Sample records for surface soil salinity

  1. Seasonal variation in apparent conductivity and soil salinity at two Narragansett Bay salt marshes

    EPA Science Inventory

    Measurement of the apparent conductivity of salt marsh sediments using electromagnetic induction (EMI) is a rapid alternative to traditional methods of salinity determination that can be used to map soil salinity across a marsh surface. Soil salinity measures can provide informat...

  2. Abacus to determine soils salinity in presence of saline groundwater in arid zones case of the region of Ouargla

    NASA Astrophysics Data System (ADS)

    Fergougui, Myriam Marie El; Benyamina, Hind; Boutoutaou, Djamel

    2018-05-01

    In order to remedy the limit of salt intake to the soil surface, it is necessary to study the causes of the soil salinity and find the origin of these salts. The arid areas in the region of Ouargla lie on excessively mineralized groundwater whose level is near the soil surface (0 - 1.5 m). The topography and absence of a reliable drainage system led to the rise of the groundwater beside the arid climatic conditions contributed to the salinization and hydromorphy of the soils. The progress and stabilization of cultures yields in these areas can only occur if the groundwater is maintained (drained) to a depth of 1.6 m. The results of works done to the determination of soil salinity depend mainly on the groundwater's salinity, its depth and the climate.

  3. Relationships between groundwater, surface water, and soil salinity in Polder 32, Southwest Bangladesh

    NASA Astrophysics Data System (ADS)

    Fry, D. C.; Ayers, J. C.

    2014-12-01

    In the coastal areas of Southwest Bangladesh polders are surrounded by tidal channels filled with brackish water. In the wet season, farmers create openings in the embankments to irrigate rice paddies. In the dry season, farmers do the same to create saline shrimp ponds. Residents on Polder 32, located within the Ganges-Brahmaputra-Meghna delta system, practice these seasonal farming techniques. Soils in the area are entisols, being sediment recently deposited, and contain mostly silt-sized particles. Brackish water in brine shrimp ponds may deposit salt in the soil, causing soil salinization. However, saline connate groundwater could also be contributing to soil salinization. Groundwater, surface water (fresh water pond, rice paddy and tidal channel water) and soil samples have been analyzed via inductively coupled plasma optical emission spectroscopy, inductively coupled plasma mass spectroscopy and ion chromatography in an attempt to correlate salinity measurements with each other in order to determine major sources of soil salinity. Multiple parameters, including distances of samples from tidal channels, inland streams, shrimp ponds and tube wells were measured to see if spatial correlations exist. Similarly, values from wet and dry seasons were compared to quantify temporal variations. Salt content in many soil samples were found to be high enough to significantly decrease rice yields. Continued soil salinization can decrease these yields even more, leading to farmers not producing enough food to sustain their families.

  4. Two Fixed Ratio Dilutions for Soil Salinity Monitoring in Hypersaline Wetlands

    PubMed Central

    Herrero, Juan; Weindorf, David C.; Castañeda, Carmen

    2015-01-01

    Highly soluble salts are undesirable in agriculture because they reduce yields or the quality of most cash crops and can leak to surface or sub-surface waters. In some cases salinity can be associated with unique history, rarity, or special habitats protected by environmental laws. Yet in considering the measurement of soil salinity for long-term monitoring purposes, adequate methods are required. Both saturated paste extracts, intended for agriculture, and direct surface and/or porewater salinity measurement, used in inundated wetlands, are unsuited for hypersaline wetlands that often are only occasionally inundated. For these cases, we propose the use of 1:5 soil/water (weight/weight) extracts as the standard for expressing the electrical conductivity (EC) of such soils and for further salt determinations. We also propose checking for ion-pairing with a 1:10 or more diluted extract in hypersaline soils. As an illustration, we apply the two-dilutions approach to a set of 359 soil samples from saline wetlands ranging in ECe from 2.3 dS m-1 to 183.0 dS m-1. This easy procedure will be useful in survey campaigns and in the monitoring of soil salt content. PMID:26001130

  5. Two fixed ratio dilutions for soil salinity monitoring in hypersaline wetlands.

    PubMed

    Herrero, Juan; Weindorf, David C; Castañeda, Carmen

    2015-01-01

    Highly soluble salts are undesirable in agriculture because they reduce yields or the quality of most cash crops and can leak to surface or sub-surface waters. In some cases salinity can be associated with unique history, rarity, or special habitats protected by environmental laws. Yet in considering the measurement of soil salinity for long-term monitoring purposes, adequate methods are required. Both saturated paste extracts, intended for agriculture, and direct surface and/or porewater salinity measurement, used in inundated wetlands, are unsuited for hypersaline wetlands that often are only occasionally inundated. For these cases, we propose the use of 1:5 soil/water (weight/weight) extracts as the standard for expressing the electrical conductivity (EC) of such soils and for further salt determinations. We also propose checking for ion-pairing with a 1:10 or more diluted extract in hypersaline soils. As an illustration, we apply the two-dilutions approach to a set of 359 soil samples from saline wetlands ranging in ECe from 2.3 dS m(-1) to 183.0 dS m(-1). This easy procedure will be useful in survey campaigns and in the monitoring of soil salt content.

  6. Spatial variability of soil salinity in coastal saline soil at different scales in the Yellow River Delta, China.

    PubMed

    Wang, Zhuoran; Zhao, Gengxing; Gao, Mingxiu; Chang, Chunyan

    2017-02-01

    The objectives of this study were to explore the spatial variability of soil salinity in coastal saline soil at macro, meso and micro scales in the Yellow River delta, China. Soil electrical conductivities (ECs) were measured at 0-15, 15-30, 30-45 and 45-60 cm soil depths at 49 sampling sites during November 9 to 11, 2013. Soil salinity was converted from soil ECs based on laboratory analyses. Our results indicated that at the macro scale, soil salinity was high with strong variability in each soil layer, and the content increased and the variability weakened with increasing soil depth. From east to west in the region, the farther away from the sea, the lower the soil salinity was. The degrees of soil salinization in three deeper soil layers are 1.14, 1.24 and 1.40 times higher than that in the surface soil. At the meso scale, the sequence of soil salinity in different topographies, soil texture and vegetation decreased, respectively, as follows: depression >flatland >hillock >batture; sandy loam >light loam >medium loam >heavy loam >clay; bare land >suaeda salsa >reed >cogongrass >cotton >paddy >winter wheat. At the micro scale, soil salinity changed with elevation in natural micro-topography and with anthropogenic activities in cultivated land. As the study area narrowed down to different scales, the spatial variability of soil salinity weakened gradually in cultivated land and salt wasteland except the bare land.

  7. Leaching behaviour and environmental risk assessment of heavy metals from electronic solder in acidified soil.

    PubMed

    Lao, Xiaodong; Cheng, Congqian; Min, Xiaohua; Zhao, Jie; Zhou, Dayu; Li, Xiaogang

    2015-11-01

    The leaching behaviour of Sn and Pb elements from eutectic SnPb solder of electronic waste in acidic soil was investigated through acidification with HCl-H2SO4 solution and compared with saline solution. The amounts of Sn and Pb elements leached, when subjected to acidic soil, are higher than those with saline soil. Evidence for the significantly preferential release of Sn into the leachate is provided; the galvanic couple accelerated such preferential release. Surface product analysis reveals the slight damage of SnPb in saline soil. Serious dissolution due to electrochemical reaction and a thick, porous PbSO4 surface layer are observed in acidified soil, suggesting more severe toxicity potential of Pb in soil rather than in water.

  8. [Soils salinity content of greenhouse in Shanghai suburb].

    PubMed

    Yao, Chun-Xia; Chen, Zhen-Lou; Xu, Shi-Yuan

    2007-06-01

    Salinity content and characteristic of farmland soil in Shanghai suburb was studied. Result indicates that soils in greenhouse in Shanghai suburb are partially salted. Soils of suburb where melons or vegetables grow in Shanghai city, 88.52% soil is non-salted while 10.37% mildly salted, 0.74% obviously salted and 0.37% badly salted. Anions component of salt salinity in soil are mainly SO4(2-), Cl-, NO3(-) and cations component are mainly Ca2+, Na+, Mg2+, K+. These ions are mostly from fertilizer auxiliary component or fertilizer transformation component besides some original deposition in soil. The formation of soil secondary salted in greenhouse cultivation in suburbs of Shanghai has a close relationship with improper fertilization or employing too much fertilizer. Soil salinity is different with different cultivation mode and utilization time. From high to low, sequence of soil salinity content in 0 - 20 cm cultivation layer of different crop mode is greenhouse vegetable soil, melon soil, vegetable melon rotation soil and hypaethral vegetable soil respectively. In the same region, salinity in greenhouse soil continually increases and accumulates from underlayer to surface along with more utilization years.

  9. Leveraging Machine Learning to Estimate Soil Salinity through Satellite-Based Remote Sensing

    NASA Astrophysics Data System (ADS)

    Welle, P.; Ravanbakhsh, S.; Póczos, B.; Mauter, M.

    2016-12-01

    Human-induced salinization of agricultural soils is a growing problem which now affects an estimated 76 million hectares and causes billions of dollars of lost agricultural revenues annually. While there are indications that soil salinization is increasing in extent, current assessments of global salinity levels are outdated and rely heavily on expert opinion due to the prohibitive cost of a worldwide sampling campaign. A more practical alternative to field sampling may be earth observation through remote sensing, which takes advantage of the distinct spectral signature of salts in order to estimate soil conductivity. Recent efforts to map salinity using remote sensing have been met with limited success due to tractability issues of managing the computational load associated with large amounts of satellite data. In this study, we use Google Earth Engine to create composite satellite soil datasets, which combine data from multiple sources and sensors. These composite datasets contain pixel-level surface reflectance values for dates in which the algorithm is most confident that the surface contains bare soil. We leverage the detailed soil maps created and updated by the United States Geological Survey as label data and apply machine learning regression techniques such as Gaussian processes to learn a smooth mapping from surface reflection to noisy estimates of salinity. We also explore a semi-supervised approach using deep generative convolutional networks to leverage the abundance of unlabeled satellite images in producing better estimates for salinity values where we have relatively fewer measurements across the globe. The general method results in two significant contributions: (1) an algorithm that can be used to predict levels of soil salinity in regions without detailed soil maps and (2) a general framework that serves as an example for how remote sensing can be paired with extensive label data to generate methods for prediction of physical phenomenon.

  10. [Study on the polarized reflectance hyperspectral characteristics and models of typical saline soil in the west of Jilin Province, China].

    PubMed

    Han, Yang; Qin, Wei-chao; Wang, Ye-qiao

    2014-06-01

    In recent years, the area of saline soil in the west of Jilin Province expands increasingly, and soil quality is becoming more and more worsening, which not only caused great damage to the land resources, but also posed a huge threat to agricultural production and ecological environment. We combined with polarized and hyperspectral information to establish the general model and scientifically validated it. The results show that there is a strong relationship between the saline soil hyperspectral polarized information and its physicochemical property parameters, and with regularity. This paper has important theoretical significance for the mechanism of saline soil surface reflection, recognition and classification of saline soil and background, the utilization of soil polarization sensor and the development of quantitative remote sensing.

  11. Characterization of soil salinization in typical estuarine area of the Jiaozhou Bay, China

    NASA Astrophysics Data System (ADS)

    Li, Qifei; Xi, Min; Wang, Qinggai; Kong, Fanlong; Li, Yue

    2018-02-01

    In this study, the characteristics of soil salinization and the effects of main land use/land cover and other factors in typical estuarine area of the Jiaozhou Bay are investigated. Soil samples were collected in the parallel coastal zone, vertical coastal zone and longitudinal profile depth in the area to determine the soil salt content. The correlation analysis and principal component analysis are used to address the general characteristics of soil salinization in the study area. In the horizontal direction, there are moderate salinization, severe salinization and saline soil state. The farther from the sea (within 1.1 km), the lower the soil salinization degree. In the direction of longitudinal profile depth, there are severe salinization and saline soil state, and the soil salt content is accumulated in the surface and bottom. The Na+ and Cl- are the dominant cation and anion, respectively, the distributions of which are consistent with that of salt content. All the salinization indexes, except for soil pH, are of moderate/strong variability. The invasion of Spartina alterniflora results in the increase of soil salt content and salinization degree, the effects of which are mainly determined by the physiological characteristics and the growth years. The degree of soil salinization increased significantly in the aquaculture ponds, which is mainly caused by the use of chemicals. The correlation between soil salt content and Na+, Cl- is particularly significant. From the results of principal component analysis, Na+, Cl-, Ca2+, Mg2+ and SO42- could be used as main diagnostic factors for salinization in typical estuarine area of the Jiaozhou Bay. The effects of NaCl and sulfate on salt content further affect the degree of salinization in the estuarine area.

  12. Detecting the Spatio-temporal Distribution of Soil Salinity and Its Relationship to Crop Growth in a Large-scale Arid Irrigation District Based on Sampling Experiment and Remote Sensing

    NASA Astrophysics Data System (ADS)

    Ren, D.; Huang, G., Sr.; Xu, X.; Huang, Q., Sr.; Xiong, Y.

    2016-12-01

    Soil salinity analysis on a regional scale is of great significance for protecting agriculture production and maintaining eco-environmental health in arid and semi-arid irrigated areas. In this study, the Hetao Irrigation District (Hetao) in Inner Mongolia Autonomous Region, with suffering long-term soil salinization problems, was selected as the case study area. Field sampling experiments and investigations related to soil salt contents, crop growth and yields were carried out across the whole area, during April to August in 2015. Soil salinity characteristics in space and time were systematically analyzed for Hetao as well as the corresponding impacts on crops. Remotely sensed map of soil salinity distribution for surface soil was also derived based on the Landsat OLI data with a 30 m resolution. The results elaborated the temporal and spatial dynamics of soil salinity and the relationships with irrigation, groundwater depth and crop water consumption in Hetao. In addition, the strong spatial variability of salinization was clearly presented by the remotely sensed map of soil salinity. Further, the relationship between soil salinity and crop growth was analyzed, and then the impact degrees of soil salinization on cropping pattern, leaf area index, plant height and crop yield were preliminarily revealed. Overall, this study can provide very useful information for salinization control and guide the future agricultural production and soil-water management for the arid irrigation districts analogous to Hetao.

  13. Sensor-Based Assessment of Soil Salinity during the First Years of Transition from Flood to Sprinkler Irrigation

    PubMed Central

    Herrero, Juan; Betrán, Jesús A.; Ritchie, Glen

    2018-01-01

    A key issue for agriculture in irrigated arid lands is the control of soil salinity, and this is one of the goals for irrigated districts when changing from flood to sprinkling irrigation. We combined soil sampling, proximal electromagnetic induction, and satellite data to appraise how soil salinity and its distribution along a previously flood-irrigated field evolved after its transformation to sprinkling. We also show that the relationship between NDVI (normalized difference vegetation index) and ECe (electrical conductivity of the soil saturation extracts) mimics the production function between yield and soil salinity. Under sprinkling, the field had a double crop of barley and then sunflower in 2009 and 2011. In both years, about 50% of the soil of the entire studied field—45 ha—had ECe < 8 dS m−1, i.e., allowing barley cultivation, while the percent of surface having ECe ≥ 16 dS m−1 increased from 8.4% in 2009 to 13.7% in 2011. Our methodology may help monitor the soil salinity oscillations associated with irrigation management. After quantifying and mapping the soil salinity in 2009 and 2011, we show that barley was stunted in places of the field where salinity was higher. Additionally, the areas of salinity persisted after the subsequent alfalfa cropping in 2013. Application of differential doses of water to the saline patches is a viable method to optimize irrigation water distribution and lessen soil salinity in sprinkler-irrigated agriculture. PMID:29462981

  14. Sensor-Based Assessment of Soil Salinity during the First Years of Transition from Flood to Sprinkler Irrigation.

    PubMed

    Casterad, Mª Auxiliadora; Herrero, Juan; Betrán, Jesús A; Ritchie, Glen

    2018-02-17

    A key issue for agriculture in irrigated arid lands is the control of soil salinity, and this is one of the goals for irrigated districts when changing from flood to sprinkling irrigation. We combined soil sampling, proximal electromagnetic induction, and satellite data to appraise how soil salinity and its distribution along a previously flood-irrigated field evolved after its transformation to sprinkling. We also show that the relationship between NDVI (normalized difference vegetation index) and ECe (electrical conductivity of the soil saturation extracts) mimics the production function between yield and soil salinity. Under sprinkling, the field had a double crop of barley and then sunflower in 2009 and 2011. In both years, about 50% of the soil of the entire studied field-45 ha-had ECe < 8 dS m-1, i.e., allowing barley cultivation, while the percent of surface having ECe ≥ 16 dS m-1 increased from 8.4% in 2009 to 13.7% in 2011. Our methodology may help monitor the soil salinity oscillations associated with irrigation management. After quantifying and mapping the soil salinity in 2009 and 2011, we show that barley was stunted in places of the field where salinity was higher. Additionally, the areas of salinity persisted after the subsequent alfalfa cropping in 2013. Application of differential doses of water to the saline patches is a viable method to optimize irrigation water distribution and lessen soil salinity in sprinkler-irrigated agriculture.

  15. Conductivity gradients as inferred by electromagnetic-induction meter (EM38) readings within a salt-affected wetland in Saskatchewan, Canada

    NASA Astrophysics Data System (ADS)

    Mirck, Jaconette; Schroeder, William

    2018-01-01

    The change from deep-rooted grass and shrub vegetation to annual-cropping dryland farming has contributed to serious soil salinization challenges on the semi-arid North American Great Plains. In some cases, cultivation of the Great Plains has increased the availability of water, causing dominant sulfate salts to travel from the uphill areas to depressions where it will surface when water evaporates at the soil surface. A potential solution could include the replanting of the native deep-rooted vegetation, which requires knowledge of the spatial distribution of soil salinity. This study tested the soil factors influencing electromagnetic-induction meter (EM38) readings of soil salinity distribution around wetlands. The objectives were to: (1) predict growth and survival of Salix dasyclados Wimm. (cv. `India') along a salinity gradient in a small wetland, and (2) investigate whether newly established willows affected water-table fluctuations, which would indicate their phreatophytic nature or their ability to obtain their water supply from the zone of saturation. Results indicated significantly lower salinity values for sampling points with EM38 readings above 175 and 250 mS m-1 for height and survival, respectively. In addition, diurnal fluxes of the water table in areas of good willow growth and lower salinity indicated that cultivar `India' was phreatophytic in these areas and therefore has great potential for being used to combat saline seeps.

  16. Conductivity gradients as inferred by electromagnetic-induction meter (EM38) readings within a salt-affected wetland in Saskatchewan, Canada

    NASA Astrophysics Data System (ADS)

    Mirck, Jaconette; Schroeder, William

    2018-06-01

    The change from deep-rooted grass and shrub vegetation to annual-cropping dryland farming has contributed to serious soil salinization challenges on the semi-arid North American Great Plains. In some cases, cultivation of the Great Plains has increased the availability of water, causing dominant sulfate salts to travel from the uphill areas to depressions where it will surface when water evaporates at the soil surface. A potential solution could include the replanting of the native deep-rooted vegetation, which requires knowledge of the spatial distribution of soil salinity. This study tested the soil factors influencing electromagnetic-induction meter (EM38) readings of soil salinity distribution around wetlands. The objectives were to: (1) predict growth and survival of Salix dasyclados Wimm. (cv. `India') along a salinity gradient in a small wetland, and (2) investigate whether newly established willows affected water-table fluctuations, which would indicate their phreatophytic nature or their ability to obtain their water supply from the zone of saturation. Results indicated significantly lower salinity values for sampling points with EM38 readings above 175 and 250 mS m-1 for height and survival, respectively. In addition, diurnal fluxes of the water table in areas of good willow growth and lower salinity indicated that cultivar `India' was phreatophytic in these areas and therefore has great potential for being used to combat saline seeps.

  17. Evaluation of the validated soil moisture product from the SMAP radiometer

    USDA-ARS?s Scientific Manuscript database

    In this study, we used a multilinear regression approach to retrieve surface soil moisture from NASA’s Soil Moisture Active Passive (SMAP) satellite data to create a global dataset of surface soil moisture which is consistent with ESA’s Soil Moisture and Ocean Salinity (SMOS) satellite retrieved sur...

  18. Compact, Lightweight Dual-Frequency Microstrip Antenna Feed for Future Soil Moisture and Sea Surface Salinity Missions

    NASA Technical Reports Server (NTRS)

    Yueh, Simon; Wilson, William J.; Njoku, Eni; Dinardo, Steve; Hunter, Don; Rahmat-Samii, Yahya; Kona, Keerti S.; Manteghi, Majid

    2006-01-01

    The development of a compact, lightweight, dual-frequency antenna feed for future soil moisture and sea surface salinity (SSS) missions is described. The design is based on the microstrip stacked-patch array (MSPA) to be used to feed a large lightweight deployable rotating mesh antenna for spaceborne L-band (approx.1 GHz) passive and active sensing systems. The design features will also enable applications to airborne soil moisture and salinity remote sensing sensors operating on small aircrafts. This paper describes the design of stacked patch elements and 16-element array configuration. The results from the return loss, antenna pattern measurements and sky tests are also described.

  19. Urease activity in different soils of Egypt.

    PubMed

    el-Shinnawi, M M

    1978-01-01

    Samples from two depths (0--15 and 15--30 cm) of five Egyptian soils: sandy, calcareous, fertile alluvial, saline alluvial, and alkali alluvial were tested for urease activity. Samples were treated with farmyard manure at rates of 0 and 0.5% C, and moisture at levels of 50, 65, and 80% of the water holding capacity. The studied Egyptian soils showed different activities of urease. Decreases in the values were shown by depth of sampling and varied in their intensities according to soil type, except for saline soil which revealed an opposite trend by the higher activity of its sub-surface layer. Order of activity was the following: fertile, saline, alkali, calcareous, and sandy soil. Farmyard manure slightly increased the activity of the enzyme. Incubation of moistened samples revealed that the optimum moisture content was 50% of W.H.C. for the tested soils, except for saline which showed best results at 65% of W.H.C.

  20. The effects of salinity in the soil water balance: A Budyko's approach

    NASA Astrophysics Data System (ADS)

    Perri, S.; Viola, F.; Molini, A.

    2017-12-01

    Soil degradation and water scarcity pose important constraints on productivity and development of arid and semi-arid countries. Among the main causes of loss of soil fertility, aridification and soil salinization are deeply connected threats enhanced by climate change. Assessing water availability is fundamental for a large number of applications especially in arid regions. An approach often adopted to estimate the long-term rainfall partitioning into evapotranspiration and runoff is the Budyko's curve. However, the classical Budyko framework might not be able to properly reproduce the water balance in salt affected basins, especially under elevated soil salinization conditions. Salinity is a limiting factor for plant transpiration (as well as growth) affecting both short and long term soil moisture dynamics and ultimately the hydrologic balance. Soluble salts cause a reduction of soil water potential similar to the one arising from droughts, although plant adaptations to soil salinity show extremely different traits and can vary from species to species. In a similar context, the salt-tolerance plants are expected to control the amount of soil moisture lost to transpiration in saline soils, also because salinity reduces evaporation. We propose a simple framework to include the effects of salinization on the surface energy and water balance within a simple Budyko approach. By introducing the effects of salinity in the stochastic water balance we are able to include the influence of vegetation type (i.e. in terms of salt-tolerance) on evapotranspiration-runoff partitioning under different climatic conditions. The water balance components are thus compared to data obtained from arid salt-affected regions.

  1. Volunteer revegetation of waste rock surfaces at the Bingham Canyon Mine, Utah.

    PubMed

    Borden, Richard K; Black, Rick

    2005-01-01

    Voluntary recolonization of sulfide-bearing waste rock dumps by native vegetation is inhibited by the harsh chemical and physical conditions. The success of volunteer vegetation on the waste rock surfaces at the Bingham Canyon (Utah) porphyry copper deposit is most strongly dependent on the soil pH and salinity, and to a lesser extent on physical characteristics such as compaction and distance from seed source. Vegetation cover and richness both decline below a paste pH of about 6 and above a paste conductivity of about 0.7 dS/m (for a 1:1 soil to water mixture). No significant vegetation establishment occurs below a soil pH of about 4.5. Young sulfide-bearing waste rock surfaces at Bingham Canyon have high salinity, but as reactive pyrite is depleted and salts are flushed from the soil, the salinity eventually declines, allowing volunteer native vegetation to become established on surfaces with a circumneutral pH. Under natural conditions, the pH of older acidic weathered surfaces will recover very slowly, but it can be rapidly raised by adding relatively small amounts of limestone because there are few intact reactive sulfides. For uncompacted waste rock surfaces with favorable chemical conditions, less than 90% gravel content, and that are located near a native seed source, the arithmetic mean volunteer vegetation cover was 56 +/- 24% and the mean species richness was 17 +/- 5. These data indicate that with adequate surface preparation and limestone addition, direct planting of older, acidic, but low salinity waste rock surfaces can greatly accelerate natural revegetation.

  2. Spatial Pattern of Soil Salinity in Area Around the Yellow River Delta and Its Seasonal Dynamics over a 3-year Period

    NASA Astrophysics Data System (ADS)

    Lai, J.; Ouyang, Z.

    2017-12-01

    Salt-affected land varies spatially and seasonally in terms of soil salinity. "Bohai Granary" is a newly proposed national-level program which was aimed to improve soil quality and mining grain production potential of the salt-affected land in east China. In this work, soil samples were monthly taken at 11 sites within Wudi county in the Yellow river delta. The spatial distribution pattern of soil salinity were investigated and its seasonal variation over 36 months were discussed. Our findings indicate that the vertical distribution type of soil salinity was bottom-accumulating in the near coastal area while its gradually turned into a type of surface-accumulating as the sampling site moving towards the inner land. The peak of the soil salinity along the soil profile alternately moved upwards and downwards during the growing seasons. However, there was no evidence for the increasing of the total salt amount within the upper 100cm of soil. Moreover, the salt was mostly accumulated in the upper soil (0-40cm) during the late spring and early summer season; and winter wheat was tend to be affected severely at this stage. Therefore, special field practices (e.g. regular irrigation to leach salt, good maintenance of drainage system) should be taken to minimize the threat of soil salinity.

  3. A natural saline soil as a model for understanding to what extent the concentration of salt affects the distribution of microorganisms

    NASA Astrophysics Data System (ADS)

    Canfora, Loredana; Pinzari, Flavia; Lo Papa, Giuseppe; Vittori Antisari, Livia; Vendramin, Elisa; Salvati, Luca; Dazzi, Carmelo; Benedetti, Anna

    2017-04-01

    Soils preserve and sustain life. Their health and functioning are crucial for crop production and for the maintenance of major ecosystem services. Human induced salinity is one of the main soil threats that reduces soil fertility and affect crop yields. In recent times, great attention has been paid to the general shortage of arable land and to the increasing demand for ecological restoration of areas affected by salinization processes. Despite the diffuse interest on the effects of salinization on plants' growth, and all the derived socioeconomic issues, very few studies analyzed the ecology of the microbial species in naturally saline soils and the resilience of biological fertility in these extreme habitats. Microorganisms inhabiting such environments may share a strategy, may have developed multiple adaptations for maintaining their populations, and cope eventually to extreme conditions by altruistic or cooperative behaviors for maintaining their metabolism active. The understanding and the knowledge of the composition and distribution of microbial communities in natural hypersaline soils can be interesting for ecological reasons but also to develop new restoration strategy where soil fertility was compromised by natural accidents or human mismanagement. The aim of this research was to provide specific information on saline soils in Italy, stressing mainly their distribution, the socioeconomic issues and the understanding of the characterizing ecological processes. Moreover, natural saline soils were used as a model for understanding to what extent the concentration of salt can affect some basic microbial processes. In the present study, physical, chemical and microbiological soil properties were investigated in the shallower horizons of natural salt affected soils in Sicily (Italy), where some ecological contrasting variables acted as strong drivers in fungal and bacterial spatial distribution. Furthermore, the interface between biological and geochemical components in the surface of that peculiar habitat was investigated to evaluate the organization and diversity of the phototrophic and heterotrophic microorganisms. Sixteen soil samples from A horizons were collected according to a random sampling scheme. Bacterial and archaeal communities were characterized by their 16S rDNA genes with T-RFLP method. A total of 92 genera were identified from the 16S pyrosequencing analysis suggesting that cyanobacteria and communities of sulfur bacteria might directly or indirectly promote the formation of protective envelope. Some bacterial phyla appeared spread in the whole area, whatever the salinity gradient, while other groups showed a distribution linked to very compartmentalised soil properties, such as the presence of saline crusts in the soil surface. Results show that saline soils couldn't contain just one single microbial community selected to withstand extreme osmotic phenomena, but many communities that can be variously correlated to one or more environmental parameters having great importance for the maintenance of the overall homeostasis.

  4. Environmental Evaluation of Soil Salinity with Various Watering Technologies Assessment.

    PubMed

    Seitkaziev, Adeubay; Shilibek, Kenzhegali; Fakhrudenova, Idiya; Salybayev, Satybaldy; Zhaparova, Sayagul; Duisenbayeva, Saule; Bayazitova, Zulfia; Aliya, Maimakova; Seitkazieva, Karlygash; Aubakirov, Hamit

    2018-01-01

      The purpose of this study is to develop mathematical tools for evaluating the level of environmental safety of various watering technologies. A set of indicators, was developed with regard to the natural factors, the nature of the man-induced load, degradation type, and characteristics of the disruption of humification conditions. Thermal and physical characteristics of the soil, the state of its surface, and meteorological factors, including air temperature, relative humidity, precipitation, wind speed, solar radiation, etc. were studied with a view to determining the heat and air exchange in the soil. An environmental evaluation of the methods for saline land development was conducted with regard to the heat and moisture supply. This tool can be used to determine the level of environmental safety of soil salinization during the environmental evaluation of the investigation of soil salinity with various watering technologies.

  5. ESA's Soil Moisture dnd Ocean Salinity Mission - Contributing to Water Resource Management

    NASA Astrophysics Data System (ADS)

    Mecklenburg, S.; Kerr, Y. H.

    2015-12-01

    The Soil Moisture and Ocean Salinity (SMOS) mission, launched in November 2009, is the European Space Agency's (ESA) second Earth Explorer Opportunity mission. The scientific objectives of the SMOS mission directly respond to the need for global observations of soil moisture and ocean salinity, two key variables used in predictive hydrological, oceanographic and atmospheric models. SMOS observations also provide information on the characterisation of ice and snow covered surfaces and the sea ice effect on ocean-atmosphere heat fluxes and dynamics, which affects large-scale processes of the Earth's climate system. The focus of this paper will be on SMOS's contribution to support water resource management: SMOS surface soil moisture provides the input to derive root-zone soil moisture, which in turn provides the input for the drought index, an important monitoring prediction tool for plant available water. In addition to surface soil moisture, SMOS also provides observations on vegetation optical depth. Both parameters aid agricultural applications such as crop growth, yield forecasting and drought monitoring, and provide input for carbon and land surface modelling. SMOS data products are used in data assimilation and forecasting systems. Over land, assimilating SMOS derived information has shown to have a positive impact on applications such as NWP, stream flow forecasting and the analysis of net ecosystem exchange. Over ocean, both sea surface salinity and severe wind speed have the potential to increase the predictive skill on the seasonal and short- to medium-range forecast range. Operational users in particular in Numerical Weather Prediction and operational hydrology have put forward a requirement for soil moisture data to be available in near-real time (NRT). This has been addressed by developing a fast retrieval for a NRT level 2 soil moisture product based on Neural Networks, which will be available by autumn 2015. This paper will focus on presenting the above applications and used SMOS data products.

  6. [Effects of Suaeda glauca planting and straw mulching on soil salinity dynamics and desalination in extremely heavy saline soil of coastal areas.

    PubMed

    Zhang, Jiao; Cui, Shi You; Feng, Zhi Xiang

    2018-05-01

    To elucidate the seasonal variations in soil salinity and its driving factors, and to explore the effects of planting Suaeda glauca and straw mulching on soil desalination and salinity controlling, a field experiment was conducted in extremely heavy saline soil of coastal areas in Rudong, Jiangsu Province. There were four treatments: control (bare land, CK), planting S. glauca (PS), straw mulching A (at 15 t·hm -2 , SM-A), straw mulching 2A (at 30 t·hm -2 , SM-2A). Climate factors (including rainfall, atmospheric temperature, sunshine duration, and atmospheric evaporation) and soil salinity dynamic changes were determined from May 2014 to May 2015. Results showed that: (1) The seasonal variation of soil salinity was obvious in the bare ground (CK), with the lowest (8.69 g·kg -1 ) during June-August and the highest (26.66 g·kg -1 ) during September-December. The changes of soil salinity in topsoil (0-20 cm) were more intense than that in sub-topsoil (20-40 cm), with the changes in sub-topsoil having somewhat time lag compared the topsoil. (2) Soil salinity in CK treatment had a significantly linear correlation with the cumulative rainfall and evaporation-precipitation ratio of the fifteen-day before sampling. The results from multifactor and interphase analysis indicated that the increases of rainfall would promote soil desalinization. The rise of atmospheric temperature could exacerbate soil salt accumulation in surface soil. The interaction between rainfall and atmospheric temperature would have a positive effect on soil salt accumulation. (3) PS treatment did not alter the seasonal variation in soil salinity, but it reduced soil salinity in topsoil. (4) In SM-A and SM-2A treatments, the relationship of soil desalinization rate (%, Y) and treatment time (days, X) was expressed as Logistic curve equation. Moreover, the soil desalination rate was over 95.0% in the topsoil after 90-100 days of straw mul-ching treatment and was over 92.0% in sub-topsoil after 120 days of straw mulching treatment. The soil salinity in SM-A and SM-2A treatments fluctuated below 0.60 g·kg -1 and 1.00 g·kg -1 , respectively in topsoil and sub-topsoil. Considering the desalination and economic costs, a suitable amount of straw mulching (such as 15 t·hm -2 ) before rainy season was recommended, which would promote the soil desalinization and reclamation in extremely heavy saline soil of coastal areas.

  7. Updates on Water Use of Pistachio Orchards Grown in the San Joaquin Valley of California on Saline Soils

    NASA Astrophysics Data System (ADS)

    Zaccaria, Daniele; Marino, Giulia; Whiting, Michael; Sanden, Blake; Ferguson, Louise; Lampinen, Bruce; Kent, Eric; Snyder, Richard; Grattan, Stephen; Little, Cayle

    2017-04-01

    Pistachio acreage is rapidly expanding in California thanks to its economic profitability and capacity to grow and produce in salt-affected soils. Our team at University of California is updating information on actual water use (ET) of mature pistachio orchards grown on saline soils under micro-irrigation methods. Actual Evapotranspiration (ETa) and Crop Coefficients (Ka) were determined for the 2015 and 2016 crop seasons on four pistachio orchards grown in the San Joaquin Valley (SJV) on grounds with increasing levels of soil-water salinity, using the residual of energy balance method with a combination of eddy covariance and surface renewal equipment. Tree canopy cover, light interception, and plant water status across the orchards were also measured and evaluated. Our preliminary results show that salinity strongly affects the tree water use, resulting in 10-30% less ET for medium to high salt-affected soils. Salinity also showed a strong effect on tree water status and light interception, as suggested by values of the Midday Stem Water Potential (ΨSWP) around 10 to 15-bar lower in salt-affected than in the control orchard, and by the intercepted Photosynthetic Active Radiation (PAR) decreasing from 75% in the control orchard to 25% in the severely salt affected grounds. The crop coefficient values we observed in this study are lower than those commonly used for irrigation scheduling in the SJV, suggesting that pistachio growers could better tailor irrigation management to the actual site-specific orchard conditions (e.g. canopy features and soil-water salinity) if they are provided updated information. Improved irrigation practices could likely lead to significant water savings and thus improve the resource-efficiency and competitiveness of pistachio production in the SJV. Keywords: Pistacia vera L., salinity, stem water potential, surface renewal, canopy cover.

  8. Soil Porewater Salinity Response to Sea-level Rise in Tidal Freshwater Forested Wetlands: A Modeling Study

    NASA Astrophysics Data System (ADS)

    Stagg, C. L.; Wang, H.; Krauss, K.; Conrads, P. A.; Swarzenski, C.; Duberstein, J. A.; DeAngelis, D.

    2017-12-01

    There is a growing concern about the adverse effects of salt water intrusion via tidal rivers and creeks into tidal freshwater forested wetlands (TFFWs) due to rising sea levels and reduction of freshwater flow. The distribution and composition of plant species, vegetation productivity, and biogeochemical functions including carbon sequestration capacity and flux rates in TFFWs have been found to be affected by increasing river and soil porewater salinities, with significant shifts occurring at a porewater salinity threshold of 3 PSU. However, the drivers of soil porewater salinity, which impact the health and ecological functions of TFFWs remains unclear, limiting our capability of predicting the future impacts of saltwater intrusion on ecosystem services provided by TFFWs. In this study, we developed a soil porewater salinity model for TFFWs based on an existing salt and water balance model with modifications to several key features such as the feedback mechanisms of soil salinity on evapotranspiration reduction and hydraulic conductivity. We selected sites along the floodplains of two rivers, the Waccamaw River (SC, USA) and the Savannah River (GA and SC, USA) that represent landscape salinity gradients of both surface water and soil porewater from tidal influence of the Atlantic Ocean. These sites represent healthy, moderately and highly salt-impacted forests, and oligohaline marshes. The soil porewater salinity model was calibrated and validated using field data collected at these sites throughout 2008-2016. The model results agreed well with field measurements. Analyses of the preliminary simulation results indicate that the magnitude, seasonal and annual variability, and duration of threshold salinities (e.g., 3 PSU) tend to vary significantly with vegetation status and type (i.e., healthy, degraded forests, and oligohaline marshes), especially during drought conditions. The soil porewater salinity model could be coupled with a wetland soil biogeochemistry model to examine the effects of salinity intrusion on carbon cycling processes in dynamic coastal wetlands.

  9. Sea Surface Salinity : Research Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Halpern, David; Lagerloef, Gary; Font, Jordi

    2012-01-01

    Sea surface salinity (SSS) can be important in regulating sea surface temperature (SST). Two technological breakthrough satellite SSS missions, Aquarius and Soil Moisture and Ocean Salinity (SMOS), are currently producing high-quality SSS data. This paper provides an overview of the importance of SSS for weather and climate applications and describes the Aquarius and SMOS missions. The newness of adequately sampled SSS data prompted a first-time at-sea field campaign devoted to improved understanding of SSS variations.

  10. [Spatial differentiation and impact factors of Yutian Oasis's soil surface salt based on GWR model].

    PubMed

    Yuan, Yu Yun; Wahap, Halik; Guan, Jing Yun; Lu, Long Hui; Zhang, Qin Qin

    2016-10-01

    In this paper, topsoil salinity data gathered from 24 sampling sites in the Yutian Oasis were used, nine different kinds of environmental variables closely related to soil salinity were selec-ted as influencing factors, then, the spatial distribution characteristics of topsoil salinity and spatial heterogeneity of influencing factors were analyzed by combining the spatial autocorrelation with traditional regression analysis and geographically weighted regression model. Results showed that the topsoil salinity in Yutian Oasis was not of random distribution but had strong spatial dependence, and the spatial autocorrelation index for topsoil salinity was 0.479. Groundwater salinity, groundwater depth, elevation and temperature were the main factors influencing topsoil salt accumulation in arid land oases and they were spatially heterogeneous. The nine selected environmental variables except soil pH had significant influences on topsoil salinity with spatial disparity. GWR model was superior to the OLS model on interpretation and estimation of spatial non-stationary data, also had a remarkable advantage in visualization of modeling parameters.

  11. Identification of vulnerable sites in salts affected agricultural soils from South-Eastern Spain

    NASA Astrophysics Data System (ADS)

    Acosta, Jose A.; Faz, Angel; Kalbitz, Karsten; Jansen, Boris; Silvia, Martinez-Martinez

    2010-05-01

    Soil salinization is one of the main problems in many soils under intensive agricultural practices, especially in arid and semiarid zones. Two important reasons for the occurrence of salinization are i) the use of low quality irrigation water and ii) climatic conditions reducing soil quality. The results of salinization can be quite serious. It limits the growing of crops, constrains agricultural productivity, and in severe cases, leads to the abandonment of agricultural soils. There are mainly two kinds of soil salinity: naturally occurring dry-land salinity and human-induced salinity caused by the low quality of irrigation water, excessive water and fertilizer applications. In both cases the development of plants and soil organisms is limited. Natural occurrence of salts in soils is very difficult to handle and requires higher investments than the reduction of human-induced salinity. For these reasons, identification of vulnerable sites is essential for sustainable agricultural management, especially in these semiarid and arid environments. The main aim of this study was to examine spatial and vertical distribution pattern of salts in a semi-arid study site in South-Eastern Spain in order to identify vulnerable sites. In order to achieve this objective, surface soil samples were collected in January and July 2009 at 48 sites located in a representative lemon production area close to City of Murcia, covering a surface area of 44 km2. The area was divided using a square grid of 1000 m and the samples were taken from these squares. The ionic concentrations were used as the input data for distribution maps. The software used for the spatial analysis was Arcview 3.1. An interpolation method called the Inverse Distanced Weighted (IDW) method was adopted for the interpolation of the data. The results indicated that the concentrations of most anions are higher in summer. The difference was particularly large for chloride, most likely because of its high mobility and little adsorption to soil colloidal particles. However, other ions such as sulfate, calcium, magnesium, and sodium also displayed significant increases in concentration in July. This can be explained by the movements of soluble salt to the surface due to evaporation and capillary rise and subsequent precipitation of the salts during high temperatures and low rainfall. Rainfall or irrigation events enhance the leaching of salts to deeper soil horizons. The most affected area is located in the west of the study area, at the lowest altitude within the study area. Depressions favour accumulation of salts, due to both runoffs from higher areas during rainfall periods and poor quality irrigation water. It is recommended to use a better quality of water, at least before the summer, in order to reduce the amount of salts in the surface layer, likely to cause stress to crops growing on the soil in question. In conclusion, the spatial distribution of anions in the soil solution is very useful for predicting where higher increases in salinity will be produced. This will allow for identification of vulnerable areas and subsequent implementation of the necessary measures to decrease the risk for sensitive crops. Acknowledgements: to "Fundación Séneca" of "Comunidad Autónoma de Murcia" for its financial support.

  12. Ecohydrologic Investigations of Shallow Lateral Subsurface Flow in Tropical Soils using Time-Lapse Surface Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Ogden, F. L.; Mojica, A.; Abebe, N. A.; Smithsonian Tropical Research Institute, Panama Canal Watershed Experiment, Agua Salud Project

    2010-12-01

    The hydrologic effects of deforestation and aforestation in the tropics remain an area of active research. Hydrologic predictions of land-use change effects remain elusive. One of the unique features of catchment hydrology in the tropics is the effect of intense, continuous biological activity by insects, shrubs, trees, and small mammals. Sapprolitic soils derived from weathered bedrock cover widespread areas. These soils have low matrix permeabilities on the order of 1 mm/h, are 10 to 20 m in thickness and have relatively low activity because they have been depleted of light cations by annual rainfall over 2000 mm. As part of the Smithsonian Tropical Research Institute, Panama Canal Watershed Experiment, Agua Salud Project, we have observed shallow subsurface flow in tropical soils in central Panama using an introduced salinity contrast and surface electrical resistivity tomography (ERT). In 2009 and 2010, experiments were conducted in a 30 year-old secondary succession forest, and in two former pasture sites that were planted with native timber species and teak, respectively, in 2008. At each site, saline water (NaCl tagged with LiBr) was introduced to the soil using two different methods: soil pits and ponded surface applications. Results showed the strongest response in the case of ponded surface applications with observed changes in resistivity between -50% and 50%. In soil pit applications, the change in electrical resistivity varied from -10% to 10%. Results suggest that in the case of surface application, a transient perched water table is created near the bottom of the bioturbation layer that activates the downslope macropore network and results in bulk flow velocities that are significantly higher than observed soil matrix permeabilities. When heavy rainfall occurred during tests, increased mobility of the salinity contrast more clearly showed the active layer where most flow occurred. Time-series ERT observations enabled measurements of downslope bulk flow velocities over 1 m/h, presumably due to the existing downslope macroporosity network. These observations are being used to estimate macroporosity network properties and constrain hydrologic model parameters in different land uses. These results show that these non-invasive tests are a useful tool to determine the distribution of downslope lateral flow generated from pit and surface-applied saline solutions. ERT experimental results from a hillslope-scale experiment in central Panama, showing change in electrical conductivity from 30-minutes to 330-minutes after continuous injection of salinity contrast at x=0.

  13. Validation of soil moisture ocean salinity (SMOS) satellite soil moisture products

    USDA-ARS?s Scientific Manuscript database

    The surface soil moisture state controls the partitioning of precipitation into infiltration and runoff. High-resolution observations of soil moisture will lead to improved flood forecasts, especially for intermediate to large watersheds where most flood damage occurs. Soil moisture is also key in d...

  14. Soil disturbance as a driver of increased stream salinity in a semiarid watershed undergoing energy development

    USGS Publications Warehouse

    Bern, Carleton R.; Clark, Melanie L.; Schmidt, Travis S.; Holloway, JoAnn M.; Mcdougal, Robert

    2015-01-01

    Salinization is a global threat to the quality of streams and rivers, but it can have many causes. Oil and gas development were investigated as one of several potential causes of changes in the salinity of Muddy Creek, which drains 2470 km2 of mostly public land in Wyoming, U.S.A. Stream discharge and salinity vary with seasonal snowmelt and define a primary salinity-discharge relationship. Salinity, measured by specific conductance, increased substantially in 2009 and was 53-71% higher at low discharge and 33-34% higher at high discharge for the years 2009-2012 compared to 2005-2008. Short-term processes (e.g., flushing of efflorescent salts) cause within-year deviations from the primary relation but do not obscure the overall increase in salinity. Dissolved elements associated with increased salinity include calcium, magnesium, and sulfate, a composition that points to native soil salts derived from marine shales as a likely source. Potential causes of the salinity increase were evaluated for consistency by using measured patterns in stream chemistry, slope of the salinity-discharge relationship, and inter-annual timing of the salinity increase. Potential causes that were inconsistent with one or more of those criteria included effects from precipitation, evapotranspiration, reservoirs, grazing, irrigation return flow, groundwater discharge, discharge of energy co-produced waters, and stream habitat restoration. In contrast, surface disturbance of naturally salt-rich soil by oil and gas development activities, such as pipeline, road, and well pad construction, is a reasonable candidate for explaining the salinity increase. As development continues to expand in semiarid lands worldwide, the potential for soil disturbance to increase stream salinity should be considered, particularly where soils host substantial quantities of native salts.

  15. Using SMOS observations in the development of the SMAP level 4 surface and root-zone soil moisture project

    USDA-ARS?s Scientific Manuscript database

    The Soil Moisture and Ocean Salinity (SMOS; [1]) mission was launched by ESA in November 2009 and has since been observing L-band (1.4 GHz) upwelling passive microwaves. Along with these brightness temperature observations, ESA also disseminates retrievals of surface soil moisture that are derived ...

  16. ESTAR: The Electronically Scanned Thinned Array Radiometer for remote sensing measurement of soil moisture and ocean salinity

    NASA Technical Reports Server (NTRS)

    Swift, C. T.

    1993-01-01

    The product of a working group assembled to help define the science objectives and measurement requirements of a spaceborne L-band microwave radiometer devoted to remote sensing of surface soil moisture and sea surface salinity is presented. Remote sensing in this long-wavelength portion of the microwave spectrum requires large antennas in low-Earth orbit to achieve acceptable spatial resolution. The proposed radiometer, ESTAR, is unique in that it employs aperture synthesis to reduce the antenna area requirements for a space system.

  17. Enhancement of acid phosphatase secretion and Pi acquisition in Suaeda fruticosa on calcareous soil by high saline level.

    PubMed

    Labidi, Nehla; Snoussi, Sana; Ammari, Manel; Metoui, Wissal; Ben Yousfi, N; Hamrouni, Lamia; Abdelly, C

    2010-12-01

    The aim of this study was to identify the relationship between the adaptive processes of Suaeda fruticosa for Pi acquisition and the physic-chemical and biological characteristics of two soil types under moderate and high saline conditions. Four treatments were established in pots: namely SS100, SS600, CS100 and CS600 where SS stood for sandy soil and CS for calcareous soil, and the indexes 100 and 600 were NaCl concentrations (mM) in irrigation distilled water. Assuming that Pi per g of plant biomass is an indicator of plant efficiency for P acquisition, the results showed that Pi acquisition was easiest on SS100 and was difficult on CS100. The differences in Pi acquisition between plants on SS100 and CS100 could be attributed to the low root surface area (-30%) and to the low alkaline phosphatases (Pases) activities (-50%) in calcareous rhizospheric soil. The high salinity level had no effect on the efficiency of P acquisition on SS but increased this parameter on CS (+50%). In the latter soil type, high acid phosphatase activities were observed in rhizospheric soil at high salinity level. Acid phosphatase seemed to be secreted from the roots. The higher secretion of acid phosphatase in this soil was related to the root lipid peroxidation in response to elevated salinity associated with the augmentation of unsaturated acids which might induce an oxidative damage of the root membrane. Thus we can conclude that in deficient soil such as calcareous, the efficiency of P acquisition in S. fruticosa which was difficult at moderate salinity level can be enhanced by high salinity level.

  18. Forested wetland habitat

    USGS Publications Warehouse

    Duberstein, Jamie A.; Krauss, Ken W.; Kennish, Michael J.

    2015-01-01

    A forested wetland (swamp) is a forest where soils are saturated or flooded for at least a portion of the growing season, and vegetation, dominated by trees, is adapted to tolerate flooded conditions. A tidal freshwater forested wetland is a forested wetland that experiences frequent but short-term surface flooding via tidal action, with average salinity of soil porewater less than 0.5 g/l. It is known locally as tidal várzea in the Amazon delta, Brazil. A tidal saltwater forested wetland (mangrove forest) is a forested wetland that experiences frequent but short-term surface flooding via tidal action, with average salinity often exceeding 3 g/l and reaching levels that can exceed seawater. Mangrove ecosystems are composed of facultative halophytes that generally experience better growth at moderate salinity concentrations.

  19. Identification of the origin of salts in an agricultural area of SE Spain

    NASA Astrophysics Data System (ADS)

    Acosta, Jose A.; Faz, Angel; Kalbitz, Karsten; Jansen, Boris; Silvia, Martinez-Martinez

    2010-05-01

    In spite of soil salinity having been widely studied in many part of the world, origin of salinity has not been addresses in detail in some of the most productive agricultural areas of Europe (e.g. southeast of Spain). According to the European Commission, salinization affects about 1 to 3 million ha of the area of the European Union and Candidate Countries. In Europe, most of the salt-affected land surfaces are concentrated in the Mediterranean basin. In Spain, about 3% of the 3.5 million hectares of irrigated land are severely affected by salts and another 15% is at serious risk of imminent salinization. Due to the limited water resources in southeast of Spain, water with marginal quality is used for irrigation. The use of this water has led to degradation, reduction of the land's production capacity and soil salinization. The main aim of the present study was to identify the origin of the salts involved in such salinization, using classical and multivariable statistical techniques. In order to achieve this objective, surface soil samples were collected in January and July 2009 at 48 sites located in a representative lemon production area close to City of Murcia, covering a surface area of 44 km2. Soil pH, electrical conductivity, ionic composition, total organic matter, equivalent calcium carbonate, cation exchange capacity and particle size distribution were determined. The Pearson correlation coefficient, r, was used to measure the relationship between two quantitative variables and principal components analysis was used to study the correlations among anions and cations and their grouping into several factors. Results indicated that the high electrical conductivity found in the study area indeed comes from poor quality irrigation water used for agriculture. Anions and cations responsible of the salinity were chlorides, sulphates, calcium, magnesium and sodium. Mismanagement of water and traditional irrigation system resulted in salt build-up in the soil system. Therefore, there is an urgent need to manage irrigation considering the soil type, climatic factors, and crop requirements. A change to drip irrigation system is desirable in this respect. Phosphate, ammonium, nitrate and potassium found in the soils under study were found to be associated with fertilization. They have been applied to the soil mainly as ammonium nitrate, potassium nitrate, and monoammonium phosphate. The previous indicated that these ions are not involved in secondary salinization of the soils. Finally, SEM-EDX analysis suggested that calcium sulphate found in the agricultural soil of Murcia originated from two sources: i) irrigation water and ii) pedogenic sources. This was confirmed by different crystal morphology and occurrence. In conclusion, multivariable analyses combined with advanced laboratory analysis (e.g. SEM-EDX) are very useful to identify the possible sources of salts. Acknowledgements: to "Fundación Séneca" of "Comunidad Autónoma de Murcia" for its financial support.

  20. Study of the water transportation characteristics of marsh saline soil in the Yellow River Delta.

    PubMed

    He, Fuhong; Pan, Yinghua; Tan, Lili; Zhang, Zhenhua; Li, Peng; Liu, Jia; Ji, Shuxin; Qin, Zhaohua; Shao, Hongbo; Song, Xueyan

    2017-01-01

    One-dimensional soil column water infiltration and capillary adsorption water tests were conducted in the laboratory to study the water transportation characteristics of marsh saline soil in the Yellow River Delta, providing a theoretical basis for the improvement, utilization and conservation of marsh saline soil. The results indicated the following: (1) For soils with different vegetation covers, the cumulative infiltration capacity increased with the depth of the soil layers. The initial infiltration rate of soils covered by Suaeda and Tamarix chinensis increased with depth of the soil layers, but that of bare soil decreased with soil depth. (2) The initial rate of capillary rise of soils with different vegetation covers showed an increasing trend from the surface toward the deeper layers, but this pattern with respect to soil depth was relatively weak. (3) The initial rates of capillary rise were lower than the initial infiltration rates, but infiltration rate decreased more rapidly than capillary water adsorption rate. (4) The two-parameter Kostiakov model can very well-simulate the changes in the infiltration and capillary rise rates of wetland saline soil. The model simulated the capillary rise rate better than it simulated the infiltration rate. (5) There were strong linear relationships between accumulative infiltration capacity, wetting front, accumulative capillary adsorbed water volume and capillary height. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. A Compact L-band Radiometer for High Resolution sUAS-based Imaging of Soil Moisture and Surface Salinity Variations

    NASA Astrophysics Data System (ADS)

    Gasiewski, A. J.; Stachura, M.; Dai, E.; Elston, J.; McIntyre, E.; Leuski, V.

    2014-12-01

    Due to the long electrical wavelengths required along with practical aperture size limitations the scaling of passive microwave remote sensing of soil moisture and salinity from spaceborne low-resolution (~10-100 km) applications to high resolution (~10-1000 m) applications requires use of low flying aerial vehicles. This presentation summarizes the status of a project to develop a commercial small Unmanned Aerial System (sUAS) hosting a microwave radiometer for mapping of soil moisture in precision agriculture and sea surface salinity studies. The project is based on the Tempest electric-powered UAS and a compact L-band (1400-1427 MHz) radiometer developed specifically for extremely small and lightweight aerial platforms or man-portable, tractor, or tower-based applications. Notable in this combination are a highly integrated sUAS/radiometer antenna design and use of both the upwelling emitted signal from the surface and downwelling cold space signal for precise calibration using a unique lobe-differencing correlating radiometer architecture. The system achieves a spatial resolution comparable to the altitude of the UAS above the surface while referencing upwelling measurements to the constant and well-known background temperature of cold space. The radiometer has been tested using analog correlation detection, although future builds will include infrared, near-infrared, and visible (red) sensors for surface temperature and vegetation biomass correction and digital sampling for radio frequency interference mitigation. This NASA-sponsored project is being developed for commercial application in cropland water management (for example, high-value shallow root-zone crops), landslide risk assessment, NASA SMAP satellite validation, and NASA Aquarius salinity stratification studies. The system will ultimately be capable of observing salinity events caused by coastal glacier and estuary fresh water outflow plumes and open ocean rainfall events.

  2. Irrigation salinity hazard assessment and risk mapping in the lower Macintyre Valley, Australia.

    PubMed

    Huang, Jingyi; Prochazka, Melissa J; Triantafilis, John

    2016-05-01

    In the Murray-Darling Basin of Australia, secondary soil salinization occurs due to excessive deep drainage and the presence of shallow saline water tables. In order to understand the cause and best management, soil and vadose zone information is necessary. This type of information has been generated in the Toobeah district but owing to the state border an inconsistent methodology was used. This has led to much confusion from stakeholders who are unable to understand the ambiguity of the results in terms of final overall risk of salinization. In this research, a digital soil mapping method that employs various ancillary data is presented. Firstly, an electromagnetic induction survey using a Geonics EM34 and EM38 was used to characterise soil and vadose zone stratigraphy. From the apparent electrical conductivity (ECa) collected, soil sampling locations were selected and with laboratory analysis carried out to determine average (2-12m) clay and EC of a saturated soil-paste extract (ECe). EM34 ECa, land surface parameters derived from a digital elevation model and measured soil data were used to establish multiple linear regression models, which allowed for mapping of various hazard factors, including clay and ECe. EM38 ECa data were calibrated to deep drainage obtained from Salt and Leaching Fraction (SaLF) modelling of soil data. Expert knowledge and indicator kriging were used to determine critical values where the salinity hazard factors were likely to contribute to a shallow saline water table (i.e., clay ≤35%; ECe>2.5dS/m, and deep drainage >100mm/year). This information was combined to produce an overall salinity risk map for the Toobeah district using indicator kriging. The risk map shows potential salinization areas and where detailed information is required and where targeted research can be conducted to monitor soil conditions and water table heights and determine best management strategies. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Evaluating soil moisture retrievals from ESA's SMOS and NASA's SMAP brightness temperature datasets

    USDA-ARS?s Scientific Manuscript database

    Two satellites are currently monitoring surface soil moisture (SM) from L-band observations: SMOS (Soil Moisture and Ocean Salinity), a European Space Agency (ESA) satellite that was launched on November 2, 2009 and SMAP (Soil Moisture Active Passive), a National Aeronautics and Space Administration...

  4. Relationships between salinity and short-term soil carbon accumulation rates form marsh types across a landscape in the Mississippi River Delta

    USGS Publications Warehouse

    Baustian, Melissa M.; Stagg, Camille L.; Perry, Carey L.; Moss, Leland C; Carruthers, Tim J.B.; Allison, Mead

    2017-01-01

    Salinity alterations will likely change the plant and environmental characteristics in coastal marshes thereby influencing soil carbon accumulation rates. Coastal Louisiana marshes have been historically classified as fresh, intermediate, brackish, or saline based on resident plant community and position along a salinity gradient. Short-term total carbon accumulation rates were assessed by collecting 10-cm deep soil cores at 24 sites located in marshes spanning the salinity gradient. Bulk density, total carbon content, and the short-term accretion rates obtained with feldspar horizon markers were measured to determine total carbon accumulation rates. Despite some significant differences in soil properties among marsh types, the mean total carbon accumulation rates among marsh types were not significantly different (mean ± std. err. of 190 ± 27 g TC m−2 year−1). However, regression analysis indicated that mean annual surface salinity had a significant negative relationship with total carbon accumulation rates. Based on both analyses, the coastal Louisiana total marsh area (1,433,700 ha) accumulates about 2.7 to 3.3 Tg C year−1. Changing salinities due to increasing relative sea level or resulting from restoration activities may alter carbon accumulation rates in the short term and significantly influence the global carbon cycle.

  5. Effect of salinity on heavy metal mobility and availability in intertidal sediments of the Scheldt estuary

    NASA Astrophysics Data System (ADS)

    Du Laing, G.; De Vos, R.; Vandecasteele, B.; Lesage, E.; Tack, F. M. G.; Verloo, M. G.

    2008-05-01

    The effect of the flood water salinity on the mobility of heavy metals was studied for intertidal sediments of the Scheldt estuary (Belgium). Soils and sediments of 4 sampling sites were flooded with water of different salinities (0.5, 2.5, and 5 g NaCl L -1). Metal concentrations were monitored in pore water and surface water. To study the potential effects of flood water salinity on metal bioavailability, duckweed ( Lemna minor) was grown in the surface water. The salinity was found to primarily enhance the mobility of Cd and its uptake by duckweed. Cadmium concentrations in pore water of soils and sediments and surrounding surface waters significantly exceeded sanitation thresholds and quality standards during flooding of initially oxidized sediments. Moreover, the effect was observed already at lower salinities of 0.5 g NaCl L -1. This implies that risks related to Cd uptake by organisms and Cd leaching to ground water are relevant when constructing flooding areas in the brackish zones of estuaries. These risks can be reduced by inducing sulphide precipitation because Cd is then immobilised as sulphide and its mobility becomes independent of flood water salinity. This could be achieved by permanently flooding the polluted sediments, because sulphates are sufficiently available in the river water of the brackish part of the estuary.

  6. Linking river, floodplain, and vadose zone hydrology to improve restoration of a coastal river affected by saltwater intrusion.

    PubMed

    Kaplan, D; Muñoz-Carpena, R; Wan, Y; Hedgepeth, M; Zheng, F; Roberts, R; Rossmanith, R

    2010-01-01

    Floodplain forests provide unique ecological structure and function, which are often degraded or lost when watershed hydrology is modified. Restoration of damaged ecosystems requires an understanding of surface water, groundwater, and vadose (unsaturated) zone hydrology in the floodplain. Soil moisture and porewater salinity are of particular importance for seed germination and seedling survival in systems affected by saltwater intrusion but are difficult to monitor and often overlooked. This study contributes to the understanding of floodplain hydrology in one of the last bald cypress [Taxodium distichum (L.) Rich.] floodplain swamps in southeast Florida. We investigated soil moisture and porewater salinity dynamics in the floodplain of the Loxahatchee River, where reduced freshwater flow has led to saltwater intrusion and a transition to salt-tolerant, mangrove-dominated communities. Twenty-four dielectric probes measuring soil moisture and porewater salinity every 30 min were installed along two transects-one in an upstream, freshwater location and one in a downstream tidal area. Complemented by surface water, groundwater, and meteorological data, these unique 4-yr datasets quantified the spatial variability and temporal dynamics of vadose zone hydrology. Results showed that soil moisture can be closely predicted based on river stage and topographic elevation (overall Nash-Sutcliffe coefficient of efficiency = 0.83). Porewater salinity rarely exceeded tolerance thresholds (0.3125 S m(-1)) for bald cypress upstream but did so in some downstream areas. This provided an explanation for observed vegetation changes that both surface water and groundwater salinity failed to explain. The results offer a methodological and analytical framework for floodplain monitoring in locations where restoration success depends on vadose zone hydrology and provide relationships for evaluating proposed restoration and management scenarios for the Loxahatchee River.

  7. Global Soil Moisture from the Aquarius/SAC-D Satellite: Description and Initial Assessment

    NASA Technical Reports Server (NTRS)

    Bindlish, Rajat; Jackson, Thomas; Cosh, Michael; Zhao, Tianjie; O'Neil, Peggy

    2015-01-01

    Aquarius satellite observations over land offer a new resource for measuring soil moisture from space. Although Aquarius was designed for ocean salinity mapping, our objective in this investigation is to exploit the large amount of land observations that Aquarius acquires and extend the mission scope to include the retrieval of surface soil moisture. The soil moisture retrieval algorithm development focused on using only the radiometer data because of the extensive heritage of passive microwave retrieval of soil moisture. The single channel algorithm (SCA) was implemented using the Aquarius observations to estimate surface soil moisture. Aquarius radiometer observations from three beams (after bias/gain modification) along with the National Centers for Environmental Prediction model forecast surface temperatures were then used to retrieve soil moisture. Ancillary data inputs required for using the SCA are vegetation water content, land surface temperature, and several soil and vegetation parameters based on land cover classes. The resulting global spatial patterns of soil moisture were consistent with the precipitation climatology and with soil moisture from other satellite missions (Advanced Microwave Scanning Radiometer for the Earth Observing System and Soil Moisture Ocean Salinity). Initial assessments were performed using in situ observations from the U.S. Department of Agriculture Little Washita and Little River watershed soil moisture networks. Results showed good performance by the algorithm for these land surface conditions for the period of August 2011-June 2013 (rmse = 0.031 m(exp 3)/m(exp 3), Bias = -0.007 m(exp 3)/m(exp 3), and R = 0.855). This radiometer-only soil moisture product will serve as a baseline for continuing research on both active and combined passive-active soil moisture algorithms. The products are routinely available through the National Aeronautics and Space Administration data archive at the National Snow and Ice Data Center.

  8. Soil degradation in farmlands of California's San Joaquin Valley resulting from drought-induced land-use changes

    NASA Astrophysics Data System (ADS)

    Scudiero, Elia; Skaggs, Todd; Anderson, Ray; Corwin, Dennis

    2016-04-01

    Irrigation in California's Central Valley (USA) has decreased significantly due to water shortages resulting from the current drought, which began in 2010. In particular, fallow fields in the west side of the San Joaquin Valley (WSJV), which is the southwest portion of the Central Valley, increased from around 12% in the years before the drought (2007-2010) to 20-25% in the following years (2011-2015). We monitored and mapped drought-induced edaphic changes in salinity at two scales: (i) field scale (32.4-ha field in Kings County) and (ii) water district scale (2400 ha at -former- Broadview Water District in Fresno County). At both scales drought-induced land-use changes (i.e., shift from irrigated agriculture to fallow) drastically decreased soil quality by increasing salinity (and sodicity), especially in the root-zone (top 1.2 m). The field study monitors the spatial (three dimensions) changes of soil salinity (and sodicity) in the root-zone during 10 years of irrigation with drainage water followed by 4 years of no applied irrigation water (only rainfall) due to drought conditions. Changes of salinity (and other edaphic properties), through the soil profile (down to 1.2 m, at 0.3-m increments), were monitored and modeled using geospatial apparent electrical conductivity measurements and extensive soil sampling in 1999, 2002, 2004, 2009, 2011, and 2013. Results indicate that when irrigation was applied, salts were leached from the root-zone causing a remarkable improvement in soil quality. However, in less than two years after termination of irrigation, salinity in the soil profile returned to original levels or higher across the field. At larger spatial scales the effect of drought-induced land-use change on root-zone salinity is also evident. Up to spring 2006, lands in Broadview Water District (BWD) were used for irrigated agriculture. Water rights were then sold and the farmland was retired. Soil quality decreased since land retirement, especially during the drought years. Root-zone soil salinity was mapped in 1991 using geospatial apparent electrical conductivity measurements and extensive soil sampling and in 2013 using recent root-zone remote sensing salinity map for the WSJV (developed and published by the U.S. Salinity Laboratory, USDA-ARS), which was calibrated and (independently) validated, including fields from the BWD. Results reveal dramatic increases in soil salinity for all the fields that were originally non-saline and slightly-saline in 1991. Additionally, time-series analysis of very-high resolution ortho-imagery (from Google Earth and USGS) suggests that surface soil quality drastically decreased especially during the drought years. Our research shows how terminating irrigation in California's Central Valley can lead to substantial soil salinization in a very short time. Salinization in WSJV due to the termination of irrigation is a consequence of the complex multi-scale interaction of geomorphologic, topographic, and anthropogenic factors requiring yearly monitoring to adequately assess the impacts of drought for use in field- and basin-scale water management decisions. Among other concerns, increased salinity and sodicity affect vegetation growth and may lead to increased soil erosion and very-fine dust formation creating health and environmental hazards.

  9. The role of salinity tolerance and competition in the distribution of an endangered desert salt marsh endemic

    USGS Publications Warehouse

    DeFalco, Lesley; Scoles, Sara; Beamguard, Emily R.

    2017-01-01

    Rare plants are often associated with distinctive soil types, and understanding why endemic species occur in unique environments is fundamental for their management. At Ash Meadows National Wildlife Refuge in southern Nevada, USA, we evaluated whether the limited distribution of endangered Amargosa niterwort (Nitrophila mohavensis) is explained by this species’ tolerance of saline soils on salt-encrusted mud flats compared with the broadly distributed desert saltgrass (Distichlis spicata var. stricta). We simultaneously explored whether niterwort distribution is restricted from expanding due to interspecific competition with saltgrass. Surface soils collected throughout niterwort’s range were unexpectedly less saline with lower extractable Na, seasonal electroconductivity, and Na absorption ratio, and higher soil moisture than in adjacent saltgrass or mixed shrub habitats. Comparison of niterwort and saltgrass growth along an experimental salinity gradient in a greenhouse demonstrated lower growth of niterwort at all but the highest NaCl concentrations. Although growth of niterwort ramets was similar when transplanted into both habitats at the refuge below Crystal Reservoir, niterwort reproductive effort was considerably higher in saltgrass compared to its own habitat, implying reallocation of resources to sexual reproduction to maximize fitness when the probability of ramet mortality increases with greater salinity stress. Saltgrass was not a demonstrated direct competitor of niterwort; however, this species is known to increase soil salinity by exuding salt ions and through litterfall. Niterwort conservation will benefit from protecting hydrological processes that reduce salinity stress and preventing saltgrass colonization into niterwort habitat.

  10. Vegetation succession influences soil carbon sequestration in coastal alkali-saline soils in southeast China.

    PubMed

    Li, Niu; Shao, Tianyun; Zhu, Tingshuo; Long, Xiaohua; Gao, Xiumei; Liu, Zhaopu; Shao, Hongbo; Rengel, Zed

    2018-06-27

    The area of saline soils accounts for 8% of the earth's surface, making these soils an important terrestrial carbon sink. Soil organic carbon (SOC), microbial biomass carbon (MBC), dissolved organic carbon (DOC), soil enzyme activity, and soil bacterial abundance and biodiversity were measured in four successive coastal tidal flat ecosystems representing: bare saline soil (BS), Suaeda glauca land (SL), Imperata cylindrica grassland (IG), and Jerusalem artichoke field (JF). A decrease in soil salt content resulted in increased SOC content. With vegetation succession, MBC and DOC concentrations showed a positive trend, and activities of soil urease, catalase, invertase and alkaline phosphatase increased. A next-generation, Illumina-based sequencing approach showed that Proteobacteria, Acidobacteria, Chloroflexi, Bacteroidetes, Gemmatimonadetes, Actinobacteria, Nitrospirae and Planctomycetes were the dominant bacterial communities (a total of 597 taxa were detected, and 27 genera showed significant differences among the vegetation communities). Bacterial diversity at two soil depths was enhanced with the succession of vegetation ecosystems, with the increases in operational taxonomic units (OTUs) and the Shannon and Chao1 indices ranked in the order: JF > IG > SL > BS. The SOC and C/N were the most determinant factors influencing diversity of bacterial communities in the succession ecosystems.

  11. Detecting crop yield reduction due to irrigation-induced soil salinization in South-West Russia

    NASA Astrophysics Data System (ADS)

    Argaman, E.; Beets, W.; Croes, J.; Keesstra, S.; Verzandvoort, S.; Zeiliguer, A.

    2012-04-01

    The South-European part of the Russian Federation has experienced serious land degradation in the form of soil salinization since the 1960s. This land degradation was caused by intensive, large-scale irrigation on reclaimed land in combination with the salt-rich nature of the substrate. Alkaline soil salinity is believed to be an important factor decreasing crop yield in this area. A large research effort has been directed to the effects of soil salinity on crops, there is a need for simple, easily determinable indicators of crop health and soil salinity in irrigated systems, that can help to detect crop water stress in an early stage. The objectives of this research were to study the effects of soil salinity and vegetation water stress on the performance of alfalfa crop yield and physiological crop properties, and to study the possibility to measure soil salinity and alkalinity and the crop water stress index at plot level using a thermal gun and a regular digital camera. The study area was located in Saratov District, in the South-West part of Russia. Variables on the surface energy balance, crop properties, soil properties and visible reflectance were measured on plots with alfalfa cultures in two fields with and without signs of alkaline soil salinity, and with and without irrigation in July 2009. The research showed no clear adverse effects of soil salinity and soil alkalinity on crop yield and physiological crop properties. Soil salinity, as reflected by the electric conductivity, positively affected the root biomass of alfalfa in the range of 0.15 to 1.52 dS/m . This was a result of EC levels being below the documented threshold to negatively affect Alfalfa, as would be the case in truly saline soils. The soil pH also showed a positive correlation with root biomass within the range of pH 6.2 and 8.5 . From the literature these pH values are generally believed to be too high to exhibit a positive relationship with root biomass. No relationship was found between EC and pH on the one hand , and soil moisture content on the other. However, soil moisture content in the topsoil appeared to have a major influence on the crop water stress index, which on its turn affected the leaf area index, the fresh biomass and the mean plant height. The crop leaf color as detected by a regular digital camera appeared to be correlated with pH and EC properties of the soil. The visible light band ratios red/green and blue/green correlated well with the crop water stress index. More research is necessary to prove if this relation is applicable in different environments, and for different crops. A confirmation of these findings would offer scope to increase the spatial support of this technique using satellite images.

  12. Aquarius/SAC-D soil moisture product using V3.0 observations

    USDA-ARS?s Scientific Manuscript database

    Although Aquarius was designed for ocean salinity mapping, our objective in this investigation is to exploit the large amount of land observations that Aquarius acquires and extend the mission scope to include the retrieval of surface soil moisture. The soil moisture retrieval algorithm development ...

  13. On the origin of saline soils at Blackspring Ridge, Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Stein, Richard; Schwartz, Franklin W.

    1990-09-01

    Problems of soil salinity occur at Blackspring Ridge, Alberta, in four different settings. The most seriously affected area is at the base of the ridge where salinity appears as severe salt crusting on the surface, salt-tolerant vegetation, and areas of poor or no crop production. Blackspring Ridge is a structural bedrock high that is underlain by Upper Cretaceous sediment of the Horseshoe Canyon Formation. Bedrock is overlain by fluvial, glacial, lacustrine, and aeolian sediment. Piezometric data indicate that groundwater is recharged on and along the upper flanks of Blackspring Ridge and discharges in southern parts of a lacustrine plain that surrounds the ridge. Hydraulic conductivity data, water-level fluctuations, stable isotopes, and hydrochemical data indicate that the fractured near-surface bedrock and overlying thin-drift sediment constitute a zone of active groundwater flow within which salts are generated and transported. Water discharging from this shallow system evaporates and forms saline areas at the base of the ridge. The most seriously affected areas on the lacustrine plain coincide with places where the water table is less than 1.5m from the ground surface. A high water table occurs locally because of the changing topology of geologic units, and lows in the topographic surface that focus groundwater and surface water flows. Some proportion of the shallow groundwater salinized by evaporation is also transported down the flow system where it mixes with unevaporated water. Surface water, from snowmelt and precipitation events, dissolves salt that was deposited at the surface by evaporating groundwater and redistributes the salt to areas of lower elevation.

  14. An overview of new insights from satellite salinity missions on oceanography

    NASA Astrophysics Data System (ADS)

    Reul, Nicolas

    2015-04-01

    The Soil Moisture and Ocean Salinity (SMOS) mission, launched on 2 November 2009, is the European Space Agency's (ESA) second Earth Explorer Opportunity mission. The scientific objectives of the SMOS mission directly respond to the need for global observations of soil moisture and ocean salinity, two key variables describing the Earth's water cycle and having been identified as Essential Climate Variables (ECVs) by the Global Climate Observing System (GCOS). After five years of satellite Sea Surface Salinity (SSS) monitoring from SMOS data, we will present an overview of the scientific highlights these data have brougtht to the oceanographic communities. In particular, we shall review the impact of SMOS SSS and brightness tempeaerture data for the monitoring of: -Mesoscale variability of SSS (and density) in frontal structures, eddies, -Ocean propagative SSS signals (e.g. TIW, planetary waves), -Freshwater flux Monitoring (Evaportaion minus precipitation, river run off), -Large scale SSS anomalies related to climate fluctuations (e.g. ENSO, IOD), -Air-Sea interactions (equatorial upwellings, Tropical cyclone wakes) -Temperature-Salinity dependencies, -Sea Ice thickness, -Tropical Storm and high wind monitoring, -Ocean surface bio-geo chemistry.

  15. De-icing salt contamination reduces urban tree performance in structural soil cells.

    PubMed

    Ordóñez-Barona, Camilo; Sabetski, Vadim; Millward, Andrew A; Steenberg, James

    2018-03-01

    Salts used for de-icing roads and sidewalks in northern climates can have a significant impact on water quality and vegetation. Sub-surface engineering systems, such as structural soil cells, can regulate water runoff and pollutants, and provide the necessary soil volume and irrigation to grow trees. However, the ability of such systems to manage de-icing salt contamination, and the impact of this contamination on the trees growing in them, have not been evaluated. We report on an field investigation of de-icing salt contamination in structural cells in two street-revitalization projects in Toronto, Canada, and the impact of this contamination on tree performance. We analyzed soil chemistry and collected tree attributes; these data were examined together to understand the effect of salinity on tree mortality rates and foliar condition. Data collected from continuous soil salinity loggers from April to June for one of the two sites were used to determine whether there was a long-term accumulation of salts in the soils. Results for both sites indicate that both sites displayed high salinity and alkalinity, with levels elevated beyond those suggested before those reported to cause negative tree effects. For one site, trees that were alive and trees that had a better foliar condition had significantly lower levels of soil salinity and alkalinity than other trees. High salinity and alkalinity in the soil were also associated with lower nutrient levels for both sites. Although tests for salinity accumulation in the soils of one site were negative, a longer monitoring of the soil conditions within the soil cells is warranted. Despite structural cells being increasingly utilized for their dual role in storm-water management and tree establishment, there may be a considerable trade-off between storm-water management and urban-forest function in northern climates where de-icing salt application continues to be commonplace. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. SMOS disaggregated soil moisture product at 1 km resolution: processor overview and first validation results

    USDA-ARS?s Scientific Manuscript database

    The SMOS (Soil Moisture and Ocean Salinity) mission provides surface soil moisture (SM) maps at a mean resolution of ~50 km. However, agricultural applications (irrigation, crop monitoring) and some hydrological applications (floods and modeling of small basins) require higher resolution SM...

  17. SMOS: a satellite mission to measure ocean surface salinity

    NASA Astrophysics Data System (ADS)

    Font, Jordi; Kerr, Yann H.; Srokosz, Meric A.; Etcheto, Jacqueline; Lagerloef, Gary S.; Camps, Adriano; Waldteufel, Philippe

    2001-01-01

    The ESA's SMOS (Soil Moisture and Ocean Salinity) Earth Explorer Opportunity Mission will be launched by 2005. Its baseline payload is a microwave L-band (21 cm, 1.4 GHz) 2D interferometric radiometer, Y shaped, with three arms 4.5 m long. This frequency allows the measurement of brightness temperature (Tb) under the best conditions to retrieve soil moisture and sea surface salinity (SSS). Unlike other oceanographic variables, until now it has not been possible to measure salinity from space. However, large ocean areas lack significant salinity measurements. The 2D interferometer will measure Tb at large and different incidence angles, for two polarizations. It is possible to obtain SSS from L-band passive microwave measurements if the other factors influencing Tb (SST, surface roughness, foam, sun glint, rain, ionospheric effects and galactic/cosmic background radiation) can be accounted for. Since the radiometric sensitivity is low, SSS cannot be recovered to the required accuracy from a single measurement as the error is about 1-2 psu. If the errors contributing to the uncertainty in Tb are random, averaging the independent data and views along the track, and considering a 200 km square, allow the error to be reduced to 0.1-0.2 pus, assuming all ancillary errors are budgeted.

  18. Simulating Salt Movement and Transformation using a Coupled Reactive Transport Model in Variably-Saturated Groundwater Systems

    NASA Astrophysics Data System (ADS)

    Tavakoli Kivi, S.; Bailey, R. T.; Gates, T.

    2016-12-01

    Salinization is one of the major concerns in irrigated agricultural landscapes. Increasing salinity concentrations are due principally to evaporative concentration; dissolution of salts from weathered minerals and bedrock; and a high water table that results from excessive irrigation, canal seepage, and a lack of efficient drainage systems; leading to decreasing crop yield. High groundwater salinity loading to nearby river systems also impacts downstream areas, with saline river water diverted for application on irrigated fields. In this study, a solute transport model coupled with equilibrium chemistry reactions has been developed to simulate transport of individual salt ions in regional-scale aquifer systems and thereby investigate strategies for salinity remediation. The physically-based numerical model is based on the UZF-RT3D variably-saturated, multi-species groundwater reactive transport modeling code, and accounts for advection, dispersion, carbon and nitrogen cycling, oxidation-reduction reactions, and salt ion equilibrium chemistry reactions such as complexation, ion exchange, and precipitation/dissolution. Each major salt ion (sulfate, chloride, bicarbonate, calcium, sodium, magnesium, potassium) is included. The model has been tested against measured soil salinity at a small scale (soil profile) and against soil salinity, groundwater salinity, and groundwater salinity loading to surface water at the regional scale (500 km2) in the Lower Arkansas River Valley (LARV) in southeastern Colorado, an area acutely affected by salinization for many decades and greatly influenced by gypsum deposits. Preliminary results of using the model in scenario analysis suggest that increasing irrigation efficiency, sealing earthen canals, and rotational fallowing of land can decrease the groundwater salt load to the Arkansas River by 50 to 70% and substantially lower soil salinity in the root zone.

  19. Regional scale soil salinity assessment using remote sensing based environmental factors and vegetation indicators

    NASA Astrophysics Data System (ADS)

    Ma, Ligang; Ma, Fenglan; Li, Jiadan; Gu, Qing; Yang, Shengtian; Ding, Jianli

    2017-04-01

    Land degradation, specifically soil salinization has rendered large areas of China west sterile and unproductive while diminishing the productivity of adjacent lands and other areas where salting is less severe. Up to now despite decades of research in soil mapping, few accurate and up-to-date information on the spatial extent and variability of soil salinity are available for large geographic regions. This study explores the po-tentials of assessing soil salinity via linear and random forest modeling of remote sensing based environmental factors and indirect indicators. A case study is presented for the arid oases of Tarim and Junggar Basin, Xinjiang, China using time series land surface temperature (LST), evapotranspiration (ET), TRMM precipitation (TRM), DEM product and vegetation indexes as well as their second order products. In par-ticular, the location of the oasis, the best feature sets, different salinity degrees and modeling approaches were fully examined. All constructed models were evaluated for their fit to the whole data set and their performance in a leave-one-field-out spatial cross-validation. In addition, the Kruskal-Wallis rank test was adopted for the statis-tical comparison of different models. Overall, the random forest model outperformed the linear model for the two basins, all salinity degrees and datasets. As for feature set, LST and ET were consistently identified to be the most important factors for two ba-sins while the contribution of vegetation indexes vary with location. What's more, models performances are promising for the salinity ranges that are most relevant to agricultural productivity.

  20. Assessing spatial variability of soil properties and ions associated to salinity using the multifractal approach

    NASA Astrophysics Data System (ADS)

    Machado Siqueira, Glécio; Soares da Silva, Jucicleia; Farías França e Silva, Ênio; Lado, Marcos; Paz-González, Antonio; Vidal-Vázquez, Eva

    2017-04-01

    The lowlands coastal region of the state of Pernambuco, Northeast of Brazil, was formerly covered by humid Atlantic forest (Mata Atlântica) and then has been increasingly devoted to Sugar cane production. Because the water table is near to the soil surface salinity can occur in this area. The objective of this study was to assess the scale dependence of parameters associated to soil salinity and ions responsible for salination using multifractal analysis. The field work was conducted at an experimental field located in the Goiania municipality, Pernambuco, Brazil. This site is located 10 km east from the Atlantic coast. The field has been devoted to monoculture of sugarcane (Saccharum of?cinarum sp.) since 25 years. The climate of the region is tropical, with average annual temperature of 24°C and 1800 mm of precipitation per year. Soil was sampled every 3 m at 128 locations across a 384 m transect at a depth of 0-20 cm. The soil samples were analysed for pH, electrical conductivity (EC), Na+, K+, Ca2+, Mg2+, Cl- and SO4-2; also sodium adsorption ratio (SAR) was calculated. The spatial distributions of all the studied variables associated to soil salinity exhibited multifractal behaviour. Although all the variables studied exhibited a very strong power law scaling, different degrees of multifractality, assessed by differences in the amplitude and several selected parameters of the generalized dimension and singularity spectrum curves, have been appreciated. The multifractal approach gives a good description of the patterns of spatial variability of properties and ions describing soil salinity, and allows discriminating differences between them.

  1. [Diversity of uncultured actinomycetes in saline-alkali soil from Jiuquan area of Hexi Corridor].

    PubMed

    Li, Hai-yun; Niu, Shi-quan; Kong, Wei-bao; Yan, Wei-ru; Geng, Hui; Han, Cai-hong; Da, Wen-yan; Zhang, Ai-mei; Zhu, Xue-tai

    2015-09-01

    In order to more accurately understand community structure and diversity of actinomycetes in saline-alkali soil from Jiuquan area of Hexi Corridor, the community structure and diversity from three kinds of soil samples (primary, secondary saline alkali soil and farmland soil) were analyzed using uncultured methods. The results showed that the 16S rDNA clone library of actinomycetales from the primary saline-alkali soil belonged to 19 OTUs, Micrococcineae, Propionibacterineae, Corynebacterineae, Frankineae, Pseudonocardineae and unknown groups of Actinomycetales; the 16S r DNA clone library of actinomycetales from the secondary saline-alkali soil belonged to 14 OTUs, Micrococcineae, Propionibacterineae, Corynebacterineae, Frankineae, Pseudonocardineae and unknown groups of Actinomycetales; the 16S rDNA clone library of farmland soil belonged to 7 OTUs, Micrococcineae, Propionibacterineae, Corynebacterineae, Frankineae, Pseudonocardineae and unknown groups of Actinomycetales; Micrococcineae was the common population in the three soils, and also was the dominant population in primary saline alkali soil and farmland soil. The diversity index and rarefaction curves analysis showed that actinomycetes species richness was in order of primary saline-alkali soil > secondary saline-alkali soil > farmland soil. The dilution curves of primary saline-alkali soil and secondary saline-alkali soil were not leveled off, which indicated the actinomycetes diversity in saline-alkali soil was more enriched than the actual. The rich and diverse actinomycetes resources in saline-alkali soil from Jiuquan area of Hexi Corridor provide important data on the actinomycetes ecology distribution research, exploitation and utilization in saline-alkali soil.

  2. Salt Efflorescence Effects on Soil Surface Erodibility and Dust Emissions

    NASA Astrophysics Data System (ADS)

    Van Pelt, R. S.; Zhang, G.

    2017-12-01

    Soluble salts resulting from weathering of geological materials often form surface crusts or efflorescences in areas with shallow saline groundwater. In many cases, the affected areas are susceptible to wind erosion due to their lack of protective vegetation and their flat topography. Fugitive dusts containing soluble salts affect the biogeochemistry of deposition regions and may result in respiratory irritation during transport. We created efflorescent crusts on soil trays by surface evaporation of single salt solutions and bombarded the resultant efflorescences with quartz abrader sand in a laboratory wind tunnel. Four replicate trays containing a Torrifluvent soil affected by one of nine salts commonly found in arid and semiarid streams were tested and the emissions were captured by an aspirated multi-stage deposition and filtering system. We found that in most cases the efflorescent crust reduced the soil surface erodibility but also resulted in the emission of salt rich dust. Two of the salts, sodium thiosulfate and calcium chloride, resulted in increased soil volume and erodibility. However, one of the calcium chloride replicates was tested after an outbreak of humid air caused hygroscopic wetting of the soil and it became indurated upon drying greatly decreasing the erodibility. Although saline affected soils are not used for agricultural production and degradation is not a great concern, the release of salt rich dust is an area of environmental concern and steps to control the dust emissions from affected soils should be developed. Future testing will utilize suites of salts found in streams of arid and semiarid regions.

  3. Interannual and Decadal Changes in Salinity in the Oceanic Subtropical Gyres

    NASA Astrophysics Data System (ADS)

    Bulusu, Subrahmanyam

    2017-04-01

    There is evidence that the global water cycle has been undergoing an intensification over several decades as a response to increasing atmospheric temperatures, particularly in regions with skewed evaporation - precipitation (E-P) patterns such as the oceanic subtropical gyres. Moreover, observational data (rain gauges, etc.) are quite sparse over such areas due to the inaccessibility of open ocean regions. In this work, a comparison of observational and model simulations are conducted to highlight the potential applications of satellite derived salinity from NASA Aquarius Salinity mission, NASA Soil Moisture and Ocean Salinity (SMOS), and ESA's Soil Moisture Active Passive (SMAP). We explored spatial and temporal salinity changes (and trends) in surface and subsurface in the oceanic subtropical gyres using Argo floats salinity data, Simple Ocean Data Assimilation (SODA) reanalysis, Estimating the Circulations & Climate of the Ocean GECCO (German ECCO) model simulations, and Hybrid Coordinate Ocean Model (HYCOM). Our results based on SODA reanalysis reveals that a positive rising trend in sea surface salinity in the subtropical gyres emphasizing evidence for decadal intensification in the surface forcing in these regions. Zonal drift in the location of the salinity maximum of the south Pacific, north Atlantic, and south Indian regions implies a change in the mean near-surface currents responsible for advecting high salinity waters into the region. Also we found out that an overall salinity increase within the mixed layer, and a subsurface salinity decrease at depths greater than 200m in the global subtropical gyres over 61 years. We determine that freshwater fluxes at the air-sea interface are the primary drivers of the sea surface salinity (SSS) signature over these open ocean regions by quantifying the advective contribution within the surface layer. This was demonstrated through a mixed layer salinity budget in each subtropical gyre based on the vertically integrated advection and entrainment of salt. Our analysis of decadal variability of fluxes into and out of the gyres reveals little change in the strength of the mean currents through this region despite an increase in the annual export of salt in all subtropical gyres, with the meridional component dominating the zonal. This study reveals that the salt content of E-P maximum waters advected into the subtropical gyres is increasing over time. A combination of increasing direct evaporation over the regions with increasing remote evaporation over nearby E-P maxima is believed to be the main driver in increasing salinity of the subtropical oceans, suggesting an intensification of the global water cycle over decadal timescales.

  4. Enhancing begetation productivity forecasting using remotely-sensed surface soil moisture retrievals

    USDA-ARS?s Scientific Manuscript database

    With the onset of data availability from the ESA Soil Moisture and Ocean Salinity (SMOS) mission (Kerr and Levine, 2008) and the expected 2015 launch of the NASA Soil Moisture Active and Passive (SMAP) mission (Entekhabi et al., 2010), the next five years should see a significant expansion in our ab...

  5. A dynamic model of soil salinity and drainage generation in irrigated agriculture: A framework for policy analysis

    NASA Astrophysics Data System (ADS)

    Dinar, Ariel; Aillery, Marcel P.; Moore, Michael R.

    1993-06-01

    This paper presents a dynamic model of irrigated agriculture that accounts for drainage generation and salinity accumulation. Critical model relationships involving crop production, soil salinity, and irrigation drainage are based on newly estimated functions derived from lysimeter field tests. The model allocates land and water inputs over time based on an intertemporal profit maximization objective function and soil salinity accumulation process. The model is applied to conditions in the San Joaquin Valley of California, where environmental degradation from irrigation drainage has become a policy issue. Findings indicate that in the absence of regulation, drainage volumes increase over time before reaching a steady state as increased quantities of water are allocated to leaching soil salts. The model is used to evaluate alternative drainage abatement scenarios involving drainage quotas and taxes, water supply quotas and taxes, and irrigation technology subsidies. In our example, direct drainage policies are more cost-effective in reducing drainage than policies operating indirectly through surface water use, although differences in cost efficiency are relatively small. In some cases, efforts to control drainage may result in increased soil salinity accumulation, with implications for long-term cropland productivity. While policy adjustments may alter the direction and duration of convergence to a steady state, findings suggest that a dynamic model specification may not be necessary due to rapid convergence to a comon steady state under selected scenarios.

  6. Compact, Lightweight Dual- Frequency Microstrip Antenna Feed for Future Soil Moisture and Sea Surface Salinity Missions

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.; Wilson, William J.; Njoku, Eni; Hunter, Don; Dinardo, Steve; Kona, Keerti S.; Manteghi, Majid; Gies, Dennis; Rahmat-Samii, Yahya

    2004-01-01

    The development of a compact, lightweight, dual frequency antenna feed for future soil moisture and sea surface salinity (SSS) missions is described. The design is based on the microstrip stacked-patch array (MSPA) to be used to feed a large lightweight deployable rotating mesh antenna for spaceborne L-band (approx. 1 GHz) passive and active sensing systems. The design features will also enable applications to airborne sensors operating on small aircrafts. This paper describes the design of stacked patch elements, 16-element array configuration and power-divider beam forming network The test results from the fabrication of stacked patches and power divider were also described.

  7. Sea surface temperature and salinity from French research vessels, 2001–2013

    PubMed Central

    Gaillard, Fabienne; Diverres, Denis; Jacquin, Stéphane; Gouriou, Yves; Grelet, Jacques; Le Menn, Marc; Tassel, Joelle; Reverdin, Gilles

    2015-01-01

    French Research vessels have been collecting thermo-salinometer (TSG) data since 1999 to contribute to the Global Ocean Surface Underway Data (GOSUD) programme. The instruments are regularly calibrated and continuously monitored. Water samples are taken on a daily basis by the crew and later analysed in the laboratory. We present here the delayed mode processing of the 2001–2013 dataset and an overview of the resulting quality. Salinity measurement error was a few hundredths of a unit or less on the practical salinity scale (PSS), due to careful calibration and instrument maintenance, complemented with a rigorous adjustment on water samples. In a global comparison, these data show excellent agreement with an ARGO-based salinity gridded product. The Sea Surface Salinity and Temperature from French REsearch SHips (SSST-FRESH) dataset is very valuable for the ‘calibration and validation’ of the new satellite observations delivered by the Soil Moisture and Ocean Salinity (SMOS) and Aquarius missions. PMID:26504523

  8. Compact Radiometers Expand Climate Knowledge

    NASA Technical Reports Server (NTRS)

    2010-01-01

    To gain a better understanding of Earth's water, energy, and carbon cycles, NASA plans to embark on the Soil Moisture Active and Passive mission in 2015. To prepare, Goddard Space Flight Center provided Small Business Innovation Research (SBIR) funding to ProSensing Inc., of Amherst, Massachusetts, to develop a compact ultrastable radiometer for sea surface salinity and soil moisture mapping. ProSensing incorporated small, low-cost, high-performance elements into just a few circuit boards and now offers two lightweight radiometers commercially. Government research agencies, university research groups, and large corporations around the world are using the devices for mapping soil moisture, ocean salinity, and wind speed.

  9. The Impact of Dielectric Constant Model and Surface Reference on Differences Between SMOS and Aquarius Sea Surface Salinity

    NASA Technical Reports Server (NTRS)

    Dinnat, E. P.; Boutin, J.; Yin, X.; LeVine, D. M.

    2014-01-01

    Two ongoing space missions share the scientific objective of mapping the global Sea Surface Salinity (SSS), yet their observations show significant discrepancies. ESA's Soil Moisture and Ocean Salinity (SMOS) and NASA's Aquarius use L-band (1.4 GHz) radiometers to measure emission from the sea surface and retrieve SSS. Significant differences in SSS retrieved by both sensors are observed, with SMOS SSS being generally lower than Aquarius SSS, except for very cold waters where SMOS SSS is the highest overall. Figure 1 is an example of the difference between the SSS retrieved by SMOS and Aquarius averaged over one month and 1 degree in longitude and latitude. Differences are mostly between -1 psu and +1 psu (psu, practical salinity unit), with a significant regional and latitudinal dependence. We investigate the impact of the vicarious calibration and retrieval algorithm used by both mission on these differences.

  10. Impact of the Sun on Remote Sensing of Sea Surface Salinity from Space

    NASA Technical Reports Server (NTRS)

    LeVine, David M; Abraham, Saji; Wentz, F; Lagerloef, G S

    2005-01-01

    The sun is a sufficiently strong source of radiation at L-band to be an important source of interference for radiometers on future satellite missions such as SMOS, Aquarius, and Hydros designed to monitor soil moisture and sea surface salinity. Radiation from the sun can impact passive remote sensing systems in several ways, including line-of-sight radiation that comes directly from the sun and enters through antenna side lobes and radiation that is reflected from the surface to the radiometer. Examples are presented in the case of Aquarius, a pushbroom radiometer with three beams designed to monitor sea surface salinity. Near solar minimum, solar contamination is not a problem unless the sun enters near the main beam. But near solar maximum, contamination from the sun equivalent to a change of salinity on the order of 0.1 psu can occur even when the signal enters in sidelobes far from the main beam.

  11. Development and application of a conceptual hydrologic model to predict soil salinity within modern Tunisian oases

    NASA Astrophysics Data System (ADS)

    Askri, Brahim; Bouhlila, Rachida; Job, Jean Olivier

    2010-01-01

    SummaryIn modern oases situated in the south of Tunisia, secondary salination of irrigated lands is a crucial problem. The visible salt deposits and soil salination processes are the consequence of several factors including the excessive use of saline irrigation water, seepage from earthen canal systems, inefficient irrigation practices and inadequate drainage. Understanding the mechanism of the secondary salination is of interest in order to maintain existing oases, and thus ensure the sustainability of date production in this part of the country. Therefore, a conceptual, daily, semi-distributed hydrologic model (OASIS_MOD) was developed to analyse the impact of irrigation management on the water table fluctuation, soil salinity and drain discharge, and to evaluate measures to control salinity within an oasis ecosystem. The basic processes incorporated in the model are irrigation, infiltration, percolation to the shallow groundwater, soil evaporation, crop transpiration, groundwater flow, capillary rise flux, and drain discharge. OASIS_MOD was tested with data collected in a parcel of farmland situated in the Segdoud oasis, in the south-west of Tunisia. The calibration results showed that groundwater levels were simulated with acceptable accuracy, since the differences between the simulated and measured values are less than 0.22 m. However, the model under-predicted some water table peaks when irrigation occurs due to inconsistencies in the irrigation water data. The validation results showed that deviations between observed and simulated groundwater levels have increased to about 0.5 m due to under-estimation of groundwater inflow from an upstream palm plantation. A long-term simulation scenario revealed that the soil salinity and groundwater level have three types of variability in time: a daily variability due to irrigation practices, seasonal fluctuation due to climatic conditions and annual variability explained by the increase in cultivated areas. The irrigation interval was found to be important with irrigating once each ten days leading to soil salinity increase during the dry summer season and to a rising water table during the autumn-winter period. The annual increase in the irrigated area caused a decrease of the irrigation water depths, and thus an augmentation of the soil and groundwater salinities. The surface area affected by a soil salinity concentration above 15 g/L has increased from 2% of the study parcel area in June 1992 to about 50% four years later due to the abandonment of several cultivated basins.

  12. Climate and soil salinity in the deserts of Central Asia

    NASA Astrophysics Data System (ADS)

    Pankova, E. I.; Konyushkova, M. V.

    2013-07-01

    A comparative analysis of climatic and soil salinity characteristics of the deserts of Central Asia, including deserts of the Turan Depression, the Gobi Desert, and deserts of the Dzungar and Tarim depressions was performed. The climatic characteristics—the degree of aridity, the degree of continentality, and the amount and regime of precipitation—are different in these deserts. No direct relationships between the areas occupied by the automorphic salt-affected soils and the aridity of the climate are observed in the studied regions. In the automorphic landscapes of Asian deserts, the degree and chemistry of the soil salinization and the distribution of salt-affected soils are controlled by the history of the particular territories rather than by their modern climatic conditions. The presence and properties of the salt-bearing rocks and the eolian migration of salts play the most significant role. The deficit of moisture in the modern climate favors the preservation of salt accumulations in places of their origin. The specific features of the climate, including the regime of precipitation, affect the redistribution of salts in the profiles of automorphic salt-affected soils. An increase in the degree of climatic continentality is accompanied by the decrease in the intensity of weathering and initial accumulation of salts. A different situation is observed in the soils of hydromorphic desert landscapes, in which the degree of salinity of the surface horizons and the area occupied by salt-affected soils are directly influenced by the modern climatic conditions.

  13. The role of the upper tidal estuary in wetland blue carbon storage and flux

    USGS Publications Warehouse

    Krauss, Ken W.; Noe, Gregory B.; Duberstein, Jamie A.; Conner, William H.; Stagg, Camille L.; Cormier, Nicole; Jones, Miriam C.; Bernhardt, Christopher E.; Lockaby, B. Graeme; From, Andrew S.; Doyle, Thomas W.; Day, Richard H.; Ensign, Scott H.; Pierfelice, Katherine N.; Hupp, Cliff R.; Chow, Alex T.; Whitbeck, Julie L.

    2018-01-01

    Carbon (C) standing stocks, C mass balance, and soil C burial in tidal freshwater forested wetlands (TFFW) and TFFW transitioning to low‐salinity marshes along the upper estuary are not typically included in “blue carbon” accounting, but may represent a significant C sink. Results from two salinity transects along the tidal Waccamaw and Savannah rivers of the US Atlantic Coast show total C standing stocks were 321‐1264 Mg C ha‐1 among all sites, generally shifting to greater soil storage as salinity increased. Carbon mass balance inputs (litterfall, woody growth, herbaceous growth, root growth, surface accumulation) minus C outputs (surface litter and root decomposition, gaseous C) over a period of up to 11 years were 340‐900 g C m‐2 yr‐1. Soil C burial was variable (7‐337 g C m‐2 yr‐1), and lateral C export was estimated as C mass balance minus soil C burial as 267‐849 g C m‐2yr‐1. This represents a large amount of C export to support aquatic biogeochemical transformations. Despite reduced C persistence within emergent vegetation, decomposition of organic matter, and higher lateral C export, total C storage increased as forests converted to marsh with salinization. These tidal river wetlands exhibited high N mineralization in salinity‐stressed forested sites and considerable P mineralization in low salinity marshes. Large C standing stocks and rates of C sequestration suggest that TFFW and oligohaline marshes are considerably important globally to coastal C dynamics and in facilitating energy transformations in areas of the world in which they occur.

  14. Phytoextraction and phytoexcretion of Cd by the leaves of Tamarix smyrnensis growing on contaminated non-saline and saline soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manousaki, Eleni; Kadukova, Jana; Papadantonakis, Nikolaos

    2008-03-15

    Phytoremediation and more specifically phytoextraction, is an alternative restoration strategy for the clean up of heavy metal contaminated soils. Phytoextraction can only be successful if suitable plant species colonize the contaminated area, extract the toxic substances and accumulate them in their above ground tissues. In this study, the salt cedar Tamarix smyrnensis that is a widespread salt-tolerant plant in the Mediterranean region has been investigated. A pot experiment is conducted with T. smyrnensis grown in polluted soil with 16 ppm of cadmium and at three different salt concentrations (0.0, 0.5, 3.0% NaCl) for a 10-week period. It took place inmore » an open-air area with natural light, at ambient temperature and humidity in an effort to keep the plants under conditions as similar as possible to those in the field. However, care was taken not to let them be rained on. Temperature ranged from 19 to 50 deg. C with 33 and 21 deg. C being the average day and night temperature, respectively. Humidity ranged from 28% to 87% with a 13-14 h photoperiod. The specific aims of this work are to investigate the accumulation of cadmium via root uptake at different saline conditions and cadmium excretion through salt glands on the surface of the leaves as a probable detoxification mechanism of the plant. Furthermore, measurements of chlorophyll content, biomass, and shoot length are used to evaluate the potential of the plant for the removal of cadmium from contaminated saline and non-saline soils. The experimental data suggest that increased soil salinity results in an increase of the cadmium uptake by T. smyrnensis. Analysis of white salt crystals taken from glandular tissue confirmed the fact that this plant excretes cadmium through its salt glands on the surface of the leaves as a possible detoxification mechanism in order to resist metal toxicity. Excreted cadmium is again released into the environment and it is redeposited on the top soil. Furthermore, increased salinity results in an increased excretion of the metal on Tamarix leaf surface. The presence of metals usually affects negatively the plant health, but T. smyrnensis developed no visible signs of metal toxicity, only salt toxicity symptoms were observed. Cadmium usually decreases the chlorophyll content in plants; however, the amount of photosynthetic pigments of T. smyrnensis was found not to be affected. All the above points to the potential of T. smyrnensis for use in phytoremediation with the metal secretion from the leaves being a unique advantage that may change current phytoextraction practices.« less

  15. The role of topography and surface cover upon soil formation along hillslopes in arid climates

    NASA Astrophysics Data System (ADS)

    Yair, Aaron

    1990-09-01

    Two north-facing soil toposequences were selected from within the northern Negev desert, Israel, where average annual rainfall ranges from 70 to 200 mm. Both slopes are composed of an upper rocky and a lower colluvial section. Similar trends were found along both slopes. A high salt content was characteristic of soils at the top of the slope; salinity decreased downslope within the rocky slope section. The opposite occurred along the colluvial slopes, with salinity increasing sharply downslope. At any location along the slopes the northernmost soil toposequence site (160 mm average annual rainfall) represents, from a pedological point of view, an environment which is far more arid than its climatologically drier, more southern counterpart. The explanation provided for the variation of soil proporties at the scale of single hillslopes and at the regional scale is the same. It is contended that water input into the soil, and therefore leaching intensity, is positively related to the ratio of bedrock/soil cover. Rocky areas have limited infiltration, thus yielding high runoff rates into adjoining soil-covered areas, and contribute to water concentration, deeper infiltration and leaching intensity. Soil or sediment-covered areas having relatively high absorption capacities will experience reduced runoff, shallow infiltration and decreased water availability for leaching. This leads over time to salt accumulation at a shallow depth. The decrease in rock/soil ratio downslope within the colluvium is therefore held responsible for the corresponding increase in salinity. Similarly, the greater salinity of the soils in the northern site is explained by the fact that its rock/soil ratio is lower than in the southern area. The theoretical and practical implications regarding the relationship between climatic change and landscape evolution in arid areas are briefly discussed.

  16. Climate change and soil salinity: The case of coastal Bangladesh.

    PubMed

    Dasgupta, Susmita; Hossain, Md Moqbul; Huq, Mainul; Wheeler, David

    2015-12-01

    This paper estimates location-specific soil salinity in coastal Bangladesh for 2050. The analysis was conducted in two stages: First, changes in soil salinity for the period 2001-2009 were assessed using information recorded at 41 soil monitoring stations by the Soil Research Development Institute. Using these data, a spatial econometric model was estimated linking soil salinity with the salinity of nearby rivers, land elevation, temperature, and rainfall. Second, future soil salinity for 69 coastal sub-districts was projected from climate-induced changes in river salinity and projections of rainfall and temperature based on time trends for 20 Bangladesh Meteorological Department weather stations in the coastal region. The findings indicate that climate change poses a major soil salinization risk in coastal Bangladesh. Across 41 monitoring stations, the annual median projected change in soil salinity is 39 % by 2050. Above the median, 25 % of all stations have projected changes of 51 % or higher.

  17. A meta-analysis of soil salinization effects on nitrogen pools, cycles and fluxes in coastal ecosystems.

    PubMed

    Zhou, Minghua; Butterbach-Bahl, Klaus; Vereecken, Harry; Brüggemann, Nicolas

    2017-03-01

    Salinity intrusion caused by land subsidence resulting from increasing groundwater abstraction, decreasing river sediment loads and increasing sea level because of climate change has caused widespread soil salinization in coastal ecosystems. Soil salinization may greatly alter nitrogen (N) cycling in coastal ecosystems. However, a comprehensive understanding of the effects of soil salinization on ecosystem N pools, cycling processes and fluxes is not available for coastal ecosystems. Therefore, we compiled data from 551 observations from 21 peer-reviewed papers and conducted a meta-analysis of experimental soil salinization effects on 19 variables related to N pools, cycling processes and fluxes in coastal ecosystems. Our results showed that the effects of soil salinization varied across different ecosystem types and salinity levels. Soil salinization increased plant N content (18%), soil NH 4 + (12%) and soil total N (210%), although it decreased soil NO 3 - (2%) and soil microbial biomass N (74%). Increasing soil salinity stimulated soil N 2 O fluxes as well as hydrological NH 4 + and NO 2 - fluxes more than threefold, although it decreased the hydrological dissolved organic nitrogen (DON) flux (59%). Soil salinization also increased the net N mineralization by 70%, although salinization effects were not observed on the net nitrification, denitrification and dissimilatory nitrate reduction to ammonium in this meta-analysis. Overall, this meta-analysis improves our understanding of the responses of ecosystem N cycling to soil salinization, identifies knowledge gaps and highlights the urgent need for studies on the effects of soil salinization on coastal agro-ecosystem and microbial N immobilization. Additional increases in knowledge are critical for designing sustainable adaptation measures to the predicted intrusion of salinity intrusion so that the productivity of coastal agro-ecosystems can be maintained or improved and the N losses and pollution of the natural environment can be minimized. © 2016 John Wiley & Sons Ltd.

  18. Soil salinity decreases global soil organic carbon stocks.

    PubMed

    Setia, Raj; Gottschalk, Pia; Smith, Pete; Marschner, Petra; Baldock, Jeff; Setia, Deepika; Smith, Jo

    2013-11-01

    Saline soils cover 3.1% (397 million hectare) of the total land area of the world. The stock of soil organic carbon (SOC) reflects the balance between carbon (C) inputs from plants, and losses through decomposition, leaching and erosion. Soil salinity decreases plant productivity and hence C inputs to the soil, but also microbial activity and therefore SOC decomposition rates. Using a modified Rothamsted Carbon model (RothC) with a newly introduced salinity decomposition rate modifier and a plant input modifier we estimate that, historically, world soils that are currently saline have lost an average of 3.47 tSOC ha(-1) since they became saline. With the extent of saline soils predicted to increase in the future, our modelling suggests that world soils may lose 6.8 Pg SOC due to salinity by the year 2100. Our findings suggest that current models overestimate future global SOC stocks and underestimate net CO2 emissions from the soil-plant system by not taking salinity effects into account. From the perspective of enhancing soil C stocks, however, given the lower SOC decomposition rate in saline soils, salt tolerant plants could be used to sequester C in salt-affected areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Soil transport parameters of potassium under a tropical saline soil condition using STANMOD

    NASA Astrophysics Data System (ADS)

    Suzanye da Silva Santos, Rafaelly; Honorio de Miranda, Jarbas; Previatello da Silva, Livia

    2015-04-01

    Environmental responsibility and concerning about the final destination of solutes in soil, so more studies allow a better understanding about the solutes behaviour in soil. Potassium is a macronutrient that is required in high concentrations, been an extremely important nutrient for all agricultural crops. It plays essential roles in physiological processes vital for plant growth, from protein synthesis to maintenance of plant water balance, and is available to plants dissolved in soil water while exchangeable K is loosely held on the exchange sites on the surface of clay particles. K will tend to be adsorbed onto the surface of negatively charged soil particles. Potassium uptake is vital for plant growth but in saline soils sodium competes with potassium for uptake across the plasma membrane of plant cells. This can result in high Na+:K+ ratios that reduce plant growth and eventually become toxic. This study aimed to obtain soil transport parameters of potassium in saline soil, such as: pore water velocity in soil (v), retardation factor (R), dispersivity (λ) and dispersion coefficient (D), in a disturbed sandy soil with different concentrations of potassium chlorate solution (KCl), which is one of the most common form of potassium fertilizer. The experiment was carried out using soil samples collected in a depth of 0 to 20 cm, applying potassium chlorate solution containing 28.6, 100, 200 and 500 mg L-1 of K. To obtain transport parameters, the data were adjusted with the software STANMOD. At low concentrations, interaction between potassium and soil occur more efficiently. It was observed that only the breakthrough curve prepared with solution of 500 mg L-1 reached the applied concentration, and the solution of 28.6 mg L-1 overestimated the parameters values. The STANMOD proved to be efficient in obtaining potassium transport parameters; KCl solution to be applied should be greater than 500 mg L-1; solutions with low concentrations tend to overestimate parameters values.

  20. Near-surface temperature and salinity stratification as observed with dual-sensor Lagrangian drifters deployed during SPURS-2 field campaign

    NASA Astrophysics Data System (ADS)

    Volkov, Denis; Dong, Shenfu; Goni, Gustavo; Lumpkin, Rick; Foltz, Greg

    2017-04-01

    Despite the importance of sea surface salinity (SSS) as an indicator of the hydrological cycle, many details of air-sea interaction responsible for freshwater fluxes and processes determining the near-surface salinity stratification and its variability are still poorly understood. This is primarily due to the lack of dedicated observations. The advent of satellites capable of monitoring SSS, such as the Soil Moisture and Ocean Salinity (SMOS), Aquarius, and Soil Moisture Active-Passive (SMAP) missions, has greatly advanced our knowledge of SSS distribution and variability. However, the spatial resolution of satellite retrievals is too coarse to study the upper-ocean salinity changes due to patchy and transient rain events. Furthermore, the satellites measure salinity within the upper 1 cm skin layer, which can significantly differ from in situ SSS measured at 5 m depth by most Argo floats. Differences between the Aquarius and Argo SSS can be as large as ±0.5 psu. In order to study the near-surface salinity structure in great detail and to link the satellite observations of SSS with all the oceanic and atmospheric processes that control its variability, the National Aeronautics and Space Administration has initiated two field campaigns within the framework of Salinity Processes in the Upper-Ocean Regional Study (SPURS) project (http://spurs.jpl.nasa.gov/). The first campaign, SPURS-1, took place in the evaporation-dominated subtropical North Atlantic Ocean in 2012-2013. The second campaign, SPURS-2, focused on a 3×3° domain in the Inter-Tropical Convergence Zone (ITCZ) in the eastern equatorial Pacific (123.5-126.5°W and 8.5-11.5°N), where the near-surface salinity is strongly dominated by precipitation. The first SPURS-2 cruise took place in Aug-Sep 2016 on board the R/V Roger Revelle, during which a complex multi-instrument oceanographic survey was conducted. As part of this field campaign, we deployed 6 dual-sensor Lagrangian drifters, specifically designed to measure temperature and salinity near the surface ( 20 cm) and at 5 m depth. The main objectives of this deployment were (i) to validate the satellite SSS retrievals and to investigate the causes for the satellite-Argo SSS bias in the precipitation-dominated SPURS-2 region, and (ii) to explore salinity stratification in the upper 5 m and processes that determine it, in particular in relation to rain events. Throughout the experiment, we have observed systematic differences of 0.01-0.02 psu between the near-surface and 5 m salinity. Rain and low wind events have caused salinity differences of up to 2 psu. Strong evaporation on sunny and low wind days has caused the surface to be saltier than the 5-m depth layer by up to 0.4 psu. The mixing time scale between the surface and 5-m depth has been less than a day. Overall, the drifter observations have shown that the bias between Argo and satellite retrievals in the precipitation-dominated region can be largely due to the surface-subsurface salinity differences.

  1. Cl/Br ratios and chlorine isotope evidences for groundwater salinization and its impact on groundwater arsenic, fluoride and iodine enrichment in the Datong basin, China.

    PubMed

    Li, Junxia; Wang, Yanxin; Xie, Xianjun

    2016-02-15

    In order to identify the salinization processes and its impact on arsenic, fluoride and iodine enrichment in groundwater, hydrogeochemical and environmental isotope studies have been conducted on groundwater from the Datong basin, China. The total dissolved solid (TDS) concentrations in groundwater ranged from 451 to 8250 mg/L, and 41% of all samples were identified as moderately saline groundwater with TDS of 3000-10,000 mg/L. The results of groundwater Cl concentrations, Cl/Br molar ratio and Cl isotope composition suggest that three processes including water-rock interaction, surface saline soil flushing, and evapotranspiration result in the groundwater salinization in the study area. The relatively higher Cl/Br molar ratio in groundwater from multiple screening wells indicates the contribution of halite dissolution from saline soil flushed by vertical infiltration to the groundwater salinization. However, the results of groundwater Cl/Br molar ratio model indicate that the effect of saline soil flushing practice is limited to account for the observed salinity variation in groundwater. The plots of groundwater Cl vs. Cl/Br molar ratio, and Cl vs δ(37)Cl perform the dominant effects of evapotranspiration on groundwater salinization. Inverse geochemical modeling results show that evapotranspiration may cause approximately 66% loss of shallow groundwater to account for the observed hydrochemical pattern. Due to the redox condition fluctuation induced by irrigation activities and evapotranspiration, groundwater salinization processes have negative effects on groundwater arsenic enrichment. For groundwater iodine and fluoride enrichment, evapotranspiration partly accounts for their elevation in slightly saline water. However, too strong evapotranspiration would restrict groundwater fluoride concentration due to the limitation of fluorite solubility. Copyright © 2015. Published by Elsevier B.V.

  2. A partial least square regression method to quantitatively retrieve soil salinity using hyper-spectral reflectance data

    NASA Astrophysics Data System (ADS)

    Qu, Yonghua; Jiao, Siong; Lin, Xudong

    2008-10-01

    Hetao Irrigation District located in Inner Mongolia, is one of the three largest irrigated area in China. In the irrigational agriculture region, for the reasons that many efforts have been put on irrigation rather than on drainage, as a result much sedimentary salt that usually is solved in water has been deposited in surface soil. So there has arisen a problem in such irrigation district that soil salinity has become a chief fact which causes land degrading. Remote sensing technology is an efficiency way to map the salinity in regional scale. In the principle of remote sensing, soil spectrum is one of the most important indications which can be used to reflect the status of soil salinity. In the past decades, many efforts have been made to reveal the spectrum characteristics of the salinized soil, such as the traditional statistic regression method. But it also has been found that when the hyper-spectral reflectance data are considered, the traditional regression method can't be treat the large dimension data, because the hyper-spectral data usually have too higher spectral band number. In this paper, a partial least squares regression (PLSR) model was established based on the statistical analysis on the soil salinity and the reflectance of hyper-spectral. Dataset were collect through the field soil samples were collected in the region of Hetao irrigation from the end of July to the beginning of August. The independent validation using data which are not included in the calibration model reveals that the proposed model can predicate the main soil components such as the content of total ions(S%), PH with higher determination coefficients(R2) of 0.728 and 0.715 respectively. And the rate of prediction to deviation(RPD) of the above predicted value are larger than 1.6, which indicates that the calibrated PLSR model can be used as a tool to retrieve soil salinity with accurate results. When the PLSR model's regression coefficients were aggregated according to the wavelength of visual (blue, green, red) and near infrared bands of LandSat Thematic Mapper(TM) sensor, some significant response values were observed, which indicates that the proposed method in this paper can be used to analysis the remotely sensed data from the space-boarded platform.

  3. Effects of Soil Salinity on Sucrose Metabolism in Cotton Fiber

    PubMed Central

    Liu, Jingran; Luo, Junyu; Zhao, Xinhua; Dong, Helin; Ma, Yan; Sui, Ning; Zhou, Zhiguo; Meng, Yali

    2016-01-01

    Cotton (Gosspium hirsutum L.) is classified as a salt tolerant crop. However, its yield and fiber quality are negatively affected by soil salinity. Studies on the enzymatic differences in sucrose metabolism under different soil salinity levels are lacking. Therefore, field experiments, using two cotton cultivars, CCRI-79 (salt-tolerant) and Simian 3 (salt-sensitive), were conducted in 2013 and 2014 at three different salinity levels (1.15 dS m-1 [low soil salinity], 6.00 dS m-1 [medium soil salinity], and 11.46 dS m-1 [high soil salinity]). The objective was to elucidate the effects of soil salinity on sucrose content and the activity of key enzymes that are related to sucrose metabolism in cotton fiber. Results showed that as the soil salinity increased, cellulose content, sucrose content, and sucrose transformation rate declined; the decreases in cellulose content and sucrose transformation rate caused by the increase in soil salinity were more in Simian 3 than those in CCRI-79. With increase in soil salinity, activities of sucrose metabolism enzymes sucrose phophate synthase (SPS), acidic invertase, and alkaline invertase were decreased, whereas sucrose synthase (SuSy) activity increased. However, the changes displayed in the SuSy and SPS activities in response to increase in soil salinity were different and the differences were large between the two cotton cultivars. These results illustrated that suppressed cellulose synthesis and sucrose metabolism under high soil salinity were mainly due to the change in SPS, SuSy, and invertase activities, and the difference in cellulose synthesis and sucrose metabolism in fiber for the two cotton cultivars in response to soil salinity was determined mainly by both SuSy and SPS activities. PMID:27227773

  4. Jerusalem artichoke decreased salt content and increased diversity of bacterial communities in the rhizosphere soil in the coastal saline zone

    NASA Astrophysics Data System (ADS)

    Shao, Tianyun; Li, Niu; Cheng, Yongwen; Long, Xiaohua; Shao, Hongbo; Zed, Rengel

    2017-04-01

    Soil salinity is one of the main environmental constraints that restrict plant growth and agricultural productivity; however, utilization of salt-affected land can bring substantial benefits. This study used an in-situ remediation method by planting Jerusalem artichoke in naturally occurring saline alkali soils with different salinity (high salinity (H, >4.0 g•salt kg-1 soil), moderate salinity (M, 2.0-4.0 g•salt kg-1 soil) and low salinity (L, 1.0-2.0 g•salt kg-1 soil) in the coastal saline zone in southeast China in comparison with the respective controls without Jerusalem artichoke planting (undisturbed soil). Soil pH and salinity increased sequentially from the rhizosphere to the bulk soil and the unplanted controls. The activity of neutral phosphatase and invertase decreased in the order L > M > H, whereas that of catalase was reverse. The minimum content of calcite, muscovite and quartz, and maximum content of chlorite and albite, were found in the control soils. Planting of Jerusalem artichoke enhanced bacterial microflora in saline alkali soil. Proteobacteria, Acidobacteria, Actinobacteria and Bacteroidetes were the dominant phyla in all samples, accounting for more than 80% of the reads. The number of Operational Taxonomic Units (OTU) in the rhizosphere soil was, respectively, 1.27, 1.02 and 1.25 times higher compared with the bulk soil, suggesting that Jerusalem artichoke played a significant role in increasing abundance and diversity of soil microbial populations. The study showed that Jerusalem artichoke could be used to improve saline alkali soil by enriching bacterial communities, enhancing the activity of phosphatase and invertase, and decreasing soil salinity.

  5. [Simulation of effects of soil properties and plants on soil water-salt movement with reclaimed water irrigation by ENVIRO-GRO model].

    PubMed

    Lü, Si-Dan; Chen, Wei-Ping; Wang, Mei-E

    2012-12-01

    In order to promote safe irrigation with reclaimed water and prevent soil salinisation, the dynamic transport of salts in urban soils of Beijing under irrigation of reclaimed water was simulated by ENVIRO-GRO model in this study. The accumulation trends and profile distribution of soil salinity were predicted. Simultaneously, the effects of different soil properties and plants on soil water-salt movement and salt accumulation were investigated. Results indicated that soil salinity in the profiles reached uniform equilibrium conditions by repeated simulation, with different initial soil salinity. Under the conditions of loam and clay loam soil, salinity in the profiles increased over time until reaching equilibrium conditions, while under the condition of sandy loam soil, salinity in the profiles decreased over time until reaching equilibrium conditions. The saturated soil salinity (EC(e)) under equilibrium conditions followed an order of sandy loam < loam < clay loam. Salt accumulations in Japan euonymus and Chinese pine were less than that in Blue grass. The temporal and spatial distributions of soil salinity were also different in these three types of plants. In addition, the growth of the plants was not influenced by soil salinity (except clay loam), but mild soil salinization occurred under all conditions (except sandy loam).

  6. Mapping Soil Salinity/Sodicity by using Landsat OLI Imagery and PLSR Algorithm over Semiarid West Jilin Province, China

    PubMed Central

    Liu, Mingyue; Du, Baojia; Zhang, Bai

    2018-01-01

    Soil salinity and sodicity can significantly reduce the value and the productivity of affected lands, posing degradation, and threats to sustainable development of natural resources on earth. This research attempted to map soil salinity/sodicity via disentangling the relationships between Landsat 8 Operational Land Imager (OLI) imagery and in-situ measurements (EC, pH) over the west Jilin of China. We established the retrieval models for soil salinity and sodicity using Partial Least Square Regression (PLSR). Spatial distribution of the soils that were subjected to hybridized salinity and sodicity (HSS) was obtained by overlay analysis using maps of soil salinity and sodicity in geographical information system (GIS) environment. We analyzed the severity and occurring sizes of soil salinity, sodicity, and HSS with regard to specified soil types and land cover. Results indicated that the models’ accuracy was improved by combining the reflectance bands and spectral indices that were mathematically transformed. Therefore, our results stipulated that the OLI imagery and PLSR method applied to mapping soil salinity and sodicity in the region. The mapping results revealed that the areas of soil salinity, sodicity, and HSS were 1.61 × 106 hm2, 1.46 × 106 hm2, and 1.36 × 106 hm2, respectively. Also, the occurring area of moderate and intensive sodicity was larger than that of salinity. This research may underpin efficiently mapping regional salinity/sodicity occurrences, understanding the linkages between spectral reflectance and ground measurements of soil salinity and sodicity, and provide tools for soil salinity monitoring and the sustainable utilization of land resources. PMID:29614727

  7. Effects of Soil Salinity on the Expression of Bt Toxin (Cry1Ac) and the Control Efficiency of Helicoverpa armigera in Field-Grown Transgenic Bt Cotton.

    PubMed

    Luo, Jun-Yu; Zhang, Shuai; Peng, Jun; Zhu, Xiang-Zhen; Lv, Li-Min; Wang, Chun-Yi; Li, Chun-Hua; Zhou, Zhi-Guo; Cui, Jin-Jie

    2017-01-01

    An increasing area of transgenic Bacillus thuringiensis (Bt) cotton is being planted in saline-alkaline soil in China. The Bt protein level in transgenic cotton plants and its control efficiency can be affected by abiotic stress, including high temperature, water deficiency and other factors. However, how soil salinity affects the expression of Bt protein, thus influencing the control efficiency of Bt cotton against the cotton bollworm (CBW) Helicoverpa armigera (Hübner) in the field, is poorly understood. Our objective in the present study was to investigate the effects of soil salinity on the expression of Bt toxin (Cry1Ac) and the control efficiency of Helicoverpa armigera in field-grown transgenic Bt cotton using three natural saline levels (1.15 dS m-1 [low soil-salinity], 6.00 dS m-1 [medium soil-salinity] and 11.46 dS m-1 [high soil-salinity]). We found that the Bt protein content in the transgenic Bt cotton leaves and the insecticidal activity of Bt cotton against CBW decreased with the increasing soil salinity in laboratory experiments during the growing season. The Bt protein content of Bt cotton leaves in the laboratory were negatively correlated with the salinity level. The CBW populations were highest on the Bt cotton grown in medium-salinity soil instead of the high-salinity soil in field conditions. A possible mechanism may be that the relatively high-salinity soil changed the plant nutritional quality or other plant defensive traits. The results from this study may help to identify more appropriate practices to control CBW in Bt cotton fields with different soil salinity levels.

  8. Effects of Soil Salinity on the Expression of Bt Toxin (Cry1Ac) and the Control Efficiency of Helicoverpa armigera in Field-Grown Transgenic Bt Cotton

    PubMed Central

    Luo, Jun-Yu; Zhang, Shuai; Peng, Jun; Zhu, Xiang-Zhen; Lv, Li-Min; Wang, Chun-Yi; Li, Chun-Hua; Zhou, Zhi-Guo; Cui, Jin-Jie

    2017-01-01

    An increasing area of transgenic Bacillus thuringiensis (Bt) cotton is being planted in saline-alkaline soil in China. The Bt protein level in transgenic cotton plants and its control efficiency can be affected by abiotic stress, including high temperature, water deficiency and other factors. However, how soil salinity affects the expression of Bt protein, thus influencing the control efficiency of Bt cotton against the cotton bollworm (CBW) Helicoverpa armigera (Hübner) in the field, is poorly understood. Our objective in the present study was to investigate the effects of soil salinity on the expression of Bt toxin (Cry1Ac) and the control efficiency of Helicoverpa armigera in field-grown transgenic Bt cotton using three natural saline levels (1.15 dS m-1 [low soil-salinity], 6.00 dS m-1 [medium soil-salinity] and 11.46 dS m-1 [high soil-salinity]). We found that the Bt protein content in the transgenic Bt cotton leaves and the insecticidal activity of Bt cotton against CBW decreased with the increasing soil salinity in laboratory experiments during the growing season. The Bt protein content of Bt cotton leaves in the laboratory were negatively correlated with the salinity level. The CBW populations were highest on the Bt cotton grown in medium-salinity soil instead of the high-salinity soil in field conditions. A possible mechanism may be that the relatively high-salinity soil changed the plant nutritional quality or other plant defensive traits. The results from this study may help to identify more appropriate practices to control CBW in Bt cotton fields with different soil salinity levels. PMID:28099508

  9. Factors influencing CO2 and CH4 emissions from coastal wetlands in the Liaohe Delta, Northeast China

    NASA Astrophysics Data System (ADS)

    Olsson, L.; Ye, S.; Yu, X.; Wei, M.; Krauss, K. W.; Brix, H.

    2015-08-01

    Many factors are known to influence greenhouse gas emissions from coastal wetlands, but it is still unclear which factors are most important under field conditions when they are all acting simultaneously. The objective of this study was to assess the effects of water table, salinity, soil temperature and vegetation on CH4 emissions and ecosystem respiration (Reco) from five coastal wetlands in the Liaohe Delta, Northeast China: two Phragmites australis (common reed) wetlands, two Suaeda salsa (sea blite) marshes and a rice (Oryza sativa) paddy. Throughout the growing season, the Suaeda wetlands were net CH4 sinks whereas the Phragmites wetlands and the rice paddy were net CH4 sources emitting 1.2-6.1 g CH4 m-2 yr-1. The Phragmites wetlands emitted the most CH4 per unit area and the most CH4 relative to CO2. The main controlling factors for the CH4 emissions were water table, temperature, soil organic carbon and salinity. The CH4 emission was accelerated at high and constant (or managed) water tables and decreased at water tables below the soil surface. High temperatures enhanced CH4 emissions, and emission rates were consistently low (< 1 mg CH4 m-2 h-1) at soil temperatures < 18 °C. At salinity levels > 18 ppt, the CH4 emission rates were always low (< 1 mg CH4 m-2 h-1) probably because methanogens were out-competed by sulphate-reducing bacteria. Saline Phragmites wetlands can, however, emit significant amounts of CH4 as CH4 produced in deep soil layers are transported through the air-space tissue of the plants to the atmosphere. The CH4 emission from coastal wetlands can be reduced by creating fluctuating water tables, including water tables below the soil surface, as well as by occasional flooding by high-salinity water. The effects of water management schemes on the biological communities in the wetlands must, however, be carefully studied prior to the management in order to avoid undesirable effects on the wetland communities.

  10. Assessment of Sampling Approaches for Remote Sensing Image Classification in the Iranian Playa Margins

    NASA Astrophysics Data System (ADS)

    Kazem Alavipanah, Seyed

    There are some problems in soil salinity studies based upon remotely sensed data: 1-spectral world is full of ambiguity and therefore soil reflectance can not be attributed to a single soil property such as salinity, 2) soil surface conditions as a function of time and space is a complex phenomena, 3) vegetation with a dynamic biological nature may create some problems in the study of soil salinity. Due to these problems the first question which may arise is how to overcome or minimise these problems. In this study we hypothesised that different sources of data, well established sampling plan and optimum approach could be useful. In order to choose representative training sites in the Iranian playa margins, to define the spectral and informational classes and to overcome some problems encountered in the variation within the field, the following attempts were made: 1) Principal Component Analysis (PCA) in order: a) to determine the most important variables, b) to understand the Landsat satellite images and the most informative components, 2) the photomorphic unit (PMU) consideration and interpretation; 3) study of salt accumulation and salt distribution in the soil profile, 4) use of several forms of field data, such as geologic, geomorphologic and soil information; 6) confirmation of field data and land cover types with farmers and the members of the team. The results led us to find at suitable approaches with a high and acceptable image classification accuracy and image interpretation. KEY WORDS; Photo Morphic Unit, Pprincipal Ccomponent Analysis, Soil Salinity, Field Work, Remote Sensing

  11. Dynamics of the Seychelles-Chagos Thermocline Ridge

    NASA Astrophysics Data System (ADS)

    Bulusu, S.

    2016-02-01

    The southwest tropical Indian Ocean (SWTIO) features a unique, seasonal upwelling of the thermocline also known as the Seychelles-Chagos Thermocline Ridge (SCTR). More recently, this ridge or "dome"-like feature in the thermocline depth at (55°E-65°E, 5°S-12°S) in the SWTIO has been linked to interannual variability in the semi-annual Indian Ocean monsoon seasons as well as the Madden-Julian Oscillation (MJO) and El Niño Southern Oscillation (ENSO). The SCTR is a region where the MJO is associated with strong SST variability. Normally more cyclones are found generated in this SCTR region when the thermocline is deeper, which has a positive relation to the arrival of a downwelling Rossby wave from the southeast tropical Indian Ocean. Previous studies have focused their efforts solely on sea surface temperature (SST) because they determined salinity variability to be low, but with the Soil Moisture and Ocean Salinity (SMOS), and Aquarius salinity missions new insight can be shed on the effects that the seasonal upwelling of the thermocline has on Sea Surface Salinity (SSS). Seasonal SSS anomalies these missions will reveal the magnitude of seasonal SSS variability, while Argo depth profiles will show the link between changes in subsurface salinity and temperature structure. A seasonal increase in SST and a decrease in SSS associated with the downwelling of the thermocline have also been shown to occasionally generate MJO events, an extremely important part of climate variability in the Indian ocean. Satellite derives salinity and Argo data can help link changes in surface and subsurface salinity structure to the generation of the important MJO events. This study uses satellite derived salinity from Soil Moisture and Ocean Salinity (SMOS), and Aquarius to see if these satellites can yield new information on seasonal and interannual surface variability. In this study barrier layer thickness (BLT) estimates will be derived from satellite measurements using a multilinear regression model (MRM). This study will help to improve monsoon modeling and forecasting, two areas that remain highly inaccurate after decades of research work.

  12. Comparison of SMOS and Aquarius Sea Surface Salinity and Analysis of Possible Causes for the Differences

    NASA Technical Reports Server (NTRS)

    Dinnat, E. P.; Boutin, J.; Yin, X.; Le Vine, D. M.; Waldteufel, P.; Vergely, J. -L.

    2014-01-01

    Two ongoing space missions share the scientific objective of mapping the global Sea Surface Salinity (SSS), yet their observations show significant discrepancies. ESA's Soil Moisture and Ocean Salinity (SMOS) and NASA's Aquarius use L-band (1.4 GHz) radiometers to measure emission from the sea surface and retrieve SSS. Significant differences in SSS retrieved by both sensors are observed, with SMOS SSS being generally lower than Aquarius SSS, except for very cold waters where SMOS SSS is the highest overall. Figure 1 is an example of the difference between the SSS retrieved by SMOS and Aquarius averaged over one month and 1 degree in longitude and latitude. Differences are mostly between -1 psu and +1 psu (psu, practical salinity unit), with a significant regional and latitudinal dependence. We investigate the impact of the vicarious calibration and some components of the retrieval algorithm used by both mission on these differences.

  13. Eddy-induced Sea Surface Salinity changes in the tropical Pacific

    NASA Astrophysics Data System (ADS)

    Delcroix, T. C.; Chaigneau, A.; Soviadan, D.; Boutin, J.

    2017-12-01

    We analyse the Sea Surface Salinity (SSS) signature of westward propagating mesoscale eddies in the tropical Pacific by collocating 5 years (2010-2015) of SMOS (Soil Moisture and Ocean Salinity) SSS and altimetry-derived sea level anomalies. The main characteristics of mesoscale eddies are first identified in SLA maps. Composite analyses in the Central and Eastern ITCZ regions then reveal regionally dependent impacts with opposite SSS anomalies for the cyclonic and anticyclonic eddies. In the Central region (where we have the largest meridional SSS gradient), we found dipole-like SSS changes with maximum anomalies on the leading edge of the eddy. In the Eastern region (where we have the largest near-surface vertical salinity gradient) we found monopole-like SSS changes with maximum anomalies in the eddy centre. These dipole/monopole patterns and the rotational sense of eddies suggest the dominant role of horizontal and vertical advection in the Central and Eastern ITCZ regions, respectively.

  14. The assessment of spatial distribution of soil salinity risk using neural network.

    PubMed

    Akramkhanov, Akmal; Vlek, Paul L G

    2012-04-01

    Soil salinity in the Aral Sea Basin is one of the major limiting factors of sustainable crop production. Leaching of the salts before planting season is usually a prerequisite for crop establishment and predetermined water amounts are applied uniformly to fields often without discerning salinity levels. The use of predetermined water amounts for leaching perhaps partly emanate from the inability of conventional soil salinity surveys (based on collection of soil samples, laboratory analyses) to generate timely and high-resolution salinity maps. This paper has an objective to estimate the spatial distribution of soil salinity based on readily or cheaply obtainable environmental parameters (terrain indices, remote sensing data, distance to drains, and long-term groundwater observation data) using a neural network model. The farm-scale (∼15 km(2)) results were used to upscale soil salinity to a district area (∼300 km(2)). The use of environmental attributes and soil salinity relationships to upscale the spatial distribution of soil salinity from farm to district scale resulted in the estimation of essentially similar average soil salinity values (estimated 0.94 vs. 1.04 dS m(-1)). Visual comparison of the maps suggests that the estimated map had soil salinity that was uniform in distribution. The upscaling proved to be satisfactory; depending on critical salinity threshold values, around 70-90% of locations were correctly estimated.

  15. [Survival capacity of Corynebacterium pseudotuberculosis biovar ovis in different soil types from Chubut, Argentine Patagonia].

    PubMed

    Alvarez, Laura; William, Aillin; Castro, Isabel; Valenzuela, Fernanda; Estevao Belchior, Silvia

    Corynebacterium pseudotuberculosis is transmitted among sheep in Argentine Patagonia causing pseudotuberculosis. The bacterium penetrates the skin or mucous membrane wounds, infecting the superficial lymph nodes and viscera. When surface abscesses are cut during shearing, they drain their purulent contents and contaminate tools and the soil. The objective of this work was to evaluate the survival capacity of C. pseudotuberculosis over time, in soils from the extra-Andean Patagonia region. Five types of superficial soils were collected from different areas in Chubut province (extra-Andean Patagonia), having distinctive physicochemical properties including organic matter content (very high to nonexistent), pH (neutral to strongly alkaline), electrical conductivity (saline to non-saline) and texture (sandy, clayey, silty loam). Different aliquots of each type of soil were inoculated with C. pseudotuberculosis PAT10 strain isolated from a Patagonian sheep, and were stored at room temperature. The number of surviving bacteria was determined at various times. Sixty percent (60%) of the inoculated C. pseudotuberculosis population survived for 80 to 210 days in soils with moderate to high organic matter content respectively. Silty soils favored bacterial survival, whereas the variables pH and salinity had no effect on survival. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Contribution of electromagnetic and tomographic technique to the study of the impact of salinity in soils of the experimental station of Al Ain Atti (Errachidia, Morocco)

    NASA Astrophysics Data System (ADS)

    Benamara, A.; El Harnafi, M.; Ammar, A.

    2017-03-01

    Soil salinity is widespread particularly in arid areas. Much work has been done to remedy this natural contamination and make them more favorable to receive experimental soil of vegetation adapted to grow in these contrasting environments of scarce water resources. Over the 80 years, Morocco has experienced excessive dryness whose effects have been severely felt in the region of Errachidia. The depletion of the Quaternary alluvial aquifer has required the exploitation of deep reservoirs. In order to optimize the use of salt water in arid, the Institute of Agricultural Research tested soil experimenting three plant species; the Triplex, Acacia and Cypress. This experiment was not only economic objectives; increasing agricultural yields and production, but also reduce the impact of desertification in this region. So these are environmental reasons which have led researchers to realize this experiment whose purpose is to examine the ability of these plants to grow and adapt to irrigation by saline water from the deep aquifer in place. The experimental site is located on the left bank of the national road to Erfoud (Errachidia). In its entirety, the redesigned covering about 10 hectares. The studies that have been conducted mainly concerned pedogenetic analyzes and observations the development height of the plantation tested, regardless of the experimental ground heterogeneity. This is why we undertook a geophysical survey which aims to provide information on the quality of the tested soils and accumulation of salinity at different depths of the experimental ground. To achieve our goal, we used the technique of electrical and electromagnetic investigation in order to identify the main lines of a possible spatial heterogeneity. Recall that the work of OKAY (2010) on an experiment coring by examining the evolution of the newly formed fracturing have proved that the result of resistivity measurement is correlated with that of the chargeability. The electrical resistivity is closely related to the concentration of mineral particles. Characterization studies at the La Ronde tailings mine (Agnico-Eagle Ltd, in Abitibi), showed quite encouraging results (Campos, 2004; Anterrieu, 2006). Since it is a salt-bearing areas (highly conductive) and given that the induced polarization is very sensitive to the ground conductivity; by measurement of residual potential, so we took measures chargeability tomography, the result is compared to the resistivity measured at different soils (control and irrigated), which will better clarify the impact of salinity on the quality of the disturbed soil. Indeed, the chargeability response it possible to characterize the different irrigated soils and its variation is attributed not only to the effect of saline irrigation but also the existence of an heterogeneity of the original ground. Prospecting in electrical tomography has displayed vertically and horizontally anomalies existing within the experimental site of the station of Ain Al Atti, it showed that: - accumulation of salinity becomes wider going from the control ground to that of Acacias. - surveyed the ground at least appear more homogeneous in surface, but their conductivity varies in depth. - salinity origin and the concretion formed on the surface greatly influenced chargeability and resistivity measured on the different experimental soils.

  17. An evaluation of hyperspectral vegetation indices for detecting soil salinity in sugarcane fields using EO-1 Hyperion Data

    NASA Astrophysics Data System (ADS)

    Hamzeh, S.; Naseri, A. A.; Alavi Panah, S. K.; Bartholomeus, H.; Mojaradi, B.; Clevers, J.; Behzad, M.

    2012-04-01

    Sugarcane is the major agricultural crops in the Khuzestan province, in the southwest of Iran. But soil salinity is a major problem affecting the sugarcane yield, and therefore, monitoring and assessment of soil salinity is necessary. This research was carried out to investigate the performance of several hyperspectral vegetation indices to assess salinity stress in sugarcane fields and to determine the suitable indicators and statistical models for detecting various soil salinity levels. For this purpose one Hyperion image was acquired on Sept 2, 2010 and soil salinity was measured in 108 points 5 to 15 days from this date. 60 Samples were used for modeling and 48 samples were used for validation. Values of the soil salinity were linked with the corresponding pixel at the satellite imagery and 16 (hyperspectral) spectral indices were calculated. Then, the potential of these indices for estimating the soil salinity were analyzed and results show that soil salinity can well be estimated by vegetation indices derived from Hyperion data. Indices that are based on the chlorophyll and water absorption bands have medium to high relationship with soil salinity, while indices that only use visible bands or combination of visible and NIR bands don't perform well. From the investigated indices the Optimized Soil-Adjusted Vegetation Index (OSAVI) has the strongest relationship (R2 = 0.69) with soil salinity, because this index minimizes the variations in reflectance characteristics of soil background.

  18. Towards decadal soil salinity mapping using Landsat time series data

    NASA Astrophysics Data System (ADS)

    Fan, Xingwang; Weng, Yongling; Tao, Jinmei

    2016-10-01

    Salinization is one of the major soil problems around the world. However, decadal variation in soil salinization has not yet been extensively reported. This study exploited thirty years (1985-2015) of Landsat sensor data, including Landsat-4/5 TM (Thematic Mapper), Landsat-7 ETM+ (Enhanced Thematic Mapper Plus) and Landsat-8 OLI (Operational Land Imager), for monitoring soil salinity of the Yellow River Delta, China. The data were initially corrected for atmospheric effects, and then matched the spectral bands of EO-1 (Earth Observing One) ALI (Advanced Land Imager). Subsequently, soil salinity maps were derived with a previously developed PLSR (Partial Least Square Regression) model. On intra-annual scale, the retrievals showed that soil salinity increased in February, stabilized in March, and decreased in April. On inter-annual scale, soil salinity decreased within 1985-2000 (-0.74 g kg-1/10a, p < 0.001), and increased within 2000-2015 (0.79 g kg-1/10a, p < 0.001). Our study presents a new perspective for use of multiple Landsat data in soil salinity retrieval, and further the understanding of soil salinization development over the Yellow River Delta.

  19. Microstrip Antenna for Remote Sensing of Soil Moisture and Sea Surface Salinity

    NASA Technical Reports Server (NTRS)

    Ramhat-Samii, Yahya; Kona, Keerti; Manteghi, Majid; Dinardo, Steven; Hunter, Don; Njoku, Eni; Wilson, Wiliam; Yueh, Simon

    2009-01-01

    This compact, lightweight, dual-frequency antenna feed developed for future soil moisture and sea surface salinity (SSS) missions can benefit future soil and ocean studies by lowering mass, volume, and cost of the antenna system. It also allows for airborne soil moisture and salinity remote sensors operating on small aircraft. While microstrip antenna technology has been developed for radio communications, it has yet to be applied to combined radar and radiometer for Earth remote sensing. The antenna feed provides a key instrument element enabling high-resolution radiometric observations with large, deployable antennas. The design is based on the microstrip stacked-patch array (MSPA) used to feed a large, lightweight, deployable, rotating mesh antenna for spaceborne L-band (approximately equal to 1 GHz) passive and active sensing systems. The array consists of stacked patches to provide dual-frequency capability and suitable radiation patterns. The stacked-patch microstrip element was designed to cover the required L-band center frequencies at 1.26 GHz (lower patch) and 1.413 GHz (upper patch), with dual-linear polarization capabilities. The dimension of patches produces the required frequencies. To achieve excellent polarization isolation and control of antenna sidelobes for the MSPA, the orientation of each stacked-patch element within the array is optimized to reduce the cross-polarization. A specialized feed-distribution network was designed to achieve the required excitation amplitude and phase for each stacked-patch element.

  20. Irrigation scheduling, freeze warning and soil salinity detecting. [in Cameron County Texas

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Correlations of multispectral scanner (MSS) digital data differences between vegetated and bare soil areas with salinity levels from the eight saline areas using MSS bands seven and ten in the infrared region were significant. Correlations were derived for Cameron County, Texas. Detection of saline soils may be possible, using either film density readings or multispectral scanner data, when the lower reflectance of vegetation on highly saline soil and the higher reflectance of vegetation on lower saline soil are considered by using film on MSS contrasts between vegetation and bare soil.

  1. [Investigation and canonical correspondence analysis of salinity contents in secondary salinization greenhouse soils in Shanghai suburb].

    PubMed

    Tang, Dong; Mao, Liang; Zhi, Yue-e; Zhang, Jin-Zhong; Zhou, Pei; Chai, Xiao-Tong

    2014-12-01

    The salinity characteristics of greenhouse soils with cropping obstacles in Shanghai suburb were investigated and analyzed. The salinity contents of the salinization greenhouse soils showed a trend of first increasing and then decreasing with the increasing cropping duration. The salinized soils mainly included slightly salted, mildly salted and salted soils, which accounted for 17.39%, 56.52% and 13.04%, respectively. Among them, the degree of salinity in greenhouse soil planted with asparagus in Chongming County was the highest. Among the salt ions in greenhouse soils, the cations were mainly Ca2+ and Na+, while the anions were mainly NO3- and SO4(2-). The degree of salinity was mainly influenced by fertilization mode, cropping duration, crop type and management level, which led to the great variation in the salinity contents and salt ions. Canonical correspondence analysis found that the contents of Ca2+, Mg2+ and NO3- in greenhouse soils were greatly affected by cropping duration, and the degree of salinity would be enhanced and attenuated with long-term application of single fertilizer and mixed application of chemical fertilizer and organic manure, respectively. The greenhouse soils in Shanghai suburb could be classified as four patterns influenced by the relationship between salinity ions and samples, and the most soils were influenced by Ca2+, Mg2+, NO3- and Cl-, which required to be primarily controlled.

  2. Land Retirement as a Habitat Restoration Tool

    NASA Astrophysics Data System (ADS)

    Singh, P. N.; Wallender, W. W.

    2007-12-01

    Use of intensive irrigation in arid and semi-arid areas usually leads to gradual salination of the soil leading to crop yield decline. The salination problem is mitigated by applying irrigation in excess of crop requirements, which leaches the excess salt load to the groundwater. Insufficient natural or man made drainage to dispose off this saline recharge to the groundwater leads to a gradual rise in the water table and eventual encroachment upon the root zone. This may ultimately make the land unfit for any economically productive activity. The abandoned land may even lead to desertification with adverse environmental consequences. In drainage basins with no surface outflow (sometimes called closed basins), land retirement has been proposed as a management tool to address this problem. Land retirement essentially entails intentionally discontinuing irrigation of selected farmlands with the expectation that the shallow water table beneath those lands should drop and the root zone salinity level should decrease. In the San Joaquin Valley of California, intensive irrigation in conjunction with a shallow underlying layer of clay, known as the Corcoran clay layer and absence of a drainage system caused the root zone to become highly saline and the shallow water table to rise. Land retirement would remove from production those farmlands contributing the poorest quality subsurface drain water. Based on numerical models results, it was expected that with land retirement of substantial irrigated lands with poor drainage characteristics, beneath which lies shallow groundwater with high salt load, the shallow water table beneath those lands should drop. A part of the retired lands could also be used for wildlife habitat. A potential negative side of the land retirement option that has to be considered is that in certain enabling evapotranspiration, soil and water table conditions, water will be drawn upwards and evaporated, leaving a deposit of salts on the surface and in the root zone. Salt on the surface may then be wind blown to adjacent areas creating a potential environmental hazard. Using field results from the U.S. Department of the Interior Land Retirement Demonstration Project at the Tranquillity site located in western Fresno County, principles of mass balance in a fixed control volume, the HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media, and PEST, a model-independent parameter optimizer, we have investigated the processes of soil water and salinity movement in the root zone and the deep vadose zone. Various combinations of evapotranspiration, soil water retention properties, water table condition and top and bottom boundary condition were tested. We show that certain Land Retirement scenarios decrease shallow water table and soil water salinity and enhance development of native plants as a means to facilitate habitat restoration for certain combination of soil and bottom boundary condition. Other combinations are not sustainable.

  3. REMEDIADE™

    EPA Pesticide Factsheets

    Technical product bulletin: this bioremediation agent (nutrient additive) used in oil spill cleanups may be applied to any surface or water of any salinity to remove hydrocarbons. In soil, apply by tilling in specified increments.

  4. Simulation of salinity effects on past, present, and future soil organic carbon stocks.

    PubMed

    Setia, Raj; Smith, Pete; Marschner, Petra; Gottschalk, Pia; Baldock, Jeff; Verma, Vipan; Setia, Deepika; Smith, Jo

    2012-02-07

    Soil organic carbon (SOC) models are used to predict changes in SOC stocks and carbon dioxide (CO(2)) emissions from soils, and have been successfully validated for non-saline soils. However, SOC models have not been developed to simulate SOC turnover in saline soils. Due to the large extent of salt-affected areas in the world, it is important to correctly predict SOC dynamics in salt-affected soils. To close this knowledge gap, we modified the Rothamsted Carbon Model (RothC) to simulate SOC turnover in salt-affected soils, using data from non-salt-affected and salt-affected soils in two agricultural regions in India (120 soils) and in Australia (160 soils). Recently we developed a decomposition rate modifier based on an incubation study of a subset of these soils. In the present study, we introduce a new method to estimate the past losses of SOC due to salinity and show how salinity affects future SOC stocks on a regional scale. Because salinity decreases decomposition rates, simulations using the decomposition rate modifier for salinity suggest an accumulation of SOC. However, if the plant inputs are also adjusted to reflect reduced plant growth under saline conditions, the simulations show a significant loss of soil carbon in the past due to salinization, with a higher average loss of SOC in Australian soils (55 t C ha(-1)) than in Indian soils (31 t C ha(-1)). There was a significant negative correlation (p < 0.05) between SOC loss and osmotic potential. Simulations of future SOC stocks with the decomposition rate modifier and the plant input modifier indicate a greater decrease in SOC in saline than in non-saline soils under future climate. The simulations of past losses of SOC due to salinity were repeated using either measured charcoal-C or the inert organic matter predicted by the Falloon et al. equation to determine how much deviation from the Falloon et al. equation affects the amount of plant inputs generated by the model for the soils used in this study. Both sets of results suggest that saline soils have lost carbon and will continue to lose carbon under future climate. This demonstrates the importance of both reduced decomposition and reduced plant input in simulations of future changes in SOC stocks in saline soils.

  5. Identifying change in spatial accumulation of soil salinity in an inland river watershed, China.

    PubMed

    Wang, Yugang; Deng, Caiyun; Liu, Yan; Niu, Ziru; Li, Yan

    2018-04-15

    Soil salinity accumulation is strong in arid areas and it has become a serious environmental problem. Knowledge of the process and spatial changes of accumulated salinity in soil can provide an insight into the spatial patterns of soil salinity accumulation. This is especially useful for estimating the spatial transport of soil salinity at the watershed scale. This study aimed to identify spatial patterns of salt accumulation in the top 20cm soils in a typical inland watershed, the Sangong River watershed in arid northwest China, using geostatistics, spatial analysis technology and the Lorenz curve. The results showed that: (1) soil salt content had great spatial variability (coefficient variation >1.0) in both in 1982 and 2015, and about 56% of the studied area experienced transition the degree of soil salt content from one class to another during 1982-2015. (2) Lorenz curves describing the proportions of soil salinity accumulation (SSA) identified that the boundary between soil salinity migration and accumulation regions was 24.3m lower in 2015 than in 1982, suggesting a spatio-temporal inequality in loading of the soil salinity transport region, indicating significant migration of soil salinity from the upstream to the downstream watershed. (3) Regardless of migration or accumulation region, the mean value of SSA per unit area was 0.17kg/m 2 higher in 2015 than 1982 (p<0.01) and the increasing SSA per unit area in irrigated land significantly increased by 0.19kg/m 2 compared with the migration region. Dramatic accumulation of soil salinity in all land use types was clearly increased by 0.29kg/m 2 in this agricultural watershed during the studied period in the arid northwest of China. This study demonstrates the spatial patterns of soil salinity accumulation, which is particularly useful for estimating the spatial transport of soil salinity at the watershed scale. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Soil salinization in different natural zones of intermontane depressions in Tuva

    NASA Astrophysics Data System (ADS)

    Chernousenko, G. I.; Kurbatskaya, S. S.

    2017-11-01

    Soil salinization features in semidesert, dry steppe, and chernozemic steppe zones within intermontane depressions in the central part of the Tuva Republic are discussed. Chernozems, chestnut soils, and brown desert-steppe soils of these zones are usually nonsaline. However, salinization of these zonal soils is possible in the case of the presence of salt-bearing parent materials (usually, the derivatives of Devonian deposits). In different natural zones of the intermontane depressions, salt-affected soils are mainly allocated to endorheic lake basins, where they are formed in places of discharge of mineral groundwater, and to river valleys. The composition and content of salts in the natural waters are dictated by the local hydrogeological conditions. The total content of dissolved solids in lake water varies from 1 to 370 g/L; the water is usually of the sulfate-chloride or chloride-sulfate salinity type; in some cases, soda-sulfate water is present. Soil salinity around the lakes is usually of the chloride-sulfate-sodium type; gypsum is often present in the profiles. Chloride salinization rarely predominates in this part of Tuva, because chlorides are easily leached off from the mainly coarse-textured soils. In some cases, the predominance of magnesium over sodium is observed in the composition of dissolved salts, which may be indicative of the cryogenic transformation of soil salts. Soda-saline soils are present in all the considered natural zones on minor areas. It is hardly possible to make unambiguous statements about the dominance of the particular type of salinity in the given natural zones. Zonal salinity patterns are weakly expressed in salinization of hydromorphic soils. However, a tendency for more frequent occurrence of soda-saline soils in steppe landscapes and chloride-sulfate salinization (often, with participation of gypsum) in the dry steppe and semidesert landscapes is observed.

  7. Geoaccumulation assessment of heavy metal pollution in Ikwo soils, eastern Nigeria.

    PubMed

    Tyopine, Andrew A; Jayeoye, Titilope J; Okoye, Chukwuma O B

    2018-01-04

    An imbalance in the environment's composition leads to significant effect on human activities such as farming. Of importance are heavy metals which are introduced anthropogenically or naturally. This calls for environmental monitoring and subsequent remediation if needed. An environmental monitoring exercise was conducted on Ikwo soils of Ebonyi State, eastern Nigeria with the aim of determining concentration levels for possible remediation. A total of 18 soil composite samples taken at 0-50 cm below soil surface from fallowed and cultivated soils not fertilized were subjected to heavy metal analyses and fertility indices like: organic matter (OM), cation exchange capacity (CEC), % total nitrogen (%TN), organic carbon (OC), and salinity. A correlation at 95% confidence level between geo-accumulations (I geo ) of the various heavy metals with salinity, OM, and CEC of the sampled soils reveals that I geo could be a contributing factor to the fertility status of the soils. With the aid of inductively coupled plasma atomic emission spectrophotometer (ICP-AES), the distribution pattern was determined as Mn> Fe> Zn>Cu> Mo> Cd> V>Hg>Ti> Ni>Bi> Pb> Co>Ag>Au> Cr>Pd>Pt. The I geo of the heavy metals in the study area varied from heavily to extremely contaminated levels. A remediation exercise was recommended on Ikwo soils due to their high salinity level and low CEC.

  8. Salinity controls on plant transpiration and soil water balance

    NASA Astrophysics Data System (ADS)

    Perri, S.; Molini, A.; Suweis, S. S.; Viola, F.; Entekhabi, D.

    2017-12-01

    Soil salinization and aridification represent a major threat for the food security and sustainable development of drylands. The two problems are deeply connected, and their interplay is expected to be further enhanced by climate change and projected population growth. Salt-affected land is currently estimated to cover around 1.1 Gha, and is particularly widespread in semi-arid to hyper-arid climates. Over 900 Mha of these saline/sodic soils are potentially available for crop or biomass production. Salt-tolerant plants have been recently proposed as valid solution to exploit or even remediate salinized soils. However the effects of salinity on evapotranspiration, soil water balance and the long-term salt mass balance in the soil, are still largely unexplored. In this contribution we analyze the feedback of evapotranspiration on soil salinization, with particular emphasis on the role of vegetation and plant salt-tolerance. The goal is to introduce a simple modeling framework able to shed some light on how (a) soil salinity controls plant transpiration, and (b) salinization itself is favored/impeded by different vegetation feedback. We introduce at this goal a spatially lumped stochastic model of soil moisture and salt mass dynamics averaged over the active soil depth, and accounting for the effect of salinity on evapotranspiration. Here, the limiting effect of salinity on ET is modeled through a simple plant response function depending on both salt concentration in the soil and plant salt-tolerance. The coupled soil moisture and salt mass balance is hence used to obtain the conditional steady-state probability density function (pdf) of soil moisture for given salt tolerance and salinization level, Our results show that salinity imposes a limit in the soil water balance and this limit depends on plant salt-tolerance mainly through the control of the leaching occurrence (tolerant plants exploit water more efficiently than the sensitive ones). We also analyzed the effect of salt-tolerance on salt concentration patterns pointing out how vegetation imposes an upper bound to concentration of soluble salts in the soil. The long-term effects of plant salt tolerance on soil salinization are also discussed by an approximated expression for the salt mass pdf.

  9. Roles of saltcedar (Tamarix spp.) and capillary rise in salinizing a non-flooding terrace on a flow-regulated desert river

    USGS Publications Warehouse

    Glenn, E.P.; Morino, K.; Nagler, P.L.; Murray, R.S.; Pearlstein, S.; Hultine, K.R.

    2012-01-01

    Tamarix spp. (saltcedar) secretes salts and has been considered to be a major factor contributing to the salinization of river terraces in western US riparian zones. However, salinization can also occur from the capillary rise of salts from the aquifer into the vadose zone. We investigated the roles of saltcedar and physical factors in salinizing the soil profile of a non-flooding terrace at sites on the Cibola National Wildlife Refuge on the Lower Colorado River, USA. We placed salt traps under and between saltcedar shrubs and estimated the annual deposition rate of salts from saltcedar. These were then compared to the quantities and distribution on of salts in the soil profile. Dense stands of saltcedar deposited 0.159kgm -2yr -1 of salts to the soil surface. If this rate was constant since seasonal flooding ceased in 1938 and all of the salts were retained in the soil profile, they could account for 11.4kgm -2 of salt, about 30% of total salts in the profile today. Eliminating saltcedar would not necessarily reduce salts, because vegetation reduces the upward migration of salts in bulk flow from the aquifer. The densest saltcedar stand had the lowest salt levels in the vadose zone in this study. ?? 2011 Elsevier Ltd.

  10. Impact of soil salinity on arbuscular mycorrhizal fungi biodiversity and microflora biomass associated with Tamarix articulata Vahll rhizosphere in arid and semi-arid Algerian areas.

    PubMed

    Bencherif, Karima; Boutekrabt, Ammar; Fontaine, Joël; Laruelle, Fréderic; Dalpè, Yolande; Sahraoui, Anissa Lounès-Hadj

    2015-11-15

    Soil salinization is an increasingly important problem in many parts of the world, particularly under arid and semi-arid areas. Unfortunately, the knowledge about restoration of salt affected ecosystems using mycorrhizae is limited. The current study aims to investigate the impact of salinity on the microbial richness of the halophytic plant Tamarix articulata rhizosphere. Soil samples were collected from natural sites with increasing salinity (1.82-4.95 ds.m(-1)). Six arbuscular mycorrhizal fungi (AMF) species were isolated from the different saline soils and identified as Septoglomus constrictum, Funneliformis mosseae, Funneliformis geosporum, Funneliformis coronatum, Rhizophagus fasciculatus, and Gigaspora gigantea. The number of AMF spores increased with soil salinity. Total root colonization rate decreased from 65 to 16% but remained possible with soil salinity. Microbial biomass in T. articulata rhizosphere was affected by salinity. The phospholipid fatty acids (PLFA) C16:1ω5 as well as i15:0, a15:0, i16:0, i17:0, a17:0, cy17:0, C18:1ω7 and cy19:0 increased in high saline soils suggesting that AMF and bacterial biomasses increased with salinity. In contrast, ergosterol amount was negatively correlated with soil salinity indicating that ectomycorrhizal and saprotrophic fungal biomasses were reduced with salinity. Our findings highlight the adaptation of arbuscular and bacterial communities to natural soil salinity and thus the potential use of mycorrhizal T. articulata trees as an approach to restore moderately saline disturbed arid lands. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Edaphic, salinity, and stand structural trends in chronosequences of native and non-native dominated riparian forests along the Colorado River, USA

    USGS Publications Warehouse

    Merritt, David M.; Shafroth, Patrick B.

    2012-01-01

    Tamarix spp. are introduced shrubs that have become among the most abundant woody plants growing along western North American rivers. We sought to empirically test the long-held belief that Tamarix actively displaces native species through elevating soil salinity via salt exudation. We measured chemical and physical attributes of soils (e.g., salinity, major cations and anions, texture), litter cover and depth, and stand structure along chronosequences dominated by Tamarix and those dominated by native riparian species (Populus or Salix) along the upper and lower Colorado River in Colorado and Arizona/California, USA. We tested four hypotheses: (1) the rate of salt accumulation in soils is faster in Tamarix-dominated stands than stands dominated by native species, (2) the concentration of salts in the soil is higher in mature stands dominated by Tamarix compared to native stands, (3) soil salinity is a function of Tamarix abundance, and (4) available nutrients are more concentrated in native-dominated stands compared to Tamarix-dominated stands. We found that salt concentration increases at a faster rate in Tamarix-dominated stands along the relatively free-flowing upper Colorado but not along the heavily-regulated lower Colorado. Concentrations of ions that are known to be preferentially exuded by Tamarix (e.g., B, Na, and Cl) were higher in Tamarix stands than in native stands. Soil salt concentrations in older Tamarix stands along the upper Colorado were sufficiently high to inhibit germination, establishment, or growth of some native species. On the lower Colorado, salinity was very high in all stands and is likely due to factors associated with floodplain development and the hydrologic effects of river regulation, such as reduced overbank flooding, evaporation of shallow ground water, higher salt concentrations in surface and ground water due to agricultural practices, and higher salt concentrations in fine-textured sediments derived from naturally saline parent material.

  12. On the relative roles of hydrology, salinity, temperature, and root productivity in controlling soil respiration from coastal swamps (freshwater)

    USGS Publications Warehouse

    Krauss, Ken W.; Whitbeck, Julie L.; Howard, Rebecca J.

    2012-01-01

    Background and aims Soil CO2 emissions can dominate gaseous carbon losses from forested wetlands (swamps), especially those positioned in coastal environments. Understanding the varied roles of hydroperiod, salinity, temperature, and root productivity on soil respiration is important in discerning how carbon balances may shift as freshwater swamps retreat inland with sea-level rise and salinity incursion, and convert to mixed communities with marsh plants. Methods We exposed soil mesocosms to combinations of permanent flooding, tide, and salinity, and tracked soil respiration over 2 1/2 growing seasons. We also related these measurements to rates from field sites along the lower Savannah River, Georgia, USA. Soil temperature and root productivity were assessed simultaneously for both experiments. Results Soil respiration from mesocosms (22.7-1678.2 mg CO2 m-2 h-1) differed significantly among treatments during four of the seven sampling intervals, where permanently flooded treatments contributed to low rates of soil respiration and tidally flooded treatments sometimes contributed to higher rates. Permanent flooding reduced the overall capacity for soil respiration as soils warmed. Salinity did reduce soil respiration at times in tidal treatments, indicating that salinity may affect the amount of CO2 respired with tide more strongly than under permanent flooding. However, soil respiration related greatest to root biomass (mesocosm) and standing root length (field); any stress reducing root productivity (incl. salinity and permanent flooding) therefore reduces soil respiration. Conclusions Overall, we hypothesized a stronger, direct role for salinity on soil respiration, and found that salinity effects were being masked by varied capacities for increases in respiration with soil warming as dictated by hydrology, and the indirect influence that salinity can have on plant productivity.

  13. Soil Respiration in Different Agricultural and Natural Ecosystems in an Arid Region

    PubMed Central

    Lai, Liming; Zhao, Xuechun; Jiang, Lianhe; Wang, Yongji; Luo, Liangguo; Zheng, Yuanrun; Chen, Xi; Rimmington, Glyn M.

    2012-01-01

    The variation of different ecosystems on the terrestrial carbon balance is predicted to be large. We investigated a typical arid region with widespread saline/alkaline soils, and evaluated soil respiration of different agricultural and natural ecosystems. Soil respiration for five ecosystems together with soil temperature, soil moisture, soil pH, soil electric conductivity and soil organic carbon content were investigated in the field. Comparing with the natural ecosystems, the mean seasonal soil respiration rates of the agricultural ecosystems were 96%–386% higher and agricultural ecosystems exhibited lower CO2 absorption by the saline/alkaline soil. Soil temperature and moisture together explained 48%, 86%, 84%, 54% and 54% of the seasonal variations of soil respiration in the five ecosystems, respectively. There was a significant negative relationship between soil respiration and soil electrical conductivity, but a weak correlation between soil respiration and soil pH or soil organic carbon content. Our results showed that soil CO2 emissions were significantly different among different agricultural and natural ecosystems, although we caution that this was an observational, not manipulative, study. Temperature at the soil surface and electric conductivity were the main driving factors of soil respiration across the five ecosystems. Care should be taken when converting native vegetation into cropland from the point of view of greenhouse gas emissions. PMID:23082234

  14. Soil respiration in different agricultural and natural ecosystems in an arid region.

    PubMed

    Lai, Liming; Zhao, Xuechun; Jiang, Lianhe; Wang, Yongji; Luo, Liangguo; Zheng, Yuanrun; Chen, Xi; Rimmington, Glyn M

    2012-01-01

    The variation of different ecosystems on the terrestrial carbon balance is predicted to be large. We investigated a typical arid region with widespread saline/alkaline soils, and evaluated soil respiration of different agricultural and natural ecosystems. Soil respiration for five ecosystems together with soil temperature, soil moisture, soil pH, soil electric conductivity and soil organic carbon content were investigated in the field. Comparing with the natural ecosystems, the mean seasonal soil respiration rates of the agricultural ecosystems were 96%-386% higher and agricultural ecosystems exhibited lower CO(2) absorption by the saline/alkaline soil. Soil temperature and moisture together explained 48%, 86%, 84%, 54% and 54% of the seasonal variations of soil respiration in the five ecosystems, respectively. There was a significant negative relationship between soil respiration and soil electrical conductivity, but a weak correlation between soil respiration and soil pH or soil organic carbon content. Our results showed that soil CO(2) emissions were significantly different among different agricultural and natural ecosystems, although we caution that this was an observational, not manipulative, study. Temperature at the soil surface and electric conductivity were the main driving factors of soil respiration across the five ecosystems. Care should be taken when converting native vegetation into cropland from the point of view of greenhouse gas emissions.

  15. Component-specific dynamics of riverine mangrove CO2 efflux in the Florida coastal Everglades

    USGS Publications Warehouse

    Troxler, Tiffany G.; Barr, Jordan G.; Fuentes, Jose D.; Engel, Victor C.; Anderson, Gordon H.; Sanchez, Christopher; Lagomosino, David; Price, Rene; Davis, Stephen E.

    2015-01-01

    Carbon cycling in mangrove forests represents a significant portion of the coastal wetland carbon (C) budget across the latitudes of the tropics and subtropics. Previous research suggests fluctuations in tidal inundation, temperature and salinity can influence forest metabolism and C cycling. Carbon dioxide (CO2) from respiration that occurs from below the canopy is contributed from different components. In this study, we investigated variation in CO2 flux among different below-canopy components (soil, leaf litter, course woody debris, soil including pneumatophores, prop roots, and surface water) in a riverine mangrove forest of Shark River Slough estuary, Everglades National Park (Florida, USA). The range in CO2 flux from different components exceeded that measured among sites along the oligohaline-saline gradient. Black mangrove (Avicennia germinans) pneumatophores contributed the largest average CO2 flux. Over a narrow range of estuarine salinity (25–35 practical salinity units (PSU)), increased salinity resulted in lower CO2 flux to the atmosphere. Tidal inundation reduced soil CO2 flux overall but increased the partial pressure of CO2 (pCO2) observed in the overlying surface water upon flooding. Higher pCO2 in surface water is then subject to tidally driven export, largely as HCO3. Integration and scaling of CO2 flux rates to forest scale allowed for improved understanding of the relative contribution of different below-canopy components to mangrove forest ecosystem respiration (ER). Summing component CO2fluxes suggests a more significant contribution of below-canopy respiration to ER than previously considered. An understanding of below-canopy CO2 component fluxes and their contributions to ER can help to elucidate how C cycling will change with discrete disturbance events (e.g., hurricanes) and long-term change, including sea-level rise, and potential impact mangrove forests. As such, key controls on below-canopy ER must be taken into consideration when developing and modeling mangrove forest C budgets.

  16. Types, harms and improvement of saline soil in Songnen Plain

    NASA Astrophysics Data System (ADS)

    Wang, Zhengjun; Zhuang, Jingjing; Zhao, Anping; Li, Xinxin

    2018-03-01

    Saline soil is an extremely difficult and modified soil, widely distributed around the world. According to UN-UNESCO and FAO, the world’s saline soil area is about 9.54×108hm2, and there is a growing trend, every year in 1.0×106-1.5×106hm2 speed growth, the effective utilization of land resources to the world is the most serious threat. The total area of saline-alkali land in China is about 9.91×107hm2, including the Songnen Plain, which is called one of the three major saline soil concentrations in the world. The Songnen plain is an important grain producing area in China, and the saline soil occupies most of the Songnen plain, so it is of great significance to study the saline soil and improvement in Songnen plain.

  17. Trend Analysis of Soil Salinity in Different Land Cover Types Using Landsat Time Series Data (case Study Bakhtegan Salt Lake)

    NASA Astrophysics Data System (ADS)

    Taghadosi, M. M.; Hasanlou, M.

    2017-09-01

    Soil salinity is one of the main causes of desertification and land degradation which has negative impacts on soil fertility and crop productivity. Monitoring salt affected areas and assessing land cover changes, which caused by salinization, can be an effective approach to rehabilitate saline soils and prevent further salinization of agricultural fields. Using potential of satellite imagery taken over time along with remote sensing techniques, makes it possible to determine salinity changes at regional scales. This study deals with monitoring salinity changes and trend of the expansion in different land cover types of Bakhtegan Salt Lake district during the last two decades using multi-temporal Landsat images. For this purpose, per-pixel trend analysis of soil salinity during years 2000 to 2016 was performed and slope index maps of the best salinity indicators were generated for each pixel in the scene. The results of this study revealed that vegetation indices (GDVI and EVI) and also salinity indices (SI-1 and SI-3) have great potential to assess soil salinity trends in vegetation and bare soil lands respectively due to more sensitivity to salt features over years of study. In addition, images of May had the best performance to highlight changes in pixels among different months of the year. A comparative analysis of different slope index maps shows that more than 76% of vegetated areas have experienced negative trends during 17 years, of which about 34% are moderately and highly saline. This percent is increased to 92% for bare soil lands and 29% of salt affected soils had severe salinization. It can be concluded that the areas, which are close to the lake, are more affected by salinity and salts from the lake were brought into the soil which will lead to loss of soil productivity ultimately.

  18. Modeling daily soil salinity dynamics in response to agricultural and environmental changes in coastal Bangladesh

    NASA Astrophysics Data System (ADS)

    Payo, Andrés.; Lázár, Attila N.; Clarke, Derek; Nicholls, Robert J.; Bricheno, Lucy; Mashfiqus, Salehin; Haque, Anisul

    2017-05-01

    Understanding the dynamics of salt movement in the soil is a prerequisite for devising appropriate management strategies for land productivity of coastal regions, especially low-lying delta regions, which support many millions of farmers around the world. At present, there are no numerical models able to resolve soil salinity at regional scale and at daily time steps. In this research, we develop a novel holistic approach to simulate soil salinization comprising an emulator-based soil salt and water balance calculated at daily time steps. The method is demonstrated for the agriculture areas of coastal Bangladesh (˜20,000 km2). This shows that we can reproduce the dynamics of soil salinity under multiple land uses, including rice crops, combined shrimp and rice farming, as well as non-rice crops. The model also reproduced well the observed spatial soil salinity for the year 2009. Using this approach, we have projected the soil salinity for three different climate ensembles, including relative sea-level rise for the year 2050. Projected soil salinity changes are significantly smaller than other reported projections. The results suggest that inter-season weather variability is a key driver of salinization of agriculture soils at coastal Bangladesh.

  19. Mapping Spatial Variability of Soil Salinity in a Coastal Paddy Field Based on Electromagnetic Sensors

    PubMed Central

    Guo, Yan; Huang, Jingyi; Shi, Zhou; Li, Hongyi

    2015-01-01

    In coastal China, there is an urgent need to increase land area for agricultural production and urban development, where there is a rapid growing population. One solution is land reclamation from coastal tidelands, but soil salinization is problematic. As such, it is very important to characterize and map the within-field variability of soil salinity in space and time. Conventional methods are often time-consuming, expensive, labor-intensive, and unpractical. Fortunately, proximal sensing has become an important technology in characterizing within-field spatial variability. In this study, we employed the EM38 to study spatial variability of soil salinity in a coastal paddy field. Significant correlation relationship between ECa and EC1:5 (i.e. r >0.9) allowed us to use EM38 data to characterize the spatial variability of soil salinity. Geostatistical methods were used to determine the horizontal spatio-temporal variability of soil salinity over three consecutive years. The study found that the distribution of salinity was heterogeneous and the leaching of salts was more significant in the edges of the study field. By inverting the EM38 data using a Quasi-3D inversion algorithm, the vertical spatio-temporal variability of soil salinity was determined and the leaching of salts over time was easily identified. The methodology of this study can be used as guidance for researchers interested in understanding soil salinity development as well as land managers aiming for effective soil salinity monitoring and management practices. In order to better characterize the variations in soil salinity to a deeper soil profile, the deeper mode of EM38 (i.e., EM38v) as well as other EMI instruments (e.g. DUALEM-421) can be incorporated to conduct Quasi-3D inversions for deeper soil profiles. PMID:26020969

  20. Mapping spatial variability of soil salinity in a coastal paddy field based on electromagnetic sensors.

    PubMed

    Guo, Yan; Huang, Jingyi; Shi, Zhou; Li, Hongyi

    2015-01-01

    In coastal China, there is an urgent need to increase land area for agricultural production and urban development, where there is a rapid growing population. One solution is land reclamation from coastal tidelands, but soil salinization is problematic. As such, it is very important to characterize and map the within-field variability of soil salinity in space and time. Conventional methods are often time-consuming, expensive, labor-intensive, and unpractical. Fortunately, proximal sensing has become an important technology in characterizing within-field spatial variability. In this study, we employed the EM38 to study spatial variability of soil salinity in a coastal paddy field. Significant correlation relationship between ECa and EC1:5 (i.e. r >0.9) allowed us to use EM38 data to characterize the spatial variability of soil salinity. Geostatistical methods were used to determine the horizontal spatio-temporal variability of soil salinity over three consecutive years. The study found that the distribution of salinity was heterogeneous and the leaching of salts was more significant in the edges of the study field. By inverting the EM38 data using a Quasi-3D inversion algorithm, the vertical spatio-temporal variability of soil salinity was determined and the leaching of salts over time was easily identified. The methodology of this study can be used as guidance for researchers interested in understanding soil salinity development as well as land managers aiming for effective soil salinity monitoring and management practices. In order to better characterize the variations in soil salinity to a deeper soil profile, the deeper mode of EM38 (i.e., EM38v) as well as other EMI instruments (e.g. DUALEM-421) can be incorporated to conduct Quasi-3D inversions for deeper soil profiles.

  1. Microbial response to salinity stress in a tropical sandy soil amended with native shrub residues or inorganic fertilizer.

    PubMed

    Sall, Saïdou Nourou; Ndour, Ndèye Yacine Badiane; Diédhiou-Sall, Siré; Dick, Richard; Chotte, Jean-Luc

    2015-09-15

    Soil degradation and salinization caused by inappropriate cultivation practices and high levels of saltwater intrusion are having an adverse effect on agriculture in Central Senegal. The residues of Piliostigma reticulatum, a local shrub that coexists with crops, were recently shown to increase particulate organic matter and improve soil quality and may be a promising means of alleviating the effects of salinization. This study compared the effects of inorganic fertilizer and P. reticulatum residues on microbial properties and the ability of soil to withstand salinity stress. We hypothesized that soils amended with P. reticulatum would be less affected by salinity stress than soils amended with inorganic fertilizer and control soil. Salinity stress was applied to soil from a field site that had been cultivated for 5 years under a millet/peanut crop rotation when microbial biomass, phospholipid fatty acid (PLFA) community profile, catabolic diversity, microbial activities were determined. Microbial biomass, nitrification potential and dehydrogenase activity were higher by 20%, 56% and 69% respectively in soil with the organic amendment. With salinity stress, the structure and activities of the microbial community were significantly affected. Although the biomass of actinobacteria community increased with salinity stress, there was a substantial reduction in microbial activity in all soils. The soil organically amended was, however, less affected by salinity stress than the control or inorganic fertilizer treatment. This suggests that amendment using P. reticulatum residues may improve the ability of soils to respond to saline conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Factors influencing CO2 and CH4 emissions from coastal wetlands in the Liaohe Delta, Northeast China

    NASA Astrophysics Data System (ADS)

    Olsson, L.; Ye, S.; Yu, X.; Wei, M.; Krauss, K. W.; Brix, H.

    2015-02-01

    Many factors are known to influence greenhouse gas emissions from coastal wetlands, but it is still unclear which factors are most important under field conditions when they are all acting simultaneously. The objective of this study was to assess the effects of water table, salinity, soil temperature and vegetation on CH4 emissions and ecosystem respiration (Reco) from five coastal wetlands in the Liaohe Delta, northeast China: two Phragmites australis (common reed) wetlands, two Suaeda salsa (sea blite) marshes and a rice (Oryza sativa) paddy. Throughout the growing season, the Suaeda wetlands were net CH4 sinks whereas the Phragmites wetlands and the rice paddy were net CH4 sources emitting 1.2-6.1 g CH4 m-2 y-1. The Phragmites wetlands emitted the most CH4 per unit area and the most CH4 relative to CO2. The main controlling factors for the CH4 emissions were water table, temperature and salinity. The CH4 emission was accelerated at high and constant (or managed) water tables and decreased at water tables below the soil surface. High temperatures enhanced CH4 emissions, and emission rates were consistently low (< 1 mg CH4 m-2 h) at soil temperatures <18 °C. At salinity levels > 18 ppt, the CH4 emission rates were always low (< 1 mg CH4 m-2 h-1) probably because methanogens were outcompeted by sulphate reducing bacteria. Saline Phragmites wetlands can, however, emit significant amounts of CH4 as CH4 produced in deep soil layers are transported through the air-space tissue of the plants to the atmosphere. The CH4 emission from coastal wetlands can be reduced by creating fluctuating water tables, including water tables below the soil surface, as well as by occasional flooding by high-salinity water. The effects of water management schemes on the biological communities in the wetlands must, however, be carefully studied prior to the management in order to avoid undesirable effects on the wetland communities.

  3. Using growth-based methods to determine direct effects of salinity on soil microbial communities

    NASA Astrophysics Data System (ADS)

    Rath, Kristin; Rousk, Johannes

    2015-04-01

    Soil salinization is a widespread agricultural problem and increasing salt concentrations in soils have been found to be correlated with decreased microbial activity. A central challenge in microbial ecology is to link environmental factors, such as salinity, to responses in the soil microbial community. That is, it can be difficult to distinguish direct from indirect effects. In order to determine direct salinity effects on the community we employed the ecotoxicological concept of Pollution-Induced Community Tolerance (PICT). This concept is built on the assumption that if salinity had an ecologically relevant effect on the community, it should have selected for more tolerant species and strains, resulting in an overall higher community tolerance to salt in communities from saline soils. Growth-based measures, such as the 3H-leucine incorporation into bacterial protein , provide sensitive tools to estimate community tolerance. They can also provide high temporal resolution in tracking changes in tolerance over time. In our study we used growth-based methods to investigate: i) at what levels of salt exposure and over which time scales salt tolerance can be induced in a non-saline soil, and (ii) if communities from high salinity sites have higher tolerance to salt exposure along natural salinity gradients. In the first part of the study, we exposed a non-saline soil to a range of salinities and monitored the development of community tolerance over time. We found that community tolerance to intermediate salinities up to around 30 mg NaCl per g soil can be induced at relatively short time scales of a few days, providing evidence that microbial communities can adapt rapidly to changes in environmental conditions. In the second part of the study we used soil samples originating from natural salinity gradients encompassing a wide range of salinity levels, with electrical conductivities ranging from 0.1 dS/m to >10 dS/m. We assessed community tolerance to salt by measuring the bacterial growth response to added NaCl in a soil suspension. The bacterial community tolerance to salt increased along the salt gradients with higher in situ soil salinity. In samples from the low-saline end of the gradient, bacterial growth rates in the soil suspension showed a clear concentration-response relationship to NaCl resulting in inhibition curves. This relationship gradually changed toward higher salt concentrations. In soil samples from high salinity sites, bacterial growth was no longer inhibited by adding high concentrations of NaCl to the bacterial soil suspension. In fact, adding NaCl even promoted bacterial growth rates. These results show that salinity played an ecologically significant role in shaping communities at the highly saline end of the gradients and provide evidence for a direct salt effect on the microbial community

  4. Geochemical processes controlling water salinization in an irrigated basin in Spain: identification of natural and anthropogenic influence.

    PubMed

    Merchán, D; Auqué, L F; Acero, P; Gimeno, M J; Causapé, J

    2015-01-01

    Salinization of water bodies represents a significant risk in water systems. The salinization of waters in a small irrigated hydrological basin is studied herein through an integrated hydrogeochemical study including multivariate statistical analyses and geochemical modeling. The study zone has two well differentiated geologic materials: (i) Quaternary sediments of low salinity and high permeability and (ii) Tertiary sediments of high salinity and very low permeability. In this work, soil samples were collected and leaching experiments conducted on them in the laboratory. In addition, water samples were collected from precipitation, irrigation, groundwater, spring and surface waters. The waters show an increase in salinity from precipitation and irrigation water to ground- and, finally, surface water. The enrichment in salinity is related to the dissolution of soluble mineral present mainly in the Tertiary materials. Cation exchange, precipitation of calcite and, probably, incongruent dissolution of dolomite, have been inferred from the hydrochemical data set. Multivariate statistical analysis provided information about the structure of the data, differentiating the group of surface waters from the groundwaters and the salinization from the nitrate pollution processes. The available information was included in geochemical models in which hypothesis of consistency and thermodynamic feasibility were checked. The assessment of the collected information pointed to a natural control on salinization processes in the Lerma Basin with minimal influence of anthropogenic factors. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Simulating the effect of water management decisions on groundwater flow and quality in the Kyzylkum Irrigation Scheme, Kazakhstan

    NASA Astrophysics Data System (ADS)

    Naudascher, R. M.; Marti, B. S.; Siegfried, T.; Wolfgang, K.; Anselm, K.

    2017-12-01

    The Kyzylkum Irrigation Scheme lies north of the Chardara reservoir on the banks of the river Syr Darya in South Kazakhstan. It was designed as a model Scheme and developed to a size of 74'000 ha during Soviet times for rice and cotton production. However, since the 1990s only very limited funds were available for maintenance and as a result, problems like water logging and salinization of soils and groundwater are now omnipresent in the scheme. The aim of this study was to develop a numerical groundwater flow model for the region in Modflow and to evaluate the effect of various infrastructure investments on phreatic evaporation (a major driver for soil salinization). Decadal groundwater observation data from 2011 to 2015 were used to calibrate the annual model and to validate the monthly model. Scenarios simulated were (partial) lining of main and/or secondary and tertiary canal system, improvement of drainage via horizontal canals or pumps, combinations of these and a joint groundwater-surface-water use scenario. Although the annual average model is sufficient to evaluate the yearly water balance, the transient model is a prerequisite for analysing measures against water logging and salinization, both of which feature strong seasonality. The transient simulation shows that a combination of leakage reduction (lining of canals) and drainage improvement measures is needed to lower the groundwater levels enough to avoid phreatic evaporation. To save water, joint surface water and groundwater irrigation can be applied in areas where groundwater salinity is low enough but without proper lining of canals, it is not sufficient to mitigate the ongoing soil degradation due to salinization and water logging.

  6. Estimation of Volume and Freshwater Flux from the Arctic Ocean using SMAP and NCEP CFSv2

    NASA Astrophysics Data System (ADS)

    Bulusu, S.

    2017-12-01

    Spatial and temporal monitoring of sea surface salinity (SSS) plays an important role globally and especially over the Arctic Ocean. The Arctic ice melt has led to an influx of freshwater into the Arctic environment, a process that can be observed in SSS. The recently launched NASA's Soil Moisture Active Passive (SMAP) mission is primarily designed for the global monitoring of soil moisture using L- band (1.4GHz) frequency. SMAP also has the capability of measuring SSS and can thus extend the NASA's Aquarius salinity mission (ended June 7, 2015), salinity data record with improved temporal/spatial sampling. In this research an attempt is made to investigate the retrievability of SSS over the Arctic from SMAP satellite. The objectives of this study are to verify the use of SMAP sea surface salinity (and freshwater) variability in the Arctic Ocean and the extent to estimate freshwater, salt and volume flux from the Arctic Ocean. Along with SMAP data we will use NASA's Ice, Cloud,and land Elevation Satellites (ICESat and ICESat-2), and ESA's CryoSat-2, and NASA's Gravity Recovery and Climate Experiment (GRACE) satellites data to estimate ice melt in the Arctic. The preliminary results from SMAP compared well with the NCEP Climate Forecast System version 2 (CFSv2) salinity data in this region capturing patterns fairly well over the Arctic.

  7. Satellite Sea-surface Salinity Retrieval Dependencies

    NASA Astrophysics Data System (ADS)

    Bayler, E. J.; Ren, L.

    2016-02-01

    Comparing satellite sea-surface salinity (SSS) measurements and in situ observations reveals large-scale differences. What causes these differences? In this study, five boxes, sampling various oceanic regimes of the global ocean, provide insights on the relative performance of satellite SSS retrievals with respect to the influences of SST, precipitation and wind speed. The regions sampled are: the Inter-tropical Convergence Zone (ITCZ), the South Pacific Convergence Zone (SPCZ), NASA's Salinity Processes of the Upper-ocean Regional Study (SPURS) area, the North Pacific subarctic region, and the southern Indian Ocean. This study examines satellite SSS data from NASA's Aquarius Mission and ESA's Soil Moisture - Ocean Salinity (SMOS) mission, specifically: Aquarius official Aquarius Data Processing System (ADPS) Level-2 data, experimental Aquarius Combined Active-Passive (CAP) Level-2 SSS data developed by NASA's Jet Propulsion Laboratory (JPL), and SMOS Level-2 data.

  8. SMOS after 2 YEARS and a half in orbit

    NASA Astrophysics Data System (ADS)

    Kerr, Y.; Richaume, P.; Wigneron, J.-P.; Waldteufel, P.; Mecklenburg, S.; Cabot, F.; Boutin, J.; Font, J.; Reul, N.

    2012-04-01

    The SMOS (Soil Moisture and Ocean Salinity) satellite was successfully launched in November 2009. This ESA led mission for Earth Observation is dedicated to provide soil moisture over continental surface (with an accuracy goal of 0.04 m3/m3) and ocean salinity. These two geophysical features are important as they control the energy balance between the surface and the atmosphere. Their knowledge at a global scale is of interest for climatic and weather researches in particular in improving models forecasts. The purpose of this communication is to present the mission results after more than two years in orbit as well as some outstanding results already obtained. A special attention will be devoted to level 2 products. Modeling multi-angular brightness temperatures is not straightforward. The radiative model transfer model L-MEB (L-band Microwave Emission) is used over land while different models with different approaches as to the modeling of sea surface roughness are used over ocean surfaces. Over land the approach is based on semi-empirical relationships, adapted to different type of surface. The model computes a dielectric constant leading to surface emissivity. Surface features (roughness, vegetation) are also considered in the models. However, considering SMOS spatial resolution a wide area is seen by the instrument with strong heterogeneity. The L2 soil moisture retrieval scheme takes this into account. Brightness temperatures are computed for every classes composing a working area. A weighted function is applied for the incidence angle and the antenna beam. Once the brightness temperature is computed for the entire working area, the minimizing process starts. If no soil moisture is derived (not attempted or process failed) a dielectric constant is still derived from an simplified modeled (the cardioid model). SMOS data enabled very quickly to infer Sea surface salinity fields. As salinity retrieval is quite challenging, retrieving it enable to assess very finely the characteristics of the complete system in terms of stability, drift etc. Some anomalies such as the ascending descending temperature differences, temporal drifts or land sea contamination were used to infer issues and improve data quality. The modeling has to account for several perturbing factors 'galactic reflection, sea state, atmospheric path and Faraday rotation etc…as the useful signal is quite small when compared to the perturbing factors impact as well as the instrument sensitivity. Over sea ice several studies showed that it was possible to infer thin ice (first year ice, 50 cm or less) from SMOS measurements. Other studies focused on the Antarctic plateau with also very interesting new results. This presentation will show in detail the SMOS in flight results. The retrieval schemes have been developed to reach science requirements, that is to derive the surface soil moisture over continental surface with an accuracy better than 0,04m3/m3. Over the ocean the goals are not yet satisfied but results are already getting close to the requirements.

  9. Challenges and lessons learned in establishing a critical zone observatory in an intensively managed rural landscape of India

    NASA Astrophysics Data System (ADS)

    Paul, D.; Tripathi, S.; Harsha, K. S.; Adla, S.; Dash, S. K.; Chander, Y.; Mahajan, P.; Tripathi, S. N.; Sen, I. S.; Sinha, R.

    2016-12-01

    Soil salinization and aridification represent a major threat for the food security and sustainable development of drylands. The two problems are deeply connected, and their interplay is expected to be further enhanced by climate change and projected population growth. Salt-affected land is currently estimated to cover around 1.1 Gha, and is particularly widespread in semi-arid to hyper-arid climates. Over 900 Mha of these saline/sodic soils are potentially available for crop or biomass production. Salt-tolerant plants have been recently proposed as valid solution to exploit or even remediate salinized soils. However the effects of salinity on evapotranspiration, soil water balance and the long-term salt mass balance in the soil, are still largely unexplored. In this contribution we analyze the feedback of evapotranspiration on soil salinization, with particular emphasis on the role of vegetation and plant salt-tolerance. The goal is to introduce a simple modeling framework able to shed some light on how (a) soil salinity controls plant transpiration, and (b) salinization itself is favored/impeded by different vegetation feedback. We introduce at this goal a spatially lumped stochastic model of soil moisture and salt mass dynamics averaged over the active soil depth, and accounting for the effect of salinity on evapotranspiration. Here, the limiting effect of salinity on ET is modeled through a simple plant response function depending on both salt concentration in the soil and plant salt-tolerance. The coupled soil moisture and salt mass balance is hence used to obtain the conditional steady-state probability density function (pdf) of soil moisture for given salt tolerance and salinization level, Our results show that salinity imposes a limit in the soil water balance and this limit depends on plant salt-tolerance mainly through the control of the leaching occurrence (tolerant plants exploit water more efficiently than the sensitive ones). We also analyzed the effect of salt-tolerance on salt concentration patterns pointing out how vegetation imposes an upper bound to concentration of soluble salts in the soil. The long-term effects of plant salt tolerance on soil salinization are also discussed by an approximated expression for the salt mass pdf.

  10. Effects of produced waters at oilfield production sites on the Osage Indian Reservation, northeastern Oklahoma

    USGS Publications Warehouse

    Otton, James K.; Asher-Bolinder, Sigrid; Owen, Douglass E.; Hall, Laurel

    1997-01-01

    The authors conducted limited site surveys in the Wildhorse and Burbank oilfields on the Osage Indian Reservation, northeastern Oklahoma. The purpose was to document salt scarring, erosion, and soil and water salinization, to survey for radioactivity in oilfield equipment, and to determine if trace elements and naturally occurring radioactive materials (NORM) were present in soils affected by oilfield solid waste and produced waters. These surveys were also designed to see if field gamma spectrometry and field soil conductivity measurements were useful in screening for NORM contamination and soil salinity at these sites. Visits to oilfield production sites in the Wildhorse field in June of 1995 and 1996 confirmed the presence of substantial salt scarring, soil salinization, and slight to locally severe erosion. Levels of radioactivity on some oil field equipment, soils, and road surfaces exceed proposed state standards. Radium activities in soils affected by tank sludge and produced waters also locally exceed proposed state standards. Laboratory analyses of samples from two sites show moderate levels of copper, lead, and zinc in brine-affected soils and pipe scale. Several sites showed detectable levels of bromine and iodine, suggesting that these trace elements may be present in sufficient quantity to inhibit plant growth. Surface waters in streams at two sampled sites exceed total dissolved solid limits for drinking waters. At one site in the Wildhorse field, an EM survey showed that saline soils in the upper 6m extend from a surface salt scar downvalley about 150 m. (Photo [95k]: Dead oak trees and partly revegetated salt scar at Site OS95-2 in the Wildhorse field, Osage County, Oklahoma.) In the Burbank field, limited salt scarring and slight erosion occurs in soils at some sites and low to moderate levels of radioactivity were observed in oil field equipment at some sites. The levels of radioactivity and radium observed in some soils and equipment at these sites are above levels of concern as defined in regulations proposed by the Conference of Radiation Control Program Directors. The volumes of material involved appear to be relatively small for most sites. The lead levels observed in soils affected by tank sludge wastes are about one half of the US Environmental Protection Agency (USEPA) interim remedial action levels used for Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and Resource Conservation and Recovery Act (RCRA) sites (400 ppm). Field gamma spectrometry proved useful in delineating areas where radium has been added to the natural soil by oilfield solid waste and produced water, although the technique does not meet standards of assessment used in the state of Louisiana which require core sampling of 15 cm intervals and radiochemical analysis in the laboratory. Further work is needed to develop field gamma spectrometry as a substitute for the more expensive coring and laboratory analysis. The ratio of radium-228 to radium-226 may hold promise in evaluating the relative ages of NORM contamination at a site.

  11. Retrieve sea surface salinity using principal component regression model based on SMOS satellite data

    NASA Astrophysics Data System (ADS)

    Zhao, Hong; Li, Changjun; Li, Hongping; Lv, Kebo; Zhao, Qinghui

    2016-06-01

    The sea surface salinity (SSS) is a key parameter in monitoring ocean states. Observing SSS can promote the understanding of global water cycle. This paper provides a new approach for retrieving sea surface salinity from Soil Moisture and Ocean Salinity (SMOS) satellite data. Based on the principal component regression (PCR) model, SSS can also be retrieved from the brightness temperature data of SMOS L2 measurements and Auxiliary data. 26 pair matchup data is used in model validation for the South China Sea (in the area of 4°-25°N, 105°-125°E). The RMSE value of PCR model retrieved SSS reaches 0.37 psu (practical salinity units) and the RMSE of SMOS SSS1 is 1.65 psu when compared with in-situ SSS. The corresponding Argo daily salinity data during April to June 2013 is also used in our validation with RMSE value 0.46 psu compared to 1.82 psu for daily averaged SMOS L2 products. This indicates that the PCR model is valid and may provide us with a good approach for retrieving SSS from SMOS satellite data.

  12. Effects of imidacloprid on soil microbial communities in different saline soils.

    PubMed

    Zhang, Qingming; Xue, Changhui; Wang, Caixia

    2015-12-01

    The effects of imidacloprid in the soil environment are a worldwide concern. However, the impact of imidacloprid on soil microorganisms under salt stress is almost unknown. Therefore, an indoor incubation test was performed, and the denaturing gradient gel electrophoresis (DGGE) approach was used to determine the response of different saline soil bacterial and fungal community structures to the presence of imidacloprid (0.4, 2, 10 mg kg(-1)). The results showed that the soil bacterial diversity slightly declined with increasing imidacloprid concentration in soils with low salinity. In moderately saline soils, a new band in the DGGE profile suggested that imidacloprid could improve the soil bacterial diversity to some degree. An analysis of variance indicated that the measured soil bacterial diversity parameters were significantly affected by dose and incubation time. Compared with the control, the soil fungal community structure showed no obvious changes in low and moderately saline soils treated with imidacloprid. The results of these observations provide a basic understanding of the potential ecological effects of imidacloprid on different microorganisms in saline soils.

  13. Regional-scale assessment of soil salinity in the Red River Valley using multi-year MODIS EVI and NDVI.

    PubMed

    Lobell, D B; Lesch, S M; Corwin, D L; Ulmer, M G; Anderson, K A; Potts, D J; Doolittle, J A; Matos, M R; Baltes, M J

    2010-01-01

    The ability to inventory and map soil salinity at regional scales remains a significant challenge to scientists concerned with the salinization of agricultural soils throughout the world. Previous attempts to use satellite or aerial imagery to assess soil salinity have found limited success in part because of the inability of methods to isolate the effects of soil salinity on vegetative growth from other factors. This study evaluated the use of Moderate Resolution Imaging Spectroradiometer (MODIS) imagery in conjunction with directed soil sampling to assess and map soil salinity at a regional scale (i.e., 10-10(5) km(2)) in a parsimonious manner. Correlations with three soil salinity ground truth datasets differing in scale were made in Kittson County within the Red River Valley (RRV) of North Dakota and Minnesota, an area where soil salinity assessment is a top priority for the Natural Resource Conservation Service (NRCS). Multi-year MODIS imagery was used to mitigate the influence of temporally dynamic factors such as weather, pests, disease, and management influences. The average of the MODIS enhanced vegetation index (EVI) for a 7-yr period exhibited a strong relationship with soil salinity in all three datasets, and outperformed the normalized difference vegetation index (NDVI). One-third to one-half of the spatial variability in soil salinity could be captured by measuring average MODIS EVI and whether the land qualified for the Conservation Reserve Program (a USDA program that sets aside marginally productive land based on conservation principles). The approach has the practical simplicity to allow broad application in areas where limited resources are available for salinity assessment.

  14. Inter-Comparison of SMOS and Aquarius Sea Surface Salinity: Effects of the Dielectric Constant and Vicarious Calibration

    NASA Technical Reports Server (NTRS)

    Dinnat, Emmanuel P.; Boutin, Jacqueline; Yin, Xiaobin; Le Vine, David M.

    2014-01-01

    Two spaceborne instruments share the scientific objective of mapping the global Sea Surface Salinity (SSS). ESA's Soil Moisture and Ocean Salinity (SMOS) and NASA's Aquarius use L-band (1.4 GHz) radiometry to retrieve SSS. We find that SSS retrieved by SMOS is generally lower than SSS retrieved by Aquarius, except for very cold waters where SMOS SSS is higher overall. The spatial distribution of the differences in SSS is similar to the distribution of sea surface temperature. There are several differences in the retrieval algorithm that could explain the observed SSS differences. We assess the impact of the dielectric constant model and the ancillary sea surface salinity used by both missions for calibrating the radiometers and retrieving SSS. The differences in dielectric constant model produce differences in SSS of the order of 0.3 psu and exhibit a dependence on latitude and temperature. We use comparisons with the Argo in situ data to assess the performances of the model in various regions of the globe. Finally, the differences in the ancillary sea surface salinity products used to perform the vicarious calibration of both instruments are relatively small (0.1 psu), but not negligible considering the requirements for spaceborne remote sensing of SSS.

  15. Stochastic Modeling of Soil Salinity

    NASA Astrophysics Data System (ADS)

    Suweis, Samir; Rinaldo, Andrea; van der Zee, Sjoerd E. A. T. M.; Maritan, Amos; Porporato, Amilcare

    2010-05-01

    Large areas of cultivated land worldwide are affected by soil salinity. Estimates report that 10% of arable land in over 100 countries, and nine million km2 are salt affected, especially in arid and semi-arid regions. High salinity causes both ion specific and osmotic stress effects, with important consequences for plant production and quality. Salt accumulation in the root zone may be due to natural factors (primary salinization) or due to irrigation (secondary salinization). Simple (e.g., vertically averaged over the soil depth) coupled soil moisture and salt balance equations have been used in the past. Despite their approximations, these models have the advantage of parsimony, thus allowing a direct analysis of the interplay of the main processes. They also provide the ideal starting point to include external, random hydro-climatic fluctuations in the analysis of long-term salinization trends. We propose a minimalist stochastic model of primary soil salinity, in which the rate of soil salinization is determined by the balance between dry and wet salt deposition and the intermittent leaching events caused by rainfall events. The long term probability density functions of salt mass and concentration are found by reducing the coupled soil moisture and salt mass balance equation to a stochastic differential equation driven by multiplicative Poisson noise. The novel analytical solutions provide insight on the interplay of the main soil, plant and climate parameters responsible for long-term soil salinization. In fact, soil salinity statistics are obtained as a function of climate, soil and vegetation parameters. These, in turn, can be combined with soil moisture statistics to obtain a full characterization of soil salt concentrations and the ensuing risk of primary salinization. In particular, the solutions show the existence of two quite distinct regimes, the first one where the mean salt mass remains nearly constant with increasing rainfall frequency, and the second one where mean salt content increases markedly with increasing rainfall frequency. As a result, relatively small reductions of rainfall in drier climates may entail dramatic shifts in long-term soil salinization trends, with significant consequences e.g. for climate change impacts on rain-fed agriculture. The analytical nature of the solution allows direct estimation of the impact of changes in the climatic drivers on soil salinity and makes it suitable for computations of salinity risk at the global scale as a function of simple parameters. Moreover it facilitates their coupling with other models of long-term soil-plant biogeochemistry.

  16. SMAP Salinity Artifacts Associated With Presence of Rain

    NASA Astrophysics Data System (ADS)

    Jacob, M. M.; Santos-Garcia, A.; Jones, L.

    2016-02-01

    The Soil Moisture Active Passive (SMAP) satellite carries an L-band radiometer, which measures sea surface salinity (SSS) over a swath of 1000 km @ 40 km resolution. SMAP can extend the Aquarius (AQ) salinity data record with improved temporal/spatial sampling. Previous studies [see references] have demonstrated significant differences between satellite and in-situ salinity measurements during rain. In the presence of precipitation, salinity stratification exists near the sea surface, which nullifies the presumption of a well-mixed salinity. In general, these salinity gradients last only a few hours and the upper layer becomes slightly fresher in salinity. This paper describes the Rain Impact Model (RIM) that simulates the effects of rain accumulation on the SSS [Santos-Garcia et al., 2014] applied to SMAP. This model incorporates rainfall information for the previous 24 hours to the measurement sample (in this case SMAP) and uses as initialization the Hybrid Coordinate Ocean Model (HYCOM) data. Given the better resolution of SMAP, the goal of this paper is to continue the analysis previously done with AQ to better understand the effects of the instantaneous and accumulated rain on the salinity measurements. Boutin, J., N. Martin, G. Reverdin, X. Yin, and F. Gaillard (2013), Sea surface freshening inferred from SMOS and ARGO salinity: Impact of rain, Ocean Sci., 9(1), 183-192, doi:10.5194/os-9-183-2013. Santos-Garcia, A., M. Jacob, L. Jones, W. Asher, Y. Hejazin, H. Ebrahimi, and M. Rabolli (2014), Investigation of rain effects on Aquarius Sea Surface Salinity measurements, J. Geophys. Res. Oceans, 119, 7605-7624, doi:10.1002/2014JC010137. Tang, W., S.H Yueh, A. Hayashi, A.G. Fore, W.L. Jones, A. Santos-Garcia, and M.M. Jacob, (2015), Rain-Induced Near Surface Salinity Stratification and Rain Roughness Correction for Aquarius SSS Retrieval, in Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of, 8(99), 1-11, doi: 10.1109/JSTARS.2015.2463768.

  17. Response of CO and H2 uptake to extremes of water stress in saline and non-saline soils

    NASA Astrophysics Data System (ADS)

    King, G.

    2017-12-01

    Neither carbon monoxide (CO) nor hydrogen (H2) have direct impacts on radiative forcing, but both play important roles in tropospheric chemistry. Soils affect both the fate and significance of atmospheric CO and H2 by acting as strong global gas sinks ( 15% and >75 %, respectively), but much remains unknown about the microbiology of these gases, including responses to key environmental drivers. The role of water availability, measured as water potential, has been addressed to a limited extent by earlier studies with results suggesting that CO and H2 uptake are strongly limited by water stress. However recent results indicate a much greater tolerance of water stress than previously suspected. Ex situ assays have shown that non-saline playa soils from the Alvord Basin (Oregon, USA) consumed atmospheric and exogenous hydrogen and CO under conditions of severe water stress. CO uptake occurred at water potentials < -30 MPa, which are far below values considered optimal for terrestrial bacterial growth. Surface soils that had been exposed to water potentials as low as -300 MPa also oxidized CO and H2 after brief equilibration at higher potentials (less water stress), indicating remarkable tolerance of desiccating conditions. Tolerance to water stress for CO and H2 uptake was also observed for soils from a montane rainforest (Hawai`i, USA). However, unlike playa soils rainforest soils seldom experience extended drought that would select for desiccation tolerance. While CO uptake by forest soils was more sensitive to water stress (limits -10MPa) than in playa soils, H2 uptake was observed at -90 MPa to -100 MPa. Tolerance at these levels might be due to the formation of intracellular water that limits the local effects of stress. Comparisons of water stress responses between saline and non-saline soils further suggested that communities of CO- and H2-oxidizing were generally robust with respect to stresses resulting from solute and matric effects. Collectively the results indicate that models of global CO and H2 dynamics might be improved by incorporating responses to soil water stress that could be estimated using relative humidity regimes calibrated for different soil types and systems. Incorporating water stress responses into models offers a means for assessing potential climate change impacts on two important trace gases.

  18. Surface Soil Moisture Estimates Across China Based on Multi-satellite Observations and A Soil Moisture Model

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Yang, Tao; Ye, Jinyin; Li, Zhijia; Yu, Zhongbo

    2017-04-01

    Soil moisture is a key variable that regulates exchanges of water and energy between land surface and atmosphere. Soil moisture retrievals based on microwave satellite remote sensing have made it possible to estimate global surface (up to about 10 cm in depth) soil moisture routinely. Although there are many satellites operating, including NASA's Soil Moisture Acitive Passive mission (SMAP), ESA's Soil Moisture and Ocean Salinity mission (SMOS), JAXA's Advanced Microwave Scanning Radiometer 2 mission (AMSR2), and China's Fengyun (FY) missions, key differences exist between different satellite-based soil moisture products. In this study, we applied a single-channel soil moisture retrieval model forced by multiple sources of satellite brightness temperature observations to estimate consistent daily surface soil moisture across China at a spatial resolution of 25 km. By utilizing observations from multiple satellites, we are able to estimate daily soil moisture across the whole domain of China. We further developed a daily soil moisture accounting model and applied it to downscale the 25-km satellite-based soil moisture to 5 km. By comparing our estimated soil moisture with observations from a dense observation network implemented in Anhui Province, China, our estimated soil moisture results show a reasonably good agreement with the observations (RMSE < 0.1 and r > 0.8).

  19. Contribution to the study of pollution of soil and water in Oued El Maleh area (Mohammedia, Morocco)

    NASA Astrophysics Data System (ADS)

    El hajjaji, Souad; Dahchour, Abdelmalek; Belhsaien, Kamal; Zouahri, Abdelmjid; Moussadek, Rachid; Douaik, Ahmed

    2016-04-01

    In Morocco, diffuse ground and surface water pollution in irrigated areas has caused an increase in the risk of water and soil quality deterioration. This has generated a health and environmental risks. The present study was carried out in the Oued El Maleh region located 65 Km to the south of Rabat on the Moroccan Atlantic coast. It covers a surface area of 310 km2 where agriculture constitutes the main activity of the population. This region is considered as a very important agricultural area, known nationally for its high potential for market gardening. This intensification has been accompanied by an excessive use of agrochemical inputs and poor control of irrigation and drainage. Consequently, salinization phenomena and deterioration of soil structure as well as water are about to create an alarming situation. In order to assess the state of pollution of waters and soil in the region, our study focuses on the determination of physicochemical parameters for the quality of water and soil. The obtained results from sampled wells and surface water show relatively higher values of nitrate and conductivity exceeding Moroccan national standards and revealing net degradation of water quality; therefore the water can be considered not suitable for human consumption and can induce a degradation of soil. The results of the studied soil show that the pH of these soils is weakly to moderately basic; they are usually non-saline with organic matter content moderately filled. Moreover, very high concentrations of nutrients (potassium, phosphorus and nitrogen) were recorded, highlighting poor management fertilizing vegetable crops in the region of Oued El Maleh.

  20. Estimating salinity stress in sugarcane fields with spaceborne hyperspectral vegetation indices

    NASA Astrophysics Data System (ADS)

    Hamzeh, S.; Naseri, A. A.; AlaviPanah, S. K.; Mojaradi, B.; Bartholomeus, H. M.; Clevers, J. G. P. W.; Behzad, M.

    2013-04-01

    The presence of salt in the soil profile negatively affects the growth and development of vegetation. As a result, the spectral reflectance of vegetation canopies varies for different salinity levels. This research was conducted to (1) investigate the capability of satellite-based hyperspectral vegetation indices (VIs) for estimating soil salinity in agricultural fields, (2) evaluate the performance of 21 existing VIs and (3) develop new VIs based on a combination of wavelengths sensitive for multiple stresses and find the best one for estimating soil salinity. For this purpose a Hyperion image of September 2, 2010, and data on soil salinity at 108 locations in sugarcane (Saccharum officina L.) fields were used. Results show that soil salinity could well be estimated by some of these VIs. Indices related to chlorophyll absorption bands or based on a combination of chlorophyll and water absorption bands had the highest correlation with soil salinity. In contrast, indices that are only based on water absorption bands had low to medium correlations, while indices that use only visible bands did not perform well. From the investigated indices the optimized soil-adjusted vegetation index (OSAVI) had the strongest relationship (R2 = 0.69) with soil salinity for the training data, but it did not perform well in the validation phase. The validation procedure showed that the new salinity and water stress indices (SWSI) implemented in this study (SWSI-1, SWSI-2, SWSI-3) and the Vogelmann red edge index yielded the best results for estimating soil salinity for independent fields with root mean square errors of 1.14, 1.15, 1.17 and 1.15 dS/m, respectively. Our results show that soil salinity could be estimated by satellite-based hyperspectral VIs, but validation of obtained models for independent data is essential for selecting the best model.

  1. North Atlantic salinity as a predictor of Sahel rainfall.

    PubMed

    Li, Laifang; Schmitt, Raymond W; Ummenhofer, Caroline C; Karnauskas, Kristopher B

    2016-05-01

    Water evaporating from the ocean sustains precipitation on land. This ocean-to-land moisture transport leaves an imprint on sea surface salinity (SSS). Thus, the question arises of whether variations in SSS can provide insight into terrestrial precipitation. This study provides evidence that springtime SSS in the subtropical North Atlantic ocean can be used as a predictor of terrestrial precipitation during the subsequent summer monsoon in Africa. Specifically, increased springtime SSS in the central to eastern subtropical North Atlantic tends to be followed by above-normal monsoon-season precipitation in the African Sahel. In the spring, high SSS is associated with enhanced moisture flux divergence from the subtropical oceans, which converges over the African Sahel and helps to elevate local soil moisture content. From spring to the summer monsoon season, the initial water cycling signal is preserved, amplified, and manifested in excessive precipitation. According to our analysis of currently available soil moisture data sets, this 3-month delay is attributable to a positive coupling between soil moisture, moisture flux convergence, and precipitation in the Sahel. Because of the physical connection between salinity, ocean-to-land moisture transport, and local soil moisture feedback, seasonal forecasts of Sahel precipitation can be improved by incorporating SSS into prediction models. Thus, expanded monitoring of ocean salinity should contribute to more skillful predictions of precipitation in vulnerable subtropical regions, such as the Sahel.

  2. North Atlantic salinity as a predictor of Sahel rainfall

    PubMed Central

    Li, Laifang; Schmitt, Raymond W.; Ummenhofer, Caroline C.; Karnauskas, Kristopher B.

    2016-01-01

    Water evaporating from the ocean sustains precipitation on land. This ocean-to-land moisture transport leaves an imprint on sea surface salinity (SSS). Thus, the question arises of whether variations in SSS can provide insight into terrestrial precipitation. This study provides evidence that springtime SSS in the subtropical North Atlantic ocean can be used as a predictor of terrestrial precipitation during the subsequent summer monsoon in Africa. Specifically, increased springtime SSS in the central to eastern subtropical North Atlantic tends to be followed by above-normal monsoon-season precipitation in the African Sahel. In the spring, high SSS is associated with enhanced moisture flux divergence from the subtropical oceans, which converges over the African Sahel and helps to elevate local soil moisture content. From spring to the summer monsoon season, the initial water cycling signal is preserved, amplified, and manifested in excessive precipitation. According to our analysis of currently available soil moisture data sets, this 3-month delay is attributable to a positive coupling between soil moisture, moisture flux convergence, and precipitation in the Sahel. Because of the physical connection between salinity, ocean-to-land moisture transport, and local soil moisture feedback, seasonal forecasts of Sahel precipitation can be improved by incorporating SSS into prediction models. Thus, expanded monitoring of ocean salinity should contribute to more skillful predictions of precipitation in vulnerable subtropical regions, such as the Sahel. PMID:27386525

  3. [Characteristics of arbuscular mycorrhizal fungal diversity and functions in saline-alkali land].

    PubMed

    Yang, Hai-xia; Guo, Shao-xia; Liu, Run-jin

    2015-01-01

    Arbuscular mycorrhizal (AM) fungi, widely distributing in various terrestrial ecosys- tems, are one of the important functional biotic components in soil habitats and play a vital role in improving soil evolution, maintaining soil health and sustainable productivity. Saline-alkali soil is a special habitat affecting plant growth and grain yield. Under the influence of a series of factors, such as human activities on the nature, S and N deposition, ozone, greenhouse effect, climate anomalies, and alien species invasions etc., soil salinization, biodiversity and functions of saline farmlands may be greatly affected, which could consequently influence agricultural production and the sustainable development of ecosystems. Followed by an introduction of the changing characteristics of saline soil area and the secondary salinization under the background of global changes, the present review mainly discussed the changing features of diversity and functions of AM fungi in saline habitats, summarized the factors influencing AM fungal diversity and functions, and the factors' changing characters under the global changes, in order to provide new ideas and ways in further elucidating the position, role and function of AM fungi in saline soil, and in strengthening saline farmland remediation in response to global changes.

  4. SSEM: A model for simulating runoff and erosion of saline-sodic soil slopes under coastal reclamation

    NASA Astrophysics Data System (ADS)

    Liu, Dongdong; She, Dongli

    2018-06-01

    Current physically based erosion models do not carefully consider the dynamic variations of soil properties during rainfall and are unable to simulate saline-sodic soil slope erosion processes. The aim of this work was to build upon a complete model framework, SSEM, to simulate runoff and erosion processes for saline-sodic soils by coupling dynamic saturated hydraulic conductivity Ks and soil erodibility Kτ. Sixty rainfall simulation rainfall experiments (2 soil textures × 5 sodicity levels × 2 slope gradients × 3 duplicates) provided data for model calibration and validation. SSEM worked very well for simulating the runoff and erosion processes of saline-sodic silty clay. The runoff and erosion processes of saline-sodic silt loam were more complex than those of non-saline soils or soils with higher clay contents; thus, SSEM did not perform very well for some validation events. We further examined the model performances of four concepts: Dynamic Ks and Kτ (Case 1, SSEM), Dynamic Ks and Constant Kτ (Case 2), Constant Ks and Dynamic Kτ (Case 3) and Constant Ks and Constant Kτ (Case 4). The results demonstrated that the model, which considers dynamic variations in soil saturated hydraulic conductivity and soil erodibility, can provide more reasonable runoff and erosion prediction results for saline-sodic soils.

  5. Assimilation of Smos Observations to Generate a Prototype SMAP Level 4 Surface and Root-Zone Soil Moisture Product

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf H.; De Lannoy, Gabrielle J. M.; Crow, Wade T.; Koster, Randal D.; Kimball, John

    2012-01-01

    The Soil Moisture Active and Passive (SMAP; [1]) mission is being implemented by NASA for launch in October 2014. The primary science objectives of SMAP are to enhance understanding of land surface controls on the water, energy and carbon cycles, and to determine their linkages. Moreover, the high-resolution soil moisture mapping provided by SMAP has practical applications in weather and seasonal climate prediction, agriculture, human health, drought and flood decision support. The Soil Moisture and Ocean Salinity (SMOS; [2]) mission was launched by ESA in November 2009 and has since been observing L-band (1.4 GHz) upwelling passive microwaves. In this paper we describe our use of SMOS brightness temperature observations to generate a prototype of the planned SMAP Level 4 Surface and Root-zone Soil Moisture (L4_SM) product [5].

  6. Matching soil salinization and cropping systems in communally managed irrigation schemes

    NASA Astrophysics Data System (ADS)

    Malota, Mphatso; Mchenga, Joshua

    2018-03-01

    Occurrence of soil salinization in irrigation schemes can be a good indicator to introduce high salt tolerant crops in irrigation schemes. This study assessed the level of soil salinization in a communally managed 233 ha Nkhate irrigation scheme in the Lower Shire Valley region of Malawi. Soil samples were collected within the 0-0.4 m soil depth from eight randomly selected irrigation blocks. Irrigation water samples were also collected from five randomly selected locations along the Nkhate River which supplies irrigation water to the scheme. Salinity of both the soil and the irrigation water samples was determined using an electrical conductivity (EC) meter. Analysis of the results indicated that even for very low salinity tolerant crops (ECi < 2 dS/m), the irrigation water was suitable for irrigation purposes. However, root-zone soil salinity profiles depicted that leaching of salts was not adequate and that the leaching requirement for the scheme needs to be relooked and always be adhered to during irrigation operation. The study concluded that the crop system at the scheme needs to be adjusted to match with prevailing soil and irrigation water salinity levels.

  7. Site Suitability Analysis for Dissemination of Salt-tolerant Rice Varieties in Southern Bangladesh

    NASA Astrophysics Data System (ADS)

    Sinha, D. D.; Singh, A. N.; Singh, U. S.

    2014-11-01

    Bangladesh is a country of 14.4 million ha geographical area and has a population density of more than 1100 persons per sq. km. Rice is the staple food crop, growing on about 72 % of the total cultivated land and continues to be the most important crop for food security of the country. A project "Sustainable Rice Seed Production and Delivery Systems for Southern Bangladesh" has been executed by the International Rice Research Institute (IRRI) in twenty southern districts of Bangladesh. These districts grow rice in about 2.9 million ha out of the country's total rice area of 11.3 million ha. The project aims at contributing to the Government of Bangladesh's efforts in improving national and household food security through enhanced and sustained productivity by using salinity-, submergence- and drought- tolerant and high yielding rice varieties. Out of the 20 project districts, 12 coastal districts are affected by the problem of soil salinity. The salt-affected area in Bangladesh has increased from about 0.83 million ha in 1973 to 1.02 million ha in 2000, and 1.05 million ha in 2009 due to the influence of cyclonic storms like "Sidr", "Laila" and others, leading to salt water intrusion in croplands. Three salinity-tolerant rice varieties have recently been bred by IRRI and field tested and released by the Bangladesh Rice Research Institute (BRRI) and Bangladesh Institute of Nuclear Agriculture (BINA). These varieties are BRRI dhan- 47 and Bina dhan-8 and - 10. However, they can tolerate soil salinity level up to EC 8-10 dSm-1, whereas the EC of soils in several areas are much higher. Therefore, a large scale dissemination of these varieties can be done only when a site suitability analysis of the area is carried out. The present study was taken up with the objective of preparing the site suitability of the salt-tolerant varieties for the salinity-affected districts of southern Bangladesh. Soil salinity map prepared by Soil Resources Development Institute of Bangladesh shows five classes of salinity. viz., non-saline with some very slight saline soil, very slightly saline with some slight saline soil, slightly saline with some moderately saline soil, strongly saline with some moderately saline soil, and very strongly saline with some strongly saline soil. The soil EC level of different classes range from 2 dSm-1 to >16 dSm-1. The soil map was geo-referenced and digitized using Arc GIS. Salinity tolerance characteristics of the rice varieties were matched with the soil characteristics shown on the map. Three suitability classes were made; soils suitable for salt-tolerant varieties, not suitable for salt-tolerant varieties due to high soil salinity, and suitable for other high yielding varieties due to slight salinity. The mauza (smallest revenue unit) boundary provided by the Bangladesh Agriculture Research Council was also geo-referenced and digitized in the same projection. Overlaying and intersecting the mauza boundary on the soil suitability map provided the suitable and not suitable mauza. A total of 4070 mauzas in the 12 salinity-affected districts were listed and maps showing suitability of mauza prepared. About 0.6 million ha out of total 0.87 million ha salinity affected area were found suitable for growing the salinity-tolerant BRRI dhan-47, Bina dhan-8 and -10 in these districts. The maps and other generated information have helped the Dept. of Agriculture Extension (DAE) of Bangladesh in large scale dissemination of seeds of the salinity-tolerant rice varieties in different districts during the past two years.

  8. Modeling as a tool for management of saline soils and irrigation waters

    USDA-ARS?s Scientific Manuscript database

    Optimal management of saline soils and irrigation waters requires consideration of many interrelated factors including, climate, water applications and timing, water flow, plant water uptake, soil chemical reactions, plant response to salinity and solution composition, soil hydraulic properties and ...

  9. Diversity and Contributions to Nitrogen Cycling and Carbon Fixation of Soil Salinity Shaped Microbial Communities in Tarim Basin

    PubMed Central

    Ren, Min; Zhang, Zhufeng; Wang, Xuelian; Zhou, Zhiwei; Chen, Dong; Zeng, Hui; Zhao, Shumiao; Chen, Lingling; Hu, Yuanliang; Zhang, Changyi; Liang, Yunxiang; She, Qunxin; Zhang, Yi; Peng, Nan

    2018-01-01

    Arid and semi-arid regions comprise nearly one-fifth of the earth's terrestrial surface. However, the diversities and functions of their soil microbial communities are not well understood, despite microbial ecological importance in driving biogeochemical cycling. Here, we analyzed the geochemistry and microbial communities of the desert soils from Tarim Basin, northwestern China. Our geochemical data indicated half of these soils are saline. Metagenomic analysis showed that bacterial phylotypes (89.72% on average) dominated the community, with relatively small proportions of Archaea (7.36%) and Eukaryota (2.21%). Proteobacteria, Firmicutes, Actinobacteria, and Euryarchaeota were most abundant based on metagenomic data, whereas genes attributed to Proteobacteria, Actinobacteria, Euryarchaeota, and Thaumarchaeota most actively transcribed. The most abundant phylotypes (Halobacterium, Halomonas, Burkholderia, Lactococcus, Clavibacter, Cellulomonas, Actinomycetospora, Beutenbergia, Pseudomonas, and Marinobacter) in each soil sample, based on metagenomic data, contributed marginally to the population of all microbial communities, whereas the putative halophiles, which contributed the most abundant transcripts, were in the majority of the active microbial population and is consistent with the soil salinity. Sample correlation analyses according to the detected and active genotypes showed significant differences, indicating high diversity of microbial communities among the Tarim soil samples. Regarding ecological functions based on the metatranscriptomic data, transcription of genes involved in various steps of nitrogen cycling, as well as carbon fixation, were observed in the tested soil samples. Metatranscriptomic data also indicated that Thaumarchaeota are crucial for ammonia oxidation and Proteobacteria play the most important role in other steps of nitrogen cycle. The reductive TCA pathway and dicarboxylate-hydroxybutyrate cycle attributed to Proteobacteria and Crenarchaeota, respectively, were highly represented in carbon fixation. Our study reveals that the microbial communities could provide carbon and nitrogen nutrients for higher plants in the sandy saline soils of Tarim Basin. PMID:29593680

  10. [Amelioration of secondary bare alkali-saline patches in Songnen Plain through inserting cornstalk].

    PubMed

    He, Nianpeng; Wu, Ling; Jiang, Shicheng; Zhou, Daowei

    2004-06-01

    Based on the field experiment on Songnen grassland, a new method was established to ameliorate the secondary bare alkali-saline patches (SAP) through inserting cornstalk. The experiment was rested on the assumption that through inserting cornstalk in the secondary bare alkali-saline patches (SAP) to retain seeds moving over its surface, the necessary seed source could be gained; and these seeds should be able to germinate and survive successfully on the cornstalk itself or in its neighborhood, where should be more fit to grow than other sites in SAP, due to the decomposition of cornstalk and its special role, so that, the aim to restore vegetation of SAP could be achieved at a pretty low cost and rapid speed. The results showed that the seed bank in soil was increased significantly, owing to the inserted cornstalk and its operating processes. The seed number in ameliorated soil was 4020.0 +/- 1773.6 seeds x m(-2), while that in the secondary bare alkali-saline patches (SAP) was only 10.0 +/- 31.6 seeds x m(-2). Although the soil chemical and physical characters in ameliorated zone were improved to some extent, the overall situation of soil was still bad for plant growth, as the pH, soluble saline ion and organic matter were concerned. Most of Chloris virgata grew around or on the cornstalk, the plants around each cornstalk being 3.9 +/- 2.2, and the total being 48.64 +/- 38.72 g x m(-2). Therefore, this method demanded a few resources, and needed simple technology and low cost, which is potentially deserved to popularize.

  11. Spectral reflectance characteristics of soils in northeastern Brazil as influenced by salinity levels.

    PubMed

    Pessoa, Luiz Guilherme Medeiros; Freire, Maria Betânia Galvão Dos Santos; Wilcox, Bradford Paul; Green, Colleen Heather Machado; De Araújo, Rômulo José Tolêdo; De Araújo Filho, José Coelho

    2016-11-01

    In northeastern Brazil, large swaths of once-productive soils have been severely degraded by soil salinization, but the true extent of the damage has not been assessed. Emerging remote sensing technology based on hyperspectral analysis offers one possibility for large-scale assessment, but it has been unclear to what extent the spectral properties of soils are related to salinity characteristics. The purpose of this study was to characterize the spectral properties of degraded (saline) and non-degraded agricultural soils in northeastern Brazil and determine the extent to which these properties correspond to soil salinity. We took soil samples from 78 locations within a 45,000-km 2 site in Pernambuco State. We used cluster analysis to group the soil samples on the basis of similarities in salinity and sodicity levels, and then obtained spectral data for each group. The physical properties analysis indicated a predominance of the coarse sand fraction in almost all the soil groups, and total porosity was similar for all the groups. The chemical analysis revealed different levels of degradation among the groups, ranging from non-degraded to strongly degraded conditions, as defined by the degree of salinity and sodicity. The soil properties showing the highest correlation with spectral reflectance were the exchangeable sodium percentage followed by fine sand. Differences in the reflectance curves for the various soil groups were relatively small and were not significant. These results suggest that, where soil crusts are not present, significant challenges remain for using hyperspectral remote sensing to assess soil salinity in northeastern Brazil.

  12. Effect of salinity on soil respiration in relation to dissolved organic carbon and microbial characteristics of a wetland in the Liaohe River estuary, Northeast China.

    PubMed

    Yang, Jisong; Zhan, Chao; Li, Yunzhao; Zhou, Di; Yu, Yang; Yu, Junbao

    2018-06-18

    Increasing salinity has important impacts on biogeochemical processes in estuary wetlands, with the potential to influence the soil respiration, dissolved organic carbon (DOC) and microbial population. However, it is unclear how soil respiration is related to changes in the DOC and microbial community composition with increasing salinity. In this study, soil cores were sampled from a brackish wetland in the Liaohe River estuary and treated by salinity solutions at four levels (fresh water, 3‰, 5‰, and 10‰). Samples of gas, water and soil were collected to determine the respiration rates and microbial community structure of the soil and the DOC leaching from the soil. Compared to the low-salinity treatments (fresh water and 3‰), the high-salinity treatments (5‰ and 10‰) decreased the soil respiration rates by 45-57% and decreased the DOC concentrations by 47-55%. However, no significant differences were observed within the low-salinity treatments nor the high-salinity treatments. There is a positive correlation between the soil respiration rates and DOC concentrations in all treatments, but it does not indicate a genetic cause-effect relationship between them. The microbial community structure varied with the salinity level, with higher β- and δ-Proteobacteria abundance, as well as higher Anaerolineae, and lower Clostridia abundance in the high-salinity treatments. The respiration rates were slightly negatively related to the richness of Proteobacteria and positively related to the richness of Clostridia. This study suggests that there may be a salinity threshold (3-10‰) impacting the organic carbon loss from estuarine brackish wetlands. In addition, the response of soil respiration to increasing salinity may be mainly linked to changes in the microbial community composition rather than changes in the DOC quantity. Copyright © 2018. Published by Elsevier B.V.

  13. Salinity: Electrical conductivity and total dissolved solids

    USDA-ARS?s Scientific Manuscript database

    The measurement of soil salinity is a quantification of the total salts present in the liquid portion of the soil. Soil salinity is important in agriculture because salinity reduces crop yields by reducing the osmotic potential making it more difficult for the plant to extract water, by causing spe...

  14. Predicted Infiltration for Sodic/Saline Soils from Reclaimed Coastal Areas: Sensitivity to Model Parameters

    PubMed Central

    She, Dongli; Yu, Shuang'en; Shao, Guangcheng

    2014-01-01

    This study was conducted to assess the influences of soil surface conditions and initial soil water content on water movement in unsaturated sodic soils of reclaimed coastal areas. Data was collected from column experiments in which two soils from a Chinese coastal area reclaimed in 2007 (Soil A, saline) and 1960 (Soil B, nonsaline) were used, with bulk densities of 1.4 or 1.5 g/cm3. A 1D-infiltration model was created using a finite difference method and its sensitivity to hydraulic related parameters was tested. The model well simulated the measured data. The results revealed that soil compaction notably affected the water retention of both soils. Model simulations showed that increasing the ponded water depth had little effect on the infiltration process, since the increases in cumulative infiltration and wetting front advancement rate were small. However, the wetting front advancement rate increased and the cumulative infiltration decreased to a greater extent when θ 0 was increased. Soil physical quality was described better by the S parameter than by the saturated hydraulic conductivity since the latter was also affected by the physical chemical effects on clay swelling occurring in the presence of different levels of electrolytes in the soil solutions of the two soils. PMID:25197699

  15. Predicted infiltration for sodic/saline soils from reclaimed coastal areas: sensitivity to model parameters.

    PubMed

    Liu, Dongdong; She, Dongli; Yu, Shuang'en; Shao, Guangcheng; Chen, Dan

    2014-01-01

    This study was conducted to assess the influences of soil surface conditions and initial soil water content on water movement in unsaturated sodic soils of reclaimed coastal areas. Data was collected from column experiments in which two soils from a Chinese coastal area reclaimed in 2007 (Soil A, saline) and 1960 (Soil B, nonsaline) were used, with bulk densities of 1.4 or 1.5 g/cm(3). A 1D-infiltration model was created using a finite difference method and its sensitivity to hydraulic related parameters was tested. The model well simulated the measured data. The results revealed that soil compaction notably affected the water retention of both soils. Model simulations showed that increasing the ponded water depth had little effect on the infiltration process, since the increases in cumulative infiltration and wetting front advancement rate were small. However, the wetting front advancement rate increased and the cumulative infiltration decreased to a greater extent when θ₀ was increased. Soil physical quality was described better by the S parameter than by the saturated hydraulic conductivity since the latter was also affected by the physical chemical effects on clay swelling occurring in the presence of different levels of electrolytes in the soil solutions of the two soils.

  16. [Simulation of effect of irrigation with reclaimed water on soil water-salt movement by ENVIRO-GRO model].

    PubMed

    Lü, Si-Dan; Chen, Wei-Ping; Wang, Mei-E

    2012-12-01

    As the conflict between water supply and demand, wastewater reuse has become an important measure, which can relieve the water shortage in Beijing. In order to promote safe irrigation with reclaimed water and prevent soil salinisation, the dynamic transport of salts in urban soils of Beijing, a city of water shortage, under irrigation of reclaimed water was simulated by ENVIRO-GRO model in this research. The accumulation trends of soil salinity were predicted. Simultaneously, it investigated the effects of different irrigation practices on soil water-salt movement and salt accumulation. Results indicated that annual averages of soil salinity (EC(e)) increased 29.5%, 97.2%, 197.8% respectively, with the higher irrigation, normal irrigation, and low irrigation under equilibrium conditions. Irrigation frequency had little effect on soil salt-water movement, and soil salt accumulation was in a downward trend with low frequency of irrigation. Under equilibrium conditions, annual averages of EC(e) increased 23.7%, 97.2%, 208.5% respectively, with irrigation water salinity (EC(w)) 0.6, 1.2, 2.4 dS x m(-1). Soil salinity increased slightly with EC(w) = 0.6 dS x m(-1), while soil salinization did not appear. Totally, the growth of Blue grass was not influenced by soil salinity under equilibrium conditions with the regular irrigation in Beijing, but mild soil salinization appeared.

  17. Salinity Adaptation and the Contribution of Parental Environmental Effects in Medicago truncatula

    PubMed Central

    Moriuchi, Ken S.; Friesen, Maren L.; Cordeiro, Matilde A.; Badri, Mounawer; Vu, Wendy T.; Main, Bradley J.; Aouani, Mohamed Elarbi; Nuzhdin, Sergey V.; Strauss, Sharon Y.; von Wettberg, Eric J. B.

    2016-01-01

    High soil salinity negatively influences plant growth and yield. Some taxa have evolved mechanisms for avoiding or tolerating elevated soil salinity, which can be modulated by the environment experienced by parents or offspring. We tested the contribution of the parental and offspring environments on salinity adaptation and their potential underlying mechanisms. In a two-generation greenhouse experiment, we factorially manipulated salinity concentrations for genotypes of Medicago truncatula that were originally collected from natural populations that differed in soil salinity. To compare population level adaptation to soil salinity and to test the potential mechanisms involved we measured two aspects of plant performance, reproduction and vegetative biomass, and phenological and physiological traits associated with salinity avoidance and tolerance. Saline-origin populations had greater biomass and reproduction under saline conditions than non-saline populations, consistent with local adaptation to saline soils. Additionally, parental environmental exposure to salt increased this difference in performance. In terms of environmental effects on mechanisms of salinity adaptation, parental exposure to salt spurred phenological differences that facilitated salt avoidance, while offspring exposure to salt resulted in traits associated with greater salt tolerance. Non-saline origin populations expressed traits associated with greater growth in the absence of salt while, for saline adapted populations, the ability to maintain greater performance in saline environments was also associated with lower growth potential in the absence of salt. Plastic responses induced by parental and offspring environments in phenology, leaf traits, and gas exchange contribute to salinity adaptation in M. truncatula. The ability of plants to tolerate environmental stress, such as high soil salinity, is likely modulated by a combination of parental effects and within-generation phenotypic plasticity, which are likely to vary in populations from contrasting environments. PMID:26943813

  18. Estimation of the barrier layer thickness in the Indian Ocean using Aquarius Salinity

    NASA Astrophysics Data System (ADS)

    Felton, Clifford S.; Subrahmanyam, Bulusu; Murty, V. S. N.; Shriver, Jay F.

    2014-07-01

    Monthly barrier layer thickness (BLT) estimates are derived from satellite measurements using a multilinear regression model (MRM) within the Indian Ocean. Sea surface salinity (SSS) from the recently launched Soil Moisture and Ocean Salinity (SMOS) and Aquarius SAC-D salinity missions are utilized to estimate the BLT. The MRM relates BLT to sea surface salinity (SSS), sea surface temperature (SST), and sea surface height anomalies (SSHA). Three regions where the BLT variability is most rigorous are selected to evaluate the performance of the MRM for 2012; the Southeast Arabian Sea (SEAS), Bay of Bengal (BoB), and Eastern Equatorial Indian Ocean (EEIO). The MRM derived BLT estimates are compared to gridded Argo and Hybrid Coordinate Ocean Model (HYCOM) BLTs. It is shown that different mechanisms are important for sustaining the BLT variability in each of the selected regions. Sensitivity tests show that SSS is the primary driver of the BLT within the MRM. Results suggest that salinity measurements obtained from Aquarius and SMOS can be useful for tracking and predicting the BLT in the Indian Ocean. Largest MRM errors occur along coastlines and near islands where land contamination skews the satellite SSS retrievals. The BLT evolution during 2012, as well as the advantages and disadvantages of the current model are discussed. BLT estimations using HYCOM simulations display large errors that are related to model layer structure and the selected BLT methodology.

  19. Estimating Sea Surface Salinity and Wind Using Combined Passive and Active L-Band Microwave Observations

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.; Chaubell, Mario J.

    2012-01-01

    Several L-band microwave radiometer and radar missions have been, or will be, operating in space for land and ocean observations. These include the NASA Aquarius mission and the Soil Moisture Active Passive (SMAP) mission, both of which use combined passive/ active L-band instruments. Aquarius s passive/active L-band microwave sensor has been designed to map the salinity field at the surface of the ocean from space. SMAP s primary objectives are for soil moisture and freeze/thaw detection, but it will operate continuously over the ocean, and hence will have significant potential for ocean surface research. In this innovation, an algorithm has been developed to retrieve simultaneously ocean surface salinity and wind from combined passive/active L-band microwave observations of sea surfaces. The algorithm takes advantage of the differing response of brightness temperatures and radar backscatter to salinity, wind speed, and direction, thus minimizing the least squares error (LSE) measure, which signifies the difference between measurements and model functions of brightness temperatures and radar backscatter. The algorithm uses the conjugate gradient method to search for the local minima of the LSE. Three LSE measures with different measurement combinations have been tested. The first LSE measure uses passive microwave data only with retrieval errors reaching 1 to 2 psu (practical salinity units) for salinity, and 1 to 2 m/s for wind speed. The second LSE measure uses both passive and active microwave data for vertical and horizontal polarizations. The addition of active microwave data significantly improves the retrieval accuracy by about a factor of five. To mitigate the impact of Faraday rotation on satellite observations, the third LSE measure uses measurement combinations invariant under the Faraday rotation. For Aquarius, the expected RMS SSS (sea surface salinity) error will be less than about 0.2 psu for low winds, and increases to 0.3 psu at 25 m/s wind speed for warm waters (25 C). To achieve the required 0.2 psu accuracy, the impact of sea surface roughness (e.g. wind-generated ripples) on the observed brightness temperature has to be corrected to better than one tenth of a degree Kelvin. With this algorithm, the accuracy of retrieved wind speed will be high, varying from a few tenths to 0.6 m/s. The expected direction accuracy is also excellent (less than 10 ) for mid to high winds, but degrades for lower speeds (less than 7 m/s).

  20. Is the Taklimakan Desert Highway Shelterbelt Sustainable to Long-Term Drip Irrigation with High Saline Groundwater?

    PubMed Central

    Zhang, Jianguo; Xu, Xinwen; Li, Shengyu; Zhao, Ying; Zhang, Afeng; Zhang, Tibin; Jiang, Rui

    2016-01-01

    Freshwater resources are scarce in desert regions. Highly saline groundwater of different salinity is being used to drip irrigate the Taklimakan Desert Highway Shelterbelt with a double-branch-pipe system controlling the irrigation cycles. In this study, to evaluate the dynamics of soil moisture and salinity under the current irrigation system, soil samples were collected to a 2-m depth in the shelterbelt planted for different years and irrigated with different groundwater salinities, and soil moisture and salinity were analyzed. The results showed that both depletion of soil moisture and increase of topsoil salinity occurred simultaneously during one irrigation cycle. Soil moisture decreased from 27.4% to 2.4% for a 15-day irrigation cycle and from 26.4% to 2.7% for a 10-day-cycle, respectively. Topsoil electrical conductivity (EC) increased from 0.64 to 3.32 dS/m and 0.70 to 3.99 dS/m for these two irrigation cycles. With increased shelterbelt age, profiled average soil moisture (0–200 cm) reduced from 12.8% (1-year) to 7.1% (10-year); however, soil moisture in 0–20-cm increased, while topsoil salinity decreased. In addition, irrigation salinity mainly affected soil salinity in the 0–20-cm range. We conclude that water supply with the double-branch-pipe is a feasible irrigation method for the Taklimakan Desert Highway Shelterbelt, and our findings provide a model for shelterbelt construction and sustainable management when using highly saline water for irrigation in analogous habitats. PMID:27711244

  1. Integrating active restoration with environmental flows to improve native riparian tree establishment in the Colorado River Delta

    USGS Publications Warehouse

    Schlatter, Karen; Grabau, Matthew R.; Shafroth, Patrick B.; Zamora-Arroyo, Francisco

    2017-01-01

    Drastic alterations to river hydrology, land use change, and the spread of the nonnative shrub, tamarisk (Tamarix spp.), have led to the degradation of riparian habitat in the Colorado River Delta in Mexico. Delivery of environmental flows to promote native cottonwood (Populus spp.) and willow (Salix spp.) recruitment in human-impacted riparian systems can be unsuccessful due to flow-magnitude constraints and altered abiotic–biotic feedbacks. In 2014, an experimental pulse flow of water was delivered to the Colorado River in Mexico as part of the U.S.-Mexico binational agreement, Minute 319. We conducted a field experiment to assess the effects of vegetation removal, seed augmentation, and environmental flows, separately and in combination, on germination and first-year seedling establishment of cottonwood, willow, and tamarisk at five replicate sites along 5 river km. The relatively low-magnitude flow deliveries did not substantively restore natural fluvial processes of erosion, sediment deposition, and vegetation scour, but did provide wetted surface soils, shallow groundwater, and low soil salinity. Cottonwood and willow only established in wetted, cleared treatments, and establishment was variable in these treatments due to variable site conditions and inundation duration and timing. Wetted soils, bare surface availability, soil salinity, and seed availability were significant factors contributing to successful cottonwood and willow germination, while soil salinity and texture affected seedling persistence over the growing season. Tamarisk germinated and persisted in a wider range of environmental conditions than cottonwood and willow, including in un-cleared treatment areas. Our results suggest that site management can increase cottonwood and willow recruitment success from low-magnitude environmental flow events, an approach that can be applied in other portions of the Delta and to other human-impacted riparian systems across the world with similar ecological limitations.

  2. Modelling the salinization of a coastal lagoon-aquifer system

    NASA Astrophysics Data System (ADS)

    Colombani, N.; Mastrocicco, M.

    2017-08-01

    In this study, a coastal area constituted by alternations of saline-brackish lagoons and freshwater bodies was studied and modelled to understand the hydrological processes occurring between the lagoons, the groundwater system of the Po River Delta (Italy) and the Adriatic Sea. The contribution of both evaporation and anthropogenic factors on groundwater salinization was assessed by means of soil, groundwater and surface water monitoring. Highresolution multi-level samplers were used to capture salinity gradients within the aquifer and surface water bodies. Data were employed to calibrate a density-dependent numerical transport model implemented with SEAWAT code along a transect perpendicular to the coast line. The results show that the lagoon is hydraulically well connected with the aquifer, which provides the major source of salinity because of the upcoming of paleo-seawater from the aquitard laying at the base of the unconfined aquifer. On the contrary, the seawater (diluted by the freshwater river outflow) creates only a limited saltwater wedge. The increase in groundwater salinity could be of serious concern, especially for the pinewood located in the dune near the coast, sensitive to salinity increases. This case study represents an interesting paradigm for other similar environmental setting, where the assumption of classical aquifer salinization from a saltwater wedge intruding from the sea is often not representative of the actual aquifer’s salinization mechanisms.

  3. Simplifying field-scale assessment of spatiotemporal changes of soil salinity

    USDA-ARS?s Scientific Manuscript database

    Monitoring soil salinity (ECe) is important to properly plan agronomic and irrigation practices. Salinity can be readily measured through soil sampling directed by geospatial measurements of apparent soil electrical conductivity (ECa). Using data from a long-term (1999-2012) monitoring study at a 32...

  4. Hydraulic redistribution: limitations for plants in saline soils.

    PubMed

    Bazihizina, Nadia; Veneklaas, Erik J; Barrett-Lennard, Edward G; Colmer, Timothy D

    2017-10-01

    Hydraulic redistribution (HR), the movement of water from wet to dry patches in the soil via roots, occurs in different ecosystems and plant species. By extension of the principle that HR is driven by gradients in soil water potential, HR has been proposed to occur for plants in saline soils. Despite the inherent spatial patchiness and salinity gradients in these soils, the lack of direct evidence of HR in response to osmotic gradients prompted us to ask the question: are there physical or physiological constraints to HR for plants in saline environments? We propose that build-up of ions in the root xylem sap and in the leaf apoplast, with the latter resulting in a large predawn disequilibrium of water potential in shoots compared with roots and soil, would both impede HR. We present a conceptual model that illustrates how processes in root systems in heterogeneous salinity with water potential gradients, even if equal to those in non-saline soils, will experience a dampened magnitude of water potential gradients in the soil-plant continuum, minimizing or preventing HR. Finally, we provide an outlook for understanding the relevance of HR for plants in saline environments by addressing key research questions on plant salinity tolerance. © 2017 John Wiley & Sons Ltd.

  5. Bacterial polyextremotolerant bioemulsifiers from arid soils improve water retention capacity and humidity uptake in sandy soil.

    PubMed

    Raddadi, Noura; Giacomucci, Lucia; Marasco, Ramona; Daffonchio, Daniele; Cherif, Ameur; Fava, Fabio

    2018-05-31

    Water stress is a critical issue for plant growth in arid sandy soils. Here, we aimed to select bacteria producing polyextremotolerant surface-active compounds capable of improving water retention and humidity uptake in sandy soils. From Tunisian desert and saline systems, we selected eleven isolates able to highly emulsify different organic solvents. The bioemulsifying activities were stable with 30% NaCl, at 4 and 120 °C and in a pH range 4-12. Applications to a sandy soil of the partially purified surface-active compounds improved soil water retention up to 314.3% compared to untreated soil. Similarly, after 36 h of incubation, the humidity uptake rate of treated sandy soil was up to 607.7% higher than untreated controls. Overall, results revealed that polyextremotolerant bioemulsifiers of bacteria from arid and desert soils represent potential sources to develop new natural soil-wetting agents for improving water retention in arid soils.

  6. Physiological and biochemical perspectives of non-salt tolerant plants during bacterial interaction against soil salinity.

    PubMed

    Radhakrishnan, Ramalingam; Baek, Kwang Hyun

    2017-07-01

    Climatic changes on earth affect the soil quality of agricultural lands, especially by increasing salt deposition in soil, which results in soil salinity. Soil salinity is a major challenge to growth and reproduction among glycophytes (including all crop plants). Soil bacteria present in the rhizosphere and/or roots naturally protect plants from the adverse effects of soil salinity by reprogramming the stress-induced physiological changes in plants. Bacteria can enrich the soil with major nutrients (nitrogen, phosphorus, and potassium) in a form easily available to plants and prevent the transport of excess sodium to roots (exopolysaccharides secreted by bacteria bind with sodium ions) for maintaining ionic balance and water potential in cells. Salinity also affects plant growth regulators and suppresses seed germination and root and shoot growth. Bacterial secretion of indole-3-acetic acid and gibberellins compensates for the salt-induced hormonal decrease in plants, and bacterial 1-aminocyclopropane-1-carboxylate (ACC) deaminase synthesis decreases ethylene production to stimulate plant growth. Furthermore, bacteria modulate the redox state of salinity-affected plants by enhancing antioxidants and polyamines, which leads to increased photosynthetic efficiency. Bacteria-induced accumulation of compatible solutes in stressed plants regulates plant cellular activities and prevents salt stress damage. Plant-bacterial interaction reprograms the expression of salt stress-responsive genes and proteins in salinity-affected plants, resulting in a precise stress mitigation metabolism as a defense mechanism. Soil bacteria increase the fertility of soil and regulate the plant functions to prevent the salinity effects in glycophytes. This review explains the current understanding about the physiological changes induced in glycophytes during bacterial interaction to alleviate the adverse effects of soil salinity stress. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Faraday Rotation for SMOS Retrievals of Ocean Salinity and Soil Moisture

    NASA Technical Reports Server (NTRS)

    El-Nimri, Salem; Le Vine, David M.

    2016-01-01

    Faraday rotation is a change in polarization as radiation propagates from the surface through the ionosphere to the sensor. At L-band (1.4 GHz) this change can be significant and can be important for the remote sensing of soil moisture and ocean salinity from space. Consequently, modern L-band radiometers (SMOS, Aquarius and SMOS) are polarimetric to measure Faraday rotation in situ so that a correction can be made. This is done using the ratio of the third and second Stokes parameters. In the case of SMOS this procedure has produced very noisy estimates. An alternate procedure is reported here in which the total electron content is estimated and averaged to reduce noise.

  8. Aquarius and SMOS detect effects of an extreme Mississippi River flooding event in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Gierach, Michelle M.; Vazquez-Cuervo, Jorge; Lee, Tong; Tsontos, Vardis M.

    2013-10-01

    surface salinity (SSS) measurements from the Aquarius/Satélite de Aplicaciones Científicas (SAC)-D satellite and Soil Moisture and Ocean Salinity (SMOS) mission were used to document the freshening associated with the record 2011 Mississippi River flooding event in the Gulf of Mexico (GoM). Assessment of the salinity response was aided by additional satellite observations, including chlorophyll-a (chl-a) and ocean surface currents, and a passive tracer simulation. Low SSS values associated with the spreading of the river plume were observed 1-3 months after peak river discharge which then receded and became unidentifiable from satellite observations 5 months after maximum discharge. The seasonal wind pattern and general circulation of the GoM dramatically impacted the observed salinity response, transporting freshwater eastward along the Gulf coast and entraining low salinity waters into the open GoM. The observed salinity response from Aquarius was consistent with SMOS SSS, chl-a concentrations, and the passive tracer simulation in terms of the pathway and transit time of the river plume spreading. This study is the first successful application of satellite SSS to study salinity variation in marginal seas.

  9. SMOS reveals the signature of Indian Ocean Dipole events

    NASA Astrophysics Data System (ADS)

    Durand, Fabien; Alory, Gaël; Dussin, Raphaël; Reul, Nicolas

    2013-12-01

    The tropical Indian Ocean experiences an interannual mode of climatic variability, known as the Indian Ocean Dipole (IOD). The signature of this variability in ocean salinity is hypothesized based on modeling and assimilation studies, on account of scanty observations. Soil Moisture and Ocean Salinity (SMOS) satellite has been designed to take up the challenge of sea surface salinity remote sensing. We show that SMOS data can be used to infer the pattern of salinity variability linked with the IOD events. The core of maximum variability is located in the central tropical basin, south of the equator. This region is anomalously salty during the 2010 negative IOD event, and anomalously fresh during the 2011 positive IOD event. The peak-to-peak anomaly exceeds one salinity unit, between late 2010 and late 2011. In conjunction with other observational datasets, SMOS data allow us to draw the salt budget of the area. It turns out that the horizontal advection is the main driver of salinity anomalies. This finding is confirmed by the analysis of the outputs of a numerical model. This study shows that the advent of SMOS makes it feasible the quantitative assessment of the mechanisms of ocean surface salinity variability in the tropical basins, at interannual timescales.

  10. Using a trait-based approach to link microbial community composition and functioning to soil salinity

    NASA Astrophysics Data System (ADS)

    Rath, Kristin; Fierer, Noah; Rousk, Johannes

    2017-04-01

    Our knowledge of the dynamics structuring microbial communities and the consequences this has for soil functions is rudimentary. In particular, predictions of the response of microbial communities to environmental change and the implications for associated ecosystem processes remain elusive. Understanding how environmental factors structure microbial communities and regulate the functions they perform is key to a mechanistic understanding of how biogeochemical cycles respond to environmental change. Soil salinization is an agricultural problem in many parts of the world. The activity of soil microorganisms is reduced in saline soils compared to non-saline soil. However, soil salinity often co-varies with other factors, making it difficult to assign responses of microbial communities to direct effects of salinity. A trait-based approach allows us to connect the environmental factor salinity with the responses of microbial community composition and functioning. Salinity along a salinity gradient serves as a filter for the community trait distribution of salt tolerance, selecting for higher salt tolerance at more saline sites. This trait-environment relationship can be used to predict responses of microbial communities to environmental change. Our aims were to (i) use salinity along natural salinity gradients as an environmental filter, and (ii) link the resulting filtered trait-distributions of the communities (the trait being salt tolerance) to the community composition. Soil samples were obtained from two replicated salinity gradients along an Australian salt lake, spanning a wide range of soil salinities (0.1 dS m-1 to >50 dS m-1). In one of the two gradients salinity was correlated with pH. Community trait distributions for salt tolerance were assessed by establishing dose-dependences for extracted bacterial communities using growth rate assays. In addition, functional parameters were measured along the salt gradients. Community composition of sites was compared through 16S rRNA gene amplicon sequencing. Microbial community composition changed greatly along the salinity gradients. Using the salt-tolerance assessments to estimate bacterial trait-distributions we could determine substantial differences in tolerance to salt revealing a strong causal connection between environment and trait distributions. By constraining the community composition with salinity tolerance in ordinations, we could assign which community differences were directly due to a shift in community trait distributions. These analyses revealed that a substantial part (up to 30%) of the community composition differences were directly driven by environmental salt concentrations.. Even though communities in saline soils had trait-distributions aligned to their environment, their performance (respiration, growth rates) was lower than those in non-saline soils and remained low even after input of organic material. Using a trait-based approach we could connect filtered trait distributions along environmental gradients, to the composition of the microbial community. We show that soil salinity played an important role in shaping microbial community composition by selecting for communities with higher salt tolerance. The shift toward bacterial communities with trait distributions matched to salt environments probably compensated for much of the potential loss of function induced by salinity, resulting in a degree of apparent functional redundancy for decomposition. However, more tolerant communities still showed reduced functioning, suggesting a trade-off between salt tolerance and performance.

  11. Naturally occurring soil salinity does not reduce N-transforming enzymes or organisms

    USDA-ARS?s Scientific Manuscript database

    Soil salinity can negatively affect plant production and important biogeochemical cycles which are mainly carried out by soil microbes. The objective of this study was to contribute new information on soil biological N transformations by examining the impact primary salinity reduction has on a) the ...

  12. Landscape scale assessment of soil and water salinization processes in agricultural coastal area.

    NASA Astrophysics Data System (ADS)

    Elen Bless, Aplena; Follain, Stéphane; Coiln, François; Crabit, Armand

    2017-04-01

    Soil salinization is among main land degradation process around the globe. It reduces soil quality, disturbs soil function, and has harmful impacts on plant growth that would threaten agricultural sustainability, particularly in coastal areas where mostly susceptible on land degradation because of pressure from anthropogenic activities and at the same time need to preserve soil quality for supporting food production. In this presentation, we present a landscape scale analysis aiming to assess salinization process affecting wine production. This study was carried out at Serignan estuary delta in South of France (Languadoc Roussillon Region, 43˚ 28'N and 3˚ 31'E). It is a sedimentary basin near coastline of Mediterranean Sea. Field survey was design to characterize both space and time variability of soil and water salinity through water electrical conductivity (ECw) and soil 1/5 electrical conductivity (EC1/5). For water measurements, Orb River and groundwater salinity (piezometers) were determined and for soil 1737 samples were randomly collected from different soil depths (20, 50, 80, and 120 cm) between year 2012 and 2016 and measured. In order to connect with agricultural practices observations and interviews with farmers were conducted. We found that some areas combining specific criteria presents higher electrical conductivity: positions with lower elevation (a.s.l), Cambisols (Calcaric) / Fluvisols soil type (WRB) and dominated clay textures. These observations combined with geochemical determination and spatial analysis confirm our first hypothesis of sea salt intrusion as the main driven factor of soil salinity in this region. In this context, identification of salinization process, fine determination of pedological specificities and fine understanding of agricultural practices allowed us to proposed adaptation strategies to restore soil production function. Please fill in your abstract text. Key Words: Salinity, Coastal Agriculture, Landscape, Soil, Water

  13. Remote-sensing-based analysis of landscape change in the desiccated seabed of the Aral Sea--a potential tool for assessing the hazard degree of dust and salt storms.

    PubMed

    Löw, F; Navratil, P; Kotte, K; Schöler, H F; Bubenzer, O

    2013-10-01

    With the recession of the Aral Sea in Central Asia, once the world's fourth largest lake, a huge new saline desert emerged which is nowadays called the Aralkum. Saline soils in the Aralkum are a major source for dust and salt storms in the region. The aim of this study was to analyze the spatio-temporal land cover change dynamics in the Aralkum and discuss potential implications for the recent and future dust and salt storm activity in the region. MODIS satellite time series were classified from 2000-2008 and change of land cover was quantified. The Aral Sea desiccation accelerated between 2004 and 2008. The area of sandy surfaces and salt soils, which bear the greatest dust and salt storm generation potential increased by more than 36 %. In parts of the Aralkum desalinization of soils was found to take place within 4-8 years. The implication of the ongoing regression of the Aral Sea is that the expansion of saline surfaces will continue. Knowing the spatio-temporal dynamics of both the location and the surface characteristics of the source areas for dust and salt storms allows drawing conclusions about the potential hazard degree of the dust load. The remote-sensing-based land cover assessment presented in this study could be coupled with existing knowledge on the location of source areas for an early estimation of trends in shifting dust composition. Opportunities, limits, and requirements of satellite-based land cover classification and change detection in the Aralkum are discussed.

  14. Polymer tensiometers in a saline environment.

    NASA Astrophysics Data System (ADS)

    van der Ploeg, Martine; Gooren, H. P. A.; Bakker, G.; Russell, W.; Hoogendam, C. W.; Huiskes, C.; Shouse, P.; de Rooij, G. H.

    2010-05-01

    It is estimated that 20% of all cultivated land and nearly half of the irrigated land is salt-affected, which pose major economic and environmental problems. Salinity may be the result of two processes; dryland and irrigation salinity. Dryland salinity is caused by a rise in the groundwater table, which occurs as a result of the replacement of deep-rooted, perennial native vegetation by shallow-rooted annual species meant for production. Irrigation salinity may occur as a result of poor water quality, poor drainage, or inefficient use of water. Consequently, new strategies to enhance crop yield stability on saline soils represent a major research priority (Botella et al. 2005). At the same time, native vegetation is capable of thriving under saline and/or dry conditions. The plant physiology of such vegetation has been investigated thoroughly, but the relation with in situ soil properties (soil moisture and salinity) may be more difficult to unravel as soil moisture sensors are less sensitive in dry soil, and the signal of most soil moisture content sensors is strongly attenuated by soil salinity. Recently, polymer tensiometer were developed that are able to measure matric potentials (closely related to a soil's moisture status) in dry soils. Polymer tensiometers consist of a solid ceramic, a stainless steel cup and a pressure transducer. The ceramic consist of a support layer and a membrane with 2 nm pore-size to prevent polymer leakage. Between the ceramic membrane and the pressure transducer a tiny chamber is located, which contains the polymer solution. The polymer's osmotic potential strongly reduces the total water potential inside the polymer tensiometer, which causes build-up of osmotic pressure. Polymer tensiometers would thus be an ideal instrument to measure in dry soil, if the polymer inside the tensiometer is not affected by the salts in the soil solution. We will address some key issues regarding the use of POTs in saline environments by showing results from a field experiment conducted in a very saline soil. This research was funded by the Dutch Technology Foundation (STW).

  15. Detection of terrain indices related to soil salinity and mapping salt-affected soils using remote sensing and geostatistical techniques.

    PubMed

    Triki Fourati, Hela; Bouaziz, Moncef; Benzina, Mourad; Bouaziz, Samir

    2017-04-01

    Traditional surveying methods of soil properties over landscapes are dramatically cost and time-consuming. Thus, remote sensing is a proper choice for monitoring environmental problem. This research aims to study the effect of environmental factors on soil salinity and to map the spatial distribution of this salinity over the southern east part of Tunisia by means of remote sensing and geostatistical techniques. For this purpose, we used Advanced Spaceborne Thermal Emission and Reflection Radiometer data to depict geomorphological parameters: elevation, slope, plan curvature (PLC), profile curvature (PRC), and aspect. Pearson correlation between these parameters and soil electrical conductivity (EC soil ) showed that mainly slope and elevation affect the concentration of salt in soil. Moreover, spectral analysis illustrated the high potential of short-wave infrared (SWIR) bands to identify saline soils. To map soil salinity in southern Tunisia, ordinary kriging (OK), minimum distance (MD) classification, and simple regression (SR) were used. The findings showed that ordinary kriging technique provides the most reliable performances to identify and classify saline soils over the study area with a root mean square error of 1.83 and mean error of 0.018.

  16. Multiangular L-band Datasets for Soil Moisture and Sea Surface Salinity Retrieval Measured by Airborne HUT-2D Synthetic Aperture Radiometer

    NASA Astrophysics Data System (ADS)

    Kainulainen, J.; Rautiainen, K.; Seppänen, J.; Hallikainen, M.

    2009-04-01

    SMOS is the European Space Agency's next Earth Explorer satellite due for launch in 2009. It aims for global monitoring of soil moisture and ocean salinity utilizing a new technology concept for remote sensing: two-dimensional aperture synthesis radiometry. The payload of SMOS is Microwave Imaging Radiometer by Aperture Synthesis, or MIRAS. It is a passive instrument that uses 72 individual L-band receivers for measuring the brightness temperature of the Earth. From each acquisition, i.e. integration time or snapshot, MIRAS provides two-dimensional brightness temperature of the scene in the instrument's field of view. Thus, consecutive snapshots provide multiangular measurements of the target once the instrument passes over it. Depending on the position of the target in instrument's swath, the brightness temperature of the target at incidence angles from zero up to 50 degrees can be measured with one overpass. To support the development MIRAS instrument, its calibration, and soil moisture and sea surface salinity retrieval algorithm development, Helsinki University of Technology (TKK) has designed, manufactured and tested a radiometer which operates at L-band and utilizes the same two-dimensional methodology of interferometery and aperture synthesis as MIRAS does. This airborne instrument, called HUT-2D, was designed to be used on board the University's research aircraft. It provides multiangular measurements of the target in its field of view, which spans up to 30 degrees off the boresight of the instrument, which is pointed to the nadir. The number of independent measurements of each target point depends on the flight speed and altitude. In addition to the Spanish Airborne MIRAS demonstrator (AMIRAS), HUT-2D is the only European airborne synthetic aperture radiometer. This paper presents the datasets and measurement campaigns, which have been carried out using the HUT-2D radiometer and are available for the scientific community. In April 2007 HUT-2D participated in to the first scientific measurement campaign. This campaign consisted of a single flight over the Gulf of Finland simultaneously with R/V Aranda's (Finnish Marine Research Institute) ground truth collection. The vessel measured e.g. sea surface salinity and sea temperature along the test lines measured with the radiometer system. During the autumn of 2007 HUT-2D participated in the CoSMOS-2007 campaign, in which three datasets from the Finnish coastal area were measured in order to demonstrate sea salinity retrieval. The campaign consisted of two two-hour measurement flights over an expected salinity gradient with HUT-2D and the Danish conventional radiometer EMIRAD. For the reference data, sea surface temperature and salinity were measured along the gradient line from a vessel. The third flight included different maneuvers, such as wing-wags, circles, and clover leafs, over the Gulf of Finland. During the same autumn, HUT-2D was used to measure datasets in northern Finland for soil moisture retrieval purposes. The flight consisted of measurement flights over test areas in Sodankylä, and Pallas. These test sites were equipped with weather stations of Finnish Meteorological Institute. Also soil moisture samples were collected at the sites. During the transition flights (approx. 800 km) from southern Finland to these test sites HUT-2D measured continuously, however, ground reference data for soil moisture was not collected beyond a few weather stations overpassed. Land classification maps for the transit flights are available. The most significant measurement campaign of HUT-2D so far was carried out during the spring of 2008. This 6-week campaign consisted of measurements of soil moisture test sites in Germany (Danube Catchment Area, DCA) and Spain (Valencia Anchor Station, VAS). The campaign at the DCA site consisted of four two-hour flights over the selected test lines in the Danube river catchment area, which is actively used for soil moisture studies. The VAC site consisted of 10 x 10 kilometers area also used for soil moisture studies. This area was mapped with HUT-2D in four different days.

  17. Evaluation of Soil Salinity Amelioration Technologies in Timpaki, Crete

    NASA Astrophysics Data System (ADS)

    Panagea, Ioanna; Daliakopoulos, Ioannis; Tsanis, Ioannis; Schwilch, Gudrun

    2015-04-01

    Salinization is a soil threat that adversely affects ecosystem services and diminishes soil functions in many arid and semi-arid regions. Soil salinity management depends on a range of factors, and can be complex expensive and time demanding. Besides taking no action, possible management strategies include amelioration and adaptation measures. The WOCAT Technologies Questionnaire is a standardized methodology for monitoring, evaluating and documenting sustainable land management practices through interaction with the stakeholders. Here we use WOCAT for the systematic analysis and evaluation of soil salinization amelioration measures, for the RECARE project Case Study in Greece, the Timpaki basin, a semi-arid region in south-central Crete where the main land use is horticulture in greenhouses irrigated by groundwater. Excessive groundwater abstractions have resulted in a drop of the groundwater level in the coastal part of the aquifer, thus leading to seawater intrusion and in turn to soil salinization due to irrigation with brackish water. Amelioration technologies that have already been applied in the case study by the stakeholders are examined and classified depending on the function they promote and/or improve. The documented technologies are evaluated for their impacts on ecosystem services, cost and input requirements. Preliminary results show that technologies which promote maintaining existing crop types while enhancing productivity and decreasing soil salinity such as composting, mulching, rain water harvesting and seed biopriming are preferred by the stakeholders. Further work will include result validation using qualitative approaches. Keywords: soil salinity; salinization; evaluation of soil salinization amelioration techniques; WOCAT; RECARE FP7 project; Timpaki Crete

  18. Remote Sensing Soil Salinity Map for the San Joaquin Vally, California

    NASA Astrophysics Data System (ADS)

    Scudiero, E.; Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.

    2015-12-01

    Soil salinization is a major natural hazard to worldwide agriculture. We present a remote imagery approach that maps salinity within a range (i.e., salinities less than 20 dS m-1, when measured as the electrical conductivity of the soil saturation extract), accuracy, and resolution most relevant to agriculture. A case study is presented for the western San Joaquin Valley (WSJV), California, USA (~870,000 ha of farmland) using multi-year Landsat 7 ETM+ canopy reflectance and the Canopy Response Salinity Index (CRSI). Highly detailed salinity maps for 22 fields (542 ha) established from apparent soil electrical conductivity directed sampling were used as ground-truth (sampled in 2013), totaling over 5000 pixels (30×30 m) with salinity values in the range of 0 to 35.2 dS m-1. Multi-year maximum values of CRSI were used to model soil salinity. In addition, soil type, elevation, meteorological data, and crop type were evaluated as covariates. The fitted model (R2=0.73) was validated: i) with a spatial k-folds (i.e., leave-one-field-out) cross-validation (R2=0.61), ii) versus salinity data from three independent fields (sampled in 2013 and 2014), and iii) by determining the accuracy of the qualitative classification of white crusted land as extremely-saline soils. The effect of land use change is evaluated over 2396 ha in the Broadview Water District from a comparison of salinity mapped in 1991 with salinity predicted in 2013 from the fitted model. From 1991 to 2013 salinity increased significantly over the selected study site, bringing attention to potential negative effects on soil quality of shifting from irrigated agriculture to fallow-land. This is cause for concern since over the 3 years of California's drought (2010-2013) the fallow land in the WSJV increased from 12.7% to 21.6%, due to drastic reduction in water allocations to farmers.

  19. Factors influencing CO2 and CH4 emissions from coastal wetlands in the Liaohe Delta, northeast China

    USGS Publications Warehouse

    Olsson, Linda; Ye, Siyuan; Yu, Xueyang; Wei, Mengjie; Krauss, Ken W.; Brix, Hans

    2015-01-01

    Many factors are known to influence greenhouse gas emissions from coastal wetlands, but it is still unclear which factors are most important under field conditions when they are all acting simultaneously. The objective of this study was to assess the effects of water table, salinity, soil temperature and vegetation on CH4 emissions and ecosystem respiration (Reco) from five coastal wetlands in the Liaohe Delta, northeast China: two Phragmites australis (common reed) wetlands, two Suaeda salsa (sea blite) marshes and a rice (Oryza sativa) paddy. Throughout the growing season, the Suaeda wetlands were net CH4 sinks whereas the Phragmites wetlands and the rice paddy were net CH4sources emitting 1.2–6.1 g CH4 m−2 y−1. The Phragmites wetlands emitted the most CH4 per unit area and the most CH4 relative to CO2. The main controlling factors for the CH4 emissions were water table, temperature and salinity. The CH4 emission was accelerated at high and constant (or managed) water tables and decreased at water tables below the soil surface. High temperatures enhanced CH4 emissions, and emission rates were consistently low (< 1 mg CH4 m−2 h) at soil temperatures <18 °C. At salinity levels > 18 ppt, the CH4 emission rates were always low (< 1 mg CH4 m−2 h−1) probably because methanogens were outcompeted by sulphate reducing bacteria. Saline Phragmites wetlands can, however, emit significant amounts of CH4 as CH4 produced in deep soil layers are transported through the air-space tissue of the plants to the atmosphere. The CH4 emission from coastal wetlands can be reduced by creating fluctuating water tables, including water tables below the soil surface, as well as by occasional flooding by high-salinity water. The effects of water management schemes on the biological communities in the wetlands must, however, be carefully studied prior to the management in order to avoid undesirable effects on the wetland communities.

  20. [Effect of shifting sand burial on evaporation reduction and salt restraint under saline water irrigation in extremely arid region].

    PubMed

    Zhang, Jian-Guo; Zhao, Ying; Xu, Xin-Wen; Lei, Jia-Qiang; Li, Sheng-Yu; Wang, Yong-Dong

    2014-05-01

    The Taklimakan Desert Highway Shelterbelt is drip-irrigated with high saline groundwater (2.58-29.70 g x L(-1)), and shifting sand burial and water-salt stress are most common and serious problems in this region. So it is of great importance to study the effect of shifting sand burial on soil moisture evaporation, salt accumulation and their distribution for water saving, salinity restraint, and suitable utilization of local land and water resources. In this study, Micro-Lysimeters (MLS) were used to investigate dynamics of soil moisture and salt under different thicknesses of sand burial (1, 2, 3, 4, and 5 cm), and field control experiments of drip-irrigation were also carried out to investigate soil moisture and salt distribution under different thicknesses of shifting sand burial (5, 10, 15, 20, 25, 30, 35, and 40 cm). The soil daily and cumulative evaporation decreased with the increase of sand burial thickness in MLS, cumulative evaporation decreased by 2.5%-13.7% compared with control. And evaporative inhibiting efficiency increased with sand burial thickness, evaporative inhibiting efficiency of 1-5 cm sand burial was 16.7%-79.0%. Final soil moisture content beneath the interface of sand burial increased with sand burial thickness, and it increased by 2.5%-13.7% than control. The topsoil EC of shifting sand in MLS decreased by 1.19-6.00 mS x cm(-1) with the increasing sand burial thickness, whereas soil salt content beneath the interface in MLS increased and amplitude of the topsoil salt content was higher than that of the subsoil. Under drip-irrigation with saline groundwater, average soil moisture beneath the interface of shifting sand burial increased by 0.4% -2.0% compare with control, and the highest value of EC was 7.77 mS x cm(-1) when the sand burial thickness was 10 cm. The trend of salt accumulation content at shifting sand surface increased firstly, and then decreased with the increasing sand burial thickness. Soil salt contents beneath the interface of shifting sand burial were much lower than that of shifting sand surface. 35 cm was the critical sand burial thickness for water-saving and salt restraint. In summary, sand burial had obvious inhibition effects on soil evaporation and salt accumulation, so maybe it could be used to save water and reduce salt accumulation in arid shifting desert areas.

  1. Regional-scale Assessment of Soil Salinity in the Red River Valley Using Multi-year MODIS EVI

    USDA-ARS?s Scientific Manuscript database

    The ability to inventory and map soil salinity at regional scales remains a significant challenge to soil, environmental, and natural resource scientists. Previous attempts to use satellite or aerial imagery to assess and map soil salinity have resulted in limited success due, in part, to the inabi...

  2. Study of quaternary aquifers in Ganga Plain, India: focus on groundwater salinity, fluoride and fluorosis.

    PubMed

    Misra, Anil Kumar; Mishra, Ajai

    2007-06-01

    In marginal and central alluvial plains (Ganga Plain) of India, the inland salinity is continuously increasing, canal network and arid to semi-arid climatic conditions that led to excessive evapotranspiration concentrates the salt in soil and thereby escalating the groundwater salinity. In Mat Tahsil, Mathura district (Ganga Plain) study on shallow and deep aquifer salinity and fluoride was carried out in August 2001 and 2004. Groundwater salinity in some parts is more then 4000 microOmega(-1)/cm. This region is severely affected by endemic fluorosis due to consumption of fluoride-contaminated water. Analysis of F(-), Na(+), K(+), Cl(-) and HCO(3)(-) was carried out at 30 sites of dugwells and borewells. Result shows that there is a variation and continuous escalation in the groundwater salinity and fluoride concentration in deep and shallow aquifers on the basis of analysis. Classification of salinity levels was carried out in 2001 and 2004. The deep aquifers (borewells) are found more saline as compare to the shallow aquifers (dugwells) while F(-), Na(+), K(+), Cl(-) and HCO(3)(-) shows high concentration in shallow aquifers. The fluoride concentration in the groundwater of these villages showed values from 0.1 to 2.5mg/l, severe enough to cause dental and skeletal fluorosis among the inhabitants, especially children of these villages. One of the major effects of inland salinity in this region is from saline groundwater, which is reaching the land surface and causing soil salinisations and water logging in the NE and SE parts of Mat block.

  3. A kinetic approach to evaluate salinity effects on carbon mineralization in a plant residue-amended soil*

    PubMed Central

    Nourbakhsh, Farshid; Sheikh-Hosseini, Ahmad R.

    2006-01-01

    The interaction of salinity stress and plant residue quality on C mineralization kinetics in soil is not well understood. A laboratory experiment was conducted to study the effects of salinity stress on C mineralization kinetics in a soil amended with alfalfa, wheat and corn residues. A factorial combination of two salinity levels (0.97 and 18.2 dS/m) and four levels of plant residues (control, alfalfa, wheat and corn) with three replications was performed. A first order kinetic model was used to describe the C mineralization and to calculate the potentially mineralizable C. The CO2-C evolved under non-saline condition, ranged from 814.6 to 4842.4 mg CO2-C/kg in control and alfalfa residue-amended soils, respectively. Salinization reduced the rates of CO2 evolution by 18.7%, 6.2% and 5.2% in alfalfa, wheat and corn residue-amended soils, respectively. Potentially mineralizable C (C 0) was reduced significantly in salinized alfalfa residue-treated soils whereas, no significant difference was observed for control treatments as well as wheat and corn residue-treated soils. We concluded that the response pattern of C mineralization to salinity stress depended on the plant residue quality and duration of incubation. PMID:16972320

  4. Formulation of Subgrid Variability and Boundary-Layer Cloud Cover in Large-Scale Models

    DTIC Science & Technology

    1999-02-28

    related to burned and unburned landscapes, saline and non-saline soils, and irrigated and nonirrigated crops. Escuela de Agrono’mia Universidad de Talca...Piso 2 Departamento de Ciencias de la Atmosfera 1428 Capital Federal ARGENTINA Juan Carlos TORRES, torres@cima.uba.ar Coupled land-surface...evaporation fraction, and qc,sat is the canopy saturation specific humidity, a function of Tc. Using (21) - (22) we then de - termine qc qc = qca

  5. Seasonal induced changes in spinach rhizosphere microbial community structure with varying salinity and drought.

    PubMed

    Mark Ibekwe, A; Ors, Selda; Ferreira, Jorge F S; Liu, Xuan; Suarez, Donald L

    2017-02-01

    Salinity is a common problem under irrigated agriculture, especially in low rainfall and high evaporative demand areas of southwestern United States and other semi-arid regions around the world. However, studies on salinity effects on soil microbial communities are relatively few while the effects of irrigation-induced salinity on soil chemical and physical properties and plant growth are well documented. In this study, we examined the effects of salinity, temperature, and temporal variability on soil and rhizosphere microbial communities in sand tanks irrigated with prepared solutions designed to simulate saline wastewater. Three sets of experiments with spinach (Spinacia oleracea L., cv. Racoon) were conducted under saline water during different time periods (early winter, late spring, and early summer). Bacterial 16S V4 rDNA region was amplified utilizing fusion primers designed against the surrounding conserved regions using MiSeq® Illumina sequencing platform. Across the two sample types, bacteria were relatively dominant among three phyla-the Proteobacteria, Cyanobacteria, and Bacteroidetes-accounted for 77.1% of taxa detected in the rhizosphere, while Proteobacteria, Bacteroidetes, and Actinobacteria accounted for 55.1% of taxa detected in soil. The results were analyzed using UniFrac coupled with principal coordinate analysis (PCoA) to compare diversity, abundance, community structure, and specific bacterial groups in soil and rhizosphere samples. Permutational analysis of variance (PERMANOVA) analysis showed that soil temperature (P=0.001), rhizosphere temperature (P=0.001), rhizosphere salinity (P=0.032), and evapotranspiration (P=0.002) significantly affected beta diversity of soil and rhizosphere microbial communities. Furthermore, salinity had marginal effects (P=0.078) on soil beta diversity. However, temporal variability differentially affected rhizosphere microbial communities irrigated with saline wastewater. Therefore, microbial communities in soils impacted by saline irrigation water respond differently to irrigation water quality and season of application due to temporal effects associated with temperature. Published by Elsevier B.V.

  6. Integration of remote sensing and ground-based techniques for the study of land degradation phenomena in coastal areas.

    NASA Astrophysics Data System (ADS)

    Imbrenda, Vito; Coluzzi, Rosa; Calamita, Giuseppe; Luigia Giannossi, Maria; D'Emilio, Mariagrazia; Lanfredi, Maria; Makris, John; Palombo, Angelo; Pascucci, Simone; Santini, Federico; Margiotta, Salvatore; Emanuela Bonomo, Agnese; De Martino, Gregory; Perrone, Angela; Rizzo, Enzo; Pignatti, Stefano; Summa, Vito; Simoniello, Tiziana

    2015-04-01

    Land degradation processes, such as salinization and waterlogging, are increasingly affecting extensive areas devoted to agriculture threatening the sustainability of farming practices. Soil salinization typically appears as an excess accumulation of salt generally pronounced at the soil surface. Commonly, soil salinity is defined and measured by means of laboratory measurements of the electrical conductivity of liquid extracted from saturated soil-paste or different soil-water suspensions. Lab measurements are generally time consuming, costly, destructive, untimely for practical situations where the determination of the causes and/or the assessment of management practices are of interest. Recently, emerging survey techniques proved to be powerful tools to support soil salinity appraisal reducing costs and increasing the amount of spatial information. In the frame of PRO-LAND project (PO-FESR Basilicata 2007-2013) the research activities have been focused on the study of a complex salinization phenomenon occurring in a coastal environment of the Basilicata region (Southern Italy) as a result of natural and anthropic disturbances. The study area is located in the southernmost part of the Bradanic Trough along the sandy Ionian coastal plain. The hydrogeological conditions affect shallowness of the aquifer (45-50 cm below the ground) allowing the occurrence of seawater intrusion. Moreover, during last century, human activities, i.e. built-up of dams, the emergence of farms and industries, played a relevant role in the alteration of soil and groundwater quality of the area. In this work, both ground-based and remote sensing data were used. First, a geophysical mapping of electrical conductivity was carried out using a multi-frequency portable electro-magnetic induction (EMI) sensor. Based on the geophysical mapping and on optimization sampling approach, a number of locations were identified to collect soil samples for the geomineralogical characterization. Airborne images were acquired on the study area by the hyperspectral Compact Airborne Spectrographic Imager (CASI) - 1500 to derive indices sensitive to soil degradation. The main aim of this research activity was to improve the knowledge about the most relevant driving forces, contributing to the analyzed degradation process, and their interplay within the study area. In the light of this, we also would like to suggest the most appropriate best practices and restoration activities to be undertaken.

  7. Shallow groundwater and soil chemistry response to 3 years of subsurface drip irrigation using coalbed-methane-produced water

    USGS Publications Warehouse

    Bern, Carleton R.; Boehlke, Adam R.; Engle, Mark A.; Geboy, Nicholas J.; Schroeder, K.T.; Zupancic, J.W.

    2013-01-01

    Disposal of produced waters, pumped to the surface as part of coalbed methane (CBM) development, is a significant environmental issue in the Wyoming portion of the Powder River Basin, USA. High sodium adsorption ratios (SAR) of the waters could degrade agricultural land, especially if directly applied to the soil surface. One method of disposing of CBM water, while deriving beneficial use, is subsurface drip irrigation (SDI), where acidified CBM waters are applied to alfalfa fields year-round via tubing buried 0.92 m deep. Effects of the method were studied on an alluvial terrace with a relatively shallow depth to water table (∼3 m). Excess irrigation water caused the water table to rise, even temporarily reaching the depth of drip tubing. The rise corresponded to increased salinity in some monitoring wells. Three factors appeared to drive increased groundwater salinity: (1) CBM solutes, concentrated by evapotranspiration; (2) gypsum dissolution, apparently enhanced by cation exchange; and (3) dissolution of native Na–Mg–SO4 salts more soluble than gypsum. Irrigation with high SAR (∼24) water has increased soil saturated paste SAR up to 15 near the drip tubing. Importantly though, little change in SAR has occurred at the surface.

  8. Shallow groundwater and soil chemistry response to 3 years of subsurface drip irrigation using coalbed-methane-produced water

    NASA Astrophysics Data System (ADS)

    Bern, C. R.; Boehlke, A. R.; Engle, M. A.; Geboy, N. J.; Schroeder, K. T.; Zupancic, J. W.

    2013-12-01

    Disposal of produced waters, pumped to the surface as part of coalbed methane (CBM) development, is a significant environmental issue in the Wyoming portion of the Powder River Basin, USA. High sodium adsorption ratios (SAR) of the waters could degrade agricultural land, especially if directly applied to the soil surface. One method of disposing of CBM water, while deriving beneficial use, is subsurface drip irrigation (SDI), where acidified CBM waters are applied to alfalfa fields year-round via tubing buried 0.92 m deep. Effects of the method were studied on an alluvial terrace with a relatively shallow depth to water table (˜3 m). Excess irrigation water caused the water table to rise, even temporarily reaching the depth of drip tubing. The rise corresponded to increased salinity in some monitoring wells. Three factors appeared to drive increased groundwater salinity: (1) CBM solutes, concentrated by evapotranspiration; (2) gypsum dissolution, apparently enhanced by cation exchange; and (3) dissolution of native Na-Mg-SO4 salts more soluble than gypsum. Irrigation with high SAR (˜24) water has increased soil saturated paste SAR up to 15 near the drip tubing. Importantly though, little change in SAR has occurred at the surface.

  9. Evaluating abiotic influences on soil salinity of inland managed wetlands and agricultural croplands in a semi-arid environment

    USGS Publications Warehouse

    Fowler, D.; King, Sammy L.; Weindorf, David C.

    2014-01-01

    Agriculture and moist-soil management are important management techniques used on wildlife refuges to provide adequate energy for migrant waterbirds. In semi-arid systems, the accumulation of soluble salts throughout the soil profile can limit total production of wetland plants and agronomic crops and thus jeopardize meeting waterbird energy needs. This study evaluates the effect of distinct hydrologic regimes associated with moist-soil management and agricultural production on salt accumulation in a semi-arid floodplain. We hypothesized that the frequency of flooding and quantity of floodwater in a moist-soil management hydroperiod results in a less saline soil profile compared to profiles under traditional agricultural management. Findings showed that agricultural croplands differed (p-value < 0.001, df = 9) in quantities of total soluble salts (TSS) compared to moist-soil impoundments and contained greater concentrations (TSS range = 1,160-1,750 (mg kg-1)) at depth greater than 55 cm below the surface of the profile, while moist-soil impoundments contained lower concentrations (TSS range = 307-531 (mg kg-1)) at the same depths. Increased salts in agricultural may be attributed to the lack of leaching afforded by smaller summer irrigations while larger periodic flooding events in winter and summer flood irrigations in moist-soil impoundments may serve as leaching events.

  10. Rainfall and irrigation controls on groundwater rise and salinity risk in the Ord River Irrigation Area, northern Australia

    NASA Astrophysics Data System (ADS)

    Smith, Anthony J.

    2008-09-01

    Groundwater beneath the Ord River Irrigation Area (ORIA) in northern Australia has risen in elevation by 10-20 m during the past 40 years with attendant concerns about water logging and soil salinization. Persistent groundwater accession has been attributed to excessive irrigation and surface water leakage; however, analysis of daily water-table records from the past 10 years yielded a contrary result. On a seasonal basis, water-table elevation typically fell during irrigation (dry) seasons and rose during fallow (wet) seasons, conflicting with the conventional view that irrigation and not rainfall must be the dominant control on groundwater accession. Previous investigations of unexpectedly large infiltration losses through the cracking clay soils provide a plausible explanation for the apparent conundrum. Because rainfall is uncontrolled and occurs independently of the soil moisture condition, there is greater opportunity for incipient ponding and rapid infiltration through preferred flow pathways. In contrast, irrigation is scheduled when needed and applications are stopped after soil wetting is achieved. Contemporary groundwater management in the ORIA is focused on improving irrigation efficiency during dry seasons but additional opportunities may exist to improve groundwater conditions and salinity risk through giving equal attention to the wet-season water balance.

  11. Remediation of saline soils contaminated with crude oil using the halophyte Salicornia persica in conjunction with hydrocarbon-degrading bacteria.

    PubMed

    Ebadi, Ali; Khoshkholgh Sima, Nayer Azam; Olamaee, Mohsen; Hashemi, Maryam; Ghorbani Nasrabadi, Reza

    2018-08-01

    The negative impact of salinity on plant growth and the survival of rhizosphere biota complicates the application of bioremediation to crude oil-contaminated saline soils. Here, a comparison was made between the remedial effect of treating the soil with Pseudomonas aeruginosa, a salinity tolerant hydrocarbon-degrading consortium in conjunction with either the halophyte Salicornia persica or the non-halophyte Festuca arundinacea. The effect of the various treatments on salinized soils was measured by assessing the extent of total petroleum hydrocarbon (TPH) degradation, the soil's dehydrogenase activity, the abundance of the bacteria and the level of phytotoxicity as measured by a bioassay. When a non-salinized soil was assessed after a treatment period of 120 days, the ranking for effectiveness with respect to TPH removal was F. arundinacea > P. aeruginosa > S. persica > no treatment control, while in the presence of salinity, the ranking changed to S. persica > P. aeruginosa > F. arundinacea > no treatment control. Combining the planting of S. persica or F. arundinacea with P. aeruginosa inoculation ("bioaugmentation") boosted the degradation of TPH up to 5-17%. Analyses of the residual oil contamination revealed that long chain alkanes (above C20) were particularly strongly degraded following the bioaugmentation treatments. The induced increase in dehydrogenase activity and the abundance of the bacteria (3.5 and 10 fold respectively) achieved in the bioaugmentation/S. persica treatment resulted in 46-76% reduction in soil phytotoxicity in a saline soil. The indication was that bioaugmentation of halophyte can help to mitigate the adverse effects on the effectiveness of bioremediation in a crude oil-contaminated saline soil. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Nutrient and salt relations of Pterocarpus officinalis L. in coastal wetlands of the Caribbean: assessment through leaf and soil analyses.

    Treesearch

    Ernesto Medina; Elvira Cuevas; Ariel Lugo

    2007-01-01

    Pterocarpus officinalis L. is a dominant tree of freshwater coastal wetlands in the Caribbean and the Guiana regions. It is frequently associated with mangroves in areas with high rainfall and/or surface run-off. We hypothesized that P. officinalis is a freshwater swamp species that when occurring in association with mangroves occupies low-salinity soil microsites, or...

  13. Land clearance and river salinisation in the western Murray Basin, Australia

    NASA Astrophysics Data System (ADS)

    Allison, G. B.; Cook, P. G.; Barnett, S. R.; Walker, G. R.; Jolly, I. D.; Hughes, M. W.

    1990-11-01

    The clearing of native vegetation in a semi-arid region of southern Australia has led to increases in groundwater recharge of about two orders of magnitude. Although most of the clearing took place early this century, the generally deep water table along with the low rates of recharge means that there is a considerable delay in the response of the aquifer to the increased recharge. The rates of pre- and post-clearing recharge, and the time delay in aquifer response have been estimated using unsaturated zone chloride and matric suction profiles. Predictions of the time lag in aquifer response have been verified using bore hydrographs. The results of these analyses suggest that where the soils are light textured, and the water table is less than 40 m below the soil surface, it is now rising. Where the soils are heavier textured, it is estimated that the water table is rising only where it is less than 10 m below the soil surface. The effect of the increased recharge rates on the salinity of the River Murray, a major water resource, have been predicted using a groundwater model of the region. The predictions suggest that the salinity of the river will increase at about 1 μS cm -1 year -1 over the next 50 years and beyond.

  14. Using the Electromagnetic Induction Method to Connect Spatial Vegetation Distributions with Soil Water and Salinity Dynamics on Steppe Grassland

    NASA Astrophysics Data System (ADS)

    Jiang, Z.; Li, X.; Wu, H.

    2014-12-01

    In arid and semi-arid areas, plant growth and productivity are obviously affected by soil water and salinity. But it is not easy to acquire the spatial and temporal dynamics of soil water and salinity by traditional field methods because of the heterogeneity in their patterns. Electromagnetic induction (EMI), for its rapid character, can provide a useful way to solve this problem. Grassland dominated by Achnatherum splendens is an important ecosystem near the Qinghai-Lake watershed on the Qinghai-Tibet Plateau in northwestern China. EMI surveys were conducted for electrical conductivity (ECa) at an intermediate habitat scale (a 60×60 m experimental area) of A. splendens steppe for 18 times (one day only for one time) during the 2013 growing season. And twenty sampling points were established for the collection of soil samples for soil water and salinity, which were used for calibration of ECa. In addition, plant species, biomass and spatial patterns of vegetation were also sampled. The results showed that ECa maps exhibited distinctly spatial differences because of variations in soil moisture. And soil water was the main factor to drive salinity patterns, which in turn affected ECa values. Moreover, soil water and salinity could explain 82.8% of ECa changes due to there was a significant correlation (P<0.01) between ECa, soil water and salinity. Furthermore, with higher ECa values closer to A. splendens patches at the experimental site, patterns of ECa images showed clearly temporal stability, which were extremely corresponding with the spatial pattern of vegetation. A. splendens patches that accumulated infiltrating water and salinity and thus changed long-term soil properties, which were considered as "reservoirs" and were deemed responsible for the temporal stability of ECa images. Hence, EMI could be an indicator to locate areas of decreasing or increasing of water and to reveal soil water and salinity dynamics through repeated ECa surveys.

  15. Assessing secondary soil salinization risk based on the PSR sustainability framework.

    PubMed

    Zhou, De; Lin, Zhulu; Liu, Liming; Zimmermann, David

    2013-10-15

    Risk assessment of secondary soil salinization, which is caused in part by the way people manage the land, is an essential challenge to agricultural sustainability. The objective of our study was to develop a soil salinity risk assessment methodology by selecting a consistent set of risk factors based on the conceptual Pressure-State-Response (PSR) sustainability framework and incorporating the grey relational analysis and the Analytic Hierarchy Process methods. The proposed salinity risk assessment methodology was demonstrated through a case study of developing composite risk index maps for the Yinchuan Plain, a major irrigation agriculture district in northwest China. Fourteen risk factors were selected in terms of the three PSR criteria: pressure, state, and response. The results showed that the salinity risk in the Yinchuan Plain was strongly influenced by the subsoil and groundwater salinity, land use, distance to irrigation canals, and depth to groundwater. To maintain agricultural sustainability in the Yinchuan Plain, a suite of remedial and preventative actions were proposed to manage soil salinity risk in the regions that are affected by salinity at different levels and by different salinization processes. The weight sensitivity analysis results also showed that the overall salinity risk of the Yinchuan Plain would increase or decrease as the weights for pressure or response risk factors increased, signifying the importance of human activities on secondary soil salinization. Ideally, the proposed methodology will help us develop more consistent management tools for risk assessment and management and for control of secondary soil salinization. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Effects of Sludge Compost on EC value of Saline Soil and Plant Height of Medicago

    NASA Astrophysics Data System (ADS)

    Sun, Chongyang; Zhao, Ke; Chen, Xing; Wang, Xiaohui

    2017-12-01

    In this study, the effects of sludge composting on the EC value of saline soil and the response to Medicago plant height were studied by planting Medicago with pots for 45 days in different proportions as sludge composting with saline soil. The results showed that the EC value of saline soil did not change obviously with the increase of fertilization ratio,which indicated that the EC value of saline soil was close to that of the original soil. The EC decreased by 31.45% at fertilization ratio of 40%. The height of Medicago reached the highest at 40% fertilization ratio, and that was close to 60% fertilization ratio, and the difference was significant with other treatments. By comprehensive analyse and compare,the optimum application rate of sludge compost was 40% under this test condition.

  17. A Proposed Extension to the Soil Moisture and Ocean Salinity Level 2 Algorithm for Mixed Forest and Moderate Vegetation Pixels

    NASA Technical Reports Server (NTRS)

    Panciera, Rocco; Walker, Jeffrey P.; Kalma, Jetse; Kim, Edward

    2011-01-01

    The Soil Moisture and Ocean Salinity (SMOS)mission, launched in November 2009, provides global maps of soil moisture and ocean salinity by measuring the L-band (1.4 GHz) emission of the Earth's surface with a spatial resolution of 40-50 km.Uncertainty in the retrieval of soilmoisture over large heterogeneous areas such as SMOS pixels is expected, due to the non-linearity of the relationship between soil moisture and the microwave emission. The current baseline soilmoisture retrieval algorithm adopted by SMOS and implemented in the SMOS Level 2 (SMOS L2) processor partially accounts for the sub-pixel heterogeneity of the land surface, by modelling the individual contributions of different pixel fractions to the overall pixel emission. This retrieval approach is tested in this study using airborne L-band data over an area the size of a SMOS pixel characterised by a mix Eucalypt forest and moderate vegetation types (grassland and crops),with the objective of assessing its ability to correct for the soil moisture retrieval error induced by the land surface heterogeneity. A preliminary analysis using a traditional uniform pixel retrieval approach shows that the sub-pixel heterogeneity of land cover type causes significant errors in soil moisture retrieval (7.7%v/v RMSE, 2%v/v bias) in pixels characterised by a significant amount of forest (40-60%). Although the retrieval approach adopted by SMOS partially reduces this error, it is affected by errors beyond the SMOS target accuracy, presenting in particular a strong dry bias when a fraction of the pixel is occupied by forest (4.1%v/v RMSE,-3.1%v/v bias). An extension to the SMOS approach is proposed that accounts for the heterogeneity of vegetation optical depth within the SMOS pixel. The proposed approach is shown to significantly reduce the error in retrieved soil moisture (2.8%v/v RMSE, -0.3%v/v bias) in pixels characterised by a critical amount of forest (40-60%), at the limited cost of only a crude estimate of the optical depth of the forested area (better than 35% uncertainty). This study makes use of an unprecedented data set of airborne L-band observations and ground supporting data from the National Airborne Field Experiment 2005 (NAFE'05), which allowed accurate characterisation of the land surface heterogeneity over an area equivalent in size to a SMOS pixel.

  18. Effects of spatiotemporal variation of soil salinity on fine root distribution in different plant configuration modes in new reclamation coastal saline field.

    PubMed

    Jiang, Hong; Du, Hongyu; Bai, Yingying; Hu, Yue; Rao, Yingfu; Chen, Chong; Cai, Yongli

    2016-04-01

    In order to study the effects of salinity on plant fine roots, we considered three different plant configuration modes (tree stand model (TSM), shrub stand model (SSM), and tree-shrub stand model (TSSM)). Soil samples were collected with the method of soil drilling. Significant differences of electrical conductivity (EC) in the soil depth of 0-60 cm were observed among the three modes (p < 0.05). In the above three modes, the variation of soil salinity among various soil layers and monthly variation of soil salinity were the highest in SSM and reached 2.30 and 2.23 mS/cm (EC1:5), respectively. Due to the effect of salinity, fine root biomass (FRB) showed significant differences in different soil depths (p < 0.05). More than 60% of FRB was concentrated in the soil depth above 30 cm. FRB showed exponential decline with soil depth (p < 0.05). FRB showed spatial heterogeneity in the 40-cm soil depth. In the above three modes, compared with FRB, specific root length (SRL) and fine root length density (FRLD) showed the similar changing trend. Fine roots showed significant seasonal differences among different modes (p < 0.05). FRB showed the bimodal variation and was the highest in July. However, we found that the high content of salts had obvious inhibitory effect on the distribution of FRB. Therefore, the salinity should be below 1.5 mS/cm, which was suitable for the growth of plant roots. Among the three modes, TSSM had the highest FRB, SRL, and FRLD and no obvious soil salt accumulation was observed. The results indicated that fine root biomass was affected by high salt and that TSSM had the strong effects of salt suppression and control. In our study, TSSM may be the optimal configuration mode for salt suppression and control in saline soil.

  19. Reconstruction from EOF analysis of SMOS salinity data in Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Parard, Gaelle; Alvera-Azcárate, Aida; Barth, Alexander; Olmedo, Estrella; Turiel, Antonio; Becker, Jean-Marie

    2017-04-01

    Sea Surface Salinity (SSS) data from the Soil Moisture and Ocean Salinity (SMOS) mission is reconstructed in the North Atlantic and the Mediterranean Sea using DINEOF (Data Interpolating Empirical Orthogonal Functions). We used the satellite data Level 2 from SMOS Barcelona Expert Centre between 2011 and 2015. DINEOF is a technique that reconstructs missing data and removes noise by retaining only an optimal set of EOFs. DINEOF analysis is used to detect and remove outliers from the SMOS SSS daily field. The gain obtained with DINEOF method and L2 SMOS data give a higher spatial and temporal resolution between 2011 and 2015, allow to study the SSS variability from daily to seasonal resolution. In order to improve the SMOS salinity data reconstruction we combine with other parameters measured from satellite such chlorophyll, sea surface temperature, precipitation and CDOM variability. After a validation of the SMOS satellite data reconstruction with in situ data (CTD, Argo float salinity measurement) in the North Atlantic and Mediterranean Sea, the main SSS processes and their variability are studied. The gain obtained with the higher spatial and temporal resolution with SMOS salinity data give assess to study the characteristics of oceanic structures in North Atlantic and Mediterranean Sea.

  20. Cadmium accumulation by muskmelon under salt stress in contaminated organic soil.

    PubMed

    Ondrasek, Gabrijel; Gabrijel, Ondrasek; Romic, Davor; Davor, Romic; Rengel, Zed; Zed, Rengel; Romic, Marija; Marija, Romic; Zovko, Monika; Monika, Zovko

    2009-03-15

    Human-induced salinization and trace element contamination are widespread and increasing rapidly, but their interactions and environmental consequences are poorly understood. Phytoaccumulation, as the crucial entry pathway for biotoxic Cd into the human foodstuffs, correlates positively with rhizosphere salinity. Hypothesising that organic matter decreases the bioavailable Cd(2+) pool and therefore restricts its phytoextraction, we assessed the effects of four salinity levels (0, 20, 40 and 60 mM NaCl) and three Cd levels (0.3, 5.5 and 10.4 mg kg(-1)) in peat soil on mineral accumulation/distribution as well as vegetative growth and fruit yield parameters of muskmelon (Cucumis melo L.) in a greenhouse. Salt stress reduced shoot biomass and fruit production, accompanied by increased Na and Cl and decreased K concentration in above-ground tissues. A 25- and 50-day exposure to salinity increased Cd accumulation in leaves up to 87% and 46%, respectively. Accumulation of Cd in the fruits was up to 43 times lower than in leaves and remained unaltered by salinity. Soil contamination by Cd enhanced its accumulation in muskmelon tissues by an order of magnitude compared with non-contaminated control. In the drainage solution, concentrations of Na and Cl slightly exceeded those in the irrigation solution, whereas Cd concentration in drainage solution was lower by 2-3 orders of magnitude than the total amount added. Chemical speciation and distribution modelling (NICA-Donnan) using Visual MINTEQ showed predominance of dissolved organic ligands in Cd chemisorption and complexation in all treatments; however, an increase in salt addition caused a decrease in organic Cd complexes from 99 to 71%, with free Cd(2+) increasing up to 6% and Cd-chlorocomplexes up to 23%. This work highlights the importance of soil organic reactive surfaces in reducing trace element bioavailability and phytoaccumulation. Chloride salinity increased Cd accumulation in leaves but not in fruit peel and pulp.

  1. SMAP Data Assimilation at NASA SPoRT

    NASA Technical Reports Server (NTRS)

    Blankenship, Clay B.; Case, Jonathan L.; Zavodsky, Bradley T.

    2016-01-01

    The NASA Short-Term Prediction Research and Transition (SPoRT) Center maintains a near-real- time run of the Noah Land Surface Model within the Land Information System (LIS) at 3-km resolution. Soil moisture products from this model are used by several NOAA/National Weather Service Weather Forecast Offices for flood and drought situational awareness. We have implemented assimilation of soil moisture retrievals from the Soil Moisture Ocean Salinity (SMOS) and Soil Moisture Active/ Passive (SMAP) satellites, and are now evaluating the SMAP assimilation. The SMAP-enhanced LIS product is planned for public release by October 2016.

  2. [Monitoring of soil salinization in Northern Tarim Basin, Xinjiang of China in dry and wet seasons based on remote sensing].

    PubMed

    Yao, Yuan; Ding, Jian-Li; Zhang, Fang; Wang, Gang; Jiang, Hong-Nan

    2013-11-01

    Soil salinization is one of the most important eco-environment problems in arid area, which can not only induce land degradation, inhibit vegetation growth, but also impede regional agricultural production. To accurately and quickly obtain the information of regional saline soils by using remote sensing data is critical to monitor soil salinization and prevent its further development. Taking the Weigan-Kuqa River Delta Oasis in the northern Tarim River Basin of Xinjiang as test object, and based on the remote sensing data from Landsat-TM images of April 15, 2011 and September 22, 2011, in combining with the measured data from field survey, this paper extracted the characteristic variables modified normalized difference water index (MNDWI), normalized difference vegetation index (NDVI), and the third principal component from K-L transformation (K-L-3). The decision tree method was adopted to establish the extraction models of soil salinization in the two key seasons (dry and wet seasons) of the study area, and the classification maps of soil salinization in the two seasons were drawn. The results showed that the decision tree method had a higher discrimination precision, being 87.2% in dry season and 85.3% in wet season, which was able to be used for effectively monitoring the dynamics of soil salinization and its spatial distribution, and to provide scientific basis for the comprehensive management of saline soils in arid area and the rational utilization of oasis land resources.

  3. Moving forward on remote sensing of soil salinity at regional scale

    USDA-ARS?s Scientific Manuscript database

    Soil salinity undermines global agriculture by reducing crop yield and soil quality. Irrigation management can help control salinity levels within the root-zone. To best allocate water resources, accurate regional-scale inventories are needed. Two remote sensing approaches are currently used to moni...

  4. Species richness and selenium accumulation of plants in soils with elevated concentration of selenium and salinity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Z.Z.; Wu, L.

    1991-12-01

    Field studies were conducted in soils with elevated concentrations of Se and salinity at Kesterson, California. Biomass distribution, species richness, and selenium accumulation of plants were examined for two sites where 15 cm of surface soil was removed and replaced with fill dirt in the fall of 1989, and two sites were native soil cover. The Se concentrations in the top 15 cm of fill dirt ranged from undetectable to 36 ng g-1. For the native soil sites, Se levels ranged from 75 to 550 ng g-1. Soil Se concentrations below 15 cm ranged from 300 to 700 ng g-1more » and were comparable between the fill dirt and the native soil sites. At least 20 different plant species were brought into the two fill dirt sites with the top soil. Avena fatua L., Bassia hyssopifolia Kuntze Rev. Gen. Pl., Centaurea solstitialis L., Erysimum officianale L., Franseria acanthicarpa Cav. Icon., and Melilotus indica (L.) All. contributed over 60% of the total biomass. Only 5 species were found in the native soil sites, and salt grass (Distichlis spicata L.) was the predominant species and accounted for over 80% of the total biomass. Between 1989 and 1990, two years after the surface soil replacement, the two fill dirt sites had a 70% reduction in species richness. Plant tissue selenium concentrations were found to be quite variable between plant species and between sites of sampling. At the fill dirt sites, the plant species with deep root systems accumulated greater amounts of selenium than the shallow-rooted species. The soil selenium concentration of the field soil had no negative effect on pollen fertility, seed set, and seed germination for the plant species examined. However, seedling growth was impaired by the soil selenium concentrations. This suggests that a selection pressure of soil Se concentration may have been imposed on plant species such as M. indica in an early stage of its life cycle.« less

  5. Effectiveness of T. harzianum and Humate Amendment in Soil Salinity Restoration

    NASA Astrophysics Data System (ADS)

    Apostolakis, Antonios; Daliakopoulos, Ioannis; Tsanis, Ioannis

    2017-04-01

    Soil salinity is a major soil degradation threat, especially for the water stressed parts of the Mediterranean region, where it hinders soil fertility and thus agricultural productivity. Soil salinity management can be complex and expensive, often resorting to the use of chemical amendments thus risking soil and aquifer pollution. This study quantifies the beneficial effects of (a) a commercial strain of the beneficial fungus Trichoderma harzianum (TH), and (b) a commercial humate fertilizer enhancer (HFE) approved for organic farming, against soil salinization. The treatments are tested in the context of a Solanum lycopersicum (tomato) greenhouse simulation of the cultivation conditions typical for the semi-arid coastal Timpaki basin in south-central Crete. 20 vigorous 20-day-old Solanum lycopersicum L. cv Elpida seedlings are treated either with TH or HFE, using soil substrates and irrigation treatments of two degradation states. 20 additional plants serve either as controls or guard rows. All plants are transplanted into 35 L pots under greenhouse conditions. Preliminary analysis of soil salinity and crop yield indicators suggest that both treatments are beneficial for the soil-plant system, each to a different extent depending on initial soil conditions.

  6. Hydrologic exchanges and baldcypress water use on deltaic hummocks, Louisiana, USA

    USGS Publications Warehouse

    Hsueh, Yu-Hsin; Chambers, Jim L.; Krauss, Ken W.; Allen, Scott T.; Keim, Richard F.

    2016-01-01

    Coastal forested hummocks support clusters of trees in the saltwater–freshwater transition zone. To examine how hummocks support trees in mesohaline sites that are beyond physiological limits of the trees, we used salinity and stable isotopes (2H and 18O) of water as tracers to understand water fluxes in hummocks and uptake by baldcypress (Taxodium distichum (L.) Rich.), which is the most abundant tree species in coastal freshwater forests of the southeastern U.S. Hummocks were always partially submerged and were completely submerged 1 to 8% of the time during the two studied growing seasons, in association with high water in the estuary. Salinity, δ18O, and δ2H varied more in the shallow open water than in groundwater. Surface water and shallow groundwater were similar to throughfall in isotopic composition, which suggested dominance by rainfall. Salinity of groundwater in hummocks increased with depth, was higher than in swales, and fluctuated little over time. Isotopic composition of xylem water in baldcypress was similar to the vadose zone and unlike other measured sources, indicating that trees preferentially use unsaturated hummock tops as refugia from higher salinity and saturated soil in swales and the lower portions of hummocks. Sustained upward gradients of salinity from groundwater to surface water and vadose water, and low variation in groundwater salinity and isotopic composition, suggested long residence time, limited exchange with surface water, and that the shallow subsurface of hummocks is characterized by episodic salinization and slow dilution.

  7. Effect on Soil Properties of BcWRKY1 Transgenic Maize with Enhanced Salinity Tolerance

    PubMed Central

    Zeng, Xing; Zhou, Yu; Zhu, Zhongjia; Zu, Hongyue

    2016-01-01

    Maize (Zea mays L.) is the most important cereal crop in the world. However, soil salinity has become a major problem affecting plant productivity due to arable field degradation. Thus, transgenic maize transformed with a salinity tolerance gene has been developed to further evaluate its salt tolerance and effects on agronomic traits. It is necessary to analyze the potential environmental risk of transgenic maize before further commercialization. Enzyme activities, physicochemical properties, and microbial populations were evaluated in saline and nonsaline rhizosphere soils from a transgenic maize line (WL-73) overexpressing BcWRKY1 and from wild-type (WT) maize LH1037. Measurements were taken at four growth stages (V3, V9, R1, and R6) and repeated in three consecutive years (2012–2014). There was no change in the rhizosphere soils of either WL-73 or WT plants in the four soil enzyme activities, seven soil physicochemical properties, and the populations of three soil organisms. The results of this study suggested that salinity tolerant transgenic maize had no adverse impact on soil properties in soil rhizosphere during three consecutive years at two different locations and provided a theoretical basis for environmental impact monitoring of salinity tolerant transgenic maize. PMID:27990421

  8. The effect of digging activity of little souslik on soils of the first terrace of Khaki Sor in the Botkul'sk-Khaki depression

    NASA Astrophysics Data System (ADS)

    Shabanova, N. P.; Lebedeva Verba, M. P.; Bykov, A. V.

    2014-03-01

    The effect of digging activity of little souslik ( Spermophilus pygmaeus Pall.) on the microtopography and soils was studied in the areas with shallow saline groundwater developing under continental conditions for 10.5-12.7 ka. The portion of microtopographic features related to the digging activity was quantified. It was found that the micromounds formed by sousliks appear on recently dried surfaces with shallow saline groundwater. However, their portion in this case is less than 3% because of the poor vegetation and shallow groundwater. Then, with the lowering of the base of erosion and aging of the territory, the zoogenic effect becomes more pronounced. On the first terrace of Khaki Sor (salt lake), the digging activity of sousliks creates the initial heterogeneity of soils and vegetation. The soil cover is composed of the virgin quasigleyed solonchakous solonetzes under the Atriplex-Artemisia santonica association (Gypsic Salic Solonetz (Albic, Ruptic, Oxiaquic, Siltic)) and of the zooturbated solonetzes under the Artemisia santonica-A. lerchiana association (Endosalic Hypogypsic Gypsisol (Sodic, Siltic, Novic)). A comparative analysis of morphology and some chemical properties of virgin and zooturbated soils is given. The soils of souslik-made mounds are strongly mixed, and the structure of their horizons is completely disturbed. They are characterized by an increased total content of salts mainly due to gypsum accumulation. At the same time, the content of toxic salts in the soil profile remains rather high because of their ascending migration from the strongly saline groundwater. On the first terrace, the process of zoogenic amelioration of solonetzes by sousliks is limited and does not affect deep soil layers.

  9. Composition of vegetable oil from seeds of native halophytes

    Treesearch

    D. J. Weber; B. Gul; A. Khan; T. Williams; N. Williams; P. Wayman; S. Warner

    2001-01-01

    Of the world’s land area, about 7 percent is salt affected. Irrigated land is more susceptible to salinity and it is estimated that over 1/3 of the irrigated soils are becoming saline. Certain plants (halophytes) grow well on high saline soils. One approach would be to grow halophytes on high saline soils and harvest their seeds. The oil in the seeds would be extracted...

  10. Modeling the effects of different irrigation water salinity on soil water movement, uptake and multicomponent solute transport

    NASA Astrophysics Data System (ADS)

    Lekakis, E. H.; Antonopoulos, V. Z.

    2015-11-01

    Simulation models can be important tools for analyzing and managing irrigation, soil salinization or crop production problems. In this study a mathematical model that describes the water movement and mass transport of individual ions (Ca2+, Mg2+ and Na+) and overall soil salinity by means of the soil solution electrical conductivity, is used. The mass transport equations of Ca2+, Mg2+ and Na+ have been incorporated as part of the integrated model WANISIM and the soil salinity was computed as the sum of individual ions. The model was calibrated and validated against field data, collected during a three year experiment in plots of maize, irrigated with three different irrigation water qualities, at Thessaloniki area in Northern Greece. The model was also used to evaluate salinization and sodification hazards by the use of irrigation water with increasing electrical conductivity of 0.8, 3.2 and 6.4 dS m-1, while maintaining a ratio of Ca2+:Mg2+:Na+ equal to 3:3:2. The qualitative and quantitative procedures for results evaluation showed that there was good agreement between the simulated and measured values of the water content, overall salinity and the concentration of individual soluble cations, at two soil layers (0-35 and 35-75 cm). Nutrient uptake was also taken into account. Locally available irrigation water (ECiw = 0.8 dS m-1) did not cause soil salinization or sodification. On the other hand, irrigation water with ECiw equal to 3.2 and 6.4 dS m-1 caused severe soil salinization, but not sodification. The rainfall water during the winter seasons was not sufficient to leach salts below the soil profile of 110 cm. The modified version of model WANISIM is able to predict the effects of irrigation with saline waters on soil and plant growth and it is suitable for irrigation management in areas with scarce and low quality water resources.

  11. Halophytes can salinize soil when competing with glycophytes, intensifying effects of sea level rise in coastal communities.

    PubMed

    Wendelberger, Kristie S; Richards, Jennifer H

    2017-07-01

    Sea level rise (SLR) and land-use change are working together to change coastal communities around the world. Along Florida's coast, SLR and large-scale drying are increasing groundwater salinity, resulting in halophytic (salt-tolerant) species colonizing glycophytic (salt-intolerant) communities. We hypothesized that halophytes can contribute to increased soil salinity as they move into glycophyte communities, making soils more saline than SLR or drying alone. We tested our hypothesis with a replacement-series greenhouse experiment with halophyte/glycophyte ratios of 0:4, 1:3, 2:2, 3:1, 4:0, mimicking halophyte movement into glycophyte communities. We subjected replicates to 0, 26, and 38‰ salinity for one, one, and three months, respectively, taking soil salinity and stomatal conductance measurements at the end of each treatment period. Our results showed that soil salinity increased as halophyte/glycophyte ratio increased. Either osmotic or ionic stress caused decreases in glycophyte biomass, resulting in less per-plant transpiration as compared to halophytes. At 38‰ groundwater, soil salinity increased as halophyte density increased, making conditions more conducive to further halophyte establishment. This study suggests that coastal plant community turnover may occur faster than would be predicted from SLR and anthropogenic disturbance alone.

  12. Diversity and Distribution Characteristics of Viruses in Soils of a Marine-Terrestrial Ecotone in East China.

    PubMed

    Yu, Dan-Ting; Han, Li-Li; Zhang, Li-Mei; He, Ji-Zheng

    2018-02-01

    A substantial gap remains in our understanding of the abundance, diversity, and ecology of viruses in soil although some advances have been achieved in recent years. In this study, four soil samples according to the salinity gradient from shore to inland in East China have been characterized. Results showed that spherical virus particles represented the largest viral component in all of the four samples. The viromes had remarkably different taxonomic compositions, and most of the sequences were derived from single-stranded DNA viruses, especially from families Microviridae and Circoviridae. Compared with viromes from other aquatic and sediment samples, the community compositions of our four soil viromes resembled each other, meanwhile coastal sample virome closely congregated with sediment and hypersaline viromes, and high salinity paddy soil sample virome was similar with surface sediment virome. Phylogenetic analysis of functional genes showed that four viromes have high diversity of the subfamily Gokushovirinae in family Microviridae and most of Circoviridae replicase protein sequences grouped within the CRESS-DNA viruses. This work provided an initial outline of the viral communities in marine-terrestrial ecotone and will improve our understanding of the ecological functions of soil viruses.

  13. Spatial variability of sugarcane yields in relation to soil salinity in Louisiana

    USDA-ARS?s Scientific Manuscript database

    High soil salinity levels have been documented to negatively impact sugarcane yields. Tests were conducted in commercial sugarcane fields in South Louisiana in 2009-2010 to determine if elevated soil salinity levels resulting from salt water intrusion from several recent hurricanes was having a neg...

  14. Validating the use of MODIS time series for salinity assessment over agricultural soils in California, USA

    USDA-ARS?s Scientific Manuscript database

    Testing soil salinity assessment methodologies over different regions is important for future continental and global scale applications. A novel regional-scale soil salinity modeling approach using plant-performance metrics was proposed by Zhang et al. (2015) for farmland in the Yellow River Delta, ...

  15. [Study on nutrient and salinity in soil covered with different vegetations in Shuangtaizi estuarine wetlands].

    PubMed

    Song, Xiao-Lin; Lü, Xian-Guo; Zhang, Zhong-Sheng; Chen, Zhi-Ke; Liu, Zheng-Mao

    2011-09-01

    Nutrient elements and salinity in soil covered by different vegetations including Phragmites australis (Clay.) Trin., Typha orientalis Presl., Puccinellia distans Parl, and Suaeda salsa in Shuangtaizi estuarine wetlands were investigated to study their distribution characteristics and to reveal the nutrient element variation during the vegetation succession processes. Results indicated that total potassium, total phosphorus and salinity were different significantly in soil between different plant communities while available phosphorus, total nitrogen, available nitrogen, available potassium, total sulfur, iron and soil organic carbon were different insignificantly. Correlation analysis suggested that soil organic carbon were related significantly to total nitrogen, available phosphorus, available potassium, which implied that decomposition of plant litter might be the mail source of soil nitrogen and available nutrient. Salinity was significantly related to total phosphorus and iron in soil. In Shuangtaizi estuarine wetland soil, ratios of carbon to nitrogen (R(C/N)) was in the range of 12.21-26.33 and the average value was 18.21, which was higher than 12.0. It indicated that soil organic carbon in Shuangtaizi estuarine mainly came from land but not ocean and plants contributed the most of soil organic matters. There was no significant difference in R(C/N) between soil from the four plant communities (F = 1.890, p = 0.151). R(C/N) was related significantly to sol salinity (r = 0.346 3, p = 0.035 8) and was increasing with soil salinity.

  16. [Effects of brackish water irrigation on soil enzyme activity, soil CO2 flux and organic matter decomposition].

    PubMed

    Zhang, Qian-qian; Wang, Fei; Liu, Tao; Chu, Gui-xin

    2015-09-01

    Brackish water irrigation utilization is an important way to alleviate water resource shortage in arid region. A field-plot experiment was set up to study the impact of the salinity level (0.31, 3.0 or 5.0 g · L(-1) NaCl) of irrigated water on activities of soil catalase, invertase, β-glucosidase, cellulase and polyphenoloxidase in drip irrigation condition, and the responses of soil CO2 flux and organic matter decomposition were also determined by soil carbon dioxide flux instrument (LI-8100) and nylon net bag method. The results showed that in contrast with fresh water irrigation treatment (CK), the activities of invertase, β-glucosidase and cellulase in the brackish water (3.0 g · L(-1)) irrigation treatment declined by 31.7%-32.4%, 29.7%-31.6%, 20.8%-24.3%, respectively, while soil polyphenoloxidase activity was obviously enhanced with increasing the salinity level of irrigated water. Compared to CK, polyphenoloxidase activity increased by 2.4% and 20.5%, respectively, in the brackish water and saline water irrigation treatments. Both soil microbial biomass carbon and microbial quotient decreased with increasing the salinity level, whereas, microbial metabolic quotient showed an increasing tendency with increasing the salinity level. Soil CO2 fluxes in the different treatments were in the order of CK (0.31 g · L(-1)) > brackish water irrigation (3.0 g · L(-1)) ≥ saline water irrigation (5.0 g · L(-1)). Moreover, CO2 flux from plastic film mulched soil was always much higher than that from no plastic film mulched soil, regardless the salinity of irrigated water. Compared with CK, soil CO2 fluxes in the saline water and brackish water treatments decreased by 29.8% and 28.2% respectively in the boll opening period. The decomposition of either cotton straw or alfalfa straw in the different treatments was in the sequence of CK (0.31 g · L(-1)) > brackish water irrigation (3.0 g · L(-1)) > saline water treatment (5.0 g · L(-1)). The organic matter decomposition rate in the plastic film mulched soil was significantly higher than that in the no plastic film mulched soil. 125 days after incubation, the recovery rates of cotton straw and alfalfa straw were 39.7% and 46.5% with saline water irrigation, 36.3% and 36.5% with brackish water irrigation, and 30.5% and 35.4% with CK, respectively. In conclusion, brackish water drip irrigation had a significant adverse effect on soil enzyme activities, which decreased soil microbial biomass, soil CO2 flux and soil organic matter decomposition, and subsequently deteriorated the soil biological characteristics in oasis farmland.

  17. Effects of nitrogen fertilization on the acidity and salinity of greenhouse soils.

    PubMed

    Han, Jiangpei; Shi, Jiachun; Zeng, Lingzao; Xu, Jianming; Wu, Laosheng

    2015-02-01

    A greenhouse pot experiment was conducted to study the effects of conventional nitrogen fertilization on soil acidity and salinity. Three N rates (urea; N0, 0 kg N ha(-1); N1, 600 kg N ha(-1); and N2, 1,200 kg N ha(-1)) were applied in five soils with different greenhouse cultivation years to evaluate soil acidification and salinization rate induced by nitrogen fertilizer in lettuce production. Both soil acidity and salinity increased significantly as N input increased after one season, with pH decrease ranging from 0.45 to 1.06 units and electrolytic conductivity increase from 0.24 to 0.68 mS cm(-1). An estimated 0.92 mol H(+) was produced for 1 mol (NO2 (-) + NO3 (-))-N accumulation in soil. The proton loading from nitrification was 14.3-27.3 and 12.1-58.2 kmol H(+) ha(-1) in the center of Shandong Province under N1 and N2 rate, respectively. However, the proton loading from the uptake of excess bases by lettuces was only 0.3-4.5 % of that from nitrification. Moreover, the release of protons induced the direct release of base cations and accelerated soil salinization. The increase of soil acidity and salinity was attributed to the nitrification of excess N fertilizer. Compared to the proton loading by lettuce, nitrification contributed more to soil acidification in greenhouse soils.

  18. Can Tomato Inoculation with Trichoderma Compensate Yield and Soil Health Deficiency due to Soil Salinity?

    NASA Astrophysics Data System (ADS)

    Wagner, Karl; Apostolakis, Antonios; Daliakopoulos, Ioannis; Tsanis, Ioannis

    2016-04-01

    Soil salinity is a major soil degradation threat, especially for arid coastal environments where it hinders agricultural production and soil health. Protected horticultural crops in the Mediterranean region, typically under deficit irrigation and intensive cultivation practices, have to cope with increasing irrigation water and soil salinization. This study quantifies the beneficial effects of the Trichoderma harzianum (TH) on the sustainable production of Solanum lycopersicum (tomato), a major greenhouse crop of the RECARE project Case Study in Greece, the semi-arid coastal Timpaki basin in south-central Crete. 20 vigorous 20-day-old Solanum lycopersicum L. cv Elpida seedlings are treated with TH fungi (T) or without (N) and transplanted into 35 L pots under greenhouse conditions. Use of local planting soil with initial Electrical Conductivity (ECe) 1.8 dS m-1 and local cultivation practices aim to simulate the prevailing conditions at the Case Study. In order to simulate seawater intrusion affected irrigation, plants are drip irrigated with two NaCl treatments: slightly (S) saline (ECw = 1.1 dS m-1) and moderately (M) saline water (ECw = 3.5 dS m-1), resulting to very high and excessively high ECe, respectively. Preliminary analysis of below and aboveground biomass, soil quality, salinity, and biodiversity indicators, suggest that TH pre-inoculation of tomato plants at both S and M treatments improve yield, soil biodiversity and overall soil health.

  19. Predicting Soil Salinity with Vis–NIR Spectra after Removing the Effects of Soil Moisture Using External Parameter Orthogonalization

    PubMed Central

    Liu, Ya; Pan, Xianzhang; Wang, Changkun; Li, Yanli; Shi, Rongjie

    2015-01-01

    Robust models for predicting soil salinity that use visible and near-infrared (vis–NIR) reflectance spectroscopy are needed to better quantify soil salinity in agricultural fields. Currently available models are not sufficiently robust for variable soil moisture contents. Thus, we used external parameter orthogonalization (EPO), which effectively projects spectra onto the subspace orthogonal to unwanted variation, to remove the variations caused by an external factor, e.g., the influences of soil moisture on spectral reflectance. In this study, 570 spectra between 380 and 2400 nm were obtained from soils with various soil moisture contents and salt concentrations in the laboratory; 3 soil types × 10 salt concentrations × 19 soil moisture levels were used. To examine the effectiveness of EPO, we compared the partial least squares regression (PLSR) results established from spectra with and without EPO correction. The EPO method effectively removed the effects of moisture, and the accuracy and robustness of the soil salt contents (SSCs) prediction model, which was built using the EPO-corrected spectra under various soil moisture conditions, were significantly improved relative to the spectra without EPO correction. This study contributes to the removal of soil moisture effects from soil salinity estimations when using vis–NIR reflectance spectroscopy and can assist others in quantifying soil salinity in the future. PMID:26468645

  20. Soil salinisation and irrigation management of date palms in a Saharan environment.

    PubMed

    Haj-Amor, Zied; Ibrahimi, Mohamed-Khaled; Feki, Nissma; Lhomme, Jean-Paul; Bouri, Salem

    2016-08-01

    The continuance of agricultural production in regions of the world with chronic water shortages depends upon understanding how soil salinity is impacted by irrigation practises such as water salinity, irrigation frequency and amount of irrigation. A two-year field study was conducted in a Saharan oasis of Tunisia (Lazala Oasis) to determine how the soil electrical conductivity was affected by irrigation of date palms with high saline water. The study area lacked a saline shallow water table. Field results indicate that, under current irrigation practises, soil electrical conductivity can build up to levels which exceed the salt tolerance of date palm trees. The effects of irrigation practises on the soil electrical conductivity were also evaluated using model simulations (HYDRUS-1D) of various irrigation regimes with different frequencies, different amounts of added water and different water salinities. The comparison between the simulated and observed results demonstrated that the model gave an acceptable estimation of water and salt dynamics in the soil profile, as indicated by the small values of root mean square error (RMSE) and the high values of the Nash-Sutcliffe model efficiency coefficient (NSE). The simulations demonstrated that, under field conditions without saline shallow groundwater, saline irrigation water can be used to maintain soil electrical conductivity and soil water content at safe levels (soil electrical conductivity <4 dS m(-1) and soil water content >0.04 cm(3) cm(-3)) if frequent irrigations with small amounts of water (90 % of the evapotranspiration requirements) were applied throughout the year.

  1. Time-lapse electric resistivity in a stressed mangrove forest to image the role of the root zone in porewater salt distribution

    NASA Astrophysics Data System (ADS)

    Downs, C. M.; Krauss, K.; Kruse, S.

    2017-12-01

    The movement and storage of porewater salts is poorly understood in mangrove forests with limited surface water exchange between the forest and neighboring lagoon. These mangroves are often the most stressed, and have the most unfavorable salinity balance that often transition to mortality during extreme drought. A time-lapse resistivity survey was conducted in a stressed mangrove forest over a diel period. Resistivity is sensitive to the entire soil volume, including fine roots. The objective was to image changes in porewater salinity structures around both mangrove trees, where roots can be a prolific contributor to soil volume, and a salt pan with little or no vegetation. Throughout the diel period, salt pan conductivities remained relatively constant. The most significant temporal changes occur in the root zone around mangrove trees. Particularly interesting is a drop in resistivity (increased conductivity) at sunset when transpiration from individual trees decreases (or even ceases), potentially identifying a cumulative concentration of salts around the mangrove root zone after a full day of transpiration. The resistivity gradient decreases immediately after its peak at sunset, potentially identifying the consequences of hydraulic redistribution in diluting soils surrounding trees immediately after transpiration ceases. This is quicker than expected, and may imply a very strong and rapid eco-hydrological connection in the tree-facilitated salinity balance essential to their survival under the most salinity-stressed environments. At sunrise, resistivity increases, further suggesting dilution of salts via hydraulic redistribution of fresh water from the tree into the upper soil layers, or suggests an accumulation of salts within roots when presumably less water is moving through the trees. Repeated electric resistivity arrays provide spatial and temporal information about these salts and contribute to an overall understanding of how stressed mangrove forests behave. The mangrove ecophysiology literature has suggested that such a balance should exist between tree water use and soil salinity concentration. Here, we document the diel pattern from the perspective of the soil for the first time, but need more surveys to develop conclusive ecosystem level impacts.

  2. Simplified spatiotemporal electromagnetic induction - salinity multi-field calibration

    USDA-ARS?s Scientific Manuscript database

    Salinity-affected farmlands are common in arid and semi-arid regions. To assure long-term sustainability of farming practices in these areas, soil salinity (ECe) should be routinely mapped and monitored. Salinity can be measured through soil sampling directed by geospatial measurements of apparent s...

  3. Water-retaining barrier and method of construction

    DOEpatents

    Adams, Melvin R.; Field, Jim G.

    1996-01-01

    An agricultural barrier providing a medium for supporting plant life in an arid or semi-arid land region having a ground surface, the barrier being disposed on native soil of the region, the barrier including: a first layer composed of pieces of basalt, the first layer being porous and being in contact with the native soil; a porous second layer of at least one material selected from at least one of sand and gravel, the second layer being less porous than, and overlying, the first layer; and a porous third layer containing soil which favors plant growth, the third layer being less porous than, and overlying, the second layer and having an exposed upper surface, wherein the porosities of the second and third layers differ from one another by an amount which impedes transport of soil from the first layer into the second layer. Soil for the third layer may be provided by washing salinated or contaminated soil with water and using the washed soil for the third layer.

  4. Water-retaining barrier and method of construction

    DOEpatents

    Adams, M.R.; Field, J.G.

    1996-02-20

    An agricultural barrier is disclosed which provides a medium for supporting plant life in an arid or semi-arid land region having a ground surface. The barrier is disposed on native soil of the region. The barrier includes a first porous layer composed of pieces of basalt, and is in contact with the native soil. There is a less porous second layer of at least one material selected from at least one of sand and gravel. The second layer overlies the first layer. A third layer, less porous than the second layer, contains soil which favors plant growth. The third layer overlies the second layer and has an exposed upper surface. The porosities of the second and third layers differ from one another by an amount which impedes transport of soil from the first layer into the second layer. Soil for the third layer may be provided by washing salinated or contaminated soil with water and using the washed soil for the third layer. 2 figs.

  5. Assimilation of SMOS Retrieved Soil Moisture into the Land Information System

    NASA Technical Reports Server (NTRS)

    Blankenship, Clay; Case, Jonathan; Zavodsky, Bradley; Jedlovec, Gary

    2014-01-01

    Soil moisture retrievals from the Soil Moisture and Ocean Salinity (SMOS) instrument are assimilated into the Noah land surface model (LSM) within the NASA Land Information System (LIS). Before assimilation, SMOS retrievals are bias-corrected to match the model climatological distribution using a Cumulative Distribution Function (CDF) matching approach. Data assimilation is done via the Ensemble Kalman Filter. The goal is to improve the representation of soil moisture within the LSM, and ultimately to improve numerical weather forecasts through better land surface initialization. We present a case study showing a large area of irrigation in the lower Mississippi River Valley, in an area with extensive rice agriculture. High soil moisture value in this region are observed by SMOS, but not captured in the forcing data. After assimilation, the model fields reflect the observed geographic patterns of soil moisture. Plans for a modeling experiment and operational use of the data are given. This work helps prepare for the assimilation of Soil Moisture Active/Passive (SMAP) retrievals in the near future.

  6. Effect of the phosphogypsum amendment of saline and agricultural soils on growth, productivity and antioxidant enzyme activities of tomato (Solanum lycopersicum L.).

    PubMed

    Smaoui-Jardak, Mariem; Kriaa, Walid; Maalej, Mohamed; Zouari, Mohamed; Kamoun, Lotfi; Trabelsi, Wassim; Ben Abdallah, Ferjani; Elloumi, Nada

    2017-10-01

    The objective of this study was to investigate the effects of phosphogypsum (PG) amendment on the physiochemical proprieties of saline and agricultural soils along with the growth, productivity and antioxidant enzyme activities of tomato plants ( Solanum lycopersicum L.) grown on the amended soils under controlled conditions. Obtained results showed that the amendment of saline soil (H) by PG induced a decrease in pH as well as in electrical conductivity. However, for the non saline soil (MC), there was a decrease in pH associated with an increase in electrical conductivity. For both soils, PG amendment led to an increase in Calcium (Ca) and sodium (Na), and a decrease in potassium (K) in plant tissues. Cadmium (Cd), Zinc (Zn) and Chromium (Cr) contents in different parts of plants increased in proportion with PG concentration in the soils. Apart from Cd, all the analyzed metals in tomato fruit were found to be below the recommended maximum allowable concentration (MAC). Our results showed that PG application, at doses not exceeding 20%, seems to be beneficial for growth, photosynthetic activity and productivity of tomato plants as well as in decreasing salinity of saline soils. In these conditions, the use of PG could be a promising project for the rehabilitation of marginalized and saline ecosystems with either ornamental or non-fruit species. For both soils, a significant accumulation of MDA in shoots was detected, reflecting cell membrane damage especially when the PG amendment reached 20%. Beyond 20 and 40% PG, tomato plants developed an enzymatic antioxidant defense system in response to salinity and heavy metal stress. However, at 80% PG, enzymes activities were significantly inhibited.

  7. The U.S. Salinity Laboratory (USDA-ARS) guidelines for assessing multi-scale soil salinity with proximal and remote sensing

    USDA-ARS?s Scientific Manuscript database

    Soil salinity is a major threat to sustainable agriculture, especially in arid and semi-arid regions. Updated and accurate inventories of salinity in agronomically and environmentally relevant ranges (i.e., <20 dS/m, when salinity is measured as electrical conductivity of the saturation extract, ECe...

  8. Comparative molecular analysis of chemolithoautotrophic bacterial diversity and community structure from coastal saline soils, Gujarat, India

    PubMed Central

    2012-01-01

    Background Soils harbour high diversity of obligate as well as facultative chemolithoautotrophic bacteria that contribute significantly to CO2 dynamics in soil. In this study, we used culture dependent and independent methods to assess the community structure and diversity of chemolithoautotrophs in agricultural and coastal barren saline soils (low and high salinity). We studied the composition and distribution of chemolithoautotrophs by means of functional marker gene cbbL encoding large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase and a phylogenetic marker 16S rRNA gene. The cbbL form IA and IC genes associated with carbon fixation were analyzed to gain insight into metabolic potential of chemolithoautotrophs in three soil types of coastal ecosystems which had a very different salt load and sulphur content. Results In cbbL libraries, the cbbL form IA was retrieved only from high saline soil whereas form IC was found in all three soil types. The form IC cbbL was also amplified from bacterial isolates obtained from all soil types. A number of novel monophyletic lineages affiliated with form IA and IC phylogenetic trees were found. These were distantly related to the known cbbL sequences from agroecosystem, volcanic ashes and marine environments. In 16S rRNA clone libraries, the agricultural soil was dominated by chemolithoautotrophs (Betaproteobacteria) whereas photoautotrophic Chloroflexi and sulphide oxidizers dominated saline ecosystems. Environmental specificity was apparently visible at both higher taxonomic levels (phylum) and lower taxonomic levels (genus and species). The differentiation in community structure and diversity in three soil ecosystems was supported by LIBSHUFF (P = 0.001) and UniFrac. Conclusion This study may provide fundamentally new insights into the role of chemolithoautotrophic and photoautotrophic bacterial diversity in biochemical carbon cycling in barren saline soils. The bacterial communities varied greatly among the three sites, probably because of differences in salinity, carbon and sulphur contents. The cbbL form IA-containing sulphide-oxidizing chemolithotrophs were found only in high saline soil clone library, thus giving the indication of sulphide availability in this soil ecosystem. This is the first comparative study of the community structure and diversity of chemolithoautotrophic bacteria in coastal agricultural and saline barren soils using functional (cbbL) and phylogenetic (16S rDNA) marker genes. PMID:22834535

  9. Digital Mapping of Soil Salinity and Crop Yield across a Coastal Agricultural Landscape Using Repeated Electromagnetic Induction (EMI) Surveys

    PubMed Central

    Yao, Rongjiang; Yang, Jingsong; Wu, Danhua; Xie, Wenping; Gao, Peng; Jin, Wenhui

    2016-01-01

    Reliable and real-time information on soil and crop properties is important for the development of management practices in accordance with the requirements of a specific soil and crop within individual field units. This is particularly the case in salt-affected agricultural landscape where managing the spatial variability of soil salinity is essential to minimize salinization and maximize crop output. The primary objectives were to use linear mixed-effects model for soil salinity and crop yield calibration with horizontal and vertical electromagnetic induction (EMI) measurements as ancillary data, to characterize the spatial distribution of soil salinity and crop yield and to verify the accuracy of spatial estimation. Horizontal and vertical EMI (type EM38) measurements at 252 locations were made during each survey, and root zone soil samples and crop samples at 64 sampling sites were collected. This work was periodically conducted on eight dates from June 2012 to May 2013 in a coastal salt-affected mud farmland. Multiple linear regression (MLR) and restricted maximum likelihood (REML) were applied to calibrate root zone soil salinity (ECe) and crop annual output (CAO) using ancillary data, and spatial distribution of soil ECe and CAO was generated using digital soil mapping (DSM) and the precision of spatial estimation was examined using the collected meteorological and groundwater data. Results indicated that a reduced model with EMh as a predictor was satisfactory for root zone ECe calibration, whereas a full model with both EMh and EMv as predictors met the requirement of CAO calibration. The obtained distribution maps of ECe showed consistency with those of EMI measurements at the corresponding time, and the spatial distribution of CAO generated from ancillary data showed agreement with that derived from raw crop data. Statistics of jackknifing procedure confirmed that the spatial estimation of ECe and CAO exhibited reliability and high accuracy. A general increasing trend of ECe was observed and moderately saline and very saline soils were predominant during the survey period. The temporal dynamics of root zone ECe coincided with those of daily rainfall, water table and groundwater data. Long-range EMI surveys and data collection are needed to capture the spatial and temporal variability of soil and crop parameters. Such results allowed us to conclude that, cost-effective and efficient EMI surveys, as one part of multi-source data for DSM, could be successfully used to characterize the spatial variability of soil salinity, to monitor the spatial and temporal dynamics of soil salinity, and to spatially estimate potential crop yield. PMID:27203697

  10. Digital Mapping of Soil Salinity and Crop Yield across a Coastal Agricultural Landscape Using Repeated Electromagnetic Induction (EMI) Surveys.

    PubMed

    Yao, Rongjiang; Yang, Jingsong; Wu, Danhua; Xie, Wenping; Gao, Peng; Jin, Wenhui

    2016-01-01

    Reliable and real-time information on soil and crop properties is important for the development of management practices in accordance with the requirements of a specific soil and crop within individual field units. This is particularly the case in salt-affected agricultural landscape where managing the spatial variability of soil salinity is essential to minimize salinization and maximize crop output. The primary objectives were to use linear mixed-effects model for soil salinity and crop yield calibration with horizontal and vertical electromagnetic induction (EMI) measurements as ancillary data, to characterize the spatial distribution of soil salinity and crop yield and to verify the accuracy of spatial estimation. Horizontal and vertical EMI (type EM38) measurements at 252 locations were made during each survey, and root zone soil samples and crop samples at 64 sampling sites were collected. This work was periodically conducted on eight dates from June 2012 to May 2013 in a coastal salt-affected mud farmland. Multiple linear regression (MLR) and restricted maximum likelihood (REML) were applied to calibrate root zone soil salinity (ECe) and crop annual output (CAO) using ancillary data, and spatial distribution of soil ECe and CAO was generated using digital soil mapping (DSM) and the precision of spatial estimation was examined using the collected meteorological and groundwater data. Results indicated that a reduced model with EMh as a predictor was satisfactory for root zone ECe calibration, whereas a full model with both EMh and EMv as predictors met the requirement of CAO calibration. The obtained distribution maps of ECe showed consistency with those of EMI measurements at the corresponding time, and the spatial distribution of CAO generated from ancillary data showed agreement with that derived from raw crop data. Statistics of jackknifing procedure confirmed that the spatial estimation of ECe and CAO exhibited reliability and high accuracy. A general increasing trend of ECe was observed and moderately saline and very saline soils were predominant during the survey period. The temporal dynamics of root zone ECe coincided with those of daily rainfall, water table and groundwater data. Long-range EMI surveys and data collection are needed to capture the spatial and temporal variability of soil and crop parameters. Such results allowed us to conclude that, cost-effective and efficient EMI surveys, as one part of multi-source data for DSM, could be successfully used to characterize the spatial variability of soil salinity, to monitor the spatial and temporal dynamics of soil salinity, and to spatially estimate potential crop yield.

  11. Salinity stress accelerates the effect of cadmium toxicity on soil N dynamics and cycling: Does joint effect of these stresses matter?

    PubMed

    Raiesi, Fayez; Razmkhah, Mahshid; Kiani, Shahram

    2018-05-30

    The objective of this study was to determine responses of soil nitrogen (N) transformation, microbial biomass N, and urease activity to the combined effect of cadmium (Cd) toxicity (0 and 30 mg kg -1 ) and NaCl stress (0, 7.5 and 15 dS m -1 ) in a clay loam soil unamended (0%) or amended with alfalfa residues (1%, w/w). Cd, NaCl, and alfalfa residues were added to the soil, and the mixtures were incubated for 90 days under standard laboratory conditions (25 ± 1 °C and 70% of water holding capacity [WHC]). The results showed that salinity increased soil Cd availability and toxicity and subsequently decreased soil microbial N transformations (i.e., potential ammonification and nitrification as well as net N mineralization), arginine ammonification and nitrification rates, microbial biomass N, and urease activity. The adverse effects of salinity on soil microbial properties were greater in Cd-polluted than unpolluted soils, at high than low salinity levels, but were lower in residue-amended than unamended soils. These effects were mainly attributed to the increased Cd availability under saline conditions or the decreased Cd availability with residue addition. All the measured soil microbial attributes showed a negative correlation with the available Cd content in the soil. The interaction or combined effects of Cd and NaCl on soil microbial attributes were mostly synergistic in residue-unamended soils but antagonistic in residue-amended soils. The addition of organic residues to Cd-polluted soils may moderate salinity effect, and thus could stimulate the activity of ammonifiers and nitrifiers, as well as urease. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Mechanisms for Seasonal and Interannual Sea Surface Salinity Variability in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Köhler, J.; Stammer, D.; Serra, N.; Bryan, F.

    2016-12-01

    Space-borne salinity data in the Indian Ocean are analyzed over the period 2000-2015 based on data from the European Space Agency's (ESA) "Soil Moisture and Ocean Salinity" (SMOS) and the National Aeronautical Space Agency's (NASA) "Aquarius/SAC-D" missions. The seasonal variability is the dominant mode of sea surface salinity (SSS) variability in the Indian Ocean, accounting for more than 50% of salinity variance. Through a combined analysis of the satellite and ARGO data, dominant forcing terms for seasonal salinity changes are identified. It is found, that E-P controls seasonal salinity tendency in the western Indian Ocean, where the ITCZ has a strong seasonal cycle. In contrast, Ekman advection is the dominant term in the northern and eastern equatorial Indian Ocean. The influence of vertical processes on the salinity tendency is enhanced in coastal upwelling regions and south of the equator due to mid-ocean upwelling. Jointly those processes can explain most of the observed seasonal cycle with a correlation of 0.85 and an RMS difference of 0.07/month. However, the detailed composition of driving terms depends on underlying data products. In general, our study confirms previous results from Lisan Yu (2011); however, in the eastern Indian Ocean contrasting results indicate the leading role of meridional Ekman advection to the seasonal salinity tendency instead of surface external forces due to precipitation. The inferred dominant salinity budget terms are confirmed by results obtained from a high resolution NCAR Core model run driven by NCEP forcing fields. From an EOF analysis of the salinity fields after substracting the annual and semiannual cycle we found that the first EOF mode explains more than 20% of salinity variance. The first principal component of SSS EOF is correlated with the Indian Ocean Dipole Mode Index. Nevertheless the EOF pattern shows a meridional tripole structure, while the IOD describes a zonal SST dipole (Saji et al, 1999).

  13. Invasion Potential of Two Tropical Physalis Species in Arid and Semi-Arid Climates: Effect of Water-Salinity Stress and Soil Types on Growth and Fecundity.

    PubMed

    Ozaslan, Cumali; Farooq, Shahid; Onen, Huseyin; Bukun, Bekir; Ozcan, Selcuk; Gunal, Hikmet

    2016-01-01

    Invasive plants are recognized for their impressive abilities to withstand adverse environmental conditions however, all invaders do not express the similar abilities. Therefore, survival, growth, nutrient uptake and fecundity of two co-occurring, invasive Physalis species were tested under water and salinity stresses, and different soil textures in the current study. Five different water stress levels (100, 75, 50, 25, and 12.5% pot water contents), four different soil salinity levels (0, 3, 6, and 12 dSm-1) and four different soil textures (67% clay, 50% clay, silt clay loam and sandy loam) were included in three different pot experiments. Both weeds survived under all levels of water stress except 12.5% water contents and on all soil types however, behaved differently under increasing salinity. The weeds responded similarly to salinity up till 3 dSm-1 whereas, P. philadelphica survived for longer time than P. angulata under remaining salinity regimes. Water and salinity stress hampered the growth and fecundity of both weeds while, soil textures had slight effect. Both weeds preferred clay textured soils for better growth and nutrient uptake however, interactive effect of weeds and soil textures was non-significant. P. angulata accumulated higher K and Na while P. philadelphica accrued more Ca and Mg as well as maintained better K/Na ratio. P. angulata accumulated more Na and P under salinity stress while, P. philadelphica accrued higher K and Mg, and maintained higher K/Na ratio. Collectively, highest nutrient accumulation was observed under stress free conditions and on clay textured soils. P. philadelphica exhibited higher reproductive output under all experimental conditions than P. angulata. It is predicted that P. philadelphica will be more problematic under optimal water supply and high salinity while P. angulata can better adapt water limited environments. The results indicate that both weeds have considerable potential to further expand their ranges in semi-arid regions of Turkey.

  14. Invasion Potential of Two Tropical Physalis Species in Arid and Semi-Arid Climates: Effect of Water-Salinity Stress and Soil Types on Growth and Fecundity

    PubMed Central

    Ozaslan, Cumali; Bukun, Bekir; Ozcan, Selcuk

    2016-01-01

    Invasive plants are recognized for their impressive abilities to withstand adverse environmental conditions however, all invaders do not express the similar abilities. Therefore, survival, growth, nutrient uptake and fecundity of two co-occurring, invasive Physalis species were tested under water and salinity stresses, and different soil textures in the current study. Five different water stress levels (100, 75, 50, 25, and 12.5% pot water contents), four different soil salinity levels (0, 3, 6, and 12 dSm-1) and four different soil textures (67% clay, 50% clay, silt clay loam and sandy loam) were included in three different pot experiments. Both weeds survived under all levels of water stress except 12.5% water contents and on all soil types however, behaved differently under increasing salinity. The weeds responded similarly to salinity up till 3 dSm-1 whereas, P. philadelphica survived for longer time than P. angulata under remaining salinity regimes. Water and salinity stress hampered the growth and fecundity of both weeds while, soil textures had slight effect. Both weeds preferred clay textured soils for better growth and nutrient uptake however, interactive effect of weeds and soil textures was non-significant. P. angulata accumulated higher K and Na while P. philadelphica accrued more Ca and Mg as well as maintained better K/Na ratio. P. angulata accumulated more Na and P under salinity stress while, P. philadelphica accrued higher K and Mg, and maintained higher K/Na ratio. Collectively, highest nutrient accumulation was observed under stress free conditions and on clay textured soils. P. philadelphica exhibited higher reproductive output under all experimental conditions than P. angulata. It is predicted that P. philadelphica will be more problematic under optimal water supply and high salinity while P. angulata can better adapt water limited environments. The results indicate that both weeds have considerable potential to further expand their ranges in semi-arid regions of Turkey. PMID:27741269

  15. Soil Salinity Mapping in Everglades National Park Using Remote Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Su, H.; Khadim, F. K.; Blankenship, J.; Sobhan, K.

    2017-12-01

    The South Florida Everglades is a vast subtropical wetland with a globally unique hydrology and ecology, and it is designated as an International Biosphere Reserve and a Wetland of International Importance. Everglades National Park (ENP) is a hydro-ecologically enriched wetland with varying salinity contents, which is a concern for terrestrial ecosystem balance and sustainability. As such, in this study, time series soil salinity mapping was carried out for the ENP area. The mapping first entailed a maximum likelihood classification of seven land cover classes for the ENP area—namely mangrove forest, mangrove scrub, low-density forest, sawgrass, prairies and marshes, barren lands with woodland hammock and water—for the years 1996, 2000, 2006, 2010 and 2015. The classifications for 1996-2010 yielded accuracies of 82%-94%, and the 2015 classification was supported through ground truthing. Afterwards, electric conductivity (EC) tolerance thresholds for each vegetation class were established,which yielded soil salinity maps comprising four soil salinity classes—i.e., the non- (EC = 0 2 dS/m), low- (EC = 2 4 dS/m), moderate- (EC = 4 8 dS/m) and high-saline (EC = >8 dS/m) areas. The soil salinity maps visualized the spatial distribution of soil salinity with no significant temporal variations. The innovative approach of "land cover identification to salinity estimation" used in the study is pragmatic and application oriented, and the study upshots are also useful, considering the diversifying ecological context of the ENP area.

  16. Ocean Surface Emissivity at L-band (1.4 GHz): The Dependence on Salinity and Roughness

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Lang, R.; Wentz, F.; Messiner, T.

    2012-01-01

    A characterization of the emissivity of sea water at L-band is important for the remote sensing of sea surface salinity. Measurements of salinity are currently being made in the radio astronomy band at 1.413 GHz by ESA's Soil Moisture and Ocean Salinity (SMOS) mission and NASA's Aquarius instrument aboard the Aquarius/SAC-D observatory. The goal of both missions is accuracy on the order of 0.1 psu. This requires accurate knowledge of the dielectric constant of sea water as a function of salinity and temperature and also the effect of waves (roughness). The former determines the emissivity of an ideal (i.e. flat) surface and the later is the major source of error from predictions based on a flat surface. These two aspects of the problem of characterizing the emissivity are being addressed in the context of the Aquarius mission. First, laboratory measurements are being made of the dielectric constant of sea water. This is being done at the George Washington University using a resonant cavity. In this technique, sea water of known salinity and temperature is fed into the cavity along its axis through a narrow tube. The sea water changes the resonant frequency and Q of the cavity which, if the sample is small enough, can be related to the dielectric constant of the sample. An extensive set of measurements have been conducted at 1.413 GHz to develop a model for the real and imaginary part of the dielectric constant as a function of salinity and temperature. The results are compared to the predictions of models based on parameterization of the Debye resonance of the water molecule. The models and measurements are close; however, the differences are significant for remote sensing of salinity. This is especially true at low temperatures where the sensitivity to salinity is lowest.

  17. Monthly Sea Surface Salinity and Freshwater Flux Monitoring

    NASA Astrophysics Data System (ADS)

    Ren, L.; Xie, P.; Wu, S.

    2017-12-01

    Taking advantages of the complementary nature of the Sea Surface Salinity (SSS) measurements from the in-situ (CTDs, shipboard, Argo floats, etc.) and satellite retrievals from Soil Moisture Ocean Salinity (SMOS) satellite of the European Space Agency (ESA), the Aquarius of a joint venture between US and Argentina, and the Soil Moisture Active Passive (SMAP) of national Aeronautics and Space Administration (NASA), a technique is developed at NOAA/NCEP/CPC to construct an analysis of monthly SSS, called the NOAA Blended Analysis of Sea-Surface Salinity (BASS). The algorithm is a two-steps approach, i.e. to remove the bias in the satellite data through Probability Density Function (PDF) matching against co-located in situ measurements; and then to combine the bias-corrected satellite data with the in situ measurements through the Optimal Interpolation (OI) method. The BASS SSS product is on a 1° by 1° grid over the global ocean for a 7-year period from 2010. Combined with the NOAA/NCEP/CPC CMORPH satellite precipitation (P) estimates and the Climate Forecast System Reanalysis (CFSR) evaporation (E) fields, a suite of monthly package of the SSS and oceanic freshwater flux (E and P) was developed to monitor the global oceanic water cycle and SSS on a monthly basis. The SSS in BASS product is a suite of long-term SSS and fresh water flux data sets with temporal homogeneity and inter-component consistency better suited for the examination of the long-term changes and monitoring. It presents complete spatial coverage and improved resolution and accuracy, which facilitates the diagnostic analysis of the relationship and co-variability among SSS, freshwater flux, mixed layer processes, oceanic circulation, and assimilation of SSS into global models. At the AGU meeting, we will provide more details on the CPC salinity and fresh water flux data package and its applications in the monitoring and analysis of SSS variations in association with the ENSO and other major climate variability in recent years.

  18. Towards a theory of ecotone resilience: coastal vegetation on a salinity gradient.

    PubMed

    Jiang, Jiang; Gao, Daozhou; DeAngelis, Donald L

    2012-08-01

    Ecotones represent locations where vegetation change is likely to occur as a result of climate and other environmental changes. Using a model of an ecotone vulnerable to such future changes, we estimated the resilience of the ecotone to disturbances. The specific ecotone is that between two different vegetation types, salinity-tolerant and salinity-intolerant, along a gradient in groundwater salinity. In the case studied, each vegetation type, through soil feedback loops, promoted local soil salinity levels that favor itself in competition with the other type. Bifurcation analysis was used to study the system of equations for the two vegetation types and soil salinity. Alternative stable equilibria, one for salinity-tolerant and one for salinity intolerant vegetation, were shown to exist over a region of the groundwater salinity gradient, bounded by two bifurcation points. This region was shown to depend sensitively on parameters such as the rate of upward infiltration of salinity from groundwater into the soil due to evaporation. We showed also that increasing diffusion rates of vegetation can lead to shrinkage of the range between the two bifurcation points. Sharp ecotones are typical of salt-tolerant vegetation (mangroves) near the coastline and salt-intolerant vegetation inland, even though the underlying elevation and groundwater salinity change very gradually. A disturbance such as an input of salinity to the soil from a storm surge could upset this stable boundary, leading to a regime shift of salinity-tolerant vegetation inland. We showed, however, that, for our model as least, a simple pulse disturbance would not be sufficient; the salinity would have to be held at a high level, as a 'press', for some time. The approach used here should be generalizable to study the resilience of a variety of ecotones to disturbances. Published by Elsevier Inc.

  19. Towards a theory of ecotone resilience: coastal vegetation on a salinity gradient

    USGS Publications Warehouse

    Jiang, Jiang; Gao, Daozhou; DeAngelis, Donald L.

    2012-01-01

    Ecotones represent locations where vegetation change is likely to occur as a result of climate and other environmental changes. Using a model of an ecotone vulnerable to such future changes, we estimated the resilience of the ecotone to disturbances. The specific ecotone is that between two different vegetation types, salinity-tolerant and salinity-intolerant, along a gradient in groundwater salinity. In the case studied, each vegetation type, through soil feedback loops, promoted local soil salinity levels that favor itself in competition with the other type. Bifurcation analysis was used to study the system of equations for the two vegetation types and soil salinity. Alternative stable equilibria, one for salinity-tolerant and one for salinity intolerant vegetation, were shown to exist over a region of the groundwater salinity gradient, bounded by two bifurcation points. This region was shown to depend sensitively on parameters such as the rate of upward infiltration of salinity from groundwater into the soil due to evaporation. We showed also that increasing diffusion rates of vegetation can lead to shrinkage of the range between the two bifurcation points. Sharp ecotones are typical of salt-tolerant vegetation (mangroves) near the coastline and salt-intolerant vegetation inland, even though the underlying elevation and groundwater salinity change very gradually. A disturbance such as an input of salinity to the soil from a storm surge could upset this stable boundary, leading to a regime shift of salinity-tolerant vegetation inland. We showed, however, that, for our model as least, a simple pulse disturbance would not be sufficient; the salinity would have to be held at a high level, as a 'press', for some time. The approach used here should be generalizable to study the resilience of a variety of ecotones to disturbances.

  20. Effect of biosolid waste compost on soil respiration in salt-affected soils

    NASA Astrophysics Data System (ADS)

    Raya, Silvia; Gómez, Ignacio; García, Fuensanta; Navarro, José; Jordán, Manuel Miguel; Belén Almendro, María; Martín Soriano, José

    2013-04-01

    A great part of mediterranean soils are affected by salinization. This is an important problem in semiarid areas increased by the use of low quality waters, the induced salinization due to high phreatic levels and adverse climatology. Salinization affects 25% of irrigated agriculture, producing important losses on the crops. In this situation, the application of organic matter to the soil is one of the possible solutions to improve their quality. The main objective of this research was to asses the relation between the salinity level (electrical conductivity, EC) in the soil and the response of microbial activity (soil respiration rate) after compost addition. The study was conducted for a year. Soil samples were collected near to an agricultural area in Crevillente and Elche, "El Hondo" Natural Park (Comunidad de Regantes from San Felipe Neri). The experiment was developed to determine and quantify the soil respiration rate in 8 different soils differing in salinity. The assay was done in close pots -in greenhouse conditions- containing soil mixed with different doses of sewage sludge compost (2, 4 and 6%) besides the control. They were maintained at 60% of water holding capacity (WHC). Soil samples were analyzed every four months for a year. The equipment used to estimate the soil respiration was a Bac-Trac and CO2 emitted by the soil biota was measured and quantified by electrical impedance changes. It was observed that the respiration rate increases as the proportion of compost added to each sample increases as well. The EC was incremented in each sampling period from the beginning of the experiment, probably due to the fact that soils were in pots and lixiviation was prevented, so the salts couldńt be lost from soil. Over time the compost has been degraded and, it was more susceptible to be mineralized. Salts were accumulated in the soil. Also it was observed a decrease of microbial activity with the increase of salinity in the soil. Keywords: soil respiration, compost, electrical conductivity, salinization, Bac-Trac References: Abdelbasset Lakhdar, Mokded Rabhi, Tahar Ghnaya, Francesco Montemurro, Naceur Jedidi , Chedly Abdelly. Effectiveness of compost use in salt-affected soil. Journal of Hazardous Materials 171 (2009) pp 29-37. M. Tejada, C. Garcia, J.L. Gonzalez , M.T. Hernandez . Use of organic amendment as a strategy for saline soil remediation:Influence on the physical, chemical and biological properties of soil. Soil Biology & Biochemistry 38 (2006) pp 1413-1421. I. Gomez; J.M. Disla Soriano; J. Navarro-Pedreño; F. García-Orenes; M.B. Almendro-Candel; M.M. Jordan. Quantification of soil respiration in different saline soil of Alicante (Spain). EGU General Assembly (2012). Viena. Ed. Geophysycal Research Abstracts. Vol 14 EGU2012-2399,(2012). (Acknowledgements: This work was supported by the Spanish MICINN. Project Ref.: CGL2009-11194)

  1. Infrared thermal remote sensing for soil salinity assessment on landscape scale

    NASA Astrophysics Data System (ADS)

    Ivushkin, Konstantin; Bartholomeus, Harm; Bregt, Arnold K.; Pulatov, Alim; Bui, Elisabeth N.; Wilford, John

    2017-04-01

    Soil salinity is considered as one of the most severe land degradation aspects. An increased soil salt level inhibits growth and development of crops. Therefore, up to date soil salinity information is vital for appropriate management practices and reclamation strategies. This information is required at increasing spatial and temporal resolution for appropriate management adaptations. Conventional soil sampling and associated laboratory analyses are slow, expensive, and often cannot deliver the temporal and spatial resolution required. The change of canopy temperature is one of the stress indicators in plants. Its behaviour in response to salt stress on individual plant level is well studied in laboratory and greenhouse experiments, but its potential for landscape scale studies using remote sensing techniques is not investigated yet. In our study, possibilities of satellite thermography for landscape scale soil salinity assessment of cropped areas were studied. The performance of satellite thermography is compared with other approaches that have been used before, like Normalised Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). The study areas were Syrdarya province of Uzbekistan and four study areas in four Australian states namely, Western Australia, South Australia, Queensland and New South Wales. The diversity of the study areas allowed us to analyse behaviour of canopy temperature of different crops (wheat, cotton, barley) and different agriculture practices (rain fed and irrigated). MODIS and Landsat TM multiannual satellite images were used to measure canopy temperature. As ground truth for Uzbekistan study area we used a provincial soil salinity map. For the Australian study areas we used the EC map for the whole country. ANOVA was used to analyse relations between the soil salinity maps and canopy temperature, NDVI, EVI. Time series graphs were created to analyse the dynamics of the indicators during the growing season. The results showed significant relations between the soil salinity maps and canopy temperature. The amplitude of canopy temperature difference between salinity classes varies for different crops, but the trend of temperature increase under increased salinity is present in all cases. The calculated F-values were higher for canopy temperature than for all other compared indicators. The vegetation indices also showed significant differences, but F-values were lower compared to canopy temperature. Also the visual comparison of the soil salinity map and the canopy temperature map show similar spatial patterns. The NDVI and EVI maps look more random and noisy and patterns are less pronounced than for the canopy temperature map. The strongest relation between the soil salinity map and canopy temperature was usually observed at the end of a dry season and in the period of maximum crop development. Satellite thermography appeared to be a valuable approach to detect soil salinity under agricultural crops at landscape scale.

  2. The Impacts of Soil Fertility and Salinity on Soil Nitrogen Dynamics Mediated by the Soil Microbial Community Beneath the Halophytic Shrub Tamarisk.

    PubMed

    Iwaoka, Chikae; Imada, Shogo; Taniguchi, Takeshi; Du, Sheng; Yamanaka, Norikazu; Tateno, Ryunosuke

    2018-05-01

    Nitrogen (N) is one of the most common limiting nutrients for primary production in terrestrial ecosystems. Soil microbes transform organic N into inorganic N, which is available to plants, but soil microbe activity in drylands is sometimes critically suppressed by environmental factors, such as low soil substrate availability or high salinity. Tamarisk (Tamarix spp.) is a halophytic shrub species that is widely distributed in the drylands of China; it produces litter enriched in nutrients and salts that are thought to increase soil fertility and salinity under its crown. To elucidate the effects of tamarisks on the soil microbial community, and thus N dynamics, by creating "islands of fertility" and "islands of salinity," we collected soil samples from under tamarisk crowns and adjacent barren areas at three habitats in the summer and fall. We analyzed soil physicochemical properties, inorganic N dynamics, and prokaryotic community abundance and composition. In soils sampled beneath tamarisks, the N mineralization rate was significantly higher, and the prokaryotic community structure was significantly different, from soils sampled in barren areas, irrespective of site and season. Tamarisks provided suitable nutrient conditions for one of the important decomposers in the area, Verrucomicrobia, by creating "islands of fertility," but provided unsuitable salinity conditions for other important decomposers, Flavobacteria, Gammaproteobacteria, and Deltaproteobacteria, by mitigating salt accumulation. However, the quantity of these decomposers tended to be higher beneath tamarisks, because they were relatively unaffected by the small salinity gradient created by the tamarisks, which may explain the higher N mineralization rate beneath tamarisks.

  3. Adsorption of organic ligands on low surface charge clay minerals: the composition in the aqueous interface region.

    PubMed

    Jelavić, S; Stipp, S L S; Bovet, N

    2018-06-27

    An understanding of the mechanisms that control the adsorption of organic molecules on clay minerals is of interest in several branches of science and industry. Oil production using low salinity injection fluids can increase yields by as much as 40% over standard injection with seawater or formation water. The mechanism responsible for the low salinity response is still debated, but one hypothesis is a change in pore surface wettability. Organic contamination in soil and drinking water aquifers is a challenge for municipal water suppliers and for agriculture. A better understanding is needed for how mineral species, solution composition and pH affect the desorption of low molecular weight organic ligands from clay minerals and consequently their wettability. We used X-ray photoelectron spectroscopy under cryogenic conditions to investigate the in situ composition in the mineral-solution interface region in a series of experiments with a range of pH and ion concentrations. We demonstrate that both chlorite and kaolinite release organic molecules under conditions relevant for low salinity water flooding. This release increases with a higher solution pH but is only slightly affected by the character of the organic ligand. This is consistent with the observation that low salinity enhanced oil recovery correlates with the presence of chlorite and kaolinite. Our results indicate that the pore surface charge and salinity of formation water and injection fluids are key parameters in determining the low salinity response. In general, our results imply that clay mineral surface charge influences the composition in the interface through an affinity for organic molecules.

  4. The long oasis: understanding and managing saline floodplains in southeastern Australia

    NASA Astrophysics Data System (ADS)

    Woods, J.; Green, G.; Laattoe, T.; Purczel, C.; Riches, V.; Li, C.; Denny, M.

    2017-12-01

    In a semi-arid region of southeastern Australia, the River Murray is the predominant source of freshwater for town water supply, irrigation, and floodplain ecosystems. The river interacts with aquifers where the salinity routinely exceeds 18,000 mg/l. River regulation, extraction, land clearance, and irrigation have reduced the size and frequency of floods while moving more salt into the floodplain. Floodplain ecosystem health has declined. Management options to improve floodplain health under these modified conditions include environmental watering, weirpool manipulation, and groundwater pumping. To benefit long-lived tree species, floodplain management needs to increase soil moisture availability. A conceptual model was developed of floodplain processes impacting soil moisture availability. The implications and limitations of the conceptualization were investigated using a series of numerical models, each of which simulated a subset of the processes under current and managed conditions. The aim was to determine what range of behaviors the models predicted, and to identify which parameters were key to accurately predicting the success of management options. Soil moisture availability was found to depend strongly on the properties of the floodplain clay, which controls vertical recharge during inundation. Groundwater freshening near surface water features depended on the riverbed conductivity and the penetration of the river into the floodplain sediments. Evapotranspiration is another critical process, and simulations revealed the limitations of standard numerical codes in environments where both evaporation and transpiration depend on salinity. Finally, maintenance of viable populations of floodplain trees is conceptually understood to rely on the persistence of adequate soil moisture availability over time, but thresholds for duration of exposure to low moisture availability that lead to decline and irreversible decline in tree condition are a major knowledge gap. The work identified critical data gaps which will be addressed in monitoring guidelines to improve management. This includes: hydrogeochemical sampling; in situ soil monitoring combined with tree health observations; monitoring of actual evapotranspiration; and monitoring of bores close to surface water sources.

  5. Contaminants from Cretaceous Black Shale Part 1: Natural weathering processes controlling contaminant cycling in Mancos Shale, southwestern United States, with emphasis on salinity and selenium

    USGS Publications Warehouse

    Tuttle, Michele L.W.; Fahy, Juli W.; Elliott, John G.; Grauch, Richard I.; Stillings, Lisa L.

    2013-01-01

    Soils derived from black shale can accumulate high concentrations of elements of environmental concern, especially in regions with semiarid to arid climates. One such region is the Colorado River basin in the southwestern United States where contaminants pose a threat to agriculture, municipal water supplies, endangered aquatic species, and water-quality commitments to Mexico. Exposures of Cretaceous Mancos Shale (MS) in the upper basin are a major contributor of salinity and selenium in the Colorado River. Here, we examine the roles of geology, climate, and alluviation on contaminant cycling (emphasis on salinity and Se) during weathering of MS in a Colorado River tributary watershed. Stage I (incipient weathering) began perhaps as long ago as 20 ka when lowering of groundwater resulted in oxidation of pyrite and organic matter. This process formed gypsum and soluble organic matter that persist in the unsaturated, weathered shale today. Enrichment of Se observed in laterally persistent ferric oxide layers likely is due to selenite adsorption onto the oxides that formed during fluctuating redox conditions at the water table. Stage II weathering (pedogenesis) is marked by a significant decrease in bulk density and increase in porosity as shale disaggregates to soil. Rainfall dissolves calcite and thenardite (Na2SO4) at the surface, infiltrates to about 1 m, and precipitates gypsum during evaporation. Gypsum formation (estimated 390 kg m−2) enriches soil moisture in Na and residual SO4. Transpiration of this moisture to the surface or exposure of subsurface soil (slumping) produces more thenardite. Most Se remains in the soil as selenite adsorbed to ferric oxides, however, some oxidizes to selenate and, during wetter conditions is transported with soil moisture to depths below 3 m. Coupled with little rainfall, relatively insoluble gypsum, and the translocation of soluble Se downward, MS landscapes will be a significant nonpoint source of salinity and Se to the Colorado River well into the future. Other trace elements weathering from MS that are often of environmental concern include U and Mo, which mimic Se in their behavior; As, Co, Cr, Cu, Ni, and Pb, which show little redistribution; and Cd, Sb, V, and Zn, which accumulate in Stage I shale, but are lost to varying degrees from upper soil intervals. None of these trace elements have been reported previously as contaminants in the study area.

  6. Forage kochia and Russian wildrye potential for rehabilitating Gardner's saltbush ecosystems degraded by halogeton

    USDA-ARS?s Scientific Manuscript database

    Gardner saltbush ecosystems are increasingly being invaded by halogeton (Halogeton glomeratus), which is extremely competitive and believed to increase soil surface salinity making it difficult to establish other desired plants. This study evaluated the ability of forage kochia (Kochia prostrata), ...

  7. Chloride and sulfate salinity effects on selenium accumulation by tall fescue. [Festuca arundinacea Schreb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin Wu; Zhang-Zhi Huang

    The discovery of high levels of Se in soil and water samples from the San Joaquin Valley, California, and of its responsibility for deformity and death of wildlife at Kesterson National Wildlife Refuge have renewed interest in the bioaccumulation of this element. Greenhouse nutrient solution culture and field experiments were conducted to examine the effects of Cl and SO{sub 4} salt on growth and Se accumulation in tall fescue (Festuca arundinacea Schreb.) cultivars Alta, Falcon, and Olympic. Sulfate salt substantially reduced growth inhibition and Se accumulation. Tall fescue from the field irrigated with water low in salinity had higher tissuemore » Se concentration than plants from the field irrigated with water high in salinity. No difference in tissue Se concentration was found among the three tall fescue cultivars; however, forage-type Alta produced the most shoot biomass and accumulated the most total Se. The soil irrigated with water high in salinity had 10 times higher Se concentration than soil irrigated with water low in salinity. The highest soil Se concentration was found in the top 15 cm of soil. Growing fescue for one year reduced soil Se by 50%. Selenium concentrations below 15-cm depth were lower and similar between the bare soil and the soil under tall fescue. Both the high and low salinity water irrigations did not cause high levels of Se accumulation by the tall fescue cultivars unless there was continual addition of Se into the system. This study generated important information for Se bioaccumulation management in soils with elevated salinity and Se levels.« less

  8. Assessment of groundwater and soil quality degradation using multivariate and geostatistical analyses, Dakhla Oasis, Egypt

    NASA Astrophysics Data System (ADS)

    Masoud, Alaa A.; El-Horiny, Mohamed M.; Atwia, Mohamed G.; Gemail, Khaled S.; Koike, Katsuaki

    2018-06-01

    Salinization of groundwater and soil resources has long been a serious environmental hazard in arid regions. This study was conducted to investigate and document the factors controlling such salinization and their inter-relationships in the Dakhla Oasis (Egypt). To accomplish this, 60 groundwater samples and 31 soil samples were collected in February 2014. Factor analysis (FA) and hierarchical cluster analysis (HCA) were integrated with geostatistical analyses to characterize the chemical properties of groundwater and soil and their spatial patterns, identify the factors controlling the pattern variability, and clarify the salinization mechanism. Groundwater quality standards revealed emergence of salinization (av. 885.8 mg/L) and extreme occurrences of Fe2+ (av. 17.22 mg/L) and Mn2+ (av. 2.38 mg/L). Soils were highly salt-affected (av. 15.2 dS m-1) and slightly alkaline (av. pH = 7.7). Evaporation and ion-exchange processes governed the evolution of two main water types: Na-Cl (52%) and Ca-Mg-Cl (47%), respectively. Salinization leads the chemical variability of both resources. Distinctive patterns of slight salinization marked the northern part and intense salinization marked the middle and southern parts. Congruence in the resources clusters confirmed common geology, soil types, and urban and agricultural practices. Minimizing the environmental and socioeconomic impacts of the resources salinization urges the need for better understanding of the hydrochemical characteristics and prediction of quality changes.

  9. Analysis of the Dielectric constant of saline-alkali soils and the effect on radar backscattering coefficient: a case study of soda alkaline saline soils in Western Jilin Province using RADARSAT-2 data.

    PubMed

    Li, Yang-yang; Zhao, Kai; Ren, Jian-hua; Ding, Yan-ling; Wu, Li-li

    2014-01-01

    Soil salinity is a global problem, especially in developing countries, which affects the environment and productivity of agriculture areas. Salt has a significant effect on the complex dielectric constant of wet soil. However, there is no suitable model to describe the variation in the backscattering coefficient due to changes in soil salinity content. The purpose of this paper is to use backscattering models to understand behaviors of the backscattering coefficient in saline soils based on the analysis of its dielectric constant. The effects of moisture and salinity on the dielectric constant by combined Dobson mixing model and seawater dielectric constant model are analyzed, and the backscattering coefficient is then simulated using the AIEM. Simultaneously, laboratory measurements were performed on ground samples. The frequency effect of the laboratory results was not the same as the simulated results. The frequency dependence of the ionic conductivity of an electrolyte solution is influenced by the ion's components. Finally, the simulated backscattering coefficients measured from the dielectric constant with the AIEM were analyzed using the extracted backscattering coefficient from the RADARSAT-2 image. The results show that RADARSAT-2 is potentially able to measure soil salinity; however, the mixed pixel problem needs to be more thoroughly considered.

  10. SMOS sea surface salinity maps of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Gabarro, Carolina; Olmedo, Estrella; Turiel, Antonio; Ballabrera-Poy, Joaquim; Martinez, Justino; Portabella, Marcos

    2016-04-01

    Salinity and temperature gradients drive the thermohaline circulation of the oceans, and play a key role in the ocean-atmosphere coupling. The strong and direct interactions between the ocean and the cryosphere (primarily through sea ice and ice shelves) is also a key ingredient of the thermohaline circulation. The ESA's Soil Moisture and Ocean Salinity (SMOS) mission, launched in 2009, has the objective measuring soil moisture over the continents and sea surface salinity over the oceans. Although the mission was originally conceived for hydrological and oceanographic studies [1], SMOS is also making inroads in the cryospheric monitoring. SMOS carries an innovative L-band (1.4 GHz, or 21-cm wavelength), passive interferometric radiometer (the so-called MIRAS) that measures the electromagnetic radiation emitted by the Earth's surface, at about 50 km spatial resolution wide swath (1200-km), and with a 3-day revisit time at the equator, but a more frequent one at the poles. Although the SMOS radiometer operating frequency offers almost the maximum sensitivity of the brightness temperature (TB) to sea surface salinity (SSS) variations, this is rather low, , i.e.,: 90% of ocean SSS values span a range of brightness temperatures of only 5K at L-band. This sensitivity is particularly low in cold waters. This implies that the SSS retrieval requires high radiometric performance. Since the SMOS launch, SSS Level 3 maps have been distributed by several expert laboratories including the Barcelona Expert Centre (BEC). However, since the TB sensitivity to SSS decreases with decreasing sea surface temperature (SST), large retrieval errors had been reported when retrieving salinity values at latitudes above 50⁰N. Two new processing algorithms, recently developed at BEC, have led to a considerable improvement of the SMOS data, allowing for the first time to derive SSS maps in cold waters. The first one is to empirically characterize and correct the systematic biases with six years of SMOS data acquisitions. The second is the modification of the filtering criterion to account for the statistical distributions of SSS at each ocean grid point. This allows retrieving a value of SSS which is less affected by outliers originated from RFI and other effects. We will provide an assessment of the quality of these new SSS products in the Arctic, as well as illustrate the potential of these maps to monitor the main river discharges to the Arctic Ocean. [1] Font, J.; Camps, A.; Borges, A.; Martín-Neira, M.; Boutin, J.; Reul, N.; Kerr, Y.; Hahne, A. & Mecklenburg, S. SMOS: The Challenging Sea Surface Salinity Measurement From Space Proceedings of the IEEE, 2010, 98, 649 -665

  11. The threat of soil salinity: A European scale review.

    PubMed

    Daliakopoulos, I N; Tsanis, I K; Koutroulis, A; Kourgialas, N N; Varouchakis, A E; Karatzas, G P; Ritsema, C J

    2016-12-15

    Soil salinisation is one of the major soil degradation threats occurring in Europe. The effects of salinisation can be observed in numerous vital ecological and non-ecological soil functions. Drivers of salinisation can be detected both in the natural and man-made environment, with climate and the foreseen climate change also playing an important role. This review outlines the state of the art concerning drivers and pressures, key indicators as well as monitoring, modeling and mapping methods for soil salinity. Furthermore, an overview of the effect of salinisation on soil functions and the respective mechanism is presented. Finally, the state of salinisation in Europe is presented according to the most recent literature and a synthesis of consistent datasets. We conclude that future research in the field of soil salinisation should be focused on among others carbon dynamics of saline soil, further exploration of remote sensing of soil properties and the harmonization and enrichment of soil salinity maps across Europe within a general context of a soil threat monitoring system to support policies and strategies for the protection of European soils. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Dynamic changes in water and salinity in saline-alkali soils after simulated irrigation and leaching.

    PubMed

    Wang, Shutao; Feng, Qian; Zhou, Yapeng; Mao, Xiaoxi; Chen, Yaheng; Xu, Hao

    2017-01-01

    Soil salinization is a global problem that limits agricultural development and impacts human life. This study aimed to understand the dynamic changes in water and salinity in saline-alkali soil based on an indoor soil column simulation. We studied the changes in the water and salt contents of soils with different degrees of salinization under various irrigation conditions. The results showed that after seven irrigations, the pH, conductivity and total soluble salt content of the percolation samples after irrigation generally increased initially then decreased with repeated irrigation. The soil moisture did not change significantly after irrigation. The pH, conductivity, and total soluble salt content of each layer of the soil profile exhibited general declining trends. In the soil profile from Changguo Township (CG), the pH decreased from 8.21-8.35 to 7.71-7.88, the conductivity decreased from 0.95-1.14 ms/cm to 0.45-0.68 ms/cm, and the total soluble salt content decreased from 2.63-2.81 g/kg to 2.28-2.51 g/kg. In the soil profile from Zhongjie Industrial Park (ZJ), the pH decreased from 8.36-8.54 to 7.73-7.96, the conductivity decreased from 1.58-1.68 ms/cm to 1.45-1.54 ms/cm, and the total soluble salt decreased from 2.81-4.03 g/kg to 2.56-3.28 g/kg. The transported salt ions were primarily K+, Na+ and Cl-. After several irrigations, a representative desalination effect was achieved. The results of this study can provide technical guidance for the comprehensive management of saline-alkali soils.

  13. Dynamic changes in water and salinity in saline-alkali soils after simulated irrigation and leaching

    PubMed Central

    Feng, Qian; Mao, Xiaoxi

    2017-01-01

    Soil salinization is a global problem that limits agricultural development and impacts human life. This study aimed to understand the dynamic changes in water and salinity in saline-alkali soil based on an indoor soil column simulation. We studied the changes in the water and salt contents of soils with different degrees of salinization under various irrigation conditions. The results showed that after seven irrigations, the pH, conductivity and total soluble salt content of the percolation samples after irrigation generally increased initially then decreased with repeated irrigation. The soil moisture did not change significantly after irrigation. The pH, conductivity, and total soluble salt content of each layer of the soil profile exhibited general declining trends. In the soil profile from Changguo Township (CG), the pH decreased from 8.21–8.35 to 7.71–7.88, the conductivity decreased from 0.95–1.14 ms/cm to 0.45–0.68 ms/cm, and the total soluble salt content decreased from 2.63–2.81 g/kg to 2.28–2.51 g/kg. In the soil profile from Zhongjie Industrial Park (ZJ), the pH decreased from 8.36–8.54 to 7.73–7.96, the conductivity decreased from 1.58–1.68 ms/cm to 1.45–1.54 ms/cm, and the total soluble salt decreased from 2.81–4.03 g/kg to 2.56–3.28 g/kg. The transported salt ions were primarily K+, Na+ and Cl-. After several irrigations, a representative desalination effect was achieved. The results of this study can provide technical guidance for the comprehensive management of saline-alkali soils. PMID:29091963

  14. [Soil sandy desertification and salinization and their interrelationships in Yanghuang irrigated area of Hongsipu, Ningxia of northwest China].

    PubMed

    Yang, Xin-guo; Song, Nai-ping

    2011-09-01

    By the methods of controlled and typical sampling, this paper analyzed the texture, salinization characteristics, cation exchange capacity (CEC), and their correlations in the 0-40 cm soil profiles of corn land, medlar land, and non-utilized land in Yanghuang irrigated area of Hongsipu, Northwest China. Under controlled sampling, the salt content in the soil profiles was 0.69-1.30 g x kg(-1) (except in non-utilized land where the 0-10 cm soil salt content was up to 1.74 g x kg(-1)), with no obvious salinization. The sodium adsorption ratio and exchangeable sodium percentage in the 20-40 cm soil layer of medlar land were 12.18 and 14.1%, respectively, and the total content of clay and silt in the 0-40 cm soil profile of medlar land was up to 37.3% whereas that in the 0-20 cm soil layer of corn land was only 13.5%. In the 20-40 cm soil layer of corn land, the indices of sandy desertification and salinization had significant correlations under controlled sampling but no correlations under typical sampling, while the CEC and the sandy desertification and salinization indices had significant correlations under typical sampling. In different land use types in the study area, soil sandy desertification and salinization had complicated interrelationships, and CEC could be used as the indicator for the changes in soil environmental quality.

  15. pH dependent salinity-boron interactions impact yield, biomass, evapotranspiration and boron uptake in broccoli (Brassica oleracea L.)

    USDA-ARS?s Scientific Manuscript database

    Soil pH is known to influence many important biochemical processes in plants and soils, however its role in salinity - boron interactions affecting plant growth and ion relations has not been examined. The purpose of this research was to evaluate the interactive effects of salinity, boron and soil ...

  16. Storage/Turnover Rate of Inorganic Carbon and Its Dissolvable Part in the Profile of Saline/Alkaline Soils

    PubMed Central

    Wang, Yugang; Wang, Zhongyuan; Li, Yan

    2013-01-01

    Soil inorganic carbon is the most common form of carbon in arid and semiarid regions, and has a very long turnover time. However, little is known about dissolved inorganic carbon storage and its turnover time in these soils. With 81 soil samples taken from 6 profiles in the southern Gurbantongute Desert, China, we investigated the soil inorganic carbon (SIC) and the soil dissolved inorganic carbon (SDIC) in whole profiles of saline and alkaline soils by analyzing their contents and ages with radiocarbon dating. The results showed that there is considerable SDIC content in SIC, and the variations of SDIC and SIC contents in the saline soil profile were much larger than that in the alkaline profile. SDIC storage accounted for more than 20% of SIC storage, indicating that more than 1/5 of the inorganic carbon in both saline and alkaline soil is not in non-leachable forms. Deep layer soil contains considerable inorganic carbon, with more than 80% of the soil carbon stored below 1 m, whether for SDIC or SIC. More importantly, SDIC ages were much younger than SIC in both saline soil and alkaline soil. The input rate of SDIC and SIC ranged from 7.58 to 29.54 g C m-2 yr-1 and 1.34 to 5.33 g C m-2 yr-1 respectively for saline soil, and from 1.43 to 4.9 g C m-2 yr-1 and 0.79 to 1.27 g C m-2 yr-1respectively for alkaline soil. The comparison of SDIC and SIC residence time showed that using soil inorganic carbon to estimate soil carbon turnover would obscure an important fraction that contributes to the modern carbon cycle: namely the shorter residence and higher input rate of SDIC. This is especially true for SDIC in deep layers of the soil profile. PMID:24312399

  17. Soil salinity detection. [Starr and Cameron Counties, Texas

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L.; Richardson, A. J.; Gausman, H. W.; Leamer, R. W.; Gerbermann, A. H.; Everitt, J. H.; Cuellar, J. A. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Growth forms and herbage biomass production varied considerably among saline and nonsaline soil range sites in Starr County. Grasses on saline soil sites were shallow-rooted and short whereas on nonsaline sites there was an intermixture of short and midgrass species. Differentiation between primarily undisturbed saline and nonsaline rangelands, in Starr County, is partially possible using film optical density readings from Skylab imagery. Differentiation among eight saline and nonsaline soil sites in Cameron County, using black and white and color film was not possible according to statistical results from both DMRT and correlation analysis. Linear analysis showed that Bendix 24-band MSS data (aircraft) collected at 1700 m and 4800 m, as well as Skylab and LANDSAT-1 MSS data, were significantly correlated to electrical conductivity readings. In Starr County, the best spectral band for detection of saline soil levels, using black and white SO-022 film, was in the 0.6 to 0.7 micron spectral region. In Cameron County, the best spectral bands for detection of saline soil levels were the 2.3 to 2.43 micron, 0.72 to 0.76 micron, 0.69 to 1.75 micron, and 0.7 to 1.1 micron spectral regions.

  18. Soil salinity and matric potential interaction on water use, water use efficiency and yield response factor of bean and wheat.

    PubMed

    Khataar, Mahnaz; Mohhamadi, Mohammad Hossien; Shabani, Farzin

    2018-02-08

    We studied the effects of soil matric potential and salinity on the water use (WU), water use efficiency (WUE) and yield response factor (Ky), for wheat (Triticum aestivum cv. Mahdavi) and bean (Phaseoulus vulgaris cv. COS16) in sandy loam and clay loam soils under greenhouse conditions. Results showed that aeration porosity is the predominant factor controlling WU, WUE, Ky and shoot biomass (Bs) at high soil water potentials. As matric potential was decreased, soil aeration improved, with Bs, WU and Ky reaching maximum value at -6 to -10 kPa, under all salinities. Wheat WUE remained almost unchanged by reduction of matric potential under low salinities (EC ≤ 8 dSm -1 ), but increased under higher salinities (EC ≥ 8 dSm -1 ), as did bean WUE at all salinities, as matric potential decreased to -33 kPa. Wheat WUE exceeds that of bean in both sandy loam and clay loam soils. WUE of both plants increased with higher shoot/root ratio and a high correlation coefficient exists between them. Results showed that salinity decreases all parameters, particularly at high potentials (h = -2 kPa), and amplifies the effects of waterlogging. Further, we observed a strong relationship between transpiration (T) and root respiration (Rr) for all experiments.

  19. Morphological and structural plasticity of grassland species in response to a gradient in saline-sodic soils.

    PubMed

    Huang, Y; Song, Y; Li, G; Drake, P L; Zheng, W; Li, Z; Zhou, D

    2015-11-01

    The abundance and distribution of species can be ascribed to both environmental heterogeneity and stress tolerance, with the latter measure sometimes associated with phenotypic plasticity. Although phenotypic plasticity varies predictably in response to common forms of stress, we lack a mechanistic understanding of the response of species to high saline-sodic soils. We compared the phenotypic plasticity of three pairs of high and low saline-sodic tolerant congeners from the families Poaceae (Leymus chinensis versus L. secalinus), Fabaceae (Lespedeza davurica versus L. bicolor) and Asteraceae (Artemisia mongolica versus A. sieversiana) in a controlled pot experiment in the Songnen grassland, China. The low tolerant species, L. secalinus and A. sieversiana exhibited higher plasticity in response to soil salinity and sodicity than their paired congeners. Highly tolerant species, L. chinensis and A. mongolica, had higher values for several important morphological traits, such as shoot length and total biomass under the high saline-sodic soil treatment than their paired congeners. In contrast, congeners from the family Fabaceae, L. davurica and L. bicolor, did not exhibit significantly different plasticity in response to soil salinity and sodicity. All species held a constant reproductive effort in response to saline-sodic soil stress. The different responses between low and high tolerant species offer an explanation for the distribution patterns of these species in the Songnen grassland. Highly tolerant species showed less morphological plasticity over a range of saline-sodic conditions than their paired congeners, which may manifest as an inability to compete with co-occurring species in locations where saline-sodic soils are absent. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  20. Recent advances in the salinity retrieval algorithms for Aquarius and Soil Moisture Active Passive (SMAP)

    NASA Astrophysics Data System (ADS)

    Meissner, Thomas; Wentz, Frank; Lee, Tong

    2017-04-01

    Our presentation discusses the latest improvements in the salinity retrievals both for Aquarius and Soil Moisture Active-Passive (SMAP) since the last releases. The Aquarius V4.0 was released in June 2015. The final V5.0 release is planned for late 2017. SMAP V 2.0 has been released in September 2016. We will present validation results for both Aquarius V5.0 pre-release and SMAP V2.0 salinity comparing with near-surface salinity measurements from Argo floats. We show that salty biases at higher northern latitudes in Aquarius V4.0 can be explained by inaccuracy in the model used in correcting for the absorption by atmospheric oxygen. These biases will be mitigated in V5.0 by fine-tuning the parameters in the oxygen absorption model. The full 360-degree look capability of SMAP makes it possible to take observations from the forward and backward looking direction at the same instance of time. This two-look capability aids the salinity retrievals. One of the largest spurious contaminations in the salinity retrievals is caused by the galactic reflection from the ocean surface. Because in most instances the reflected galaxy appears only in either the forward or the backward look, it is possible to determine its contribution by taking the difference of the measured SMAP brightness temperatures between the two looks. Our result suggests that the surface roughness that is used in the galactic correction needs to be increased and also the estimated strength of some of the galactic sources need to be slightly adjusted. The improved galaxy correction has been implemented in SMAP V2.0 retrieval and will be included in Aquarius V5.0 as well. It helps the mitigation of residual zonal and temporal biases that were present in both products. Another major cause of the observed zonal biases in SMAP is the emissive SMAP mesh antenna. In order to correct for it, an accurate knowledge of the emissivity of the antenna and its physical temperature are required. We discuss the improvements in the correction for the emissive SMAP antenna in SMAP V2.0 over V1.0.

  1. Introducing a decomposition rate modifier in the Rothamsted Carbon Model to predict soil organic carbon stocks in saline soils.

    PubMed

    Setia, Raj; Smith, Pete; Marschner, Petra; Baldock, Jeff; Chittleborough, David; Smith, Jo

    2011-08-01

    Soil organic carbon (SOC) models such as the Rothamsted Carbon Model (RothC) have been used to estimate SOC dynamics in soils over different time scales but, until recently, their ability to accurately predict SOC stocks/carbon dioxide (CO(2)) emissions from salt-affected soils has not been assessed. Given the large extent of salt-affected soils (19% of the 20.8 billion ha of arable land on Earth), this may lead to miss-estimation of CO(2) release. Using soils from two salt-affected regions (one in Punjab, India and one in South Australia), an incubation study was carried out measuring CO(2) release over 120 days. The soils varied both in salinity (measured as electrical conductivity (EC) and calculated as osmotic potential using EC and water content) and sodicity (measured as sodium adsorption ratio, SAR). For soils from both regions, the osmotic potential had a significant positive relationship with CO(2)-C release, but no significant relationship was found between SAR and CO(2)-C release. The monthly cumulative CO(2)-C was simulated using RothC. RothC was modified to take into account reductions in plant inputs due to salinity. A subset of non-salt-affected soils was used to derive an equation for a "lab-effect" modifier to account for changes in decomposition under lab conditions and this modifier was significantly related with pH. Using a subset of salt-affected soils, a decomposition rate modifier (as a function of osmotic potential) was developed to match measured and modelled CO(2)-C release after correcting for the lab effect. Using this decomposition rate modifier, we found an agreement (R(2) = 0.92) between modelled and independently measured data for a set of soils from the incubation experiment. RothC, modified by including reduced plant inputs due to salinity and the salinity decomposition rate modifier, was used to predict SOC stocks of soils in a field in South Australia. The predictions clearly showed that SOC stocks are reduced in saline soils. Therefore both the decomposition rate modifier and plant input modifier should be taken into account when accounting for SOC turnover in saline soils. Since modeling has previously not accounted for the impact of salinity, our results suggest that previous predictions may have overestimated SOC stocks.

  2. Salinity control in a clay soil beneath an orchard irrigated with treated waste water in the presence of a high water table: A numerical study

    NASA Astrophysics Data System (ADS)

    Russo, David; Laufer, Asher; Bardhan, Gopali; Levy, Guy J.

    2015-12-01

    A citrus orchard planted on a structured, clay soil associated with a high water table, irrigated by drip irrigation system using treated waste water (TWW) and local well water (LWW) was considered here. The scope of the present study was to analyze transport of mixed-ion, interacting salts in a combined vadose zone-groundwater flow system focusing on the following issues: (i) long-term effects of irrigation with TWW on the response of the flow system, identifying the main factors (e.g., soil salinity, soil sodicity) that control these effects, and (ii) salinity control aiming at improving both crop productivity and groundwater quality. To pursue this two-fold goal, 3-D numerical simulations of field-scale flow and transport were performed for an extended period of time, considering realistic features of the soil, water table, crop, weather and irrigation, and the coupling between the flow and the transport through the dependence of the soil hydraulic functions, K(ψ) and θ(ψ), on soil solution concentration C, and sodium adsorption ratio, SAR. Results of the analyses suggest that in the case studied, the long-term effect of irrigation with TWW on the response of the flow system is attributed to the enhanced salinity of the TWW, and not to the increase in soil sodicity. The latter findings are attributed to: (i) the negative effect of soil salinity on water uptake, and the tradeoff between water uptake and drainage flux, and, concurrently, solute discharge below the root zone; and, (ii) the tradeoff between the effects of C and SAR on K(ψ) and θ(ψ). Furthermore, it was demonstrated that a data-driven protocol for soil salinity control, based on alternating irrigation water quality between TWW and desalinized water, guided by the soil solution salinity at the centroid of the soil volume active in water uptake, may lead to a substantial increase in crop yield, and to a substantial decrease in the salinity load in the groundwater.

  3. Salinity modeling by remote sensing in central and southern Iraq

    NASA Astrophysics Data System (ADS)

    Wu, W.; Mhaimeed, A. S.; Platonov, A.; Al-Shafie, W. M.; Abbas, A. M.; Al-Musawi, H. H.; Khalaf, A.; Salim, K. A.; Chrsiten, E.; De Pauw, E.; Ziadat, F.

    2012-12-01

    Salinization, leading to a significant loss of cultivated land and crop production, is one of the most active land degradation phenomena in the Mesopotamian region in Iraq. The objectives of this study (under the auspices of ACIAR and Italian Government) are to investigate the possibility to use remote sensing technology to establish salinity-sensitive models which can be further applied to local and regional salinity mapping and assessment. Case studies were conducted in three pilot sites namely Musaib, Dujaila and West Garraf in the central and southern Iraq. Fourteen spring (February - April), seven June and four summer Landsat ETM+ images in the period 2009-2012, RapidEye data (April 2012), and 95 field EM38 measurements undertaken in this spring and summer, 16 relevant soil laboratory analysis result (Dujaila) were employed in this study. The procedure we followed includes: (1) Atmospheric correction using FLAASH model; (2) Multispectral transformation of a set of vegetation and non-vegetation indices such as GDVI (Generalized Difference Vegetation Index), NDVI (Normalized Difference Vegetation Index), EVI (Enhanced Vegetation Index), SAVI (Soil Adjusted Vegetation Index), SARVI (Soil Adjusted and Atmospherically Resistant Vegetation Index), NDII (Normalized Difference Infrared Index), Principal Components and surface temperature (T); (3) Derivation of the spring maximum (Musaib) and annual maximum (Dujaila and West Garraf) value in each pixel of each index of the observed period to avoid problems related to crop rotation (e.g. fallow) and the SLC-Off gaps in ETM+ images; (4) Extraction of the values of each vegetation and non-vegetation index corresponding to the field sampling locations (about 3 to 5 controversial samples very close to the roads or located in fallow were excluded); and (5) Coupling remote sensing indices with the available EM38 and soil electrical conductivity (EC) data using multiple linear least-square regression model at the confidence level of 95% in a stepwise (forward) manner. The results reveal that soil salinity and EM38 readings are negatively correlated with the different vegetation indices, especially, GDVI and NDVI, and positively correlated with T. The models obtained for the pilot sites are presented in Table 1. Although we are still waiting for more laboratory analytical result and satellite imagery for more comprehensive analysis, it is clearly possible to build up salinity models by remote sensing, on which further salinity mapping and assessment can be based. It is also noted that among all the vegetation indices, GDVI is the best salinity indicator followed by NDVI and T. RapidEye image shows lower correlation with EM38 measurements and EC because fallow and crop rotation issue cannot be sorted out by one acquisition image.Table 1: Salinity models obtained from the pilot sitesNote: EMV- Vertical reading of EM38, EC - Electrical conductivity in dS/m

  4. Porewater biogeochemistry and soil metabolism in dwarf red mangrove habitats (Twin Cays, Belize)

    USGS Publications Warehouse

    Lee, R.Y.; Porubsky, W.P.; Feller, Ilka C.; McKee, K.L.; Joye, S.B.

    2008-01-01

    Seasonal variability in biogeochemical signatures was used to elucidate the dominant pathways of soil microbial metabolism and elemental cycling in an oligotrophic mangrove system. Three interior dwarf mangrove habitats (Twin Cays, Belize) where surface soils were overlain by microbial mats were sampled during wet and dry periods of the year. Porewater equilibration meters and standard biogeochemical methods provided steady-state porewater profiles of pH, chloride, sulfate, sulfide, ammonium, nitrate/nitrite, phosphate, dissolved organic carbon, nitrogen, and phosphorus, reduced iron and manganese, dissolved inorganic carbon, methane and nitrous oxide. During the wet season, the salinity of overlying pond water and shallow porewaters decreased. Increased rainwater infiltration through soils combined with higher tidal heights appeared to result in increased organic carbon inventories and more reducing soil porewaters. During the dry season, evaporation increased both surface water and porewater salinities, while lower tidal heights resulted in less reduced soil porewaters. Rainfall strongly influenced inventories of dissolved organic carbon and nitrogen, possibly due to more rapid decay of mangrove litter during the wet season. During both times of year, high concentrations of reduced metabolites accumulated at depth, indicating substantial rates of organic matter mineralization coupled primarily to sulfate reduction. Nitrous oxide and methane concentrations were supersaturated indicating considerable rates of nitrification and/or incomplete denitrification and methanogenesis, respectively. More reducing soil conditions during the wet season promoted the production of reduced manganese. Contemporaneous activity of sulfate reduction and methanogenesis was likely fueled by the presence of noncompetitive substrates. The findings indicate that these interior dwarf areas are unique sites of nutrient and energy regeneration and may be critical to the overall persistence and productivity of mangrove-dominated islands in oligotrophic settings. ?? 2008 Springer Science+Business Media B.V.

  5. Salinity management in the Rio Grande Bosque

    Treesearch

    Jan M. H. Hendrickx; J. Bruce J. Harrison; Jelle Beekma; Graciela Rodriguez-Marin

    1999-01-01

    This paper discusses management options for salinity control in the Rio Grande Bosque. First, salt sources are identified and quantified. Capillary rise of ground water is the most important cause for soil salinization in the bosque. Next, a riparian salt balance is presented to explain the different mechanisms for soil salinization. Finally, the advantages and...

  6. Research on chemical characteristics of soil salt crusts with saline groundwater drip-irrigation in the Tarim Desert Highway Shelterbelt.

    PubMed

    Zhang, Jianguo; Xu, Xinwen; Lei, Jiaqiang; Li, Shengyu

    2013-01-01

    Soil salt crusts are special layers at soil surface which are widely distributed in the Trim Desert Highway Shelterbelt under drip-irrigation with high salinity groundwater. In order to reveal annual variation of their chemical characteristics, soil salt crusts in shelterbelt of different ages in hinterland of the Taklimakan Desert were sampled. SOM, total salt, inions and pH were analyzed. Following results were obtained. SOM of salt crusts increased with the shelterbelt ages, but increasing trend became lower gradually. Total salt, ions, and pH of salt crusts reduced gradually with the shelterbelt ages. Total salt of salt crusts in shelterbelt of different ages was much higher than shifting sandy land. Ions were higher than shifting sandy land, Cl(-), Na(+), and SO4 (2-) increased more obvious, then Mg(2+), K(+), Ca(2+) and HCO3 (-), CO3 (2-) was little and nearly had no change. pH was all alkaline, pH of salt crusts in shelterbelt of 11 years was even lower than shifting sandy land. We can include that the quality of shallow soil (0~30 cm) in the Trim Desert Highway Shelterbelt becomes better gradually.

  7. Forage kochia and Russian wildrye potential for rehabilitating Gardner's saltbush ecosystems degraded by halogeton

    USDA-ARS?s Scientific Manuscript database

    Gardner saltbush ecosystems are increasingly being invaded by halogeton [Halogeton glomeratus (M. Bieb.) C.A. Mey.], an annual halophyte that increases soil surface salinity and reduces plant biodiversity. This study was established in the Flaming Gorge National Recreation Area near Manilla, UT, to...

  8. Remote Sensing Monitoring of Changes in Soil Salinity: A Case Study in Inner Mongolia, China.

    PubMed

    Wu, Jingwei; Vincent, Bernard; Yang, Jinzhong; Bouarfa, Sami; Vidal, Alain

    2008-11-07

    This study used archived remote sensing images to depict the history of changes in soil salinity in the Hetao Irrigation District in Inner Mongolia, China, with the purpose of linking these changes with land and water management practices and to draw lessons for salinity control. Most data came from LANDSAT satellite images taken in 1973, 1977, 1988, 1991, 1996, 2001, and 2006. In these years salt-affected areas were detected using a normal supervised classification method. Corresponding cropped areas were detected from NVDI (Normalized Difference Vegetation Index) values using an unsupervised method. Field samples and agricultural statistics were used to estimate the accuracy of the classification. Historical data concerning irrigation/drainage and the groundwater table were used to analyze the relation between changes in soil salinity and land and water management practices. Results showed that: (1) the overall accuracy of remote sensing in detecting soil salinity was 90.2%, and in detecting cropped area, 98%; (2) the installation/innovation of the drainage system did help to control salinity; and (3) a low ratio of cropped land helped control salinity in the Hetao Irrigation District. These findings suggest that remote sensing is a useful tool to detect soil salinity and has potential in evaluating and improving land and water management practices.

  9. Response of edible amaranth cultivar to salt stress led to Cd mobilization in rhizosphere soil: A metabolomic analysis.

    PubMed

    Guo, Shi-Hong; Hu, Ni; Li, Qu-Sheng; Yang, Ping; Wang, Li-Li; Xu, Zhi-Min; Chen, Hui-Jun; He, Bao-Yan; Zeng, Eddy Y

    2018-05-31

    The present study aimed to investigate the metabolic response of edible amaranth cultivars to salt stress and the induced rhizosphere effects on Cd mobilization in soil. Two edible amaranth cultivars (Amaranthus mangostanus L.), Quanhong (low-Cd accumulator; LC) and Liuye (high-Cd accumulator; HC), were subject to salinity treatment in both soil and hydroponic cultures. The total amount of mobilized Cd in rhizosphere soil under salinity treatment increased by 2.78-fold in LC cultivar and 4.36-fold in HC cultivar compared with controls, with 51.2% in LC cultivar and 80.5% in HC cultivar being attributed to biological mobilization of salinity. Multivariate statistical analysis generated from metabolite profiles in both rhizosphere soil and root revealed clear discrimination between control and salt treated samples. Tricarboxylic acid cycle in root was up-regulated to cope with salinity treatment, which promoted release of organic acids from root. The increased accumulation of organic acids in rhizosphere under salt stress obviously promoted soil Cd mobility. These results suggested that salinity promoted release of organic acids from root and enhanced soil Cd mobilization and accumulation in edible amaranth cultivar in soil culture. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Evaluation of Assimilated SMOS Soil Moisture Data for US Cropland Soil Moisture Monitoring

    NASA Technical Reports Server (NTRS)

    Yang, Zhengwei; Sherstha, Ranjay; Crow, Wade; Bolten, John; Mladenova, Iva; Yu, Genong; Di, Liping

    2016-01-01

    Remotely sensed soil moisture data can provide timely, objective and quantitative crop soil moisture information with broad geospatial coverage and sufficiently high resolution observations collected throughout the growing season. This paper evaluates the feasibility of using the assimilated ESA Soil Moisture Ocean Salinity (SMOS)Mission L-band passive microwave data for operational US cropland soil surface moisture monitoring. The assimilated SMOS soil moisture data are first categorized to match with the United States Department of Agriculture (USDA)National Agricultural Statistics Service (NASS) survey based weekly soil moisture observation data, which are ordinal. The categorized assimilated SMOS soil moisture data are compared with NASSs survey-based weekly soil moisture data for consistency and robustness using visual assessment and rank correlation. Preliminary results indicate that the assimilated SMOS soil moisture data highly co-vary with NASS field observations across a large geographic area. Therefore, SMOS data have great potential for US operational cropland soil moisture monitoring.

  11. Intraspecific variation in the response of Taxodium distichum seedlings to salinity

    USGS Publications Warehouse

    Allen, J.A.; Chambers, J.L.; McKinney, D.

    1994-01-01

    Seedlings of 15 open-pollinated families of baldcypress (Taxodium distichum) were tested for their tolerance to combined salinty and flooding stress. Ten of the families were from coastal locations in Louisiana or Alabama, USA, that were slightly brackish. The other families were from locations not affected by saltwater intrusion. Five salinity levels were investigated--0,2,4,6, and 8 g -1 artificial seawater -- all with flooding to approximately 5 cm above the soil surface. Survival, height growth, leaf area and total biomass all declined with increasing salinity. Significant variation was found among salinity levels, families, and salinity x family interactions for leaf area and total biomass. Two tolerance indices were also developed to compare family response with salinity. In general, families from brackish sources had greater total biomass, leaf area, and tolerance index values than families from freshwater sources at the higher slainity levels. A selection and breeding program designed to develop moderately salt-tolerant baldcypress seedlings for use in wetland restoration projects and other applications appears to be well-justified.

  12. Stress adaptations in a Plant Growth Promoting Rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils.

    PubMed

    Paul, Diby; Nair, Sudha

    2008-10-01

    The costs associated with soil salinity are potentially enormous and the effects of salinity may impact heavily on agriculture, biodiversity and the environment. As the saline areas under agriculture are increasing every year across the globe, it is of much public concern. Agricultural crops and soil microorganisms are affected with salinity. As Plant Growth Promoting Rhizobacteria (PGPR) have been reported to be contributing to the plant health, the osmotolerance mechanisms of these PGPRs are of importance. Pseudomonas fluorescens MSP-393 is a proven biocontrol agent for many of the crops grown in saline soils of coastal ecosystem. Studies revealed that the root colonization potential of the strain was not hampered with higher salinity in soil. As a means of salt tolerance, the strain de novo -synthesized, the osmolytes, Ala, Gly, Glu, Ser, Thr, and Asp in their cytosol. To understand the mechanism of salt tolerance, the proteome analysis of the bacteria was carried out employing 2D gel electrophoresis and MALDI-TOF. Peptide mass fingerprinting and in silico investigation revealed the up regulation of many of salt regulated proteins. It could be ascertained that the osmotolerance mechanisms of MSP-393 viz. de novo synthesis of osmolytes and over production of salt stress proteins effectively nullified the detrimental effects of high osmolarity. MSP-393 could serve as a suitable bioinoculant for crops grown in saline soils. (c) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Heavy metal displacement in salt-water-irrigated soil during phytoremediation.

    PubMed

    Wahla, Intkhab Hazoor; Kirkham, M B

    2008-09-01

    In regions where phytoremediation is carried out, brackish water must often be used. However, no information exists concerning the consequences of saline-water irrigation on the mobility of heavy metals in sludge applied to soil during phytoremediation. The purpose of this experiment was to determine the effect of NaCl irrigation on displacement of seven heavy metals in sludge (Cd, Cu, Fe, Mn, Ni, Pb, Zn) applied to the surface of soil columns containing barley plants. Half the columns received NaCl irrigation (10,000 mg L(-1)) and half the columns received tap-water irrigation. Half the columns were treated with the chelating agent EDTA. With no EDTA, irrigation with the NaCl solution increased the concentrations of Cd, Fe, Mn, and Pb in the drainage water above drinking-water standards. Irrigation of sludge farms with brackish water is not recommended, because saline water increased the mobility of the heavy metals and they polluted the drainage water.

  14. An inorganic CO2 diffusion and dissolution process explains negative CO2 fluxes in saline/alkaline soils.

    PubMed

    Ma, Jie; Wang, Zhong-Yuan; Stevenson, Bryan A; Zheng, Xin-Jun; Li, Yan

    2013-01-01

    An 'anomalous' negative flux, in which carbon dioxide (CO2) enters rather than is released from the ground, was studied in a saline/alkaline soil. Soil sterilization disclosed an inorganic process of CO2 dissolution into (during the night) and out of (during the day) the soil solution, driven by variation in soil temperature. Experimental and modeling analysis revealed that pH and soil moisture were the most important determinants of the magnitude of this inorganic CO2 flux. In the extreme cases of air-dried saline/alkaline soils, this inorganic process was predominant. While the diurnal flux measured was zero sum, leaching of the dissolved inorganic carbon in the soil solution could potentially effect net carbon ecosystem exchange. This finding implies that an inorganic module should be incorporated when dealing with the CO2 flux of saline/alkaline land. Neglecting this inorganic flux may induce erroneous or misleading conclusions in interpreting CO2 fluxes of these ecosystems.

  15. An inorganic CO2 diffusion and dissolution process explains negative CO2 fluxes in saline/alkaline soils

    PubMed Central

    Ma, Jie; Wang, Zhong-Yuan; Stevenson, Bryan A.; Zheng, Xin-Jun; Li, Yan

    2013-01-01

    An ‘anomalous' negative flux, in which carbon dioxide (CO2) enters rather than is released from the ground, was studied in a saline/alkaline soil. Soil sterilization disclosed an inorganic process of CO2 dissolution into (during the night) and out of (during the day) the soil solution, driven by variation in soil temperature. Experimental and modeling analysis revealed that pH and soil moisture were the most important determinants of the magnitude of this inorganic CO2 flux. In the extreme cases of air-dried saline/alkaline soils, this inorganic process was predominant. While the diurnal flux measured was zero sum, leaching of the dissolved inorganic carbon in the soil solution could potentially effect net carbon ecosystem exchange. This finding implies that an inorganic module should be incorporated when dealing with the CO2 flux of saline/alkaline land. Neglecting this inorganic flux may induce erroneous or misleading conclusions in interpreting CO2 fluxes of these ecosystems. PMID:23778238

  16. Soil sail content estimation in the yellow river delta with satellite hyperspectral data

    USGS Publications Warehouse

    Weng, Yongling; Gong, Peng; Zhu, Zhi-Liang

    2008-01-01

    Soil salinization is one of the most common land degradation processes and is a severe environmental hazard. The primary objective of this study is to investigate the potential of predicting salt content in soils with hyperspectral data acquired with EO-1 Hyperion. Both partial least-squares regression (PLSR) and conventional multiple linear regression (MLR), such as stepwise regression (SWR), were tested as the prediction model. PLSR is commonly used to overcome the problem caused by high-dimensional and correlated predictors. Chemical analysis of 95 samples collected from the top layer of soils in the Yellow River delta area shows that salt content was high on average, and the dominant chemicals in the saline soil were NaCl and MgCl2. Multivariate models were established between soil contents and hyperspectral data. Our results indicate that the PLSR technique with laboratory spectral data has a strong prediction capacity. Spectral bands at 1487-1527, 1971-1991, 2032-2092, and 2163-2355 nm possessed large absolute values of regression coefficients, with the largest coefficient at 2203 nm. We obtained a root mean squared error (RMSE) for calibration (with 61 samples) of RMSEC = 0.753 (R2 = 0.893) and a root mean squared error for validation (with 30 samples) of RMSEV = 0.574. The prediction model was applied on a pixel-by-pixel basis to a Hyperion reflectance image to yield a quantitative surface distribution map of soil salt content. The result was validated successfully from 38 sampling points. We obtained an RMSE estimate of 1.037 (R2 = 0.784) for the soil salt content map derived by the PLSR model. The salinity map derived from the SWR model shows that the predicted value is higher than the true value. These results demonstrate that the PLSR method is a more suitable technique than stepwise regression for quantitative estimation of soil salt content in a large area. ?? 2008 CASI.

  17. Estimating Surface Soil Moisture in Simulated AVIRIS Spectra

    NASA Technical Reports Server (NTRS)

    Whiting, Michael L.; Li, Lin; Ustin, Susan L.

    2004-01-01

    Soil albedo is influenced by many physical and chemical constituents, with moisture being the most influential on the spectra general shape and albedo (Stoner and Baumgardner, 1981). Without moisture, the intrinsic or matrix reflectance of dissimilar soils varies widely due to differences in surface roughness, particle and aggregate sizes, mineral types, including salts, and organic matter contents. The influence of moisture on soil reflectance can be isolated by comparing similar soils in a study of the effects that small differences in moisture content have on reflectance. However, without prior knowledge of the soil physical and chemical constituents within every pixel, it is nearly impossible to accurately attribute the reflectance variability in an image to moisture or to differences in the physical and chemical constituents in the soil. The effect of moisture on the spectra must be eliminated to use hyperspectral imagery for determining minerals and organic matter abundances of bare agricultural soils. Accurate soil mineral and organic matter abundance maps from air- and space-borne imagery can improve GIS models for precision farming prescription, and managing irrigation and salinity. Better models of soil moisture and reflectance will also improve the selection of soil endmembers for spectral mixture analysis.

  18. Satellite surface salinity maps to determine fresh water fluxes in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Gabarro, Carolina; Estrella, Olmedo; Emelianov, Mikhail; Ballabrera, Joaquim; Turiel, Antonio

    2017-04-01

    Salinity and temperature gradients drive the thermohaline circulation of the oceans, and play a key role in the ocean-atmosphere coupling. The strong and direct interactions between the ocean and the cryosphere (primarily through sea ice and ice shelves) are also a key ingredient of the thermohaline circulation. Recent observational studies have documented changes in upper Arctic Ocean hydrography [1, 2]. The ESA's Soil Moisture and Ocean Salinity (SMOS) mission, launched in 2009, have the objective to measure soil moisture over the continents and sea surface salinity over the oceans [3]. However, SMOS is also making inroads in Cryospheric science, as the measurements of thin ice thickness and sea ice concentration. SMOS carries an innovative L-band (1.4 GHz, or 21-cm wavelength), passive interferometric radiometer (the so-called MIRAS) that measures the electromagnetic radiation emitted by the Earth's surface, at about 50 km spatial resolution wide swath (1200-km), and with a 3-day revisit time at the equator, but more frequently at the poles. Although the SMOS radiometer operating frequency offers almost the maximum sensitivity of the brightness temperature (TB) to sea surface salinity (SSS) variations, such sensitivity is rather low, even lower at cold waters [4]: 90% of ocean SSS values span a range of brightness temperatures of just 5K. This implies that the SMOS SSS retrieval requires a high performance of the MIRAS interferometric radiometer [5]. New algorithms, recently developed at the Barcelona Expert Center (BEC) to improve the quality of SMOS measurements [6], allow for the first time to derive cold-water SSS maps from SMOS data, and to observe the variability of the SSS in the higher north Atlantic and the Arctic Ocean. In this work, we will provide an assessment of the quality of these new SSS Arctic maps, and we will illustrate their potential to monitor the impact on ocean state of the discharges from the main rivers to the Arctic Ocean. Moreover, results make you think that assimilating SMOS Arctic SSS data could be beneficial for the TOPAZ Arctic Ocean Prediction system. Therefore, SMOS shows great potential to routinely monitor the extension of the surface freshwater fluxes also in the Arctic Ocean. The new SMOS Arctic products can therefore substantially contribute to increase our knowledge of the critical processes that are taking place in the Arctic. [1] Haine, T. et al. (2015), 'Arctic freshwater export: Status, mechanisms, and prospects', Global and Planetary Change, 125, 2015. [2] Peterson, B., et al. (2002), 'Increasing river discharge to the arctic ocean', Science, 298, 21712173. [3] Font, J. et al. (2010), 'The Challenging Sea Surface Salinity Measurement From Space'. Proceed. IEEE, 98, 649 -665 [4] Swift, C. (1980). Boundary-layer Meteorology, 18:25-54. [5] McMullan, K. et al. (2008), 'SMOS: The payload', IEEE T. Geosci. Remote, 46. [6] Olmedo, E., et al. (2017) 'Debiased Non-Bayesian retrieval: a novel approach to SMOS Sea Surface Salinity', Remote Sensing of Environment, under review.

  19. Agroforestry-based management of salt-affected croplands in irrigated agricultural landscape in Uzbekistan

    NASA Astrophysics Data System (ADS)

    Khamzina, Asia; Kumar, Navneet; Heng, Lee

    2017-04-01

    In the lower Amu Darya River Basin, the decades of intensive irrigation led to elevated groundwater tables, resulting in ubiquitous soil salinization and adverse impact on crop production. Field-scale afforestation trials and farm-scale economic analyses in the Khorezm region have determined that afforestation can be an environmentally and financially attractive land-use option for degraded croplands because it combines a diversified agricultural production, carbon sequestration, an improved soil health and minimizes the use of irrigation water. We examined prospects for upscaling afforestation activity for regional land-use planning considering prevailing constraints in irrigated agriculture landscape. Assessment of salinity-induced cropland productivity decline using satellite imagery of multiple spatial and temporal resolution revealed that 18-38% of the marginally productive or abandoned cropland might be considered for conversion to agroforestry. Furthermore, a regional-scale water balance suggests that most of these marginal croplands are characterized by sufficient surface water supplies for irrigating the newly planted saplings, before they are able to rely on the groundwater alone. However, the 10-year monitoring of soil salt dynamics in the afforestation trials reveals increasing salinity levels due to the salt exclusion from the root water uptake by the trees. Further study focuses on enhancing long-term sustainability of afforestation as a management option for highly saline lands by examining salt tolerance of candidate species using 13C isotopic signature as the indicator of water and salt stress, salt leaching needs and implications for regional scale planning.

  20. Remediation of saline-sodic soil with flue gas desulfurization gypsum in a reclaimed tidal flat of southeast China.

    PubMed

    Mao, Yumei; Li, Xiaping; Dick, Warren A; Chen, Liming

    2016-07-01

    Salinization and sodicity are obstacles for vegetation reconstruction of coastal tidal flat soils. A study was conducted with flue gas desulfurization (FGD)-gypsum applied at rates of 0, 15, 30, 45 and 60Mg/ha to remediate tidal flat soils of the Yangtze River estuary. Exchangeable sodium percentage (ESP), exchangeable sodium (ExNa), pH, soluble salt concentration, and composition of soluble salts were measured in 10cm increments from the surface to 30cm depth after 6 and 18months. The results indicated that the effect of FGD-gypsum is greatest in the 0-10cm mixing soil layer and 60Mg/ha was the optimal rate that can reduce the ESP to below 6% and decrease soil pH to neutral (7.0). The improvement effect was reached after 6months, and remained after 18months. The composition of soluble salts was transformed from sodic salt ions mainly containing Na(+), HCO3(-)+CO3(2-) and Cl(-) to neutral salt ions mainly containing Ca(2+) and SO4(2-). Non-halophyte plants were survived at 90%. The study demonstrates that the use of FGD-gypsum for remediating tidal flat soils is promising. Copyright © 2016. Published by Elsevier B.V.

  1. Integrated electrokinetics-adsorption remediation of saline-sodic soils: effects of voltage gradient and contaminant concentration on soil electrical conductivity.

    PubMed

    Essa, Mohammed Hussain; Mu'azu, Nuhu Dalhat; Lukman, Salihu; Bukhari, Alaadin

    2013-01-01

    In this study, an integrated in situ remediation technique which couples electrokinetics with adsorption, using locally produced granular activated carbon from date palm pits in the treatment zones that are installed directly to bracket the contaminated soils at bench-scale, is investigated. Natural saline-sodic clay soil, spiked with contaminant mixture (kerosene, phenol, Cr, Cd, Cu, Zn, Pb, and Hg), was used in this study to investigate the effects of voltage gradient, initial contaminant concentration, and polarity reversal rate on the soil electrical conductivity. Box-Behnken Design (BBD) was used for the experimental design and response surface methodology (RSM) was employed to model, optimize, and interpret the results obtained using Design-Expert version 8 platform. The total number of experiments conducted was 15 with voltage gradient, polarity reversal rate, and initial contaminant concentration as variables. The main target response discussed in this paper is the soil electrical conductivity due to its importance in electrokinetic remediation process. Responses obtained were fitted to quadratic models whose R (2) ranges from 84.66% to 99.19% with insignificant lack of fit in each case. Among the investigated factors, voltage gradient and initial contaminant concentration were found to be the most significant influential factors.

  2. Comparative regional-scale soil salinity assessment with near-ground apparent electrical conductivity and remote sensing canopy reflectance

    USDA-ARS?s Scientific Manuscript database

    Soil salinity is recognized worldwide as a major threat to agriculture, particularly in arid and semi-arid regions. Farmers and decision makers need updated and accurate maps of salinity in agronomically and environmentally relevant ranges (i.e., <20 dS m/1, when salinity is measured as electrical...

  3. Aircraft and satellite remote sensing of desert soils and landscapes

    NASA Technical Reports Server (NTRS)

    Petersen, G. W.; Connors, K. F.; Miller, D. A.; Day, R. L.; Gardner, T. W.

    1987-01-01

    Remote sensing data on desert soils and landscapes, obtained by the Landsat TM, Heat Capacity Mapping Mission (HCMM), Simulated SPOT, and Thermal IR Multispectral Scanner (TIMS) aboard an aircraft, are discussed together with the analytical techniques used in the studies. The TM data for southwestern Nevada were used to discriminate among the alluvial fan deposits with different degrees of desert pavement and varnish, and different vegetation cover. Thermal-IR data acquired from the HCMM satellite were used to map the spatial distribution of diurnal surface temperatures and to estimate mean annual soil temperatures in central Utah. Simulated SPOT data for northwestern New Mexico identified geomorphic features, such as differences in eolian sand cover and fluvial incision, while the TIMS data depicted surface geologic features of the Saline Valley in California.

  4. A simplified regional-scale electromagnetic induction - Salinity calibration model using ANOCOVA modeling techniques

    USDA-ARS?s Scientific Manuscript database

    Directed soil sampling based on geospatial measurements of apparent soil electrical conductivity (ECa) is a potential means of characterizing the spatial variability of any soil property that influences ECa including soil salinity, water content, texture, bulk density, organic matter, and cation exc...

  5. Evaluation of the halophyte Salsola soda as an alternative crop for saline soils high in selenium and boron.

    PubMed

    Centofanti, Tiziana; Bañuelos, Gary

    2015-07-01

    Urbanization, industrial development, and intensive agriculture have caused soil contamination and land degradation in many areas of the world. Salinization is one important factor contributing to land degradation and it affects agricultural production and environmental quality. When salinization is combined with soil pollution by trace elements, as it occurs in many arid and semi-arid regions around the world, strategies to phyto-manage pollutants and sustain crop production need to be implemented. In this study, we present the case of saline soils in the West side of Central California which contain naturally-occurring selenium (Se), boron (B), and other salts, such as NaCl, CaCl2, Na2SO4, and Na2SeO4. To sustain crop production on Se- and B-laden arid saline soils, we investigated the potential of the halophyte "agretti" (Salsola soda L.) as an alternative crop. The aim of our greenhouse study was to examine adaptability, B tolerance, and Se accumulation by S. soda grown on soils collected from a typical saline-laden field site located on the West side of the San Joaquin Valley (SJV). Our results showed that S. soda tolerates the saline (EC ∼ 10 dS m(-1)) and B-laden soils (10 mg B L(-1)) of the SJV even with the additional irrigation of saline and B rich water (EC ∼ 3 dS m(-1) and 4 mg B L(-1)). Under these growing conditions, the plant can accumulate high concentrations of Na (80 g Na kg(-1) DW), B (100 mg B kg(-1) DW), and Se (3-4 mg Se kg(-1) DW) without showing toxicity symptoms. Hence, S. soda showed promising potential as a plant species that can be grown in B-laden saline soils and accumulate and potentially manage excessive soluble Se and B in soil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Distribution of selenium in soils of agricultural fields, western San Joaquin Valley, California

    USGS Publications Warehouse

    Fujii, Roger; Deverel, S.J.; Hatfield, D.B.

    1987-01-01

    Soils from three agricultural fields in the western San Joaquin Valley were analyzed for soluble, adsorbed, and total concentrations of selenium (Se) to assess the distribution and forms of Se, and the relation of the distribution and forms of Se to the leaching of Se from soils. Soil samples were collected in three fields with drainage systems of different ages (6, 15, 1.5 yr) and different Se concentrations in drain water (58, 430, 3700 micrograms/L respectively). Preliminary methods to determine total Se and estimate adsorbed Se were developed. Of the three fields, concentrations of soluble Se and salinity were highest in soils from the field drained for 1.5 yr and lowest in the field drained for 6 yr. The field drained for 1.5 yr also had the highest concentration of total Se in soil; a median of 1.2 microgram/gm. Of the total concentration of Se in soil from all three fields, the proportion of adsorbed Se and soluble Se ranged from 1 to 11% and < 1 to 63%, respectively. Most of the variance in soluble Se is explained by salinity ( r sq > 0.68) in saturation extracts of soils sampled from below the water table, reflecting evaporative concentration of Se and salinity. In contrast, most soluble salts and Se apparently have been leached from the unsaturated soils in the fields drained for 6 and 15 yr; therefore, the correlation was lower between Se and salinity in saturation extracts of those soils (r sq < 0.33). Among soils from all three fields, the ratio of Se to salinity in saturation extracts increased with increasing salinity. (Author 's abstract)

  7. Salinization owing to evaporation from bare-soil surfaces and its influences on the evaporation

    NASA Astrophysics Data System (ADS)

    Shimojimaa, Eiichi; Yoshioka, Ryuma; Tamagawa, Ichiro

    1996-04-01

    To investigate the relationship between evaporation and salinization, the surfaces of three columns of uniform porous materials, desert dune sand, silica sand and glass beads, respectively, were exposed to a temperature-, humidity- and/or wind-speed-controlled ambient atmosphere. For the dune sand, chemicals such as Na +, Ca 2+, Cl - and SO 42-, dissolved mainly from CaSO 4, Na 2SO 4, CaCO 3 and NaC1 in the sand particles, caused marked salinization near the top surface. Slow dissolution of Na 2SO 4 and CaSO 4 influenced the development of concentration profiles for SO 42- and Na + markedly for months after the beginning of the experiment, while the profile of Cl - was not affected directly, because dissolution of NaCl was rapid. Concentration profiles of Cl - for the glass beads and for the silica sand columns filled with a high concentration of NaCI solution of (10 4 mg1 -1 for Cl -), were analysed similarly. Experimental results suggested that the vapour flux in a dry soil became larger because of the increase in the gradient of the vapour density caused by greater chemical enrichment near the top surface compared with that at the evaporation surface. The vapour flux also became smaller as the gradient of the vapour density decreased, owing to the markedly enriched evaporation surface. In the experiment with glass beads, filled with the NaCl solution, solute crystallization (4-10 mm thick) was observed. For the dune sand, only when a turbulent airflow was applied did a crust (a few millimetres in thickness) form entirely on the top surface. Such deposition led to a reduction in the flux of water vapour as the permeable cross-sectional area decreased. The resistance to transfer increased three to ten times for the glass beads but only by 30% for the dune sand. The lower increase for the dune sand may be due to penetration of the applied airflow into cracks in the crust.

  8. Lipoic acid mitigates oxidative stress and recovers metabolic distortions in salt-stressed wheat seedlings by modulating ion homeostasis, the osmo-regulator level and antioxidant system.

    PubMed

    Gorcek, Zeynep; Erdal, Serkan

    2015-11-01

    Soil salinity is one of the most detrimental environmental factors affecting the growth of plants and limiting their agricultural productivity. This study investigated whether exogenous lipoic acid (LA) pretreatment plays a role in promoting salt tolerance in wheat seedlings. The seedlings were treated with LA (1.75 mmol L(-1)) and salt (100 mmol L(-1) NaCl) separately and a combination of them. Salt stress significantly reduced relative water content, leaf surface area, ribulose bisphosphate carboxylase expression, and chlorophyll content but increased the content of osmo-regulator protein, carbohydrates and proline. In addition, salinity led to an imbalance in the inorganic composition of wheat leaves. While it elevated Na(+) content compared to control, Ca content and K(+)/Na(+) ratio were reduced. Under saline conditions, despite increases in antioxidant enzyme activity and levels of antioxidant compounds (ascorbate and glutathione), the content of reactive oxygen species (superoxide anion, hydrogen peroxide) and malondialdehyde were higher than in control seedlings. LA significantly promoted osmo-regulator level and antioxidant enzyme activities compared to stressed seedlings alone. Also, it both increased levels of ascorbate and glutathione and regenerated their oxidised forms, thus contributing to maintaining cellular redox status. Similarly, LA prevented excessive accumulation of Na(+) and promoted K(+)/Na(+) ratio and Ca content. Reactive oxygen species content was significantly reduced, and the inhibitions in the above parameters markedly recovered. LA reduced salinity-induced oxidative damage and thus contributed to the growth and development of plants in saline soils by modulating ion homeostasis between plant and soil as well as in osmo-regulator content and antioxidant system. © 2014 Society of Chemical Industry.

  9. Barley responses to combined waterlogging and salinity stress: separating effects of oxygen deprivation and elemental toxicity

    PubMed Central

    Zeng, Fanrong; Shabala, Lana; Zhou, Meixue; Zhang, Guoping; Shabala, Sergey

    2013-01-01

    Salinity and waterlogging are two major factors affecting crop production around the world and often occur together (e.g., salt brought to the surface by rising water tables). While the physiological and molecular mechanisms of plant responses to each of these environmental constraints are studied in detail, the mechanisms underlying plant tolerance to their combined stress are much less understood. In this study, whole-plant physiological responses to individual/combined salinity and waterlogging stresses were studied using two barley varieties grown in either vermiculite (semi-hydroponics) or sandy loam. Two weeks of combined salinity and waterlogging treatment significantly decreased plant biomass, chlorophyll content, maximal quantum efficiency of PSII and water content (WC) in both varieties, while the percentage of chlorotic and necrotic leaves and leaf sap osmolality increased. The adverse effects of the combined stresses were much stronger in the waterlogging-sensitive variety Naso Nijo. Compared with salinity stress alone, the combined stress resulted in a 2-fold increase in leaf Na+, but a 40% decrease in leaf K+ content. Importantly, the effects of the combined stress were more pronounced in sandy loam compared with vermiculite and correlated with changes in the soil redox potential and accumulation of Mn and Fe in the waterlogged soils. It is concluded that hypoxia alone is not a major factor determining differential plant growth under adverse stress conditions, and that elemental toxicities resulting from changes in soil redox potential have a major impact on genotypic differences in plant physiological and agronomical responses. These results are further discussed in the context of plant breeding for waterlogging stress tolerance. PMID:23967003

  10. Spectral Characteristics of Salinized Soils during Microbial Remediation Processes.

    PubMed

    Ma, Chuang; Shen, Guang-rong; Zhi, Yue-e; Wang, Zi-jun; Zhu, Yun; Li, Xian-hua

    2015-09-01

    In this study, the spectral reflectance of saline soils, the associated soil salt content (SSC) and the concentrations of salt ions were measured and analysed by tracing the container microbial remediation experiments for saline soil (main salt is sodium chloride) of Dongying City, Shandong Province. The sensitive spectral reflectance bands of saline soils to SSC, Cl- and Na+ in the process of microbial remediation were analysed. The average-dimension reduction of these bands was conducted by using a combination of correlation coefficient and decision coefficient, and by gradually narrowing the sampling interval method. Results showed that the tendency and magnitude of the average spectral reflectance in all bands of saline soils during the total remediation processes were nearly consistent with SSC and with Cl- coocentration, respectively. The degree of salinity of the soil, including SSC and salt ion concentrations, had a significant positive correlation with the spectral reflectance of all bands, particularly in the near-infrared band. The optimal spectral bands of SSC were 1370 to 1445 nm and 1447 to 1608 nm, whereas the optimal spectral bands of Cl- and Na+ were 1336 to 1461 nm and 1471 to 1561 nm, respectively. The relationship model among SSC, soil salt ion concentrations (Cl- and Na+) and soil spectral reflectance of the corresponding optimal spectral band was established. The largest R2 of relationship model between SSC and the average reflectance of associated optimal band reached to 0.95, and RMSEC and RMSEP were 1.076 and 0.591, respectively. Significant statistical analysis of salt factors and soil reflectance for different microbial remediation processes indicated that the spectral response characteristics and sensitivity of SSC to soil reflectance, which implied the feasibility of high spectrum test on soil microbial remediation monitoring, also provided the basis for quick nondestructive monitoring soil bioremediation process by soil spectral reflectance.

  11. The Occurrence, Sources and Spatial Characteristics of Soil Salt and Assessment of Soil Salinization Risk in Yanqi Basin, Northwest China

    PubMed Central

    Zhaoyong, Zhang; Abuduwaili, Jilili; Yimit, Hamid

    2014-01-01

    In order to evaluate the soil salinization risk of the oases in arid land of northwest China, we chose a typical oasis-the Yanqi basin as the research area. Then, we collected soil samples from the area and made comprehensive assessment for soil salinization risk in this area. The result showed that: (1) In all soil samples, high variation was found for the amount of Ca2+ and K+, while the other soil salt properties had moderate levels of variation. (2) The land use types and the soil parent material had a significant influence on the amount of salt ions within the soil. (3) Principle component (PC) analysis determined that all the salt ion values, potential of hydrogen (pHs) and ECs fell into four PCs. Among them, PC1 (C1-, Na+, SO4 2-, EC, and pH) and PC2 (Ca2+, K+, Mg2+and total amount of salts) are considered to be mainly influenced by artificial sources, while PC3 and PC4 (CO3 - and HCO3 2-) are mainly influenced by natural sources. (4) From a geo-statistical point of view, it was ascertained that the pH and soil salt ions, such as Ca2+, Mg2+ and HCO3 -, had a strong spatial dependency. Meanwhile, Na+ and Cl- had only a weak spatial dependency in the soil. (5) Soil salinization indicators suggested that the entire area had a low risk of soil salinization, where the risk was mainly due to anthropogenic activities and climate variation. This study can be considered an early warning of soil salinization and alkalization in the Yanqi basin. It can also provide a reference for environmental protection policies and rational utilization of land resources in the arid region of Xinjiang, northwest China, as well as for other oases of arid regions in the world. PMID:25211240

  12. Modelling soil salinity in Oued El Abid watershed, Morocco

    NASA Astrophysics Data System (ADS)

    Mouatassime Sabri, El; Boukdir, Ahmed; Karaoui, Ismail; Arioua, Abdelkrim; Messlouhi, Rachid; El Amrani Idrissi, Abdelkhalek

    2018-05-01

    Soil salinisation is a phenomenon considered to be a real threat to natural resources in semi-arid climates. The phenomenon is controlled by soil (texture, depth, slope etc.), anthropogenic factors (drainage system, irrigation, crops types, etc.), and climate factors. This study was conducted in the watershed of Oued El Abid in the region of Beni Mellal-Khenifra, aimed at localising saline soil using remote sensing and a regression model. The spectral indices were extracted from Landsat imagery (30 m resolution). A linear correlation of electrical conductivity, which was calculated based on soil samples (ECs), and the values extracted based on spectral bands showed a high accuracy with an R2 (Root square) of 0.80. This study proposes a new spectral salinity index using Landsat bands B1 and B4. This hydro-chemical and statistical study, based on a yearlong survey, showed a moderate amount of salinity, which threatens dam water quality. The results present an improved ability to use remote sensing and regression model integration to detect soil salinity with high accuracy and low cost, and permit intervention at an early stage of salinisation.

  13. A risk assessment of water salinization during the initial impounding period of a proposed reservoir in Tianjin, China.

    PubMed

    Zhu, Liqin; Jiang, Cuiling; Wang, Youheng; Peng, Yanmei; Zhang, Peng

    2013-09-01

    Water salinization of coastal reservoirs seriously threatens the safety of their water supply. To elucidate the mechanism of salinization and to quantitatively analyze the risk in the initial period of the impoundment of a proposed reservoir in Tianjin Binhai New Area, laboratory and field simulation experiments were implemented and integrated with the actual operation of Beitang Reservoir, which is located in the same region and has been operational for many years. The results suggested that water salinization of the proposed reservoir was mainly governed by soil saline release, evaporation and leakage. Saline release was the prevailing factor in the earlier stage of the impoundment, then the evaporation and leakage effects gradually became notable over time. By referring to the actual case of Beitang Reservoir, it was predicted that the chloride ion (Cl(-)) concentration of the water during the initial impounding period of the proposed reservoir would exceed the standard for quality of drinking water from surface water sources (250 mg L(-1)), and that the proposed reservoir had a high risk of water salinization.

  14. High Temperature and Salinity Enhance Soil Nitrogen Mineralization in a Tidal Freshwater Marsh

    PubMed Central

    Gao, Haifeng; Bai, Junhong; He, Xinhua; Zhao, Qingqing; Lu, Qiongqiong; Wang, Junjing

    2014-01-01

    Soil nitrogen (N) mineralization in wetlands is sensitive to various environmental factors. To compare the effects of salinity and temperature on N mineralization, wetland soils from a tidal freshwater marsh locating in the Yellow River Delta was incubated over a 48-d anaerobic incubation period under four salinity concentrations (0, 10, 20 and 35‰) and four temperature levels (10, 20, 30 and 40°C). The results suggested that accumulated ammonium nitrogen (NH4 +-N) increased with increasing incubation time under all salinity concentrations. Higher temperatures and salinities significantly enhanced soil N mineralization except for a short-term (≈10 days) inhibiting effect found under 35‰ salinity. The incubation time, temperature, salinity and their interactions exhibited significant effects on N mineralization (P<0.001) except the interactive effect of salinity and temperature (P>0.05), while temperature exhibited the greatest effect (P<0.001). Meanwhile, N mineralization processes were simulated using both an effective accumulated temperature model and a one-pool model. Both models fit well with the simulation of soil N mineralization process in the coastal freshwater wetlands under a range of 30 to 40°C (R2 = 0.88–0.99, P<0.01). Our results indicated that an enhanced NH4 +-N release with increasing temperature and salinity deriving from the projected global warming could have profound effects on nutrient cycling in coastal wetland ecosystems. PMID:24733366

  15. Evaluation of SMOS soil moisture products over the CanEx-SM10 area

    USDA-ARS?s Scientific Manuscript database

    The Soil Moisture and Ocean Salinity (SMOS) Earth observation satellite was launched in November 2009 to provide global soil moisture and ocean salinity measurements based on L-Band passive microwave measurements. Since its launch, different versions of SMOS soil moisture products processors have be...

  16. Laboratory evaluation of dual-frequency multisensor capacitance probes to monitor soil water and salinity

    USDA-ARS?s Scientific Manuscript database

    Real-time information on salinity levels and transport of fertilizers are generally missing from soil profile knowledge bases. A dual-frequency multisensor capacitance probe (MCP) is now commercially available for sandy soils that simultaneously monitor volumetric soil water content (VWC, ') and sa...

  17. Simulated storm surge effects on freshwater coastal wetland soil porewater salinity and extractable ammonium levels: Implications for marsh recovery after storm surge

    NASA Astrophysics Data System (ADS)

    McKee, M.; White, J. R.; Putnam-Duhon, L. A.

    2016-11-01

    Coastal wetland systems experience both short-term changes in salinity, such as those caused by wind-driven tides and storm surge, and long-term shifts caused by sea level rise. Salinity increases associated with storm surge are known to have significant effects on soil porewater chemistry, but there is little research on the effect of flooding length on salt penetration depth into coastal marsh soils. A simulated storm surge was imposed on intact soil columns collected from a non-vegetated mudflat and a vegetated marsh site in the Wax Lake Delta, LA. Triplicate intact cores were continuously exposed to a 35 salinity water column (practical salinity scale) for 1, 2, and 4 weeks and destructively sampled in order to measure porewater salinity and extractable NH4sbnd N at two cm depth intervals. Salinity was significantly higher in the top 8 cm for both the marsh and mudflat cores after one week of flooding. After four weeks of flooding, salinity was significantly higher in marsh and mudflat cores compared to the control (no salinity) cores throughout the profile for both sites. Extractable ammonium levels increased significantly in the marsh cores throughout the experiment, but there was only a marginally (p < 0.1) significant increase seen in the mudflat cores. Results indicate that porewater salinity levels can become significantly elevated within a coastal marsh soil in just one week. This vertical intrusion of salt can potentially negatively impact macrophytes and associated microbial communities for significantly longer term post-storm surge.

  18. The Effects of Salinity on the Herbivorous Crop Pest Tetranychus urticae (Trombidiformes: Tetranychidae) on Soybean and Corn.

    PubMed

    Eichele-Nelson, Jaclyn L; Wick, Abbey F; DeSutter, Thomas M; Harmon, Jason P

    2017-08-01

    Many environmental factors, including soil characteristics, are critical for plants, herbivorous arthropods, and their interactions. Despite increasing evidence that soil salinity drastically impacts plants, little is known about how salinity affects the herbivorous arthropod pests feeding on those plants. We investigated how soil salinity affects the twospotted spider mite (Tetranychus urticae Koch) feeding on corn (Zea mays L.) and soybean (Glycine max L.). We performed two greenhouse studies, one focusing on the impact of salinity on individual mite fecundity over a period of 3 d and the other focusing on population growth of T. urticae over 7 d. Both experiments were performed across varying salinity levels; electrical conductivity values ranged from 0.84 to 8.07 dS m-1. We also performed the 3-d fecundity experiment in the field, across naturally varying saline conditions. Overall, the twospotted spider mite performed better as salinity increased; both fecundity and population growth tended to have a positive linear correlation with salinity. These studies suggest that salinity can be important for herbivores, just as it is for plants. Moreover, the negative effects of soil salinity on crop plants in agroecosystems may be further compounded by a greater risk of pest problems. Salinity may be another important environmental stressor that can directly influence crop production while also indirectly influencing herbivorous pests. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Advances in Assimilation of Satellite-Based Passive Microwave Observations for Soil-Moisture Estimation

    NASA Technical Reports Server (NTRS)

    De Lannoy, Gabrielle J. M.; Pauwels, Valentijn; Reichle, Rolf H.; Draper, Clara; Koster, Randy; Liu, Qing

    2012-01-01

    Satellite-based microwave measurements have long shown potential to provide global information about soil moisture. The European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS, [1]) mission as well as the future National Aeronautics and Space Administration (NASA) Soil Moisture Active and Passive (SMAP, [2]) mission measure passive microwave emission at L-band frequencies, at a relatively coarse (40 km) spatial resolution. In addition, SMAP will measure active microwave signals at a higher spatial resolution (3 km). These new L-band missions have a greater sensing depth (of -5cm) compared with past and present C- and X-band microwave sensors. ESA currently also disseminates retrievals of SMOS surface soil moisture that are derived from SMOS brightness temperature observations and ancillary data. In this research, we address two major challenges with the assimilation of recent/future satellite-based microwave measurements: (i) assimilation of soil moisture retrievals versus brightness temperatures for surface and root-zone soil moisture estimation and (ii) scale-mismatches between satellite observations, models and in situ validation data.

  20. Salinity altered root distribution and increased diversity of bacterial communities in the rhizosphere soil of Jerusalem artichoke

    PubMed Central

    Yang, Hui; Hu, Jinxiang; Long, Xiaohua; Liu, Zhaopu; Rengel, Zed

    2016-01-01

    The interaction between roots and bacterial communities in halophytic species is poorly understood. Here, we used Jerusalem artichoke cultivar Nanyu 1 (NY-1) to characterise root distribution patterns and determine diversity and abundance of bacteria in the rhizosphere soil under variable salinity. Root growth was not inhibited within the salinity range 1.2 to 1.9 g salt/kg, but roots were mainly confined to 0–20 cm soil layer vertically and 0–30 cm horizontally from the plant centre. Root concentrations of K+, Na+, Mg2+ and particularly Ca2+ were relatively high under salinity stress. High salinity stress decreased soil invertase and catalase activity. Using a next-generation, Illumina-based sequencing approach, we determined higher diversity of bacteria in the rhizosphere soil at high than low salinity. More than 15,500 valid reads were obtained, and Proteobacteria, Acidobacteria, Bacteroidetes and Actinobacteria predominated in all samples, accounting for >80% of the reads. On a genus level, 636 genera were common to the low and high salinity treatments at 0–5 cm and 5–10 cm depth. The abundance of Steroidobacter and Sphingomonas was significantly decreased by increasing salinity. Higher Shannon and Chao 1 indices with increasing severity of salt stress indicated that high salt stress increased diversity in the bacterial communities. PMID:26852800

  1. Salinization of the soil solution decreases the further accumulation of salt in the root zone of the halophyte Atriplex nummularia Lindl. growing above shallow saline groundwater.

    PubMed

    Alharby, Hesham F; Colmer, Timothy D; Barrett-Lennard, Edward G

    2018-01-01

    Water use by plants in landscapes with shallow saline groundwater may lead to the accumulation of salt in the root zone. We examined the accumulation of Na + and Cl - around the roots of the halophyte Atriplex nummularia Lindl. and the impacts of this increasing salinity for stomatal conductance, water use and growth. Plants were grown in columns filled with a sand-clay mixture and connected at the bottom to reservoirs containing 20, 200 or 400 mM NaCl. At 21 d, Na + and Cl - concentrations in the soil solution were affected by the salinity of the groundwater, height above the water table and the root fresh mass density at various soil depths (P < 0.001). However, by day 35, the groundwater salinity and height above the water table remained significant factors, but the root fresh mass density was no longer significant. Regression of data from the 200 and 400 mM NaCl treatments showed that the rate of Na + accumulation in the soil increased until the Na + concentration reached ~250 mM within the root zone; subsequent decreases in accumulation were associated with decreases in stomatal conductance. Salinization of the soil solution therefore had a feedback effect on further salinization within the root zone. © 2017 John Wiley & Sons Ltd.

  2. Salinity altered root distribution and increased diversity of bacterial communities in the rhizosphere soil of Jerusalem artichoke

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Hu, Jinxiang; Long, Xiaohua; Liu, Zhaopu; Rengel, Zed

    2016-02-01

    The interaction between roots and bacterial communities in halophytic species is poorly understood. Here, we used Jerusalem artichoke cultivar Nanyu 1 (NY-1) to characterise root distribution patterns and determine diversity and abundance of bacteria in the rhizosphere soil under variable salinity. Root growth was not inhibited within the salinity range 1.2 to 1.9 g salt/kg, but roots were mainly confined to 0-20 cm soil layer vertically and 0-30 cm horizontally from the plant centre. Root concentrations of K+, Na+, Mg2+ and particularly Ca2+ were relatively high under salinity stress. High salinity stress decreased soil invertase and catalase activity. Using a next-generation, Illumina-based sequencing approach, we determined higher diversity of bacteria in the rhizosphere soil at high than low salinity. More than 15,500 valid reads were obtained, and Proteobacteria, Acidobacteria, Bacteroidetes and Actinobacteria predominated in all samples, accounting for >80% of the reads. On a genus level, 636 genera were common to the low and high salinity treatments at 0-5 cm and 5-10 cm depth. The abundance of Steroidobacter and Sphingomonas was significantly decreased by increasing salinity. Higher Shannon and Chao 1 indices with increasing severity of salt stress indicated that high salt stress increased diversity in the bacterial communities.

  3. Wide-area estimates of stand structure and water use of tamarix spp. on the lower colorado river: Implications for restoration and water management projects

    USGS Publications Warehouse

    Nagler, P.L.; Glenn, E.P.; Didan, K.; Osterberg, J.; Jordan, F.; Cunningham, J.

    2008-01-01

    Tamarix spp. removal has been proposed to salvage water and allow native vegetation to recolonize western U.S. riparian corridors. We conducted wide-area studies on the Lower Colorado River to answer some of the scientific questions about Tamarix water use and the consequences of removal, combining ground surveys with remote sensing methods. Tamarix stands had moderate rates of evapotranspiration (ET), based on remote sensing estimates, averaging 1.1 m/yr, similar to rates determined for other locations on the river and other rivers. Leaf area index values were also moderate, and stands were relatively open, with areas of bare soil interspersed within stands. At three Tamarix sites in the Cibola National Wildlife Refuge, groundwater salinity at the site nearest to the river (200 m) was relatively low (circa 2,250 mg/L) and was within 3 m of the surface. However, 750 and 1,500 m from the river, the groundwater salinity was 5,000-10,000 mg/L due to removal of water by the Tamarix stands. Despite the high groundwater salinity, the sites away from the river did not have saline surface soils. Only 1% of the mean annual river flow is lost to Tamarix ET on the Lower Colorado River in the United States, and the opportunities for water salvage through Tamarix removal are constrained by its modest ET rates. A possible alternative to Tamarix removal is to intersperse native plants among the stands to improve the habitat value of the riparian zone. ?? 2008 Society for Ecological Restoration International.

  4. Quantitative estimation of soil salinity by means of different modeling methods and visible-near infrared (VIS–NIR) spectroscopy, Ebinur Lake Wetland, Northwest China

    PubMed Central

    Wang, Jingzhe; Abulimiti, Aerzuna; Cai, Lianghong

    2018-01-01

    Soil salinization is one of the most common forms of land degradation. The detection and assessment of soil salinity is critical for the prevention of environmental deterioration especially in arid and semi-arid areas. This study introduced the fractional derivative in the pretreatment of visible and near infrared (VIS–NIR) spectroscopy. The soil samples (n = 400) collected from the Ebinur Lake Wetland, Xinjiang Uyghur Autonomous Region (XUAR), China, were used as the dataset. After measuring the spectral reflectance and salinity in the laboratory, the raw spectral reflectance was preprocessed by means of the absorbance and the fractional derivative order in the range of 0.0–2.0 order with an interval of 0.1. Two different modeling methods, namely, partial least squares regression (PLSR) and random forest (RF) with preprocessed reflectance were used for quantifying soil salinity. The results showed that more spectral characteristics were refined for the spectrum reflectance treated via fractional derivative. The validation accuracies showed that RF models performed better than those of PLSR. The most effective model was established based on RF with the 1.5 order derivative of absorbance with the optimal values of R2 (0.93), RMSE (4.57 dS m−1), and RPD (2.78 ≥ 2.50). The developed RF model was stable and accurate in the application of spectral reflectance for determining the soil salinity of the Ebinur Lake wetland. The pretreatment of fractional derivative could be useful for monitoring multiple soil parameters with higher accuracy, which could effectively help to analyze the soil salinity. PMID:29736341

  5. Quantitative estimation of soil salinity by means of different modeling methods and visible-near infrared (VIS-NIR) spectroscopy, Ebinur Lake Wetland, Northwest China.

    PubMed

    Wang, Jingzhe; Ding, Jianli; Abulimiti, Aerzuna; Cai, Lianghong

    2018-01-01

    Soil salinization is one of the most common forms of land degradation. The detection and assessment of soil salinity is critical for the prevention of environmental deterioration especially in arid and semi-arid areas. This study introduced the fractional derivative in the pretreatment of visible and near infrared (VIS-NIR) spectroscopy. The soil samples ( n  = 400) collected from the Ebinur Lake Wetland, Xinjiang Uyghur Autonomous Region (XUAR), China, were used as the dataset. After measuring the spectral reflectance and salinity in the laboratory, the raw spectral reflectance was preprocessed by means of the absorbance and the fractional derivative order in the range of 0.0-2.0 order with an interval of 0.1. Two different modeling methods, namely, partial least squares regression (PLSR) and random forest (RF) with preprocessed reflectance were used for quantifying soil salinity. The results showed that more spectral characteristics were refined for the spectrum reflectance treated via fractional derivative. The validation accuracies showed that RF models performed better than those of PLSR. The most effective model was established based on RF with the 1.5 order derivative of absorbance with the optimal values of R 2 (0.93), RMSE (4.57 dS m -1 ), and RPD (2.78 ≥ 2.50). The developed RF model was stable and accurate in the application of spectral reflectance for determining the soil salinity of the Ebinur Lake wetland. The pretreatment of fractional derivative could be useful for monitoring multiple soil parameters with higher accuracy, which could effectively help to analyze the soil salinity.

  6. Site condition, structure, and growth of baldcypress along tidal/non-tidal salinity gradients

    USGS Publications Warehouse

    Krauss, K.W.; Duberstein, J.A.; Doyle, T.W.; Conner, W.H.; Day, Richard H.; Inabinette, L.W.; Whitbeck, J.L.

    2009-01-01

    This report documents changes in forest structure and growth potential of dominant trees in salt-impacted tidal and non-tidal baldcypress wetlands of the southeastern United States. We inventoried basal area and tree height, and monitored incremental growth (in basal area) of codominant baldcypress (Taxodium distichum) trees monthly, for over four years, to examine the inter-relationships among growth, site fertility, and soil physico-chemical characteristics. We found that salinity, soil total nitrogen (TN), flood duration, and flood frequency affected forest structure and growth the greatest. While mean annual site salinity ranged from 0.1 to 3.4 ppt, sites with salinity concentrations of 1.3 ppt or greater supported a basal area of less than 40 m2/ha. Where salinity was < 0.7 ppt, basal area was as high as 87 m2/ha. Stand height was also negatively affected by higher salinity. However, salinity related only to soil TN concentrations or to the relative balance between soil TN and total phosphorus (TP), which reached a maximum concentration between 1.2 and 2.0 ppt salinity. As estuarine influence shifts inland with sea-level rise, forest growth may become more strongly linked to salinity, not only due to salt effects but also as a consequence of site nitrogen imbalance.

  7. Organic matter dynamics along a salinity gradient in Siberian steppe soils

    NASA Astrophysics Data System (ADS)

    Bischoff, Norbert; Mikutta, Robert; Shibistova, Olga; Dohrmann, Reiner; Herdtle, Daniel; Gerhard, Lukas; Fritzsche, Franziska; Puzanov, Alexander; Silanteva, Marina; Grebennikova, Anna; Guggenberger, Georg

    2018-01-01

    Salt-affected soils will become more frequent in the next decades as arid and semiarid ecosystems are predicted to expand as a result of climate change. Nevertheless, little is known about organic matter (OM) dynamics in these soils, though OM is crucial for soil fertility and represents an important carbon sink. We aimed at investigating OM dynamics along a salinity and sodicity gradient in the soils of the southwestern Siberian Kulunda steppe (Kastanozem, non-sodic Solonchak, Sodic Solonchak) by assessing the organic carbon (OC) stocks, the quantity and quality of particulate and mineral-associated OM in terms of non-cellulosic neutral sugar contents and carbon isotopes (δ13C, 14C activity), and the microbial community composition based on phospholipid fatty acid (PLFA) patterns. Aboveground biomass was measured as a proxy for plant growth and soil OC inputs. Our hypotheses were that (i) soil OC stocks decrease along the salinity gradient, (ii) the proportion and stability of particulate OM is larger in salt-affected Solonchaks compared to non-salt-affected Kastanozems, (iii) sodicity reduces the proportion and stability of mineral-associated OM, and (iv) the fungi : bacteria ratio is negatively correlated with salinity. Against our first hypothesis, OC stocks increased along the salinity gradient with the most pronounced differences between topsoils. In contrast to our second hypothesis, the proportion of particulate OM was unaffected by salinity, thereby accounting for only < 10 % in all three soil types, while mineral-associated OM contributed > 90 %. Isotopic data (δ13C, 14C activity) and neutral sugars in the OM fractions indicated a comparable degree of OM transformation along the salinity gradient and that particulate OM was not more persistent under saline conditions. Our third hypothesis was also rejected, as Sodic Solonchaks contained more than twice as much mineral-bound OC than the Kastanozems, which we ascribe to the flocculation of OM and mineral components under higher ionic strength conditions. Contrary to the fourth hypothesis, the fungi : bacteria ratio in the topsoils remained fairly constant along the salinity gradient. A possible explanation for why our hypotheses were not affirmed is that soil moisture covaried with salinity along the transect, i.e., the Solonchaks were generally wetter than the Kastanozems. This might cause comparable water stress conditions for plants and microorganisms, either due to a low osmotic or a low matric potential and resulting in (i) similar plant growth and hence soil OC inputs along the transect, (ii) a comparable persistence of particulate OM, and (iii) unaffected fungi : bacteria ratios. We conclude that salt-affected soils contribute significantly to the OC storage in the semiarid soils of the Kulunda steppe, while most of the OC is associated with minerals and is therefore effectively sequestered in the long term.

  8. Remote sensing is a viable tool for mapping soil salinity in agricultural lands

    USDA-ARS?s Scientific Manuscript database

    Soil salinity negatively impacts the productivity and profitability of western San Joaquin Valley (WSJV) farmland. Drought, climate change, reduced water allocations, and land use changes are among many current phenomena that could potentially worsen salinity conditions in agricultural lands. Monito...

  9. Spatiotemporal monitoring of soil salinization in irrigated Tadla Plain (Morocco) using satellite spectral indices

    NASA Astrophysics Data System (ADS)

    El Harti, Abderrazak; Lhissou, Rachid; Chokmani, Karem; Ouzemou, Jamal-eddine; Hassouna, Mohamed; Bachaoui, El Mostafa; El Ghmari, Abderrahmene

    2016-08-01

    Soil salinization is major environmental issue in irrigated agricultural production. Conventional methods for salinization monitoring are time and money consuming and limited by the high spatiotemporal variability of this phenomenon. This work aims to propose a spatiotemporal monitoring method of soil salinization in the Tadla plain in central Morocco using spectral indices derived from Thematic Mapper (TM) and Operational Land Imager (OLI) data. Six Landsat TM/OLI satellite images acquired during 13 years period (2000-2013) coupled with in-situ electrical conductivity (EC) measurements were used to develop the proposed method. After radiometric and atmospheric correction of TM/OLI images, a new soil salinity index (OLI-SI) is proposed for soil EC estimation. Validation shows that this index allowed a satisfactory EC estimation in the Tadla irrigated perimeter with coefficient of determination R2 varying from 0.55 to 0.77 and a Root Mean Square Error (RMSE) ranging between 1.02 dS/m and 2.35 dS/m. The times-series of salinity maps produced over the Tadla plain using the proposed method show that salinity is decreasing in intensity and progressively increasing in spatial extent, over the 2000-2013 period. This trend resulted in a decrease in agricultural activities in the southwestern part of the perimeter, located in the hydraulic downstream.

  10. The Effects of Salinity and Sodium Adsorption Ratio on the Water Retention and Hydraulic Conductivity Curves of Soils From The Pampa del Tamarugal, Chile

    NASA Astrophysics Data System (ADS)

    Lagos, M. S.; Munoz, J.; Suarez, F. I.; Fierro, V.; Moreno, C.

    2015-12-01

    The Pampa del Tamarugal is located in the Atacama Desert, the most arid desert of the world. It has important reserves of groundwater, which are probably fed by infiltration coming from the Andes Mountain, with groundwater levels fluctuating between 3 and 10-70 m below the land surface. In zones where shallow groundwater exists, the capillary rise allows to have a permanently moist vadose zone, which sustain native vegetation such as the Tamarugos (Prosopis tamarugo Phil.) and Algarrobos (Prosopis alba Griseb.). The native vegetation relies on the soil moisture and on the evaporative fluxes, which are controlled by the hydrodynamic characteristics of the soils. The soils associated to the salt flats of the Pampa del Tamarugal are a mixture of sands and clays, which have high levels of sulfates, chloride, carbonates, sodium, calcium, magnesium, and potassium, with high pH and electrical conductivity, and low organic matter and cationic exchange capacity. In this research, we are interested in evaluating the impact of salinity and sodium adsorption ratio (SAR) on the hydrodynamic characteristics of the soil, i.e., water retention and hydraulic conductivity curves. Soils were collected from the Pampa del Tamarugal and brought to the laboratory for characterization. The evaporation method (HYPROP, UMS) was used to determine the water retention curve and the hydraulic conductivity curve was estimated combining the evaporation method with direct measurements using a variable head permeameter (KSAT, UMS). It was found that higher sodium concentrations increase the water retention capacity and decrease the soiĺs hydraulic conductivity. These changes occur in the moist range of the hydrodynamic characteristics. The soil's hydraulic properties have significant impact on evaporation fluxes, which is the mayor component of the water balance. Thus, it is important to quantify them and incorporate salt precipitation/dissolution effect on the hydrodynamic properties to correctly simulate evaporation in saline soils.

  11. [Spatial heterogeneity of soil salinization and its influencing factors in the typical region of the Mu Us Desert-Loess Plateau transitional zone, Northwest China].

    PubMed

    Zhao, Xuan; Hao, Qi Li; Sun, Ying Ying

    2017-06-18

    Studies on the spatial heterogeneity of saline soil in the Mu Us Desert-Loess Plateau transition zone are meaningful for understanding the mechanisms of land desertification. Taking the Mu Us Desert-Loess Plateau transition zone as the study subject, its spatial heterogeneity of pH, electrical conductivity (EC) and total salt content were analyzed by using on-site sampling followed with indoor analysis, classical statistical and geostatistical analysis. The results indicated that: 1) The average values of pH, EC and total salt content were 8.44, 5.13 mS·cm -1 and 21.66 g·kg -1 , respectively, and the coefficient of variation ranged from 6.9% to 73.3%. The pH was weakly variable, while EC and total salt content were moderately variable. 2) Results of semivariogram analysis showed that the most fitting model for spatial variability of all three indexes was spherical model. The C 0 /(C 0 +C) ratios of three indexes ranged from 8.6% to 14.3%, which suggested the spatial variability of all indexes had a strong spatial autocorrelation, and the structural factors played a more important role. The variation range decreased in order of pH

  12. Chemical structure of soil organic matter in slickspots as investigated by advanced solid-state NMR

    USDA-ARS?s Scientific Manuscript database

    Slickspot soils are saline, and knowledge of their humic chemistry would contribute to our limited understanding how salinity affects soil C and N stocks. We characterized humic acids (HAs) from slickspot soils with solid-state 13C nuclear magnetic resonance (NMR). Expanding on previous use of cross...

  13. Effect of reclamation of abandoned salinized farmland on soil bacterial communities in arid northwest China.

    PubMed

    Cheng, Zhibo; Chen, Yun; Zhang, Fenghua

    2018-07-15

    Understanding the impact of reclamation of abandoned salinized farmland on soil bacterial community is of great importance for maintaining soil health and sustainability in arid regions. In this study, we used field sampling and 454 pyrosequencing methods to investigate the effects of 5-year reclamation treatments on soil properties, bacterial community composition and diversity. The four reclamation treatments are: abandoned salinized farmland (CK), cropland (CL), grassland (GL) and woodland (WL). We have found soil properties are significantly altered by abandoned salinized farmland reclamation. In particular, the lowest soil pH and electrical conductivity (EC) values are observed in CL (P<0.05). The dominant phyla are Firmicutes, Proteobacteria, Chloroflexi, Actinobacteria and Acidobacteria in all treatments. At the genus levels, the relative abundance of Bacillus, Lactococcus, Streptococcus and Enterococcus in CK, GL and WL is significantly higher than in CL. Bacterial diversity indices (i.e. ACE, Chao and Shannon) dramatically increase after the reclamation, with the highest in CL. Similar patterns of bacterial communities have been observed in CK, GL and WL soils, but significantly different from CL. Regression analyses indicate that the relative abundance of these phyla are significantly correlated with soil Fe, pH and EC. Results from non-metric multidimensional scaling (NMDS) and redundancy analysis (RDA) indicate that soil Fe content, EC and pH are the most important factors in shaping soil bacterial communities. Overall, results indicate that abandoned salinized farmland reclaimed for CL significantly decrease soil pH and EC, and increase soil bacterial community diversity. Soil Fe concentration, EC and pH are the dominant environmental factors affecting soil bacterial community composition. The important role of Fe concentration in shaping bacterial community composition is a new discovery among the similar studies. Copyright © 2018. Published by Elsevier B.V.

  14. High-resolution model for estimating the economic and policy implications of agricultural soil salinization in California

    NASA Astrophysics Data System (ADS)

    Welle, Paul D.; Mauter, Meagan S.

    2017-09-01

    This work introduces a generalizable approach for estimating the field-scale agricultural yield losses due to soil salinization. When integrated with regional data on crop yields and prices, this model provides high-resolution estimates for revenue losses over large agricultural regions. These methods account for the uncertainty inherent in model inputs derived from satellites, experimental field data, and interpreted model results. We apply this method to estimate the effect of soil salinity on agricultural outputs in California, performing the analysis with both high-resolution (i.e. field scale) and low-resolution (i.e. county-scale) data sources to highlight the importance of spatial resolution in agricultural analysis. We estimate that soil salinity reduced agricultural revenues by 3.7 billion (1.7-7.0 billion) in 2014, amounting to 8.0 million tons of lost production relative to soil salinities below the crop-specific thresholds. When using low-resolution data sources, we find that the costs of salinization are underestimated by a factor of three. These results highlight the need for high-resolution data in agro-environmental assessment as well as the challenges associated with their integration.

  15. Inferring soil salinity in a drip irrigation system from multi-configuration EMI measurements using adaptive Markov chain Monte Carlo

    NASA Astrophysics Data System (ADS)

    Zaib Jadoon, Khan; Umer Altaf, Muhammad; McCabe, Matthew Francis; Hoteit, Ibrahim; Muhammad, Nisar; Moghadas, Davood; Weihermüller, Lutz

    2017-10-01

    A substantial interpretation of electromagnetic induction (EMI) measurements requires quantifying optimal model parameters and uncertainty of a nonlinear inverse problem. For this purpose, an adaptive Bayesian Markov chain Monte Carlo (MCMC) algorithm is used to assess multi-orientation and multi-offset EMI measurements in an agriculture field with non-saline and saline soil. In MCMC the posterior distribution is computed using Bayes' rule. The electromagnetic forward model based on the full solution of Maxwell's equations was used to simulate the apparent electrical conductivity measured with the configurations of EMI instrument, the CMD Mini-Explorer. Uncertainty in the parameters for the three-layered earth model are investigated by using synthetic data. Our results show that in the scenario of non-saline soil, the parameters of layer thickness as compared to layers electrical conductivity are not very informative and are therefore difficult to resolve. Application of the proposed MCMC-based inversion to field measurements in a drip irrigation system demonstrates that the parameters of the model can be well estimated for the saline soil as compared to the non-saline soil, and provides useful insight about parameter uncertainty for the assessment of the model outputs.

  16. Insights into the Groundwater Salinization Processes in Manas River Basin, Northwest China

    NASA Astrophysics Data System (ADS)

    Jin, M.; Liu, Y.; Liang, X.

    2017-12-01

    Manas River Basin (MRB) is a typical mountains-oasis-desert inland basin in northwest China, where groundwater salinization is threatening the local water use and the environment, but the groundwater salinization process is not clear. Based on groundwater flow system analysis by integrating flow fields, hydrochemical and isotopic characteristics, a deuterium excess analytical method was used to quantitatively assess salinization mechanism and calculate the contribution ratios of evapoconcentration effect to the salinities. 73 groundwater samples and 11 surface water samples were collected from the basin. Hydrochemical diagrams and δD and δ18O compositions indicated that evapoconcentration, mineral dissolution and transpiration, increased the groundwater salinities (i.e. total dissolved solids). The results showed that the average contribution ratios of evapoconcentration effect to the increased salinities were 5.8% and 32.7% in groundwater and surface water, respectively. From the piedmont plain to the desert plain, the evapoconcentration effect increased the average groundwater loss from 7% to 29%. However, it only increased slight salinity (0 - 0.27 g/L), as determined from the deuterium excess signals. Minerals dissolution and anthropogenic activities are the major cause of groundwater salinization problem. The results revealed that fresh water in the rivers directly and quickly infiltrated the aquifers in the piedmont area with evapoconcentration affected weakly, and the fresh water interacted with the sediments and dissolved soluble minerals, subsequently increasing the salinities. Combined with the groundwater stable isotopic compositions and hydrochemical evolution, the relationships between δ18O and Cl and salinities reveal the soil evaporites leaching by the vertical recharge (irrigation return flow and channels leakage) mainly affect the groundwater salinization processes in the middle alluvial-diluvial plain and the desert land. The saline water released from aquitards by continuous decline of water level due to over exploitation is an additional factor for groundwater salinization.

  17. Evaluation of soil sustainability along the Rio Grande in West Texas: changes in salt loading and organic nutrients due to farming practices

    NASA Astrophysics Data System (ADS)

    Cox, C. L.; Ganjegunte, G.; Borrok, D. M.; Lougheed, V.; Ma, L.; Jin, L.

    2011-12-01

    Growing populations demand an increase in the amount of food being produced, which in turn, puts pressure on the productivity and sustainability of soils. The use of flood irrigation from the Rio Grande, which contains high salinity, has greatly increased the sodicity and enhanced leaching of the nutrients in the Rio Grande Basin. To evaluate soil health in this area, Rio Grande, soil water, drainage water, and soils from four different sites were collected during the 2011 irrigation season. Sample sites include two pecan fields (Pecan1 and Pecan 2), one cotton field (Cotton), and one alfalfa field (Alfalfa). Each site was equipped with ECH2O-5TE sensors (Decagon Devices Inc., Pullman, WA) to measure soil moisture, temperature, and electrical conductivity (EC), along with lysimeters at depths of 15, 30, and 60 cm to collect soil water samples. Soil solution, irrigation water and drainage water were analyzed for pH, EC (measure of salinity), major cation (Ca, Mg, Na and K) concentrations and soils were analyzed for sodium adsorption ratio (SAR, a measure of sodicity) using standard methods. Soil extraction data suggests that water-soluble cation concentrations increase with depth and are significantly higher in clay-rich soils than sandy ones. Na is the most dominant water-soluble cation with it's concentrations ranging from 0.4 to 5.6 cmolc kg-1. Among all crop types, Cotton soils have the highest amount of water-soluble cations. Preliminary data shows that in the Cotton, Pecan 1 and Pecan 2 sites, soil sodicity increases with depth and becomes greater than 13 mmols1/2 L-1/2 at 30 cm below ground surface, while Alfalfa soils are generally less sodic. Overall, Cotton soils had the highest sodicity, up to 19.2 mmols1/2 L-1/2, which is well above the tolerance level of this crop. Sodicity affects soil permeability, and coincides with areas of high clay content. These observations are in agreement with the facts that pecan orchards are more intensively irrigated and thus have higher salt loading, and that Cotton has a higher clay content. The EC values continuously increase from irrigation water to soil waters, suggesting that as water travels through the soil profile it increases in salinity. Consistent with this observation, cation concentrations in soil waters increased with depth. Therefore, the salts within the soils are mobilized during irrigation. 5TE sensors at all three depths in the field showed spikes in EC, and soil moisture during each period of flood irrigation. Data also suggests a lower bulk EC between irrigation periods which might result from a lower soil moisture content which doesn't solublize the salts. The carbonate- and gypsum- rich soils and surface water in the Rio Grande Basin change with intensity and amount of irrigation, addition of fertilizers, and other agricultural practices. Results from this project contribute to our understanding of salt loading and nutrient cycling in the vulnerable area of the Rio Grande Valley in West Texas.

  18. China Report Agriculture No. 197, Jiangsu Agricultural Geography

    DTIC Science & Technology

    1982-04-06

    Improvement of Heavily Salinated Soil by a Combination of Nurture and Use With Active Improvement in Soil Fertility 120 Third Section. Equitable Cotton and...because of the effect of saline soil in coastal cotton growing areas, regular sowing seasons cannot be too early. Therefore, the sowing season for... salinity of ground water, local runoff cannot now be used in large amounts for irrigation. However, it can be used to flush away silt to keep

  19. Why is SMOS Drier than the South Fork In-situ Soil Moisture Network?

    NASA Astrophysics Data System (ADS)

    Walker, V. A.; Hornbuckle, B. K.; Cosh, M. H.

    2014-12-01

    Global maps of near-surface soil moisture are currently being produced by the European Space Agency's Soil Moisture and Ocean Salinity (SMOS) satellite mission at 40 km. Within the next few months NASA's Soil Moisture Active Passive (SMAP) satellite mission will begin producing observations of near-surface soil moisture at 10 km. Near-surface soil moisture is the water content of the first 3 to 5 cm of the soil. Observations of near-surface soil moisture are expected to improve weather and climate forecasts. These satellite observations must be validated. We define validation as determining the space/time statistical characteristics of the uncertainty. A standard that has been used for satellite validation is in-situ measurements of near-surface soil moisture made with a network of sensors spanning the extent of a satellite footprint. Such a network of sensors has been established in the South Fork of the Iowa River in Central Iowa by the USDA ARS. Our analysis of data in 2013 indicates that SMOS has a dry bias: SMOS near-surface soil moisture is between 0.05 to 0.10 m^3m^{-3} lower than what is observed by the South Fork network. A dry bias in SMOS observations has also been observed in other regions of North America. There are many possible explanations for this difference: underestimation of vegetation, or soil surface roughness; undetected radio frequency interference (RFI); a retrieval model that is not appropriate for agricultural areas; or the use of an incorrect surface temperature in the retrieval process. We will begin our investigation by testing this last possibility: that SMOS is using a surface temperature that is too low which results in a drier soil moisture that compensates for this error. We will present a comparison of surface temperatures from the European Center for Medium-range Weather Forecasting (ECMWF) used to retrieve near-surface soil moisture from SMOS measurements of brightness temperature, and surface temperatures in the South Fork obtained from both tower and in-situ sensors. We will also use a long-term data set of tower and in-situ sensors collected in agricultural fields to develop a relationship between air temperature and the surface temperature relevant to the terrestrial microwave emission that is detected by SMOS.

  20. [The design and implementation of the web typical surface object spectral information system in arid areas based on .NET and SuperMap].

    PubMed

    Xia, Jun; Tashpolat, Tiyip; Zhang, Fei; Ji, Hong-jiang

    2011-07-01

    The characteristic of object spectrum is not only the base of the quantification analysis of remote sensing, but also the main content of the basic research of remote sensing. The typical surface object spectral database in arid areas oasis is of great significance for applied research on remote sensing in soil salinization. In the present paper, the authors took the Ugan-Kuqa River Delta Oasis as an example, unified .NET and the SuperMap platform with SQL Server database stored data, used the B/S pattern and the C# language to design and develop the typical surface object spectral information system, and established the typical surface object spectral database according to the characteristics of arid areas oasis. The system implemented the classified storage and the management of typical surface object spectral information and the related attribute data of the study areas; this system also implemented visualized two-way query between the maps and attribute data, the drawings of the surface object spectral response curves and the processing of the derivative spectral data and its drawings. In addition, the system initially possessed a simple spectral data mining and analysis capabilities, and this advantage provided an efficient, reliable and convenient data management and application platform for the Ugan-Kuqa River Delta Oasis's follow-up study in soil salinization. Finally, It's easy to maintain, convinient for secondary development and practically operating in good condition.

  1. Salinity sources of Kefar Uriya wells in the Judea Group aquifer of Israel. Part 1—conceptual hydrogeological model

    NASA Astrophysics Data System (ADS)

    Avisar, D.; Rosenthal, E.; Flexer, A.; Shulman, H.; Ben-Avraham, Z.; Guttman, J.

    2003-01-01

    In the Yarkon-Taninim groundwater basin, the karstic Judea Group aquifer contains groundwater of high quality. However, in the western wells of the Kefar Uriya area located in the foothills of the Judea Mountains, brackish groundwater was locally encountered. The salinity of this water is caused presumably by two end members designated as the 'Hazerim' and 'Lakhish' water types. The Hazerim type represents surface water percolating through a highly fractured thin chalky limestone formation overlying the Judea Group aquifer. The salinity of the water derives conjointly from several sources such as leachates from rendzina and grumosols, dissolution of caliche crusts which contain evaporites and of rock debris from the surrounding formations. This surface water percolates downwards into the aquifer through a funnel- or chimney-like mechanism. This local salinization mechanism supercedes another regional process caused by the Lakhish waters. These are essentially diluted brines originating from deep formations in the western parts of the Coastal Plain. The study results show that salinization is not caused by the thick chalky beds of the Senonian Mt Scopus Group overlying the Judea Group aquifer, as traditionally considered but prevalently by aqueous leachates from soils and rock debris. The conceptual qualitative hydrogeological model of the salinization as demonstrated in this study, is supported by a quantitative hydrological model presented in another paper in this volume.

  2. Tuber and inulin production of Jerusalem artichoke (Helianthus tuberosus, L.) under salinity stress

    USDA-ARS?s Scientific Manuscript database

    Salinization of soils and irrigation waters has increased soil salinity worldwide, and threaten to reduce crop yield. In the semiarid regions, fresh water scarcity demands salt- and drought-tolerant crops. Jerusalem artichoke (cv. Stampede), a North American crop with inulin-rich tubers, is a carb...

  3. New insights into saline water evaporation from porous media: Complex interaction between evaporation rates, precipitation, and surface temperature

    NASA Astrophysics Data System (ADS)

    Shokri-Kuehni, Salomé M. S.; Vetter, Thomas; Webb, Colin; Shokri, Nima

    2017-06-01

    Understanding salt transport and deposition patterns during evaporation from porous media is important in many engineering and hydrological processes such as soil salinization, ecosystem functioning, and land-atmosphere interaction. As evaporation proceeds, salt concentration increases until it exceeds solubility limits, locally, and crystals precipitate. The interplay between transport processes, crystallization, and evaporation influences where crystallization occurs. During early stages, the precipitated salt creates an evolving porous structure affecting the evaporation kinetics. We conducted a comprehensive series of experiments to investigate how the salt concentration and precipitation influence evaporation dynamics. Our results illustrate the contribution of the evolving salt crust to the evaporative mass losses. High-resolution thermal imaging enabled us to investigate the complex temperature dynamics at the surface of precipitated salt, providing further confirmation of salt crust contribution to the evaporation. We identify different phases of saline water evaporation from porous media with the corresponding dominant mechanisms in each phase and extend the physical understanding of such processes.

  4. Evaluating management-induced soil salinization in golf courses in semi-arid landscapes

    NASA Astrophysics Data System (ADS)

    Young, J.; Udeigwe, T. K.; Weindorf, D. C.; Kandakji, T.; Gautam, P.; Mahmoud, M. M. A.

    2015-01-01

    Site-specific information on land management practices are often desired to make better assertions of their environmental impacts. A study was conducted in Lubbock, TX, in the Southern High Plains of the United States, an area characterized by semi-arid climatic conditions, to (1) examine the potential management-induced alteration in soil salinity indicators in golf course facilities and (2) develop predictive relationships for a more rapid soil salinity examination within these urban landscape soils using findings from portable x-ray fluorescence (PXRF) spectrometer. Soil samples were collected from the managed (well irrigated) and non-managed (non irrigated) areas of seven golf course facilities at 0-10, 10-20, and 20-30 cm depths, and analyzed for a suite of chemical properties. Among the extractable cations, sodium (Na) was significantly (p < 0.05) higher in the managed zones of all the golf facilities. Soil electrical conductivity (EC), exchangeable sodium percentage (ESP), and sodium adsorption ratio (SAR), parameters often used in characterizing soil salinity and sodicity, were in most part significantly (p < 0.05) higher in the managed areas. Water quality report collected over a 22-year period (1991-2013, all years not available) indicated a gradual increase in pH, EC, SAR, total alkalinity, and extractable ions, thus, supporting the former findings. Findings from the PXRF suggested possible differences in chemical species and sources that contribute to salinity between the managed and non-managed zones. PXRF quantified Cl and S, and to a lesser extent Ca, individually and collectively explained 23-85% of the variability associated with soil salinity at these facilities.

  5. Evaluating management-induced soil salinization in golf courses in semi-arid landscapes

    NASA Astrophysics Data System (ADS)

    Young, J.; Udeigwe, T. K.; Weindorf, D. C.; Kandakji, T.; Gautam, P.; Mahmoud, M. A.

    2015-04-01

    Site-specific information on land management practices are often desired to make better assessments of their environmental impacts. A study was conducted in Lubbock, Texas, in the Southern High Plains of the United States, an area characterized by semi-arid climatic conditions, to (1) examine the potential management-induced alterations in soil salinity indicators in golf course facilities and (2) develop predictive relationships for a more rapid soil salinity examination within these urban landscape soils using findings from a portable X-ray fluorescence (PXRF) spectrometer. Soil samples were collected from managed (well irrigated) and non-managed (non-irrigated) areas of seven golf course facilities at 0-10, 10-20, and 20-30 cm depths and analyzed for a suite of chemical properties. Among the extractable cations, sodium (Na) was significantly (p < 0.05) higher in the managed zones of all the golf facilities. Soil electrical conductivity (EC), exchangeable sodium percentage (ESP), and sodium adsorption ratio (SAR), parameters often used in characterizing soil salinity and sodicity, were for the most part significantly (p < 0.05) higher in the managed areas. Water quality reports collected over a 22-year period (1991-2013, all years not available) indicated a gradual increase in pH, EC, SAR, total alkalinity, and extractable ions, thus supporting the former findings. Findings from the PXRF suggested possible differences in chemical species and sources that contribute to salinity between the managed and non-managed zones. PXRF-quantified Cl and S, and to a lesser extent Ca, individually and collectively explained 23-85% of the variability associated with soil salinity at these facilities.

  6. Seasonal Variability of Salt Transports in the Northern Indian Ocean

    NASA Astrophysics Data System (ADS)

    D'Addezio, J. M.; Bulusu, S.

    2016-02-01

    Due to limited observational data in the Indian Ocean compared to other regions of the global ocean, past work on the Northern Indian Ocean (NIO) has relied heavily upon model analysis to study the variability of regional salinity advection caused by the monsoon seasons. With the launch of the Soil Moisture and Ocean Salinity (SMOS) satellite in 2009 and the Aquarius SAC-D mission in 2011 (ended on June 7, 2011), remotely sensed, synoptic scale sea surface salinity (SSS) data is now readily available to study this dynamic region. The new observational data has allowed us to revisit the region to analyze seasonal variability of salinity advection in the NIO using several modeled products, the Aquarius and SMOS satellites, and Argo floats data. The model simulations include the Consortium for Estimating the Circulation and Climate of the Ocean (ECCO2), European Centre for Medium-Range Weather Forecasts - Ocean Reanalysis System 4 (ECMWF-ORSA4), Simple Ocean Data Assimilation (SODA) Reanalysis, and HYbrid Coordinate Ocean Model (HYCOM). Our analyses of salinity at the surface and at depths up to 200 m, surface salt transport in the top 5 m layer, and depth-integrated salt transports revealed different salinity processes in the NIO that are dominantly related to the semi-annual monsoons. Aquarius and SMOS prove useful tools for observing this dynamic region, and reveal some aspects of SSS that Argo cannot resolve. Meridional depth-integrated salt transports using the modeled products along 6°N revealed dominant advective processes from the surface towards near-bottom depths. Finally, a difference in subsurface salinity stratification causes many of the modeled products to incorrectly estimate the magnitude and seasonality of NIO barrier layer thickness (BLT) when compared to the Argo solution. This problem is also evident in model output from the Seychelles-Chagos Thermocline Ridge (SCTR), a region with strong air-sea teleconnections with the Arabian Sea.

  7. Role of solute-transport models in the analysis of groundwater salinity problems in agricultural areas

    USGS Publications Warehouse

    Konikow, Leonard F.

    1981-01-01

    Undesirable salinity increases occur in both groundwater and surface water and are commonly related to agricultural practices. Groundwater recharge from precipitation or irrigation will transport and disperse residual salts concentrated by evapotranspiration, salts leached from soil and aquifer materials, as well as some dissolved fertilizers and pesticides. Where stream salinity is affected by agricultural practices, the increases in salt load usually are attributable mostly to a groundwater component of flow. Thus, efforts to predict, manage, or control stream salinity increases should consider the role of groundwater in salt transport. Two examples of groundwater salinity problems in Colorado, U.S.A., illustrate that a model which simulates accurately the transport and dispersion of solutes in flowing groundwater can be (1) a valuable investigative tool to help understand the processes and parameters controlling the movement and fate of the salt, and (2) a valuable management tool for predicting responses and optimizing the development and use of the total water resource. ?? 1981.

  8. Effects of poly-γ-glutamic acid biopreparation (PGAB) on nitrogen conservation in the coastal saline soil

    NASA Astrophysics Data System (ADS)

    Chen, Lihua; Xu, Xianghong; Zhang, Huan; Han, Rui; Cheng, Yao; Tan, Xueyi; Chen, Xuanyu

    2017-04-01

    Water leaching is the major method to decrease soil salinity of the coastal saline soil. Conservation of soil nutrition in the soil ameliorating process is helpful to maintain soil fertility and prevent environment pollution. In the experiment, glutamic acid and poly-γ-glutamic acid (PGA) producing bacteria were isolated for manufacturing the PGA biopreparation (PGAB), and the effect of PGAB on the soil nitrogen (N) conservation was assayed. The glutamic acid and PGA producing bacteria were identified as Brevibacterium flavum and Bacillus amyloliquefaciens. After soil leached with water for 90 days, compared to control treatment, salt concentration of 0-30cm soil with PGAB treatment was lowered by 39.93%, however the total N loss was decreased by 65.37%. Compared to control, the microbial biomass N increased by 1.19 times at 0-30 cm soil with PGAB treatment. The populations of soil total bacteria, fungi, actinomyces, nitrogen fixing bacteria, ammonifying bacteria, nitrifying bacteria and denitrifying bacteria and biomass of soil algae were significantly increased in PGAB treatment, while anaerobic bacteria decreased (P<0.05). In addition, the percentage of soil aggregates with diameter > 0.25 mm and 0.02 mm < diameter <0.25 mm were increased by 2.93 times and 26.79% respectively in PGAB treatment. The soil erosion-resistance coefficient of PGAB treatment increased by 50%. All these suggested that the PGAB conserved the soil nitrogen effectively in the process of soil water leaching and improved the coastal saline soil quality.

  9. Chloride ion transport and fate in oilfield wastewater reuse by interval dynamic multimedia aquivalence model.

    PubMed

    Hu, Y; Zhang, C; Wang, D Z; Wen, J Y; Chen, M H; Li, Y

    2013-01-01

    A surface flow constructed wetland was built up to dispose of oilfield wastewater with a high level of inorganic salt ions. Chlorine ion (Cl(-)) was selected as an indicator of soil secondary salinization, and an interval dynamic multimedia aquivalence (IDMA) model was developed to investigate the dynamic multimedia environmental (air, water, soil, flora, and groundwater) effects of Cl(-) in the wastewater irrigation process between 2002 and 2020. The modeled Cl(-) concentrations were in good agreement with the measured ones, as indicated by the interval average logarithmic residual errors (IALREs) being generally lower than 0.5 logarithmic units. The model results showed that the temporal trends of Cl(-) concentrations in the multimedia environments represented a relatively steady state. More than 97.00% of the mass exchange was finished between soil and groundwater compartments, and Cl(-) finally outputted the environmental system by the pathways of advection outflows in the water (71.03%) and groundwater (24.02%). Soil (59.17%) was the dominant sink of Cl(-). It was revealed that the high level of Cl(-) in oilfield wastewater was well treated by the constructed wetland, and there was not a significant environmental effect of soil secondary salinization in the oilfield wastewater reused for the constructed wetland irrigation.

  10. Differential distribution and abundance of diazotrophic bacterial communities across different soil niches using a gene-targeted clone library approach.

    PubMed

    Yousuf, Basit; Kumar, Raghawendra; Mishra, Avinash; Jha, Bhavanath

    2014-11-01

    Diazotrophs are key players of the globally important biogeochemical nitrogen cycle, having a significant role in maintaining ecosystem sustainability. Saline soils are pristine and unexplored habitats representing intriguing ecosystems expected to harbour potential diazotrophs capable of adapting in extreme conditions, and these implicated organisms are largely obscure. Differential occurrence of diazotrophs was studied by the nifH gene-targeted clone library approach. Four nifH gene clone libraries were constructed from different soil niches, that is saline soils (low and high salinity; EC 3.8 and 7.1 ds m(-1) ), and agricultural and rhizosphere soil. Additionally, the abundance of diazotrophic community members was assessed using quantitative PCR. Results showed environment-dependent metabolic versatility and the presence of nitrogen-fixing bacteria affiliated with a range of taxa, encompassing members of the Alphaproteobacteria, Betaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, Cyanobacteria and Firmicutes. The analyses unveiled the dominance of Alphaproteobacteria and Gammaproteobacteria (Pseudomonas, Halorhodospira, Ectothiorhodospira, Bradyrhizobium, Agrobacterium, Amorphomonas) as nitrogen fixers in coastal-saline soil ecosystems, and Alphaproteobacteria and Betaproteobacteria (Bradyrhizobium, Azohydromonas, Azospirillum, Ideonella) in agricultural/rhizosphere ecosystems. The results revealed a repertoire of novel nitrogen-fixing bacterial guilds particularly in saline soil ecosystems. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  11. Mapping soil salinity and a fresh-water intrusion in three-dimensions using a quasi-3d joint-inversion of DUALEM-421S and EM34 data

    NASA Astrophysics Data System (ADS)

    Zare, Ehsan; Huang, Jingyi; Koganti, Triven; Triantafilis, John

    2017-04-01

    In order to understand the drivers of topsoil salinization, the distribution and movement of salt in accordance with groundwater need mapping. In this study, we described a method to map the distribution of soil salinity, as measured by the electrical conductivity of a saturated soil-paste extract (ECe), and in 3-dimensions around a water storage reservoir in an irrigated field near Bourke, New South Wales, Australia. A quasi-3d electromagnetic conductivity image (EMCI) or model of the true electrical conductivity (sigma) was developed using 133 apparent electrical conductivity (ECa) measurements collected on a 50 m grid and using various coil arrays of DUALEM-421S and EM34 instruments. For the DUALEM-421S we considered ECa in horizontal coplanar (i.e., 1 mPcon, 2 mPcon and 4 mPcon) and vertical coplanar (i.e., 1 mHcon, 2 mHcon and 4 mHcon) arrays. For the EM34, three measurements in the horizontal mode (i.e., EM34-10H, EM34-20H and EM34-40H) were considered. We estimated σ using a quasi-3d joint-inversion algorithm (EM4Soil). The best correlation (R2 = 0.92) between σ and measured soil ECe was identified when a forward modelling (FS), inversion algorithm (S2) and damping factor (lambda = 0.2) were used and using both DUALEM-421 and EM34 data; but not including the 4 m coil arrays of the DUALEM-421S. A linear regression calibration model was used to predict ECe in 3-dimensions beneath the study field. The predicted ECe was consistent with previous studies and revealed the distribution of ECe and helped to infer a freshwater intrusion from a water storage reservoir at depth and as a function of its proximity to near-surface prior stream channels and buried paleochannels. It was concluded that this method can be applied elsewhere to map the soil salinity and water movement and provide guidance for improved land management.|

  12. Mapping soil salinity and a fresh-water intrusion in three-dimensions using a quasi-3d joint-inversion of DUALEM-421S and EM34 data.

    PubMed

    Huang, J; Koganti, T; Santos, F A Monteiro; Triantafilis, J

    2017-01-15

    In order to understand the drivers of topsoil salinization, the distribution and movement of salt in accordance with groundwater need mapping. In this study, we described a method to map the distribution of soil salinity, as measured by the electrical conductivity of a saturated soil-paste extract (EC e ), and in 3-dimensions around a water storage reservoir in an irrigated field near Bourke, New South Wales, Australia. A quasi-3d electromagnetic conductivity image (EMCI) or model of the true electrical conductivity (σ) was developed using 133 apparent electrical conductivity (EC a ) measurements collected on a 50m grid and using various coil arrays of DUALEM-421S and EM34 instruments. For the DUALEM-421S we considered EC a in horizontal coplanar (i.e., 1mPcon, 2mPcon and 4mPcon) and vertical coplanar (i.e., 1mHcon, 2mHcon and 4mHcon) arrays. For the EM34, three measurements in the horizontal mode (i.e., EM34-10H, EM34-20H and EM34-40H) were considered. We estimated σ using a quasi-3d joint-inversion algorithm (EM4Soil). The best correlation (R 2 =0.92) between σ and measured soil EC e was identified when a forward modelling (FS), inversion algorithm (S2) and damping factor (λ=0.2) were used and using both DUALEM-421 and EM34 data; but not including the 4m coil arrays of the DUALEM-421S. A linear regression calibration model was used to predict EC e in 3-dimensions beneath the study field. The predicted EC e was consistent with previous studies and revealed the distribution of EC e and helped to infer a freshwater intrusion from a water storage reservoir at depth and as a function of its proximity to near-surface prior stream channels and buried paleochannels. It was concluded that this method can be applied elsewhere to map the soil salinity and water movement and provide guidance for improved land management. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Aquarius Radiometer and Scatterometer Weekly Polar-Gridded Products to Monitor Ice Sheets, Sea Ice, and Frozen Soil

    NASA Technical Reports Server (NTRS)

    Brucker, Ludovic; Dinnat, Emmanuel; Koenig, Lora

    2014-01-01

    Space-based microwave sensors have been available for several decades, and with time more frequencies have been offered. Observations made at frequencies between 7 and 183 GHz were often used for monitoring cryospheric properties (e.g. sea ice concentration, snow accumulation, snow melt extent and duration). Since 2009, satellite observations are available at the low frequency of 1.4 GHz. Such observations are collected by the Soil Moisture and Ocean Salinity (SMOS) mission, and the Aquarius/SAC-D mission. Even though these missions have been designed for the monitoring of soil moisture and sea surface salinity, new applications are being developed to study the cryosphere. For instance, L-band observations can be used to monitor soil freeze/thaw (e.g. Rautiainen et al., 2012), and thin sea ice thickness (e.g. Kaleschke et al., 2010, Huntemann et al., 2013). Moreover, with the development of satellite missions comes the need for calibration and validation sites. These sites must have stable characteristics, such as the Antarctic Plateau (Drinkwater et al., 2004, Macelloni et al., 2013). Therefore, studying the cryosphere with 1.4 GHz observations is relevant for both science applications, and remote sensing applications.

  14. Aquarius Radiometer and Scatterometer Weekly-Polar-Gridded Products to Monitor Ice Sheets, Sea Ice, and Frozen Soil

    NASA Technical Reports Server (NTRS)

    Brucker, Ludovic; Dinnat, Emmanuel; Koenig, Lora

    2014-01-01

    Space-based microwave sensors have been available for several decades, and with time more frequencies have been offered. Observations made at frequencies between 7 and 183 GHz were often used for monitoring cryospheric properties (e.g. sea ice concentration, snow accumulation, snow melt extent and duration). Since 2009, satellite observations are available at the low frequency of 1.4 GHz. Such observations are collected by the Soil Moisture and Ocean Salinity (SMOS) mission, and the AquariusSAC-D mission. Even though these missions have been designed for the monitoring of soil moisture and sea surface salinity, new applications are being developed to study the cryosphere. For instance, L-band observations can be used to monitor soil freezethaw (e.g. Rautiainen et al., 2012), and thin sea ice thickness (e.g. Kaleschke et al., 2010, Huntemann et al., 2013). Moreover, with the development of satellite missions comes the need for calibration and validation sites. These sites must have stable characteristics, such as the Antarctic Plateau (Drinkwater et al., 2004, Macelloni et al., 2013). Therefore, studying the cryosphere with 1.4 GHz observations is relevant for both science applications, and remote sensing applications.

  15. Soil Salt Distribution and Tomato Response to Saline Water Irrigation under Straw Mulching

    PubMed Central

    Zhai, Yaming; Yang, Qian; Wu, Yunyu

    2016-01-01

    To investigate better saline water irrigation scheme for tomatoes that scheduling with the compromise among yield (Yt), quality, irrigation water use efficiency (IWUE) and soil salt residual, an experiment with three irrigation quotas and three salinities of irrigation water was conducted under straw mulching in northern China. The irrigation quota levels were 280 mm (W1), 320 mm (W2) and 360 mm (W3), and the salinity levels were 1.0 dS/m (F), 3.0 dS/m (S1) and 5.0 dS/m (S2). Compared to freshwater, saline water irrigations decreased the maximum leaf area index (LAIm) of tomatoes, and the LAIm presented a decline tendency with higher salinity and lower irrigation quota. The best overall quality of tomato was obtained by S2W1, with the comprehensive quality index of 3.61. A higher salinity and lower irrigation quota resulted in a decrease of individual fruit weight and an increase of the blossom-end rot incidence, finally led to a reduction in the tomato Yt and marketable yield (Ym). After one growth season of tomato, the mass fraction of soil salt in plough layer under S2W1 treatment was the highest, and which presented a decline trend with an increasing irrigation quota. Moreover, compared to W1, soil salts had a tendency to move to the deeper soil layer when using W2 and W3 irrigation quota. According to the calculation results of projection pursuit model, S1W3 was the optimal treatment that possessed the best comprehensive benefit (tomato overall quality, Yt, Ym, IWUE and soil salt residual), and was recommended as the saline water irrigation scheme for tomatoes in northern China. PMID:27806098

  16. Soil Salt Distribution and Tomato Response to Saline Water Irrigation under Straw Mulching.

    PubMed

    Zhai, Yaming; Yang, Qian; Wu, Yunyu

    2016-01-01

    To investigate better saline water irrigation scheme for tomatoes that scheduling with the compromise among yield (Yt), quality, irrigation water use efficiency (IWUE) and soil salt residual, an experiment with three irrigation quotas and three salinities of irrigation water was conducted under straw mulching in northern China. The irrigation quota levels were 280 mm (W1), 320 mm (W2) and 360 mm (W3), and the salinity levels were 1.0 dS/m (F), 3.0 dS/m (S1) and 5.0 dS/m (S2). Compared to freshwater, saline water irrigations decreased the maximum leaf area index (LAIm) of tomatoes, and the LAIm presented a decline tendency with higher salinity and lower irrigation quota. The best overall quality of tomato was obtained by S2W1, with the comprehensive quality index of 3.61. A higher salinity and lower irrigation quota resulted in a decrease of individual fruit weight and an increase of the blossom-end rot incidence, finally led to a reduction in the tomato Yt and marketable yield (Ym). After one growth season of tomato, the mass fraction of soil salt in plough layer under S2W1 treatment was the highest, and which presented a decline trend with an increasing irrigation quota. Moreover, compared to W1, soil salts had a tendency to move to the deeper soil layer when using W2 and W3 irrigation quota. According to the calculation results of projection pursuit model, S1W3 was the optimal treatment that possessed the best comprehensive benefit (tomato overall quality, Yt, Ym, IWUE and soil salt residual), and was recommended as the saline water irrigation scheme for tomatoes in northern China.

  17. Monitoring the Impact of Climate Change on Soil Salinity in Agricultural Areas Using Ground and Satellite Sensors

    NASA Astrophysics Data System (ADS)

    Corwin, D. L.; Scudiero, E.

    2017-12-01

    Changes in climatic patterns have had dramatic influence on agricultural areas worldwide, particularly in irrigated arid-zone agricultural areas subjected to recurring drought, such as California's San Joaquin Valley (SJV), or areas receiving above average rainfall for a decade or more, such as Minnesota's Red River Valley (RRV). Climate change has impacted water availability with an under or over abundance, which subsequently has impacted soil salinity levels in the root zone primarily from the upward movement of salts from shallow water tables. Inventorying and monitoring the impact of climate change on soil salinity is crucial to evaluate the extent of the problem, to recognize trends, and to formulate state-wide and field-scale irrigation, drainage, and crop management strategies that will sustain the agricultural productivity of the SJV and RRV. Over the past 3 decades, Corwin and colleagues at the U.S. Salinity Laboratory have developed proximal sensor (i.e., electrical resistivity and electromagnetic induction) and remote imagery (i.e., MODIS and Landsat 7) methodologies for assessing soil salinity at multiple scales: field (0.5 ha to 3 km2), landscape (3 to 10 km2), and regional (10 to 105 km2) scales. The purpose of this presentation is to provide an overview of these scale-dependent salinity assessment technologies. Case studies for SJV and RRV are presented to demonstrate at multiple scales the utility of these approaches in assessing soil salinity changes due to management-induced changes and to changes in climate patterns, and in providing site-specific irrigation management information for salinity control. Decision makers in state and federal agencies, irrigation and drainage district managers, soil and water resource managers, producers, agriculture consultants, extension specialists, and Natural Resource Conservation Service field staff are the beneficiaries of this information.

  18. Soil salinity assessment through satellite thermography for different irrigated and rainfed crops

    NASA Astrophysics Data System (ADS)

    Ivushkin, Konstantin; Bartholomeus, Harm; Bregt, Arnold K.; Pulatov, Alim; Bui, Elisabeth N.; Wilford, John

    2018-06-01

    The use of canopy thermography is an innovative approach for salinity stress detection in plants. But its applicability for landscape scale studies using satellite sensors is still not well investigated. The aim of this research is to test the satellite thermography soil salinity assessment approach on a study area with different crops, grown both in irrigated and rainfed conditions, to evaluate whether the approach has general applicability. Four study areas in four different states of Australia were selected to give broad representation of different crops cultivated under irrigated and rainfed conditions. The soil salinity map was prepared by the staff of Geoscience Australia and CSIRO Land and Water and it is based on thorough soil sampling together with environmental modelling. Remote sensing data was captured by the Landsat 5 TM satellite. In the analysis we used vegetation indices and brightness temperature as an indicator for canopy temperature. Applying analysis of variance and time series we have investigated the applicability of satellite remote sensing of canopy temperature as an approach of soil salinity assessment for different crops grown under irrigated and rainfed conditions. We concluded that in all cases average canopy temperatures were significantly correlated with soil salinity of the area. This relation is valid for all investigated crops, grown both irrigated and rainfed. Nevertheless, crop type does influence the strength of the relations. In our case cotton shows only minor temperature difference compared to other vegetation classes. The strongest relations between canopy temperature and soil salinity were observed at the moment of a maximum green biomass of the crops which is thus considered to be the best time for application of the approach.

  19. Soil salinization in the agricultural lands of Rhodope District, northeastern Greece.

    PubMed

    Pisinaras, V; Tsihrintzis, V A; Petalas, C; Ouzounis, K

    2010-07-01

    The objective of this study was to identify seasonal and spatial trends and soil salinization patterns in a part of Rhodope District irrigated land, northeastern Greece, located east of Vistonis Lagoon. The study area is irrigated from a coastal aquifer, where salt water intrusion occurs because of extensive groundwater withdrawals. Fourteen monitoring sites were established in harvest fields in the study area, where soil samples were collected. Electrical conductivity (ECe), pH, and ion concentrations were determined in the saturated paste extract of the soil samples in the laboratory using standard methods. A clear tendency was observed for ECe to increase from April to September, i.e., within the irrigation period, indicating the effect of saline groundwater to soil. In the last years, the change from moderately sensitive (e.g., corn) to moderately tolerant crops (e.g., cotton) in the south part of the study area indicates the impacts of soil salinity. The study proposes management methods to alleviate this problem.

  20. Effects of Soil Salinity on Sucrose Metabolism in Cotton Leaves

    PubMed Central

    Zhang, Lei; Luo, Junyu; Dong, Helin; Ma, Yan; Zhao, Xinhua; Chen, Binglin; Sui, Ning; Zhou, Zhiguo; Meng, Yali

    2016-01-01

    This study investigated sucrose metabolism of the youngest fully expanded main-stem leaf (MSL) and the subtending leaf of cotton (Gossypium hirsutum L.) boll (LSCB) of salt-tolerant (CCRI-79) and salt-sensitive (Simian 3) cultivars and its relationship to boll weight under low, medium and high soil salinity stress in Dafeng, China, in 2013 and 2014. The results showed that with increased soil salinity, 1) both the chlorophyll content and net photosynthetic rate (Pn) decreased, while the internal CO2 concentration firstly declined, and then increased in the MSL and LSCB; 2) carbohydrate contents in the MSL reduced significantly, while sucrose and starch contents in the LSCB increased, as did the activities of sucrose phosphate synthase (SPS) and sucrose synthase (SuSy) in both the MSL and LSCB; 3) but invertase activity in both the MSL and LSCB did not change significantly. Our study also showed that the LSCB was more sensitive to soil salinity than was the MSL. Of the measured physiological indices, higher SPS activity, mainly controlled by sps3, may contribute to adaption of the LSCB to soil salinity stress because SPS is beneficial for efficiently sucrose synthesis, reduction of cellular osmotic potential and combined actions of Pn, and sucrose transformation rate and SPS may contribute to the reduction in boll weight under soil salinity stress. PMID:27228029

  1. Biochar-manure compost in conjunction with pyroligneous solution alleviated salt stress and improved leaf bioactivity of maize in a saline soil from central China: a 2-year field experiment.

    PubMed

    Lashari, Muhammad Siddique; Ye, Yingxin; Ji, Haishi; Li, Lianqing; Kibue, Grace Wanjiru; Lu, Haifei; Zheng, Jufeng; Pan, Genxing

    2015-04-01

    Salinity is a major stress threatening crop production in dry lands. A 2-year field experiment was conducted to assess the potential of a biochar product to alleviate salt-stress to a maize crop in a saline soil. The soil was amended with a compost at 12 t ha(-1) of wheat straw biochar and poultry manure compost (BPC), and a diluted pyroligneous solution (PS) at 0.15 t ha(-1) (BPC-PS). Changes in soil salinity and plant performance, leaf bioactivity were examined in the first (BPC-PS1) and second (BPC-PS2) year following a single amendment. While soil salinity significantly decreased, there were large increases in leaf area index, plant performance, and maize grain yield, with a considerable decrease in leaf electrolyte leakage when grown in amendments. Maize leaf sap nitrogen, phosphorus and potassium increased while sodium and chloride decreased, leaf bioactivity related to osmotic stress was significantly improved following the treatments. These effects were generally greater in the second than in the first year. A combined amendment of crop straw biochar with manure compost plus pyroligneous solution could help combat salinity stress to maize and improve productivity in saline croplands in arid/semi-arid regions threatened increasingly by global climate change. © 2014 Society of Chemical Industry.

  2. Impact of groundwater levels on evaporation and water-vapor fluxes in highly saline soils

    NASA Astrophysics Data System (ADS)

    Munoz, J. F.; Hernández, M. F.; Braud, I.; Gironas, J. A.; Suarez, F. I.

    2012-12-01

    In aquifers of arid and hyper-arid zones, such as those occurring in the Chilean Andes high plateau, it is important to determine both the quantity and location of water discharges at the temporal scales of interest to close the basin's water budget and thus, to manage the water resource properly. In zones where shallow aquifers are the main source of water, overexploitation of the water resource changes the dynamics of water, heat and solute transport in the vadose zone. As aquifers are exploited, fluctuations in depth to groundwater are exacerbated. These fluctuations modify both soil structure and evaporation from the ground, which is typically the most important discharge from the water budget and is very difficult to estimate. Therefore, a correct quantification of evaporation from these soils is essential to improve the accuracy of the water balance estimation. The objective of this study was to investigate the evaporation processes and water-vapor fluxes in a soil column filled with a saline soil from the Salar del Huasco basin, Chile. Water content, electrical conductivity and temperature at different depths in the soil profile were monitored to determine the liquid and vapor fluxes within the soil column. The results showed that evaporation is negligible when the groundwater table is deeper than 1 m. For shallower groundwater levels, evaporation increases in an exponential fashion reaching a value of 3 mm/day when the groundwater table is near the surface of the ground. These evaporation rates are on the same order of magnitude than the field measurements, but slightly lower due to the controlled conditions maintained in the laboratory. Isothermal fluid fluxes were predominant over the non-isothermal fluid and water vapor fluxes. The net flux for all the phreatic levels tested in the laboratory showed different behaviors, with ascending or descending flows as a consequence of changes in water content and temperature distribution within the soil. It was found that evaporation from bare soils occurs as a consequence of vapor transport due to the thermal gradients. This vapor transport was also influences by the salinity of the soil.

  3. Compartmentalization of gypsum and halite associated with cyanobacteria in saline soil crusts.

    PubMed

    Canfora, Loredana; Vendramin, Elisa; Vittori Antisari, Livia; Lo Papa, Giuseppe; Dazzi, Carmelo; Benedetti, Anna; Iavazzo, Pietro; Adamo, Paola; Jungblut, Anne D; Pinzari, Flavia

    2016-06-01

    The interface between biological and geochemical components in the surface crust of a saline soil was investigated using X-ray diffraction, and variable pressure scanning electron microscopy in combination with energy dispersive X-ray spectrometry. Mineral compounds such as halite and gypsum were identified crystallized around filaments of cyanobacteria. A total of 92 genera were identified from the bacterial community based on 16S gene pyrosequencing analysis. The occurrence of the gypsum crystals, their shapes and compartmentalization suggested that they separated NaCl from the immediate microenvironment of the cyanobacteria, and that some cyanobacteria and communities of sulfur bacteria may had a physical control over the distinctive halite and gypsum structures produced. This suggests that cyanobacteria might directly or indirectly promote the formation of a protective envelope made of calcium and sulfur-based compounds. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Impact of Aquarius and SMAP Sea Surface Salinity Observations on Seasonal Predictions of the 2015 El Nino

    NASA Technical Reports Server (NTRS)

    Hackert, E.; Kovach, R.; Marshak, J.; Borovikov, A.; Molod, A.; Vernieres, G.

    2018-01-01

    We assess the impact of satellite sea surface salinity (SSS) observations on dynamical ENSO forecasts for the big 2015 El Nino event. From March to June 2015, the availability of two overlapping satellite SSS instruments, Aquarius and SMAP (Soil Moisture Active Passive Mission), allows a unique opportunity to compare and contrast forecasts generated with the benefit of these two satellite SSS observation types. Four distinct experiments are presented that include 1) freely evolving model SSS (i.e. no satellite SSS), relaxation to 2) climatological SSS (i.e. WOA13 SSS), 3) Aquarius, and 4) SMAP initialization. Coupled hindcasts are then generated from these initial conditions for March 2015. These forecasts are then validated against observations and evaluated with respect to the observed El Nino development.

  5. Impact of water quality and irrigation management on soil salinization in the Drâa valley of Morocco.

    NASA Astrophysics Data System (ADS)

    Beff, L.; Descamps, C.; Dufey, J.; Bielders, C.

    2009-04-01

    Under the arid climatic conditions of the Drâa valley in southern Morocco, irrigation is essential for crop production. Two sources of water are available to farmers: (1) moderate salinity water from the Oued Drâa (classified as C3-S1 in the USDA irrigation water classification diagram) which is available only a few times per year following discrete releases from the Mansour Eddahbi dam, and (2) high salinity water from wells (C4-S2). Soil salinization is frequently observed, principally on plots irrigated with well water. As Oued water is available in insufficient amounts, strategies must be devised to use well and Oued water judiciously, without inducing severe salinization. The salinization risk under wheat production was evaluated using the HP1 program (Jacques and Šimůnek, 2005) for different combinations of the two main water sources, different irrigation frequencies and irrigation volumes. The soil was a sandy clay loam (topsoil) to sandy loam (40 cm depth). Soil hydrodynamic properties were derived from in situ measurements and lab measurements on undisturbed soil samples. The HP1 model was parameterized for wheat growth and 12 scenarios were run for 10 year periods using local climatic data. Water quality was measured or estimated on the basis of water samples in wells and various Oueds, and the soil chemical properties were determined. Depending on the scenario, soil salinity in the mean root zone increased from less than 1 meq/100g of soil to more than 5 meq/100g of soil over a ten year period. Salt accumulation was more pronounced at 45 cm soil depth, which is half of the maximum rooting depth, and when well water was preferentially used. Maximum crop yield (water transpired / potential water transpired) was achieved for five scenarios but this implied the use of well water to satisfy the crop water requirements. The usual Drâa Valley irrigation scenario, with five, 84 mm dam water applications per year, lead to a 25% yield loss. Adding the amount of well water needed to satisfy the crop water requirements as well as the leaching requirement had the lowest impact on soil salinization but resulted in a very low water use efficiency of 0.2 (water transpired / water added). This demonstrates the importance of using larger amounts of water than plant water requirements in this region in order to leach out salt of the root zone. However, in arid region, water is often limited and thus farmers can not afford to waste it. In that case, it is necessary to find a compromise between salinization, sodification and saving water. References: Jacques D., Šimůnek J. (2005). User Manual of the Multicomponent Variably-Saturated Flow and Transport Model HP1. Waste and Disposal Department, Mol, Belgium. USDA, United States Department of Agriculture (1969). Diagnosis and Improvement of Saline and Alkali Soils. United States Salinity Laboratory Staff, Agriculture Handbook No. 60, 160p.

  6. Cadmium tolerance and phytoremediation potential of acacia (Acacia nilotica L.) under salinity stress.

    PubMed

    Shabir, Rahat; Abbas, Ghulam; Saqib, Muhammad; Shahid, Muhammad; Shah, Ghulam Mustafa; Akram, Muhammad; Niazi, Nabeel Khan; Naeem, Muhammad Asif; Hussain, Munawar; Ashraf, Farah

    2018-06-07

    In this study, we explored the effect of salinity on cadmium (Cd) tolerance and phytoremediation potential of Acacia nilotica. Two-month-old uniform plants of A. nilotica were grown in pots contaminated with various levels of Cd (0, 5, 10, and 15 mg kg -1 ), NaCl (0%, 0.5%, 1.0% (hereafter referred as salinity), and all possible combinations of Cd + salinity for a period of six months. Results showed that shoot and root growth, biomass, tissue water content and chlorophyll (chl a, chl b, and total chl a+b) contents decreased more in response to salinity and combination of Cd + salinity compared to Cd alone. Shoot and root K concentrations significantly decreased with increasing soil Cd levels, whereas Na and Cl concentrations were not affected significantly. Shoot and root Cd concentrations, bioconcentration factor (BCF) and translocation factor (TF) increased with increasing soil Cd and Cd + salinity levels. At low level of salinity (0.5%), shoot and root Cd uptake enhanced, while it decreased at high level of salinity (1.0%). Due to Cd tolerance, high shoot biomass and shoot Cd uptake, this tree species has some potential for phytoremediation of Cd from the metal contaminated saline and nonsaline soils.

  7. Application of SMAP Data for Ocean Surface Remote Sensing

    NASA Astrophysics Data System (ADS)

    Fore, A.; Yueh, S. H.; Tang, W.; Stiles, B. W.; Hayashi, A.

    2017-12-01

    The Soil Moisture Active Passive (SMAP) mission was launched January 31st, 2015. It is designed to measure the soil moisture over land using a combined active / passive L-band system. Due to the Aquarius mission, L-band model functions for ocean winds and salinity are mature and are directly applicable to the SMAP mission. In contrast to Aquarius, the higher resolution and scanning geometry of SMAP allow for wide-swath ocean winds and salinities to be retrieved. In this talk we present the SMAP Sea Surface Salinity (SSS) and extreme winds dataset and its performance. First we discuss the heritage of SMAP SSS algorithms, showing that SMAP and Aquarius show excellent agreement in the ocean surface roughness correction. Then, we give an overview of some newly developed algorithms that are only relevant to the SMAP system; a new galaxy correction and land correction enabling SSS retrievals up to 40 km from coast. We discuss recent improvements to the SMAP data processing for version 4.0. Next we compare the performance of the SMAP SSS to in-situ salinity measurements obtained from ARGO floats, tropical moored buoys, and ship-based data. SMAP SSS has accuracy of 0.2 PSU on a monthly basis compared to ARGO gridded data in tropics and mid-latitudes. In tropical oceans, time series comparison of salinity measured at 1 m depth by moored buoys indicates SMAP can track large salinity changes within a month. Synergetic analysis of SMAP, SMOS, and Argo data allows us to identify and exclude erroneous buoy data from assessment of SMAP SSS. The resulting SMAP-buoy matchup analysis gives a mean standard deviation (STD) of 0.22 PSU and correlation of 0.73 on weekly scale; at monthly scale the mean STD decreased to 0.17 PSU and the correlation increased to 0.8. In addition to SSS, SMAP provides a view into tropical cyclones having much higher sensitivity than traditional scatterometers. We validate the high-winds using collocations with SFMR during tropical cyclones as well as triple-collocations with RapidScat and WindSat. We consider two validation regimes, storm force winds and hurricane force winds. For storm force winds we validate using other space-borne scatterometers and microwave radiometers as well as with SFMR, however, for hurricane force winds we must use SFMR. Finally we discuss the various data products and where they may be obtained.

  8. Analytical Solution for Interface Flow to a Sink With an Upconed Saline Water Lens: Strack's Regimes Revisited

    NASA Astrophysics Data System (ADS)

    Kacimov, A. R.; Obnosov, Y. V.

    2018-01-01

    A study is made of a steady, two-dimensional groundwater flow with a horizontal well (drain), which pumps out freshwater from an aquifer sandwiched between a horizontal bedrock and ponded soil surface, and containing a lens-shaped static volume of a heavier saline water (DNAPL-dense nonaqueous phase liquid) as a free surface. For flow toward a line sink, an explicit analytical solution is obtained by a conformal mapping of the hexagon in the complex potential plane onto a reference plane and the Keldysh-Sedov integral representation of a mixed boundary-value problem for a complex physical coordinate. The interface is found as a function of the pumping rate, the well locus, the ratio of liquid densities, and the hydraulic heads at the soil surface and in the well. The shape with two inflexion points and fronts varies from a small-thickness bedrock-spread pancake to a critical curvilinear triangle, which cusps toward the sink. The problem is mathematically solvable in a relatively narrow band of geometric and hydraulic parameters. A similar analytic solution for a static heavy bubble confined by a closed-curve interface (no contact with the bedrock) is outlined as an illustration of the method to solve a mixed boundary-value problem.

  9. Chemical and isotopic evidence for hydrogeochemical processes occurring in the Lincolnshire Limestone

    NASA Astrophysics Data System (ADS)

    Bishop, Philip K.; Lloyd, John W.

    1990-12-01

    Over 150 groundwater samples from the Lincolnshire Limestone have been analysed for pH, major ions and δ 13C ratios. Where possible, field E h and iodide concentrations were measured and methane concentrations were determined for 12 samples. Stable isotope ratios were determined for soil and rock carbonate samples. A system of zonation allows the division of hydrogeochemical processes occurring in the aquifer. The use of hydrochemical and isotope data in modelling exercises enables the re-evaluation and possible enhancement of the understanding of hydrogeochemical processes. The carbonate chemistry of outcrop groundwaters is explained by calcite saturation being achieved under open-system conditions in the soil zone. δ 13C ratios in the range - 15.99 to - 10.57‰ may be generated from a stoichiometric reaction with possible additional partial and/or simultaneous exchange with soil CO 2 or carbonate. The isotopic composition of soil carbonate shows the effects of precipitation from soil waters. The incongruent dissolution of primary depositional limestone carbonate results in increasing magnesium and strontium concentrations and increasing δ 13C ratios for the groundwaters with flow down the hydraulic gradient. As a result of incongruent dissolution, secondary calcite may be precipitated onto fissure surfaces. Significant nitrate and sulphate reduction in non-saline groundwaters is not supported by the results of hydrochemical and isotope modelling exercises. However, sulphate reduction and methane fermentation may be affecting the isotopic and chemical compositions of saline groundwaters. Sodium-calcium ion exchange leads to limited calcite dissolution deep in the aquifer, but the evolution of these groundwaters is confused by the uncertain effects of oxidation of organic carbon and mixing with a saline end-member solution.

  10. Predictive spatial modelling for mapping soil salinity at continental scale

    NASA Astrophysics Data System (ADS)

    Bui, Elisabeth; Wilford, John; de Caritat, Patrice

    2017-04-01

    Soil salinity is a serious limitation to agriculture and one of the main causes of land degradation. Soil is considered saline if its electrical conductivity (EC) is > 4 dS/m. Maps of saline soil distribution are essential for appropriate land development. Previous attempts to map soil salinity over extensive areas have relied on satellite imagery, aerial electromagnetic (EM) and/or proximally sensed EM data; other environmental (climate, topographic, geologic or soil) datasets are generally not used. Having successfully modelled and mapped calcium carbonate distribution over the 0-80 cm depth in Australian soils using machine learning with point samples from the National Geochemical Survey of Australia (NGSA), we took a similar approach to map soil salinity at 90-m resolution over the continent. The input data were the EC1:5 measurements on the < 2mm fraction at 1315 georeferenced points across the continent at two depth intervals (TOS, 0-10 cm, and BOS, 60-80 cm) (see http://www.ga.gov.au/energy/projects/national-geochemical-survey/atlas.html) were log-transformed and combined with values for climate, elevation and terrain attributes, soil and lithology classes, geophysics, and MODIS vegetation indices extracted at the same locations which were used as predictors in decision tree models. The machine learning software 'Cubist' (www.rulequest.com) was used as the inference engine for the modelling, a 90:10 training:test set data split was used to validate results, and 100 randomly sampled trees were built using the training data. The results were good with an average internal correlation (r) of 0.88 between predicted and measured logEC1:5 (training data), an average external correlation of 0.48 (test subset), and a Lin's concordance correlation coefficient (which evaluates the 1:1 fit) of 0.61. Therefore, the rules derived were mapped and the mean prediction for each 90-m pixel was used for the final logEC1:5 map. This is the most detailed picture of soil salinity over Australia since the 2001 National Land and Water Resources Audit and is generally consistent with it. Our map will be useful as a baseline salinity map circa 2008, when the NGSA samples were collected, for future State of the Environment reports.

  11. Chemistry, mineralogy and origin of the clay-hill nitrate deposits, Amargosa River valley, Death Valley region, California, U.S.A.

    USGS Publications Warehouse

    Ericksen, G.E.; Hosterman, J.W.; St., Amand

    1988-01-01

    The clay-hill nitrate deposits of the Amargosa River valley, California, are caliche-type accumulations of water-soluble saline minerals in clay-rich soils on saline lake beds of Miocene, Pliocene(?) and Pleistocene age. The soils have a maximum thickness of ??? 50 cm, and commonly consist of three layers: (1) an upper 5-10 cm of saline-free soil; (2) an underlying 15-20 cm of rubbly saline soil; and (3) a hard nitrate-rich caliche, 10-20 cm thick, at the bottom of the soil profile. The saline constituents, which make up as much as 50% of the caliche, are chiefly Cl-, NO-3, SO2-4 and Na+. In addition are minor amounts of K+, Mg2+ and Ca2+, varying, though generally minor, amounts of B2O3 and CO2-3, and trace amounts of I (probably as IO-3), NO-2, CrO2-4 and Mo (probably as MoO2-4). The water-soluble saline materials have an I/Br ratio of ??? 1, which is much higher than nearly all other saline depostis. The principal saline minerals of the caliche are halite (NaCl), nitratite (NaNO3), darapskite (Na3(SO4)(NO3)??H2O), glauberite (Na2Ca(SO4)2), gypsum (CaSO4??2H2O) and anhydrite (CaSO4). Borax (Na2B4O5(OH)4??8H2O), tincalconite (Na2B4O5(OH)4??3H2O) and trona (Na3(CO3)(HCO3)??2H2O) are abundant locally. The clay-hill nitrate deposits are analogous to the well-known Chilean nitrate deposits, and probably are of similar origin. Whereas the Chilean deposits are in permeable soils of the nearly rainless Atacama Desert, the clay-hill deposits are in relatively impervious clay-rich soils that inhibited leaching by rain water. The annual rainfall in the Death Valley region of ??? 5 cm is sufficient to leach water-soluble minerals from the more permeable soils. The clay-hill deposits contain saline materials from the lake beds beneath the nitrate deposits are well as wind-transported materials from nearby clay-hill soils, playas and salt marshes. The nitrate is probably of organic origin, consisting of atmospheric nitrogen fixed as protein by photoautotrophic blue-green algae, which are thought to form crusts on soils at the sites of the deposits when moistened by rainfall. The protein is subsequently transformed to nitrate by autotophic bacteria. ?? 1988.

  12. Hurricane-induced failure of low salinity wetlands

    PubMed Central

    Howes, Nick C.; FitzGerald, Duncan M.; Hughes, Zoe J.; Georgiou, Ioannis Y.; Kulp, Mark A.; Miner, Michael D.; Smith, Jane M.; Barras, John A.

    2010-01-01

    During the 2005 hurricane season, the storm surge and wave field associated with Hurricanes Katrina and Rita eroded 527 km2 of wetlands within the Louisiana coastal plain. Low salinity wetlands were preferentially eroded, while higher salinity wetlands remained robust and largely unchanged. Here we highlight geotechnical differences between the soil profiles of high and low salinity regimes, which are controlled by vegetation and result in differential erosion. In low salinity wetlands, a weak zone (shear strength 500–1450 Pa) was observed ∼30 cm below the marsh surface, coinciding with the base of rooting. High salinity wetlands had no such zone (shear strengths > 4500 Pa) and contained deeper rooting. Storm waves during Hurricane Katrina produced shear stresses between 425–3600 Pa, sufficient to cause widespread erosion of the low salinity wetlands. Vegetation in low salinity marshes is subject to shallower rooting and is susceptible to erosion during large magnitude storms; these conditions may be exacerbated by low inorganic sediment content and high nutrient inputs. The dramatic difference in resiliency of fresh versus more saline marshes suggests that the introduction of freshwater to marshes as part of restoration efforts may therefore weaken existing wetlands rendering them vulnerable to hurricanes. PMID:20660777

  13. Effects of water salinity on the correlation scale of Root density and Evapotranspiration fluxes

    NASA Astrophysics Data System (ADS)

    Ajeel, Ali; Saeed, Ali; Dragonetti, Giovanna; Comegna, Alessandro; Lamaddalena, Nicola; Coppola, Antonio

    2015-04-01

    Spatial pattern and the correlation of different soil and plant parameters were examined in a green bean field experiment carried out at the Mediterranean Agronomic Institute of Bari, Italy. The experiment aimed to evaluate the role of local processes of salt accumulation and transport which mainly influences the evapotranspiration (and thus the root uptake) processes under different water salinity levels. The experiment consisted of three transects of 30m length and 4.2 m width, irrigated with three different salinity levels (1dSm-1, 3dSm-1, 6dSm-1). Soil measurements (electrical conductivity and soil water content) were monitored along transects in 24 sites, 1 m apart by using TDR probes and Diviner 2000. Water storage measured by TDR and Diviner sensor were coupled for calculating directly the evapotranspiration fluxes along the whole soil profile under the different salinity levels imposed during the experiment. In the same sites, crop monitoring involved measurements of Leaf Area Index (LAI), Osmotic Potential (OP), Leaf Water Potential (LWP), and Root length Density (RlD). Soil and plant properties were analyzed by classical statistics, geostatistics methods and spectral analysis. Results indicated moderate to large spatial variability across the field for soil and plant parameters under all salinity treatments. Furthermore, cross-semivariograms exhibited a strong positive spatial interdependence between electrical conductivity of soil solution ECw with ET and RlD in transect treated with 3dSm-1 as well as with LAI in transect treated with 6dSm-1 at all 24 monitoring sites. Spectral analysis enabled to identify the observation window to sample the soil salinity information responsible for a given plant response (ET, OP, RlD). It is also allowed a clear identification of the spatial scale at which the soil water salinity level and distribution and the crop response in terms of actual evapotranspiration ET, RlD and OP, are actually correlated. Additionally, significant peaks in the power and coherency spectra around 6-8 m suggested organization into hierarchical levels of soil variability.

  14. Advanced systems requirements for ocean observations via microwave radiometers

    NASA Technical Reports Server (NTRS)

    Blume, H.-J. C.; Swift, C. T.; Kendall, B. M.

    1978-01-01

    A future microwave spectroradiometer operating in several frequency bands will have the capability to step or sweep frequencies on an adaptable or programmable basis. The on-board adaptable frequency shifting can make the systems immune from radio interference. Programmable frequency sweeping with on-board data inversion by high speed computers would provide for instantaneous synoptic measurements or sea surface temperature and salinity, water surface and volume pollution, ice thickness, ocean surface winds, snow depth, and soil moisture. Large structure satellites will allow an order of magnitude improvement in the present radiometric measurement spacial resolution.

  15. High salinity leads to accumulation of soil organic carbon in mangrove soil.

    PubMed

    Kida, Morimaru; Tomotsune, Mitsutoshi; Iimura, Yasuo; Kinjo, Kazutoshi; Ohtsuka, Toshiyuki; Fujitake, Nobuhide

    2017-06-01

    Although mangrove forests are one of the most well-known soil organic carbon (SOC) sinks, the mechanism underlying SOC accumulation is relatively unknown. High net primary production (NPP) along with the typical bottom-heavy biomass allocation and low soil respiration (SR) have been considered to be responsible for SOC accumulation. However, an emerging paradigm postulates that SR is severely underestimated because of the leakage of dissolved inorganic carbon (DIC) in groundwater. Here we propose a simple yet unique mechanism for SOC accumulation in mangrove soils. We conducted sequential extraction of water extractable organic matter (WEOM) from mangrove soils using ultrapure water and artificial seawater, respectively. A sharp increase in humic substances (HS) concentration was observed only in the case of ultrapure water, along with a decline in salinity. Extracted WEOM was colloidal, and ≤70% of it re-precipitated by the addition of artificial seawater. These results strongly suggest that HS is selectively flocculated and maintained in the mangrove soils because of high salinity. Because sea salts are a characteristic of any mangrove forest, high salinity may be one of mechanisms underlying SOC accumulation in mangrove soils. Copyright © 2017. Published by Elsevier Ltd.

  16. Surface Runoff Estimation Using SMOS Observations, Rain-gauge Measurements and Satellite Precipitation Estimations. Comparison with Model Predictions

    NASA Astrophysics Data System (ADS)

    Garcia Leal, Julio A.; Lopez-Baeza, Ernesto; Khodayar, Samiro; Estrela, Teodoro; Fidalgo, Arancha; Gabaldo, Onofre; Kuligowski, Robert; Herrera, Eddy

    Surface runoff is defined as the amount of water that originates from precipitation, does not infiltrates due to soil saturation and therefore circulates over the surface. A good estimation of runoff is useful for the design of draining systems, structures for flood control and soil utilisation. For runoff estimation there exist different methods such as (i) rational method, (ii) isochrone method, (iii) triangular hydrograph, (iv) non-dimensional SCS hydrograph, (v) Temez hydrograph, (vi) kinematic wave model, represented by the dynamics and kinematics equations for a uniforme precipitation regime, and (vii) SCS-CN (Soil Conservation Service Curve Number) model. This work presents a way of estimating precipitation runoff through the SCS-CN model, using SMOS (Soil Moisture and Ocean Salinity) mission soil moisture observations and rain-gauge measurements, as well as satellite precipitation estimations. The area of application is the Jucar River Basin Authority area where one of the objectives is to develop the SCS-CN model in a spatial way. The results were compared to simulations performed with the 7-km COSMO-CLM (COnsortium for Small-scale MOdelling, COSMO model in CLimate Mode) model. The use of SMOS soil moisture as input to the COSMO-CLM model will certainly improve model simulations.

  17. [Variations of soil microbial community composition and enzyme activities with different salinities on Yuyao coast, Zhejiang, China].

    PubMed

    Sun, Hui; Zhang, Jian Feng; Xu, Hua Sen; Chen, Guang Cai; Wang, Li Ping

    2016-10-01

    In October 2015, soil samples with different salinity were collected in a coast area in Yuyao, Zhejiang, and soil microbial community composition, soil catalase, urease activities, as well as soil physical and chemical properties were studied. The results showed that Nitrospira took absolute advantage in the bacterial community, and showed good correlations to total potassium. Cladosporium and Fusarium were predominant in the fungal community. Meanwhile, Cladosporium was related to soil urease and total nitrogen, and same correlation was found between Fusarium and soil urease. Catalase activity ranged from 3.52 to 4.56 mL·g -1 , 3.08 to 4.61 mL·g -1 and 5.81 to 6.91 mL·g -1 for soils with heavy, medium and weak salinity, respectively. Catalase activity increased with the soil layer deepening, which was directly related to soil total potassium, and indirectly related to pH, organic matter, total nitrogen and total phosphorus through total potassium. Soil urease activity ranged among 0.04 to 0.52 mg·g -1 , 0.08 to 1.07 mg·g -1 and 0.27 to 8.21 mg·g -1 for each saline soil, respectively. Urease activity decreased with soil layer deepening which was directly related to soil total nitrogen, and was indirectly related to pH, organic matter and total potassium through total nitrogen. The total phosphorus was the largest effect factor on the bacterial community CCA ordination, and the urease was on fungal community.

  18. Multi-scale soil salinity mapping and monitoring with proximal and remote sensing

    USDA-ARS?s Scientific Manuscript database

    This talk is part of a technical short course on “Soil mapping and process modelling at diverse scales”. In the talk, guidelines, special considerations, protocols, and strengths and limitations are presented for characterizing spatial and temporal variation in soil salinity at several spatial scale...

  19. Use of mixed solid waste as a soil amendment for saline-sodic soil remediation and oat seedling growth improvement.

    PubMed

    Fan, Yuan; Ge, Tian; Zheng, Yanli; Li, Hua; Cheng, Fangqin

    2016-11-01

    Soil salinization has become a worldwide problem that imposes restrictions on crop production and food quality. This study utilizes a soil column experiment to address the potential of using mixed solid waste (vinegar residue, fly ash, and sewage sludge) as soil amendment to ameliorate saline-sodic soil and enhance crop growth. Mixed solid waste with vinegar residue content ranging from 60-90 %, sewage sludge of 8.7-30 %, and fly ash of 1.3-10 % was added to saline-sodic soil (electrical conductivity (EC 1:5 ) = 1.83 dS m -1 , sodium adsorption ratio (SAR 1:5 ) = 129.3 (mmol c L -1 ) 1/2 , pH = 9.73) at rates of 0 (control), 130, 260, and 650 kg ha -1 . Results showed that the application of waste amendment significantly reduced SAR, while increasing soil soluble K + , Ca 2+ , and Mg 2+ , at a dose of 650 kg ha -1 . The wet stability of macro-aggregates (>1 mm) was improved 90.7-133.7 % when the application rate of amendment was greater than 260 kg ha -1 . The application of this amendment significantly reduced soil pH. Germination rates and plant heights of oats were improved with the increasing rate of application. There was a positive correlation between the percentage of vinegar residue and the K/Na ratio in the soil solutions and roots. These findings suggest that applying a mixed waste amendment (vinegar residue, fly ash, and sewage sludge) could be a cost-effective method for the reclamation of saline-sodic soil and the improvement of the growth of salt-tolerant plants.

  20. Effects on environment and agriculture of geothermal wastewater and boron pollution in great Menderes basin.

    PubMed

    Koç, Cengiz

    2007-02-01

    Boron toxicity is an important disorder that can be limit plant growth on soils of arid and semi arid environments through the world. High concentrations of Boron may occur naturally in the soil or in groundwater, or be added to the soil from mining, fertilizers, or irrigation water. Off all the potential resources, irrigation water is the most important contributor to high levels of soil boron, boron is often found in high concentrations in association with saline soil and saline well water. Although of considerable agronomic importance, our understanding of Boron toxicity is rather fragment and limited. In this study, Boron content of Great Menderes River and Basin was researched. Great Menderes Basin is one of the consequence basins having agricultural potential, aspect of water and soil resources in Turkey. Great Menderes River, water resource of the basin was to be polluted by geothermal wastewater and thermal springs including Boron element. Great Menderes Basin has abundant geothermal water resources which contain high amounts of Boron and these ground water are brought to surface and used for various purposes such as power generation, heating or thermal spring and than discharged to Great Menderes River. In order to prevent Boron pollution and hence unproductively in soils, it is necessary not to discharged water with Boron to irrigation water. According to results, it was obtained that Boron content of River was as high in particular Upper Basin where there was a ground thermal water reservoir. Boron has been accumulated more than plant requirement in this area irrigated by this water. Boron content of River was relatively low in rainy months and irrigation season while it was high in dry season. Boron concentration in the River was to decrease from upstream to downstream. If it is no taken measure presently, about 130,000 ha irrigation areas which was constructed irrigation scheme in the Great Menderes basin will expose the Boron pollution and salinity. Even though Boron concentration of river water is under 0.5 ppm limit value, Boron element will store in basin soils, decrease in crop yields, and occur problematic soils in basin.

  1. [Effects of salt stress on physiological characters and salt-tolerance of Ulmus pumila in different habitats].

    PubMed

    Liu, Bing-Xiang; Wang, Zhi-Gang; Liang, Hai-Yong; Yang, Min-Sheng

    2012-06-01

    Taking the Ulmus pumila seedlings from three different habitats (medium-, mild-, and non-saline soils) as test materials, an experiment was conducted to study their salt-tolerance thresholds and physiological characteristic under different levels (0, 2, 4, 6, 8, and 10 g X kg(-1)) of salt stress. With increasing level of the salt stress, the seedlings taken from medium- and mild- saline habitats had a lower increment of leaf membrane permeability, Na+ content, and Na+/K+ but a higher increment of leaf proline, soluble sugar, and K+ contents, and a lower decrement of leaf starch content, net photosynthetic rate, transpiration rate, intercellular CO2 concentration, and stomatic conductance, as compared with the seedlings taken from non-saline habitat. The salt-tolerance thresholds of the seedlings taken from different habitats were in the order of medium- saline habitat (7.76 g X kg(-1)) > mild- saline habitat (7.37 g X kg(-1)) > non-saline habitat (6.95 g X kg(-1)). It was suggested that the U. pumila seedlings in medium- and mild-saline habitats had a stronger adaptability to saline soil environment than the U. pumila seedlings in non-saline soil environment.

  2. Furfural and its biochar improve the general properties of a saline soil

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Xu, G.; Shao, H. B.

    2014-07-01

    Organic materials (e.g., furfural residue) are generally believed to improve the physical and chemical properties of saline soils with low fertility. Recently, biochar has been received more attention as a possible measure to improve the carbon balance and improve soil quality in some degraded soils. However, little is known about their different amelioration of a sandy saline soil. In this study, 56 d incubation experiment was conducted to evaluate the influence of furfural and its biochar on the properties of saline soil. The results showed that both furfural and biochar greatly reduced pH, increased soil organic carbon (SOC) content and cation exchange capacity (CEC), and enhanced the available phosphorus (P) in the soil. Furfural is more efficient than biochar in reducing pH: 5% furfural lowered the soil pH by 0.5-0.8 (soil pH: 8.3-8.6), while 5% biochar decreased by 0.25-0.4 due to the loss of acidity in pyrolysis process. With respect to available P, furfural addition at a rate of 5% increased available P content by 4-6 times in comparison to 2-5 times with biochar application. In reducing soil exchangeable sodium percentage (ESP), biochar is slightly superior to furfural because soil ESP reduced by 51% and 43% with 5% furfural and 5% biochar at the end of incubation. In addition, no significant differences were observed between furfural and biochar about their capacity to retain N, P in leaching solution and to increase CEC in soil. These facts may be caused by the relatively short incubation time. In general, furfural and biochar exhibited a different effect depending on the property: furfural was more effective in decreasing pH and increasing available P, whereas biochar played a more important role in increasing SOC and reducing ESP of saline soil.

  3. Isolation of Rhizobium Bacteria from Forage Legumes for the Development of Ruminant Feed

    NASA Astrophysics Data System (ADS)

    Fuskhah, E.; Purbajanti, E. D.; Anwar, S.

    2018-02-01

    The aimed of the study was to explore the presence of Rhizobium bacteria along the northern coast of Central Java, to develop a saline-resistant legumes. Rhizobium bacteria is a mutualistic bacterium capable of symbiosis with legumes so that legumes crop yields increase. The research begins with sampling of soil and root nodule of forage legumes along the Northern Coast of Central Java including Tegal, Pekalongan, Semarang, Demak, Pati. Soil samples were analysed for salinity, Total Dissolved Solids, and pH. Rhizobium bacteria were isolated from the acquired root nodule, then identified by biochemical test to ensure that the isolates obtained were Rhizobium bacteria. The results showed that the five districts/municipal sites sampled by the soil have very low salinity to very high levels. The highest level of soil salinity was found in Demak (Sayung) which has an electrical conductivity value (EC) of 17.77 mmhos/cm. The EC values of legumes overgrown soils showed a low salinity level while bare soils have high salinity levels. Feed crops legumes that could be found in the northern coast of Central Java were Centrosema pubescens, Calopogonium mucunoides, Leucaena leucocephala, and Sesbania grandiflora. The study obtained 6 kinds of isolates of rhizobium bacteria isolated from forage legumes, included 1) Centrosema pubescens isolated from Pekalongan, 2) Centrosema pubescens isolated from Tegal, 3) Calopogonium mucunoides isolated from Pekalongan, 4) Leucaenaleucocephala isolated from Tegal, 5) Leucaena leucocephala isolated from Semarang, 6) Sesbania grandiflora isolated from Tegal.

  4. SMOS first results over land

    NASA Astrophysics Data System (ADS)

    Kerr, Yann; Waldteufel, Philippe; Cabot, François; Richaume, Philippe; Jacquette, Elsa; Bitar, Ahmad Al; Mamhoodi, Ali; Delwart, Steven; Wigneron, Jean-Pierre

    2010-05-01

    The Soil Moisture and Ocean Salinity (SMOS) mission is ESA's (European Space Agency ) second Earth Explorer Opportunity mission, launched in November 2009. It is a joint programme between ESA CNES (Centre National d'Etudes Spatiales) and CDTI (Centro para el Desarrollo Tecnologico Industrial). SMOS carries a single payload, an L-band 2D interferometric radiometer in the 1400-1427 MHz protected band. This wavelength penetrates well through the atmosphere and hence the instrument probes the Earth surface emissivity. Surface emissivity can then be related to the moisture content in the first few centimeters of soil, and, after some surface roughness and temperature corrections, to the sea surface salinity over ocean. In order to prepare the data use and dissemination, the ground segment will produce level 1 and 2 data. Level 1 consists mainly of angular brightness temperatures while level 2 consists of geophysical products. In this context, a group of institutes prepared the soil moisture and ocean salinity Algorithm Theoretical Basis documents (ATBD) to be used to produce the operational algorithm. The principle of the soil moisture retrieval algorithm is based on an iterative approach which aims at minimizing a cost function given by the sum of the squared weighted differences between measured and modelled brightness temperature (TB) data, for a variety of incidence angles. This is achieved by finding the best suited set of the parameters which drive the direct TB model, e.g. soil moisture (SM) and vegetation characteristics. Despite the simplicity of this principle, the main reason for the complexity of the algorithm is that SMOS "pixels" can correspond to rather large, inhomogeneous surface areas whose contribution to the radiometric signal is difficult to model. Moreover, the exact description of pixels, given by a weighting function which expresses the directional pattern of the SMOS interferometric radiometer, depends on the incidence angle. The goal is to retrieve soil moisture over fairly large and thus inhomogeneous areas. The retrieval is carried out at nodes of a fixed Earth surface grid. To achieve this purpose, after checking input data quality and ingesting auxiliary data, the retrieval process per se can be initiated. This cannot be done blindly as the direct model will be dependent upon surface characteristics. It is thus necessary to first assess what is the dominant land use of a node. For this, an average weighing function (MEAN_WEF) which takes into account the "antenna"pattern is run over the high resolution land use map to assess the dominant cover type. This is used to drive the decision tree which, step by step, selects the type of model to be used as per surface conditions. All this being said and done the retrieval procedure starts if all the conditions are satisfied, ideally to retrieve 3 parameters over the dominant class (the so-called rich retrieval). If the algorithm does not converge satisfactorily, a new trial is made with less floating parameters ("poorer retrieval") until either results are satisfactory or the algorithm is considered to fail. The retrieval algorithm also delivers whenever possible a dielectric constant parameter (using the-so called cardioid approach). Finally, once the retrieval converged, it is possible to compute the brightness temperature at a given fixed angle (42.5°) using the selected forward models applied to the set of parameters obtained at the end of the retrieval process. So the output product of the level 2 soil moisture algorithm should be node position, soil moisture, dielectric constants, computed brightness temperature at 42.5°, flags and quality indices. During the presentation we will describe in more details the algorithm and accompanying work in particular decision tree principle and characteristics, the auxiliary data used and the special and "exotic"cases. We will also be more explicit on the algorithm validation and verification through the data collected during the commissioning phase. The main hurdle being working in spite of spurious signals (RFI) on some areas of the globe.

  5. An Evaluation of Antarctica as a Calibration Target for Passive Microwave Satellite Missions with Climate Data Record Applications

    NASA Technical Reports Server (NTRS)

    Kim, Edward

    2011-01-01

    Passive microwave remote sensing at L-band (1.4 GHz) is sensitive to soil moisture and sea surface salinity, both important climate variables. Science studies involving these variables can now take advantage of new satellite L-band observations. The first mission with regular global passive microwave observations at L-band is the European Space Agency's Soil Moisture and Ocean Salinity (SMOS), launched November, 2009. A second mission, NASA's Aquarius, was launched June, 201 I. A third mission, NASA's Soil Moisture Active Passive (SMAP) is scheduled to launch in 2014. Together, these three missions may provide a decade-long data record-provided that they are intercalibrated. The intercalibration is best performed at the radiance (brightness temperature) level, and Antarctica is proving to be a key calibration target. However, Antarctica has thus far not been fully characterized as a potential target. This paper will present evaluations of Antarctica as a microwave calibration target for the above satellite missions. Preliminary analyses have identified likely target areas, such as the vicinity of Dome-C and larger areas within East Antarctica. Physical sources of temporal and spatial variability of polar firn are key to assessing calibration uncertainty. These sources include spatial variability of accumulation rate, compaction, surface characteristics (dunes, micro-topography), wind patterns, and vertical profiles of density and temperature. Using primarily SMOS data, variability is being empirically characterized and attempts are being made to attribute observed variability to physical sources. One expected outcome of these studies is the potential discovery of techniques for remotely sensing--over all of Antarctica-parameters such as surface temperature.

  6. An Evaluation of Antarctica as a Calibration Target for Passive Microwave Satellite Missions

    NASA Technical Reports Server (NTRS)

    Kim, Edward

    2012-01-01

    Passive microwave remote sensing at L-band (1.4 GHz) is sensitive to soil moisture and sea surface salinity, both important climate variables. Science studies involving these variables can now take advantage of new satellite L-band observations. The first mission with regular global passive microwave observations at L-band is the European Space Agency's Soil Moisture and Ocean Salinity (SMOS), launched November, 2009. A second mission, NASA's Aquarius, was launched June, 201l. A third mission, NASA's Soil Moisture Active Passive (SMAP) is scheduled to launch in 2014. Together, these three missions may provide a decade-long data record -- provided that they are intercalibrated. The intercalibration is best performed at the radiance (brightness temperature) level, and Antarctica is proving to be a key calibration target. However, Antarctica has thus far not been fully characterized as a potential target. This paper will present evaluations of Antarctica as a microwave calibration target for the above satellite missions. Preliminary analyses have identified likely target areas, such as the vicinity of Dome-C and larger areas within East Antarctica. Physical sources of temporal and spatial variability of polar firn are key to assessing calibration uncertainty. These sources include spatial variability of accumulation rate, compaction, surface characteristics (dunes, micro-topography), wind patterns, and vertical profiles of density and temperature. Using primarily SMOS data, variability is being empirically characterized and attempts are being made to attribute observed variability to physical sources. One expected outcome of these studies is the potential discovery of techniques for remotely sensing--over all of Antarctica--parameters such as surface temperature.

  7. [Research on characteristics of soil clay mineral evolution in paddy field and dry land by XRD spectrum].

    PubMed

    Zhang, Zhi-dan; Li, Qiao; Luo, Xiang-li; Jiang, Hai-chao; Zheng, Qing-fu; Zhao, Lan-po; Wang, Ji-hong

    2014-08-01

    The present paper took the typical saline-alkali soil in Jilin province as study object, and determinated the soil clay mineral composition characteristics of soil in paddy field and dry land. Then XRD spectrum was used to analyze the evolutionary mechanism of clay mineral in the two kinds of soil. The results showed that the physical and chemical properties of soil in paddy field were better than those in dry land, and paddy field would promote the weathering of mineral particles in saline-alkali soil and enhance the silt content. Paddy field soil showed a strong potassium-removal process, with a higher degree of clay mineral hydration and lower degree of illite crystallinity. Analysis of XRD spectrum showed that the clay mineral composition was similar in two kinds of soil, while the intensity and position of diffraction peak showed difference. The evolution process of clay mineral in dry land was S/I mixture-->vermiculite, while in paddy field it was S/I mixture-->vermiculite-->kaolinite. One kind of hydroxylated 'chlorite' mineral would appear in saline-alkali soil in long-term cultivated paddy field. Taking into account that the physical and chemical properties of soil in paddy field were better then those in dry land, we could know that paddy field could help much improve soil structure, cultivate high-fertility soil and improve saline-alkali soil. This paper used XRD spectrum to determine the characteristics of clay minerals comprehensively, and analyzed two'kinds of land use comparatively, and was a new perspective of soil minerals study.

  8. The ecological genomic basis of salinity adaptation in Tunisian Medicago truncatula.

    PubMed

    Friesen, Maren L; von Wettberg, Eric J B; Badri, Mounawer; Moriuchi, Ken S; Barhoumi, Fathi; Chang, Peter L; Cuellar-Ortiz, Sonia; Cordeiro, Matilde A; Vu, Wendy T; Arraouadi, Soumaya; Djébali, Naceur; Zribi, Kais; Badri, Yazid; Porter, Stephanie S; Aouani, Mohammed Elarbi; Cook, Douglas R; Strauss, Sharon Y; Nuzhdin, Sergey V

    2014-12-22

    As our world becomes warmer, agriculture is increasingly impacted by rising soil salinity and understanding plant adaptation to salt stress can help enable effective crop breeding. Salt tolerance is a complex plant phenotype and we know little about the pathways utilized by naturally tolerant plants. Legumes are important species in agricultural and natural ecosystems, since they engage in symbiotic nitrogen-fixation, but are especially vulnerable to salinity stress. Our studies of the model legume Medicago truncatula in field and greenhouse settings demonstrate that Tunisian populations are locally adapted to saline soils at the metapopulation level and that saline origin genotypes are less impacted by salt than non-saline origin genotypes; these populations thus likely contain adaptively diverged alleles. Whole genome resequencing of 39 wild accessions reveals ongoing migration and candidate genomic regions that assort non-randomly with soil salinity. Consistent with natural selection acting at these sites, saline alleles are typically rare in the range-wide species' gene pool and are also typically derived relative to the sister species M. littoralis. Candidate regions for adaptation contain genes that regulate physiological acclimation to salt stress, such as abscisic acid and jasmonic acid signaling, including a novel salt-tolerance candidate orthologous to the uncharacterized gene AtCIPK21. Unexpectedly, these regions also contain biotic stress genes and flowering time pathway genes. We show that flowering time is differentiated between saline and non-saline populations and may allow salt stress escape. This work nominates multiple potential pathways of adaptation to naturally stressful environments in a model legume. These candidates point to the importance of both tolerance and avoidance in natural legume populations. We have uncovered several promising targets that could be used to breed for enhanced salt tolerance in crop legumes to enhance food security in an era of increasing soil salinization.

  9. Research on screening of suitable forage grasses in coastal saline - alkaline soil

    NASA Astrophysics Data System (ADS)

    Yue, Xiaoyu; Han, Xin; Song, Qianhong; Yang, Xu; Zhou, Qingyun

    2017-11-01

    The screening of salt-tolerant plants can provide suitable tree species for the afforestation of coastal salinity and maintain biodiversity and ecological stability. The research was based on the study of seven grasses, such as high fescue, the bermuda grass, the thyme, the rye grass, the precocious grass, the third leaf, and the red three leaves. Each pasture was planted in three different kinds of soil, such as salt alkali soil, salt alkali soil + ecological bag and non-saline alkali soil. The effect of salt alkali soil on germinating time, germination rate and grass growth was analyzed. The effects of ecological bag on soil salt and the growth and germination of grass was also analyzed in order to provide the reference basis for the widespread and systematic selection of salt-tolerant plants, with the grass being selected for the suitable ecological bag.

  10. Soil salinity: Germination tolerance of alternative oilseed crops for soil health

    USDA-ARS?s Scientific Manuscript database

    World-wide, saline soils contribute to over US$27.3 billion in agricultural losses annually by reducing plant growth through osmotic imbalances and ion toxicity. Nearly 800,000 ha of salt affected land is located in the northern Great Plains. Limited information is available on the germination of al...

  11. Salinity tolerance and mycorrhizal responsiveness of native xeroriparian plants in semi-arid western USA

    USGS Publications Warehouse

    Beauchamp, Vanessa B.; Walz, C.; Shafroth, P.B.

    2009-01-01

    Restoration of salt-affected soils is a global concern. In the western United States, restoration of salinized land, particularly in river valleys, often involves control of Tamarix, an introduced species with high salinity tolerance. Revegetation of hydrologically disconnected floodplains and terraces after Tamarix removal is often difficult because of limited knowledge regarding the salinity tolerance of candidate native species for revegetation. Additionally, Tamarix appears to be non-mycorrhizal. Extended occupation of Tamarix may deplete arbuscular mycorrhizal fungi in the soil, further decreasing the success of revegetation efforts. To address these issues, we screened 42 species, races, or ecotypes native to southwestern U.S. for salinity tolerance and mycorrhizal responsiveness. As expected, the taxa tested showed a wide range of responses to salinity and mycorrhizal fungi. This variation also occurred between ecotypes or races of the same species, indicating that seed collected from high-salinity reference systems is likely better adapted to harsh conditions than seed originating from less saline environments. All species tested had a positive or neutral response to mycorrhizal inoculation. We found no clear evidence that mycorrhizae increased salinity tolerance, but some species were so dependent on mycorrhizal fungi that they grew poorly at all salinity levels in pasteurized soil. ?? 2009 Elsevier B.V.

  12. NASA Soil Moisture Active Passive Mission Status and Science Performance

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.; Entekhabi, Dara; O'Neill, Peggy; Njoku, Eni; Entin, Jared K.

    2016-01-01

    The Soil Moisture Active Passive (SMAP) observatory was launched January 31, 2015, and its L-band radiometer and radar instruments became operational since mid-April 2015. The SMAP radiometer has been operating flawlessly, but the radar transmitter ceased operation on July 7. This paper provides a status summary of the calibration and validation of the SMAP instruments and the quality assessment of its soil moisture and freeze/thaw products. Since the loss of the radar in July, the SMAP project has been conducting two parallel activities to enhance the resolution of soil moisture products. One of them explores the Backus Gilbert optimum interpolation and de-convolution techniques based on the oversampling characteristics of the SMAP radiometer. The other investigates the disaggregation of the SMAP radiometer data using the European Space Agency's Sentinel-1 C-band synthetic radar data to obtain soil moisture products at about 1 to 3 kilometers resolution. In addition, SMAP's L-band data have found many new applications, including vegetation opacity, ocean surface salinity and hurricane ocean surface wind mapping. Highlights of these new applications will be provided.

  13. Responses of Water and Salt Parameters to Groundwater Levels for Soil Columns Planted with Tamarix chinensis

    PubMed Central

    Xia, Jiangbao; Zhao, Ximei; Chen, Yinping; Fang, Ying; Zhao, Ziguo

    2016-01-01

    Groundwater is the main water resource for plant growth and development in the saline soil of the Yellow River Delta in China. To investigate the variabilities and distributions of soil water and salt contents at various groundwater level (GL), soil columns with planting Tamarix chinensis Lour were established at six different GL. The results demonstrated the following: With increasing GL, the relative soil water content (RWC) declined significantly, whereas the salt content (SC) and absolute soil solution concentration (CS) decreased after the initial increase in the different soil profiles. A GL of 1.2 m was the turning point for variations in the soil water and salt contents, and it represented the highest GL that could maintain the soil surface moist within the soil columns. Both the SC and CS reached the maximum levels in these different soil profiles at a GL of 1.2 m. With the raise of soil depth, the RWC increased significantly, whereas the SC increased after an initial decrease. The mean SC values reached 0.96% in the top soil layer; however, the rates at which the CS and RWC decreased with the GL were significantly reduced. The RWC and SC presented the greatest variations at the medium (0.9–1.2 m) and shallow water levels (0.6 m) respectively, whereas the CS presented the greatest variation at the deep water level (1.5–1.8 m).The RWC, SC and CS in the soil columns were all closely related to the GL. However, the correlations among the parameters varied greatly within different soil profiles, and the most accurate predictions of the GL were derived from the RWC in the shallow soil layer or the SC in the top soil layer. A GL at 1.5–1.8 m was moderate for planting T. chinensis seedlings under saline groundwater conditions. PMID:26730602

  14. Impact Assessment of Salinization Affected Soil on Greenhouse Crops using SALTMED

    NASA Astrophysics Data System (ADS)

    Pappa, Polyxeni; Daliakopoulos, Ioannis; Tsanis, Ioannis; Varouchakis, Emmanouil

    2015-04-01

    Here we assess the effects of soil salinization on greenhouse crops and the potential benefits of rainwater harvesting as a soil amelioration technology. The study deals with the following scenarios: (a) variation of irrigation water salinity from 3,000 μS/cm to 500 μS/cm through mixing with rainwater, (b) crop substitution for increased tolerance and (c) climatic variability to account for the impact of climate change. In order to draw meaningful conclusions, a model that takes into account vegetation interaction, soil, irrigation water and climate variables is required. The SALTMED model is a reliable and tested physical process model that simulates evapotranspiration, plant water uptake, water and solute transport to estimate crop yield and biomass production under all irrigation systems. SALTMED is tested with the above scenarios in the RECARE FP7 Project Case Study of Timpaki, in the Island of Crete, Greece. Simulations are conducted for typical cultivations of Solanum lycopersicum, Capsicum anuumm and Solanum melongena. Preliminary results indicate the optimal combination from a set of solutions concerning the soil and water parameters can be beneficial against the salinization threat. Future research includes the validation of the results with field experiments. Keywords: salinization, greenhouse, tomato, SALTMED, rainwater, RECARE

  15. Effect of organic materials on the chemical properties of saline soil in the Yellow River Delta of China

    NASA Astrophysics Data System (ADS)

    Yu, Yan; Liu, Jie; Liu, Chunmeng; Zong, Shuang; Lu, Zhaohua

    2015-06-01

    A 180-day incubation experiment was conducted to investigate the effect of different organic materials on the chemical properties of coastal soil with high salinity and relatively low pH. Four organic materials (three kinds of plant residues: straw, composted straw, and fresh reed; and one kind of poultry manure: chicken manure) were applied at a ratio of 15 g·kg-1 to samples of costal saline soil from the Yellow River Delta of China. The results showed that the soil pH and exchangeable sodium percentage (ESP) decreased, whereas soil cation exchangeable capacity (CEC) and macronutrient concentrations increased, regardless of the type of organic material used. All treatments showed a remarkable increase in soil soluble organic carbon (SOC) during the 180-day incubation. The peak values of SOC in descending order were chicken manure, reed, composted straw, straw, and control soil. At the end of incubation, the highest level of SOC occurred in the straw-amended soil, followed by composted straw, reed, and chicken manureamended soils. Soil respiration rate and available nitrogen were significantly influenced by the type of material used. Although reed-amended soil had a relatively high SOC and respiration rate, the ESP was reduced the least. Considering the possible risk of heavy metals caused by chicken manure, it is proposed that straw and composted straw are the more efficient materials to use for reclaiming costal saline soil and improving the availability of macronutrients.

  16. Reflectance spectroscopy for the assessment of soil salt content in soils of the yellow river delta of China

    USGS Publications Warehouse

    Weng, Yongling; Gong, P.; Zhu, Z.

    2008-01-01

    There has been growing interest in the use of reflectance spectroscopy as a rapid and inexpensive tool for soil characterization. In this study, we collected 95 soil samples from the Yellow River Delta of China to investigate the level of soil salinity in relation to soil spectra. Sample plots were selected based on a field investigation and the corresponding soil salinity classification map to maximize variations of saline characteristics in the soil. Spectral reflectances of air-dried soil samples were measured using an Analytical Spectral Device (ASD) spectrometer (350-2500 nm) with an artificial light source. In the Yellow River Delta, the dominant chemical in the saline soil was NaCl and MgCl2. Soil spectra were analysed using two-thirds of the available samples, with the remaining one-third withheld for validation purposes. The analysis indicated that with some preprocessing, the reflectance at 1931-2123 nm and 2153-2254 nm was highly correlated with soil salt content (SSC). In the spectral region of 1931-2123 nm, the correlation R ranged from -0.80 to -0.87. In the region of 2153-2254 nm, the SSC was positively correlated with preprocessed reflectance (0.79-0.88). The preprocessing was done by fitting a convex hull to the reflectance curve and dividing the spectral reflectance by the value of the corresponding convex hull band by band. This process is called continuum removal, and the resulting ratio is called continuum removed reflectance (CR reflectance). However, the SSC did not have a high correlation with the unprocessed reflectance, and the correlation was always negative in the entire spectrum (350-2500 nm) with the strongest negative correlation at 1981 nm (R = -0.63). Moreover, we found a strong correlation (R=0.91) between a soil salinity index (SSI: Constructed using CR reflectance at 2052 nm and 2203 nm) and SSC. We estimated SSC as a function of SSI and SSI' (SSI': Constructed using unprocessed reflectance at 2052 nm and 2203 nm) using univariate regression. Validation of the estimation of SSC was conducted by comparing the estimated SSC with the holdout sample points. The comparison produced an estimated root mean squared error (RMSE) of 0.986 (SSC ranging from 0.06 to 12.30 g kg-1) and R2 of 0.873 for SSC with SSI as independent variable and RMSE of 1.248 and R2 of 0.8 for SSC with SSI' as independent variable. This study showed that a soil salinity index developed for CR reflectance at 2052 nm and 2203 nm on the basis of spectral absorption features of saline soil can be used as a quick and inexpensive method for soil salt-content estimation.

  17. Evaluation of soil salinity amelioration technologies in Timpaki, Crete: a participatory approach

    NASA Astrophysics Data System (ADS)

    Panagea, I. S.; Daliakopoulos, I. N.; Tsanis, I. K.; Schwilch, G.

    2015-10-01

    Soil salinity management can be complex, expensive and time demanding, especially in arid and semi-arid regions. Besides taking no action, possible management strategies include amelioration and adaptation measures. Here we use the World Overview of Conservation Approaches and Technologies (WOCAT) framework for the systematic analysis and evaluation of soil salinisation amelioration technologies in close collaboration with stakeholders. The participatory approach is applied in the RECARE Project Case Study of Timpaki, a semi-arid region in south-central Crete (Greece) where the main land use is horticulture in greenhouses irrigated by groundwater. Excessive groundwater abstractions have resulted in a drop of the groundwater level in the coastal part of the aquifer, thus leading to seawater intrusion and in turn to soil salinisation. The documented technologies are evaluated for their impacts on ecosystem services, cost and input requirements using a participatory approach and field evaluations. Results show that technologies which promote maintaining existing crop types while enhancing productivity and decreasing soil salinity are preferred by the stakeholders. The evaluation concludes that rain water harvesting is the optimal solution for direct soil salinity mitigation, whereas green manuring and the use of biological agents can support increasing production/efficiency and improving soil properties.

  18. Heavy metal water pollution associated with the use of sewage sludge compost and limestone outcrop residue for soil restoration: effect of saline irrigation.

    NASA Astrophysics Data System (ADS)

    Pérez-Gimeno, Ana; Navarro-Pedreño, Jose; Gómez, Ignacio; Belén Almedro-Candel, María; Jordán, Manuel M.; Bech, Jaume

    2015-04-01

    The use of composted sewage sludge and limestone outcrop residue in soil restoration and technosol making can influence the mobility of heavy metals into groundwater. The use of compost from organic residues is a common practice in soil and land rehabilitation, technosol making, and quarry restoration (Jordán et al. 2008). Compost amendments may improve the physical, chemical, and biological properties of soils (Jordão et al. 2006; Iovieno et al. 2009). However, the use of compost and biosolids may have some negative effects on the environment (Karaca 2004; Navarro-Pedreño et al. 2004). This experiment analyzed the water pollution under an experimental design based on the use of columns (0-30 cm) formed by both wastes. Two waters of different quality (saline and non-saline) were used for irrigation. The presence of heavy metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in the leachates was checked under controlled conditions inside a greenhouse (mean values: 20°±5°C and around 60% relative humidity). Sixteen 30-cm tall columns made of PVC pipe with internal diameters of 10.5 cm were prepared. The columns were filled with one of these materials: either sewage sludge compost (SW) or limestone outcrop residue (LR), fraction (<4 mm). The columns were irrigated with 2000 mL/week (230 mm) for twelve weeks (April to July). Half of them were irrigated with non-saline water (NS) and the others were so with saline water (S) from the beginning of the experiment. Four treatments combining the quality of the irrigation water (saline and non-saline) and wastes were studied: SW-NS, SW-S, LR-NS, and LR-S. After 24 hours of irrigation on the first day of each week, the leachates were taken and analyzed the heavy metal content (AAS-ES espectometer). The environmental risk due to the presence of heavy metals associated with the use of these materials was very low in general (under 0.1 mg/L). The use of sewage sludge favoured the presence of these metals in the lecheates and no effect was observed in the case of limestone residue. The presence of metals in SW was the main source (although the composition was under the UE legislation for its use in agricultural purpouses). Cu, Ni, Cr, Fe, Mn, Pb and Zn were detected in leachates from SW and salinity slightly favoured their presence. Cd was not detected in any of the treatments (concentration under 0,01 mg/L). The combination of saline water for irrigation with the compost has to be considered as a source of pollution for surface and ground waters and the main factor controlling the heavy metal pollution is the composition of the sewage sludge compost. Future long time experiments will determine if the accumulation of heavy metals in waters may be determinant for future pollution. References: Iovieno P, Morra L, Leone A, Pagano L, Alfani A (2009) Effect of organic and mineral fertilizers on soil respiration and enzyme activities of two Mediterranean horticultural soils. Biol Fert Soils doi:10.1007/s00374-009-0365-z. Jordán MM, Pina S, García-Orenes F, Almendro-Candel MB, García-Sánchez E (2008) Environmental risk evaluation of the use of mine spoils and treated sewage sludge in the ecological restoration of limestone quarries. Environ Geol doi:10.1007/s00254-007-0991-4. Jordão CP, Nascentes CC, Cecon PR, Fontes RLF, Pereira JL (2006) Heavy metal availability in soil amended with composted urban solid wastes. Environ Monit Assess doi:10.1007/s10661-006-1072-y. Karaca A (2004) Effect of organic wastes on the extractability of cadmium, copper, nickel, and zinc in soil. Geoderma doi:10.1016/j.geoderma.2004.01.016. Navarro-Pedreño J, Almendro-Candel MB, Jordán-Vidal MM, Mataix-Solera J, García-Sánchez E (2004) Risk areas in the application of sewage sludge on degraded soils in Alicante province (Spain). In: Martin JF, Brebbia CA, Godfrey AE, Díaz de Terán JR (eds) Geo-Environment. WIT Press, Southampton, pp 293-302.

  19. Deep subsurface drip irrigation using coal-bed sodic water: part II. geochemistry

    USGS Publications Warehouse

    Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.

    2013-01-01

    Waters with low salinity and high sodium adsorption ratios (SARs) present a challenge to irrigation because they degrade soil structure and infiltration capacity. In the Powder River Basin of Wyoming, such low salinity (electrical conductivity, EC 2.1 mS cm-1) and high-SAR (54) waters are co-produced with coal-bed methane and some are used for subsurface drip irrigation(SDI). The SDI system studied mixes sulfuric acid with irrigation water and applies water year-round via drip tubing buried 92 cm deep. After six years of irrigation, SAR values between 0 and 30 cm depth (0.5-1.2) are only slightly increased over non-irrigated soils (0.1-0.5). Only 8-15% of added Na has accumulated above the drip tubing. Sodicity has increased in soil surrounding the drip tubing, and geochemical simulations show that two pathways can generate sodic conditions. In soil between 45-cm depth and the drip tubing, Na from the irrigation water accumulates as evapotranspiration concentrates solutes. SAR values >12, measured by 1:1 water-soil extracts, are caused by concentration of solutes by factors up to 13. Low-EC (-1) is caused by rain and snowmelt flushing the soil and displacing ions in soil solution. Soil below the drip tubing experiences lower solute concentration factors (1-1.65) due to excess irrigation water and also contains relatively abundant native gypsum (2.4 ± 1.7 wt.%). Geochemical simulations show gypsum dissolution decreases soil-water SAR to 14 and decreasing EC in soil water to 3.2 mS cm-1. Increased sodicity in the subsurface, rather than the surface, indicates that deep SDI can be a viable means of irrigating with sodic waters.

  20. Mitigation of salt stress in white clover (Trifolium repens) by Azospirillum brasilense and its inoculation effect.

    PubMed

    Khalid, Muhammad; Bilal, Muhammad; Hassani, Danial; Iqbal, Hafiz M N; Wang, Hang; Huang, Danfeng

    2017-12-01

    Salinity is one of the increasingly serious environmental problems worldwide for cultivating agricultural crops. The present study was aimed to ascertain the potential of beneficial soil bacterium Azospirillum brasilense to alleviate saline stress in Trifolium repens. Experimental plants (white clover) were grown from seeds and inoculated with or without A. brasilense bacterial strain supplemented with 0, 40, 80, or 120 mM NaCl into soil. The growth attributes including, shoot heights, root lengths, fresh and dry weights, leaf area and chlorophyll content were significantly enhanced in T. repens plants grown in A. brasilense inoculated soil than un-inoculated controls, particularly under elevated salinity conditions (40, 80 and 120 mM NaCl). Malondialdehyde content of leaf was recorded to be declined under saline conditions. Moreover, the K + /Na + ratio was also improved in bacterium-inoculated plants, since A. brasilense significantly reduced the root and shoot Na + level under high salty environment. Results revealed that soil inoculation with A. brasilense could significantly promote T. repens growth under both non-saline and saline environments, and this study might be extended to other vegetables and crops for the germination and growth enhancement.

  1. Alfalfa (Medicago sativa L.) is tolerant to higher levels of salinity than previous guidelines indicated: Implications of field and greenhouse studies

    NASA Astrophysics Data System (ADS)

    Putnam, Daniel H.; Benes, Sharon; Galdi, Giuliano; Hutmacher, Bob; Grattan, Steve

    2017-04-01

    Alfalfa (Medicago sativa L.) is the most widely grown leguminous forage crop in North America and is valued for high productivity, quality, economic value, and for dairy productivity. Alfalfa has historically been classified as moderately sensitive to saline conditions, with yield declines predicted at >2 dS/m in the saturated soil paste extract. However, greenhouse, sand tank, and field studies over the past five years have confirmed that alfalfa can be grown with limited negative effects at much higher salinity levels. A broad collection of alfalfa varieties has exhibited a range of resistance at irrigation water salinities >5 dS/m ECw in greenhouse trials, with significant variation due to variety. USDA-ARS sand tank studies indicated similar or greater tolerances closer to 8 dS/m in the soil water, in addition to confirmation of significant varietal differences. A three-year field study on clay loam soil with applications of 5-7 dS/m ECw irrigation water indicated normal yields and excellent stand survivability. A second field study in the same soil type with levels from 8-10 dS/m ECw showed yield reductions of 10-15% but economic yields were still achieved at those levels. Field and greenhouse studies were conducted with mixed salt saline sodic waters typical of the San Joaquin Valley of California. Field evaluation of variety performance was subject to greater variation due to secondary salinity-soil interactions including water infiltration and crusting problems, not only salinity per-se. Thus, adequate irrigation water availability to the crop may be as important as salinity in impacting yields under field conditions. Once established, the deep-rooted characteristics of alfalfa enable utilization of deeper subsurface moisture, even at moderate to high salinity levels, as documented by USDA lysimeter studies. Significant advantages to salinity-tolerant varieties have been observed. It will be important to consider specific management factors which may enable the successful production of irrigated alfalfa with use of saline (up to 8 dS/m ECw) irrigation water, including careful water management during stand establishment, prevention of crusting, and agronomic practices to promote water infiltration. Irrigated regions looking for economically-viable crop species to grow under saline conditions may consider alfalfa grown utilizing appropriate methodologies, including salt-tolerant varieties and agronomic practices to mitigate the secondary effects of soil salinity and sodicity.

  2. Salinity Impacts on Agriculture and Groundwater in Delta Regions

    NASA Astrophysics Data System (ADS)

    Clarke, D.; Salehin, M.; Jairuddin, M.; Saleh, A. F. M.; Rahman, M. M.; Parks, K. E.; Haque, M. A.; Lázár, A. N.; Payo, A.

    2015-12-01

    Delta regions are attractive for high intensity agriculture due to the availability of rich sedimentary soils and of fresh water. Many of the world's tropical deltas support high population densities which are reliant on irrigated agriculture. However environmental changes such as sea level rise, tidal inundation and reduced river flows have reduced the quantity and quality of water available for successful agriculture. Additionally, anthropogenic influences such as the over abstraction of ground water and the increased use of low quality water from river inlets has resulted in the accumulation of salts in the soils which diminishes crop productivity. Communities based in these regions are usually reliant on the same water for drinking and cooking because surface water is frequently contaminated by commercial and urban pollution. The expansion of shallow tube well systems for drinking water and agricultural use over the last few decades has resulted in mobilisation of salinity in the coastal and estuarine fringes. Sustainable development in delta regions is becoming constrained by water salinity. However salinity is often studied as an independent issue by specialists working in the fields of agriculture, community water supply and groundwater. The lack of interaction between these disciplines often results in corrective actions being applied to one sector without fully assessing the effects of these actions on other sectors. This paper describes a framework for indentifying the causes and impacts of salinity in delta regions based on the source-pathway-receptor framework. It uses examples and scenarios from the Ganges-Brahmaputra-Meghna delta in Bangladesh together with field measurements and observations made in vulnerable coastal communities. The paper demonstrates the importance of creating an holistic understanding of the development and management of water resources to reduce the impact of salinity in fresh water in delta regions.

  3. Quinoa Seed Quality Response to Sodium Chloride and Sodium Sulfate Salinity

    PubMed Central

    Wu, Geyang; Peterson, Adam J.; Morris, Craig F.; Murphy, Kevin M.

    2016-01-01

    Quinoa (Chenopodium quinoa Willd.) is an Andean crop with an edible seed that both contains high protein content and provides high quality protein with a balanced amino acid profile in embryonic tissues. Quinoa is a halophyte adapted to harsh environments with highly saline soil. In this study, four quinoa varieties were grown under six salinity treatments and two levels of fertilization, and then evaluated for quinoa seed quality characteristics, including protein content, seed hardness, and seed density. Concentrations of 8, 16, and 32 dS m-1 of NaCl and Na2SO4, were applied to the soil medium across low (1 g N, 0.29 g P, 0.29 g K per pot) and high (3 g N, 0.85 g P, 0.86 g K per pot) fertilizer treatments. Seed protein content differed across soil salinity treatments, varieties, and fertilization levels. Protein content of quinoa grown under salinized soil ranged from 13.0 to 16.7%, comparable to that from non-saline conditions. NaCl and Na2SO4 exhibited different impacts on protein content. Whereas the different concentrations of NaCl did not show differential effects on protein content, the seed from 32 dS m-1 Na2SO4 contained the highest protein content. Seed hardness differed among varieties, and was moderately influenced by salinity level (P = 0.09). Seed density was affected significantly by variety and Na2SO4 concentration, but was unaffected by NaCl concentration. The samples from 8 dS m-1 Na2SO4 soil had lower density (0.66 g/cm3) than those from 16 dS m-1 and 32 dS m-1 Na2SO4, 0.74 and 0.72g/cm3, respectively. This paper identifies changes in critical seed quality traits of quinoa as influenced by soil salinity and fertility, and offers insights into variety response and choice across different abiotic stresses in the field environment. PMID:27375648

  4. Vegetation cover change detection and assessment in arid environment using multi-temporal remote sensing images and ecosystem management approach

    NASA Astrophysics Data System (ADS)

    Abdelrahman Aly, Anwar; Mosa Al-Omran, Abdulrasoul; Shahwan Sallam, Abdulazeam; Al-Wabel, Mohammad Ibrahim; Shayaa Al-Shayaa, Mohammad

    2016-04-01

    Vegetation cover (VC) change detection is essential for a better understanding of the interactions and interrelationships between humans and their ecosystem. Remote sensing (RS) technology is one of the most beneficial tools to study spatial and temporal changes of VC. A case study has been conducted in the agro-ecosystem (AE) of Al-Kharj, in the center of Saudi Arabia. Characteristics and dynamics of total VC changes during a period of 26 years (1987-2013) were investigated. A multi-temporal set of images was processed using Landsat images from Landsat4 TM 1987, Landsat7 ETM+2000, and Landsat8 to investigate the drivers responsible for the total VC pattern and changes, which are linked to both natural and social processes. The analyses of the three satellite images concluded that the surface area of the total VC increased by 107.4 % between 1987 and 2000 and decreased by 27.5 % between years 2000 and 2013. The field study, review of secondary data, and community problem diagnosis using the participatory rural appraisal (PRA) method suggested that the drivers for this change are the deterioration and salinization of both soil and water resources. Ground truth data indicated that the deteriorated soils in the eastern part of the Al-Kharj AE are frequently subjected to sand dune encroachment, while the southwestern part is frequently subjected to soil and groundwater salinization. The groundwater in the western part of the ecosystem is highly saline, with a salinity ≥ 6 dS m-1. The ecosystem management approach applied in this study can be used to alike AE worldwide.

  5. Organic matter and salinity modify cadmium soil (phyto)availability.

    PubMed

    Filipović, Lana; Romić, Marija; Romić, Davor; Filipović, Vilim; Ondrašek, Gabrijel

    2018-01-01

    Although Cd availability depends on its total concentration in soil, it is ultimately defined by the processes which control its mobility, transformations and soil solution speciation. Cd mobility between different soil fractions can be significantly affected by certain pedovariables such as soil organic matter (SOM; over formation of metal-organic complexes) and/or soil salinity (over formation of metal-inorganic complexes). Phytoavailable Cd fraction may be described as the proportion of the available Cd in soil which is actually accessible by roots and available for plant uptake. Therefore, in a greenhouse pot experiment Cd availability was observed in the rhizosphere of faba bean exposed to different levels of SOM, NaCl salinity (50 and 100mM) and Cd contamination (5 and 10mgkg -1 ). Cd availability in soil does not linearly follow its total concentration. Still, increasing soil Cd concentration may lead to increased Cd phytoavailability if the proportion of Cd 2+ pool in soil solution is enhanced. Reduced Cd (phyto)availability by raised SOM was found, along with increased proportion of Cd-DOC complexes in soil solution. Data suggest decreased Cd soil (phyto)availability with the application of salts. NaCl salinity affected Cd speciation in soil solution by promoting the formation of CdCl n 2-n complexes. Results possibly suggest that increased Cd mobility in soil does not result in its increased availability if soil adsorption capacity for Cd has not been exceeded. Accordingly, chloro-complex possibly operated just as a Cd carrier between different soil fractions and resulted only in transfer between solid phases and not in increased (phyto)availability. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Moderately haloalkaliphilic actinomycetes in salt-affected soils

    NASA Astrophysics Data System (ADS)

    Zvyagintsev, D. G.; Zenova, G. M.; Oborotov, G. V.

    2009-12-01

    It was found that the population density of actinomycetes in solonchaks and saline desert soils varied from hundreds to tens of thousands of colony-forming units (CFUs) per 1 g of soil depending on soil type and was by 1-3 orders of magnitude lower than the number of mycelial bacteria in main soil types. Actinomycetes grow actively in saline soils, and the length of their mycelium reaches 140 m per 1 g of soil. Domination of moderately halophilic, alkaliphilic, and haloalkaliphilic actinomycetes, which grow well under 5% NaCl and pH 8-9, is a specific feature of actinomycetal complexes in saline soils. Representatives of Streptomyces and Micromonospora genera were found among the haloalkaliphilic actinomycetes. Micromonospores demonstrated lower (than streptomycetes) adaptability to high salt concentrations. Investigation of the phylogenetic position of isolated dominant haloalkaliphilic strains of streptomycetes performed on the basis of sequencing of the gene 16S rRNA enabled identifying these strains as Streptomyces pluricolorescens and S. prunicolor.

  7. Physiological performance of the soybean crosses in salinity stress

    NASA Astrophysics Data System (ADS)

    Wibowo, F.; Armaniar

    2018-02-01

    Plants grown in saline soils will experience salinity stress. Salinity stresses, one of which causes oxidative stress, that cause an imbalance in the production ROS compounds (Reactive Oxygen Species), antioxidants and chlorophyll. Where the reaction of this compound can affect plant growth and plant production. This study aims to inform performance and action gene to soybean physiological character that potential to tolerant from salinity soil that characterized by the presence of SOD and POD antioxidant compounds and chlorophyll. This research used a destructive analysis from crossbred (AxN) and (GxN). A = Anjasmoro varieties and G = Grobogan varieties as female elders and N = Grobogan varieties as male elders (N1, N2, N3, N4, N5) that have been through the stage of saline soil selection. Research result can be concluded that GxN cross is more potential for Inheritance of the offspring. This can be seen from the observed skewness of character SOD, POD compounds, Chlorophyll a and chlorophyll b.

  8. Salinity index determination of porous materials using open-ended probes

    NASA Astrophysics Data System (ADS)

    Szypłowska, Agnieszka; Kafarski, Marcin; Wilczek, Andrzej; Lewandowski, Arkadiusz; Skierucha, Wojciech

    2017-01-01

    The relations among soil water content, bulk electrical conductivity and electrical conductivity of soil solution can be described by a number of theoretical and empirical models. The aim of the paper is to examine the performance of open-ended coaxial probes with and without a short antenna in determination of complex dielectric permittivity spectra, moisture and salinity of porous materials using the salinity index approach. Glass beads of 0.26 and 1.24 mm average diameters moistened to various water contents with distilled water and KCl solutions were used to model the soil material. Due to the larger sensitivity zone, only the probe with the antenna enabled determination of bulk electrical conductivity and salinity index of the samples. The relations between bulk electrical conductivity and dielectric permittivity of the samples were highly linear, which was consistent with the salinity index model. The slope of the relation between salinity index and electrical conductivity of moistening solutions closely matched the value for 100 % sand presented in literature.

  9. Soil respiration in typical plant communities in the wetland surrounding the high-salinity Ebinur Lake

    NASA Astrophysics Data System (ADS)

    Li, Yanhong; Zhao, Mingliang; Li, Fadong

    2018-03-01

    Soil respiration in wetlands surrounding lakes is a vital component of the soil carbon cycle in arid regions. However, information remains limited on the soil respiration around highly saline lakes during the plant growing season. Here, we aimed to evaluate diurnal and seasonal variation in soil respiration to elucidate the controlling factors in the wetland of Ebinur Lake, Xinjiang Uygur Autonomous Region, western China. We used a soil carbon flux automatic analyzer (LI-840A) to measure soil respiration rates during the growing season (April to November) in two fields covered by reeds and tamarisk and one field with no vegetation (bare soil) from 2015 to 2016. The results showed a single peak in the diurnal pattern of soil respiration from 11:00 to 17:00 for plots covered in reeds, tamarisk, and bare soil, with minimum values being detected from 03:00 to 07:00. During the growing season, the soil respiration of reeds and tamarisk peaked during the thriving period (4.16 and 3.75 mmol•m-2•s-1, respectively), while that of bare soil peaked during the intermediate growth period (0.74 mmol•m-2•s-1). The soil respiration in all three plots was lowest during the wintering period (0.08, 0.09, and-0.87 mmol•m-2•s-1, respectively). Air temperature and relative humidity significantly influenced soil respiration. A significant linear relationship was detected between soil respiration and soil temperature for reeds, tamarisk, and bare soil. The average Q10 of reeds and tamarisk were larger than that of bare soil. However, soil moisture content was not the main factor controlling soil respiration. Soil respiration was negatively correlated with soil pH and soil salinity in all three plot types. In contrast, soil respiration was positively correlated with organic carbon. Overall, CO2 emissions and greenhouse gases had a relatively weak effect on the wetlands surrounding the highly saline Ebinur Lake.

  10. Microbial community biomass and structure in saline and non-saline soils associated with salt, boran tolerant poplar clones grown for the phytoremediation of selenium

    USDA-ARS?s Scientific Manuscript database

    The effect of naturally-occurring salts, boron (B), and selenium (Se) on soil microbial community composition associated with plants during different growing seasons used in bioremediation strategies is not known. This information is needed for developing sustainable remediation practices as soil mi...

  11. The Effect of a Receding Saline Lake (The Salton Sea) on Airborne Particulate Matter Composition.

    PubMed

    Frie, Alexander L; Dingle, Justin H; Ying, Samantha C; Bahreini, Roya

    2017-08-01

    The composition of ambient particulate matter (PM) and its sources were investigated at the Salton Sea, a shrinking saline lake in California. To investigate the influence of playa exposure on PM composition, PM samples were collected during two seasons and at two sites around the Salton Sea. To characterize source composition, soil samples were collected from local playa and desert surfaces. PM and soil samples were analyzed for 15 elements using mass spectrometry and X-ray diffraction. The contribution of sources to PM mass and composition was investigated using Al-referenced enrichment factors (EFs) and source factors resolved from positive matrix factorization (PMF). Playa soils were found to be significantly enriched in Ca, Na, and Se relative to desert soils. PMF analysis resolved the PM 10 data with four source factors, identified as Playa-like, Desert-like, Ca-rich, and Se. Playa-like and desert-like sources were estimated to contribute to a daily average of 8.9% and 45% of PM 10 mass, respectively. Additionally, playa sources were estimated to contribute to 38-68% of PM 10 Na. PM 10 Se concentrations showed strong seasonal variations, suggesting a seasonal cycle of Se volatilization and recondensation. These results support the importance of playas as a source of PM mass and a controlling factor of PM composition.

  12. Two-Dimensional Synthetic Aperture Radiometry over Land Surface During Soil Moisture Experiment in 2003 (SMEX03)

    NASA Technical Reports Server (NTRS)

    Ryu, Dongryeol; Jackson, Thomas J.; Bindlish, Rajat; Le Vine, David M.; Haken, Michael

    2007-01-01

    Microwave radiometry at low frequencies (L-band, approx. 1.4 GHz) has been known as an optimal solution for remote sensing of soil moisture. However, the antenna size required to achieve an appropriate resolution from space has limited the development of spaceborne L-band radiometers. This problem can be addressed by interferometric technology called aperture synthesis. The Soil Moisture and Ocean Salinity (SMOS) mission will apply this technique to monitor global-scale surface parameters in the near future. The first airborne experiment using an aircraft prototype of this approach, the Two-Dimensional Synthetic Aperture Radiometer (2D-STAR), was performed in the Soil Moisture Experiment in 2003 (SMEX03). The L-band brightness temperature data acquired in Alabama by the 2DSTAR was compared with ground-based measurements of soil moisture and with C-band data collected by the Polarimetric Scanning Radiometer (PSR). Our results demonstrate a good response of the 2D-STAR brightness temperature to changes in surface wetness, both in agricultural and forest lands. The behavior of the horizontally polarized brightness temperature data with increasing view-angle over the forest area was noticeably different than over bare soil. The results from the comparison of 2D-STAR and PSR indicate a better response of the 2D-STAR to the surface wetness under both wet and dry conditions. Our results have important implications for the performance of the future SMOS mission.

  13. Salinity-mediated cyanogenesis in white clover (Trifolium repens) affects trophic interactions

    PubMed Central

    Ballhorn, Daniel J.; Elias, Jacob D.

    2014-01-01

    Background and Aims Increasing soil salinity poses a major plant stress in agro-ecosystems worldwide. Surprisingly little is known about the quantitative effect of elevated salinity on secondary metabolism in many agricultural crops. Such salt-mediated changes in defence-associated compounds may significantly alter the quality of food and forage plants as well as their resistance against pests. In the present study, the effects of soil salinity on cyanogenesis in white clover (Trifolium repens), a forage crop of international importance, are analysed. Methods Experimental clonal plants were exposed to five levels of soil salinity, and cyanogenic potential (HCNp, total amount of accumulated cyanide in a given plant tissue), β-glucosidase activity, soluble protein concentration and biomass production were quantified. The attractiveness of plant material grown under the different salt treatments was tested using cafeteria-style feeding trials with a generalist (grey garden slug, Deroceras reticulatum) and a specialist (clover leaf weevil, Hypera punctata) herbivore. Key Results Salt treatment resulted in an upregulation of HCNp, whereas β-glucosidase activity and soluble protein concentration showed no significant variation among treatments. Leaf area consumption of both herbivore species was negatively correlated with HCNp, indicating bottom-up effects of salinity-mediated changes in HCNp on plant consumers. Conclusions The results suggest that soil salinity leads to an upregulation of cyanogenesis in white clover, which results in enhanced resistance against two different natural herbivores. The potential implications for such salinity-mediated changes in plant defence for livestock grazing remain to be tested. PMID:25006176

  14. Impacts of soil and groundwater salinization on tree crop performance in post-tsunami Aceh Barat, Indonesia

    NASA Astrophysics Data System (ADS)

    Marohn, C.; Distel, A.; Dercon, G.; Wahyunto; Tomlinson, R.; Noordwijk, M. v.; Cadisch, G.

    2012-09-01

    The Indian Ocean tsunami of December 2004 had far reaching consequences for agriculture in Aceh province, Indonesia, and particularly in Aceh Barat district, 150 km from the seaquake epicentre. In this study, the spatial distribution and temporal dynamics of soil and groundwater salinity and their impact on tree crops were monitored in Aceh Barat from 2006 to 2008. On 48 sampling points along ten transects, covering 40 km of coastline, soil and groundwater salinity were measured and related to mortality and yield depression of the locally most important tree crops. Given a yearly rainfall of over 3000 mm, initial groundwater salinity declined rapidly from over 10 to less than 2 mS cm-1 within two years. On the other hand, seasonal dynamics of the groundwater table in combination with intrusion of saline water into the groundwater body led to recurring elevated salinity, sufficient to affect crops. Tree mortality and yield depression in the flooded area varied considerably between tree species. Damage to coconut (65% trees damaged) was related to tsunami run-up height, while rubber (50% trees damaged) was mainly affected by groundwater salinity. Coconut yields (-35% in average) were constrained by groundwater Ca2+ and Mg2+, while rubber yields (-65% on average) were related to groundwater chloride, pH and soil sodium. These findings have implications on planting deep-rooted tree crops as growth will be constrained by ongoing oscillations of the groundwater table and salinity.

  15. Coupling of a distributed stakeholder-built system dynamics socio-economic model with SAHYSMOD for sustainable soil salinity management. Part 2: Model coupling and application

    NASA Astrophysics Data System (ADS)

    Inam, Azhar; Adamowski, Jan; Prasher, Shiv; Halbe, Johannes; Malard, Julien; Albano, Raffaele

    2017-08-01

    Many simulation models focus on simulating a single physical process and do not constitute balanced representations of the physical, social and economic components of a system. The present study addresses this challenge by integrating a physical (P) model (SAHYSMOD) with a group (stakeholder) built system dynamics model (GBSDM) through a component modeling approach based on widely applied tools such as MS Excel, Python and Visual Basic for Applications (VBA). The coupled model (P-GBSDM) was applied to test soil salinity management scenarios (proposed by stakeholders) for the Haveli region of the Rechna Doab Basin in Pakistan. Scenarios such as water banking, vertical drainage, canal lining, and irrigation water reallocation were simulated with the integrated model. Spatiotemporal maps and economic and environmental trade-off criteria were used to examine the effectiveness of the selected management scenarios. After 20 years of simulation, canal lining reduced soil salinity by 22% but caused an initial reduction of 18% in farm income, which requires an initial investment from the government. The government-sponsored Salinity Control and Reclamation Project (SCARP) is a short-term policy that resulted in a 37% increase in water availability with a 12% increase in farmer income. However, it showed detrimental effects on soil salinity in the long term, with a 21% increase in soil salinity due to secondary salinization. The new P-GBSDM was shown to be an effective platform for engaging stakeholders and simulating their proposed management policies while taking into account socioeconomic considerations. This was not possible using the physically based SAHYSMOD model alone.

  16. Simulated formation and flow of microemulsions during surfactant flushing of contaminated soil.

    PubMed

    Ouyan, Ying; Cho, Jong Soo; Mansell, Robert S

    2002-01-01

    Contamination of groundwater resources by non-aqueous phase liquids (NAPLs) has become an issue of increasing environmental concern. This study investigated the formation and flow of microemulsions during surfactant flushing of NAPL-contaminated soil using the finite difference model UTCHEM, which was verified with our laboratory experimental data. Simulation results showed that surfactant flushing of NAPLs (i.e., trichloroethylene and tetrachloroethylene) from the contaminated soils was an emulsion-driven process. Formation of NAPL-in-water microemulsions facilitated the removal of NAPLs from contaminated soils. Changes in soil saturation pressure were used to monitor the mobilization and entrapment of NAPLs during surface flushing process. In general, more NAPLs were clogged in soil pores when the soil saturation pressure increased. Effects of aquifer salinity on the formation and flow of NAPL-in-water microemulsions were significant. This study suggests that the formation and flow of NAPL-in-water microemulsions through aquifer systems are complex physical-chemical phenomena that are critical to effective surfactant flushing of contaminated soils.

  17. Saltwater intrusion coupled with drought accelerates carbon loss from a brackish coastal wetland

    NASA Astrophysics Data System (ADS)

    Wilson, B.; Troxler, T.

    2017-12-01

    Coastal wetlands, such as the Everglades, are critical ecosystems for blue carbon (C) storage, yet this storage capacity is vulnerable to environmental change, such as saltwater intrusion and altered hydrology. Saltwater intrusion can stress vegetation and bring new metabolites for microbial respiration, thereby altering the C cycle. Drought can reduce the depth of water covering the wetland soil, and, in extreme cases, lead to exposed soil surface. This increases oxygen levels, thus speeding up C decomposition and potentially leading to peat collapse. The combined effects of both saltwater intrusion and drought on coastal marshes, however, are still uncertain, but recent evidence suggests that saltwater intrusion accelerates C loss from wetlands when coupled with drought. Our objective was to determine the change in CO2 flux, decomposition, root and shoot production, and elevation in a brackish water marsh under conditions of drought and elevated salinity. During the onset of drought, soil CO2 efflux increased by 124% and 237% in the ambient and elevated salinity treatments, respectively, compared to the control. Within one month, elevated salinity decreased net ecosystem production (NEP) by 40%, while after 6 months it had decreased by 85%. During the onset of the drought, there was no difference in NEP with ambient salinity between the inundated and exposed monoliths (-3.4 ± 0.8 vs. -4.2 ± 2.0 μmol CO2 m-2 s-1, respectively). However, drought conditions in the elevated salinity treatment resulted in more CO2 release in the exposed monoliths than the inundated monoliths (1.5 ± 0.4 vs. -0.5 ± 0.3 μmol CO2 m-2 s-1, respectively). Elevation change collected at the end of the experiment will allow us to test if elevated salinity combined with drought contributes to peat collapse, and what mechanisms of ecosystem C cycling has the greatest influence. While the restoration of water flows to the southern Everglades is hypothesized to mitigate the periods of drought and slow down saltwater intrusion, this restoration has not occurred yet. Given accelerating sea level rise, increasing frequencies of saltwater intrusion coupled with drought could accelerate C loss from these coastal marshes.

  18. Soil and water characteristics of a young surface mine wetland

    NASA Astrophysics Data System (ADS)

    Andrew Cole, C.; Lefebvre, Eugene A.

    1991-05-01

    Coal companies are reluctant to include wetland development in reclamation plans partly due to a lack of information on the resulting characteristics of such sites. It is easier for coal companies to recreate terrestrial habitats than to attempt experimental methods and possibly face significant regulatory disapproval. Therefore, we studied a young (10 years) wetland on a reclaimed surface coal mine in southern Illinois so as to ascertain soil and water characteristics such that the site might serve as a model for wetland development on surface mines. Water pH was not measured because of equipment problems, but evidence (plant life, fish, herpetofauna) suggests suitable pH levels. Other water parameters (conductivity, salinity, alkalinity, chloride, copper, total hardness, iron, manganese, nitrate, nitrite, phosphate, and sulfate) were measured, and only copper was seen in potentially high concentrations (but with no obvious toxic effects). Soil variables measured included pH, nitrate, nitrite, ammonia, potassium, calcium, magnesium, manganese, aluminum, iron, sulfate, chloride, and percent organic matter. Soils were slightly alkaline and most parameters fell within levels reported for other studies on both natural and manmade wetlands. Aluminum was high, but this might be indicative more of large amounts complexed with soils and therefore unavailable, than amounts actually accessible to plants. Organic matter was moderate, somewhat surprising given the age of the system.

  19. Modeling Soil Sodicity Problems under Dryland and Irrigated Conditions: Case Studies in Argentina and Colombia

    NASA Astrophysics Data System (ADS)

    Pla-Sentís, Ildefonso

    2014-05-01

    Salt-affected soils, both saline and sodic, my develop both under dryland and irrigated conditions, affecting negatively the physical and chemical soil properties, the crop production and the animal and human health.Among the development processes of salt-affected soils, the processes of sodification have been generally received less attention and is less understood than the development of saline soils. Although in both of them, hydrological processes are involved in their development, in the case of sodic soils we have to consider some additional chemical and physicochemical reactions, making more difficult their modeling and prediction. In this contribution we present two case studies: one related to the development of sodic soils in the lowlands of the Argentina Pampas, under dryland conditions and sub-humid temperate climate, with pastures for cattle production; the other deals with the development of sodic soils in the Colombia Cauca Valley, under irrigated conditions and tropical sub-humid climate, in lands used for sugarcane cropping dedicated to sugar and ethanol production. In both cases the development of sodicity in the surface soil is mainly related to the effects of the composition and level of groundwater, affected in the case of Argentina Pampas by the off-site changes in dryland use and management in the upper zones and by the drainage conditions in the lowlands, and in the case of the Cauca Valley, by the on-site irrigation and drainage management in lands with sugarcane. There is shown how the model SALSODIMAR, developed by the main author, based on the balance of water and soluble componentes of both the irrigation water and groundwater under different water and land management conditions, may be adapted for the diagnosis and prediction of both problems, and for the selection of alternatives for their management and amelioration.

  20. Landscape evolution and agricultural land salinization in coastal area: A conceptual model.

    PubMed

    Bless, Aplena Elen; Colin, François; Crabit, Armand; Devaux, Nicolas; Philippon, Olivier; Follain, Stéphane

    2018-06-01

    Soil salinization is a major threat to agricultural lands. Among salt-affected lands, coastal areas could be considered as highly complex systems, where salinization degradation due to anthropogenic pressure and climate-induced changes could significantly alter system functioning. For such complex systems, conceptual models can be used as evaluation tools in a preliminary step to identify the main evolutionary processes responsible for soil and water salinization. This study aimed to propose a conceptual model for water fluxes in a coastal area affected by salinity, which can help to identify the relationships between agricultural landscape evolution and actual salinity. First, we conducted field investigations from 2012 to 2016, mainly based on both soil (EC 1/5 ) and water (EC w ) electrical conductivity survey. This allowed us to characterize spatial structures for EC 1/5 and EC w and to identify the river as a preponderant factor in land salinization. Subsequently, we proposed and used a conceptual model for water fluxes and conducted a time analysis (1962-2012) for three of its main constitutive elements, namely climate, river, and land systems. When integrated within the conceptual model framework, it appeared that the evolution of all constitutive elements since 1962 was responsible for the disruption of system equilibrium, favoring overall salt accumulation in the soil root zone. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Causal mechanisms of soil organic matter decomposition: Deconstructing salinity and flooding impacts in coastal wetlands

    USGS Publications Warehouse

    Stagg, Camille L.; Schoolmaster, Donald; Krauss, Ken W.; Cormier, Nicole; Conner, William H.

    2017-01-01

    Coastal wetlands significantly contribute to global carbon storage potential. Sea-level rise and other climate change-induced disturbances threaten coastal wetland sustainability and carbon storage capacity. It is critical that we understand the mechanisms controlling wetland carbon loss so that we can predict and manage these resources in anticipation of climate change. However, our current understanding of the mechanisms that control soil organic matter decomposition, in particular the impacts of elevated salinity, are limited, and literature reports are contradictory. In an attempt to improve our understanding of these complex processes, we measured root and rhizome decomposition and developed a causal model to identify and quantify the mechanisms that influence soil organic matter decomposition in coastal wetlands that are impacted by sea-level rise. We identified three causal pathways: 1) a direct pathway representing the effects of flooding on soil moisture, 2) a direct pathway representing the effects of salinity on decomposer microbial communities and soil biogeochemistry, and 3) an indirect pathway representing the effects of salinity on litter quality through changes in plant community composition over time. We used this model to test the effects of alternate scenarios on the response of tidal freshwater forested wetlands and oligohaline marshes to short- and long-term climate-induced disturbances of flooding and salinity. In tidal freshwater forested wetlands, the model predicted less decomposition in response to drought, hurricane salinity pulsing, and long-term sea-level rise. In contrast, in the oligohaline marsh, the model predicted no change in response to sea-level rise, and increased decomposition following a drought or a hurricane salinity pulse. Our results show that it is critical to consider the temporal scale of disturbance and the magnitude of exposure when assessing the effects of salinity intrusion on carbon mineralization in coastal wetlands. Here we identify three causal mechanisms that can reconcile disparities between long-term and short-term salinity impacts on organic matter decomposition.

  2. Causal mechanisms of soil organic matter decomposition: deconstructing salinity and flooding impacts in coastal wetlands.

    PubMed

    Stagg, Camille L; Schoolmaster, Donald R; Krauss, Ken W; Cormier, Nicole; Conner, William H

    2017-08-01

    Coastal wetlands significantly contribute to global carbon storage potential. Sea-level rise and other climate-change-induced disturbances threaten coastal wetland sustainability and carbon storage capacity. It is critical that we understand the mechanisms controlling wetland carbon loss so that we can predict and manage these resources in anticipation of climate change. However, our current understanding of the mechanisms that control soil organic matter decomposition, in particular the impacts of elevated salinity, are limited, and literature reports are contradictory. In an attempt to improve our understanding of these complex processes, we measured root and rhizome decomposition and developed a causal model to identify and quantify the mechanisms that influence soil organic matter decomposition in coastal wetlands that are impacted by sea-level rise. We identified three causal pathways: (1) a direct pathway representing the effects of flooding on soil moisture, (2) a direct pathway representing the effects of salinity on decomposer microbial communities and soil biogeochemistry, and (3) an indirect pathway representing the effects of salinity on litter quality through changes in plant community composition over time. We used this model to test the effects of alternate scenarios on the response of tidal freshwater forested wetlands and oligohaline marshes to short- and long-term climate-induced disturbances of flooding and salinity. In tidal freshwater forested wetlands, the model predicted less decomposition in response to drought, hurricane salinity pulsing, and long-term sea-level rise. In contrast, in the oligohaline marsh, the model predicted no change in response to drought and sea-level rise, and increased decomposition following a hurricane salinity pulse. Our results show that it is critical to consider the temporal scale of disturbance and the magnitude of exposure when assessing the effects of salinity intrusion on carbon mineralization in coastal wetlands. Here, we identify three causal mechanisms that can reconcile disparities between long-term and short-term salinity impacts on organic matter decomposition. © 2017 by the Ecological Society of America.

  3. Soil analysis in discussions of agricultural feasibility for ancient civilizations: A critical review and reanalysis of the data and debate from Chaco Canyon, New Mexico.

    PubMed

    McCool, Jon-Paul P; Fladd, Samantha G; Scarborough, Vernon L; Plog, Stephen; Dunning, Nicholas P; Owen, Lewis A; Watson, Adam S; Bishop, Katelyn J; Crowley, Brooke E; Haussner, Elizabeth A; Tankersley, Kenneth B; Lentz, David; Carr, Christopher; Thress, Jessica L

    2018-01-01

    Questions about how archaeological populations obtained basic food supplies are often difficult to answer. The application of specialist techniques from non-archaeological fields typically expands our knowledge base, but can be detrimental to cultural interpretations if employed incorrectly, resulting in problematic datasets and erroneous conclusions not easily caught by the recipient archaeological community. One area where this problem has failed to find resolution is Chaco Canyon, New Mexico, the center of one of the New World's most vibrant ancient civilizations. Discussions of agricultural feasibility and its impact on local population levels at Chaco Canyon have been heavily influenced by studies of soil salinity. A number of researchers have argued that salinized soils severely limited local agricultural production, instead suggesting food was imported from distant sources, specifically the Chuska Mountains. A careful reassessment of existing salinity data as measured by electrical conductivity reveals critical errors in data conversion and presentation that have misrepresented the character of the area's soil and its potential impact on crops. We combine all available electrical conductivity data, including our own, and apply multiple established conversion methods in order to estimate soil salinity values and evaluate their relationship to agricultural productivity potential. Our results show that Chacoan soils display the same salinity ranges and spatial variability as soils in other documented, productive fields in semi-arid areas. Additionally, the proposed large-scale importation of food from the Chuska Mountains region has serious social implications that have not been thoroughly explored. We consider these factors and conclude that the high cost and extreme inflexibility of such a system, in combination with material evidence for local agriculture within Chaco Canyon, make this scenario highly unlikely. Both the soil salinity and archaeological data suggest that there is no justification for precluding the practice of local agriculture within Chaco Canyon.

  4. Study of hydro-saline characteristics of soils a palm grove in basin of Ouargla (Northern Algerian Sahara)

    NASA Astrophysics Data System (ADS)

    Rezagui, D.; Bouhoun, M. Daddi; Boutoutaou, D.; Djaghoubi, A.

    2016-07-01

    Saharan soils are often faced with several problems of development, taking account the hydro-edaphic constraints, mainly of hydric types by water table, mechanical by gypso-calcareous crusts and saline by irrigation waters and upwelling of water table. Our work consists in doing a soil characterization of a palm grove in Ouargla in order to study the constraints hydro-halomorphes. The results show that irrigation water by two plies of Senonian and Mioplcène had a high salinity with a value of 2.83 and 5.10 dS.m-1 respectively. The conduct of irrigation is traditional random of submersion type. The palm grove has a poor drainage with a level of water table 156.67±15.71 cm and salinity of 31.37±34.04 dS.m-1. The drains are open type and their maintenance is not regular. This situation of management of irrigation-drainage promotes the upwelling of water table and the waterlogging in soils. The study of soil profiles shows the existence of mechanical obstruction of gypso-calcareous crusts which limit the entrenchment of the date palms and the leaching of salts. Soil salinity is excessive in profiles with a range of 8.98 ± 4.58 dS.m-1. This accumulation of salts is due to the dynamic ascending and descending of salts respectively under the effect of upwelling of water table and leaching by irrigation. The salinization, the upwelling of water table and the presence of gypso-calcareous crusts recorded in Ouargla testify to a degradation hydro-halomorphe and mechanic of soil which constitute the major constraints in the management of system irrigation-drainage and sustainable agricultural development of the palm groves of the basin of Ouargla. Some hydro-agricultural planning are necessary to apply in the oasis to improve the hydro-mechanical properties of soils in order to reduce their degradation.

  5. Spaceborne Microwave Instrument for High Resolution Remote Sensing of the Earth's Surface Using a Large-Aperture Mesh Antenna

    NASA Technical Reports Server (NTRS)

    Njoku, E.; Wilson, W.; Yueh, S.; Freeland, R.; Helms, R.; Edelstein, W.; Sadowy, G.; Farra, D.; West, R.; Oxnevad, K.

    2001-01-01

    This report describes a two-year study of a large-aperture, lightweight, deployable mesh antenna system for radiometer and radar remote sensing of the Earth from space. The study focused specifically on an instrument to measure ocean salinity and Soil moisture. Measurements of ocean salinity and soil moisture are of critical . importance in improving knowledge and prediction of key ocean and land surface processes, but are not currently obtainable from space. A mission using this instrument would be the first demonstration of deployable mesh antenna technology for remote sensing and could lead to potential applications in other remote sensing disciplines that require high spatial resolution measurements. The study concept features a rotating 6-m-diameter deployable mesh antenna, with radiometer and radar sensors, to measure microwave emission and backscatter from the Earth's surface. The sensors operate at L and S bands, with multiple polarizations and a constant look angle, scanning across a wide swath. The study included detailed analyses of science requirements, reflector and feedhorn design and performance, microwave emissivity measurements of mesh samples, design and test of lightweight radar electronic., launch vehicle accommodations, rotational dynamics simulations, and an analysis of attitude control issues associated with the antenna and spacecraft, The goal of the study was to advance the technology readiness of the overall concept to a level appropriate for an Earth science emission.

  6. Complementary effects of surface water and groundwater on soil moisture dynamics in a degraded coastal floodplain forest

    NASA Astrophysics Data System (ADS)

    Kaplan, D.; Muñoz-Carpena, R.

    2011-02-01

    SummaryRestoration of degraded floodplain forests requires a robust understanding of surface water, groundwater, and vadose zone hydrology. Soil moisture is of particular importance for seed germination and seedling survival, but is difficult to monitor and often overlooked in wetland restoration studies. This research hypothesizes that the complex effects of surface water and shallow groundwater on the soil moisture dynamics of floodplain wetlands are spatially complementary. To test this hypothesis, 31 long-term (4-year) hydrological time series were collected in the floodplain of the Loxahatchee River (Florida, USA), where watershed modifications have led to reduced freshwater flow, altered hydroperiod and salinity, and a degraded ecosystem. Dynamic factor analysis (DFA), a time series dimension reduction technique, was applied to model temporal and spatial variation in 12 soil moisture time series as linear combinations of common trends (representing shared, but unexplained, variability) and explanatory variables (selected from 19 additional candidate hydrological time series). The resulting dynamic factor models yielded good predictions of observed soil moisture series (overall coefficient of efficiency = 0.90) by identifying surface water elevation, groundwater elevation, and net recharge (cumulative rainfall-cumulative evapotranspiration) as important explanatory variables. Strong and complementary linear relationships were found between floodplain elevation and surface water effects (slope = 0.72, R2 = 0.86, p < 0.001), and between elevation and groundwater effects (slope = -0.71, R2 = 0.71, p = 0.001), while the effect of net recharge was homogenous across the experimental transect (slope = 0.03, R2 = 0.05, p = 0.242). This study provides a quantitative insight into the spatial structure of groundwater and surface water effects on soil moisture that will be useful for refining monitoring plans and developing ecosystem restoration and management scenarios in degraded coastal floodplains.

  7. Development of predictive mapping techniques for soil survey and salinity mapping

    NASA Astrophysics Data System (ADS)

    Elnaggar, Abdelhamid A.

    Conventional soil maps represent a valuable source of information about soil characteristics, however they are subjective, very expensive, and time-consuming to prepare. Also, they do not include explicit information about the conceptual mental model used in developing them nor information about their accuracy, in addition to the error associated with them. Decision tree analysis (DTA) was successfully used in retrieving the expert knowledge embedded in old soil survey data. This knowledge was efficiently used in developing predictive soil maps for the study areas in Benton and Malheur Counties, Oregon and accessing their consistency. A retrieved soil-landscape model from a reference area in Harney County was extrapolated to develop a preliminary soil map for the neighboring unmapped part of Malheur County. The developed map had a low prediction accuracy and only a few soil map units (SMUs) were predicted with significant accuracy, mostly those shallow SMUs that have either a lithic contact with the bedrock or developed on a duripan. On the other hand, the developed soil map based on field data was predicted with very high accuracy (overall was about 97%). Salt-affected areas of the Malheur County study area are indicated by their high spectral reflectance and they are easily discriminated from the remote sensing data. However, remote sensing data fails to distinguish between the different classes of soil salinity. Using the DTA method, five classes of soil salinity were successfully predicted with an overall accuracy of about 99%. Moreover, the calculated area of salt-affected soil was overestimated when mapped using remote sensing data compared to that predicted by using DTA. Hence, DTA could be a very helpful approach in developing soil survey and soil salinity maps in more objective, effective, less-expensive and quicker ways based on field data.

  8. The geostatistic-based spatial distribution variations of soil salts under long-term wastewater irrigation.

    PubMed

    Wu, Wenyong; Yin, Shiyang; Liu, Honglu; Niu, Yong; Bao, Zhe

    2014-10-01

    The purpose of this study was to determine and evaluate the spatial changes in soil salinity by using geostatistical methods. The study focused on the suburb area of Beijing, where urban development led to water shortage and accelerated wastewater reuse to farm irrigation for more than 30 years. The data were then processed by GIS using three different interpolation techniques of ordinary kriging (OK), disjunctive kriging (DK), and universal kriging (UK). The normality test and overall trend analysis were applied for each interpolation technique to select the best fitted model for soil parameters. Results showed that OK was suitable for soil sodium adsorption ratio (SAR) and Na(+) interpolation; UK was suitable for soil Cl(-) and pH; DK was suitable for soil Ca(2+). The nugget-to-sill ratio was applied to evaluate the effects of structural and stochastic factors. The maps showed that the areas of non-saline soil and slight salinity soil accounted for 6.39 and 93.61%, respectively. The spatial distribution and accumulation of soil salt were significantly affected by the irrigation probabilities and drainage situation under long-term wastewater irrigation.

  9. Mystery #13 Answer

    Atmospheric Science Data Center

    2013-04-22

    ... April.   C.   They are both landlocked.   D.   Soil in both countries has been subjected to increasing salinization. ... Both of these landlocked countries are losing arable land to soil salinization as a result of rising groundwater   levels that accompany ...

  10. Salinity tolerance of germinating alternative oilseeds

    USDA-ARS?s Scientific Manuscript database

    Integrating oilseed crops into rotations can improve soil health benefits, nutrient retention, and pollinator provisions. Field margins represent areas where incorporation of oilseeds is feasible. However in the northern Great Plains, field margins can oftentimes be areas of saline soil, which can i...

  11. Effects of different remediation treatments on crude oil contaminated saline soil.

    PubMed

    Gao, Yong-Chao; Guo, Shu-Hai; Wang, Jia-Ning; Li, Dan; Wang, Hui; Zeng, De-Hui

    2014-12-01

    Remediation of the petroleum contaminated soil is essential to maintain the sustainable development of soil ecosystem. Bioremediation using microorganisms and plants is a promising method for the degradation of crude oil contaminants. The effects of different remediation treatments, including nitrogen addition, Suaeda salsa planting, and arbuscular mycorrhiza (AM) fungi inoculation individually or combined, on crude oil contaminated saline soil were assessed using a microcosm experiment. The results showed that different remediation treatments significantly affected the physicochemical properties, oil contaminant degradation and bacterial community structure of the oil contaminated saline soil. Nitrogen addition stimulated the degradation of total petroleum hydrocarbon significantly at the initial 30d of remediation. Coupling of different remediation techniques was more effective in degrading crude oil contaminants. Applications of nitrogen, AM fungi and their combination enhanced the phytoremediation efficiency of S. salsa significantly. The main bacterial community composition in the crude oil contaminated saline soil shifted with the remediation processes. γ-Proteobacteria, β-Proteobacteria, and Actinobacteria were the pioneer oil-degraders at the initial stage, and Firmicutes were considered to be able to degrade the recalcitrant components at the later stage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Optical tool for salinity detection by remote sensing spectroscopy: application on Oran watershed, Algeria

    NASA Astrophysics Data System (ADS)

    Abdellatif, Dehni; Mourad, Lounis

    2017-07-01

    Soil salinity is a complex problem that affects groundwater aquifers and agricultural lands in the semiarid regions. Remote sensing and spectroscopy database systems provide accuracy for salinity autodetection and dynamical delineation. Salinity detection techniques using polychromatic wavebands by field geocomputation and experimental data are time consuming and expensive. This paper presents an automated spectral detection and identification of salt minerals using a monochromatic waveband concept from multispectral bands-Landsat 8 Operational Land Imager (OLI) and Thermal InfraRed Sensor (TIRS) and spectroscopy United States Geological Survey database. For detecting mineral salts related to electrolytes, such as electronical and vibrational transitions, an integrated approach of salinity detection related to the optical monochromatic concept has been addressed. The purpose of this paper is to discriminate waveband intrinsic spectral similarity using the Beer-Lambert and Van 't Hoff laws for spectral curve extraction such as transmittance, reflectance, absorbance, land surface temperature, molar concentration, and osmotic pressure. These parameters are primordial for hydrodynamic salinity modeling and continuity identification using chemical and physical approaches. The established regression fitted models have been addressed for salt spectroscopy validation for suitable calibration and validation. Furthermore, our analytical tool is conducted for better decision interface using spectral salinity detection and identification in the Oran watershed, Algeria.

  13. An Arabidopsis Soil-Salinity–Tolerance Mutation Confers Ethylene-Mediated Enhancement of Sodium/Potassium Homeostasis[W

    PubMed Central

    Jiang, Caifu; Belfield, Eric J.; Cao, Yi; Smith, J. Andrew C.; Harberd, Nicholas P.

    2013-01-01

    High soil Na concentrations damage plants by increasing cellular Na accumulation and K loss. Excess soil Na stimulates ethylene-induced soil-salinity tolerance, the mechanism of which we here define via characterization of an Arabidopsis thaliana mutant displaying transpiration-dependent soil-salinity tolerance. This phenotype is conferred by a loss-of-function allele of ETHYLENE OVERPRODUCER1 (ETO1; mutant alleles of which cause increased production of ethylene). We show that lack of ETO1 function confers soil-salinity tolerance through improved shoot Na/K homeostasis, effected via the ETHYLENE RESISTANT1–CONSTITUTIVE TRIPLE RESPONSE1 ethylene signaling pathway. Under transpiring conditions, lack of ETO1 function reduces root Na influx and both stelar and xylem sap Na concentrations, thereby restricting root-to-shoot delivery of Na. These effects are associated with increased accumulation of RESPIRATORY BURST OXIDASE HOMOLOG F (RBOHF)–dependent reactive oxygen species in the root stele. Additionally, lack of ETO1 function leads to significant enhancement of tissue K status by an RBOHF-independent mechanism associated with elevated HIGH-AFFINITY K+ TRANSPORTER5 transcript levels. We conclude that ethylene promotes soil-salinity tolerance via improved Na/K homeostasis mediated by RBOHF-dependent regulation of Na accumulation and RBOHF-independent regulation of K accumulation. PMID:24064768

  14. A Texas Flood from Land to Ocean Observed by SMAP

    NASA Astrophysics Data System (ADS)

    Fournier, S.; Reager, J. T., II; Lee, T.; Vazquez, J.; David, C. H.; Gierach, M. M.

    2016-12-01

    Floods are natural hazards that can have damaging impacts not only on affected land areas but also on the adjacent coastal waters. NASA's Soil Moisture Active Passive (SMAP) mission provides measurements of both surface soil moisture and sea surface salinity (SSS), offering the opportunity to study the effects of flooding events on both terrestrial and marine environments. Here, we present analysis of a severe flood that occurred in May 2015 in Texas using SMAP observations and ancillary satellite and in situ data that describe the precipitation intensity, the evolving saturation state of the land surface, the flood discharge peak, and the resulting freshwater plume in the Gulf of Mexico. We describe the spatiotemporal evolution of the different variables, their relationships, and the associated physical processes. Specifically, we identify a freshwater plume in the north-central Gulf, being distinct from the typical Mississippi River plume, that is attributable to the Texas flood.

  15. Age-related environmental gradients influence invertebrate distribution in the Prince Charles Mountains, East Antarctica.

    PubMed

    Czechowski, Paul; White, Duanne; Clarke, Laurence; McKay, Alan; Cooper, Alan; Stevens, Mark I

    2016-12-01

    The potential impact of environmental change on terrestrial Antarctic ecosystems can be explored by inspecting biodiversity patterns across large-scale gradients. Unfortunately, morphology-based surveys of Antarctic invertebrates are time-consuming and limited by the cryptic nature of many taxa. We used biodiversity information derived from high-throughput sequencing (HTS) to elucidate the relationship between soil properties and invertebrate biodiversity in the Prince Charles Mountains, East Antarctica. Across 136 analysed soil samples collected from Mount Menzies, Mawson Escarpment and Lake Terrasovoje, we found invertebrate distribution in the Prince Charles Mountains significantly influenced by soil salinity and/or sulfur content. Phyla Tardigrada and Arachnida occurred predominantly in low-salinity substrates with abundant nutrients, whereas Bdelloidea (Rotifera) and Chromadorea (Nematoda) were more common in highly saline substrates. A significant correlation between invertebrate occurrence, soil salinity and time since deglaciation indicates that terrain age indirectly influences Antarctic terrestrial biodiversity, with more recently deglaciated areas supporting greater diversity. Our study demonstrates the value of HTS metabarcoding to investigate environmental constraints on inconspicuous soil biodiversity across large spatial scales.

  16. Age-related environmental gradients influence invertebrate distribution in the Prince Charles Mountains, East Antarctica

    PubMed Central

    White, Duanne; Clarke, Laurence; McKay, Alan; Cooper, Alan; Stevens, Mark I.

    2016-01-01

    The potential impact of environmental change on terrestrial Antarctic ecosystems can be explored by inspecting biodiversity patterns across large-scale gradients. Unfortunately, morphology-based surveys of Antarctic invertebrates are time-consuming and limited by the cryptic nature of many taxa. We used biodiversity information derived from high-throughput sequencing (HTS) to elucidate the relationship between soil properties and invertebrate biodiversity in the Prince Charles Mountains, East Antarctica. Across 136 analysed soil samples collected from Mount Menzies, Mawson Escarpment and Lake Terrasovoje, we found invertebrate distribution in the Prince Charles Mountains significantly influenced by soil salinity and/or sulfur content. Phyla Tardigrada and Arachnida occurred predominantly in low-salinity substrates with abundant nutrients, whereas Bdelloidea (Rotifera) and Chromadorea (Nematoda) were more common in highly saline substrates. A significant correlation between invertebrate occurrence, soil salinity and time since deglaciation indicates that terrain age indirectly influences Antarctic terrestrial biodiversity, with more recently deglaciated areas supporting greater diversity. Our study demonstrates the value of HTS metabarcoding to investigate environmental constraints on inconspicuous soil biodiversity across large spatial scales. PMID:28083092

  17. Assimilation of SMOS Retrieved Soil Moisture into the Land Information System

    NASA Technical Reports Server (NTRS)

    Blankenship, Clay B.; Case, Jonathan L.; Zavodsky, Bradley T.

    2014-01-01

    Soil moisture is a crucial variable for weather prediction because of its influence on evaporation and surface heat fluxes. It is also of critical importance for drought and flood monitoring and prediction and for public health applications such as monitoring vector-borne diseases. Land surface modeling benefits greatly from regular updates with soil moisture observations via data assimilation. Satellite remote sensing is the only practical observation type for this purpose in most areas due to its worldwide coverage. The newest operational satellite sensor for soil moisture is the Microwave Imaging Radiometer using Aperture Synthesis (MIRAS) instrument aboard the Soil Moisture and Ocean Salinity (SMOS) satellite. The NASA Short-term Prediction Research and Transition Center (SPoRT) has implemented the assimilation of SMOS soil moisture observations into the NASA Land Information System (LIS), an integrated modeling and data assimilation software platform. We present results from assimilating SMOS observations into the Noah 3.2 land surface model within LIS. The SMOS MIRAS is an L-band radiometer launched by the European Space Agency in 2009, from which we assimilate Level 2 retrievals [1] into LIS-Noah. The measurements are sensitive to soil moisture concentration in roughly the top 2.5 cm of soil. The retrievals have a target volumetric accuracy of 4% at a resolution of 35-50 km. Sensitivity is reduced where precipitation, snowcover, frozen soil, or dense vegetation is present. Due to the satellite's polar orbit, the instrument achieves global coverage twice daily at most mid- and low-latitude locations, with only small gaps between swaths.

  18. Assimilation of SMOS Brightness Temperatures or Soil Moisture Retrievals into a Land Surface Model

    NASA Technical Reports Server (NTRS)

    De Lannoy, Gabrielle J. M.; Reichle, Rolf H.

    2016-01-01

    Three different data products from the Soil Moisture Ocean Salinity (SMOS) mission are assimilated separately into the Goddard Earth Observing System Model, version 5 (GEOS-5) to improve estimates of surface and root-zone soil moisture. The first product consists of multi-angle, dual-polarization brightness temperature (Tb) observations at the bottom of the atmosphere extracted from Level 1 data. The second product is a derived SMOS Tb product that mimics the data at a 40 degree incidence angle from the Soil Moisture Active Passive (SMAP) mission. The third product is the operational SMOS Level 2 surface soil moisture (SM) retrieval product. The assimilation system uses a spatially distributed ensemble Kalman filter (EnKF) with seasonally varying climatological bias mitigation for Tb assimilation, whereas a time-invariant cumulative density function matching is used for SM retrieval assimilation. All assimilation experiments improve the soil moisture estimates compared to model-only simulations in terms of unbiased root-mean-square differences and anomaly correlations during the period from 1 July 2010 to 1 May 2015 and for 187 sites across the US. Especially in areas where the satellite data are most sensitive to surface soil moisture, large skill improvements (e.g., an increase in the anomaly correlation by 0.1) are found in the surface soil moisture. The domain-average surface and root-zone skill metrics are similar among the various assimilation experiments, but large differences in skill are found locally. The observation-minus-forecast residuals and analysis increments reveal large differences in how the observations add value in the Tb and SM retrieval assimilation systems. The distinct patterns of these diagnostics in the two systems reflect observation and model errors patterns that are not well captured in the assigned EnKF error parameters. Consequently, a localized optimization of the EnKF error parameters is needed to further improve Tb or SM retrieval assimilation.

  19. Land surface sensitivity of monsoon depressions formed over Bay of Bengal using improved high-resolution land state

    NASA Astrophysics Data System (ADS)

    Rajesh, P. V.; Pattnaik, S.; Mohanty, U. C.; Rai, D.; Baisya, H.; Pandey, P. C.

    2017-12-01

    Monsoon depressions (MDs) constitute a large fraction of the total rainfall during the Indian summer monsoon season. In this study, the impact of high-resolution land state is addressed by assessing the evolution of inland moving depressions formed over the Bay of Bengal using a mesoscale modeling system. Improved land state is generated using High Resolution Land Data Assimilation System employing Noah-MP land-surface model. Verification of soil moisture using Soil Moisture and Ocean Salinity (SMOS) and soil temperature using tower observations demonstrate promising results. Incorporating high-resolution land state yielded least root mean squared errors with higher correlation coefficient in the surface and mid tropospheric parameters. Rainfall forecasts reveal that simulations are spatially and quantitatively in accordance with observations and provide better skill scores. The improved land surface characteristics have brought about the realistic evolution of surface, mid-tropospheric parameters, vorticity and moist static energy that facilitates the accurate MDs dynamics in the model. Composite moisture budget analysis reveals that the surface evaporation is negligible compared to moisture flux convergence of water vapor, which supplies moisture into the MDs over land. The temporal relationship between rainfall and moisture convergence show high correlation, suggesting a realistic representation of land state help restructure the moisture inflow into the system through rainfall-moisture convergence feedback.

  20. Arbuscular mycorrhizal fungi in saline soils: Vertical distribution at different soil depth

    PubMed Central

    Becerra, Alejandra; Bartoloni, Norberto; Cofré, Noelia; Soteras, Florencia; Cabello, Marta

    2014-01-01

    Arbuscular mycorrhizal fungi (AMF) colonize land plants in every ecosystem, even extreme conditions such as saline soils. In the present work we report for the first time the mycorrhizal status and the vertical fungal distribution of AMF spores present in the rhizospheric soil samples of four species of Chenopodiaceae (Allenrolfea patagonica, Atriplex argentina, Heterostachys ritteriana and Suaeda divaricata) at five different depths in two saline of central Argentina. Roots showed medium, low or no colonization (0–50%). Nineteen morphologically distinctive AMF species were recovered. The number of AMF spores ranged between 3 and 1162 per 100 g dry soil, and AMF spore number decreased as depth increased at both sites. The highest spore number was recorded in the upper soil depth (0–10 cm) and in S. divaricata. Depending of the host plant, some AMF species sporulated mainly in the deep soil layers (Glomus magnicaule in Allenrolfea patagonica, Septoglomus aff. constrictum in Atriplex argentina), others mainly in the top layers (G. brohultti in Atriplex argentina and Septoglomus aff. constrictum in Allenrolfea patagonica). Although the low percentages of colonization or lack of it, our results show a moderate diversity of AMF associated to the species of Chenopodiaceae investigated in this study. The taxonomical diversity reveals that AMF are adapted to extreme environmental conditions from saline soils of central Argentina. PMID:25242945

  1. Remote sensing inputs to water demand modeling

    NASA Technical Reports Server (NTRS)

    Estes, J. E.; Jensen, J. R.; Tinney, L. R.; Rector, M.

    1975-01-01

    In an attempt to determine the ability of remote sensing techniques to economically generate data required by water demand models, the Geography Remote Sensing Unit, in conjunction with the Kern County Water Agency of California, developed an analysis model. As a result it was determined that agricultural cropland inventories utilizing both high altitude photography and LANDSAT imagery can be conducted cost effectively. In addition, by using average irrigation application rates in conjunction with cropland data, estimates of agricultural water demand can be generated. However, more accurate estimates are possible if crop type, acreage, and crop specific application rates are employed. An analysis of the effect of saline-alkali soils on water demand in the study area is also examined. Finally, reference is made to the detection and delineation of water tables that are perched near the surface by semi-permeable clay layers. Soil salinity prediction, automated crop identification on a by-field basis, and a potential input to the determination of zones of equal benefit taxation are briefly touched upon.

  2. Physicochemical studies on Uburu Salt Lake Ebonyi State-Nigeria.

    PubMed

    Akubugwo, I E; Ofoegbu, C J; Ukwuoma, C U

    2007-09-15

    Physicochemical properties of soil (sediment) and water from Uburu salt lake were evaluated and compared with control soil and surface water from the same community. Results showed significant (p < 0.05) higher values for the heavy metals cadmium, chromium, copper, lead and zinc in the lake water relative to the control. The values of these metals in the lake soil (sediments) however, were significantly (p < 0.05) lower than the control soil. Similar significant (p < 0.05) elevations were observed in the lake water temperature, salinity, pH, calcium, magnesium, sodium, potassium, nitrate, carbonate, sulphate and phosphate levels compared to the control. Significant (p < 0.05) changes were also noted in the lake soil's pH, exchangeable acidity, nitrogen, organic carbon, calcium and magnesium levels. Also the soil texture was affected relative to the control. In a number of cases, the values of the studied parameters were higher than the permissible WHO standards. In view of these findings, cautious use of the salt lake soil and water is advocated.

  3. Ectomycorrhizal Community Structure of Salix and Betula spp. at a Saline Site in Central Poland in Relation to the Seasons and Soil Parameters.

    PubMed

    Hrynkiewicz, Katarzyna; Szymańska, Sonia; Piernik, Agnieszka; Thiem, Dominika

    Saline stress is one of the most important abiotic factors limiting the growth and development of plants and associated microorganisms. While the impact of salinity on associations of arbuscular fungi is relatively well understood, knowledge of the ectomycorrhizal (EM) fungi of trees growing on saline land is limited. The main objective of this study was to determine the density and diversity of EM fungi associated with three tree species, Salix alba , Salix caprea and Betula pendula , growing in saline soil during two seasons, autumn and spring. The site was located in central Poland, and the increased salinity of the soil was of anthropogenic origin from soda production. The degree of EM colonisation of fine root tips varied between 9 and 34 % and depended on the tree species of interest ( S. caprea < S. alba < B. pendula ) and season (spring < autumn). Moreover, the ectomycorrhizal colonisation of B. pendula was positively correlated with pH and CaCO 3 , while for S. caprea and S. alba, colonisation was associated with most of the other soil parameters investigated; e.g. salinity, C org and N. Analysis of EM fungi revealed four to five different morphotypes per each season: Tomentella sp. Sa-A, Hebeloma collariatum Sc-A, Geopora sp. Sc-A, Helotiales sp. Bp-A in the autumn and Tomentella sp. Sa-S, Tomentella sp. Sc-S and three morphotypes from the families Thelephoraceae and Pyronemataceae in the spring. In conclusion, the density of EM is related to the level of salinity (EC e ), season and tree species. Tomentella spp., Hebeloma sp., Geopora sp. and Helotiales sp. are groups of species highly adapted to saline conditions.

  4. Seasonal variation of methane flux from coastal saline rice field with the application of different organic manures

    NASA Astrophysics Data System (ADS)

    Datta, A.; Yeluripati, Jagadeesh B.; Nayak, D. R.; Mahata, K. R.; Santra, S. C.; Adhya, T. K.

    2013-02-01

    A field experiment was conducted in an irrigated saline rice field of Gadakujang (a fishing hamlet of coastal Odisha, India, ravaged by the super cyclone of 1999 and cyclone BOB02 of 2006), to study the effects of locally available organic and fresh green manure amendment to the saline soil on methane (CH4) emission during wet and dry seasons using the conventional closed chamber flux measurement method. In a first report of this kind, CH4 emission vis-à-vis yield improvement of rice with different locally available organic manure application from coastal saline rice field soil of Odisha, is reported. The study confirms that CH4 flux from the saline soil planted to rice is significantly lower than that of irrigated inland non-saline rice field during both wet and dry seasons. Cumulative seasonal CH4 flux from different treatments of the coastal saline rice field ranged between 119.51 and 263.60 kg ha-1 during the wet season and 15.35-100.88 kg ha-1 during the dry season. Lower CH4 emission during the dry season may be attributed to the increased soil salinity (EC1:2) that went up from 0.76 dS m-1 during the wet season to 3.96 dS m-1 during the dry season. Annual CH4 emission per Mg grain yield was significantly low from plots treated with locally available green manure Morning glory (Ipomoea lacunosa) (17.27) with significantly high rice grain yield. Study indicates that Morning glory may be used as a potential green manure to increase grain yield and reduced CH4 emission from the coastal saline rice ecosystems of the tropics.

  5. SMAP Soil Moisture Disaggregation using Land Surface Temperature and Vegetation Data

    NASA Astrophysics Data System (ADS)

    Fang, B.; Lakshmi, V.

    2016-12-01

    Soil moisture (SM) is a key parameter in agriculture, hydrology and ecology studies. The global SM retrievals have been providing by microwave remote sensing technology since late 1970s and many SM retrieval algorithms have been developed, calibrated and applied on satellite sensors such as AMSR-E (Advanced Microwave Scanning Radiometer for the Earth Observing System), AMSR-2 (Advanced Microwave Scanning Radiometer 2) and SMOS (Soil Moisture and Ocean Salinity). Particularly, SMAP (Soil Moisture Active/Passive) satellite, which was developed by NASA, was launched in January 2015. SMAP provides soil moisture products of 9 km and 36 km spatial resolutions which are not capable for research and applications of finer scale. Toward this issue, this study applied a SM disaggregation algorithm to disaggregate SMAP passive microwave soil moisture 36 km product. This algorithm was developed based on the thermal inertial relationship between daily surface temperature variation and daily average soil moisture which is modulated by vegetation condition, by using remote sensing retrievals from AVHRR (Advanced Very High Resolution Radiometer, MODIS (Moderate Resolution Imaging Spectroradiometer), SPOT (Satellite Pour l'Observation de la Terre), as well as Land Surface Model (LSM) output from NLDAS (North American Land Data Assimilation System). The disaggregation model was built at 1/8o spatial resolution on monthly basis and was implemented to calculate and disaggregate SMAP 36 km SM retrievals to 1 km resolution in Oklahoma. The SM disaggregation results were also validated using MESONET (Mesoscale Network) and MICRONET (Microscale Network) ground SM measurements.

  6. Matematical modeling of galophytic plants productivity taking into account the temperature factor and soil salinity level

    NASA Astrophysics Data System (ADS)

    Natalia, Slyusar; Pisman, Tamara; Pechurkin, Nikolai S.

    Among the most challenging tasks faced by contemporary ecology is modeling of biological production process in different plant communities. The difficulty of the task is determined by the complexity of the study material. Models showing the influence of climate and climate change on plant growth, which would also involve soil site parameters, could be of both practical and theoretical interest. In this work a mathematical model has been constructed to describe the growth dynamics of different plant communities of halophytic meadows as dependent upon the temperature factor and soil salinity level, which could be further used to predict yields of these plant communities. The study was performed on plants of halophytic meadows in the coastal area of Lake of the Republic of Khakasia in 2004 - 2006. Every plant community grew on the soil of a different level of salinity - the amount of the solid residue of the saline soil aqueous extract. The mathematical model was analyzed using field data of 2004 and 2006, the years of contrasting air temperatures. Results of model investigations show that there is a correlation between plant growth and the temperature of the air for plant communities growing on soils containing the lowest (0.1Thus, results of our study, in which we used a mathematical model describing the development of plant communities of halophytic meadows and field measurements, suggest that both climate conditions (temperature) and ecological factors of the plants' habitat (soil salinity level) should be taken into account when constructing models for predicting crop yields.

  7. SMOS data and extreme events

    NASA Astrophysics Data System (ADS)

    Kerr, Yann; Wigneron, Jean-Pierre; Ferrazzoli, Paolo; Mahmoodi, Ali; Al-Yaari, Amen; Parrens, Marie; Bitar, Ahmad Al; Rodriguez-Fernandez, Nemesio; Bircher, Simone; Molero-rodenas, Beatriz; Drusch, Matthias; Mecklenburg, Susanne

    2017-04-01

    The SMOS (Soil Moisture and Ocean Salinity) satellite was successfully launched in November 2009. This ESA led mission for Earth Observation is dedicated to provide soil moisture over continental surface (with an accuracy goal of 0.04 m3/m3), vegetation water content over land, and ocean salinity. These geophysical features are important as they control the energy balance between the surface and the atmosphere. Their knowledge at a global scale is of interest for climatic and weather researches, and in particular in improving model forecasts. The Soil Moisture and Ocean Salinity mission has now been collecting data for over 7 years. The whole data set has been reprocessed (Version 620 for levels 1 and 2 and version 3 for level 3 CATDS) while operational near real time soil moisture data is now available and assimilation of SMOS data in NWP has proved successful. After 7 years it seems important to start using data for having a look at anomalies and see how they can relate to large scale events. We have also produced a 15 year soil moisture data set by merging SMOS and AMSR using a neural network approach. The purpose of this communication is to present the mission results after more than seven years in orbit in a climatic trend perspective, as through such a period anomalies can be detected. Thereby we benefit from consistent datasets provided through the latest reprocessing using most recent algorithm enhancements. Using the above mentioned products it is possible to follow large events such as the evolution of the droughts in North America, or water fraction evolution over the Amazonian basin. In this occasion we will focus on the analysis of SMOS and ancillary products anomalies to reveal two climatic trends, the temporal evolution of water storage over the Indian continent in relation to rainfall anomalies, and the global impact of El Nino types of events on the general water storage distribution. This presentation shows in detail the use of long term data sets of L-band microwave radiometry in two specific cases, namely droughts and water budget over a large basin. Several other analyses are under way currently. Obviously, vegetation water content, but also dielectric constant, are carrying a wealth of information and some interesting perspectives will be presented.

  8. Effects of different regulatory methods on improvement of greenhouse saline soils, tomato quality, and yield.

    PubMed

    Maomao, Hou; Xiaohou, Shao; Yaming, Zhai

    2014-01-01

    To identify effective regulatory methods scheduling with the compromise between the soil desalination and the improvement of tomato quality and yield, a 3-year field experiment was conducted to evaluate and compare the effect of straw mulching and soil structure conditioner and water-retaining agent on greenhouse saline soils, tomato quality, and yield. A higher salt removing rate of 80.72% in plough layer with straw mulching was obtained based on the observation of salt mass fraction in 0 ~ 20 cm soil layer before and after the experiment. Salts were also found to move gradually to the deeper soil layer with time. Straw mulching enhanced the content of soil organic matter significantly and was conductive to reserve soil available N, P, and K, while available P and K in soils of plough layer with soil structure conditioner decreased obviously; thus a greater usage of P fertilizer and K fertilizer was needed when applying soil structure conditioner. Considering the evaluation indexes including tomato quality, yield, and desalination effects of different regulatory methods, straw mulching was recommended as the main regulatory method to improve greenhouse saline soils in south China. Soil structure conditioner was the suboptimal method, which could be applied in concert with straw mulching.

  9. Ectomycorrhizal and endophytic fungi associated with Alnus glutinosa growing in a saline area of central Poland.

    PubMed

    Thiem, Dominika; Piernik, Agnieszka; Hrynkiewicz, Katarzyna

    2018-01-01

    Alnus glutinosa (black alder) is a mycorrhizal pioneer tree species with tolerance to high concentrations of salt in the soil and can therefore be considered to be an important tree for the regeneration of forests areas devastated by excessive salt. However, there is still a lack of information about the ectomycorrhizal fungi (EMF) associated with mature individuals of A. glutinosa growing in natural saline conditions. The main objective of this study was to test the effect of soil salinity and other physicochemical parameters on root tips colonized by EMF, as well as on the species richness and diversity of an EMF community associated with A. glutinosa growing in natural conditions. We identified a significant effect of soil salinity (expressed as electrical conductivity: EC e and EC 1:5 ) on fungal taxa but not on the total level of EM fungal colonization on roots. Increasing soil salinity promoted dark-coloured EMF belonging to the order Thelephorales ( Tomentella sp. and Thelephora sp.). These fungi are also commonly found in soils polluted with heavy-metal. The ability of these fungi to grow in contaminated soil may be due to the presence of melanine, a natural dark pigment and common wall component of the Thelephoraceae that is known to act as a protective interface between fungal metabolism and biotic and abiotic environmental stressors. Moreover, increased colonization of fungi belonging to the class of Leotiomycetes and Sordiomycetes, known as endophytic fungal species, was observed at the test sites, that contained a larger content of total phosphorus. This observation confirms the ability of commonly known endophytic fungi to form ectomycorrhizal structures on the roots of A. glutinosa under saline stress conditions.

  10. The extent of variation in salinity tolerance of the minicore collection of finger millet (Eleusine coracana L. Gaertn.) germplasm.

    PubMed

    Krishnamurthy, Lakshmanan; Upadhyaya, Hari Deo; Purushothaman, Ramamoorthy; Gowda, Cholenahalli Lakkegowda Laxmipathi; Kashiwagi, Junichi; Dwivedi, Sangam Lal; Singh, Sube; Vadez, Vincent

    2014-10-01

    Finger millet (Eleusine coracana L. Gaertn.) ranks third in production among the dry land cereals. It is widely cultivated in Africa and South Asia where soil salinization is a major production constraint. It is a potential crop for salt affected soils. To identify salt tolerant germplasm, the minicore finger millet germplasm (n=80) was screened for grain yield performance in a soil saturated with NaCl solution of 100 or 125mM. Genotype effect was significant for most traits, while salinity×genotype interaction was significant only in one year. Salinity delayed phenology, marginally reduced shoot biomass and grain yield. There was a large range of genotypic variation in grain yield under salinity and other traits. The yield loss was higher in accessions with prolific growth and yield potential was associated with saline yields. Based on saline yields, accessions were grouped in to four groups and the top tolerant group had 22 accessions with IE 4797 remaining at the top. Salinity had no adverse impact on grain yield of five accessions. Root anatomy in selected genotype of pearl and finger millet showed presence of porous cortex and well fortified endodermis in finger millet that can exclude Na(+) and enhance N absorption. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. IRIS - A concept for microwave sensing of soil moisture and ocean salinity

    NASA Technical Reports Server (NTRS)

    Moghaddam, M.; Njoku, E.

    1997-01-01

    A concept is described for passive microwave sensing of soil moisture and ocean salinity from space. The Inflatable Radiometric Imaging System (IRIS) makes use of a large-diameter, offset-fed, parabolic-torus antenna with multiple feeds, in a conical pushbroom configuration.

  12. The development of halophyte-based agriculture: past and present

    PubMed Central

    Ventura, Yvonne; Eshel, Amram; Pasternak, Dov; Sagi, Moshe

    2015-01-01

    Background Freshwater comprises about a mere 2·5 % of total global water, of which approximately two-thirds is locked into glaciers at the polar ice caps and on mountains. In conjunction with this, in many instances irrigation with freshwater causes an increase in soil salinity due to overirrigation of agricultural land, inefficient water use and poor drainage of unsuitable soils. The problem of salinity was recognized a long time ago and, due to the importance of irrigated agriculture, numerous efforts have been devoted towards improving crop species for better utilization of saline soils and water. Irrigating plants with saline water is a challenge for practitioners and researchers throughout the world. Scope Recruiting wild halophytes with economic potential was suggested several decades ago as a way to reduce the damage caused by salinization of soil and water. A range of cultivation systems for the utilization of halophytes have been developed, for the production of biofuel, purification of saline effluent in constructed wetlands, landscaping, cultivation of gourmet vegetables, and more. This review critically analyses past and present halophyte-based production systems in the context of genetics, physiology, agrotechnical issues and product value. There are still difficulties that need to be overcome, such as direct germination in saline conditions or genotype selection. However, more and more research is being directed not only towards determining salt tolerance of halophytes, but also to the improvement of agricultural traits for long-term progress. PMID:25122652

  13. Multiple-scale Proximal Sensor and Remote Imagery Technology for Sustaining Agricultural Productivity During Climate Change

    NASA Astrophysics Data System (ADS)

    Corwin, D. L.; Scudiero, E.

    2016-12-01

    Changes in climatic patterns have had dramatic influence on agricultural areas worldwide, particularly in irrigated arid-zone agricultural areas subjected to recurring drought, such as California's San Joaquin Valley. Climate change has impacted water availability, which subsequently has impacted soil salinity levels in the root zone, especially on the west side of the San Joaquin Valley (WSJV). Inventorying and monitoring the extent of climate change on soil salinity is crucial to evaluate the extent of the problem, to recognize trends, and to formulate state-wide and field-scale irrigation management strategies that will sustain the agricultural productivity of the WSJV. Over the past 3 decades, Corwin and colleagues at the U.S. Salinity Laboratory have developed proximal sensor (i.e., electrical resistivity and electromagnetic induction) and remote imagery (i.e., MODIS and Landsat 7) methodologies for assessing soil salinity at multiple scales: field (0.5 ha to 3 km2), landscape (3 to 10 km2), and regional (10 to 105 km2) scales. The purpose of this presentation is to provide an overview of these scale-dependent salinity assessment technologies. Case studies for the WSJV are presented to demonstrate at multiple scales the utility of these approaches in assessing soil salinity changes due to management-induced changes and to changes in climate patterns, and in providing site-specific irrigation management information for salinity control. Land resource managers, producers, agriculture consultants, extension specialists, and Natural Resource Conservation Service field staff are the beneficiaries of this information.

  14. Oxygation enhances growth, gas exchange and salt tolerance of vegetable soybean and cotton in a saline vertisol.

    PubMed

    Bhattarai, Surya P; Midmore, David J

    2009-07-01

    Impacts of salinity become severe when the soil is deficient in oxygen. Oxygation (using aerated water for subsurface drip irrigation of crop) could minimize the impact of salinity on plants under oxygen-limiting soil environments. Pot experiments were conducted to evaluate the effects of oxygation (12% air volume/volume of water) on vegetable soybean (moderately salt tolerant) and cotton (salt tolerant) in a salinized vertisol at 2, 8, 14, 20 dS/m EC(e). In vegetable soybean, oxygation increased above ground biomass yield and water use efficiency (WUE) by 13% and 22%, respectively, compared with the control. Higher yield with oxygation was accompanied by greater plant height and stem diameter and reduced specific leaf area and leaf Na+ and Cl- concentrations. In cotton, oxygation increased lint yield and WUE by 18% and 16%, respectively, compared with the control, and was accompanied by greater canopy light interception, plant height and stem diameter. Oxygation also led to a greater rate of photosynthesis, higher relative water content in the leaf, reduced crop water stress index and lower leaf water potential. It did not, however, affect leaf Na+ or Cl- concentration. Oxygation invariably increased, whereas salinity reduced the K+ : Na+ ratio in the leaves of both species. Oxygation improved yield and WUE performance of salt tolerant and moderately tolerant crops under saline soil environments, and this may have a significant impact for irrigated agriculture where saline soils pose constraints to crop production.

  15. Ocean to land moisture transport is reflected in sea surface salinity

    NASA Astrophysics Data System (ADS)

    Schmitt, R. W.; Schanze, J. J.; Li, L.; Ummenhofer, C.

    2016-02-01

    The ocean has a much larger water cycle than the land, with global ocean evaporation of 13 Sverdrups being 10 times larger than the sum of all river flows. This disparity and the different dynamics of dry surfaces, have led to an unfortunate disconnect between terrestrial hydrologists and oceanographers. Here we show that there is in fact a close coupling between the water cycles of ocean and land. In both cases there is much local recycling of moisture, since it does not travel far in the atmosphere. We argue that the most important water cycle variable is the net export (or import) of water from (to) an area. Over the open ocean this is just evaporation minus precipitation (E-P). The "P vs E" plot is a valuable tool for identifying the source and sink regions of the water cycle. The subtropical high pressure systems are the source regions of the water cycle, with a global net export of 4.5 Sv. The three sinks are the ITCZ in the tropics, the high latitude subpolar lows, and the land, all at about 1.5 Sv, though the subpolar lows do receive more water than the tropics, where high rainfall is maintained by much local recycling. Of course, the signature of E-P in the open ocean is the sea surface salinity (SSS), as only net freshwater fluxes can create salinity variations. With the land receiving 1/3 of the oceanic export, we should expect close coupling between terrestrial rainfall and the salinity of nearby oceans, and SSS variations have indeed been found to be valuable for seasonal rainfall forecasts on land. The remarkable 3-6 month lead of winter-spring SSS over summer rainfall appears to be mediated by the recycling process on land through soil moisture. When soil moisture is high, terrestrial regions can become more oceanic-like, with solar heating energizing evaporation and leading to down-stream propagation of the moisture signal (the "brown ocean" effect). The correlation of high SSS with high rainfall promises to be a very valuable seasonal prediction tool for a variety of regions around the world.

  16. The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L.).

    PubMed

    Elhindi, Khalid M; El-Din, Ahmed Sharaf; Elgorban, Abdallah M

    2017-01-01

    Salinity is one of the serious abiotic stresses adversely affecting the majority of arable lands worldwide, limiting the crop productivity of most of the economically important crops. Sweet basil ( Osmium basilicum ) plants were grown in a non-saline soil (EC = 0.64 dS m -1 ), in low saline soil (EC = 5 dS m -1 ), and in a high saline soil (EC = 10 dS m -1 ). There were differences between arbuscular mycorrhizal ( Glomus deserticola ) colonized plants (+AMF) and non-colonized plants (-AMF). Mycorrhiza mitigated the reduction of K, P and Ca uptake due to salinity. The balance between K/Na and between Ca/Na was improved in +AMF plants. Growth enhancement by mycorrhiza was independent from plant phosphorus content under high salinity levels. Different growth parameters, salt stress tolerance and accumulation of proline content were investigated, these results showed that the use of mycorrhizal inoculum (AMF) was able to enhance the productivity of sweet basil plants under salinity conditions. Mycorrhizal inoculation significantly increased chlorophyll content and water use efficiency under salinity stress. The sweet basil plants appeared to have high dependency on AMF which improved plant growth, photosynthetic efficiency, gas exchange and water use efficiency under salinity stress. In this study, there was evidence that colonization with AMF can alleviate the detrimental salinity stress influence on the growth and productivity of sweet basil plants.

  17. [Correlation Among Soil Organic Carbon, Soil Inorganic Carbon and the Environmental Factors in a Typical Oasis in the Southern Edge of the Tarim Basin].

    PubMed

    Gong, Lu; Zhu, Mei-ling; Liu, Zeng-yuan; Zhang, Xue-ni; Xie, Li-na

    2016-04-15

    We analyzed the differentiation among the environmental factors and soil organic/inorganic carbon contents of irrigated desert soil, brown desert soil, saline soil and aeolian sandy soil by classical statistics methods, and studied the correlation between soil carbon contents and the environmental factor by redundancy analysis (RDA) in a typical oasis of Yutian in the southern edge of the Tarim Basin. The results showed that the average contents of soil organic carbon and soil inorganic carbon were 2.51 g · kg⁻¹ and 25.63 g · kg⁻¹ respectively. The soil organic carbon content of the irrigated desert soil was significantly higher than those of brown desert soil, saline soil and aeolian sandy soil, while the inorganic carbon content of aeolian sandy soil was significantly higher than those of other soil types. The soil moisture and nutrient content were the highest in the irrigated desert soil and the lowest in the aeolian sandy sail. All soil types had high degree of salinization except the irrigated desert soil. The RDA results showed that the impacts of environmental factors on soil carbon contents ranked in order of importance were total nitrogen > available phosphorus > soil moisture > ground water depth > available potassium > pH > total salt. The soil carbon contents correlated extremely significantly with total nitrogen, available phosphorus, soil moisture and ground water depth (P < 0.01), and it correlated significantly with available potassium and pH (P < 0.05). There was no significant correlation between soil carbon contents and other environmental factors (P > 0.05).

  18. Impact of SMOS soil moisture data assimilation on NCEP-GFS forecasts

    NASA Astrophysics Data System (ADS)

    Zhan, X.; Zheng, W.; Meng, J.; Dong, J.; Ek, M.

    2012-04-01

    Soil moisture is one of the few critical land surface state variables that have long memory to impact the exchanges of water, energy and carbon between the land surface and atmosphere. Accurate information about soil moisture status is thus required for numerical weather, seasonal climate and hydrological forecast as well as for agricultural production forecasts, water management and many other water related economic or social activities. Since the successful launch of ESA's soil moisture ocean salinity (SMOS) mission in November 2009, about 2 years of soil moisture retrievals has been collected. SMOS is believed to be the currently best satellite sensors for soil moisture remote sensing. Therefore, it becomes interesting to examine how the collected SMOS soil moisture data are compared with other satellite-sensed soil moisture retrievals (such as NASA's Advanced Microwave Scanning Radiometer -AMSR-E and EUMETSAT's Advanced Scatterometer - ASCAT)), in situ soil moisture measurements, and how these data sets impact numerical weather prediction models such as the Global Forecast System of NOAA-NCEP. This study implements the Ensemble Kalman filter in GFS to assimilate the AMSR-E, ASCAT and SMOS soil moisture observations after a quantitative assessment of their error rate based on in situ measurements from ground networks around contiguous United States. in situ soil moisture measurements from ground networks (such as USDA Soil Climate Analysis network - SCAN and NOAA's U.S. Climate Reference Network -USCRN) are used to evaluate the GFS soil moisture simulations (analysis). The benefits and uncertainties of assimilating the satellite data products in GFS are examined by comparing the GFS forecasts of surface temperature and rainfall with and without the assimilations. From these examinations, the advantages of SMOS soil moisture data products over other satellite soil moisture data sets will be evaluated. The next step toward operationally assimilating soil moisture and other land observations into GFS will also be discussed.

  19. Ecological aspects of selenium effects on plant growth and species diversity in soils with elevated concentrations of salinity and selenium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Zhangzhi.

    1991-01-01

    A field study was conducted in soils with elevated concentrations of salinity and selenium during 1986-1990 at Kesterson Reservoir, Merced County, California. The investigation was conducted in three stages of plant habitat restoration: (1) wet habitat, (2) dry habitat, and (3) fill dirt cover habitat. The total water extractable selenium concentrations of wet habitat, dry habitat and fill dirt cover habitat were 2260-3700, 90-670, and undetectable-37 [mu]g/kg dry soil, respectively. Among the vascular flowering plants, saltgrass (Distichlis spicata L.) was the dominant species in dry habitat, and cattail (Typha latifolia L.) was the dominant species in wet habitat in themore » evaporation ponds at Kesterson. High concentrations of selenium were found in Kesterson marsh plant species. In wet habitat, selenium concentrations averaged 12.50 ppm ([mu]g/g dry wt) in Distichlis spicata leaves, 15.20 ppm in Typha latifolia leaves and 4.10 ppm in Juncus mexicanus leaves, respectively. In dry habitat, the tissue selenium concentration was about 1.5 ppm for Distichlis spicata and 4 ppm for Atriplex species. In fill dirt cover habitat, plant tissue selenium concentrations ranged from 1 to 19 ppm. Biomass distribution, species richness, and selenium accumulation of plants were studied for four sites during 1988-1990. At two sites, the surface soil consisted of fill dirt. Another two sites were native-soil cover (including Kesterson sediment).« less

  20. CAROLS: a new airborne L-band radiometer for ocean surface and land observations.

    PubMed

    Zribi, Mehrez; Pardé, Mickael; Boutin, Jacquline; Fanise, Pascal; Hauser, Daniele; Dechambre, Monique; Kerr, Yann; Leduc-Leballeur, Marion; Reverdin, Gilles; Skou, Niels; Søbjærg, Sten; Albergel, Clement; Calvet, Jean Christophe; Wigneron, Jean Pierre; Lopez-Baeza, Ernesto; Rius, Antonio; Tenerelli, Joseph

    2011-01-01

    The "Cooperative Airborne Radiometer for Ocean and Land Studies" (CAROLS) L-Band radiometer was designed and built as a copy of the EMIRAD II radiometer constructed by the Technical University of Denmark team. It is a fully polarimetric and direct sampling correlation radiometer. It is installed on board a dedicated French ATR42 research aircraft, in conjunction with other airborne instruments (C-Band scatterometer-STORM, the GOLD-RTR GPS system, the infrared CIMEL radiometer and a visible wavelength camera). Following initial laboratory qualifications, three airborne campaigns involving 21 flights were carried out over South West France, the Valencia site and the Bay of Biscay (Atlantic Ocean) in 2007, 2008 and 2009, in coordination with in situ field campaigns. In order to validate the CAROLS data, various aircraft flight patterns and maneuvers were implemented, including straight horizontal flights, circular flights, wing and nose wags over the ocean. Analysis of the first two campaigns in 2007 and 2008 leads us to improve the CAROLS radiometer regarding isolation between channels and filter bandwidth. After implementation of these improvements, results show that the instrument is conforming to specification and is a useful tool for Soil Moisture and Ocean Salinity (SMOS) satellite validation as well as for specific studies on surface soil moisture or ocean salinity.

  1. Salt tolerant Methylobacterium mesophilicum showed viable colonization abilities in the plant rhizosphere

    PubMed Central

    Egamberdieva, Dilfuza; Wirth, Stephan; Alqarawi, Abdulaziz A.; Abd_Allah, E.F.

    2015-01-01

    The source of infection has always been considered as an important factor in epidemiology and mostly linked to environmental source such as surface water, soil, plants and also animals. The activity of the opportunistic pathogens associated with plant root, their adaptation and survival under hostile environmental condition is poorly understood. In this study the salt tolerance ability of Methylobacterium mesophilicum and its colonization in the root and shoot of plants under severe drought and salt stress conditions were investigated. The colonization of plant by M. mesophilicum was investigated in a gnotobiotic sand system, and their survival in pots with saline soil. Bacterial strain was found to colonize rhizosphere of cucumber, tomato and paprika grown under normal and salt stress condition and reached up to 6.4 × 104 and 2.6 × 104 CFU/g root. The strain was resistant to Gentamicin, Ampicillin, Amoxicillin plus Clavulanic acid, Cefotaxime, neomycin, penicillin and was also tolerant to salinity stress (up to 6% NaCl). These abilities play important roles in enabling persistent colonization of the plant surface by M. mesophilicum strains. In conclusion, this study provides background information on the behaviour of opportunistic pathogen M. mesophilicum on plants and their survival in harsh environmental conditions. PMID:26288563

  2. Evaluation of promising technologies for soil salinity amelioration in Timpaki (Crete): a participatory approach

    NASA Astrophysics Data System (ADS)

    Panagea, I. S.; Daliakopoulos, I. N.; Tsanis, I. K.; Schwilch, G.

    2016-02-01

    Soil salinity management can be complex, expensive, and time demanding, especially in arid and semi-arid regions. Besides taking no action, possible management strategies include amelioration and adaptation measures. Here we apply the World Overview of Conservation Approaches and Technologies (WOCAT) framework for the systematic analysis and evaluation and selection of soil salinisation amelioration technologies in close collaboration with stakeholders. The participatory approach is applied in the RECARE (Preventing and Remediating degradation of soils in Europe through Land Care) project case study of Timpaki, a semi-arid region in south-central Crete (Greece) where the main land use is horticulture in greenhouses irrigated by groundwater. Excessive groundwater abstractions have resulted in a drop of the groundwater level in the coastal part of the aquifer, thus leading to seawater intrusion and in turn to soil salinisation. The documented technologies are evaluated for their impacts on ecosystem services, cost, and input requirements using a participatory approach and field evaluations. Results show that technologies which promote maintaining existing crop types while enhancing productivity and decreasing soil salinity are preferred by the stakeholders. The evaluation concludes that rainwater harvesting is the optimal solution for direct soil salinity mitigation, as it addresses a wider range of ecosystem and human well-being benefits. Nevertheless, this merit is offset by poor financial motivation making agronomic measures more attractive to users.

  3. Bacterial colonization of a fumigated alkaline saline soil.

    PubMed

    Bello-López, Juan M; Domínguez-Mendoza, Cristina A; de León-Lorenzana, Arit S; Delgado-Balbuena, Laura; Navarro-Noya, Yendi E; Gómez-Acata, Selene; Rodríguez-Valentín, Analine; Ruíz-Valdiviezo, Victor M; Luna-Guido, Marco; Verhulst, Nele; Govaerts, Bram; Dendooven, Luc

    2014-07-01

    After chloroform fumigating an arable soil, the relative abundance of phylotypes belonging to only two phyla (Actinobacteria and Firmicutes) and two orders [Actinomycetales and Bacillales (mostly Bacillus)] increased in a subsequent aerobic incubation, while it decreased for a wide range of bacterial groups. It remained to be seen if similar bacterial groups were affected when an extreme alkaline saline soil was fumigated. Soil with electrolytic conductivity between 139 and 157 dS m(-1), and pH 10.0 and 10.3 was fumigated and the bacterial community structure determined after 0, 1, 5 and 10 days by analysis of the 16S rRNA gene, while an unfumigated soil served as control. The relative abundance of the Firmicutes increased in the fumigated soil (52.8%) compared to the unfumigated soil (34.2%), while that of the Bacteroidetes decreased from 16.2% in the unfumigated soil to 8.8% in the fumigated soil. Fumigation increased the relative abundance of the genus Bacillus from 14.7% in the unfumigated soil to 25.7%. It was found that phylotypes belonging to the Firmicutes, mostly of the genus Bacillus, were dominant in colonizing the fumigated alkaline saline as found in the arable soil, while the relative abundance of a wide range of bacterial groups decreased.

  4. Re-Assessing Leaching Requirements for the Salinity Control under New Irrigation Regimes

    NASA Astrophysics Data System (ADS)

    Wu, Laosheng; Yang, Ting; Šimůnek, Jirka

    2017-04-01

    Irrigation is essential to sustain agricultural production, but it adds dissolved salts (or salinity) to croplands. Leaching is thus necessary to keep the average rootzone salinity below the plant threshold EC levels in order to sustain crop production. Current leaching requirement (LR) calculation is based on steady-state, one-dimensional (1D), and water balance approaches, which often overestimates the LRs under transient field conditions. While in recent years, surface and sprinkler irrigated fields have been largely converted to drip or micro-spray systems and deficit irrigation has become more popular, currently accepted LRs may not be appropriate for these irrigation systems. Under point or line irrigation sources (e.g., drips or drip-lines), water and salts move both downwards and laterally, which may lead to highly saline areas on the edges of the wetted area. Under such circumstances, processes such as precipitation/dissolution of mineral phases and/or cation exchange may significantly affect the leaching requirement. The overall objective of this research was to use computer simulation models (i.e., Hydrus-2D and UnsatChem) to evaluate LRs under transient conditions and new irrigation regimes. Simulations were carried out using parameters for soils, climate zones, and major crops and their corresponding fertilization practices typical for California to: (1) Assess the effects of salt precipitation/dissolution on the leaching requirement (LR); (2) Evaluate localized water movement on average rootzone salinity and the leaching requirement (LR); (3) Evaluate leaching requirements for soils under deficit irrigation; and (4) Assess the effects of rainfall on the leaching requirement. Information from this research could significantly impact water management practices in irrigated croplands.

  5. SMOS Soil Moisture Data Assimilation in the NASA Land Information System: Impact on LSM Initialization and NWP Forecasts

    NASA Technical Reports Server (NTRS)

    Blankenship, Clay; Case, Jonathan L.; Zavodsky, Bradley

    2015-01-01

    Land surface models are important components of numerical weather prediction (NWP) models, partitioning incoming energy into latent and sensitive heat fluxes that affect boundary layer growth and destabilization. During warm-season months, diurnal heating and convective initiation depend strongly on evapotranspiration and available boundary layer moisture, which are substantially affected by soil moisture content. Therefore, to properly simulate warm-season processes in NWP models, an accurate initialization of the land surface state is important for accurately depicting the exchange of heat and moisture between the surface and boundary layer. In this study, soil moisture retrievals from the Soil Moisture and Ocean Salinity (SMOS) satellite radiometer are assimilated into the Noah Land Surface Model via an Ensemble Kalman Filter embedded within the NASA Land Information System (LIS) software framework. The output from LIS-Noah is subsequently used to initialize runs of the Weather Research and Forecasting (WRF) NWP model. The impact of assimilating SMOS retrievals is assessed by initializing the WRF model with LIS-Noah output obtained with and without SMOS data assimilation. The southeastern United States is used as the domain for a preliminary case study. During the summer months, there is extensive irrigation in the lower Mississippi Valley for rice and other crops. The irrigation is not represented in the meteorological forcing used to drive the LIS-Noah integration, but the irrigated areas show up clearly in the SMOS soil moisture retrievals, resulting in a case with a large difference in initial soil moisture conditions. The impact of SMOS data assimilation on both Noah soil moisture fields and on short-term (0-48 hour) WRF weather forecasts will be presented.

  6. Identification of heavy metal origins related to chemical and morphological soil properties using several non-destructive X-ray analytical methods.

    PubMed

    Akbulut, Songul; Grieken, Renevan; Kılıc, Mehmet A; Cevik, Ugur; Rotondo, Giuliana G

    2013-03-01

    Soils are complex mixtures of organic, inorganic materials, and metal compounds from anthropogenic sources. In order to identify the pollution sources, their magnitude and development, several X-ray analytical methods were applied in this study. The concentrations of 16 elements were determined in all the soil samples using energy dispersive X-ray fluorescence spectrometry. Soils of unknown origin were observed by scanning electron microscopy equipped with a Si(Li) X-ray detector using Monte Carlo simulation approach. The mineralogical analyses were carried out using X-ray diffraction spectrometry. Due to the correlations between heavy metals and oxide compounds, the samples were analyzed also by electron probe microanalyzer (EPMA) in order to have information about their oxide contents. On the other hand, soil pH and salinity levels were identified owing to their influence between heavy metal and soil-surface chemistry. Moreover, the geoaccumulation index (I (geo)) enables the assessment of contamination by comparing current and pre-industrial concentrations.

  7. Stochastic modeling of soil salinity

    NASA Astrophysics Data System (ADS)

    Suweis, S.; Porporato, A. M.; Daly, E.; van der Zee, S.; Maritan, A.; Rinaldo, A.

    2010-12-01

    A minimalist stochastic model of primary soil salinity is proposed, in which the rate of soil salinization is determined by the balance between dry and wet salt deposition and the intermittent leaching events caused by rainfall events. The equations for the probability density functions of salt mass and concentration are found by reducing the coupled soil moisture and salt mass balance equations to a single stochastic differential equation (generalized Langevin equation) driven by multiplicative Poisson noise. Generalized Langevin equations with multiplicative white Poisson noise pose the usual Ito (I) or Stratonovich (S) prescription dilemma. Different interpretations lead to different results and then choosing between the I and S prescriptions is crucial to describe correctly the dynamics of the model systems. We show how this choice can be determined by physical information about the timescales involved in the process. We also show that when the multiplicative noise is at most linear in the random variable one prescription can be made equivalent to the other by a suitable transformation in the jump probability distribution. We then apply these results to the generalized Langevin equation that drives the salt mass dynamics. The stationary analytical solutions for the probability density functions of salt mass and concentration provide insight on the interplay of the main soil, plant and climate parameters responsible for long term soil salinization. In particular, they show the existence of two distinct regimes, one where the mean salt mass remains nearly constant (or decreases) with increasing rainfall frequency, and another where mean salt content increases markedly with increasing rainfall frequency. As a result, relatively small reductions of rainfall in drier climates may entail dramatic shifts in longterm soil salinization trends, with significant consequences, e.g. for climate change impacts on rain fed agriculture.

  8. Synergistic method for boreal soil moisture and soil freeze retrievals using active and passive microwave instruments

    NASA Astrophysics Data System (ADS)

    Smolander, Tuomo; Lemmetyinen, Juha; Rautiainen, Kimmo; Schwank, Mike; Pulliainen, Jouni

    2017-04-01

    Soil moisture and soil freezing are important for diverse hydrological, biogeochemical, and climatological applications. They affect surface energy balance, surface and subsurface water flow, and exchange rates of carbon with the atmosphere. Soil freezing controls important biogeochemical processes, like photosynthetic activity of plants and microbial activity within soils. Permafrost covers approximately 24% of the land surface in the Northern Hemisphere and seasonal freezing occurs on approximately 51% of the area. The retrieval method presented is based on an inversion technique and applies a semiempirical backscattering model that describes the dependence of radar backscattering of forest as a function of stem volume, soil permittivity, the extinction coefficient of forest canopy, surface roughness, incidence angle, and radar frequency. It gives an estimate of soil permittivity using active microwave measurements. Applying a Bayesian assimilation scheme, it is also possible to use other soil permittivity retrievals to regulate this estimate to combine for example low resolution passive observations with high resolution active observations for a synergistic retrieval. This way the higher variance in the active retrieval can be constricted with the passive retrieval when at the same time the spatial resolution of the product is improved compared to the passive-only retrieval. The retrieved soil permittivity estimate can be used to detect soil freeze/thaw state by considering the soil to be frozen when the estimate is below a threshold value. The permittivity retrieval can also be used to estimate the relative moisture of the soil. The method was tested using SAR (Synthetic Aperture Radar) measurements from ENVISAT ASAR instrument for the years 2010-2012 and from Sentinel-1 satellite for the years 2015-2016 in Sodankylä area in Northern Finland. The synergistic method was tested combining the SAR measurements with a SMOS (Soil Moisture Ocean Salinity) radiometer based retrieval. The results were validated using in situ measurements from automatic soil state observation stations in Sodankylä calibration and validation (CAL-VAL) site, which is a reference site for several EO (Earth Observation) data products.

  9. Plant osmoregulation as an emergent water-saving adaptation under salt-stress conditions

    NASA Astrophysics Data System (ADS)

    Perri, S.; Entekhabi, D.; Molini, A.

    2017-12-01

    Ecohydrological models have been widely used in studying plant-environment relations and hydraulic traits in response to water, light and nutrient limitations. In this context, models become a tool to investigate how plants exploit available resources to maximize transpiration and growth, eventually pointing out possible pathways to adaptation. In contrast, ecohydrologists have rarely focused on the effects of salinity on plant transpiration, which are commonly considered marginal in terrestrial biomes. The effect of salinity, however, cannot be neglected in the case of salt affected soils - estimated to cover over 9 billion ha worldwide - and in intertidal and coastal ecosystems. The objective of this study is to model the effects of salinity on plant-water relations in order to better understand the interplay of soil hyperosmotic conditions and osmoregulation strategies in determining different transpiration patterns. Salinity reduces the water potential, therefore is expected to affect the plant hydraulics and reduce plant conductance (eventually leading to cavitation for very high salt concentrations). Also, plant adaptation to short and long-term exposure to salinity comes into place to maintain an efficient water and nutrients uptake. We introduce a parsimonious soil-plant-atmosphere continuum (SPAC) model that incorporates parameterizations for morphological, physiological and biochemical mechanisms involving varying salt concentrations in the soil water solution. Transpiration is expressed as a function of soil water salinity and salt-mediated water flows within the SPAC (the conceptual representation of the model is shown in Figure c). The model is used to explain a paradox observed in salt-tolerant plants where maximum transpiration occurs at an intermediate value of salinity (CTr,max), and is lower in more fresh (CTr,max) and more saline (C>CTr,max) conditions (Figure a and b). In particular, we show that - in salt-tolerant species - osmoregulation emerges as a water-saving behavior similar to the strategies that xerophytes use to cope with aridity. Possible anatomical and morphological adaptations to long-term salinity exposure are addressed through an analysis of transpiration patterns for different values of root and leaf density and for diverse levels of salt-tolerance.

  10. Effect of soil salinity and nutrient levels on the community structure of the root-associated bacteria of the facultative halophyte, Tamarix ramosissima, in southwestern United States.

    PubMed

    Taniguchi, Takeshi; Imada, Shogo; Acharya, Kumud; Iwanaga, Fumiko; Yamanaka, Norikazu

    2015-01-01

    Tamarix ramosissima is a tree species that is highly resistant to salt and drought. The Tamarix species survives in a broad range of environmental salt levels, and invades major river systems in southwestern United States. It may affect root-associated bacteria (RB) by increasing soil salts and nutrients. The effects of RB on host plants may vary even under saline conditions, and the relationship may be important for T. ramosissima. However, to the best of our knowledge, there have been no reports relating to T. ramosissima RB and its association with salinity and nutrient levels. In this study, we have examined this association and the effect of arbuscular mycorrhizal colonization of T. ramosissima on RB because a previous study has reported that colonization of arbuscular mycorrhizal fungi affected the rhizobacterial community (Marschner et al., 2001). T. ramosissima roots were collected from five locations with varying soil salinity and nutrient levels. RB community structures were examined by terminal restriction fragment (T-RF) length polymorphism, cloning, and sequencing analyses. The results suggest that RB richness, or the diversity of T. ramosissima, have significant negative relationships with electrical conductivity (EC), sodium concentration (Na), and the colonization of arbuscular mycorrhizal fungi, but have a significant positive relationship with phosphorus in the soil. However, at each T-RF level, positive correlations between the emergence of some T-RFs and EC or Na were observed. These results indicate that high salinity decreased the total number of RB species, but some saline-tolerant RB species multiplied with increasing salinity levels. The ordination scores of nonmetric multidimensional scale analysis of RB community composition show significant relationships with water content, calcium concentration, available phosphorus, and total nitrogen. These results indicate that the RB diversity and community composition of T. ramosissima are affected by soil salinity and nutrient levels. Sequence analysis detected one Bacteroidetes and eight Proteobacteria species. Most 16S rRNA gene sequences had high similarities with the bacteria isolated from saline conditions, indicating that at least a portion of the RB species observed in T. ramosissima was halotolerant.

  11. Designing viable cropping options for salt-affected lands

    NASA Astrophysics Data System (ADS)

    Shabala, Sergey; Meinke, Holger

    2017-04-01

    Salinity cost agricultural sector over 27Bln pa in lost opportunities and is an issue that crosses all spatial and temporal scales - from individual fields, farms, catchments, landscapes to national and global levels. Salinity manifests itself in many forms and often leads to further soil degradation such as erosion, nutrient and soil organic matter depletion, and a loss of (soil) biodiversity. Salinity may also cause major disturbance to ecosystems due to its impact on resources (e.g. pollution of aquifers). In extreme cases it can turn previously highly productive areas into wastelands. An increasing global population and unprecedented urban sprawls are now putting additional pressures on our soil and water resources, particularly in regions where urbanisation directly competes with agriculture for access to land and water. And although everyone agrees that avoiding soil salinity in the first instance would be the most effective way of combating it, reality is that the amount of saline land and water resources is rapidly increasing, and will continue to increase, especially in developing countries. Purposefully designing our cropping systems that can cope with various levels of salinity could be one answer to this increasing problem. In this work we review some of the key cropping options that can be deployed to either avoid, reduce or remediate salt-affected lands. We argue that for these measures to be most effective an ongoing science - policy - society dialogue is required to ensure that policy frameworks that govern land and water management are conducive to reducing salinity or even assist in restoring affected areas. We first consider several case studies highlighting the extent of the problem using ongoing salinity hotspots around the globe. We then look at halophytes as a possible biological tools to remediate already saline sols, and discuss prospects of mixed (halophytes and glycophytes) cropping solutions for various agricultural systems at different scales and geographic distribution. We then consider different scenarios of land use and link these with international, national and local policy frameworks that govern land and water management. Finally, we discuss the importance of developing modelling approaches that facilitate informed debates about alternative management options and so engender dialogs between scientists, policy makers, communities and end users.

  12. Runoff and solute mobilization processes in a semiarid headwater catchment

    NASA Astrophysics Data System (ADS)

    Hughes, Justin D.; Khan, Shahbaz; Crosbie, Russell S.; Helliwell, Stuart; Michalk, David L.

    2007-09-01

    Runoff and solute transport processes contributing to streamflow were determined in a small headwater catchment in the eastern Murray-Darling Basin of Australia using hydrometric and tracer methods. Streamflow and electrical conductivity were monitored from two gauges draining a portion of the upper catchment area (UCA) and a saline scalded area, respectively. Runoff in the UCA was related to the formation of a seasonally perched aquifer in the near-surface zone (0-0.4 m). A similar process was responsible for runoff generation in the saline scalded area. However, saturation in the scald area was related to the proximity of groundwater rather than low subsurface hydraulic conductivity. Because of higher antecedent water content, runoff commenced earlier in winter from the scald than did the UCA. Additionally, areal runoff from the scald was far greater than from the UCA. Total runoff from the UCA was higher than the scald (15.7 versus 3.5 mL), but salt export was far lower (0.6 and 5.4 t for the UCA and scald area, respectively) since salinity of the scald runoff was far higher than that from the UCA, indicating the potential impact of saline scalded areas at the catchment scale. End-member mixing analysis modeling using six solutes indicated that most runoff produced from the scald was "new" (40-71%) despite the proximity of the groundwater surface and the high antecedent moisture levels. This is a reflection of the very low hydraulic conductivity of soils in the study area. Nearly all chloride exported to the stream from the scald emanated from the near-surface zone (77-87%). Runoff and solute mobilization processes depend upon seasonal saturation occurring in the near-surface zone during periods of low evaporative demand and generation of saturated overland flow.

  13. Soil Moisture Retrieval During a Corn Growth Cycle using L-band (1.6 GHz) Radar Observations

    NASA Technical Reports Server (NTRS)

    Joseph, Alicia T.; vanderVelde, Rogier; O'Neill, Peggy E.; Lang, Roger; Gish, Tim

    2007-01-01

    New opportunities for large-scale soil moisture monitoring will emerge with the launch of two low frequency (L-band 1.4 GHz) radiometers: the Aquarius mission in 2009 and the Soil Moisture and Ocean Salinity (SMOS) mission in 2008. Soil moisture is an important land surface variable affecting water and heat exchanges between atmosphere, land surface and deeper ground water reservoirs. The data products from these sensors provide valuable information in a range of climate and hydrologic applications (e.g., numecal weather prediction, drought monitoring, flood forecasting, water resources management, etc.). This paper describes a unique data set that was collected during a field campaign at OPE^ (Optimizing Production Inputs for Economic and Environmental Enhancements) site in Beltsville, Maryland throughout the eompj2ete corn growing in 2002. This investigation describes a simple methodology to correct active microwave observations for vegetation effects, which could potentially be implemented in a global soil moisture monitoring algorithm. The methodology has been applied to radar observation collected during the entire corn growth season and validation against ground measurements showed that the top 5-cm soil moisture can be retrieved with an accuracy up to 0.033 [cu cm/cu cm] depending on the sensing configuration.

  14. Salinization and Saline Environments

    NASA Astrophysics Data System (ADS)

    Vengosh, A.

    2003-12-01

    One of the most conspicuous phenomena of water-quality degradation, particularly in arid and semi-arid zones, is salinization of water and soil resources. Salinization is a long-term phenomenon, and during the last century many aquifers and river basins have become unsuitable for human consumption owing to high levels of salinity. Future exploitation of thousands of wells in the Middle East and in many other water-scarce regions in the world depends, to a large extent, on the degree and rate of salinization. Moreover, every year a large fraction of agricultural land is salinized and becomes unusable.Salinization is a global environmental phenomenon that affects many different aspects of our life (Williams, 2001a, b): changing the chemical composition of natural water resources (lakes, rivers, and groundwater), degrading the quality of water supply to the domestic and agriculture sectors, contribution to loss of biodiversity, taxonomic replacement by halotolerant species ( Williams, 2001a, b), loss of fertile soil, collapse of agricultural and fishery industries, changing of local climatic conditions, and creating severe health problems (e.g., the Aral Basin). The damage due to salinity in the Colorado River Basin alone, for example, ranges between 500 and 750 million per year and could exceed 1 billion per year if the salinity in the Imperial Dam increases from 700 mg L-1 to 900 mg L-1 (Bureau of Reclamation, 2003, USA). In Australia, accelerating soil salinization has become a massive environmental and economic disaster. Western Australia is "losing an area equal to one football oval an hour" due to spreading salinity ( Murphy, 1999). The annual cost for dryland salinity in Australia is estimated as AU700 million for lost land and AU$130 million for lost production ( Williams et al., 2002). In short, the salinization process has become pervasive.Salinity in water is usually defined by the chloride content (mg L-1) or total dissolved solids content (TDS, mg L-1or g L-1), although the chloride comprises only a fraction of the total dissolved salts in water. The Cl/TDS ratio varies from 0.1 in nonmarine saline waters to ˜0.5 in marine-associated saline waters. Water salinity is also defined by electrical conductivity (EC). In soil studies, the electrical conductivity and the ratio of Na/√(Ca+Mg) (SAR) are often used as an indirect measure of soil salinity. In addition to chloride, high levels of other dissolved constituents may limit the use of water for domestic, agriculture, and industrial applications. In some parts of Africa, China, and India, for example, high fluoride content is associated with saline groundwater and causes severe dental and skeletal fluorosis (Shiklomanov, 1997). Hence, the "salinity" problem is only the "tip of the iceberg," as high levels of salinity are associated with high concentrations of other inorganic pollutants (e.g., sodium, sulfate, boron, fluoride), and bioaccumulated elements (e.g., selenium, and arsenic) (see Chapter 9.03).The World Health Organization (WHO) recommends that the chloride concentration of the water supply for human consumption should not exceed 250 mg L-1. Agriculture applications also depend upon the salinity level of the supplied water. Many crops, such as citrus, avocado, and mango, are sensitive to chloride concentration in irrigation water (an upper limit of 250 mg L-1). In addition, long-term irrigation with water enriched with sodium results in a significant reduction in the hydraulic conductivity and hence the fertility of the irrigated soil. Similarly, the industrial sector demands water of high quality. For example, the high-tech industry requires a large amount of water with low levels of dissolved salts. Hence, the salinity level of groundwater is one of the limiting factors that determine the suitability of water for a variety of applications.The salinity problem is a global phenomenon but it is more severe in water-scarce areas, such as arid and semi-arid zones. The increasing demand for water has created tremendous pressures on water resources that have resulted in lowering water level and increasing salinization. For example, in the Middle East salinity is the main factor that limits water utilization, and future prospects for water use in Israel, Palestinian Authority, and Jordan are overshadowed by the increasing salinization (Vengosh and Rosenthal, 1994; Salameh, 1996). The salinity problem has numerous grave economic, social, and political consequences, particularly in cross-boundary basins that are shared by different communities (e.g., Salinas Valley California; Vengosh et al., 2002a), friendly states (e.g., salinization of the Colorado River along Mexico-US border; Stanton et al., 2001), and hostile states (e.g., the Jordan River, Vengosh et al., 2001; Aral Basin, Weinthal, 2002; Euphrates River, Beaumont, 1996; and the Nile River, Ohlsson, 1995).Salinization of water resources also affects agricultural management. The type of irrigation water and its quality determine the salinity and fertility of the soil and eventually the quality of the underlying water resource. The use of treated wastewater or other marginal water (e.g., brackish water) depends on the salinity and the chemical composition of the water. Treated wastewater with high contents of chloride, sodium, and boron is suitable only for salt-tolerant crops and requires special treatment of the soil. Finally, high boron in irrigation water and consequently in soil water is also an important limiting factor for crops, as boron is an essential micronutrient for plants but becomes toxic at high levels (typically >0.75 mg L-1 in irrigation water).This chapter investigates the different mechanisms and geochemistry of salinization in different parts of the world. The role of the unsaturated zone in shaping the chemical composition of dryland salinization is discussed. Special emphasis is on the anthropogenic effects and to man-made fluids and reused water, such as treated wastewater and agricultural drainage water. Two anthropogenic salinization cycles are introduced - the agricultural and the domestic cycles. Some useful geochemical fingerprinting tracers are also included for defining the sources of salinity. Finally, the chemical composition of future water resources is predicted, based on the chemical and isotopic fractionation associated with remediation and desalination.

  15. Simulating the role of surface forcing on observed multidecadal upper-ocean salinity changes

    DOE PAGES

    Lago, Veronique; Wijffels, Susan E.; Durack, Paul J.; ...

    2016-07-18

    The ocean’s surface salinity field has changed over the observed record, driven by an intensification of the water cycle in response to global warming. However, the origin and causes of the coincident subsurface salinity changes are not fully understood. The relationship between imposed surface salinity and temperature changes and their corresponding subsurface changes is investigated using idealized ocean model experiments. The ocean’s surface has warmed by about 0.5°C (50 yr) –1 while the surface salinity pattern has amplified by about 8% per 50 years. The idealized experiments are constructed for a 50-yr period, allowing a qualitative comparison to the observedmore » salinity and temperature changes previously reported. The comparison suggests that changes in both modeled surface salinity and temperature are required to replicate the three-dimensional pattern of observed salinity change. The results also show that the effects of surface changes in temperature and salinity act linearly on the changes in subsurface salinity. In addition, surface salinity pattern amplification appears to be the leading driver of subsurface salinity change on depth surfaces; however, surface warming is also required to replicate the observed patterns of change on density surfaces. This is the result of isopycnal migration modified by the ocean surface warming, which produces significant salinity changes on density surfaces.« less

  16. Simulating the role of surface forcing on observed multidecadal upper-ocean salinity changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lago, Veronique; Wijffels, Susan E.; Durack, Paul J.

    The ocean’s surface salinity field has changed over the observed record, driven by an intensification of the water cycle in response to global warming. However, the origin and causes of the coincident subsurface salinity changes are not fully understood. The relationship between imposed surface salinity and temperature changes and their corresponding subsurface changes is investigated using idealized ocean model experiments. The ocean’s surface has warmed by about 0.5°C (50 yr) –1 while the surface salinity pattern has amplified by about 8% per 50 years. The idealized experiments are constructed for a 50-yr period, allowing a qualitative comparison to the observedmore » salinity and temperature changes previously reported. The comparison suggests that changes in both modeled surface salinity and temperature are required to replicate the three-dimensional pattern of observed salinity change. The results also show that the effects of surface changes in temperature and salinity act linearly on the changes in subsurface salinity. In addition, surface salinity pattern amplification appears to be the leading driver of subsurface salinity change on depth surfaces; however, surface warming is also required to replicate the observed patterns of change on density surfaces. This is the result of isopycnal migration modified by the ocean surface warming, which produces significant salinity changes on density surfaces.« less

  17. Modeling salt movement and halophytic crop growth on marginal lands with the APEX model

    NASA Astrophysics Data System (ADS)

    Goehring, N.; Saito, L.; Verburg, P.; Jeong, J.; Garrett, A.

    2016-12-01

    Saline soils negatively impact crop productivity in nearly 20% of irrigated agricultural lands worldwide. At these saline sites, cultivation of highly salt-tolerant plants, known as halophytes, may increase productivity compared to conventional salt-sensitive crops (i.e., glycophytes), thereby increasing the economic potential of marginal lands. Through a variety of mechanisms, halophytes are more effective than glycophytes at excluding, accumulating, and secreting salts from their tissues. Each mechanism can have a different impact on the salt balance in the plant-soil-water system. To date, little information is available to understand the long-term impacts of halophyte cultivation on environmental quality. This project utilizes the Agricultural Policy/Environmental Extender (APEX) model, developed by the US Department of Agriculture, to model the growth and production of two halophytic crops. The crops being modeled include quinoa (Chenopodium quinoa), which has utilities for human consumption and forage, and AC Saltlander green wheatgrass (Elymus hoffmannii), which has forage utility. APEX simulates salt movement between soil layers and accounts for the salt balance in the plant-soil-water system, including salinity in irrigation water and crop-specific salt uptake. Key crop growth parameters in APEX are derived from experimental growth data obtained under non-stressed conditions. Data from greenhouse and field experiments in which quinoa and AC Saltlander were grown under various soil salinity and irrigation salinity treatments are being used to parameterize, calibrate, and test the model. This presentation will discuss progress on crop parameterization and completed model runs under different salt-affected soil and irrigation conditions.

  18. Assessment of possibilities and conditions of irrigation in Hungary by digital soil map products

    NASA Astrophysics Data System (ADS)

    Laborczi, Annamária; Bakacsi, Zsófia; Takács, Katalin; Szatmári, Gábor; Szabó, József; Pásztor, László

    2016-04-01

    Sustaining proper soil moisture is essentially important in agricultural management. However, irrigation can be really worth only, if we lay sufficient emphasis on soil conservation. Nationwide planning of irrigation can be taken place, if we have spatially exhaustive maps and recommendations for the different areas. Soil moisture in the pores originate from 'above' (precipitation), or from 'beneath' (from groundwater by capillary lift). The level of groundwater depends on topography, climatic conditions and water regime of the nearby river. The thickness of capillary zone is basicly related to the physical and water management properties of the soil. Accordingly the capillary rise of sandy soils - with very high infiltration rate and very poor water retaining capacity - are far smaller than in the case of clay soils - with very poor infiltration rate and high water retaining capacity. Applying irrigation water can be considered as a reinforcement from 'above', and it affects the salinity and sodicity as well as the soil structure, nutrient supply and soil formation. We defined the possibilities of irrigation according to the average salt content of the soil profile. The nationwide mapping of soil salinity was based on legacy soil profile data, and it was carried out by regression kriging. This method allows that environmental factors with exhaustive spatial extension, such as climatic-, vegetation-, topographic-, soil- and geologic layers can be taken into consideration to the spatial extension of the reference data. According to soil salinity content categories, the areas were delineated as 1. to be irrigated, 2. to be irrigated conditionally, 3. not to be irrigated. The conditions of irrigation was determined by the comparison of the 'actual' and the 'critical' depth of the water table. Since, if the water rises above the critical level, undesirable processes, such as salinization and alkalinization can be developed. The critical depth of the water table was calculated according to the literature, and based on average soil content of the soil profile, the water regime category of soil, salt content of the groundwater, and soil pH. The water regime category map originated from legacy polygon-based map of physical soil properties. The soil content, and the actual level of groundwater as well as the soil pH map - similarly to the soil salinity map - was compiled by regression kriging. The conditions are classified into the following three categories: 1. level of groundwater have to be sinked, 2. rising of groundwater level have to be hindered, 3. level of groundwater have to be regularly controlled. The newly compiled maps can help decision makers to improve land use management, taking soil conservation into consideration. Our work was supported by the Hungarian National Scientific Research Foundation (OTKA, Grant No. K105167) and the Research Institute of Agricultural Economics.

  19. Dynamic characteristics of soil respiration in Yellow River Delta wetlands, China

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Luo, Xianxiang; Jia, Hongli; Zheng, Hao

    2018-02-01

    The stable soil carbon (C) pool in coastal wetlands, referred to as "blue C", which has been extensively damaged by climate change and soil degradation, is of importance to maintain global C cycle. Therefore, to investigate the dynamic characteristics of soil respiration rate and evaluate C budgets in coastal wetlands are urgently. In this study, the diurnal and seasonal variation of soil respiration rate in the reed wetland land (RL) and the bare wetland land (BL) was measured in situ with the dynamic gas-infrared CO2 method in four seasons, and the factors impacted on the dynamic characteristics of soil respiration were investigated. The results showed that the diurnal variation of soil respiration rate consistently presented a "U" curve pattern in April, July, and September, with the maximum values at 12:00 a.m. and the minimum values at 6:00 a.m. In the same season, the diurnal soil respiration rate in RL was significantly greater than those in BL (P < 0.05). In April, July, and September, the mean diurnal soil respiration rate was 0.14, 0.42, and 0.39 μmol m-2 s-1 in RL, 0.05, 0.22, 0.13, and 0.01 μmol m-2 s-1 in BL, respectively. Soil surface temperature was the primary factor that influenced soil respiration, which was confirmed by the exponential positive correlation between the soil respiration rate and soil surface temperature in BL and RL (P < 0.05). In addition, the high salinity of soils suppressed soil respiration, confirming by the significantly negative correlation between soil respiration rate and the content of soluble salt. These results will be useful for understanding the mechanisms underlying soil respiration and elevating C sequestration potential in the coastal wetlands.

  20. Geochemical modeling of trivalent chromium migration in saline-sodic soil during Lasagna process: impact on soil physicochemical properties.

    PubMed

    Lukman, Salihu; Bukhari, Alaadin; Al-Malack, Muhammad H; Mu'azu, Nuhu D; Essa, Mohammed H

    2014-01-01

    Trivalent Cr is one of the heavy metals that are difficult to be removed from soil using electrokinetic study because of its geochemical properties. High buffering capacity soil is expected to reduce the mobility of the trivalent Cr and subsequently reduce the remedial efficiency thereby complicating the remediation process. In this study, geochemical modeling and migration of trivalent Cr in saline-sodic soil (high buffering capacity and alkaline) during integrated electrokinetics-adsorption remediation, called the Lasagna process, were investigated. The remedial efficiency of trivalent Cr in addition to the impacts of the Lasagna process on the physicochemical properties of the soil was studied. Box-Behnken design was used to study the interaction effects of voltage gradient, initial contaminant concentration, and polarity reversal rate on the soil pH, electroosmotic volume, soil electrical conductivity, current, and remedial efficiency of trivalent Cr in saline-sodic soil that was artificially spiked with Cr, Cu, Cd, Pb, Hg, phenol, and kerosene. Overall desirability of 0.715 was attained at the following optimal conditions: voltage gradient 0.36 V/cm; polarity reversal rate 17.63 hr; soil pH 10.0. Under these conditions, the expected trivalent Cr remedial efficiency is 64.75%.

  1. Geochemical Modeling of Trivalent Chromium Migration in Saline-Sodic Soil during Lasagna Process: Impact on Soil Physicochemical Properties

    PubMed Central

    Bukhari, Alaadin; Al-Malack, Muhammad H.; Mu'azu, Nuhu D.; Essa, Mohammed H.

    2014-01-01

    Trivalent Cr is one of the heavy metals that are difficult to be removed from soil using electrokinetic study because of its geochemical properties. High buffering capacity soil is expected to reduce the mobility of the trivalent Cr and subsequently reduce the remedial efficiency thereby complicating the remediation process. In this study, geochemical modeling and migration of trivalent Cr in saline-sodic soil (high buffering capacity and alkaline) during integrated electrokinetics-adsorption remediation, called the Lasagna process, were investigated. The remedial efficiency of trivalent Cr in addition to the impacts of the Lasagna process on the physicochemical properties of the soil was studied. Box-Behnken design was used to study the interaction effects of voltage gradient, initial contaminant concentration, and polarity reversal rate on the soil pH, electroosmotic volume, soil electrical conductivity, current, and remedial efficiency of trivalent Cr in saline-sodic soil that was artificially spiked with Cr, Cu, Cd, Pb, Hg, phenol, and kerosene. Overall desirability of 0.715 was attained at the following optimal conditions: voltage gradient 0.36 V/cm; polarity reversal rate 17.63 hr; soil pH 10.0. Under these conditions, the expected trivalent Cr remedial efficiency is 64.75 %. PMID:25152905

  2. Aerial biomass and elemental changes in Atriplex canescens and A. acanthocarpa as affected by salinity and soil water availability

    Treesearch

    Ricardo Mata-Gonzalez; Ruben Melendez-Gonzalez; J. Jesus Martinez-Hernandez

    2001-01-01

    Atriplex canescens and A. acanthocarpa from the Chihuahuan Desert in Mexico were subjected to different salinity and irrigation treatments in a greenhouse study. Plants were grown in pots containing soil and irrigated with NaCl solutions of 0, 50, and 100 mM at 40 and 80 percent available soil water. Aerial biomass of A. canescens declined as NaCl treatments increased...

  3. Differential effects of abiotic factors and host plant traits on diversity and community composition of root-colonizing arbuscular mycorrhizal fungi in a salt-stressed ecosystem.

    PubMed

    Guo, Xiaohong; Gong, Jun

    2014-02-01

    Arbuscular mycorrhizal fungi (AMF) were investigated in roots of 18 host plant species in a salinized south coastal plain of Laizhou Bay, China. From 18 clone libraries of 18S rRNA genes, all of the 22 AMF phylotypes were identified into Glomus, of which 18 and 4 were classified in group A and B in the phylogenetic tree, respectively. The phylotypes related to morphologically defined Glomus species occurred generally in soil with higher salinity. AMF phylotype richness, Shannon index, and evenness were not significantly different between root samples from halophytes vs. non-halophytes, invades vs. natives, or annuals vs. perennials. However, AMF diversity estimates frequently differed along the saline gradient or among locations, but not among pH gradients. Moreover, UniFrac tests showed that both plant traits (salt tolerance, life style or origin) and abiotic factors (salinity, pH, or location) significantly affected the community composition of AMF colonizers. Redundancy and variation partitioning analyses revealed that soil salinity and pH, which respectively explained 6.9 and 4.2 % of the variation, were the most influential abiotic variables in shaping the AMF community structure. The presented data indicate that salt tolerance, life style, and origin traits of host species may not significantly affect the AMF diversity in roots, but do influence the community composition in this salinized ecosystem. The findings also highlight the importance of soil salinity and pH in driving the distribution of AMF in plant and soil systems.

  4. Upper-soil moisture inter-comparison from SMOS's products and land surface models over the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Polcher, Jan; Barella-Ortiz, Anaïs; Aires, Filipe; Balsamo, Gianpaolo; Gelati, Emiliano; Rodríguez-Fernández, Nemesio

    2015-04-01

    Soil moisture is a key state variable of the hydrological cycle. It conditions runoff, infiltration and evaporation over continental surfaces, and is key for forecasting droughts and floods. It plays thus an important role in surface-atmosphere interactions. Surface Soil Moisture (SSM) can be measured by in situ measurements, by satellite observations or modelled using land surface models. As a complementary tool, data assimilation can be used to combine both modelling and satellite observations. The work presented here is an inter-comparison of retrieved and modelled SSM data, for the 2010 - 2012 period, over the Iberian Peninsula. The region has been chosen because its vegetation cover is not very dense and includes strong contrasts in the rainfall regimes and thus a diversity of behaviours for SSM. Furthermore this semi-arid region is strongly dependent on a good management of its water resources. Satellite observations correspond to the Soil Moisture and Ocean Salinity (SMOS) retrievals: the L2 product from an optimal interpolation retrieval, and 3 other products using Neural Network retrievals with different input information: SMOS time indexes, purely SMOS data, or addition of the European Advanced Scaterometer (ASCAT) backscattering, and the Moderate-Resolution Imaging Spectrometer (MODIS) surface temperature information. The modelled soil moistures have been taken from the ORCHIDEE (ORganising Carbon and Hydrology In Dynamic EcosystEms) and the HTESSEL (Hydrology-Tiled ECMWF Scheme for Surface Exchanges over Land) land surface models. Both models are forced with the same atmospheric conditions (as part of the Earth2Observe FP7 project) over the period but they represent the surface soil moisture with very different degrees of complexity. ORCHIDEE has 5 levels in the top 5 centimetres of soil while in HTESSEL this variable is part of the top soil moisture level. The two types of SMOS retrievals are compared to the model outputs in their spatial and temporal characteristics. The comparison with the model helps to identify which retrieval configuration is most consistent with our understanding of surface soil moisture in this region. In particular we have determined how each of the soil moisture products is related to the spatio-temporal variations of rainfall. In large parts of the Iberian Peninsula the co-variance of remote sensed SSM and rainfall is consistent with that of the models. But for some regions questions are raised. The variability of SSM observed by SMOS in the North West of the Iberian Peninsula is similar to that of rainfall, at least this relation of SSM and rainfall is closer than suggested by the two models.

  5. Morphology and phylogenetic analysis of two oxytrichid soil ciliates from China, Oxytricha paragranulifera n. sp. and Oxytricha granulifera Foissner and Adam, 1983 (Protista, Ciliophora, Hypotrichia).

    PubMed

    Shao, Chen; Lv, Zhao; Pan, Ying; Al-Rasheid, Khaled A S; Yi, Zhenzhen

    2014-09-01

    The morphology and infraciliature of two hypotrichous ciliates, Oxytricha paragranulifera n. sp. and Oxytricha granulifera Foissner and Adam, 1983, collected respectively from the surface of a sandy soil in the Huguang mangrove forest, Zhanjiang, China, and the surface of soil in a forest beside Ziwu Road, Xian, north-west China, were examined. O. paragranulifera n. sp. is characterized by an elongate body with slightly tapered anterior end, two macronuclear nodules and two micronuclei, paroral and endoral in Stylonychia-pattern, colourless cortical granules distributed in clusters or irregular short rows, adoral zone occupying 37 % of the body length, marginal rows almost confluent posteriorly, six dorsal kineties and three caudal cirri, caudal cirri and dorsal bristles almost indistinguishable when viewed in vivo. The well-known O. granulifera Foissner and Adam, 1983 was also redescribed and can be separated from the novel species by having cortical granules arranged along dorsal kineties and marginal rows on both sides (vs grouped in clusters as well as in short irregular rows), paroral and endoral in Oxytricha-pattern (vs in Stylonychia-pattern), macronuclear nodules obviously detached (vs adjacent) and a non-saline terrestrial habitat (vs saline terrestrial). The separation of these two taxa is also firmly supported by the molecular data, which show a significant difference between the two in their SSU rRNA gene sequences (similarity 97.1 %). Phylogenetic analyses based on SSU rRNA gene sequence data suggest a close relationship within the Oxytrichidae assemblage between O. paragranulifera n. sp. and O. granulifera. © 2014 IUMS.

  6. Alleviation of the effects of saline-alkaline stress on maize seedlings by regulation of active oxygen metabolism by Trichoderma asperellum.

    PubMed

    Fu, Jian; Liu, Zhihua; Li, Zuotong; Wang, Yufeng; Yang, Kejun

    2017-01-01

    This study investigated the influence of Trichoderma asperellum on active oxygen production in maize seedlings under saline-alkaline stress conditions. Two maize cultivars were tested: 'Jiangyu 417' ('JY417'), which can tolerate saline-alkaline stress; and, 'Xianyu 335' ('XY335'), which is sensitive to saline-alkaline stress. The seedlings were grown on natural saline-alkaline soil (pH 9.30) in plastic pots. To each liter of saline-alkaline soil, 200 mL of T. asperellum spore suspension was applied; three fungal suspensions were used, namely, 1 × 103, 1 × 106, and 1 × 109 spores/L. A control with only the vehicle applied was also established, along with a second control in which untreated meadow soil (pH 8.23) was used. Root and leaf samples were collected when the seedlings had three heart-shaped leaves and the fourth was in the developmental phase. Physical and biochemical parameters related to oxidation resistance were assessed. The results indicated that the 'JY417' and 'XY335' seedlings showed different degrees of oxidative damage and differences in their antioxidant defense systems under saline-alkaline stress. As the spore density of the fungal suspension increased, the K+ and Ca2+ contents in the seedlings increased, but Na+ content decreased. Moreover, fungal treatment promoted the synthesis or accumulation of osmolytes, which enhanced the water absorbing capacity of the cells, increased antioxidant enzyme activities, enhanced the content of non-enzyme antioxidants, and reduced the accumulation of reactive oxygen species. Fungal treatment alleviated oxidative damage caused by the saline-alkaline stress in roots and leaves of the seedlings. The application of T. asperellum overcame the inhibitory effect of saline-alkaline soil stress on the growth of maize seedlings. In the present experiment, application with 1 × 109 spores/L gave the optimal results.

  7. Additive effects of Na+ and Cl– ions on barley growth under salinity stress

    PubMed Central

    Tavakkoli, Ehsan; Fatehi, Foad; Coventry, Stewart; Rengasamy, Pichu; McDonald, Glenn K.

    2011-01-01

    Soil salinity affects large areas of the world's cultivated land, causing significant reductions in crop yield. Despite the fact that most plants accumulate both sodium (Na+) and chloride (Cl–) ions in high concentrations in their shoot tissues when grown in saline soils, most research on salt tolerance in annual plants has focused on the toxic effects of Na+ accumulation. It has previously been suggested that Cl– toxicity may also be an important cause of growth reduction in barley plants. Here, the extent to which specific ion toxicities of Na+ and Cl– reduce the growth of barley grown in saline soils is shown under varying salinity treatments using four barley genotypes differing in their salt tolerance in solution and soil-based systems. High Na+, Cl–, and NaCl separately reduced the growth of barley, however, the reductions in growth and photosynthesis were greatest under NaCl stress and were mainly additive of the effects of Na+ and Cl– stress. The results demonstrated that Na+ and Cl– exclusion among barley genotypes are independent mechanisms and different genotypes expressed different combinations of the two mechanisms. High concentrations of Na+ reduced K+ and Ca2+ uptake and reduced photosynthesis mainly by reducing stomatal conductance. By comparison, high Cl– concentration reduced photosynthetic capacity due to non-stomatal effects: there was chlorophyll degradation, and a reduction in the actual quantum yield of PSII electron transport which was associated with both photochemical quenching and the efficiency of excitation energy capture. The results also showed that there are fundamental differences in salinity responses between soil and solution culture, and that the importance of the different mechanisms of salt damage varies according to the system under which the plants were grown. PMID:21273334

  8. Links between seawater flooding, soil ammonia oxidiser communities and their response to changes in salinity.

    PubMed

    Nacke, Heiko; Schöning, Ingo; Schindler, Malte; Schrumpf, Marion; Daniel, Rolf; Nicol, Graeme W; Prosser, James I

    2017-11-01

    Coastal areas worldwide are challenged by climate change-associated increases in sea level and storm surge quantities that potentially lead to more frequent flooding of soil ecosystems. Currently, little is known of the effects of inundation events on microorganisms controlling nitrification in these ecosystems. The goal of this study was to investigate the impact of seawater flooding on the abundance, community composition and salinity tolerance of soil ammonia oxidisers. Topsoil was sampled from three islands flooded at different frequencies by the Wadden Sea. Archaeal ammonia oxidiser amoA genes were more abundant than their betaproteobacterial counterparts, and the distribution of archaeal and bacterial ammonia oxidiser amoA and 16S rRNA gene sequences significantly differed between the islands. The findings indicate selection of ammonia oxidiser phylotypes with greater tolerance to high salinity and slightly alkaline pH (e.g. Nitrosopumilus representatives) in frequently flooded soils. A cluster phylogenetically related to gammaproteobacterial ammonia oxidisers was detected in all samples analysed in this survey. Nevertheless, no gammaprotebacterial amoA genes could be amplified via PCR and only betaproteobacterial ammonia oxidisers were detected in enrichment cultures. A slurry-based experiment demonstrated the tolerance of both bacterial and archaeal ammonia oxidisers to a wide range of salinities (e.g. Wadden Sea water salinity) in soil naturally exposed to seawater at a high frequency. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Membrane proteins involved in transport, vesicle traffic and Ca(2+) signaling increase in beetroots grown in saline soils.

    PubMed

    Lino, Bárbara; Chagolla, Alicia; E González de la Vara, Luis

    2016-07-01

    By separating plasma membrane proteins according to their hydropathy from beetroots grown in saline soils, several proteins probably involved in salt tolerance were identified by mass spectrometry. Beetroots, as a salt-tolerant crop, have developed mechanisms to cope with stresses associated with saline soils. To observe which plasma membrane (PM) proteins were more abundant in beet roots grown in saline soils, beet root plants were irrigated with water or 0.2 M NaCl. PM-enriched membrane preparations were obtained from these plants, and their proteins were separated according to their hydropathy by serial phase partitioning with Triton X-114. Some proteins whose abundance increased visibly in membranes from salt-grown beetroots were identified by mass spectrometry. Among them, there was a V-type H(+)-ATPase (probably from contaminating vacuolar membranes), which increased with salt at all stages of beetroots' development. Proteins involved in solute transport (an H(+)-transporting PPase and annexins), vesicle traffic (clathrin and synaptotagmins), signal perception and transduction (protein kinases and phospholipases, mostly involved in calcium signaling) and metabolism, appeared to increase in salt-grown beetroot PM-enriched membranes. These results suggest that PM and vacuolar proteins involved in transport, metabolism and signal transduction increase in beet roots adapted to saline soils. In addition, these results show that serial phase partitioning with Triton X-114 is a useful method to separate membrane proteins for their identification by mass spectrometry.

  10. Chamber-Based Estimates of Methane Production in Coastal Estuarine Systems in Southern California

    NASA Astrophysics Data System (ADS)

    Brigham, B.; Lipson, D.; Lai, C.

    2008-12-01

    Wetland systems are believed to produce between 100 - 231 Tg CH4 yr-1 which is roughly 20% of global methane emissions. The uncertainty in methane emissions models stem from the lack of detailed information about methane gas production within regional wetland systems. The aim of this study is to report the range of methane fluxes observed along salinity gradients at two San Diego coastal wetland systems, the Tijuana Estuary (Tijuana River National Estuarine Research Reserve) and the Peñasquitos Lagoon (Torrey Pines State Park Reserve). Soil water samples are used to elucidate factors responsible for the observed variation in methane fluxes. Air samples were subsequently collected from the headspace of a static soil chamber and stored in pre- evacuated vials. Methane concentrations were analyzed within hours after collection by gas chromatography in the laboratory. The chemical and physical properties of the soil, including salinity, pH, redox potential and temperature are measured with a hand-held probe nearby soil collars. The biological properties of the soil, including dissolved organic carbon, nitrate, and ammonia levels are measured from soil water samples in the laboratory. We find that saline sites under direct tidal influence produced methane fluxes ranging from -3.10 to 9.10 (mean 2.18) mg CH4 m-2 day-1. We also find that brackish sites (0.6 to 3.2 ppt in salinity) with fresh water input from residential runoff at the Peñasquitos Lagoon produced methane fluxes ranging from 0.53 to 192.10 (mean 33.34) mg CH4 m-2 day-1. Sampling was done over the course of 5 weeks during August-September of 2008. We hypothesize that the contrasting methane fluxes found between the saline and the brackish sites is due primarily to the different salinity, and in turn sulfate levels found at the two sites. The reduction of sulfate to produce energy is more energetically favorable than the reduction of carbon dioxide to produce methane. Thus the presence of sulfate may act as a methanogensis inhibitor resulting in higher methane flux in low salinity conditions such as those found at the brackish sites.

  11. The SWEX at the area of Eastern Poland: Comparison of soil moisture obtained from ground measurements and SMOS satellite data*

    NASA Astrophysics Data System (ADS)

    Usowicz, J. B.; Marczewski, W.; Usowicz, B.; Lukowski, M. I.; Lipiec, J.; Slominski, J.

    2012-04-01

    Soil moisture, together with soil and vegetation characteristics, plays an important role in exchange of water and energy between the land surface and the atmospheric boundary layer. Accurate knowledge of current and future spatial and temporal variation in soil moisture is not well known, nor easy to measure or predict. Knowledge of soil moisture in surface and root zone soil moisture is critical for achieving sustainable land and water management. The importance of SM is so high that this ECV is recommended by GCOS (Global Climate Observing System) to any attempts of evaluating of effects the climate change, and therefore it is one of the goals for observing the Earth by the ESA SMOS Mission (Soil Moisture and Ocean Salinity), globally. SMOS provides its observations by means of the interferometric radiometry method (1.4 GHz) from the orbit. In parallel, ten ground based stations are kept by IA PAN, in area of the Eastern Wall in Poland, in order to validate SMOS data and for other ground based agrophysical purposes. Soil moisture measurements obtained from ground and satellite measurements from SMOS were compared using Bland-Altman method of agreement, concordance correlation coefficient (CCC) and total deviation index (TDI). Observed similar changes in soil moisture, but the values obtained from satellite measurements were lower. Minor differences between the compared data are at higher moisture contents of soil and they grow with decreasing soil moisture. Soil moisture trends are maintained in the individual stations. Such distributions of soil moisture were mainly related to soil type. * The work was financially supported in part by the ESA Programme for European Cooperating States (PECS), No.98084 "SWEX-R, Soil Water and Energy Exchange/Research", AO3275.

  12. The nature and classification of Australian soils affected by sodium

    NASA Astrophysics Data System (ADS)

    Murphy, Brian; Greene, Richard; Harms, Ben

    2017-04-01

    Large areas of Australia are affected by the processes of salinity and sodicity and they are important processes to understand as they can result in the degradation of agricultural lands used for both intensive cropping and extensive grazing practices. Sodic soils are defined as those having ESP of at least 6% in Australia. Northcote and Skene (1972) estimated that of Australia's total area of 770 M ha, 39 M ha was affected by salinity and 193-257 M ha by sodicity. However, in a more recent publication, Rengasamy (2006), quoted the areas of saline and sodic soils as 66 M ha and 340 M ha respectively. The soils affected by sodium in Australia include a large group of contrasting soils (Northcote and Skene 1972). Based on the Australian soil classification, included are: • Alkaline strongly sodic to sodic clay soils with uniform texture profiles - largely Vertosols 666 400 km2 • Alkaline strongly sodic to sodic coarse and medium textured soils with uniform and gradational texture profiles - largely Calcarosols 600 700 km2 • Alkaline strongly sodic to sodic texture contrast soils - largely Sodosols 454 400 km2 • Non-alkaline sodic and strongly sodic neutral texture contrast soils - largely Sodosols 134 700 km2 • Non-alkaline sodic acid texture contrast soils - Sodosols and Kurosols 140 700 km2 Many Australian sodic soils have not developed by the traditional solonetz process of leaching of a solonchak, but rather have developed by the accumulation of sodium on the cation exchange complex in preference to the other exchangeable cations without any recognisable intermediate saline phase occurring. This is especially the case for the sodic, non-alkaline texture contrast soils or Sodosols. The major sodic soil group in WRB is the Solonetz soils. These require the presence of a Natric horizon which has to contain illuviated clay and at least 15% ESP. However, there is provision for Sodic qualifiers with at least 6% ESP for many other reference Soil Groups including the Vertisols, Luvisols, Calcisols and Planosols which would have some relationship to Australia's sodic soils.

  13. Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation.

    PubMed

    Xun, Feifei; Xie, Baoming; Liu, Shasha; Guo, Changhong

    2015-01-01

    To investigate the effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) on phytoremediation in saline-alkali soil contaminated by petroleum, saline-alkali soil samples were artificially mixed with different amount of oil, 5 and 10 g/kg, respectively. Pot experiments with oat plants (Avena sativa) were conducted under greenhouse condition for 60 days. Plant biomass, physiological parameters in leaves, soil enzymes, and degradation rate of total petroleum hydrocarbon were measured. The result demonstrated that petroleum inhibited the growth of the plant; however, inoculation with PGPR in combination with AMF resulted in an increase in dry weight and stem height compared with noninoculated controls. Petroleum stress increased the accumulation of malondialdehyde (MDA) and free proline and the activities of the antioxidant enzyme such as superoxide dismutase, catalase, and peroxidase. Application of PGPR and AMF augmented the activities of three enzymes compared to their respective uninoculated controls, but decreased the MDA and free proline contents, indicating that PGPR and AMF could make the plants more tolerant to harmful hydrocarbon contaminants. It also improved the soil quality by increasing the activities of soil enzyme such as urease, sucrase, and dehydrogenase. In addition, the degradation rate of total petroleum hydrocarbon during treatment with PGPR and AMF in moderately contaminated soil reached a maximum of 49.73%. Therefore, we concluded the plants treated with a combination of PGPR and AMF had a high potential to contribute to remediation of saline-alkali soil contaminated with petroleum.

  14. Investigations of adaptation mechanisms of different halophytes types in different soil salinity conditions (Southern Central Siberia, Russia)

    NASA Astrophysics Data System (ADS)

    Slyusar, Natalia; Pechurkin, Nickolay

    High salt concentration in the soil is one of the limiting factors affecting plant growth and development. However, there are plants that are physiologically adapted to high salts concen-trations -halophytes. Studies of halophytes reveals mechanisms of adaptation to this factor. Investigations were conducted in the steppe zone of Southern Central Siberia (Russia, Khaka-sia), nearest coastal zone of the Lake Kurinka. The work was carried on route and stationary methods. As a results was conducted about 100 geobotanical descriptions, was defined species composition, covering, vertical and horizontal structure of plant communities, the productivity of above ground dry phytomass. As a result of field work was identified various types of plant communities, that are located on soils with a salinity degree are 0,2 -7,16 g / l. Type of saline -sulfate-sodium. Suaeda plant communities was located in the meadow-saline soil (soil salinity degree 5 -7 g / l). The dominant is euhalophyte Suaeda linifolia Pall. and subdominant is glycohalophyte Puccinellia tenuissima. A plant community has two layers. Total covering is 50 -55During the study period (2004 -2009), the change was observed in the soil salinity degree in the range of 2.27 -7.16 g / l. The plan community productivity varied from 99 to 201 g/m2 by years of research. Also was noted that the salt amount in the plants biomass varies depending on the type of halophyte. In the cells of euhalophyte Suaeda linifolia the salt amount was 10-35The investigation noted that relations between the main photosynthetic pigments (chlorophylls and carotenoids) have changes depending on the type of halophyte. Thus, in typical glycohalophyte Puccinellia tenuissima, Elytrigia repens and Phragmites australis chlorophyll content remained relatively high during the summer period and were 0,74, 0,61 and 0,53

  15. Endophytic Bacteria Improve Plant Growth, Symbiotic Performance of Chickpea (Cicer arietinum L.) and Induce Suppression of Root Rot Caused by Fusarium solani under Salt Stress.

    PubMed

    Egamberdieva, Dilfuza; Wirth, Stephan J; Shurigin, Vyacheslav V; Hashem, Abeer; Abd Allah, Elsayed F

    2017-01-01

    Salinity causes disturbance in symbiotic performance of plants, and increases susceptibility of plants to soil-borne pathogens. Endophytic bacteria are an essential determinant of cross-tolerance to biotic and abiotic stresses in plants. The aim of this study was to isolate non-rhizobial endophytic bacteria from the root nodules of chickpea ( Cicer arietinum L.), and to assess their ability to improve plant growth and symbiotic performance, and to control root rot in chickpea under saline soil conditions. A total of 40 bacterial isolates from internal root tissues of chickpea grown in salinated soil were isolated. Four bacterial isolates, namely Bacillus cereus NUU1 , Achromobacter xylosoxidans NUU2, Bacillus thuringiensis NUU3, and Bacillus subtilis NUU4 colonizing root tissue demonstrated plant beneficial traits and/or antagonistic activity against F. solani and thus were characterized in more detail. The strain B. subtilis NUU4 proved significant plant growth promotion capabilities, improved symbiotic performance of host plant with rhizobia, and promoted yield under saline soil as compared to untreated control plants under field conditions. A combined inoculation of chickpea with M. ciceri IC53 and B. subtilis NUU4 decreased H 2 O 2 concentrations and increased proline contents compared to the un-inoculated plants indicating an alleviation of adverse effects of salt stress. Furthermore, the bacterial isolate was capable to reduce the infection rate of root rot in chickpea caused by F. solani . This is the first report of F. solani causing root rot of chickpea in a salinated soil of Uzbekistan. Our findings demonstrated that the endophytic B. subtilis strain NUU4 provides high potentials as a stimulator for plant growth and as biological control agent of chickpea root rot under saline soil conditions. These multiple relationships could provide promising practical approaches to increase the productivity of legumes under salt stress.

  16. Endophytic Bacteria Improve Plant Growth, Symbiotic Performance of Chickpea (Cicer arietinum L.) and Induce Suppression of Root Rot Caused by Fusarium solani under Salt Stress

    PubMed Central

    Egamberdieva, Dilfuza; Wirth, Stephan J.; Shurigin, Vyacheslav V.; Hashem, Abeer; Abd_Allah, Elsayed F.

    2017-01-01

    Salinity causes disturbance in symbiotic performance of plants, and increases susceptibility of plants to soil-borne pathogens. Endophytic bacteria are an essential determinant of cross-tolerance to biotic and abiotic stresses in plants. The aim of this study was to isolate non–rhizobial endophytic bacteria from the root nodules of chickpea (Cicer arietinum L.), and to assess their ability to improve plant growth and symbiotic performance, and to control root rot in chickpea under saline soil conditions. A total of 40 bacterial isolates from internal root tissues of chickpea grown in salinated soil were isolated. Four bacterial isolates, namely Bacillus cereus NUU1, Achromobacter xylosoxidans NUU2, Bacillus thuringiensis NUU3, and Bacillus subtilis NUU4 colonizing root tissue demonstrated plant beneficial traits and/or antagonistic activity against F. solani and thus were characterized in more detail. The strain B. subtilis NUU4 proved significant plant growth promotion capabilities, improved symbiotic performance of host plant with rhizobia, and promoted yield under saline soil as compared to untreated control plants under field conditions. A combined inoculation of chickpea with M. ciceri IC53 and B. subtilis NUU4 decreased H2O2 concentrations and increased proline contents compared to the un-inoculated plants indicating an alleviation of adverse effects of salt stress. Furthermore, the bacterial isolate was capable to reduce the infection rate of root rot in chickpea caused by F. solani. This is the first report of F. solani causing root rot of chickpea in a salinated soil of Uzbekistan. Our findings demonstrated that the endophytic B. subtilis strain NUU4 provides high potentials as a stimulator for plant growth and as biological control agent of chickpea root rot under saline soil conditions. These multiple relationships could provide promising practical approaches to increase the productivity of legumes under salt stress. PMID:29033922

  17. Effects of elevated atmospheric CO2 on dissolution of geological fluorapatite in water and soil.

    PubMed

    Li, Zhen; Su, Mu; Tian, Da; Tang, Lingyi; Zhang, Lin; Zheng, Yangfan; Hu, Shuijin

    2017-12-01

    Most of phosphorus (P) is present as insoluble phosphorus-bearing minerals or organic forms in soil. Geological fluorapatite (FAp) is the dominant mineral-weathering source of P. In this study, FAp was added into water and soil under elevated CO 2 to investigate the pathway of P release. Two types of soils (an acidic soil from subtropical China and a saline-alkali soil from Tibet Plateau, China) with similar total P content were studied. In the solution, increased CO 2 in air enhanced the dissolution of FAp, i.e., from 0.04 to 1.18ppm for P and from 2.48 to 13.61ppm for Ca. In addition, release of Ca and P from FAp reached the maximum (2.14ppm for P and 13.84ppm for Ca) under the combination of elevated CO 2 and NaCl due to the increasing ion exchange. Consistent with the results from the solution, CO 2 elevation promoted P release more significantly (triple) in the saline-alkali soil than in the acidic soil. Therefore, saline-alkali soils in Tibet Plateau would be an important reservoir of available P under the global CO 2 rise. This study sheds the light on understanding the geological cycle of phosphorus. Copyright © 2017. Published by Elsevier B.V.

  18. [Monitoring of water and salt transport in silt and sandy soil during the leaching process].

    PubMed

    Fu, Teng-Fei; Jia, Yong-Gang; Guo, Lei; Liu, Xiao-Lei

    2012-11-01

    Water and salt transport in soil and its mechanism is the key point of the saline soil research. The dynamic rule of water and transport in soil during the leaching process is the theoretical basis of formation, flush, drainage and improvement of saline soil. In this study, a vertical infiltration experiment was conducted to monitor the variation in the resistivity of silt and sandy soil during the leaching process by the self-designed automatic monitoring device. The experimental results showed that the peaks in the resistivity of the two soils went down and faded away in the course of leaching. It took about 30 minutes for sandy soil to reach the water-salt balance, whereas the silt took about 70 minutes. With the increasing leaching times, the desalination depth remained basically the same, being 35 cm for sandy soil and 10 cm for the silt from the top to bottom of soil column. Therefore, 3 and 7 leaching processes were required respectively for the complete desalination of the soil column. The temporal and spatial resolution of this monitoring device can be adjusted according to the practical demand. This device can not only achieve the remote, in situ and dynamic monitoring data of water and salt transport, but also provide an effective method in monitoring, assessment and early warning of salinization.

  19. Analysis of Factors Influencing Soil Salinity, Acidity, and Arsenic Concentration in a Polder in Southwest Bangladesh

    NASA Astrophysics Data System (ADS)

    Ayers, J. C.; Patton, B.; Fry, D. C.; Goodbred, S. L., Jr.

    2017-12-01

    Soil samples were collected on Polder 32 in the coastal zone of SW Bangladesh in wet (October) and dry (May) seasons from 2013-2017 and analyzed to characterize the problems of soil salinization and arsenic contamination and identify their causes. Soils are entisols formed from recently deposited, predominantly silt-sized sediments with low carbon concentrations typical of the local mangrove forests. Soluble (DI extract) arsenic concentrations were below the Government of Bangladesh limit of 50 ppb for drinking water. Soil acidity and extract arsenic concentrations exhibit spatial variation but no consistent trends. In October soil extract As is higher and S and pH are lower than in May. These observations suggest that wet season rainwater oxidizes pyrite, reducing soil S and releasing H+, causing pH to decrease. Released iron is oxidized to form Hydrous Ferric Oxyhydroxides (HFOs), which sorb As and increase extractable As in wet season soils. Changes in pH are small due to pH buffering by soil carbonates. Soil and rice paddy water salinities are consistently higher in May than October, reaching levels in May that reduce rice yields. Rice grown in paddies should be unaffected by salt concentrations in the wet season, while arsenic concentrations in soil may be high enough to cause unsafe As levels in produced rice.

  20. Short and long-term soil carbon accumulation in marsh salinity types of the Mississippi River Deltaic Plain: implications for future global climate change and coastal restoration

    NASA Astrophysics Data System (ADS)

    Baustian, M. M.; Stagg, C. L.; Perry, C. L.; Moss, L.; Carruthers, T.; Allison, M. A.

    2017-12-01

    The vegetation community and environmental characteristics of marsh habitats influence how carbon is produced, decomposed, and accumulated. In coastal Louisiana, marsh habitats have historically been classified as fresh, intermediate, brackish, and saline based on their position along the salinity gradient. Changing environmental conditions, such as sea-level rise and coastal restoration activities, may change the relative extent of the four marsh habitats and how soil carbon is accumulated in the short and long term. Soil cores (100 cm) were collected at each of 24 sites within the four marsh habitats in two coastal Louisiana basins, Terrebonne and Barataria. Each core was sectioned into 2-cm depth intervals and analyzed for bulk density, organic matter, and radionuclide geochronology (137Cs and 210Pb). Feldspar marker horizon data was utilized to estimate short-term accretion rates. Short-term total carbon accumulation rates (using the top 10 cm soil properties and feldspar horizon markers) among marsh type categories were not significantly different (mean ± std. err of 190 ± 27 g TC m-2 yr-1, n = 15). However, regression analysis, on measured salinity at individual sites, indicated that mean annual salinity had a significant negative relationship suggesting that more saline marshes may be accumulating less carbon in the short term. Coastal Louisiana marsh area (1,433,700 ha) soils store in the short term about 2.7 to 3.3 Tg C yr-1. Long-term carbon accumulation rates of classified marsh type categories also did not differ (mean ± std. err of 80.0 ±8.9 g TC m-2 yr-1, n = 16) and were over two times lower than short-term accumulation rates. Coast-wide, in Louisiana, these soils bury approximately 1.2 Tg TC yr-1 in the long term and contribute about 1-5% of the global marsh/mangrove carbon sink budget. Carbon accumulation and storage rates tend to decrease over long time periods and estimating these rates from varying soil core depths (10 vs. 100 cm) has important implications to estimating carbon budgets and comparing rates in the literature. This study helps to characterize short and long-term carbon accumulation rates in four marsh salinity types and provides insight into how carbon accumulation may change with predicted changes in marsh type resulting from environmental change.

  1. Opposing effects of floral visitors and soil conditions on the determinants of competitive outcomes maintain species diversity in heterogeneous landscapes.

    PubMed

    Lanuza, Jose B; Bartomeus, Ignasi; Godoy, Oscar

    2018-06-01

    Theory argues that both soil conditions and aboveground trophic interactions have equivalent potential to limit or promote plant diversity. However, it remains unexplored how they jointly modify the niche differences stabilising species coexistence and the average fitness differences driving competitive dominance. We conducted a field study in Mediterranean annual grasslands to parameterise population models of six competing plant species. Spatially explicit floral visitor assemblages and soil salinity variation were characterised for each species. Both floral visitors and soil salinity modified species population dynamics via direct changes in seed production and indirect changes in competitive responses. Although the magnitude and sign of these changes were species-specific, floral visitors promoted coexistence at neighbourhood scales, while soil salinity did so over larger scales by changing the superior competitors' identity. Our results show how below and aboveground interactions maintain diversity in heterogeneous landscapes through their opposing effects on the determinants of competitive outcomes. © 2018 John Wiley & Sons Ltd/CNRS.

  2. Effect of some amendments on leachate properties of a calcareous saline- sodic soil: A laboratory experiment

    NASA Astrophysics Data System (ADS)

    Yazdanpanah, Najme; Mahmoodabadi, Majid

    2010-05-01

    Soil salinity and sodicity are escalating problems worldwide, especially in Iran since 90 percent of the country is located in arid and semi-arid. Reclamation of sodic soils involves replacement of exchangeable Na by Ca. While some researches have been undertaken in the controllable laboratory conditions using soil column with emphasis on soil properties, the properties of effluent as a measure of soil reclamation remain unstudied. In addition, little attention has been paid to the temporal variability of effluent quality. The objective of this study was to investigate the effect of different amendments consist of gypsum, manure, pistachio residue, and their combination for ameliorating a calcareous saline sodic soil. Temporal variability of effluent properties during reclamation period was studied, as well. A laboratory experiment was conducted to evaluate the effect of different amendments using soil columns. The amendment treatments were: control, manure, pistachio residue, gypsum powder (equivalent of gypsum requirement), manure+gypsum and pistachio residue+gypsum, which were applied once in the beginning of the experiment. The study was performed in 120 days period and totally four irrigation treatments were supplied to each column. After irrigations, the effluent samples were collected every day at the bottom of the soil columns and were analyzed. The results show that for all treatments, cations (e.g. Ca, Mg, Na and K) in the outflow decreased with time, exponentially. Manure treatment resulted in highest rate of Ca, Mg, Na leaching from soil solution, in spite of the control which had the lowest rate. In addition, pistachio residue had the most effect on K leaching. Manure treatment showed the most EC and SAR in the leachate, while gypsum application leads to the least rate of them. The findings of this research reveal different rates of cations leaching from soil profile, which is important in environmental issues. Keywords: Saline sodic soil, Reclamation, Organic Matter, Gypsum, Leachate.

  3. Environmental aspects of produced-water salt releases in onshore and coastal petroleum-producing areas of the conterminous U.S. - a bibliography

    USGS Publications Warehouse

    Otton, James K.

    2006-01-01

    Environmental effects associated with the production of oil and gas have been reported since the first oil wells were drilled in the Appalachian Basin in Pennsylvania and Kentucky in the early to mid-1800s. The most significant of these effects are the degradation of soils, ground water, surface water, and ecosystems they support by releases of suspended and dissolved hydrocarbons and co-produced saline water. Produced water salts are less likely than hydrocarbons to be adsorbed by mineral phases in the soil and sediment and are not subject to degradation by biologic processes. Sodium is a major dissolved constituent in most produced waters and it causes substantial degradation of soils through altering of clays and soil textures and subsequent erosion. Produced water salts seem to have the most wide-ranging effects on soils, water quality, and ecosystems. Trace elements, including boron, lithium, bromine, fluorine, and radium, also occur in elevated concentrations in some produced waters. Many trace elements are phytotoxic and are adsorbed and may remain in soils after the saline water has been flushed away. Radium-bearing scale and sludge found in oilfield equipment and discarded on soils pose additional hazards to human health and ecosystems. This bibliography includes studies from across the oil- and natural-gas-producing areas of the conterminous United States that were published in the last 80 yrs. The studies describe the effects of produced water salts on soils, water quality, and ecosystems. Also included are reports that describe (1) the inorganic chemistry of produced waters included in studies of formation waters for various purposes, (2) other sources of salt affecting water quality that may be mistaken for produced water effects, (3) geochemical and geophysical techniques that allow discrimination of salt sources, (4) remediation technologies designed to repair damage caused to soils and ground water by produced water salts, and (5) contamination by naturally occurring radioactive materials (NORM)at oilfield sites.

  4. Integrating Multi-Sensor Remote Sensing and In-situ Measurements for Africa Drought Monitoring and Food Security Assessment

    NASA Astrophysics Data System (ADS)

    Hao, X.; Qu, J. J.; Motha, R. P.; Stefanski, R.; Malherbe, J.

    2014-12-01

    Drought is one of the most complicated natural hazards, and causes serious environmental, economic and social consequences. Agricultural production systems, which are highly susceptible to weather and climate extremes, are often the first and most vulnerable sector to be affected by drought events. In Africa, crop yield potential and grazing quality are already nearing their limit of temperature sensitivity, and, rapid population growth and frequent drought episodes pose serious complications for food security. It is critical to promote sustainable agriculture development in Africa under conditions of climate extremes. Soil moisture is one of the most important indicators for agriculture drought, and is a fundamentally critical parameter for decision support in crop management, including planting, water use efficiency and irrigation. While very significant technological advances have been introduced for remote sensing of surface soil moisture from space, in-situ measurements are still critical for calibration and validation of soil moisture estimation algorithms. For operational applications, synergistic collaboration is needed to integrate measurements from different sensors at different spatial and temporal scales. In this presentation, a collaborative effort is demonstrated for drought monitoring in Africa, supported and coordinated by WMO, including surface soil moisture and crop status monitoring. In-situ measurements of soil moisture, precipitation and temperature at selected sites are provided by local partners in Africa. Measurements from the Soil Moisture and Ocean Salinity (SMOS) and the Moderate Resolution Imaging Spectroradiometer (MODIS) are integrated with in-situ observations to derive surface soil moisture at high spatial resolution. Crop status is estimated through temporal analysis of current and historical MODIS measurements. Integrated analysis of soil moisture data and crop status provides both in-depth understanding of drought conditions and potential impacts on crop yield. This information is extremely useful in local decision support for agricultural management.

  5. Integrating Multi-Sensor Remote Sensing and In-situ Measurements for Africa Drought Monitoring and Food Security Assessment

    NASA Astrophysics Data System (ADS)

    Hao, X.; Qu, J. J.; Motha, R. P.; Stefanski, R.; Malherbe, J.

    2015-12-01

    Drought is one of the most complicated natural hazards, and causes serious environmental, economic and social consequences. Agricultural production systems, which are highly susceptible to weather and climate extremes, are often the first and most vulnerable sector to be affected by drought events. In Africa, crop yield potential and grazing quality are already nearing their limit of temperature sensitivity, and, rapid population growth and frequent drought episodes pose serious complications for food security. It is critical to promote sustainable agriculture development in Africa under conditions of climate extremes. Soil moisture is one of the most important indicators for agriculture drought, and is a fundamentally critical parameter for decision support in crop management, including planting, water use efficiency and irrigation. While very significant technological advances have been introduced for remote sensing of surface soil moisture from space, in-situ measurements are still critical for calibration and validation of soil moisture estimation algorithms. For operational applications, synergistic collaboration is needed to integrate measurements from different sensors at different spatial and temporal scales. In this presentation, a collaborative effort is demonstrated for drought monitoring in Africa, supported and coordinated by WMO, including surface soil moisture and crop status monitoring. In-situ measurements of soil moisture, precipitation and temperature at selected sites are provided by local partners in Africa. Measurements from the Soil Moisture and Ocean Salinity (SMOS) and the Moderate Resolution Imaging Spectroradiometer (MODIS) are integrated with in-situ observations to derive surface soil moisture at high spatial resolution. Crop status is estimated through temporal analysis of current and historical MODIS measurements. Integrated analysis of soil moisture data and crop status provides both in-depth understanding of drought conditions and potential impacts on crop yield. This information is extremely useful in local decision support for agricultural management.

  6. Towards an improved soil moisture retrieval for organic-rich soils from SMOS passive microwave L-band observations

    NASA Astrophysics Data System (ADS)

    Bircher, Simone; Richaume, Philippe; Mahmoodi, Ali; Mialon, Arnaud; Fernandez-Moran, Roberto; Wigneron, Jean-Pierre; Demontoux, François; Jonard, François; Weihermüller, Lutz; Andreasen, Mie; Rautiainen, Kimmo; Ikonen, Jaakko; Schwank, Mike; Drusch, Mattias; Kerr, Yann H.

    2017-04-01

    From the passive L-band microwave radiometer onboard the Soil Moisture and Ocean Salinity (SMOS) space mission global surface soil moisture data is retrieved every 2 - 3 days. Thus far, the empirical L-band Microwave Emission of the Biosphere (L-MEB) radiative transfer model applied in the SMOS soil moisture retrieval algorithm is exclusively calibrated over test sites in dry and temperate climate zones. Furthermore, the included dielectric mixing model relating soil moisture to relative permittivity accounts only for mineral soils. However, soil moisture monitoring over the higher Northern latitudes is crucial since these regions are especially sensitive to climate change. A considerable positive feedback is expected if thawing of these extremely organic soils supports carbon decomposition and release to the atmosphere. Due to differing structural characteristics and thus varying bound water fractions, the relative permittivity of organic material is lower than that of the most mineral soils at a given water content. This assumption was verified by means of L-band relative permittivity laboratory measurements of organic and mineral substrates from various sites in Denmark, Finland, Scotland and Siberia using a resonant cavity. Based on these data, a simple empirical dielectric model for organic soils was derived and implemented in the SMOS Soil Moisture Level 2 Prototype Processor (SML2PP). Unfortunately, the current SMOS retrieved soil moisture product seems to show unrealistically low values compared to in situ soil moisture data collected from organic surface layers in North America, Europe and the Tibetan Plateau so that the impact of the dielectric model for organic soils cannot really be tested. A simplified SMOS processing scheme yielding higher soil moisture levels has recently been proposed and is presently under investigation. Furthermore, recalibration of the model parameters accounting for vegetation and roughness effects that were thus far only evaluated using the default dielectric model for mineral soils is ongoing for the "organic" L-MEB version. Additionally, in order to decide where a soil moisture retrieval using the "organic" dielectric model should be triggered, information on soil organic matter content in the soil surface layer has to be considered in the retrieval algorithm. For this purpose, SoilGrids (www.soilgrids.org) providing soil organic carbon content (SOCC) in g/kg is under study. A SOCC threshold based on the relation between the SoilGrids' SOCC and the presence of organic soil surface layers (relevant to alter the microwave L-band emissions from the land surface) in the SoilGrids' source soil profile information has to be established. In this communication, we present the current status of the above outlined studies with the objective to advance towards an improved soil moisture retrieval for organic-rich soils from SMOS passive microwave L-band observations.

  7. Toxicity of Lunar Dust in Lungs Assessed by Examining Biomarkers in Exposed Mice

    NASA Technical Reports Server (NTRS)

    Lam, C.-W.; James, J. T.; Zeidler-Erdely, P. C.; Castranova, V.; Young, S. H.; Quan, C. L.; Khan-Mayberry, N.; Taylor, L. A.

    2009-01-01

    NASA plans to build an outpost on the Moon for prolonged human habitation and research. The lunar surface is covered by a layer of soil, of which the finest portion is highly reactive dust. NASA has invited NIOSH to collaboratively investigate the toxicity of lunar dust. Dust samples of respirable sizes were aerodynamically isolated from two lunar soil samples of different maturities (cosmic exposure ages) collected during the Apollo 16 mission. The lunar dust samples, titanium dioxide, or quartz, suspended in normal saline or in Survanta (a bovine lung surfactant), were given to groups of 5 mice (C-57 male) by intrapharyngeal aspiration at 1, 0.3, or 0.1 mg/mouse. The mice were euthanized 7 or 30 days later, and their lungs were lavaged to assess the toxicity biomarkers in bronchioalveolar lavage fluids. The acellular fractions were assayed for total proteins, lactate dehydrogenase activities, and cytokines; the cellular portions were assessed for total cell counts and cell differentials. Results from the high-dose groups showed that lunar dust, suspended in saline, was more toxic than TiO 2, but less toxic than quartz. Lunar dust particles aggregate and settle out rapidly in water or saline, but not in Survanta. Lunar dust suspended in Survanta manifested greater toxicity than lunar dust in saline. The increase in toxicity presumably was due to that Survanta gave a better particle dispersion in the lungs. The two lunar dust samples showed similar toxicity. The overall results showed that lunar dust is more toxic than TiO 2 but less toxic than quartz.

  8. Environmental tolerances of rare and common mangroves along light and salinity gradients.

    PubMed

    Dangremond, Emily M; Feller, Ilka C; Sousa, Wayne P

    2015-12-01

    Although mangroves possess a variety of morphological and physiological adaptations for life in a stressful habitat, interspecific differences in survival and growth under different environmental conditions can shape their local and geographic distributions. Soil salinity and light are known to affect mangrove performance, often in an interactive fashion. It has also been hypothesized that mangroves are intrinsically shade intolerant due to the high physiological cost of coping with saline flooded soils. To evaluate the relationship between stress tolerance and species distributions, we compared responses of seedlings of three widespread mangrove species and one narrow endemic mangrove species in a factorial array of light levels and soil salinities in an outdoor laboratory experiment. The more narrowly distributed species was expected to exhibit a lower tolerance of potentially stressful conditions. Two of the widespread species, Avicennia germinans and Lumnitzera racemosa, survived and grew well at low-medium salinity, regardless of light level, but performed poorly at high salinity, particularly under high light. The third widespread species, Rhizophora mangle, responded less to variation in light and salinity. However, at high salinity, its relative growth rate was low at every light level and none of these plants flushed leaves. As predicted, the rare species, Pelliciera rhizophorae, was the most sensitive to environmental stressors, suffering especially high mortality and reduced growth and quantum yield under the combined conditions of high light and medium-high salinity. That it only thrives under shaded conditions represents an important exception to the prevailing belief that halophytes are intrinsically constrained to be shade intolerant.

  9. Water flow and solute transport in the soil-plant-atmosphere continuum: Upscaling from rhizosphere to root zone

    NASA Astrophysics Data System (ADS)

    Lazarovitch, Naftali; Perelman, Adi; Guerra, Helena; Vanderborght, Jan; Pohlmeier, Andreas

    2016-04-01

    Root water and nutrient uptake are among the most important processes considered in numerical models simulating water content and fluxes in the subsurface, as they control plant growth and production as well as water flow and nutrient transport out of the root zone. Root water uptake may lead to salt accumulation at the root-soil interface, resulting in rhizophere salt concentrations much higher than in the bulk soil. This salt accumulation is caused by soluble salt transport towards the roots by mass flow through the soil, followed by preferential adsorption of specific nutrients by active uptake, thereby excluding most other salts at the root-soil interface or in the root apoplast. The salinity buildup can lead to large osmotic pressure gradients across the roots thereby effectively reducing root water uptake. The initial results from rhizoslides (capillary paper growth system) show that sodium concentration is decreasing with distance from the root, compared with the bulk that remained more stable. When transpiration rate was decreased under high salinity levels, sodium concentration was more homogenous compared with low salinity levels. Additionally, sodium and gadolinium distributions were measured nondestructively around tomato roots using magnetic resonance imaging (MRI). This technique could also observe the root structure and water content around single roots. Results from the MRI confirm the solutes concentration pattern around roots and its relation to their initial concentration. We conclude that local water potentials at the soil-root interface differ from bulk potentials. These relative differences increase with decreasing root density, decreasing initial salt concentration and increasing transpiration rate. Furthermore, since climate may significantly influence plant response to salinity a dynamic climate-coupled salinity reduction functions are critical in while using macroscopic numerical models.

  10. Identifying suitable land for alternative crops in a drying climate: soil salinity, texture and topographic conditions for the growth of old man saltbush (Atriplex nummularia)

    NASA Astrophysics Data System (ADS)

    Holmes, K. W.; Barrett-Lennard, E. G.; Altman, M.

    2011-12-01

    Experiments conducted under controlled conditions clearly show that the growth and survival of plants on saltland is affected by both the levels of salinity and waterlogging (or depth to water-table) in the soil. Different plant species thrive under varying combinations of these growth constraints. However in natural settings, short distance spatial variability in soil properties and subtle topographic features often complicate the definition of saline and soil hydrological conditions; additional factors may also overprint the trends identified under controlled conditions, making it difficult to define the physical settings where planting is economically viable. We investigated the establishment and growth of old man saltbush (Atriplex nummularia) in relation to variable soil-landscape conditions across an experimental site in southwestern Australia where the combination of high salinity and occasional seasonal waterlogging ruled out the growth of traditional crops and pastures. Saltbush can be critical supplemental feed in the dry season, providing essential nutrients for sheep in combination with sufficient water and dry feed (hay). We applied a range of modeling approaches including classification and regression trees and generalized linear models to statistically characterize these plant-environment relationships, and extend them spatially using full cover raster covariate datasets. Plant deaths could be consistently predicted (97% correct classification of independent dataset) using a combination of topographic variables, salinity, soil mineralogical information, and depth to the water table. Plant growth patterns were more difficult to predict, particularly after several years of grazing, however variation in plant volume was well-explained with a linear model (r2 = 0.6, P < 0.0001). All types of environmental data were required, supporting the starting hypothesis that saltland pasture success is driven by water movement in the landscape. The final selected covariates for modeling were a digital elevation model and derivatives, soil mineralogy, competitors for water (adjacent trees) and soil salinity (measured with an EM38). Our exploration of strengths and weaknesses of extrapolating simple relationships determined under controlled conditions to the field vindicates the importance of both approaches. Landholders often view the idea of the productive use of saltland with skepticism. The challenge is to use the combined datasets from glasshouse and field experiments to develop information guidelines for landholders that maximize the chances of revegetation success. Water availability, waterlogging, quality of the shallow groundwater, and secondary salinity are dominant processes that impact on agriculture in southwestern Australia. Improving our understanding of their interactions and effect on productivity will help adapt agricultural management to changing environmental conditions in the future.

  11. Coupled electrokinetics-adsorption technique for simultaneous removal of heavy metals and organics from saline-sodic soil.

    PubMed

    Lukman, Salihu; Essa, Mohammed Hussain; Mu'azu, Nuhu Dalhat; Bukhari, Alaadin

    2013-01-01

    In situ remediation technologies for contaminated soils are faced with significant technical challenges when the contaminated soil has low permeability. Popular traditional technologies are rendered ineffective due to the difficulty encountered in accessing the contaminants as well as when employed in settings where the soil contains mixed contaminants such as petroleum hydrocarbons, heavy metals, and polar organics. In this study, an integrated in situ remediation technique that couples electrokinetics with adsorption, using locally produced granular activated carbon from date palm pits in the treatment zones that are installed directly to bracket the contaminated soils at bench-scale, is investigated. Natural saline-sodic soil, spiked with contaminant mixture (kerosene, phenol, Cr, Cd, Cu, Zn, Pb, and Hg), was used in this study to investigate the efficiency of contaminant removal. For the 21-day period of continuous electrokinetics-adsorption experimental run, efficiency for the removal of Zn, Pb, Cu, Cd, Cr, Hg, phenol, and kerosene was found to reach 26.8, 55.8, 41.0, 34.4, 75.9, 92.49, 100.0, and 49.8%, respectively. The results obtained suggest that integrating adsorption into electrokinetic technology is a promising solution for removal of contaminant mixture from saline-sodic soils.

  12. Divergence in Life History Traits between Two Populations of a Seed-Dimorphic Halophyte in Response to Soil Salinity

    PubMed Central

    Yang, Fan; Baskin, Jerry M.; Baskin, Carol C.; Yang, Xuejun; Cao, Dechang; Huang, Zhenying

    2017-01-01

    Production of heteromorphic seeds is common in halophytes growing in arid environments with strong spatial and temporal heterogeneity. However, evidence for geographic variation (reflecting local adaptation) is almost nonexistent. Our primary aims were to compare the life history traits of two desert populations of this halophytic summer annual Suaeda corniculata subsp. mongolica and to investigate the phenotypic response of its plant and heteromorphic seeds to different levels of salt stress. Dimorphic seeds (F1) of the halophyte S. corniculata collected from two distant populations (F0) that differ in soil salinity were grown in a common environment under different levels of salinity to minimize the carryover effects from the field environment and tested for variation in plant (F1) and seed (F2) traits. Compared to F1 plants grown in low soil salinity, those grown in high salinity (>0.2 mol⋅L-1) were smaller and produced fewer seeds but had a higher reproductive allocation and a higher non-dormant brown seed: dormant black seed ratio. High salinity during plant growth decreased germination percentage of F2 black seeds but had no effect on F2 brown seeds. Between population differences in life history traits in the common environment corresponded with those in the natural populations. Phenotypic differences between the two populations were retained in F1 plants and in F2 seeds in the common environment, which suggests that the traits are genetically based. Our results indicate that soil salinity plays an ecologically important role in population regeneration of S. corniculata by influencing heteromorphic seed production in the natural habitat. PMID:28670319

  13. Vulnerability of Coastal Crop Land to Climate Change in the Northern Part of Bay of Bengal: Issues, Challenges and Future Prospects

    NASA Astrophysics Data System (ADS)

    Kamal, A. H. M.

    2015-12-01

    The coastal communities of northeastern part of Bay of Bengal are used to live and survive through facing different types of natural disasters since primitive time. Among the natural disasters, salinity intrusion due to climate change and sea level rise in the coastal agriculture land is the major unpleasant incident now days. Because of that wide area of the coastal agricultural land, coastal forest, drinking water facilities and fresh water availability are in critical condition which may cause 40 million people of 147 coastal districts covering 47201 km area are placed in danger. The nation wide assessment on the detected of coastal soil and water salinity is not conducted since 9 years. The survey on the coastal soil salinity on 1973 and 2000 found that the saline effected land is increased from 0.83 million ha to 1.20 million ha within 27 years. It is assumed that at present the rate of salinity intrusion in the coastal agriculture land will be higher than those of 1973 and 2000. The soil salinity was recorded 18-20 psu after AILA in the south-eastern coast of Bangladesh and increased further 2-4 psu due to low precipitation which causes crop burning. This paper aims to know the salinity intrusion in the coastal soil and water of Bangladesh, which would help to plan and improvement of the sustainable agriculture production. Study revealed that to face any extra stresses on the coastal agriculture land due to climate change requires extensive inventory, awareness activities, mitigation measures, adaptation techniques and extension of indigenous technology.

  14. Use of radium isotopes to determine the age and origin of radioactive barite at oil-field production sites

    USGS Publications Warehouse

    Zielinski, R.A.; Otton, J.K.; Budahn, J.R.

    2001-01-01

    Radium-bearing barite (radiobarite) is a common constituent of scale and sludge deposits that form in oil-field production equipment. The barite forms as a precipitate from radium-bearing, saline formation water that is pumped to the surface along with oil. Radioactivity levels in some oil-field equipment and in soils contaminated by scale and sludge can be sufficiently high to pose a potential health threat. Accurate determinations of radium isotopes (226Ra+228Ra) in soils are required to establish the level of soil contamination and the volume of soil that may exceed regulatory limits for total radium content. In this study the radium isotopic data are used to provide estimates of the age of formation of the radiobarite contaminant. Age estimates require that highly insoluble radiobarite approximates a chemically closed system from the time of its formation. Age estimates are based on the decay of short-lived 228Ra (half-life=5.76 years) compared to 226Ra (half-life=1600 years). Present activity ratios of 228Ra/226Ra in radiobarite-rich scale or highly contaminated soil are compared to initial ratios at the time of radiobarite precipitation. Initial ratios are estimated by measurements of saline water or recent barite precipitates at the site or by considering a range of probable initial ratios based on reported values in modern oil-field brines. At sites that contain two distinct radiobarite sources of different age, the soils containing mixtures of sources can be identified, and mixing proportions quantified using radium concentration and isotopic data. These uses of radium isotope data provide more description of contamination history and can possibly address liability issues. Copyright ?? 2000 .

  15. Study of the technical performance of localized irrigation and its environmental and agroeconomic impact in the first areas of collective reconversion at the irrigated perimeter of the Tadla - Beni Moussa perimeter of the west - Morocco

    NASA Astrophysics Data System (ADS)

    Mouradi, Abdellah; Ait Yacine, Zehor; El Harti, Abderrazak

    2018-05-01

    The evaluation of the performance of the localized irrigation system involved a selected sample of farmers to reflect the diversity of the study area. The hydraulic diagnosis revealed the absence of apparent malfunctioning anomalies of the installations studied (Coefficient of Distribution Uniformity ≥ 90% with average application efficiencies and overall of 90.54 and 86.83% respectively). In terms of the combined use of surface and underground irrigation water this new technique has saved about 30% compared to conventional irrigation. The agro-economic evaluation revealed that the crops practiced have high value-added and optimize the value of irrigation water. The environmental impact has resulted in an average drawdown of the static level of groundwater of 2.59 m due mainly to the new irrigation method introduced, which limited the percolation of water to the aquifer. The drip-to-drip transition resulted in an increase in salinity relative compared to the reference situation (+ 0.59 %, or 0.01 mS / cm) but to different degrees depending on the prospecting soil horizon. The practice of fertilization remains the major and probable cause of soil salinization of aquifers. The effect of soluble salts on the soil was investigated through the risks associated with sodium, which showed that the soil permeability problem does not arise at this time (SAR ≤ 15). The residual sodium carbonate remains less than 1.25 meq / l thus not causing soil dispersion.

  16. Soil- and plant- water uptake in saline environments and their consequences to plant adaptation in fluctuating climates

    NASA Astrophysics Data System (ADS)

    Volpe, V.; Albertson, J. D.; Katul, G. G.; Marani, M.

    2010-12-01

    Ecological processes determining plant colonization are quite peculiar and competition among different species is governed by a set of unique adaptations to stress conditions caused by drought, hypoxic or hyper-saline conditions. These adaptations and possible positive feedbacks often lead to the formation of patterns of vegetation colonization and spatial heterogeneity (zonation), and play a primary role in the stabilization of sediments. It is these issues that frame the scope of this study. The main objective of this work is to track one of the fundamental pathways between plant adaptation (quantified in terms of physiological and ecological attributes such as leaf area or root density profile) and feedbacks (quantified by plant-mediated alterations to water availability and salinity levels): root water uptake. Because root-water uptake is the main conduit connecting transpiring leaves to reservoirs of soil water, the means by which salinity modifies the processes governing its two end-points and any two-way interactions between them serves as a logical starting point. Salinity effects on leaf transpiration and photosynthesis are first explored via stomatal optimization principles that maximize carbon gain at a given water loss for autonomous leaves. Salinity directly affects leaf physiological attributes such as mesophyll conductance and photosynthetic parameters and hence over-all conductance to transpiration as well as different strategies to cope with the high salinity (e.g. through salt seclusion, compartmentation and osmotic adjustments). A coupled model of subsurface flow based on a modified Richards’ equation that accounts for the effects of increasing salinity, anaerobic conditions, water stress and compensation factors is developed. Plant water uptake is considered as a soil moisture sink term with a potential rate dictated by the carbon demands of the leaves, and an actual rate that accounts for both - hydraulic and salinity limitations. Using this model, the root distribution shape function (e.g. constant, linear, exponential, or power-law) that optimally satisfies these carbon demands and simultaneous hydraulic and salinity constraints of the soil-root system is then determined for a set of forcing variables and boundary conditions. Adaptation speeds and feedback strengths to future climatic fluctuations are explored as ‘departures’ from this equilibrium profile state.

  17. Distribution of ion contents and microorganisms during the electro-bioremediation of petroleum-contaminated saline soil.

    PubMed

    Zhang, Meng; Guo, Shuhai; Li, Fengmei; Wu, Bo

    2017-10-15

    This study investigated the distribution of ion contents and microorganisms during the electro-bioremediation (EK-Bio) of petroleum-contaminated saline soil. The results showed that soil ions tend to accumulate around the electrodes, and the concentration was correlated with the distance from the electrodes. The average soil ion content was 7.92 g/kg around the electrodes (site A) and 0.55 g/kg at the furthest distance from the electrodes (site B) after 112 days of treatment, while the initial average content was 3.92 g/kg. Smooth linear (R 2 = 0.98) loss of soil ions was observed at site C, which was closer to the electrodes than site B, and had a final average soil ion content of 1.96 g/kg. The dehydrogenase activity was much higher in EK-Bio test soil than in the Bio test soil after 28 days of treatment, and followed the order: site C > site B > site A. However, the soil dehydrogenase activity dropped continuously when the soil ion reached very high and low concentrations at sites A and B. The soil microbial community varied in sample sites that had different ion contents, and the soil microbial diversity followed the order: site C > site B > site A. The applied electric field clearly enhanced the biodegradation efficiency for soil petroleum contaminants. However, the biodegradation promotion effects were weakening in soils where the ion contents were extremely high and low (sites A and B). These results can provide useful information for EK-Bioremediation of organic-contaminated saline soil.

  18. Effects of chemical elements in the trophic levels of natural salt marshes.

    PubMed

    Kamiński, Piotr; Barczak, Tadeusz; Bennewicz, Janina; Jerzak, Leszek; Bogdzińska, Maria; Aleksandrowicz, Oleg; Koim-Puchowska, Beata; Szady-Grad, Małgorzata; Klawe, Jacek J; Woźniak, Alina

    2016-06-01

    The relationships between the bioaccumulation of Na, K, Ca, Mg, Fe, Zn, Cu, Mn, Co, Cd, and Pb, acidity (pH), salinity (Ec), and organic matter content within trophic levels (water-soil-plants-invertebrates) were studied in saline environments in Poland. Environments included sodium manufactures, wastes utilization areas, dumping grounds, and agriculture cultivation, where disturbed Ca, Mg, and Fe exist and the impact of Cd and Pb is high. We found Zn, Cu, Mn, Co, and Cd accumulation in the leaves of plants and in invertebrates. Our aim was to determine the selectivity exhibited by soil for nutrients and heavy metals and to estimate whether it is important in elucidating how these metals are available for plant/animal uptake in addition to their mobility and stability within soils. We examined four ecological plant groups: trees, shrubs, minor green plants, and water macrophytes. Among invertebrates, we sampled breastplates Malacostraca, small arachnids Arachnida, diplopods Diplopoda, small insects Insecta, and snails Gastropoda. A higher level of chemical elements was found in saline polluted areas (sodium manufactures and anthropogenic sites). Soil acidity and salinity determined the bioaccumulation of free radicals in the trophic levels measured. A pH decrease caused Zn and Cd to increase in sodium manufactures and an increase in Ca, Zn, Cu, Cd, and Pb in the anthropogenic sites. pH increase also caused Na, Mg, and Fe to increase in sodium manufactures and an increase in Na, Fe, Mn, and Co in the anthropogenic sites. There was a significant correlation between these chemical elements and Ec in soils. We found significant relationships between pH and Ec, which were positive in saline areas of sodium manufactures and negative in the anthropogenic and control sites. These dependencies testify that the measurement of the selectivity of cations and their fluctuation in soils provide essential information on the affinity and binding strength in these environments. The chemical elements accumulated in soils and plants; however, further flow is selective and variable. The selectivity exhibited by soil systems for nutrients and heavy metals is important in elucidating how these metals become available for plant/animal uptake and also their mobility and stability in soils.

  19. Field-scale apparent soil electrical conductivity

    USDA-ARS?s Scientific Manuscript database

    Soils are notoriously spatially heterogeneous and many soil properties (e.g., salinity, water content, trace element concentration, etc.) are temporally variable, making soil a complex media. Spatial variability of soil properties has a profound influence on agricultural and environmental processes ...

  20. Unstable Pore-Water Flow in Intertidal Wetlands

    NASA Astrophysics Data System (ADS)

    Barry, D. A.; Shen, C.; Li, L.

    2014-12-01

    Salt marshes are important intertidal wetlands strongly influenced by interactions between surface water and groundwater. Bordered by coastal water, the marsh system undergoes cycles of inundation and exposure driven by the tide. This leads to dynamic, complex pore-water flow and solute transport in the marsh soil. Pore-water circulations occur over vastly different spatial and temporal scales with strong link to the marsh topography. These circulations control solute transport between the marsh soil and the tidal creek, and ultimately affect the overall nutrient exchange between the marsh and coastal water. The pore-water flows also dictate the soil condition, particularly aeration, which influences the marsh plant growth. Numerous studies have been carried out to examine the pore-water flow process in the marsh soil driven by tides, focusing on stable flow with the assumption of homogeneity in soil and fluid properties. This assumption, however, is questionable given the actual inhomogeneous conditions in the field. For example, the salinity of surface water in the tidal creek varies temporally and spatially due to the influence of rainfall and evapotranspiration as well as the freshwater input from upland areas to the estuary, creating density gradients across the marsh surface and within the marsh soil. Many marshes possess soil stratigraphy with low-permeability mud typically overlying high-permeability sandy deposits. Macropores such as crab burrows are commonly distributed in salt marsh sediments. All these conditions are prone to the development of non-uniform, unstable preferential pore-water flow in the marsh soil, for example, funnelling and fingering. Here we present results from laboratory experiments and numerical simulations to explore such unstable flow. In particular, the analysis aims to address how the unstable flow modifies patterns of local pore-water movement and solute transport, as well as the overall exchange between the marsh soil and creek water. The changes would influence not only the marsh soil condition for plant growth but also nutrient cycling in the marsh soil and discharge to the coastal sea.

Top