred adsorption sites, adsorption energies and surface electronic structures of a selected set of typical organic phosphines adsorbed on TM surfaces are calculated with density-functional theory to obtain a systematic understanding on the nature of adsorption interactions. All organic phosphines considered are found to chemically adsorb on these TM surfaces with the atop site as the most preferred one, and the TM-P bond is formed via the lone-pair electrons of the P atom and the directly contacted TM atom. These findings imply that it is indeed possible to build heterogeneous chiral catalytic systems based on organic phosphines adsorbed on TM surfaces, which, however, requires a careful design of molecular structure of organic phosphines.
NASA Astrophysics Data System (ADS)
Miller, Ryan; Larson, Amanda; Pohl, Karsten
Pentacene serves as a backbone for several molecules that provide attractive qualities for organic photovoltaic devices. One of these pentacene derivatives is 5 6,7-trithiapentacene-13-one (TTPO), which is unique in that it achieves its lowest energy configuration on Au(1 1 1) surfaces with the thiol group angled down towards the surface, allowing many molecules to pack closely together and form molecular nanowires. However, TTPO diffuses on flat surfaces, making it difficult for the self-assembly process to be initiated. With the help of the low-energy sites in surface defects and Au(7 8 8) step edges, TTPO molecules can be anchored in place on surfaces, allowing for chain formation to begin. By using high-performance Density Functional Theory based molecular dynamics calculations, the molecules can be shown to stay localized to these bonding sites and serve as a basis for chain formation. In addition, by simulating various temperatures with a Nose-Hoover thermostat, we can analyze how temperature affects anchoring ability and diffusion properties.
Adamowicz, S.C.; Roman, C.T.
2002-01-01
This study evaluates the response of three salt marshes, associated with the Rachel Carson National Wildlife Refuge (Maine), to the practice of ditch plugging. Drainage ditches, originally dug to drain the marsh for mosquito control or to facilitate salt hay farming, are plugged with marsh peat in an effort to impound water upstream of the plug, raise water table levels in the marsh, and increase surface water habitat. At two study sites, Moody Marsh and Granite Point Road Marsh, ditch plugs were installed in spring 2000. Monitoring of hydrology, vegetation, nekton and bird utilization, and marsh development processes was conducted in 1999, before ditch plugging, and then in 2000 and 2001 (all parameters except nekton), after ditch plugging. Each study site had a control marsh that was monitored simultaneously with the plugged marsh, and thus, we employed a BACI study design (before, after, control, impact). A third site, Marshall Point Road Marsh, was plugged in 1998. Monitoring of the plugged and control sites was conducted in 1999 and 2000, with limited monitoring in 2001, thus there was no ?before? plug monitoring. With ditch plugging, water table levels increased toward the marsh surface and the areal extent of standing water increased. Responding to a wetter substrate, a vegetation change from high marsh species (e.g., Spartina patens) to those more tolerant of flooded conditions (e.g., Spartina alterniflora) was noted at two of the three ditch plugged sites. Initial response of the nekton community (fishes and decapod crustaceans) was evaluated by monitoring utilization of salt marsh pools using a 1m2 enclosure trap. In general, nekton species richness, density, and community structure remained unchanged following ditch plugging at the Moody and Granite Point sites. At Marshall Point, species richness and density (number of individuals per m2) were significantly greater in the experimental plugged marsh than the control marsh (<2% of the control marsh was open water habitat vs. 11% of the plugged marsh). The response of birds, categorized as waterfowl & waterbirds, shorebirds & wading birds, gulls & terns, and miscellaneous (raptors, passerines, other), was variable. Following ditch plugging, bird species richness increased at the Granite Point site (1999 pre-plug = 15.4, 2000 post-plug = 26.2, 2001 post-plug = 38.7). Because of a low sample size at Moody Marsh, reliable statements on species richness cannot be made. Density of birds (no. of birds per ha) remained unchanged with ditch plugging at Granite Point Marsh, although there was a strong, but not statistically significant, trend toward increased density. This study only reports on initial responses of marsh functions to ditch plugging. Monitoring should continue at these sites, and perhaps at additional sites, for the next decade or so. A monitoring plan is recommended. Long-term monitoring will include evaluation of salt marsh development processes using SET (surface elevation table) methodology. There is concern, although not confirmed, that as ditch-plugged marshes become wetter and marsh grass production declines their ability to keep pace with sea level rise could be jeopardized. It is suggested that ditch plugging should be considered an experimental marsh management technique. Additional monitoring on the physical and habitat responses of ditch-plugged marshes is required, along with assessments of other techniques aimed at restoring open water habitat to the marsh surface.
NASA Astrophysics Data System (ADS)
Liu, Xiao-Qiang; Xue, Ying; Tian, Zhi-Yue; Mo, Jing-Jing; Qiu, Nian-Xiang; Chu, Wei; Xie, He-Ping
2013-11-01
Graphene doped by nitrogen (N) and/or boron (B) is used to represent the surface models of coal with the structural heterogeneity. Through the density functional theory (DFT) calculations, the interactions between coalbed methane (CBM) and coal surfaces have been investigated. Several adsorption sites and orientations of methane (CH4) on graphenes were systematically considered. Our calculations predicted adsorption energies of CH4 on graphenes of up to -0.179 eV, with the strongest binding mode in which three hydrogen atoms of CH4 direct to graphene surface, observed for N-doped graphene, compared to the perfect (-0.154 eV), B-doped (-0.150 eV), and NB-doped graphenes (-0.170 eV). Doping N in graphene increases the adsorption energies of CH4, but slightly reduced binding is found when graphene is doped by B. Our results indicate that all of graphenes act as the role of a weak electron acceptor with respect to CH4. The interactions between CH4 and graphenes are the physical adsorption and slightly depend upon the adsorption sites on graphenes and the orientations of methane as well as the electronegativity of dopant atoms in graphene.
Tanabe, Norio; Kuboyama, Tomoharu; Kazuma, Kohei; Konno, Katsuhiro; Tohda, Chihiro
2015-01-01
Although axonal extension to reconstruct spinal tracts should be effective for restoring function after spinal cord injury (SCI), chondroitin sulfate proteoglycan (CSPG) levels increase at spinal cord lesion sites, and inhibit axonal regrowth. In this study, we found that the water extract of roots of Sophora flavescens extended the axons of mouse cortical neurons, even on a CSPG-coated surface. Consecutive oral administrations of S. flavescens extract to SCI mice for 31 days increased the density of 5-HT-positive axons at the lesion site and improved the motor function. Further, the active constituents in the S. flavescens extract were identified. The water and alkaloid fractions of the S. flavescens extract each exhibited axonal extension activity in vitro. LC/MS analysis revealed that these fractions mainly contain matrine and/or oxymatrine, which are well-known major compounds in S. flavescens. Matrine and oxymatrine promoted axonal extension on the CSPG-coated surface. This study is the first to demonstrate that S. flavescens extract, matrine, and oxymatrine enhance axonal growth in vitro, even on a CSPG-coated surface, and that S. flavescens extract improves motor function and increases axonal density in SCI mice.
A density functional theory study of CO oxidation on CuO1-x(111).
Yang, Bing-Xing; Ye, Li-Ping; Gu, Hui-Jie; Huang, Jin-Hua; Li, Hui-Ying; Luo, Yong
2015-08-01
The surface structures, CO adsorption, and oxidation-reaction properties of CuO1-x(111) with different reduction degree have been investigated by using density functional theory including on-site Coulomb corrections (DFT + U). Results indicate that the reduction of Cu has a great influence on the adsorption of CO. Electron localization caused by the reduction turns Cu(2+) to Cu(+), which interacts much stronger with CO, and the adsorption strength of CO is related to the electronic interaction with the substrate as well as the structural relaxation. In particular, the electronic interaction is proved to be the decisive factor. The surfaces of CuO1-x(111) with different reduction degree all have good adsorption to CO. With the expansion of the surface reduction degree, the amount of CO that is stably adsorbed on the surface increases, while the number of surface active lattice O decreases. In general, the activity of CO oxidation first rises and then declines.
Density-functional theory study of the initial oxygen incorporation in Pd(111)
NASA Astrophysics Data System (ADS)
Todorova, Mira; Reuter, Karsten; Scheffler, Matthias
2005-05-01
Pd(111) has recently been shown to exhibit a propensity to form a subnanometer thin surface oxide film already well before a full monolayer coverage of adsorbed O atoms is reached on the surface. Aiming at an atomic-scale understanding of this finding, we study the initial oxygen incorporation into the Pd(111) surface using density-functional theory. We find that oxygen incorporation into the sub-surface region starts at essentially the same coverage as formation of the surface oxide. This implies that the role of sub-surface oxygen should be considered as that of a metastable precursor in the oxidation process of the surface. The mechanisms found to play a role towards the ensuing stabilization of an ordered oxidic structure with a mixed on-surface/sub-surface site occupation follow a clear trend over the late 4d transition metal series, as seen by comparing our data to previously published studies concerned with oxide formation at the basal surface of Ru, Rh, and Ag. The formation of a linearly aligned O-TM-O trilayered structure (TM=Ru,Rh,Pd,Ag) , together with an efficient coupling to the underlying substrate seem to be key ingredients in this respect.
Surface features of soil particles of three types of soils under different land use strategies
NASA Astrophysics Data System (ADS)
Matveeva, Nataliy; Kotelnikova, Anna; Rogova, Olga; Proskurnin, Mikhail
2017-04-01
Nowadays, there is a clear need in a deep investigation of molecular composition of soils and of its influence on surface characteristics of soil particles. The aim of this study is to evaluate the composition and properties of physical fractions in different soil types in determining functional specificity of soil solid-phase surface. The experiments were carried out with three different types of Russian soils—Sod-Podzolic, Chestnut, and Chernozem soils—under various treatments (fallow, different doses of mineral fertilizers and their aftereffects). The samples were separated into three fractions: silt (SF) with a particle size of <2 μm, light fraction (LF) with a density of <2 g/cm3, and residual fraction (RF) with a size >2 μm and the density >2 g/cm3. We measured specific surface area, surface hydrophobicity (contact angle, CA), ζ-potential, and the point of zero charge (PZC). For Chernozem and Chestnut soils and their fractions of we observed an increase in hydrophobicity for SF and RF under fertilizer treatment. At the sites not treated with fertilizers and aftereffect sites, the hydrophobicity of fractions was lower compared to the sites under treatment. The CA of the original soils and fractions were different: in 35% of cases CA was higher for SF and RF by 12-16%. The rest of samples demonstrated CA of all three physical fractions lower than CA of the original soil. The variability of the mean CA indicates considerable differences in ζ-potential and PZC between different types of soils and soil fractions. The results of potentiometric titration of PZC for Sod-Podzolic soil showed that all values are in acidic range, which suggests predominance of acidic functional groups at the surface of soil particles. Specific surface area determines soil sorption processes, bioavailability of nutrients, water etc. Here, specific surface area of Sod-Podzolic soil was low and SF-dependent. We calculated specific surface charge from obtained data on specific surface area and PZC. The results suggested considerable differences between sorption features of both soils and fractions under different land use strategies.
Compressive Strength of Cometary Surfaces Derived from Radar Observations
NASA Astrophysics Data System (ADS)
ElShafie, A.; Heggy, E.
2014-12-01
Landing on a comet nucleus and probing it, mechanically using harpoons, penetrometers and drills, and electromagnetically using low frequency radar waves is a complex task that will be tackled by the Rosetta mission for Comet 67P/Churyumov-Gerasimenko. The mechanical properties (i.e. density, porosity and compressive strength) and the electrical properties (i.e. the real and imaginary parts of the dielectric constant) of the comet nucleus, constrain both the mechanical and electromagnetic probing capabilities of Rosetta, as well as the choice of landing site, the safety of the landing, and subsurface data interpretation. During landing, the sounding radar data that will be collected by Rosetta's CONSERT experiment can be used to probe the comet's upper regolith layer by assessing its dielectric properties, which are then inverted to retrieve the surface mechanical properties. These observations can help characterize the mechanical properties of the landing site, which will optimize the operation of the anchor system. In this effort, we correlate the mechanical and electrical properties of cometary analogs to each other, and derive an empirical model that can be used to retrieve density, porosity and compressive strength from the dielectric properties of the upper regolith inverted from CONSERT observations during the landing phase. In our approach we consider snow as a viable cometary material analog due to its low density and its porous nature. Therefore, we used the compressive strength and dielectric constant measurements conducted on snow at a temperature of 250 K and a density range of 0.4-0.9 g/cm3 in order to investigate the relation between compressive strength and dielectric constant under cometary-relevant density range. Our results suggest that compressive strength increases linearly as function of the dielectric constant over the observed density range mentioned above. The minimum and maximum compressive strength of 0.5 and 4.5 MPa corresponded to a dielectric constant of 2.2 and 3.4 over the density range of 0.4-0.9 g/cm3. This preliminary correlation will be applied to the case of porous and dust contaminated snow under different temperatures to assess the surface mechanical properties for Comet 67P.
Spectroscopic infrared extinction mapping as a probe of grain growth in IRDCs
NASA Astrophysics Data System (ADS)
Lim, Wanggi; Carey, Sean J.
2014-07-01
We present photometric and spectroscopic tests of MIR to FIR extinction laws toward IRDC G028.36+00.07, a potential site of massive star formation. Lim & Tan (2014, hereafter LT14) developed methods of FIR extinction mapping of this source using Spitzer-MIPS 24 micron and Herschel-PACS 70 micron images, and extending the MIR 8 micron mapping methods of (Butler & Tan 2012, hereafter BT12), finding evidence for grain growth in the highest mass surface density regions. Here we present initial results of spectroscopic infrared extinction (SIREX) mapping using Spitzer-IRS (14 to 38 micron) data of the same IRDC. These methods allow us to measure the SED of the diffuse Galactic ISM, which we compare to theoretical models of Draine & Li (2007), as well as to search for opacity law variations with mass surface density within the IRDC. By comparison with theoretical dust models, e.g., Ossenkopf & Henning (1994) and Ormel et al. (2011), we are able to search for compositional signatures of the grain ices, such as water and methanol. We find evidence for generally flatter MIR to FIR extinction laws as mass surface density increases, strengthening the evidence for grain and ice mantle growth in higher density regions.
Wang, Lei; Liu, Lian-you; Gao, Shang-yu; Hasi, Eerdun; Wang, Zhi
2006-01-01
Particulate pollution is a serious health problem throughout the world, exacerbating a wide range of respiratory and vascular illnesses in urban areas. Urban plants play an important role in reducing particulate pollution. Physicochemical characteristics of ambient particles settling upon leaf surfaces of eleven roadside plants at four sites of Beijing were studies. Results showed that density of particles on the leaf surfaces greatly varied with plant species and traffic condition. Fraxinus chinensis, Sophora japonica, A ilanthus altissima, Syringa oblata and Prunus persica had larger densities of particles among the tall species. Due to resuspension of road dust, the densities of particles of Euonymus japonicus and Parthenocissus quinquefolia with low sampling height were 2-35 times to other taller tree species. For test plant species, micro-roughness of leaf surfaces and density of particles showed a close correlation. In general, the larger micro-roughness of leaf surfaces is, the larger density of particles is. Particles settling upon leaf surfaces were dominantly PM, (particulate matter less than 10 microm in aerodynamic diameter; 98.4%) and PM25 (particulate matter less than 2.5 microm in aerodynamic diameter; 64.2%) which were closely relative to human health. Constant elements of particles were C, O, K, Ca, Si, Al, Mg, Na, Fe, S, Cl and minerals with higher content were SiO2, CaCO3, CaMg(CO3)2, NaCI and 2CaSO4 x H20, SiO2. CaCO3 and CaMg(CO3)2 mainly came from resuspension of road dust. 2CaSO4 x H20 was produced by the reaction between CaCO3 derived from earth dust or industrial emission and SO2, H2SO4 or sulfate. NaCl was derived from sea salt.
Hattori, Masashi; Kamata, Keigo; Hara, Michikazu
2017-02-01
Photo-assisted phosphorylation of an anatase TiO 2 catalyst was examined to improve its catalytic performance for the direct production of 5-(hydroxymethyl)furfural (HMF), a versatile chemical platform, from glucose. In phosphorylation based on simple esterification between phosphoric acid and surface OH groups on anatase TiO 2 with water-tolerant Lewis acid sites, the density of phosphates immobilized on TiO 2 is limited to 2 phosphates nm -2 , which limits selective HMF production. Phosphorylation of the TiO 2 surface under fluorescent light irradiation increases the surface phosphate density to 50%, which is higher than the conventional limit, thus preventing the adsorption of hydrophilic glucose molecules on TiO 2 and resulting in a more selective HMF production over photoassist-phosphorylated TiO 2 .
Enhanced photocurrent in engineered bacteriorhodopsin monolayer.
Patil, Amol V; Premaruban, Thenhuan; Berthoumieu, Olivia; Watts, Anthony; Davis, Jason J
2012-01-12
The integration of the transmembrane protein bacteriorhodopsin (BR) with man-made electrode surfaces has attracted a great deal of interest for some two decades or more and holds significant promise from the perspective of derived photoresponse or energy capture interfaces. Here we demonstrate that a novel and strategically engineered cysteine site (M163C) can be used to intimately and effectively couple delipidated BR to supporting metallic electrode surfaces. By virtue of the combined effects of the greater surface molecular density afforded by delipidation, and the vicinity of the electrostatic changes associated with proton pumping to the transducing metallic continuum, the resulting films generate a considerably greater photocurrent density on wavelength-selective illumination than previously achievable with monolayers of BR. Given the uniquely photoresponsive, wavelength-selective, and photostable characteristics of this protein, the work has implications for utilization in solar energy capture and photodetector devices.
The Mass Surface Density Distribution of a High-Mass Protocluster forming from an IRDC and GMC
NASA Astrophysics Data System (ADS)
Lim, Wanggi; Tan, Jonathan C.; Kainulainen, Jouni; Ma, Bo; Butler, Michael
2016-01-01
We study the probability distribution function (PDF) of mass surface densities of infrared dark cloud (IRDC) G028.36+00.07 and its surrounding giant molecular cloud (GMC). Such PDF analysis has the potential to probe the physical processes that are controlling cloud structure and star formation activity. The chosen IRDC is of particular interest since it has almost 100,000 solar masses within a radius of 8 parsecs, making it one of the most massive, dense molecular structures known and is thus a potential site for the formation of a high-mass, "super star cluster". We study mass surface densities in two ways. First, we use a combination of NIR, MIR and FIR extinction maps that are able to probe the bulk of the cloud structure that is not yet forming stars. This analysis also shows evidence for flattening of the IR extinction law as mass surface density increases, consistent with increasing grain size and/or growth of ice mantles. Second, we study the FIR and sub-mm dust continuum emission from the cloud, especially utlizing Herschel PACS and SPIRE images. We first subtract off the contribution of the foreground diffuse emission that contaminates these images. Next we examine the effects of background subtraction and choice of dust opacities on the derived mass surface density PDF. The final derived PDFs from both methods are compared, including also with other published studies of this cloud. The implications for theoretical models and simulations of cloud structure, including the role of turbulence and magnetic fields, are discussed.
Rice, Karen C.; Monti, Michele M.; Ettinger, Matthew R.
2005-01-01
Concentrated animal feeding operations (CAFOs) result from the consolidation of small farms with animals into larger operations, leading to a higher density of animals per unit of land on CAFOs than on small farms. The density of animals and subsequent concentration of animal wastes potentially can cause contamination of nearby ground and surface waters. This report summarizes water-quality data collected from agricultural sites in the Shenandoah Valley and Eastern Shore of Virginia. Five sites, three non-CAFO and two dairy-operation CAFO sites, were sampled in the Shenandoah Valley. Four sites, one non-CAFO and three poultry-operation CAFO sites were sampled on the Eastern Shore. All samples were collected during January and February 2004. Water samples were analyzed for the following parameters and constituents: temperature, specific conductance, pH, and dissolved oxygen; concentrations of the indicator organisms Escherichia coli (E. coli) and enterococci; bacterial isolates of E. coli, enterococci, Salmonella spp., and Campylobacter spp.; sensitivity to antibiotics of E. coli, enterococci, and Salmonella spp.; arsenic, cadmium, chromium3+, copper, nickel, and mercury; hardness, biological oxygen demand, nitrate, nitrite, ammonia, ortho-phosphate, total Kjeldahl nitrogen, chemical oxygen demand, total organic carbon, and dissolved organic carbon; and 45 dissolved organic compounds, which included a suite of antibiotic compounds.Data are presented in tables 5-21 and results of analyses of replicate samples are presented in tables 22-28. A summary of the data in tables 5-8 and 18-21 is included in the report.
NASA Astrophysics Data System (ADS)
Provata, Astero; Prassas, Vassilis D.; Theodorou, Doros N.
1997-10-01
A thin liquid film of lattice fluid in equilibrium with its vapor is studied in 2 and 3 dimensions with canonical Monte Carlo simulation (MC) and Self-Consistent Field Theory (SCF) in the temperature range 0.45Tc to Tc, where Tc the liquid-gas critical temperature. Extending the approach of Oates et al. [Philos. Mag. B 61, 337 (1990)] to anisotropic systems, we develop a method for the MC computation of the transverse and normal pressure profiles, hence of the surface tension, based on virtual removals of individual sites or blocks of sites from the system. Results from implementation of this new method, obtained at very modest computational cost, are in reasonable agreement with exact values and other MC estimates of the surface tension of the 2-d and 3-d model systems, respectively. SCF estimates of the interfacial density profiles, the surface tension, the vapor pressure curve and the binodal curve compare well with MC results away from Tc, but show the expected deviations at high temperatures.
Surface complexation model for multisite adsorption of copper(II) onto kaolinite
NASA Astrophysics Data System (ADS)
Peacock, Caroline L.; Sherman, David M.
2005-08-01
We measured the adsorption of Cu(II) onto kaolinite from pH 3-7 at constant ionic strength. EXAFS spectra show that Cu(II) adsorbs as (CuO 4H n) n-6 and binuclear (Cu 2O 6H n) n-8 inner-sphere complexes on variable-charge ≡AlOH sites and as Cu 2+ on ion exchangeable ≡X-H + sites. Sorption isotherms and EXAFS spectra show that surface precipitates have not formed at least up to pH 6.5. Inner-sphere complexes are bound to the kaolinite surface by corner-sharing with two or three edge-sharing Al(O,OH) 6 polyhedra. Our interpretation of the EXAFS data are supported by ab initio (density functional theory) geometries of analog clusters simulating Cu complexes on the {110} and {010} crystal edges and at the ditrigonal cavity sites on the {001}. Having identified the bidentate (≡AlOH) 2Cu(OH) 20, tridentate (≡Al 3O(OH) 2)Cu 2(OH) 30 and ≡X-Cu 2+ surface complexes, the experimental copper(II) adsorption data can be fit to the reactions
NASA Astrophysics Data System (ADS)
Steinke, I.; Hoose, C.; Möhler, O.; Connolly, P.; Leisner, T.
2015-04-01
Deposition nucleation experiments with Arizona Test Dust (ATD) as a surrogate for mineral dusts were conducted at the AIDA cloud chamber at temperatures between 220 and 250 K. The influence of the aerosol size distribution and the cooling rate on the ice nucleation efficiencies was investigated. Ice nucleation active surface site (INAS) densities were calculated to quantify the ice nucleation efficiency as a function of temperature, humidity and the aerosol surface area concentration. Additionally, a contact angle parameterization according to classical nucleation theory was fitted to the experimental data in order to relate the ice nucleation efficiencies to contact angle distributions. From this study it can be concluded that the INAS density formulation is a very useful tool to describe the temperature- and humidity-dependent ice nucleation efficiency of ATD particles. Deposition nucleation on ATD particles can be described by a temperature- and relative-humidity-dependent INAS density function ns(T, Sice) with ns(xtherm) = 1.88 ×105 · exp(0.2659 · xtherm) [m-2] , (1) where the temperature- and saturation-dependent function xtherm is defined as xtherm = -(T-273.2)+(Sice-1) ×100, (2) with the saturation ratio with respect to ice Sice >1 and within a temperature range between 226 and 250 K. For lower temperatures, xtherm deviates from a linear behavior with temperature and relative humidity over ice. Also, two different approaches for describing the time dependence of deposition nucleation initiated by ATD particles are proposed. Box model estimates suggest that the time-dependent contribution is only relevant for small cooling rates and low number fractions of ice-active particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chilukuri, Bhaskar; Mazur, Ursula; Hipps, Kerry W.
A density functional theory study of a cobalt(II) octaethylporphyrin (CoOEP) monolayer on Au(111) and HOPG(0001) surfaces was performed under periodic boundary conditions. Calculations with and without dispersion corrections are performed and the effect of van der Waals forces on the interface properties is analyzed. Calculations have determined that the CoOEP molecule tends to bind at the 3-fold and the 6-fold center sites on Au(111) and HOPG(0001), respectively. Geometric optimizations at the center binding sites have indicated that the porphyrin molecules (in the monolayer) lie flat on both substrates. Calculations also reveal that the CoOEP monolayer binds slightly more strongly tomore » Au(111) than to HOPG(0001). Charge density difference plots disclose that charge is redistributed mostly around the porphyrin plane and the first layer of the substrates. Dispersion interactions cause a larger substrate to molecule charge pushback on Au(111) than on HOPG. CoOEP adsorption tends to lower the work functions of either substrate, qualitatively agreeing with the experimental photoelectron spectroscopic data. Comparison of the density of states (DOS) of the isolated CoOEP molecule with that on gold and HOPG substrates showed significant band shifts around the Fermi energy due to intermolecular orbital hybridization. Simulated STM images were plotted with the Tersoff–Hamann approach using the local density of states, which also agree with the experimental results. This study elucidates the role of dispersion for better describing porphyrin–substrate interactions. A DFT based overview of geometric, adsorption and electronic properties of a porphyrin monolayer on conductive surfaces is presented.« less
Chilukuri, Bhaskar; Mazur, Ursula; Hipps, K W
2014-07-21
A density functional theory study of a cobalt(II) octaethylporphyrin (CoOEP) monolayer on Au(111) and HOPG(0001) surfaces was performed under periodic boundary conditions. Calculations with and without dispersion corrections are performed and the effect of van der Waals forces on the interface properties is analyzed. Calculations have determined that the CoOEP molecule tends to bind at the 3-fold and the 6-fold center sites on Au(111) and HOPG(0001), respectively. Geometric optimizations at the center binding sites have indicated that the porphyrin molecules (in the monolayer) lie flat on both substrates. Calculations also reveal that the CoOEP monolayer binds slightly more strongly to Au(111) than to HOPG(0001). Charge density difference plots disclose that charge is redistributed mostly around the porphyrin plane and the first layer of the substrates. Dispersion interactions cause a larger substrate to molecule charge pushback on Au(111) than on HOPG. CoOEP adsorption tends to lower the work functions of either substrate, qualitatively agreeing with the experimental photoelectron spectroscopic data. Comparison of the density of states (DOS) of the isolated CoOEP molecule with that on gold and HOPG substrates showed significant band shifts around the Fermi energy due to intermolecular orbital hybridization. Simulated STM images were plotted with the Tersoff-Hamann approach using the local density of states, which also agree with the experimental results. This study elucidates the role of dispersion for better describing porphyrin-substrate interactions. A DFT based overview of geometric, adsorption and electronic properties of a porphyrin monolayer on conductive surfaces is presented.
Modelling realistic TiO2 nanospheres: A benchmark study of SCC-DFTB against hybrid DFT
NASA Astrophysics Data System (ADS)
Selli, Daniele; Fazio, Gianluca; Di Valentin, Cristiana
2017-10-01
TiO2 nanoparticles (NPs) are nowadays considered fundamental building blocks for many technological applications. Morphology is found to play a key role with spherical NPs presenting higher binding properties and chemical activity. From the experimental point of view, the characterization of these nano-objects is extremely complex, opening a large room for computational investigations. In this work, TiO2 spherical NPs of different sizes (from 300 to 4000 atoms) have been studied with a two-scale computational approach. Global optimization to obtain stable and equilibrated nanospheres was performed with a self-consistent charge density functional tight-binding (SCC-DFTB) simulated annealing process, causing a considerable atomic rearrangement within the nanospheres. Those SCC-DFTB relaxed structures have been then optimized at the DFT(B3LYP) level of theory. We present a systematic and comparative SCC-DFTB vs DFT(B3LYP) study of the structural properties, with particular emphasis on the surface-to-bulk sites ratio, coordination distribution of surface sites, and surface energy. From the electronic point of view, we compare HOMO-LUMO and Kohn-Sham gaps, total and projected density of states. Overall, the comparisons between DFTB and hybrid density functional theory show that DFTB provides a rather accurate geometrical and electronic description of these nanospheres of realistic size (up to a diameter of 4.4 nm) at an extremely reduced computational cost. This opens for new challenges in simulations of very large systems and more extended molecular dynamics.
Sun, Long; Zhang, Guang-hui; Luan, Li-li; Li, Zhen-wei; Geng, Ren
2016-02-01
Along the 368-591 mm precipitation gradient, 7 survey sites, i.e. a total 63 investigated plots were selected. At each sites, woodland, grassland, and cropland with similar restoration age were selected to investigate soil organic carbon distribution in surface soil (0-30 cm), and the influence of factors, e.g. climate, soil depth, and land uses, on soil organic carbon distribution were analyzed. The result showed that, along the precipitation gradient, the grassland (8.70 g . kg-1) > woodland (7.88 g . kg-1) > farmland (7.73 g . kg-1) in concentration and the grassland (20.28 kg . m-2) > farmland (19.34 kg . m-2) > woodland (17.14 kg . m-2) in density. The differences of soil organic carbon concentration of three land uses were not significant. Further analysis of pooled data of three land uses showed that the surface soil organic carbon concentration differed significantly at different precipitation levels (P<0.00 1). Significant positive relationship was detected between mean annual precipitation and soil organic carbon concentration (r=0.838, P<0.001) in the of pooled data. From south to north (start from northernmost Ordos), i.e. along the 368-591 mm precipitation gradient, the soil organic carbon increased with annual precipitation 0. 04 g . kg-1 . mm-1, density 0.08 kg . m-2 . mm-1. The soil organic carbon distribution was predicted with mean annual precipitation, soil clay content, plant litter in woodland, and root density in farmland.
Ji, Jiayuan; Zhao, Lingling; Tao, Lu; Lin, Shangchao
2017-06-29
In CO 2 geological storage, the interfacial tension (IFT) between supercritical CO 2 and brine is critical for the storage capacitance design to prevent CO 2 leakage. IFT relies not only on the interfacial molecule properties but also on the environmental conditions at different storage sites. In this paper, supercritical CO 2 -NaCl solution systems are modeled at 343-373 K and 6-35 MPa under the salinity of 1.89 mol/L using molecular dynamics simulations. After computing and comparing the molecular density profile across the interface, the atomic radial distribution function, the molecular orientation distribution, the molecular Gibbs surface excess (derived from the molecular density profile), and the CO 2 -hydrate number density under the above environmental conditions, we confirm that only the molecular Gibbs surface excess of CO 2 molecules and the CO 2 -hydrate number density correlate strongly with the temperature- and pressure-dependent IFTs. We also compute the populations of two distinct CO 2 -hydrate structures (T-type and H-type) and attribute the observed dependence of IFTs to the dominance of the more stable, surfactant-like T-type CO 2 -hydrates at the interface. On the basis of these new molecular mechanisms behind IFT variations, this study could guide the rational design of suitable injecting environmental pressure and temperature conditions. We believe that the above two molecular-level metrics (Gibbs surface excess and hydrate number density) are of great fundamental importance for understanding the supercritical CO 2 -water interface and engineering applications in geological CO 2 storage.
Yang, Dong; Ortuño, Manuel A; Bernales, Varinia; Cramer, Christopher J; Gagliardi, Laura; Gates, Bruce C
2018-03-14
Some metal-organic frameworks (MOFs) incorporate nodes that are metal oxide clusters such as Zr 6 O 8 . Vacancies on the node surfaces, accidental or by design, act as catalytic sites. Here, we report elucidation of the chemistry of Zr 6 O 8 nodes in the MOFs UiO-66 and UiO-67 having used infrared and nuclear magnetic resonance spectroscopies to determine the ligands on the node surfaces originating from the solvents and modifiers used in the syntheses and having elucidated the catalytic properties of the nodes for ethanol dehydration, which takes place selectively to make diethyl ether but not ethylene at 473-523 K. Density functional theory calculations show that the key to the selective catalysis is the breaking of node-linker bonds (or the accidental adjacency of open/defect sites) that allows catalytically fruitful bonding of the reactant ethanol to neighboring sites on the nodes, facilitating the bimolecular ether formation through an S N 2 mechanism.
New England salt marsh pools: A quantitative analysis of geomorphic and geographic features
Adamowicz, S.C.; Roman, C.T.
2005-01-01
New England salt marsh pools provide important wildlife habitat and are the object of on-going salt marsh restoration projects; however, they have not been quantified in terms of their basic geomorphic and geographic traits. An examination of 32 ditched and unditched salt marshes from the Connecticut shore of Long Island Sound to southern Maine, USA, revealed that pools from ditched and unditched marshes had similar average sizes of about 200 m2, averaged 29 cm in depth, and were located about 11 m from the nearest tidal flow. Unditched marshes had 3 times the density (13 pools/ha), 2.5 times the pool coverage (83 m pool/km transect), and 4 times the total pool surface area per hectare (913 m2 pool/ha salt marsh) of ditched sites. Linear regression analysis demonstrated that an increasing density of ditches (m ditch/ha salt marsh) was negatively correlated with pool density and total pool surface area per hectare. Creek density was positively correlated with these variables. Thus, it was not the mere presence of drainage channels that were associated with low numbers of pools, but their type (ditch versus creek) and abundance. Tidal range was not correlated with pool density or total pool surface area, while marsh latitude had only a weak relationship to total pool surface area per hectare. Pools should be incorporated into salt marsh restoration planning, and the parameters quantified here may be used as initial design targets.
Adsorption of xenon on vicinal copper and platinum surfaces
NASA Astrophysics Data System (ADS)
Baker, Layton
The adsorption of xenon was studied on Cu(111), Cu(221), Cu(643) and on Pt(111), Pt(221), and Pt(531) using low energy electron diffraction (LEED), temperature programmed desorption (TPD) of xenon, and ultraviolet photoemission of adsorbed xenon (PAX). These experiments were performed to study the atomic and electronic structure of stepped and step-kinked, chiral metal surfaces. Xenon TPD and PAX were performed on each surface in an attempt to titrate terrace, step edge, and kink adsorption sites by adsorption energetics (TPD) and local work function differences (PAX). Due to the complex behavior of xenon on the vicinal copper and platinum metal surfaces, adsorption sites on these surfaces could not be adequately titrated by xenon TPD. On Cu(221) and Cu(643), xenon desorption from step adsorption sites was not apparent leading to the conclusion that the energy difference between terrace and step adsorption is minuscule. On Pt(221) and Pt(531), xenon TPD indicated that xenon prefers to bond at step edges and that the xenon-xenon interaction at step edges in repulsive but no further indication of step-kink adsorption was observed. The Pt(221) and Pt(531) TPD spectra indicated that the xenon overlayer undergoes strong compression near monolayer coverage on these surfaces due to repulsion between step-edge adsorbed xenon and other encroaching xenon atoms. The PAX experiments on the copper and platinum surfaces demonstrated that the step adsorption sites have lower local work functions than terrace adsorption sites and that higher step density leads to a larger separation in the local work function of terrace and step adsorption sites. The PAX spectra also indicated that, for all surfaces studied at 50--70 K, step adsorption is favored at low coverage but the step sites are not saturated until monolayer coverage is reached; this observation is due to the large entropy difference between terrace and step adsorption states and to repulsive interactions between xenon atoms adsorbed at step edges (on the platinum surfaces). The results herein provide several novel observations regarding the adsorptive behavior of xenon on vicinal copper and platinum surfaces.
Six-dimensional quantum dynamics study for the dissociative adsorption of HCl on Au(111) surface
NASA Astrophysics Data System (ADS)
Liu, Tianhui; Fu, Bina; Zhang, Dong H.
2013-11-01
The six-dimensional quantum dynamics calculations for the dissociative chemisorption of HCl on Au(111) are carried out using the time-dependent wave-packet approach, based on an accurate PES which was recently developed by neural network fitting to density functional theory energy points. The influence of vibrational excitation and rotational orientation of HCl on the reactivity is investigated by calculating the exact six-dimensional dissociation probabilities, as well as the four-dimensional fixed-site dissociation probabilities. The vibrational excitation of HCl enhances the reactivity and the helicopter orientation yields higher dissociation probability than the cartwheel orientation. A new interesting site-averaged effect is found for the title molecule-surface system that one can essentially reproduce the six-dimensional dissociation probability by averaging the four-dimensional dissociation probabilities over 25 fixed sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexandrov, Vitaly; Sushko, Maria L.; Schreiber, Daniel K.
A density-functional-theory modeling study of atomic oxygen/sulfur adsorption and diffusion at pristine and doped Ni(111) and (110) surfaces is presented. We find that oxygen and sulfur feature comparable adsorption energies over the same surface sites, however, the surface diffusion of sulfur is characterized by an activation barrier about one half that of oxygen. Calculations with different alloying elements at Ni surfaces show that Cr strongly enhances surface binding of both species in comparison to Al. These results in combination with previous modeling studies help explain the observed differences in selective grain boundary oxidation mechanisms of Ni-Cr and Ni-Al alloys.
Adsorption of selenium by amorphous iron oxyhydroxide and manganese dioxide
Balistrieri, L.S.; Chao, T.T.
1990-01-01
This work compares and models the adsorption of selenium and other anions on a neutral to alkaline surface (amorphous iron oxyhydroxide) and an acidic surface (manganese dioxide). Selenium adsorption on these oxides is examined as a function of pH, particle concentration, oxidation state, and competing anion concentration in order to assess how these factors might influence the mobility of selenium in the environment. The data indicate that 1. 1) amorphous iron oxyhydroxide has a greater affinity for selenium than manganese dioxide, 2. 2) selenite [Se(IV)] adsorption increases with decreasing pH and increasing particle concentration and is stronger than selenate [Se(VI)] adsorption on both oxides, and 3. 3) selenate does not adsorb on manganese dioxide. The relative affinity of selenate and selenite for the oxides and the lack of adsorption of selenate on a strongly acidic surface suggests that selenate forms outer-sphere complexes while selenite forms inner-sphere complexes with the surfaces. The data also indicate that the competition sequence of other anions with respect to selenite adsorption at pH 7.0 is phosphate > silicate > molybdate > fluoride > sulfate on amorphous iron oxyhydroxide and molybdate ??? phosphate > silicate > fluoride > sulfate on manganese dioxide. The adsorption of phosphate, molybdate, and silicate on these oxides as a function of pH indicates that the competition sequences reflect the relative affinities of these anions for the surfaces. The Triple Layer surface complexation model is used to provide a quantitative description of these observations and to assess the importance of surface site heterogeneity on anion adsorption. The modeling results suggest that selenite forms binuclear, innersphere complexes with amorphous iron oxyhydroxide and monodentate, inner-sphere complexes with manganese dioxide and that selenate forms outer-sphere, monodentate complexes with amorphous iron oxyhydroxide. The heterogeneity of the oxide surface sites is reflected in decreasing equilibrium constants for selenite with increasing adsorption density and both experimental observations and modeling results suggest that manganese dioxide has fewer sites of higher energy for selenite adsorption than amorphous iron oxyhydroxide. Modeling and interpreting the adsorption of phosphate, molybdate, and silicate on the oxides are made difficult by the lack of constraint in choosing surface species and the fact that equally good fits can be obtained with different surface species. Finally, predictions of anion competition using the model results from single adsorbate systems are not very successful because the model does not account for surface site heterogeneity. Selenite adsorption data from a multi-adsorbate system could be fit if the equilibrium constant for selenite is decreased with increasing anion adsorption density. ?? 1990.
Adsorption states of NO on the Pt(1 1 1) step surface
NASA Astrophysics Data System (ADS)
Tsukahara, N.; Mukai, K.; Yamashita, Y.; Yoshinobu, J.; Aizawa, H.
2006-09-01
Using infrared reflection absorption spectroscopy (IRAS) and scanning tunneling microscopy (STM), we investigated the adsorption states of NO on the Pt(9 9 7) step surface. At 90 K, we observe three N-O stretching modes at 1490 cm -1, 1631 cm -1 and 1700 cm -1 at 0.2 ML. The 1490 cm -1 and 1700 cm -1 peaks are assigned to NO molecules at fcc-hollow and on-top sites of the terrace, respectively. The 1631 cm -1 peak is assigned to the step NO species. In the present STM results, we observed that NO molecules were adsorbed at the bridge sites of the step as well as fcc-hollow and on-top sites of the terrace. To help with our assignments, density functional theory calculations were also performed. The calculated results indicate that a bridge site of the step is the most stable adsorption site for NO, and its stretching frequency is 1607 cm -1. The interactions between NO species at different sites on Pt(9 9 7) are also discussed.
Virus-based surface patterning of biological molecules, probes, and inorganic materials.
Ahn, Suji; Jeon, Seongho; Kwak, Eun-A; Kim, Jong-Man; Jaworski, Justyn
2014-10-01
An essential requirement for continued technological advancement in many areas of biology, physics, chemistry, and materials science is the growing need to generate custom patterned materials. Building from recent achievements in the site-specific modification of virus for covalent surface tethering, we show in this work that stable 2D virus patterns can be generated in custom geometries over large area glass surfaces to yield templates of biological, biochemical, and inorganic materials in high density. As a nanomaterial building block, filamentous viruses have been extensively used in recent years to produce materials with interesting properties, owing to their ease of genetic and chemical modification. By utilizing un-natural amino acids generated at specific locations on the filamentous fd bacteriophage protein coat, surface immobilization is carried out on APTES patterned glass resulting in precise geometries of covalently linked virus material. This technique facilitated the surface display of a high density of virus that were labeled with biomolecules, fluorescent probes, and gold nanoparticles, thereby opening the possibility of integrating virus as functional components for surface engineering. Copyright © 2014 Elsevier B.V. All rights reserved.
The effect of leveling coatings on the atomic oxygen durability of solar concentrator surfaces
NASA Technical Reports Server (NTRS)
Degroh, Kim K.; Dever, Therese M.; Quinn, William F.
1990-01-01
Space power systems for Space Station Freedom will be exposed to the harsh environment of low earth orbit (LEO). Neutral atomic oxygen is the major constituent in LEO and has the potential of severely reducing the efficiency of solar dynamic power systems through degradation of the concentrator surfaces. Several transparent dielectric thin films have been found to provide atomic oxygen protection, but atomic oxygen undercutting at inherent defect sites is still a threat to solar dynamic power system survivability. Leveling coatings smooth microscopically rough surfaces, thus eliminating potential defect sites prone to oxidation attack on concentrator surfaces. The ability of leveling coatings to improve the atomic oxygen durability of concentrator surfaces was investigated. The application of a EPO-TEK 377 epoxy leveling coating on a graphite epoxy substrate resulted in an increase in solar specular reflectance, a decrease in the atomic oxygen defect density by an order of magnitude and a corresponding order of magnitude decrease in the percent loss of specular reflectance during atomic oxygen plasma ashing.
NASA Astrophysics Data System (ADS)
Lai, Dakun; Sun, Jian; Li, Yigang; He, Bin
2013-06-01
As radio frequency (RF) catheter ablation becomes increasingly prevalent in the management of ventricular arrhythmia in patients, an accurate and rapid determination of the arrhythmogenic site is of important clinical interest. The aim of this study was to test the hypothesis that the inversely reconstructed ventricular endocardial current density distribution from body surface potential maps (BSPMs) can localize the regions critical for maintenance of a ventricular ectopic activity. Patients with isolated and monomorphic premature ventricular contractions (PVCs) were investigated by noninvasive BSPMs and subsequent invasive catheter mapping and ablation. Equivalent current density (CD) reconstruction (CDR) during symptomatic PVCs was obtained on the endocardial ventricular surface in six patients (four men, two women, years 23-77), and the origin of the spontaneous ectopic activity was localized at the location of the maximum CD value. Compared with the last (successful) ablation site (LAS), the mean and standard deviation of localization error of the CDR approach were 13.8 and 1.3 mm, respectively. In comparison, the distance between the LASs and the estimated locations of an equivalent single moving dipole in the heart was 25.5 ± 5.5 mm. The obtained CD distribution of activated sources extending from the catheter ablation site also showed a high consistency with the invasively recorded electroanatomical maps. The noninvasively reconstructed endocardial CD distribution is suitable to predict a region of interest containing or close to arrhythmia source, which may have the potential to guide RF catheter ablation.
Site-specific colloidal crystal nucleation by template-enhanced particle transport
NASA Astrophysics Data System (ADS)
Mishra, Chandan K.; Sood, A. K.; Ganapathy, Rajesh
2016-10-01
The monomer surface mobility is the single most important parameter that decides the nucleation density and morphology of islands during thin-film growth. During template-assisted surface growth in particular, low surface mobilities can prevent monomers from reaching target sites and this results in a partial to complete loss of nucleation control. Whereas in atomic systems a broad range of surface mobilities can be readily accessed, for colloids, owing to their large size, this window is substantially narrow and therefore imposes severe restrictions in extending template-assisted growth techniques to steer their self-assembly. Here, we circumvented this fundamental limitation by designing templates with spatially varying feature sizes, in this case moiré patterns, which in the presence of short-range depletion attraction presented surface energy gradients for the diffusing colloids. The templates serve a dual purpose: first, directing the particles to target sites by enhancing their surface mean-free paths and second, dictating the size and symmetry of the growing crystallites. Using optical microscopy, we directly followed the nucleation and growth kinetics of colloidal islands on these surfaces at the single-particle level. We demonstrate nucleation control, with high fidelity, in a regime that has remained unaccessed in theoretical, numerical, and experimental studies on atoms and molecules as well. Our findings pave the way for fabricating nontrivial surface architectures composed of complex colloids and nanoparticles as well.
Williams, Linda A.; Guo, Neng; Motta, Alessandro; Delferro, Massimiliano; Fragalà, Ignazio L.; Miller, Jeffrey T.; Marks, Tobin J.
2013-01-01
Structural characterization of the catalytically significant sites on solid catalyst surfaces is frequently tenuous because their fraction, among all sites, typically is quite low. Here we report the combined application of solid-state 13C-cross-polarization magic angle spinning nuclear magnetic resonance (13C-CPMAS-NMR) spectroscopy, density functional theory (DFT), and Zr X-ray absorption spectroscopy (XAS) to characterize the adsorption products and surface chemistry of the precatalysts (η5-C5H5)2ZrR2 (R = H, CH3) and [η5-C5(CH3)5]Zr(CH3)3 adsorbed on Brønsted superacidic sulfated alumina (AlS). The latter complex is exceptionally active for benzene hydrogenation, with ∼100% of the Zr sites catalytically significant as determined by kinetic poisoning experiments. The 13C-CPMAS-NMR, DFT, and XAS data indicate formation of organozirconium cations having a largely electrostatic [η5-C5(CH3)5]Zr(CH3)2+···AlS− interaction with greatly elongated Zr···OAlS distances of ∼2.35(2) Å. The catalytic benzene hydrogenation cycle is stepwise understandable by DFT, and proceeds via turnover-limiting H2 delivery to surface [η5-C5(CH3)5]ZrH2(benzene)+···AlS− species, observable by solid-state NMR and XAS. PMID:23269836
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, S.; Sorescu, D.C.; Yates, J.T., Jr.
The adsorption and vibrational properties of chemisorbed HCN on Lewis acid sites, Lewis base sites, and Brønsted Al-OH acid sites on a partially hydroxylated [gamma]-Al2O3 surface have been obtained by a combination of FTIR and density functional theory studies. The vibrational modes from the molecular and dissociative adsorption of HCN were assigned by using deuterium and 13C-labeled D13CN molecules at 170 K. In addition, [eta]2(C, N)-HCN bonding is also found from the [nu](CdN) vibrational spectra. Good correlation of the calculated vibrational frequencies for the adsorbed species with experimental data is found. The effect of triethylenediamine (TEDA) (also called 1, 4-diazabicyclomore » [2.2.2]octane, DABCO) on the adsorption of hydrogen cyanide (HCN) on the high area [gamma]-Al2O3 surface has been investigated using transmission FTIR spectroscopy. During HCN adsorption on TEDA-functionalized surfaces, there is no spectral change or emerging feature in either the TEDA or HCN spectral regions, indicating that no direct interaction occurs between these two molecules. Instead, we found that TEDA competes with HCN for the active sites on [gamma]-Al2O3. The observed [nu](C [identical with] N) mode on a TEDA-precovered surface is due to the HCN adsorption on Lewis base sites (Al-O-Al) which are less affected by TEDA preadsorption.« less
Surface sensitization mechanism on negative electron affinity p-GaN nanowires
NASA Astrophysics Data System (ADS)
Diao, Yu; Liu, Lei; Xia, Sihao; Feng, Shu; Lu, Feifei
2018-03-01
The surface sensitization is the key to prepare negative electron affinity photocathode. The thesis emphasizes on the study of surface sensitization mechanism of p-type doping GaN nanowires utilizing first principles based on density function theory. The adsorption energy, work function, dipole moment, geometry structure, electronic structure and optical properties of Mg-doped GaN nanowires surfaces with various coverages of Cs atoms are investigated. The GaN nanowire with Mg doped in core position is taken as the sensitization base. At the initial stage of sensitization, the best adsorption site for Cs atom on GaN nanowire surface is BN, the bridge site of two adjacent N atoms. Surface sensitization generates a p-type internal surface with an n-type surface state, introducing a band bending region which can help reduce surface barrier and work function. With increasing Cs coverage, work functions decrease monotonously and the "Cs-kill" phenomenon disappears. For Cs coverage of 0.75 ML and 1 ML, the corresponding sensitization systems reach negative electron affinity state. Through surface sensitization, the absorption curves are red shifted and the absorption coefficient is cut down. All theoretical calculations can guide the design of negative electron affinity Mg doped GaN nanowires photocathode.
NASA Astrophysics Data System (ADS)
Sachdeva, Ritika; Soni, Abhinav; Singh, V. P.; Saini, G. S. S.
2018-05-01
Etoricoxib is one of the selective cyclooxygenase inhibitor drug which plays a significant role in the pharmacological management of arthritis and pain. The theoretical investigation of its reactivity is done using Density Functional Theory calculations. Molecular Electrostatic Potential Surface of etoricoxib and its Mulliken atomic charge distribution are used for the prediction of its electrophilic and nucleophilic sites. The detailed analysis of its frontier molecular orbitals is also done.
Belhadj, Safia; Derridj, Arezki; Aigouy, Thierry; Gers, Charles; Gauquelin, Thierry; Mevy, Jean-Philippe
2007-10-01
A comparative analysis was undertaken to conduct a micromorphological study of Pistacia atlantica leaves by comparing different populations grown under different climatic conditions. Leaf epidermis of eight wild populations was investigated under scanning electron microscope. Micromorphological characteristics (epidermis ornament, stomata type, waxes as well as trichomes) of the adaxial and abaxial leaf surfaces were examined. The epidermis ornament varied among populations and leaf surface, the abaxial leaf surface is reticulate with a striate surface. Messaad site shows a smooth uneven surface. The adaxial leaf surface is smooth but several ornamentations can be seen. The leaflet is amphistomatic; the stomata appeared to be slightly sunken. A variety of stomatal types were recorded; actinocytic and anomocytic types are the most frequent. The indumentum consisted of glandular and nonglandular trichomes. Unicellular glandular trichomes are recorded for P. atlantica leaves in this study. Their density is higher in Oued safene site, located at the highest altitude in comparison with the other populations. The wax occurred in all the sites and its pattern varied according to the populations studied, particularly between Berriane and Messaad. The morphological variability exhibited by the eight populations of P. atlantica may be interpreted as relevant to the ecological plasticity and the physiological mechanisms involved are discussed in this report.
DFT calculations for Au adsorption onto a reduced TiO2 (110) surface with the coexistence of Cl
NASA Astrophysics Data System (ADS)
Tada, Kohei; Sakata, Kohei; Yamada, Satoru; Okazaki, Kazuyuki; Kitagawa, Yasutaka; Kawakami, Takashi; Yamanaka, Shusuke; Okumura, Mitsutaka
2014-02-01
Residual chlorines, which originate from HAuCl4, enhance the aggregation of gold (Au) nanoparticles and clusters, preventing the generation of highly active supported Au catalysts. However, the detailed mechanism of residual-chlorine-promoted aggregation of Au is unknown. Herein to investigate this mechanism, density functional theory (DFT) calculations of Au and Cl adsorption onto a reduced rutile TiO2 (110) surface were performed using a generalised gradient approximation Perdew, Burke, and Ernzerhof formula (GGA-PBE) functional and plane-wave basis. Although both Au and Cl atoms prefer to mono-absorb onto oxygen defect sites, Cl atoms have a stronger absorption onto a reduced TiO2 (110) surface, abbreviated as rTiO2 (110) in the following, than Au atoms. Additionally, co-adsorption of a Cl atom and a Au atom or Au nanorod onto a rTiO2 surface was investigated; Cl adsorption onto an oxygen defect site weakens the interaction between a Au atom or Au nanorod and rTiO2 (110) surface. The calculation results suggest that the depletion of interaction between Au and rTiO2 surface is due to strong interaction between Cl atoms at oxygen defect sites and neighbouring bridging oxygen (OB) atoms.
Lead and selenite adsorption at water–goethite interfaces from first principles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leung, Kevin; Criscenti, Louise J.
Here, the complexation of toxic and/or radioactive ions on to mineral surfaces is an important topic in geochemistry. We apply periodic-boundary-conditions density functional theory (DFT) molecular dynamics simulations to examine the coordination of Pb(II),more » $${\\rm SeO}_3^{2-}$$ , and their contact ion pairs to goethite (1 0 1) and (2 1 0) surfaces. The multitude of Pb(II) adsorption sites and possibility of Pb(II)-induced FeOH deprotonation make this a complex problem. At surface sites where Pb(II) is coordinated to three FeO and/or FeOH groups, and with judicious choices of FeOH surface group protonation states, the predicted Fe–Pb distances are in good agreement with EXAFS measurements. Trajectories where Pb(II) is in part coordinated to only two surface Fe–O groups exhibit larger fluctuations in Pb–O distances. Pb(II)/$${\\rm SeO}_3^{2-}$$ contact ion pairs are at least metastable on goethite (2 1 0) surfaces if the $${\\rm SeO}_3^{2-}$$ has a monodentate Se–O–Fe bond. Our DFT-based molecular dynamics calculations are a prerequisite for calculations of finite temperature equilibrium binding constants of Pb(II) and Pb(II)/$${\\rm SeO}_3^{2-}$$ ion pairs to goethite adsorption sites.« less
Lead and selenite adsorption at water–goethite interfaces from first principles
Leung, Kevin; Criscenti, Louise J.
2017-08-04
Here, the complexation of toxic and/or radioactive ions on to mineral surfaces is an important topic in geochemistry. We apply periodic-boundary-conditions density functional theory (DFT) molecular dynamics simulations to examine the coordination of Pb(II),more » $${\\rm SeO}_3^{2-}$$ , and their contact ion pairs to goethite (1 0 1) and (2 1 0) surfaces. The multitude of Pb(II) adsorption sites and possibility of Pb(II)-induced FeOH deprotonation make this a complex problem. At surface sites where Pb(II) is coordinated to three FeO and/or FeOH groups, and with judicious choices of FeOH surface group protonation states, the predicted Fe–Pb distances are in good agreement with EXAFS measurements. Trajectories where Pb(II) is in part coordinated to only two surface Fe–O groups exhibit larger fluctuations in Pb–O distances. Pb(II)/$${\\rm SeO}_3^{2-}$$ contact ion pairs are at least metastable on goethite (2 1 0) surfaces if the $${\\rm SeO}_3^{2-}$$ has a monodentate Se–O–Fe bond. Our DFT-based molecular dynamics calculations are a prerequisite for calculations of finite temperature equilibrium binding constants of Pb(II) and Pb(II)/$${\\rm SeO}_3^{2-}$$ ion pairs to goethite adsorption sites.« less
First-principles study of molecular NO dissociation on Ir(100) surface
NASA Astrophysics Data System (ADS)
Erikat, I. A.; Hamad, B. A.; Khalifeh, J. M.
2014-02-01
The dissociation of NO on Ir(100) surface is investigated using density functional theory (DFT). The pathway and transition state (TS) of the dissociation of NO molecule are determined using climbing image nudge elastic band (CI-NEB). The prerequisite state of NO dissociation is determining the most stable sites of the reactant and products. We found that the most energetically stable sites are the hollow for N atom and the bridge for NO molecule as well as O atom. We found that the bending of NO is the first step of the dissociation reaction due to the increase of the back-donation from the d-band of Ir to 2 π ∗ orbital of NO, which causes the weakening of NO bond. The dissociation energy barrier of NO molecule on Ir(100) surface is 0.49 eV.
A theoretical study of structural and electronic properties of pentacene/Al(100) interface.
Saranya, G; Nair, Shiny; Natarajan, V; Kolandaivel, P; Senthilkumar, K
2012-09-01
The first principle calculations within the framework of density functional theory have been performed for the pentacene molecule deposited on the aluminum Al(100) substrate to study the structural and electronic properties of the pentacene/Al(100) interface. The most stable configuration was found at bridge site with 45° rotation of the pentacene molecule on Al(100) surface with a vertical distance of 3.4 Å within LDA and 3.8 Å within GGA functionals. The calculated adsorption energy reveals that the adsorption of pentacene molecule on Al(100) surface is physisorption. For the stable adsorption geometry the electronic properties such as density of states (DOS), partial density of states (PDOS), Mulliken population analysis and Schottky barrier height are studied. The analysis of atomic charge, DOS and PDOS show that the charge is transferred from the Al(100) surface to pentacene molecule, and the transferred charge is about -0.05 electrons. For the adsorbed system, the calculated Schottky barrier height for hole and electron transport is 0.27 and 1.55 eV, respectively. Copyright © 2012 Elsevier Inc. All rights reserved.
Moore, H.J.; Jakosky, B.M.
1989-01-01
Important problems that confront future scientific exploration of Mars include the physical properties of Martian surface materials and the geologic processes that formed the materials. The design of landing spacecraft, roving vehicles, and sampling devices and the selection of landing sites, vehicle traverses, and sample sites will be, in part, guided by the physical properties of the materials. Four materials occur in the sample fields of the Viking landers: (1) drift, (2) crusty to cloddy, (3) blocky, and (4) rock. The first three are soillike. Drift materials is weak, loose, and porous. We estimate that it has a dielectric constant near 2.4 and a thermal inertia near 1 ?? 10-3 to 3 ?? 10-3 (cal cm-2 sec 1 2 K-1) because of its low bulk density, fine grain size, and small cohesion. Crusty to cloddy material is expected to have a dielectric constant near 2.8 and a thermal inertia near 4 ?? 10-3 to 7 ?? 10-3 because of its moderate bulk density and cementation of grains. Blocky material should have a dielectric constant near 3.3 and a thermal inertia near 7 ?? 10-3 to 9 ?? 10-3 because of its moderate bulk density and cementation. Common basaltic rocks have dielectric constans near 8 and thermal inertias near 30 ?? 10-3 to 60 ?? 10-3. Comparisons of estimated dielectric constants and thermal inertias of the materials at the landing sites with those obtained remotely by Earth-based radars and Viking Orbiter thermal sensors suggest that the materials at the landing sites are good analogs for materials elsewhere on Mars. Correlation of remotely estimated dielectric constant and thermal inertias indicates two modal values for paired values of dielectric constants and thermal inertias near (A) 2 and 2 ?? 10-3 and (B) 3 and 6 ?? 10-3, respectively. These two modes are comparable to the dielectric constants and thermal inertias for drift and crusty to cloddy material, respectively. Dielectric constants and thermal inertias for blocky material are larger but conistent with values in the northern plains. Our interprertations are compatible with an aeolian origin for drift and similar materials elsewhere on Mars. The postulate that moderate dielectric constants and thermal inertias larger than 3 or 4 ?? 10-3 are produced by cementation of soillike materials is partly consistent with the data. The average dielectric constant and thermal inertia and their correlation with one another suggest that most of the surface of Mars should present few difficulties to future surface exploration, but some surfaces may present difficulties for spacecraft that are not suitably designed. ?? 1989.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hensley, Alyssa J. R.; Wang, Yong; Mei, Donghai
A mechanistic understanding of the roles of water is essential for developing highly active and selective catalysts for hydrodeoxygenation (HDO) reactions since water is ubiquitous in such reaction systems. Here, we present a study for phenol HDO on Fe catalysts using density functional theory which examines the effect of water on three elementary pathways for phenol HDO using an explicit solvation model. The presence of water is found to significantly decrease activation barriers required by hydrogenation reactions via two pathways. First, the proton transfer in the hydrogen bonding network of the liquid water phase is nearly barrierless, which significantly promotesmore » the direct through space tautomerization of phenol. Second, due to the high degree of oxophilicity on Fe, liquid water molecules are found to be easily dissociated into surface hydroxyl groups that can act as Brønsted acid sites. These sites dramatically promote hydrogenation reactions on the Fe surface. As a result, the hydrogen assisted dehydroxylation becomes the dominant phenol HDO pathway. This work provides new fundamental insights into aqueous phase HDO of biomass-derived oxygenates over Fe-based catalysts; e.g., the activity of Fe-based catalysts can be optimized by tuning the surface coverage of Brønsted acid sites via surface doping.« less
Adsorption of guanidinium collectors on aluminosilicate minerals - a density functional study.
Nulakani, Naga Venkateswara Rao; Baskar, Prathab; Patra, Abhay Shankar; Subramanian, Venkatesan
2015-10-07
In this density functional theory based investigation, we have modelled and studied the adsorption behaviour of guanidinium cations and substituted (phenyl, methoxy phenyl, nitro phenyl and di-nitro phenyl) guanidinium cationic collectors on the basal surfaces of kaolinite and goethite. The adsorption behaviour is assessed in three different media, such as gas, explicit water and pH medium, to understand the affinity of GC collectors to the SiO4 tetrahedral and AlO6 octahedral surfaces of kaolinite. The tetrahedral siloxane surface possesses a larger binding affinity to GC collectors than the octahedral sites due to the presence of surface exposed oxygen atoms that are active in the intermolecular interactions. Furthermore, the inductive electronic effects of substituted guanidinium cations also play a key role in the adsorption mechanism. Highly positive cations result in a stronger electrostatic interaction and preferential adsorption with the kaolinite surfaces than low positive cations. Computed interaction energies and electron densities at the bond critical points suggest that the adsorption of guanidinium cations on the surfaces of kaolinite and goethite is due to the formation of intra/inter hydrogen bonding networks. Also, the electrostatic interaction favours the high adsorption ability of GC collectors in the pH medium than gas phase and water medium. The structures and energies of GC collectors pave an intuitive view for future experimental studies on mineral flotation.
A Theory for the RF Surface Field for Various Metals at the Destructive Breakdown Limit
NASA Astrophysics Data System (ADS)
Wilson, Perry B.
2006-11-01
By destructive breakdown we mean a breakdown event that results in surface melting over a macroscopic area in a high E-field region of an accelerator structure. A plasma forms over the molten area, bombarding the surface with an intense ion current (˜108 A/cm2), equivalent to a pressure of about a thousand Atmospheres. This pressure in turn causes molten copper to migrate away from the iris tip, resulting in measurable changes in the iris shape. The breakdown process can be roughly divided into four stages: (1) the formation of "plasma spots" at field emission sites, each spot leaving a crater-like footprint; (2) crater clustering, and the formation of areas with hundreds of overlapping craters; (3) surface melting in the region of a crater cluster; (4) the process after surface melting that leads to destructive breakdown. The physics underlying each of these stages is developed, and a comparison is made between the theory and experimental evidence whenever possible. The key to preventing breakdown lies in stage (3). A single plasma spot emits a current of several amperes, a portion of which returns to impact the surrounding area with a power density on the order 107 Watt/cm2. This power density is not quite adequate to melt the surrounding surface on a time scale short compared to the rf pulse length. In a crater field, however, the impact areas from multiple plasma spots overlap to provide sufficient power density for surface melting over an area on the order of 0.1 mm2 or more. The key to preventing breakdown is to choose an iris tip material that requires the highest power density (proportional to the square of the rf surface field) for surface melting, taking into account the penetration depth of the impacting electrons. The rf surface field required for surface melting (relative to copper) has been calculated for a large number elementary metals, plus stainless-steel and carbon.
NASA Astrophysics Data System (ADS)
Henne, S.; Fleming, Z.; Brunner, D.; Klausen, J.; Buchmann, B.
2009-04-01
Recent trends of surface ozone (O3) within Europe vary substantially depending on the location and surroundings of a measurement site. The influence of long-range transport from North America and Asia, changes in stratosphere-troposphere exchange, increase in lower stratospheric O3 and changes in advection patterns are possible drivers for the observed O3 trends. O3 concentrations greatly depend on meteorology (temperature and radiation) and local to regional emissions of precursor gases and therefore on the representativeness of a site (e.g. background vs. urban site) and regional emission trends. We investigated the representativeness of 1264 "rural" and "suburban" background sites (as available through the European Environment Agency (EEA )Airbase database) by analysing population density, land cover and topography in the surrounding of the sites. A hierarchical clustering method was applied to derive an independent site categorization. The two area types as specified by EEA are split into 7 categories: elevated, lowered, remote, rural, rural/coastal, rural/polluted, suburban. Furthermore, we analysed the trend of surface O3 and Ox (O3+NO2) for the mentioned sites based on the above site categorization, local meteorology and precursor emission trends. Of the 1264 sites 161 possess sufficiently long and complete O3 data series suitable for robust trend estimation, while for 100 sites both O3 and NO2 data are available. We present a strategy for further data exclusion based on available data quality information and a break detection algorithm. First results of the trend analysis applying different statistical approaches are discussed.
Canopy reflectance modelling of semiarid vegetation
NASA Technical Reports Server (NTRS)
Franklin, Janet
1994-01-01
Three different types of remote sensing algorithms for estimating vegetation amount and other land surface biophysical parameters were tested for semiarid environments. These included statistical linear models, the Li-Strahler geometric-optical canopy model, and linear spectral mixture analysis. The two study areas were the National Science Foundation's Jornada Long Term Ecological Research site near Las Cruces, NM, in the northern Chihuahuan desert, and the HAPEX-Sahel site near Niamey, Niger, in West Africa, comprising semiarid rangeland and subtropical crop land. The statistical approach (simple and multiple regression) resulted in high correlations between SPOT satellite spectral reflectance and shrub and grass cover, although these correlations varied with the spatial scale of aggregation of the measurements. The Li-Strahler model produced estimated of shrub size and density for both study sites with large standard errors. In the Jornada, the estimates were accurate enough to be useful for characterizing structural differences among three shrub strata. In Niger, the range of shrub cover and size in short-fallow shrublands is so low that the necessity of spatially distributed estimation of shrub size and density is questionable. Spectral mixture analysis of multiscale, multitemporal, multispectral radiometer data and imagery for Niger showed a positive relationship between fractions of spectral endmembers and surface parameters of interest including soil cover, vegetation cover, and leaf area index.
Borrok, David M; Fein, Jeremy B; Kulpa, Charles F
2004-11-01
To model the effects of bacterial metal adsorption in contaminated environments, results from metal adsorption experiments involving individual pure stains of bacteria must be extrapolated to systems in which potentially dozens of bacterial species are present. This extrapolation may be made easier because bacterial consortia from natural environments appear to exhibit similar metal binding properties. However, bacteria that thrive in highly perturbed contaminated environments may exhibit significantly different adsorptive behavior. Here we measure proton and Cd adsorption onto a range of bacterial consortia grown from heavily contaminated industrial wastes, groundwater, and soils. We model the results using a discrete site surface complexation approach to determine binding constants and site densities for each consortium. The results demonstrate that bacterial consortia from different contaminated environments exhibit a range of total site densities (approximately a 3-fold difference) and Cd-binding constants (approximately a 10-fold difference). These ranges for Cd binding constants may be small enough to suggest that bacteria-metal adsorption in contaminated environments can be described using relatively few "averaged" bacteria-metal binding constants (in conjunction with the necessary binding constants for competing surfaces and ligands). However, if additional precision is necessary, modeling parameters must be developed separately for each contaminated environment of interest.
Competing contact processes in the Watts-Strogatz network
NASA Astrophysics Data System (ADS)
Rybak, Marcin; Malarz, Krzysztof; Kułakowski, Krzysztof
2016-06-01
We investigate two competing contact processes on a set of Watts-Strogatz networks with the clustering coefficient tuned by rewiring. The base for network construction is one-dimensional chain of N sites, where each site i is directly linked to nodes labelled as i ± 1 and i ± 2. So initially, each node has the same degree k i = 4. The periodic boundary conditions are assumed as well. For each node i the links to sites i + 1 and i + 2 are rewired to two randomly selected nodes so far not-connected to node i. An increase of the rewiring probability q influences the nodes degree distribution and the network clusterization coefficient 𝓒. For given values of rewiring probability q the set 𝓝(q)={𝓝1,𝓝2,...,𝓝 M } of M networks is generated. The network's nodes are decorated with spin-like variables s i ∈ { S,D }. During simulation each S node having a D-site in its neighbourhood converts this neighbour from D to S state. Conversely, a node in D state having at least one neighbour also in state D-state converts all nearest-neighbours of this pair into D-state. The latter is realized with probability p. We plot the dependence of the nodes S final density n S T on initial nodes S fraction n S 0. Then, we construct the surface of the unstable fixed points in (𝓒, p, n S 0) space. The system evolves more often toward n S T for (𝓒, p, n S 0) points situated above this surface while starting simulation with (𝓒, p, n S 0) parameters situated below this surface leads system to n S T =0. The points on this surface correspond to such value of initial fraction n S * of S nodes (for fixed values 𝓒 and p) for which their final density is n S T=1/2.
How to Make Data a Blessing to Parametric Uncertainty Quantification and Reduction?
NASA Astrophysics Data System (ADS)
Ye, M.; Shi, X.; Curtis, G. P.; Kohler, M.; Wu, J.
2013-12-01
In a Bayesian point of view, probability of model parameters and predictions are conditioned on data used for parameter inference and prediction analysis. It is critical to use appropriate data for quantifying parametric uncertainty and its propagation to model predictions. However, data are always limited and imperfect. When a dataset cannot properly constrain model parameters, it may lead to inaccurate uncertainty quantification. While in this case data appears to be a curse to uncertainty quantification, a comprehensive modeling analysis may help understand the cause and characteristics of parametric uncertainty and thus turns data into a blessing. In this study, we illustrate impacts of data on uncertainty quantification and reduction using an example of surface complexation model (SCM) developed to simulate uranyl (U(VI)) adsorption. The model includes two adsorption sites, referred to as strong and weak sites. The amount of uranium adsorption on these sites determines both the mean arrival time and the long tail of the breakthrough curves. There is one reaction on the weak site but two reactions on the strong site. The unknown parameters include fractions of the total surface site density of the two sites and surface complex formation constants of the three reactions. A total of seven experiments were conducted with different geochemical conditions to estimate these parameters. The experiments with low initial concentration of U(VI) result in a large amount of parametric uncertainty. A modeling analysis shows that it is because the experiments cannot distinguish the relative adsorption affinity of the strong and weak sites on uranium adsorption. Therefore, the experiments with high initial concentration of U(VI) are needed, because in the experiments the strong site is nearly saturated and the weak site can be determined. The experiments with high initial concentration of U(VI) are a blessing to uncertainty quantification, and the experiments with low initial concentration help modelers turn a curse into a blessing. The data impacts on uncertainty quantification and reduction are quantified using probability density functions of model parameters obtained from Markov Chain Monte Carlo simulation using the DREAM algorithm. This study provides insights to model calibration, uncertainty quantification, experiment design, and data collection in groundwater reactive transport modeling and other environmental modeling.
Poma, Violeta; Mamani, Nataniel; Iñiguez, Volga
2016-01-01
La Paz River in Andean highlands is heavily polluted with urban run-off and further contaminates agricultural lowlands and downstream waters at the Amazon watershed. Agricultural produce at this region is the main source of vegetables for the major Andean cities of La Paz and El Alto. We conducted a 1 year study, to evaluate microbial quality parameters and occurrence of multiple enteropathogenic bacteria (Enterohemorrhagic E. coli-EHEC, Enteroinvasive E. coli or Shigella-EIEC/Shigella, Enteroaggregative E. coli-EAEC, Enteropathogenic E. coli-EPEC Enterotoxigenic E. coli-ETEC and Salmonella) and its resistance to 11 antibiotics. Four sampling locations were selected: a fresh mountain water reservoir (un-impacted, site 1) and downstream sites receiving wastewater discharges (impacted, sites 2-4). River water (sites 1-4, N = 48), and soil and vegetable samples (site 3, N = 24) were collected during dry (April-September) and rainy seasons (October-March). Throughout the study, thermotolerant coliform density values at impacted sites greatly exceeded the guidelines for recreational and agricultural water uses. Seasonal differences were found for thermotolerant coliform density during dry season in water samples nearby a populated and hospital compound area. In contrast to the un-impacted site, where none of the tested enteropathogens were found, 100 % of surface water, 83 % of soil and 67 % of vegetable samples at impacted sites, were contaminated with at least one enteropathogen, being ETEC and Salmonella the most frequently found. ETEC isolates displayed different patterns of toxin genes among sites. The occurrence of enteropathogens was associated with the thermotolerant coliform density. At impacted sites, multiple enteropathogens were frequently found during rainy season. Among isolated enteropathogens, 50 % were resistant to at least two antibiotics, with resistance to ampicillin, nalidixic acid, trimethoprim-sulfamethoxazole and tetracycline commonly present. Moreover, some Salmonella isolates were distinguished by their multi-resistance to ≥8 antibiotics, within soil and vegetable samples. Overall, this study demonstrates that La Paz River-an affluent of the Amazon macrobasin-is heavily polluted along the year with a high density of thermotolerant coliforms and is a reservoir of multiple antibiotic resistant enteropathogens, present in river water, soil and vegetables. These data highlight health risk associated with food and waterborne diseases at the region.
A First Principles Study of H2 Adsorption on LaNiO3(001) Surfaces
Pan, Changchang; Chen, Yuhong; Wu, Na; Zhang, Meiling; Yuan, Lihua; Zhang, Cairong
2017-01-01
The adsorption of H2 on LaNiO3 was investigated using density functional theory (DFT) calculations. The adsorption sites, adsorption energy, and electronic structure of LaNiO3(001)/H2 systems were calculated and indicated through the calculated surface energy that the (001) surface was the most stable surface. By looking at optimized structure, adsorption energy and dissociation energy, we found that there were three types of adsorption on the surface. First, H2 molecules completely dissociate and then tend to bind with the O atoms, forming two –OH bonds. Second, H2 molecules partially dissociate with the H atoms bonding to the same O atom to form one H2O molecule. These two types are chemical adsorption modes; however, the physical adsorption of H2 molecules can also occur. When analyzing the electron structure of the H2O molecule formed by the partial dissociation of the H2 molecule and the surface O atom, we found that the interaction between H2O and the (001) surface was weaker, thus, H2O was easier to separate from the surface to create an O vacancy. On the (001) surface, a supercell was constructed to accurately study the most stable adsorption site. The results from analyses of the charge population; electron localization function; and density of the states indicated that the dissociated H and O atoms form a typical covalent bond and that the interaction between the H2 molecule and surface is mainly due to the overlap-hybridization among the H 1s, O 2s, and O 2p states. Therefore, the conductivity of LaNiO3(001)/H2 is stronger after adsorption and furthermore, the conductivity of the LaNiO3 surface is better than that of the LaFeO3 surface. PMID:28772396
Diffusion of hydrogen into and through γ-iron by density functional theory
NASA Astrophysics Data System (ADS)
Chohan, Urslaan K.; Koehler, Sven P. K.; Jimenez-Melero, Enrique
2018-06-01
This study is concerned with the early stages of hydrogen embrittlement on an atomistic scale. We employed density functional theory to investigate hydrogen diffusion through the (100), (110) and (111) surfaces of γ-Fe. The preferred adsorption sites and respective energies for hydrogen adsorption were established for each plane, as well as a minimum energy pathway for diffusion. The H atoms adsorb on the (100), (110) and (111) surfaces with energies of ∼4.06 eV, ∼3.92 eV and ∼4.05 eV, respectively. The barriers for bulk-like diffusion for the (100), (110) and (111) surfaces are ∼0.6 eV, ∼0.5 eV and ∼0.7 eV, respectively. We compared these calculated barriers with previously obtained experimental data in an Arrhenius plot, which indicates good agreement between experimentally measured and theoretically predicted activation energies. Texturing austenitic steels such that the (111) surfaces of grains are preferentially exposed at the cleavage planes may be a possibility to reduce hydrogen embrittlement.
NASA Astrophysics Data System (ADS)
Erikat, I. A.; Hamad, B. A.
2013-11-01
We employ density functional theory to examine the adsorption and absorption of carbon atom as well as the dissociation of carbon monoxide on Ir(100) surface. We find that carbon atoms bind strongly with Ir(100) surface and prefer the high coordination hollow site for all coverages. In the case of 0.75 ML coverage of carbon, we obtain a bridging metal structure due to the balance between Ir-C and Ir-Ir interactions. In the subsurface region, the carbon atom prefers the octahedral site of Ir(100) surface. We find large diffusion barrier for carbon atom into Ir(100) surface (2.70 eV) due to the strong bonding between carbon atom and Ir(100) surface, whereas we find a very small segregation barrier (0.22 eV) from subsurface to the surface. The minimum energy path and energy barrier for the dissociation of CO on Ir(100) surface are obtained by using climbing image nudge elastic band. The energy barrier of CO dissociation on Ir(100) surface is found to be 3.01 eV, which is appreciably larger than the association energy (1.61 eV) of this molecule.
Erikat, I A; Hamad, B A
2013-11-07
We employ density functional theory to examine the adsorption and absorption of carbon atom as well as the dissociation of carbon monoxide on Ir(100) surface. We find that carbon atoms bind strongly with Ir(100) surface and prefer the high coordination hollow site for all coverages. In the case of 0.75 ML coverage of carbon, we obtain a bridging metal structure due to the balance between Ir-C and Ir-Ir interactions. In the subsurface region, the carbon atom prefers the octahedral site of Ir(100) surface. We find large diffusion barrier for carbon atom into Ir(100) surface (2.70 eV) due to the strong bonding between carbon atom and Ir(100) surface, whereas we find a very small segregation barrier (0.22 eV) from subsurface to the surface. The minimum energy path and energy barrier for the dissociation of CO on Ir(100) surface are obtained by using climbing image nudge elastic band. The energy barrier of CO dissociation on Ir(100) surface is found to be 3.01 eV, which is appreciably larger than the association energy (1.61 eV) of this molecule.
Combined advanced finishing and UV laser conditioning process for producing damage resistant optics
Menapace, Joseph A.; Peterson, John E.; Penetrante, Bernardino M.; Miller, Philip E.; Parham, Thomas G.; Nichols, Michael A.
2005-07-26
A method for reducing the density of sites on the surface of fused silica optics that are prone to the initiation of laser-induced damage, resulting in optics which have far fewer catastrophic defects, and are better capable of resisting optical deterioration upon exposure to a high-power laser beam.
NASA Astrophysics Data System (ADS)
Goncalves Neto, A.; Johnson, R. J.; Bates, N. R.
2016-02-01
Rising sea level is one of the main concerns for human life in a scenario with global atmosphere and ocean warming, which is of particular concern for oceanic islands. Bermuda, located in the center of the Sargasso Sea, provides an ideal location to investigate sea level rise since it has a long term tide gauge (1933-present) and is in close proximity to deep ocean time-series sites, namely, Hydrostation `S' (1954-present) and the Bermuda Atlantic Time-Series Study site (1988-present). In this study, we use the monthly CTD deep casts at BATS to compute the contribution of steric height (SH) to the local sea surface height (SSH) for the past 24 years. To determine the relative contribution from the various water masses we first define 8 layers (Surface Layer, Upper Thermocline, Subtropical Mode-Water, Lower Thermocline, Antarctic Intermediate Water, Labrador Sea Water, Iceland-Scotland Overflow Water, Denmark Strait Overflow Water) based on neutral density criteria for which SH is computed. Additionally, we calculate the thermosteric and halosteric components for each of the defined neutral density layers. Surprisingly, the results show that, despite a 3.3mm/yr sea level rise observed at the Bermuda tide gauge, the steric contribution to the SSH at BATS has decreased at a rate of -1.1mm/yr during the same period. The thermal component is found to account for the negative trend in the steric height (-4.4mm/yr), whereas the halosteric component (3.3mm/yr) partially compensates the thermal signal and can be explained by an overall cooling and freshening at the BATS site. Although the surface layer and the upper thermocline waters are warming, all the subtropical and polar water masses, which represent most of the local water column, are cooling and therefore drive the overall SH contribution to the local SSH. Hence, it suggests that the mass contribution to the local SSH plays an important role in the sea level rise, for which we investigate with GRACE data.
Identification of craters on Moon using Crater Density Parameter
NASA Astrophysics Data System (ADS)
Vandana, Vandana
2016-07-01
Lunar craters are the most noticeable features on the face of the moon. They take up 40.96% of the lunar surface and, their accumulated area is approximately three times as much as the lunar surface area. There are many myths about the moon. Some says moon is made of cheese. The moon and the sun chase each other across the sky etc. but scientifically the moon are closest and are only natural satellite of earth. The orbit plane of the moon is tilted by 5° and orbit period around the earth is 27-3 days. There are two eclipse i.e. lunar eclipse and solar eclipse which always comes in pair. Moon surface has 3 parts i.e. highland, Maria, and crater. For crater diagnostic crater density parameter is one of the means for measuring distance can be easily identity the density between two craters. Crater size frequency distribution (CSFD) is being computed for lunar surface using TMC and MiniSAR image data and hence, also the age for the selected test sites of mars is also determined. The GIS-based program uses the density and orientation of individual craters within LCCs (as vector points) to identify potential source craters through a series of cluster identification and ejection modeling analyses. JMars software is also recommended and operated only the time when connected with server but work can be done in Arc GIS with the help of Arc Objects and Model Builder. The study plays a vital role to determine the lunar surface based on crater (shape, size and density) and exploring affected craters on the basis of height, weight and velocity. Keywords: Moon; Crater; MiniSAR.
Modeling collective behavior of molecules in nanoscale direct deposition processes
NASA Astrophysics Data System (ADS)
Lee, Nam-Kyung; Hong, Seunghun
2006-03-01
We present a theoretical model describing the collective behavior of molecules in nanoscale direct deposition processes such as dip-pen nanolithography. We show that strong intermolecular interactions combined with nonuniform substrate-molecule interactions can produce various shapes of molecular patterns including fractal-like structures. Computer simulations reveal circular and starlike patterns at low and intermediate densities of preferentially attractive surface sites, respectively. At large density of such surface sites, the molecules form a two-dimensional invasion percolation cluster. Previous experimental results showing anisotropic patterns of various chemical and biological molecules correspond to the starlike regime [P. Manandhar et al., Phys. Rev. Lett. 90, 115505 (2003); J.-H. Lim and C. A. Mirkin, Adv. Mater. (Weinheim, Ger.) 14, 1474 (2002); D. L. Wilson et al., Proc. Natl. Acad. Sci. U.S.A. 98, 13660 (2001); M. Su et al., Appl. Phys. Lett. 84, 4200 (2004); R. McKendry et al., Nano Lett. 2, 713 (2002); H. Zhou et al., Appl. Surf. Sci. 236, 18 (2004); G. Agarwal et al., J. Am. Chem. Soc. 125, 580 (2003)].
Understanding oxidative dehydrogenation of ethane on Co 3O 4 nanorods from density functional theory
Fung, Victor; Tao, Franklin; Jiang, De-en
2016-05-20
Co 3O 4 is a metal oxide catalyst with weak, tunable M–O bonds promising for catalysis. Here, density functional theory (DFT) is used to study the oxidative dehydrogenation (ODH) of ethane on Co 3O 4 nanorods based on the preferred surface orientation (111) from the experimental electron-microscopy image. The pathway and energetics of the full catalytic cycle including the first and second C–H bond cleavages, hydroxyl clustering, water formation, and oxygen-site regeneration are determined. We find that both lattice O and Co may participate as active sites in the dehydrogenation, with the lattice-O pathway being favored. Here, we identify themore » best ethane ODH pathway based on the overall energy profiles of several routes. We identify that water formation from the lattice oxygen has the highest energy barrier and is likely a rate-determining step. This work of the complete catalytic cycle of ethane ODH will allow further study into tuning the surface chemistry of Co 3O 4 nanorods for high selectivity of alkane ODH reactions.« less
Direct measurement of the plasma screening length and surface potential near the lunar terminator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benson, J.
1977-05-01
Direct measurement of the lunar dayside surface potential and screening length has been made by the suprathermal ion detector experiment (Side) near the terminator. In a region 20degree--30degree from the terminator at the Apollo 14 and 15 sites the surface potential is found to be approximately 50 V negative, and the screening length to be about 1 km. This value of the screening length is more than 2 orders of magnitude greater than the solar wind 'Debye' length. The strong negative surface potential in this region may be due to enhanced temperature and density of the solar wind plasma.
Direct measurement of the plasma screening length and surface potential near the lunar terminator
NASA Technical Reports Server (NTRS)
Benson, J.
1977-01-01
Direct measurement of the lunar dayside surface potential and screening length has been made by the suprathermal ion detector experiment (Side) near the terminator. In a region 20-30 deg from the terminator at the Apollo 14 and 15 sites the surface potential is found to be approximately 50 V negative, and the screening length to be about 1 km. This value of the screening length is more than 2 orders of magnitude greater than the solar wind 'Debye' length. The strong negative surface potential in this region may be due to enhanced temperature and density of the solar wind plasma.
Investigating the Lewis acidity of aluminium fluoride surfaces
NASA Astrophysics Data System (ADS)
Bailey, C. L.; Mukhopadhyay, S.; Wander, A.; Harrison, N. M.
2008-03-01
The current study employs state of the art hybrid-exchange density functional theory (DFT) to investigate the Lewis acidic sites on the β-AlF3 (100) surface. It is shown that the strong Lewis base, NH3, binds to the surface with a binding energy of up to 1.9 eV. This demonstrates that the material is strongly Lewis acidic. We also consider the binding of the weak Lewis base CO to the surface. We calculate the shift in its stretch frequency compared to the gas phase molecule. Shifts are compared to experimental data and are shown to be typical of strong Lewis acidity.
NASA Astrophysics Data System (ADS)
Cosburn, K.; Roy, M.; Rowe, C. A.; Guardincerri, E.
2017-12-01
Obtaining accurate static and time-dependent shallow subsurface density structure beneath volcanic, hydrogeologic, and tectonic targets can help illuminate active processes of fluid flow and magma transport. A limitation of using surface gravity measurements for such imaging is that these observations are vastly underdetermined and non-unique. In order to hone in on a more accurate solution, other data sets are needed to provide constraints, typically seismic or borehole observations. The spatial resolution of these techniques, however, is relatively poor, and a novel solution to this problem in recent years has been to use attenuation of the cosmic ray muon flux, which provides an independent constraint on density. In this study we present a joint inversion of gravity and cosmic ray muon flux observations to infer the density structure of a target rock volume at a well-characterized site near Los Alamos, New Mexico, USA. We investigate the shallow structure of a mesa formed by the Quaternary ash-flow tuffs on the Pajarito Plateau, flanking the Jemez volcano in New Mexico. Gravity measurements were made using a Lacoste and Romberg D meter on the surface of the mesa and inside a tunnel beneath the mesa. Muon flux measurements were also made at the mesa surface and at various points within the same tunnel using a muon detector having an acceptance region of 45 degrees from the vertical and a track resolution of several milliradians. We expect the combination of muon and gravity data to provide us with enhanced resolution as well as the ability to sense deeper structures in our region of interest. We use Bayesian joint inversion techniques on the gravity-muon dataset to test these ideas, building upon previous work using gravity inversion alone to resolve density structure in our study area. Both the regional geology and geometry of our study area is well-known and we assess the inferred density structure from our gravity-muon joint inversion within this known geologic framework.
Reaction of hydrogen with Ag(111): binding states, minimum energy paths, and kinetics.
Montoya, Alejandro; Schlunke, Anna; Haynes, Brian S
2006-08-31
The interaction of atomic and molecular hydrogen with the Ag(111) surface is studied using periodic density functional total-energy calculations. This paper focuses on the site preference for adsorption, ordered structures, and energy barriers for H diffusion and H recombination. Chemisorbed H atoms are unstable with respect to the H(2) molecule in all adsorption sites below monolayer coverage. The three-hollow sites are energetically the most favorable for H chemisorption. The binding energy of H to the surface decreases slightly up to one monolayer, suggesting a small repulsive H-H interaction on nonadjacent sites. Subsurface and vacancy sites are energetically less favorable for H adsorption than on-top sites. Recombination of chemisorbed H atoms leads to the formation of gas-phase H(2) with no molecular chemisorbed state. Recombination is an exothermic process and occurs on the bridge site with a pronounced energy barrier. This energy barrier is significantly higher than that inferred from experimental temperature-programmed desorption (TPD) studies. However, there is significant permeability of H atoms through the recombination energy barrier at low temperatures, thus increasing the rate constant for H(2) desorption due to quantum tunneling effects, and improving the agreement between experiment and theory.
Equations for estimating selected streamflow statistics in Rhode Island
Bent, Gardner C.; Steeves, Peter A.; Waite, Andrew M.
2014-01-01
The equations, which are based on data from streams with little to no flow alterations, will provide an estimate of the natural flows for a selected site. They will not estimate flows for altered sites with dams, surface-water withdrawals, groundwater withdrawals (pumping wells), diversions, and wastewater discharges. If the equations are used to estimate streamflow statistics for altered sites, the user should adjust the flow estimates for the alterations. The regression equations should be used only for ungaged sites with drainage areas between 0.52 and 294 square miles and stream densities between 0.94 and 3.49 miles per square mile; these are the ranges of the explanatory variables in the equations.
DeFalco, Lesley A.; Esque, Todd C.; Nicklas, Melissa B.; Kane, Jeffrey M.
2012-01-01
Revegetation of degraded arid lands often involves supplementing impoverished seed banks and improving the seedbed, yet these approaches frequently fail. To understand these failures, we tracked the fates of seeds for six shrub species that were broadcast across two contrasting surface disturbances common to the Mojave Desert—sites compacted by concentrated vehicle use and trenched sites where topsoil and subsurface soils were mixed. We evaluated seedbed treatments that enhance soil-seed contact (tackifier) and create surface roughness while reducing soil bulk density (harrowing). We also explored whether seed harvesting by granivores and seedling suppression by non-native annuals influence the success of broadcast seeding in revegetating degraded shrublands. Ten weeks after treatments, seeds readily moved off of experimental plots in untreated compacted sites, but seed movements were reduced 32% by tackifier and 55% through harrowing. Harrowing promoted seedling emergence in compacted sites, particularly for the early-colonizing species Encelia farinosa, but tackifier was largely ineffective. The inherent surface roughness of trenched sites retained three times the number of seeds than compacted sites, but soil mixing during trench development likely altered the suitability of the seedbed thus resulting in poor seedling emergence. Non-native annuals had little influence on seed fates during our study. In contrast, the prevalence of harvester ants increased seed removal on compacted sites, whereas rodent activity influenced removal on trenched sites. Future success of broadcast seeding in arid lands depends on evaluating disturbance characteristics prior to seeding and selecting appropriate species and seasons for application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Da-Jiang; Evans, James W.
An accurate description of oxygen dissociation pathways and kinetics for various local adlayer environments is key for an understanding not just of the coverage dependence of oxygen sticking, but also of reactive steady states in oxidation reactions. Density functional theory analysis for M(100) surfaces with M=Pd, Rh, and Ni, where O prefers the fourfold hollow adsorption site, does not support the traditional Brundle-Behm-Barker picture of dissociative adsorption onto second-nearest-neighbor hollow sites with an additional blocking constraint. Rather adsorption via neighboring vicinal bridge sites dominates, although other pathways can be active. The same conclusion also applies for M=Pt and Ir, wheremore » oxygen prefers the bridge adsorption site. Statistical mechanical analysis is performed based on kinetic Monte Carlo simulation of a multisite lattice-gas model consistent with our revised picture of adsorption. This analysis determines the coverage and temperature dependence of sticking for a realistic treatment of the oxygen adlayer structure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Bin; Department of Chemical Physics, University of Science and Technology of China, Hefei 230026; Guo, Hua, E-mail: hguo@unm.edu
Recently, we reported the first highly accurate nine-dimensional global potential energy surface (PES) for water interacting with a rigid Ni(111) surface, built on a large number of density functional theory points [B. Jiang and H. Guo, Phys. Rev. Lett. 114, 166101 (2015)]. Here, we investigate site-specific reaction probabilities on this PES using a quasi-seven-dimensional quantum dynamical model. It is shown that the site-specific reactivity is largely controlled by the topography of the PES instead of the barrier height alone, underscoring the importance of multidimensional dynamics. In addition, the full-dimensional dissociation probability is estimated by averaging fixed-site reaction probabilities with appropriatemore » weights. To validate this model and gain insights into the dynamics, additional quasi-classical trajectory calculations in both full and reduced dimensions have also been performed and important dynamical factors such as the steering effect are discussed.« less
Active sites for CO 2 hydrogenation to methanol on Cu/ZnO catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kattel, Shyam; Ramírez, Pedro J.; Chen, Jingguang G.
The active sites over commercial copper/zinc oxide/aluminum oxide (Cu/ZnO/Al 2O 3) catalysts for carbon dioxide (CO 2) hydrogenation to methanol, the Zn-Cu bimetallic sites or ZnO-Cu interfacial sites, have recently been the subject of intense debate. Here, we report a direct comparison between the activity of ZnCu and ZnO/Cu model catalysts for methanol synthesis. By combining x-ray photoemission spectroscopy, density functional theory, and kinetic Monte Carlo simulations, we can identify and characterize the reactivity of each catalyst. Both experimental and theoretical results agree that ZnCu undergoes surface oxidation under the reaction conditions so that surface Zn transforms into ZnO andmore » allows ZnCu to reach the activity of ZnO/Cu with the same Zn coverage. These results highlight a synergy of Cu and ZnO at the interface that facilitates methanol synthesis via formate intermediates.« less
Active sites for CO 2 hydrogenation to methanol on Cu/ZnO catalysts
Kattel, Shyam; Ramírez, Pedro J.; Chen, Jingguang G.; ...
2017-03-23
The active sites over commercial copper/zinc oxide/aluminum oxide (Cu/ZnO/Al 2O 3) catalysts for carbon dioxide (CO 2) hydrogenation to methanol, the Zn-Cu bimetallic sites or ZnO-Cu interfacial sites, have recently been the subject of intense debate. Here, we report a direct comparison between the activity of ZnCu and ZnO/Cu model catalysts for methanol synthesis. By combining x-ray photoemission spectroscopy, density functional theory, and kinetic Monte Carlo simulations, we can identify and characterize the reactivity of each catalyst. Both experimental and theoretical results agree that ZnCu undergoes surface oxidation under the reaction conditions so that surface Zn transforms into ZnO andmore » allows ZnCu to reach the activity of ZnO/Cu with the same Zn coverage. These results highlight a synergy of Cu and ZnO at the interface that facilitates methanol synthesis via formate intermediates.« less
Tanabe, Norio; Kuboyama, Tomoharu; Kazuma, Kohei; Konno, Katsuhiro; Tohda, Chihiro
2016-01-01
Although axonal extension to reconstruct spinal tracts should be effective for restoring function after spinal cord injury (SCI), chondroitin sulfate proteoglycan (CSPG) levels increase at spinal cord lesion sites, and inhibit axonal regrowth. In this study, we found that the water extract of roots of Sophora flavescens extended the axons of mouse cortical neurons, even on a CSPG-coated surface. Consecutive oral administrations of S. flavescens extract to SCI mice for 31 days increased the density of 5-HT-positive axons at the lesion site and improved the motor function. Further, the active constituents in the S. flavescens extract were identified. The water and alkaloid fractions of the S. flavescens extract each exhibited axonal extension activity in vitro. LC/MS analysis revealed that these fractions mainly contain matrine and/or oxymatrine, which are well-known major compounds in S. flavescens. Matrine and oxymatrine promoted axonal extension on the CSPG-coated surface. This study is the first to demonstrate that S. flavescens extract, matrine, and oxymatrine enhance axonal growth in vitro, even on a CSPG-coated surface, and that S. flavescens extract improves motor function and increases axonal density in SCI mice. PMID:26834638
NASA Astrophysics Data System (ADS)
Rulis, Paul; Yao, Hongzhi; Ouyang, Lizhi; Ching, W. Y.
2007-12-01
Fluorapatite (FAP) and hydroxyapatite (HAP) are two very important bioceramic crystals. The (001) surfaces of FAP and HAP crystals are studied by ab initio density functional calculations using a supercell slab geometry. It is shown that in both crystals, the O-terminated (001) surface is more stable with calculated surface energies of 0.865 and 0.871J/m2 for FAP and HAP, respectively. In FAP, the two surfaces are symmetric. In HAP, the orientation of the OH group along the c axis reduces the symmetry such that the top and bottom surfaces are no longer symmetric. It is revealed that the atoms near the surface and subsurface are significantly relaxed especially in the case of HAP. The largest relaxations occurred via the lateral movements of the O ions at the subsurface level. The electronic structures of the surface models in the form of layer-by-layer resolved partial density of states for all the atoms show systematic variation from the surface region toward the bulk region. The calculated Mulliken effective charge on each type of atom and the bond order values between cations (Ca, P) and anions (O, F) show different charge transfers and bond strength variations from the bulk crystal values. Electron charge density calculations show that the surfaces of both FAP and HAP crystals are mostly positively charged due to the presence of Ca ions at the surface. The positively charged surfaces have implications for the absorption on apatite surfaces of water and other organic molecules in an aqueous environment which are an important part of its bioactivity. The x-ray absorption near-edge structure (XANES) spectra ( Ca-K , O-K , F-K , P-K , and P-L3 edges) of both the surface models and the bulk crystals are calculated and compared. The calculations use a supercell approach which takes into account the electron-core-hole interaction. It is shown that the site-specific XANES spectra show significant differences between atoms near the surface and in the bulk and are very sensitive to the local atomic environment of each atom. This information will be very valuable for characterizing the apatite materials and in the interpretation of experimental data. Comparisons of several sets of experimental data with the weighted sums of the calculated spectra at different sites for the same element show very good agreement.
NASA Astrophysics Data System (ADS)
Putzig, Nathaniel E.; Phillips, Roger J.; Campbell, Bruce A.; Mellon, Michael T.; Holt, John W.; Brothers, T. Charles
2014-08-01
We use the Shallow Radar (SHARAD) on the Mars Reconnaissance Orbiter to search for subsurface interfaces and characterize surface roughness at the landing sites of Viking Landers 1 and 2, Mars Pathfinder, the Mars Exploration Rovers Spirit and Opportunity, the Phoenix Mars lander, the Mars Science Laboratory Curiosity rover, and three other sites proposed for Curiosity. Only at the Phoenix site do we find clear evidence of subsurface radar returns, mapping out an interface that may be the base of ground ice at depths of ~15-66 m across 2900 km2 in the depression where the lander resides. At the Opportunity, Spirit, and candidate Curiosity sites, images and altimetry show layered materials tens to hundreds of meters thick extending tens to hundreds of kilometers laterally. These scales are well within SHARAD's resolution limits, so the lack of detections is attributable either to low density contrasts in layers of similar composition and internal structure or to signal attenuation within the shallowest layers. At each site, we use the radar return power to estimate surface roughness at scales of 10-100 m, a measure that is important for assessing physical properties, landing safety, and site trafficability. The strongest returns are found at the Opportunity site, indicating that Meridiani Planum is exceptionally smooth. Returns of moderate strength at the Spirit site reflect roughness more typical of Mars. Gale crater, Curiosity's ultimate destination, is the smoothest of the four proposed sites we examined, with Holden crater, Eberswalde crater, and Mawrth Vallis exhibiting progressively greater roughness.
A surface complexation and ion exchange model of Pb and Cd competitive sorption on natural soils
NASA Astrophysics Data System (ADS)
Serrano, Susana; O'Day, Peggy A.; Vlassopoulos, Dimitri; García-González, Maria Teresa; Garrido, Fernando
2009-02-01
The bioavailability and fate of heavy metals in the environment are often controlled by sorption reactions on the reactive surfaces of soil minerals. We have developed a non-electrostatic equilibrium model (NEM) with both surface complexation and ion exchange reactions to describe the sorption of Pb and Cd in single- and binary-metal systems over a range of pH and metal concentration. Mineralogical and exchange properties of three different acidic soils were used to constrain surface reactions in the model and to estimate surface densities for sorption sites, rather than treating them as adjustable parameters. Soil heterogeneity was modeled with >FeOH and >SOH functional groups, representing Fe- and Al-oxyhydroxide minerals and phyllosilicate clay mineral edge sites, and two ion exchange sites (X - and Y -), representing clay mineral exchange. An optimization process was carried out using the entire experimental sorption data set to determine the binding constants for Pb and Cd surface complexation and ion exchange reactions. Modeling results showed that the adsorption of Pb and Cd was distributed between ion exchange sites at low pH values and specific adsorption sites at higher pH values, mainly associated with >FeOH sites. Modeling results confirmed the greater tendency of Cd to be retained on exchange sites compared to Pb, which had a higher affinity than Cd for specific adsorption on >FeOH sites. Lead retention on >FeOH occurred at lower pH than for Cd, suggesting that Pb sorbs to surface hydroxyl groups at pH values at which Cd interacts only with exchange sites. The results from the binary system (both Pb and Cd present) showed that Cd retained in >FeOH sites decreased significantly in the presence of Pb, while the occupancy of Pb in these sites did not change in the presence of Cd. As a consequence of this competition, Cd was shifted to ion exchange sites, where it competes with Pb and possibly Ca (from the background electrolyte). Sorption on >SOH functional groups increased with increasing pH but was small compared to >FeOH sites, with little difference between single- and binary-metal systems. Model reactions and conditional sorption constants for Pb and Cd sorption were tested on a fourth soil that was not used for model optimization. The same reactions and constants were used successfully without adjustment by estimating surface site concentrations from soil mineralogy. The model formulation developed in this study is applicable to acidic mineral soils with low organic matter content. Extension of the model to soils of different composition may require selection of surface reactions that account for differences in clay and oxide mineral composition and organic matter content.
Bajerlein, Daria; Adamski, Zbigniew; Kacalak, Wojciech; Tandecka, Katarzyna; Wiesner, Maciej; Jurga, Stefan
2016-08-01
Previous studies on preferences of phoretic deutonymphs of Uropodina for attachment sites have shown that they frequently select smooth and hydrophobic surfaces. The aim of our study was to provide the detailed morphological and topographical characteristics of beetle body surfaces to which deutonymphs frequently attach and to verify how the presence of setae and surface sculpture affects deutonymph attachment. The study was conducted on Uropoda orbicularis (Müller, 1776) and its common beetle carriers: Aphodius prodromus (Brahm, 1790), Aphodius fimetarius (Linnaeus, 1758), Onthophagus nuchicornis (Linnaeus, 1758) and Margarinotus carbonarius (Hoffmann, 1803). Morphology and topography of elytra, femora, propygidia and pygidia of beetles were analysed mainly using SEM methods supported with CLSM and AFM techniques. The hypothesis that deutonymphs may attach to surfaces covered with setae, if seta density is low enough not to disturb mite movement, was tested. The study revealed that deutonymphs attach to surfaces of various types as follows: (i) smooth, (ii) hairy, i.e., covered with setae, (iii) flat and (iv) sculptured. Smooth body parts and body parts covered with setae of low density were most frequently and intensively occupied with deutonymphs. Surfaces of high seta density were avoided by mites. Within elytra of Aphodius beetles, deutonymphs definitely preferred flat surfaces of elytral intervals. On the contrary, densely punctuated propygidium and pygidium in M. carbonarius were heavily infested with deutonymphs. We conclude that carrier surface morphology and topography are important for Uropodina deutonymph attachment, but these two factors cannot fully explain the observed relation.
NASA Astrophysics Data System (ADS)
Bajerlein, Daria; Adamski, Zbigniew; Kacalak, Wojciech; Tandecka, Katarzyna; Wiesner, Maciej; Jurga, Stefan
2016-08-01
Previous studies on preferences of phoretic deutonymphs of Uropodina for attachment sites have shown that they frequently select smooth and hydrophobic surfaces. The aim of our study was to provide the detailed morphological and topographical characteristics of beetle body surfaces to which deutonymphs frequently attach and to verify how the presence of setae and surface sculpture affects deutonymph attachment. The study was conducted on Uropoda orbicularis (Müller, 1776) and its common beetle carriers: Aphodius prodromus (Brahm, 1790), Aphodius fimetarius (Linnaeus, 1758), Onthophagus nuchicornis (Linnaeus, 1758) and Margarinotus carbonarius (Hoffmann, 1803). Morphology and topography of elytra, femora, propygidia and pygidia of beetles were analysed mainly using SEM methods supported with CLSM and AFM techniques. The hypothesis that deutonymphs may attach to surfaces covered with setae, if seta density is low enough not to disturb mite movement, was tested. The study revealed that deutonymphs attach to surfaces of various types as follows: (i) smooth, (ii) hairy, i.e., covered with setae, (iii) flat and (iv) sculptured. Smooth body parts and body parts covered with setae of low density were most frequently and intensively occupied with deutonymphs. Surfaces of high seta density were avoided by mites. Within elytra of Aphodius beetles, deutonymphs definitely preferred flat surfaces of elytral intervals. On the contrary, densely punctuated propygidium and pygidium in M. carbonarius were heavily infested with deutonymphs. We conclude that carrier surface morphology and topography are important for Uropodina deutonymph attachment, but these two factors cannot fully explain the observed relation.
Adsorption of thiophene on transition metal surfaces with the inclusion of van der Waals effects
NASA Astrophysics Data System (ADS)
Malone, Walter; Matos, Jeronimo; Kara, Abdelkader
2018-03-01
We use density functional theory with the inclusion of the van der Waals interaction to study the adsorption of thiophene, C4H4S, on Pt, Rh, Pd, Au, and Ag (100) surfaces. The five van der Waals (vdW) inclusive functionals we employ are optB86b-vdW, optB88-vdW, optPBE-vdW, revPBE-vdW, and rPW86-vdW2. For comparison we also run calculations with the GGA- Perdew Burke and Ernzerhof (PBE) functional. We examine several adsorption sites with the plane of the molecule parallel or perpendicular to the surface. The most stable configuration on all metals was the site where the center of the thiophene lies over a 4-fold hollow site with the sulfur atom lying close to a top site. Furthermore, we examine several electronic and geometric properties of the adsorbate including charge transfer, modification of the d-band, adsorption energy, tilt angle, and adsorption height. For the coinage metals PBE gives the lowest adsorption energy. For reactive transition metal substrates, revPBE-vdW and rPW86-vdW2 give lower adsorption energies than PBE.
Six-dimensional quantum dynamics study for the dissociative adsorption of HCl on Au(111) surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Tianhui; Fu, Bina; Zhang, Dong H., E-mail: zhangdh@dicp.ac.cn
The six-dimensional quantum dynamics calculations for the dissociative chemisorption of HCl on Au(111) are carried out using the time-dependent wave-packet approach, based on an accurate PES which was recently developed by neural network fitting to density functional theory energy points. The influence of vibrational excitation and rotational orientation of HCl on the reactivity is investigated by calculating the exact six-dimensional dissociation probabilities, as well as the four-dimensional fixed-site dissociation probabilities. The vibrational excitation of HCl enhances the reactivity and the helicopter orientation yields higher dissociation probability than the cartwheel orientation. A new interesting site-averaged effect is found for the titlemore » molecule-surface system that one can essentially reproduce the six-dimensional dissociation probability by averaging the four-dimensional dissociation probabilities over 25 fixed sites.« less
NASA Astrophysics Data System (ADS)
Hardy, R. A.; Nerem, R. S.; Wiese, D. N.
2017-12-01
Gravity and surface elevation change data altimetry provide different perspectives on mass variability in Antarctica. In anticipation of the concurrent operation of the successors of GRACE and ICESat, GRACE Follow-On and ICESat-2, we approach the problem of combining these data for enhanced spatial resolution and disaggregation of Antarctica's major mass transport processes. Using elevation changes gathered from over 500 million overlapping ICESat laser shot pairs between 2003 and 2009, we construct gridded models of Antarctic elevation change for each ICESat operational period. Comparing these elevation grids with temporally registered JPL RL05M mascon solutions, we exploit the relationship between surface mass flux and elevation change to inform estimates of effective surface density. These density estimates enable solutions for glacial isostatic adjustment and monthly estimates of surface mass change. These are used alongside spatial statistics from both the data and models of surface mass balance to produce enhanced estimates of Antarctic mass balance. We validate our solutions by modeling the effects of elastic loading and GIA from these solutions on the vertical motion of Antarctica's GNSS sites.
Madurga, Sergio; Martín-Molina, Alberto; Vilaseca, Eudald; Mas, Francesc; Quesada-Pérez, Manuel
2007-06-21
The structure of the electric double layer in contact with discrete and continuously charged planar surfaces is studied within the framework of the primitive model through Monte Carlo simulations. Three different discretization models are considered together with the case of uniform distribution. The effect of discreteness is analyzed in terms of charge density profiles. For point surface groups, a complete equivalence with the situation of uniformly distributed charge is found if profiles are exclusively analyzed as a function of the distance to the charged surface. However, some differences are observed moving parallel to the surface. Significant discrepancies with approaches that do not account for discreteness are reported if charge sites of finite size placed on the surface are considered.
Zhang, Ren-Qin; Lee, Tae-Hun; Yu, Byung-Deok; Stampfl, Catherine; Soon, Aloysius
2012-12-28
As a first step towards a microscopic understanding of single-Pt atom-dispersed catalysts on non-conventional TiN supports, we present density-functional theory (DFT) calculations to investigate the adsorption properties of Pt atoms on the pristine TiN(100) surface, as well as the dominant influence of surface defects on the thermodynamic stability of platinized TiN. Optimized atomic geometries, energetics, and analysis of the electronic structure of the Pt/TiN system are reported for various surface coverages of Pt. We find that atomic Pt does not bind preferably to the clean TiN surface, but under typical PEM fuel cell operating conditions, i.e. strongly oxidizing conditions, TiN surface vacancies play a crucial role in anchoring the Pt atom for its catalytic function. Whilst considering the energetic stability of the Pt/TiN structures under varying N conditions, embedding Pt at the surface N-vacancy site is found to be the most favorable under N-lean conditions. Thus, the system of embedding Pt at the surface N-vacancy sites on TiN(100) surfaces could be promising catalysts for PEM fuel cells.
Standing and sitting adlayers in atomic layer deposition of ZnO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Zhengning; Banerjee, Parag, E-mail: parag.banerjee@wustl.edu; Wu, Fei
The extent of reactivity of diethyl zinc (DEZ) with a hydroxylated surface during atomic layer deposition (ALD) of ZnO using DEZ and water is measured. Two adlayer configurations of DEZ are possible. The “standing” adlayer releases one ethyl group from DEZ. The “sitting” adlayer releases both ethyl groups, thus forming a Zn bridge between two O anions. Density functional theory calculations suggest the sitting configuration is more stable than the standing configuration by 790 meV. In situ quadrupole mass spectroscopy of by-product ethane generated in ALD half cycles indicate that ∼1.56 OH sites react with a DEZ molecule resulting in 71.6%more » of sitting sites. A simple simulation of a “ball-and-stick” DEZ molecule randomly collapsing on a neighboring site remarkably captures this adlayer behavior. It is concluded that DEZ fraction sitting is a competitive process of a standing DEZ molecule collapsing onto an available neighboring hydroxyl site, as sites vie for occupancy via adsorption and surface diffusion.« less
A method for continuous monitoring of the Ground Reaction Force during daily activity
NASA Technical Reports Server (NTRS)
Whalen, Robert; Quintana, Jason; Emery, Jeff
1993-01-01
Theoretical models and experimental studies of bone remodeling have identified peak cyclic force levels (or cyclic tissue strain energy density), number of daily loading cycles, and load (strain) rate as possible contributors to bone modeling and remodeling stimulus. To test our theoretical model and further investigate the influence of mechanical forces on bone density, we have focused on the calcaneus as a model site loaded by calcaneal surface tractions which are predominantly determined by the magnitude of the external ground reaction force (GRF).
Zhu, Mengqiang; Paul, Kristian W; Kubicki, James D; Sparks, Donald L
2009-09-01
Density functional theory (DFT) calculations were used to investigate As(V) and As(III) surface complex structures and reaction energies on both Mn(III) and Mn(IV) sites in an attempt to better understand As(III) oxidation bybirnessite, a layered Mn-dioxide mineral. Edge-sharing dioctahedral Mn(III) and Mn(IV) clusters with different combinations of surface functional groups (>MnOH and >MnOH2) were employed to mimic pH variability. Results show that As(V) adsorption was more thermodynamically favorable than As(III) adsorption on both Mn(III) and Mn(IV) surface sites under simulated acidic pH conditions. Therefore, we propose that As(V) adsorption inhibits As(III) oxidation by blocking adsorption sites. Under simulated acidic pH conditions, Mn(IV) sites exhibited stronger adsorption affinity than Mn(III) sites for both As(III) and As(V). Overall, we hypothesize that Mn(III) sites are less reactive in terms of As(III) oxidation due to their lower affinity for As(III) adsorption, higher potential to be blocked by As(V) complexes, and slower electron transfer rates with adsorbed As(III). Results from this study offer an explanation regarding the experimental observations of Mn(III) accumulation on birnessite and the long residence time of As(III) adsorption complexes on manganite (r-MnOOH) during As(III) oxidation.
Effects of Acids, Bases, and Heteroatoms on Proximal Radial Distribution Functions for Proteins.
Nguyen, Bao Linh; Pettitt, B Montgomery
2015-04-14
The proximal distribution of water around proteins is a convenient method of quantifying solvation. We consider the effect of charged and sulfur-containing amino acid side-chain atoms on the proximal radial distribution function (pRDF) of water molecules around proteins using side-chain analogs. The pRDF represents the relative probability of finding any solvent molecule at a distance from the closest or surface perpendicular protein atom. We consider the near-neighbor distribution. Previously, pRDFs were shown to be universal descriptors of the water molecules around C, N, and O atom types across hundreds of globular proteins. Using averaged pRDFs, a solvent density around any globular protein can be reconstructed with controllable relative error. Solvent reconstruction using the additional information from charged amino acid side-chain atom types from both small models and protein averages reveals the effects of surface charge distribution on solvent density and improves the reconstruction errors relative to simulation. Solvent density reconstructions from the small-molecule models are as effective and less computationally demanding than reconstructions from full macromolecular models in reproducing preferred hydration sites and solvent density fluctuations.
Pd surface and Pt subsurface segregation in Pt1-c Pd c nanoalloys
NASA Astrophysics Data System (ADS)
De Clercq, A.; Giorgio, S.; Mottet, C.
2016-02-01
The structure and chemical arrangement of Pt1-c Pd c nanoalloys with the icosahedral and face centered cubic symmetry are studied using Monte Carlo simulations with a tight binding interatomic potential fitted to density-functional theory calculations. Pd surface segregation from the lowest to the highest coordinated sites is predicted by the theory together with a Pt enrichment at the subsurface, whatever the structure and the size of the nanoparticles, and which subsists when increasing the temperature. The onion-shell chemical configuration is found for both symmetries and is initiated from the Pd surface segregation. It is amplified in the icosahedral symmetry and small sizes but when considering larger sizes, the oscillating segregation profile occurs near the surface on about three to four shells whatever the structure. Pd segregation results from the significant lower cohesive energy of Pd as compared to Pt and the weak ordering tendency leads to the Pt subsurface segregation. The very weak size mismatch does not prevent the bigger atoms (Pt) from occupying subsurface sites which are in compression whereas the smaller ones (Pd) occupy the central site of the icosahedra where the compression is an order of magnitude higher.
Formation, Migration, and Reactivity of Au CO Complexes on Gold Surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jun; McEntee, Monica; Tang, Wenjie
2016-01-12
Here, we report experimental as well as theoretical evidence that suggests Au CO complex formation upon the exposure of CO to active sites (step edges and threading dislocations) on a Au(111) surface. Room-temperature scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy, transmission infrared spectroscopy, and density functional theory calculations point to Au CO complex formation and migration. Room-temperature STM of the Au(111) surface at CO pressures in the range from 10^ 8 to 10^ 4 Torr (dosage up to 10^6 langmuir) indicates Au atom extraction from dislocation sites of the herringbone reconstruction, mobile Au CO complex formation and diffusion, and Aumore » adatom cluster formation on both elbows and step edges on the Au surface. The formation and mobility of the Au CO complex result from the reduced Au Au bonding at elbows and step edges leading to stronger Au CO bonding and to the formation of a more positively charged CO (CO +) on Au. These studies indicate that the mobile Au CO complex is involved in the Au nanoparticle formation and reactivity, and that the positive charge on CO increases due to the stronger adsorption of CO at Au sites with lower coordination numbers.« less
Hannah, Daniel C; Gezelter, J Daniel; Schaller, Richard D; Schatz, George C
2015-06-23
We examine the role played by surface structure and passivation in thermal transport at semiconductor/organic interfaces. Such interfaces dominate thermal transport in semiconductor nanomaterials owing to material dimensions much smaller than the bulk phonon mean free path. Utilizing reverse nonequilibrium molecular dynamics simulations, we calculate the interfacial thermal conductance (G) between a hexane solvent and chemically passivated wurtzite CdSe surfaces. In particular, we examine the dependence of G on the CdSe slab thickness, the particular exposed crystal facet, and the extent of surface passivation. Our results indicate a nonmonotonic dependence of G on ligand-grafting density, with interfaces generally exhibiting higher thermal conductance for increasing surface coverage up to ∼0.08 ligands/Å(2) (75-100% of a monolayer, depending on the particular exposed facet) and decreasing for still higher coverages. By analyzing orientational ordering and solvent penetration into the ligand layer, we show that a balance of competing effects is responsible for this nonmonotonic dependence. Although the various unpassivated CdSe surfaces exhibit similar G values, the crystal structure of an exposed facet nevertheless plays an important role in determining the interfacial thermal conductance of passivated surfaces, as the density of binding sites on a surface determines the ligand-grafting densities that may ultimately be achieved. We demonstrate that surface passivation can increase G relative to a bare surface by roughly 1 order of magnitude and that, for a given extent of passivation, thermal conductance can vary by up to a factor of ∼2 between different surfaces, suggesting that appropriately tailored nanostructures may direct heat flow in an anisotropic fashion for interface-limited thermal transport.
NASA Astrophysics Data System (ADS)
Brandt, Angelika; Vanreusel, Ann; Bracher, Astrid; Jule Marie Hoppe, Clara; Lins, Lidia; Meyer-Löbbecke, Anna; Altenburg Soppa, Mariana; Würzberg, Laura
2014-10-01
In austral summer 2012, during the expedition ANT-XXVIII/3 on board RV Polarstern, two sites were sampled 1600 km apart in the South Polar Front area (52°S) at the boundary of different productivity regimes for meio- and macrobenthos using a multiple-corer and an epibenthic sledge, respectively. Patterns in density and abundance data were compared between different size classes of the benthos and interpreted in relation to surface primary productivity data and sediment oxygen consumption. We tested the hypothesis that long-term satellite-derived surface phytoplankton biomass, in situ real time biomass, and productivity measurements at the surface and throughout the euphotic zone are reflected in abyssal benthos densities, abundances and activity. Specifically, we investigated the effect of boundary conditions for lower and higher surface productivity. Surface and integrated to 100 m depth biomass and primary productivity measurements vary stations, with the lowest values at station 85 (0.083 mg Chl-a m-3 at surface, 9 mg Chl-a m-2 and 161 mg C m-2 d-1- integrated over the first 100 m depth), and the highest values at station 86 (2.231 mg Chl-a m-3 at surface, 180 mg Chl-a m-2 and 2587 mg C m-2 d-1 integrated over first 100 m depth). Total meiofaunal densities varied between 102 and 335 individuals/10 cm². Densities were the highest at station 86-30 (335 individuals) and lowest at station 81-13 (102 individuals). Total macrofaunal densities (individuals/1000 m²) varied between 26 individuals at station 81-17 and 194 individuals at station 86-24. However, three EBS hauls were taken at station 86 with a minimum of 80 and a maximum of 194 individuals. Sediment oxygen consumption did not vary significantly between stations from east to west. Bentho-pelagic coupling of meio- and macrobenthic communities could not be observed in the South Polar Front at the boundary conditions from low to high surface productivity between stations 81 and 86.
The effect of multiple stressors on salt marsh end-of-season biomass
Visser, J.M.; Sasser, C.E.; Cade, B.S.
2006-01-01
It is becoming more apparent that commonly used statistical methods (e.g., analysis of variance and regression) are not the best methods for estimating limiting relationships or stressor effects. A major challenge of estimating the effects associated with a measured subset of limiting factors is to account for the effects of unmeasured factors in an ecologically realistic matter. We used quantile regression to elucidate multiple stressor effects on end-of-season biomass data from two salt marsh sites in coastal Louisiana collected for 18 yr. Stressor effects evaluated based on available data were flooding, salinity, air temperature, cloud cover, precipitation deficit, grazing by muskrat, and surface water nitrogen and phosphorus. Precipitation deficit combined with surface water nitrogen provided the best two-parameter model to explain variation in the peak biomass with different slopes and intercepts for the two study sites. Precipitation deficit, cloud cover, and temperature were significantly correlated with each other. Surface water nitrogen was significantly correlated with surface water phosphorus and muskrat density. The site with the larger duration of flooding showed reduced peak biomass, when cloud cover and surface water nitrogen were optimal. Variation in the relatively low salinity occurring in our study area did not explain any of the variation in Spartina alterniflora biomass. ?? 2006 Estuarine Research Federation.
The effect of multiple stressors on salt marsh end-of-season biomass
Visser, J.M.; Sasser, C.E.; Cade, B.S.
2006-01-01
It is becoming more apparent that commonly used statistical methods (e.g. analysis of variance and regression) are not the best methods for estimating limiting relationships or stressor effects. A major challenge of estimating the effects associated with a measured subset of limiting factors is to account for the effects of unmeasured factors in an ecologically realistic matter. We used quantile regression to elucidate multiple stressor effects on end-of-season biomass data from two salt marsh sites in coastal Louisiana collected for 18 yr. Stressor effects evaluated based on available data were flooding, salinity air temperature, cloud cover, precipitation deficit, grazing by muskrat, and surface water nitrogen and phosphorus. Precipitation deficit combined with surface water nitrogen provided the best two-parameter model to explain variation in the peak biomass with different slopes and intercepts for the two study sites. Precipitation deficit, cloud cover, and temperature were significantly correlated with each other. Surface water nitrogen was significantly correlated with surface water phosphorus and muskrat density. The site with the larger duration of flooding showed reduced peak biomass, when cloud cover and surface water nitrogen were optimal. Variation in the relatively low salinity occurring in our study area did not explain any of the variation in Spartina alterniflora biomass.
Adsorption behavior of acetone solvent at the HMX crystal faces: A molecular dynamics study.
Liu, Yingzhe; Yu, Tao; Lai, Weipeng; Ma, Yiding; Kang, Ying; Ge, Zhongxue
2017-06-01
Molecular dynamics simulations have been performed to understand the adsorption behavior of acetone (AC) solvent at the three surfaces of 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctan (HMX) crystal, i.e. (011), (110), and (020) faces. The simulation results show that the structural features and electrostatic potentials of crystal faces are determined by the HMX molecular packing, inducing distinct mass density distribution, dipole orientation, and diffusion of solvent molecules in the interfacial regions. The solvent adsorption is mainly governed by the van der Waals forces, and the crystal-solvent interaction energies among three systems are ranked as (020)≈(110)>(011). The adsorption sites for solvent incorporation at the crystal surface were found and visualized with the aid of occupancy analysis. A uniform arrangement of adsorption sites is observed at the rough (020) surface as a result of ordered adsorption motif. Copyright © 2017 Elsevier Inc. All rights reserved.
Land cover effects on thresholds for surface runoff generation in Eastern Madagascar
NASA Astrophysics Data System (ADS)
van Meerveld, Ilja H. J.; Prasad Ghimire, Chandra; Zwartendijk, Bob W.; Ravelona, Maafaka; Lahitiana, Jaona; Bruijnzeel, L. Adrian
2016-04-01
Reforestation and natural regrowth in the tropics are promoted for a wide range of benefits, including carbon sequestration, land rehabilitation and streamflow regulation. However, their effects on runoff generation mechanisms and streamflow are still poorly understood. Evaporative losses (transpiration and interception) likely increase with forest regrowth, while infiltration rates are expected to increase and surface runoff occurrence is, therefore, expected to decrease. As part of a larger project investigating the effects of land use on hydrological processes in upland Eastern Madagascar, this presentation reports on a comparison of the thresholds for surface runoff generation at a degraded grassland site, a young secondary forest site (5-7 years; LAI 1.83) and a mature secondary forest site (ca. 20 years; LAI 3.39). Surface runoff was measured on two (young and mature secondary forest) or three (degraded site) 3 m by 10 m plots over a one-year period (October 2014-September 2015). Soil moisture was measured at four (degraded site) to six depths (both forests), while perched groundwater levels were measured in piezometers installed at 30 cm below the soil surface. Soil hydraulic conductivity was measured in situ at the surface and at 10-20 and 20-30 cm depths at three locations in each plot. Porosity, moisture content at field capacity and bulk density were determined from soil cores taken at 2.5-7.5, 12.5-17.5 and 22.5-27.5 cm depth. The porosity and texture of the different plots were comparable. The hydraulic conductivity of the soil differed between the different land uses and declined sharply at 20-30 cm below the soil surface. Total surface runoff during the study period was 11% of incident rainfall at the degraded site vs. 2% for the two secondary forest sites. Maximum monthly runoff coefficients were 22%, 3.5% and 2.7% for the degraded site, the young forest site and the mature forest site, respectively, but individual event runoff coefficients could be as high as 45%, 12%, and 10%, respectively. Initial analyses indicate that a threshold rainfall amount was required before surface runoff occurs. Comparison of surface runoff occurrence with perched groundwater levels and soil moisture data showed that surface runoff was generated once the top-soil (0-20 cm) became saturated because of impeded drainage to the low hydraulic conductivity deeper layers. Thresholds for saturation overland flow generation were higher at the two forested sites compared to the degraded grassland due to their greater percolation to deeper layers, faster shallow lateral flow, and larger available storage in the top layers. The detailed analyses of the soil moisture and rainfall thresholds for surface runoff generation and their temporal variation will be used to develop a bucket-based conceptual model for runoff generation at these upland tropical sites. Key words: Runoff plot, rainfall threshold, soil moisture, saturation overland flow, secondary forest, soil hydraulic conductivity, Madagascar, p4ges project
NASA Astrophysics Data System (ADS)
Dutta, Shibsankar; De, Sukanta
2016-05-01
It have been already seen that 2-dimensional nano materials are the suitable choice for the supercapacitor application due to their large specific surface area, electrochemical active sites, micromechanical flexibility, expedite ion migration channel properties. Free standing hybrid films of functionalized MWCNT (- COOH group) and α-Vanadyl phosphates (VOPO42H2O) are prepared by vacuum filtering. The surface morphology and microstructure of the samples are studied by transmission electron microscope, field emission scanning electron microscope, XRD, Electrochemical properties of hybrid films have been investigated systematically in 1M Na2SO4 aqueous electrolyte. The hybrid material exhibits a high specific capacitance 236 F/g with high energy density of 65.6 Wh/Kg and a power density of 1476 W/Kg.
Understanding Self-Catalyzed Epitaxial Growth of III-V Nanowires toward Controlled Synthesis.
Zi, Yunlong; Suslov, Sergey; Yang, Chen
2017-02-08
The self-catalyzed growth of III-V nanowires has drawn plenty of attention due to the potential of integration in current Si-based technologies. The homoparticle-assisted vapor-liquid-solid growth mechanism has been demonstrated for self-catalyzed III-V nanowire growth. However, the understandings of the preferred growth sites of these nanowires are still limited, which obstructs the controlled synthesis and the applications of self-catalyzed nanowire arrays. Here, we experimentally demonstrated that thermally created pits could serve as the preferred sites for self-catalyzed InAs nanowire growth. On that basis, we performed a pregrowth annealing strategy to promote the nanowire density by enhancing the pits formation on the substrate surface and enable the nanowire growth on the substrate that was not capable to facilitate the growth. The discovery of the preferred self-catalyzed nanowire growth sites and the pregrowth annealing strategy have shown great potentials for controlled self-catalyzed III-V nanowire array growth with preferred locations and density.
Structural Comparison of Different Antibodies Interacting with Parvovirus Capsids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hafenstein, Susan; Bowman, Valorie D.; Sun, Tao
2009-05-13
The structures of canine parvovirus (CPV) and feline parvovirus (FPV) complexed with antibody fragments from eight different neutralizing monoclonal antibodies were determined by cryo-electron microscopy (cryoEM) reconstruction to resolutions varying from 8.5 to 18 {angstrom}. The crystal structure of one of the Fab molecules and the sequence of the variable domain for each of the Fab molecules have been determined. The structures of Fab fragments not determined crystallographically were predicted by homology modeling according to the amino acid sequence. Fitting of the Fab and virus structures into the cryoEM densities identified the footprints of each antibody on the viral surface.more » As anticipated from earlier analyses, the Fab binding sites are directed to two epitopes, A and B. The A site is on an exposed part of the surface near an icosahedral threefold axis, whereas the B site is about equidistant from the surrounding five-, three-, and twofold axes. One antibody directed to the A site binds CPV but not FPV. Two of the antibodies directed to the B site neutralize the virus as Fab fragments. The differences in antibody properties have been linked to the amino acids within the antibody footprints, the position of the binding site relative to the icosahedral symmetry elements, and the orientation of the Fab structure relative to the surface of the virus. Most of the exposed surface area was antigenic, although each of the antibodies had a common area of overlap that coincided with the positions of the previously mapped escape mutations.« less
The interaction of mercury with halogenated graphene
NASA Astrophysics Data System (ADS)
Kirchofer, Abigail; Sasmaz, Erdem; Wilcox, Jennifer
2011-03-01
The interaction of mercury with halogenated graphene was studied using plane-wave density functional theory. Various configurations of H, Hg, O and Br or Cl on the zigzag edge sites of graphene were investigated. Although Hg-Br (or -Cl) complexes were found to be stable on the surface, the most stable configurations found were those with Hg adjacent to O. The surface atoms Hg, O, and Br tend to repel each other during geometric optimization, moving towards an H atom nearest-neighbor where possible. The strength of the Hg-graphene interaction is very sensitive to the local environment. The Hg-graphene binding energy is strongest when the Hg is located next to a surface O but not immediately next to a bound Br. DOS analysis revealed that Hg adsorption involves a gain in Hg 6 p-states and a loss in Hg 5 s electron density, resulting in an oxidized surface-bound Hg complex. DOS analysis suggests that Br strengthens the Hg-graphene interaction by modifying the surface carbon electron density; however, when Br is adjacent to Hg, a direct Hg-Br interaction weakens the Hg-C bond. These investigations provide insight into the mechanism associated with enhanced Hg adsorption on Br-functionalized carbon materials for Hg emissions reductions from coal-fired power plant applications. The authors acknowledge the financial support by Electric Power Research Institute (EPRI).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaidle, Joshua A.; Blackburn, Jeffrey; Farberow, Carrie A.
Ex situ catalytic fast pyrolysis (CFP) is a promising route for producing fungible biofuels; however, this process requires bifunctional catalysts that favor C–O bond cleavage, activate hydrogen at near atmospheric pressure and high temperature (350–500 °C), and are stable under high-steam, low hydrogen-to-carbon environments. Recently, early transition-metal carbides have been reported to selectively cleave C–O bonds of alcohols, aldehydes, and oxygenated aromatics, yet there is limited understanding of the metal carbide surface chemistry under reaction conditions and the identity of the active sites for deoxygenation. In this study, we evaluated molybdenum carbide (Mo 2C) for the deoxygenation of acetic acid,more » an abundant component of biomass pyrolysis vapors, under ex situ CFP conditions, and we probed the Mo 2C surface chemistry, identity of the active sites, and deoxygenation pathways using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculations.« less
Schaidle, Joshua A.; Blackburn, Jeffrey; Farberow, Carrie A.; ...
2016-01-21
Ex situ catalytic fast pyrolysis (CFP) is a promising route for producing fungible biofuels; however, this process requires bifunctional catalysts that favor C–O bond cleavage, activate hydrogen at near atmospheric pressure and high temperature (350–500 °C), and are stable under high-steam, low hydrogen-to-carbon environments. Recently, early transition-metal carbides have been reported to selectively cleave C–O bonds of alcohols, aldehydes, and oxygenated aromatics, yet there is limited understanding of the metal carbide surface chemistry under reaction conditions and the identity of the active sites for deoxygenation. In this study, we evaluated molybdenum carbide (Mo 2C) for the deoxygenation of acetic acid,more » an abundant component of biomass pyrolysis vapors, under ex situ CFP conditions, and we probed the Mo 2C surface chemistry, identity of the active sites, and deoxygenation pathways using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculations.« less
Catherine A. Scudieri; Carolyn Hull Sieg; Sally M. Haase; Andrea E. Thode; Stephen S. Sackett
2010-01-01
Southwestern USA ponderosa pine (Pinus ponderosa C. Lawson var. scopulorum Engelm.) forests evolved with frequent surface fires and have changed dramatically over the last century. Overstory tree density has sharply increased while abundance of understory vegetation has declined primarily due to the near cessation of fires. We...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayernick, Adam D.; Janik, Michael J.
2010-12-24
Palladium/ceria exhibits unique catalytic activity for hydrocarbon oxidation; however, the chemical and structural properties of active sites on the palladium–ceria surface are difficult to characterize. Strong interactions between palladium and the ceria support stabilize oxidized Pd δ+ species, which may contribute to the significant activity of Pd/ceria for methane oxidation. We present a density functional theory (DFT + U) investigation into methane oxidation over Pd/ceria and quantify the activity of the Pd xCe 1-xO 2(1 1 1) mixed oxide surface in comparison with the PdO(1 0 0) and Pd(1 1 1) surfaces. The methane activation barrier is lowest over themore » Pd xCe 1-xO 2(1 1 1) surface, even lower than over the Pd(1 1 1) surface or low coordinated stepped or kinked Pd sites. Subsequent reaction steps in complete oxidation, including product desorption and vacancy refilling, are considered to substantiate that methane activation remains the rate-limiting step despite the low barrier over Pd xCe 1-xO 2(1 1 1). The low barrier over the Pd xCe 1-xO 2(1 1 1) surface demonstrates that mixed ceria-noble metal oxides offer the potential for improved hydrocarbon oxidation performance with respect to dispersed noble metal particles on ceria.« less
A density functional theory study on the acetylene cyclotrimerization on Pd-modified Au(111) surface
NASA Astrophysics Data System (ADS)
Ren, Bohua; Dong, Xiuqin; Yu, Yingzhe; Zhang, Minhua
2017-10-01
Calculations based on the first-principle density functional theory were carried out to study the possible acetylene cyclotrimerization reactions on Pd-Au(111) surface and to investigate the effect of Au atom alloying with Pd. The adsorption of C2H2, C4H4, C6H6 and the PDOS of 4d orbitals of surface Pd and Au atoms were studied. The comparison of d-band center of Pd and Au atom before and after C2H2 or C4H4 adsorption suggests that these molecules affect the activity of Pd-Au(111) surface to some degree due to the high binding energy of the adsorption. In our study, the second neighboring Pd ensembles on Pd-Au(111) surface can adsorb two acetylene molecules on parallel-bridge site of two Au atoms and one Pd atom, respectively. Csbnd C bonds are parallel to each other and two acetylenes are adsorbed face to face to produce four-membered ring C4H4 firstly. The geometric effect and electronic effect of Pd-Au(111) surface with the second neighboring Pd ensembles both help to reduce this activation barrier.
Surface characterization of acidic ceria-zirconia prepared by direct sulfation
NASA Astrophysics Data System (ADS)
Azambre, B.; Zenboury, L.; Weber, J. V.; Burg, P.
2010-05-01
Acidic ceria-zirconia (SCZ) solid acid catalysts with a nominal surface density of ca 2 SO 42-/nm 2 were prepared by a simple route consisting in soaking high specific surface area Ce xZr 1- xO 2 (with x = 0.21 and 0.69) mixed oxides solutions in 0.5 M sulphuric acid. Characterizations by TPD-MS, TP-DRIFTS and FT-Raman revealed that most of surface structures generated by sulfation are stable at least up to 700 °C under inert atmosphere and consist mainly as isolated sulfates located on defects or crystal planes and to a lesser extent as polysulfates. Investigations by pyridine adsorption/desorption have stated that: SCZ possess both strong Brønsted (B) and Lewis (L) acid sites, some of them being presumably superacidic; the B/L site ratio was found to be more dependent on the temperature and hydration degree than on the composition of the ceria-zirconia. By contrast, the reactivity of the parent Ce xZr 1- xO 2 materials towards pyridine is mostly driven by redox properties resulting in the formation of Py-oxide with the participation of Lewis acid sites of moderate strength ( cus Ce x+ and Zr x+ cations). Basicity studies by CO 2 adsorption/desorption reveal that SCZ surfaces are solely acidic whereas the number and strength of Lewis basic sites increases with the Ce content for the parent Ce xZr 1- xO 2 materials.
Gu, Juan; Sun, An-Yuan; Wang, Xue-Dong; Shao, Chao-Peng; Li, Zheng; Huang, Li-Hua; Pan, Zhao-Lin; Wang, Qing-Ping; Sun, Guang-Ming
2014-04-01
The characteristics of the D antigen are important as they influence the immunogenicity of D variant cells. Several studies on antigenic sites have been reported in normal D positive, weak D and partial D cases, including a comprehensive analysis of DEL types in Caucasians. The aim of this study was to assess D antigen density and epitopes on the erythrocyte surface of Asian type DEL phenotypic individuals carrying the RHD1227A allele in the Chinese population. A total of 154 DEL phenotypic individuals carrying the RHD1227A allele were identified through adsorption and elution tests and polymerase chain reaction analysis with sequence-specific primers in the Chinese population. D antigen density on the erythrocyte surface of these individuals was detected using a flow cytometric method. An erythrocyte sample with known D antigen density was used as a standard. Blood samples from D-negative and D-positive individuals were used as controls. In addition, D antigen epitopes on the erythrocyte surface of DEL individuals carrying the RHD1227A allele were investigated with 18 monoclonal anti-D antibodies specific for different D antigen epitopes. The means of the median fluorescence intensity of D antigen on the erythrocyte membrane surface of D-negative, D-positive and DEL individuals were 2.14±0.25, 193.61±11.43 and 2.45±0.82, respectively. The DEL samples were estimated to have approximately 22 D antigens per cell. The samples from all 154 DEL individuals reacted positively with 18 monoclonal anti-D antibodies specific for different D antigen epitopes. In this study, D antigen density on the erythrocyte surface of DEL individuals carrying the RHD1227A allele was extremely low, there being only very few antigenic molecules per cell, but the D antigen epitopes were grossly complete.
PSO-Assisted Development of New Transferable Coarse-Grained Water Models.
Bejagam, Karteek K; Singh, Samrendra; An, Yaxin; Berry, Carter; Deshmukh, Sanket A
2018-02-15
We have employed two-to-one mapping scheme to develop three coarse-grained (CG) water models, namely, 1-, 2-, and 3-site CG models. Here, for the first time, particle swarm optimization (PSO) and gradient descent methods were coupled to optimize the force-field parameters of the CG models to reproduce the density, self-diffusion coefficient, and dielectric constant of real water at 300 K. The CG MD simulations of these new models conducted with various timesteps, for different system sizes, and at a range of different temperatures are able to predict the density, self-diffusion coefficient, dielectric constant, surface tension, heat of vaporization, hydration free energy, and isothermal compressibility of real water with excellent accuracy. The 1-site model is ∼3 and ∼4.5 times computationally more efficient than 2- and 3-site models, respectively. To utilize the speed of 1-site model and electrostatic interactions offered by 2- and 3-site models, CG MD simulations of 1:1 combination of 1- and 2-/3-site models were performed at 300 K. These mixture simulations could also predict the properties of real water with good accuracy. Two new CG models of benzene, consisting of beads with and without partial charges, were developed. All three water models showed good capacity to solvate these benzene models.
Microwave radiometer experiment of soil moisture sensing at BARC test site during summer 1981
NASA Technical Reports Server (NTRS)
Wang, J.; Jackson, T.; Engman, E. T.; Gould, W.; Fuchs, J.; Glazer, W.; Oneill, P.; Schmugge, T. J.; Mcmurtrey, J., III
1984-01-01
Soil moisture was measured by truck mounted microwave radiometers at the frequencies of 1.4 GHz, 5 GHz, and 10.7 GHz. The soil textures in the two test sites were different so that the soil type effect of microwave radiometric response could be studied. Several fields in each test site were prepared with different surface roughnesses and vegetation covers. Ground truth on the soil moisture, temperature, and the biomass of the vegetation was acquired in support of the microwave radiometric measurements. Soil bulk density for each of the fields in both test sites was sampled. The soils in both sites were measured mechanically and chemically. A tabulation of the measured data is presented and the sensors and operational problems associated with the measurements are discussed.
Mori, Kohsuke; Sano, Taiki; Kobayashi, Hisayoshi; Yamashita, Hiromi
2018-06-22
The hydrogenation of carbon dioxide (CO 2 ) to formic acid (FA; HCOOH), a renewable hydrogen storage material, is a promising means of realizing an economical CO 2 -mediated hydrogen energy cycle. The development of reliable heter-ogeneous catalysts is an urgent yet challenging task associated with such systems, although precise catalytic site design protocols are still lacking. In the present study, we demonstrate that PdAg alloy nanoparticles (NPs) supported on TiO 2 promote the efficient selective hydrogenation of CO 2 to give FA even under mild reaction conditions (2.0 MPa, 100 °C). Specimens made using surface engineering with atomic precision reveal a strong correlation between increased cata-lytic activity and decreased electron density of active Pd atoms resulting from a synergistic effect of alloying with Ag atoms. The isolated and electronically promoted surface-exposed Pd atoms in Pd@Ag alloy NPs exhibit a maximum turnover number of 14,839 based on the quantity of surface Pd atoms, which represents a more than ten-fold increase compared to the activity of monometallic Pd/TiO 2 . Kinetic and density functional theory (DFT) calculations show that the attack on the C atom in HCO 3 - by a dissociated H atom over an active Pd site is the rate-determining step during this reaction, and this step is boosted by PdAg alloy NPs having a low Pd/Ag ratio.
Arjunan, V; Thirunarayanan, S; Durga Devi, G; Mohan, S
2015-11-05
Spectroscopic and theoretical quantum chemical studies of 2,5-dihydrothiophene-1,1-dioxide and 3-methyl-2,5-dihydrothiophene-1,1-dioxide have been carried out by FTIR and FT-Raman spectral techniques along with B3LYP methods. The geometry of the compounds have been optimised by B3LYP method with 6-311++G(∗∗) and cc-pVTZ basis sets. The geometrical parameters obtained at B3LYP levels have been compared with the experimental values. Molecular electrostatic potential surface, total electron density distribution and frontier molecular orbital are constructed at B3LYP/cc-pVTZ level to understand the electronic properties. The charge density distribution and sites of chemical reactivity of the molecules have been obtained by mapping electron density isosurface with electrostatic potential surfaces. Natural bond orbital analysis of the molecules are carried out and the occupancies and the atomic hybrid contributions are calculated. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Franke, J.-H.; Kosov, D. S.
2015-01-01
We study the adsorption and ring-opening of lactide on the naturally chiral metal surface Pt(321)S. Lactide is a precursor for polylactic acid ring-opening polymerization, and Pt is a well known catalyst surface. We study, here, the energetics of the ring-opening of lactide on a surface that has a high density of kink atoms. These sites are expected to be present on a realistic Pt surface and show enhanced catalytic activity. The use of a naturally chiral surface also enables us to study potential chiral selectivity effects of the reaction at the same time. Using density functional theory with a functional that includes the van der Waals forces in a first-principles manner, we find modest adsorption energies of around 1.4 eV for the pristine molecule and different ring-opened states. The energy barrier to be overcome in the ring-opening reaction is found to be very small at 0.32 eV and 0.30 eV for LL- and its chiral partner DD-lactide, respectively. These energies are much smaller than the activation energy for a dehydrogenation reaction of 0.78 eV. Our results thus indicate that (a) ring-opening reactions of lactide on Pt(321) can be expected already at very low temperatures, and Pt might be a very effective catalyst for this reaction; (b) the ring-opening reaction rate shows noticeable enantioselectivity.
Jiang, Zhen; Klyukin, Konstantin; Alexandrov, Vitaly
2017-06-14
Vanadium redox flow batteries (VRFBs) represent a promising solution to grid-scale energy storage, and understanding the reactivity of electrode materials is crucial for improving the power density of VRFBs. However, atomistic details about the interactions between vanadium ions and electrode surfaces in aqueous electrolytes are still lacking. Here, we examine the reactivity of the basal (0001) and edge (112[combining macron]0) graphite facets with water and aqueous V 2+ /V 3+ redox species at 300 K employing Car-Parrinello molecular dynamics (CPMD) coupled with metadynamics simulations. The results suggest that the edge surface is characterized by the formation of ketonic C[double bond, length as m-dash]O functional groups due to complete water dissociation into the H/O/H configuration with surface O atoms serving as active sites for adsorption of V 2+ /V 3+ species. The formation of V-O bonds at the surface should significantly improve the kinetics of electron transfer at the edge sites, which is not the case for the basal surface, in agreement with the experimentally hypothesized mechanism.
Harnessing surface-bound enzymatic reactions to organize microcapsules in solution
Shklyaev, Oleg E.; Shum, Henry; Sen, Ayusman; Balazs, Anna C.
2016-01-01
By developing new computational models, we examine how enzymatic reactions on an underlying surface can be harnessed to direct the motion and organization of reagent-laden microcapsules in a fluid-filled microchannel. In the presence of appropriate reagents, surface-bound enzymes can act as pumps, which drive large-scale fluid flows. When the reagents diffuse through the capsules’ porous shells, they can react with enzymatic sites on the bottom surface. The ensuing reaction generates fluid density variations, which result in fluid flows. These flows carry the suspended microcapsules and drive them to aggregate into “colonies” on and near the enzyme-covered sites. This aggregation continues until the reagent has been depleted and the convection stops. We show that the shape of the assembled colonies can be tailored by patterning the distribution of enzymes on the surface. This fundamental physicochemical mechanism could have played a role in the self-organization of early biological cells (protocells) and can be used to regulate the autonomous motion and targeted delivery of microcarriers in microfluidic devices. PMID:27034990
Comparing the ice nucleation efficiencies of ice nucleating substrates to natural mineral dusts
NASA Astrophysics Data System (ADS)
Steinke, Isabelle; Funk, Roger; Höhler, Kristina; Haarig, Moritz; Hoffmann, Nadine; Hoose, Corinna; Kiselev, Alexei; Möhler, Ottmar; Leisner, Thomas
2014-05-01
Mineral dust particles in the atmosphere may act as efficient ice nuclei over a wide range of temperature and relative humidity conditions. The ice nucleation capability of dust particles mostly depends on the particle surface area and the associated physico-chemical surface properties. It has been observed that the surface-related ice nucleation efficiency of different dust particles and mineral species can vary by several orders of magnitude. However, the relation between aerosol surface properties and observed ice nucleation efficiency is still not completely understood due to the large variability of chemical compositions and morphological features. In order to gain a better understanding of small scale freezing processes, we investigated the freezing of several hundreds of small droplets (V=0.4 nl) deposited on materials with reasonably well defined surfaces such as crystalline silicon wafers, graphite and freshly cleaved mica sheets under atmospherically relevant conditions. These substrates are intended to serve as simple model structures compared to the surface of natural aerosol particles. To learn more about the impact of particle morphology on ice nucleation processes, we also investigated micro-structured silicon wafers with prescribed trenches. The ice nucleation efficiencies deduced from these experiments are expressed as ice nucleation active surface site density values. With this approach, the freezing properties of the above-described substrates could be compared to those of natural mineral dusts such as agricultural soil dusts, volcanic ash and fossil diatoms, which have been investigated in AIDA cloud chamber experiments. All tested ice nucleating substrates were consistently less efficient at nucleating ice than the natural mineral dusts. Crystalline silicon only had a negligible influence on the freezing of small droplets, leading to freezing near the homogeneous freezing temperature threshold. Applying surface structures to silicon led to a shift towards heterogeneous freezing. However, the measured ice nucleation active surface site densities were still smaller than those of mineral dusts.
NASA Technical Reports Server (NTRS)
Schieldge, John
2000-01-01
Wavelet and fractal analyses have been used successfully to analyze one-dimensional data sets such as time series of financial, physical, and biological parameters. These techniques have been applied to two-dimensional problems in some instances, including the analysis of remote sensing imagery. In this respect, these techniques have not been widely used by the remote sensing community, and their overall capabilities as analytical tools for use on satellite and aircraft data sets is not well known. Wavelet and fractal analyses have the potential to provide fresh insight into the characterization of surface properties such as temperature and emissivity distributions, and surface processes such as the heat and water vapor exchange between the surface and the lower atmosphere. In particular, the variation of sensible heat flux density as a function of the change In scale of surface properties Is difficult to estimate, but - in general - wavelets and fractals have proved useful in determining the way a parameter varies with changes in scale. We present the results of a limited study on the relationship between spatial variations in surface temperature distribution and sensible heat flux distribution as determined by separate wavelet and fractal analyses. We analyzed aircraft imagery obtained in the thermal infrared (IR) bands from the multispectral TIMS and hyperspectral MASTER airborne sensors. The thermal IR data allows us to estimate the surface kinetic temperature distribution for a number of sites in the Midwestern and Southwestern United States (viz., San Pedro River Basin, Arizona; El Reno, Oklahoma; Jornada, New Mexico). The ground spatial resolution of the aircraft data varied from 5 to 15 meters. All sites were instrumented with meteorological and hydrological equipment including surface layer flux measuring stations such as Bowen Ratio systems and sonic anemometers. The ground and aircraft data sets provided the inputs for the wavelet and fractal analyses, and the validation of the results.
Zarrinkalam, M R; Mulaibrahimovic, A; Atkins, G J; Moore, R J
2012-04-01
Histomorphometric assessment of trabecular bone in osteoporotic sheep showed that bone volume, osteoid surface area, bone formation rate, and osteocyte density were reduced. In contrast, eroded surface area and empty lacunae density were increased. Changes in osteocyte density correlated with changes in osteoblast and osteoclast activity. Osteocytes contribute to the regulation of the activity of osteoclasts and osteoblasts that together control bone mass. Osteocytes therefore likely play a role in the loss of bone mass associated with osteoporosis. The purpose of this study was to investigate the relationships between osteocyte lacunar density and other bone histomorphometric parameters in the iliac crest (IC) and lumbar spine (LS) of osteoporotic sheep. Osteoporosis was induced in ten mature ewes by an established protocol involving a combination of ovariectomy, dexamethasone injection, and low calcium diet for 6 months. Five ewes were used as controls. Post-mortem IC and LS biopsies were collected and processed for further histomorphometric assessment. Bone volume, osteoid surface, and bone formation rate in the IC and LS of osteoporotic sheep were reduced compared to those of the controls. In contrast, eroded surface area was increased in osteoporotic sheep. In the osteoporotic group, osteocyte density was reduced in the LS region and to a greater extent in the IC region. The empty osteocyte lacunae were increased 1.7-fold in LS and 2.1-fold in IC in the osteoporotic group. The osteocyte density correlated positively with markers of osteoblast activity and negatively with those of osteoclast activity. Depletion of osteocytes and an increase in the empty lacunae could be important factors contributing to bone loss in this model since they may adversely affect intercellular communication between osteoblasts and osteoclasts. The regional differences in histology suggest that there may be different pathological mechanisms operating at different anatomical sites.
Patterns of vegetation in the Owens Valley, California
NASA Technical Reports Server (NTRS)
Ustin, S. L.; Rock, B. N.; Woodward, R. A.
1986-01-01
Spectral characteristics of semi-arid shrub communities were examined using Airborne Imaging Spectrometer (AIS) data collected in the tree mode on 23 May 1985. Mesic sites with relatively high vegetation density and distinct zonation patterns exhibited greater spectral signature variations than sites with more xeric shrub communities. Spectral signature patterns were not directly related to vegetation density or physiognomy, although spatial maps derived from an 8-channel maximum likelihood classification were supported by photo-interpreted surface features. In AIS data, the principal detected effect of shrub vegetation on the alluvial fans is to lower reflectance across the spectrum. These results are similar to those reported during a period of minimal physiological activity in autumn, indicating that shadows cast by vegetation canopies are an important element of soil-vegetation interaction under conditions of relatively low canopy cover.
Scanned-probe field-emission studies of vertically aligned carbon nanofibers
NASA Astrophysics Data System (ADS)
Merkulov, Vladimir I.; Lowndes, Douglas H.; Baylor, Larry R.
2001-02-01
Field emission properties of dense and sparse "forests" of randomly placed, vertically aligned carbon nanofibers (VACNFs) were studied using a scanned probe with a small tip diameter of ˜1 μm. The probe was scanned in directions perpendicular and parallel to the sample plane, which allowed for measuring not only the emission turn-on field at fixed locations but also the emission site density over large surface areas. The results show that dense forests of VACNFs are not good field emitters as they require high extracting (turn-on) fields. This is attributed to the screening of the local electric field by the neighboring VACNFs. In contrast, sparse forests of VACNFs exhibit moderate-to-low turn-on fields as well as high emission site and current densities, and long emission lifetime, which makes them very promising for various field emission applications.
Grain Boundary Induced Bias Instability in Soluble Acene-Based Thin-Film Transistors
Nguyen, Ky V.; Payne, Marcia M.; Anthony, John E.; Lee, Jung Hun; Song, Eunjoo; Kang, Boseok; Cho, Kilwon; Lee, Wi Hyoung
2016-01-01
Since the grain boundaries (GBs) within the semiconductor layer of organic field-effect transistors (OFETs) have a strong influence on device performance, a substantial number of studies have been devoted to controlling the crystallization characteristics of organic semiconductors. We studied the intrinsic effects of GBs within 5,11-bis(triethylsilylethynyl) anthradithiophene (TES-ADT) thin films on the electrical properties of OFETs. The GB density was easily changed by controlling nulceation event in TES-ADT thin films. When the mixing time was increased, the number of aggregates in as-spun TES-ADT thin films were increased and subsequent exposure of the films to 1,2-dichloroethane vapor led to a significant increase in the number of nuleation sites, thereby increasing the GB density of TES-ADT spherulites. The density of GBs strongly influences the angular spread and crystallographic orientation of TES-ADT spherulites. Accordingly, the FETs with higher GB densities showed much poorer electrical characteristics than devices with lower GB density. Especially, GBs provide charge trapping sites which are responsible for bias-stress driven electrical instability. Dielectric surface treatment with a polystyrene brush layer clarified the GB-induced charge trapping by reducing charge trapping at the semiconductor-dielectric interface. Our study provides an understanding on GB induced bias instability for the development of high performance OFETs. PMID:27615358
Grain Boundary Induced Bias Instability in Soluble Acene-Based Thin-Film Transistors.
Nguyen, Ky V; Payne, Marcia M; Anthony, John E; Lee, Jung Hun; Song, Eunjoo; Kang, Boseok; Cho, Kilwon; Lee, Wi Hyoung
2016-09-12
Since the grain boundaries (GBs) within the semiconductor layer of organic field-effect transistors (OFETs) have a strong influence on device performance, a substantial number of studies have been devoted to controlling the crystallization characteristics of organic semiconductors. We studied the intrinsic effects of GBs within 5,11-bis(triethylsilylethynyl) anthradithiophene (TES-ADT) thin films on the electrical properties of OFETs. The GB density was easily changed by controlling nulceation event in TES-ADT thin films. When the mixing time was increased, the number of aggregates in as-spun TES-ADT thin films were increased and subsequent exposure of the films to 1,2-dichloroethane vapor led to a significant increase in the number of nuleation sites, thereby increasing the GB density of TES-ADT spherulites. The density of GBs strongly influences the angular spread and crystallographic orientation of TES-ADT spherulites. Accordingly, the FETs with higher GB densities showed much poorer electrical characteristics than devices with lower GB density. Especially, GBs provide charge trapping sites which are responsible for bias-stress driven electrical instability. Dielectric surface treatment with a polystyrene brush layer clarified the GB-induced charge trapping by reducing charge trapping at the semiconductor-dielectric interface. Our study provides an understanding on GB induced bias instability for the development of high performance OFETs.
Snow micro-structure at Kongsvegen glacier, Svalbard
NASA Astrophysics Data System (ADS)
Bilgeri, F.; Karner, F.; Steinkogler, W.; Fromm, R.; Obleitner, F.; Kohler, J.
2012-04-01
Measurements of physical snow properties have been performed at several sites at Kongsvegen glacier, which is a key Arctic glacier in western Spitzbergen (79N, 13E). The data were collected at six locations along the flow line of the glacier at different elevations (161 to 741m asl.) and describe snow that was deposited during winter 2010/11. We basically consider the vertical profiles of snow temperature, density, hardness, grain size and crystal shapes derived from standard stratigraphic methods (snow pits)and measurements using advanced instruments like Snow Micropen® and NIR imagery. Some parameters were measured repeatedly and with different instruments which proves a high quality as well as long-term and spatial representativeness of the data. The general snow conditions at the end of winter are characterized by a linear increase of snow depth and water equivalent with elevation. Snow hardness also increases with elevation while density remains remarkably constant. At most sites the snow temperature, density, hardness and grain size increase from the surface towards the snow-ice interface. The surface and the bottom layers stand out by specific changes in snow signature (crystal types) and delineate the bulk of the snow pack which itself features a rather complex layering. Comparison of the high-resolution profiles measured at different elevations at the glacier suggests some principal correlations of the signatures of hardness, grain size and crystal type. Thus, some major features (e.g. particularly hard layers) can be traced along the glacier, but the high-resolution layering can not straightforwardly be related from one site to the other. This basically reflects a locally different history of the snow pack in terms of precipitation events and post-depositional snow metamorphism. The issue is investigated more quantitatively by enhanced statistical processing of the observed signatures and simulation of the history of individual layers. These studies are supported by meteorological measurements at the snow observation sites.
Assessment of Mars Pathfinder landing site predictions
Golombek, M.P.; Moore, H.J.; Haldemann, A.F.C.; Parker, T.J.; Schofield, J.T.
1999-01-01
Remote sensing data at scales of kilometers and an Earth analog were used to accurately predict the characteristics of the Mars Pathfinder landing site at a scale of meters. The surface surrounding the Mars Pathfinder lander in Ares Vallis appears consistent with orbital interpretations, namely, that it would be a rocky plain composed of materials deposited by catastrophic floods. The surface and observed maximum clast size appears similar to predictions based on an analogous surface of the Ephrata Fan in the Channeled Scabland of Washington state. The elevation of the site measured by relatively small footprint delay-Doppler radar is within 100 m of that determined by two-way ranging and Doppler tracking of the spacecraft. The nearly equal elevations of the Mars Pathfinder and Viking Lander 1 sites allowed a prediction of the atmospheric conditions with altitude (pressure, temperature, and winds) that were well within the entry, descent, and landing design margins. High-resolution (~38 m/pixel) Viking Orbiter 1 images showed a sparsely cratered surface with small knobs with relatively low slopes, consistent with observations of these features from the lander. Measured rock abundance is within 10% of that expected from Viking orbiter thermal observations and models. The fractional area covered by large, potentially hazardous rocks observed is similar to that estimated from model rock distributions based on data from the Viking landing sites, Earth analog sites, and total rock abundance. The bulk and fine-component thermal inertias measured from orbit are similar to those calculated from the observed rock size-frequency distribution. A simple radar echo model based on the reflectivity of the soil (estimated from its bulk density), and the measured fraction of area covered by rocks was used to approximate the quasi-specular and diffuse components of the Earth-based radar echos. Color and albedo orbiter data were used to predict the relatively dust free or unweathered surface around the Pathfinder lander compared to the Viking landing sites. Comparisons with the experiences of selecting the Viking landing sites demonstrate the enormous benefit the Viking data and its analyses and models had on the successful predictions of the Pathfinder site. The Pathfinder experience demonstrates that, in certain locations, geologic processes observed in orbiter data can be used to infer surface characteristics where those processes dominate over other processes affecting the Martian surface layer. Copyright 1999 by the American Geophysical Union.
DeFalco, L.A.; Esque, T.C.; Nicklas, M.B.; Kane, J.M.
2012-01-01
Revegetation of degraded arid lands often involves supplementing impoverished seed banks and improving the seedbed, yet these approaches frequently fail. To understand these failures, we tracked the fates of seeds for six shrub species that were broadcast across two contrasting surface disturbances common to the Mojave Desert-sites compacted by concentrated vehicle use and trenched sites where topsoil and subsurface soils were mixed. We evaluated seedbed treatments that enhance soil-seed contact (tackifier) and create surface roughness while reducing soil bulk density (harrowing). We also explored whether seed harvesting by granivores and seedling suppression by non-native annuals influence the success of broadcast seeding in revegetating degraded shrublands. Ten weeks after treatments, seeds readily moved off of experimental plots in untreated compacted sites, but seed movements were reduced 32% by tackifier and 55% through harrowing. Harrowing promoted seedling emergence in compacted sites, particularly for the early-colonizing species Encelia farinosa, but tackifier was largely ineffective. The inherent surface roughness of trenched sites retained three times the number of seeds than compacted sites, but soil mixing during trench development likely altered the suitability of the seedbed thus resulting in poor seedling emergence. Non-native annuals had little influence on seed fates during our study. In contrast, the prevalence of harvester ants increased seed removal on compacted sites, whereas rodent activity influenced removal on trenched sites. Future success of broadcast seeding in arid lands depends on evaluating disturbance characteristics prior to seeding and selecting appropriate species and seasons for application. ?? 2010 Society for Ecological Restoration International.
Fission dynamics with microscopic level densities
NASA Astrophysics Data System (ADS)
Randrup, Jørgen; Ward, Daniel; Carlsson, Gillis; Døssing, Thomas; Möller, Peter; Åberg, Sven
2018-03-01
Working within the Langevin framework of nuclear shape dynamics, we study the dependence of the evolution on the degree of excitation. As the excitation energy of the fissioning system is increased, the pairing correlations and the shell effects diminish and the effective potential-energy surface becomes ever more liquid-drop like. This feature can be included in the treatment in a formally well-founded manner by using the local level densities as a basis for the shape evolution. This is particularly easy to understand and implement in the Metropolis treatment where the evolution is simulated by means of a random walk on the five-dimensional lattice of shapes for which the potential energy has been tabulated. Because the individual steps between two neighboring lattice sites are decided on the basis of the ratio of the statistical weights, what is needed is the ratio of the local level densities for those shapes, evaluated at the associated local excitation energies. For this purpose, we adapt a recently developed combinatorial method for calculating level densities which employs the same single-particle levels as those that were used for the calculation of the pairing and shell contributions to the macroscopic-microscopic deformation-energy surface. For each nucleus under consideration, the level density (for a fixed total angular momentum) is calculated microscopically for each of the over five million shapes given in the three-quadratic-surface parametrization. This novel treatment, which introduces no new parameters, is illustrated for the fission fragment mass distributions for selected uranium and plutonium cases.
High-Density Nanosharp Microstructures Enable Efficient CO2 Electroreduction.
Saberi Safaei, Tina; Mepham, Adam; Zheng, Xueli; Pang, Yuanjie; Dinh, Cao-Thang; Liu, Min; Sinton, David; Kelley, Shana O; Sargent, Edward H
2016-11-09
Conversion of CO 2 to CO powered by renewable electricity not only reduces CO 2 pollution but also is a means to store renewable energy via chemical production of fuels from CO. However, the kinetics of this reaction are slow due its large energetic barrier. We have recently reported CO 2 reduction that is considerably enhanced via local electric field concentration at the tips of sharp gold nanostructures. The high local electric field enhances CO 2 concentration at the catalytic active sites, lowering the activation barrier. Here we engineer the nucleation and growth of next-generation Au nanostructures. The electroplating overpotential was manipulated to generate an appreciably increased density of honed nanoneedles. Using this approach, we report the first application of sequential electrodeposition to increase the density of sharp tips in CO 2 electroreduction. Selective regions of the primary nanoneedles are passivated using a thiol SAM (self-assembled monolayer), and then growth is concentrated atop the uncovered high-energy planes, providing new nucleation sites that ultimately lead to an increase in the density of the nanosharp structures. The two-step process leads to a new record in CO 2 to CO reduction, with a geometric current density of 38 mA/cm 2 at -0.4 V (vs reversible hydrogen electrode), and a 15-fold improvement over the best prior reports of electrochemical surface area (ECSA) normalized current density.
NASA Technical Reports Server (NTRS)
Mukhopadhyay, C. K.; Mazumder, B.; Lindley, P. F.; Fox, P. L.
1997-01-01
Free transition metal ions oxidize lipids and lipoproteins in vitro; however, recent evidence suggests that free metal ion-independent mechanisms are more likely in vivo. We have shown previously that human ceruloplasmin (Cp), a serum protein containing seven Cu atoms, induces low density lipoprotein oxidation in vitro and that the activity depends on the presence of a single, chelatable Cu atom. We here use biochemical and molecular approaches to determine the site responsible for Cp prooxidant activity. Experiments with the His-specific reagent diethylpyrocarbonate (DEPC) showed that one or more His residues was specifically required. Quantitative [14C]DEPC binding studies indicated the importance of a single His residue because only one was exposed upon removal of the prooxidant Cu. Plasmin digestion of [14C]DEPC-treated Cp (and N-terminal sequence analysis of the fragments) showed that the critical His was in a 17-kDa region containing four His residues in the second major sequence homology domain of Cp. A full length human Cp cDNA was modified by site-directed mutagenesis to give His-to-Ala substitutions at each of the four positions and was transfected into COS-7 cells, and low density lipoprotein oxidation was measured. The prooxidant site was localized to a region containing His426 because CpH426A almost completely lacked prooxidant activity whereas the other mutants expressed normal activity. These observations support the hypothesis that Cu bound at specific sites on protein surfaces can cause oxidative damage to macromolecules in their environment. Cp may serve as a model protein for understanding mechanisms of oxidant damage by copper-containing (or -binding) proteins such as Cu, Zn superoxide dismutase, and amyloid precursor protein.
Effects of Conformal Coat on Tin Whisker Growth
NASA Technical Reports Server (NTRS)
Kadesch, Jong S.; Leidecker, Henning; Day, John H. (Technical Monitor)
2000-01-01
A whisker from a tin plated part was blamed for the loss of a commercial spacecraft in 1998. Although pure tin finishes are prohibited by NASA, tin plated parts, such as hybrids, relays and commercial off the shelf (COTS) parts, are something discovered to have been installed in NASA spacecraft. Invariably, the assumption is that a conformal coat will prevent the growth of, or short circuits caused by, tin whiskers. This study measures the effect a Uralane coating has on the initiation and growth of tin whiskers, on the ability of this coating to prevent a tin whisker from emerging from the coating, and on the ability to prevent shorting. A sample of fourteen brass substrates (1 inch by 4 inches by 1/16 inch) were plated by two separate processes: half of the specimens were 'bright' tin plated directly over the brass substrate and half received a copper flash over the brass substrate prior to 'bright' tin plating. Each specimen was coated on one half of the substrate with three bi-directional sprays of Uralane 5750 to a nominal thickness of 25 to 75 micrometers (1 to 3 mils). Several specimens of both types, Cu and non-Cu flashed, were placed in an oven maintained at 50 C as others' work suggests that this is the optimal temperature for whisker formation. The remaining specimens were maintained at room ambient conditions. The surfaces of each specimen have been regularly inspected using both optical (15 to 400x power) and Scanning Electronic Microscopy (SEM). Many types of growths, including needle-like whiskers, first appeared approximately three months after plating on the non-conformally coated sides of all specimens. At four months, 4 to 5 times more growth sites were observed on the coated side; however, the density of growth sites on the non-conformally coated side has since increased rapidly, and now, at one year, is about the same for both sides. The density of growth sites is estimated at 90/sq mm with 30 percent of the sites growing whiskers (needle-like forms) with the potential to cause short circuit bridging. The average growth rate of the needle-like whiskers on the non-conformally coated areas is about 130 micrometers per year with some outliers reaching 800 micrometers after one year. It is more difficult to make growth measurements under the conformal coat. As yet no whiskers have been observed to penetrate through the coating surface, however, a number of tin nodules appear on the verge of breaking through the thinner regions of the coating surface. These domes are developing sharper and sharper tips, as if a growing whisker is about to push its way through a tough skin. Our observations are that the specimens with copper flash show a much lower density of nucleation sites and significantly slower whisker growth compared to the specimens that have only bright tin plating over brass. The specimens kept at room temperature have a higher whisker density than those stored at 50 C. This is an unexpected result and does not agree with the published findings of others. All of the whiskers originate from small surface defects (thin, tiny scratches) that appear over the entire surface of each specimen.
Waychunas, G.; Trainor, T.; Eng, P.; Catalano, J.; Brown, G.; Davis, J.; Rogers, J.; Bargar, J.
2005-01-01
X-ray diffraction [crystal-truncation-rod (CTR)] studies of the surface structure of moisture-equilibrated hematite reveal sites for complexation not present on the bulk oxygen-terminated surface, and impose constraints on the types of inner-sphere sorption topologies. We have used this improved model of the hematite surface to analyze grazing-incidence EXAFS results for arsenate sorption on the c(0001) and r(10-12) surfaces measured in two electric vector polarizations. This work shows that the reconfiguration of the surface under moist conditions is responsible for an increased adsorption density of arsenate complexes on the (0001) surface relative to predicted ideal termination, and an abundance of "edge-sharing" bidentate complexes on both studied surfaces. We consider possible limitations on combining the methods due to differing surface sensitivities, and discuss further analysis possibilities using both methods. ?? Springer-Verlag 2005.
Crystallographic perturbations to valence charge density and hydrogen-surface interactions
NASA Astrophysics Data System (ADS)
Ciston, James W.
The subject of surfaces has been the epicenter of numerous studies in recent years, particularly with respect to applications in catalysis, thin films, and self-assembly of nanostructures where the surface-to-volume ratio is large. Understanding how the atomic structure of materials differs at surfaces where the atoms are far less constrained can yield fundamental insight into these interesting nanoscale phenomena. Quantum surface crystallography takes this one step further in an attempt to experimentally measure the structure of the electrons themselves, which is of greater importance than atomic positions in determining material properties. We report a procedure for obtaining a much better initial parameterization of the charge density than what is possible from a neutral atom model. This procedure involves the parameterization of a bulk charge density model in terms of simple variables such as bond lengths, which can then be transferred to the problem of interest, for instance a surface. Parameterization is accomplished through the fitting of Density Functional Theory calculations of a variety of crystal distortions to a bond-centered pseudoatom (BCPA) model. This parameterized model can then be applied to surfaces or for other problems where an initial higher-order model is needed without the addition of any extra fitted parameters. Through the use of the BCPA model, we report a three-dimensional charge density refinement from x-ray diffraction intensities of the Si (001) 2x1H surface. By properly accounting for the covalent bonding effects in the silicon structure, we were able to stably refine the positions of hydrogen atoms at this surface in three dimensions, which had never before been accomplished for any surface. In addition, we found experimentally an increased, slightly localized bond density of approximately 0.31 electrons between each Si atom pair at the surface. Both the atomic positions and the charge density were found to be in remarkably good agreement with density functional theory (DFT) calculations. The BCPA model was also applied to an experimental refinement of the local charge density at the Si (111) 7x7 surface utilizing a combination of x-ray and high energy electron diffraction. By perturbing about the bond-centered pseudoatom model, we found experimentally that the adatoms were in an anti-bonding state with the atoms directly below. We were also able to experimentally refine a charge transfer of 0.26+/-0.04 e- from each adatom site to the underlying layers. This was the first statistically significant refinement of site-specific bonding information at any surface utilizing x-ray diffraction data. Precession electron diffraction (PED) is a technique which is gaining increasing interest due to its ease of use and reduction of the dynamical scattering problem in electron diffraction. To further investigate the usefulness of this technique, we performed a systematic study of the effect of precession angle on the mineral andalusite where the semiangle was varied from 6.5 to 32 mrad in five discrete steps. We have shown that the intensities of kinematically forbidden reflections decayed exponentially as the precession semiangle (ϕ) was increased. Additionally, we have determined that charge density effects were best observed at moderately low angles (6.5-13 mrad) even though PED patterns became more kinematical in nature as the precession angle was increased further. We have also shown that the amount of interpretable information provided by direct methods phase inversion of the diffraction data increases monotonically but non-systematically as ϕ increases. We report an experimental and theoretical analysis of the ✓3x✓3-R30° and 2x2 reconstructions on the MgO (111) surface combining transmission electron microscopy, x-ray photoelectron spectroscopy, and reasonably accurate density functional calculations using the meta-GGA functional TPSS. We have not only conclusively solved the atomic structures of these reconstructions, but have developed a kinetic model for an evolutionary pathway between structures driven entirely by exchange of water molecules between the surface and the environment that does not require the cations to move when the structure transforms. This is the first time an experimentally and theoretically supported kinetic model has described not only all of the structures in a series on a single oxide surface, but also describes why none of the structures pass through the thermodynamically most stable configuration. Lastly, we have investigated the observability of valence bonding effects in aberration-corrected high resolution electron microscopy (HREM) images along the [010] projection of the mineral Forsterite (Mg2SiO 4). Direct observability of bonding effects would be both faster and less ambiguous than the refinement of similar features against diffraction data. Through analysis of simulated high resolution electron microscopy images, we have determined that bonding effects should be observable at levels approaching 20% of the total contrast. Initial experimental results for this material system have also been presented.
NASA Technical Reports Server (NTRS)
Kaplan, David I. (Compiler)
1988-01-01
A compilation of scientific knowledge about the planet Mars is provided. Information is divided into three categories: atmospheric data, surface data, and astrodynamic data. The discussion of atmospheric data includes the presentation of nine different models of the Mars atmosphere. Also discussed are Martian atmospheric constituents, winds, clouds, and solar irradiance. The great dust storms of Mars are presented. The section on Mars surface data provides an in-depth examination of the physical and chemical properties observed at the two Viking landing sites. Bulk densities, dielectric constants, and thermal inertias across the planet are then described and related back to those specific features found at the Viking landing sites. The astrodynamic materials provide the astronomical constants, time scales, and reference coordinate frames necessary to perform flightpath analysis, navigation design, and science observation design.
Qian, M.; Haser, R.; Payan, F.
1995-01-01
The X-ray structure analysis of a crystal of pig pancreatic alpha-amylase (PPA, EC 3.2.1.1.) that was soaked with the substrate maltopentaose showed electron density corresponding to two independent carbohydrate recognition sites on the surface of the molecule. Both binding sites are distinct from the active site described in detail in our previous high-resolution study of a complex between PPA and a carbohydrate inhibitor (Qian M, Buisson G, Duée E, Haser H, Payan F, 1994, Biochemistry 33:6284-6294). One of the binding sites previously identified in a 5-A-resolution electron density map, lies at a distance of 20 A from the active site cleft and can accommodate two glucose units. The second affinity site for sugar units is located close to the calcium binding site. The crystal structure of the maltopentaose complex was refined at 2.1 A resolution, to an R-factor of 17.5%, with an RMS deviation in bond distances of 0.007 A. The model includes all 496 residues of the enzyme, 1 calcium ion, 1 chloride ion, 425 water molecules, and 3 bound sugar rings. The binding sites are characterized and described in detail. The present complex structure provides the evidence of an increased stability of the structure upon interaction with the substrate and allows identification of an N-terminal pyrrolidonecarboxylic acid in PPA. PMID:7613472
What We Learned From the Venus Surface in-situ Exploration And What Looks Promising to do Next
NASA Astrophysics Data System (ADS)
Basilevsky, A. T.; Head, J. W.
2005-12-01
The in-situ study of Venus surface started on Dec 15, 1970 with the landing of the Soviet Venera 7 probe, which sent back to Earth data on the surface temperature and atmosphere pressure. Then, since 1972 till 1985 there were successful landings of the Soviet Venera 9 to 14 and Vega 1-2 probes. The Day probe, part of the US Pioneer Venus Multiprobe (1978), also sent the data from the Venus surface. Gained by these missions we have the results of gamma-spectrometry measurements of K, U, and Th contents in the surface material in five sites and the X-ray fluorescence measurements of major elements contents in three sites as well as TV panoramas of four landing sites. In addition, in some of these sites there have been measured the surface material density, bearing capacity and electro conductivity as well as albedo and color. The results of the geochemical measurements, all characterizing Venusian plains, are consistent with basaltic composition of the surface material in all seven sampled sites. Recent comparisons of the Venusian compositions with those of the extended database of terrestrial magmatic rocks from different geodynamic environments within the oceanic crust showed that except one (Venera 14) all other measurements suggest enrichment in LIL elements and differ from N-MORB compositions. The surface in the imaged landing sites was found to consist of very dark finely layered and mechanically weak rock and even darker soil. Recent joint analysis of the Veneras' and Magellan data showed that the layered rock most likely is thermally sintered airborn sediment of fine debris derived from ejecta of impact craters. This sediment, although of small thickness, seems to be widespread on the Venus surface that should be taken into account in planning new missions. The future landings have to provide more compositional knowledge on Venus surface by significantly improving the analyses accuracies and detection limits and extending sampled geologic formations beyond the already sampled plains. Determination of mineralogic composition of the surface material as well as the redox-controlling components of the atmosphere are of a key value. Seismic and other geophysical sounding of Venus interior should be also planned. Sample return mission(s) as distant but necessary step in Venus studies should be considered too.
Wong, M; Wuethrich, P; Eggli, P; Hunziker, E
1996-05-01
A new methodology was developed to measure spatial variations in chondrocyte/matrix structural parameters and chondrocyte biosynthetic activity in articular cartilage. This technique is based on the use of a laser scanning confocal microscope that can "optically" section chemically fixed, unembedded tissue. The confocal images are used for morphometric measurement of stereologic parameters such as cell density (cells/mm3), cell volume fraction (%), surface density (l/cm), mean cell volume (micron3), and mean cell surface area (micron2). Adjacent pieces of tissue are simultaneously processed for conventional liquid emulsion autoradiography, and a semiautomated grain counting program is used to measure the silver grain density at regions corresponding to the same sites used for structural measurements. An estimate of chondrocyte biosynthetic activity in terms of grains per cell is obtained by dividing the value for grain density by that for cell density. In this paper, the newly developed methodology was applied to characterize the zone-specific behavior of adult articular cartilage in the free-swelling state. Cylinders of young adult bovine articular cartilage were labelled with either [3H]proline or [35S]sulfate, and chondrocyte biosynthesis and structural parameters were measured from the articular surface to the tidemark. The results showed that chondrocytes of the radial zone occupied twice the volume and surface area of the chondrocytes of the superficial zone but were 10 times more synthetically active. This efficient and unbiased technique may prove useful in studying the correlation between mechanically induced changes in cell form and biosynthetic activity within inhomogeneous tissue as well as metabolic changes in cartilage due to ageing and disease.
Photoinitiator Nucleotide for Quantifying Nucleic Acid Hybridization
Johnson, Leah M.; Hansen, Ryan R.; Urban, Milan; Kuchta, Robert D.; Bowman, Christopher N.
2010-01-01
This first report of a photoinitiator-nucleotide conjugate demonstrates a novel approach for sensitive, rapid and visual detection of DNA hybridization events. This approach holds potential for various DNA labeling schemes and for applications benefiting from selective DNA-based polymerization initiators. Here, we demonstrate covalent, enzymatic incorporation of an eosin-photoinitiator 2′-deoxyuridine-5′-triphosphate (EITC-dUTP) conjugate into surface-immobilized DNA hybrids. Subsequent radical chain photoinitiation from these sites using an acrylamide/bis-acrylamide formulation yields a dynamic detection range between 500pM and 50nM of DNA target. Increasing EITC-nucleotide surface densities leads to an increase in surface-based polymer film heights until achieving a film height plateau of 280nm ±20nm at 610 ±70 EITC-nucleotides/μm2. Film heights of 10–20 nm were obtained from eosin surface densities of approximately 20 EITC-nucleotides/μm2 while below the detection limit of ~10 EITC-nucleotides/μm2, no detectable films were formed. This unique threshold behavior is utilized for instrument-free, visual quantification of target DNA concentration ranges. PMID:20337438
Boiling and quenching heat transfer advancement by nanoscale surface modification.
Hu, Hong; Xu, Cheng; Zhao, Yang; Ziegler, Kirk J; Chung, J N
2017-07-21
All power production, refrigeration, and advanced electronic systems depend on efficient heat transfer mechanisms for achieving high power density and best system efficiency. Breakthrough advancement in boiling and quenching phase-change heat transfer processes by nanoscale surface texturing can lead to higher energy transfer efficiencies, substantial energy savings, and global reduction in greenhouse gas emissions. This paper reports breakthrough advancements on both fronts of boiling and quenching. The critical heat flux (CHF) in boiling and the Leidenfrost point temperature (LPT) in quenching are the bottlenecks to the heat transfer advancements. As compared to a conventional aluminum surface, the current research reports a substantial enhancement of the CHF by 112% and an increase of the LPT by 40 K using an aluminum surface with anodized aluminum oxide (AAO) nanoporous texture finish. These heat transfer enhancements imply that the power density would increase by more than 100% and the quenching efficiency would be raised by 33%. A theory that links the nucleation potential of the surface to heat transfer rates has been developed and it successfully explains the current finding by revealing that the heat transfer modification and enhancement are mainly attributed to the superhydrophilic surface property and excessive nanoscale nucleation sites created by the nanoporous surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Mingxia; Cheng, Lei; Choi, Jae-Soon
Density functional theory (DFT) calculations were used to investigate the effect of Ni dopants on the removal of chemisorbed oxygen (O*) from the Mo-terminated (T-Mo) and C-terminated (Tc) Mo2C(001) surfaces. The removal of adsorbed oxygen from the catalytic site is essential to maintain the long-term activity and selectivity of the carbide catalysts in the deoxygenation process related to bio-oil stabilization and upgrading. In this contribution, the computed reaction energetics and reaction barriers of O* removal were compared among undoped and Ni-doped Mo2C(001) surfaces. The DFT calculations indicate that selected Ni-doped surfaces such as Ni adsorbed on T-Mo and Tc Mo2C(001)more » surfaces enable weaker binding of important reactive intermediates (O*, OH*) compared to the undoped counterparts, which is beneficial for the O* removal from the catalyst surface. This study thus confirms the promoting effect of the Ni dopant on O* removal reaction on the T-Mo Mo2C(001) and Tc Mo2C(001) surfaces. This computational prediction has been confirmed by the temperature-programmed reduction profiles of Mo2C and Ni-doped Mo2C catalysts, which had been passivated and stored in an oxygen environment.« less
NASA Astrophysics Data System (ADS)
Xia, Hong-qi; So, Keisei; Kitazumi, Yuki; Shirai, Osamu; Nishikawa, Koji; Higuchi, Yoshiki; Kano, Kenji
2016-12-01
A membraneless direct electron transfer (DET)-type dihydrogen (H2)/air-breathing biofuel cell without any mediator was constructed wherein bilirubin oxidase from Myrothecium verrucaria (BOD) and membrane-bound [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F (MBH) were used as biocatalysts for the cathode and the anode, respectively, and Ketjen black-modified water proof carbon paper (KB/WPCC) was used as an electrode material. The KB/WPCC surface was modified with 2-aminobenzoic acid and p-phenylenediamine, respectively, to face the positively charged electron-accepting site of BOD and the negatively charged electron-donating site of MBH to the electrode surface. A gas-diffusion system was employed for the electrodes to realize high-speed substrate supply. As result, great improvement in the current density of O2 reduction with BOD and H2 reduction with MBH were realized at negatively and postively charged surfaces, respectively. Gas diffusion system also suppressed the oxidative inactivation of MBH at high electrode potentials. Finally, based on the improved bioanode and biocathode, a dual gas-diffusion membrane- and mediatorless H2/air-breathing biofuel cell was constructed. The maximum power density reached 6.1 mW cm-2 (at 0.72 V), and the open circuit voltage was 1.12 V using 1 atm of H2 gas as a fuel at room temperature and under passive and quiescent conditions.
Schwilk, D.W.; Keeley, J.E.; Knapp, E.E.; Mciver, J.; Bailey, J. D.; Fettig, C.J.; Fiedler, C.E.; Harrod, R.J.; Moghaddas, J.J.; Outcalt, K.W.; Skinner, C.N.; Stephens, S.L.; Waldrop, T.A.; Yaussy, D.A.; Youngblood, A.
2009-01-01
Changes in vegetation and fuels were evaluated from measurements taken before and after fuel reduction treatments (prescribed fire, mechanical treatments, and the combination of the two) at 12 Fire and Fire Surrogate (FFS) sites located in forests with a surface fire regime across the conterminous United States. To test the relative effectiveness of fuel reduction treatments and their effect on ecological parameters we used an informationtheoretic approach on a suite of 12 variables representing the overstory (basal area and live tree, sapling, and snag density), the understory (seedling density, shrub cover, and native and alien herbaceous species richness), and the most relevant fuel parameters for wildfire damage (height to live crown, total fuel bed mass, forest floor mass, and woody fuel mass). In the short term (one year after treatment), mechanical treatments were more effective at reducing overstory tree density and basal area and at increasing quadratic mean tree diameter. Prescribed fire treatments were more effective at creating snags, killing seedlings, elevating height to live crown, and reducing surface woody fuels. Overall, the response to fuel reduction treatments of the ecological variables presented in this paper was generally maximized by the combined mechanical plus burning treatment. If the management goal is to quickly produce stands with fewer and larger diameter trees, less surface fuel mass, and greater herbaceous species richness, the combined treatment gave the most desirable results. However, because mechanical plus burning treatments also favored alien species invasion at some sites, monitoring and control need to be part of the prescription when using this treatment. ?? 2009 by the Ecological Society of America.
Chaudhuri, Santanu; Graetz, Jason; Ignatov, Alex; Reilly, James J; Muckerman, James T
2006-09-06
We report the results of an experimental and theoretical study of hydrogen storage in sodium alanate (NaAlH(4)). Reversible hydrogen storage in this material is dependent on the presence of 2-4% Ti dopant. Our combined study shows that the role of Ti may be linked entirely to Ti-containing active catalytic sites in the metallic Al phase present in the dehydrogenated NaAlH(4). The EXAFS data presented here show that dehydrogenated samples contain a highly disordered distribution of Ti-Al distances with no long-range order beyond the second coordination sphere. We have used density functional theory techniques to calculate the chemical potential of possible Ti arrangements on an Al(001) surface for Ti coverages ranging from 0.125 to 0.5 monolayer (ML) and have identified those that can chemisorb molecular hydrogen via spontaneous or only moderately activated pathways. The chemisorption process exhibits a characteristic nodal symmetry property for the low-barrier sites: the incipient doped surface-H(2) adduct's highest occupied molecular orbital (HOMO) incorporates the sigma antibonding molecular orbital of hydrogen, allowing the transfer of charge density from the surface to dissociate the molecular hydrogen. This work also proposes a plausible mechanism for the transport of an aluminum hydride species back into the NaH lattice that is supported by Car-Parrinello molecular dynamics (CPMD) simulations of the stability and mobility of aluminum clusters (alanes) on Al(001). As an experimental validation of the proposed role of titanium and the subsequent diffusion of alanes, we demonstrate experimentally that AlH(3) reacts with NaH to form NaAlH(4) without any requirement of a catalyst or hydrogen overpressure.
Heard, Christopher J.; Heiles, Sven; Vajda, Stefan; ...
2014-08-07
We employed the novel surface mode of the Birmingham Cluster Genetic Algorithm (S-BCGA) for the global optimisation of noble metal tetramers upon an MgO(100) substrate at the GGA-DFT level of theory. The effect of element identity and alloying in surface-bound neutral subnanometre clusters is determined by energetic comparison between all compositions of Pd nAg (4-n) and Pd nPt (4-n). And while the binding strengths to the surface increase in the order Pt > Pd > Ag, the excess energy profiles suggest a preference for mixed clusters for both cases. The binding of CO is also modelled, showing that the adsorptionmore » site can be predicted solely by electrophilicity. Comparison to CO binding on a single metal atom shows a reversal of the 5s-d activation process for clusters, weakening the cluster surface interaction on CO adsorption. Charge localisation determines homotop, CO binding and surface site preferences. Furthermore, the electronic behaviour, which is intermediate between molecular and metallic particles allows for tunable features in the subnanometre size range.« less
Zhaodong Li; Chunhua Yao; Yi-Cheng Wang; Solomon Mikael; Sundaram Gunasekaran; Zhenqiang Ma; Zhiyong Cai; Xudong Wang
2016-01-01
Aldehyde-functionalized cellulose nanofibers (CNFs) were applied to synthesize Pt nanoparticles (NPs) on CNF surfaces via on-site Pt ion reduction and achieve high concentration and uniform Pt NP loading. ALD could then selectively deposit TiO2 on CNFs and keep the Pt NPs uncovered due to their drastically different hydro-affinity properties. The...
Generalization of Equivalent Crystal Theory to Include Angular Dependence
NASA Technical Reports Server (NTRS)
Ferrante, John; Zypman, Fredy R.
2004-01-01
In the original Equivalent Crystal Theory, each atomic site in the real crystal is assigned an equivalent lattice constant, in general different from the ground state one. This parameter corresponds to a local compression or expansion of the lattice. The basic method considers these volumetric transformations and, in addition, introduces the possibility that the reference lattice is anisotropically distorted. These distortions however, were introduced ad-hoc. In this work, we generalize the original Equivalent Crystal Theory by systematically introducing site-dependent directional distortions of the lattice, whose corresponding distortions account for the dependence of the energy on anisotropic local density variations. This is done in the spirit of the original framework, but including a gradient term in the density. This approach is introduced to correct a deficiency in the original Equivalent Crystal Theory and other semiempirical methods in quantitatively obtaining the correct ratios of the surface energies of low index planes of cubic metals (100), (110), and (111). We develop here the basic framework, and apply it to the calculation of Fe (110) and Fe (111) surface energy formation. The results, compared with first principles calculations, show an improvement over previous semiempirical approaches.
NASA Astrophysics Data System (ADS)
Morita, Kazuki; Yasuoka, Kenji
2018-03-01
Anatase TiO2 nanocrystals have received considerable attention owing to their promising applications in photocatalysis, photovoltaics, and fuel cells. Although experimental evidence has shown that the performance of nanocrystals can be significantly improved through reduction, the mechanistic basis of this enhancement remains unclear. To shed a light on the chemistry of reduced anatase TiO2 nanocrystals, density functional theory were used to investigate the properties of defects and excess electrons. We demonstrated that oxygen vacancies are stable both on the surface and at the sub-surface of the nanocrystal, while titanium interstitials prefer sub-surface sites. Different defect locations possessed different excess electron structures, which contributed to deep and shallow states in the band gap of the nanocrystals. Furthermore, valence band tailing was observed, resulting in band gap narrowing. The theoretical results presented here deepen our understanding, and show the potential of defects to considerably change the macroscopic properties of anatase TiO2 nanocrystals.
Adsorption of the astatine species on a gold surface: A relativistic density functional theory study
NASA Astrophysics Data System (ADS)
Demidov, Yuriy; Zaitsevskii, Andréi
2018-01-01
We report first-principle based studies of the adsorption interaction of astatine species on a gold surface. These studies are aimed primarily at the support and interpretation of gas chromatographic experiments with superheavy elements, tennessine (Ts, Z = 117), a heavier homologue of At, and possibly its pseudo-homologue nihonium (Nh, Z = 113). We use gold clusters with up to 69 atoms to simulate the adsorption sites and estimate the desorption energies of At & AtOH from a stable gold (1 1 1) surface. To describe the electronic structure of At -Aun and AtOH -Aun complexes, we combine accurate shape-consistent relativistic pseudopotentials and non-collinear two-component relativistic density functional theory. The predicted desorption energies of At and AtOH on gold are 130 ± 10 kJ/mol and 90 ± 10 kJ/mol, respectively. These results confirm the validity of the estimates derived from chromatographic data (147 ± 15 kJ/mol for At, and 100-10+20 kJ/mol for AtOH).
Excess electrons in ice: a density functional theory study.
Bhattacharya, Somesh Kr; Inam, Fakharul; Scandolo, Sandro
2014-02-21
We present a density functional theory study of the localization of excess electrons in the bulk and on the surface of crystalline and amorphous water ice. We analyze the initial stages of electron solvation in crystalline and amorphous ice. In the case of crystalline ice we find that excess electrons favor surface states over bulk states, even when the latter are localized at defect sites. In contrast, in amorphous ice excess electrons find it equally favorable to localize in bulk and in surface states which we attribute to the preexisting precursor states in the disordered structure. In all cases excess electrons are found to occupy the vacuum regions of the molecular network. The electron localization in the bulk of amorphous ice is assisted by its distorted hydrogen bonding network as opposed to the crystalline phase. Although qualitative, our results provide a simple interpretation of the large differences observed in the dynamics and localization of excess electrons in crystalline and amorphous ice films on metals.
The Role of Low-coordinate Oxygen on Co3O4(110) in Catalytic Oxidation of CO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Deen; Dai, Sheng
2011-01-01
A complete catalytic cycle for carbon monoxide (CO) oxidation to carbon dioxide (CO{sub 2}) by molecular oxygen on the Co{sub 3}O{sub 4}(110) surface was obtained by density functional theory plus the on-site Coulomb repulsion (DFT + U). Previously observed high activity of Co{sub 3}O{sub 4} to catalytically oxidize CO at very low temperatures is explained by a unique twofold-coordinate oxygen site on Co{sub 3}O{sub 4}(110). The CO molecule extracts this oxygen with a computed barrier of 27 kJ/mol. The extraction leads to CO{sub 2} formation and an oxygen vacancy on Co{sub 3}O{sub 4}(110). Then, the O{sub 2} molecule dissociates withoutmore » a barrier between two neighboring oxygen vacancies (which are shown to have high surface mobility), thereby replenishing the twofold-coordinate oxygen sites on the surface and enabling the catalytic cycle. In contrast, extracting the threefold-coordinate oxygen site on Co{sub 3}O{sub 4}(110) has a higher barrier. Our work furnishes a molecular-level mechanism of Co{sub 3}O{sub 4}'s catalytic power, which may help understand previous experimental results and oxidation catalysis by transition metal oxides.« less
Zamani, Mehdi; Moradi Delfani, Ali; Jabbari, Morteza
2018-05-03
The radical scavenging performance and antioxidant activity of γ-alumina nanoparticles towards 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical were investigated by spectroscopic and computational methods. The radical scavenging ability of γ-alumina nanoparticles in the media with different polarity (i.e. i-propanol and n-hexane) was evaluated by measuring the DPPH absorbance in UV-Vis absorption spectra. The structure and morphology of γ-alumina nanoparticles before and after adsorption of DPPH were studied using XRD, FT-IR and UV-Vis spectroscopic techniques. The adsorption of DPPH free radical on the clean and hydrated γ-alumina (1 1 0) surface was examined by dispersion corrected density functional theory (DFT-D) and natural bond orbital (NBO) calculations. Also, time-dependent density functional theory (TD-DFT) was used to predict the absorption spectra. The adsorption was occurred through the interaction of radical nitrogen N and NO 2 groups of DPPH with the acidic and basic sites of γ-alumina surface. The high potential for the adsorption of DPPH radical on γ-alumina nanoparticles was investigated. Interaction of DPPH with Brønsted and Lewis acidic sites of γ-alumina was more favored than Brønsted basic sites. The following order for the adsorption of DPPH over the different active sites of γ-alumina was predicted: Brønsted base < Lewis acid < Brønsted acid. These results are of great significance for the environmental application of γ-alumina nanoparticles in order to remove free radicals. Copyright © 2018. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dutta, Shibsankar; De, Sukanta, E-mail: sukanta.physics@presiuniv.ac.in
It have been already seen that 2-dimensional nano materials are the suitable choice for the supercapacitor application due to their large specific surface area, electrochemical active sites, micromechanical flexibility, expedite ion migration channel properties. Free standing hybrid films of functionalized MWCNT (– COOH group) and α-Vanadyl phosphates (VOPO{sub 4}2H{sub 2}O) are prepared by vacuum filtering. The surface morphology and microstructure of the samples are studied by transmission electron microscope, field emission scanning electron microscope, XRD, Electrochemical properties of hybrid films have been investigated systematically in 1M Na{sub 2}SO{sub 4} aqueous electrolyte. The hybrid material exhibits a high specific capacitance 236more » F/g with high energy density of 65.6 Wh/Kg and a power density of 1476 W/Kg.« less
NASA Astrophysics Data System (ADS)
Wang, Lei; Li, Liuan; Zhang, Tong; Liu, Xinke; Ao, Jin-Ping
2018-01-01
In this study, we evaluated the pH sensitivity enhancement of AlGaN/GaN ion-sensitive field-effect transistor (ISFET) coated by Al2O3 film on the sensing area utilizing atomic layer deposition (ALD). The presence of the Al2O3 film leads to an obvious reduction of surface state density as well as leakage current in the solution, which is beneficial for improving the stability of the ISFET. Furthermore, the sensitivity of the ISFET was improved to 57.8 mV/pH, which is very close to the Nernstian limit at room temperature. The pH sensitivity enhancement can be explained by the higher density of sensing site as well as better surface hydrophilicity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maiti, Debtanu; Daza, Yolanda A.; Yung, Matthew M.
Density functional theory (DFT) based investigation of two parameters of prime interest -- oxygen vacancy and surface terminations along (100) and (110) planes -- has been conducted for La (1-x)Sr xFe(1-y)Co yO (3-more » $$\\delta$$) perovskite oxides in view of their application towards thermochemical carbon dioxide conversion reactions. The bulk oxygen vacancy formation energies for these mixed perovskite oxides are found to increase with increasing lanthanum and iron contents in the 'A' site and 'B' site, respectively. Surface terminations along (100) and (110) crystal planes are studied to probe their stability and their capabilities to accommodate surface oxygen vacancies. Amongst the various terminations, the oxygen-rich (110) surface and strontium-rich (100) surface are the most stable, while transition metal-rich terminations along (100) revealed preference towards the production of oxygen vacancies. The carbon dioxide adsorption strength, a key descriptor for CO 2 conversion reactions, is found to increase on oxygen vacant surfaces thus establishing the importance of oxygen vacancies in CO 2 conversion reactions. Amongst all the surface terminations, the lanthanum-oxygen terminated surface exhibited the strongest CO 2 adsorption strength. Finally, the theoretical prediction of the oxygen vacancy trends and the stability of the samples were corroborated by the temperature-programmed reduction and oxidation reactions and in situ XRD crystallography.« less
Hydrologic data for Leviathan Mine and vicinity, Alpine County, California, 1981-83
Hammermeister, D.P.; Walmsley, S.J.
1985-01-01
The U.S. Geological Survey collected basic hydrologic and water-quality data during 1981-83 to facilitate the geohydrologic evaluation of the Leviathan Mine area and the design of a pollution-abatement project. Surface-water field data included one or more measurements of pH, water temperature, and specific conductance at 45 sites in and adjacent to the mine area. At nine of these sites, daily data on discharge, specific conductance, and water temperature were collected during parts of 1981-82 by using electronic monitor-recorder systems. Ground-water field data included one or more of the water-quality measurements listed above at 71 piezometers in the mine area. Borehole geophysical data included neutron-moisture, neutron-porosity, gamma-gamma density, natural gamma, and temperature logs at three sites. Mineralogic and hydrologic data were obtained for cores taken from nine test holes. One or more surface-water samples from 26 sites were analyzed for major cations, major anions, and a wide range of minor inorganic constituents. Single ground-water samples from 36 piezometers were analyzed for the same array of major and minor constituents. (USGS)
Eddy Correlation Flux Measurement System Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, D. R.
2016-01-01
The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration. The instruments used are: • a fast-response, three-dimensional (3D) wind sensor (sonic anemometer) to obtain the orthogonal wind componentsmore » and the speed of sound (SOS) (used to derive the air temperature) • an open-path infrared gas analyzer (IRGA) to obtain the water vapor density and the CO2 concentration, and • an open-path infrared gas analyzer (IRGA) to obtain methane density and methane flux at one SGP EF and at the NSA CF. The ECOR systems are deployed at the locations where other methods for surface flux measurements (e.g., energy balance Bowen ratio [EBBR] systems) are difficult to employ, primarily at the north edge of a field of crops. A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system in SGP, NSA, Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes. The SEBS at one SGP and one NSA site also support upwelling and downwelling PAR measurements to qualify those two locations as Ameriflux sites.« less
Impact of air pollution on floral morphology of Cassia siamea Lamk.
Chauhan, S V S; Chaurasia, Bharati; Rana, Anita
2004-07-01
Cassia siamea plants growing at two different sites (polluted and non-polluted) on two important roads of Agra city exhibited significant differences in their flowering phenology and floral morphology. The flowering in plants growing at polluted site is delayed and there was a marked reduction in flowering density, flowering period, size of floral parts, pollen fertility, fruit and seed-set. SEM observations revealed the presence of well developed glandular structures and reduction in the number and size of large stomata on the anther surface at polluted site. These changes were found to be closely associated with the extent of air pollution caused mainly by significant in the number of automobiles.
NASA Astrophysics Data System (ADS)
Graeter, K.; Osterberg, E. C.; Hawley, R. L.; Thundercloud, Z. R.; Marshall, H. P.; Ferris, D. G.; Lewis, G.
2016-12-01
Predictions of the Greenland Ice Sheet's (GIS) contribution to sea-level rise in a warming climate depend on our ability to model the surface mass balance (SMB) processes occurring across the ice sheet. These processes are poorly constrained in the percolation zone, the region of the ice sheet where surface melt refreezes in the firn, thus preventing that melt from directly contributing to GIS mass loss. In this way, the percolation zone serves as a buffer to higher temperatures increasing mass loss. However, it is unknown how the percolation zone is evolving in a changing climate and to what extent the region will continue to serve as a buffer to future runoff. We collected seven shallow ( 22-30 m) firn cores from the Western Greenland percolation zone in May-June 2016 as part of the Greenland Traverse for Accumulation and Climate Studies (GreenTrACS) project. Here we present data on melt layer stratigraphy, density, and annual accumulation for each core to determine: (1) the temporal and spatial accumulation and melt refreeze patterns in the percolation zone of W. Greenland over the past 40 - 55 years, and (2) the impacts of changing melt and refreeze patterns on the near-surface density profile of the percolation zone. Three of the GreenTrACS firn cores re-occupy firn core sites collected in the 1970's-1990's, allowing us to more accurately quantify the evolution of the percolation zone surface melt and firn density during the most recent decades of summertime warming. This work is the basis for broader investigations into how changes in W. Greenland summertime climate are impacting the SMB of the Greenland Ice Sheet.
Surface Structure of TiO2 Rutile (011) Exposed to Liquid Water
2017-01-01
The rutile TiO2(011) surface exhibits a (2 × 1) reconstruction when prepared by standard techniques in ultrahigh vacuum (UHV). Here we report that a restructuring occurs upon exposing the surface to liquid water at room temperature. The experiment was performed in a dedicated UHV system, equipped for direct and clean transfer of samples between UHV and liquid environment. After exposure to liquid water, an overlayer with a (2 × 1) symmetry was observed containing two dissociated water molecules per unit cell. The two OH groups yield an apparent “c(2 × 1)” symmetry in scanning tunneling microscopy (STM) images. On the basis of STM analysis and density functional theory (DFT) calculations, this overlayer is attributed to dissociated water on top of the unreconstructed (1 × 1) surface. Investigation of possible adsorption structures and analysis of the domain boundaries in this structure provide strong evidence that the original (2 × 1) reconstruction is lifted. Unlike the (2 × 1) reconstruction, the (1 × 1) surface has an appropriate density and symmetry of adsorption sites. The possibility of contaminant-induced restructuring was excluded based on X-ray photoelectron spectroscopy (XPS) and low-energy He+ ion scattering (LEIS) measurements. PMID:29285204
SkinChip, a new tool for investigating the skin surface in vivo.
Lévêque, Jean Luc; Querleux, Bernard
2003-11-01
Non-invasive methods used for characterizing skin micro-relief and skin surface hydration were developed in the 1980s. Although they allowed some progress in the knowledge of skin properties, they are not completely satisfactory in many aspects. Today, new technologies are emerging that may address such issues. We adapted the technology produced by the ST Microelectronics Company for sensing fingerprint for the measurement of skin surface properties. Accordingly, we developed acquisition software for obtaining routinely the distribution of skin surface capacitance along different body sites. Image analysis softwares were also processed for collecting both the main orientations of the micro-relief lines and their density. The average value of skin capacitance is also obtained. The images allow a highly precise observation of the skin topography that can be easily quantified in terms of line density and line orientation. The mean gray levels of the images appear much closely correlated to the Corneometer values. This new device appears to be a very convenient way for characterizing the properties of the skin surface. With regard to hydration, it usefully provides both the average value and the hydration chart of the investigated skin zones.
Impact of bottom trawling on deep-sea sediment properties along the flanks of a submarine canyon.
Martín, Jacobo; Puig, Pere; Masqué, Pere; Palanques, Albert; Sánchez-Gómez, Anabel
2014-01-01
The offshore displacement of commercial bottom trawling has raised concerns about the impact of this destructive fishing practice on the deep seafloor, which is in general characterized by lower resilience than shallow water regions. This study focuses on the flanks of La Fonera (or Palamós) submarine canyon in the Northwestern Mediterranean, where an intensive bottom trawl fishery has been active during several decades in the 400-800 m depth range. To explore the degree of alteration of surface sediments (0-50 cm depth) caused by this industrial activity, fishing grounds and control (untrawled) sites were sampled along the canyon flanks with an interface multicorer. Sediment cores were analyzed to obtain vertical profiles of sediment grain-size, dry bulk density, organic carbon content and concentration of the radionuclide 210Pb. At control sites, surface sediments presented sedimentological characteristics typical of slope depositional systems, including a topmost unit of unconsolidated and bioturbated material overlying sediments progressively compacted with depth, with consistently high 210Pb inventories and exponential decaying profiles of 210Pb concentrations. Sediment accumulation rates at these untrawled sites ranged from 0.3 to 1.0 cm y-1. Sediment properties at most trawled sites departed from control sites and the sampled cores were characterized by denser sediments with lower 210Pb surface concentrations and inventories that indicate widespread erosion of recent sediments caused by trawling gears. Other alterations of the physical sediment properties, including thorough mixing or grain-size sorting, as well as organic carbon impoverishment, were also visible at trawled sites. This work contributes to the growing realization of the capacity of bottom trawling to alter the physical properties of surface sediments and affect the seafloor integrity over large spatial scales of the deep-sea.
Impact of Bottom Trawling on Deep-Sea Sediment Properties along the Flanks of a Submarine Canyon
Martín, Jacobo; Puig, Pere; Masqué, Pere; Palanques, Albert; Sánchez-Gómez, Anabel
2014-01-01
The offshore displacement of commercial bottom trawling has raised concerns about the impact of this destructive fishing practice on the deep seafloor, which is in general characterized by lower resilience than shallow water regions. This study focuses on the flanks of La Fonera (or Palamós) submarine canyon in the Northwestern Mediterranean, where an intensive bottom trawl fishery has been active during several decades in the 400–800 m depth range. To explore the degree of alteration of surface sediments (0–50 cm depth) caused by this industrial activity, fishing grounds and control (untrawled) sites were sampled along the canyon flanks with an interface multicorer. Sediment cores were analyzed to obtain vertical profiles of sediment grain-size, dry bulk density, organic carbon content and concentration of the radionuclide 210Pb. At control sites, surface sediments presented sedimentological characteristics typical of slope depositional systems, including a topmost unit of unconsolidated and bioturbated material overlying sediments progressively compacted with depth, with consistently high 210Pb inventories and exponential decaying profiles of 210Pb concentrations. Sediment accumulation rates at these untrawled sites ranged from 0.3 to 1.0 cm y−1. Sediment properties at most trawled sites departed from control sites and the sampled cores were characterized by denser sediments with lower 210Pb surface concentrations and inventories that indicate widespread erosion of recent sediments caused by trawling gears. Other alterations of the physical sediment properties, including thorough mixing or grain-size sorting, as well as organic carbon impoverishment, were also visible at trawled sites. This work contributes to the growing realization of the capacity of bottom trawling to alter the physical properties of surface sediments and affect the seafloor integrity over large spatial scales of the deep-sea. PMID:25111298
Highly Enhanced Gas Adsorption Properties in Vertically Aligned MoS2 Layers.
Cho, Soo-Yeon; Kim, Seon Joon; Lee, Youhan; Kim, Jong-Seon; Jung, Woo-Bin; Yoo, Hae-Wook; Kim, Jihan; Jung, Hee-Tae
2015-09-22
In this work, we demonstrate that gas adsorption is significantly higher in edge sites of vertically aligned MoS2 compared to that of the conventional basal plane exposed MoS2 films. To compare the effect of the alignment of MoS2 on the gas adsorption properties, we synthesized three distinct MoS2 films with different alignment directions ((1) horizontally aligned MoS2 (basal plane exposed), (2) mixture of horizontally aligned MoS2 and vertically aligned layers (basal and edge exposed), and (3) vertically aligned MoS2 (edge exposed)) by using rapid sulfurization method of CVD process. Vertically aligned MoS2 film shows about 5-fold enhanced sensitivity to NO2 gas molecules compared to horizontally aligned MoS2 film. Vertically aligned MoS2 has superior resistance variation compared to horizontally aligned MoS2 even with same surface area exposed to identical concentration of gas molecules. We found that electrical response to target gas molecules correlates directly with the density of the exposed edge sites of MoS2 due to high adsorption of gas molecules onto edge sites of vertically aligned MoS2. Density functional theory (DFT) calculations corroborate the experimental results as stronger NO2 binding energies are computed for multiple configurations near the edge sites of MoS2, which verifies that electrical response to target gas molecules (NO2) correlates directly with the density of the exposed edge sites of MoS2 due to high adsorption of gas molecules onto edge sites of vertically aligned MoS2. We believe that this observation extends to other 2D TMD materials as well as MoS2 and can be applied to significantly enhance the gas sensor performance in these materials.
Population Structure of Montastraea cavernosa on Shallow versus Mesophotic Reefs in Bermuda
Goodbody-Gringley, Gretchen; Marchini, Chiara; Chequer, Alex D.; Goffredo, Stefano
2015-01-01
Mesophotic coral reef ecosystems remain largely unexplored with only limited information available on taxonomic composition, abundance and distribution. Yet, mesophotic reefs may serve as potential refugia for shallow-water species and thus understanding biodiversity, ecology and connectivity of deep reef communities is integral for resource management and conservation. The Caribbean coral, Montastraea cavernosa, is considered a depth generalist and is commonly found at mesophotic depths. We surveyed abundance and size-frequency of M. cavernosa populations at six shallow (10m) and six upper mesophotic (45m) sites in Bermuda and found population structure was depth dependent. The mean surface area of colonies at mesophotic sites was significantly smaller than at shallow sites, suggesting that growth rates and maximum colony surface area are limited on mesophotic reefs. Colony density was significantly higher at mesophotic sites, however, resulting in equal contributions to overall percent cover. Size-frequency distributions between shallow and mesophotic sites were also significantly different with populations at mesophotic reefs skewed towards smaller individuals. Overall, the results of this study provide valuable baseline data on population structure, which indicate that the mesophotic reefs of Bermuda support an established population of M. cavernosa. PMID:26544963
Population Structure of Montastraea cavernosa on Shallow versus Mesophotic Reefs in Bermuda.
Goodbody-Gringley, Gretchen; Marchini, Chiara; Chequer, Alex D; Goffredo, Stefano
2015-01-01
Mesophotic coral reef ecosystems remain largely unexplored with only limited information available on taxonomic composition, abundance and distribution. Yet, mesophotic reefs may serve as potential refugia for shallow-water species and thus understanding biodiversity, ecology and connectivity of deep reef communities is integral for resource management and conservation. The Caribbean coral, Montastraea cavernosa, is considered a depth generalist and is commonly found at mesophotic depths. We surveyed abundance and size-frequency of M. cavernosa populations at six shallow (10m) and six upper mesophotic (45m) sites in Bermuda and found population structure was depth dependent. The mean surface area of colonies at mesophotic sites was significantly smaller than at shallow sites, suggesting that growth rates and maximum colony surface area are limited on mesophotic reefs. Colony density was significantly higher at mesophotic sites, however, resulting in equal contributions to overall percent cover. Size-frequency distributions between shallow and mesophotic sites were also significantly different with populations at mesophotic reefs skewed towards smaller individuals. Overall, the results of this study provide valuable baseline data on population structure, which indicate that the mesophotic reefs of Bermuda support an established population of M. cavernosa.
Wang, Tsing-Hai; Chen, Chin-Lung; Ou, Lu-Yen; Wei, Yuan-Yaw; Chang, Fu-Lin; Teng, Shi-Ping
2011-09-15
A reliable performance assessment of radioactive waste repository depends on better knowledge of interactions between nuclides and geological substances. Numerical fitting of acquired experimental results by the surface complexation model enables us to interpret sorption behavior at molecular scale and thus to build a solid basis for simulation study. A lack of consensus on a standard set of assessment criteria (such as determination of sorption site concentration, reaction formula) during numerical fitting, on the other hand, makes lower case comparison between various studies difficult. In this study we explored the sorption of cesium to argillite by conducting experiments under different pH and solid/liquid ratio (s/l) with two specific initial Cs concentrations (100mg/L, 7.5 × 10(-4)mol/L and 0.01 mg/L, 7.5 × 10(-8)mol/L). After this, numerical fitting was performed, focusing on assessment criteria and their consequences. It was found that both ion exchange and electrostatic interactions governed Cs sorption on argillite. At higher initial Cs concentration the Cs sorption showed an increasing dependence on pH as the solid/liquid ratio was lowered. In contrast at trace Cs levels, the Cs sorption was neither s/l dependent nor pH sensitive. It is therefore proposed that ion exchange mechanism dominates Cs sorption when the concentration of surface sorption site exceeds that of Cs, whereas surface complexation is attributed to Cs uptake under alkaline environments. Numerical fitting was conducted using two different strategies to determine concentration of surface sorption sites: the clay model (based on the cation exchange capacity plus surface titration results) and the iron oxide model (where the concentration of sorption sites is proportional to the surface area of argillite). It was found that the clay model led to better fitting than the iron oxide model, which is attributed to more amenable sorption sites (two specific sorption sites along with larger site density) when using clay model. Moreover, increasing s/l ratio would produce more sorption sites, which helps to suppress the impact of heterogeneous surface on Cs sorption behavior under high pH environments. Copyright © 2011 Elsevier B.V. All rights reserved.
Environmental studies conducted at the Fenton Hill Hot Dry Rock geothermal development site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miera, F.R. Jr.; Langhorst, G.; McEllin, S.
1984-05-01
An environmental investigation of Hot Dry Rock (HDR) geothermal development was conducted at Fenton Hill, New Mexico, during 1976-1979. Activities at the Fenton Hill Site included an evaluation of baseline data for biotic and abiotic ecosystem components. Identification of contaminants produced by HDR processes that had the potential for reaching the surrounding environment is also discussed. Three dominant vegetative communities were identified in the vicinity of the site. These included grass-forb, aspen, and mixed conifer communities. The grass-forb area was identified as having the highest number of species encountered, with Phleum pratense and Dactylis glomerata being the dominant grass species.more » Frequency of occurrence and mean coverage values are also given for other species in the three main vegetative complexes. Live trapping of small mammals was conducted to determine species composition, densities, population, and diversity estimates for this component of the ecosystem. The data indicate that Peromyscus maniculatus was the dominant species across all trapping sites during the study. Comparisons of relative density of small mammals among the various trapping sites show the grass-forb vegetative community to have had the highest overall density. Comparisons of small mammal diversity for the three main vegetative complexes indicate that the aspen habitat had the highest diversity and the grass-forb habitat had the lowest. Analyses of waste waters from the closed circulation loop indicate that several trace contaminants (e.g., arsenic, cadmium, fluoride, boron, and lithium) were present at concentrations greater than those reported for surface waters of the region.« less
Effects of Acids, Bases, and Heteroatoms on Proximal Radial Distribution Functions for Proteins
Nguyen, Bao Linh; Pettitt, B. Montgomery
2015-01-01
The proximal distribution of water around proteins is a convenient method of quantifying solvation. We consider the effect of charged and sulfur-containing amino acid side-chain atoms on the proximal radial distribution function (pRDF) of water molecules around proteins using side-chain analogs. The pRDF represents the relative probability of finding any solvent molecule at a distance from the closest or surface perpendicular protein atom. We consider the near-neighbor distribution. Previously, pRDFs were shown to be universal descriptors of the water molecules around C, N, and O atom types across hundreds of globular proteins. Using averaged pRDFs, a solvent density around any globular protein can be reconstructed with controllable relative error. Solvent reconstruction using the additional information from charged amino acid side-chain atom types from both small models and protein averages reveals the effects of surface charge distribution on solvent density and improves the reconstruction errors relative to simulation. Solvent density reconstructions from the small-molecule models are as effective and less computationally demanding than reconstructions from full macromolecular models in reproducing preferred hydration sites and solvent density fluctuations. PMID:26388706
Andersen, O M; Petersen, H H; Jacobsen, C; Moestrup, S K; Etzerodt, M; Andreasen, P A; Thøgersen, H C
2001-07-01
The low-density-lipoprotein-receptor (LDLR)-related protein (LRP) is composed of several classes of domains, including complement-type repeats (CR), which occur in clusters that contain binding sites for a multitude of different ligands. Each approximately 40-residue CR domain contains three conserved disulphide linkages and an octahedral Ca(2+) cage. LRP is a scavenging receptor for ligands from extracellular fluids, e.g. alpha(2)-macroglobulin (alpha(2)M)-proteinase complexes, lipoprotein-containing particles and serine proteinase-inhibitor complexes, like the complex between urokinase-type plasminogen activator (uPA) and the plasminogen activator inhibitor-1 (PAI-1). In the present study we analysed the interaction of the uPA-PAI-1 complex with an ensemble of fragments representing a complete overlapping set of two-domain fragments accounting for the ligand-binding cluster II (CR3-CR10) of LRP. By ligand blotting, solid-state competition analysis and surface-plasmon-resonance analysis, we demonstrate binding to multiple CR domains, but show a preferential interaction between the uPA-PAI-1 complex and a two-domain fragment comprising CR domains 5 and 6 of LRP. We demonstrate that surface-exposed aspartic acid and tryptophan residues at identical positions in the two homologous domains, CR5 and CR6 (Asp(958,CR5), Asp(999,CR6), Trp(953,CR5) and Trp(994,CR6)), are critical for the binding of the complex as well as for the binding of the receptor-associated protein (RAP) - the folding chaperone/escort protein required for transport of LRP to the cell surface. Accordingly, the present work provides (1) an identification of a preferred binding site within LRP CR cluster II; (2) evidence that the uPA-PAI-1 binding site involves residues from two adjacent protein domains; and (3) direct evidence identifying specific residues as important for the binding of uPA-PAI-1 as well as for the binding of RAP.
Alaskan Arctic Soils: Relationship between Microbial Carbon Usage and Soil Composition
NASA Astrophysics Data System (ADS)
Li, H.; Ziolkowski, L. A.
2015-12-01
Carbon stored in Arctic permafrost carbon is sensitive to climate change. Microbes are known to degrade Arctic soil organic carbon (OC) and potentially release vast quantitates of CO2 and CH4. Previously, it has been shown that warming of Arctic soils leads to microbes respiring older carbon. To examine this process, we studied the microbial carbon usage and its relationship to the soil OC composition in active layer soils at five locations along a latitudinal transect on the North Slope of Alaska using the compound specific radiocarbon signatures of the viable microbial community using phospholipid fatty acids (PLFA). Additional geochemical parameters (C/N, 13C, 15N and 14C) of bulk soils were measured. Overall there was a greater change with depth than location. Organic rich surface soils are rich in vegetation and have high PLFA based cell densities, while deeper in the active layer geochemical parameters indicated soil OC was degraded and cell densities decreased. As expected, PLFA indicative of Fungi and Protozoa species dominated in surface soils, methyl-branched PLFAs, indicative of bacterial origin, increased in deeper in the active layer. A group of previously unreported PLFAs, believed to correlate to anaerobic microbes, increased at the transition between the surface and deep microbial communities. Cluster analysis based on individual PLFAs of samples confirmed compositional differences as a function of depth dominated with no site to site differences. Radiocarbon data of soil OC and PLFA show the preferential consumption of younger soil OC by microbes at all sites and older OC being eaten in deep soils. However, in deeper soil, where the C/N ratio suggests lower bioavailability, less soil OC was incorporated into the microbes as indicating by greater differences between bulk and PLFA radiocarbon ages.
Wood, Petra; Ammer, Frank K.
2015-01-01
We studied 3 mountaintop mining–valley fill (MTMVF) complexes in southern West Virginia, USA to examine grasshopper sparrow (Ammodramus savannarum pratensis) demographic response to different age classes of mine land reclamation. For 71 nests monitored during the 2001–2002 breeding seasons, overall nest success (36%) was within the range of nest success rates previously reported for this species, but it was highest on more recently reclaimed sites (56%). Nest density and clutch size did not differ (P > 0.30) among reclamation age classes, whereas number of fledglings was greater (P = 0.01) on more recently reclaimed sites. We measured vegetation variables at 70 nest subplots and at 96 systematic subplots to compare nest vegetation with vegetation available on the plots. We found that nests occurred in areas with more bare ground near the nest, greater vegetation height–density surrounding the nest site, lower grass height, and fewer woody stems, similar to previous studies. As postreclamation age increased, vegetation height–density and maximum grass height increased, and sericea (Lespedeza cuneata) became more dominant. Nest success declined with increasing vegetation height–density at the nest. The grasslands available on these reclaimed mine complexes are of sufficient quality to support breeding populations of grasshopper sparrows, but nest success decreased on the older reclaimed areas. Without active management, grasslands on reclaimed MTMVF mines become less suitable for nesting grasshopper sparrows about 10 years after reclamation.
Mancuso, F P; Strain, E M A; Piccioni, E; De Clerck, O; Sarà, G; Airoldi, L
2018-04-01
We analyzed the occurrence and status of infralittoral fringe populations of Cystoseira spp. (Fucales) at thirteen rocky sites around the Italian coastline, and explored the relationships with relevant environmental and anthropogenic variables. We found Cystoseira populations at 11 sites: most were scattered and comprised monospecific stands of C. compressa, and only 6 sites also supported sparse specimens of either C. amentacea var. stricta or C. brachycarpa. Coastal human population density, Chlorophyll a seawater concentrations, sea surface temperature, annual range of sea surface temperature and wave fetch explained most of the variation of the status of C. compressa. We hypothesize a generally unhealthy state of the Italian Cystoseira infralittoral fringe populations and identify multiple co-occurring anthropogenic stressors as the likely drivers of these poor conditions. Extensive baseline monitoring is needed to describe how Cystoseira populations are changing, and implement a management framework for the conservation of these valuable but vulnerable habitats. Copyright © 2017 Elsevier Ltd. All rights reserved.
New insights into thermal decomposition of polycyclic aromatic hydrocarbon oxyradicals.
Liu, Peng; Lin, He; Yang, Yang; Shao, Can; Gu, Chen; Huang, Zhen
2014-12-04
Thermal decompositions of polycyclic aromatic hydrocarbon (PAH) oxyradicals on various surface sites including five-membered ring, free-edge, zigzag, and armchair have been systematically investigated by using ab initio density functional theory B3LYP/6-311+G(d,p) basis set. The calculation based on Hückel theory indicates that PAHs (3H-cydopenta[a]anthracene oxyradical) with oxyradicals on a five-membered ring site have high chemical reactivity. The rate coefficients of PAH oxyradical decomposition were evaluated by using Rice-Ramsperger-Kassel-Marcus theory and solving the master equations in the temperature range of 1500-2500 K and the pressure range of 0.1-10 atm. The kinetic calculations revealed that the rate coefficients of PAH oxyradical decomposition are temperature-, pressure-, and surface site-dependent, and the oxyradical on a five-membered ring is easier to decompose than that on a six-membered ring. Four-membered rings were found in decomposition of the five-membered ring, and a new reaction channel of PAH evolution involving four-membered rings is recommended.
The effects of trawling on the properties of surface sediments in the Lagoon of Venice, Italy.
NASA Astrophysics Data System (ADS)
Aspden, R.; Vardy, S.; Perkins, R.; Davidson, I.; Paterson, D. M.
2003-04-01
The effects of trawling for clams in two differently impacted areas of the Lagoon of Venice were investigated. The Lagoon has an area of 55,000 hectares and the trawling of clams (Tapes phippinarum) has important socio-economic and environmental implications for the area. Bottom trawling has been shown to have large disruptive effects on the structure of benthic communities but the relationship of this to the stability and structure of the surface sediments is still unclear. The sediment stability, grain size, bulk and colloidal carbohydrate content, total organic carbon, chlorophyll a content, and sediment dry bulk density were measured in order to determine the effects of dredging on the physical and biological properties of the lagoon surface sediments. The sediments were more stable at the less impacted site and biological measurements from the same site indicated a relatively low capacity for biogenic stabilisation of sediments. Measurements were taken before and after trawling had occurred. At the less impacted site all biological properties were significantly different before and after the disturbance event, the only physical property to be significantly different was water content. At the highly impacted site the disturbance event had only a small effect on the biological and physical properties of the sediments. Only chlorophyll a content was significantly different before and after the trawl. The results suggest that frequent trawling of the lagoon will reduce the stability of the surface sediments due to the effects on the bulk strength of the sediments and on the biological status of the surface sediments.
Roques, Jérôme; Veilly, Edouard; Simoni, Eric
2009-06-04
Canister integrity and radionuclides retention is of prime importance for assessing the long term safety of nuclear waste stored in engineered geologic depositories. A comparative investigation of the interaction of uranyl ion with three different mineral surfaces has thus been undertaken in order to point out the influence of surface composition on the adsorption mechanism(s). Periodic DFT calculations using plane waves basis sets with the GGA formalism were performed on the TiO(2)(110), Al(OH)(3)(001) and Ni(111) surfaces. This study has clearly shown that three parameters play an important role in the uranyl adsorption mechanism: the solvent (H(2)O) distribution at the interface, the nature of the adsorption site and finally, the surface atoms' protonation state.
Roques, Jérôme; Veilly, Edouard; Simoni, Eric
2009-01-01
Canister integrity and radionuclides retention is of prime importance for assessing the long term safety of nuclear waste stored in engineered geologic depositories. A comparative investigation of the interaction of uranyl ion with three different mineral surfaces has thus been undertaken in order to point out the influence of surface composition on the adsorption mechanism(s). Periodic DFT calculations using plane waves basis sets with the GGA formalism were performed on the TiO2(110), Al(OH)3(001) and Ni(111) surfaces. This study has clearly shown that three parameters play an important role in the uranyl adsorption mechanism: the solvent (H2O) distribution at the interface, the nature of the adsorption site and finally, the surface atoms’ protonation state. PMID:19582222
Izbicki, John A.; Clark, Dennis A.; Pimental, Maria I.; Land, Michael; Radyk, John C.; Michel, Robert L.
2000-01-01
This report presents data on the physical properties of unsaturated alluvial deposits and on the chemical and isotopic composition of soil water and soil gas collected at 12 monitoring sites in the western part of the Mojave Desert, near Victorville, California. Sites were installed using the ODEX air-hammer method. Seven sites were located in the active channels of Oro Grande and Sheep Creek Washes. The remaining five sites were located away from the active washes. Most sites were drilled to a depth of about 100 feet below land surface; two sites were drilled to the water table almost 650 feet below land surface. Drilling procedures, lithologic and geophysical data, and site construction and instrumentation are described. Core material was analyzed for water content, bulk density, water potential, particle size, and water retention. The chemical composition of leachate from almost 1,000 subsamples of cores and cuttings was determined. Water extracted from selected subsamples of cores was analyzed for tritium and the stable isotopes of oxygen and hydrogen. Water from suction-cup lysimeters and soil-gas samples also were analyzed for chemical and isotopic composition. In addition, data on the chemical and isotopic composition of bulk precipitation from five sites and on ground water from two water-table wells are reported.
Human risk of infection with Borrelia burgdorferi, the Lyme disease agent, in eastern United States.
Diuk-Wasser, Maria A; Hoen, Anne Gatewood; Cislo, Paul; Brinkerhoff, Robert; Hamer, Sarah A; Rowland, Michelle; Cortinas, Roberto; Vourc'h, Gwenaël; Melton, Forrest; Hickling, Graham J; Tsao, Jean I; Bunikis, Jonas; Barbour, Alan G; Kitron, Uriel; Piesman, Joseph; Fish, Durland
2012-02-01
The geographic pattern of human risk for infection with Borrelia burgdorferi sensu stricto, the tick-borne pathogen that causes Lyme disease, was mapped for the eastern United States. The map is based on standardized field sampling in 304 sites of the density of Ixodes scapularis host-seeking nymphs infected with B. burgdorferi, which is closely associated with human infection risk. Risk factors for the presence and density of infected nymphs were used to model a continuous 8 km×8 km resolution predictive surface of human risk, including confidence intervals for each pixel. Discontinuous Lyme disease risk foci were identified in the Northeast and upper Midwest, with a transitional zone including sites with uninfected I. scapularis populations. Given frequent under- and over-diagnoses of Lyme disease, this map could act as a tool to guide surveillance, control, and prevention efforts and act as a baseline for studies tracking the spread of infection.
Trapped charge densities in Al{sub 2}O{sub 3}-based silicon surface passivation layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, Paul M., E-mail: Paul.Jordan@namlab.com; Simon, Daniel K.; Dirnstorfer, Ingo
2016-06-07
In Al{sub 2}O{sub 3}-based passivation layers, the formation of fixed charges and trap sites can be strongly influenced by small modifications in the stack layout. Fixed and trapped charge densities are characterized with capacitance voltage profiling and trap spectroscopy by charge injection and sensing, respectively. Al{sub 2}O{sub 3} layers are grown by atomic layer deposition with very thin (∼1 nm) SiO{sub 2} or HfO{sub 2} interlayers or interface layers. In SiO{sub 2}/Al{sub 2}O{sub 3} and HfO{sub 2}/Al{sub 2}O{sub 3} stacks, both fixed charges and trap sites are reduced by at least a factor of 5 compared with the value measured inmore » pure Al{sub 2}O{sub 3}. In Al{sub 2}O{sub 3}/SiO{sub 2}/Al{sub 2}O{sub 3} or Al{sub 2}O{sub 3}/HfO{sub 2}/Al{sub 2}O{sub 3} stacks, very high total charge densities of up to 9 × 10{sup 12} cm{sup −2} are achieved. These charge densities are described as functions of electrical stress voltage, time, and the Al{sub 2}O{sub 3} layer thickness between silicon and the HfO{sub 2} or the SiO{sub 2} interlayer. Despite the strong variation of trap sites, all stacks reach very good effective carrier lifetimes of up to 8 and 20 ms on p- and n-type silicon substrates, respectively. Controlling the trap sites in Al{sub 2}O{sub 3} layers opens the possibility to engineer the field-effect passivation in the solar cells.« less
Theoretical insight into Cobalt subnano-clusters adsorption on α-Al{sub 2}O{sub 3} (0001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Fen-e; Ren, Jun, E-mail: jun.ren@nuc.edu.cn; Wang, Qiang
The investigation on the structural stability, nucleation, growth and interaction of cobalt cluster Con(n=2–7) on the α-Al{sub 2}O{sub 3}(0001) surface by using density functional theory methods has been reported. Energetically, the most favorable adsorption sites were identified and the strongest adsorption energy cluster is the tetrahedral Co{sub 4} cluster. On the other hand, the nucleation of Con(n=2–7) clusters on the surface is exothermic and thermodynamically favorable. Moreover, even-odd alternation was found with respect to clusters nucleation as a function of the number of cobalt atoms (for n=1–7). Meanwhile, the Co{sub n} clusters can be adsorbed on the surface stably owingmore » to the charge transfer from Co atoms to Al and O atoms of the Al{sub 2}O{sub 3} substrate. In addition, we establish the crucial importance of monomer, dimer and trimer diffusion on the surface. The diffusion of the monomer cobalt from Al{sup (3)} to O{sup (5)} or O{sup (5)} to Al{sup (4)} site is quite easy on the Al{sub 2}O{sub 3}(0001) surface, whereas the diffusion of the Co{sub 2} dimer is thermodynamically unfavorable by compared with that of the Co adatom and Co{sub 3} trimer. - Graphical abstract: Diffusion process of Co adatom on the α-Al{sub 2}O{sub 3} (0001) surface, Al{sup (3)} site→O{sup (5)} site→Al{sup (4)} site. Potential energy surface for diffusion of a single Co atom from Al{sup (3)} to O{sup (5)} site, and from O{sup (5)} to Al{sup (4)} site on the surface. The activation energy of the two migration processes from Al{sup (3)} to O{sup (5)} and O{sup (5)} to Al{sup (4)} are 0.06 and 0.09 eV, respectively. This implies the monomer is quite mobile on the surface under typical growth conditions.« less
Cole, S.C.; Atwater, B.F.; McCutcheon, P.T.; Stein, J.K.; Hemphill-Haley, E.
1996-01-01
Although inhabited by thousands of people when first reached by Europeans, the Pacific coast of southern Washington has little recognized evidence of prehistoric human occupation. This apparent contradiction may be explained partly by geologic evidence for coastal submergence during prehistoric earthquakes on the Cascadia subduction zone. Recently discovered archaeological sites, exposed in the banks of two tidal streams, show evidence for earthquake-induced submergence and consequent burial by intertidal mud about A.D. 1700. We surmise that, because of prehistoric earthquakes, other archaeological sites may now lie hidden beneath the surfaces of modern tidelands. Such burial of archaeological sites raises questions about the estimation of prehistoric human population densities along coasts subject to earthquake-induced submergence. ?? 1996 John Wiley & Sons, Inc.
Scott, Andrea Michalkova; Burns, Elizabeth A; Hill, Frances C
2014-08-01
The adsorption of nitrogen-containing compounds (NCCs) including 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), 2,4-dinitroanisole (DNAN), and 3-nitro-1,2,4-triazol-5-one (NTO) on kaolinite surfaces was investigated. The M06-2X and M06-2X-D3 density functionals were applied with the cluster approximation. Several different positions of NCCs relative to the adsorption sites of kaolinite were examined, including NCCs in perpendicular and parallel orientation toward both surface models of kaolinite. The binding between the target molecules and kaolinite surfaces was analyzed and bond energies were calculated applying the atoms in molecules (AIM) method. All NCCs were found to prefer a parallel orientation toward both kaolinite surfaces, and were bound more strongly to the octahedral than to the tetrahedral site. TNT exhibited the strongest interaction with the octahedral surface and DNAN with the tetrahedral surface of kaolinite. Hydrogen bonding was shown to be the dominant non-covalent interaction for NCCs interacting with the octahedral surface of kaolinite with a small stabilizing effect of dispersion interactions. In the case of adsorption on the tetrahedral surface, kaolonite-NCC binding was shown to be governed by the balance between hydrogen bonds and dispersion forces. The presence of water as a solvent leads to a significant decrease in the adsorption strength for all studied NCCs interacting with both kaolinite surfaces.
Adsorption Study of a Water Molecule on Vacancy-Defected Nonpolar CdS Surfaces
2017-01-01
A detailed understanding of the water–semiconductor interface is of major importance for elucidating the molecular interactions at the photocatalyst’s surface. Here, we studied the effect of vacancy defects on the adsorption of a water molecule on the (101̅0) and (112̅0) CdS surfaces, using spin-polarized density functional theory. We observed that the local spin polarization did not persist for most of the cationic vacancies on the surfaces, unlike in bulk, owing to surface reconstructions caused by displaced S atoms. This result suggests that cationic vacancies on these surfaces may not be the leading cause of the experimentally observed magnetism in CdS nanostructures. The surface vacancies are predominantly nonmagnetic except for one case, where a magnetic cationic vacancy is relatively stable due to constraints posed by the (101̅0) surface geometry. At this particular magnetic defect site, we found a very strong interaction with the H2O molecule leading to a case of chemisorption, where the local spin polarization vanishes concurrently. At the same defect site, adsorption of an O2 molecule was also simulated, and the results were found to be consistent with experimental electron paramagnetic resonance findings for powdered CdS. The anion vacancies on these surfaces were always found to be nonmagnetic and did not affect the water adsorption at these surfaces. PMID:28539988
Spectroscopic determination of surface geometry: Ti(0001)-H(1×1)
NASA Astrophysics Data System (ADS)
Feibelman, Peter J.; Hamann, D. R.
1980-02-01
The electronic structure of a Ti(0001) film covered by a monolayer of H is shown to depend strongly on the location of the H atom in the surface unit cell. Best agreement with experiment is found with the H's in three-fold sites, 0.8 a.u. outside the outer Ti layer. In this geometry the H atoms "heal" the surface-the clean Ti(0001) surface state near the Fermi level is removed and the outer layer d-like local density of states (LDOS) is quite similar to that of the interior. Additionally, the calculated work function is 4.0 eV and an H-derived peak in the calculated LDOS appears 5 eV below EF, in agreement with photoemission measurements.
Healy, D.L.; Miller, C.H.
1962-01-01
The gravity survey of the Nevada Test Site and contiguous areas of southern Nevada and southeastern California (fig. 1) has been made by the U.S. Geological Survey on behalf of the U.S. Atomic Energy Commission.The objective of this study is to delineate and interpret gravity anomalies and regional trends so that the configuration and depth of the buried erosional surface of the Paleozoic rocks may be determined. This buried surface is of utmost importance in understanding the geologic history of the Nevada Test Site region, the thickness and distribution of the overlying volcanic rocks and alluvium, and the movement of ground water. The Paleozoic rocks cause positive gravity anomalies where they outcrop or occur near the surface and negative anomalies where they are buried in valleys or capped by low-density Tertiary volcanic rocks. Gravity trends which extend over the entire area provide a basis for computing the regional gravity gradient. The regional gravity gradient must be removed from the data for geologic interpretation of the paleotopographic surface in any limited area. Knowledge of the thickness of low-density material overlying the paleotopographic surface is useful in several ways. Proposed underground test sites, such as drill holes and tunnels, may be evaluated in terms of rock unit thickness and alluvial cover requirements. Recent work by the Water Resources Division of the U.S. Geological Survey has demonstrated ground-water movement through the Paleozoic rocks in the vicinity of the Nevada Test Site. Therefore, knowledge of the position of buried Paleozoic rocks is important in evaluating (a) the rate and direction of flow of the ground water, (b) ground-water supplies for domestic and industrial uses, and (c) the possibility of radioactive contamination of ground water. Finally, regional gravity trends and paleotopography are useful in working out the structural history of the area in connection with geologic studies now in progress. The purpose of this interim report is to present the major part of the gravity data obtained as of December 31, 1961. The data are presented as a complete Bouguer gravity anomaly map. Although the gravity contours are somewhat generalized because the map has a scale of 1:250,000 and a contour interval of 5 milligals, the largest anomalies are adequately delineated. Preliminary results of this gravity survey have been reported by Wilmarth and others, 1960, and by Diment and others, 1959 and 1960.
NASA Astrophysics Data System (ADS)
Kirsch, Janet E.; Harris, Suzanne
2003-01-01
Solid-state Fenske-Hall band structure calculations have been used to study the different surface structures which result from adsorption of a half monolayer of C, N, or O atoms on the Ni(1 0 0) surface. C or N atoms sit nearly coplanar with the surface Ni atoms and induce the "clock" reconstruction of the surface. In contrast, adsorbed O atoms sit slightly above the Ni(1 0 0) surface plane and have little effect on the overall surface structure. The local environments of the C, N, and O atoms on these surfaces are similar to their environments in a series of late transition metal carbonyl clusters, suggesting that some of the same electronic factors may play a role in favoring the different structures. Results of the calculations indicate that when adsorbates occupy coplanar sites on Ni(1 0 0), much of the Ni-Ni bonding within the surface layer and between the surface- and second-layers is disrupted. On the C- and N-covered surfaces the disruption is more than compensated for by the formation of strong adsorbate-Ni bonds and by new Ni-Ni surface bonds resulting from the clock reconstruction. When O is forced into a coplanar site, however, both the higher electron count and increased electronegativity of the O atoms lead to severe disruption of the surface bonding and weak Ni-O bonds. When O atoms sit above the surface, they form more polar Ni-O bonds, contribute less electron density to the Ni surface bands, and cause less disruption to Ni-Ni surface bonds. These results suggest that, similar to the organometallic clusters, the site preferences of C, N, and O atoms are directly related to their electron count, and in turn to the relative occupation of both Ni-Ni and X-Ni (X=C, N, O) antibonding bands.
Robinson, G.R.; Larkin, S.P.; Boughton, C.J.; Reed, B.W.; Sibrell, P.L.
2007-01-01
Lead arsenate pesticides were widely used in apple orchards from 1925 to 1955. Soils from historic orchards in four counties in Virginia and West Virginia contained elevated concentrations of As and Pb, consistent with an arsenical pesticide source. Arsenic concentrations in approximately 50% of the orchard site soils and approximately 1% of reference site soils exceed the USEPA Preliminary Remediation Goal (PRG) screening guideline of 22 mg kg-1 for As in residential soi, defined on the basis of combined chronic exposure risk. Approximately 5% of orchard site soils exceed the USEPA PRG for Pb of 400 mg kg-1 in residential soil; no reference site soils sampled exceed this value. A variety of statistical methods were used to characterize the occurrence, distribution, and dispersion of arsenical pesticide residues in soils, stream sediments, and ground waters relative to landscape features and likely background conditions. Concentrations of Zn, Pb, and Cu were most strongly associated with high developed land density and population density, whereas elevated concentrations of As were weakly correlated with high orchard density, consistent with a pesticide residue source. Arsenic concentrations in ground water wells in the region are generally <0.005 mg L-1. There was no spatial association between As concentrations in ground water and proximity to orchards. Arsenic had limited mobility into ground water from surface soils contaminated with arsenical pesticide residues at concentrations typically found in orchards. ?? ASA, CSSA, SSSA.
Density Banding in Coral Skeletons: A Biotic Response to Sea Surface Temperature?
NASA Astrophysics Data System (ADS)
Hill, C. A.; Oehlert, A. M.; Piggot, A. M.; Yau, P. M.; Fouke, B. W.
2008-12-01
Density bands in the CaCO3 (aragonite) skeleton of scleractinian corals are commonly used as chronometers, where crystalline couplets of high and low density bands represent the span of one year. This provides a sensitive reconstructive tool for paleothermometry, paleoclimatology and paleoecology. However, the detailed mechanisms controlling aragonite nucleation and crystallization events and the rate of skeletal growth remain uncertain. The organic matrix, composed of macromolecules secreted by the calicoblastic ectoderm, is closely associated with skeletal precipitation and is itself incorporated into the skeleton. We postulate that density banding is primarily controlled by changes in the rate of aragonite crystal precipitation mediated by the coral holobiont response to changes in sea surface temperature (SST). To test this hypothesis, data were collected from coral skeleton-tissue biopsies (2.5 cm in diameter) extracted from four species of Montastraea growing on the fringing reef tract of Curacao, Netherlands Antilles (annual mean variation in SST is 29° C in mid-September to 26° C in late February). Samples were collected in the following three contextual modes: 1) at two sites (Water Plant and Playa Kalki) along a lateral 25 km spatial transect; 2) across a vertical bathymetric gradient from 5 to 15 m water depth at each site; and 3) at strategic time periods spanning the 3° C annual variations in SST. Preliminary results indicate that skeletal density banding is also expressed in the organic matrix, permitting biochemical characterization and correlation of the organic matrix banding to the skeletal banding. In addition, both surficial and ectodermal mucins were characterized in terms of total protein content, abundance and location of their anionic, cationic, and neutral macromolecular constituents. Furthermore, the ratio of mucocytes in the oral ectoderm to gastrodermal symbiotic zooxanthellae has permitted estimates of seasonal carbon allocation by the coral holobiont. Our nanometer-scale optical analyses of crystal morphology, arrangement, and densities have revealed consistent changes between high and low skeletal density bands. Mass spectrometry, newly developed immunohistochemical staining, fluorescence and polarized light microscopy are in progress to further quantify and model these observations.
Synthesis and characterization of mesoporous zirconia and aluminated mesoporous zirconia
NASA Astrophysics Data System (ADS)
Zhao, Elizabeth Sun
Synthesis of mesoporous zirconia has been performed by slowly hydrolyzing zirconium propoxide in the presence of anionic surfactants: namely, dodecyl phosphate or sulfate (P12 and Sf12) and hexadecyl sulfonate (So16) The zirconia. outgassed at 140--150°C has T-plot surface areas higher than 400 M2/g. This outgassing does not remove the surfactant. After calcination in air at 500°C and combustion of the surfactant, the mesoporous volume is reduced by a factor of about 2, whereas the pore wall material crystallizes in the tetragonal phase. The high-resolution electron microscopic study reveals the presence of a disorganized network of polygonal pores structure. It is suggested that the chemistry of the hydrolysis solution is instrumental in determining the pore structure. A schematic model in which the surfactant is a scaffold component is suggested in order to explain these results and the fixation of PO4, or SO4 in the walls may help to preserve the porous structure. It is very different from the templating mechanism. From the density obtained from phase transition temperature, and from the mesoporous volume (N2 adsorption), the thickness of the wall can be calculated as well as the pseudo-length of the pores. From the thickness, the T-plot area can be recalculated and agrees well with the measured T-plot surface area for the sample calcined at 500°C. Around 900°C, the walls become thicker and crystallizes into monoclinic zirconia without pore structure. In order to try to modify, the acidity of the mesoporous sulfated and oxo-phosphated zirconia, they were doped with aluminum. The sulfated zirconia only has a coating layer of amorphous alumina, while the phosphated zirconia has aluminum in the lattice and the alumina coat. A maximum ratio of Al/Zr ˜ 0.04 can be reached in the lattice. The introduction of aluminum into the lattice prevents the crystallization of the oxo-phosphate at 900°C, and helps to preserve the surface area and porosity of the sulfated zirconia above 500°C. However the acidity was not modified by doping. The comparison of the effects of adsorbing water or ammonia on the infrared bands between 1400 and 1000 cm-1 suggests that, besides structural Lewis sites on the surface of ZrO2, the strong Lewis sites are made from chemisorbed SO3. Upon adsorption of water, SO3 is converted, probably, into HSO4 which may act as strong Bronsted sites. At moderate surface hydration, both SO 3 and HSO4, may coexist. The catalytic activity in the isomerization of isobutane is a function of the overall nominal surface density of SO 4. The acid sites on the surface of phosphated mesoporous zirconia are attributable to surface P-OH groups working, as weak Bronsted sites.
Probing Interfacial Processes on Graphene Surface by Mass Detection
NASA Astrophysics Data System (ADS)
Kakenov, Nurbek; Kocabas, Coskun
2013-03-01
In this work we studied the mass density of graphene, probed interfacial processes on graphene surface and examined the formation of graphene oxide by mass detection. The graphene layers were synthesized by chemical vapor deposition method on copper foils and transfer-printed on a quartz crystal microbalance (QCM). The mass density of single layer graphene was measured by investigating the mechanical resonance of the QCM. Moreover, we extended the developed technique to probe the binding dynamics of proteins on the surface of graphene, were able to obtain nonspecific binding constant of BSA protein of graphene surface in aqueous solution. The time trace of resonance signal showed that the BSA molecules rapidly saturated by filling the available binding sites on graphene surface. Furthermore, we monitored oxidation of graphene surface under oxygen plasma by tracing the changes of interfacial mass of the graphene controlled by the shifts in Raman spectra. Three regimes were observed the formation of graphene oxide which increases the interfacial mass, the release of carbon dioxide and the removal of small graphene/graphene oxide flakes. Scientific and Technological Research Council of Turkey (TUBITAK) grant no. 110T304, 109T209, Marie Curie International Reintegration Grant (IRG) grant no 256458, Turkish Academy of Science (TUBA-Gebip).
Interaction between aerosol and the planetary boundary layer depth at sites in the US and China
NASA Astrophysics Data System (ADS)
Sawyer, V. R.
2015-12-01
The depth of the planetary boundary layer (PBL) defines a changing volume into which pollutants from the surface can disperse, which affects weather, surface air quality and radiative forcing in the lower troposphere. Model simulations have also shown that aerosol within the PBL heats the layer at the expense of the surface, changing the stability profile and therefore also the development of the PBL itself: aerosol radiative forcing within the PBL suppresses surface convection and causes shallower PBLs. However, the effect has been difficult to detect in observations. The most intensive radiosonde measurements have a temporal resolution too coarse to detect the full diurnal variability of the PBL, but remote sensing such as lidar can fill in the gaps. Using a method that combines two common PBL detection algorithms (wavelet covariance and iterative curve-fitting) PBL depth retrievals from micropulse lidar (MPL) at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site are compared to MPL-derived PBL depths from a multiyear lidar deployment at the Hefei Radiation Observatory (HeRO). With aerosol optical depth (AOD) measurements from both sites, it can be shown that a weak inverse relationship exists between AOD and daytime PBL depth. This relationship is stronger at the more polluted HeRO site than at SGP. Figure: Mean daily AOD vs. mean daily PBL depth, with the Nadaraya-Watson estimator overlaid on the kernel density estimate. Left, SGP; right, HeRO.
Effective rate constants for nanostructured heterogeneous catalysts
NASA Astrophysics Data System (ADS)
Hendy, Shaun; Gaston, Nicola; Zhang, Philip; Lund, Nat
2012-02-01
There is currently a high level of interest in the use of nanostructured materials for catalysis. For instance, gold, which is largely inert in the bulk, can exhibit strong catalytic activity when in nanoparticle form. With precious metal catalysts such as Pt and Pd in high demand, the use of these materials in nanoparticle form can also substantially reduce costs by exposure of more surface area for the same volume of material. When reactants are plentiful, the effective activity of a nanoparticulate catalyst will increase roughly with its surface area. However, under diffusion-limited conditions, the reactant must diffuse to active sites on the catalyst, so a high surface area and a high density of active sites may bring diminishing returns if reactant is consumed faster than it arrives. Here we apply a mathematical homogenisation approach to derive simple expressions for the effective reactivity of a nanostructured catalyst under diffusion limited conditions that relate the intrinsic rate constants of the surfaces presented by the catalyst to an effective rate constant. When highly active catalytic sites, such as step edges or other defects are present, we show that distinct limiting cases emerge depending on the degree of overlap of the reactant depletion zone about each site. In gases, the size of this depletion zone is approximately the mean free path, so the effective reactivity will depend on the structure of the catalyst on that scale. We discuss implications for the optimal design of nanoparticle catalysts.
Selection and Characterization of Landing Sites for Chandrayaan-2 Lander
NASA Astrophysics Data System (ADS)
Gopala Krishna, Barla; Amitabh, Amitabh; Srinivasan, T. P.; Karidhal, Ritu; Nagesh, G.; Manjusha, N.
2016-07-01
Indian Space Research Organisation has planned the second mission to moon known as Chandrayaan-2, which consists of an Orbiter, a Lander and a Rover. This will be the first soft landing mission of India on lunar surface. The Orbiter, Lander and Rover individually will carry scientific payloads that enhance the scientific objectives of Chandrayaan-2. The Lander soft lands on the lunar surface and subsequently Lander & Rover will carry on with the payload activities on the moon surface. Landing Site identification based on the scientific and engineering constrains of lander plays an important role in success of a mission. The Lander poses some constraints because of its engineering design for the selection of the landing site and on the other hand the landing site / region imparts some constrain on the Lander. The various constraints that have to be considered for the study of the landing site are Local slope, Sun illumination during mission life, Radio communication with the Earth, Global slope towards equator, Boulders size, Crater density and boulder distribution. This paper describes the characterization activities of the different landing locations which have been studied for Chandrayaan-2 Lander. The sites have been studied both in the South Polar and North Polar regions of the moon on the near side. The Engineering Constraints at the sites due to the Lander, Factors that affect mission life (i.e. illumination at the location), Factors influencing communication to earth (i.e. RF visibility) & Shadow movements have been studied at these locations and zones that are favourable for landing have been short listed. This paper gives methodology of these studies along with the results of the characteristics of all the sites and the recommendations for further action in finalizing the landing area.
The effects of clam fishing on the properties of surface sediments in the lagoon of Venice, Italy
NASA Astrophysics Data System (ADS)
Aspen, R. J.; Vardy, S.; Perkins, R. G.; Davidson, I. R.; Bates, R.; Paterson, D. M.
Harvesting of clams(Tapes philippinarum) has important socio-economic and environmental implications for the Venice lagoon area, Italy. Clam harvesting disrupts the structure of benthic communities but the effects upon sediment stability and surface structure remain unclear. The effect of clam fishing on the sediment properties of the lagoon bed was investigated at two different sites, a heavily fished site (San Angelo) and an infrequently fished site (San Giaccomo). Both sites were assessed for immediate impacts of fishing, using indicators of biogenic sediment stabilisation. Samples were taken at three points along three 100 m linear transects at each site prior to and post fishing. Paired samples were also taken parallel to each transect at a distance of 5m, to allow for temporal variation. Sediment stability, measured with a cohesive strength meter (CSM), was significantly higher at the less impacted site (F1,34 = 6.23, p < 0.018), was correlated with indicators of biogenic sediment stabilisation and decreased by approximately 50% following the trawling event. Concomitant decreases in chlorophyll a (chl a), colloidal-S carbohydrate and dry bulk density were observed on the transect after fishing but not adjacent to the fishing path. At the heavily impacted site, clam fishing by trawling had, in general, no significant effect on the biological and physical properties (although chl a did decrease significantly after fishing). The lack of a significant impact from fishing at the impacted site was attributed to the higher frequency of fishing occurring in this area. Hence, frequent fishing of the lagoon prevents establishment of biotic communities, preventing biostabilisation and thus reduces the stability of the surface sediment.
Influence of Environmental Pollution on Leaf Properties of Urban Plane Trees, Platanus orientalis L.
Pourkhabbaz, Alireza; Rastin, Nayerah; Olbrich, Andrea; Langenfeld-Heyser, Rosemarie
2010-01-01
To investigate whether leaves of plane trees (Platanus orientalis) are damaged by traffic pollution, trees from a megacity (Mashhad, Iran) and a rural area were investigated. Soil and air from the urban centre showed enrichment of several toxic elements, but only lead was enriched in leaves. Leaf size and stomata density were lower at the urban site. At the urban site leaf surfaces were heavily loaded by dust particles but the stomata were not occluded; the cuticle was thinner; other anatomical properties were unaffected suggesting that plane trees can cope with traffic exhaust in megacities. PMID:20577871
Influence of environmental pollution on leaf properties of urban plane trees, Platanus orientalis L.
Pourkhabbaz, Alireza; Rastin, Nayerah; Olbrich, Andrea; Langenfeld-Heyser, Rosemarie; Polle, Andrea
2010-09-01
To investigate whether leaves of plane trees (Platanus orientalis) are damaged by traffic pollution, trees from a megacity (Mashhad, Iran) and a rural area were investigated. Soil and air from the urban centre showed enrichment of several toxic elements, but only lead was enriched in leaves. Leaf size and stomata density were lower at the urban site. At the urban site leaf surfaces were heavily loaded by dust particles but the stomata were not occluded; the cuticle was thinner; other anatomical properties were unaffected suggesting that plane trees can cope with traffic exhaust in megacities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eaton, Todd R.; Campos, Michael P.; Gray, Kimberly A.
2014-01-01
It can be difficult to determine the number of active atoms accessible to the fluid phase in mixed oxide catalysts, as required for obtaining true turnover frequencies (TOF). Here, we utilize the selective titration of surface Ti atoms with phenylphosphonic acid (PPA) on TiO 2–SiO 2 materials to estimate the number of reactant-accessible sites. TiO 2–SiO 2 composites were synthesized over a range of Ti loadings from grafting of titanocene dichloride (Cp 2TiCl 2) or tetraethoxy orthotitanate (TEOT) on SiO 2 and sol–gel co-hydrolysis of Si and Ti alkoxides. The materials were characterized by DRUV–vis, XRD, BET, and XANES. Despitemore » the significant morphological and electronic differences, materials prepared by Cp 2TiCl 2 and TEOT yielded a near-constant TOF of 0.14 h -1 (±0.04) across Ti loadings, for benzyl alcohol photooxidation, when normalizing rates by sites titrated by PPA. The fraction of Ti atoms titrated by PPA was strongly dependent on synthesis method and surface density. PPA titration and benzyl alcohol photooxidation may be useful measures of surface accessibility in other supported oxides.« less
Basic data report for drillhole WIPP 30 (Waste Isolation Pilot Plant - WIPP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-04-01
WIPP 30 was drilled in east-central Eddy County, New Mexico, in NW 1/4, Sec. 33, T21S, R31E, to obtain drill core for the study of dissolution of near-surface rocks. The borehole encountered from top to bottom, the Dewey Lake Red Beds (449' including artificial fill for drill pad), Rustler Formation (299'), and the upper 160' of the Salado Formation. Continuous core was cut from the surface to total depth. Geophysical logs were taken the full length of the borehole to measure acoustic velocities, density, and distribution of potassium and other radioactive elements. Information from this borehole will be included inmore » an interpretive report on dissolution in Nash Draw based on combined borehole data, surface mapping and laboratory analyses of rocks and fluids. The WIPP is to demonstrate (through limited operations) disposal technology for transuranic defense wastes and to then be converted to a repository. The WIPP will also provide research facilities for interactions between high-level waste and salt. Administration policy as of February 1980 is to hold the WIPP site in reserve until the first disposal site can be chosen from several potential sites, including the WIPP.« less
Govender, Ashriti; Ferré, Daniel Curulla; Niemantsverdriet, J W Hans
2012-04-23
The thermodynamics and kinetics of the surface hydrogenation of adsorbed atomic carbon to methane, following the reaction sequence C+4H(-->/<--)CH+3H(-->/<--)CH(2)+2H(-->/<--)CH(3)+H(-->/<--)CH(4), are studied on Fe(100) by means of density functional theory. An assessment is made on whether the adsorption energies and overall energy profile are affected when zero-point energy (ZPE) corrections are included. The C, CH and CH(2) species are most stable at the fourfold hollow site, while CH(3) prefers the twofold bridge site. Atomic hydrogen is adsorbed at both the twofold bridge and fourfold hollow sites. Methane is physisorbed on the surface and shows neither orientation nor site preference. It is easily desorbed to the gas phase once formed. The incorporation of ZPE corrections has a very slight, if any, effect on the adsorption energies and does not alter the trends with regards to the most stable adsorption sites. The successive addition of hydrogen to atomic carbon is endothermic up to the addition of the third hydrogen atom resulting in the methyl species, but exothermic in the final hydrogenation step, which leads to methane. The overall methanation reaction is endothermic when starting from atomic carbon and hydrogen on the surface. Zero-point energy corrections are rarely provided in the literature. Since they are derived from C-H bonds with characteristic vibrations on the order of 2500-3000 cm(-1), the equivalent ZPE of 1/2 hν is on the order of 0.2-0.3 eV and its effect on adsorption energy can in principle be significant. Particularly in reactions between CH(x) and H, the ZPE correction is expected to be significant, as additional C-H bonds are formed. In this instance, the methanation reaction energy of +0.77 eV increased to +1.45 eV with the inclusion of ZPE corrections, that is, less favourable. Therefore, it is crucial to include ZPE corrections when reporting reactions involving hydrogen-containing species. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lechner, Barbara A. J.; Feng, Xiaofeng; Feibelman, Peter J.; ...
2017-07-28
Here, we use scanning tunneling microscopy (STM) to investigate the spatial arrangement of carbon monoxide (CO) and hydrogen (H) co-adsorbed on a model catalyst surface, Ru(0001). We find that at cryogenic temperatures CO forms small triangular islands of up to 21 molecules with hydrogen segregated outside of the islands. Furthermore, whereas for small island sizes (3-6 CO molecules) the molecules adsorb at hcp sites, a registry shift towards top sites occurs for larger islands (10-21 CO molecules). To characterize the CO structures better and to help interpret the data, we carried out density functional theory (DFT) calculations of the structuremore » and simulations of the STM images, which reveal a delicate interplay between the repulsions of the different species.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lechner, Barbara A. J.; Feng, Xiaofeng; Feibelman, Peter J.
Here, we use scanning tunneling microscopy (STM) to investigate the spatial arrangement of carbon monoxide (CO) and hydrogen (H) co-adsorbed on a model catalyst surface, Ru(0001). We find that at cryogenic temperatures CO forms small triangular islands of up to 21 molecules with hydrogen segregated outside of the islands. Furthermore, whereas for small island sizes (3-6 CO molecules) the molecules adsorb at hcp sites, a registry shift towards top sites occurs for larger islands (10-21 CO molecules). To characterize the CO structures better and to help interpret the data, we carried out density functional theory (DFT) calculations of the structuremore » and simulations of the STM images, which reveal a delicate interplay between the repulsions of the different species.« less
The application of automatic recognition techniques in the Apollo 9 SO-65 experiment
NASA Technical Reports Server (NTRS)
Macdonald, R. B.
1970-01-01
A synoptic feature analysis is reported on Apollo 9 remote earth surface photographs that uses the methods of statistical pattern recognition to classify density points and clusterings in digital conversion of optical data. A computer derived geological map of a geological test site indicates that geological features of the range are separable, but that specific rock types are not identifiable.
W. J. Massman; J. M. Frank
2006-01-01
Throughout the world fire plays an important role in the management and maintenance of ecosystems. However, if a fire is sufficiently intense, soil can be irreversibly altered and the ability of vegetation, particularly forests, to recover after a fire can be seriously compromised. Because fire is frequently used by land managers to reduce surface fuels, it is...
D.W. Johnson; C.T. Hunsaker; D.W. Glass; B.M. Rau; B.A. Roath
2011-01-01
Soil C and nutrient contents were estimated for eight watersheds in two sites (one high elevation, Bull, and one low elevation, Providence) in the Kings River Experimental Watersheds in the western Sierra Nevada Mountains of California. Eighty-seven quantitative pits were dug to measure soil bulk density and total rock content, while three replicate surface samples...
Ward, H C; Kotthaus, S; Grimmond, C S B; Bjorkegren, A; Wilkinson, M; Morrison, W T J; Evans, J G; Morison, J I L; Iamarino, M
2015-03-01
Anthropogenic and biogenic controls on the surface-atmosphere exchange of CO2 are explored for three different environments. Similarities are seen between suburban and woodland sites during summer, when photosynthesis and respiration determine the diurnal pattern of the CO2 flux. In winter, emissions from human activities dominate urban and suburban fluxes; building emissions increase during cold weather, while traffic is a major component of CO2 emissions all year round. Observed CO2 fluxes reflect diurnal traffic patterns (busy throughout the day (urban); rush-hour peaks (suburban)) and vary between working days and non-working days, except at the woodland site. Suburban vegetation offsets some anthropogenic emissions, but 24-h CO2 fluxes are usually positive even during summer. Observations are compared to estimated emissions from simple models and inventories. Annual CO2 exchanges are significantly different between sites, demonstrating the impacts of increasing urban density (and decreasing vegetation fraction) on the CO2 flux to the atmosphere. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
A flexible metal-organic framework with a high density of sulfonic acid sites for proton conduction
NASA Astrophysics Data System (ADS)
Yang, Fan; Xu, Gang; Dou, Yibo; Wang, Bin; Zhang, Heng; Wu, Hui; Zhou, Wei; Li, Jian-Rong; Chen, Banglin
2017-11-01
The design of stable electrolyte materials with high proton conductivity for use in proton exchange membrane fuel cells remains a challenge. Most of the materials explored have good conductivity at high relative humidity (RH), but significantly decreased conductivity at reduced RH. Here we report a chemically stable and structurally flexible metal-organic framework (MOF), BUT-8(Cr)A, possessing a three-dimensional framework structure with one-dimensional channels, in which high-density sulfonic acid (-SO3H) sites arrange on channel surfaces for proton conduction. We propose that its flexible nature, together with its -SO3H sites, could allow BUT-8(Cr)A to self-adapt its framework under different humid environments to ensure smooth proton conduction pathways mediated by water molecules. Relative to other MOFs, BUT-8(Cr)A not only has a high proton conductivity of 1.27 × 10-1 S cm-1 at 100% RH and 80 °C but also maintains moderately high proton conductivity at a wide range of RH and temperature.
Tétreault, Marie-Philippe; Bourdin, Benoîte; Briot, Julie; Segura, Emilie; Lesage, Sylvie; Fiset, Céline; Parent, Lucie
2016-01-01
Alteration in the L-type current density is one aspect of the electrical remodeling observed in patients suffering from cardiac arrhythmias. Changes in channel function could result from variations in the protein biogenesis, stability, post-translational modification, and/or trafficking in any of the regulatory subunits forming cardiac L-type Ca2+ channel complexes. CaVα2δ1 is potentially the most heavily N-glycosylated subunit in the cardiac L-type CaV1.2 channel complex. Here, we show that enzymatic removal of N-glycans produced a 50-kDa shift in the mobility of cardiac and recombinant CaVα2δ1 proteins. This change was also observed upon simultaneous mutation of the 16 Asn sites. Nonetheless, the mutation of only 6/16 sites was sufficient to significantly 1) reduce the steady-state cell surface fluorescence of CaVα2δ1 as characterized by two-color flow cytometry assays and confocal imaging; 2) decrease protein stability estimated from cycloheximide chase assays; and 3) prevent the CaVα2δ1-mediated increase in the peak current density and voltage-dependent gating of CaV1.2. Reversing the N348Q and N812Q mutations in the non-operational sextuplet Asn mutant protein partially restored CaVα2δ1 function. Single mutation N663Q and double mutations N348Q/N468Q, N348Q/N812Q, and N468Q/N812Q decreased protein stability/synthesis and nearly abolished steady-state cell surface density of CaVα2δ1 as well as the CaVα2δ1-induced up-regulation of L-type currents. These results demonstrate that Asn-663 and to a lesser extent Asn-348, Asn-468, and Asn-812 contribute to protein stability/synthesis of CaVα2δ1, and furthermore that N-glycosylation of CaVα2δ1 is essential to produce functional L-type Ca2+ channels. PMID:26742847
NASA Astrophysics Data System (ADS)
Mastail, C.; David, M.; Nita, F.; Michel, A.; Abadias, G.
2017-11-01
We use ab initio calculations to determine the preferred nucleation sites and migration pathways of Ti, Al and N adatoms on cubic NaCl-structure (B1) AlN surfaces, primary inputs towards a further thin film growth modelling of the TiAlN alloy system. The potential energy landscape is mapped out for both metallic species and nitrogen adatoms for two different AlN surface orientations, (001) and (110), using density functional theory. For all species, the adsorption energies on AlN(011) surface are larger than on AlN(001) surface. Ti and Al adatom adsorption energy landscapes determined at 0 K by ab initio show similar features, with stable binding sites being located in, or near, epitaxial surface positions, with Ti showing a stronger binding compared to Al. In direct contrast, N adatoms (Nad) adsorb preferentially close to N surface atoms (Nsurf), thus forming strong N2-molecule-like bonds on both AlN(001) and (011). Similar to N2 desorption mechanisms reported for other cubic transition metal nitride surfaces, in the present work we investigate Nad/Nsurf desorption on AlN(011) using a drag calculation method. We show that this process leaves a Nsurf vacancy accompanied with a spontaneous surface reconstruction, highlighting faceting formation during growth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srinivasan, Sriram Goverapet; Shivaramaiah, Radha; Kent, Paul R. C.
2016-07-11
Bastnasite is a fluoro-carbonate mineral that is the largest source of rare earth elements such as Y, La and Ce. With increasing demand for REE in many emerging technologies, there is an urgent need for improving the efficiency of ore beneficiation by froth flotation. In order to design improved flotation agents that can selectively bind to the mineral surface, a fundamental understanding of the bulk and surface properties of bastnasite is essential. Density functional theory calculations using the PBEsol exchange correlation functional and the DFT-D3 dispersion correction reveal that the most stable form of La bastnsite is isomorphic to themore » structure of Ce bastnasite belonging to the P2c space group, while the Inorganic Crystal Structure Database structure in the P2m space group is ca. 11.3 kJ/mol higher in energy per LaFCO 3 formula unit. We report powder X-ray diffraction measurements on synthetic of La bastnasite to support these theoretical findings. Six different surfaces are studied by DFT, namely [100], [0001], [101], [102], [104] and [112]. Among these, the [100] surface is the most stable with a surface energy of 0.73 J/m 2 in vacuum and 0.45 J/m 2 in aqueous solution. We predicted the shape of a La bastnasite nanoparticle via thermodynamic Wulff construction to be a hexagonal prism with [100] and [0001] facets, chiseled at its ends by the [101] and [102] facets. The average surface energy of the nanoparticle in the gas phase is estimated to be 0.86 J/m 2, in good agreement with a value of 1.11 J/m 2 measured by calorimetry. The calculated adsorption energy of a water molecule varies widely with the surface plane and specific adsorption sites on a given surface. Moreover, the first layer of water molecules is predicted to adsorb strongly on the La-bastnasite surface, in agreement with water adsorption calorimetry experiments. Our work provides an important step towards a detailed atomistic understanding of the bastnasite water interface and designing collector molecules that can bind specifically to bastnasite.« less
Anomalously-dense firn in an ice-shelf channel revealed by wide-angle radar
NASA Astrophysics Data System (ADS)
Drews, R.; Brown, J.; Matsuoka, K.; Witrant, E.; Philippe, M.; Hubbard, B.; Pattyn, F.
2015-10-01
The thickness of ice shelves, a basic parameter for mass balance estimates, is typically inferred using hydrostatic equilibrium for which knowledge of the depth-averaged density is essential. The densification from snow to ice depends on a number of local factors (e.g. temperature and surface mass balance) causing spatial and temporal variations in density-depth profiles. However, direct measurements of firn density are sparse, requiring substantial logistical effort. Here, we infer density from radio-wave propagation speed using ground-based wide-angle radar datasets (10 MHz) collected at five sites on Roi Baudouin Ice Shelf (RBIS), Dronning Maud Land, Antarctica. Using a novel algorithm including traveltime inversion and raytracing with a prescribed shape of the depth-density relationship, we show that the depth to internal reflectors, the local ice thickness and depth-averaged densities can reliably be reconstructed. For the particular case of an ice-shelf channel, where ice thickness and surface slope change substantially over a few kilometers, the radar data suggests that firn inside the channel is about 5 % denser than outside the channel. Although this density difference is at the detection limit of the radar, it is consistent with a similar density anomaly reconstructed from optical televiewing, which reveals 10 % denser firn inside compared to outside the channel. The denser firn in the ice-shelf channel should be accounted for when using the hydrostatic ice thickness for determining basal melt rates. The radar method presented here is robust and can easily be adapted to different radar frequencies and data-acquisition geometries.
Constraining variable density of ice shelves using wide-angle radar measurements
NASA Astrophysics Data System (ADS)
Drews, Reinhard; Brown, Joel; Matsuoka, Kenichi; Witrant, Emmanuel; Philippe, Morgane; Hubbard, Bryn; Pattyn, Frank
2016-04-01
The thickness of ice shelves, a basic parameter for mass balance estimates, is typically inferred using hydrostatic equilibrium, for which knowledge of the depth-averaged density is essential. The densification from snow to ice depends on a number of local factors (e.g., temperature and surface mass balance) causing spatial and temporal variations in density-depth profiles. However, direct measurements of firn density are sparse, requiring substantial logistical effort. Here, we infer density from radio-wave propagation speed using ground-based wide-angle radar data sets (10 MHz) collected at five sites on Roi Baudouin Ice Shelf (RBIS), Dronning Maud Land, Antarctica. We reconstruct depth to internal reflectors, local ice thickness, and firn-air content using a novel algorithm that includes traveltime inversion and ray tracing with a prescribed shape of the depth-density relationship. For the particular case of an ice-shelf channel, where ice thickness and surface slope change substantially over a few kilometers, the radar data suggest that firn inside the channel is about 5 % denser than outside the channel. Although this density difference is at the detection limit of the radar, it is consistent with a similar density anomaly reconstructed from optical televiewing, which reveals that the firn inside the channel is 4.7 % denser than that outside the channel. Hydrostatic ice thickness calculations used for determining basal melt rates should account for the denser firn in ice-shelf channels. The radar method presented here is robust and can easily be adapted to different radar frequencies and data-acquisition geometries.
Tang, Hongjian; Duan, Yufeng; Zhu, Chun; Cai, Tianyi; Li, Chunfeng; Cai, Liang
2017-10-01
Alkali metal-based sorbents are potential for oxidized mercury (Hg 2+ ) selective adsorption but show hardly effect to elemental mercury (Hg 0 ) in flue gas. Density functional theory (DFT) was employed to investigate the Hg 0 and HgCl 2 adsorption mechanism over alkali metal-based sorbents, including calcium oxide (CaO), magnesium oxide (MgO), potassium chloride (KCl) and sodium chloride (NaCl). Hg 0 was found to weakly interact with CaO (001), MgO (001), KCl (001) and NaCl (001) surfaces while HgCl 2 was effectively adsorbed on top-O and top-Cl sites. Charge transfer and bond population were calculated to discuss the covalency and ionicity of HgCl 2 bonding with the adsorption sites. The partial density of states (PDOS) analysis manifests that HgCl 2 strongly interacts with surface sites through the orbital hybridizations between Hg and top O or Cl. Frontier molecular orbital (FMO) energy and Mulliken electronegativity are introduced as the quantitative criteria to evaluate the reactivity of mercury species and alkali metal-based sorbents. HgCl 2 is identified as a Lewis acid and more reactive than Hg 0 . The Lewis basicity of the four alkali metal-based sorbents is predicted as the increasing order: NaCl < MgO < KCl < CaO, in consistence with the trend of HgCl 2 adsorption energies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dominance of grain size impacts on seasonal snow albedo at open sites in New Hampshire
NASA Astrophysics Data System (ADS)
Adolph, Alden C.; Albert, Mary R.; Lazarcik, James; Dibb, Jack E.; Amante, Jacqueline M.; Price, Andrea
2017-01-01
Snow cover serves as a major control on the surface energy budget in temperate regions due to its high reflectivity compared to underlying surfaces. Winter in the northeastern United States has changed over the last several decades, resulting in shallower snowpacks, fewer days of snow cover, and increasing precipitation falling as rain in the winter. As these climatic changes occur, it is imperative that we understand current controls on the evolution of seasonal snow albedo in the region. Over three winter seasons between 2013 and 2015, snow characterization measurements were made at three open sites across New Hampshire. These near-daily measurements include spectral albedo, snow optical grain size determined through contact spectroscopy, snow depth, snow density, black carbon content, local meteorological parameters, and analysis of storm trajectories using the Hybrid Single-Particle Lagrangian Integrated Trajectory model. Using analysis of variance, we determine that land-based winter storms result in marginally higher albedo than coastal storms or storms from the Atlantic Ocean. Through multiple regression analysis, we determine that snow grain size is significantly more important in albedo reduction than black carbon content or snow density. And finally, we present a parameterization of albedo based on days since snowfall and temperature that accounts for 52% of variance in albedo over all three sites and years. Our improved understanding of current controls on snow albedo in the region will allow for better assessment of potential response of seasonal snow albedo and snow cover to changing climate.
Light Makes a Surface Banana-Bond Split: Photodesorption of Molecular Hydrogen from RuO 2 (110)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, Michael A.; Mu, Rentao; Dahal, Arjun
The coordination of H2 to a metal center via polarization of its bond electron density, known as a Kubas complex, is the means by which H2 chemisorbs at Ru4+ sites on the rutile RuO2(110) surface. This distortion of electron density off an interatomic axis is often described as a ‘banana-bond.’ We show that the Ru-H2 banana-bond can be destabilized, and split, using visible light. Photodesorption of H2 (or D2) is evident by mass spectrometry and scanning tunneling microscopy. From time-dependent density functional theory, the key optical excitation splitting the Ru-H2 banana-bond involves an interband transition in RuO2 which effectively diminishesmore » its Lewis acidity, and thereby weakening the Kubas complex. Such excitations are not expected to affect adsorbates on RuO2 given its metallic properties. Therefore, this common thermal co-catalyst employed in promoting water splitting is, itself, photo-active in the visible.« less
NASA Astrophysics Data System (ADS)
Arjunan, V.; Saravanan, I.; Marchewka, Mariusz K.; Mohan, S.
Experimental FTIR and FT-Raman spectroscopic analysis of 2-chloro-4-methyl-3-nitropyridine (2C4M3NP) and 2-chloro-6-methylpyridine (2C6MP) have been performed. A detailed quantum chemical calculations have been carried out using B3LYP and B3PW91 methods with 6-311++G** and cc-pVTZ basis sets. Conformation analysis was carried for 2C4M3NP and 2C6MP. The temperature dependence of thermodynamic properties has been analysed. The atomic charges, electronic exchange interaction and charge delocalisation of the molecule have been performed by natural bond orbital (NBO) analysis. Molecular electrostatic surface potential (MESP), total electron density distribution and frontier molecular orbitals (FMOs) are constructed at B3LYP/6-311++G** level to understand the electronic properties. The charge density distribution and site of chemical reactivity of the molecules have been obtained by mapping electron density isosurface with electrostatic potential surfaces (ESP). The electronic properties, HOMO and LUMO energies were measured by time-dependent TD-DFT approach.
Moran, M.S.; Jackson, R. D.; Raymond, L.H.; Gay, L.W.; Slater, P.N.
1989-01-01
Surface energy balance components were evaluated by combining satellite-based spectral data with on-site measurements of solar irradiance, air temperature, wind speed, and vapor pressure. Maps of latent heat flux density (??E) and net radiant flux density (Rn) were produced using Landsat Thematic Mapper (TM) data for three dates: 23 July 1985, 5 April 1986, and 24 June 1986. On each date, a Bowen-ratio apparatus, located in a vegetated field, was used to measure ??E and Rn at a point within the field. Estimates of ??E and Rn were also obtained using radiometers aboard an aircraft flown at 150 m above ground level. The TM-based estimates differed from the Bowen-ratio and aircraft-based estimates by less than 12 % over mature fields of cotton, wheat, and alfalfa, where ??E and Rn ranged from 400 to 700 Wm-2. ?? 1989.
Thermophysical Property Measurements in the MSFC ESL
NASA Technical Reports Server (NTRS)
Hyers, R. W.; Rogers, J. R.; Robinson, M. B.; Rathz, T. J.; Curreri, Peter A. (Technical Monitor)
2002-01-01
Electrostatic Levitation (ESL) is an advanced technique for containerless processing of metals, ceramics, and semiconductors. Because no container is required, there is no contamination from reaction with a crucible, allowing processing of high temperature, highly reactive melts. The high vacuum processing environment further reduces possible contamination of the samples. Finally, there is no container to provide heterogeneous nucleation sites, so the undercooled range is also accessible for many materials. For these reasons, ESL provides a unique environment for measuring thermophysical properties of liquid materials. The properties that can be measured in ESL include density, surface tension, viscosity, electrical and thermal conductivity, specific heat, phase diagram, TTT- and CCT- curves, and other thermodynamic properties. In this paper, we present data on surface tension and viscosity, measured by the oscillating drop technique, and density, measured by an automated photographic technique, measured in the ESL at NASA Marshall Space Flight Center.
NASA Astrophysics Data System (ADS)
Järvi, L.; Grimmond, S. B.; Christen, A.; McFadden, J. P.; Strachan, I. B.
2016-12-01
Urban effects on climate are often pronounced in winter due to large anthropogenic heat releases and differences in snow cover between urban and surrounding rural areas. In this study, we simulate energy and water balances in cities characterized by cold winter climates with snow. Eleven urban sites from Helsinki (Finland), Basel (Switzerland), Montreal (Canada) and Minneapolis (USA) are analysed. The sites were selected based on the availability of either measured turbulent fluxes (from eddy covariance) or surface runoff to be used for model evaluation. The sites vary with respect to land cover fractions, irrigation habits and population densities. For example, the plan area fraction of impervious surface varies from 5% in Minneapolis to 84% in Basel. To simulate urban energy and water balances, we use the Surface Urban Energy and Water balance Scheme (SUEWS) model, which has been designed to minimize the number of required input variables and model parameters. For each site, the model is run in an offline mode using measured hourly meteorological data with a time step of 5-min. As the modelled time periods range from one (Basel) to 7.5 years (Helsinki), a wide range of meteorological conditions occur. Our results show how both evaporation and surface runoff are highly dependent on the fraction of impervious surface cover (r > |0.8|) during snow-free periods. However, high year-to-year variability in simulated evaporation and runoff indicates that climatological factors are also important. In winter, the amount and duration of snow cover become import controlling factor in determining the two components of water balance. The shorter the snow cover period is, the larger the cumulative runoff tends to be. Thus, our results suggest that warmer winters with less snow will increase the stress on drainage systems and modify the urban ecosystem via changes in evaporation and Bowen ratio. Also, our results indicate that simply using the fraction of impervious or pervious surfaces when estimating the surface runoff at different sites is not sufficient, but rather inter-annual variability in climatology also needs to be considered.
Analysis of a terminal landing on Mars
NASA Astrophysics Data System (ADS)
Tuckness, Dan G.
1995-01-01
This study consists of a preliminary performance and sensitivity assessment of trajectory and guidance capabilities of a Mars terminal landing phase. The phase begins with the end of the entry phase, which is at parachute deployment. Therefore, the trajectory investigated in this study starts at parachute deployment and continues through parachute jettison and finally propulsive deceleration and maneuvering to a specified landing site. Various landing navigation maneuver schemes and environmental conditions for the lander are investigated and their performance analyzed. Effects of atmospheric density and surface wind deviations on landing guidance are investigated using stochastic wind and density models. Simulation shows that the lander guidance is robust to wind and density dispersions. Density dispersions are found to be more critical for a precision landing than wind dispersions. Also, because of the aerodynamic characteristics of current aeroshell vehicle designs, very little terminal maneuvering is allowed for navigation.
Mayo Marques, Marcia Ortiz; Maria Rodrigues, Tatiane
2017-01-01
Abstract Herbivory can induce several structural and functional alterations in the plant secretory system. Glandular trichomes are the main sites of production of volatile organic compounds (VOCs) with several chemical properties in Lamiaceae species. Ocimum species usually have three morphotypes of glandular trichomes (morphotype I is peltate and has a wide four-celled head; morphotype II is capitate and has a unicellular head; and morphotype III is capitate with a bicellular head) which produce a great amount of terpenes, although other chemical categories of substances are also produced. Despite the abundance of trichomes producing important anti-herbivory components in their leaves, the association between Ocimum species and leaf-cutter ants has been commonly registered in Brazil. We investigated the effect of leaf-cutter ant attack on the density of the glandular trichomes and on the chemistry of the VOCs released from leaves of O. gratissimum. Plants were subjected to Acromyrmex rugosus attack until 90 % of leaves were removed. After 40 days from the leaf-cutter attack, both treatments were sampled. The glandular trichome density was analysed by scanning electron microscopy. The VOCs were extracted utilizing headspace solid-phase microextraction (HS-SPME) technique and analysed by gas chromatography. Generally, the density of glandular trichomes increased in the adaxial leaf surface of the attacked plants. However, we bring novelties on this topic since we analysed the density of each morphotype separately. The morphotype I decreased in the abaxial leaf surface, and increased in the adaxial leaf surface; the morphotype II increased in both leaf surfaces; and the morphotype III decreased in the abaxial leaf surface and remained constant in the adaxial leaf surface of attacked plants. In leaves of attacked plants, the (Z)-β-ocimene increased by 50 %, the α-selinene by 13 % and the germacrene D by 126 %, whereas the eugenol decreased by 70 %. Our data point to a differential response of each glandular morphotype in O. gratissimum and are consistent with the idea of a compartmentalization of functions among the different glandular morphotypes in the plant defence against environmental factors. PMID:29218139
Variations in Below Canopy Turbulent Flux From Snow in North American Mountain Environments
NASA Astrophysics Data System (ADS)
Essery, R.; Marks, D.; Pomeroy, J.; Grangere, R.; Reba, M.; Hedstrom, N.; Link, T.; Winstral, A.
2004-12-01
Sensible and latent heat and mass fluxes from the snow surface are modulated by site canopy density and structure. Forest and shrub canopies reduce wind speeds and alter the radiation and thermal environment which will alter the below canopy energetics that control the magnitude of turbulent fluxes between the snow surface and the atmosphere. In this study eddy covariance (EC) systems were located in three experimental catchments along a mountain transect through the North American Cordillera. Within each catchment, a variety of sites representing the local range of climate, weather, and canopy conditions were selected for measurement of sensible and latent heat and mass flux from the snow surface. EC measurements were made 1) below a uniform pine canopy (2745m) in the Fraser Experimental Forest in Colorado from February through June melt-out in 2003; 2) at an open, unforested site (2100m), and below an Aspen canopy (2055m) within a small headwater catchment in the Reynolds Creek Experimental Watershed, Owyhee Mts., Idaho from October, 2003, through June melt-out, 2004; and 3) at five sites, representing a range of conditions: a) below a dense spruce forest (750m); b) a north-facing shrub-tundra slope (1383m); c) a south-facing shrub-tundra slope; d) the valley bottom between b) and c) (1363m); and e) a tundra site (1402m) in the Wolf Creek Research Basin (WCRB) in the Yukon, Canada during the 2001 and 2002 snow seasons. Summary data from all sites are presented and compared including the relative significance of sublimation losses at each site, the importance of interception losses to the snowcover mass balance, and the occurrence of condensation events. Site and weather conditions that inhibit or enhance flux from the snow surface are discussed. This research will improve snow modeling by allowing better representation of turbulent fluxes from snow in forested regions, and improved simulation of the snowcover mass balance over low deposition, high latitude sites such as WCRB, and during drought conditions at mid-latitude sites such as Fraser, Colorado, and RCEW in Idaho.
Gold nanoparticles with different capping systems: an electronic and structural XAS analysis.
López-Cartes, C; Rojas, T C; Litrán, R; Martínez-Martínez, D; de la Fuente, J M; Penadés, S; Fernández, A
2005-05-12
Gold nanoparticles (NPs) have been prepared with three different capping systems: a tetralkylammonium salt, an alkanethiol, and a thiol-derivatized neoglycoconjugate. Also gold NPs supported on a porous TiO(2) substrate have been investigated. X-ray absorption spectroscopy (XAS) has been used to determine the electronic behavior of the different capped/supported systems regarding the electron/hole density of d states. Surface and size effects, as well as the role of the microstructure, have been also studied through an exhaustive analysis of the EXAFS (extended X-ray absorption fine structure) data. Very small gold NPs functionalized with thiol-derivatized molecules show an increase in d-hole density at the gold site due to Au-S charge transfer. This effect is overcoming size effects (which lead to a slightly increase of the d-electron density) for high S:Au atomic ratios and core-shell microstructures where an atomically abrupt Au-S interface likely does not exist. It has been also shown that thiol functionalization of very small gold NPs is introducing a strong distortion as compared to fcc order. To the contrary, electron transfer from reduced support oxides to gold NPs can produce a higher increase in d-electron density at the gold site, as compared to naked gold clusters.
The size, shape, density, and albedo of Ceres from its occultation of BD+8 deg 471
NASA Technical Reports Server (NTRS)
Millis, R. L.; Wasserman, L. H.; Franz, O. G.; Nye, R. A.; Oliver, R. C.; Kreidl, T. J.; Jones, S. E.; Hubbard, W.; Lebofsky, L.; Goff, R.
1986-01-01
The occultation of BD+8 degrees 471 by Ceres on 13 November 1984 was observed photoelectrically at 13 sites in Mexico, Florida, and the Caribbean. These observations indicate that Ceres is an oblate spheroid having an equatorial radius of 479.6 + or - 2.4 km and a polar radius of 453.4 + or - 4.5 km. The mean density of this minor planet is 2.7 gm/cubic cm + or - 5%, and its visual geometric albedo is 0.070. While the surface appears globally to be in hydrostatic equilibrium, firm evidence of real limb irregularities is seen in the data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Mingxia; Cheng, Lei; Choi, Jae-Soon
Density functional theory (DFT) calculations were used in this paper to investigate the effect of Ni dopants on the removal of chemisorbed oxygen (O*) from the Mo-terminated (T Mo) and C-terminated (T C) Mo 2C(001) surfaces. The removal of adsorbed oxygen from the catalytic site is essential to maintain the long-term activity and selectivity of the carbide catalysts in the deoxygenation process related to bio-oil stabilization and upgrading. In this contribution, the computed reaction energetics and reaction barriers of O* removal were compared among undoped and Ni-doped Mo 2C(001) surfaces. The DFT calculations indicate that selected Ni-doped surfaces such asmore » Ni adsorbed on T Mo and T C Mo 2C(001) surfaces enable weaker binding of important reactive intermediates (O*, OH*) compared to the undoped counterparts, which is beneficial for the O* removal from the catalyst surface. This study thus confirms the promoting effect of the Ni dopant on O* removal reaction on the T Mo Mo 2C(001) and T C Mo 2C(001) surfaces. Finally, this computational prediction has been confirmed by the temperature-programmed reduction profiles of Mo 2C and Ni-doped Mo 2C catalysts, which had been passivated and stored in an oxygen environment.« less
Zhou, Mingxia; Cheng, Lei; Choi, Jae-Soon; ...
2017-12-22
Density functional theory (DFT) calculations were used in this paper to investigate the effect of Ni dopants on the removal of chemisorbed oxygen (O*) from the Mo-terminated (T Mo) and C-terminated (T C) Mo 2C(001) surfaces. The removal of adsorbed oxygen from the catalytic site is essential to maintain the long-term activity and selectivity of the carbide catalysts in the deoxygenation process related to bio-oil stabilization and upgrading. In this contribution, the computed reaction energetics and reaction barriers of O* removal were compared among undoped and Ni-doped Mo 2C(001) surfaces. The DFT calculations indicate that selected Ni-doped surfaces such asmore » Ni adsorbed on T Mo and T C Mo 2C(001) surfaces enable weaker binding of important reactive intermediates (O*, OH*) compared to the undoped counterparts, which is beneficial for the O* removal from the catalyst surface. This study thus confirms the promoting effect of the Ni dopant on O* removal reaction on the T Mo Mo 2C(001) and T C Mo 2C(001) surfaces. Finally, this computational prediction has been confirmed by the temperature-programmed reduction profiles of Mo 2C and Ni-doped Mo 2C catalysts, which had been passivated and stored in an oxygen environment.« less
Strategies to Improve the Accuracy of Mars-GRAM Sensitivity Studies at Large Optical Depths
NASA Technical Reports Server (NTRS)
Justh, Hilary L.; Justus, Carl G.; Badger, Andrew M.
2009-01-01
The Mars Global Reference Atmospheric Model (Mars-GRAM) is an engineering-level atmospheric model widely used for diverse mission applications. Mars-GRAM s perturbation modeling capability is commonly used, in a Monte-Carlo mode, to perform high fidelity engineering end-to-end simulations for entry, descent, and landing (EDL). It has been discovered during the Mars Science Laboratory (MSL) site selection process that Mars-GRAM when used for sensitivity studies for MapYear=0 and large optical depth values such as tau=3 is less than realistic. A comparison study between Mars atmospheric density estimates from Mars- GRAM and measurements by Mars Global Surveyor (MGS) has been undertaken for locations of varying latitudes, Ls, and LTST on Mars. The preliminary results from this study have validated the Thermal Emission Spectrometer (TES) limb data. From the surface to 80 km altitude, Mars- GRAM is based on the NASA Ames Mars General Circulation Model (MGCM). MGCM results that were used for Mars-GRAM with MapYear=0 were from a MGCM run with a fixed value of tau=3 for the entire year at all locations. Unrealistic energy absorption by uniform atmospheric dust leads to an unrealistic thermal energy balance on the polar caps. The outcome is an inaccurate cycle of condensation/sublimation of the polar caps and, as a consequence, an inaccurate cycle of total atmospheric mass and global-average surface pressure. Under an assumption of unchanged temperature profile and hydrostatic equilibrium, a given percentage change in surface pressure would produce a corresponding percentage change in density at all altitudes. Consequently, the final result of a change in surface pressure is an imprecise atmospheric density at all altitudes. To solve this pressure-density problem, a density factor value was determined for tau=.3, 1 and 3 that will adjust the input values of MGCM MapYear 0 pressure and density to achieve a better match of Mars-GRAM MapYear=0 with MapYears 1 and 2 MGCM output at comparable dust loading. Currently, these density factors are fixed values for all latitudes and Ls. Results will be presented of the work underway to derive better multipliers by including possible variation with latitude and/or Ls. This is achieved by comparison of Mars-GRAM MapYear=0 output with TES limb data. The addition of these density factors to Mars-GRAM will improve the results of the sensitivity studies done for large optical depths. Answers may also be provided to the issues raised in a recent study by Desai(2008). Desai has shown that the actual landing sites of Mars Pathfinder, the Mars Exploration Rovers and the Phoenix Mars Lander have been further downrange than predicted by models prior to landing. Desai s reconstruction of their entries into the Martian atmosphere showed that the models consistently predicted higher densities than those found upon EDL. The solution of this problem would be important to the Mars Program since future exploration of Mars by landers and rovers will require more accurate landing capabilities, especially for the proposed Mars Sample Return mission.
First-principles study of the interaction of H2O with the GaSb (001) surface
NASA Astrophysics Data System (ADS)
Bermudez, V. M.
2013-05-01
The adsorption of H2O on the GaSb (001) surface, both clean and with pre-adsorbed H atoms, has been studied computationally using dispersion-corrected density functional theory. The model employed is the α-(4×3) reconstruction consisting of Ga-Sb dimers adsorbed on the Sb-terminated surface, a disordered version of which is believed to constitute the frequently observed Sb-rich (1×3) surface. On the clean surface, molecular adsorption of H2O at a coordinatively unsaturated Ga site is exothermic (ΔE = -0.57 eV), but dissociation of this adsorbed H2O is significantly endothermic (ΔE = +0.45 eV or more). Dissociation can form either a (HO)Ga-Sb(H) site involving a Ga-Sb dimer or a (H)Ga-O(H)-Sb bridge. Other reactions are also energetically feasible, depending on the bond strength of different inequivalent Ga-Sb dimers. The two structures have essentially the same energy, and both can undergo an exothermic reaction with a second H2O. For the (HO)Ga-Sb(H) site, this reaction leads to the breaking of the dimer bond and the adsorption of molecular water, while the (H)Ga-O(H)-Sb bridge transforms to (HO)Ga-O(H)-Sb with the release of H2. On the H-terminated surface, molecular adsorption of H2O can be suppressed and dissociative adsorption enhanced, which means that formation of an OH-terminated surface may be easier when starting with an H-terminated vs. a clean surface. The implications of these results for the growth of oxide/GaSb heterostructures via atomic layer deposition are discussed.
Spectroscopic Infrared Extinction Mapping as a Probe of Grain Growth in IRDCs
NASA Astrophysics Data System (ADS)
Lim, Wanggi; Carey, Sean J.; Tan, Jonathan C.
2015-11-01
We present spectroscopic tests of MIR to FIR extinction laws in IRDC G028.36+00.07, a potential site of massive star and star cluster formation. Lim & Tan developed methods of FIR extinction mapping of this source using Spitzer-MIPS 24 μm and Herschel-PACS 70 μm images, and by comparing to MIR Spitzer-IRAC 3-8 μm extinction maps, found tentative evidence for grain growth in the highest mass surface density regions. Here we present results of spectroscopic infrared extinction mapping using Spitzer-IRS (14-38 μm) data of the same Infrared dark cloud (IRDC). These methods allow us to first measure the SED of the diffuse Galactic interstellar medium that is in the foreground of the IRDC. We then carry out our primary investigation of measuring the MIR to FIR opacity law and searching for potential variations as a function of mass surface density within the IRDC. We find relatively flat, featureless MIR-FIR opacity laws that lack the ˜12 and ˜35 μm features associated with the thick water ice mantle models of Ossenkopf & Henning. Their thin ice mantle models and the coagulating aggregate dust models of Ormel et al. are a generally better match to the observed opacity laws. We also find evidence for generally flatter MIR to FIR extinction laws as mass surface density increases, strengthening the evidence for grain and ice mantle growth in higher density regions.
SPECTROSCOPIC INFRARED EXTINCTION MAPPING AS A PROBE OF GRAIN GROWTH IN IRDCs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Wanggi; Carey, Sean J.; Tan, Jonathan C.
We present spectroscopic tests of MIR to FIR extinction laws in IRDC G028.36+00.07, a potential site of massive star and star cluster formation. Lim and Tan developed methods of FIR extinction mapping of this source using Spitzer-MIPS 24 μm and Herschel-PACS 70 μm images, and by comparing to MIR Spitzer-IRAC 3–8 μm extinction maps, found tentative evidence for grain growth in the highest mass surface density regions. Here we present results of spectroscopic infrared extinction mapping using Spitzer-IRS (14–38 μm) data of the same Infrared dark cloud (IRDC). These methods allow us to first measure the SED of the diffusemore » Galactic interstellar medium that is in the foreground of the IRDC. We then carry out our primary investigation of measuring the MIR to FIR opacity law and searching for potential variations as a function of mass surface density within the IRDC. We find relatively flat, featureless MIR–FIR opacity laws that lack the ∼12 and ∼35 μm features associated with the thick water ice mantle models of Ossenkopf and Henning. Their thin ice mantle models and the coagulating aggregate dust models of Ormel et al. are a generally better match to the observed opacity laws. We also find evidence for generally flatter MIR to FIR extinction laws as mass surface density increases, strengthening the evidence for grain and ice mantle growth in higher density regions.« less
Surface diffusion on SrTiO3 (100): A temperature accelerated dynamics and first principles study
NASA Astrophysics Data System (ADS)
Hong, Minki; Wohlwend, Jennifer L.; Behera, Rakesh K.; Phillpot, Simon R.; Sinnott, Susan B.; Uberuaga, Blas P.
2013-11-01
Temperature accelerated dynamics (TAD) with an empirical potential is used to predict diffusion mechanisms and energy barriers associated with surface diffusion of adatoms and surface vacancies on (100) SrTiO3 (STO). Specifically, Sr, O, and Ti adatoms and vacancies are investigated on each termination - SrO and TiO2 - of the SrTiO3 surface. We find that the empirical potential predicts different surface mobility of adatoms depending on the surface termination: they are mobile with relatively low diffusion barriers on the SrO-terminated surface, whereas they are largely immobile on the TiO2-terminated surface. One important finding is that, of the two binding sites on the SrO-terminated surface, one is typically very close in energy to the saddle point. Thus, one of the two sites is a good estimator of the migration energy of the adatom, a conclusion supported by select density functional theory (DFT) calculations. Motivated by this result, we calculate the migration energies for a number of metal elements on the SrO-terminated surface: Ti, Ba, La, and Al. The DFT results also reveal that the details of the migration mechanism depend on the charge state of the diffusing species and that the ability of the empirical potential to properly estimate the migration mechanism depends on the magnitude and variability of the charge transfer between the adatom and the surface.
NASA Astrophysics Data System (ADS)
Kucharik, C.; Roth, J.
2002-12-01
The threat of global climate change has provoked policy-makers to consider plausible strategies to slow the accumulation of greenhouse gases, especially carbon dioxide, in the atmosphere. One such idea involves the sequestration of atmospheric carbon (C) in degraded agricultural soils as part of the Conservation Reserve Program (CRP). While the potential for significant C sequestration in CRP grassland ecosystems has been demonstrated, the paired-site sampling approach traditionally used to quantify soil C changes has not been evaluated with robust statistical analysis. In this study, 14 paired CRP (> 8 years old) and cropland sites in Dane County, Wisconsin (WI) were used to assess whether a paired-site sampling design could detect statistically significant differences (ANOVA) in mean soil organic C and total nitrogen (N) storage. We compared surface (0 to 10 cm) bulk density, and sampled soils (0 to 5, 5 to 10, and 10 to 25 cm) for textural differences and chemical analysis of organic matter (OM), soil organic C (SOC), total N, and pH. The CRP contributed to lowering soil bulk density by 13% (p < 0.0001) and increased SOC and OM storage (kg m-2) by 13 to 17% in the 0 to 5 cm layer (p = 0.1). We tested the statistical power associated with ANOVA for measured soil properties, and calculated minimum detectable differences (MDD). We concluded that 40 to 65 paired sites and soil sampling in 5 cm increments near the surface were needed to achieve an 80% confidence level (α = 0.05; β = 0.20) in soil C and N sequestration rates. Because soil C and total N storage was highly variable among these sites (CVs > 20%), only a 23 to 29% change in existing total organic C and N pools could be reliably detected. While C and N sequestration (247 kg C ha{-1 } yr-1 and 17 kg N ha-1 yr-1) may be occurring and confined to the surface 5 cm as part of the WI CRP, our sampling design did not statistically support the desired 80% confidence level. We conclude that usage of statistical power analysis is essential to insure a high level of confidence in soil C and N sequestration rates that are quantified using paired plots.
NASA Astrophysics Data System (ADS)
Naderi, Ebadollah; Nanavati, Sachin P.; Majumder, Chiranjib; Ghaisas, S. V.
2014-03-01
In the present work we have calculated using density functional theory (DFT), diffusion barrier potentials on both the CdTe (111) surfaces, Cd terminated (A-type) & Te terminated (B-type). We employ nudge elastic band method (NEB) for obtaining the barrier potentials. The barrier is computed for Cd and for Te adatoms on both A-type and B-type surfaces. We report two energetically favourable positions along the normal to the surface, one above and other below the surface. The one above the surface has binding energy slightly more the one below. According to the results of this work, binding energy (in all cases) for adatoms are reasonable and close to experimental data. The barrier potential for hopping adatoms (Cd and Te) on both the surfaces is less than 0.35 eV. Apart from these most probable sites, there are other at least two sites on both the types of surfaces which are meta stable. We have also computed barriers for hopping to and from these meta stable positions. The present results can shade light on the defect formation mechanism in CdTe thin films during growth. The authors would like to thank C-DAC for the computing time on its PARAM series of supercomputers and DST Govt. of India, for partial funding.
Shakiba, Amin; Jamison, Andrew C; Lee, T Randall
2015-06-09
Surfaces modified with poly(L-lysine) can be used to immobilize selected biomolecules electrostatically. This report describes the preparation of a set of self-assembled monolayers (SAMs) from three different azide-terminated adsorbates as platforms for performing controlled surface attachments and as a means of determining the parameters that afford stable poly(L-lysine)-modified SAM surfaces having controlled packing densities. A maleimide-terminated alkyne linker was "clicked" to the azide-terminated surfaces via a copper-catalyzed cycloaddition reaction to produce the attachment sites for the polypeptides. A thiol-Michael addition was then used to immobilize cysteine-terminated poly(L-lysine) moieties on the gold surface, avoiding adsorbate self-reactions with this two-step procedure. Each step in this process was analyzed by ellipsometry, X-ray photoelectron spectroscopy, polarization modulation infrared reflection-absorption spectroscopy, and contact angle goniometry to determine which adsorbate structure most effectively produced the targeted polypeptide interface. Additionally, a series of mixed SAMs using an azidoalkanethiol in combination with a normal alkanethiol having an equivalent alkyl chain were prepared to provide data to determine how dilution of the azide reactive site on the SAM surface influences the initial click reaction. Overall, the collected data demonstrate the advantages of an appropriately designed bidentate absorbate and its potential to form effective platforms for biomolecule surface attachment via click reactions.