Sample records for surface soils strongly

  1. Antisoiling technology: Theories of surface soiling and performance of antisoiling surface coatings

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.; Willis, P. B.

    1984-01-01

    Physical examination of surfaces undergoing natural outdoor soiling suggests that soil matter accumulates in up to three distinct layers. The first layer involves strong chemical attachment or strong chemisorption of soil matter on the primary surface. The second layer is physical, consisting of a highly organized arrangement of soil creating a gradation in surface energy from a high associated with the energetic first layer to the lowest possible state on the outer surfce of the second layer. The lowest possible energy state is dictated by the physical nature of the regional atmospheric soiling materials. These first two layers are resistant to removal by rain. The third layer constitutes a settling of loose soil matter, accumulating in dry periods and being removed during rainy periods. Theories and evidence suggest that surfaces that should be naturally resistant to the formation of the first two-resistant layers should be hard, smooth, hydrophobic, free of first-period elements, and have the lowest possible surface energy. These characteristics, evolving as requirements for low-soiling surfaces, suggest that surfaces or surface coatings should be of fluorocarbon chemistry. Evidence for the three-soil-layer concept, and data on the positive performance of candidate fluorocarbon coatings on glass and transparent plastic films after 28 months of outdoor exposure, are presented.

  2. Impact of surface coal mining on soil hydraulic properties

    Treesearch

    X. Liu; J. Q. Wu; P. W. Conrad; S. Dun; C. S. Todd; R. L. McNearny; William Elliot; H. Rhee; P. Clark

    2016-01-01

    Soil erosion is strongly related to soil hydraulic properties. Understanding how surface coal mining affects these properties is therefore important in developing effective management practices to control erosion during reclamation. To determine the impact of mining activities on soil hydraulic properties, soils from undisturbed areas, areas of roughly graded mine...

  3. Soil Erodibility Parameters Under Various Cropping Systems of Maize

    NASA Astrophysics Data System (ADS)

    van Dijk, P. M.; van der Zijp, M.; Kwaad, F. J. P. M.

    1996-08-01

    For four years, runoff and soil loss from seven cropping systems of fodder maize have been measured on experimental plots under natural and simulated rainfall. Besides runoff and soil loss, several variables have also been measured, including rainfall kinetic energy, degree of slaking, surface roughness, aggregate stability, soil moisture content, crop cover, shear strength and topsoil porosity. These variables explain a large part of the variance in measured runoff, soil loss and splash erosion under the various cropping systems. The following conclusions were drawn from the erosion measurements on the experimental plots (these conclusions apply to the spatial level at which the measurements were carried out). (1) Soil tillage after maize harvest strongly reduced surface runoff and soil loss during the winter; sowing of winter rye further reduced winter erosion, though the difference with a merely tilled soil is small. (2) During spring and the growing season, soil loss is reduced strongly if the soil surface is partly covered by plant residues; the presence of plant residue on the surface appeared to be essential in achieving erosion reduction in summer. (3) Soil loss reductions were much higher than runoff reductions; significant runoff reduction is only achieved by the straw system having flat-lying, non-fixed plant residue on the soil surface; the other systems, though effective in reducing soil loss, were not effective in reducing runoff.

  4. Influence of soil phosphorus and manure on phosphorus leaching in Swedish topsoils

    USDA-ARS?s Scientific Manuscript database

    In Sweden, subsurface transport of phosphorus (P) represents the primary pathway of concern to surface water quality. While strong relationships have been consistently observed between P in surface runoff and soil test P, there have been mixed findings linking P in leachate with soil test P. To expl...

  5. Pleistocene permafrost features in soils in the South-western Italian Alps

    NASA Astrophysics Data System (ADS)

    D'Amico, Michele; Catoni, Marcella; Bonifacio, Eleonora; Zanini, Ermanno

    2015-04-01

    Because of extensive Pleistocenic glaciations which erased most of the previously existing soils, slope steepness and climatic conditions favoring soil erosion, most soils observed on the Alps (and in other mid-latitude mountain ranges) developed only during the Holocene. However, in few sites, particularly in the outermost sections of the Alpine range, Pleistocene glaciers covered only small and scattered surfaces because of the low altitude reached in the basins, and ancient soils could be preserved for long periods of time on particularly stable surfaces. In some cases, these soils retain good memories of past periglacial activity. We described and sampled soils on stable surfaces in the Upper Tanaro valley, Ligurian Alps (Southwestern Piemonte, Italy). The sampling sites were between 600 to 1600 m of altitude, under present day lower montane Castanea sativa/Ostrya carpinifolia forests, montane Fagus sylvatica and Pinus uncinata forests or montane heath/grazed grassland, on different quartzitic substrata. The surface morphology often showed strongly developed, fossil periglacial patterned ground forms, such as coarse stone circles on flat surfaces, or stone stripes on steeper slopes. The stone circles could be up to 5 m wide, while the sorted stripes could be as wide as 12-15 m. A strong lateral cryogenic textural sorting characterized the fine fraction too, with sand dominating close to the stone rims of the patterned ground features and silt and clay the central parts. The surface 60-120 cm of the soils were podzolized during the Holocene; as a result of the textural lateral sorting, the thickness of the podzolic E and Bs horizons varied widely across the patterns. The lower boundary of the Holocene Podzols was abrupt, and corresponded with dense layers with thick coarse laminar structure and illuvial silt accumulation (Cjj horizons). Dense Cjj diapiric inclusions were sometimes preserved in the central parts of the patterns. Where cover beds were developed, more superimposed podzol cycles were observed: the deeper podzols, included in the dense layer, were strongly cryoturbated and showed convoluted horizons and buried organic horizons. The presence of the dense Cjj horizons also influenced surface soil hydrology, which in turn influenced the expression of E and Bs horizons, in addition to textural lateral variability. In conclusion, surface morphology and soil properties evidence the presence of permafrost during cold Pleistocene phases, with an active layer 60-120 cm thick, associated with a particularly strong cryoturbation. However, all the permafrost features were not necessarily formed during the same periods, and dating of different materials would be necessary in order to obtain precise paleoenvironmental reconstructions of cold Quaternary phases in the Alps.

  6. Circular linkages between soil biodiversity, fertility and plant productivity are limited to topsoil at the continental scale.

    PubMed

    Delgado-Baquerizo, Manuel; Powell, Jeff R; Hamonts, Kelly; Reith, Frank; Mele, Pauline; Brown, Mark V; Dennis, Paul G; Ferrari, Belinda C; Fitzgerald, Anna; Young, Andrew; Singh, Brajesh K; Bissett, Andrew

    2017-08-01

    The current theoretical framework suggests that tripartite positive feedback relationships between soil biodiversity, fertility and plant productivity are universal. However, empirical evidence for these relationships at the continental scale and across different soil depths is lacking. We investigate the continental-scale relationships between the diversity of microbial and invertebrate-based soil food webs, fertility and above-ground plant productivity at 289 sites and two soil depths, that is 0-10 and 20-30 cm, across Australia. Soil biodiversity, fertility and plant productivity are strongly positively related in surface soils. Conversely, in the deeper soil layer, the relationships between soil biodiversity, fertility and plant productivity weaken considerably, probably as a result of a reduction in biodiversity and fertility with depth. Further modeling suggested that strong positive associations among soil biodiversity-fertility and fertility-plant productivity are limited to the upper soil layer (0-10 cm), after accounting for key factors, such as distance from the equator, altitude, climate and physicochemical soil properties. These findings highlight the importance of surface soil biodiversity for soil fertility, and suggest that any loss of surface soil could potentially break the links between soil biodiversity-fertility and/or fertility-plant productivity, which can negatively impact nutrient cycling and food production, upon which future generations depend. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  7. Speciation study in the sulfamethoxazole-copper-pH-soil system: implications for retention prediction.

    PubMed

    Morel, Marie-Christine; Spadini, Lorenzo; Brimo, Khaled; Martins, Jean M F

    2014-05-15

    Sulfamethoxazole (SMX) is a persistent sulfonamide antibiotic drug used in the veterinary and human medical sectors and is widely detected in natural waters. To better understand the reactive transport of this antibiotic in soil, the speciation of the SMX-Cu(II)-H(+) system in solution and the combined sorption of these components in a natural vineyard soil were investigated by acid-base titrimetry and infrared spectroscopy. Cu(II) is considered to represent a strongly complexing trace element cation (such as Cd(2+), Zn(2+), Pb(2+), Ni(2+), etc.) in comparison to more prevalent but more weakly binding cations (such as Ca(2+) and Mg(2+)). Titrimetric studies showed that, relative to other antibiotics, such as tetracycline, SMX is a weak copper chelating agent and a weak soil sorbent at the soil pH (pH6). However, the sorption of SMX in soil increases strongly (by a factor of 6) in the presence of copper. This finding strongly supports the hypothetical formation of ternary SMX-Cu-soil complexes, especially considering that copper is dominantly sorbed in a state at pH6. The data were successfully modelled with PhreeqC assuming the existence of binary and ternary surface complexes in equilibrium with aqueous Cu, SMX and Cu-SMX complexes. It is thought that other strongly complexing cations present on the surface of reactive organic and mineral soil phases, such as Cd(II), Ni(II), Zn(II), Pb(II), Fe(II/III), Mn(II/IV) and Al(III), affect the solid/solution partitioning of SMX. This study thus suggests that surface-adsorbed cations significantly increase the sorption of SMX. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Vegetation-induced turbulence influencing evapotranspiration-soil moisture coupling: Implications for semiarid regions

    NASA Astrophysics Data System (ADS)

    Haghighi, E.; Kirchner, J. W.; Entekhabi, D.

    2016-12-01

    The relationship between soil moisture and evapotranspiration (ET) fluxes is an important component of land-atmosphere interactions controlling hydrology-climate feedback processes. Important as this relationship is, it remains empirical and physical mechanisms governing its dynamics are insufficiently studied. This is particularly of importance for semiarid regions (currently comprising about half of the Earth's land surface) where the shallow surface soil layer is the primary source of ET and direct evaporation from bare soil is likely a large component of the total flux. Hence, ET-soil moisture coupling in these regions is hypothesized to be strongly influenced by soil evaporation and associated mechanisms. Motivated by recent progress in mechanistic modeling of localized heat and mass exchange rates from bare soil surfaces covered by cylindrical bluff-body elements, we developed a physically based ET model explicitly incorporating coupled impacts of soil moisture and vegetation-induced turbulence in the near-surface region. Model predictions of ET and its partitioning were in good agreement with measured data and suggest that the strength and nature of ET-soil moisture interactions in sparsely vegetated areas are strongly influenced by aerodynamic (rather than radiative) forcing namely wind speed and near-surface turbulence generation as a function of vegetation type and cover fraction. The results demonstrated that the relationship between ET and soil moisture varies from a nonlinear function (the dual regime behavior) to a single moisture-limited regime (linear relationship) by increasing wind velocity and enhancing turbulence generation in the near-surface region (small-scale woody vegetation species of low cover fraction). Potential benefits of this study for improving accuracy and predictive capabilities of remote sensing techniques when applied to semiarid environments will also be discussed.

  9. Improving Water Level and Soil Moisture Over Peatlands in a Global Land Modeling System

    NASA Technical Reports Server (NTRS)

    Bechtold, M.; De Lannoy, G. J. M.; Roose, D.; Reichle, R. H.; Koster, R. D.; Mahanama, S. P.

    2017-01-01

    New model structure for peatlands results in improved skill metrics (without any parameter calibration) Simulated surface soil moisture strongly affected by new model, but reliable soil moisture data lacking for validation.

  10. Volatilization of pesticides from the bare soil surface: evaluation of the humidity effect.

    PubMed

    Schneider, Martina; Endo, Satoshi; Goss, Kai-Uwe

    2013-01-01

    Volatilization of pesticides from soils under dry conditions (water content below the permanent wilting point) can be significantly influenced by sorption to hydrated mineral surfaces. This sorption process strongly depends on the water activity, expressed as equilibrium relative humidity in the pore space of the soil, and on the available surface area of the hydrated minerals. In this study, the influence of different humidity regimes on the volatilization of two pesticides (triallate and trifluralin) was demonstrated with a bench-scale wind tunnel system that allowed the establishment of well controlled humidity conditions within the soil. In the experiment starting with very dry conditions, increasing the relative humidity in the adjacent air from 60 to 85% resulted in an up to 8 times higher volatilization rate of the pesticides. An additional strong increase in volatilization (up to 3 times higher) was caused by a simulated rain event, which eliminates all sorption sites associated to mineral surfaces. In agreement with this interpretation, the comparison of two soils suggested that mineral surface area was the soil property that governs the volatilization under dry conditions, whereas soil organic matter was the controlling variable under wet conditions. In contrast to expectations, the use of a novel capsulated suspension for triallate showed the same humidity effects and no substantially lower volatilization rates in comparison to the regular formulation. This study demonstrated that humidity effects on pesticide volatilization can be interpreted via the mechanism of sorption to mineral surfaces under dry conditions. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Evolution of Indian land surface biases in the seasonal hindcasts from the Met Office Global Seasonal Forecasting System GloSea5

    NASA Astrophysics Data System (ADS)

    Chevuturi, Amulya; Turner, Andrew G.; Woolnoug, Steve J.; Martin, Gill

    2017-04-01

    In this study we investigate the development of biases over the Indian region in summer hindcasts of the UK Met Office coupled initialised global seasonal forecasting system, GloSea5-GC2. Previous work has demonstrated the rapid evolution of strong monsoon circulation biases over India from seasonal forecasts initialised in early May, together with coupled strong easterly wind biases on the equator. These mean state biases lead to strong precipitation errors during the monsoon over the subcontinent. We analyse a set of three springtime start dates for the 20-year hindcast period (1992-2011) and fifteen total ensemble members for each year. We use comparisons with variety of observations to assess the evolution of the mean state biases over the Indian land surface. All biases within the model develop rapidly, particularly surface heat and radiation flux biases. Strong biases are present within the model climatology from pre-monsoon (May) in the surface heat fluxes over India (higher sensible / lower latent heat fluxes) when compared to observed estimates. The early evolution of such biases prior to onset rains suggests possible problems with the land surface scheme or soil moisture errors. Further analysis of soil moisture over the Indian land surface shows a dry bias present from the beginning of the hindcasts during the pre-monsoon. This lasts until the after the monsoon develops (July) after which there is a wet bias over the region. Soil moisture used for initialization of the model also shows a dry bias when compared against the observed estimates, which may lead to the same in the model. The early dry bias in the model may reduce local moisture availability through surface evaporation and thus may possibly limit precipitation recycling. On this premise, we identify and test the sensitivity of the monsoon in the model against higher soil moisture forcing. We run sensitivity experiments initiated using gridpoint-wise annual soil moisture maxima over the Indian land surface as input for experiments in the atmosphere-only version of the model. We plan to analyse the response of the sensitivity experiments on seasonal forecasting of surface heat fluxes and subsequently monsoon precipitation.

  12. Influence of soil environmental parameters on thoron exhalation rate.

    PubMed

    Hosoda, M; Tokonami, S; Sorimachi, A; Ishikawa, T; Sahoo, S K; Furukawa, M; Shiroma, Y; Yasuoka, Y; Janik, M; Kavasi, N; Uchida, S; Shimo, M

    2010-10-01

    Field measurements of thoron exhalation rates have been carried out using a ZnS(Ag) scintillation detector with an accumulation chamber. The influence of soil surface temperature and moisture saturation on the thoron exhalation rate was observed. When the variation of moisture saturation was small, the soil surface temperature appeared to induce a strong effect on the thoron exhalation rate. On the other hand, when the variation of moisture saturation was large, the influence of moisture saturation appeared to be larger than the soil surface temperature. The number of data ranged over 405, and the median was estimated to be 0.79 Bq m(-2) s(-1). Dependence of geology on the thoron exhalation rate from the soil surface was obviously found, and a nationwide distribution map of the thoron exhalation rate from the soil surface was drawn by using these data. It was generally high in the southwest region than in the northeast region.

  13. Analysis of factors controlling soil phosphorus loss with surface runoff in Huihe National Nature Reserve by principal component and path analysis methods.

    PubMed

    He, Jing; Su, Derong; Lv, Shihai; Diao, Zhaoyan; Bu, He; Wo, Qiang

    2018-01-01

    Phosphorus (P) loss with surface runoff accounts for the P input to and acceleration of eutrophication of the freshwater. Many studies have focused on factors affecting P loss with surface runoff from soils, but rarely on the relationship among these factors. In the present study, rainfall simulation on P loss with surface runoff was conducted in Huihe National Nature Reserve, in Hulunbeier grassland, China, and the relationships between P loss with surface runoff, soil properties, and rainfall conditions were examined. Principal component analysis and path analysis were used to analyze the direct and indirect effects on P loss with surface runoff. The results showed that P loss with surface runoff was closely correlated with soil electrical conductivity, soil pH, soil Olsen P, soil total nitrogen (TN), soil total phosphorus (TP), and soil organic carbon (SOC). The main driving factors which influenced P loss with surface runoff were soil TN, soil pH, soil Olsen P, and soil water content. Path analysis and determination coefficient analysis indicated that the standard multiple regression equation for P loss with surface runoff and each main factor was Y = 7.429 - 0.439 soil TN - 6.834 soil pH + 1.721 soil Olsen-P + 0.183 soil water content (r = 0.487, p < 0.01, n = 180). Soil TN, soil pH, soil Olsen P, and soil water content and the interactions between them were the main factors affecting P loss with surface runoff. The effect of physical and chemical properties of undisturbed soils on P loss with surface runoff was discussed, and the soil water content and soil Olsen P were strongly positive influences on the P loss with surface runoff.

  14. Soil Carbon Dioxide Production and Surface Fluxes: Subsurface Physical Controls

    NASA Astrophysics Data System (ADS)

    Risk, D.; Kellman, L.; Beltrami, H.

    Soil respiration is a critical determinant of landscape carbon balance. Variations in soil temperature and moisture patterns are important physical processes controlling soil respiration which need to be better understood. Relationships between soil respi- ration and physical controls are typically addressed using only surface flux data but other methods also exist which permit more rigorous interpretation of soil respira- tion processes. Here we use a combination of subsurface CO_{2} concentrations, surface CO_{2} fluxes and detailed physical monitoring of the subsurface envi- ronment to examine physical controls on soil CO_{2} production at four climate observatories in Eastern Canada. Results indicate that subsurface CO_{2} produc- tion is more strongly correlated to the subsurface thermal environment than the surface CO_{2} flux. Soil moisture was also found to have an important influence on sub- surface CO_{2} production, particularly in relation to the soil moisture - soil profile diffusivity relationship. Non-diffusive profile CO_{2} transport appears to be im- portant at these sites, resulting in a de-coupling of summertime surface fluxes from subsurface processes and violating assumptions that surface CO_{2} emissions are the result solely of diffusion. These results have implications for the study of soil respiration across a broad range of terrestrial environments.

  15. Research-derived insights into surface geochemical hydrocarbon exploration

    USGS Publications Warehouse

    Price, L.C.

    1996-01-01

    Research studies based on foreland basins (mainly in eastern Colorado) examined three surface geochemical exploration (SGE) methods as possible hydrocarbon (HC) exploration techniques. The first method, microbial soil surveying, has high potential as an exploration tool, especially hi development and enhanced recovery operations. Integrative adsorption, the second technique, is not effective as a quantitative SGE method because water, carbon dioxide, nitrous oxide, unsaturated hydrocarbons, and organic compounds are collected by the adsorbent (activated charcoal) much more strongly than covalently bonded microseeping Q-Cs thermogenic HCs. Qualitative comparisons (pattern recognition) of C8+ mass spectra cannot gauge HC gas microseepage that involves only the Q-Cs HCs. The third method, soil cakite surveying, also has no potential as an exploration tool. Soil calcite concentrations had patterns with pronounced areal contrasts, but these patterns had no geometric relationship to surface traces of established or potential production, that is, the patterns were random. Microscopic examination of thousands of soils revealed that soil calcite was an uncrystallized caliche coating soil particles. During its precipitation, caliche captures or occludes any gases, elements, or compounds in its immediate vicinity. Thus, increased signal intensity of some SGE methods should depend on increasing soil calcite concentrations. Analyses substantiate this hypothesis. Because soil calcite has no utility as a surface exploration tool, any surface method that depends on soil calcite has a diminished utility as an SGE tool. Isotopic analyses of soil calcites revealed carbonate carbon ??13C values of -4.0 to +2.07co (indicating a strong influence of atmospheric CO2) as opposed to expected values of-45 to -30%c if the carbonate carbon had originated from microbial oxidation of microseeping HC gases. These analyses confirm a surface origin for this soil calcite (caliche), which is not necessarily related to HC gas microseepage. This previously unappreciated pivotal role of caliche is hypothesized to contribute significantly to the poor and inconsistent results of some SGE methods.

  16. LINKING SOLID PHASE SPECIATION OF PB SEQUESTERED TO BIRNESSITE TO ORAL PB BIOACCESSIBLITY: IMPLICATIONS FOR SOIL REMEDIATION

    EPA Science Inventory

    Lead (Pb) sorption onto oxide surfaces in soils may strongly influence the risk posed from incidental ingestion of lead-contaminated soils. In this study, Pb was sorbed to a model soil mineral, birnessite, and was placed in a simulated gastrointestinal tract (in vitro) to simula...

  17. Evaluation of a cosmic-ray neutron sensor network for improved land surface model prediction

    NASA Astrophysics Data System (ADS)

    Baatz, Roland; Hendricks Franssen, Harrie-Jan; Han, Xujun; Hoar, Tim; Reemt Bogena, Heye; Vereecken, Harry

    2017-05-01

    In situ soil moisture sensors provide highly accurate but very local soil moisture measurements, while remotely sensed soil moisture is strongly affected by vegetation and surface roughness. In contrast, cosmic-ray neutron sensors (CRNSs) allow highly accurate soil moisture estimation on the field scale which could be valuable to improve land surface model predictions. In this study, the potential of a network of CRNSs installed in the 2354 km2 Rur catchment (Germany) for estimating soil hydraulic parameters and improving soil moisture states was tested. Data measured by the CRNSs were assimilated with the local ensemble transform Kalman filter in the Community Land Model version 4.5. Data of four, eight and nine CRNSs were assimilated for the years 2011 and 2012 (with and without soil hydraulic parameter estimation), followed by a verification year 2013 without data assimilation. This was done using (i) a regional high-resolution soil map, (ii) the FAO soil map and (iii) an erroneous, biased soil map as input information for the simulations. For the regional soil map, soil moisture characterization was only improved in the assimilation period but not in the verification period. For the FAO soil map and the biased soil map, soil moisture predictions improved strongly to a root mean square error of 0.03 cm3 cm-3 for the assimilation period and 0.05 cm3 cm-3 for the evaluation period. Improvements were limited by the measurement error of CRNSs (0.03 cm3 cm-3). The positive results obtained with data assimilation of nine CRNSs were confirmed by the jackknife experiments with four and eight CRNSs used for assimilation. The results demonstrate that assimilated data of a CRNS network can improve the characterization of soil moisture content on the catchment scale by updating spatially distributed soil hydraulic parameters of a land surface model.

  18. Assessing the fate of radioactive nickel in cultivated soil cores.

    PubMed

    Denys, Sébastien; Echevarria, Guillaume; Florentin, Louis; Leclerc, Elisabeth; Morel, Jean-Louis

    2009-10-01

    Parameters regarding fate of (63)Ni in the soil-plant system (soil: solution distribution coefficient, K(d) and soil plant concentration ratio, CR) are mostly determined in controlled pot experiments or from simple models involving a limited set of soil parameters. However, as migration of pollutants in soil is strongly linked to the water migration, variation of soil structure in the field and seasonal variation of evapotranspiration will affect these two parameters. The aim of this work was to explore to what extent the downward transfer of (63)Ni and its uptake by plants from surface-contaminated undisturbed soil cores under cultivation can be explained by isotopic dilution of this radionuclide in the pool of stable Ni of soils. Undisturbed soil cores (50 cm x 50 cm) were sampled from a brown rendzina (Rendzic Leptosol), a colluvial brown soil (Fluvic Cambisol) and an acidic brown soil (Dystric Cambisol) using PVC lysimeter tubes (three lysimeters sampled per soil type). Each core was equipped with a leachate collector. Cores were placed in a greenhouse and maize (DEA, Pioneer) was sown. After 44 days, an irrigation was simulated at the core surfaces to supply 10 000 Bq (63)NiCl(2). Maize was harvested 135 days after (63)Ni input and radioactivity determined in both vegetal and water samples. Effective uptake of (63)Ni by maize was calculated for leaves and kernels. Water drainage and leaching of (63)Ni were monitored over the course of the experiment. Values of K(d) in surface soil samples were calculated from measured parameters of isotopic exchange kinetics. Results confirmed that (63)Ni was strongly retained at the soil surface. Prediction of the (63)Ni downward transfer could not be reliably assessed using the K(d) values, since the soil structure, which controls local water fluxes, also affected both water and Ni transport. In terms of (63)Ni plant uptake, the effective uptake in undisturbed soil cores is controlled by isotope dilution as previously shown at the pot experiment scale.

  19. Heterogeneity of soil surface temperature induced by xerophytic shrub in a revegetated desert ecosystem, northwestern China

    NASA Astrophysics Data System (ADS)

    Zhang, Ya-Feng; Wang, Xin-Ping; Pan, Yan-Xia; Hu, Rui; Zhang, Hao

    2013-06-01

    Variation characteristics of the soil surface temperature induced by shrub canopy greatly affects the near-surface biological and biochemical processes in desert ecosystems. However, information regarding the effects of shrub upon the heterogeneity of soil surface temperature is scarce. Here we aimed to characterize the effects of shrub ( Caragana korshinskii) canopy on the soil surface temperature heterogeneity at areas under shrub canopy and the neighbouring bare ground. Diurnal variations of soil surface temperature were measured at areas adjacent to the shrub base (ASB), beneath the midcanopy (BMC), and in the bare intershrub spaces (BIS) at the eastern, southern, western and northern aspects of shrub, respectively. Results indicated that diurnal mean soil surface temperature under the C. korshinskii canopy (ASB and BMC) was significantly lower than in the BIS, with the highest in the BIS, followed by the BMC and ASB. The diurnal maximum and diurnal variations of soil surface temperatures under canopy vary strongly with different aspects of shrub with the diurnal variation in solar altitude, which could be used as cues to detect safe sites for under-canopy biota. A significant empirical linear relationship was found between soil surface temperature and solar altitude, suggesting an empirical predicator that solar altitude can serve for soil surface temperature. Lower soil surface temperatures under the canopy than in the bare intershrub spaces imply that shrubs canopy play a role of `cool islands' in the daytime in terms of soil surface temperature during hot summer months in the desert ecosystems characterized by a mosaic of sparse vegetation and bare ground.

  20. High-resolution Mapping of Permafrost and Soil Freeze/thaw Dynamics in the Tibetan Plateau Based on Multi-sensor Satellite Observations

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Yi, Y.; Yang, K.; Kimball, J. S.

    2016-12-01

    The Tibetan Plateau (TP) is underlain by the world's largest extent of alpine permafrost ( 2.5×106 km2), dominated by sporadic and discontinuous permafrost with strong sensitivity to climate warming. Detailed permafrost distributions and patterns in most of the TP region are still unknown due to extremely sparse in-situ observations in this region characterized by heterogeneous land cover and large temporal dynamics in surface soil moisture conditions. Therefore, satellite-based temperature and moisture observations are essential for high-resolution mapping of permafrost distribution and soil active layer changes in the TP region. In this study, we quantify the TP regional permafrost distribution at 1-km resolution using a detailed satellite data-driven soil thermal process model (GIPL2). The soil thermal model is calibrated and validated using in-situ soil temperature/moisture observations from the CAMP/Tibet field campaign (9 sites: 0-300 cm soil depth sampling from 1997-2007), a multi-scale soil moisture and temperature monitoring network in the central TP (CTP-SMTMN, 57 sites: 5-40 cm, 2010-2014) and across the whole plateau (China Meteorology Administration, 98 sites: 0-320 cm, 2000-2015). Our preliminary results using the CAMP/Tibet and CTP-SMTMN network observations indicate strong controls of surface thermal and soil moisture conditions on soil freeze/thaw dynamics, which vary greatly with underlying topography, soil texture and vegetation cover. For regional mapping of soil freeze/thaw and permafrost dynamics, we use the most recent soil moisture retrievals from the NASA SMAP (Soil Moisture Active Passive) sensor to account for the effects of temporal soil moisture dynamics on soil thermal heat transfer, with surface thermal conditions defined by MODIS (Moderate Resolution Imaging Spectroradiometer) land surface temperature records. Our study provides the first 1-km map of spatial patterns and recent changes of permafrost conditions in the TP.

  1. Macroscopic and molecular approaches of enrofloxacin retention in soils in presence of Cu(II).

    PubMed

    Graouer-Bacart, Mareen; Sayen, Stéphanie; Guillon, Emmanuel

    2013-10-15

    The co-adsorption of copper and the fluoroquinolone antibiotic enrofloxacin (ENR) at the water-soil interface was studied by means of batch adsorption experiments, and extended X-ray absorption fine structure (EXAFS) spectroscopy. The system was investigated over a pH range between 6 and 10, at different contact times, ionic strengths, and ENR concentrations. Adsorption coefficient - Kd - was determined at relevant environmental concentrations and the value obtained in water at a ionic strength imposed by the soil and at soil natural pH was equal to 0.66Lg(-1). ENR adsorption onto the soil showed strong pH dependence illustrating the influence of the electrostatic interactions in the sorption processes. The simultaneous co-adsorption of ENR and Cu(II) on the soil was also investigated. The presence of Cu(II) strongly influenced the retention of the antibiotic, leading to an increase up to 35% of adsorbed ENR amount. The combined quantitative and spectroscopic results showed that Cu(II) and ENR directly interacted at the water-soil interface to form ternary surface complexes. Cu K-edge EXAFS data indicated a molecular structure where the carboxylate and carbonyl groups of ENR coordinate to Cu(II) to form a 6-membered chelate ring and where Cu(II) bridges between ENR and the soil surface sites. Cu(II) bonds bidentately to the surface in an inner-sphere mode. Thus, the spectroscopic data allowed us to propose the formation of ternary surface complexes with the molecular architecture soil-Cu(II)-ENR. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Linking soil type and rainfall characteristics towards estimation of surface evaporative capacitance

    NASA Astrophysics Data System (ADS)

    Or, D.; Bickel, S.; Lehmann, P.

    2017-12-01

    Separation of evapotranspiration (ET) to evaporation (E) and transpiration (T) components for attribution of surface fluxes or for assessment of isotope fractionation in groundwater remains a challenge. Regional estimates of soil evaporation often rely on plant-based (Penman-Monteith) ET estimates where is E is obtained as a residual or a fraction of potential evaporation. We propose a novel method for estimating E from soil-specific properties, regional rainfall characteristics and considering concurrent internal drainage that shelters soil water from evaporation. A soil-dependent evaporative characteristic length defines a depth below which soil water cannot be pulled to the surface by capillarity; this depth determines the maximal soil evaporative capacitance (SEC). The SEC is recharged by rainfall and subsequently emptied by competition between drainage and surface evaporation (considering canopy interception evaporation). We show that E is strongly dependent on rainfall characteristics (mean annual, number of storms) and soil textural type, with up to 50% of rainfall lost to evaporation in loamy soil. The SEC concept applied to different soil types and climatic regions offers direct bounds on regional surface evaporation independent of plant-based parameterization or energy balance calculations.

  3. Temperature sensitivity of gaseous elemental mercury in the active layer of the Qinghai-Tibet Plateau permafrost.

    PubMed

    Ci, Zhijia; Peng, Fei; Xue, Xian; Zhang, Xiaoshan

    2018-07-01

    Soils represent the single largest mercury (Hg) reservoir in the global environment, indicating that a tiny change of Hg behavior in soil ecosystem could greatly affect the global Hg cycle. Climate warming is strongly altering the structure and functions of permafrost and then would influence the Hg cycle in permafrost soils. However, Hg biogeochemistry in climate-sensitive permafrost is poorly investigated. Here we report a data set of soil Hg (0) concentrations in four different depths of the active layer in the Qinghai-Tibet Plateau permafrost. We find that soil Hg (0) concentrations exhibited a strongly positive and exponential relationship with temperature and showed different temperature sensitivity under the frozen and unfrozen condition. We conservatively estimate that temperature increases following latest temperature scenarios of the IPCC could result in up to a 54.9% increase in Hg (0) concentrations in surface permafrost soils by 2100. Combining the simultaneous measurement of air-soil Hg (0) exchange, we find that enhanced Hg (0) concentrations in upper soils could favor Hg (0) emissions from surface soil. Our findings indicate that Hg (0) emission could be stimulated by permafrost thawing in a warmer world. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Long term soil pH change in rainfed cropping systems: is acidification systemic?

    USDA-ARS?s Scientific Manuscript database

    Many soils throughout the northern Great Plains developed from deep, moderately-weathered glacial and loess deposits under prairie vegetation. Soils of this type are typically neutral to slightly acidic in near-surface depths, and slightly to strongly alkaline in subsoil depths, with high buffer cap...

  5. Bacteria increase arid-land soil surface temperature through the production of sunscreens

    DOE PAGES

    Couradeau, Estelle; Karaoz, Ulas; Lim, Hsiao Chien; ...

    2016-01-20

    Soil surface temperature, an important driver of terrestrial biogeochemical processes, depends strongly on soil albedo, which can be significantly modified by factors such as plant cover. In sparsely vegetated lands, the soil surface can be colonized by photosynthetic microbes that build biocrust communities. Here we use concurrent physical, biochemical and microbiological analyses to show that mature biocrusts can increase surface soil temperature by as much as 10 °C through the accumulation of large quantities of a secondary metabolite, the microbial sunscreen scytonemin, produced by a group of late-successional cyanobacteria. Scytonemin accumulation decreases soil albedo significantly. Such localized warming has apparentmore » and immediate consequences for the soil microbiome, inducing the replacement of thermosensitive bacterial species with more thermotolerant forms. In conclusion, these results reveal that not only vegetation but also microorganisms are a factor in modifying terrestrial albedo, potentially impacting biosphere feedbacks on past and future climate, and call for a direct assessment of such effects at larger scales.« less

  6. Soil crusts to warm the planet

    NASA Astrophysics Data System (ADS)

    Garcia-Pichel, Ferran; Couradeau, Estelle; Karaoz, Ulas; da Rocha Ulisses, Nunes; Lim Hsiao, Chiem; Northen, Trent; Brodie, Eoin

    2016-04-01

    Soil surface temperature, an important driver of terrestrial biogeochemical processes, depends strongly on soil albedo, which can be significantly modified by factors such as plant cover. In sparsely vegetated lands, the soil surface can also be colonized by photosynthetic microbes that build biocrust communities. We used concurrent physical, biochemical and microbiological analyses to show that mature biocrusts can increase surface soil temperature by as much as 10 °C through the accumulation of large quantities of a secondary metabolite, the microbial sunscreen scytonemin, produced by a group of late-successional cyanobacteria. Scytonemin accumulation decreases soil albedo significantly. Such localized warming had apparent and immediate consequences for the crust soil microbiome, inducing the replacement of thermosensitive bacterial species with more thermotolerant forms. These results reveal that not only vegetation but also microorganisms are a factor in modifying terrestrial albedo, potentially impacting biosphere feedbacks on past and future climate, and call for a direct assessment of such effects at larger scales. Based on estimates of the global biomass of cyanobacteria in soil biocrusts, one can easily calculate that there must currently exist about 15 million metric tons of scytonemin at work, warming soil surfaces worldwide

  7. Evaluating new SMAP soil moisture for drought monitoring in the rangelands of the US High Plains

    USGS Publications Warehouse

    Velpuri, Naga Manohar; Senay, Gabriel B.; Morisette, Jeffrey T.

    2016-01-01

    Level 3 soil moisture datasets from the recently launched Soil Moisture Active Passive (SMAP) satellite are evaluated for drought monitoring in rangelands.Validation of SMAP soil moisture (SSM) with in situ and modeled estimates showed high level of agreement.SSM showed the highest correlation with surface soil moisture (0-5 cm) and a strong correlation to depths up to 20 cm.SSM showed a reliable and expected response of capturing seasonal dynamics in relation to precipitation, land surface temperature, and evapotranspiration.Further evaluation using multi-year SMAP datasets is necessary to quantify the full benefits and limitations for drought monitoring in rangelands.

  8. Characteristics of Eurasian snowmelt and its impacts on the land surface and surface climate

    NASA Astrophysics Data System (ADS)

    Ye, Kunhui; Lau, Ngar-Cheung

    2018-03-01

    The local hydrological and climatic impacts of Eurasian snowmelt are studied using advanced land surface and atmospheric data. It is found that intense melting of snow is located at mid-high latitudes in April and May. Snowmelt plays an important role in determining the seasonal cycles of surface runoff and soil moisture (SM). Specifically, melting is accompanied by sharp responses in surface runoff and surface SM while the impacts are delayed for deeper-layer of soil. This is particularly significant in the western sector of Eurasia. On interannual timescales, the responses of various surface parameters to snowmelt in the same month are rather significant. However, the persistence of surface SM anomalies is weak due to the strong soil evaporation anomalies and surplus of surface energy for evaporation. Strong impacts on the sensible heat flux, planetary boundary layer height and precipitation in the next month following the melting of snow are identified in west Russia and Siberia. Downward propagation of surface SM anomalies is observed and a positive evaporation-convection feedback is identified in west Russia. However, the subsequent impacts on the local convective precipitation in late spring-summer and its contribution to the total precipitation are seemingly weak. The atmospheric water vapor convergence has strong control over the total precipitation anomalies. Overall, snowmelt-produced SM anomalies are not found to significantly impact the late spring-summer local climate anomalies in Northern Eurasia. Therefore, the delayed remote-responses of atmospheric circulation and climate to the melting of Eurasian snow may be only possible near the melting period.

  9. Nutrient and dust enrichment in Danish wind erosion sediments for different tillage directions

    NASA Astrophysics Data System (ADS)

    Mohammadian Behbahani, Ali; Fister, Wolfgang; Heckrath, Goswin; Kuhn, Nikolaus J.

    2015-04-01

    More than 80% of the soil types in Denmark have a sandy texture. Denmark is also subject to strong offshore and onshore winds, therefore, Danish soils are considered especially vulnerable to wind erosion. Where conventional tillage operations are applied on poorly aggregated soils, tillage ridges are more or less the only roughness element that can be used to protect soils against wind erosion until crop plants are large enough to provide sufficient breaks. Since wind erosion is a selective process, it can be assumed that increasing erosion rates are associated with increasing loss of dust sized particles and nutrients. However, selective erosion is strongly affected by the orientation and respective trapping efficiency of tillage ridges and furrows. The main objective of this study, therefore, was to determine the effect of tillage direction on nutrient mobilization by wind erosion from agricultural land in Denmark. In order to assess the relationship between the enrichment ratio of specific particle sizes and the amount of eroded nutrients, three soils with loamy sand texture, but varying amounts of sand-sized particles, were selected. In addition, a soil with slightly less sand, but much higher organic matter content was chosen. The soils were tested with three different soil surface scenarios (flat surface, parallel tillage, perpendicular tillage) in a wind tunnel simulation. The parallel tillage operation experienced the greatest erosion rates, independent of soil type. Particles with D50 between 100-155 µm showed the greatest risk of erosion. However, due to a greater loss of dust sized particles from perpendicularly tilled surfaces, this wind-surface arrangement showed a significant increase in nutrient enrichment ratio compared to parallel tillage and flat surfaces. The main reason for this phenomenon is most probably the trapping of larger particles in the perpendicular furrows. This indicates that the highest rate of soil protection does not necessarily coincide with lowest soil nutrient losses and dust emissions. For the evaluation of protection measures on these soil types in Denmark it is, therefore, important to differentiate between their effectivity to reduce total soil erosion amount, dust emission, and nutrient loss.

  10. Estimation of surface soil moisture and roughness from multi-angular ASAR imagery in the Watershed Allied Telemetry Experimental Research (WATER)

    NASA Astrophysics Data System (ADS)

    Wang, S. G.; Li, X.; Han, X. J.; Jin, R.

    2010-06-01

    Radar remote sensing has demonstrated its applicability to the retrieval of basin-scale soil moisture. The mechanism of radar backscattering from soils is complicated and strongly influenced by surface roughness. Furthermore, retrieval of soil moisture using AIEM-like models is a classic example of the underdetermined problem due to a lack of credible known soil roughness distributions at a regional scale. Characterization of this roughness is therefore crucial for an accurate derivation of soil moisture based on backscattering models. This study aims to directly obtain surface roughness information along with soil moisture from multi-angular ASAR images. The method first used a semi-empirical relationship that connects the roughness slope (Zs) and the difference in backscattering coefficient (Δσ) from ASAR data in different incidence angles, in combination with an optimal calibration form consisting of two roughness parameters (the standard deviation of surface height and the correlation length), to estimate the roughness parameters. The deduced surface roughness was then used in the AIEM model for the retrieval of soil moisture. An evaluation of the proposed method was performed in a grassland site in the middle stream of the Heihe River Basin, where the Watershed Allied Telemetry Experimental Research (WATER) was taken place. It has demonstrated that the method is feasible to achieve reliable estimation of soil water content. The key challenge to surface soil moisture retrieval is the presence of vegetation cover, which significantly impacts the estimates of surface roughness and soil moisture.

  11. Chemical, Mineralogical, and Physical Properties of Martian Dust and Soil

    NASA Technical Reports Server (NTRS)

    Ming, D. W.; Morris, R. V.

    2017-01-01

    Global and regional dust storms on Mars have been observed from Earth-based telescopes, Mars orbiters, and surface rovers and landers. Dust storms can be global and regional. Dust is material that is suspended into the atmosphere by winds and has a particle size of 1-3 micrometer. Planetary scientist refer to loose unconsolidated materials at the surface as "soil." The term ''soil'' is used here to denote any loose, unconsolidated material that can be distinguished from rocks, bedrock, or strongly cohesive sediments. No implication for the presence or absence of organic materials or living matter is intended. Soil contains local and regional materials mixed with the globally distributed dust by aeolian processes. Loose, unconsolidated surface materials (dust and soil) may pose challenges for human exploration on Mars. Dust will no doubt adhere to spacesuits, vehicles, habitats, and other surface systems. What will be the impacts on human activity? The objective of this paper is to review the chemical, mineralogical, and physical properties of the martian dust and soil.

  12. Soil-soil solution distribution coefficient of soil organic matter is a key factor for that of radioiodide in surface and subsurface soils.

    PubMed

    Unno, Yusuke; Tsukada, Hirofumi; Takeda, Akira; Takaku, Yuichi; Hisamatsu, Shun'ichi

    2017-04-01

    We investigated the vertical distribution of the soil-soil-solution distribution coefficients (K d ) of 125 I, 137 Cs, and 85 Sr in organic-rich surface soil and organic-poor subsurface soil of a pasture and an urban forest near a spent-nuclear-fuel reprocessing plant in Rokkasho, Japan. K d of 137 Cs was highly correlated with water-extractable K + . K d of 85 Sr was highly correlated with water-extractable Ca 2+ and SOC. K d of 125 I - was low in organic-rich surface soil, high slightly below the surface, and lowest in the deepest soil. This kinked distribution pattern differed from the gradual decrease of the other radionuclides. The thickness of the high- 125 I - K d middle layer (i.e., with high radioiodide retention ability) differed between sites. K d of 125 I - was significantly correlated with K d of soil organic carbon. Our results also showed that the layer thickness is controlled by the ratio of K d -OC between surface and subsurface soils. This finding suggests that the addition of SOC might prevent further radioiodide migration down the soil profile. As far as we know, this is the first report to show a strong correlation of a soil characteristic with K d of 125 I - . Further study is needed to clarify how radioiodide is retained and migrates in soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Using Smoke Injection in Drains to Identify Potential Preferential Pathways in a Drained Arable Field

    NASA Astrophysics Data System (ADS)

    Nielsen, M. H.; Petersen, C. T.; Hansen, S.

    2014-12-01

    Macropores forming a continuous pathway between the soil surface and subsurface drains favour the transport of many contaminants from agricultural fields to surface waters. The smoke injection method presented by Shipitalo and Gibbs (2000) used for demonstrating and quantifying such pathways has been further developed and used on a drained Danish sandy loam. In order to identify the preferential pathways to drains, smoke was injected in three 1.15 m deep tile drains (total drain length 93 m), and smoke emitting macropores (SEMP) at the soil surface were counted and characterized as producing either strong or weak plumes compared to reference plumes from 3 and 6 mm wide tubes. In the two situations investigated in the present study - an early spring and an autumn situation, smoke only penetrated the soil surface layer via earthworm burrows located in a 1.0 m wide belt directly above the drain lines. However, it is known from previous studies that desiccation fractures in a dry summer situation also can contribute to the smoke pattern. The distance between SEMP measured along the drain lines was on average 0.46 m whereas the average spacing between SEMP with strong plumes was 2.3 m. Ponded water was applied in 6 cm wide rings placed above 52 burrows including 17 reference burrows which did not emit smoke. Thirteen pathways in the soil were examined using dye tracer and profile excavation. SEMP with strong plumes marked the entrance of highly efficient transport pathways conducting surface applied water and dye tracer into the drain. However, no single burrow was traced all the way from the surface into the drain, the dye patterns branched off in a network of other macropores. Water infiltration rates were significantly higher (P < 0.05) in SEMP with strong plumes (average rate: 247 mL min-1 n = 19) compared to SEMP with weak plumes (average rate: 87 mL min-1 n = 16) and no plumes (average rate: 56 mL min-1 n = 17). The results suggest that the smoke injection method is useful for identification of potentially efficient pathways for surface applied contaminants to drains and surface waters, pathways being associated primarily with unevenly distributed SEMP producing strong smoke plumes.

  14. Crusts: biological

    USGS Publications Warehouse

    Belnap, Jayne; Elias, Scott A.

    2013-01-01

    Biological soil crusts, a community of cyanobacteria, lichens, mosses, and fungi, are an essential part of dryland ecosystems. They are critical in the stabilization of soils, protecting them from wind and water erosion. Similarly, these soil surface communities also stabilized soils on early Earth, allowing vascular plants to establish. They contribute nitrogen and carbon to otherwise relatively infertile dryland soils, and have a strong influence on hydrologic cycles. Their presence can also influence vascular plant establishment and nutrition.

  15. Soil erosion in mountainous areas: how far can we go?

    NASA Astrophysics Data System (ADS)

    Egli, Markus

    2017-04-01

    Erosion is the counter part of soil formation, is a natural process and cannot be completely impeded. With respect to soil protection, the term of tolerable soil erosion, having several definitions, has been created. Tolerable erosion is often equalled to soil formation or production. It is therefore crucial that we know the rates of soil formation when discussing sustainability of soil use and management. Natural rates of soil formation or production are determined by mineral weathering or transformation of parent material into soil, dust deposition and organic matter incorporation. In mountain areas where soil depth is a main limiting factor for soil productivity, the use and management of soils must consider how to preserve them from excessive depth loss and consequent degradation of their physical, chemical and biological properties. Even under natural conditions, landscape surfaces and soils are known to evolve in complex, non-linear ways over time. As a result, soil production and erosion change substantially with time. The fact that soil erosion and soil production processes are discontinuous over time is an aspect that is in most cases completely neglected. To conserve a given situation, tolerable values should take these dynamics into account. Measurements of long and short-term physical erosion rates, total denudation, weathering rates and soil production have recently become much more widely available through cosmogenic and fallout nuclide techniques. In addition to this, soil chronosequences deliver a precious insight into the temporal aspect of soil formation and production. Examples from mountainous and alpine areas demonstrate that soil production rates strongly vary as a function of time (with young soils and eroded surfaces having distinctly higher rates than old soils). Extensive erosion promotes rejuvenation of the surface and, therefore, accelerates chemical weathering and soil production - the resulting soil thickness will however be shallow. The comparison of soil production and erosion rates indicates that the present-day management of grassland soils in several alpine and mountain regions will lead in the long-term to very shallow soils (showing the characteristics of young soils). Shallow soils go along with high 'tolerable' erosion rates. It is, however, strongly doubtful whether this matches the deeper sense of sustainability.

  16. Determination of Martian soil mineralogy and water content using the Thermal Analyzer for Planetary Soils (TAPS)

    NASA Technical Reports Server (NTRS)

    Gooding, James L.; Ming, Douglas W.; Allton, Judith H.; Byers, Terry B.; Dunn, Robert P.; Gibbons, Frank L.; Pate, Daniel B.; Polette, Thomas M.

    1992-01-01

    Physical and chemical interactions between the surface and atmosphere of Mars can be expected to embody a strong cause-and-effect relationship with the minerals comprising the martian regolith. Many of the minerals in soils and sediments are probably products of chemical weathering (involving surface/atmosphere or surface/hydrosphere reactions) that could be expected to subsequently influence the sorption of atmospheric gases and water vapor. Therefore, identification of the minerals in martian surface soils and sediments is essential for understanding both past and present interactions between the Mars surface and atmosphere. Clearly, the most definitive mineral analyses would be achieved with well-preserved samples returned to Earth-based laboratories. In advance of a Mars sample return mission, however, significant progress could be made with in situ experiments that fill current voids in knowledge about the presence or abundance of key soil minerals such as clays (layered-structured silicates), zeolites, and various salts, including carbonates. TAPS is intended to answer that challenge by providing first-order identification of soil and sediment minerals.

  17. Groundwater control of mangrove surface elevation: shrink and swell varies with soil depth

    USGS Publications Warehouse

    Whelan, K.R.T.; Smith, T. J.; Cahoon, D.R.; Lynch, J.C.; Anderson, G.H.

    2005-01-01

    We measured monthly soil surface elevation change and determined its relationship to groundwater changes at a mangrove forest site along Shark River, Everglades National Park, Florida. We combined the use of an original design, surface elevation table with new rod-surface elevation tables to separately track changes in the mid zone (0?4 m), the shallow root zone (0?0.35 m), and the full sediment profile (0?6 m) in response to site hydrology (daily river stage and groundwater piezometric pressure). We calculated expansion and contraction for each of the four constituent soil zones (surface [accretion and erosion; above 0 m], shallow zone [0?0.35 m], middle zone [0.35?4 m], and bottom zone [4?6 m]) that comprise the entire soil column. Changes in groundwater pressure correlated strongly with changes in soil elevation for the entire profile (Adjusted R2 5 0.90); this relationship was not proportional to the depth of the soil profile sampled. The change in thickness of the bottom soil zone accounted for the majority (R2 5 0.63) of the entire soil profile expansion and contraction. The influence of hydrology on specific soil zones and absolute elevation change must be considered when evaluating the effect of disturbances, sea level rise, and water management decisions on coastal wetland systems.

  18. Spatial trends and pollution assessment for mercury in the surface soils of the Nansi Lake catchment, China.

    PubMed

    Ren, Ming-Yi; Yang, Li-Yuan; Wang, Long-Feng; Han, Xue-Mei; Dai, Jie-Rui; Pang, Xu-Gui

    2018-01-01

    Surface soil samples collected from Nansi Lake catchment were analyzed for mercury (Hg) to determine its spatial trends and environmental impacts. Results showed that the average soil Hg contents were 0.043 mg kg -1 . A positive correlation was shown between TOC and soil Hg contents. The main type of soil with higher TOC contents and lower pH values showed higher soil Hg contents. Soil TOC contents and CV values were both higher in the eastern catchment. The eastern part of the catchment, where the industry is developed, had relatively high soil Hg contents and a banding distribution of high Hg contents was corresponded with the southwest-northeast economic belt. Urban soils had higher Hg contents than rural soils. The urbanization pattern that soil Hg contents presented a decreasing trend from city center to suburb was shown clearly especially in the three cities. Soil Hg contents in Jining City showed a good consistency with the urban land expansion. The spatial trends of soil Hg contents in the catchment indicated that the type and the intensity of human activities have a strong influence on the distribution of Hg in soils. Calculated risk indices showed that the western part of the catchment presented moderately polluted condition and the eastern part of the catchment showed moderate to strong pollution level. The area with high ecological risk appeared mainly along the economic belt.

  19. Rainfall Lysimeter Evaluation of Leachability and Surface Transport of Heavy Metals From Six Soils With and Without Phosphate Amendment

    DTIC Science & Technology

    2005-09-01

    found no significant change in concentration (+ 5 percent) occurring between 72 and 96 hr. The aqueous metal/ soil solution was then centrifuged and...environment. Soils with high Kd values strongly adsorb the lead onto the soil particles and slow the rate of migration of the lead in the soil solution . A...small Kd suggests faster migration rates and more rapid migration with the soil solution . Comparison of the Kd values obtained shows a large

  20. Long-term TNT sorption and bound residue formation in soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hundal, L.S.; Shea, P.J.; Comfort, S.D.

    1997-05-01

    Soils surrounding former munitions production facilities are highly contaminated with 2,4,6-trinitrotoluene (TNT). Long-term availability and fate of TNT and its transformation products must be understood to predict environmental impact and develop appropriate remediation strategies. Sorption and transport in surface soil containing solid-phase TNT are particularly critical, since nonlinear sorption isotherms indicate greater TNT availability for transport at high concentrations. Our objectives were to determine long-term sorption and bound residue formation in surface and subsurface Sharpsburg soil (Typic Argiudoll). Prolonged equilibration of {sup 14}C-TNT with the soil revealed a gradual increase in amount sorbed and formation of unextractable (bound) {sup 14}Cmore » residues. The presence of solid-phase TNT did not initially affect the amount of {sup 14}C sorbed during a 168-d equilibration. After 168d, 93% of the added {sup 14}C was sorbed by uncontaminated soil, while 79% was sorbed by soil containing solid-phase TNT. In the absence of solid phase, pools of readily available (extractable with 3 mM CaCl{sub 2}) and potentially available (CH{sub 3}CN-extractable) sorbed TNT decreased rapidly with time and coincided with increased {sup 14}C in soil organic matter. More {sup 14}C was found in fulvic acid than in the humic acid fraction when no solid-phase TNT was present. After sequential extractions, including strong alkali and acid, 32 to 40% of the sorbed {sup 14}C was irreversibly bound (unextractable) in Sharpsburg surface and subsurface soil. Results provide strong evidence for humification of TNT in soil. This process may represent a significant route for detoxification in the soil-water environment. 58 refs., 6 figs., 3 tabs.« less

  1. Upper-soil moisture inter-comparison from SMOS's products and land surface models over the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Polcher, Jan; Barella-Ortiz, Anaïs; Aires, Filipe; Balsamo, Gianpaolo; Gelati, Emiliano; Rodríguez-Fernández, Nemesio

    2015-04-01

    Soil moisture is a key state variable of the hydrological cycle. It conditions runoff, infiltration and evaporation over continental surfaces, and is key for forecasting droughts and floods. It plays thus an important role in surface-atmosphere interactions. Surface Soil Moisture (SSM) can be measured by in situ measurements, by satellite observations or modelled using land surface models. As a complementary tool, data assimilation can be used to combine both modelling and satellite observations. The work presented here is an inter-comparison of retrieved and modelled SSM data, for the 2010 - 2012 period, over the Iberian Peninsula. The region has been chosen because its vegetation cover is not very dense and includes strong contrasts in the rainfall regimes and thus a diversity of behaviours for SSM. Furthermore this semi-arid region is strongly dependent on a good management of its water resources. Satellite observations correspond to the Soil Moisture and Ocean Salinity (SMOS) retrievals: the L2 product from an optimal interpolation retrieval, and 3 other products using Neural Network retrievals with different input information: SMOS time indexes, purely SMOS data, or addition of the European Advanced Scaterometer (ASCAT) backscattering, and the Moderate-Resolution Imaging Spectrometer (MODIS) surface temperature information. The modelled soil moistures have been taken from the ORCHIDEE (ORganising Carbon and Hydrology In Dynamic EcosystEms) and the HTESSEL (Hydrology-Tiled ECMWF Scheme for Surface Exchanges over Land) land surface models. Both models are forced with the same atmospheric conditions (as part of the Earth2Observe FP7 project) over the period but they represent the surface soil moisture with very different degrees of complexity. ORCHIDEE has 5 levels in the top 5 centimetres of soil while in HTESSEL this variable is part of the top soil moisture level. The two types of SMOS retrievals are compared to the model outputs in their spatial and temporal characteristics. The comparison with the model helps to identify which retrieval configuration is most consistent with our understanding of surface soil moisture in this region. In particular we have determined how each of the soil moisture products is related to the spatio-temporal variations of rainfall. In large parts of the Iberian Peninsula the co-variance of remote sensed SSM and rainfall is consistent with that of the models. But for some regions questions are raised. The variability of SSM observed by SMOS in the North West of the Iberian Peninsula is similar to that of rainfall, at least this relation of SSM and rainfall is closer than suggested by the two models.

  2. Fractal behavior of soil water storage at multiple depths

    NASA Astrophysics Data System (ADS)

    Ji, Wenjun; Lin, Mi; Biswas, Asim; Si, Bing C.; Chau, Henry W.; Cresswell, Hamish P.

    2016-08-01

    Spatiotemporal behavior of soil water is essential to understand the science of hydrodynamics. Data intensive measurement of surface soil water using remote sensing has established that the spatial variability of soil water can be described using the principle of self-similarity (scaling properties) or fractal theory. This information can be used in determining land management practices provided the surface scaling properties are kept at deep layers. The current study examined the scaling properties of sub-surface soil water and their relationship to surface soil water, thereby serving as supporting information for plant root and vadose zone models. Soil water storage (SWS) down to 1.4 m depth at seven equal intervals was measured along a transect of 576 m for 5 years in Saskatchewan. The surface SWS showed multifractal nature only during the wet period (from snowmelt until mid- to late June) indicating the need for multiple scaling indices in transferring soil water variability information over multiple scales. However, with increasing depth, the SWS became monofractal in nature indicating the need for a single scaling index to upscale/downscale soil water variability information. In contrast, all soil layers during the dry period (from late June to the end of the growing season in early November) were monofractal in nature, probably resulting from the high evapotranspirative demand of the growing vegetation that surpassed other effects. This strong similarity between the scaling properties at the surface layer and deep layers provides the possibility of inferring about the whole profile soil water dynamics using the scaling properties of the easy-to-measure surface SWS data.

  3. The nanophase iron mineral(s) in Mars soil

    NASA Technical Reports Server (NTRS)

    Banin, A.; Ben-Shlomo, T.; Margulies, L.; Blake, D. F.; Gehring, A. U.

    1992-01-01

    Iron-enriched smectites have been suggested as important mineral compounds of the Martian soil. They were shown to comply with the chemical analysis of the Martian soil, to simulate many of the findings of the Viking Labeled Release Experiments on Mars, to have spectral reflectance in the VIS-NIR strongly resembling the bright regions on Mars. The analogy with Mars soil is based, in a number of aspects, on the nature and behavior of the iron oxides and oxyhydroxides deposited on the surface of the clay particles. A summary of the properties of these iron phases and some recent findings are presented. Their potential relevance to Mars surface processes is discussed.

  4. Is Nitrogen Deposition Altering the Nitrogen Status of Northeastern Forests?

    NASA Astrophysics Data System (ADS)

    Aber, J. D.; Goodale, C. L.; Ollinger, S. V.; Smith, M.; Magill, A. H.; Martin, M. E.; Hallett, R. A.; Stoddard, J. L.; Participants, N.

    2002-05-01

    The nitrogen saturation hypothesis suggests that foliar and soil N concentration, nitrification rate, and nitrate leaching loss should all increase in response to increased N deposition. We tested this hypothesis with a major new synthesis of foliar (362 plots), soil (251 plots), and surface water (354 lakes and streams) chemistry from the northeastern U.S. Nitrogen deposition decreases across the Northeast from ~ 10-12 kg ha-1 yr-1 in the Mid-Atlantic region to ~ 4 kg ha-1 yr-1 in northern Maine. Foliar chemistry (%N and lignin:N ratio) of red spruce and sugar maple correlated more strongly with elevation than with N deposition, although these factors covary. Forest floor C:N ratio decreased with N deposition for both conifers and hardwoods although correlations were not strong (R2 < 0.20). Regardless of forest type or soil horizon, percent nitrification (as a fraction of N mineralization) increased as soil C:N decreased below ~25, and increased weakly with N deposition in hardwood stands. Across the Northeast, surface water seasonal nitrate concentrations and N export during the mid- to late-1990s increased with N deposition (R2 = 0.30-0.56), with two important patterns emerging: 1) nitrate rarely exceeded 1 μ mol/L in watersheds receiving <8-10 kg ha-1 yr-1; and 2) high nitrate concentrations occurred only in lakes and streams receiving relatively high N inputs. This pattern resembles that for European forests. Factors such as species composition, forest history, climate, and hydrology may affect foliar, soil, and stream chemistry at different spatial and temporal scales. Foliar and soil chemistry may be more strongly influenced by local heterogeneity, whereas surface water samples integrate over much larger areas. Using surface waters as the most comprehensive indicator of N saturation, it appears that N deposition is altering the N status of forests in the northeastern U.S.

  5. Aquaculture in artificially developed wetlands in urban areas: an application of the bivariate relationship between soil and surface water in landscape ecology.

    PubMed

    Paul, Abhijit

    2011-01-01

    Wetlands show a strong bivariate relationship between soil and surface water. Artificially developed wetlands help to build landscape ecology and make built environments sustainable. The bheries, wetlands of eastern Calcutta (India), utilize the city sewage to develop urban aquaculture that supports the local fish industries and opens a new frontier in sustainable environmental planning research.

  6. Microwave Processing of Planetary Surfaces for the Extraction of Volatiles

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin C.; Kaukler, William

    2011-01-01

    In-Situ Resource Utilization will be necessary for sustained exploration of space. Volatiles are present in planetary soils, but water by far has the most potential for effective utilization. The presence of water at the lunar poles, Mars, and possibly on Phobos opens the possibility of producing LOX for propellant. Water is also a useful radiation shielding material , and valuable to replenish expendables (water and oxygen) required for habitation in space. Because of the strong function of water vapor pressure with temperature, heating soil effectively liberates water vapor by sublimation. Microwave energy will penetrate soil and heat from within much more efficiently than heating from the surface with radiant heat. This is especially true under vacuum conditions since the heat transfer rate is very low. The depth of microwave penetration is a strong function of the microwave frequency and to a lesser extent on soil dielectric properties. Methods for complex electric permittivity and magnetic permeability measurement are being developed and used for measurements of lunar soil simulants. A new method for delivery of microwaves deep into a planetary surface is being prototyped with laboratory experiments and modeled with COMSOL MultiPhysics. We are planning to set up a planetary testbed in a large vacuum chamber in the coming year. Recent results are discussed.

  7. Interactions of 14C-labeled multi-walled carbon nanotubes with soil minerals in water.

    PubMed

    Zhang, Liwen; Petersen, Elijah J; Zhang, Wen; Chen, Yongsheng; Cabrera, Miguel; Huang, Qingguo

    2012-07-01

    Carbon nanotubes are often modified to be stable in the aqueous phase by adding extensive hydrophilic surface functional groups. The stability of such CNTs in water with soil or sediment is one critical factor controlling their environmental fate. We conducted a series of experiments to quantitatively assess the association between water dispersed multi-walled carbon nanotubes (MWCNTs) and three soil minerals (kaolinite, smectite, or shale) in aqueous solution under different sodium concentrations. (14)C-labeling was used in these experiments to unambiguously quantify MWCNTs. The results showed that increasing ionic strength strongly promoted the removal of MWCNTs from aqueous phase. The removal tendency is inversely correlated with the soil minerals' surface potential and directly correlated with their hydrophobicity. This removal can be interpreted by the extended Derjaguin-Landau-Verwey-Overbeek (EDLVO) theory especially for kaolinite and smectite. Shale, which contains large and insoluble organic materials, sorbed MWCNTs the most strongly. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Microwave Remote Sensing of Soil Moisture

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.

    1985-01-01

    Because of the large contrast between the dielectric constant of liquid water and that of dry soil at microwave wavelength, there is a strong dependence of the thermal emission and radar backscatter from the soil on its moisture content. This dependence provides a means for the remote sensing of the moisture content in a surface layer approximately 5 cm thick. The feasibility of these techniques is demonstrated from field, aircraft and spacecraft platforms. The soil texture, surface roughness, and vegetative cover affect the sensitivity of the microwave response to moisture variations with vegetation being the most important. It serves as an attenuating layer which can totally obscure the surface. Research indicates that it is possible to obtain five or more levels of moisture discrimination and that a mature corn crop is the limiting vegetation situation.

  9. Savanna Vegetation Dynamics and their Influence on Landscape-Scale C, N, and P Biogeochemistry

    NASA Astrophysics Data System (ADS)

    Boutton, T. W.; Zhou, Y.; Wu, X. B.; Hyodo, A.

    2017-12-01

    Soil carbon (C), nitrogen (N) and phosphorus (P) cycles are strongly interlinked and controlled through biological processes, and the P cycle is further controlled through geochemical processes. In grasslands, savannas, and other dryland ecosystems throughout the world, woody plant encroachment often modifies soil C, N, and P stores, although it remains unknown if these three elements change proportionally in response to this vegetation change. We evaluated proportional changes and spatial patterns of soil organic C (SOC), total N (TN), and total P (TP) following woody encroachment by taking spatially-explicit soil cores to a depth of 1.2 m across a subtropical savanna landscape which has undergone encroachment by trees and shrubs during the past century in the Rio Grande Plains, USA. SOC and TN were coupled with respect to increasing magnitudes and spatial patterns along the soil profile following woody encroachment. In contrast, TP increased slower than SOC and TN in surface soils, but faster in subsurface soils. Spatial patterns of TP strongly resembled those of vegetation cover throughout the soil profile, but differed from those of SOC and TN, especially in deeper portions of the profile. The encroachment of woody plants into this P-limited ecosystem resulted in the accumulation of proportionally less soil P compared to C and N in surface soils; however, proportionally more P accrued in deeper portions of the profile beneath woody patches where alkaline soil pH and high carbonate concentrations would favor precipitation of P as relatively insoluble calcium phosphates. Structural equation models (SEM) showed that fine root density explained the greatest proportion of variation in SOC, TN, and TP in the surface soil. In deeper portions of the profile, SEM showed that silt and clay explained much of the variation in SOC and TN, while soil pH strongly controlled TP. This imbalanced relationship highlights that the relative importance of biotic vs. abiotic mechanisms controlling C and N vs. P accumulation following vegetation change may vary with depth in the profile. Our findings suggest that efforts to incorporate the effects of land cover changes into coupled climate-biogeochemical models should attempt to represent C-N-P imbalances that may arise following vegetation change.

  10. Soil Texture Often Exerts a Stronger Influence Than Precipitation on Mesoscale Soil Moisture Patterns

    NASA Astrophysics Data System (ADS)

    Dong, Jingnuo; Ochsner, Tyson E.

    2018-03-01

    Soil moisture patterns are commonly thought to be dominated by land surface characteristics, such as soil texture, at small scales and by atmospheric processes, such as precipitation, at larger scales. However, a growing body of evidence challenges this conceptual model. We investigated the structural similarity and spatial correlations between mesoscale (˜1-100 km) soil moisture patterns and land surface and atmospheric factors along a 150 km transect using 4 km multisensor precipitation data and a cosmic-ray neutron rover, with a 400 m diameter footprint. The rover was used to measure soil moisture along the transect 18 times over 13 months. Spatial structures of soil moisture, soil texture (sand content), and antecedent precipitation index (API) were characterized using autocorrelation functions and fitted with exponential models. Relative importance of land surface characteristics and atmospheric processes were compared using correlation coefficients (r) between soil moisture and sand content or API. The correlation lengths of soil moisture, sand content, and API ranged from 12-32 km, 13-20 km, and 14-45 km, respectively. Soil moisture was more strongly correlated with sand content (r = -0.536 to -0.704) than with API for all but one date. Thus, land surface characteristics exhibit coherent spatial patterns at scales up to 20 km, and those patterns often exert a stronger influence than do precipitation patterns on mesoscale spatial patterns of soil moisture.

  11. Recordings from the deepest borehole in the New Madrid Seismic Zone

    USGS Publications Warehouse

    Wang, Z.; Woolery, E.W.

    2006-01-01

    The recordings at the deepest vertical strong-motion array (VSAS) from three small events, the 21 October 2004 Tiptonville, Tennessee, earthquake; the 10 February 2005 Arkansas earthquake; and the 2 June 2005 Ridgely, Tennessee, earthquake show some interesting wave-propagation phenomena through the soils: the S-wave is attenuated from 260 m to 30 m depth and amplified from 30 m to the surface. The S-wave arrival times from the three events yielded different shear-wave velocity estimates for the soils. These different estimates may be the result of different incident angles of the S-waves due to different epicentral distances. The epicentral distances are about 22 km, 110 km, and 47 km for the Tiptonville, Arkansas, and Ridgely earthquakes, respectively. These recordings show the usefulness of the borehole strong-motion array. The vertical strong-motion arrays operated by the University of Kentucky have started to accumulate recordings that will provide a database for scientists and engineers to study the effects of the near-surface soils on the strong ground motion in the New Madrid Seismic Zone. More information about the Kentucky Seismic and Strong-Motion Network can be found at www.uky.edu/KGS/geologichazards. The digital recordings are available at ftp://kgsweb.uky.edu.

  12. The SIR-B observations of microwave backscatter dependence on soil moisture, surface roughness, and vegetation covers

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Shiue, J. C.; Engman, E. T.; Rusek, M.; Steinmeier, C.

    1986-01-01

    An experiment was conducted from an L-band SAR aboard Space Shuttle Challenger in October 1984 to study the microwave backscatter dependence on soil moisture, surface roughness, and vegetation cover. The results based on the analyses of an image obtained at 21-deg incidence angle show a positive correlatlion between scattering coefficient and soil moisture content, with a sensitivity comparable to that derived from the ground radar measurements reported by Ulaby et al. (1978). The surface roughness strongly affects the microwave backscatter. A factor of two change in the standard deviation of surface roughness height gives a corresponding change of about 8 dB in the scattering coefficient. The microwave backscatter also depends on the vegetation types. Under the dry soil conditions, the scattering coefficient is observed to change from about -24 dB for an alfalfa or lettuce field to about -17 dB for a mature corn field. These results suggest that observations with a SAR system of multiple frequencies and polarizations are required to unravel the effects of soil moisture, surface roughness, and vegetation cover.

  13. Chloropicrin emission reduction by soil amendment with biochar

    USDA-ARS?s Scientific Manuscript database

    Biochar is the carbon-enriched and porous material produced by heating organic material under conditions of limited or no oxygen. As biochar has a large surface area and strong sorption capacity, it can enhance the sequestration of organic contaminants such as pesticides in soil. Chloropicrin (CP) i...

  14. Using semi-variogram analysis for providing spatially distributed information on soil surface condition for land surface modeling

    NASA Astrophysics Data System (ADS)

    Croft, Holly; Anderson, Karen; Kuhn, Nikolaus J.

    2010-05-01

    The ability to quantitatively and spatially assess soil surface roughness is important in geomorphology and land degradation studies. Soils can experience rapid structural degradation in response to land cover changes, resulting in increased susceptibility to erosion and a loss of Soil Organic Matter (SOM). Changes in soil surface condition can also alter sediment detachment, transport and deposition processes, infiltration rates and surface runoff characteristics. Deriving spatially distributed quantitative information on soil surface condition for inclusion in hydrological and soil erosion models is therefore paramount. However, due to the time and resources involved in using traditional field sampling techniques, there is a lack of spatially distributed information on soil surface condition. Laser techniques can provide data for a rapid three dimensional representation of the soil surface at a fine spatial resolution. This provides the ability to capture changes at the soil surface associated with aggregate breakdown, flow routing, erosion and sediment re-distribution. Semi-variogram analysis of the laser data can be used to represent spatial dependence within the dataset; providing information about the spatial character of soil surface structure. This experiment details the ability of semi-variogram analysis to spatially describe changes in soil surface condition. Soil for three soil types (silt, silt loam and silty clay) was sieved to produce aggregates between 1 mm and 16 mm in size and placed evenly in sample trays (25 x 20 x 2 cm). Soil samples for each soil type were exposed to five different durations of artificial rainfall, to produce progressively structurally degraded soil states. A calibrated laser profiling instrument was used to measure surface roughness over a central 10 x 10 cm plot of each soil state, at 2 mm sample spacing. The laser data were analysed within a geostatistical framework, where semi-variogram analysis quantitatively represented the change in soil surface structure during crusting. The laser data were also used to create digital surface models (DSM) of the soil states for visual comparison. This research has shown that aggregate breakdown and soil crusting can be shown quantitatively by a decrease in sill variance (silt soil: 11.67 (control) to 1.08 (after 90 mins rainfall)). Features present within semi-variograms were spatially linked to features at the soil surface, such as soil cracks, tillage lines and areas of deposition. Directional semi-variograms were used to provide a spatially orientated component, where the directional sill variance associated with a soil crack was shown to increase from 7.95 to 19.33. Periodicity within semi-variogram was also shown to quantify the spatial scale of soil cracking networks and potentially surface flowpaths; an average distance between soil cracks of 37 mm closely corresponded to the distance of 38 mm shown in the semi-variogram. The results provide a strong basis for the future retrieval of spatio-temporal variations in soil surface condition. Furthermore, the presence of process-based information on hydrological pathways within semi-variograms may work towards an inclusion of geostatisically-derived information in land surface models and the understanding of complex surface processes at different spatial scales.

  15. Fatty acid methyl ester analysis to identify sources of soil in surface water.

    PubMed

    Banowetz, Gary M; Whittaker, Gerald W; Dierksen, Karen P; Azevedo, Mark D; Kennedy, Ann C; Griffith, Stephen M; Steiner, Jeffrey J

    2006-01-01

    Efforts to improve land-use practices to prevent contamination of surface waters with soil are limited by an inability to identify the primary sources of soil present in these waters. We evaluated the utility of fatty acid methyl ester (FAME) profiles of dry reference soils for multivariate statistical classification of soils collected from surface waters adjacent to agricultural production fields and a wooded riparian zone. Trials that compared approaches to concentrate soil from surface water showed that aluminum sulfate precipitation provided comparable yields to that obtained by vacuum filtration and was more suitable for handling large numbers of samples. Fatty acid methyl ester profiles were developed from reference soils collected from contrasting land uses in different seasons to determine whether specific fatty acids would consistently serve as variables in multivariate statistical analyses to permit reliable classification of soils. We used a Bayesian method and an independent iterative process to select appropriate fatty acids and found that variable selection was strongly impacted by the season during which soil was collected. The apparent seasonal variation in the occurrence of marker fatty acids in FAME profiles from reference soils prevented preparation of a standardized set of variables. Nevertheless, accurate classification of soil in surface water was achieved utilizing fatty acid variables identified in seasonally matched reference soils. Correlation analysis of entire chromatograms and subsequent discriminant analyses utilizing a restricted number of fatty acid variables showed that FAME profiles of soils exposed to the aquatic environment still had utility for classification at least 1 wk after submersion.

  16. Brief Overview of Using Nonlinear Seismology in Analysis of the Soil Deposits Effects on Structure Location

    NASA Astrophysics Data System (ADS)

    Florin Balan, Stefan; Apostol, Bogdan Felix; Ionescu, Constantin

    2017-12-01

    The purpose of the paper is to show the great influence of nonlinear seismology in the analysis of the soil deposit response. Some elements about nonlinear seismology, the complexity of the seismic phenomenon are presented, and how we perceive seismic input for constructions at the surface of the earth. Further is presented the nonlinear behaviour of soil deposits during strong earthquakes as it results from resonant column tests (in laboratory) and from the spectral amplification factors (in situ records). The resonance phenomenon between natural period of a structure and soil deposit during strong earthquakes is analysed. All these studies have in common nonlinear behaviour of the soil deposit during strong earthquakes, in fact, the site where a new construction is built or an old one is rehabilitated and needs an optional assessment for mitigation seismic risk. All these studies stand up in supporting nonlinear seismology, the seismology of the XXI-st century.

  17. Effect of soil texture on the microwave emission from soils

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.

    1980-01-01

    The intensity brightness temperature of the microwave emission from the soil is determined primarily by its dielectric properties. The large difference between the dielectric constant of water and that of dry soil produces a strong dependence of the soil's dielectric constant on its moisture content. This dependence is effected by the texture of the soil because the water molecules close to the particle surface are tightly bound and do not contribute significantly to the dielectric properties. Since this surface area is a function of the particle size distribution (soil texture), being larger for clay soils with small particles, and smaller for sandy soils with larger particles; the dielectric properties will depend on soil texture. Laboratory measurements of the dielectric constant for soils are summarized. The dependence of the microwave emission on texture is demonstrated by measurements of brightness temperature from an aircraft platform for a wide range of soil textures. It is concluded that the effect of soil texture differences on the observed values can be normalized by expressing the soil moisture values as a percent field capacity for the soil.

  18. Preliminary results of the North American Soil Geochemical Landscapes Project, northeast United States and Maritime Provinces of Canada

    USGS Publications Warehouse

    Grunsky, Eric C.; Smith, David B.; Friske, Peter W.B.; Woodruff, Laurel G.

    2009-01-01

    The results of a soil geochemical survey of the Canadian Maritime provinces and the northeast states of the United States are described. The data presented are for the <2-mm fraction of the surface layer (0-5 cm depth) and C horizons of the soil. Elemental determinations were made by ICP-MS following two digestions, aqua regia (partial dissolution) and a strong 4-acid mixture (near-total dissolution). The preliminary results show that Hg and Pb exhibit elevated abundances in the surface layer, while As and Ni exhibit abundances that can be attributed to the geological provenance of the soil parent materials.

  19. A strong enrichment of potentially toxic elements (PTEs) in Nord-Trøndelag (central Norway) forest soil.

    PubMed

    Reimann, C; Fabian, K; Schilling, J; Roberts, D; Englmaier, P

    2015-12-01

    Analysis of soil C and O horizon samples in a recent regional geochemical survey of Nord-Trøndelag, central Norway (752 sample sites covering 25,000 km2), identified a strong enrichment of several potentially toxic elements (PTEs) in the O horizon. Of 53 elements analysed in both materials, Cd concentrations are, on average, 17 times higher in the O horizon than in the C horizon and other PTEs such as Ag (11-fold), Hg (10-fold), Sb (8-fold), Pb (4-fold) and Sn (2-fold) are all strongly enriched relative to the C horizon. Geochemical maps of the survey area do not reflect an impact from local or distant anthropogenic contamination sources in the data for O horizon soil samples. The higher concentrations of PTEs in the O horizon are the result of the interaction of the underlying geology, the vegetation zone and type, and climatic effects. Based on the general accordance with existing data from earlier surveys in other parts of northern Europe, the presence of a location-independent, superordinate natural trend towards enrichment of these elements in the O horizon relative to the C horizon soil is indicated. The results imply that the O and C horizons of soils are different geochemical entities and that their respective compositions are controlled by different processes. Local mineral soil analyses (or published data for the chemical composition of the average continental crust) cannot be used to provide a geochemical background for surface soil. At the regional scale used here surface soil chemistry is still dominated by natural sources and processes. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Impacts of Soil-aquifer Heat and Water Fluxes on Simulated Global Climate

    NASA Technical Reports Server (NTRS)

    Krakauer, N.Y.; Puma, Michael J.; Cook, B. I.

    2013-01-01

    Climate models have traditionally only represented heat and water fluxes within relatively shallow soil layers, but there is increasing interest in the possible role of heat and water exchanges with the deeper subsurface. Here, we integrate an idealized 50m deep aquifer into the land surface module of the GISS ModelE general circulation model to test the influence of aquifer-soil moisture and heat exchanges on climate variables. We evaluate the impact on the modeled climate of aquifer-soil heat and water fluxes separately, as well as in combination. The addition of the aquifer to ModelE has limited impact on annual-mean climate, with little change in global mean land temperature, precipitation, or evaporation. The seasonal amplitude of deep soil temperature is strongly damped by the soil-aquifer heat flux. This not only improves the model representation of permafrost area but propagates to the surface, resulting in an increase in the seasonal amplitude of surface air temperature of >1K in the Arctic. The soil-aquifer water and heat fluxes both slightly decrease interannual variability in soil moisture and in landsurface temperature, and decrease the soil moisture memory of the land surface on seasonal to annual timescales. The results of this experiment suggest that deepening the modeled land surface, compared to modeling only a shallower soil column with a no-flux bottom boundary condition, has limited impact on mean climate but does affect seasonality and interannual persistence.

  1. Fine dust emissions in sandy and silty agricultural soils

    USDA-ARS?s Scientific Manuscript database

    Dust emissions from strong winds are common in arid and semi-arid regions and occur under both natural and managed land systems. A portable field wind tunnel has been developed to allow measurements of dust emissions from soil surfaces to test the premise that dust concentrations are highly correlat...

  2. SOIL AND HYDROLOGY OF A WET-SANDY CATENA IN EAST-CENTRAL MINNESOTA

    EPA Science Inventory

    Sail properties are strongly related to the retention and movement of water within the soil system. The purposes of this study were to document the near-surface hydrology of a wetland-upland hillslope on a sandy glacial outwash plain in east-central Minnesota and to describe the ...

  3. Comparison of different assimilation methodologies of groundwater levels to improve predictions of root zone soil moisture with an integrated terrestrial system model

    NASA Astrophysics Data System (ADS)

    Zhang, Hongjuan; Kurtz, Wolfgang; Kollet, Stefan; Vereecken, Harry; Franssen, Harrie-Jan Hendricks

    2018-01-01

    The linkage between root zone soil moisture and groundwater is either neglected or simplified in most land surface models. The fully-coupled subsurface-land surface model TerrSysMP including variably saturated groundwater dynamics is used in this work. We test and compare five data assimilation methodologies for assimilating groundwater level data via the ensemble Kalman filter (EnKF) to improve root zone soil moisture estimation with TerrSysMP. Groundwater level data are assimilated in the form of pressure head or soil moisture (set equal to porosity in the saturated zone) to update state vectors. In the five assimilation methodologies, the state vector contains either (i) pressure head, or (ii) log-transformed pressure head, or (iii) soil moisture, or (iv) pressure head for the saturated zone only, or (v) a combination of pressure head and soil moisture, pressure head for the saturated zone and soil moisture for the unsaturated zone. These methodologies are evaluated in synthetic experiments which are performed for different climate conditions, soil types and plant functional types to simulate various root zone soil moisture distributions and groundwater levels. The results demonstrate that EnKF cannot properly handle strongly skewed pressure distributions which are caused by extreme negative pressure heads in the unsaturated zone during dry periods. This problem can only be alleviated by methodology (iii), (iv) and (v). The last approach gives the best results and avoids unphysical updates related to strongly skewed pressure heads in the unsaturated zone. If groundwater level data are assimilated by methodology (iii), EnKF fails to update the state vector containing the soil moisture values if for (almost) all the realizations the observation does not bring significant new information. Synthetic experiments for the joint assimilation of groundwater levels and surface soil moisture support methodology (v) and show great potential for improving the representation of root zone soil moisture.

  4. Dry/Wet Cycles Change the Activity and Population Dynamics of Methanotrophs in Rice Field Soil

    PubMed Central

    Ma, Ke; Conrad, Ralf

    2013-01-01

    The methanotrophs in rice field soil are crucial in regulating the emission of methane. Drainage substantially reduces methane emission from rice fields. However, it is poorly understood how drainage affects microbial methane oxidation. Therefore, we analyzed the dynamics of methane oxidation rates, composition (using terminal restriction fragment length polymorphism [T-RFLP]), and abundance (using quantitative PCR [qPCR]) of methanotroph pmoA genes (encoding a subunit of particulate methane monooxygenase) and their transcripts over the season and in response to alternate dry/wet cycles in planted paddy field microcosms. In situ methane oxidation accounted for less than 15% of total methane production but was enhanced by intermittent drainage. The dry/wet alternations resulted in distinct effects on the methanotrophic communities in different soil compartments (bulk soil, rhizosphere soil, surface soil). The methanotrophic communities of the different soil compartments also showed distinct seasonal dynamics. In bulk soil, potential methanotrophic activity and transcription of pmoA were relatively low but were significantly stimulated by drainage. In contrast, however, in the rhizosphere and surface soils, potential methanotrophic activity and pmoA transcription were relatively high but decreased after drainage events and resumed after reflooding. While type II methanotrophs dominated the communities in the bulk soil and rhizosphere soil compartments (and to a lesser extent also in the surface soil), it was the pmoA of type I methanotrophs that was mainly transcribed under flooded conditions. Drainage affected the composition of the methanotrophic community only minimally but strongly affected metabolically active methanotrophs. Our study revealed dramatic dynamics in the abundance, composition, and activity of the various type I and type II methanotrophs on both a seasonal and a spatial scale and showed strong effects of dry/wet alternation cycles, which enhanced the attenuation of methane flux into the atmosphere. PMID:23770899

  5. A new approach for remediation of As-contaminated soil: ball mill-based technique.

    PubMed

    Shin, Yeon-Jun; Park, Sang-Min; Yoo, Jong-Chan; Jeon, Chil-Sung; Lee, Seung-Woo; Baek, Kitae

    2016-02-01

    In this study, a physical ball mill process instead of chemical extraction using toxic chemical agents was applied to remove arsenic (As) from contaminated soil. A statistical analysis was carried out to establish the optimal conditions for ball mill processing. As a result of the statistical analysis, approximately 70% of As was removed from the soil at the following conditions: 5 min, 1.0 cm, 10 rpm, and 5% of operating time, media size, rotational velocity, and soil loading conditions, respectively. A significant amount of As remained in the grinded fine soil after ball mill processing while more than 90% of soil has the original properties to be reused or recycled. As a result, the ball mill process could remove the metals bound strongly to the surface of soil by the surface grinding, which could be applied as a pretreatment before application of chemical extraction to reduce the load.

  6. 10Be inventories in Alpine soils and their potentiality for dating land surfaces

    NASA Astrophysics Data System (ADS)

    Egli, Markus; Brandová, Dagmar; Böhlert, Ralph; Favilli, Filippo; Kubik, Peter W.

    2010-05-01

    To exploit natural archives and geomorphic objects it is necessary to date them first. Landscape evolution of Alpine areas is often strongly related to the activities of glaciers in the Pleistocene and Holocene. At sites where no organic matter for radiocarbon dating exists and where suitable boulders for surface exposure dating (using in situ produced cosmogenic nuclides) are absent, dating of soils could give information about the timing of landscape evolution. We explored the applicability of soil dating using the inventory of meteoric Be-10 in Alpine soils. For this purpose, a set of 6 soil profiles in the Swiss and Italian Alps was investigated. The surface at these sites had already been dated (using the radiocarbon technique or surface exposure dating using in situ produced Be-10). Consequently, a direct comparison of the ages of the soils using meteoric Be-10 and other dating techniques was made possible. The estimation of Be-10 deposition rates is subject to severe limitations and strongly influences the obtained results. We tested three scenarios using a) the meteoric Be-10 deposition rates as a function of the annual precipitation rate, b) a constant Be-10 input for the Central Alps and c) as b) but assuming a pre-exposure of the parent material. The obtained ages that are based on the Be-10 inventory in soils and on scenario a) for the Be-10 input agreed reasonably well with the expected age (obtained from surface exposure or radiocarbon dating). The ages obtained from soils using scenario b) produced mostly ages that were too old whereas the approach using scenario c) seemed to yield better results than scenario b). Erosion calculations can, in theory, be performed using the Be-10 inventory and Be-10 deposition rates. An erosion estimation was possible using scenario a) and c), but not using b). The estimated erosion rates are in a reasonable range. The dating of soils using Be-10 has several potential error sources. Analytical errors as well as errors from other parameters such as bulk soil density and soil skeleton content have to be taken into account. The error range was from 8 up to 21%. Furthermore, uncertainties in estimating Be-10 deposition rates substantially influence the calculated ages. Relative age estimates and, under optimal conditions, a numerical dating can be carried out. Age determination of Alpine soils using Be-10 gives another possibility to date surfaces when other methods fail or are not possible at all. It is, however, not straightforward, quite laborious and may consequently have some distinct limitations.

  7. Clay fractions from a soil chronosequence after glacier retreat reveal the initial evolution of organo-mineral associations

    NASA Astrophysics Data System (ADS)

    Dümig, Alexander; Häusler, Werner; Steffens, Markus; Kögel-Knabner, Ingrid

    2012-05-01

    Interactions between organic and mineral constituents prolong the residence time of organic matter in soils. However, the structural organization and mechanisms of organic coverage on mineral surfaces as well as their development with time are still unclear. We used clay fractions from a soil chronosequence (15, 75 and 120 years) in the foreland of the retreating Damma glacier (Switzerland) and from mature soils outside the proglacial area (>700 and <3000 years) to elucidate the evolution of organo-mineral associations during initial soil formation. The chemical composition of the clay-bound organic matter (OM) was assessed by solid-state 13C NMR spectroscopy while the quantities of amino acids and neutral sugar monomers were determined after acid hydrolysis. The mineral phase was characterized by X-ray diffraction, oxalate extraction, specific surface area by N2 adsorption (BET approach), and cation exchange capacity at pH 7 (CECpH7). The last two methods were applied before and after H2O2 treatment. We found pronounced shifts in quantity and quality of OM during aging of the clay fractions, especially within the first one hundred years of soil formation. The strongly increasing organic carbon (OC) loading of clay-sized particles resulted in decreasing specific surface areas (SSA) of the mineral phases and increasing CECpH7. Thus, OC accumulation was faster than the supply of mineral surfaces and cation exchange capacity was mainly determined by the OC content. Clay-bound OC of the 15-year-old soils showed high proportions of carboxyl C and aromatic C. This may point to remnants of ancient OC which were inherited from the recently exposed glacial till. With increasing age (75 and 120 years), the relative proportions of carboxyl and aromatic C decreased. This was associated with increasing O-alkyl C proportions, whereas accumulation of alkyl C was mainly detected in clay fractions from the mature soils. These findings from solid-state 13C NMR spectroscopy are in line with the increasing amounts of microbial-derived carbohydrates with soil age. The large accumulation of proteins, which was comparable to those of carbohydrates, and the very low C/N ratios of H2O2-resistant OM indicated strong and preferential associations between proteinaceous compounds and mineral surfaces. In the acid soils, poorly crystalline Fe oxides were the main providers of mineral surface area and important for the stabilization of OM during aging of the clay fractions. This was indicated by (I) the strong correlations between oxalate soluble Fe and both, SSA of H2O2-treated clay fractions and OC content, and (II) the low formation of expandable clays due to small extents of mineral weathering. Our chronosequence approach provided new insights into the evolution of organo-mineral interactions in acid soils. The formation of organo-mineral associations started with the sorption of proteinaceous compounds and microbial-derived carbohydrates on mineral surfaces which were mainly provided by ferrihydrite. The sequential accumulation of different organic compounds and the large OC loadings point to multiple accretion of OM in distinct zones or layers during the initial evolution of clay fractions.

  8. The intraannual variability of land-atmosphere coupling over North America in the Canadian Regional Climate Model (CRCM5)

    NASA Astrophysics Data System (ADS)

    Yang Kam Wing, G.; Sushama, L.; Diro, G. T.

    2016-12-01

    This study investigates the intraannual variability of soil moisture-temperature coupling over North America. To this effect, coupled and uncoupled simulations are performed with the fifth-generation Canadian Regional Climate Model (CRCM5), driven by ERA-Interim. In coupled simulations, land and atmosphere interact freely; in uncoupled simulations, the interannual variability of soil moisture is suppressed by prescribing climatological values for soil liquid and frozen water contents. The study also explores projected changes to coupling by comparing coupled and uncoupled CRCM5 simulations for current (1981-2010) and future (2071-2100) periods, driven by the Canadian Earth System Model. Coupling differs for the northern and southern parts of North America. Over the southern half, it is persistent throughout the year while for the northern half, strongly coupled regions generally follow the freezing line during the cold months. Detailed analysis of the southern Canadian Prairies reveals seasonal differences in the underlying coupling mechanism. During spring and fall, as opposed to summer, the interactive soil moisture phase impacts the snow depth and surface albedo, which further impacts the surface energy budget and thus the surface air temperature; the air temperature then influences the snow depth in a feedback loop. Projected changes to coupling are also season specific: relatively drier soil conditions strengthen coupling during summer, while changes in soil moisture phase, snow depth, and cloud cover impact coupling during colder months. Furthermore, results demonstrate that soil moisture variability amplifies the frequency of temperature extremes over regions of strong coupling in current and future climates.

  9. Pore-scale water dynamics during drying and the impacts of structure and surface wettability

    NASA Astrophysics Data System (ADS)

    Cruz, Brian C.; Furrer, Jessica M.; Guo, Yi-Syuan; Dougherty, Daniel; Hinestroza, Hector F.; Hernandez, Jhoan S.; Gage, Daniel J.; Cho, Yong Ku; Shor, Leslie M.

    2017-07-01

    Plants and microbes secrete mucilage into soil during dry conditions, which can alter soil structure and increase contact angle. Structured soils exhibit a broad pore size distribution with many small and many large pores, and strong capillary forces in narrow pores can retain moisture in soil aggregates. Meanwhile, contact angle determines the water repellency of soils, which can result in suppressed evaporation rates. Although they are often studied independently, both structure and contact angle influence water movement, distribution, and retention in soils. Here drying experiments were conducted using soil micromodels patterned to emulate different aggregation states of a sandy loam soil. Micromodels were treated to exhibit contact angles representative of those in bulk soil (8.4° ± 1.9°) and the rhizosphere (65° ± 9.2°). Drying was simulated using a lattice Boltzmann single-component, multiphase model. In our experiments, micromodels with higher contact angle surfaces took 4 times longer to completely dry versus micromodels with lower contact angle surfaces. Microstructure influenced drying rate as a function of saturation and controlled the spatial distribution of moisture within micromodels. Lattice Boltzmann simulations accurately predicted pore-scale moisture retention patterns within micromodels with different structures and contact angles.

  10. Unstable Pore-Water Flow in Intertidal Wetlands

    NASA Astrophysics Data System (ADS)

    Barry, D. A.; Shen, C.; Li, L.

    2014-12-01

    Salt marshes are important intertidal wetlands strongly influenced by interactions between surface water and groundwater. Bordered by coastal water, the marsh system undergoes cycles of inundation and exposure driven by the tide. This leads to dynamic, complex pore-water flow and solute transport in the marsh soil. Pore-water circulations occur over vastly different spatial and temporal scales with strong link to the marsh topography. These circulations control solute transport between the marsh soil and the tidal creek, and ultimately affect the overall nutrient exchange between the marsh and coastal water. The pore-water flows also dictate the soil condition, particularly aeration, which influences the marsh plant growth. Numerous studies have been carried out to examine the pore-water flow process in the marsh soil driven by tides, focusing on stable flow with the assumption of homogeneity in soil and fluid properties. This assumption, however, is questionable given the actual inhomogeneous conditions in the field. For example, the salinity of surface water in the tidal creek varies temporally and spatially due to the influence of rainfall and evapotranspiration as well as the freshwater input from upland areas to the estuary, creating density gradients across the marsh surface and within the marsh soil. Many marshes possess soil stratigraphy with low-permeability mud typically overlying high-permeability sandy deposits. Macropores such as crab burrows are commonly distributed in salt marsh sediments. All these conditions are prone to the development of non-uniform, unstable preferential pore-water flow in the marsh soil, for example, funnelling and fingering. Here we present results from laboratory experiments and numerical simulations to explore such unstable flow. In particular, the analysis aims to address how the unstable flow modifies patterns of local pore-water movement and solute transport, as well as the overall exchange between the marsh soil and creek water. The changes would influence not only the marsh soil condition for plant growth but also nutrient cycling in the marsh soil and discharge to the coastal sea.

  11. A laboratory study of colloid and solute transport in surface runoff on saturated soil

    NASA Astrophysics Data System (ADS)

    Yu, Congrong; Gao, Bin; Muñoz-Carpena, Rafael; Tian, Yuan; Wu, Lei; Perez-Ovilla, Oscar

    2011-05-01

    SummaryColloids in surface runoff may pose risks to the ecosystems not only because some of them (e.g., pathogens) are toxic, but also because they may facilitate the transport of other contaminants. Although many studies have been conducted to explore colloid fate and transport in the environment, current understanding of colloids in surface runoff is still limited. In this study, we conducted a range of laboratory experiments to examine the transport behavior of colloids in a surface runoff system, made of a soil box packed with quartz sand with four soil drainage outlets and one surface flow outlet. A natural clay colloid (kaolinite) and a conservative chemical tracer (bromide) were applied to the system under a simulated rainfall event (64 mm/h). Effluent soil drainage and surface flow samples were collected to determine the breakthrough concentrations of bromide and kaolinite. Under the experimental conditions tested, our results showed that surface runoff dominated the transport processes. As a result, kaolinite and bromide were found more in surface flow than in soil drainage. Comparisons between the breakthrough concentrations of bromide and kaolinite showed that kaolinite had lower mobility than bromide in the subsurface flow (i.e., soil drainage), but behaved almost identical to bromide in the surface runoff. Student's t-test confirmed the difference between kaolinite and bromide in subsurface flow ( p = 0.02). Spearman's test and linear regression analysis, however, showed a strong 1:1 correlation between kaolinite and bromide in surface runoff ( p < 0.0001). Our result indicate that colloids and chemical solutes may behave similarly in overland flow on bare soils with limited drainage when surface runoff dominates the transport processes.

  12. Competing factors of compost concentration and proximity to root affect the distribution of streptomycetes.

    PubMed

    Inbar, Ehud; Green, Stefan J; Hadar, Yitzhak; Minz, Dror

    2005-07-01

    Streptomycetes are important members of soil microbial communities and are particularly active in the degradation of recalcitrant macromolecules and have been implicated in biological control of plant disease. Using a streptomycetes-specific polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (PCR-DGGE) methodology coupled with band excision and sequence analysis, we examined the effect of grape marc compost amendment to soil on cucumber plant-associated streptomycetes community composition. We observed that both compost amendment and proximity to the root surface influenced the streptomycetes community composition. A strong root selection for a soil-derived Streptomycete, most closely related to Streptomyces thermotolerans, S. iakyrus, and S. thermocarboxydus, was independent of compost amendment rate. However, while the impact of compost amendment was mitigated with increasing proximity to the root, high levels of compost amendment resulted in the detection of compost-derived species on the root surface. Conversely, in rhizosphere and non-rhizosphere soils, the community composition of streptomycetes was affected strongly even by modest compost amendment. The application of a streptomycetes-specific PCR primer set combined with DGGE analysis provided a rapid means of examining the distribution and ecology of streptomycetes in soils and plant-associated environments.

  13. Soil Response to Global Change: Soil Process Domains and Pedogenic Thresholds (Invited)

    NASA Astrophysics Data System (ADS)

    Chadwick, O.; Kramer, M. G.; Chorover, J.

    2013-12-01

    The capacity of soil to withstand perturbations, whether driven by climate, land use change, or spread of invasive species, depends on its chemical composition and physical state. The dynamic interplay between stable, well buffered soil process domains and thresholds in soil state and function is a strong determinant of soil response to forcing from global change. In terrestrial ecosystems, edaphic responses are often mediated by availability of water and its flux into and through soils. Water influences soil processes in several ways: it supports biological production, hence proton-donor, electron-donor and complexing-ligand production; it determines the advective removal of dissolution products, and it can promote anoxia that leads microorganisms to utilize alternative electron acceptors. As a consequence climate patterns strongly influence global distribution of soil, although within region variability is governed by other factors such as landscape age, parent material and human land use. By contrast, soil properties can vary greatly among climate regions, variation which is guided by the functioning of a suite of chemical processes that tend to maintain chemical status quo. This soil 'buffering' involves acid-base reactions as minerals weather and oxidation-reduction reactions that are driven by microbial respiration. At the planetary scale, soil pH provides a reasonable indicator of process domains and varies from about 3.5 to10, globally, although most soils lie between about 4.5 and 8.5. Those that are above 7.5 are strongly buffered by the carbonate system, those that are characterized by neutral pH (7.5-6) are buffered by release of non-hydrolyzing cations from primary minerals and colloid surfaces, and those that are <6 are buffered by hydrolytic aluminum on colloidal surfaces. Alkali and alkaline (with the exception of limestone parent material) soils are usually associated with arid and semiarid conditions, neutral pH soils with young soils in both dry and wet environments and acid soils with wet environments. Furthermore acid soils often have lost much of their easily weatherable primary minerals and their soluble (plant nutrient) ions, and thus much of their ability to buffer against acidity introduced by biological respiration and its products. Acid soils are closer to thermodynamic equilibrium with their near-surface environment and are less vulnerable to change compared with soils that contain a substantial supply of weatherable minerals (young soils) or carbonate minerals (dry soils). The impact of changing seasonal and annual rainfall and evapotranspiration patterns associated with climate change depends on how current pedogenic thresholds manifest across the landscape. We expect that humid soils subjected to drying should undergo less change than arid or semi-arid soils subjected to wetter seasonal conditions. Land-use changes can drive differential responses depending on changing chemistry and porosity. Collectively these factors provide the framework from which to predict and map soil sensivity to global change and climate change in particular.

  14. [Spatial variation characteristics of surface soil water content, bulk density and saturated hydraulic conductivity on Karst slopes].

    PubMed

    Zhang, Chuan; Chen, Hong-Song; Zhang, Wei; Nie, Yun-Peng; Ye, Ying-Ying; Wang, Ke-Lin

    2014-06-01

    Surface soil water-physical properties play a decisive role in the dynamics of deep soil water. Knowledge of their spatial variation is helpful in understanding the processes of rainfall infiltration and runoff generation, which will contribute to the reasonable utilization of soil water resources in mountainous areas. Based on a grid sampling scheme (10 m x 10 m) and geostatistical methods, this paper aimed to study the spatial variability of surface (0-10 cm) soil water content, soil bulk density and saturated hydraulic conductivity on a typical shrub slope (90 m x 120 m, projected length) in Karst area of northwest Guangxi, southwest China. The results showed that the surface soil water content, bulk density and saturated hydraulic conductivity had different spatial dependence and spatial structure. Sample variogram of the soil water content was fitted well by Gaussian models with the nugget effect, while soil bulk density and saturated hydraulic conductivity were fitted well by exponential models with the nugget effect. Variability of soil water content showed strong spatial dependence, while the soil bulk density and saturated hydraulic conductivity showed moderate spatial dependence. The spatial ranges of the soil water content and saturated hydraulic conductivity were small, while that of the soil bulk density was much bigger. In general, the soil water content increased with the increase of altitude while it was opposite for the soil bulk densi- ty. However, the soil saturated hydraulic conductivity had a random distribution of large amounts of small patches, showing high spatial heterogeneity. Soil water content negatively (P < 0.01) correlated with the bulk density and saturated hydraulic conductivity, while there was no significant correlation between the soil bulk density and saturated hydraulic conductivity.

  15. Sensitivity of Photosynthetic Gas Exchange and Growth of Lodgepole Pine to Climate Variability Depends on the Age of Pleistocene Glacial Surfaces

    NASA Astrophysics Data System (ADS)

    Osborn, B.; Chapple, W.; Ewers, B. E.; Williams, D. G.

    2014-12-01

    The interaction between soil conditions and climate variability plays a central role in the ecohydrological functions of montane conifer forests. Although soil moisture availability to trees is largely dependent on climate, the depth and texture of soil exerts a key secondary influence. Multiple Pleistocene glacial events have shaped the landscape of the central Rocky Mountains creating a patchwork of soils differing in age and textural classification. This mosaic of soil conditions impacts hydrological properties, and montane conifer forests potentially respond to climate variability quite differently depending on the age of glacial till and soil development. We hypothesized that the age of glacial till and associated soil textural changes exert strong control on growth and photosynthetic gas exchange of lodgepole pine. We examined physiological and growth responses of lodgepole pine to interannual variation in maximum annual snow water equivalence (SWEmax) of montane snowpack and growing season air temperature (Tair) and vapor pressure deficit (VPD) across a chronosequence of Pleistocene glacial tills ranging in age from 700k to 12k years. Soil textural differences across the glacial tills illustrate the varying degrees of weathering with the most well developed soils with highest clay content on the oldest till surfaces. We show that sensitivity of growth and carbon isotope discrimination, an integrated measure of canopy gas exchange properties, to interannual variation SWEmax , Tair and VPD is greatest on young till surfaces, whereas trees on old glacial tills with well-developed soils are mostly insensitive to these interannual climate fluctuations. Tree-ring widths were most sensitive to changes in SWEmax on young glacial tills (p < 0.01), and less sensitive on the oldest till (p < 0.05). Tair correlates strongly with δ13C values on the oldest and youngest tills sites, but shows no significant relationship on the middle aged glacial till. It is clear that growth and photosynthetic gas exchange parameters are sensitive to glacial till surfaces, which is evident by the different responses to SWEmax and Tair across sites.

  16. Microbiomes associated with infective stages of root-knot and lesion nematodes in soil

    PubMed Central

    Elhady, Ahmed; Giné, Ariadna; Topalovic, Olivera; Jacquiod, Samuel; Sørensen, Søren J.; Sorribas, Francisco Javier

    2017-01-01

    Endoparasitic root-knot (Meloidogyne spp.) and lesion (Pratylenchus spp.) nematodes cause considerable damage in agriculture. Before they invade roots to complete their life cycle, soil microbes can attach to their cuticle or surface coat and antagonize the nematode directly or by induction of host plant defenses. We investigated whether the nematode-associated microbiome in soil differs between infective stages of Meloidogyne incognita and Pratylenchus penetrans, and whether it is affected by variation in the composition of microbial communities among soils. Nematodes were incubated in suspensions of five organically and two integrated horticultural production soils, recovered by sieving and analyzed for attached bacteria and fungi after washing off loosely adhering microbes. Significant effects of the soil type and nematode species on nematode-associated fungi and bacteria were revealed as analyzed by community profiling using denaturing gradient gel electrophoresis. Attached microbes represented a small specific subset of the soil microbiome. Two organic soils had very similar bacterial and fungal community profiles, but one of them was strongly suppressive towards root-knot nematodes. They were selected for deep amplicon sequencing of bacterial 16S rRNA genes and fungal ITS. Significant differences among the microbiomes associated with the two species in both soils suggested specific surface epitopes. Among the 28 detected bacterial classes, Betaproteobacteria, Bacilli and Actinobacteria were the most abundant. The most frequently detected fungal genera were Malassezia, Aspergillus and Cladosporium. Attached microbiomes did not statistically differ between these two soils. However, Malassezia globosa and four fungal species of the family Plectosphaerellaceae, and the bacterium Neorhizobium galegae were strongly enriched on M. incognita in the suppressive soil. In conclusion, the highly specific attachment of microbes to infective stages of phytonematodes in soil suggested an ecological role of this association and might be involved in soil suppressiveness towards them. PMID:28472099

  17. Sorption and Transport of Pharmaceutical chemicals in Organic- and Mineral-rich Soils

    NASA Astrophysics Data System (ADS)

    Vulava, V. M.; Schwindaman, J.; Murphey, V.; Kuzma, S.; Cory, W.

    2011-12-01

    Pharmaceutical, active ingredients in personal care products (PhACs), and their derivative compounds are increasingly ubiquitous in surface waters across the world. Sorption and transport of four relatively common PhACs (naproxen, ibuprofen, cetirizine, and triclosan) in different natural soils was measured. All of these compounds are relatively hydrophobic (log KOW>2) and have acid/base functional groups, including one compound that is zwitterionic (cetirizine.) The main goal of this study was to correlate organic matter (OM) and clay content in natural soils and sediment with sorption and degradation of PhACs and ultimately their potential for transport within the subsurface environment. A- and B-horizon soils were collected from four sub-regions within a pristine managed forested watershed near Charleston, SC, with no apparent sources of anthropogenic contamination. These four soil series had varying OM content (fOC) between 0.4-9%, clay mineral content between 6-20%, and soil pH between 4.5-6. The A-horizon soils had higher fOC and lower clay content than the B-horizon soils. Sorption isotherms measured from batch sorption experimental data indicated a non-linear sorption relationship in all A- and B-horizon soils - stronger sorption was observed at lower PhAC concentrations and lower sorption at higher concentrations. Three PhACs (naproxen, ibuprofen, and triclosan) sorbed more strongly with higher fOC A-horizon soils compared with the B-horizon soils. These results show that soil OM had a significant role in strongly binding these three PhACs, which had the highest KOW values. In contrast, cetirizine, which is predominantly positively charged at pH below 8, strongly sorbed to soils with higher clay mineral content and least strongly to higher fOC soils. All sorption isotherms fitted well to the Freundlich model. For naproxen, ibuprofen, and triclosan, there was a strong and positive linear correlation between the Freundlich adsorption constant, Kf, and fOC, again indicating that these PhACs preferentially partition into the soil OM. Such a correlation was absent for cetirizine. Breakthrough curves of PhACs measured in homogeneous packed soil columns indicated that PhAC transport was affected by chemical nonequilibrium processes depending on the soil and PhAC chemistry. The shape of the breakthrough curves indicated that there were two distinct sorption sites - OM and clay minerals - which influence nonequilibrium transport of these compounds. The retardation factor estimated using the distribution coefficient, Kd, measured from the sorption experiments was very similar to the measured value. While the sorption and transport data do not provide mechanistic information regarding the nature of PhAC interaction with chemical reactive components within geological materials, they do provide important information regarding potential fate of such compounds in the environment. The results also show the role that soil OM and mineral surfaces play in sequestering or transporting these chemicals. These insights have implications to the quality of the water resources in our communities.

  18. Satellite Mapping of Rain-Induced Nitric Oxide Emissions from Soils

    NASA Technical Reports Server (NTRS)

    Jaegle, L.; Martin, R. V.; Chance, K.; Steinberger, L.; Kurosu, T. P.; Jacob, D. J.; Modi, A. I.; Yoboue, V.; Sigha-Nkamdjou, L.; Galy-Lacaux, C.

    2004-01-01

    We use space-based observations of NO2 columns from the Global Ozone Monitoring Experiment (GOME) to map the spatial and seasonal variations of NOx emissions over Africa during 2000. The GOME observations show not only enhanced tropospheric NO2 columns from biomass burning during the dry season but also comparable enhancements from soil emissions during the rainy season over the Sahel. These soil emissions occur in strong pulses lasting 1-3 weeks following the onset of rain, and affect 3 million sq km of semiarid sub-Saharan savanna. Surface observations of NO2 from the International Global Atmospheric Chemistry (IGAC)/Deposition of Biochemically Important Trace Species (DEBITS)/Africa (IDAF) network over West Africa provide further evidence for a strong role for microbial soil sources. By combining inverse modeling of GOME NO2 columns with space-based observations of fires, we estimate that soils contribute 3.3+/-1.8 TgN/year, similar to the biomass burning source (3.8+/-2.1 TgN/year), and thus account for 40% of surface NO(x) emissions over Africa. Extrapolating to all the tropics, we estimate a 7.3 TgN/year biogenic soil source, which is a factor of 2 larger compared to model-based inventories but agrees with observation-based inventories. These large soil NO(x) emissions are likely to significantly contribute to the ozone enhancement originating from tropical Africa.

  19. On the Comparison of the Global Surface Soil Moisture product and Land Surface Modeling

    NASA Astrophysics Data System (ADS)

    Delorme, B., Jr.; Ottlé, C.; Peylin, P.; Polcher, J.

    2016-12-01

    Thanks to its large spatio-temporal coverage, the new ESA CCI multi-instruments dataset offers a good opportunity to assess and improve land surface models parametrization. In this study, the ESA CCI surface soil moisture (SSM) combined product (v2.2) has been compared to the simulated top first layers of the ORCHIDEE LSM (the continental part of the IPSL earth system model), in order to evaluate its potential of improvements with data assimilation techniques. The ambition of the work was to develop a comprehensive comparison methodology by analyzing simultaneously the temporal and spatial structures of both datasets. We analyzed the SSM synoptic, seasonal, and inter-annual variations by decomposing the signals into fast and slow components. ORCHIDEE was shown to adequately reproduce the observed SSM dynamics in terms of temporal correlation. However, these correlation scores are supposed to be strongly influenced by SSM seasonal variability and the quality of the model input forcing. Autocorrelation and spectral analyses brought out disagreements in the temporal inertia of the upper soil moisture reservoirs. By linking our results to land cover maps, we found that ORCHIDEE is more dependent on rainfall events compared to the observations in regions with sparse vegetation cover. These diflerences might be due to a wrong partition of rainfall between soil evaporation, transpiration, runofl and drainage in ORCHIDEE. To refine this analysis, a single value decomposition (SVD) of the co-variability between rainfall provided by WFDEI and soil moisture was pursued over Central Europe and South Africa. It showed that spatio-temporal co-varying patterns between ORCHIDEE and rainfall and the ESA-CCI product and rainfall are in relatively good agreement. However, the leading SVD pattern, which exhibits a strong annual cycle and explains the same portion of covariance for both datasets, explains a much larger fraction of variance for ORCHIDEE than for the ESA-CCI product. These results highlight that the role of other surface variables presenting a strong seasonal variability (like vegetation cover, possibly irrigation) is not accounted for similarly in both the model and the product, and that further work is needed to explore these discrepancies.

  20. Response of seasonal soil freeze depth to climate change across China

    NASA Astrophysics Data System (ADS)

    Peng, Xiaoqing; Zhang, Tingjun; Frauenfeld, Oliver W.; Wang, Kang; Cao, Bin; Zhong, Xinyue; Su, Hang; Mu, Cuicui

    2017-05-01

    The response of seasonal soil freeze depth to climate change has repercussions for the surface energy and water balance, ecosystems, the carbon cycle, and soil nutrient exchange. Despite its importance, the response of soil freeze depth to climate change is largely unknown. This study employs the Stefan solution and observations from 845 meteorological stations to investigate the response of variations in soil freeze depth to climate change across China. Observations include daily air temperatures, daily soil temperatures at various depths, mean monthly gridded air temperatures, and the normalized difference vegetation index. Results show that soil freeze depth decreased significantly at a rate of -0.18 ± 0.03 cm yr-1, resulting in a net decrease of 8.05 ± 1.5 cm over 1967-2012 across China. On the regional scale, soil freeze depth decreases varied between 0.0 and 0.4 cm yr-1 in most parts of China during 1950-2009. By investigating potential climatic and environmental driving factors of soil freeze depth variability, we find that mean annual air temperature and ground surface temperature, air thawing index, ground surface thawing index, and vegetation growth are all negatively associated with soil freeze depth. Changes in snow depth are not correlated with soil freeze depth. Air and ground surface freezing indices are positively correlated with soil freeze depth. Comparing these potential driving factors of soil freeze depth, we find that freezing index and vegetation growth are more strongly correlated with soil freeze depth, while snow depth is not significant. We conclude that air temperature increases are responsible for the decrease in seasonal freeze depth. These results are important for understanding the soil freeze-thaw dynamics and the impacts of soil freeze depth on ecosystem and hydrological process.

  1. Below-ground attributes on reclaimed surface minelands over a 40-year chronosequence

    NASA Astrophysics Data System (ADS)

    Limb, Ryan; Bohrer, Stefanie; Volk, Jay

    2017-04-01

    Reclamation following mining activities often aims to restore stable soils that support productive and diverse native plant communities. The soil re-spread process increases soil compaction, which may alter soil water, plant composition, rooting depths and soil organic matter. This may have a direct impact on vegetation establishment and species recruitment. Seasonal wet/dry and freeze/thaw patterns are thought to alleviate soil compaction over time. However, this has not been formally evaluated on reclaimed landscapes at large scales. Our objectives were to (1) determine soil compaction alleviation, (2) rooting depth and (3) spatial patterns of soil water content over a time-since-reclamation gradient. Soil resistance to penetration varied by depth, with shallow compaction remaining unchanged, but deeper compaction increased over time rather than being alleviated. Root biomass and depth did not increase with time and was consistently less than reference locations. Plant communities initially had a strong native component, but quickly became dominated by invasive species following reclamation and soil water content became increasingly homogeneous over the 40-year chronosequence. Seasonal weather patterns and soil organic matter additions can reduce soil compaction if water infiltration is not limited. Shallow and strongly fibrous-rooted grasses present in reclaimed sites added organic matter to shallow soil layers, but did not penetrate the compacted layers and allow water infiltration. Strong linkages between land management strategies, soil properties and vegetation composition can advance reclamation efforts and promote heterogeneous landscapes. However, current post-reclamation management strategies are not facilitating natural seasonal weather patterns to reducing soil compaction.

  2. Soils of wet valleys in the Larsemann Hills and Vestfold Hills oases (Princess Elizabeth Land, East Antarctica)

    NASA Astrophysics Data System (ADS)

    Mergelov, N. S.

    2014-09-01

    The properties and spatial distribution of soils and soil-like bodies in valleys of the coastal Larsemann Hills and Vestfold Hills oases—poorly investigated in terms of the soil areas of East Antarctica—are discussed. In contrast to Dry Valleys—large continental oases of Western Antarctica—the studied territory is characterized by the presence of temporarily waterlogged sites in the valleys. It is argued that the deficit of water rather than the low temperature is the major limiting factor for the development of living organisms and the pedogenesis on loose substrates. The moisture gradients in the surface soil horizons explain the spatial distribution of the different soils and biotic complexes within the studied valleys. Despite the permanent water-logging of the deep suprapermafrost horizons of most of the soils in the valleys, no gley features have been identified in them. The soils of the wet valleys in the Larsemann Hills oasis do not contain carbonates. They have a slightly acid or neutral reaction. The organic carbon and nitrogen contents are mainly controlled by the amount of living and dead biomass rather than by the humic substances proper. The larger part of the biomass is concentrated inside the mineral soil matrix rather than on the soil surface. The stresses caused by surface drying, strong winds, and ultraviolet radiation prevent the development of organisms on the surface of the soil and necessitate the search for shelter within the soil fine earth material (endoedaphic niche) or under the gravelly pavement (hypolithic niche). In the absence of higher plants, humified products of their decomposition, and rainwater that can wash the soil profile and upon the low content of silt and clay particles in the soil material, "classical" soil horizons are not developed. The most distinct (and, often, the only diagnosed) products of pedogenesis in these soils are represented by organomineral films on the surface of mineral particles.

  3. Spectral element modelling of seismic wave propagation in visco-elastoplastic media including excess-pore pressure development

    NASA Astrophysics Data System (ADS)

    Oral, Elif; Gélis, Céline; Bonilla, Luis Fabián; Delavaud, Elise

    2017-12-01

    Numerical modelling of seismic wave propagation, considering soil nonlinearity, has become a major topic in seismic hazard studies when strong shaking is involved under particular soil conditions. Indeed, when strong ground motion propagates in saturated soils, pore pressure is another important parameter to take into account when successive phases of contractive and dilatant soil behaviour are expected. Here, we model 1-D seismic wave propagation in linear and nonlinear media using the spectral element numerical method. The study uses a three-component (3C) nonlinear rheology and includes pore-pressure excess. The 1-D-3C model is used to study the 1987 Superstition Hills earthquake (ML 6.6), which was recorded at the Wildlife Refuge Liquefaction Array, USA. The data of this event present strong soil nonlinearity involving pore-pressure effects. The ground motion is numerically modelled for different assumptions on soil rheology and input motion (1C versus 3C), using the recorded borehole signals as input motion. The computed acceleration-time histories show low-frequency amplification and strong high-frequency damping due to the development of pore pressure in one of the soil layers. Furthermore, the soil is found to be more nonlinear and more dilatant under triaxial loading compared to the classical 1C analysis, and significant differences in surface displacements are observed between the 1C and 3C approaches. This study contributes to identify and understand the dominant phenomena occurring in superficial layers, depending on local soil properties and input motions, conditions relevant for site-specific studies.

  4. Integrated Processing of High Resolution Topographic Data for Soil Erosion Assessment Considering Data Acquisition Schemes and Surface Properties

    NASA Astrophysics Data System (ADS)

    Eltner, A.; Schneider, D.; Maas, H.-G.

    2016-06-01

    Soil erosion is a decisive earth surface process strongly influencing the fertility of arable land. Several options exist to detect soil erosion at the scale of large field plots (here 600 m²), which comprise different advantages and disadvantages depending on the applied method. In this study, the benefits of unmanned aerial vehicle (UAV) photogrammetry and terrestrial laser scanning (TLS) are exploited to quantify soil surface changes. Beforehand data combination, TLS data is co-registered to the DEMs generated with UAV photogrammetry. TLS data is used to detect global as well as local errors in the DEMs calculated from UAV images. Additionally, TLS data is considered for vegetation filtering. Complimentary, DEMs from UAV photogrammetry are utilised to detect systematic TLS errors and to further filter TLS point clouds in regard to unfavourable scan geometry (i.e. incidence angle and footprint) on gentle hillslopes. In addition, surface roughness is integrated as an important parameter to evaluate TLS point reliability because of the increasing footprints and thus area of signal reflection with increasing distance to the scanning device. The developed fusion tool allows for the estimation of reliable data points from each data source, considering the data acquisition geometry and surface properties, to finally merge both data sets into a single soil surface model. Data fusion is performed for three different field campaigns at a Mediterranean field plot. Successive DEM evaluation reveals continuous decrease of soil surface roughness, reappearance of former wheel tracks and local soil particle relocation patterns.

  5. LS3MIP (v1.0) Contribution to CMIP6: The Land Surface, Snow and Soil Moisture Model Intercomparison Project Aims, Setup and Expected Outcome.

    NASA Technical Reports Server (NTRS)

    Van Den Hurk, Bart; Kim, Hyungjun; Krinner, Gerhard; Seneviratne, Sonia I.; Derksen, Chris; Oki, Taikan; Douville, Herve; Colin, Jeanne; Ducharne, Agnes; Cheruy, Frederique; hide

    2016-01-01

    The Land Surface, Snow and Soil Moisture Model Intercomparison Project (LS3MIP) is designed to provide a comprehensive assessment of land surface, snow, and soil moisture feedbacks on climate variability and climate change, and to diagnose systematic biases in the land modules of current Earth System Models (ESMs). The solid and liquid water stored at the land surface has a large influence on the regional climate, its variability and predictability, including effects on the energy, water and carbon cycles. Notably, snow and soil moisture affect surface radiation and flux partitioning properties, moisture storage and land surface memory. They both strongly affect atmospheric conditions, in particular surface air temperature and precipitation, but also large-scale circulation patterns. However, models show divergent responses and representations of these feedbacks as well as systematic biases in the underlying processes. LS3MIP will provide the means to quantify the associated uncertainties and better constrain climate change projections, which is of particular interest for highly vulnerable regions (densely populated areas, agricultural regions, the Arctic, semi-arid and other sensitive terrestrial ecosystems).The experiments are subdivided in two components, the first addressing systematic land biases in offline mode (LMIP, building upon the 3rd phase of Global Soil Wetness Project; GSWP3) and the second addressing land feedbacks attributed to soil moisture and snow in an integrated framework (LFMIP, building upon the GLACE-CMIP blueprint).

  6. Ground-based Remote Sensing for Quantifying Subsurface and Surface Co-variability to Scale Arctic Ecosystem Functioning

    NASA Astrophysics Data System (ADS)

    Oktem, R.; Wainwright, H. M.; Curtis, J. B.; Dafflon, B.; Peterson, J.; Ulrich, C.; Hubbard, S. S.; Torn, M. S.

    2016-12-01

    Predicting carbon cycling in Arctic requires quantifying tightly coupled surface and subsurface processes including permafrost, hydrology, vegetation and soil biogeochemistry. The challenge has been a lack of means to remotely sense key ecosystem properties in high resolution and over large areas. A particular challenge has been characterizing soil properties that are known to be highly heterogeneous. In this study, we exploit tightly-coupled above/belowground ecosystem functioning (e.g., the correlations among soil moisture, vegetation and carbon fluxes) to estimate subsurface and other key properties over large areas. To test this concept, we have installed a ground-based remote sensing platform - a track-mounted tram system - along a 70 m transect in the ice-wedge polygonal tundra near Barrow, Alaska. The tram carries a suite of near-surface remote sensing sensors, including sonic depth, thermal IR, NDVI and multispectral sensors. Joint analysis with multiple ground-based measurements (soil temperature, active layer soil moisture, and carbon fluxes) was performed to quantify correlations and the dynamics of above/belowground processes at unprecedented resolution, both temporally and spatially. We analyzed the datasets with particular focus on correlating key subsurface and ecosystem properties with surface properties that can be measured by satellite/airborne remote sensing over a large area. Our results provided several new insights about system behavior and also opens the door for new characterization approaches. We documented that: (1) soil temperature (at >5 cm depth; critical for permafrost thaw) was decoupled from soil surface temperature and was influenced strongly by soil moisture, (2) NDVI and greenness index were highly correlated with both soil moisture and gross primary productivity (based on chamber flux data), and (3) surface deformation (which can be measured by InSAR) was a good proxy for thaw depth dynamics at non-inundated locations.

  7. Effect of soil moisture on diurnal convection and precipitation in Large-Eddy Simulations

    NASA Astrophysics Data System (ADS)

    Cioni, Guido; Hohenegger, Cathy

    2017-04-01

    Soil moisture and convective precipitation are generally thought to be strongly coupled, although limitations in the modeling set-up of past studies due to coarse resolutions, and thus poorly resolved convective processes, have prevented a trustful determination of the strength and sign of this coupling. In this work the soil moisture-precipitation feedback is investigated by means of high-resolution simulations where convection is explicitly resolved. To that aim we use the LES (Large Eddy Simulation) version of the ICON model with a grid spacing of 250 m, coupled to the TERRA-ML soil model. We use homogeneous initial soil moisture conditions and focus on the precipitation response to increase/decrease of the initial soil moisture for various atmospheric profiles. The experimental framework proposed by Findell and Eltahir (2003) is revisited by using the same atmospheric soundings as initial condition but allowing a full interaction of the atmosphere with the land-surface over a complete diurnal cycle. In agreement with Findell and Eltahir (2003) the triggering of convection can be favoured over dry soils or over wet soils depending on the initial atmospheric sounding. However, total accumulated precipitation is found to always decrease over dry soils regardless of the employed sounding, thus highlighting a positive soil moisture-precipitation feedback (more rain over wetter soils) for the considered cases. To understand these differences and to infer under which conditions a negative feedback may occur, the total accumulated precipitation is split into its magnitude and duration component. While the latter can exhibit a dry soil advantage, the precipitation magnitude strongly correlates with the surface latent heat flux and thus always exhibits a wet soil advantage. The dependency is so strong that changes in duration cannot offset it. This simple argument shows that, in our idealised setup, a negative feedback is unlikely to be observed. The effects of other factors on the soil moisture-precipitation coupling, namely cloud radiative effects, large-scale forcing, winds, and plants are investigated by conducting further sensitivity experiments. All the experiments support a positive soil moisture-precipitation feedback. References: -Findell, K. L., and E. A. Eltahir, 2003: Atmospheric controls on soil moisture-boundary layer interactions. part I: Framework development. Journal of Hydrometeorology, 4 (3), 552-569.

  8. The role of fire in management of watershed responses

    Treesearch

    Malcolm J. Zwolinski

    2000-01-01

    Hydrologic responses of watersheds are strongly related to vegetation and soil disturbances. Many of the storage and transfer components of the global hydrologic cycle are altered by the occurrence of fire. The major effect of fire on the hydrologic functioning of watersheds is the removal of vegetation and litter materials that protect the soil surface. Reductions in...

  9. 10Be inventories in Alpine soils and their potential for dating land surfaces

    NASA Astrophysics Data System (ADS)

    Egli, Markus; Brandová, Dagmar; Böhlert, Ralph; Favilli, Filippo; Kubik, Peter W.

    2010-07-01

    To exploit natural sedimentary archives and geomorphic landforms it is necessary to date them first. Landscape evolution of Alpine areas is often strongly related to the activities of glaciers in the Pleistocene and Holocene. At sites where no organic matter for radiocarbon dating exists and where suitable boulders for surface exposure dating (using in situ produced cosmogenic nuclides) are absent, dating of soils could give information about the timing of landscape evolution. This paper explores the applicability of soil dating using the inventory of meteoric 10Be in Alpine soils. For this purpose, a set of 6 soil profiles in the Swiss and Italian Alps was investigated. The surface at these sites had already been dated (using the radiocarbon technique or the surface exposure determination using in situ produced 10Be). Consequently, a direct comparison of the ages of the soils using meteoric 10Be and other dating techniques was made possible. The estimation of 10Be deposition rates is subject to severe limitations and strongly influences the obtained results. We tested three scenarios using a) the meteoric 10Be deposition rates as a function of the annual precipitation rate, b) a constant 10Be input for the Central Alps, and c) as b) but assuming a pre-exposure of the parent material. The obtained ages that are based on the 10Be inventory in soils and on scenario a) for the 10Be input agreed reasonably well with the age using surface exposure or radiocarbon dating. The ages obtained from soils using scenario b) produced ages that were mostly too old whereas the approach using scenario c) seemed to yield better results than scenario b). Erosion calculations can, in theory, be performed using the 10Be inventory and 10Be deposition rates. An erosion estimation was possible using scenario a) and c), but not using b). The calculated erosion rates using these scenarios seemed to be plausible with values in the range of 0-57 mm/ky. The dating of soils using 10Be has several potential error sources. Analytical errors as well as errors from other parameters such as bulk soil density and soil skeleton content have to be taken into account. The error range was from 8 up to 21%. Furthermore, uncertainties in estimating 10Be deposition rates substantially influence the calculated ages. Relative age estimates and, under optimal conditions, absolute dating can be carried out. Age determination of Alpine soils using 10Be gives another possibility to date surfaces when other methods fail or are not possible at all. It is, however, not straightforward, quite laborious and may consequently have some distinct limitations.

  10. Soil magnetic susceptibility reflects soil moisture regimes and the adaptability of tree species to these regimes

    USGS Publications Warehouse

    Wang, J.-S.; Grimley, D.A.; Xu, C.; Dawson, J.O.

    2008-01-01

    Flooded, saturated or poorly drained soils are frequently anaerobic, leading to dissolution of the strongly magnetic minerals, magnetite and maghemite, and a corresponding decrease in soil magnetic susceptibility (MS). In this study of five temperate deciduous forests in east-central Illinois, USA, mean surface soil MS was significantly higher adjacent to upland tree species (31 ?? 10-5 SI) than adjacent to floodplain or lowland tree species (17 ?? 10-5 SI), when comparing regional soils with similar parent material of loessal silt. Although the sites differ in average soil MS for each tree species, the relative order of soil MS means for associated tree species at different locations is similar. Lowland tree species, Celtis occidentalis L., Ulmus americana L., Acer saccharinum L., Carya laciniosa (Michx. f.) Loud., and Fraxinus pennsylvanica Marsh. were associated with the lowest measured soil MS mean values overall and at each site. Tree species' flood tolerance rankings increased significantly, as soil MS values declined, the published rankings having significant correlations with soil MS values for the same species groups. The three published classifications of tree species' flood tolerance were significantly correlated with associated soil MS values at all sites, but most strongly at Allerton Park, the site with the widest range of soil drainage classes and MS values. Using soil MS measurements in forests with soil parent material containing similar initial levels of strongly magnetic minerals can provide a simple, rapid and quantitative method to classify soils according to hydric regimes, including dry conditions, and associated plant composition. Soil MS values thus have the capacity to quantify the continuum of hydric tolerances of tree species and guide tree species selection for reforestation. ?? 2007 Elsevier B.V. All rights reserved.

  11. Effectiveness of submerged drains in reducing subsidence of peat soils in agricultural use, and their effects on water management and nutrient loading of surface water: modelling of a case study in the western peat soil area of The Netherlands

    NASA Astrophysics Data System (ADS)

    Hendriks, Rob F. A.; van den Akker, Jan J. A.

    2017-04-01

    Effectiveness of submerged drains in reducing subsidence of peat soils in agricultural use, and their effects on water management and nutrient loading of surface water: modelling of a case study in the western peat soil area of The Netherlands In the Netherlands, about 8% of the area is covered by peat soils. Most of these soils are in use for dairy farming and, consequently, are drained. Drainage causes decomposition of peat by oxidation and accordingly leads to surface subsidence and greenhouse gas emission. Submerged drains that enhance submerged infiltration of water from ditches during the dry and warm summer half year were, and are still, studied in The Netherlands as a promising tool for reducing peat decomposition by raising groundwater levels. For this purpose, several pilot field studies in the Western part of the Dutch peat area were conducted. Besides the effectiveness of submerged drains in reducing peat decomposition and subsidence by raising groundwater tables, some other relevant or expected effects of these drains were studied. Most important of these are water management and loading of surface water with nutrients nitrogen, phosphorus and sulphate. Because most of these parameters are not easy to assess and all of them are strongly depending on the meteorological conditions during the field studies some of these studies were modelled. The SWAP model was used for evaluating the hydrological results on groundwater table and water discharge and recharge. Effects of submerged drains were assessed by comparing the results of fields with and without drains. An empirical relation between deepest groundwater table and subsidence was used to convert effects on groundwater table to effects on subsidence. With the SWAP-ANIMO model nutrient loading of surface water was modelled on the basis of field results on nutrient concentrations . Calibrated models were used to assess effects in the present situation, as thirty-year averages, under extreme weather conditions and for two extreme climate scenarios of the Royal Netherlands Meteorological Institute. In this study the model results of one of the pilot studies are presented. The case study 'de Krimpenerwaard' is situated in the peat area in the "Green Heart" between the major cities of Amsterdam, The Hague, Rotterdam and Utrecht. Model results show a halving of soil subsidence, a strong increase of water recharge but a lower increase of water discharge, and generally small to moderate effects on nutrient loading , all depending (strongly) on meteorological conditions.

  12. Seasonal-to-Interannual Variability and Land Surface Processes

    NASA Technical Reports Server (NTRS)

    Koster, Randal

    2004-01-01

    Atmospheric chaos severely limits the predictability of precipitation on subseasonal to interannual timescales. Hope for accurate long-term precipitation forecasts lies with simulating atmospheric response to components of the Earth system, such as the ocean, that can be predicted beyond a couple of weeks. Indeed, seasonal forecasts centers now rely heavily on forecasts of ocean circulation. Soil moisture, another slow component of the Earth system, is relatively ignored by the operational seasonal forecasting community. It is starting, however, to garner more attention. Soil moisture anomalies can persist for months. Because these anomalies can have a strong impact on evaporation and other surface energy fluxes, and because the atmosphere may respond consistently to anomalies in the surface fluxes, an accurate soil moisture initialization in a forecast system has the potential to provide additional forecast skill. This potential has motivated a number of atmospheric general circulation model (AGCM) studies of soil moisture and its contribution to variability in the climate system. Some of these studies even suggest that in continental midlatitudes during summer, oceanic impacts on precipitation are quite small relative to soil moisture impacts. The model results, though, are strongly model-dependent, with some models showing large impacts and others showing almost none at all. A validation of the model results with observations thus naturally suggests itself, but this is exceedingly difficult. The necessary contemporaneous soil moisture, evaporation, and precipitation measurements at the large scale are virtually non-existent, and even if they did exist, showing statistically that soil moisture affects rainfall would be difficult because the other direction of causality - wherein rainfall affects soil moisture - is unquestionably active and is almost certainly dominant. Nevertheless, joint analyses of observations and AGCM results do reveal some suggestions of land-atmosphere feedback in the observational record, suggestions that soil moisture can affect precipitation over seasonal timescales and across certain large continental areas. The strength of this observed feedback in nature is not large but is still significant enough to be potentially useful, e.g., for forecasts. This talk will address all of these issues. It will begin with a brief overview of land surface modeling in atmospheric models but will then focus on recent research - using both observations and models - into the impact of land surface processes on variability in the climate system.

  13. Water retention of repellent and subcritical repellent soils: New insights from model and experimental investigations

    NASA Astrophysics Data System (ADS)

    Czachor, H.; Doerr, S. H.; Lichner, L.

    2010-01-01

    SummarySoil organic matter can modify the surface properties of the soil mineral phase by changing the surface tension of the mineral surfaces. This modifies the soil's solid-water contact angle, which in turn would be expected to affect its water retention curve (SWRC). Here we model the impact of differences in the soil pore-water contact angle on capillarity in non-cylindrical pores by accounting for their complex pore geometry. Key outcomes from the model include that (i) available methods for measuring the Young's wetting angle on soil samples are insufficient in representing the wetting angle in the soil pore space, (ii) the wetting branch of water retention curves is strongly affected by the soil pore-water contact angle, as manifest in the wetting behavior of water repellent soils, (iii) effects for the drying branch are minimal, indicating that both wettable and water repellent soils should behave similarly, and (vi) water retention is a feature not of only wettable soils, but also soils that are in a water repellent state. These results are tested experimentally by determining drying and wetting branches for (a) 'model soil' (quartz sands with four hydrophobization levels) and (b) five field soil samples with contrasting wettability, which were used with and without the removal of the soil organic matter. The experimental results support the theoretical predictions and indicate that small changes in wetting angle can cause switches between wettable and water repellent soil behavior. This may explain the common observation that relatively small changes in soil water content can cause substantial changes in soil wettability.

  14. Impact of Soil Moisture Initialization on Seasonal Weather Prediction

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Suarez, Max J.; Houser, Paul (Technical Monitor)

    2002-01-01

    The potential role of soil moisture initialization in seasonal forecasting is illustrated through ensembles of simulations with the NASA Seasonal-to-Interannual Prediction Project (NSIPP) model. For each boreal summer during 1997-2001, we generated two 16-member ensembles of 3-month simulations. The first, "AMIP-style" ensemble establishes the degree to which a perfect prediction of SSTs would contribute to the seasonal prediction of precipitation and temperature over continents. The second ensemble is identical to the first, except that the land surface is also initialized with "realistic" soil moisture contents through the continuous prior application (within GCM simulations leading up to the start of the forecast period) of a daily observational precipitation data set and the associated avoidance of model drift through the scaling of all surface prognostic variables. A comparison of the two ensembles shows that soil moisture initialization has a statistically significant impact on summertime precipitation and temperature over only a handful of continental regions. These regions agree, to first order, with regions that satisfy three conditions: (1) a tendency toward large initial soil moisture anomalies, (2) a strong sensitivity of evaporation to soil moisture, and (3) a strong sensitivity of precipitation to evaporation. The degree to which the initialization improves forecasts relative to observations is mixed, reflecting a critical need for the continued development of model parameterizations and data analysis strategies.

  15. Estimation of surface soil moisture and roughness from multi-angular ASAR imagery in the Watershed Allied Telemetry Experimental Research (WATER)

    NASA Astrophysics Data System (ADS)

    Wang, S. G.; Li, X.; Han, X. J.; Jin, R.

    2011-05-01

    Radar remote sensing has demonstrated its applicability to the retrieval of basin-scale soil moisture. The mechanism of radar backscattering from soils is complicated and strongly influenced by surface roughness. Additionally, retrieval of soil moisture using AIEM (advanced integrated equation model)-like models is a classic example of underdetermined problem due to a lack of credible known soil roughness distributions at a regional scale. Characterization of this roughness is therefore crucial for an accurate derivation of soil moisture based on backscattering models. This study aims to simultaneously obtain surface roughness parameters (standard deviation of surface height σ and correlation length cl) along with soil moisture from multi-angular ASAR images by using a two-step retrieval scheme based on the AIEM. The method firstly used a semi-empirical relationship that relates the roughness slope, Zs (Zs = σ2/cl) and the difference in backscattering coefficient (Δσ) from two ASAR images acquired with different incidence angles. Meanwhile, by using an experimental statistical relationship between σ and cl, both these parameters can be estimated. Then, the deduced roughness parameters were used for the retrieval of soil moisture in association with the AIEM. An evaluation of the proposed method was performed in an experimental area in the middle stream of the Heihe River Basin, where the Watershed Allied Telemetry Experimental Research (WATER) was taken place. It is demonstrated that the proposed method is feasible to achieve reliable estimation of soil water content. The key challenge is the presence of vegetation cover, which significantly impacts the estimates of surface roughness and soil moisture.

  16. Modeling interface shear behavior of granular materials using micro-polar continuum approach

    NASA Astrophysics Data System (ADS)

    Ebrahimian, Babak; Noorzad, Ali; Alsaleh, Mustafa I.

    2018-01-01

    Recently, the authors have focused on the shear behavior of interface between granular soil body and very rough surface of moving bounding structure. For this purpose, they have used finite element method and a micro-polar elasto-plastic continuum model. They have shown that the boundary conditions assumed along the interface have strong influences on the soil behavior. While in the previous studies, only very rough bounding interfaces have been taken into account, the present investigation focuses on the rough, medium rough and relatively smooth interfaces. In this regard, plane monotonic shearing of an infinite extended narrow granular soil layer is simulated under constant vertical pressure and free dilatancy. The soil layer is located between two parallel rigid boundaries of different surface roughness values. Particular attention is paid to the effect of surface roughness of top and bottom boundaries on the shear behavior of granular soil layer. It is shown that the interaction between roughness of bounding structure surface and the rotation resistance of bounding grains can be modeled in a reasonable manner through considered Cosserat boundary conditions. The influence of surface roughness is investigated on the soil shear strength mobilized along the interface as well as on the location and evolution of shear localization formed within the layer. The obtained numerical results have been qualitatively compared with experimental observations as well as DEM simulations, and acceptable agreement is shown.

  17. Geographical trends in 137Cs fallout from the Chernobyl accident and leaching from natural surface soil in Norway.

    PubMed

    Gjelsvik, Runhild; Steinnes, Eiliv

    2013-12-01

    In order to follow the turnover of (137)Cs in natural soils and estimate future trends in exposure of livestock, samples of natural surface soils were collected at 0-3 cm depth at 464 sites in 1995 and 463 sites in 2005 covering the country. In both cases the geographical pattern observed was similar to the original distribution from 1986, but the decline of (137)Cs activity in the surface soil was not the same everywhere. In 1995 the (137)Cs reduction since 1986 was found to be considerably greater in coastal areas than farther inland. The main reason for this appears to be the much greater deposition of marine cations such as Mg(2+) and Na(+) in the coastal areas, replacing Cs ions fixed on soil particle surfaces. This cation exchange appeared to be particularly strong near the southern coast where deposition of NH4(+) from transboundary air pollution is evident in addition to the marine cations. During 1995-2005 the (137)Cs decline in the surface soil was more uniform over the country than in the preceding 10-year period but still significantly higher in coastal areas than inland. Differences in precipitation chemistry may have influenced the uptake of (137)Cs in terrestrial food chains. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Mercury content of Illinois soils

    USGS Publications Warehouse

    Dreher, G.B.; Follmer, L.R.

    2004-01-01

    For a survey of Illinois soils, 101 cores had been collected and analyzed to determine the current and background elemental compositions of Illinois soils. Mercury and other elements were determined in six samples per core, including a surface sample from each core. The mean mercury content in the surface samples was 33 ?? 20 ??g/kg soil, and the background content was 20 ?? 9 ??g/kg. The most probable sources of mercury in these soils were the parent material, and wet and dry deposition of Hg0 and Hg2+ derived from coal-burning power plants, other industrial plants, and medical and municipal waste incinerators. Mercury-bearing sewage sludge or other fertilizers applied to agricultural fields could have been the local sources of mercury. Although the mercury content correlated with organic carbon content or clay content in individual cores, when all the data were considered, there was no strong correlation between mercury and either the organic carbon or the clay-size content.

  19. Soil seal development under simulated rainfall: Structural, physical and hydrological dynamics

    NASA Astrophysics Data System (ADS)

    Armenise, Elena; Simmons, Robert W.; Ahn, Sujung; Garbout, Amin; Doerr, Stefan H.; Mooney, Sacha J.; Sturrock, Craig J.; Ritz, Karl

    2018-01-01

    This study delivers new insights into rainfall-induced seal formation through a novel approach in the use of X-ray Computed Tomography (CT). Up to now seal and crust thickness have been directly quantified mainly through visual examination of sealed/crusted surfaces, and there has been no quantitative method to estimate this important property. X-ray CT images were quantitatively analysed to derive formal measures of seal and crust thickness. A factorial experiment was established in the laboratory using open-topped microcosms packed with soil. The factors investigated were soil type (three soils: silty clay loam - ZCL, sandy silt loam - SZL, sandy loam - SL) and rainfall duration (2-14 min). Surface seal formation was induced by applying artificial rainfall events, characterised by variable duration, but constant kinetic energy, intensity, and raindrop size distribution. Soil porosities derived from CT scans were used to quantify the thickness of the rainfall-induced surface seals and reveal temporal seal micro-morphological variations with increasing rainfall duration. In addition, the water repellency and infiltration dynamics of the developing seals were investigated by measuring water drop penetration time (WDPT) and unsaturated hydraulic conductivity (Kun). The range of seal thicknesses detected varied from 0.6 to 5.4 mm. Soil textural characteristics and OM content played a central role in the development of rainfall-induced seals, with coarser soil particles and lower OM content resulting in thicker seals. Two different trends in soil porosity vs. depth were identified: i) for SL soil porosity was lowest at the immediate soil surface, it then increased constantly with depth till the median porosity of undisturbed soil was equalled; ii) for ZCL and SL the highest reduction in porosity, as compared to the median porosity of undisturbed soil, was observed in a well-defined zone of maximum porosity reduction c. 0.24-0.48 mm below the soil surface. This contrasting behaviour was related to different dynamics and processes of seal formation which depended on the soil properties. The impact of rainfall-induced surface sealing on the hydrological behaviour of soil (as represented by WDTP and Kun) was rapid and substantial: an average 60% reduction in Kun occurred for all soils between 2 and 9 min rainfall, and water repellent surfaces were identified for SZL and ZCL. This highlights that the condition of the immediate surface of agricultural soils involving rainfall-induced structural seals has a strong impact in the overall ability of soil to function as water reservoir.

  20. Bioaccessibility Of Lead Sequestered To Corundum and Ferrihydrite In A Simulated Gastrointestinal System

    EPA Science Inventory

    Lead (Pb) sorption onto oxide surfaces in soils may strongly influence the risk posed from incidental ingestion of Pb-contaminated soil. Lead was sorbed to model oxide minerals of corundum (α-Al2O3) and ferrihydrite (Fe5HO8•4H2

  1. Uncertainty in Arctic hydrology projections and the permafrost-carbon feedback

    NASA Astrophysics Data System (ADS)

    Andresen, C. G.; Lawrence, D. M.; Wilson, C. J.; McGuire, D.

    2017-12-01

    Projected warming is expected to thaw permafrost soils and deepen the permafrost active layer. These changes will affect surface hydrological conditions. Since the soil hydrologic state exerts a strong influence on the rate and pathway of soil organic matter decomposition into CO2 or CH4, there is a strong need to examine and better understand model projections of hydrologic change and how differences in process representation affect projections of wetting and/or drying of changing permafrost landscapes. This study aims to advance understanding of where, when and why arctic will become wetter or drier. We assessed simulations from 8 "permafrost enabled" land models that were run in offline mode from 1960 to 2299 forced with the same projected climate for a high-emissions scenario. Climate models project increased precipitation (P) across most of the Arctic domain and the land models indicate that runoff and evapotranspiration (ET) will also both increase. In general, the water input to the soil (P-ET) also increases, but the models project a contradicting long-term drying of the surface soil. The surface drying in the models can generally be explained by filtration of moisture to deeper soil layers as the active layer deepens or by increased sub-surface drainage where permafrost in a grid cell thaws completely. Though, there is a qualitative agreement in this type of response across the models, the projections vary dramatically in magnitude. Variability among simulations is largely attributed to parameterization and structural differences across the participating models, particularly the diverse representations of evapotranspiration, water table and soil water storage and transmission. A limited set of results from single forcing experiments suggests that the warming effect in the sensitivity analysis was the principal driver of soil drying while CO2 and precipitation effects had a small wetting influence. When compared to observational data, simulations tend to underestimate discharge by a factor of 2 for the major arctic river basins. This analysis serves as a baseline to identify key process representation gaps and opportunities to improve representation of permafrost hydrology and associated projections of carbon and energy feedbacks in land models.

  2. Light Gray Surface-Gleyed Loamy Sandy Soils of the Northern Part of Tambov Plain: Agroecology, Properties, and Diagnostics

    NASA Astrophysics Data System (ADS)

    Zaidel'man, F. R.; Stepantsova, L. V.; Nikiforova, A. S.; Krasin, V. N.; Dautokov, I. M.; Krasina, T. V.

    2018-04-01

    Light gray soils of Tambov oblast mainly develop from sandy and loamy sandy parent materials; these are the least studied soils in this region. Despite their coarse texture, these soils are subjected to surface waterlogging. They are stronger affected by the agrogenic degradation in comparison with chernozems and dark gray soils. Morphology, major elements of water regime, physical properties, and productivity of loamy sandy light gray soils with different degrees of gleyzation have been studied in the northern part of Tambov Plain in order to substantiate the appropriate methods of their management. The texture of these soils changes at the depth of 70-100 cm. The upper part is enriched in silt particles (16-30%); in the lower part, the sand content reaches 80-85%. In the nongleyed variants, middle-profile horizons contain thin iron-cemented lamellae (pseudofibers); in surface-gleyed variants, iron nodules are present in the humus horizon. The removal of clay from the humus horizon and its accumulation at the lithological contact and in pseudofibers promote surface subsidence and formation of microlows in the years with moderate and intense winter precipitation. The low range of active moisture favors desiccation of the upper horizons to the wilting point in dry years. The yield of cereal crops reaches 3.5-4.5 t/ha in the years with high and moderate summer precipitation on nongleyed and slightly gleyed light gray soils and decreases by 20-50% on strongly gleyed light gray soils. On light gray soils without irrigation, crop yields are unstable, and productivity of pastures is low. High yields of cereals and vegetables can be obtained on irrigated soils. In this case, local drainage measures should be applied to microlows; liming can be recommended to improve soil productivity.

  3. The Use of Indirect Estimates of Soil Moisture to Initialize Coupled Models and its Impact on Short-Term and Seasonal Simulations

    NASA Technical Reports Server (NTRS)

    Lapenta, William M.; Crosson, William; Dembek, Scott; Lakhtakia, Mercedes

    1998-01-01

    It is well known that soil moisture is a characteristic of the land surface that strongly affects the partitioning of outgoing radiation into sensible and latent heat which significantly impacts both weather and climate. Detailed land surface schemes are now being coupled to mesoscale atmospheric models in order to represent the effect of soil moisture upon atmospheric simulations. However, there is little direct soil moisture data available to initialize these models on regional to continental scales. As a result, a Soil Hydrology Model (SHM) is currently being used to generate an indirect estimate of the soil moisture conditions over the continental United States at a grid resolution of 36 Km on a daily basis since 8 May 1995. The SHM is forced by analyses of atmospheric observations including precipitation and contains detailed information on slope soil and landcover characteristics.The purpose of this paper is to evaluate the utility of initializing a detailed coupled model with the soil moisture data produced by SHM.

  4. Preliminary analysis of the sensitivity of AIRSAR images to soil moisture variations

    NASA Technical Reports Server (NTRS)

    Pardipuram, Rajan; Teng, William L.; Wang, James R.; Engman, Edwin T.

    1993-01-01

    Synthetic Aperture Radar (SAR) images acquired from various sources such as Shuttle Imaging Radar B (SIR-B) and airborne SAR (AIRSAR) have been analyzed for signatures of soil moisture. The SIR-B measurements have shown a strong correlation between measurements of surface soil moisture (0-5 cm) and the radar backscattering coefficient sigma(sup o). The AIRSAR measurements, however, indicated a lower sensitivity. In this study, an attempt has been made to investigate the causes for this reduced sensitivity.

  5. Study of the Effect of Turbulence and Large Obstacles on the Evaporation from Bare Soil Surface through Coupled Free-flow and Porous-medium Flow Model

    NASA Astrophysics Data System (ADS)

    Gao, B.; Smits, K. M.

    2017-12-01

    Evaporation is a strongly coupled exchange process of mass, momentum and energy between the atmosphere and the soil. Several mechanisms influence evaporation, such as the atmospheric conditions, the structure of the soil surface, and the physical properties of the soil. Among the previous studies associated with evaporation modeling, most efforts use uncoupled models which simplify the influences of the atmosphere and soil through the use of resistance terms. Those that do consider the coupling between the free flow and porous media flow mainly consider flat terrain with grain-scale roughness. However, larger obstacles, which may form drags or ridges allowing normal convective air flow through the soil, are common in nature and may affect the evaporation significantly. Therefore, the goal of this work is to study the influence of large obstacles such as wavy surfaces on the flow behavior within the soil and exchange processes to the atmosphere under turbulent free-flow conditions. For simplicity, the soil surface with large obstacles are represented by a simple wavy surface. To do this, we modified a previously developed theory for two-phase two-component porous-medium flow, coupling it to single-phase two-component turbulent flow to simulate and analyze the evaporation from wavy soil surfaces. Detailed laboratory scale experiments using a wind tunnel interfaced with a porous media tank were carried out to test the modeling results. The characteristics of turbulent flow across a permeable wavy surface are discussed. Results demonstrate that there is an obvious recirculation zone formed at the surface, which is special because of the accumulation of water vapor and the thicker boundary layer in this area. In addition, the influences of both the free flow and porous medium on the evaporation are also analyzed. The porous medium affects the evaporation through the amount of water it can provide to the soil surface; while the atmosphere influences the evaporation through the gradients formed within the boundary layer. This study gives a primary cognition on the evaporation from bare soil surface with obstacles. Ongoing work will include a deep understanding of the mechanisms which may provide the basis for land-atmosphere study on field scale.

  6. The impact of soil erosion on soil fertility and vine vigor. A multidisciplinary approach based on field, laboratory and remote sensing approaches.

    PubMed

    Novara, Agata; Pisciotta, Antonino; Minacapilli, Mario; Maltese, Antonino; Capodici, Fulvio; Cerdà, Artemi; Gristina, Luciano

    2018-05-01

    Soil erosion processes in vineyards, beyond surface runoff and sediment transport, have a strong effect on soil organic carbon (SOC) loss and redistribution along the slope. Variation in SOC across the landscape can determine differences in soil fertility and vine vigor. The goal of this research was to analyze the interactions among vines vigor, sediment delivery and SOC in a sloping vineyard located in Sicily. Six pedons were studied along the slope by digging 6 pits up to 60cm depth. Soil was sampled every 10cm and SOC, water extractable organic carbon (WEOC) and specific ultraviolet absorbance (SUVA) were analyzed. Erosion rates, detachment and deposition areas were measured by the pole height method which allowed mapping of the soil redistribution. The vigor of vegetation, expressed as Normalized Difference Vegetation Index (NDVI), derived from high-resolution satellite multispectral data, was compared with measured pruning weight. Results confirmed that soil erosion, sediment redistribution and SOC across the slope was strongly affected by topographic features, slope and curvature. The erosion rate was 16Mgha -1 y -1 since the time of planting (6years). SOC redistribution was strongly correlated with the detachment or deposition areas as highlighted by pole height measurements. The off-farm SOC loss over six years amounted to 1.2MgCha -1 . SUVA 254 values, which indicate hydrophobic material rich in aromatic constituents of WEOC, decreased significantly along the slope, demonstrating that WEOC in the detachment site is more stable in comparison to deposition sites. The plant vigor was strongly correlated with WEOC constituents. Results demonstrated that high resolution passive remote sensing data combined with soil and plant analyses can survey areas with contrasting SOC, soil fertility, soil erosion and plant vigor. This will allow monitoring of soil erosion and degradation risk areas and support decision-makers in developing measures for friendly environmental management. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Mycorrhizas and soil ecosystem function of co-existing woody vegetation islands at the alpine tree line.

    PubMed

    Wang, Lixia; Otgonsuren, Burenjargal; Godbold, Douglas L

    2017-01-01

    Picea abies , Pinus mugo and Rhododendron ferrugineum co-exist at the alpine tree line, and can have different mycorrhizal communities. The activity and diversity of mycorrhizal fungi are considered to be important factors in regulation of soil function. At a tree line site and a lower elevation site in the Austrian Alps, the community structure of ectomycorrhiza on Picea abies and Pinus mugo was determined. The activity of surface enzymes was determined on ectomycorrhizal and ericoid mycorrhizal roots. In soils, the activity of a range of enzymes, nitrogen (N) mineralization and biomass decomposition were determined. The community structure of the ectomycorrhizal community of Picea abies and Pinus mugo differed strongly, but the average activity of surface enzymes of the ectomycorrhizal communities was similar. A lower root surface enzyme activity was determined on Rhododendron ferrugineum . Soil N-mineralization under Rhododendron ferrugineum was significantly lower than under Picea abies and Pinus mugo . In soil, the activity of a range of enzymes did not differ at the tree line but differed between the tree line and the lower elevation sites. The different ectomycorrhizal communities on Picea abies and Pinus mugo and ericoid mycorrhizas on Rhododendron ferrugineum support similar ecosystem functions in soil.

  8. A field study of colloid transport in surface and subsurface flows

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Tang, Xiang-Yu; Xian, Qing-Song; Weisbrod, Noam; Yang, Jae E.; Wang, Hong-Lan

    2016-11-01

    Colloids have been recognized to enhance the migration of strongly-sorbing contaminants. However, few field investigations have examined combined colloid transport via surface runoff and subsurface flows. In a headwater catchment of the upper Yangtze River, a 6 m (L) by 4 m (W) sloping (6°) farmland plot was built by cement walls to form no-flow side boundaries. The plot was monitored in the summer of 2014 for the release and transport of natural colloids via surface runoff and subsurface flows (i.e., the interflow from the soil-mudrock interface and fracture flow from the mudrock-sandstone interface) in response to rain events. The water sources of the subsurface flows were apportioned to individual rain events using a two end-member model (i.e., mobile pre-event soil water extracted by a suction-cup sampler vs. rainwater (event water)) based on δ18O measurements. For rain events with high preceding soil moisture, mobile pre-event soil water was the main contributor (generally >60%) to the fracture flow. The colloid concentration in the surface runoff was 1-2 orders of magnitude higher than that in the subsurface flows. The lowest colloid concentration was found in the subsurface interflow, which was probably the result of pore-scale colloid straining mechanisms. The rainfall intensity and its temporal variation govern the dynamics of the colloid concentrations in both surface runoff and subsurface flows. The duration of the antecedent dry period affected not only the relative contributions of the rainwater and the mobile pre-event soil water to the subsurface flows but also the peak colloid concentration, particularly in the fracture flow. The <10 μm fine colloid size fraction accounted for more than 80% of the total suspended particles in the surface runoff, while the colloid size distributions of both the interflow and the fracture flow shifted towards larger diameters. These results highlight the need to avoid the application of strongly-sorbing agrochemicals (e.g., pesticides, phosphorus fertilizers) immediately before rainfall following a long no-rain period because their transport in association with colloids may occur rapidly over long distances via both surface runoff and subsurface flows with rainfall.

  9. Visualization of soil structure and pore structure modifications by pioneering ground beetles (Cicindelidae) in surface sediments of an artificial catchment

    NASA Astrophysics Data System (ADS)

    Badorreck, Annika; Gerke, Horst H.; Weller, Ulrich; Vontobel, Peter

    2010-05-01

    An artificial catchment was constructed to study initial soil and ecosystem development. As a key process, the pore structure dynamics in the soil at the surface strongly influences erosion, infiltration, matter dynamics, and vegetation establishment. Little is known, however, about the first macropore formation in the very early stage. This presentation focuses on observations of soil pore geometry and its effect on water flow at the surface comparing samples from three sites in the catchment and in an adjacent "younger" site composed of comparable sediments. The surface soil was sampled in cylindrical plastic rings (10 cm³) down to 2 cm depth in three replicates each site and six where caves from pioneering ground-dwelling beetles Cicindelidae were found. The samples were scanned with micro-X-ray computed tomography (at UFZ-Halle, Germany) with a resolution of 0.084 mm. The infiltration dynamics were visualized with neutronradiography (at Paul-Scherer-Institute, Switzerland) on slab-type soil samples in 2D. The micro-tomographies exhibit formation of surface sealing whose thickness and intensity vary with silt and clay content. The CT images show several coarser- and finer-textured micro-layers at the sample surfaces that were formed as a consequence of repeated washing in of finer particles in underlying coarser sediment. In micro-depressions, the uppermost layers consist of sorted fine sand and silt due to wind erosion. Similar as for desert pavements, a vesicular pore structure developed in these sediments on top, but also scattered in fine sand- and silt-enriched micro-layers. The ground-dwelling activity of Cicindelidae beetles greatly modifies the soil structure through forming caves in the first centimetres of the soil. Older collapsed caves, which form isolated pores within mixed zones, were also found. The infiltration rates were severely affected both, by surface crusts and activity of ground-dwelling beetles. The observations demonstrate relatively high abiotic and biotic dynamics of soil pore structure in the soil surface even during the very early development stages. The structure formation has potentially great effects on changing runoff and infiltration by forming sealing layers or preferential flow paths.

  10. Influence of long-term land use (arable and forest) and soil mineralogy on organic carbon stocks as well as composition and stability of soil organic matter

    NASA Astrophysics Data System (ADS)

    Kaiser, M.; Ellerbrock, R. H.; Wulf, M.; Dultz, S.; Hierath, C.; Sommer, M.

    2009-04-01

    The function of soils to sequester organic carbon (OC) and their related potential to mitigate the greenhouse effect is strongly affected by land use and soil mineralogy. This study is aimed to clarify long-term impacts of arable and forest land use as well as soil mineralogy on topsoil soil organic carbon (SOC) stocks as well as soil organic matter (SOM) composition and stability. Topsoil samples were taken from deciduous forest and adjacent arable sites (within Germany) that are continuously used for more than 100 years. The soils are different in genesis (Albic and Haplic Luvisol (AL, HL), Colluvic and Haplic Regosol (CR, HR), Haplic and Vertic Cambisol (HC, VC), Haplic Stagnosol (HSt)). First, particulate and water soluble organic matter were separated from the topsoil samples (Ap and Ah horizons). From the remaining solid extraction residues the Na-pyrophosphate soluble organic matter fractions (OM(PY)) were extracted, analysed for its OC content (OC(PY)) and characterized by FTIR spectroscopy and 14C analyses. The SOC stocks calculated for 0-40 cm depth are in general larger for the forest as compared to the adjacent arable soils (except VC). The largest difference between forest and arable topsoils was detected for the HR site (5.9 kg m-2) and seemed to be caused by a two times larger stock of exchangeable Ca of the forest topsoil. For the arable topsoils multiple regression analyses indicate a strong influence of clay, oxalate soluble Al and pyrophosphate soluble Mg on the content of OC(PY) weighted with its C=O content. Such relation is not found for the forest topsoils. Further, a positive relation between Δ14C values of OM(PY) and the following independent variables: (i) specific mineral surface area, (ii) relative C=O group content in OM(PY) and (iii) soil pH is found for the arable topsoils (pH 6.7 - 7.5) suggesting an increase in OM(PY) stability with increasing interactions between OM(PY) and soil mineral surfaces via cation bridging. A similar relation is found for the forest topsoils (pH < 5) if the specific mineral surface area is excluded from the multiple regression. This finding and the higher OC(PY) content of the forest topsoils suggest that in these soils the OM(PY) components are mainly cross-linked by cations and did not interact with mineral surfaces. We assume cross-linking to be less effective for OM stabilization as compared to cation bridging with mineral surfaces since Δ14C data indicate the OM(PY) from the forest topsoils to be less stable than that from arable topsoils.

  11. Microtopographic Evidence of Hillslope Susceptibility to Active Layer Detachments and Rapid Soil Erosion in Permafrost-dominated Watersheds

    NASA Astrophysics Data System (ADS)

    Rowland, J. C.; Shelef, E.; Sutfin, N. A.; Piliouras, A.; Andresen, C. G.; Wilson, C. J.

    2017-12-01

    Movement and storage rates of soil and carbon along permafrost-dominated hillslopes may vary dramatically from long-term steady creeping, at centimeters per year, to rapid gullying, land sliding, and active layer detachments of meter to decimeter sized portions of hillslopes. The rate and drivers of hillslope soil processes may have strong feedbacks on microtopography and hydrology that in turn strongly influence vegetation dynamics and biogeochemistry within watersheds. We observed evidence of both steady soil creep and more catastrophic soil erosion processes occurring across three small watersheds in the southern Seward Peninsula, AK. In these watersheds, we inferred active soil creep processes from the occurrence of solifluction lobes with partially buried shrubs and tilted survey benchmarks on slopes lacking lobes. More dramatic and rapid erosion of soils was evidenced by active layer detachments, extensional cracks in the tundra vegetation, gullying, and both small- and large-scale soil failure scarps. The margins and heads of valley hollows exhibited failure scars up to 4m in height. The spatial distribution of actively eroding areas suggests that some portions of hilllslopes may be more susceptible to rapid erosion. Coring of hillslope soils suggests a possible association between more actively eroding areas and the presence of an ice-rich layer (> 50%) at depths of approximately 90 cm down to the inferred top of bedrock at depths at 170 to 200 cm. We observed that the surface of these hillslope regions appears to have greater microtopographic roughness with a more chaotic and "lumpy" surface than portions of the hillslope were no massive ice layers were encountered. We hypothesize that the extensional cracking and chaotic surface roughness may arise from small-scale soil failures triggered when the seasonal thaw depth intersects the ice-rich layer. It may be possible to identify hillslope regions underlain by ice-rich layers with greater susceptibility for localized erosion and deformation based on a quantitative characterization of the hillslope microtopography. Using drone-based LiDAR topographic data to be acquired in late summer of 2017, we will quantitatively explore the relationship between microtopography and hillslope ice-content.

  12. Multiple soil nutrient competition between plants, microbes, and mineral surfaces: model development, parameterization, and example applications in several tropical forests

    DOE PAGES

    Zhu, Q.; Riley, W. J.; Tang, J.; ...

    2016-01-18

    Soil is a complex system where biotic (e.g., plant roots, micro-organisms) and abiotic (e.g., mineral surfaces) consumers compete for resources necessary for life (e.g., nitrogen, phosphorus). This competition is ecologically significant, since it regulates the dynamics of soil nutrients and controls aboveground plant productivity. Here we develop, calibrate and test a nutrient competition model that accounts for multiple soil nutrients interacting with multiple biotic and abiotic consumers. As applied here for tropical forests, the Nutrient COMpetition model (N-COM) includes three primary soil nutrients (NH 4 +, NO 3 − and PO x; representing the sum of PO 4 3−, HPOmore » 4 2− and H 2PO 4 −) and five potential competitors (plant roots, decomposing microbes, nitrifiers, denitrifiers and mineral surfaces). The competition is formulated with a quasi-steady-state chemical equilibrium approximation to account for substrate (multiple substrates share one consumer) and consumer (multiple consumers compete for one substrate) effects. N-COM successfully reproduced observed soil heterotrophic respiration, N 2O emissions, free phosphorus, sorbed phosphorus and NH 4 + pools at a tropical forest site (Tapajos). The overall model uncertainty was moderately well constrained. Our sensitivity analysis revealed that soil nutrient competition was primarily regulated by consumer–substrate affinity rather than environmental factors such as soil temperature or soil moisture. Our results also imply that under strong nutrient limitation, relative competitiveness depends strongly on the competitor functional traits (affinity and nutrient carrier enzyme abundance). We then applied the N-COM model to analyze field nitrogen and phosphorus perturbation experiments in two tropical forest sites (in Hawaii and Puerto Rico) not used in model development or calibration. Under soil inorganic nitrogen and phosphorus elevated conditions, the model accurately replicated the experimentally observed competition among nutrient consumers. Although we used as many observations as we could obtain, more nutrient addition experiments in tropical systems would greatly benefit model testing and calibration. In summary, the N-COM model provides an ecologically consistent representation of nutrient competition appropriate for land BGC models integrated in Earth System Models.« less

  13. Multiple soil nutrient competition between plants, microbes, and mineral surfaces: model development, parameterization, and example applications in several tropical forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Q.; Riley, W. J.; Tang, J.

    Soil is a complex system where biotic (e.g., plant roots, micro-organisms) and abiotic (e.g., mineral surfaces) consumers compete for resources necessary for life (e.g., nitrogen, phosphorus). This competition is ecologically significant, since it regulates the dynamics of soil nutrients and controls aboveground plant productivity. Here we develop, calibrate and test a nutrient competition model that accounts for multiple soil nutrients interacting with multiple biotic and abiotic consumers. As applied here for tropical forests, the Nutrient COMpetition model (N-COM) includes three primary soil nutrients (NH 4 +, NO 3 − and PO x; representing the sum of PO 4 3−, HPOmore » 4 2− and H 2PO 4 −) and five potential competitors (plant roots, decomposing microbes, nitrifiers, denitrifiers and mineral surfaces). The competition is formulated with a quasi-steady-state chemical equilibrium approximation to account for substrate (multiple substrates share one consumer) and consumer (multiple consumers compete for one substrate) effects. N-COM successfully reproduced observed soil heterotrophic respiration, N 2O emissions, free phosphorus, sorbed phosphorus and NH 4 + pools at a tropical forest site (Tapajos). The overall model uncertainty was moderately well constrained. Our sensitivity analysis revealed that soil nutrient competition was primarily regulated by consumer–substrate affinity rather than environmental factors such as soil temperature or soil moisture. Our results also imply that under strong nutrient limitation, relative competitiveness depends strongly on the competitor functional traits (affinity and nutrient carrier enzyme abundance). We then applied the N-COM model to analyze field nitrogen and phosphorus perturbation experiments in two tropical forest sites (in Hawaii and Puerto Rico) not used in model development or calibration. Under soil inorganic nitrogen and phosphorus elevated conditions, the model accurately replicated the experimentally observed competition among nutrient consumers. Although we used as many observations as we could obtain, more nutrient addition experiments in tropical systems would greatly benefit model testing and calibration. In summary, the N-COM model provides an ecologically consistent representation of nutrient competition appropriate for land BGC models integrated in Earth System Models.« less

  14. Multiple soil nutrient competition between plants, microbes, and mineral surfaces: model development, parameterization, and example applications in several tropical forests

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Riley, W. J.; Tang, J.; Koven, C. D.

    2016-01-01

    Soil is a complex system where biotic (e.g., plant roots, micro-organisms) and abiotic (e.g., mineral surfaces) consumers compete for resources necessary for life (e.g., nitrogen, phosphorus). This competition is ecologically significant, since it regulates the dynamics of soil nutrients and controls aboveground plant productivity. Here we develop, calibrate and test a nutrient competition model that accounts for multiple soil nutrients interacting with multiple biotic and abiotic consumers. As applied here for tropical forests, the Nutrient COMpetition model (N-COM) includes three primary soil nutrients (NH4+, NO3- and POx; representing the sum of PO43-, HPO42- and H2PO4-) and five potential competitors (plant roots, decomposing microbes, nitrifiers, denitrifiers and mineral surfaces). The competition is formulated with a quasi-steady-state chemical equilibrium approximation to account for substrate (multiple substrates share one consumer) and consumer (multiple consumers compete for one substrate) effects. N-COM successfully reproduced observed soil heterotrophic respiration, N2O emissions, free phosphorus, sorbed phosphorus and NH4+ pools at a tropical forest site (Tapajos). The overall model uncertainty was moderately well constrained. Our sensitivity analysis revealed that soil nutrient competition was primarily regulated by consumer-substrate affinity rather than environmental factors such as soil temperature or soil moisture. Our results also imply that under strong nutrient limitation, relative competitiveness depends strongly on the competitor functional traits (affinity and nutrient carrier enzyme abundance). We then applied the N-COM model to analyze field nitrogen and phosphorus perturbation experiments in two tropical forest sites (in Hawaii and Puerto Rico) not used in model development or calibration. Under soil inorganic nitrogen and phosphorus elevated conditions, the model accurately replicated the experimentally observed competition among nutrient consumers. Although we used as many observations as we could obtain, more nutrient addition experiments in tropical systems would greatly benefit model testing and calibration. In summary, the N-COM model provides an ecologically consistent representation of nutrient competition appropriate for land BGC models integrated in Earth System Models.

  15. The chemistry and mineralogy of Mars soil and dust

    NASA Technical Reports Server (NTRS)

    Banin, A.

    1991-01-01

    A single geological unit consisting of fine, apparently weathered soil material is covering large portions of the surface of Mars. This soil material has been thoroughly homogenized by global dust storms and it is plausible to assume that Mars dust is strongly correlated with it. The chemical-elemental composition of the soil was directly measured by the Viking Landers. Positive detection of Si, Al, Fe, Mg, Ca, Ti, S, Cl, and Br was achieved. Analyses of the SNC meteorites, a group of meteorites that has been suggested to be ejected Martian rocks, supply additional elemental-concentration data, broadening considerably the chemical data-base on the surface materials. A composition model for Mars soil, giving selected average elemental concentrations of major and trace elements, was recently suggested. It was constructed by combining the Viking Lander data, the SNC meteorite analyses, and other analyses. The mineralogy of the surface materials on Mars has not been directly measured yet. By use of various indirect approaches, including chemical correspondence to the surface analyses, spectral analogies, simulations of Viking Lander experiments, analyses of the SNC meteorites and various modeling efforts, the mineralogical composition was constrained to some extent. No direct analyses of soil reactivity have been done yet. Indirect evidence, mostly from the Viking biology experimental results, suggests that the soil probably has a slightly acidic reaction and is generally oxidized. Unambiguous identification of the Mars soil minerals by direct mineralogical analyses, and non-disturbed or in-situ measurements of the soil's reactivity, are of primary importance in future Mars research.

  16. Possible Mechanisms for Generation of Anomalously High PGA During the 2011 Tohoku Earthquake

    NASA Astrophysics Data System (ADS)

    Pavlenko, O. V.

    2017-08-01

    Mechanisms are suggested that could explain anomalously high PGAs (peak ground accelerations) exceeding 1 g recorded during the 2011 Tohoku earthquake ( M w = 9.0). In my previous research, I studied soil behavior during the Tohoku earthquake based on KiK-net vertical array records and revealed its `atypical' pattern: instead of being reduced in the near-source zones as usually observed during strong earthquakes, shear moduli in soil layers increased, indicating soil hardening, and reached their maxima at the moments of the highest intensity of strong motion, then reduced. We could explain this assuming that the soils experienced some additional compression. The observed changes in the shapes of acceleration time histories with distance from the source, such as a decrease of the duration and an increase of the intensity of strong motion, indicate phenomena similar to overlapping of seismic waves and a shock wave generation, which led to the compression of soils. The phenomena reach their maximum in the vicinity of stations FKSH10, TCGH16, and IBRH11, where the highest PGAs were recorded; at larger epicentral distances, PGAs sharply fall. Thus, the occurrence of anomalously high PGAs on the surface can result from the combination of the overlapping of seismic waves at the bottoms of soil layers and their increased amplification by the pre-compressed soils.

  17. Bioenergy cropping systems that incorporate native grasses stimulate growth of plant-associated soil microbes in the absence of nitrogen fertilization

    DOE PAGES

    Oates, Lawrence G.; Duncan, David S.; Sanford, Gregg R.; ...

    2016-10-03

    The choice of crops and their management can strongly influence soil microbial communities and their processes. Here, we used lipid biomarker profiling to characterize how soil microbial composition of five potential bioenergy cropping systems diverged from a common baseline five years after they were established. The cropping systems we studied included an annual system (continuous no-till corn) and four perennial crops (switchgrass, miscanthus, hybrid poplar, and restored prairie). Partial- and no-stover removal were compared for the corn system, while N-additions were compared to unfertilized plots for the perennial cropping systems. Arbuscular mycorrhizal fungi (AMF) and Gram-negative biomass was higher inmore » unfertilized perennial grass systems, especially in switchgrass and prairie. Gram-positive bacterial biomass decreased in all systems relative to baseline values in surface soils (0–10 cm), but not subsurface soils (10–25 cm). Overall microbial composition was similar between the two soil depths. Our findings demonstrate the capacity of unfertilized perennial cropping systems to recreate microbial composition found in undisturbed soil environments and indicate how strongly agroecosystem management decisions such as N addition and plant community composition can influence soil microbial assemblages.« less

  18. Bioenergy cropping systems that incorporate native grasses stimulate growth of plant-associated soil microbes in the absence of nitrogen fertilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oates, Lawrence G.; Duncan, David S.; Sanford, Gregg R.

    The choice of crops and their management can strongly influence soil microbial communities and their processes. Here, we used lipid biomarker profiling to characterize how soil microbial composition of five potential bioenergy cropping systems diverged from a common baseline five years after they were established. The cropping systems we studied included an annual system (continuous no-till corn) and four perennial crops (switchgrass, miscanthus, hybrid poplar, and restored prairie). Partial- and no-stover removal were compared for the corn system, while N-additions were compared to unfertilized plots for the perennial cropping systems. Arbuscular mycorrhizal fungi (AMF) and Gram-negative biomass was higher inmore » unfertilized perennial grass systems, especially in switchgrass and prairie. Gram-positive bacterial biomass decreased in all systems relative to baseline values in surface soils (0–10 cm), but not subsurface soils (10–25 cm). Overall microbial composition was similar between the two soil depths. Our findings demonstrate the capacity of unfertilized perennial cropping systems to recreate microbial composition found in undisturbed soil environments and indicate how strongly agroecosystem management decisions such as N addition and plant community composition can influence soil microbial assemblages.« less

  19. The relationships between microbiological attributes and soil and litter quality in pure and mixed stands of native tree species in southeastern Bahia, Brazil.

    PubMed

    Gama-Rodrigues, Emanuela F; Gama-Rodrigues, Antonio Carlos; Barros, Nairam F; Moço, Maria Kellen S

    2011-11-01

    This study was conducted to link soil and litter microbial biomass and activity with soil and litter quality in the surface layer for different pure and mixed stands of native tree species in southeastern Bahia, Brazil. The purpose of the study was to see how strongly the differences among species and stands affect the microbiological attributes of the soil and to identify how microbial processes can be influenced by soil and litter quality. Soil and litter samples were collected from six pure and mixed stands of six hardwood species (Peltogyne angustifolia, Centrolobium robustum, Arapatiella psilophylla, Sclerolobium chrysophyllum, Cordia trichotoma, Macrolobium latifolium) native to the southeastern region of Bahia, Brazil. In plantations of native tree species in humid tropical regions, the immobilization efficiency of C and N by soil microbial biomass was strongly related to the chemical quality of the litter and to the organic matter quality of the soil. According to the variables analyzed, the mixed stand was similar to the natural forest and dissimilar to the pure stands. Litter microbial biomass represented a greater sink of C and N than soil microbial biomass and is an important contributor of resources to tropical soils having low C and N availability.

  20. Multifrequency remote sensing of soil moisture. [Guymon, Oklahoma and Dalhart, Texas

    NASA Technical Reports Server (NTRS)

    Theis, S. W.; Mcfarland, M. J.; Rosenthal, W. D.; Jones, C. L. (Principal Investigator)

    1982-01-01

    Multifrequency sensor data collected at Guymon, Oklahoma and Dalhart, Texas using NASA's C-130 aircraft were used to determine which of the all-weather microwave sensors demonstrated the highest correlation to surface soil moisture over optimal bare soil conditions, and to develop and test techniques which use visible/infrared sensors to compensate for the vegetation effect in this sensor's response to soil moisture. The L-band passive microwave radiometer was found to be the most suitable single sensor system to estimate soil moisture over bare fields. In comparison to other active and passive microwave sensors the L-band radiometer (1) was influenced least by ranges in surface roughness; (2) demonstrated the most sensitivity to soil moisture differences in terms of the range of return from the full range of soil moisture; and (3) was less sensitive to errors in measurement in relation to the range of sensor response. L-band emissivity related more strongly to soil moisture when moisture was expressed as percent of field capacity. The perpendicular vegetation index as determined from the visible/infrared sensors was useful as a measure of the vegetation effect on the L-band radiometer response to soil moisture.

  1. Soil moisture and properties estimation by assimilating soil temperatures using particle batch smoother: A new perspective for DTS

    NASA Astrophysics Data System (ADS)

    Dong, J.; Steele-Dunne, S. C.; Ochsner, T. E.; Van De Giesen, N.

    2015-12-01

    Soil moisture, hydraulic and thermal properties are critical for understanding the soil surface energy balance and hydrological processes. Here, we will discuss the potential of using soil temperature observations from Distributed Temperature Sensing (DTS) to investigate the spatial variability of soil moisture and soil properties. With DTS soil temperature can be measured with high resolution (spatial <1m, and temporal < 1min) in cables up to kilometers in length. Soil temperature evolution is primarily controlled by the soil thermal properties, and the energy balance at the soil surface. Hence, soil moisture, which affects both soil thermal properties and the energy that participates the evaporation process, is strongly correlated to the soil temperatures. In addition, the dynamics of the soil moisture is determined by the soil hydraulic properties.Here we will demonstrate that soil moisture, hydraulic and thermal properties can be estimated by assimilating observed soil temperature at shallow depths using the Particle Batch Smoother (PBS). The PBS can be considered as an extension of the particle filter, which allows us to infer soil moisture and soil properties using the dynamics of soil temperature within a batch window. Both synthetic and real field data will be used to demonstrate the robustness of this approach. We will show that the proposed method is shown to be able to handle different sources of uncertainties, which may provide a new view of using DTS observations to estimate sub-meter resolution soil moisture and properties for remote sensing product validation.

  2. The AMMA-CATCH Gourma observatory site in Mali: Relating climatic variations to changes in vegetation, surface hydrology, fluxes and natural resources

    NASA Astrophysics Data System (ADS)

    Mougin, E.; Hiernaux, P.; Kergoat, L.; Grippa, M.; de Rosnay, P.; Timouk, F.; Le Dantec, V.; Demarez, V.; Lavenu, F.; Arjounin, M.; Lebel, T.; Soumaguel, N.; Ceschia, E.; Mougenot, B.; Baup, F.; Frappart, F.; Frison, P. L.; Gardelle, J.; Gruhier, C.; Jarlan, L.; Mangiarotti, S.; Sanou, B.; Tracol, Y.; Guichard, F.; Trichon, V.; Diarra, L.; Soumaré, A.; Koité, M.; Dembélé, F.; Lloyd, C.; Hanan, N. P.; Damesin, C.; Delon, C.; Serça, D.; Galy-Lacaux, C.; Seghieri, J.; Becerra, S.; Dia, H.; Gangneron, F.; Mazzega, P.

    2009-08-01

    SummaryThe Gourma site in Mali is one of the three instrumented meso-scale sites deployed in West-Africa as part of the African Monsoon Multi-disciplinary Analysis (AMMA) project. Located both in the Sahelian zone sensu stricto, and in the Saharo-Sahelian transition zone, the Gourma meso-scale window is the northernmost site of the AMMA-CATCH observatory reached by the West African Monsoon. The experimental strategy includes deployment of a variety of instruments, from local to meso-scale, dedicated to monitoring and documentation of the major variables characterizing the climate forcing, and the spatio-temporal variability of surface processes and state variables such as vegetation mass, leaf area index (LAI), soil moisture and surface fluxes. This paper describes the Gourma site, its associated instrumental network and the research activities that have been carried out since 1984. In the AMMA project, emphasis is put on the relations between climate, vegetation and surface fluxes. However, the Gourma site is also important for development and validation of satellite products, mainly due to the existence of large and relatively homogeneous surfaces. The social dimension of the water resource uses and governance is also briefly analyzed, relying on field enquiry and interviews. The climate of the Gourma region is semi-arid, daytime air temperatures are always high and annual rainfall amounts exhibit strong inter-annual and seasonal variations. Measurements sites organized along a north-south transect reveal sharp gradients in surface albedo, net radiation, vegetation production, and distribution of plant functional types. However, at any point along the gradient, surface energy budget, soil moisture and vegetation growth contrast between two main types of soil surfaces and hydrologic systems. On the one hand, sandy soils with high water infiltration rates and limited run-off support almost continuous herbaceous vegetation with scattered woody plants. On the other hand, water infiltration is poor on shallow soils, and vegetation is sparse and discontinuous, with more concentrated run-off that ends in pools or low lands within structured endorheic watersheds. Land surface in the Gourma is characterized by rapid response to climate variability, strong intra-seasonal, seasonal and inter-annual variations in vegetation growth, soil moisture and energy balance. Despite the multi-decadal drought, which still persists, ponds and lakes have increased, the grass cover has largely recovered, and there are signs of increased tree cover at least in the low lands.

  3. The carbon count of 2000 years of rice cultivation.

    PubMed

    Kalbitz, Karsten; Kaiser, Klaus; Fiedler, Sabine; Kölbl, Angelika; Amelung, Wulf; Bräuer, Tino; Cao, Zhihong; Don, Axel; Grootes, Piet; Jahn, Reinhold; Schwark, Lorenz; Vogelsang, Vanessa; Wissing, Livia; Kögel-Knabner, Ingrid

    2013-04-01

    More than 50% of the world's population feeds on rice. Soils used for rice production are mostly managed under submerged conditions (paddy soils). This management, which favors carbon sequestration, potentially decouples surface from subsurface carbon cycling. The objective of this study was to elucidate the long-term rates of carbon accrual in surface and subsurface soil horizons relative to those of soils under nonpaddy management. We assessed changes in total soil organic as well as of inorganic carbon stocks along a 2000-year chronosequence of soils under paddy and adjacent nonpaddy management in the Yangtze delta, China. The initial organic carbon accumulation phase lasts much longer and is more intensive than previously assumed, e.g., by the Intergovernmental Panel on Climate Change (IPCC). Paddy topsoils accumulated 170-178 kg organic carbon ha(-1) a(-1) in the first 300 years; subsoils lost 29-84 kg organic carbon ha(-1) a(-1) during this period of time. Subsoil carbon losses were largest during the first 50 years after land embankment and again large beyond 700 years of cultivation, due to inorganic carbonate weathering and the lack of organic carbon replenishment. Carbon losses in subsoils may therefore offset soil carbon gains or losses in the surface soils. We strongly recommend including subsoils into global carbon accounting schemes, particularly for paddy fields. © 2012 Blackwell Publishing Ltd.

  4. The impact of climatic and non-climatic factors on land surface temperature in southwestern Romania

    NASA Astrophysics Data System (ADS)

    Roşca, Cristina Florina; Harpa, Gabriela Victoria; Croitoru, Adina-Eliza; Herbel, Ioana; Imbroane, Alexandru Mircea; Burada, Doina Cristina

    2017-11-01

    Land surface temperature is one of the most important parameters related to global warming. It depends mainly on soil type, discontinuous vegetation cover, or lack of precipitation. The main purpose of this paper is to investigate the relationship between high LST, synoptic conditions and air masses trajectories, vegetation cover, and soil type in one of the driest region in Romania. In order to calculate the land surface temperature and normalized difference vegetation index, five satellite images of LANDSAT missions 5 and 7, covering a period of 26 years (1986-2011), were selected, all of them collected in the month of June. The areas with low vegetation density were derived from normalized difference vegetation index, while soil types have been extracted from Corine Land Cover database. HYSPLIT application was employed to identify the air masses origin based on their backward trajectories for each of the five study cases. Pearson, logarithmic, and quadratic correlations were used to detect the relationships between land surface temperature and observed ground temperatures, as well as between land surface temperature and normalized difference vegetation index. The most important findings are: strong correlation between land surface temperature derived from satellite images and maximum ground temperature recorded in a weather station located in the area, as well as between areas with land surface temperature equal to or higher than 40.0 °C and those with lack of vegetation; the sandy soils are the most prone to high land surface temperature and lack of vegetation, followed by the chernozems and brown soils; extremely severe drought events may occur in the region.

  5. Uptake and Accumulation of Pharmaceuticals in Overhead- and Surface-Irrigated Greenhouse Lettuce.

    PubMed

    Bhalsod, Gemini D; Chuang, Ya-Hui; Jeon, Sangho; Gui, Wenjun; Li, Hui; Ryser, Elliot T; Guber, Andrey K; Zhang, Wei

    2018-01-31

    Understanding the uptake and accumulation of pharmaceuticals in vegetables under typical irrigation practices is critical to risk assessment of crop irrigation with reclaimed water. This study investigated the pharmaceutical residues in greenhouse lettuce under overhead and soil-surface irrigations using pharmaceutical-contaminated water. Compared to soil-surface irrigation, overhead irrigation substantially increased the pharmaceutical residues in lettuce shoots. The increased residue levels persisted even after washing for trimethoprim, monensin sodium, and tylosin, indicating their strong sorption to the shoots. The postwashing concentrations in fresh shoots varied from 0.05 ± 0.04 μg/kg for sulfadiazine to 345 ± 139 μg/kg for carbamazepine. Root concentration factors ranged from 0.04 ± 0.14 for tylosin to 19.2 ± 15.7 for sulfamethoxazole. Translocation factors in surface-irrigated lettuce were low for sulfamethoxalzole, trimethoprim, monensin sodium, and tylosin (0.07-0.15), but high for caffeine (4.28 ± 3.01) and carbamazepine (8.15 ± 2.87). Carbamazepine was persistent in soil and hyperaccumulated in shoots.

  6. VHF SoOp (Signal of Opportunity) Technology Demonstration for Soil Moisture Measurement Using Microwave Hydraulic Boom Truck Platform

    NASA Technical Reports Server (NTRS)

    Joseph, A. T.; Deshpande, M.; O'Neill, P. E.; Miles, L.

    2017-01-01

    A goal of this research is to test deployable VHF antennas for 6U Cubesat platforms to enable validation of root zone soil moisture (RZSM) estimation algorithms for signal of opportunity (SoOp) remote sensing over the 240-270 MHz frequency band. The proposed work provides a strong foundation for establishing a technology development path for maturing a global direct surface soil moisture (SM) and RZSM measurement system over a variety of land covers. Knowledge of RZSM up to a depth of 1 meter and surface SM up to a depth of 0.05 meter on a global scale, at a spatial resolution of 1-10 km through moderate-to-heavy vegetation, is critical to understanding global water resources and the vertical moisture gradient in the Earths surface layer which controls moisture interactions between the soil, vegetation, and atmosphere. Current observations of surface SM from space by L-band radiometers (1.4 GHz) and radars (1.26 GHz) are limited to measurements of surface SM up to a depth of 0.05 meter through moderate amounts of vegetation. This limitation is mainly due to the inability of L-band signals to penetrate through dense vegetation and deep into the soil column. Satellite observations of the surface moisture conditions are coupled to sophisticated models which extrapolate the surface SM into the root zone, thus providing an indirect estimate rather than a direct measurement of RZSM. To overcome this limitation, low-frequency airborne radars operating at 435 MHz and 118 MHz have been investigated, since these lower frequencies should penetrate denser vegetation and respond to conditions deeper in the soil.

  7. Field-Scale Soil Moisture Observations in Irrigated Agriculture Fields Using the Cosmic-ray Neutron Rover

    NASA Astrophysics Data System (ADS)

    Franz, T. E.; Avery, W. A.; Finkenbiner, C. E.; Wang, T.; Brocca, L.

    2014-12-01

    Approximately 40% of global food production comes from irrigated agriculture. With the increasing demand for food even greater pressures will be placed on water resources within these systems. In this work we aimed to characterize the spatial and temporal patterns of soil moisture at the field-scale (~500 m) using the newly developed cosmic-ray neutron rover near Waco, NE. Here we mapped soil moisture of 144 quarter section fields (a mix of maize, soybean, and natural areas) each week during the 2014 growing season (May to September). The 11 x11 km study domain also contained 3 stationary cosmic-ray neutron probes for independent validation of the rover surveys. Basic statistical analysis of the domain indicated a strong inverted parabolic relationship between the mean and variance of soil moisture. The relationship between the mean and higher order moments were not as strong. Geostatistical analysis indicated the range of the soil moisture semi-variogram was significantly shorter during periods of heavy irrigation as compared to non-irrigated periods. Scaling analysis indicated strong power law behavior between the variance of soil moisture and averaging area with minimal dependence of mean soil moisture on the slope of the power law function. Statistical relationships derived from the rover dataset offer a novel set of observations that will be useful in: 1) calibrating and validating land surface models, 2) calibrating and validating crop models, 3) soil moisture covariance estimates for statistical downscaling of remote sensing products such as SMOS and SMAP, and 4) provide center-pivot scale mean soil moisture data for optimal irrigation timing and volume amounts.

  8. Geomorphic control of radionuclide diffusion in desert soils

    USGS Publications Warehouse

    Pelletier, J.D.; Harrington, C.D.; Whitney, J.W.; Cline, M.; DeLong, S.B.; Keating, G.; Ebert, T.K.

    2005-01-01

    Diffusion is a standard model for the vertical migration of radionuclides in soil profiles. Here we show that diffusivity values inferred from fallout 137CS profiles in soils on the Fortymile Wash alluvial fan, Nye County, Nevada, have a strong inverse correlation with the age of the geomorphic surface. This result suggests that radionuclide-bound particles are predominantly transported by infiltration rather than by bulk-mixing processes such as wetting/ drying, freeze/thaw, and bioturbation. Our results provide a preliminary basis for using soil-geomorphic mapping, point-based calibration data, and the diffusion model to predict radionuclide trans desert soils within a pedotransfer-function approach. Copyright 2005 by the American Geophysical Union.

  9. Toward Linking Aboveground Vegetation Properties and Soil Microbial Communities Using Remote Sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamada, Yuki; Gilbert, Jack A.; Larsen, Peter E.

    2014-04-01

    Despite their vital role in terrestrial ecosystem function, the distributions and dynamics of soil microbial communities (SMCs) are poorly understood. Vegetation and soil properties are the primary factors that influence SMCs. This paper discusses the potential effectiveness of remote sensing science and technologies for mapping SMC biogeography by characterizing surface biophysical properties (e.g., plant traits and community composition) strongly correlated with SMCs. Using remotely sensed biophysical properties to predict SMC distributions is extremely challenging because of the intricate interactions between biotic and abiotic factors and between above- and belowground ecosystems. However, the integration of biophysical and soil remote sensing withmore » geospatial information about the e nvironment holds great promise for mapping SMC biogeography. Additional research needs invol ve microbial taxonomic definition, soil environmental complexity, and scaling strategies. The collaborative effort of experts from diverse disciplines is essential to linking terrestrial surface biosphere observations with subsurface microbial community distributions using remote sensing.« less

  10. Toward Linking Aboveground Vegetation Properties and Soil Microbial Communities Using Remote Sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamada, Yuki; Gilbert, Jack A.; Larsen, Peter E.

    2014-04-01

    Despite their vital role in terrestrial ecosystem function, the distributions and dynamics of soil microbial communities (SMCs) are poorly understood. Vegetation and soil properties are the primary factors that influence SMCs. This paper discusses the potential effectiveness of remote sensing science and technologies for mapping SMC biogeography by characterizing surface biophysical properties (e.g., plant traits and community composition) strongly correlated with SMCs. Using remotely sensed biophysical properties to predict SMC distributions is extremely challenging because of the intricate interactions between biotic and abiotic factors and between above- and below-ground ecosystems. However, the integration of biophysical and soil remote sensing withmore » geospatial information about the environment holds great promise for mapping SMC biogeography. Additional research needs involve microbial taxonomic definition, soil environmental complexity, and scaling strategies. The collaborative effort of experts from diverse disciplines is essential to linking terrestrial surface biosphere observations with subsurface microbial community distributions using remote sensing.« less

  11. Characterisation of soils under long-term crop cultivation without fertilisers: a case study in Japan.

    PubMed

    Nakatsuka, Hiroko; Tamura, Kenji

    2016-01-01

    Certain farms in Japan, namely unfertilised farms (UFs), have been able to maintain high productivity for over 40 years without applying fertilisers or composts. This study aimed to characterise the physicochemical, biological and micromorphological properties of soil in UFs compared with control farms in Eniwa and Nariita and to identify characteristics that are associated with crop productivity. In UFs, no plough pan was observed. The thickness of the effective soil depth (ESD) of UFs was greater than that of CFs. The concentrations of soil organic carbon, total nitrogen and nitrate-nitrogen in ESD of UFs were higher than those in ESD of CFs. Soil microstructure observations indicated the strong development of a granular microstructure with large amounts of void space and a high fractal dimension in both surface and subsoil horizons of UFs. Dry yield had a strong correlation with ESD thickness and fractal dimension of voids. Thus, the management of unfertilised cultivation promoted the development of soil aggregation in both A and B horizons. The increase in ESD, soil pore spaces and complexity with the development of subsoil structure improved the productivity of unfertilised cultivation.

  12. [Study on the polarized reflectance hyperspectral characteristics and models of typical saline soil in the west of Jilin Province, China].

    PubMed

    Han, Yang; Qin, Wei-chao; Wang, Ye-qiao

    2014-06-01

    In recent years, the area of saline soil in the west of Jilin Province expands increasingly, and soil quality is becoming more and more worsening, which not only caused great damage to the land resources, but also posed a huge threat to agricultural production and ecological environment. We combined with polarized and hyperspectral information to establish the general model and scientifically validated it. The results show that there is a strong relationship between the saline soil hyperspectral polarized information and its physicochemical property parameters, and with regularity. This paper has important theoretical significance for the mechanism of saline soil surface reflection, recognition and classification of saline soil and background, the utilization of soil polarization sensor and the development of quantitative remote sensing.

  13. Chemical reactivity of the Martian soil

    NASA Technical Reports Server (NTRS)

    Zent, A. P.; Mckay, C. P.

    1992-01-01

    The Viking life sciences experimental packages detected extraordinary chemical activity in the martian soil, probably the result of soil-surface chemistry. At least one very strong oxidant may exist in the martian soil. The electrochemical nature of the martian soil has figured prominently in discussions of future life sciences research on Mars. Putative oxidants in the martian soil may be responsible for the destruction of organic material to considerable depth, precluding the recovery of reducing material that may be relic of early biological forms. Also, there have been serious expressions of concern regarding the effect that soil oxidants may have on human health and safety. The concern here has centered on the possible irritation of the respiratory system due to dust carried into the martian habitat through the air locks.

  14. Interactive effects of biochar ageing in soils related to feedstock, pyrolysis temperature, and historic charcoal production.

    NASA Astrophysics Data System (ADS)

    Heitkötter, Julian; Marschner, Bernd

    2015-04-01

    Biochar is suggested for soil amelioration and carbon sequestration, based on its assumed role as the key factor for the long-term fertility of Terra preta soils. Several studies have shown that certain biochar properties can undergo changes through ageing processes, especially regarding charge characteristics. However, only a few studies determined the changes of different biochars under the same incubation conditions and in different soils. The objective of this study was to characterize the changes of pine chip (PC)- and corn digestate (CD)-derived biochars pyrolyzed at 400 or 600 °C during 100 days of laboratory incubation in a historical kiln soil and an adjacent control soil. Separation between soil and biochar was ensured by using mesh bags. Especially, changes in charge characteristics depended on initial biochar properties affected by feedstock and pyrolysis temperature and on soil properties affected by historic charcoal production. While the cation exchange capacity (CEC) markedly increased for both CD biochars during incubation, PC biochars showed no or only slight increases in CEC. Corresponding to the changes in CEC, ageing of biochars also increased the amount of acid functional groups with increases being in average about 2-fold higher in CD biochars than in PC biochars. Further and in contrast to other studies, the surface areas of biochars increased during ageing, likely due to ash leaching and degradation of tar residues. Changes in CEC and surface acidity of CD biochars were more pronounced after incubation in the control soil, while surface area increase was higher in the kiln soil. Since the two acidic forest soils used in this this study did not greatly differ in physical or chemical properties, the main process for inducing these differences in the buried biochar most likely is related to the differences in dissolved organic carbon (DOC). Although the kiln soil contained about 50% more soil organic carbon due to the presence of charcoal particles, extractable DOC was lower and less aromatic than in the adjacent control soil, likely due to strong sorption of dissolved organic matter (DOM) onto charcoal particles. We suggest that higher sorption of DOM onto the surface of biochar in the control soil provided additional acid functional groups and thus increased the surface charge to a greater extent than in the DOC poorer kiln soil. Hence, biochars incubated in the kiln soil showed less changes in CEC and surface acidity. Higher availability of DOM in the control soil could also stimulate microbial activity to a larger extent, resulting in higher oxidation rates of biochars incubated in the control soil.

  15. Surface water and groundwater interactions in coastal wetlands

    NASA Astrophysics Data System (ADS)

    Li, Ling; Xin, Pei; Shen, Chengji

    2014-05-01

    Salt marshes are an important wetland system in the upper intertidal zone, interfacing the land and coastal water. Dominated by salt-tolerant plants, these wetlands provide essential eco-environmental services for maintaining coastal biodiversity. They also act as sediment traps and help stabilize the coastline. While they play an active role in moderating greenhouse gas emissions, these wetlands have become increasingly vulnerable to the impact of global climate change. Salt marshes are a complex hydrological system characterized by strong, dynamic interactions between surface water and groundwater, which underpin the wetland's eco-functionality. Bordered with coastal water, the marsh system undergoes cycles of inundation and exposure driven by the tide. This leads to dynamic, complex pore-water flow and solute transport in the marsh soil. Pore-water circulations occur at different spatial and temporal scales with strong link to the marsh topography. These circulations control solute transport between the marsh soil and the tidal creek, and ultimately affect the overall nutrient exchange between the marsh and coastal water. The pore-water flows also dictate the soil aeration conditions, which in turn affect marsh plant growth. This talk presents results and findings from recent numerical and experimental studies, focusing on the pore-water flow behaviour in the marsh soil under the influence of tides and density-gradients.

  16. [Spatial variability of surface soil nutrients in the landslide area of Beichuan County, South- west China, after 5 · 12 Wenchuan Earthquake].

    PubMed

    Mai, Ji-shan; Zhao, Ting-ning; Zheng, Jiang-kun; Shi, Chang-qing

    2015-12-01

    Based on grid sampling and laboratory analysis, spatial variability of surface soil nutrients was analyzed with GS⁺ and other statistics methods on the landslide area of Fenghuang Mountain, Leigu Town, Beichuan County. The results showed that except for high variability of available phosphorus, other soil nutrients exhibited moderate variability. The ratios of nugget to sill of the soil available phosphorus and soil organic carbon were 27.9% and 28.8%, respectively, showing moderate spatial correlation, while the ratios of nugget to sill of the total nitrogen (20.0%), total phosphorus (24.3%), total potassium (11.1%), available nitrogen (11.2%), and available potassium (22.7%) suggested strong spatial correlation. The total phosphorus had the maximum range (1232.7 m), followed by available nitrogen (541.27 m), total nitrogen (468.35 m), total potassium (136.0 m), available potassium (128.7 m), available phosphorus (116.6 m), and soil organic carbon (93.5 m). Soil nutrients had no significant variation with the increase of altitude, but gradually increased from the landslide area, the transition area, to the little-impacted area. The total and available phosphorus contents of the landslide area decreased by 10.3% and 79.7% compared to that of the little-impacted area, respectively. The soil nutrient contents in the transition area accounted for 31.1%-87.2% of that of the little-impacted area, with the nant reason for the spatial variability of surface soil nutrients.

  17. Interactive Effects of Climate Change and Decomposer Communities on the Stabilization of Wood-Derived Carbon Pools: Catalyst for a New Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Resh, Sigrid C.

    Globally, forest soils store ~two-thirds as much carbon (C) as the atmosphere. Although wood makes up the majority of forest biomass, the importance of wood contributions to soil C pools is unknown. Even with recent advances in the mechanistic understanding of soil processes, integrative studies tracing C input pathways and biological fluxes within and from soils are lacking. Therefore, our research objectives were to assess the impact of different fungal decay pathways (i.e., white-rot versus brown-rot)—in interaction with wood quality, soil temperature, wood location (i.e., soil surface and buried in mineral soil), and soil texture—on the transformation of woody materialmore » into soil CO 2 efflux, dissolved organic carbon (DOC), and soil C pools. The use of 13C-depleted woody biomass harvested from the Rhinelander, WI free-air carbon dioxide enrichment (Aspen-FACE) experiment affords the unique opportunity to distinguish the wood-derived C from other soil C fluxes and pools. We established 168 treatment plots across six field sites (three sand and three loam textured soil). Treatment plots consisted of full-factorial design with the following treatments: 1. Wood chips from elevated CO 2, elevated CO 2 + O 3, or ambient atmosphere AspenFACE treatments; 2. Inoculated with white rot (Bjerkandera adusta) or brown rot (Gloeophyllum sepiarium) pure fungal cultures, or the original suite of endemic microbial community on the logs; and 3. Buried (15cm in soil as a proxy for coarse roots) or surface applied wood chips. We also created a warming treatment using open-topped, passive warming chambers on a subset of the above treatments. Control plots with no added wood (“no chip control”) were incorporated into the research design. Soils were sampled for initial δ 13C values, CN concentrations, and bulk density. A subset of plots were instrumented with lysimeters for sampling soil water and temperature data loggers for measuring soil temperatures. To determine the early pathways of decomposition, we measured soil surface CO 2 efflux, dissolved organic C (DOC), and DO 13C approximately monthly over two growing seasons from a subsample of the research plots. To determine the portion of soil surface CO 2 efflux attributable to wood-derived C, we used Keeling plot techniques to estimate the associated δ 13C values of the soil CO 2 efflux. We measured the δ 13CO 2 once during the peak of each growing season. Initial values for soil δ 13C values and CN concentrations averaged across the six sites were -26.8‰ (standard error = 0.04), 2.46% (se = 0.11), and 0.15% (se = 0.01), respectively. The labeled wood chips from the Aspen FACE treatments had an average δ13C value of -39.5‰ (se 0.10). The >12 ‰ isotopic difference between the soil and wood chip δ 13C values provides the basis for tracking the wood-derived C through the early stages of decomposition and subsequent storage in the soil. Across our six research sites, average soil surface CO 2 efflux ranged from 1.04 to 2.00 g CO 2 m -2 h -1 for the first two growing seasons. No wood chip controls had an average soil surface CO 2 efflux of 0.67 g CO 2 m -2 h -1 or about half of that of the wood chip treatment plots. Wood-derived CO 2 efflux was higher for loam textured soils relative to sands (0.70 and 0.54 g CO 2 m -2 h -1, respectively; p = 0.045)), for surface relative to buried wood chip treatments (0.92 and 0.39 g CO 2 m -2 h -1, respectively; p < 0.001), for warmed relative to ambient temperature treatments (0.99 and 0.78 g CO 2 m -2 h -1, respectively; 0.004), and for natural rot relative to brown and white rots (0.93, 0.82, and 0.78 g CO 2 m -2 h -1, respectively; p = 0.068). Our first two growing seasons of soil surface CO 2 efflux data show that wood chip location (i.e., surface vs. buried chip application) is very important, with surface chips loosing twice the wood-derived CO 2. The DOC data support this trend for greater loss of ecosystem C from surface chips. This has strong implications for the importance of root and buried wood for ecosystem C retention. This strong chip location effect on wood-derived C loss was significantly modified by soil texture, soil temperature, decomposer communities, and wood quality as effected by potential future CO 2 and O 3 levels.« less

  18. Linear and non-linear responses of vegetation and soils to glacial-interglacial climate change in a Mediterranean refuge.

    PubMed

    Holtvoeth, Jens; Vogel, Hendrik; Valsecchi, Verushka; Lindhorst, Katja; Schouten, Stefan; Wagner, Bernd; Wolff, George A

    2017-08-14

    The impact of past global climate change on local terrestrial ecosystems and their vegetation and soil organic matter (OM) pools is often non-linear and poorly constrained. To address this, we investigated the response of a temperate habitat influenced by global climate change in a key glacial refuge, Lake Ohrid (Albania, Macedonia). We applied independent geochemical and palynological proxies to a sedimentary archive from the lake over the penultimate glacial-interglacial transition (MIS 6-5) and the following interglacial (MIS 5e-c), targeting lake surface temperature as an indicator of regional climatic development and the supply of pollen and biomarkers from the vegetation and soil OM pools to determine local habitat response. Climate fluctuations strongly influenced the ecosystem, however, lake level controls the extent of terrace surfaces between the shoreline and mountain slopes and hence local vegetation, soil development and OM export to the lake sediments. There were two phases of transgressional soil erosion from terrace surfaces during lake-level rise in the MIS 6-5 transition that led to habitat loss for the locally dominant pine vegetation as the terraces drowned. Our observations confirm that catchment morphology plays a key role in providing refuges with low groundwater depth and stable soils during variable climate.

  19. The effect of iron plaque on uptake and translocation of norfloxacin in rice seedlings grown in paddy soil.

    PubMed

    Yan, Dafang; Ma, Wei; Song, Xiaojing; Bao, Yanyu

    2017-03-01

    Although the role of iron plaque on rice root surface has been investigated in recent years, its effect on antibiotic uptake remains uncertain. In the study, pot experiment was conducted to investigate the effect of iron plaque on uptake and translocation of norfloxacin (adding 10 and 50 mg·kg -1 treatments) in rice seedlings grown in paddy soil. Iron plaque was induced by adding different amounts of Fe(II) in soil. The results showed that the presence of norfloxacin can decrease the amount of iron plaque induced. After rice with iron plaque induced, norfloxacin was mainly accumulated in iron plaque on root surface, followed by inside root, but its translocation from root to other rice tissues is not observed. Iron plaque played the role of a barrier for norfloxacin uptake into rice roots under high norfloxacin concentration of 50 mg·kg -1 , however not that under low concentration of 10 mg·kg -1 . And the barrier function was the most strongest with adding Fe(II) of 30 mg·kg -1 as combined action of iron plaque and rhizosphere effect. Fluorescence microscope analysis showed that norfloxacin mainly distributed in the outside of root cell, which showed its translocation as apoplastic pathway in rice. Comparing with non-rhizosphere, more norfloxacin was accumulated in rhizosphere soil. Maybe, strong root oxidization (high Eh values) induced more iron oxide formation in rhizosphere and on root surface, which led to norfloxacin's mobility towards to rhizosphere through its strong adsorption of iron oxides and then promoted its uptake by rice on root surface.

  20. Comparison of cellulose vs. plastic cigarette filter decomposition under distinct disposal environments.

    PubMed

    Joly, François-Xavier; Coulis, Mathieu

    2018-02-01

    It is estimated that 4.5 trillion cigarette butts are discarded annually, making them numerically the most common type of litter on Earth. To accelerate their disappearance after disposal, a new type of cigarette filters made of cellulose, a readily biodegradable compound, has been introduced in the market. Yet, the advantage of these cellulose filters over the conventional plastic ones (cellulose acetate) for decomposition, remains unknown. Here, we compared the decomposition of cellulose and plastic cigarettes filters, either intact or smoked, on the soil surface or within a composting bin over a six-month field decomposition experiment. Within the compost, cellulose filters decomposed faster than plastic filters, but this advantage was strongly reduced when filters had been used for smoking. This indicates that the accumulation of tars and other chemicals during filter use can strongly affect its subsequent decomposition. Strikingly, on the soil surface, we observed no difference in mass loss between cellulose and plastic filters throughout the incubation. Using a first order kinetic model for mass loss of for used filters over the short period of our experiment, we estimated that conventional plastic filters take 7.5-14 years to disappear, in the compost and on the soil surface, respectively. In contrast, we estimated that cellulose filters take 2.3-13 years to disappear, in the compost and on the soil surface, respectively. Our data clearly showed that disposal environments and the use of cellulose filters must be considered when assessing their advantage over plastic filters. In light of our results, we advocate that the shift to cellulose filters should not exempt users from disposing their waste in appropriate collection systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Geochemical Fate and Transport of Sildenafil in Natural Soils

    NASA Astrophysics Data System (ADS)

    Turner, A. E.; Vulava, V. M.

    2016-12-01

    In recent years, pharmaceutical drugs have become of increasing concern to the health of our environment. As a result of wastewater treatment plant discharge and various sources of surface runoff, pharmaceuticals can be found in trace amounts in our most common water resources. Sildenafil, a drug marketed to treat erectile dysfunction, is amongst the top 20 most prescribed pharmaceutical products in the U.S. Sildenafil is a complex polar organic molecule with multiple amine functional groups, which gives it acid-base functionality. The most common pKa of this molecule is approximately 6.0 and water solubility ranges from 3.5 to 4.6 mg/L. The goal of this project is to examine the sorption and transport behavior of sildenafil in natural organic matter- (OM) and clay-rich soils. Soils used for this study were collected from undisturbed forested areas in Francis Marion National Forest, Charleston, SC. A series of batch sorption isotherm and column transport experiments were conducted with these soils. Sildenafil was analyzed using high performance liquid chromatography (HPLC) and liquid chromatography mass spectrometry (LC-MS) techniques. Batch sorption isotherm experiments produced nonlinear data for both OM- and clay-rich soil types. The data shows that sildenafil sorbs more strongly to the clay-rich soils than to the OM-rich soils. This suggests that sildenafil behaved as a cation and preferentially sorbed with the negatively-charged clay minerals. The transport behavior of sildenafil as determined by experiments with soil-packed glass chromatography columns confirmed this behavior. The resulting breakthrough curves show that sildenafil is strongly retarded in clay-rich soils. Our studies do not show degradation or transformation of sildenafil in soils. The results from this study have strong implications for environmental management of pharmaceutical chemical effluents and disposal.

  2. Evaluation of simultaneous reduction and transport of selenium in saturated soil columns

    NASA Astrophysics Data System (ADS)

    Guo, Lei; Frankenberger, William T.; Jury, William A.

    1999-03-01

    Speciation plays an important role in determining the overall leachability of selenium in soil. In this study we present a mathematical model and results of miscible displacement experiments that were conducted to evaluate simultaneous reduction and transport of selenate in saturated soil columns. The experiments were carried out in organic amended (compost manure or gluten) or unamended soil, with O2-sparged or nonsparged influent solution. In all columns, reduction of selenate was fast enough to produce selenite flux in the effluent and elemental Se in the soil profile during a mean residence time of ˜30 hours. Reduction was accelerated in the presence of organic amendments and under low O2 concentrations, resulting in an increased retardation of selenium transport as a whole. The results of our experiments show that although selenate does not sorb to solid surfaces during transport, it reduces rapidly to forms that are strongly retarded. On the basis of simulation with the consecutive reaction and transport model using parameters derived from this study, selenium is expected to be retained near the soil surface, even under extreme leaching conditions.

  3. Modelling strong seismic ground motion: three-dimensional loading path versus wavefield polarization

    NASA Astrophysics Data System (ADS)

    Santisi d'Avila, Maria Paola; Lenti, Luca; Semblat, Jean-François

    2012-09-01

    Seismic waves due to strong earthquakes propagating in surficial soil layers may both reduce soil stiffness and increase the energy dissipation into the soil. To investigate seismic wave amplification in such cases, past studies have been devoted to one-directional shear wave propagation in a soil column (1D-propagation) considering one motion component only (1C-polarization). Three independent purely 1C computations may be performed ('1D-1C' approach) and directly superimposed in the case of weak motions (linear behaviour). This research aims at studying local site effects by considering seismic wave propagation in a 1-D soil profile accounting for the influence of the 3-D loading path and non-linear hysteretic behaviour of the soil. In the proposed '1D-3C' approach, the three components (3C-polarization) of the incident wave are simultaneously propagated into a horizontal multilayered soil. A 3-D non-linear constitutive relation for the soil is implemented in the framework of the Finite Element Method in the time domain. The complex rheology of soils is modelled by mean of a multisurface cyclic plasticity model of the Masing-Prandtl-Ishlinskii-Iwan type. The great advantage of this choice is that the only data needed to describe the model is the modulus reduction curve. A parametric study is carried out to characterize the changes in the seismic motion of the surficial layers due to both incident wavefield properties and soil non-linearities. The numerical simulations show a seismic response depending on several parameters such as polarization of seismic waves, material elastic and dynamic properties, as well as on the impedance contrast between layers and frequency content and oscillatory character of the input motion. The 3-D loading path due to the 3C-polarization leads to multi-axial stress interaction that reduces soil strength and increases non-linear effects. The non-linear behaviour of the soil may have beneficial or detrimental effects on the seismic response at the free surface, depending on the energy dissipation rate. Free surface time histories, stress-strain hysteresis loops and in-depth profiles of octahedral stress and strain are estimated for each soil column. The combination of three separate 1D-1C non-linear analyses is compared to the proposed 1D-3C approach, evidencing the influence of the 3C-polarization and the 3-D loading path on strong seismic motions.

  4. Controls on the dynamics of dissolved organic matter in soils: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalbitz, K.; Solinger, S.; Park, J.H.

    Dissolved organic matter (DOM) in soils plays an important role in the biogeochemistry of carbon, nitrogen, and phosphorus, in pedogenesis, and in the transport of pollutants in soils. The aim of this review is to summarize the recent literature about controls on DOM concentrations and fluxes in soils. The authors focus on comparing results between laboratory and field investigations and on the differences between the dynamics of dissolved organic carbon (DOC), nitrogen (DON), and phosphorus (DOP). Both laboratory and field studies show that litter and humus are the most important DOM sources in soils. However, it is impossible to quantifymore » the individual contributions of each of these sources to DOM release. In addition, it is not clear how changes in the pool sizes of litter or humus may affect DOM release. High microbial activity, high fungal abundance, and any conditions that enhance mineralization all promote high DOM concentrations. However, under field conditions, hydrologic variability in soil horizons with high carbon contents may be more important than biotic controls. In subsoil horizons with low carbon contents, DOM may be adsorbed strongly to mineral surfaces, resulting in low DOM concentrations in the soil solution. There are strong indications that microbial degradation of DOM also controls the fate of DOM in the soil.« less

  5. Effects of Jet Fuel Spills on the Microbial Community of Soil †

    PubMed Central

    Song, Hong-Gyu; Bartha, Richard

    1990-01-01

    Hydrocarbon residues, microbial numbers, and microbial activity were measured and correlated in loam soil contaminated by jet fuel spills resulting in 50 and 135 mg of hydrocarbon g of soil−1. Contaminated soil was incubated at 27°C either as well-aerated surface soil or as poorly aerated subsurface soil. In the former case, the effects of bioremediation treatment on residues, microbial numbers, and microbial activity were also assessed. Hydrocarbon residues were measured by quantitative gas chromatography. Enumerations included direct counts of metabolically active bacteria, measurement of mycelial length, plate counts of aerobic heterotrophs, and most probable numbers of hydrocarbon degraders. Activity was assessed by fluorescein diacetate (FDA) hydrolysis. Jet fuel disappeared much more rapidly from surface soil than it did from subsurface soil. In surface soil, microbial numbers and mycelial length were increased by 2 to 2.5 orders of magnitude as a result of jet fuel contamination alone and by 3 to 4 orders of magnitude as a result of the combination of jet fuel contamination and bioremediation. FDA hydrolysis was stimulated by jet fuel and bioremediation, but was inhibited by jet fuel alone. The latter was traced to an inhibition of the FDA assay by jet fuel biodegradation products. In subsurface soil, oxygen limitation strongly attenuated microbial responses to jet fuel. An increase in the most probable numbers of hydrocarbon degraders was accompanied by a decline in other aerobic heterotrophs, so that total plate counts changed little. The correlations between hydrocarbon residues, microbial numbers, and microbial activity help in elucidating microbial contributions to jet fuel elimination from soil. PMID:16348138

  6. Soil mixing and transport increase inventories of mineral surface area and organic carbon, with systematic shifts in C/N, δ13C, and δ15N, along a forested hillslope transect

    NASA Astrophysics Data System (ADS)

    Fisher, B.; Yoo, K.; Aufdenkampe, A. K.; Nater, E. A.; Aalto, R. E.; Marquard, J.

    2017-12-01

    The quantity of organic carbon (OC) per unit of mineral surface area (OC/SA) and the inventory of organic carbon increased by a factor of 2-3 as result of soil mixing due to soil creep, erosional movement, and in situ mixing process in a soil transect in a first-order forested watershed in the Christina River Basin Critical Zone Observatory. In the uppermost 5 meters, 50-75% of mineral specific surface area was contributed by citrate-dithionate extractable forms of iron and aluminum that comprised less than 2.5% of the total sample mass. As soils were redistributed to depositional landscape positions, mixing processes systematically decreased C/N and enriched stable isotopes of C ( δ13C) and N ( δ15N). Radiocarbon (14C) concentration of light and dense fraction OC (divided at 2.0 g cm-3), increased with depth, but results of light fraction radiocarbon were obscured by 3000-year-old charcoal. Short range order Fe- and Al-bearing minerals contributed the vast majority of specific surface area, and this finding has implications for the stability and longevity of organomineral complexes. We identified a strong correlation between C/N and the ratio of OC to mineral surface area (OC/SA), indicating that the processes that associate organic matter and minerals are fundamentally linked with organic matter composition, and both properties may provide a proxy for organic matter stabilization by soil minerals.

  7. Complementary effects of surface water and groundwater on soil moisture dynamics in a degraded coastal floodplain forest

    NASA Astrophysics Data System (ADS)

    Kaplan, D.; Muñoz-Carpena, R.

    2011-02-01

    SummaryRestoration of degraded floodplain forests requires a robust understanding of surface water, groundwater, and vadose zone hydrology. Soil moisture is of particular importance for seed germination and seedling survival, but is difficult to monitor and often overlooked in wetland restoration studies. This research hypothesizes that the complex effects of surface water and shallow groundwater on the soil moisture dynamics of floodplain wetlands are spatially complementary. To test this hypothesis, 31 long-term (4-year) hydrological time series were collected in the floodplain of the Loxahatchee River (Florida, USA), where watershed modifications have led to reduced freshwater flow, altered hydroperiod and salinity, and a degraded ecosystem. Dynamic factor analysis (DFA), a time series dimension reduction technique, was applied to model temporal and spatial variation in 12 soil moisture time series as linear combinations of common trends (representing shared, but unexplained, variability) and explanatory variables (selected from 19 additional candidate hydrological time series). The resulting dynamic factor models yielded good predictions of observed soil moisture series (overall coefficient of efficiency = 0.90) by identifying surface water elevation, groundwater elevation, and net recharge (cumulative rainfall-cumulative evapotranspiration) as important explanatory variables. Strong and complementary linear relationships were found between floodplain elevation and surface water effects (slope = 0.72, R2 = 0.86, p < 0.001), and between elevation and groundwater effects (slope = -0.71, R2 = 0.71, p = 0.001), while the effect of net recharge was homogenous across the experimental transect (slope = 0.03, R2 = 0.05, p = 0.242). This study provides a quantitative insight into the spatial structure of groundwater and surface water effects on soil moisture that will be useful for refining monitoring plans and developing ecosystem restoration and management scenarios in degraded coastal floodplains.

  8. High-Resolution Mesoscale Simulations of the 6-7 May 2000 Missouri Flash Flood: Impact of Model Initialization and Land Surface Treatment

    NASA Technical Reports Server (NTRS)

    Baker, R. David; Wang, Yansen; Tao, Wei-Kuo; Wetzel, Peter; Belcher, Larry R.

    2004-01-01

    High-resolution mesoscale model simulations of the 6-7 May 2000 Missouri flash flood event were performed to test the impact of model initialization and land surface treatment on timing, intensity, and location of extreme precipitation. In this flash flood event, a mesoscale convective system (MCS) produced over 340 mm of rain in roughly 9 hours in some locations. Two different types of model initialization were employed: 1) NCEP global reanalysis with 2.5-degree grid spacing and 12-hour temporal resolution, and 2) Eta reanalysis with 40- km grid spacing and $hour temporal resolution. In addition, two different land surface treatments were considered. A simple land scheme. (SLAB) keeps soil moisture fixed at initial values throughout the simulation, while a more sophisticated land model (PLACE) allows for r interactive feedback. Simulations with high-resolution Eta model initialization show considerable improvement in the intensity of precipitation due to the presence in the initialization of a residual mesoscale convective vortex (hlCV) from a previous MCS. Simulations with the PLACE land model show improved location of heavy precipitation. Since soil moisture can vary over time in the PLACE model, surface energy fluxes exhibit strong spatial gradients. These surface energy flux gradients help produce a strong low-level jet (LLJ) in the correct location. The LLJ then interacts with the cold outflow boundary of the MCS to produce new convective cells. The simulation with both high-resolution model initialization and time-varying soil moisture test reproduces the intensity and location of observed rainfall.

  9. Theoretical Relationships between Luminescence and Hillslope Soil Vertical Diffusivity: a Numerical Modeling Approach

    NASA Astrophysics Data System (ADS)

    Gray, H. J.; Tucker, G. E.; Mahan, S.

    2017-12-01

    Luminescence is a property of matter that can be used to obtain depositional ages from fine sand. Luminescence generates due to exposure to background ionizing radiation and is removed by sunlight exposure in a process known as bleaching. There is evidence to suggest that luminescence can also serve as a sediment tracer in fluvial and hillslope environments. For hillslope environments, it has been suggested that the magnitude of luminescence as a function of soil depth is related to the strength of soil mixing. Hillslope soils with a greater extent of mixing will have previously surficial sand grains moved to greater depths in a soil column. These previously surface-exposed grains will contain a lower luminescence than those which have never seen the surface. To attempt to connect luminescence profiles with soil mixing rate, here defined as the soil vertical diffusivity, I conduct numerical modelling of particles in hillslope soils coupled with equations describing the physics of luminescence. I use recently published equations describing the trajectories of particles under both exponential and uniform soil velocity soils profiles and modify them to include soil diffusivity. Results from the model demonstrates a strong connection between soil diffusivity and luminescence. Both the depth profiles of luminescence and the total percent of surface exposed grains will change drastically based on the magnitude of the diffusivity. This suggests that luminescence could potentially be used to infer the magnitude of soil diffusivity. However, I test other variables such as the soil production rate, e-folding length of soil velocity, background dose rate, and soil thickness, and I find these other variables can also affect the relationship between luminescence and diffusivity. This suggests that these other variables may need to be constrained prior to any inferences of soil diffusivity from luminescence measurements. Further field testing of the model in areas where the soil vertical diffusivity and other parameters are independently known will provide a test of this potential new method.

  10. Land surface energy budget during dry spells: global CMIP5 AMIP simulations vs. satellite observations

    NASA Astrophysics Data System (ADS)

    Gallego-Elvira, Belen; Taylor, Christopher M.; Harris, Phil P.; Ghent, Darren; Folwell, Sonja S.

    2015-04-01

    During extended periods without rain (dry spells), the soil can dry out due to vegetation transpiration and soil evaporation. At some point in this drying cycle, land surface conditions change from energy-limited to water-limited evapotranspiration, and this is accompanied by an increase of the ground and overlying air temperatures. Regionally, the characteristics of this transition determine the influence of soil moisture on air temperature and rainfall. Global Climate Models (GCMs) disagree on where and how strongly the surface energy budget is limited by soil moisture. Flux tower observations are improving our understanding of these dry down processes, but typical heterogeneous landscapes are too sparsely sampled to ascertain a representative regional response. Alternatively, satellite observations of land surface temperature (LST) provide indirect information about the surface energy partition at 1km resolution globally. In our study, we analyse how well the dry spell dynamics of LST are represented by GCMs across the globe. We use a spatially and temporally aggregated diagnostic to describe the composite response of LST during surface dry down in rain-free periods in distinct climatic regions. The diagnostic is derived from daytime MODIS-Terra LST observations and bias-corrected meteorological re-analyses, and compared against the outputs of historical climate simulations of seven models running the CMIP5 AMIP experiment. Dry spell events are stratified by antecedent precipitation, land cover type and geographic regions to assess the sensitivity of surface warming rates to soil moisture levels at the onset of a dry spell for different surface and climatic zones. In a number of drought-prone hot spot regions, we find important differences in simulated dry spell behaviour, both between models, and compared to observations. These model biases are likely to compromise seasonal forecasts and future climate projections.

  11. Observations of magnetite dissolution in poorly drained soils

    USGS Publications Warehouse

    Grimley, D.A.; Arruda, N.K.

    2007-01-01

    Dissolution of strongly magnetic minerals is a common and relatively rapid phenomenon in poorly drained soils of the central United States, resulting in low magnetic susceptibility (MS). Low Eh reducing conditions are primarily responsible for magnetic mineral dissolution; a process likely mediated by iron-reducing bacteria in the presence of soil organic matter. Based on transects across drainage sequences from nine sites, natural magnetic minerals (>5 ??m) extracted from surface soil consist of 54% ?? 18% magnetite, 21% ?? 11% titanomagnetite, and 17% ?? 14% ilmenite. Magnetite and titanomagnetite dissolution, assessed by scanning electron microscopy on a 0-to-3 scale, inversely correlates with surface soil MS (r = 0.53), a proxy for soil drainage at studied transects. Altered magnetite typically displays etch pits 5 ??m) include 26% ?? 18% anthropogenic fly ash that also exhibits greater dissolution in low MS soils (r = 0.38), indicating detectable alteration can occur within 150 years in low Eh soils. Laboratory induced reduction of magnetite, titanomagnetite, and magnetic fly ash, with a citrate-bicarbonate- dithionite solution, resulted in dissolution textures similar to those of in situ soil particles. Although experiments indicate that reductive dissolution of magnetite can occur abiotically under extreme conditions, bacteria likely play an important role in the natural environment. ?? 2007 Lippincott Williams & Wilkins, Inc.

  12. Identifying the optimal spatially and temporally invariant root distribution for a semiarid environment

    NASA Astrophysics Data System (ADS)

    Sivandran, Gajan; Bras, Rafael L.

    2012-12-01

    In semiarid regions, the rooting strategies employed by vegetation can be critical to its survival. Arid regions are characterized by high variability in the arrival of rainfall, and species found in these areas have adapted mechanisms to ensure the capture of this scarce resource. Vegetation roots have strong control over this partitioning, and assuming a static root profile, predetermine the manner in which this partitioning is undertaken.A coupled, dynamic vegetation and hydrologic model, tRIBS + VEGGIE, was used to explore the role of vertical root distribution on hydrologic fluxes. Point-scale simulations were carried out using two spatially and temporally invariant rooting schemes: uniform: a one-parameter model and logistic: a two-parameter model. The simulations were forced with a stochastic climate generator calibrated to weather stations and rain gauges in the semiarid Walnut Gulch Experimental Watershed (WGEW) in Arizona. A series of simulations were undertaken exploring the parameter space of both rooting schemes and the optimal root distribution for the simulation, which was defined as the root distribution with the maximum mean transpiration over a 100-yr period, and this was identified. This optimal root profile was determined for five generic soil textures and two plant-functional types (PFTs) to illustrate the role of soil texture on the partitioning of moisture at the land surface. The simulation results illustrate the strong control soil texture has on the partitioning of rainfall and consequently the depth of the optimal rooting profile. High-conductivity soils resulted in the deepest optimal rooting profile with land surface moisture fluxes dominated by transpiration. As we move toward the lower conductivity end of the soil spectrum, a shallowing of the optimal rooting profile is observed and evaporation gradually becomes the dominate flux from the land surface. This study offers a methodology through which local plant, soil, and climate can be accounted for in the parameterization of rooting profiles in semiarid regions.

  13. Plants Regulate Soil Organic Matter Decomposition in Response to Sea Level Rise

    NASA Astrophysics Data System (ADS)

    Megonigal, P.; Mueller, P.; Jensen, K.

    2014-12-01

    Tidal wetlands have a large capacity for producing and storing organic matter, making their role in the global carbon budget disproportionate to their land area. Most of the organic matter stored in these systems is in soils where it contributes 2-5 times more to surface accretion than an equal mass of minerals. Soil organic matter (SOM) sequestration is the primary process by which tidal wetlands become perched high in the tidal frame, decreasing their vulnerability to accelerated sea level rise. Plant growth responses to sea level rise are well understood and represented in century-scale forecast models of soil surface elevation change. We understand far less about the response of soil organic matter decomposition to rapid sea level rise. Here we quantified the effects of sea level on SOM decomposition rates by exposing planted and unplanted tidal marsh monoliths to experimentally manipulated flood duration. The study was performed in a field-based mesocosm facility at the Smithsonian's Global Change Research Wetland. SOM decomposition rate was quantified as CO2 efflux, with plant- and SOM-derived CO2 separated with a two end-member δ13C-CO2 model. Despite the dogma that decomposition rates are inversely related to flooding, SOM mineralization was not sensitive to flood duration over a 35 cm range in soil surface elevation. However, decomposition rates were strongly and positively related to aboveground biomass (R2≥0.59, p≤0.01). We conclude that soil carbon loss through decomposition is driven by plant responses to sea level in this intensively studied tidal marsh. If this result applies more generally to tidal wetlands, it has important implications for modeling soil organic matter and surface elevation change in response to accelerated sea level rise.

  14. Characterizing Martian Soils: Correlating Orbital Observations with Chemistry and Mineralogy from Landed Missions

    NASA Astrophysics Data System (ADS)

    Bishop, J. L.

    2010-12-01

    Great advances have been achieved recently in our understanding of the surface of Mars at global scales from orbital missions and at local scales from landed missions. This presentation seeks to provide links between the chemistry and mineralogy observed by landed missions with remote detections of minerals from orbit. Spectral data from CRISM, OMEGA and TES characterize a mostly basaltic planet with some outcrops of hematite, clays, sulfates and carbonates at the surface. Recent alteration of these rocks to form soils has likely been dominated by physical processes; however, martian soils probably also contain relicts of early alteration involving aqueous processes. Clays, hydroxides, sulfates, carbonates and perchlorates are examples of surface components that may have formed early in the planet’s history in the presence of liquid water. Some of these minerals have not been detected in the soil, but all have likely contributed to the current soil composition. The grain size, shape, chemistry, mineralogy, and magnetic properties of Martian soils are similar to altered volcanic ash found at many analog sites on Earth. Reflectance and emission spectra of some of these analog soils are consistent with the basic soil spectral properties observed from orbit. The cemented soil units observed by rovers may have formed through interaction of the soil grains with salts, clays, and hydroxides. Lab experiments have shown that cementing of analog grains darkens the VN reflectance, which could explain the low reflectance of Martian soils compared to analog sites. Reflectance spectra of an analog soil mixture containing altered ash and sulfate are shown in Figure 1. A pellet was made by adding water and allowing the sample to dry in air. Finally, the pellet was crushed and ground again to <125 µm. Both the dried pellet spectrum and the crushed pellet spectrum are darker than the original spectrum of the same composition. Erosion and weathering are likely the dominant processes forming the soils on Mars. However, reaction of surface grains with sulfates and perchlorates probably also influenced the soil grains. The perchlorates found by Phoenix are a strong oxidant. Consideration is being given to the interactions of perchlorates with minerals identified in surface rocks (pyroxene, olivine, feldspar, phyllosilicate, iron oxides, sulfate, silica, carbonate) and how perchlorates might be contributing to soil formation from these minerals and what their spectral properties might be.

  15. Correlations between PAH bioavailability, degrading bacteria, and soil characteristics during PAH biodegradation in five diffusely contaminated dissimilar soils.

    PubMed

    Crampon, M; Bureau, F; Akpa-Vinceslas, M; Bodilis, J; Machour, N; Le Derf, F; Portet-Koltalo, F

    2014-01-01

    The natural biodegradation of seven polycyclic aromatic hydrocarbons (PAHs) by native microorganisms was studied in five soils from Normandy (France) from diffusely polluted areas, which can also pose a problem in terms of surfaces and amounts of contaminated soils. Bioavailability tests using cyclodextrin-based extractions were performed. The natural degradation of low molecular weight (LMW) PAHs was not strongly correlated to their bioavailability due to their sorption to geosorbents. Conversely, the very low degradation of high molecular weight (HMW) PAHs was partly correlated to their poor availability, due to their sorption on complexes of organic matter and kaolinites or smectites. A principal component analysis allowed us to distinguish between the respective degradation behaviors of LMW and HMW PAHs. LMW PAHs were degraded in less than 2-3 months and were strongly influenced by the relative percentage of phenanthrene-degrading bacteria over total bacteria in soils. HMW PAHs were not significantly degraded, not only because they were less bioavailable but also because of a lack of degrading microorganisms. Benzo[a]pyrene stood apart since it was partly degraded in acidic soils, probably because of a catabolic cooperation between bacteria and fungi.

  16. Agricultural management impact on physical and chemical functions of European peat soils.

    NASA Astrophysics Data System (ADS)

    Piayda, Arndt; Tiemeyer, Bärbel; Dettmann, Ullrich; Bechtold, Michel; Buschmann, Christoph

    2017-04-01

    Peat soils offer numerous functions from the global to the local scale: they constitute the biggest terrestrial carbon storage on the globe, form important nutrient filters for catchments and provide hydrological buffer capacities for local ecosystems. Peat soils represent a large share of soils suitable for agriculture in temperate and boreal Europe, pressurized by increasing demands for production. Cultivated peat soils, however, show extreme mineralization rates of the organic substance and turn into hotspots for green house gas emissions, are highly vulnerable to land surface subsidence, soil and water quality deterioration and thus crop failure. The aim of this study is to analyse the impact of past agricultural management on soil physical and chemical functions of peat soils in six European countries. We conducted standardized soil mapping, soil physical/chemical analysis, ground water table monitoring and farm business surveys across 7 to 10 sites in Germany, The Netherlands, Denmark, Estonia, Finland and Sweden. The results show a strong impact of past agricultural management on peat soil functions across Europe. Peat soil under intensive arable land use consistently offer lowest bearing capacities in the upper 10 cm compared to extensive and intensive grassland use, which is a major limiting factor for successful agricultural practice on peat soils. The difference can be explained by root mat stabilization solely, since soil compaction in the upper 25cm is highest under arable land use. A strong decrease of available water capacity and saturated hydraulic conductivity is consequently observed under arable land use, further intensifying hydrological problems like ponding, drought stress and reductions of hydrological buffer capacities frequently present on cultivated peat soils. Soil carbon stocks clearly decrease with increasing land use intensity, showing highest carbon stocks on extensive grassland. This is supported by the degree of decomposition, which is lowest for extensive grass land. Both findings indicate a strong impact of land use intensity and management on soil carbon losses and peat conservation on the European scale. This study provides evidence how functions of peat soils, valuable for successful agricultural production and relevant for climate change mitigation, are impacted by agricultural management.

  17. The importance of both geological and pedological processes in control of grain size and sedimentation rates in Peoria Loess

    USGS Publications Warehouse

    Wang, Hongfang; Mason, J.A.; Balsam, W.L.

    2006-01-01

    The loess-paleosol succession in the Peoria Loess in southern Illinois is characterized as alternating loess layers and weathering bands, known as paleosol A horizons. The fast loess accumulation during the late Wisconsin glaciation interacted with the incipient pedogenesis and caused unclear boundaries of loess-paleosol alternations in soil horizonation and mineralogy. Parameters of grain size distribution, sedimentation rate, matrix carbonate content and diffuse reflectance (i.e. soil colors and iron oxides) are used in this paper to discuss the geological and pedological influences for the Peoria Loess in Keller Farm section in southern Illinois. The multi-proxy analysis revealed that many paleosol A horizons, defined by the diffuse reflectance variability, contain finer-grained materials with a relatively higher sedimentation rate. It suggests that glaciofluvial sediments were available in the source areas for uploading eolian dust during the temporary ice sheet retreats. The denser vegetation and wetter surface soils on the loess deposit area could increase the dust trapping efficiency and caused a greater accumulation rate of loess deposits. The coarser-grained materials and slower sedimentation rate are often found in loess layers. It suggests that strong surface winds transported the coarser-grained materials from local dust sources and sparse vegetation and dry surface soils reduced the dust trapping efficiency during the ice sheet readvance. The strong interactions between the geological and pedological processes played an important role on the loess-paleosol alternations in southern Illinois during the late Wisconsin glaciation. ?? 2006 Elsevier B.V. All rights reserved.

  18. The effect of organic contaminants on the spectral induced polarization response of porous media - mechanistic approach

    NASA Astrophysics Data System (ADS)

    Schwartz, N.; Huisman, J. A.; Furman, A.

    2012-12-01

    In recent years, there is a growing interest in using geophysical methods in general and spectral induced polarization (SIP) in particular as a tool to detect and monitor organic contaminants within the subsurface. The general idea of the SIP method is to inject alternating current through a soil volume and to measure the resultant potential in order to obtain the relevant soil electrical properties (e.g. complex impedance, complex conductivity/resistivity). Currently, a complete mechanistic understanding of the effect of organic contaminants on the SIP response of soil is still absent. In this work, we combine laboratory experiments with modeling to reveal the main processes affecting the SIP signature of soil contaminated with organic pollutant. In a first set of experiments, we investigate the effect of non-aqueous phase liquids (NAPL) on the complex conductivity of unsaturated porous media. Our results show that addition of NAPL to the porous media increases the real component of the soil electrical conductivity and decreases the polarization of the soil (imaginary component of the complex conductivity). Furthermore, addition of NAPL to the soil resulted in an increase of the electrical conductivity of the soil solution. Based on these results, we suggest that adsorption of NAPL to the soil surface, and exchange process between polar organic compounds in the NAPL and inorganic ions in the soil are the main processes affecting the SIP signature of the contaminated soil. To further support our hypothesis, the temporal change of the SIP signature of a soil as function of a single organic cation concentration was measured. In addition to the measurements of the soil electrical properties, we also measured the effect of the organic cation on the chemical composition of both the bulk and the surface of the soil. The results of those experiments again showed that the electrical conductivity of the soil increased with increasing contaminant concentration. In addition, direct evidence showed that the organic cation was adsorbed on the soil surface and exchanged with inorganic ions that usually exist in soil. This experiment confirmed that adsorption to the soil surface and the associated release of inorganic ions is the main mechanism affecting the complex conductivity of the contaminated porous media. Furthermore, our results show that adsorption of organic ions to the soil surface resulted in a decrease of the soil polarization. Using a chemical complexation model of the soil surface and a model for the polarization of the Stern layer, we were able to show that the decrease in the polarization of the soil can be related to the decrease in the surface site density of inorganic ions, and that the contribution of the soil-organic complexes to the polarization of the soil is negligible. We attribute this to the strong interaction between polar organic compounds and soil which results in a significant decrease in the mobility of the organic compounds in the Stern layer. The results of this work are essential to better interpret SIP signatures of soil contaminated with organic contaminants.

  19. Hydrologic Remote Sensing and Land Surface Data Assimilation.

    PubMed

    Moradkhani, Hamid

    2008-05-06

    Accurate, reliable and skillful forecasting of key environmental variables such as soil moisture and snow are of paramount importance due to their strong influence on many water resources applications including flood control, agricultural production and effective water resources management which collectively control the behavior of the climate system. Soil moisture is a key state variable in land surface-atmosphere interactions affecting surface energy fluxes, runoff and the radiation balance. Snow processes also have a large influence on land-atmosphere energy exchanges due to snow high albedo, low thermal conductivity and considerable spatial and temporal variability resulting in the dramatic change on surface and ground temperature. Measurement of these two variables is possible through variety of methods using ground-based and remote sensing procedures. Remote sensing, however, holds great promise for soil moisture and snow measurements which have considerable spatial and temporal variability. Merging these measurements with hydrologic model outputs in a systematic and effective way results in an improvement of land surface model prediction. Data Assimilation provides a mechanism to combine these two sources of estimation. Much success has been attained in recent years in using data from passive microwave sensors and assimilating them into the models. This paper provides an overview of the remote sensing measurement techniques for soil moisture and snow data and describes the advances in data assimilation techniques through the ensemble filtering, mainly Ensemble Kalman filter (EnKF) and Particle filter (PF), for improving the model prediction and reducing the uncertainties involved in prediction process. It is believed that PF provides a complete representation of the probability distribution of state variables of interests (according to sequential Bayes law) and could be a strong alternative to EnKF which is subject to some limitations including the linear updating rule and assumption of jointly normal distribution of errors in state variables and observation.

  20. Dust and nutrient enrichment by wind erosion from Danish soils in dependence of tillage direction

    NASA Astrophysics Data System (ADS)

    Mohammadian Behbahani, Ali; Fister, Wolfgang; Heckrath, Goswin; Kuhn, Nikolaus J.

    2016-04-01

    Wind erosion is a selective process, which promotes erosion of fine particles. Therefore, it can be assumed that increasing erosion rates are generally associated with increasing loss of dust sized particles and nutrients. However, this selective process is strongly affected by the orientation and respective trapping efficiency of tillage ridges and furrows. Since tillage ridges are often the only protection measure available on poorly aggregated soils in absence of a protective vegetation cover, it is very important to know which orientation respective to the dominant wind direction provides best protection. This knowledge could be very helpful for planning erosion protection measures on fields with high wind erosion susceptibility. The main objective of this study, therefore, was to determine the effect of tillage direction on dust and nutrient mobilization by wind, using wind tunnel simulations. In order to assess the relationship between the enrichment ratio of specific particle sizes and the amount of eroded nutrients, three soils with loamy sand texture, but varying amounts of sand-sized particles, were selected. In addition, a soil with slightly less sand, but much higher organic matter content was chosen. The soils were tested with three different soil surface scenarios - flat surface, parallel tillage, perpendicular tillage. The parallel tillage operation experienced the greatest erosion rates, independent of soil type. Particles with D50 between 100-155 μm showed the greatest risk of erosion. However, due to a greater loss of dust sized particles from perpendicularly tilled surfaces, this wind-surface arrangement showed a significant increase in nutrient enrichment ratio compared to parallel tillage and flat surfaces. The main reason for this phenomenon is most probably the trapping of larger particles in the perpendicular furrows. This indicates that the highest rate of soil protection does not necessarily coincide with lowest soil nutrient losses and dust emissions. For the evaluation of protection measures on these soil types in Denmark it is, therefore, important to differentiate between their effectivity to reduce total soil erosion amount, dust emission, and nutrient loss.

  1. 2015-16 ENSO Drove Tropical Soil Moisture Dynamics and Methane Fluxes

    NASA Astrophysics Data System (ADS)

    Aronson, E. L.; Dierick, D.; Botthoff, J.; Swanson, A. C.; Johnson, R. F.; Allen, M. F.

    2017-12-01

    The El Niño/Southern Oscillation Event (ENSO) cycle drives large-scale climatic trends globally. Within the new world tropics, El Niño brings dryer weather than the counterpart La Niña. Atmospheric methane growth rates have shown extreme variability over the past three decades. One proposed driver is the proportion of tropical land surface saturated, affecting methane production or consumption. We measured methane flux bimonthly through the transition of 2015-16 ENSO. The date of measurement, across El Niño and La Niña within the typical "rainy" and "dry" seasons, to be the most significant driver of methane flux. Soil moisture varied across this time period, and regulated methane flux. During the strong El Niño, extreme dry soil conditions occurred in a typical "rainy" season month reducing soil moisture. Wetter than usual soil conditions appeared during the "rainy" season month of the moderate La Niña. The dry El Niño soils corresponded to greater methane consumption by tropical forest soils, and a reduced local atmospheric column methane concentration. Conversely, the wet La Niña soils had lower methane consumption and higher local atmospheric column methane concentrations. The ENSO cycle is a strong driver of tropical terrestrial and wetland soil moisture conditions, and can regulate global atmospheric methane dynamics.

  2. [Spatial distribution and ecological significance of heavy metals in soils from Chatian mercury mining deposit, western Hunan province].

    PubMed

    Sun, Hong-Fei; Li, Yong-Hu; Ji, Yan-Fang; Yang, Lin-Sheng; Wang, Wu-Yi

    2009-04-15

    Ores, waste tailings and slag, together with three typical soil profiles (natural soil profiles far from mine entrance and near mine entrance, soil profile under slag) in Chatian mercury mining deposit (CMD), western Hunan province were sampled and their concentrations of mercury (Hg), arsenic (As), lead (Pb), cadmium (Cd), zinc (Zn) were determined by HG-ICP-AES and ICP-MS. Enrichment factor and correlation analysis were taken to investigate the origins, distribution and migration of Hg, as well as other heavy metals in the CMD. The results show that Hg is enriched in the bottom of the soil profile far from mine entrance but accumulated in the surface of soil profiles near mine entrance and under slag. The soil profiles near mine entrance and under slag are both contaminated by Hg, while the latter is contaminated more heavily. In the soil profile under slag, Hg concentration in the surface soil, Hg average concentration in the total profile, and the leaching depth of soil Hg are 640 microg x g(-1), (76.74 +/- 171.71) microg x g(-1), and more than 100 cm, respectively; while 6.5 microg x g(-1), (2.74 +/- 1.90) microg x g(-1), and 40 cm, respectively, are found in the soil profile near mine entrance. Soil in the mercury mine area is also polluted by Cd, As, Pb, Zn besides metallogenic element Hg, among which Cd pollution is relatively heavier than others. The mobility of the studied heavy metals in soil follows the order as Hg > Cd > As > Zn approximately equal to Pb. The leaching depth of the heavy metals is influenced by total concentration in the surface soil and soil physico-chemical parameters. The origins, distribution and migration of heavy metals in soil profile in the mining area are related to primary geological environment, and strongly influenced by human mining activities.

  3. Organic marker compounds in surface soils of crop fields from the San Joaquin Valley fugitive dust characterization study

    NASA Astrophysics Data System (ADS)

    Rogge, Wolfgang F.; Medeiros, Patricia M.; Simoneit, Bernd R. T.

    Fugitive dust from the erosion of arid and fallow land, after harvest and during agricultural activities, can at times be the dominant source of airborne particulate matter. In order to assess the source contributions to a given site, chemical mass balance (CMB) modeling is typically used together with source-specific profiles for organic and inorganic constituents. Yet, the mass balance closure can be achieved only if emission profiles for all major sources are considered. While a higher degree of mass balance closure has been achieved by adding individual organic marker compounds to elements, ions, EC, and organic carbon (OC), major source profiles for fugitive dust are not available. Consequently, neither the exposure of the population living near fugitive dust sources from farm land, nor its chemical composition is known. Surface soils from crop fields are enriched in plant detritus from both above and below ground plant parts; therefore, surface soil dust contains natural organic compounds from the crops and soil microbiota. Here, surface soils derived from fields growing cotton, safflower, tomato, almonds, and grapes have been analyzed for more than 180 organic compounds, including natural lipids, saccharides, pesticides, herbicides, and polycyclic aromatic hydrocarbon (PAH). The major result of this study is that selective biogenically derived organic compounds are suitable markers of fugitive dust from major agricultural crop fields in the San Joaquin Valley. Aliphatic homologs exhibit the typical biogenic signatures of epicuticular plant waxes and are therefore indicative of fugitive dust emissions and mechanical abrasion of wax protrusions from leaf surfaces. Saccharides, among which α- and β-glucose, sucrose, and mycose show the highest concentrations in surface soils, have been proposed to be generic markers for fugitive dust from cultivated land. Similarly, steroids are strongly indicative of fugitive dust. Yet, triterpenoids reveal the most pronounced distribution differences for all types of cultivated soils examined here and are by themselves powerful markers for fugitive dust that allow differentiation between the types of crops cultivated. PAHs are also found in some surface soils, as well as persistent pesticides, e.g., DDE, Fosfall, and others.

  4. Sorption of Hydrophobic Organic Compounds on Natural Sorbents and Organoclays from Aqueous and Non-Aqueous Solutions: A Mini-Review

    PubMed Central

    Moyo, Francis; Tandlich, Roman; Wilhelmi, Brendan S.; Balaz, Stefan

    2014-01-01

    Renewed focus on the sorption of hydrophobic organic chemicals (HOCs) onto mineral surfaces and soil components is required due to the increased and wider range of organic pollutants being released into the environment. This mini-review examines the possibility of the contribution and mechanism of HOC sorption onto clay mineral sorbents such as kaolinite, and soil organic matter and the possible role of both in the prevention of environmental contamination by HOCs. Literature data indicates that certain siloxane surfaces can be hydrophobic. Therefore soils can retain HOCs even at low soil organic levels and the extent will depend on the structure of the pollutant and the type and concentration of clay minerals in the sorbent. Clay minerals are wettable by nonpolar solvents and so sorption of HOCs onto them from aqueous and non-aqueous solutions is possible. This is important for two reasons: firstly, the movement and remediation of soil environments will be a function of the concentration and type of clay minerals in the soil. Secondly, low-cost sorbents such as kaolinite and expandable clays can be added to soils or contaminated environments as temporary retention barriers for HOCs. Inorganic cations sorbed onto the kaolinite have a strong influence on the rate and extent of sorption of hydrophobic organic pollutants onto kaolinite. Structural sorbate classes that can be retained by the kaolinite matrix are limited by hydrogen bonding between hydroxyl groups of the octahedral alumosilicate sheet and the tetrahedral sheet with silicon. Soil organic carbon plays a key role in the sorption of HOCs onto soils, but the extent will be strongly affected by the structure of the organic soil matter and the presence of soot. Structural characterisation of soil organic matter in a particular soil should be conducted during a particular contamination event. Contamination by mining extractants and antibiotics will require renewed focus on the use of the QSAR approaches in the context of the sorption of HOCs onto clay minerals from aqueous and non-aqueous solutions. PMID:24821385

  5. Impact of fire frequency on runoff, sediment and organic matter losses at micro-plot scale in north-central Portugal

    NASA Astrophysics Data System (ADS)

    Hosseini, Mohammadreza; Gonzaléz Pelayo, Oscar; Prats Alegre, Sergio; Martins, Martinho; Santos, Liliana; Ritsema, Coen; Geissen, Violette; Keizer, Jan Jacob

    2015-04-01

    High intensity and fast spreading wildfires are one of the key factors in Mediterranean ecosystems. However, since 1960 land use changes and land abandonment have resulted in a higher wildfire frequency. They have not only a strong impact on the vegetation but, may also lead to irreversible soil degradation. Therefore, assessing the impact of repeated wildfires on soil degradation is critical. Therefore, this study addresses the effects of repeated wildfires on soil cover, runoff, soil erosion and related organic matter (OM) losses in Maritime Pine forests lead to land degradation. After a large wildfire in September 2012, we selected three control sites (C) unburnt since 1975, three degraded sites (D) suffering from wildfires three more times before 2012 and three semi degraded sites (SD) only affected by wildfire in 2012. We installed 9 microplots (0.25m2) at each site and collected runoff, eroded soil and organic matter in barrels after each rainfall event during October 2012 till September 2014. Initially, soil surface of D was covered 100% by a 5 cm ash layer, after 2 years the ash coverage was still 46% and vegetation cover a 14%. Soil surface at SD initially was 95% covered by ash, after 2 years it changed to 53% ash and a vegetation cover of 13%. The soil surface of C initially was covered by 100% litter in the begin and 83% of the litter and 17% of vegetation after 2 years. The results show clearly the impact of fire frequency on runoff, OM and soil losses. Associated to maximum rainfall intensities of (23 mm.h-1 in 2013, 29 mm.h-1 in 2014) via annual rainfall of (1289 mm in 2013, 1628 mm in 2014) yearbook average runoff coefficient was the highest in D (25% in 2013, 40% in 2014) comparing to SD (6% in 2013, 10% in 2014) and C (4% in 2013, 2% in 2014). Annual average erosion for the first year in D was significantly higher than in SD with losses of 2.57 versus 0.31 Mg ha-1 and for the second year by 3.79 versus 0.84 Mg ha-1. No erosion or OM losses occurred in C due to the 100% soil cover. Annual average of OM losses in D was significantly higher with 1.29 Mg ha-1 in 2013, 2.32 Mg ha-1 in 2014 than in SD with 0.14 Mg ha-1 in 2013 and 0.37 Mg ha-1 in 2014. Repeated wildfires strongly increase the runoff coefficient and therefore the risk of flooding's in downstream regions after strong rainfalls. Total erosion rates did not exceed threshold values for soil erosion (8 Mg.ha-1) in all sites, however the transport OM loss was extremely high in the degraded sites due to the runoff related ash transport.

  6. Warming Effects on Enzyme Activities are Predominant in Sub-surface Soils of an Arctic Tundra Ecosystem over 6-Year Field Manipulation

    NASA Astrophysics Data System (ADS)

    Kang, H.; Seo, J.; Kim, M.; Jung, J. Y.; Lee, Y. K.

    2017-12-01

    Arctic tundra ecosystems are of great importance because they store a large amount of carbon as un-decomposed organic matter. Global climate change is expected to affect enzyme activities and heterotrophic respiration in Arctic soils, which may accelerate greenhouse gas (GHG) emission through positive biological feedbacks. Unlike laboratory-based incubation experiments, field measurements often show different warming effects on decomposition of organic carbon and releases of GHGs. In the present study, we conducted a field-based warming experiment in Cambridge Bay, Canada (69°07'48″N, 105°03'36″W) by employing passive chambers during growing seasons over 6 years. A suite of enzyme activities (ß-glucosidase, cellobiohydrolase, N-acetylglucosaminidase, leucine aminopeptidase and phenol oxidase), microbial community structure (NGS), microbial abundances (gene copy numbers of bacteria and fungi), and soil chemical properties have been monitored in two depths (0-5 cm and 5-10 cm) of tundra soils, which were exposed to four different treatments (`control', `warming-only', `water-addition only', and both `warming and water-addition'). Phenol oxidase activity increased substantially, and bacterial community structure and abundance changed in the early stage (after 1 year's warming manipulation), but these changes disappeared afterwards. Most hydrolases were enhanced in surface soils by `water-addition only' over the period. However, the long-term effects of warming appeared in sub-surface soils where both `warming only' and `warming and water addition' increased hydrolase activities. Overall results of this study indicate that the warming effects on enzyme activities in surface soils are only short-term (phenol oxidase) or masked by water-limitation (hydrolases). However, hydrolases activities in sub-surface soils are more strongly enhanced than surface soils by warming, probably due to the lack of water limitation. Meanwhile, negative correlations between hydrolase activities and humic fraction of DOC appeared following the sudden increase in phenol oxidase after 1 year's manipulation, suggesting that `enzyme latch' hypothesis is partially responsible for the control of hydrolases in the ecosystem.

  7. Comparing soil moisture memory in satellite observations and models

    NASA Astrophysics Data System (ADS)

    Stacke, Tobias; Hagemann, Stefan; Loew, Alexander

    2013-04-01

    A major obstacle to a correct parametrization of soil processes in large scale global land surface models is the lack of long term soil moisture observations for large parts of the globe. Currently, a compilation of soil moisture data derived from a range of satellites is released by the ESA Climate Change Initiative (ECV_SM). Comprising the period from 1978 until 2010, it provides the opportunity to compute climatological relevant statistics on a quasi-global scale and to compare these to the output of climate models. Our study is focused on the investigation of soil moisture memory in satellite observations and models. As a proxy for memory we compute the autocorrelation length (ACL) of the available satellite data and the uppermost soil layer of the models. Additional to the ECV_SM data, AMSR-E soil moisture is used as observational estimate. Simulated soil moisture fields are taken from ERA-Interim reanalysis and generated with the land surface model JSBACH, which was driven with quasi-observational meteorological forcing data. The satellite data show ACLs between one week and one month for the greater part of the land surface while the models simulate a longer memory of up to two months. Some pattern are similar in models and observations, e.g. a longer memory in the Sahel Zone and the Arabian Peninsula, but the models are not able to reproduce regions with a very short ACL of just a few days. If the long term seasonality is subtracted from the data the memory is strongly shortened, indicating the importance of seasonal variations for the memory in most regions. Furthermore, we analyze the change of soil moisture memory in the different soil layers of the models to investigate to which extent the surface soil moisture includes information about the whole soil column. A first analysis reveals that the ACL is increasing for deeper layers. However, its increase is stronger in the soil moisture anomaly than in its absolute values and the first even exceeds the latter in the deepest layer. From this we conclude that the seasonal soil moisture variations dominate the memory close to the surface but these are dampened in lower layers where the memory is mainly affected by longer term variations.

  8. Ecohydrology of the wetland-forestland interface: hydrophobicity in leaf litter and its potential effect on surface evaporation

    NASA Astrophysics Data System (ADS)

    Probert, Samantha; Kettridge, Nicholas; Devito, Kevin; Hurley, Alexander

    2017-04-01

    Riparian wetlands represent an important ecotone at the interface of peatlands and forests within the Western Boreal Plain of Canada. Water storage and negative feedbacks to evaporation in these systems is crucial for the conservation and redistribution of water during dry periods and providing ecosystem resilience to disturbance. Litter cover can alter the relative importance of the physical processes that drive soil evaporation. Negative feedbacks to drying are created as the hydrophysical properties of the litter and soil override atmospheric controls on evaporation in dry conditions, subsequently dampening the effects of external forcings on the wetland moisture balance. In this study, water repellency in leaf litter has been shown to significantly correlate with surface-atmosphere interactions, whereby severely hydrophobic leaf litter is linked to the highest surface resistances to evaporation, and therefore lowest instantaneous evaporation. Decreasing moisture is associated with increasing hydrophobicity, which may reduce the evaporative flux further as the dry hydrophobic litter creates a hydrological disconnect between soil moisture and the atmosphere. In contrast, hydrophilic litter layers exhibited higher litter moistures, which is associated with reduced resistances to evaporation and enhanced evaporative fluxes. Water repellency of the litter layer has a greater control on evaporation than the presence or absence of litter itself. Litter removal had no significant effect on instantaneous evaporation or surface resistance to evaporation except under the highest evaporation conditions, where litter layers produced higher resistance values than bare peat soils. However, litter removal modified the dominant physical controls on evaporation: moisture loss in plots with leaf litter was driven by leaf and soil hydrophysical properties. Contrastingly, bare peat soils following litter removal exhibited cooler, wetter surfaces and were more strongly correlated to atmospheric controls. The interaction between evaporation, hydrophobicity and moisture of the soil surface, or litter, presents a potentially significant negative feedback to drying across wetland-forestland interfaces.

  9. Hydrologic pathways and chemical composition of runoff during snowmelt in Loch Vale Watershed, Rocky Mountain National Park, Colorado, USA

    USGS Publications Warehouse

    Denning, A. Scott; Baron, Jill S.; Mast, M. Alisa; Arthur, Mary

    1991-01-01

    Intensive sampling of a stream draining an alpine-subalpine basin revealed that depressions in pH and acid neutralizing capacity (ANC) of surface water at the beginning of the spring snowmelt in 1987 and 1988 were not accompanied by increases in strong acid anions, and that surface waters did not become acidic (ANC<0). Samples of meltwater collected at the base of the snowpack in 1987 were acidic and exhibited distinct ‘pulses’ of nitrate and sulfate. Solutions collected with lysimeters in forest soils adjacent to the stream revealed high levels of dissolved organic carbon (DOC) and total Al. Peaks in concentration of DOC, Al, and nutrient species in the stream samples indicate a flush of soil solution into the surface water at the beginning of the melt. Infiltration of meltwater into soils and spatial heterogeneity in the timing of melting across the basin prevented stream and lake waters from becoming acidic.

  10. Evaluating soil moisture constraints on surface fluxes in land surface models globally

    NASA Astrophysics Data System (ADS)

    Harris, Phil; Gallego-Elvira, Belen; Taylor, Christopher; Folwell, Sonja; Ghent, Darren; Veal, Karen; Hagemann, Stefan

    2016-04-01

    Soil moisture availability exerts a strong control over land evaporation in many regions. However, global climate models (GCMs) disagree on when and where evaporation is limited by soil moisture. Evaluation of the relevant modelled processes has suffered from a lack of reliable, global observations of land evaporation at the GCM grid box scale. Satellite observations of land surface temperature (LST) offer spatially extensive but indirect information about the surface energy partition and, under certain conditions, about soil moisture availability on evaporation. Specifically, as soil moisture decreases during rain-free dry spells, evaporation may become limited leading to increases in LST and sensible heat flux. We use MODIS Terra and Aqua observations of LST at 1 km from 2000 to 2012 to assess changes in the surface energy partition during dry spells lasting 10 days or longer. The clear-sky LST data are aggregated to a global 0.5° grid before being composited as a function dry spell day across many events in a particular region and season. These composites are then used to calculate a Relative Warming Rate (RWR) between the land surface and near-surface air. This RWR can diagnose the typical strength of short term changes in surface heat fluxes and, by extension, changes in soil moisture limitation on evaporation. Offline land surface model (LSM) simulations offer a relatively inexpensive way to evaluate the surface processes of GCMs. They have the benefits that multiple models, and versions of models, can be compared on a common grid and using unbiased forcing. Here, we use the RWR diagnostic to assess global, offline simulations of several LSMs (e.g., JULES and JSBACH) driven by the WATCH Forcing Data-ERA Interim. Both the observed RWR and the LSMs use the same 0.5° grid, which allows the observed clear-sky sampling inherent in the underlying MODIS LST to be applied to the model outputs directly. This approach avoids some of the difficulties in analysing free-running simulations in which land and atmosphere are coupled and, as such, it provides a flexible intermediate step in the assessment of surface processes in GCMs.

  11. Earthworm impacts on organo-mineral interactions and soil carbon inventories in Fennoscandian boreal and sub-arctic landscapes

    NASA Astrophysics Data System (ADS)

    Wackett, Adrian; Yoo, Kyungsoo; Cameron, Erin; Klaminder, Jonatan

    2017-04-01

    Boreal and sub-arctic environments sustain some of the most pristine and fragile ecosystems in the world and house a disproportionate amount of the global soil carbon pool. Although the historical view of soil carbon turnover has focused on the intrinsic molecular structure of organic matter, recent work has highlighted the importance of stabilizing soil carbon on reactive mineral surfaces. However, the rates and mechanisms controlling these processes at high latitudes are poorly understood. Here we explored the biogeochemical impacts of deep-burrowing earthworm species on a range of Fennoscandian forest soils to investigate how earthworms impact soil carbon inventories and organo-mineral associations across boreal and sub-arctic landscapes. We sampled soils and earthworms at six sites spanning almost ten degrees latitude and encompassing a wide range of soil types and textures, permitting simultaneous consideration of how climate and mineralogy affect earthworm-mediated shifts in soil carbon dynamics. Across all sites, earthworms significantly decreased the carbon and nitrogen contents of the upper 10 cm, presumably through consumption of the humus layer and subsequent incorporation of the underlying mineral soil into upper organic horizons. Their mixing of humus and underlying soil also generally increased the proportion of mineral surface area occluded by organic matter, although the extent to which earthworms facilitate such organo-mineral interactions appears to be controlled by soil texture and mineralogy. This work indicates that quantitative measurements of mineral surface area and its extent of coverage by soil organic matter facilitate scaling up of molecular interactions between organic matter and minerals to the level of soil profiles and landscapes. Our preliminary data also strongly suggests that earthworms have profound effects on the fate of soil carbon and nitrogen in boreal and sub-arctic environments, highlighting the need for a better understanding of the joint ecological impacts of warming and indirect disturbances like earthworm introduction by humans to make sound predictions of future ecosystem change and carbon-climate feedbacks.

  12. Improving Representations of Near-Surface Permafrost and Soil Temperature Profiles in the Regional Arctic System Model (RASM)

    NASA Astrophysics Data System (ADS)

    Gergel, D. R.; Hamman, J.; Nijssen, B.

    2017-12-01

    Permafrost and seasonally frozen soils are a key characteristic of the terrestrial Arctic, and the fate of near-surface permafrost as a result of climate change is projected to have strong impacts on terrestrial biogeochemistry. The active layer thickness (ALT) is the layer of soil that freezes and thaws annually, and shifts in the depth of the ALT are projected to occur over large areas of the Arctic that are characterized by discontinuous permafrost. Faithful representation of permafrost in land models in climate models is a product of both soil dynamics and the coupling of air and soil temperatures. A common problem is a large bias in simulated ALT due to a model depth that is too shallow. Similarly, soil temperatures often show systematic biases, which lead to biases in air temperature due to poorly modeled air-soil temperature feedbacks in a coupled environment. In this study, we use the Regional Arctic System Model (RASM), a fully-coupled regional earth system model that is run at a 50-km land/atmosphere resolution over a pan-Arctic domain and uses the Variable Infiltration Capacity (VIC) model as its land model. To understand what modeling decisions are necessary to accurately represent near-surface permafrost and soil temperature profiles, we perform a large number of RASM simulations with prescribed atmospheric forcings (e.g. VIC in standalone mode in RASM) while varying the model soil depth, thickness of soil moisture layers, number of soil layers and the distribution of soil nodes. We compare modeled soil temperatures and ALT to observations from the Circumpolar Active Layer Monitoring (CALM) network. CALM observations include annual ALT observations as well as daily soil temperature measurements at three soil depths for three sites in Alaska. In the future, we will use our results to inform our modeling of permafrost dynamics in fully-coupled RASM simulations.

  13. Relationship between specific surface area and the dry end of the water retention curve for soils with varying clay and organic carbon contents

    NASA Astrophysics Data System (ADS)

    Resurreccion, Augustus C.; Moldrup, Per; Tuller, Markus; Ferré, T. P. A.; Kawamoto, Ken; Komatsu, Toshiko; de Jonge, Lis Wollesen

    2011-06-01

    Accurate description of the soil water retention curve (SWRC) at low water contents is important for simulating water dynamics and biochemical vadose zone processes in arid environments. Soil water retention data corresponding to matric potentials of less than -10 MPa, where adsorptive forces dominate over capillary forces, have also been used to estimate soil specific surface area (SA). In the present study, the dry end of the SWRC was measured with a chilled-mirror dew point psychrometer for 41 Danish soils covering a wide range of clay (CL) and organic carbon (OC) contents. The 41 soils were classified into four groups on the basis of the Dexter number (n = CL/OC), and the Tuller-Or (TO) general scaling model describing water film thickness at a given matric potential (<-10 MPa) was evaluated. The SA estimated from the dry end of the SWRC (SA_SWRC) was in good agreement with the SA measured with ethylene glycol monoethyl ether (SA_EGME) only for organic soils with n > 10. A strong correlation between the ratio of the two surface area estimates and the Dexter number was observed and applied as an additional scaling function in the TO model to rescale the soil water retention curve at low water contents. However, the TO model still overestimated water film thickness at potentials approaching ovendry condition (about -800 MPa). The semi-log linear Campbell-Shiozawa-Rossi-Nimmo (CSRN) model showed better fits for all investigated soils from -10 to -800 MPa and yielded high correlations with CL and SA. It is therefore recommended to apply the empirical CSRN model for predicting the dry part of the water retention curve (-10 to -800 MPa) from measured soil texture or surface area. Further research should aim to modify the more physically based TO model to obtain better descriptions of the SWRC in the very dry range (-300 to -800 MPa).

  14. Behavior of 131I and 137Cs in environments released from the Fukushima nuclear disaster

    NASA Astrophysics Data System (ADS)

    Ohta, T.; Mahara, Y.; Kubota, T.; Igarashi, T.

    2011-12-01

    The devastating tsunami that caused by the great earthquake (M = 9.0) off the coast of northeastern Honshu on 11 March 2011 destroyed large coastal areas of Tohoku and north Kanto, Japan. Radionuclides, including 131I, 134Cs, and 137Cs, were released into the atmosphere from the Fukushima Daiichi plants. Concentration of levels of 131I, 134Cs, and 137Cs in Ibaraki Prefecture, Japan, released from the Fukushima Daiichi plant were investigated in the soil and precipitation. The concentrations of 131I and 137Cs in the soil from the surface to 1 cm depth in Ibaraki Prefecture were 9360-13,400 Bq/kg and 720-3250 Bq/kg, respectively. The concentration of 137Cs at this soil observation site originating from the Fukushima plant was 8.4 to 21 times that found locally after the Nagasaki atomic bomb explosion. Most of the 134Cs and 137Cs from rainwater were trapped by the surface soil and sand to a depth of 1 cm, whereas only about 30% of the 131I was collected by the surface soil, suggesting that 131I would move deeper than 137Cs and 134Cs. The 131I in the rainwater was in the anion exchangeable form, and all of it could be collected by anion exchangeable mechanisms, whereas 30% of the 131I that had passed through the soil could not be trapped by the anion exchange resin, suggesting that the chemical form of this 30% was in a changeable, organic-bound form. The 131I, 134Cs, and 137Cs that were absorbed on soil were difficult to be dissolved into water. As the half-life of 131I is short and 137Cs is strongly adsorbed on the surface soil and sand, these radionuclides would be unlikely to reach the groundwater before completely decaying; contamination of groundwater with 131I and 137Cs supplied from rainwater to the surface soil is therefore exceedingly unlikely. As the 137Cs is likely to migrate only 0.6 cm in 10 years, people living in the Fukushima and Kanto areas will be exposed to radiation from 137Cs in the surface soil and sand. For protection, surface soils and sands with high levels of radiation need to be replaced with uncontaminated soils below a depth of about 30 cm. If this exchange operation will be done, even though the 137Cs will be placed deeper, its slow migration rate will ensure that it never reaches the groundwater.

  15. Global observation-based diagnosis of soil moisture control on land surface flux partition

    NASA Astrophysics Data System (ADS)

    Gallego-Elvira, Belen; Taylor, Christopher M.; Harris, Phil P.; Ghent, Darren; Veal, Karen L.; Folwell, Sonja S.

    2016-04-01

    Soil moisture plays a central role in the partition of available energy at the land surface between sensible and latent heat flux to the atmosphere. As soils dry out, evapotranspiration becomes water-limited ("stressed"), and both land surface temperature (LST) and sensible heat flux rise as a result. This change in surface behaviour during dry spells directly affects critical processes in both the land and the atmosphere. Soil water deficits are often a precursor in heat waves, and they control where feedbacks on precipitation become significant. State-of-the-art global climate model (GCM) simulations for the Coupled Model Intercomparison Project Phase 5 (CMIP5) disagree on where and how strongly the surface energy budget is limited by soil moisture. Evaluation of GCM simulations at global scale is still a major challenge owing to the scarcity and uncertainty of observational datasets of land surface fluxes and soil moisture at the appropriate scale. Earth observation offers the potential to test how well GCM land schemes simulate hydrological controls on surface fluxes. In particular, satellite observations of LST provide indirect information about the surface energy partition at 1km resolution globally. Here, we present a potentially powerful methodology to evaluate soil moisture stress on surface fluxes within GCMs. Our diagnostic, Relative Warming Rate (RWR), is a measure of how rapidly the land warms relative to the overlying atmosphere during dry spells lasting at least 10 days. Under clear skies, this is a proxy for the change in sensible heat flux as soil dries out. We derived RWR from MODIS Terra and Aqua LST observations, meteorological re-analyses and satellite rainfall datasets. Globally we found that on average, the land warmed up during dry spells for 97% of the observed surface between 60S and 60N. For 73% of the area, the land warmed faster than the atmosphere (positive RWR), indicating water stressed conditions and increases in sensible heat flux. Higher RWRs were observed for shorter vegetation and bare soil compared to tall, deep-rooted vegetation due to differences in both aerodynamic and hydrological properties. The variation of RWR with antecedent rainfall provides information on which evaporation regime a particular region lies in climatologically. Different drying stages for a given antecedent rainfall can thus be observed depending on land cover type. For instance, our results suggest that forests in a continental climate remain unstressed during a 10 day dry spell provided the previous month saw at least 95 mm of rain. Conversely, RWR values indicate that under similar conditions regions of grass/crop cover are water-stressed.

  16. Field sampling of loose erodible material: A new method to consider the full particle-size range

    NASA Astrophysics Data System (ADS)

    Klose, Martina; Gill, Thomas E.

    2017-04-01

    The aerodynamic entrainment of sand and dust is determined by the atmospheric forces exerted onto the soil surface and by the soil-surface condition. If aerodynamic forces are strong enough to generate sand and dust lifting, the entrained sediment amount still critically depends on the supply of loose particles readily available for lifting. This loose erodible material (LEM) is sometimes defined as the thin layer of loose particles on top of a crusted surface. Here, we more generally define LEM as loose particles or particle aggregates available for entrainment, which may or may not overlay a soil crust. Field sampling of LEM is difficult and only few attempts have been made. Motivated by saltation as the most efficient process to generate dust emission, methods have focused on capturing LEM in the sand-size range or on determining the potential of a soil surface to be eroded by aerodynamic forces and particle impacts. Here, our focus is to capture the full particle-size distribution of LEM in situ, including the dust and sand-size range, to investigate the potential and likelihood of dust emission mechanisms (aerodynamic entrainment, saltation bombardment, aggregate disintegration) to occur. A new vacuum method is introduced and its capability to sample LEM without significant alteration of the LEM particle-size distribution is investigated.

  17. Calcic soils and calcretes in the southwestern United States

    USGS Publications Warehouse

    Bachman, George Odell; Machette, Michael N.

    1977-01-01

    Secondary calcium carbonate of diverse origins, 'caliche' of many authors, is widespread in the southwestern United States. 'Caliche' includes various carbonates such as calcic soils and products of groundwater cementation. The term 'caliche' is generally avoided in this report in favor of such terms as calcrete, calcic soils, and pervasively cemented deposits. Criteria for the recognition of various types of calcrete of diverse origins include field relations and laboratory data. Calcic soils provide a comprehensive set of characteristics that aid in their recognition in the field. These characteristics include a distinctive morphology that is zoned horizontally and can frequently be traced over tens to hundreds of square kilometers. The major process in the formation of pedogenic calcrete and calic soils is the leaching of calcium carbonate from upper soil horizons by downward percolating soil solutions and reprecipitation of the carbonate in alluvial horizons near the base of the soil profile. The formation of pedogenic calcrete involves many factors including climate, source of carbonate, and tectonic stability of the geomorphic surface on which the calcrete is deposited. Most of the carbonate in pedogenic calcrete is probably derived from windblown sand, dust, and rain. Calcic soils and pedogenic calcretes follow a six-stage sequence morphologic development and is based on a classification devised by Gile, Peterson and Grossman in 1966. The .six morphologic stages of carbonate deposition in soils are related to the relative age of the soil and are as follows: I. The first or youngest stage includes filamentous or faint coatings of carbonate on detrital grains. II. The second stage includes pebble coatings which are continuous; firm carbonate nodules are few to common. III. The third stage includes coalesced nodules which occur in a friable or disseminated carbonate matrix. IV. The fourth stage includes platy, firmly cemented matrix which engulfs nodules; horizon is plugged to downward moving solutions. V. The fifth stage includes soils which are platy to tabular, dense, strongly cemented. A well-developed laminar layer occurs on the upper surface. VI. The sixth and most advanced stage is massive, multilaminar, and strongly cemented calcrete with abundant pisoliths, the upper surface of which may be brecciated. Pisoliths may indicate many generations of brecciation and reformation. In general calcic soils include stages I through III and are friable to moderately indurated; whereas pedogenic calcretes include stages IV through VI and are dense and strongly indurated. In a single pedon the morphologic stage of carbonate deposition decreases downward in the profile. The stage of development may be used in local regions for correlation and determination of relative ages of soils and geomorphic surfaces. Some structures observed in pedogenic calcretes may be present in other types of calcrete but the horizontal zonation typical of deposits of soil processes is absent. Laminar structure in particular is not restricted to pedogenic deposits and is common in many varieties of calcrete. Very little chemical change occurs in the noncalcareous nonclayey fractions of calcretes with age; but clay minerals within calcretes undergo a complex history of authigenesis. There is a depletion of magnesium in the calcareous portion and an enrichment of magnesium in the clayey portion of a calcrete with age. In keeping with this relationship, montmorillonite, or mixed layer montmorillonite-illite, is common in younger calcretes; whereas the high magnesium-silicate clays, sepiolite and palygorskite, are common in older calcretes. This indicates that the magnesium depleted from the carbonate is redistributed authigenically in clay minerals. The mobility of carbonate introduces many problems in attempts to date calcretes directly. Although the relative ages of soils within a province may be determined by quant

  18. Regional seasonal warming anomalies and land-surface feedbacks

    NASA Astrophysics Data System (ADS)

    Coffel, E.; Horton, R. M.

    2017-12-01

    Significant seasonal variations in warming are projected in some regions, especially central Europe, the southeastern U.S., and central South America. Europe in particular may experience up to 2°C more warming during June, July, and August than in the annual mean, enhancing the risk of extreme summertime heat. Previous research has shown that heat waves in Europe and other regions are tied to seasonal soil moisture variations, and that in general land-surface feedbacks have a strong effect on seasonal temperature anomalies. In this study, we show that the seasonal anomalies in warming are also due in part to land-surface feedbacks. We find that in regions with amplified warming during the hot season, surface soil moisture levels generally decline and Bowen ratios increase as a result of a preferential partitioning of incoming energy into sensible vs. latent. The CMIP5 model suite shows significant variability in the strength of land-atmosphere coupling and in projections of future precipitation and soil moisture. Due to the dependence of seasonal warming on land-surface processes, these inter-model variations influence the projected summertime warming amplification and contribute to the uncertainty in projections of future extreme heat.

  19. Chemical characterization of iron-mediated soil organic matter stabilization in tropical subsoils

    NASA Astrophysics Data System (ADS)

    Coward, E.; Plante, A. F.; Thompson, A.

    2015-12-01

    Tropical forest soils contribute disproportionately to the poorly-characterized and persistent deep soil carbon (C) pool. Highly-weathered and often extending one to two meters deep, these soils also contain an abundance of semicrystalline, Fe- and Al-containing short-range-order (SRO) minerals, metastable derivatives of framework silicate and ferromagnesian parent materials. SRO minerals are capable of soil organic matter (SOM) stabilization through sorption or co-precipitation, a faculty enhanced by their high specific surface area (SSA). As such, SRO-mediated organomineral associations may prove a critical, yet matrix-selective, driver of SOM stabilization capacity in tropical soils, particularly at depth. Surface (0-20 cm) and subsoil (50-80 cm) samples were taken from 20 quantitative soil pits dug in the Luquillo Critical Zone Observatory, located in northeast Puerto Rico. Soils were stratified across granodiorite and volcaniclastic parent materials, spanning primary mineral contents of 5 to 40%. Selective dissolution procedures were used to isolate distinct forms of Fe-C interactions: (1) sodium pyrophosphate to isolate organo-mineral complexes, (2) hydroxylamine and (3) oxalate to isolate SRO phases, and (4) inorganic dithionite to isolate crystalline Fe oxides. Extracts were analysed for dissolved organic C (DOC) and Fe and Al concentrations to estimate SOM associated with each mineral phase. Soils were also subjected to SSA analysis, 57Fe-Mössbauer spectroscopy and X-ray diffraction before and after extraction to determine the contribution of extracted mineral phases to SOM stabilization capacity. Preliminary results indicate a dominance of secondary (hydr)oxides and kaolin minerals in surface soils, strongly driven by parent material. With depth, however, we observe a marked shift towards SRO mineral phases across both parent materials, suggesting that SRO-mediated organomineral associations are significant contributors to observed C storage in tropical subsoils.

  20. Variation of Desert Soil Hydraulic Properties with Pedogenic Maturity

    NASA Astrophysics Data System (ADS)

    Nimmo, J. R.; Perkins, K. S.; Mirus, B. B.; Schmidt, K. M.; Miller, D. M.; Stock, J. D.; Singha, K.

    2006-12-01

    Older alluvial desert soils exhibit greater pedogenic maturity, having more distinct desert pavements, vesicular (Av) horizons, and more pronounced stratification from processes such as illuviation and salt accumulation. These and related effects strongly influence the soil hydraulic properties. Older soils have been observed to have lower saturated hydraulic conductivity, and possibly greater capacity to retain water, but the quantitative effect of specific pedogenic features on the soil water retention or unsaturated hydraulic conductivity (K) curves is poorly known. With field infiltration/redistribution experiments on three different-aged soils developed within alluvial wash deposits in the Mojave National Preserve, we evaluated effective hydraulic properties over a scale of several m horizontally and to 1.5 m depth. We then correlated these properties with pedogenic features. The selected soils are (1) recently deposited sediments, (2) a soil of early Holocene age, and (3) a highly developed soil of late Pleistocene age. In each experiment we ponded water in a 1-m-diameter infiltration ring for 2.3 hr. For several weeks we monitored subsurface water content and matric pressure using surface electrical resistance imaging, dielectric-constant probes, heat-dissipation probes, and tensiometers. Analysis of these data using an inverse modeling technique gives the water retention and K properties needed for predictive modeling. Some properties show a consistent trend with soil age. Progressively more developed surface and near-surface features such as desert pavement and Av horizons are the likely cause of an observed consistent decline of infiltration capacity with soil age. Other properties, such as vertical flow retardation by layer contrasts, appear to have a more complicated soil-age dependence. The wash deposits display distinct depositional layering that has a retarding effect on vertical flow, an effect that may be less pronounced in the older Holocene soil, where the original depositional structure has a relatively modest influence. Anisotropy at the scale of centimeters is of major importance in the Pleistocene soil, with developed horizons that tend to hold water within about 0.5 m of the surface for a longer duration than in the two younger soils. Correlation of these and related pedogenic features with soil hydraulic properties is a first step toward the estimation of effective hydraulic properties of widely varying Mojave Desert soils, as needed for large-scale evaluation of soil moisture dynamics in relation to ecological habitat quality.

  1. Volunteer revegetation of waste rock surfaces at the Bingham Canyon Mine, Utah.

    PubMed

    Borden, Richard K; Black, Rick

    2005-01-01

    Voluntary recolonization of sulfide-bearing waste rock dumps by native vegetation is inhibited by the harsh chemical and physical conditions. The success of volunteer vegetation on the waste rock surfaces at the Bingham Canyon (Utah) porphyry copper deposit is most strongly dependent on the soil pH and salinity, and to a lesser extent on physical characteristics such as compaction and distance from seed source. Vegetation cover and richness both decline below a paste pH of about 6 and above a paste conductivity of about 0.7 dS/m (for a 1:1 soil to water mixture). No significant vegetation establishment occurs below a soil pH of about 4.5. Young sulfide-bearing waste rock surfaces at Bingham Canyon have high salinity, but as reactive pyrite is depleted and salts are flushed from the soil, the salinity eventually declines, allowing volunteer native vegetation to become established on surfaces with a circumneutral pH. Under natural conditions, the pH of older acidic weathered surfaces will recover very slowly, but it can be rapidly raised by adding relatively small amounts of limestone because there are few intact reactive sulfides. For uncompacted waste rock surfaces with favorable chemical conditions, less than 90% gravel content, and that are located near a native seed source, the arithmetic mean volunteer vegetation cover was 56 +/- 24% and the mean species richness was 17 +/- 5. These data indicate that with adequate surface preparation and limestone addition, direct planting of older, acidic, but low salinity waste rock surfaces can greatly accelerate natural revegetation.

  2. Effects of Vegetation and of Heat and Vapor Fluxes from Soil on Snowpack Evolution and Radiobrightness

    NASA Technical Reports Server (NTRS)

    Chung, Y. C.; England, A. W.; DeRoo, R. D.; Weininger, Etai

    2006-01-01

    The radiobrightness of a snowpack is strongly linked to the snow moisture content profile, to the point that the only operational inversion algorithms require dry snow. Forward dynamic models do not include the effects of freezing and thawing of the soil beneath the snowpack and the effect of vegetation within the snow or above the snow. To get a more realistic description of the evolution of the snowpack, we reported an addition to the Snow-Soil-Vegetation-Atmosphere- Transfer (SSVAT) model, wherein we coupled soil processes of the Land Surface Process (LSP) model with the snow model SNTHERM. In the near future we will be adding a radiobrightness prediction based on the modeled moisture, temperature and snow grain size profiles. The initial investigations with this SSVAT for a late winter and early spring snow pack indicate that soil processes warm the snowpack and the soil. Vapor diffusion needs to be considered whenever the ground is thawed. In the early spring, heat flow from the ground into a snow and a strong temperature gradient across the snow lead to thermal convection. The buried vegetation can be ignored for a late winter snow pack. The warmer surface snow temperature will affect radiobrightness since it is most sensitive to snow surface characteristics. Comparison to data shows that SSVAT provides a more realistic representation of the temperature and moisture profiles in the snowpack and its underlying soil than SNTHERM. The radiobrightness module will be optimized for the prediction of brightness when the snow is moist. The liquid water content of snow causes considerable absorption compared to dry snow, and so longer wavelengths are likely to be most revealing as to the state of a moist snowpack. For volumetric moisture contents below about 7% (the pendular regime), the water forms rings around the contact points between snow grains. Electrostatic modeling of these pendular rings shows that the absorption of these rings is significantly higher than a sphere of the same volume. The first implementation of the radiobrightness module will therefore be a simple radiative transfer model without scattering.

  3. An initial assessment of a SMAP soil moisture disaggregation scheme using TIR surface evaporation data over the continental United States

    NASA Astrophysics Data System (ADS)

    Mishra, Vikalp; Ellenburg, W. Lee; Griffin, Robert E.; Mecikalski, John R.; Cruise, James F.; Hain, Christopher R.; Anderson, Martha C.

    2018-06-01

    The Soil Moisture Active Passive (SMAP) mission is dedicated toward global soil moisture mapping. Typically, an L-band microwave radiometer has spatial resolution on the order of 36-40 km, which is too coarse for many specific hydro-meteorological and agricultural applications. With the failure of the SMAP active radar within three months of becoming operational, an intermediate (9-km) and finer (3-km) scale soil moisture product solely from the SMAP mission is no longer possible. Therefore, the focus of this study is a disaggregation of the 36-km resolution SMAP passive-only surface soil moisture (SSM) using the Soil Evaporative Efficiency (SEE) approach to spatial scales of 3-km and 9-km. The SEE was computed using thermal-infrared (TIR) estimation of surface evaporation over Continental U.S. (CONUS). The disaggregation results were compared with the 3 months of SMAP-Active (SMAP-A) and Active/Passive (AP) products, while comparisons with SMAP-Enhanced (SMAP-E), SMAP-Passive (SMAP-P), as well as with more than 180 Soil Climate Analysis Network (SCAN) stations across CONUS were performed for a 19 month period. At the 9-km spatial scale, the TIR-Downscaled data correlated strongly with the SMAP-E SSM both spatially (r = 0.90) and temporally (r = 0.87). In comparison with SCAN observations, overall correlations of 0.49 and 0.47; bias of -0.022 and -0.019 and unbiased RMSD of 0.105 and 0.100 were found for SMAP-E and TIR-Downscaled SSM across the Continental U.S., respectively. At 3-km scale, TIR-Downscaled and SMAP-A had a mean temporal correlation of only 0.27. In terms of gain statistics, the highest percentage of SCAN sites with positive gains (>55%) was observed with the TIR-Downscaled SSM at 9-km. Overall, the TIR-based downscaled SSM showed strong correspondence with SMAP-E; compared to SCAN, and overall both SMAP-E and TIR-Downscaled performed similarly, however, gain statistics show that TIR-Downscaled SSM slightly outperformed SMAP-E.

  4. Sensitivity Analysis of the Land Surface Model NOAH-MP for Different Model Fluxes

    NASA Astrophysics Data System (ADS)

    Mai, Juliane; Thober, Stephan; Samaniego, Luis; Branch, Oliver; Wulfmeyer, Volker; Clark, Martyn; Attinger, Sabine; Kumar, Rohini; Cuntz, Matthias

    2015-04-01

    Land Surface Models (LSMs) use a plenitude of process descriptions to represent the carbon, energy and water cycles. They are highly complex and computationally expensive. Practitioners, however, are often only interested in specific outputs of the model such as latent heat or surface runoff. In model applications like parameter estimation, the most important parameters are then chosen by experience or expert knowledge. Hydrologists interested in surface runoff therefore chose mostly soil parameters while biogeochemists interested in carbon fluxes focus on vegetation parameters. However, this might lead to the omission of parameters that are important, for example, through strong interactions with the parameters chosen. It also happens during model development that some process descriptions contain fixed values, which are supposedly unimportant parameters. However, these hidden parameters remain normally undetected although they might be highly relevant during model calibration. Sensitivity analyses are used to identify informative model parameters for a specific model output. Standard methods for sensitivity analysis such as Sobol indexes require large amounts of model evaluations, specifically in case of many model parameters. We hence propose to first use a recently developed inexpensive sequential screening method based on Elementary Effects that has proven to identify the relevant informative parameters. This reduces the number parameters and therefore model evaluations for subsequent analyses such as sensitivity analysis or model calibration. In this study, we quantify parametric sensitivities of the land surface model NOAH-MP that is a state-of-the-art LSM and used at regional scale as the land surface scheme of the atmospheric Weather Research and Forecasting Model (WRF). NOAH-MP contains multiple process parameterizations yielding a considerable amount of parameters (˜ 100). Sensitivities for the three model outputs (a) surface runoff, (b) soil drainage and (c) latent heat are calculated on twelve Model Parameter Estimation Experiment (MOPEX) catchments ranging in size from 1020 to 4421 km2. This allows investigation of parametric sensitivities for distinct hydro-climatic characteristics, emphasizing different land-surface processes. The sequential screening identifies the most informative parameters of NOAH-MP for different model output variables. The number of parameters is reduced substantially for all of the three model outputs to approximately 25. The subsequent Sobol method quantifies the sensitivities of these informative parameters. The study demonstrates the existence of sensitive, important parameters in almost all parts of the model irrespective of the considered output. Soil parameters, e.g., are informative for all three output variables whereas plant parameters are not only informative for latent heat but also for soil drainage because soil drainage is strongly coupled to transpiration through the soil water balance. These results contrast to the choice of only soil parameters in hydrological studies and only plant parameters in biogeochemical ones. The sequential screening identified several important hidden parameters that carry large sensitivities and have hence to be included during model calibration.

  5. Adapting HYDRUS-1D to Simulate Overland Flow and Reactive Transport During Sheet Flow Deviations

    NASA Astrophysics Data System (ADS)

    Liang, J.; Bradford, S. A.; Simunek, J.; Hartmann, A.

    2017-12-01

    The HYDRUS-1D code is a popular numerical model for solving the Richards equation for variably-saturated water flow and solute transport in porous media. This code was adapted to solve rather than the Richards equation for subsurface flow the diffusion wave equation for overland flow at the soil surface. The numerical results obtained by the new model produced an excellent agreement with the analytical solution of the kinematic wave equation. Model tests demonstrated its applicability to simulate the transport and fate of many different solutes, such as non-adsorbing tracers, nutrients, pesticides, and microbes. However, the diffusion wave or kinematic wave equations describe surface runoff as sheet flow with a uniform depth and velocity across the slope. In reality, overland water flow and transport processes are rarely uniform. Local soil topography, vegetation, and spatial soil heterogeneity control directions and magnitudes of water fluxes, and strongly influence runoff characteristics. There is increasing evidence that variations in soil surface characteristics influence the distribution of overland flow and transport of pollutants. These spatially varying surface characteristics are likely to generate non-equilibrium flow and transport processes. HYDRUS-1D includes a hierarchical series of models of increasing complexity to account for both physical equilibrium and non-equilibrium, e.g., dual-porosity and dual-permeability models, up to a dual-permeability model with immobile water. The same conceptualization as used for the subsurface was implemented to simulate non-equilibrium overland flow and transport at the soil surface. The developed model improves our ability to describe non-equilibrium overland flow and transport processes and to improves our understanding of factors that cause this behavior. The HYDRUS-1D overland flow and transport model was additionally also extended to simulate soil erosion. The HYDRUS-1D Soil Erosion Model has been verified by comparing with other soil erosion models. The model performed well when the average soil particle size is relatively large. The performance of the soil erosion model has been further validated by comparing with selected experimental datasets from the literature.

  6. Formation and Stability of Microbially Derived Soil Organic Matter

    NASA Astrophysics Data System (ADS)

    Waldrop, M. P.; Creamer, C.; Foster, A. L.; Lawrence, C. R.; Mcfarland, J. W.; Schulz, M. S.

    2017-12-01

    Soil carbon is vital to soil health, food security, and climate change mitigation, but the underlying mechanisms controlling the stabilization and destabilization of soil carbon are still poorly understood. There has been a conceptual paradigm shift in how soil organic matter is formed which now emphasizes the importance of microbial activity to build stable (i.e. long-lived) and mineral-associated soil organic matter. In this conceptual model, the consumption of plant carbon by microorganisms, followed by subsequent turnover of microbial bodies closely associated with mineral particles, produces a layering of amino acid and lipid residues on the surfaces of soil minerals that remains protected from destabilization by mineral-association and aggregation processes. We tested this new model by examining how isotopically labeled plant and microbial C differ in their fundamental stabilization and destabilization processes on soil minerals through a soil profile. We used a combination of laboratory and field-based approaches to bridge multiple spatial scales, and used soil depth as well as synthetic minerals to create gradients of soil mineralogy. We used Raman microscopy as a tool to probe organic matter association with mineral surfaces, as it allows for the simultaneous quantification and identification of living microbes, carbon, minerals, and isotopes through time. As expected, we found that the type of minerals present had a strong influence on the amount of C retained, but the stabilization of new C critically depends on growth, death, and turnover of microbial cells. Additionally, the destabilization of microbial residue C on mineral surfaces was little affected by flushes of DOC relative to wet-dry cycles alone. We believe this new insight into microbial mechanisms of C stabilization in soils will eventually lead to new avenues for measuring and modeling SOM dynamics in soils, and aid in the management of soil C to mediate global challenges.

  7. The hydrological cycle at European Fluxnet sites: modeling seasonal water and energy budgets at local scale.

    NASA Astrophysics Data System (ADS)

    Stockli, R.; Vidale, P. L.

    2003-04-01

    The importance of correctly including land surface processes in climate models has been increasingly recognized in the past years. Even on seasonal to interannual time scales land surface - atmosphere feedbacks can play a substantial role in determining the state of the near-surface climate. The availability of soil moisture for both runoff and evapotranspiration is dependent on biophysical processes occuring in plants and in the soil acting on a wide time-scale from minutes to years. Fluxnet site measurements in various climatic zones are used to drive three generations of LSM's (land surface models) in order to assess the level of complexity needed to represent vegetation processes at the local scale. The three models were the Bucket model (Manabe 1969), BATS 1E (Dickinson 1984) and SiB 2 (Sellers et al. 1996). Evapotranspiration and runoff processes simulated by these models range from simple one-layer soils and no-vegetation parameterizations to complex multilayer soils, including realistic photosynthesis-stomatal conductance models. The latter is driven by satellite remote sensing land surface parameters inheriting the spatiotemporal evolution of vegetation phenology. In addition a simulation with SiB 2 not only including vertical water fluxes but also lateral soil moisture transfers by downslope flow is conducted for a pre-alpine catchment in Switzerland. Preliminary results are presented and show that - depending on the climatic environment and on the season - a realistic representation of evapotranspiration processes including seasonally and interannually-varying state of vegetation is significantly improving the representation of observed latent and sensible heat fluxes on the local scale. Moreover, the interannual evolution of soil moisture availability and runoff is strongly dependent on the chosen model complexity. Biophysical land surface parameters from satellite allow to represent the seasonal changes in vegetation activity, which has great impact on the yearly budget of transpiration fluxes. For some sites, however, the hydrological cycle is simulated reasonably well even with simple land surface representations.

  8. Surficial geology and soils of the Elmira-Williamsport region, New York and Pennsylvania, with a section on forest regions and great soil groups

    USGS Publications Warehouse

    Denny, Charles Storrow; Lyford, Walter Henry; Goodlett, J.C.

    1963-01-01

    The Elmira-Williamsport region, lying south of the Finger Lakes in central New York and northern Pennsylvania, is part of the Appalachian Plateaus physiographic province. A small segment of the Valley and Ridge province is included near the south border. In 1953 and 1954, the authors, a geologist and a soil scientist, made a reconnaissance of about 5,000 square miles extending southward from the Finger Lakes, N.Y., to Williamsport, Pa., and eastward from Wellsboro, Pa., to Towanda, Pa. Glacial drift of Wisconsin age, covering the central and most of the northern parts of the region, belongs to the Olean substage of MacClintock and Apfel. This drift is thin and patchy, is composed of the relatively soft sandstones, siltstone, shales, and conglomerates of the plateaus, commonly has a low calcium carbonate content, and is deeply leached. Mantling its surface are extensive rubbly colluvial deposits. No conspicuous terminal moraine marks the relatively straight border of Olean drift. The Valley Heads moraine of Fairchild near the south ends of the Finger Lakes is composed of relatively thick drift containing a considerable amount of somewhat resistant sedimentary and crystalline rocks. Commonly this drift has a relatively high carbonate content and is leached to only shallow depths. The Valley Heads drift is younger than Olean, but its precise age is undetermined. The age of the Olean is perhaps between Sangamon and Farmdale, on the basis of, in part, a carbon-14 date from peat at Otto, N.Y. All differences in soil development on these two Wisconsin drifts are clearly related to the lithology of the parent material or the drainage, rather than to weathering differing in kind or in duration. The authors believe that the soils are relatively young, are in equilibrium with the present environment, and contain few, if any, features acquired during past weathering intervals. The effect of tree throw on soil profiles and the presence of soils on slopes clearly indicate that soils form rapidly. Sols Bruns Acides are the most extensive great soil group occurring throughout the region. Podzols and Gray-Brown Podzolic soils are also widespread, and on long, smooth slopes Low Humic-Gley soils are common. Organic soils are of small extent. South of the Wisconsin drift border, the surficial mantle consists chiefly of alluvial, colluvial, or residual deposits of Wisconsin or of Recent age, but there are many small isolated patches of older, strongly weathered materials of pre-Wisconsin age. Although such older materials are commonly overlain or mixed with less weathered mantle, the yellowish-red color, characteristic of the strongly weathered material, is generally not masked. Some of the older material is drift, presumed to be of Illionian age, that was probably strongly weathered to a considerable depth in Sangamon time and has been greatly eroded since the last interglacial period. No clear-cut exposure of Wisconsin drift resting on older drift or other strongly weathered mantle has been found. The old drift and the other strongly weathered materials apparently acquired their present red color in pre-Wisconsin time. Where exposed at the surface, such strongly weathered mantle is the parent material of modern Red-Yellow Podzolic soils. Sols Bruns Acides and Gray-Brown Podzolic soils, developed on slightly weathered parent materials, are found adjacent to these red soils. This suggests that these Red-Yellow Podzolic soils probably developed from strongly weathered parent materials. No buried soils were found nor were any soils recognized as relics from pre-Wisconsin time. Comparison of a map of the great soil groups with a map of the vegetation of the region, prepared by John C. Goodlett, does not reveal a close relation. Laboratory analyses of samples collected furnish data on textural, mineralogical, and chemical changes caused by weathering and soil formation. The results indicate that the amount of chemical weathering which the Wisconsin drift has undergone is slight. The Red-Yellow Podzolic soils on strongly weathered pre-Wisconsin drift have B2 horizons that have a finer texture than the A2 or C horizons. The parent materials of these soils seem to be strongly weathered because of the high chromas, reddish hues, friable condition of most rock fragments, relatively high kaolinite content, and presence of gibbsite in the clay fraction. Measurements at numerous localities show that the depth of leaching increases with decreasing carbonate content and is not a criterion of the age of the drift. Pebble counts of gravels also show that the depth of leaching of gravel is related to its limestone content. The location of the gravel deposits is probably due primarily to the presence of pebbles of resistant rock rather than to ice wastage involving abundant glacial melt water. The region is in the Susquehanna drainage basin except for its north fringe, which drains to Lake Ontario. Most of the region is a dissected plateau ranging in altitude from 700 to 2,500 feet and underlain by gently folded sedimentary rocks of Paleozoic age. Much of the region slopes moderately or steeply; the most extensive areas of gently sloping land are 011 the uplands. In the northern part are several straight and deep valleys the southern extension of the Finger Lakes basins separated by uplands with several low cuestas that face north. Similarly, some streams such as the Canisteo, Cohocton, and Chemung Rivers, and the part of the Susquehanna River that is in New York, trend at right angles to the Finger Lakes, flowing in valleys that parallel the regional strike of the bedrock. The Olean drift border is marked by a change from drift containing very few rounded or striated rock fragments to a mantle containing only angular rock fragments and traces of red, strongly weathered materials. A reconstruction of the surface of the ice sheet, at its maximum extent shows an inferred slope of its distal margin ranging from 100 to 500 feet per mile

  9. The Influence of Soil Moisture and Wind on Rainfall Distribution and Intensity in Florida

    NASA Technical Reports Server (NTRS)

    Baker, R. David; Lynn, Barry H.; Boone, Aaron; Tao, Wei-Kuo

    1998-01-01

    Land surface processes play a key role in water and energy budgets of the hydrological cycle. For example, the distribution of soil moisture will affect sensible and latent heat fluxes, which in turn may dramatically influence the location and intensity of precipitation. However, mean wind conditions also strongly influence the distribution of precipitation. The relative importance of soil moisture and wind on rainfall location and intensity remains uncertain. Here, we examine the influence of soil moisture distribution and wind distribution on precipitation in the Florida peninsula using the 3-D Goddard Cumulus Ensemble (GCE) cloud model Coupled with the Parameterization for Land-Atmosphere-Cloud Exchange (PLACE) land surface model. This study utilizes data collected on 27 July 1991 in central Florida during the Convection and Precipitation Electrification Experiment (CaPE). The idealized numerical experiments consider a block of land (the Florida peninsula) bordered on the east and on the west by ocean. The initial soil moisture distribution is derived from an offline PLACE simulation, and the initial environmental wind profile is determined from the CaPE sounding network. Using the factor separation technique, the precise contribution of soil moisture and wind to rainfall distribution and intensity is determined.

  10. Modelling global nitrogen export to ground and surface water from natural ecosystems: impact of N deposition, climate, and CO2 concentration

    NASA Astrophysics Data System (ADS)

    Braakhekke, Maarten; Rebel, Karin; Dekker, Stefan; van Beek, Rens; Bierkens, Marc; Smith, Ben; Wassen, Martin

    2015-04-01

    For large regions in the world strong increases in atmospheric nitrogen (N) deposition are predicted as a result of emissions from fossil fuel combustion and food production. This will cause many previously N limited ecosystems to become N saturated, leading to increased export to ground and surface water and negative impacts on the environment and human health. However, precise N export fluxes are difficult to predict. Due to its strong link to carbon, N in vegetation and soil is also determined by productivity, as affected by rising atmospheric CO2 concentration and temperature, and denitrification. Furthermore, the N concentration of water delivered to streams depends strongly on local hydrological conditions. We aim to study how N delivery to ground and surface water is affected by changes in environmental factors. To this end we are developing a global dynamic modelling system that integrates representations of N cycling in vegetation and soil, and N delivery to ground and surface water. This will be achieved by coupling the dynamic global vegetation model LPJ-GUESS, which includes representations of N cycling, as well as croplands and pasture, to the global water balance model PCR-GLOBWB, which simulates surface runoff, interflow, groundwater recharge, and baseflow. This coupling will allow us to trace N across different systems and estimate the input of N into the riverine system which can be used as input for river biogeochemical models. We will present large scale estimates of N leaching and transport to ground and surface water for natural ecosystems in different biomes, based on a loose coupling of the two models. Furthermore, by means of a factorial model experiment we will explore how these fluxes are influenced by N deposition, temperature, and CO2 concentration.

  11. Generation of a Realistic Soil Moisture Initialization System and its Potential Impact on Short-to-Seasonal Forecasting of Near Surface Variables

    NASA Astrophysics Data System (ADS)

    Boisserie, M.; Cocke, S.; O'Brien, J. J.

    2009-12-01

    Although the amount of water contained in the soil seems insignificant when compared to the total amount of water on a global-scale, soil moisture is widely recognized as a crucial variable for climate studies. It plays a key role in regulating the interaction between the atmosphere and the land-surface by controlling the repartition between the surface latent and sensible heat fluxes. In addition, the persistence of soil moisture anomalies provides one of the most important components of memory for the climate system. Several studies have shown that, during the boreal summer in mid-latitudes, the soil moisture role in controlling the continental precipitation variability may be more important than that of the sea surface temperature (Koster et al. 2000, Hong and Kalnay 2000, Koster et al. 2000, Kumar and Hoerling 1995, Trenberth et al. 1998, Shukla 1998). Although all of the above studies have demonstrated the strong sensitivity of seasonal forecasts to the soil moisture initial conditions, they relied on extreme or idealized soil moisture levels. The question of whether realistic soil moisture initial conditions lead to improved seasonal predictions has not been adequately addressed. Progress in addressing this question has been hampered by the lack of long-term reliable observation-based global soil moisture data sets. Since precipitation strongly affects the soil moisture characteristics at the surface and in depth, an alternative to this issue is to assimilate precipitation. Because precipitation is a diagnostic variable, most of the current reanalyses do not directly assimilate it into their models (M. Bosilovitch, 2008). In this study, an effective technique that directly assimilates the precipitation is used. We examine two experiments. In the first experiment, the model is initialized by directly assimilating a global, 3-hourly, 1.0° precipitation dataset, provided by Sheffield et al. (2006), in a continuous assimilation period of a couple of months. For this, we use a technique named the Precipitation Assimilation Reanalysis (PAR) described in Nunes and Cocke (2004). This technique consists of modifying the vertical profile of humidity as a function of the observed and predicted model rain rates. In the second experiment, the model is initialized without precipitation assimilation. For each experiment, ten sets of seasonal forecasts of the coupled land-atmosphere Florida State University/Center for Ocean and Atmosphere Predictions Studies (FSU/COAPS) model were generated, starting from the boreal summer of each year between 1986 and 1995. For each forecast, ten ensembles are produced by starting the forecast from the 1st and the 15th of each month from April to August. The results of these experiments show, first, that the PAR technique greatly improves the temporal and spatial variability of out model soil moisture estimate. Second, using these realistic soil moisture initial conditions, we found a significant increase in the air temperature seasonal forecasting skills. However, not significant increase has been found in the precipitation seasonal forecasting skills. The results of this study are involved in the GLACE-2 international multi-model experiment.

  12. Updates on Water Use of Pistachio Orchards Grown in the San Joaquin Valley of California on Saline Soils

    NASA Astrophysics Data System (ADS)

    Zaccaria, Daniele; Marino, Giulia; Whiting, Michael; Sanden, Blake; Ferguson, Louise; Lampinen, Bruce; Kent, Eric; Snyder, Richard; Grattan, Stephen; Little, Cayle

    2017-04-01

    Pistachio acreage is rapidly expanding in California thanks to its economic profitability and capacity to grow and produce in salt-affected soils. Our team at University of California is updating information on actual water use (ET) of mature pistachio orchards grown on saline soils under micro-irrigation methods. Actual Evapotranspiration (ETa) and Crop Coefficients (Ka) were determined for the 2015 and 2016 crop seasons on four pistachio orchards grown in the San Joaquin Valley (SJV) on grounds with increasing levels of soil-water salinity, using the residual of energy balance method with a combination of eddy covariance and surface renewal equipment. Tree canopy cover, light interception, and plant water status across the orchards were also measured and evaluated. Our preliminary results show that salinity strongly affects the tree water use, resulting in 10-30% less ET for medium to high salt-affected soils. Salinity also showed a strong effect on tree water status and light interception, as suggested by values of the Midday Stem Water Potential (ΨSWP) around 10 to 15-bar lower in salt-affected than in the control orchard, and by the intercepted Photosynthetic Active Radiation (PAR) decreasing from 75% in the control orchard to 25% in the severely salt affected grounds. The crop coefficient values we observed in this study are lower than those commonly used for irrigation scheduling in the SJV, suggesting that pistachio growers could better tailor irrigation management to the actual site-specific orchard conditions (e.g. canopy features and soil-water salinity) if they are provided updated information. Improved irrigation practices could likely lead to significant water savings and thus improve the resource-efficiency and competitiveness of pistachio production in the SJV. Keywords: Pistacia vera L., salinity, stem water potential, surface renewal, canopy cover.

  13. Storage dynamics in hydropedological units control hillslope connectivity, runoff generation, and the evolution of catchment transit time distributions

    PubMed Central

    Tetzlaff, D; Birkel, C; Dick, J; Geris, J; Soulsby, C

    2014-01-01

    We examined the storage dynamics and isotopic composition of soil water over 12 months in three hydropedological units in order to understand runoff generation in a montane catchment. The units form classic catena sequences from freely draining podzols on steep upper hillslopes through peaty gleys in shallower lower slopes to deeper peats in the riparian zone. The peaty gleys and peats remained saturated throughout the year, while the podzols showed distinct wetting and drying cycles. In this region, most precipitation events are <10 mm in magnitude, and storm runoff is mainly generated from the peats and peaty gleys, with runoff coefficients (RCs) typically <10%. In larger events the podzolic soils become strongly connected to the saturated areas, and RCs can exceed 40%. Isotopic variations in precipitation are significantly damped in the organic-rich soil surface horizons due to mixing with larger volumes of stored water. This damping is accentuated in the deeper soil profile and groundwater. Consequently, the isotopic composition of stream water is also damped, but the dynamics strongly reflect those of the near-surface waters in the riparian peats. “pre-event” water typically accounts for >80% of flow, even in large events, reflecting the displacement of water from the riparian soils that has been stored in the catchment for >2 years. These riparian areas are the key zone where different source waters mix. Our study is novel in showing that they act as “isostats,” not only regulating the isotopic composition of stream water, but also integrating the transit time distribution for the catchment. Key Points Hillslope connectivity is controlled by small storage changes in soil units Different catchment source waters mix in large riparian wetland storage Isotopes show riparian wetlands set the catchment transit time distribution PMID:25506098

  14. Storage dynamics in hydropedological units control hillslope connectivity, runoff generation, and the evolution of catchment transit time distributions.

    PubMed

    Tetzlaff, D; Birkel, C; Dick, J; Geris, J; Soulsby, C

    2014-02-01

    We examined the storage dynamics and isotopic composition of soil water over 12 months in three hydropedological units in order to understand runoff generation in a montane catchment. The units form classic catena sequences from freely draining podzols on steep upper hillslopes through peaty gleys in shallower lower slopes to deeper peats in the riparian zone. The peaty gleys and peats remained saturated throughout the year, while the podzols showed distinct wetting and drying cycles. In this region, most precipitation events are <10 mm in magnitude, and storm runoff is mainly generated from the peats and peaty gleys, with runoff coefficients (RCs) typically <10%. In larger events the podzolic soils become strongly connected to the saturated areas, and RCs can exceed 40%. Isotopic variations in precipitation are significantly damped in the organic-rich soil surface horizons due to mixing with larger volumes of stored water. This damping is accentuated in the deeper soil profile and groundwater. Consequently, the isotopic composition of stream water is also damped, but the dynamics strongly reflect those of the near-surface waters in the riparian peats. "pre-event" water typically accounts for >80% of flow, even in large events, reflecting the displacement of water from the riparian soils that has been stored in the catchment for >2 years. These riparian areas are the key zone where different source waters mix. Our study is novel in showing that they act as "isostats," not only regulating the isotopic composition of stream water, but also integrating the transit time distribution for the catchment. Hillslope connectivity is controlled by small storage changes in soil unitsDifferent catchment source waters mix in large riparian wetland storageIsotopes show riparian wetlands set the catchment transit time distribution.

  15. Engineered polymeric nanoparticles for soil remediation.

    PubMed

    Tungittiplakorn, Warapong; Lion, Leonard W; Cohen, Claude; Kim, Ju-Young

    2004-03-01

    Hydrophobic organic groundwater contaminants, such as polynuclear aromatic hydrocarbons (PAHs), sorb strongly to soils and are difficult to remove. We report here on the synthesis of amphiphilic polyurethane (APU) nanoparticles for use in remediation of soil contaminated with PAHs. The particles are made of polyurethane acrylate anionomer (UAA) or poly(ethylene glycol)-modified urethane acrylate (PMUA) precursor chains that can be emulsified and cross-linked in water. The resulting particles are of colloidal size (17-97 nm as measured by dynamic light scattering). APU particles have the ability to enhance PAH desorption and transport in a manner comparable to that of surfactant micelles, but unlike the surface-active components of micelles, the individual cross-linked precursor chains in APU particles are not free to sorb to the soil surface. Thus, the APU particles are stable independent of their concentration in the aqueous phase. In this paper we show that APU particles can be engineered to achieve desired properties. Our experimental results show that the APU particles can be designed to have hydrophobic interior regions that confer a high affinity for phenanthrene (PHEN) and hydrophilic surfaces that promote particle mobility in soil. The affinity of APU particles for contaminants such as PHEN can be controlled by changing the size of the hydrophobic segment used in the chain synthesis. The mobility of colloidal APU suspensions in soil is controlled by the charge density or the size of the pendent water-soluble chains that reside on the particle surface. Exemplary results are provided illustrating the influence of alternative APU particle formulations with respect to their efficacy for contaminant removal. The ability to control particle properties offers the potential to produce different nanoparticles optimized for varying contaminant types and soil conditions.

  16. SMOS Soil Moisture Data Assimilation in the NASA Land Information System: Impact on LSM Initialization and NWP Forecasts

    NASA Technical Reports Server (NTRS)

    Blankenship, Clay; Case, Jonathan L.; Zavodsky, Bradley

    2015-01-01

    Land surface models are important components of numerical weather prediction (NWP) models, partitioning incoming energy into latent and sensitive heat fluxes that affect boundary layer growth and destabilization. During warm-season months, diurnal heating and convective initiation depend strongly on evapotranspiration and available boundary layer moisture, which are substantially affected by soil moisture content. Therefore, to properly simulate warm-season processes in NWP models, an accurate initialization of the land surface state is important for accurately depicting the exchange of heat and moisture between the surface and boundary layer. In this study, soil moisture retrievals from the Soil Moisture and Ocean Salinity (SMOS) satellite radiometer are assimilated into the Noah Land Surface Model via an Ensemble Kalman Filter embedded within the NASA Land Information System (LIS) software framework. The output from LIS-Noah is subsequently used to initialize runs of the Weather Research and Forecasting (WRF) NWP model. The impact of assimilating SMOS retrievals is assessed by initializing the WRF model with LIS-Noah output obtained with and without SMOS data assimilation. The southeastern United States is used as the domain for a preliminary case study. During the summer months, there is extensive irrigation in the lower Mississippi Valley for rice and other crops. The irrigation is not represented in the meteorological forcing used to drive the LIS-Noah integration, but the irrigated areas show up clearly in the SMOS soil moisture retrievals, resulting in a case with a large difference in initial soil moisture conditions. The impact of SMOS data assimilation on both Noah soil moisture fields and on short-term (0-48 hour) WRF weather forecasts will be presented.

  17. The Influence of Soil Moisture, Coastline Curvature, and Land-Breeze Circulations on Sea-Breeze Initiated Precipitation

    NASA Technical Reports Server (NTRS)

    Baker, David R.; Lynn, Barry H.; Boone, Aaron; Tao, Wei-Kuo; Simpson, Joanne

    2000-01-01

    Idealized numerical simulations are performed with a coupled atmosphere/land-surface model to identify the roles of initial soil moisture, coastline curvature, and land breeze circulations on sea breeze initiated precipitation. Data collected on 27 July 1991 during the Convection and Precipitation Electrification Experiment (CAPE) in central Florida are used. The 3D Goddard Cumulus Ensemble (GCE) cloud resolving model is coupled with the Goddard Parameterization for Land-Atmosphere-Cloud Exchange (PLACE) land surface model, thus providing a tool to simulate more realistically land-surface/atmosphere interaction and convective initiation. Eight simulations are conducted with either straight or curved coast-lines, initially homogeneous soil moisture or initially variable soil moisture, and initially homogeneous horizontal winds or initially variable horizontal winds (land breezes). All model simulations capture the diurnal evolution and general distribution of sea-breeze initiated precipitation over central Florida. The distribution of initial soil moisture influences the timing, intensity and location of subsequent precipitation. Soil moisture acts as a moisture source for the atmosphere, increases the connectively available potential energy, and thus preferentially focuses heavy precipitation over existing wet soil. Strong soil moisture-induced mesoscale circulations are not evident in these simulations. Coastline curvature has a major impact on the timing and location of precipitation. Earlier low-level convergence occurs inland of convex coastlines, and subsequent precipitation occurs earlier in simulations with curved coastlines. The presence of initial land breezes alone has little impact on subsequent precipitation. however, simulations with both coastline curvature and initial land breezes produce significantly larger peak rain rates due to nonlinear interactions.

  18. Interaction of Land Management Intensity and Micro-topography Controls on Geochemistry of Raindrop-Liberated/Mobilized Soil Particles

    NASA Astrophysics Data System (ADS)

    Hou, T.; Filley, T. R.; Berry, T.; Singh, S.; Hughes, M.; Tong, Y.; Papanicolaou, T.; Wacha, K.; Wilson, C. G.; Chaubey, I.

    2017-12-01

    The dynamics of raindrop-induced breakdown of soil aggregates, a critical factor in the initial process of surface erosion and lateral redistribution of soil, are strongly tied to land use intensity. What is unclear however is the relative control of rain and mechanical disturbance on the development of landscape-level heterogeneity in surface soil geochemistry. We used artificial rainfall simulated experiments including an aggregate stability test and time course rainfall-erosional test to evaluate the role of management intensity and micro-topography on the geochemistry of raindrop-liberated/mobilized particles from landscapes in southeastern Iowa. Comparing restored prairie, conservation tillage, and conventional tillage sites we found, and with a trend toward increasing tillage intensity, a decrease in aggregate stability and raindrop-liberated particles that were lower in organic carbon, nitrogen, and plant-derived biopolymers, while containing higher proportions of microbially-processed nitrogen than the raindrop stable aggregates. Time evolution of the geochemistry (e.g. elemental, stable isotope, and biopolymer composition) of transported soil particles exhibited distinct patterns based upon both position of the hillslope and oriented soil roughness. Additionally, in the restored prairie, raindrop liberated particles had identical geochemical composition to the raindrop stable aggregates. Our results demonstrate that agricultural sites under intensive tillage have not only a greater potential to liberate and mobilize soil particles during storms, but the mobilized particles will have a distinct chemical character based on tillage intensity, hillslope position and oriented roughness thus lead to a greater potential for landscape level heterogeneity in surface and buried soil chemistry upon mobilization and burial.

  19. Aqueous history of Mars as inferred from landed mission measurements of rocks, soils, and water ice

    NASA Astrophysics Data System (ADS)

    Arvidson, Raymond E.

    2016-09-01

    The missions that have operated on the surface of Mars acquired data that complement observations acquired from orbit and provide information that would not have been acquired without surface measurements. Data from the Viking Landers demonstrated that soils have basaltic compositions, containing minor amounts of salts and one or more strong oxidants. Pathfinder with its rover confirmed that the distal portion of Ares Vallis is the site of flood-deposited boulders. Spirit found evidence for hydrothermal deposits surrounding the Home Plate volcanoclastic feature. Opportunity discovered that the hematite signature on Meridiani Planum as seen from orbit is due to hematitic concretions concentrated on the surface as winds eroded sulfate-rich sandstones that dominate the Burns formation. The sandstones originated as playa muds that were subsequently reworked by wind and rising groundwater. Opportunity also found evidence on the rim of the Noachian Endurance Crater for smectites, with extensive leaching along fractures. Curiosity acquired data at the base of Mount Sharp in Gale Crater that allows reconstruction of a sustained fluvial-deltaic-lacustrine system prograding into the crater. Smectites and low concentrations of chlorinated hydrocarbons have been identified in the lacustrine deposits. Phoenix, landing above the Arctic Circle, found icy soils, along with low concentrations of perchlorate salt. Perchlorate is considered to be a strong candidate for the oxidant found by the Viking Landers. It is also a freezing point depressant and may play a role in allowing brines to exist at and beneath the surface in more modern periods of time on Mars.

  20. Characterising soil surface roughness with a frequency modulated polarimetric radar

    NASA Astrophysics Data System (ADS)

    Seeger, Manuel; Gronz, Oliver; Beiske, Joshua; Klein, Tobias

    2014-05-01

    Soil surface roughness is considered crucial for soil erosion as it determines the effective surface exposed to the raindrop impact. It regulates surface runoff velocity and it causes runoff concentration. But a comprehensive characterisation of the shape of the soils' surface is still difficult to achieve. Photographic systems and terrestrial laser-scanning are nowadays able to generate high resolution DEMs, but the derivation of roughness parameters is still not clear. Spaceborne radar systems are used for about 3 decades for earth survey. Spatial soil moisture distribution, ice sheet monitoring and earth-wide topographic survey are the main objectives of these radar systems, working generally with frequencies <10 GHz. Contrasting with this, technologies emitting frequencies up to 77 GHz are generally used for object tracking purposes. But it is known, that the reflection characteristics, such as intensity and polarisation, strongly depend on the properties of the target object. A new design of a frequency modulated continuous wave radar, emitting a right hand shaped circular polarization and receiving both polarization directions, right and left-hand shaped, is tested here for its ability to detect and quantify different surface roughness. The reflection characteristics of 4 different materials 1) steel, 2) sand (0,5-1 mm), 3) fine (2-4 mm) and 4) coarse (15-30 mm) rock-fragments and different roughness as well as moisture content are analysed. In addition, the signals are taken at 2 different angles to the soil's surface (90° and 70°). For quantification of the roughness, a photographic method (Structure-from-Motion) is applied to generate a detailed DEM and random roughness (RR) is calculated. To characterise the radar signal, different ratios of the reflected channels and polarisations are calculated. The signals show differences for all substrates, also clearly visible between sand and fine rock fragments, despite a wavelength of 1 cm of the electromagnetic waves. A systematic change of the signals with changing roughness is also observed. Measurements show a significant influence of the angle of observation. Soil moisture shows also an influence on the reflected signal, but is quite well differentiable to the effects of the shape of the soil's surface. The results show that polarimetric radar technology may be suitable to characterise the surface of soils, but still faces a big lack of knowledge on how to quantify and differentiate the different signals, how to handle variable observation angles, and finally how to characterise roughness.

  1. Leaching potential of chlorpyrifos in an Andisol and Entisol: adsorption-desorption and degradation studies

    NASA Astrophysics Data System (ADS)

    Mosquera-Vivas, Carmen; Walther Hansen, Eddy; Garcia-Santos, Glenda; Obregón-Neira, Nelson; Celis-Ossa, Raul Ernesto; González-Murillo, Carlos Alberto; Juraske, Ronnie; Hellweg, Stefanie; Guerrero-Dallos, Jairo Arturo

    2017-04-01

    Ecological status of tropical soils like high OC content and microbial activity plays a key role to reduce the leaching of insecticide chlorpyrifos through the soil profile and therefore into groundwater. We found that chlorpyrifos has "transitional" leaching potential (GUS values varied between 1.8 and 2.5) throughout the soil depth, which differs from the "nonleacher" classification for temperate soils as based on surface level t1/2 and Koc values from international databases. These findings provide strong evidence of the importance of estimating the transport parameters and insecticide concentrations in different soil layers, especially when the amount and type of OC content vary throughout the soil profile. We got to such conclusions after studying the soil profile structural composition of soil organic matter and the adsorption/desorption characteristics of the insecticide in two different soil profiles (Andisol and Entisol) under agriculture production using Fourier transform infrared spectroscopy, nuclear magnetic resonance, and batch analysis methods.

  2. Natural and pyrogenic humic acids at goethite and natural oxide surfaces interacting with phosphate.

    PubMed

    Hiemstra, Tjisse; Mia, Shamim; Duhaut, Pierre-Benoît; Molleman, Bastiaan

    2013-08-20

    Fulvic and humic acids have a large variability in binding to metal (hydr) oxide surfaces and interact differently with oxyanions, as examined here experimentally. Pyrogenic humic acid has been included in our study since it will be released to the environment in the case of large-scale application of biochar, potentially creating Darks Earths or Terra Preta soils. A surface complexation approach has been developed that aims to describe the competitive behavior of natural organic matter (NOM) in soil as well as model systems. Modeling points unexpectedly to a strong change of the molecular conformation of humic acid (HA) with a predominant adsorption in the Stern layer domain at low NOM loading. In soil, mineral oxide surfaces remain efficiently loaded by mineral-protected organic carbon (OC), equivalent with a layer thickness of ≥ ~0.5 nm that represents at least 0.1-1.0% OC, while surface-associated OC may be even three times higher. In natural systems, surface complexation modeling should account for this pervasive NOM coverage. With our charge distribution model for NOM (NOM-CD), the pH-dependent oxyanion competition of the organo-mineral oxide fraction can be described. For pyrogenic HA, a more than 10-fold increase in dissolved phosphate is predicted at long-term applications of biochar or black carbon.

  3. Variable Charge Soils: Mineralogy and Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qafoku, Nik; Van Ranst, Eric; Noble, Andrew

    2003-11-01

    Soils rich in particles with amphoteric surface properties in the Oxisols, Ultisols, Alfisols, Spodosols and Andisols orders (1) are considered variable charge soils (2). The term “variable charge” is used to describe organic and inorganic soil constituents with reactive surface groups whose charge varies with pH, ionic concentration and composition of the soil solution. Such groups are the surface carboxyl, phenolic and amino functional groups of organic materials in soils, and surface hydroxyl groups of Fe and Al oxides, allophane and imogolite. The hydroxyl surface groups are also present on edges of some phyllosilicate minerals such as kaolinite, mica, andmore » hydroxyl-interlayered vermiculite. The variable charge is developed on the surface groups as a result of adsorption or desorption of ions that are constituents of the solid phase, i.e., H+, and the adsorption or desorption of solid-unlike ions that are not constituents of the solid. Highly weathered soils usually undergo isoeletric weathering and reach a “zero net charge” stage during their development. They have a slightly acidic to acidic soil solution pH, which is close to either point of zero net charge (PZNC) (3) or point of zero salt effect (PZSE) (3). They are characterized by high abundances of minerals with a point of zero net proton charge (PZNPC) (3) at neutral and slightly basic pHs; the most important being Fe and Al oxides and allophane. Under acidic conditions, the surfaces of these minerals are net positively charged. In contrast, the surfaces of permanent charge phyllosilicates are negatively charged regardless of ambient conditions. Variable charge soils therefore, are heterogeneous charge systems. The coexistence and interactions of oppositely charged surfaces or particles confers a different pattern of physical and chemical behavior on the soil, relatively to a homogeneously charged system of temperate regions. In some variable charge soils (Oxisols and some Ultisols developed on ferromagnesian-rich parent materials) the surfaces of phyllosilicates are coated to a lesser or greater extent by amorphous or crystalline, oppositely charged nanoparticles of Fe and Al oxides. These coatings exhibit a high reactive surface area and help cementing larger particles with one another. As a result of these electrostatic interactions, stable microaggregates that are difficult to disperse are formed in variable charge soils. Most of highly weathered soils have reached the “advanced stage” of Jackson-Sherman weathering sequence that is characterized by the removal of Na, K, Ca, Mg, and Fe(II), the presence of Fe and Al polymers, and very dilute soil solutions with an ionic strength (IS) of less than 1 mmol L-1. The inter-penetration or overlapping of the diffuse double layers on oppositely charged surfaces may occur in these dilute systems. These diffuse layer interactions may affect the magnitude of the effective charge, i.e., the counter-ion charge (4). In addition, salt adsorption, which is defined as the simultaneous adsorption in equivalent amounts of the cation and anion of an electrolyte with no net release of other ions into the soil solution, appears to be a common phenomenon in these soils. They act as cation- and anion-exchangers and as salt-sorbers. The magnitude of salt adsorption depends strongly on initial IS in the soil solution and the presence in appreciable amounts of oppositely charged surfaces. Among the authors that have made illustrious contributions towards a better understanding of these fascinating soil systems are S. Matson, R.K. Schofield, van Olphen, M.E. Sumner, G.W. Thomas, G.P. Gillman, G. Uehara, B.K.G. Theng, K. Wada, N.J. Barrow, J.W. Bowden, R.J. Hunter and G. Sposito. This entry is mainly based on publications by these authors.« less

  4. Soil Moisture and Snow Cover: Active or Passive Elements of Climate?

    NASA Technical Reports Server (NTRS)

    Oglesby, Robert J.; Marshall, Susan; Erickson, David J., III; Robertson, Franklin R.; Roads, John O.; Arnold, James E. (Technical Monitor)

    2002-01-01

    A key question in the study of the hydrologic cycle is the extent to which surface effects such as soil moisture and snow cover are simply passive elements or whether they can affect the evolution of climate on seasonal and longer time scales. We have constructed ensembles of predictability studies using the NCAR CCM3 in which we compared the relative roles of initial surface and atmospheric conditions over the central and western U.S. in determining the subsequent evolution of soil moisture and of snow cover. We have also made sensitivity studies with exaggerated soil moisture and snow cover anomalies in order to determine the physical processes that may be important. Results from simulations with realistic soil moisture anomalies indicate that internal climate variability may be the strongest factor, with some indication that the initial atmospheric state is also important. The initial state of soil moisture does not appear important, a result that held whether simulations were started in late winter or late spring. Model runs with exaggerated soil moisture reductions (near-desert conditions) showed a much larger effect, with warmer surface temperatures, reduced precipitation, and lower surface pressures; the latter indicating a response of the atmospheric circulation. These results suggest the possibility of a threshold effect in soil moisture, whereby an anomaly must be of a sufficient size before it can have a significant impact on the atmospheric circulation and hence climate. Results from simulations with realistic snow cover anomalies indicate that the time of year can be crucial. When introduced in late winter, these anomalies strongly affected the subsequent evolution of snow cover. When introduced in early winter, however, little or no effect is seen on the subsequent snow cover. Runs with greatly exaggerated initial snow cover indicate that the high reflectively of snow is the most important process by which snow cover cart impact climate, through lower surface temperatures and increased surface pressures. In early winter, the amount of solar radiation is very small and so this albedo effect is inconsequential while in late winter, with the sun higher in the sky and period of daylight longer, the effect is much stronger.

  5. Warming of subarctic tundra increases emissions of all three important greenhouse gases - carbon dioxide, methane, and nitrous oxide.

    PubMed

    Voigt, Carolina; Lamprecht, Richard E; Marushchak, Maija E; Lind, Saara E; Novakovskiy, Alexander; Aurela, Mika; Martikainen, Pertti J; Biasi, Christina

    2017-08-01

    Rapidly rising temperatures in the Arctic might cause a greater release of greenhouse gases (GHGs) to the atmosphere. To study the effect of warming on GHG dynamics, we deployed open-top chambers in a subarctic tundra site in Northeast European Russia. We determined carbon dioxide (CO 2 ), methane (CH 4 ), and nitrous oxide (N 2 O) fluxes as well as the concentration of those gases, inorganic nitrogen (N) and dissolved organic carbon (DOC) along the soil profile. Studied tundra surfaces ranged from mineral to organic soils and from vegetated to unvegetated areas. As a result of air warming, the seasonal GHG budget of the vegetated tundra surfaces shifted from a GHG sink of -300 to -198 g CO 2 -eq m -2 to a source of 105 to 144 g CO 2 -eq m -2 . At bare peat surfaces, we observed increased release of all three GHGs. While the positive warming response was dominated by CO 2 , we provide here the first in situ evidence of increasing N 2 O emissions from tundra soils with warming. Warming promoted N 2 O release not only from bare peat, previously identified as a strong N 2 O source, but also from the abundant, vegetated peat surfaces that do not emit N 2 O under present climate. At these surfaces, elevated temperatures had an adverse effect on plant growth, resulting in lower plant N uptake and, consequently, better N availability for soil microbes. Although the warming was limited to the soil surface and did not alter thaw depth, it increased concentrations of DOC, CO 2, and CH 4 in the soil down to the permafrost table. This can be attributed to downward DOC leaching, fueling microbial activity at depth. Taken together, our results emphasize the tight linkages between plant and soil processes, and different soil layers, which need to be taken into account when predicting the climate change feedback of the Arctic. © 2016 John Wiley & Sons Ltd.

  6. Stochastic strong motion generation using slip model of 21 and 22 May 1960 mega-thrust earthquakes in the main cities of Central-South Chile

    NASA Astrophysics Data System (ADS)

    Ruiz, S.; Ojeda, J.; DelCampo, F., Sr.; Pasten, C., Sr.; Otarola, C., Sr.; Silva, R., Sr.

    2017-12-01

    In May 1960 took place the most unusual seismic sequence registered instrumentally. The Mw 8.1, Concepción earthquake occurred May, 21, 1960. The aftershocks of this event apparently migrated to the south-east, and the Mw 9.5, Valdivia mega-earthquake occurred after 33 hours. The structural damage produced by both events is not larger than other earthquakes in Chile and lower than crustal earthquakes of smaller magnitude. The damage was located in the sites with shallow soil layers of low shear wave velocity (Vs). However, no seismological station recorded this sequence. For that reason, we generate synthetic acceleration times histories for strong motion in the main cities affected by these events. We use 155 points of vertical surface displacements recopiled by Plafker and Savage in 1968, and considering the observations of this authors and local residents we separated the uplift and subsidence information associated to the first earthquake Mw 8.1 and the second mega-earthquake Mw 9.5. We consider the elastic deformation propagation, assume realist lithosphere geometry, and compute a Bayesian method that maximizes the probability density a posteriori to obtain the slip distribution. Subsequently, we use a stochastic method of generation of strong motion considering the finite fault model obtained for both earthquakes. We considered the incidence angle of ray to the surface, free surface effect and energy partition for P, SV and SH waves, dynamic corner frequency and the influence of site effect. The results show that the earthquake Mw 8.1 occurred down-dip the slab, the strong motion records are similar to other Chilean earthquake like Tocopilla Mw 7.7 (2007). For the Mw 9.5 earthquake we obtain synthetic acceleration time histories with PGA values around 0.8 g in cities near to the maximum asperity or that have low velocity soil layers. This allows us to conclude that strong motion records have important influence of the shallow soil deposits. These records correlate well with our structural damage observations.

  7. Soil characteristics of semidesert soils along a precipitation gradient in the Negev (Israel)

    NASA Astrophysics Data System (ADS)

    Steckenmesser, Daniel; Drahorad, Sylvie; Felix-Henningsen, Peter

    2010-05-01

    The sand dunes of the north-western Negev desert (Israel) show a unique precipitation gradient on a short distance. This area is build up by the same parent material and suited to investigate the influence of changes in rainfall on soil characteristics in semi-desert ecosystems. The study site is the western extension of the Sinai sand field, the sand dunes are stabilised by biological soil crusts and perennial vegetation like Retama raetam. Along this precipitation gradient the three investigation areas Nizzana South (90mm ^a-), Nizzana 84 (130mm ^a-1) and Nizzana 69 (170mm ^a-1) are situated. At every study site two soil profiles were investigated, each under the legume Retama raetam and in the bare interspace covered by biological soil crusts. The soil samples were taken at the interdune positions at every study site. The soil sampling included the biological soil crust, the topsoil and the subsoil up to 1,5 m. The narrow sampling of 20cm wide steps allow a mapping of the distribution of nutrients, carbonates and soluble salts of in order to show the impact of perennial plants and rainfall on soil properties. Soluble salts and nutrients were measured in a 1:5 water extraction, calcium carbonate was determined according to Scheibler. The data shows a strong influence of perennial shrubs on the deposition of dust and the redistribution of nutrients compared to the bare interspace. The distribution of highly and less soluble salts below the perennial shrub proofs a shallower water infiltration than in the comparable interspace area. The interspace between the plants is covered by a biological soil crust, which also strongly influences the matter fluxes by nutrient-fixation, creation of runoff and stabilization of the soil surface. These biological soil crusts show higher amounts of elements than the subsoils. The comparison of the three areas along the rainfall gradient shows higher inputs of soluble salts with increasing precipitation due to wet deposition, while carbonate contents are negatively correlated with decreasing precipitation. This is related to a higher dust input in the southern study site, which was generated in the lime stone Negev. Higher amounts of rainfall introduce higher element leaching. Perennial plants cover the surface and reduce infiltration. Inputs into the soils through dust have to be evaluated for every location to separate between effects of deposition and rainfall.

  8. Electrical properties of lunar soil dependence on frequency, temperature and moisture.

    NASA Technical Reports Server (NTRS)

    Strangway, D. W.; Chapman, W. B.; Olhoeft, G. R.; Carnes, J.

    1972-01-01

    It was found that the dielectric constant and loss tangent of lunar soil samples in the range from 100 Hz to 1 MHz are not strongly dependent on frequency provided care is taken to avoid exposure of the sample to atmospheric air containing moisture. The loss tangent value obtained is lower by nearly a factor 10 than any previously reported value. The measurement data imply that the surface layers of the moon are probably extremely transparent to radiowaves.

  9. A study of the utilization of ERTS-1 data from the Wabash River Basin. [soil mapping, crop identification, water resources

    NASA Technical Reports Server (NTRS)

    Landgrebe, D. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. In soil association mapping, computerized analysis of ERTS-1 MSS data has yielded images which will prove useful in the ongoing Cooperative Soil Survey program, involving the Soil Conservation Service of USDA and other state and local agencies. In the present mode of operation, a soil survey for a county may take up to 5 years to be completed. Results indicate that a great deal of soils information can be extracted from ERTS-1 data by computer analysis. This information is expected to be very valuable in the premapping conference phase of a soil survey, resulting in more efficient field operations during the actual mapping. In the earth surface features mapping effort it was found that temporal data improved the classification accuracy of forest classification in Tippecanoe County, Indiana. In water resources study a severe scanner look angle effect was observed in the aircraft scanner data of a test lake which was not present in ERTS-1 data of the same site. This effect was greatly accentuated by surface roughness caused by strong winds. Quantitative evaluation of urban features classification in ERTS-1 data was obtained. An 87.1% test accuracy was obtained for eight categories in Marion County, Indiana.

  10. Airborne soil organic particles generated by precipitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bingbing; Harder, Tristan H.; Kelly, Stephen T.

    Airborne organic particles play a critical role in Earth’s climate 1, public health 2, air quality 3, and hydrological and carbon cycles 4. However, sources and formation mechanisms for semi-solid and solid organic particles 5 are poorly understood and typically neglected in atmospheric models 6. Laboratory evidence suggests that fine particles can be formed from impaction of mineral surfaces by droplets 7. Here, we use chemical imaging of particles collected following rain events in the Southern Great Plains, Oklahoma, USA and after experimental irrigation to show that raindrop impaction of soils generates solid organic particles. We find that after rainmore » events, sub-micrometre solid particles, with a chemical composition consistent with soil organic matter, contributed up to 60% of atmospheric particles. Our irrigation experiments indicate that intensive water impaction is sufficient to cause ejection of airborne soil organic particles from the soil surface. Chemical imaging and micro-spectroscopy analysis of particle physico-chemical properties suggest that these particles may have important impacts on cloud formation and efficiently absorb solar radiation. Lastly, we suggest that raindrop-induced formation of solid organic particles from soils may be a widespread phenomenon in ecosystems such as agricultural systems and grasslands where soils are exposed to strong, episodic precipitation events 8.« less

  11. Airborne soil organic particles generated by precipitation

    DOE PAGES

    Wang, Bingbing; Harder, Tristan H.; Kelly, Stephen T.; ...

    2016-05-02

    Airborne organic particles play a critical role in Earth’s climate 1, public health 2, air quality 3, and hydrological and carbon cycles 4. However, sources and formation mechanisms for semi-solid and solid organic particles 5 are poorly understood and typically neglected in atmospheric models 6. Laboratory evidence suggests that fine particles can be formed from impaction of mineral surfaces by droplets 7. Here, we use chemical imaging of particles collected following rain events in the Southern Great Plains, Oklahoma, USA and after experimental irrigation to show that raindrop impaction of soils generates solid organic particles. We find that after rainmore » events, sub-micrometre solid particles, with a chemical composition consistent with soil organic matter, contributed up to 60% of atmospheric particles. Our irrigation experiments indicate that intensive water impaction is sufficient to cause ejection of airborne soil organic particles from the soil surface. Chemical imaging and micro-spectroscopy analysis of particle physico-chemical properties suggest that these particles may have important impacts on cloud formation and efficiently absorb solar radiation. Lastly, we suggest that raindrop-induced formation of solid organic particles from soils may be a widespread phenomenon in ecosystems such as agricultural systems and grasslands where soils are exposed to strong, episodic precipitation events 8.« less

  12. Sorption and Transport of Ranitidine in Natural Soils

    NASA Astrophysics Data System (ADS)

    Gaynor, A. J.; Vulava, V. M.

    2013-12-01

    Increasing levels of pharmaceuticals and their degradants are being discovered in natural water systems all over the world. These chemicals are reported to be discharged from wastewater treatment plants, sewage overflow, and leaking septic tanks. Ranitidine is an example of one such pharmaceutical chemical found in municipal drinking water, streams, and streambed sediments. It is a histamine H2-receptor antagonist, which inhibits the production of stomach acid and is commonly used to treat peptic ulcers and gastro esophageal reflux disease. Ranitidine is a complex organic compound; it is acidic, highly polar, and has two pKa values of approximately 8.2 and 2.7 because of the amine functional groups. When administered orally 25 - 30% of unchanged ranitidine has been shown to expel through urine. The objective of this research is to establish sorption and transport patterns of ranitidine in natural soils and to determine which soil properties influence these patterns the most. Laboratory experiments were preformed on A-horizon and B-horizon soil samples collected from the relatively undisturbed Francis Marion National Forest, a managed forest near Charleston, SC. The soils were characterized for chemical and physical properties: ranges of clay content = 6-20%, total organic content = 1-8%, and pH = 3.6-4.9. Kinetic reaction rates and equilibrium sorption isotherms were measured using batch experiments, whereas column experiments were used to quantify transport behavior. The reaction rates were -0.22/day and -0.33/day for organic-rich and clay-rich soils, respectively. The kinetic reaction rates were used to determine equilibration times for further equilibrium batch reactor experiments, which have soil solutions spiked with concentrations of ranitidine ranging from 0.1 mg/L to 100 mg/L. The concentration remaining in solution (C, mg/L) was plotted against the concentration in the soil (q, mg/kg) to create sorption isotherms. Ranitidine was more strongly sorbed to B-horizon than to A-horizon soils, implying a strong preference for soils higher in clay content. Freundlich model (q = Kf Cn, where Kf and n are fitting parameters) fit the sorption isotherms. Glass chromatography columns packed with soil were used for column experiments. Ranitidine tracer was injected into saturated soil columns and the breakthrough tracer concentrations were plotted as a function of time. The shape of these breakthrough curves indicated that there were two distinct sorption sites on soils - organic matter and clay minerals - which influenced tracer transport. A two-region, nonequilibrium transport code was used to model the breakthrough curves. These experiments indicate that ranitidine sorbs more strongly to clay-rich soils than to organic-rich soils. The presence of amine functional groups in ranitidine's chemical structure results in its acidic behavior in the soil solution. In acidic solutions, the cationic form of ranitidine likely forms ionic bonds with negatively charged clay surfaces. Other components of ranitidine are likely to form covalent bonds with organic matter. The data shows the complex nature of ranitidine in interactions with environmental surfaces.

  13. Chemistry and photochemistry of low-volatility organic chemicals on environmental surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, G.C.; Hebert, V.R.; Zepp, R.G.

    Hydrophobic organic xenobiotics such as polychlorinated dibenzodioxins and polycyclic aromatic hydrocarbons have strong tendencies to sorb on environmental surfaces. This paper summarizes a workshop in which scientists and modelers assembled to discuss nonbiological processes that affect sorption to soil or sediment surfaces and on atmospheric particles. The 20 scientists discussed a variety of topics with a major emphasis on the fate of chlorinated dioxins. The topics include transformation processes, mobility of organic pollutants, fate of organics, and evaluative fate models.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cobb, M. A.; Dockter, R. E.

    The permeability of ground surfaces within the U.S. Department of Energy’s (DOE) Hanford Site strongly influences boundary conditions when simulating the movement of groundwater using the Subsurface Transport Over Multiple Phases model. To conduct site-wide modeling of cumulative impacts to groundwater from past, current, and future waste management activities, a site-wide assessment of the permeability of surface conditions is needed. The surface condition of the vast majority of the Hanford Site has been and continues to be native soils vegetated with dryland grasses and shrubs.

  15. On the soil moisture estimate at basin scale in Mediterranean basins with the ASAR sensor: the Mulargia basin case study

    NASA Astrophysics Data System (ADS)

    Fois, Laura; Montaldo, Nicola

    2017-04-01

    Soil moisture plays a key role in water and energy exchanges between soil, vegetation and atmosphere. For water resources planning and managementthesoil moistureneeds to be accurately and spatially monitored, specially where the risk of desertification is high, such as Mediterranean basins. In this sense active remote sensors are very attractive for soil moisture monitoring. But Mediterranean basinsaretypicallycharacterized by strong topography and high spatial variability of physiographic properties, and only high spatial resolution sensorsare potentially able to monitor the strong soil moisture spatial variability.In this regard the Envisat ASAR (Advanced Synthetic Aperture Radar) sensor offers the attractive opportunity ofsoil moisture mapping at fine spatial and temporal resolutions(up to 30 m, every 30 days). We test the ASAR sensor for soil moisture estimate in an interesting Sardinian case study, the Mulargia basin withan area of about 70 sq.km. The position of the Sardinia island in the center of the western Mediterranean Sea basin, its low urbanization and human activity make Sardinia a perfect reference laboratory for Mediterranean hydrologic studies. The Mulargia basin is a typical Mediterranean basinin water-limited conditions, and is an experimental basin from 2003. For soil moisture mapping23 satellite ASAR imagery at single and dual polarization were acquired for the 2003-2004period.Satellite observationsmay bevalidated through spatially distributed soil moisture ground-truth data, collected over the whole basin using the TDR technique and the gravimetric method, in days with available radar images. The results show that ASAR sensor observations can be successfully used for soil moisture mapping at different seasons, both wet and dry, but an accurate calibration with field data is necessary. We detect a strong relationship between the soil moisture spatial variability and the physiographic properties of the basin, such as soil water storage capacity, deep and texture of soils, type and density of vegetation, and topographic parameters. Finally we demonstrate that the high resolution ASAR imagery are an attractive tool for estimating surface soil moisture at basin scale, offering a unique opportunity for monitoring the soil moisture spatial variability in typical Mediterranean basins.

  16. [Spatial variation of soil phosphorus in flooded area of the Yellow River based on GIS and geo-statistical methods: A case study in Zhoukou City, Henan, China.

    PubMed

    Jia, Zhen Yu; Zhang, Jun Hua; Ding, Sheng Yan; Feng, Shu; Xiong, Xiao Bo; Liang, Guo Fu

    2016-04-22

    Soil phosphorus is an important indicator to measure the soil fertility, because the content of soil phosphorus has an important effect on physical and chemical properties of soil, plant growth, and microbial activity in soil. In this study, the soil samples collecting and indoor analysis were conducted in Zhoukou City located in the flooded area of the Yellow River. By using GIS combined with geo-statistics, we tried to analyze the spatial variability and content distribution of soil total phosphorus (TP) and soil available phosphorus (AP) in the study area. Results showed that TP and AP of both soil layers (0-20 cm and 20-40 cm) were rich, and the contents of TP and AP in surface layer (0-20 cm) were higher than in the second layer (20-40 cm). TP and AP of both soil layers exhibited variation at medium level, and AP had varied much higher than TP. TP of both layers showed medium degree of anisotropy which could be well modeled by the Gaussian model. TP in the surface layer showed strong spatial correlation, but that of the second layer had medium spatial correlation. AP of both layers had a weaker scope in anisotropy which could be simulated by linear model, and both soil layers showed weaker spatial correlations. TP of both soil layers showed a slowly rising change from southwest to northeast of the study area, while it gradually declined from northwest to southeast. AP in soil surface layer exhibited an increase tendency firstly and then decrease from southwest to the northeast, while it decreased firstly and then increased from southeast to the northwest. AP in the second soil layer had an opposite change in the southwest to the northeast, while it showed continuously increasing tendency from northwest to the southeast. The contents of TP and AP in the surface layer presented high grades and the second layer of TP belonged to medium grade, but the second layer of AP was in a lower grade. The artificial factors such as land use type, cropping system, irrigation and fertilization were the main factors influencing the distribution and spatial variation of soil phosphorus in this area.

  17. Calcium depletion in a Southeastern United States forest ecosystem

    USGS Publications Warehouse

    Huntington, T.G.; Hooper, R.P.; Johnson, C.E.; Aulenbach, Brent T.; Cappellato, R.; Blum, A.E.

    2000-01-01

    Forest soil Ca depletion through leaching and vegetation uptake may threaten long-term sustainability of forest productivity in the southeastern USA. This study was conducted to assess Ca pools and fluxes in a representative southern Piedmont forest to determine the soil Ca depletion rate. Soil Ca storage, Ca inputs in atmospheric deposition, and outputs in soil leaching and vegetation uptake were investigated at the Panola Mountain Research Watershed (PMRW) near Atlanta, GA. Average annual outputs of 12.3 kg ha-1 yr-1 in uptake into merchantable wood and 2.71 kg ha-1 yr-1 soil leaching exceeded inputs in atmospheric deposition of 2.24 kg ha-1 yr-1. The annual rate of Ca uptake into merchantable wood exceeds soil leaching losses by a factor of more than five. The potential for primary mineral weathering to provide a substantial amount of Ca inputs is low. Estimates of Ca replenishment through mineral weathering in the surface 1 m of soil and saprolite was estimated to be 0.12 kg ha-1 yr-1. The weathering rate in saprolite and partially weathered bedrock below the surface 1 m is similarly quite low because mineral Ca is largely depleted. The soil Ca depletion rate at PMRW is estimated to be 12.7 kg ha-1 yr-1. At PMRW and similar hardwood-dominated forests in the Piedmont physiographic province, Ca depletion will probably reduce soil reserves to less than the requirement for a merchantable forest stand in ???80 yr. This assessment and comparable analyses at other southeastern USA forest sites suggests that there is a strong potential for a regional problem in forest nutrition in the long term.Forest soil Ca depletion through leaching and vegetation uptake may threaten long-term sustainability of forest productivity in the southeastern USA. This study was conducted to assess Ca pools and fluxes in a representative southern Piedmont forest to determine the soil Ca depletion rate. Soil Ca storage, Ca inputs in atmospheric deposition, and outputs in soil leaching and vegetation uptake were investigated at the Panola Mountain Research Watershed (PMRW) near Atlanta, GA. Average annual outputs of 12.3 kg ha-1 yr-1 in uptake into merchantable wood and 2.71 kg ha-1 yr-1 soil leaching exceeded inputs in atmospheric deposition of 2.24 kg ha-1 yr-1. The annual rate of Ca uptake into merchantable wood exceeds soil leaching losses by a factor of more than five. The potential for primary mineral weathering to provide a substantial amount of Ca inputs is low. Estimates of Ca replenishment through mineral weathering in the surface 1 m of soil and saprolite was estimated to be 0.12 kg ha-1 yr-1. The weathering rate in saprolite and partially weathered bedrock below the surface 1 m is similarly quite low because mineral Ca is largely depleted. The soil Ca depletion rate at PMRW is estimated to be 12.7 kg ha-1 yr-1. At PMRW and similar hardwood-dominated forests in the Piedmont physiographic province, Ca depletion will probably reduce soil reserves to less than the requirement for a merchantable forest stand in ???80 yr. This assessment and comparable analyses at other southeastern USA forest sites suggests that there is a strong potential for a regional problem in forest nutrition in the long term.

  18. Red Cedar Invasion Along the Missouri River, South Dakota: Cause and Consequence

    NASA Astrophysics Data System (ADS)

    Greene, S.; Knox, J. C.

    2012-12-01

    This research evaluates drivers of and ecosystem response to red cedar (Juniperus virginiana) invasion of riparian surfaces downstream of Gavin's Point Dam on the Missouri River. Gavin's Point Dam changed the downstream geomorphology and hydrology of the river and its floodplain by reducing scouring floods and flood-deposited sediment. The native cottonwood species (Populus deltoides) favors cleared surfaces with little to no competitors to establish. Now that there are infrequent erosive floods along the riparian surfaces to remove competitor seeds and seedlings, other vegetation is able to establish. Red cedar is invading the understory of established cottonwood stands and post-dam riparian surfaces. To assess reasons and spatial patterns for the recent invasion of red cedar, a stratified random sampling of soil, tree density and frequency by species, and tree age of 14 forest stands was undertaken along 59 river kilometers of riparian habitat. Soil particle size was determined using laser diffraction and tree ages were estimated from ring counts of tree cores. As an indicator of ecosystem response to invasion, we measured organic matter content in soil collected beneath red cedar and cottonwood trees at three different depths. Of 565 red cedars, only two trees were established before the dam was built. We applied a multiple regression model of red cedar density as a function of cottonwood density and percent sand (63-1000 microns in diameter) in StatPlus© statistical software. Cottonwood density and percent sand are strongly correlated with invasion of red cedar along various riparian surfaces (n = 59, R2 = 0.42, p-values < 0.05). No significant differences exist between organic matter content of soil beneath red cedar and cottonwood trees (p-value > 0.05 for all depths). These findings suggest that the dam's minimization of downstream high-stage flows opened up new habitat for red cedar to establish. Fluvial geomorphic surfaces reflect soil type and cottonwood density and, in turn, predict susceptibility of a surface to red cedar invasion. Nonetheless, soils underlying red cedar and cottonwood trees are functionally similar with regard to soil organic matter content.

  19. Estimation of Land Surface Fluxes and Their Uncertainty via Variational Data Assimilation Approach

    NASA Astrophysics Data System (ADS)

    Abdolghafoorian, A.; Farhadi, L.

    2016-12-01

    Accurate estimation of land surface heat and moisture fluxes as well as root zone soil moisture is crucial in various hydrological, meteorological, and agricultural applications. "In situ" measurements of these fluxes are costly and cannot be readily scaled to large areas relevant to weather and climate studies. Therefore, there is a need for techniques to make quantitative estimates of heat and moisture fluxes using land surface state variables. In this work, we applied a novel approach based on the variational data assimilation (VDA) methodology to estimate land surface fluxes and soil moisture profile from the land surface states. This study accounts for the strong linkage between terrestrial water and energy cycles by coupling the dual source energy balance equation with the water balance equation through the mass flux of evapotranspiration (ET). Heat diffusion and moisture diffusion into the column of soil are adjoined to the cost function as constraints. This coupling results in more accurate prediction of land surface heat and moisture fluxes and consequently soil moisture at multiple depths with high temporal frequency as required in many hydrological, environmental and agricultural applications. One of the key limitations of VDA technique is its tendency to be ill-posed, meaning that a continuum of possibilities exists for different parameters that produce essentially identical measurement-model misfit errors. On the other hand, the value of heat and moisture flux estimation to decision-making processes is limited if reasonable estimates of the corresponding uncertainty are not provided. In order to address these issues, in this research uncertainty analysis will be performed to estimate the uncertainty of retrieved fluxes and root zone soil moisture. The assimilation algorithm is tested with a series of experiments using a synthetic data set generated by the simultaneous heat and water (SHAW) model. We demonstrate the VDA performance by comparing the (synthetic) true measurements (including profile of soil moisture and temperature, land surface water and heat fluxes, and root water uptake) with VDA estimates. In addition, the feasibility of extending the proposed approach to use remote sensing observations is tested by limiting the number of LST observations and soil moisture observations.

  20. Seasonal variations in soil water in two woodland savannas of central Brazil with different fire history.

    PubMed

    Quesada, Carlos Alberto; Hodnett, Martin G; Breyer, Lacê M; Santos, Alexandre J B; Andrade, Sérgio; Miranda, Heloisa S; Miranda, Antonio Carlos; Lloyd, Jon

    2008-03-01

    Changes in soil water content were determined in two cerrado (sensu stricto) areas with contrasting fire history and woody vegetation density. The study was undertaken near Brasília, Brazil, from 1999 to 2001. Soil water content was measured with a neutron probe in three access tubes per site to a depth of 4.7 m. One site has been protected from fire for more than 30 years and, as a consequence, has a high density of woody plants. The other site had been frequently burned, and has a high herbaceous vegetation density and less woody vegetation. Soil water uptake patterns were strongly seasonal, and despite similarities in hydrological processes, the protected area systematically used more water than the burned area. Three temporarily contiguous patterns of water absorption were differentiated, characterized by variation in the soil depth from which water was extracted. In the early dry season, vegetation used water from throughout the soil profile but with a slight preference for water in the upper soil layers. Toward the peak of the dry season, vegetation had used most or all available water from the surface to a depth of 1.7 m, but continued to extract water from greater depths. Following the first rains, all water used was from the recently wetted upper soil layers only. Evaporation rates were a linear function of soil water availability, indicating a strong coupling of atmospheric water demand and the physiological response of the vegetation.

  1. Soils of the Eastern mountainsides of the southern Sikhote-Alin (on the example of Lazovsky nature reserve, Russia)

    NASA Astrophysics Data System (ADS)

    Tregubova, Valentina; Semal, Victoria; Nesterova, Olga; Yaroslavtsev, Alexis

    2017-04-01

    The most common soils of the southern Far East are Brownzems under Russian classification (Cambisols), which are the zonal ones, emerging on the steep slopes and tops of hills, on high river terraces under broad-leaved and cedar-broad-leaved forests. Those soils formed due to two processes: organic matter metamorphism and clayization by siallite, leading to the formation of clay-metamorphic horizon Bw. The main morphological features of Cambisols are not deep soil profile (50 - 70 cm), weak horizons differentiation, with lots of cobble. Chemically those soils are low saturated, even in the humus horizon. Distribution of total absorbed bases is mostly accumulative, which is related to the distribution of humus in these soils, and the predominant type of clay fraction distribution of. The only exception are Humic Cambisols and Humic Cambisols Calcic which were formed on redeposited products of limestone rock weathering. Fine-grained deposits are mainly loams with a low content of silt. Silt distribution has an accumulative character with a gradual decrease in the content of silt down from the top of the profile. Layer of fresh leaf fall is very common for the Humic Cambisols surfaces, and under it there is the litter of plant residues with different degrees of decomposition. Accumulative humus horizon is dark gray with brownish tint, thin, from 10 to 15 cm in depth, loose, crumbly, highly penetrated by roots, with a strong granular structure, with aggregates tightly attached to the root hairs, sandy loam or sandy clay loam. The middle horizon is brown, yellowish-brown, divided into sub-horizons, with different color intensity, density, soil texture and amount of cobble. Dystric Cambisols are acidic or strongly acidic with low saturation of soil absorbing complex. Due to amount and distribution of organic matter these soils can be divided into two groups. The first group is soils with accumulative humus distribution: with a low depth humus-accumulative horizon (11 - 12 cm) and high content of organic matter (23 - 26 %); humus in the upper horizons mainly consists of humic acids, while in lower horizons it is with higher ratio of fulvic acids. The second group is soils with a gradual humus distribution along the profile and with a smaller amount of organic matter in the upper horizon (9 - 13 %) and with no differentiation in humus composition. Folic Cambisols are formed on the watershed surfaces, on the steep slopes under pine and oak trees. Under thin litter horizon these soils have organic-accumulative horizon of well decomposed organic matter, but in contrast with Dystric Cambisols it doesn't have strong granular structure. At the bottom the organic horizon is humic-impregnated or has clear streaks of humus. Humic Cambisols are formed in the lower parts of slopes, on steep slopes and high river terraces under pine and deciduous forests. All this soils have humified litter horizon, which is up to 7 cm in depth, weak differentiation of the soil profile, deep humus-accumulative horizon (18 - 31 cm) with dark gray, almost black color, with strong granular structure and loam or clay loam texture. Soil acidity is determined by the lithogenic basis. Base saturation is quite high (77 - 90%) in mineral horizons and is up to 70 % in organic and accumulative ones. There is a high amount of humus on the entire profile (5 - 16 %), which consists of humic acids in the upper half of the profile and of fulvates at the bottom. Humic Cambisols Gleyic are located in the lower parts of gentle slopes under mixed forest. Due to higher moisture at the lower parts of slopes this soils have signs of weak gley process in dense subsoil horizons in the form of small light grey spots. Humic Leptosols are weakly developed soils formed on rocky hills, boulders, rocky outcrops, under thick moss layer, under which is a layer of weathered gravel rock. Humic Cambisols (Calcic) are formed on the surface sediments of limestone. They have a deep soil profile, up to 40 cm and it's humus-accumulative horizon is dark gray or black, gradually passing into soil-forming rock. Bw horizon, typical for Cambisols, is weak.

  2. Kinetically limited weathering at low denudation rates in semi-arid climates

    NASA Astrophysics Data System (ADS)

    Vanacker, V.; Schoonejans, J.; Opfergelt, S.; Ameijeiras-Marino, Y.; Christl, M.

    2016-12-01

    On Earth, the Critical Zone supports terrestrial life, being the near-surface environment where interactions between the atmosphere, lithosphere, hydrosphere, and biosphere take place Quantitative understanding of the interaction between mechanical rock breakdown, chemical weathering, and physical erosion is essential for unraveling Earth's biogeochemical cycles. In this study, we explore the role of soil water balance on regulating soil chemical weathering under water deficit regimes. Weathering rates and intensities were evaluated for nine soil profiles located on convex ridge crests of three mountain ranges in the Spanish Betic Cordillera. We present and compare quantitative information on soil weathering, chemical depletion and total denudation that were derived based on geochemical mass balance, 10Be cosmogenic nuclides and U-series disequilibria. Soil production rates determined based on U-series isotopes (238U, 234U, 230Th and 226Ra) are of the same order of magnitude as 10Be-derived denudation rates, suggesting steady state soil thickness, in two out of three sampling sites. The chemical weathering intensities are relatively low (˜5 to 30% of the total denudation of the soil) and negatively correlated with the magnitude of the water deficit in soils. Soil weathering extents increase (nonlinearly) with soil thickness and decrease with increasing surface denudation rates, consistent with kinetically limited or controlled weathering. Our study suggests that soil residence time and water availability limit weathering processes in semi-arid climates, which has not been validated previously with field data. An important implication of this finding is that climatic regimes may strongly regulate soil weathering by modulating soil solute fluxes.

  3. [Priming effect of biochar on the minerialization of native soil organic carbon and the mechanisms: A review.

    PubMed

    Chen, Ying; Liu, Yu Xue; Chen, Chong Jun; Lyu, Hao Hao; Wa, Yu Ying; He, Li Li; Yang, Sheng Mao

    2018-01-01

    In recent years, studies on carbon sequestration of biochar in soil has been in spotlight owing to the specific characteristics of biochar such as strong carbon stability and well developed pore structure. However, whether biochar will ultimately increase soil carbon storage or promote soil carbon emissions when applied into the soil? This question remains controversial in current academic circles. Further research is required on priming effect of biochar on mineralization of native soil organic carbon and its mechanisms. Based on the analysis of biochar characteristics, such as its carbon composition and stability, pore structure and surface morphology, research progress on the priming effect of biochar on the decomposition of native soil organic carbon was reviewed in this paper. Furthermore, possible mechanisms of both positive and negative priming effect, that is promoting and suppressing the mineralization, were put forward. Positive priming effect is mainly due to the promotion of soil microbial activity caused by biochar, the preferential mineralization of easily decomposed components in biochar, and the co-metabolism of soil microbes. While negative priming effect is mainly based on the encapsulation and adsorption protection of soil organic matter due to the internal pore structure and the external surface of biochar. Other potential reasons for negative priming effect can be the stabilization resulted from the formation of organic-inorganic complex promoted by biochar in the soil, and the inhibition of activity of soil microbes and its enzymes by biochar. Finally, future research directions were proposed in order to provide theoretical basis for the application of biochar in soil carbon sequestration.

  4. Inferring Land Surface Model Parameters for the Assimilation of Satellite-Based L-Band Brightness Temperature Observations into a Soil Moisture Analysis System

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf H.; De Lannoy, Gabrielle J. M.

    2012-01-01

    The Soil Moisture and Ocean Salinity (SMOS) satellite mission provides global measurements of L-band brightness temperatures at horizontal and vertical polarization and a variety of incidence angles that are sensitive to moisture and temperature conditions in the top few centimeters of the soil. These L-band observations can therefore be assimilated into a land surface model to obtain surface and root zone soil moisture estimates. As part of the observation operator, such an assimilation system requires a radiative transfer model (RTM) that converts geophysical fields (including soil moisture and soil temperature) into modeled L-band brightness temperatures. At the global scale, the RTM parameters and the climatological soil moisture conditions are still poorly known. Using look-up tables from the literature to estimate the RTM parameters usually results in modeled L-band brightness temperatures that are strongly biased against the SMOS observations, with biases varying regionally and seasonally. Such biases must be addressed within the land data assimilation system. In this presentation, the estimation of the RTM parameters is discussed for the NASA GEOS-5 land data assimilation system, which is based on the ensemble Kalman filter (EnKF) and the Catchment land surface model. In the GEOS-5 land data assimilation system, soil moisture and brightness temperature biases are addressed in three stages. First, the global soil properties and soil hydraulic parameters that are used in the Catchment model were revised to minimize the bias in the modeled soil moisture, as verified against available in situ soil moisture measurements. Second, key parameters of the "tau-omega" RTM were calibrated prior to data assimilation using an objective function that minimizes the climatological differences between the modeled L-band brightness temperatures and the corresponding SMOS observations. Calibrated parameters include soil roughness parameters, vegetation structure parameters, and the single scattering albedo. After this climatological calibration, the modeling system can provide L-band brightness temperatures with a global mean absolute bias of less than 10K against SMOS observations, across multiple incidence angles and for horizontal and vertical polarization. Third, seasonal and regional variations in the residual biases are addressed by estimating the vegetation optical depth through state augmentation during the assimilation of the L-band brightness temperatures. This strategy, tested here with SMOS data, is part of the baseline approach for the Level 4 Surface and Root Zone Soil Moisture data product from the planned Soil Moisture Active Passive (SMAP) satellite mission.

  5. Stabilization of ancient organic matter in deep buried paleosols

    NASA Astrophysics Data System (ADS)

    Marin-Spiotta, E.; Chaopricha, N. T.; Mueller, C.; Diefendorf, A. F.; Plante, A. F.; Grandy, S.; Mason, J. A.

    2012-12-01

    Buried soils representing ancient surface horizons can contain large organic carbon reservoirs that may interact with the atmosphere if exposed by erosion, road construction, or strip mining. Paleosols in long-term depositional sites provide a unique opportunity for studying the importance of different mechanisms on the persistence of organic matter (OM) over millennial time-scales. We report on the chemistry and bioavailability of OM stored in the Brady soil, a deeply buried (7 m) paleosol in loess deposits of southwestern Nebraska, USA. The Brady Soil developed 9,000-13,500 years ago during a time of warming and drying. The Brady soil represents a dark brown horizon enriched in C relative to loess immediately above and below. Spanning much of the central Great Plains, this buried soil contains large C stocks due to the thickness of its A horizon (0.5 to 1 m) and wide geographic extent. Our research provides a unique perspective on long-term OM stabilization in deep soils using multiple analytical approaches. Soils were collected from the Brady soil A horizon (at 7 m depth) and modern surface A horizons (0-15 cm) at two sites for comparison. Soils were separated by density fractionation using 1.85 g ml-1 sodium polytungstate into: free particulate organic matter (fPOM) and aggregate-occluded (oPOM) of two size classes (large: >20 μm, and small: < 20 μm). The remaining dense fraction was separated into sand, silt, and clay size fractions. The distribution and age of C among density and particle-size fractions differed between surface and Brady soils. We isolated the source of the characteristic dark coloring of the Brady soil to the oPOM-small fraction, which also contained 20% of the total organic C pool in the Brady soil. The oPOM-small fraction and the bulk soil in the middle of the Brady A horizon had 14C ages of 10,500-12,400 cal yr BP, within the time that the soil was actively forming at the land surface. Surface soils showed modern ages. Lipid analyses of the Brady soil indicate a predominance of terrestrial vegetation biomarkers. The strong presence of vascular plant-derived terpenoids and long-chain n-alkyl lipids suggest a grassland origin. Respiration rates of the buried soil in a laboratory incubation were negligible compared to modern surface A and B horizons, and responded little to wetting. These results suggest that moisture alone does not limit decomposition in the buried soil, at least over the 120-day incubation. Solid-state 13C-NMR spectroscopy reveals that the Brady soil is enriched in aromatic C, with high contributions of char, especially in the oPOM-small fraction. Thermal analysis showed high thermal stability of oPOM-small and bulk soils in the Brady soil compared to modern surface horizons. Radiocarbon ages and chemical composition of OM isolated from a deep paleosol suggest little modification since burial and may indicate rapid stabilization of plant-derived organic C by burial. The accumulation of char in the aggregate-protected fraction of the Brady soil provides additional evidence for warming and drying conditions during the time of loess deposition at this site. Developing a better understanding of the mechanisms that control long-term SOM stabilization is important for understanding how soil C is sequestered over millennia and for predicting how future disturbances may affect deep soil C.

  6. Surface elevation dynamics in a regenerating mangrove forest at Homebush Bay, Australia

    USGS Publications Warehouse

    Rogers, K.; Saintilan, N.; Cahoon, D.

    2005-01-01

    Following the dieback of an interior portion of a mangrove forest at Homebush Bay, Australia, surface elevation tables and feldspar marker horizons were installed in the impacted, intermediate and control forest to measure vertical accretion, elevation change, and shallow subsidence. The objectives of the study were to determine current vertical accretion and elevation change rates as a guide to understanding mangrove dieback, ascertain the factors controlling surface elevation change, and investigate the sustainability of the mangrove forest under estimated sea-level rise conditions. The study demonstrates that the influences on surface dynamics are more complex than soil accretion and soil autocompaction alone. During strong vegetative regrowth in the impacted forest, surface elevation increase exceeded vertical accretion apparently as a result of belowground biomass production. In addition, surface elevation in all forest zones was correlated with total monthly rainfall during a severe El Ni?o event, highlighting the importance of rainfall to groundwater recharge and surface elevation. Surface elevation increase for all zones exceeded the 85-year sea level trend for Sydney Harbour. Since mean sea-level also decreased during the El Ni?o event, the decrease in surface elevation did not translate to an increase in inundation frequency or influence the sustainability of the mangrove forest. These findings indicate that subsurface soil processes such as organic matter accumulation and groundwater flux can significantly influence mangrove surface elevation, and contribute to the long-term sustainability of mangrove systems under a scenario of rising sea levels.

  7. Biogeochemistry of heavy metals in contaminated excessively moistened soils (Analytical review)

    NASA Astrophysics Data System (ADS)

    Vodyanitskii, Yu. N.; Plekhanova, I. O.

    2014-03-01

    The biogeochemical behavior of heavy metals in contaminated excessively moistened soils depends on the development of reducing conditions (either moderate or strong). Upon the moderate biogenic reduction, Cr as the metal with variable valence forms low-soluble compounds, which decreases its availability to plants and prevents its penetration into surface- and groundwater. Creation of artificial barriers for Cr fixation on contaminated sites is based on the stimulation of natural metal-reducing bacteria. Arsenic, being a metalloid with a variable valence, is mobilized upon the moderate biogenic reduction. The mobility of siderophilic heavy metals with a constant valence grows under the moderate reducing conditions at the expense of dissolution of iron (hydr)oxides as carriers of these metals. Zinc, which can enter the newly formed goethite lattice, is an exception. Strong reduction processes in organic excessively moist and flooded soils (usually enriched in S) lead to the formation of low-soluble sulfides of heavy elements with both variable (As) and constant (Cu, Ni, Zn, and Pb) valence. On changing aquatic regime in overmoistened soils and their drying, sulfides of heavy metals are oxidized, and previously fixed metals are mobilized.

  8. Scaling considerations related to interactions of hydrologic, pedologic and geomorphic processes (Invited)

    NASA Astrophysics Data System (ADS)

    Sidle, R. C.

    2013-12-01

    Hydrologic, pedologic, and geomorphic processes are strongly interrelated and affected by scale. These interactions exert important controls on runoff generation, preferential flow, contaminant transport, surface erosion, and mass wasting. Measurement of hydraulic conductivity (K) and infiltration capacity at small scales generally underestimates these values for application at larger field, hillslope, or catchment scales. Both vertical and slope-parallel saturated flow and related contaminant transport are often influenced by interconnected networks of preferential flow paths, which are not captured in K measurements derived from soil cores. Using such K values in models may underestimate water and contaminant fluxes and runoff peaks. As shown in small-scale runoff plot studies, infiltration rates are typically lower than integrated infiltration across a hillslope or in headwater catchments. The resultant greater infiltration-excess overland flow in small plots compared to larger landscapes is attributed to the lack of preferential flow continuity; plot border effects; greater homogeneity of rainfall inputs, topography and soil physical properties; and magnified effects of hydrophobicity in small plots. At the hillslope scale, isolated areas with high infiltration capacity can greatly reduce surface runoff and surface erosion at the hillslope scale. These hydropedologic and hydrogeomorphic processes are also relevant to both occurrence and timing of landslides. The focus of many landslide studies has typically been either on small-scale vadose zone process and how these affect soil mechanical properties or on larger scale, more descriptive geomorphic studies. One of the issues in translating laboratory-based investigations on geotechnical behavior of soils to field scales where landslides occur is the characterization of large-scale hydrological processes and flow paths that occur in heterogeneous and anisotropic porous media. These processes are not only affected by the spatial distribution of soil physical properties and bioturbations, but also by geomorphic attributes. Interactions among preferential flow paths can induce rapid pore water pressure response within soil mantles and trigger landslides during storm peaks. Alternatively, in poorly developed and unstructured soils, infiltration occurs mainly through the soil matrix and a lag time exists between the rainfall peak and development of pore water pressures at depth. Deep, slow-moving mass failures are also strongly controlled by secondary porosity within the regolith with the timing of activation linked to recharge dynamics. As such, understanding both small and larger scale processes is needed to estimate geomorphic impacts, as well as streamflow generation and contaminant migration.

  9. Application of the Spectral Neighborhood of Soil Line Technique to Analyze the Intensity of Soil Use in 1985-2014 (by the Example of Three Districts of Tula Oblast)

    NASA Astrophysics Data System (ADS)

    Rukhovich, D. I.; Rukhovich, A. D.; Rukhovich, D. D.; Simakova, M. S.; Kulyanitsa, A. L.; Koroleva, P. V.

    2018-03-01

    The technique of separation of the spectral neighborhood of soil line (SNSL) makes it possible to perform quantitative estimates of the intensity of agricultural land use. This is achieved via calculation of the frequency of occurrence of bare soil surface (BSS). It is shown that the frequency of occurrence of BSS in 1984-1994 was linearly related to the soil type within the sequence of soddy strongly podzolic, soddy moderately podzolic, soddy slightly podzolic (Eutric Albic Glossic Retisols (Loamic, Aric, Cutanic, Differentic, Ochric)); light gray forest (Eutric Retisols (Loamic, Aric, Cutanic, Differentic, Ochric)), gray forest (Eutric Retisols (Loamic, Aric, Cutanic, Ochric)), and dark gray forest soils (Luvic Retic Greyzemic Phaeozems (Loamic, Aric)); podzolized chernozems (Luvic Greyzemic Chernic Phaeozems (Loamic, Aric, Pachic)) and leached chernozems (Luvic Chernic Phaeozems (Loamic, Aric, Pachic)). The intensity of exploitation of the least and most fertile soils in this sequence comprised 28 and 48%, respectively. In the next decade (1995-2004) the relationship between the type of soil and the intensity of its exploitation drastically changed; the intensity of exploitation of the leas and most fertile soils comprised 14 and 43%, respectively. Nearly a half of agricultural lands in the zones of soddy-podzolic and gray forest soils were abandoned, because the cultivation of the soils with the natural fertility below that in the podzolized chernozems became economically unfeasible under conditions of the economic crisis of the 1990s. The spatiotemporal relationships between the character of the soil cover and the intensity of exploitation of the agricultural lands manifest themselves by the decreasing frequency of occurrence of BSS from leached chernozems to soddy strongly podzolic soils and from 1985 to 2014.

  10. Assessment of Radioactive Materials and Heavy Metals in the Surface Soil around the Bayanwula Prospective Uranium Mining Area in China

    PubMed Central

    Bai, Haribala; Hu, Bitao; Wang, Chengguo; Bao, Shanhu; Sai, Gerilemandahu; Xu, Xiao; Zhang, Shuai; Li, Yuhong

    2017-01-01

    The present work is the first systematic and large scale study on radioactive materials and heavy metals in surface soil around the Bayanwula prospective uranium mining area in China. In this work, both natural and anthropogenic radionuclides and heavy metals in 48 surface soil samples were analyzed using High Purity Germanium (HPGe) γ spectrometry and inductively coupled plasma-mass spectrometry (ICP-MS). The obtained mean activity concentrations of 238U, 226Ra, 232Th, 40K, and 137Cs were 25.81 ± 9.58, 24.85 ± 2.77, 29.40 ± 3.14, 923.0 ± 47.2, and 5.64 ± 4.56 Bq/kg, respectively. The estimated average absorbed dose rate and annual effective dose rate were 76.7 ± 3.1 nGy/h and 83.1 ± 3.8 μSv, respectively. The radium equivalent activity, external hazard index, and internal hazard index were also calculated, and their mean values were within the acceptable limits. The estimated lifetime cancer risk was 3.2 × 10−4/Sv. The heavy metal contents of Cr, Ni, Cu, Zn, As, Cd, and Pb from the surface soil samples were measured and their health risks were then assessed. The concentrations of all heavy metals were much lower than the average backgrounds in China except for lead which was about three times higher than that of China’s mean. The non-cancer and cancer risks from the heavy metals were estimated, which are all within the acceptable ranges. In addition, the correlations between the radionuclides and the heavy metals in surface soil samples were determined by the Pearson linear coefficient. Strong positive correlations between radionuclides and the heavy metals at the 0.01 significance level were found. In conclusion, the contents of radionuclides and heavy metals in surface soil around the Bayanwula prospective uranium mining area are at a normal level. PMID:28335450

  11. Soil Moisture and Snow Cover: Active or Passive Elements of Climate

    NASA Technical Reports Server (NTRS)

    Oglesby, Robert J.; Marshall, Susan; Erickson, David J., III; Robertson, Franklin R.; Roads, John O.; Arnold, James E. (Technical Monitor)

    2002-01-01

    A key question is the extent to which surface effects such as soil moisture and snow cover are simply passive elements or whether they can affect the evolution of climate on seasonal and longer time scales. We have constructed ensembles of predictability studies using the NCAR CCM3 in which we compared the relative roles of initial surface and atmospheric conditions over the central and western U.S. in determining the subsequent evolution of soil moisture and of snow cover. Results from simulations with realistic soil moisture anomalies indicate that internal climate variability may be the strongest factor, with some indication that the initial atmospheric state is also important. Model runs with exaggerated soil moisture reductions (near-desert conditions) showed a much larger effect, with warmer surface temperatures, reduced precipitation, and lower surface pressures; the latter indicating a response of the atmospheric circulation. These results suggest the possibility of a threshold effect in soil moisture, whereby an anomaly must be of a sufficient size before it can have a significant impact on the atmospheric circulation and climate. Results from simulations with realistic snow cover anomalies indicate that the time of year can be crucial. When introduced in late winter, these anomalies strongly affected the subsequent evolution of snow cover. When introduced in early winter, however, little or no effect is seen on the subsequent snow cover. Runs with greatly exaggerated initial snow cover indicate that the high reflectivity of snow is the most important process by which snow cover can impact climate, through lower surface temperatures and increased surface pressures. The results to date were obtained for model runs with present-day conditions. We are currently analyzing runs made with projected forcings for the 21st century to see if these results are modified in any way under likely scenarios of future climate change. An intriguing new statistical technique involving 'clustering' is developed to assist in this analysis.

  12. Assessment of Radioactive Materials and Heavy Metals in the Surface Soil around the Bayanwula Prospective Uranium Mining Area in China.

    PubMed

    Bai, Haribala; Hu, Bitao; Wang, Chengguo; Bao, Shanhu; Sai, Gerilemandahu; Xu, Xiao; Zhang, Shuai; Li, Yuhong

    2017-03-14

    The present work is the first systematic and large scale study on radioactive materials and heavy metals in surface soil around the Bayanwula prospective uranium mining area in China. In this work, both natural and anthropogenic radionuclides and heavy metals in 48 surface soil samples were analyzed using High Purity Germanium (HPGe) γ spectrometry and inductively coupled plasma-mass spectrometry (ICP-MS). The obtained mean activity concentrations of 238 U, 226 Ra, 232 Th, 40 K, and 137 Cs were 25.81 ± 9.58, 24.85 ± 2.77, 29.40 ± 3.14, 923.0 ± 47.2, and 5.64 ± 4.56 Bq/kg, respectively. The estimated average absorbed dose rate and annual effective dose rate were 76.7 ± 3.1 nGy/h and 83.1 ± 3.8 μ Sv, respectively. The radium equivalent activity, external hazard index, and internal hazard index were also calculated, and their mean values were within the acceptable limits. The estimated lifetime cancer risk was 3.2 × 10 -4 /Sv. The heavy metal contents of Cr, Ni, Cu, Zn, As, Cd, and Pb from the surface soil samples were measured and their health risks were then assessed. The concentrations of all heavy metals were much lower than the average backgrounds in China except for lead which was about three times higher than that of China's mean. The non-cancer and cancer risks from the heavy metals were estimated, which are all within the acceptable ranges. In addition, the correlations between the radionuclides and the heavy metals in surface soil samples were determined by the Pearson linear coefficient. Strong positive correlations between radionuclides and the heavy metals at the 0.01 significance level were found. In conclusion, the contents of radionuclides and heavy metals in surface soil around the Bayanwula prospective uranium mining area are at a normal level.

  13. Arsenic in the soils of Zimapán, Mexico.

    PubMed

    Ongley, Lois K; Sherman, Leslie; Armienta, Aurora; Concilio, Amy; Salinas, Carrie Ferguson

    2007-02-01

    Arsenic concentrations of 73 soil samples collected in the semi-arid Zimapán Valley range from 4 to 14 700 mg As kg(-1). Soil arsenic concentrations decrease with distance from mines and tailings and slag heaps and exceed 400 mg kg(-1) only within 500 m of these arsenic sources. Soil arsenic concentrations correlate positively with Cu, Pb, and Zn concentrations, suggesting a strong association with ore minerals known to exist in the region. Some As was associated with Fe and Mn oxyhydroxides, this association is less for contaminated than for uncontaminated samples. Very little As was found in the mobile water-soluble or exchangeable fractions. The soils are not arsenic contaminated at depths greater than 100 cm below the surface. Although much of the arsenic in the soils is associated with relatively immobile solid phases, this represents a long-term source of arsenic to the environment.

  14. Carbon mineralization in surface and subsurface soils in a subtropical mixed forest in central China

    NASA Astrophysics Data System (ADS)

    Liu, F.; Tian, Q.

    2014-12-01

    About a half of soil carbon is stored in subsurface soil horizons, their dynamics have the potential to significantly affect carbon balancing in terrestrial ecosystems. However, the main factors regulating subsurface soil carbon mineralization are poorly understood. As affected by mountain humid monsoon, the subtropical mountains in central China has an annual precipitation of about 2000 mm, which causes strong leaching of ions and nutrition. The objectives of this study were to monitor subsurface soil carbon mineralization and to determine if it is affected by nutrient limitation. We collected soil samples (up to 1 m deep) at three locations in a small watershed with three soil layers (0-10 cm, 10-30 cm, below 30 cm). For the three layers, soil organic carbon (SOC) ranged from 35.8 to 94.4 mg g-1, total nitrogen ranged from 3.51 to 8.03 mg g-1, microbial biomass carbon (MBC) ranged from 170.6 to 718.4 μg g-1 soil. We measured carbon mineralization with the addition of N (100 μg N/g soil), P (50 μg P/g soil), and liable carbon (glucose labeled by 5 atom% 13C, at five levels: control, 10% MBC, 50% MBC, 100% MBC, 200% MBC). The addition of N and P had negligible effects on CO2 production in surface soil layers; in the deepest soil layer, the addition of N and P decreased CO2 production from 4.32 to 3.20 μg C g-1 soil carbon h-1. Glucose addition stimulated both surface and subsurface microbial mineralization of SOC, causing priming effects. With the increase of glucose addition rate from 10% to 200% MBC, the primed mineralization rate increased from 0.19 to 3.20 μg C g-1 soil carbon h-1 (fifth day of glucose addition). The magnitude of priming effect increased from 28% to 120% as soil layers go deep compare to the basal CO2 production (fifth day of 200% MBC glucose addition, basal CO2 production rate for the surface and the deepest soil was 11.17 and 2.88 μg C g-1 soil carbon h-1). These results suggested that the mineralization of subsurface carbon is more sensitive to nutrient addition, and carbon mineralization in this layer is likely limited by carbon availability. Thus, any changes in environment conditions (global warming, nitrogen deposition, precipitation pattern change etc.) that affect the distribution of fresh carbon in soil profiles could then stimulate the release of deep soil carbon.

  15. Timescales of Land Surface Evapotranspiration Response

    NASA Technical Reports Server (NTRS)

    Scott, Russell; Entekhabi, Dara; Koster, Randal; Suarez, Max

    1997-01-01

    Soil and vegetation exert strong control over the evapotranspiration rate, which couples the land surface water and energy balances. A method is presented to quantify the timescale of this surface control using daily general circulation model (GCM) simulation values of evapotranspiration and precipitation. By equating the time history of evaporation efficiency (ratio of actual to potential evapotranspiration) to the convolution of precipitation and a unit kernel (temporal weighting function), response functions are generated that can be used to characterize the timescales of evapotranspiration response for the land surface model (LSM) component of GCMS. The technique is applied to the output of two multiyear simulations of a GCM, one using a Surface-Vegetation-Atmosphere-Transfer (SVAT) scheme and the other a Bucket LSM. The derived response functions show that the Bucket LSM's response is significantly slower than that of the SVAT across the globe. The analysis also shows how the timescales of interception reservoir evaporation, bare soil evaporation, and vegetation transpiration differ within the SVAT LSM.

  16. Bryophyte-dominated biological soil crusts mitigate soil erosion in an early successional Chinese subtropical forest

    NASA Astrophysics Data System (ADS)

    Seitz, Steffen; Nebel, Martin; Goebes, Philipp; Käppeler, Kathrin; Schmidt, Karsten; Shi, Xuezheng; Song, Zhengshan; Webber, Carla L.; Weber, Bettina; Scholten, Thomas

    2017-12-01

    This study investigated the development of biological soil crusts (biocrusts) in an early successional subtropical forest plantation and their impact on soil erosion. Within a biodiversity and ecosystem functioning experiment in southeast China (biodiversity and ecosystem functioning (BEF) China), the effect of these biocrusts on sediment delivery and runoff was assessed within micro-scale runoff plots under natural rainfall, and biocrust cover was surveyed over a 5-year period. Results showed that biocrusts occurred widely in the experimental forest ecosystem and developed from initial light cyanobacteria- and algae-dominated crusts to later-stage bryophyte-dominated crusts within only 3 years. Biocrust cover was still increasing after 6 years of tree growth. Within later-stage crusts, 25 bryophyte species were determined. Surrounding vegetation cover and terrain attributes significantly influenced the development of biocrusts. Besides high crown cover and leaf area index, the development of biocrusts was favoured by low slope gradients, slope orientations towards the incident sunlight and the altitude of the research plots. Measurements showed that bryophyte-dominated biocrusts strongly decreased soil erosion, being more effective than abiotic soil surface cover. Hence, their significant role in mitigating sediment delivery and runoff generation in mesic forest environments and their ability to quickly colonise soil surfaces after disturbance are of particular interest for soil erosion control in early-stage forest plantations.

  17. Effects of molecular weight of natural organic matter on cadmium mobility in soil environments and its carbon isotope characteristics.

    PubMed

    Mahara, Y; Kubota, T; Wakayama, R; Nakano-Ohta, T; Nakamura, T

    2007-11-15

    We investigated the role of natural organic matter in cadmium mobility in soil environments. We collected the dissolved organic matter from two different types of natural waters: pond surface water, which is oxic, and deep anoxic groundwater. The collected organic matter was fractionated into four groups with molecular weights (unit: Da (Daltons)) of <1 x 10(3), 1-10 x 10(3), 10-100 x 10(3), and >100 x 10(3). The organic matter source was land plants, based on the carbon isotope ratios (delta(13)C/(12)C). The organic matter in surface water originated from presently growing land plants, based on (14)C dating, but the organic matter in deep groundwater originated from land plants that grew approximately 4000 years ago. However, some carbon was supplied by the high-molecular-weight fraction of humic substances in soil or sediments. Cadmium interacted in a system of siliceous sand, fractionated organic matter, and water. The lowest molecular weight fraction of organic matter (<1 x 10(3)) bound more cadmium than did the higher molecular weight fractions. Organic matter in deep groundwater was more strongly bound to cadmium than was organic matter in surface water. The binding behaviours of organic matter with cadmium depended on concentration, age, molecular weight, and degradation conditions of the organic matter in natural waters. Consequently, the dissolved, low-molecular-weight fraction in organic matter strongly influences cadmium migration and mobility in the environment.

  18. Air-surface exchange measurements of gaseous elemental mercury over naturally enriched and background terrestrial landscapes in Australia

    NASA Astrophysics Data System (ADS)

    Edwards, G. C.; Howard, D. A.

    2013-05-01

    This paper presents the first gaseous elemental mercury (GEM) air-surface exchange measurements obtained over naturally enriched and background (<0.1 μg g-1 Hg) terrestrial landscapes in Australia. Two pilot field studies were carried out during the Australian autumn and winter periods at a copper-gold-cobalt-arsenic-mercury mineral field near Pulganbar, NSW. GEM fluxes using a dynamic flux chamber approach were measured, along with controlling environmental parameters over three naturally enriched and three background substrates. The enriched sites results showed net emission to the atmosphere and a strong correlation between flux and substrate Hg concentration, with average fluxes ranging from 14 ± 1 ng m-2 h-1 to 113 ± 6 ng m-2 h-1. Measurements at background sites showed both emission and deposition. The average Hg flux from all background sites showed an overall net emission of 0.36 ± 0.06 ng m-2 h-1. Fluxes show strong relationships with temperature, radiation, and substrate parameters. A compensation point of 2.48, representative of bare soils was determined. For periods of deposition, dry deposition velocities ranged from 0.00025 cm s-1 to 0.0083 cm s-1 with an average of 0.0041 ± 0.00018 cm s-1, representing bare soil, nighttime conditions. Comparison of the Australian data to North American data suggests the need for Australian-specific mercury air-surface exchange data representative of Australia's unique climatic conditions, vegetation types, land use patterns and soils.

  19. A Newly Identified Role of the Deciduous Forest Floor in the Timing of Green-Up

    NASA Astrophysics Data System (ADS)

    Lapenis, Andrei G.; Lawrence, Gregory B.; Buyantuev, Alexander; Jiang, Shiguo; Sullivan, Timothy J.; McDonnell, Todd C.; Bailey, Scott

    2017-11-01

    Plant phenology studies rarely consider controlling factors other than air temperature. We evaluate here the potential significance of physical and chemical properties of soil (edaphic factors) as additional important controls on phenology. More specifically, we investigate causal connections between satellite-observed green-up dates of small forest watersheds and soil properties in the Adirondack Mountains of New York, USA. Contrary to the findings of previous studies, where edaphic controls of spring phenology were found to be marginal, our analyses show that at least three factors manifest themselves as significant controls of seasonal patterns of variation in vegetated land surfaces observed from remote sensing: (1) thickness of the forest floor, (2) concentration of exchangeable soil potassium, and (3) soil acidity. For example, a thick forest floor appears to delay the onset of green-up. Watersheds with elevated concentrations of potassium are associated with early surface greening. We also found that trees growing in strongly acidified watersheds demonstrate delayed green-up dates. Overall, our work demonstrates that, at the scale of small forest watersheds, edaphic factors can explain a significant percentage of the observed spatial variation in land surface phenology that is comparable to the percentage that can be explained by climatic and landscape factors. We conclude that physical and chemical properties of forest soil play important roles in forest ecosystems as modulators of climatic drivers controlling the rate of spring soil warming and the transition of trees out of winter dormancy.

  20. Temperature-dependent residual shear strength characteristics of smectite-bearing landslide soils

    NASA Astrophysics Data System (ADS)

    Shibasaki, Tatsuya; Matsuura, Sumio; Hasegawa, Yoichi

    2017-02-01

    This paper presents experimental investigations regarding the effect of temperature on the residual strength of landslide soils at slow-to-moderate shearing velocities. We performed ring-shear tests on 23 soil samples at temperatures of 6-29°C. The test results show that the shear strength of smectite-rich soils decreased when temperatures were relatively low. These positive temperature effects (strength losses at lower temperatures) observed for smectite-bearing soils are typical under relatively slow shearing rates. In contrast, under relatively high shearing rates, strength was gained as temperature decreased. As rheological properties of smectite suspensions are sensitive to environmental factors, such as temperature, pH, and dissolved ions, we inferred that temperature-dependent residual strengths of smectitic soils are also attributed to their specific rheological properties. Visual and scanning electron microscope observations of Ca-bentonite suggest that slickensided shear surfaces at slow shearing rates are very shiny and smooth, whereas those at moderate shearing rates are not glossy and are slightly turbulent, indicating that platy smectite particles are strongly orientated at slow velocities. The positive temperature effect is probably due to temperature-dependent microfriction that is mobilized in the parallel directions of the sheet structure of hydrous smectite particles. On the contrary, the influence of microviscous resistance, which appears in the vertical directions of the lamination, is assumed to increase at faster velocities. Our results imply that if slip-surface soils contain high fractions of smectite, decreases in ground temperature can lead to lowered shear resistance of the slip surface and trigger slow landslide movement.

  1. Soil moisture, dielectric permittivity and emissivity of soil: effective depth of emission measured by the L-band radiometer ELBARA

    NASA Astrophysics Data System (ADS)

    Usowicz, Boguslaw; Lukowski, Mateusz; Marczewski, Wojciech; Usowicz, Jerzy; Lipiec, Jerzy; Rojek, Edyta; Slominska, Ewa; Slominski, Jan

    2014-05-01

    Due to the large variation of soil moisture in space and in time, obtaining soil water balance with an aid of data acquired from the surface is still a challenge. Microwave remote sensing is widely used to determine the water content in soil. It is based on the fact that the dielectric constant of the soil is strongly dependent on its water content. This method provides the data in both local and global scales. Very important issue that is still not solved, is the soil depth at which radiometer "sees" the incoming radiation and how this "depth of view" depends on water content and physical properties of soil. The microwave emission comes from its entire profile, but much of this energy is absorbed by the upper layers of soil. As a result, the contribution of each layer to radiation visible for radiometer decreases with depth. The thickness of the surface layer, which significantly contributes to the energy measured by the radiometer is defined as the "penetration depth". In order to improve the physical base of the methodology of soil moisture measurements using microwave remote sensing and to determine the effective emission depth seen by the radiometer, a new algorithm was developed. This algorithm determines the reflectance coefficient from Fresnel equations, and, what is new, the complex dielectric constant of the soil, calculated from the Usowicz's statistical-physical model (S-PM) of dielectric permittivity and conductivity of soil. The model is expressed in terms of electrical resistance and capacity. The unit volume of soil in the model consists of solid, water and air, and is treated as a system made up of spheres, filling volume by overlapping layers. It was assumed that connections between layers and spheres in the layer are represented by serial and parallel connections of "resistors" and "capacitors". The emissivity of the soil surface is calculated from the ratio between the brightness temperature measured by the ELBARA radiometer (GAMMA Remote Sensing AG) and the physical temperature of the soil surface measured by infrared sensor. As the input data for S-PM: volumes of soil components, mineralogical composition, organic matter content, specific surface area and bulk density of the soil were used. Water contents in the model are iteratively changed, until emissivities calculated from the S-PM reach the best agreement with emissivities measured by the radiometer. Final water content will correspond to the soil moisture measured by the radiometer. Then, the examined soil profile will be virtually divided into thin slices where moisture, temperature and thermal properties will be measured and simultaneously modelled via S-PM. In the next step, the slices will be "added" starting from top (soil surface), until the effective soil moisture will be equal to the soil moisture measured by ELBARA. The thickness of obtained stack will be equal to desired "penetration depth". Moreover, it will be verified further by measuring the moisture content using thermal inertia. The work was partially funded by the Government of Poland through an ESA Contract under the PECS ELBARA_PD project No. 4000107897/13/NL/KML.

  2. Landform elevation suggests ecohydrologic footprints in subsurface geomorphology

    NASA Astrophysics Data System (ADS)

    Watts, A. C.; Watts, D.; Kaplan, D. A.; Mclaughlin, D. L.; Heffernan, J. B.; Martin, J. B.; Murray, A.; Osborne, T.; Cohen, M. J.; Kobziar, L. N.

    2012-12-01

    Many landscapes exhibit patterns in their arrangement of biota, or in their surface geomorphology as a result of biotic activity. Examples occur around the globe and include northern peatlands, Sahelian savannas, and shallow marine reefs. Such self-organized patterning is strongly suggestive of coupled, reciprocal feedbacks (i.e. locally positive, and distally negative) among biota and their environment. Much research on patterned landscapes has concerned emergent biogeomorphologic surfaces such as those found in peatlands, or the influence of biota on soil formation or transport. Our research concerns ecohydrologic feedbacks hypothesized to produce patterned occurrence of depressions in a subtropical limestone karst landscape. Our findings show strong evidence of self-organized patterning, in the form of overdispersed dissolution basins. Distributions of randomized bedrock elevation measurements on the landscape are bimodal, with means clustered about either higher- or lower-elevation modes. Measurements on the thin mantle of soil overlying this landscape, however, display reduced bimodality and mode separation. These observations indicate abiotic processes in diametric opposition to the biogenic forces which may be responsible for generating landscape pattern. Correlograms show higher spatial autocorrelation among soil measurements compared to bedrock measurements, and measurements of soil-layer thickness show high negative correlation with bedrock elevation. Our results are consistent with predictions of direct ecohydrologic feedbacks that would produce patterned "footprints" directly on bedrock, and of abiotic processes operating to obfuscate this pattern. The study suggests new steps to identify biogeochemical mechanisms for landscape patterning: an "ecological drill" by which plant communities modify geology.

  3. Shifts in the Physiology and Stoichiometric Needs of Soil Microbial Communities from Subarctic Soils in Response to Warming: Icelandic Geothermal Gradients as a Model.

    NASA Astrophysics Data System (ADS)

    Marañón-Jiménez, S.; Soong, J.; Leblans, N. I. W.; Sigurdsson, B. D.; Peñuelas, J.; Richter, A.; Asensio, D.; Fransen, E.; Janssens, I. A.

    2017-12-01

    Large amounts of CO2 can be released to the atmosphere from a faster mineralization of soil organic matter at warmer temperatures, thus inducing climate change feedbacks. Specifically, soils at high northern latitudes store more than half of the global surface soil carbon and are particularly vulnerable to temperature-driven C losses, since they warm more rapidly. Alterations to the temperature sensitivity, physiological functioning and stoichiometric constrains of soil microorganisms in response to rising temperatures can play a key role in these soil carbon (C) losses. We present results of several incubation experiments using soils from geothermal soil temperature gradients in Iceland that have undergone a range of warming intensities for seven years, encompassing the full range of IPCC warming scenarios for the northern region. Soil microbes from warmed soils did not show changes in their temperature sensitivity at the physiological level. On the contrary, seven years of chronic soil warming provoked a permanent increase of microbial metabolic quotients (i.e., respiration per unit of biomass), and a subsequent reduction in the C retained in biomass as substrate became limiting. After the initial depletion of labile soil C, increasing energy demands for metabolic maintenance and resource acquisition at higher temperatures may have triggered permanent functional changes or community shifts towards increasing respiratory costs of soil decomposers. Pointing to this, microbial communities showed a strong C limitation even at ambient soil temperatures, obscuring any metabolic response to nitrogen and phosphorous additions. The tight C:N stoichiometric constrains of soil microbial communities and the strong C limitation for microbial biomass may lead to a reduced capacity of microbial N retention, explaining the equivalent soil C and N losses found in response to soil warming. These results highlight the need to incorporate potential changes in microbial physiological functioning and stoichiometric needs into models, in order to accurately predict future changes in soil C stocks in response to global warming.

  4. Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils

    PubMed Central

    Neumann, G.; Bott, S.; Ohler, M. A.; Mock, H.-P.; Lippmann, R.; Grosch, R.; Smalla, K.

    2014-01-01

    Development and activity of plant roots exhibit high adaptive variability. Although it is well-documented, that physicochemical soil properties can strongly influence root morphology and root exudation, particularly under field conditions, a comparative assessment is complicated by the impact of additional factors, such as climate and cropping history. To overcome these limitations, in this study, field soils originating from an unique experimental plot system with three different soil types, which were stored at the same field site for 10 years and exposed to the same agricultural management practice, were used for an investigation on effects of soil type on root development and root exudation. Lettuce (Lactuca sativa L. cv. Tizian) was grown as a model plant under controlled environmental conditions in a minirhizotrone system equipped with root observation windows (rhizoboxes). Root exudates were collected by placing sorption filters onto the root surface followed by subsequent extraction and GC-MS profiling of the trapped compounds. Surprisingly, even in absence of external stress factors with known impact on root exudation, such as pH extremes, water and nutrient limitations/toxicities or soil structure effects (use of sieved soils), root growth characteristics (root length, fine root development) as well as profiles of root exudates were strongly influenced by the soil type used for plant cultivation. The results coincided well with differences in rhizosphere bacterial communities, detected in field-grown lettuce plants cultivated on the same soils (Schreiter et al., this issue). The findings suggest that the observed differences may be the result of plant interactions with the soil-specific microbiomes. PMID:24478764

  5. Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils.

    PubMed

    Neumann, G; Bott, S; Ohler, M A; Mock, H-P; Lippmann, R; Grosch, R; Smalla, K

    2014-01-01

    Development and activity of plant roots exhibit high adaptive variability. Although it is well-documented, that physicochemical soil properties can strongly influence root morphology and root exudation, particularly under field conditions, a comparative assessment is complicated by the impact of additional factors, such as climate and cropping history. To overcome these limitations, in this study, field soils originating from an unique experimental plot system with three different soil types, which were stored at the same field site for 10 years and exposed to the same agricultural management practice, were used for an investigation on effects of soil type on root development and root exudation. Lettuce (Lactuca sativa L. cv. Tizian) was grown as a model plant under controlled environmental conditions in a minirhizotrone system equipped with root observation windows (rhizoboxes). Root exudates were collected by placing sorption filters onto the root surface followed by subsequent extraction and GC-MS profiling of the trapped compounds. Surprisingly, even in absence of external stress factors with known impact on root exudation, such as pH extremes, water and nutrient limitations/toxicities or soil structure effects (use of sieved soils), root growth characteristics (root length, fine root development) as well as profiles of root exudates were strongly influenced by the soil type used for plant cultivation. The results coincided well with differences in rhizosphere bacterial communities, detected in field-grown lettuce plants cultivated on the same soils (Schreiter et al., this issue). The findings suggest that the observed differences may be the result of plant interactions with the soil-specific microbiomes.

  6. Soil aggregate stability and rainfall-induced sediment transport on field plots as affected by amendment with organic matter inputs

    NASA Astrophysics Data System (ADS)

    Shi, Pu; Arter, Christian; Liu, Xingyu; Keller, Martin; Schulin, Rainer

    2017-04-01

    Aggregate stability is an important factor in soil resistance against erosion, and, by influencing the extent of sediment transport associated with surface runoff, it is thus also one of the key factors which determine on- and off-site effects of water erosion. As it strongly depends on soil organic matter, many studies have explored how aggregate stability can be improved by organic matter inputs into the soil. However, the focus of these studies has been on the relationship between aggregate stability and soil organic matter dynamics. How the effects of organic matter inputs on aggregate stability translate into soil erodibility under rainfall impacts has received much less attention. In this study, we performed field plot experiments to examine how organic matter inputs affect aggregate breakdown and surface sediment transport under field conditions in artificial rainfall events. Three pairs of plots were prepared by adding a mixture of grass and wheat straw to one of plots in each pair but not to the other, while all plots were treated in the same way otherwise. The rainfall events were applied some weeks later so that the applied organic residues had sufficient time for decomposition and incorporation into the soil. Surface runoff rate and sediment concentration showed substantial differences between the treatments with and without organic matter inputs. The plots with organic inputs had coarser and more stable aggregates and a rougher surface than the control plots without organic inputs, resulting in a higher infiltration rate and lower transport capacity of the surface runoff. Consequently, sediments exported from the amended plots were less concentrated but more enriched in suspended particles (<20 µm) than from the un-amended plots, indicating a more size-selective sediment transport. In contrast to the amended plots, there was an increase in the coarse particle fraction (> 250 µm) in the runoff from the plots with no organic matter inputs towards the end of the rainfall events due to emerging bed-load transport. The results show that a single application of organic matter can already cause a large difference in aggregate breakdown, surface sealing, and lateral sediment-associated matter transfer under rainfall impact. Furthermore, we will present terrestrial laser scanning data showing the treatment effects on soil surface structure, as well as data on carbon, phosphorus and heavy metal export associated with the translocation of the sediments.

  7. Model tests of living brush mattresses made of shrub and tree willows as bank protection at navigable waters

    NASA Astrophysics Data System (ADS)

    Sokopp, Manuel

    2014-05-01

    The embankment stability at navigable waters suffers from hydraulic loads, like strong ship induced waves, resulting hydropeaking and strong water-level fluctuations. Willow brush mattresses can reduce erosion at the embankments of rivers and increase bank stability. Due to experiences gained in the project "Alternative Technical-Biological Bank Protection on Inland Water-ways" the Federal Waterways Engineering and Research Institute commissioned a more detailed investigation of protective functions of willow brush mattresses respectively the differences between brush mattresses made of pure shrub (Salix viminalis) or tree willows (Salix alba) at water ways with high ship-induced hydraulic loads. This paper shows the upcoming research methods of the years 2014 to 2016. The protective functions of two different willow brush mattresses and the congruence between soil, hydraulics and willow sprouts movement will be investigated in a wave basin by measuring flow velocity with ADVs (Acoustic Doppler Velocimeters) installed near the soil surface and in different embankment areas, the pore water pressure with probes in different soil layers, the wave height with ultrasound probes and the willow movements with permanently installed cameras while flooding the basin as well as measuring the erosion afterwards. These flooding test series will be conducted two times during the vegetation period. The shear strength of the tree willow rooted soil will be examined in different soil layers with a shear load frame. The results will be compared with the data of shear strength tests of same aged brush mattresses made of shrub willows, which have already been carried out by the Federal Waterways Engineering and Research Institute. The filtering capability of the soil covering branches and the near surface willow roots will be investigated by growing willow brush mattresses in sample boxes. Those can be repeatedly moved up and down into a diving pool while measuring pore water pressure in different soil layers and flow velocity with ADVs.

  8. Attachment of Pathogenic Prion Protein to Model Oxide Surfaces

    PubMed Central

    Jacobson, Kurt H.; Kuech, Thomas R.; Pedersen, Joel A.

    2014-01-01

    Prions are the infectious agents in the class of fatal neurodegenerative diseases known as transmissible spongiform encephalopathies, which affect humans, deer, sheep, and cattle. Prion diseases of deer and sheep can be transmitted via environmental routes, and soil is has been implicated in the transmission of these diseases. Interaction with soil particles is expected to govern the transport, bioavailability and persistence of prions in soil environments. A mechanistic understanding of prion interaction with soil components is critical for understanding the behavior of these proteins in the environment. Here, we report results of a study to investigate the interactions of prions with model oxide surfaces (Al2O3, SiO2) using quartz crystal microbalance with dissipation monitoring and optical waveguide light mode spectroscopy. The efficiency of prion attachment to Al2O3 and SiO2 depended strongly on pH and ionic strength in a manner consistent with electrostatic forces dominating interaction with these oxides. The N-terminal portion of the protein appeared to facilitate attachment to Al2O3 under globally electrostatically repulsive conditions. We evaluated the utility of recombinant prion protein as a surrogate for prions in attachment experiments and found that its behavior differed markedly from that of the infectious agent. Our findings suggest that prions preferentially associate with positively charged mineral surfaces in soils (e.g., iron and aluminum oxides). PMID:23611152

  9. Phosphorus runoff from waste water treatment biosolids and poultry litter applied to agricultural soils.

    PubMed

    White, John W; Coale, Frank J; Sims, J Thomas; Shober, Amy L

    2010-01-01

    Differences in the properties of organic phosphorus (P) sources, particularly those that undergo treatment to reduce soluble P, can affect soil P solubility and P transport in surface runoff. This 2-yr field study investigated soil P solubility and runoff P losses from two agricultural soils in the Mid-Atlantic region after land application of biosolids derived from different waste water treatment processes and poultry litter. Phosphorus speciation in the biosolids and poultry litter differed due to treatment processes and significantly altered soil P solubility and dissolved reactive P (DRP) and bioavailable P (FeO-P) concentrations in surface runoff. Runoff total P (TP) concentrations were closely related to sediment transport. Initial runoff DRP and FeO-P concentrations varied among the different biosolids and poultry litter applied. Over time, as sediment transport declined and DRP concentrations became an increasingly important component of runoff FeO-P and TP, total runoff P was more strongly influenced by the type of biosolids applied. Throughout the study, application of lime-stabilized biosolids and poultry litter increased concentrations of soil-soluble P, readily desorbable P, and soil P saturation, resulting in increased DRP and FeO-P concentrations in runoff. Land application of biosolids generated from waste water treatment processes that used amendments to reduce P solubility (e.g., FeCl(3)) did not increase soil P saturation and reduced the potential for DRP and FeO-P transport in surface runoff. These results illustrate the importance of waste water treatment plant process and determination of specific P source coefficients to account for differential P availability among organic P sources.

  10. Vegetation cover and land use impacts on soil water repellency in an Urban Park located in Vilnius, Lithuania

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Cerda, Artemi

    2015-04-01

    It is strongly recognized that vegetation cover, land use have important impacts on the degree of soil water repellency (SWR). Soil water repellency is a natural property of soils, but can be induced by natural and anthropogenic disturbances as fire and soil tillage (Doerr et al., 2000; Urbanek et al., 2007; Mataix-Solera et al., 2014). Urban parks are areas where soils have a strong human impact, with implications on their hydrological properties. The aim of this work is to study the impact of different vegetations cover and urban soils impact on SWR and the relation to other soil variables as pH, Electrical Conductivity (EC) and soil organic matter (SOM) in an urban park. The study area is located in Vilnius city (54°.68' N, 25°.25' E). It was collected 15 soil samples under different vegetation cover as Pine (Pinus Sylvestris), Birch (Alnus glutinosa), Penduculate Oak (Quercus robur), Platanus (Platanus orientalis) and other human disturbed areas as forest trails and soils collected from human planted grass. Soils were taken to the laboratory, air-dried at room temperature and sieved with the <2 mm mesh in order to remove the coarse material. Subsequently were placed in petri dishes and exposed to a controlled laboratory environment (temperature of 20C and 50% of air relative humidity) for one week to avoid potential impacts of the atmospheric conditions on SWR (Doerr, 1998). The persistence of SWR was measured using the water drop penetration time (WDPT) (Wessel, 1998). The classification of WDPT was according to Bisdom et al. (1993) <5 (wettable), 5-60 (slightly water repellent), 60-600 (strongly water repellent), 600-3600 (severely water repellent) and >3600 (extremely water repellent). The results showed significant differences among the different vegetation cover (Kruskal-Wallis H=20.64, p<0.001). The WDPT soil median values collected under Pine, Birch, Penduculate Oak, forest trails and soils from planted grass were significantly higher than Platanus soil. The soils from Pine, Birch, Penduculate Oak, forest trails and planted grass were majorly severely water repellent, while Platanus soils were mostly strong water repellent. Soil water repellency of Pine soils had a significant negative correlation with pH (-0.52, p<0.05) and a significant negative correlation with SOM (0.69, p<0.01) and EC (0.53, p<0.05). In relation to Birch soils, SWR had a significant negative correlation with pH (-0.88, p<0.001) and significant positive correlation with SOM (0.78, p<0.001). In relation to the other species no significant correlations were observed between SWR and pH, EC and SOM. Acknowledgments POSTFIRE (Soil quality, erosion control and plant cover recovery under different post-fire management scenarios, CGL2013-47862-C2-1-R), funded by the Spanish Ministry of Economy and Competitiveness; Fuegored; RECARE (Preventing and Remediating Degradation of Soils in Europe Through Land Care, FP7-ENV-2013-TWO STAGE), funded by the European Commission; and for the COST action ES1306 (Connecting European connectivity research). References Bisdom, E.B.A., Dekker, L., Schoute, J.F.Th. (1993) Water repellency of sieve fractions from sandy soils and relationships with organic material and soil structure. Geoderma, 56, 105-118. Doerr, S.H., Shakesby, R.A., Walsh, R.P.D. (2000) Soil water repellency: Its causes, characteristics and hydro-geomorphological significance. Earth-Science Reviews, 51, 33-65. Doerr, S.H. (1998) On standardising the "Water Drop Penetration Time" and the "Molarity of an Ethanol Droplet" techniques to classify soil hydrophobicity: a case study using medium textured soils. Earth Surface Process and Landforms, 23, 663-668. Mataix-Solera, J., Arcenegui, V., Zavala, L., Perez-Bejarano, A., Jordan, A., Morugan-Coronado, A., Barcenas-Moreno, G., Jimenez-Pinilla, P., Lozano, E., Granjed, A.J.P., Gil-Torres, J. (2014) Small variations of soil properties control fire induced water repellency, Spanish Journal of Soil Science, 4, 51-60. Urbanek., E., Hallet, P., Feeney, D., Horn, R. (2007) Water repellency and distribution of hydrophilic and hydrophobic compounds in soil aggregates from different tillage systems. Geoderma, 140, 147-155. Wessel, A.T. (1988) On using the effective contact angle and the water drop penetration time for classification of water repellency in dune soils. Earth Surface Process and Landforms, 13, 555-265.

  11. Environmental fate of roxarsone in poultry litter. Part II. Mobility of arsenic in soils amended with poultry litter

    USGS Publications Warehouse

    Rutherford, D.W.; Bednar, A.J.; Garbarino, J.R.; Needham, R.; Staver, K.W.; Wershaw, R. L.

    2003-01-01

    Poultry litter often contains arsenic as a result of organo-arsenical feed additives. When the poultry litter is applied to agricultural fields, the arsenic is released to the environment and may result in increased arsenic in surface and groundwater and increased uptake by plants. The release of arsenic from poultry litter, litter-amended soils, and soils without litter amendment was examined by extraction with water and strong acids (HCI and HN03). The extracts were analyzed for As, C, P, Cu, Zn, and Fe. Copper, zinc, and iron are also poultry feed additives. Soils with a known history of litter application and controlled application rate of arsenic-containing poultry litter were obtained from the University of Maryland Agricultural Experiment Station. Soils from fields with long-term application of poultry litter were obtained from a tilled field on the Delmarva Peninsula (MD) and an untilled Oklahoma pasture. Samples from an adjacent forest or nearby pasture that had no history of litter application were used as controls. Depth profiles were sampled for the Oklahoma pasture soils. Analysis of the poultry litter showed that 75% of the arsenic was readily soluble in water. Extraction of soils shows that weakly bound arsenic mobilized by water correlates positively with C, P, Cu, and Zn in amended fields and appears to come primarily from the litter. Strongly bound arsenic correlates positively with Fe in amended fields and suggests sorption or coprecipitation of As and Fe in the soil column.

  12. Effects of cattle manure on erosion rates and runoff water pollution by faecal coliforms.

    PubMed

    Ramos, M C; Quinton, J N; Tyrrel, S F

    2006-01-01

    The large quantities of slurry and manure that are produced annually in many areas in which cattle are raised could be an important source of organic matter and nutrients for agriculture. However, the benefits of waste recycling may be partially offset by the risk of water pollution associated with runoff from the fields to which slurry or manure has been applied. In this paper, the effects of cattle manure application on soil erosion rates and runoff and on surface water pollution by faecal coliforms are analysed. Rainfall simulations at a rate of 70 mm h(-1) were conducted in a sandy loam soil packed into soil flumes (2.5m long x 1m wide) at a bulk density of 1400 kg m(-3), with and without cattle slurry manure applied on the surface. For each simulation, sediment and runoff rates were analysed and in those simulations with applied slurry, presumptive faecal coliform (PFC) concentrations in the runoff were evaluated. The application of slurry on the soil surface appeared to have a protective effect on the soils, reducing soil detachment by up to 70% but increasing runoff volume by up to 30%. This practice implies an important source of pollution for surface waters especially if rainfall takes place within a short period after application. The concentrations of micro-organisms (presumptive faecal coliforms (PFCs)) found in water runoff ranged from 1.9 x 10(4) to 1.1 x 10(6) PFC 100mL(-1), depending on the initial concentration in the slurry, and they were particularly high during the first phases of the rainfall event. The result indicates a strong relationship between the faecal coliforms transported by runoff and the organic matter in the sediment.

  13. Longitudinal Study of the Contamination of Air and of Soil Surfaces in the Vicinity of Pig Barns by Livestock-Associated Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Friese, Anika; Klees, Sylvia; Tenhagen, Bernd A.; Fetsch, Alexandra; Rösler, Uwe; Hartung, Jörg

    2012-01-01

    During 1 year, samples were taken on 4 days, one sample in each season, from pigs, the floor, and the air inside pig barns and from the ambient air and soil at different distances outside six commercial livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA)-positive pig barns in the north and east of Germany. LA-MRSA was isolated from animals, floor, and air samples in the barn, showing a range of airborne LA-MRSA between 6 and 3,619 CFU/m3 (median, 151 CFU/m3). Downwind of the barns, LA-MRSA was detected in low concentrations (11 to 14 CFU/m3) at distances of 50 and 150 m; all upwind air samples were negative. In contrast, LA-MRSA was found on soil surfaces at distances of 50, 150, and 300 m downwind from all barns, but no statistical differences could be observed between the proportions of positive soil surface samples at the three different distances. Upwind of the barns, positive soil surface samples were found only sporadically. Significantly more positive LA-MRSA samples were found in summer than in the other seasons both in air and soil samples upwind and downwind of the pig barns. spa typing was used to confirm the identity of LA-MRSA types found inside and outside the barns. The results show that there is regular airborne LA-MRSA transmission and deposition, which are strongly influenced by wind direction and season, of up to at least 300 m around positive pig barns. The described boot sampling method seems suitable to characterize the contamination of the vicinity of LA-MRSA-positive pig barns by the airborne route. PMID:22685139

  14. Longitudinal study of the contamination of air and of soil surfaces in the vicinity of pig barns by livestock-associated methicillin-resistant Staphylococcus aureus.

    PubMed

    Schulz, Jochen; Friese, Anika; Klees, Sylvia; Tenhagen, Bernd A; Fetsch, Alexandra; Rösler, Uwe; Hartung, Jörg

    2012-08-01

    During 1 year, samples were taken on 4 days, one sample in each season, from pigs, the floor, and the air inside pig barns and from the ambient air and soil at different distances outside six commercial livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA)-positive pig barns in the north and east of Germany. LA-MRSA was isolated from animals, floor, and air samples in the barn, showing a range of airborne LA-MRSA between 6 and 3,619 CFU/m(3) (median, 151 CFU/m(3)). Downwind of the barns, LA-MRSA was detected in low concentrations (11 to 14 CFU/m(3)) at distances of 50 and 150 m; all upwind air samples were negative. In contrast, LA-MRSA was found on soil surfaces at distances of 50, 150, and 300 m downwind from all barns, but no statistical differences could be observed between the proportions of positive soil surface samples at the three different distances. Upwind of the barns, positive soil surface samples were found only sporadically. Significantly more positive LA-MRSA samples were found in summer than in the other seasons both in air and soil samples upwind and downwind of the pig barns. spa typing was used to confirm the identity of LA-MRSA types found inside and outside the barns. The results show that there is regular airborne LA-MRSA transmission and deposition, which are strongly influenced by wind direction and season, of up to at least 300 m around positive pig barns. The described boot sampling method seems suitable to characterize the contamination of the vicinity of LA-MRSA-positive pig barns by the airborne route.

  15. The Aggregate Description of Semi-Arid Vegetation with Precipitation-Generated Soil Moisture Heterogeneity

    NASA Technical Reports Server (NTRS)

    White, Cary B.; Houser, Paul R.; Arain, Altaf M.; Yang, Zong-Liang; Syed, Kamran; Shuttleworth, W. James

    1997-01-01

    Meteorological measurements in the Walnut Gulch catchment in Arizona were used to synthesize a distributed, hourly-average time series of data across a 26.9 by 12.5 km area with a grid resolution of 480 m for a continuous 18-month period which included two seasons of monsoonal rainfall. Coupled surface-atmosphere model runs established the acceptability (for modelling purposes) of assuming uniformity in all meteorological variables other than rainfall. Rainfall was interpolated onto the grid from an array of 82 recording rain gauges. These meteorological data were used as forcing variables for an equivalent array of stand-alone Biosphere-Atmosphere Transfer Scheme (BATS) models to describe the evolution of soil moisture and surface energy fluxes in response to the prevalent, heterogeneous pattern of convective precipitation. The calculated area-average behaviour was compared with that given by a single aggregate BATS simulation forced with area-average meteorological data. Heterogeneous rainfall gives rise to significant but partly compensating differences in the transpiration and the intercepted rainfall components of total evaporation during rain storms. However, the calculated area-average surface energy fluxes given by the two simulations in rain-free conditions with strong heterogeneity in soil moisture were always close to identical, a result which is independent of whether default or site-specific vegetation and soil parameters were used. Because the spatial variability in soil moisture throughout the catchment has the same order of magnitude as the amount of rain failing in a typical convective storm (commonly 10% of the vegetation's root zone saturation) in a semi-arid environment, non-linearitv in the relationship between transpiration and the soil moisture available to the vegetation has limited influence on area-average surface fluxes.

  16. The influence of land cover on surface energy partitioning and evaporative fraction regimes in the U.S. Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Bagley, Justin E.; Kueppers, Lara M.; Billesbach, Dave P.; Williams, Ian N.; Biraud, Sébastien C.; Torn, Margaret S.

    2017-06-01

    Land-atmosphere interactions are important to climate prediction, but the underlying effects of surface forcing of the atmosphere are not well understood. In the U.S. Southern Great Plains, grassland/pasture and winter wheat are the dominant land covers but have distinct growing periods that may differently influence land-atmosphere coupling during spring and summer. Variables that influence surface flux partitioning can change seasonally, depending on the state of local vegetation. Here we use surface observations from multiple sites in the U.S. Department of Energy Atmospheric Radiation Measurement Southern Great Plains Climate Research Facility and statistical modeling at a paired grassland/agricultural site within this facility to quantify land cover influence on surface energy balance and variables controlling evaporative fraction (latent heat flux normalized by the sum of sensible and latent heat fluxes). We demonstrate that the radiative balance and evaporative fraction are closely related to green leaf area at both winter wheat and grassland/pasture sites and that the early summer harvest of winter wheat abruptly shifts the relationship between evaporative fraction and surface state variables. Prior to harvest, evaporative fraction of winter wheat is strongly influenced by leaf area and soil-atmosphere temperature differences. After harvest, variations in soil moisture have a stronger effect on evaporative fraction. This is in contrast with grassland/pasture sites, where variation in green leaf area has a large influence on evaporative fraction throughout spring and summer, and changes in soil-atmosphere temperature difference and soil moisture are of relatively minor importance.

  17. Phosphorus runoff from incorporated and surface-applied liquid swine manure and phosphorus fertilizer.

    PubMed

    Daverede, I C; Kravchenko, A N; Hoeft, R G; Nafziger, E D; Bullock, D G; Warren, J J; Gonzini, L C

    2004-01-01

    Excessive fertilization with organic and/or inorganic P amendments to cropland increases the potential risk of P loss to surface waters. The objective of this study was to evaluate the effects of soil test P level, source, and application method of P amendments on P in runoff following soybean [Glycine max (L.) Merr.]. The treatments consisted of two rates of swine (Sus scrofa domestica) liquid manure surface-applied and injected, 54 kg P ha(-1) triple superphosphate (TSP) surface-applied and incorporated, and a control with and without chisel-plowing. Rainfall simulations were conducted one month (1MO) and six months (6MO) after P amendment application for 2 yr. Soil injection of swine manure compared with surface application resulted in runoff P concentration decreases of 93, 82, and 94%, and P load decreases of 99, 94, and 99% for dissolved reactive phosphorus (DRP), total phosphorus (TP), and algal-available phosphorus (AAP), respectively. Incorporation of TSP also reduced P concentration in runoff significantly. Runoff P concentration and load from incorporated amendments did not differ from the control. Factors most strongly related to P in runoff from the incorporated treatments included Bray P1 soil extraction value for DRP concentration, and Bray P1 and sediment content in runoff for AAP and TP concentration and load. Injecting manure and chisel-plowing inorganic fertilizer reduced runoff P losses, decreased runoff volumes, and increased the time to runoff, thus minimizing the potential risk of surface water contamination. After incorporating the P amendments, controlling erosion is the main target to minimize TP losses from agricultural soils.

  18. Stomatal Conductance, Plant Hydraulics, and Multilayer Canopies: A New Paradigm for Earth System Models or Unnecessary Uncertainty

    NASA Astrophysics Data System (ADS)

    Bonan, G. B.

    2016-12-01

    Soil moisture stress is a key regulator of canopy transpiration, the surface energy budget, and land-atmosphere coupling. Many land surface models used in Earth system models have an ad-hoc parameterization of soil moisture stress that decreases stomatal conductance with soil drying. Parameterization of soil moisture stress from more fundamental principles of plant hydrodynamics is a key research frontier for land surface models. While the biophysical and physiological foundations of such parameterizations are well-known, their best implementation in land surface models is less clear. Land surface models utilize a big-leaf canopy parameterization (or two big-leaves to represent the sunlit and shaded canopy) without vertical gradients in the canopy. However, there are strong biometeorological and physiological gradients in plant canopies. Are these gradients necessary to resolve? Here, I describe a vertically-resolved, multilayer canopy model that calculates leaf temperature and energy fluxes, photosynthesis, stomatal conductance, and leaf water potential at each level in the canopy. In this model, midday leaf water stress manifests in the upper canopy layers, which receive high amounts of solar radiation, have high leaf nitrogen and photosynthetic capacity, and have high stomatal conductance and transpiration rates (in the absence of leaf water stress). Lower levels in the canopy become water stressed in response to longer-term soil moisture drying. I examine the role of vertical gradients in the canopy microclimate (solar radiation, air temperature, vapor pressure, wind speed), structure (leaf area density), and physiology (leaf nitrogen, photosynthetic capacity, stomatal conductance) in determining above canopy fluxes and gradients of transpiration and leaf water potential within the canopy.

  19. Poliovirus adsorption by 34 minerals and soils.

    PubMed

    Moore, R S; Taylor, D H; Sturman, L S; Reddy, M M; Fuhs, G W

    1981-12-01

    The adsorption of radiolabeled infectious poliovirus type 2 by 34 well-defined soils and mineral substrates was analyzed in a synthetic freshwater medium containing 1 mM CaCl(2) and 1.25 mM NaHCO(3) at pH 7. In a model system, adsorption of poliovirus by Ottawa sand was rapid and reached equilibrium within 1 h at 4 degrees C. Near saturation, the adsorption could be described by the Langmuir equation; the apparent surface saturation was 2.5 x 10(6) plaque-forming units of poliovirus per mg of Ottawa sand. At low surface coverage, adsorption was described by the Freundlich equation. The soils and minerals used ranged from acidic to basic and from high in organic content to organic free. The available negative surface charge on each substrate was measured by the adsorption of a cationic polyelectrolyte, polydiallyldimethylammonium chloride. Most of the substrates adsorbed more than 95% of the virus. In general, soils, in comparison with minerals, were weak adsorbents. Among the soils, muck and Genesee silt loam were the poorest adsorbents; among the minerals, montmorillonite, glauconite, and bituminous shale were the least effective. The most effective adsorbents were magnetite sand and hematite, which are predominantly oxides of iron. Correlation coefficients for substrate properties and virus adsorption revealed that the elemental composition of the adsorbents had little effect on poliovirus uptake. Substrate surface area and pH, by themselves, were not significantly correlated with poliovirus uptake. A strong negative correlation was found between poliovirus adsorption and both the contents of organic matter and the available negative surface charge on the substrates as determined by their capacities for adsorbing the cationic polyelectrolyte, polydiallyldimethylammonium chloride.

  20. Modeling Stand-Scale Patterns in Evapotranspiration and Soil Moisture in a Heterogeneous Plant Canopy: A Coupled Subsurface-Land Surface Approach

    NASA Astrophysics Data System (ADS)

    Miller, G. R.; Gou, S.; Ferguson, I. M.; Maxwell, R. M.

    2011-12-01

    Savanna ecosystems present a well-known modeling challenge; understory grasses and overstory woody vegetation combine to form an open, heterogeneous canopy that creates strong spatial differences in soil moisture and evapotranspiration rates. In this analysis, we used ParFlow.CLM to create a stand-scale model of the Tonzi Ranch oak savanna, based on extensive topography, vegetation, soil, and hydrogeology data collected at the site. Measurements included canopy distribution and ground surface elevation from airborne Lidar, depth to groundwater from deep piezometers, soil and rock hydraulic conductivity, and leaf area index. We then compared the results to the site's long-term data records of radiative flux partitioning, obtained using the eddy-covariance method, and soil moisture, collected via a distributed network of capacitance probes. In order to obtain good agreement between the measured and modeled values, we identified several necessary modifications to the current CLM parameterization. These changes included the addition of a "winter grass" type and the alteration of the root structure and water stress functions to accommodate uptake of groundwater by deep roots. Finally, we compared variograms of site parameters and response variables and performed a scaling analysis relating ET and soil moisture variance to sampling size.

  1. Airborne soil organic particles generated by precipitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bingbing; Harder, Tristan H.; Kelly, Stephen T.

    Airborne organic particles play a critical role in the Earth’s climate1, public health2, air quality3, and hydrological and carbon cycles4. These particles exist in liquid, amorphous semi-solid, or solid (glassy) phase states depending on their composition and ambient conditions5. However, sources and formation mechanisms for semi- solid and solid organic particles are poorly understood and typically neglected in atmospheric models6. Here we report field evidence for airborne solid organic particles generated by a “raindrop” mechanism7 pertinent to atmosphere – land surface interactions (Fig. 1). We find that after rain events at Southern Great Plains, Oklahoma, USA, submicron solid particles, withmore » a composition consistent with soil organic matter, contributed up to 60% of atmospheric particles in number. Subsequent experiments indicate that airborne soil organic particles are ejected from the surface of soils caused by intensive rains or irrigation. Our observations suggest that formation of these particles may be a widespread phenomenon in ecosystems where soils are exposed to strong, episodic precipitation events such as agricultural systems and grasslands8. Chemical imaging and micro-spectroscopy analysis of their physico-chemical properties suggests that airborne soil organic particles may have important impacts on cloud formation and efficiently absorb solar radiation and hence, are an important type of particles.« less

  2. Three mars years: Viking lander 1 imaging observations

    USGS Publications Warehouse

    Arvidson, R. E.; Guinness, E.A.; Moore, H.J.; Tillman, J.; Wall, S.D.

    1983-01-01

    The Mutch Memorial Station (Viking Lander 1) on Mars acquired imaging and meteorological data over a period of 2245 martian days (3:3 martian years). This article discusses the deposition and erosion of thin deposits (ten to hundreds of micrometers) of bright red dust associated with global dust storms, and the removal of centimeter amounts of material in selected areas during a dust storm late in the third winter. Atmospheric pressure data acquired during the period of intense erosion imply that baroclinic disturbances and strong diurnal solar tidal heating combined to produce strong winds. Erosion occurred principally in areas where soil cohesion was reduced by earlier surface sampler activities. Except for redistribution of thin layers of materials, the surface appears to be remarkably stable, perhaps because of cohesion of the undisturbed surface material.

  3. Three Mars years: viking lander 1 imaging observations.

    PubMed

    Arvidson, R E; Guinness, E A; Moore, H J; Tillman, J; Wall, S D

    1983-11-04

    The Mutch Memorial Station (Viking Lander 1) on Mars acquired imaging and meteorological data over a period of 2245 martian days (3:3 martian years). This article discusses the deposition and erosion of thin deposits (ten to hundreds of micrometers) of bright red dust associated with global dust storms, and the removal of centimeter amounts of material in selected areas during a dust storm late in the third winter. Atmospheric pressure data acquired during the period of intense erosion imply that baroclinic disturbances and strong diurnal solar tidal heating combined to produce strong winds. Erosion occurred principally in areas where soil cohesion was reduced by earlier surface sampler activities. Except for redistribution of thin layers of materials, the surface appears to be remarkably stable, perhaps because of cohesion of the undisturbed surface material.

  4. Three Mars years - Viking Lander 1 imaging observations

    NASA Technical Reports Server (NTRS)

    Arvidson, R. E.; Guinness, E. A.; Moore, H. J.; Tillman, J.; Wall, S. D.

    1983-01-01

    The Mutch Memorial Station (Viking Lander 1) on Mars acquired imaging and meteorological data over a period of 2245 martian days (3.3 martian years). This article discusses the deposition and erosion of thin deposits (ten to hundreds of micrometers) of bright red dust associated with global dust storms, and the removal of centimeter amounts of material in selected areas during a dust storm late in the third winter. Atmospheric pressure data acquired during the period of intense erosion imply that baroclinic disturbances and strong diurnal solar tidal heating combined to produce strong winds. Erosion occurred principally in areas where soil cohesion was reduced by earlier surface sampler activities. Except for redistribution of thin layers of materials, the surface appears to be remarkably stable, perhaps because of cohension of the undisturbed surface material.

  5. Playa Soil Moisture and Evaporation Dynamics During the MATERHORN Field Program

    NASA Astrophysics Data System (ADS)

    Hang, Chaoxun; Nadeau, Daniel F.; Jensen, Derek D.; Hoch, Sebastian W.; Pardyjak, Eric R.

    2016-06-01

    We present an analysis of field data collected over a desert playa in western Utah, USA in May 2013, the most synoptically active month of the year, as part of the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) program. The results show that decreasing surface albedo, decreasing Bowen ratio and increasing net radiation with increasing soil moisture sustained a powerful positive feedback mechanism promoting large evaporation rates immediately following rain events. Additionally, it was found that, while nocturnal evaporation was negligible during dry periods, it was quite significant (up to 30 % of the daily cumulative flux) during nights following rain events. Our results further show that the highest spatial variability in surface soil moisture is found under dry conditions. Finally, we report strong spatial heterogeneities in evaporation rates following a rain event. The cumulative evaporation for the different sampling sites over a five-day period varied from ≈ 0.1 to ≈ 6.6 mm. Overall, this study allows us to better understand the mechanisms underlying soil moisture dynamics of desert playas as well as evaporation following occasional rain events.

  6. Alteration of soil hydraulic properties and soil water repellency by fire and vegetation succession in a sagebrush steppe ecosystem

    NASA Astrophysics Data System (ADS)

    Chandler, D. G.; Seyfried, M. S.

    2016-12-01

    This study explores the impacts of fire and plant community succession on soil water repellency (SWR) and infiltration properties to improve understanding the long term impacts of prescribed fire on SWR and infiltration properties in sagebrush-steppe ecosystem. The objectives of this study were: 1) To explore the temporal effects of prescribed burning in sagebrush dominated landscape; 2) To investigate spatial variability of soil hydrologic properties; 3) To determine the relationship among soil organic fraction, soil hydrophobicity and infiltration properties. Fieldwork was conducted in paired catchments with three dominant vegetation cover communities: Low sage, big mountain sage and aspen. Detailed, heavily replicated analyses were conducted for unsaturated hydraulic conductivity, sorptivity water drop penetration time and static soil-water-air contact angle. The results show that the severity and presence of surface soil water repellency were considerably reduced six years after fire and that hydraulic conductivity increased significantly in each vegetation cover compared to pre-burn condition. Comparisons among soil hydrological properties shows that hydraulic conductivity is not strongly related to SWR, and that sorptivity is negatively correlated with SWR. The spatial variance of hydraulic properties within the burned high sage and low sage, in particularly, spatial variability of hydraulic conductivity is basically controlled by soil texture and sorptivity is affected by soil wettability. The average water repellency in Low Sage area was significantly different with Big Sage and Aspen as the gap of organic content between Low Sage and other vegetation area. The result of contact angle measurement and organic content analysis shows a strong positive correlation between SWR and organic matter.

  7. Using ARM Observations to Evaluate Climate Model Simulations of Land-Atmosphere Coupling on the U.S. Southern Great Plains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Thomas J.; Klein, Stephen A.; Ma, Hsi -Yen

    Several independent measurements of warm-season soil moisture and surface atmospheric variables recorded at the ARM Southern Great Plains (SGP) research facility are used to estimate the terrestrial component of land-atmosphere coupling (LAC) strength and its regional uncertainty. The observations reveal substantial variation in coupling strength, as estimated from three soil moisture measurements at a single site, as well as across six other sites having varied soil and land cover types. The observational estimates then serve as references for evaluating SGP terrestrial coupling strength in the Community Atmospheric Model coupled to the Community Land Model. These coupled model components are operatedmore » in both a free-running mode and in a controlled configuration, where the atmospheric and land states are reinitialized daily, so that they do not drift very far from observations. Although the controlled simulation deviates less from the observed surface climate than its free-running counterpart, the terrestrial LAC in both configurations is much stronger and displays less spatial variability than the SGP observational estimates. Preliminary investigation of vegetation leaf area index (LAI) substituted for soil moisture suggests that the overly strong coupling between model soil moisture and surface atmospheric variables is associated with too much evaporation from bare ground and too little from the vegetation cover. Lastly, these results imply that model surface characteristics such as LAI, as well as the physical parameterizations involved in the coupling of the land and atmospheric components, are likely to be important sources of the problematical LAC behaviors.« less

  8. Using ARM Observations to Evaluate Climate Model Simulations of Land-Atmosphere Coupling on the U.S. Southern Great Plains

    DOE PAGES

    Phillips, Thomas J.; Klein, Stephen A.; Ma, Hsi -Yen; ...

    2017-10-13

    Several independent measurements of warm-season soil moisture and surface atmospheric variables recorded at the ARM Southern Great Plains (SGP) research facility are used to estimate the terrestrial component of land-atmosphere coupling (LAC) strength and its regional uncertainty. The observations reveal substantial variation in coupling strength, as estimated from three soil moisture measurements at a single site, as well as across six other sites having varied soil and land cover types. The observational estimates then serve as references for evaluating SGP terrestrial coupling strength in the Community Atmospheric Model coupled to the Community Land Model. These coupled model components are operatedmore » in both a free-running mode and in a controlled configuration, where the atmospheric and land states are reinitialized daily, so that they do not drift very far from observations. Although the controlled simulation deviates less from the observed surface climate than its free-running counterpart, the terrestrial LAC in both configurations is much stronger and displays less spatial variability than the SGP observational estimates. Preliminary investigation of vegetation leaf area index (LAI) substituted for soil moisture suggests that the overly strong coupling between model soil moisture and surface atmospheric variables is associated with too much evaporation from bare ground and too little from the vegetation cover. Lastly, these results imply that model surface characteristics such as LAI, as well as the physical parameterizations involved in the coupling of the land and atmospheric components, are likely to be important sources of the problematical LAC behaviors.« less

  9. Fluoroquinolone antibiotics in the environment.

    PubMed

    Sukul, Premasis; Spiteller, Michael

    2007-01-01

    Fluoroquinolones (FQs) are used in large amounts for human and animal medical care. They are excreted as parent compound, as conjugates, or as oxidation, hydroxylation, dealkylation, or decarboxylation products of the parent compound. A considerable amount of FQs and their metabolites may reach the soil as constituents of urine, feces, or manure. The residues of FQs in foods of animal origin may pose hazards to consumers through emergence of drug-resistant bacteria. FQs bind strongly to topsoil, reducing the threat of surface water and groundwater contamination. The strong binding of FQs to soil and sediments delays their biodegradation and explains the recalcitrance of FQs. Wastewater treatment is an efficient elimination step (79%-87% removal) for FQs before they enter rivers. FQs are susceptible to photodegradation in aqueous medium, involving oxidation, dealkylation, and cleavage of the piperazine ring.

  10. Modeling hydrological controls on vegetation distribution across topography in Seward Peninsula, Alaska

    NASA Astrophysics Data System (ADS)

    Mekonnen, Z. A.; Riley, W. J.; Grant, R. F.; Salmon, V. G.; Iversen, C. M.; Biraud, S.; Breen, A. L.

    2017-12-01

    Observed changes in vegetation affect carbon and nutrient cycles in diverse landscapes of northern ecosystems. These changes can be affected by topography and landscape hydrology. We applied a coupled transect version of the ecosystem model ecosys in a landscape underlain by impermeable permafrost at Kougarok, Alaska to examine hydrological controls on watershed-scale vegetation distributions. Our preliminary results indicate strong relationships between vegetation distribution and soil physical and hydraulic properties that control water, nutrients, and energy flows across the hillslope. Modeled differences in aboveground biomass across the Kougarok hillslope had a good agreement (R2 0.80) with preliminary biomass measurements from the NGEE-Arctic project in summer 2016. Low soil water content from shallower soil depth and lateral flow of water and nutrients in the upper slope position of the hillslope resulted in water stress and low N mineralization for plants with deeper roots. The middle slope position had intermediate soil moisture from deeper soil and higher N mineralization that favoured fast-growing and deep-rooted plants. The gentle slope and deeper soil in the lower slope position resulted in saturated soil, thus reduced O2 for microbes, hence favouring plants with higher root porosity. Earth system models that do not account for the underlying mechanisms of surface and sub-surface flows of water, nutrients, and energy may not predict these types of dynamics in Arctic ecosystems.

  11. Vertical distribution of soil organic carbon originated from a prior peatland in Greece and impacts on the landscape, after conversion to arable land

    NASA Astrophysics Data System (ADS)

    Kayrotis, Theodore; Charoulis, A.; Vavoulidou, E.; Tziouvalekas, M.

    2010-05-01

    The vertical distribution and the status of soil organic carbon (Corg.) in 66 surface and subsurface soil samples were investigated. These soils originated mainly from organic deposits of Philippoi (northern Greece) have been classified as Histosols and belong to the suborder of Saprists. The present study consisted of an area of 10,371 ha where about 90% of the soils are organic. The main crops are maize (Zea mays L.), sugar beets (Beta vulgaris L.), tobacco (Nicotiana tabacum L.), cotton (Gossypium hirsutum L.), tomatoes (Lycopersicon esculentum Mill.), and wheat (Triticum aestivum L.).The surface horizons consist mainly of well-humified organic materials mixed with mineral soil particles. Usually, they have moderate or insufficient drainage regime and conditions become favorable for microbial growth. Microbes decompose and transform the soil organic compounds into mineral forms, which are then available as nutrients for the crop. The organic matter was derived primarily from Cyperaceae (Cladium mariscus, various Carex species, etc.) and from decomposed residues of arable crops. The dominant features of these soils are the high content of organic matter and the obvious stratification of soil horizons. In contrast, most arable soils in Greece are characterized by low organic matter content. The stratification differentiates the physical and chemical properties and the groundwater table even during dry summers lies at depths,150 cm beneath surface. The Corg. content was high and varied greatly among the examined samples. In the surface layers ranged between 3.57 and 336.50 g kg2 (mean 199.26 g kg2) and between 22.10 and 401.10 g kg2 in the subsurface horizons (mean 258.89 g kg2). It can be argued that surface layers are drier and part of soil organic matter was seriously affected by the process of oxidation. At drier sites, soil subsidence was appeared as a consequence of soil organic matter oxidation. Increased contents were found in the northern part of the studied area, where soil moisture is usually higher. Similarly, higher contents were found at low-lying places or in hollows, due to drainage and consequent cultivation in the plowing horizons. The Corg. was highly correlated with total soil nitrogen, which is mainly bound into the soil organic matter. The studied soils are vulnerable to management, which strongly affects their properties. Under thermic temperature conditions, soils located in the slopping margin, where moisture regime is drier, can be decomposed relatively easier and faster. Rational water management, tillage practices, avoidance of heavy machinery, and proper fertilization could contribute to the soil and water quality, without significant yield reduction. Furthermore, a set of additional measures in the examined organic soils can be applied, such as: banning of plant residues burning, avoidance of deep ploughing, maintenance of a shallow water table and the partial conversion of arable soils into pasture land. Potential alternative uses and a number of practices can be suggested for proper soil management, such as: incorporation of crop residues after harvesting into subsoil, implementation of proper rotation schemes, and in some cases rational fertilsation and irrigation management to increase productivity. This investigation also provides a quantitative estimation of the soil carbon status per hectare, and an attempt was made for the interpretation of factors which affect the distribution of Corg. within the examined surface and subsurface soil layers.

  12. Contribution of raindrop impact to the change of soil physical properties and water erosion under semi-arid rainfalls.

    PubMed

    Vaezi, Ali Reza; Ahmadi, Morvarid; Cerdà, Artemi

    2017-04-01

    Soil erosion by water is a three-phase process that consists of detachment of soil particles from the soil mass, transportation of detached particles either by raindrop impact or surface water flow, and sedimentation. Detachment by raindrops is a key component of the soil erosion process. However, little information is available on the role of raindrop impact on soil losses in the semi-arid regions where vegetation cover is often poor and does not protect the soil from rainfall. The objective of this study is to determine the contribution of raindrop impact to changes in soil physical properties and soil losses in a semiarid weakly-aggregated agricultural soil. Soil losses were measured under simulated rainfalls of 10, 20, 30, 40, 50, 60 and 70mmh -1 , and under two conditions: i) with raindrop impact; and, ii) without raindrop impact. Three replications at each rainfall intensity and condition resulted in a total of 42 microplots of 1m×1.4m installed on a 10% slope according to a randomized complete block design. The contribution of raindrop impact to soil loss was computed using the difference between soil loss with raindrop impact and without raindrop impact at each rainfall intensity. Soil physical properties (aggregate size, bulk density and infiltration rate) were strongly damaged by raindrop impact as rainfall intensity increased. Soil loss was significantly affected by rainfall intensity under both soil surface conditions. The contribution of raindrop impact to soil loss decreased steadily with increasing rainfall intensity. At the lower rainfall intensities (20-30mmh -1 ), raindrop impact was the dominant factor controlling soil loss from the plots (68%) while at the higher rainfall intensities (40-70mmh -1 ) soil loss was mostly affected by increasing runoff discharge. At higher rainfall intensities the sheet flow protected the soil from raindrop impact. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Natural radioactivity in soils of the state of Rio de Janeiro (Brazil): Radiological characterization and relationships to geological formation, soil types and soil properties.

    PubMed

    Ribeiro, F C A; Silva, J I R; Lima, E S A; do Amaral Sobrinho, N M B; Perez, D V; Lauria, D C

    2018-02-01

    Located in the south-western part of Brazil, the state of Rio de Janeiro is geotectonically contained within a complex structural province that resulted in the amalgamation of the Western Gondwana Paleocontinent. To undertake an extensive radiological characterization of this complex geological province and investigate the influence of bedrock, soil type and soil chemical-physical characteristics on natural radionuclide levels in soils, 259 surface soil samples were collected that encompassed the main soil types and geological formations throughout the state. Gamma spectrometry analysis of the samples resulted in median values of 114 Bq.kg -1 for 40 K, 32 Bq.kg -1 for 226 Ra and 74 Bq.kg -1 for 228 Ra. The median value for 226 Ra was similar to the world median value for soils, the 40 K value was well below the worldwide value, and that for 228 Ra exceeded the world median value. The intense weathering caused by the high rainfall rates and high temperatures may be responsible for the low levels of 40 K in the soils, of which the strongly acidic and clayey soils are markedly K-depleted. A soil from a high-grade metamorphic rock (granulite) presented the lowest 226 Ra (18 Bq.kg -1 ) content, whereas the highest levels for 226 Ra (92 Bq.kg -1 ) and 228 Ra (139 Bq.kg - 1) were observed in a young soil enriched in primary minerals (Leptsol). A lowland soil (Gleysol) showed the highest median of 40 K (301 Bq.kg -1 ). Strongly acidic soils tended to present high amounts of 226 Ra, and sandy soils tended to contain low levels of 228 Ra. The external radiation dose indicates that the state has a background radiation level within the natural range. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Landscape-scale soil moisture heterogeneity and its influence on surface fluxes at the Jornada LTER site: Evaluating a new model parameterization for subgrid-scale soil moisture variability

    NASA Astrophysics Data System (ADS)

    Baker, I. T.; Prihodko, L.; Vivoni, E. R.; Denning, A. S.

    2017-12-01

    Arid and semiarid regions represent a large fraction of global land, with attendant importance of surface energy and trace gas flux to global totals. These regions are characterized by strong seasonality, especially in precipitation, that defines the level of ecosystem stress. Individual plants have been observed to respond non-linearly to increasing soil moisture stress, where plant function is generally maintained as soils dry down to a threshold at which rapid closure of stomates occurs. Incorporating this nonlinear mechanism into landscape-scale models can result in unrealistic binary "on-off" behavior that is especially problematic in arid landscapes. Subsequently, models have `relaxed' their simulation of soil moisture stress on evapotranspiration (ET). Unfortunately, these relaxations are not physically based, but are imposed upon model physics as a means to force a more realistic response. Previously, we have introduced a new method to represent soil moisture regulation of ET, whereby the landscape is partitioned into `BINS' of soil moisture wetness, each associated with a fractional area of the landscape or grid cell. A physically- and observationally-based nonlinear soil moisture stress function is applied, but when convolved with the relative area distribution represented by wetness BINS the system has the emergent property of `smoothing' the landscape-scale response without the need for non-physical impositions on model physics. In this research we confront BINS simulations of Bowen ratio, soil moisture variability and trace gas flux with soil moisture and eddy covariance observations taken at the Jornada LTER dryland site in southern New Mexico. We calculate the mean annual wetting cycle and associated variability about the mean state and evaluate model performance against this variability and time series of land surface fluxes from the highly instrumented Tromble Weir watershed. The BINS simulations capture the relatively rapid reaction to wetting events and more prolonged response to drying cycles, as opposed to binary behavior in the control.

  15. Modeling the influence of organic acids on soil weathering

    NASA Astrophysics Data System (ADS)

    Lawrence, Corey; Harden, Jennifer; Maher, Kate

    2014-08-01

    Biological inputs and organic matter cycling have long been regarded as important factors in the physical and chemical development of soils. In particular, the extent to which low molecular weight organic acids, such as oxalate, influence geochemical reactions has been widely studied. Although the effects of organic acids are diverse, there is strong evidence that organic acids accelerate the dissolution of some minerals. However, the influence of organic acids at the field-scale and over the timescales of soil development has not been evaluated in detail. In this study, a reactive-transport model of soil chemical weathering and pedogenic development was used to quantify the extent to which organic acid cycling controls mineral dissolution rates and long-term patterns of chemical weathering. Specifically, oxalic acid was added to simulations of soil development to investigate a well-studied chronosequence of soils near Santa Cruz, CA. The model formulation includes organic acid input, transport, decomposition, organic-metal aqueous complexation and mineral surface complexation in various combinations. Results suggest that although organic acid reactions accelerate mineral dissolution rates near the soil surface, the net response is an overall decrease in chemical weathering. Model results demonstrate the importance of organic acid input concentrations, fluid flow, decomposition and secondary mineral precipitation rates on the evolution of mineral weathering fronts. In particular, model soil profile evolution is sensitive to kaolinite precipitation and oxalate decomposition rates. The soil profile-scale modeling presented here provides insights into the influence of organic carbon cycling on soil weathering and pedogenesis and supports the need for further field-scale measurements of the flux and speciation of reactive organic compounds.

  16. Modeling the influence of organic acids on soil weathering

    USGS Publications Warehouse

    Lawrence, Corey R.; Harden, Jennifer W.; Maher, Kate

    2014-01-01

    Biological inputs and organic matter cycling have long been regarded as important factors in the physical and chemical development of soils. In particular, the extent to which low molecular weight organic acids, such as oxalate, influence geochemical reactions has been widely studied. Although the effects of organic acids are diverse, there is strong evidence that organic acids accelerate the dissolution of some minerals. However, the influence of organic acids at the field-scale and over the timescales of soil development has not been evaluated in detail. In this study, a reactive-transport model of soil chemical weathering and pedogenic development was used to quantify the extent to which organic acid cycling controls mineral dissolution rates and long-term patterns of chemical weathering. Specifically, oxalic acid was added to simulations of soil development to investigate a well-studied chronosequence of soils near Santa Cruz, CA. The model formulation includes organic acid input, transport, decomposition, organic-metal aqueous complexation and mineral surface complexation in various combinations. Results suggest that although organic acid reactions accelerate mineral dissolution rates near the soil surface, the net response is an overall decrease in chemical weathering. Model results demonstrate the importance of organic acid input concentrations, fluid flow, decomposition and secondary mineral precipitation rates on the evolution of mineral weathering fronts. In particular, model soil profile evolution is sensitive to kaolinite precipitation and oxalate decomposition rates. The soil profile-scale modeling presented here provides insights into the influence of organic carbon cycling on soil weathering and pedogenesis and supports the need for further field-scale measurements of the flux and speciation of reactive organic compounds.

  17. Conversion of traditional cropland into teak plantations strongly increased soil erosion in montane catchments of Southeastern Asia (Northern Laos; 2002-2014)

    NASA Astrophysics Data System (ADS)

    Evrard, O.; Ribolzi, O.; Huon, S.; de Rouw, A.; Silvera, N.; Latsachack, K. O.; Soulileuth, B.; Lefèvre, I.; Pierret, A.; Lacombe, G.; Sengtaheuanghoung, O.; Valentin, C.

    2017-12-01

    Soil erosion delivers an excessive quantity of sediment to rivers of Southeastern Asia. Land use is rapidly changing in this region of the world, and these modifications may further accelerate soil erosion in this area. Although the conversion of forests into cropland has often been investigated, much fewer studies have addressed the replacement of traditional slash-and-burn cultivation systems with commercial perennial monocultures such as teak plantations. The current research investigated the impact of this land use change on the hydrological response and the sediment yields from a representative catchment of Northern Laos (Houay Pano, 0.6 km²) where long-term monitoring (2002-2014) was conducted (http://msec.obs-mip.fr/). The results showed a significant growth in the overland flow contribution to stream flow (from 16 to 31%). Furthermore, sediment yields strongly increased from 98 to 609 Mg km-2. These changes illustrate the severity of soil erosion processes occurring under teak plantations characterized by the virtual absence of understorey vegetation to dissipate raindrop energy, which facilitates the formation of an impermeable surface crust. This counter-intuitive increase of soil erosion generated by afforestation reflects the difficulty to find sustainable production solutions for the local populations of Southeastern Asia. To reduce soil loss under teak plantations, the development of extensive agro-forestry practices could be promoted.

  18. Geochemical Analyses of Surface and Shallow Gas Flux and Composition Over a Proposed Carbon Sequestration Site in Eastern Kentucky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas Parris; Michael Solis; Kathryn Takacs

    2009-12-31

    Using soil gas chemistry to detect leakage from underground reservoirs (i.e. microseepage) requires that the natural range of soil gas flux and chemistry be fully characterized. To meet this need, soil gas flux (CO{sub 2}, CH{sub 4}) and the bulk (CO{sub 2}, CH{sub 4}) and isotopic chemistry ({delta}{sup 13}C-CO2) of shallow soil gases (<1 m, 3.3 ft) were measured at 25 locations distributed among two active oil and gas fields, an active strip mine, and a relatively undisturbed research forest in eastern Kentucky. The measurements apportion the biologic, atmospheric, and geologic influences on soil gas composition under varying degrees ofmore » human surface disturbance. The measurements also highlight potential challenges in using soil gas chemistry as a monitoring tool where the surface cover consists of reclaimed mine land or is underlain by shallow coals. For example, enrichment of ({delta}{sup 13}C-CO2) and high CH{sub 4} concentrations in soils have been historically used as indicators of microseepage, but in the reclaimed mine lands similar soil chemistry characteristics likely result from dissolution of carbonate cement in siliciclastic clasts having {delta}{sup 13}C values close to 0{per_thousand} and degassing of coal fragments. The gases accumulate in the reclaimed mine land soils because intense compaction reduces soil permeability, thereby impeding equilibration with the atmosphere. Consequently, the reclaimed mine lands provide a false microseepage anomaly. Further potential challenges arise from low permeability zones associated with compacted soils in reclaimed mine lands and shallow coals in undisturbed areas that might impede upward gas migration. To investigate the effect of these materials on gas migration and composition, four 10 m (33 ft) deep monitoring wells were drilled in reclaimed mine material and in undisturbed soils with and without coals. The wells, configured with sampling zones at discrete intervals, show the persistence of some of the aforementioned anomalies at depth. Moreover, high CO{sub 2} concentrations associated with coals in the vadose zone suggest a strong affinity for adsorbing CO{sub 2}. Overall, the low permeability of reclaimed mine lands and coals and CO2 adsorption by the latter is likely to reduce the ability of surface geochemistry tools to detect a microseepage signal.« less

  19. Earthquake Shaking - Finding the "Hot Spots"

    USGS Publications Warehouse

    Field, Edward; Jones, Lucile; Jordan, Tom; Benthien, Mark; Wald, Lisa

    2001-01-01

    A new Southern California Earthquake Center study has quantified how local geologic conditions affect the shaking experienced in an earthquake. The important geologic factors at a site are softness of the rock or soil near the surface and thickness of the sediments above hard bedrock. Even when these 'site effects' are taken into account, however, each earthquake exhibits unique 'hotspots' of anomalously strong shaking. Better predictions of strong ground shaking will therefore require additional geologic data and more comprehensive computer simulations of individual earthquakes.

  20. Soil dynamics and accelerated erosion: a sensitivity analysis of the LPJ Dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Bouchoms, Samuel; Van Oost, Kristof; Vanacker, Veerle; Kaplan, Jed O.; Vanwalleghem, Tom

    2013-04-01

    It is widely accepted that humans have become a major geomorphic force by disturbing natural vegetation patterns. Land conversion for agriculture purposes removes the protection of soils by the natural vegetation and leads to increased soil erosion by one to two orders of magnitude, breaking the balance that exists between the loss of soils and its production. Accelerated erosion and deposition have a strong influence on evolution and heterogeneity of basic soil characteristics (soil thickness, hydrology, horizon development,…) as well as on organic matter storage and cycling. Yet, since they are operating at a long time scale, those processes are not represented in state-of-art Dynamic Global Vegetation Models, which is a clear lack when exploring vegetation dynamics over past centuries. The main objectives of this paper are (i) to test the sensitivity of a Dynamic Global Vegetation Model, in terms of NPP and organic matter turnover, variations in state variables in response to accelerated erosion and (ii) to assess the performance of the model under the impact of erosion for a case-study in Central Spain. We evaluated the Lund-Postdam-Jena Dynamic Vegetation Model (LPJ DVGM) (Sitch et al, 2003) which simulates vegetation growth and carbon pools at the surface and in the soil based on climatic, pedologic and topographic variables. We assessed its reactions to changes in key soil properties that are affected by erosion such as texture and soil depth. We present the results of where we manipulated soil texture and bulk density while keeping the environmental drivers of climate, slope and altitude constant. For parameters exhibiting a strong control on NPP or SOM, a factorial analysis was conducted to test for interaction effects. The simulations show an important dependence on the clay content, especially for the slow cycling carbon pools and the biomass production, though the underground litter seems to be mostly influenced by the silt content. The fast cycling C pools and/or the surface pools vary with sand and silt richness, the highest values being reached with a combination of 50% silt and 25% sand while the lowest are for a 100% clay soil. Finally, LPJ is run for three cases corresponding to a stable, erosive and depositional soil profile. These simulations show how the model reacts and performs under erosion/deposition conditions which are recreated by changing the soil's texture and soil depth over time. We discuss the performance of the LPJ model in the context of accelerated erosion and conclusions drawn from the sensitivity analysis.

  1. Disturbance and topography shape nitrogen availability and δ15 N over long-term forest succession

    USGS Publications Warehouse

    Perakis, Steven; Tepley, Alan J.; Compton, Jana

    2015-01-01

    Forest disturbance and long-term succession towards old-growth are thought to increase nitrogen (N) availability and N loss, which should increase soil δ15N values. We examined soil and foliar patterns in N and δ15N, and soil N mineralization, across 800 years of forest succession in a topographically complex montane landscape influenced by human logging and wildfire. In contrast to expectations, we found that disturbance caused declines in surface mineral soil δ15N values, both in logged forests measured 40–50 years after disturbance, and in unlogged forests disturbed by severe wildfire within the last 200 years. Both symbiotic N fixation and N transfers from disturbed vegetation and detritus could lower soil δ15N values after disturbance. A more important role for symbiotic N fixation is suggested by lower soil δ15N values in slow-successional sites with slow canopy closure, which favors early-successional N fixers. Soil δ15N values increased only marginally throughout 800 years of succession, reflecting soil N uptake by vegetation and strong overall N retention. Although post-disturbance N inputs lowered surface soil δ15N values, steady-state mass balance calculations suggest that wildfire combustion of vegetation and detritus can dominate long-term N loss and increase whole-ecosystem δ15N. On steeper topography, declining soil δ15N values highlight erosion and accelerated soil turnover as an additional abiotic control on N balances. We conclude for N-limited montane forests that soil δ15N and N availability are less influenced by nitrate leaching and denitrification loss than by interactions between disturbance, N fixation, and erosion.

  2. Natural remediation of an unremediated soil twelve years after a mine accident: trace element mobility and plant composition.

    PubMed

    Burgos, Pilar; Madejón, Paula; Madejón, Engracia; Girón, Ignacio; Cabrera, Francisco; Murillo, José Manuel

    2013-01-15

    The long-term influence of a mine spill in soil was studied 12 years after the Aznalcóllar accident. Soils where the pyritic sludge was not removed, a fenced plot established for research purposes (2000 m(2)) and soils where the process of remediation was accomplished successfully were sampled and studied in detail. Soils were characterized at different depths, down to 100 cm depth, determining chemical parameters and total concentrations of major and trace elements. Moreover plants colonizing remediated (RE) and non remediated (NRE) soils were also analysed attending their potential risk for herbivores. Strong acidification was observed in the NRE soil except in surface (0-10 cm). The progressive colonization of natural vegetation, more than 90% of the fenced plot covered by plants, could facilitate this increased pH values in the top soil (pH 6). In the NRE soil, the successive oxidation and hydrolysis of sulphide in the deposited sludge on the surface after the accident resulted in a re-dissolution of the most mobile element (Cd, Cu and Zn) and a penetration to deeper layers. Trace element concentrations in plants growing in the NRE soil showed normal contents for higher plants and tolerable for livestock. Nitrogen and mineral nutrients were of the same order in both soils, and also normal for high plants and adequate for animal nutrition. Despite of the natural remediation of the NRE soil, results demonstrate that the remediation tasks carried out in all the area, the Guadiamar Green Corridor at present, were necessary to avoid the leaching of the most mobile elements and minimize the risk of contamination of groundwater sources, many of them close to the Doñana National Park. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Topsoil structure stability in a restored floodplain: Impacts of fluctuating water levels, soil parameters and ecosystem engineers.

    PubMed

    Schomburg, A; Schilling, O S; Guenat, C; Schirmer, M; Le Bayon, R C; Brunner, P

    2018-10-15

    Ecosystem services provided by floodplains are strongly controlled by the structural stability of soils. The development of a stable structure in floodplain soils is affected by a complex and poorly understood interplay of hydrological, physico-chemical and biological processes. This paper aims at analysing relations between fluctuating groundwater levels, soil physico-chemical and biological parameters on soil structure stability in a restored floodplain. Water level fluctuations in the soil are modelled using a numerical surface-water-groundwater flow model and correlated to soil physico-chemical parameters and abundances of plants and earthworms. Causal relations and multiple interactions between the investigated parameters are tested through structural equation modelling (SEM). Fluctuating water levels in the soil did not directly affect the topsoil structure stability, but indirectly through affecting plant roots and soil parameters that in turn determine topsoil structure stability. These relations remain significant for mean annual days of complete and partial (>25%) water saturation. Ecosystem functioning of a restored floodplain might already be affected by the fluctuation of groundwater levels alone, and not only through complete flooding by surface water during a flood period. Surprisingly, abundances of earthworms did not show any relation to other variables in the SEM. These findings emphasise that earthworms have efficiently adapted to periodic stress and harsh environmental conditions. Variability of the topsoil structure stability is thus stronger driven by the influence of fluctuating water levels on plants than by the abundance of earthworms. This knowledge about the functional network of soil engineering organisms, soil parameters and fluctuating water levels and how they affect soil structural stability is of fundamental importance to define management strategies of near-natural or restored floodplains in the future. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Decreased atmospheric sulfur deposition across the southeastern U.S.: When will watersheds release stored sulfate?

    Treesearch

    Karen C. Rice; Todd M. Scanlon; Jason A. Lynch; Bernard J. Cosby

    2014-01-01

    Emissions of sulfur dioxide (SO2) to the atmosphere lead to atmospheric deposition of sulfate (SO42-), which is the dominant strong acid anion causing acidification of surface waters and soils in the eastern United States. Since passage of the Clean Air Act and its Amendments, atmospheric deposition...

  5. Edaphic and microclimatic controls over permafrost response to fire in interior Alaska

    Treesearch

    D.R. Nossov; M.T. Jorgenson; K. Kielland; M. Kanevskiy

    2013-01-01

    Discontinuous permafrost in the North American boreal forest is strongly influenced by the effects of ecological succession on the accumulation of surface organic matter, making permafrost vulnerable to degradation resulting from fire disturbance. To assess factors affecting permafrost degradation after wildfire, we compared vegetation composition and soil properties...

  6. Improved global simulation of groundwater-ecosystem interactions via tight coupling of a dynamic global ecosystem model and a global hydrological model

    NASA Astrophysics Data System (ADS)

    Braakhekke, Maarten; Rebel, Karin; Dekker, Stefan; Smith, Benjamin; Sutanudjaja, Edwin; van Beek, Rens; van Kampenhout, Leo; Wassen, Martin

    2017-04-01

    In up to 30% of the global land surface ecosystems are potentially influenced by the presence of a shallow groundwater table. In these regions upward water flux by capillary rise increases soil moisture availability in the root zone, which has a strong effect on evapotranspiration, vegetation dynamics, and fluxes of carbon and nitrogen. Most global hydrological models and several land surface models simulate groundwater table dynamics and their effects on land surface processes. However, these models typically have relatively simplistic representation of vegetation and do not consider changes in vegetation type and structure. Dynamic global vegetation models (DGVMs), describe land surface from an ecological perspective, combining detailed description of vegetation dynamics and structure, and biogeochemical processes and are thus more appropriate to simulate the ecological and biogeochemical effects of groundwater interactions. However, currently virtually all DGVMs ignore these effects, assuming that water tables are too deep to affect soil moisture in the root zone. We have implemented a tight coupling between the dynamic global ecosystem model LPJ-GUESS and the global hydrological model PCR-GLOBWB, which explicitly simulates groundwater dynamics. This coupled model allows us to explicitly account for groundwater effects on terrestrial ecosystem processes at global scale. Results of global simulations indicate that groundwater strongly influences fluxes of water, carbon and nitrogen, in many regions, adding up to a considerable effect at the global scale.

  7. Differing response of soil microbial biomass phosphorus and phosphatase activities to lithology and climate in the Sierra Nevada of California

    NASA Astrophysics Data System (ADS)

    Margenot, A. J.; Wilson, S. G.

    2016-12-01

    Soil phosphorus (P) availability in ecosystems can be strongly reflected by microbial biomass P (MBP) and phosphatase activities. However, it is not known how MBP and phosphatases relate across variability in soil P engendered by parent material and climate. To evaluate this, we sampled surface soils (0-5 cm and 5-15 cm depth) at four climate zones (dominated by blue oak, ponderosa pine, white fir, and red fir, respectively) across three lithologies (granite, andesite, basalt) in the Sierra Nevada of California. This allowed for a unique study of both the influence of climate and lithology on microbial and enzymatic P dynamics. Soils were measured for MBP and potential activities of acid phosphomonoesterase (ACP), alkaline phosphomonoesterase (ALP), and phosphodiesterase (PDE), as well as available and organic P (Po). Across soils there were substantial differences in soil C (14-235 mg g-1), available P (0.6-111 µg g-1), and Po (53-1120 µg g-1), though soil pH was relatively constrained (pH 5.3-7.3). MBP responded more strongly to lithology than climate, and responded only to lithology at 5-15 cm depth. In contrast, phosphatase potential activities responded more strongly to climate than lithology, with greater response at 5-15 cm depth, and were positively correlated with soil C:Po (ACP p = 0.001, ALP and PDE p < 0.0001). MBP and phosphatase potential activities were not correlated, though both positively associated with soil C. Significant divergence of phosphatase activities in soils developed on andesite compared to granite and/or basalt in colder climates (white and red fir) did not reflect peak MBP at the rain-snow transition (ponderosa pine-white fir). PDE, but not ACP, ALP and MBP, was associated inversely with Po (p = 0.02) and tended to increase with available P (p = 0.059). Additionally, PDE varied most of measured indicators of P status across lithology and climate. The greater sensitivity of phosphatases to climate and of MBP to lithology, and the lack of association between MBP and phosphatase activities suggest that these (1) reflect different aspects of soil P status, and (2) are more responsive to soil C than soil P, which may explain observed trends across lithology and climate.

  8. Trends in Soil Moisture Reflect More Than Slope Position: Soils on San Cristóbal Island, Galápagos as a Case Study

    NASA Astrophysics Data System (ADS)

    Percy, M.; Singha, K.; Benninger, L. K.; Riveros-Iregui, D. A.; Mirus, B. B.

    2015-12-01

    The spatial and temporal distribution of soil moisture in tropical critical zones depends upon a number of variables including topographic position, soil texture, overlying vegetation, and local microclimates. We investigate the influences on soil moisture on a tropical basaltic island (San Cristóbal, Galápagos) across a variety of microclimates during the transition from the wetter to the drier season. We used multiple approaches to characterize spatial and temporal patterns in soil moisture at four sites across microclimates ranging from arid to very humid. The microclimates on San Cristóbal vary with elevation, so our monitoring includes two sites in the transitional zone at lower elevations, one in the humid zone at moderate elevations, and one in the very humid zone in higher elevations. We made over 250 near-surface point measurements per site using a Hydrosense II probe, and estimated the lateral variability in soil moisture across each site with an EM-31 electrical conductivity meter. We also monitored continuous time-series of in-situ soil moisture dynamics using three nested TDR probes collocated with meteorological stations at each of the sites. Preliminary analysis indicates that soils in the very humid zone have lower electrical conductivities across all the hillslopes as compared to the humid and transitional zones, which suggests that additional factors beyond climate and slope position are important. While soil texture across the very humid site is fairly uniform, variations in vegetation have a strong control on soil moisture patterns. At the remaining sites the vegetation patterns also have a very strong local influence on soil moisture, but correlation between the depth to clay layers and soil moisture patterns suggests that mineralogy is also important. Our findings suggest that the microclimatic setting is a crucial consideration for understanding relations between vegetation, soil texture, and soil-moisture dynamics in tropical critical zones.

  9. Environmental remediation following the Fukushima-Daiichi accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tagawa, A.; Miyahara, K.; Nakayama, S.

    2013-07-01

    A wide area of Fukushima Prefecture was contaminated with radioactivity released by the Fukushima Daiichi nuclear accident. The decontamination pilot projects conducted by JAEA aimed at demonstrating the applicability of different techniques to rehabilitate affected areas. As most radioactive cesium is concentrated at the top of the soil column and strongly bound to mineral surfaces, there are 3 options left to decrease the gamma dose rate (usually measured 1 m above the ground surface): the stripping of the contaminated topsoil (i.e. direct removal of cesium), the dilution by mixing and the soil profile inversion. The last two options do notmore » generate waste. As the half-distance of {sup 137}Cs gammas in soil is in the order of 5-6 cm (depending on density and water content), the shielding by 50 cm of uncontaminated deep soil would theoretically reduce gamma doses by about 3 orders of magnitude. Which option is employed depends basically on the Cesium concentration in the topsoil, averaged over a 15-cm thickness. The JAEA's decontamination pilot projects focus on soil profile inversion and topsoil stripping. Two different techniques have been tested for the soil profile inversion: one is the reversal tillage by which surface soil of thickness of several tens of cm is reversed by using a tractor plough and the other is the complete interchanging of contaminated topsoil with uncontaminated subsoil by using a back-hoe. Reversal tillage with a tractor plough cost about 30 yen/m{sup 2}, which is an order of magnitude lower than that of topsoil-subsoil interchange (about 300 yen/m{sup 2}). Topsoil stripping is significantly more costly (between 550 yen/m{sup 2} and 690 yen/m{sup 2} according to the equipment used)« less

  10. Mechanisms of soil degradation and consequences for carbon stocks on Tibetan grasslands

    NASA Astrophysics Data System (ADS)

    Kuzyakov, Yakov; Schleuss, Per-Marten; Miehe, Georg; Heitkamp, Felix; Sebeer, Elke; Spielvogel, Sandra; Xu, Xingliang; Guggenberger, Georg

    2016-04-01

    Tibetan grasslands provide tremendous sinks for carbon (C) and represent important grazing ground. Strong degradation - the destroying the upper root-mat/soil horizon of Kobresia pastures, has dramatic consequences for soil organic carbon (SOC) and nutrient storage. To demonstrate specific degradation patterns and elucidate mechanisms, as well as to assess consequences for SOC storage, we investigated a sequence of six degradation stages common over the whole Kobresia ecosystem. The soil degradation sequence consists of following mechanisms: Overgrazing and trampling by livestock provide the prerequisite for grassland degradation as both (a) cause plant dying, (b) reduce grassland recovery and (c) destroy protective Kobresia root-mats. These anthropogenic induced processes are amplified by naturally occurring degradation in harsh climate. The frequently repeated soil moisture and temperature fluctuations induce volume changes and tensions leading to polygonal cracking of the root mats. Then the plants die and erosion gradually extend the surface cracks. Soil erosion cause a high SOC loss from the upper horizons (0-10 cm: ~5.1 kg C m-2), whereas SOC loss beneath the surface cracks is caused by both, decreasing root C-input and SOC mineralization (SOC losses by mineralization: ~2.5 kg C m-2). Root biomass decreases with degradation and indicated lower C input. The negative δ13C shift of SOC reflects intensive decomposition and corresponds to a relative enrichment of 13C depleted lignin components. We conclude that the combined effects of overgrazing and harsh climate reduce root C input, increase SOC decomposition and initiate erosion leading to SOC loss up to 70% of intact soil (0-30 cm: ~7.6 kg C m-2). Consequently, a high amount of C is released back to the atmosphere as CO2, or is deposited in depressions and river beds creating a potential source of N2O and CH4. Concluding, anthropogenically induced overgrazing makes the Kobresia root-mat sensitive to natural degradation processes and lead to strong up to complete destroying of soils and so, of pastures ground and ecosystems on Tibetan plateau.

  11. The Role of Protein-Mineral Interactions for Protein Adsorption or Fragmentation

    NASA Astrophysics Data System (ADS)

    Chacon, S. S.; Reardon, P.; Washton, N.; Kleber, M.

    2014-12-01

    Soil exo-enzymes (EE) are proteins with the capability to catalyze the depolymerization of soil organic matter (SOM). SOM must be disassembled by EEs in order to be transported through the microbial cell wall and become metabolized. One factor determining an EE's functionality is their affinity to mineral surfaces found in the soil. Our goal was to establish the range of protein modifications, either chemical or structural, as the protein becomes associated with mineral surfaces. We hypothesized that pedogenic oxides would generate more extensive chemical alterations to the protein structure than phyllosilicates. A well-characterized protein proxy (Gb1, IEP 4.0, 6.2 kDA) was adsorbed onto functionally different mineral surfaces (goethite, montmorillonite, kaolinite and birnesite) at pH 5 and pH 7. We used 1H 15N Heteronuclear Single Quantum Coherence Nuclear Magnetic Resonance Spectroscopy (HSQC NMR) to observe structural modifications in the unadsorbed Gb1 that was allowed to equilibrate during the adsorption process for kaolinite, goethite and birnessite. Solid state NMR was used to observe the structural modifications of Gb1 while adsorbed onto kaolinite and montmorillonite. Preliminary results in the HSQC NMR spectra observed no changes in the native conformation of Gb1 when allowed to interact with goethite and kaolinite while birnessite induced strong structural modification of Gb1 at an acidic pH. Our results suggest that not all mineral surfaces in soil act as sorbents for EEs and changes in their catalytic activity upon adsorption to minerals surfaces may not just be an indication of conformational changes but of fragmentation of the protein itself.

  12. Mathematical Modelling of Arctic Polygonal Tundra with Ecosys: 1. Microtopography Determines How Active Layer Depths Respond to Changes in Temperature and Precipitation

    NASA Astrophysics Data System (ADS)

    Grant, R. F.; Mekonnen, Z. A.; Riley, W. J.; Wainwright, H. M.; Graham, D.; Torn, M. S.

    2017-12-01

    Microtopographic variation that develops among features (troughs, rims, and centers) within polygonal landforms of coastal arctic tundra strongly affects movement of surface water and snow and thereby affects soil water contents (θ) and active layer depth (ALD). Spatial variation in ALD among these features may exceed interannual variation in ALD caused by changes in climate and so needs to be represented in projections of changes in arctic ALD. In this study, increases in near-surface θ with decreasing surface elevation among polygon features at the Barrow Experimental Observatory (BEO) were modeled from topographic effects on redistribution of surface water and snow and from lateral water exchange with a subsurface water table during a model run from 1981 to 2015. These increases in θ caused increases in thermal conductivity that in turn caused increases in soil heat fluxes and hence in ALD of up to 15 cm with lower versus higher surface elevation which were consistent with increases measured at BEO. The modeled effects of θ caused interannual variation in maximum ALD that compared well with measurements from 1985 to 2015 at the Barrow Circumpolar Active Layer Monitoring (CALM) site (R2 = 0.61, RMSE = 0.03 m). For higher polygon features, interannual variation in ALD was more closely associated with annual precipitation than mean annual temperature, indicating that soil wetting from increases in precipitation may hasten permafrost degradation beyond that caused by soil warming from increases in air temperature. This degradation may be more rapid if increases in precipitation cause sustained wetting in higher features.

  13. Dissipation and transport of veterinary sulfonamide antibiotics after manure application to grassland in a small catchment.

    PubMed

    Stoob, Krispin; Singer, Heinz P; Mueller, Stephan R; Schwarzenbach, René P; Stamm, Christian H

    2007-11-01

    The heavy use of veterinary antibiotics in modern animal production causes concern about risks of spreading antibiotic resistance after manure applications to agricultural fields. We report on a field study aiming at elucidating the fate of sulfonamide (SA) antibiotics in grassland soils and their transport to surface water. Two controlled manure applications were carried out under different weather conditions. After both applications, the SA concentrations in pore water and the total soil content declined rapidly. This stage of fast decline was followed by a second one during which the SA were rather persistent. More than 15% of the SAs applied were still present in the soil 3 months after application, always exceeding 100 microg/kg topsoil. The apparent SA sorption increased strongly with time. Accordingly, the risk for SA losses to water bodies decreased within 2 weeks to very low values. In contrast to SA concentrations in the soil, losses to the brook were strongly influenced by the weather conditions after the two manure applications. The overall losses were 15 times larger (about 0.5% of applied SA) during the wet conditions of May 2003 compared to the dry conditions following the first application (March 2003).

  14. Biological soil crusts accelerate the nitrogen cycle through large NO and HONO emissions in drylands.

    PubMed

    Weber, Bettina; Wu, Dianming; Tamm, Alexandra; Ruckteschler, Nina; Rodríguez-Caballero, Emilio; Steinkamp, Jörg; Meusel, Hannah; Elbert, Wolfgang; Behrendt, Thomas; Sörgel, Matthias; Cheng, Yafang; Crutzen, Paul J; Su, Hang; Pöschl, Ulrich

    2015-12-15

    Reactive nitrogen species have a strong influence on atmospheric chemistry and climate, tightly coupling the Earth's nitrogen cycle with microbial activity in the biosphere. Their sources, however, are not well constrained, especially in dryland regions accounting for a major fraction of the global land surface. Here, we show that biological soil crusts (biocrusts) are emitters of nitric oxide (NO) and nitrous acid (HONO). Largest fluxes are obtained by dark cyanobacteria-dominated biocrusts, being ∼20 times higher than those of neighboring uncrusted soils. Based on laboratory, field, and satellite measurement data, we obtain a best estimate of ∼1.7 Tg per year for the global emission of reactive nitrogen from biocrusts (1.1 Tg a(-1) of NO-N and 0.6 Tg a(-1) of HONO-N), corresponding to ∼20% of global nitrogen oxide emissions from soils under natural vegetation. On continental scales, emissions are highest in Africa and South America and lowest in Europe. Our results suggest that dryland emissions of reactive nitrogen are largely driven by biocrusts rather than the underlying soil. They help to explain enigmatic discrepancies between measurement and modeling approaches of global reactive nitrogen emissions. As the emissions of biocrusts strongly depend on precipitation events, climate change affecting the distribution and frequency of precipitation may have a strong impact on terrestrial emissions of reactive nitrogen and related climate feedback effects. Because biocrusts also account for a large fraction of global terrestrial biological nitrogen fixation, their impacts should be further quantified and included in regional and global models of air chemistry, biogeochemistry, and climate.

  15. Biological soil crusts accelerate the nitrogen cycle through large NO and HONO emissions in drylands

    PubMed Central

    Wu, Dianming; Tamm, Alexandra; Ruckteschler, Nina; Rodríguez-Caballero, Emilio; Meusel, Hannah; Elbert, Wolfgang; Behrendt, Thomas; Sörgel, Matthias; Cheng, Yafang; Crutzen, Paul J.; Su, Hang; Pöschl, Ulrich

    2015-01-01

    Reactive nitrogen species have a strong influence on atmospheric chemistry and climate, tightly coupling the Earth’s nitrogen cycle with microbial activity in the biosphere. Their sources, however, are not well constrained, especially in dryland regions accounting for a major fraction of the global land surface. Here, we show that biological soil crusts (biocrusts) are emitters of nitric oxide (NO) and nitrous acid (HONO). Largest fluxes are obtained by dark cyanobacteria-dominated biocrusts, being ∼20 times higher than those of neighboring uncrusted soils. Based on laboratory, field, and satellite measurement data, we obtain a best estimate of ∼1.7 Tg per year for the global emission of reactive nitrogen from biocrusts (1.1 Tg a−1 of NO-N and 0.6 Tg a−1 of HONO-N), corresponding to ∼20% of global nitrogen oxide emissions from soils under natural vegetation. On continental scales, emissions are highest in Africa and South America and lowest in Europe. Our results suggest that dryland emissions of reactive nitrogen are largely driven by biocrusts rather than the underlying soil. They help to explain enigmatic discrepancies between measurement and modeling approaches of global reactive nitrogen emissions. As the emissions of biocrusts strongly depend on precipitation events, climate change affecting the distribution and frequency of precipitation may have a strong impact on terrestrial emissions of reactive nitrogen and related climate feedback effects. Because biocrusts also account for a large fraction of global terrestrial biological nitrogen fixation, their impacts should be further quantified and included in regional and global models of air chemistry, biogeochemistry, and climate. PMID:26621714

  16. Root architecture and wind-firmness of mature Pinus pinaster.

    PubMed

    Danjon, Frédéric; Fourcaud, Thierry; Bert, Didier

    2005-11-01

    This study aims to link three-dimensional coarse root architecture to tree stability in mature timber trees with an average of 1-m rooting depth. Undamaged and uprooted trees were sampled in a stand damaged by a storm. Root architecture was measured by three-dimensional (3-D) digitizing. The distribution of root volume by root type and in wind-oriented sectors was analysed. Mature Pinus pinaster root systems were organized in a rigid 'cage' composed of a taproot, the zone of rapid taper of horizontal surface roots and numerous sinkers and deep roots, imprisoning a large mass of soil and guyed by long horizontal surface roots. Key compartments for stability exhibited strong selective leeward or windward reinforcement. Uprooted trees showed a lower cage volume, a larger proportion of oblique and intermediate depth horizontal roots and less wind-oriented root reinforcement. Pinus pinaster stability on moderately deep soils is optimized through a typical rooting pattern and a considerable structural adaptation to the prevailing wind and soil profile.

  17. Liquefaction and soil failure during 1994 northridge earthquake

    USGS Publications Warehouse

    Holzer, T.L.

    1999-01-01

    The 1994 Northridge, Calif., earthquake caused widespread permanent ground deformation on the gently sloping alluvial fan surface of the San Fernando Valley. The ground cracks and distributed deformation damaged both pipelines and surface structures. To evaluate the mechanism of soil failure, detailed subsurface investigations were conducted at four sites. Three sites are underlain by saturated sandy silts with low standard penetration test and cone penetration test values. These soils are similar to those that liquefied during the 1971 San Fernando earthquake, and are shown by widely used empirical relationships to be susceptible to liquefaction. The remaining site is underlain by saturated clay whose undrained shear strength is approximately half the value of the earthquake-induced shear stress at this location. This study demonstrates that the heterogeneous nature of alluvial fan sediments in combination with variations in the ground-water table can be responsible for complex patterns of permanent ground deformation. It may also help to explain some of the spatial variability of strong ground motion observed during the 1994 earthquake. ?? ASCE,.

  18. Species-specific responses to atmospheric carbon dioxide and tropospheric ozone mediate changes in soil carbon.

    PubMed

    Talhelm, Alan F; Pregitzer, Kurt S; Zak, Donald R

    2009-11-01

    We repeatedly sampled the surface mineral soil (0-20 cm depth) in three northern temperate forest communities over an 11-year experimental fumigation to understand the effects of elevated carbon dioxide (CO(2)) and/or elevated phyto-toxic ozone (O(3)) on soil carbon (C). After 11 years, there was no significant main effect of CO(2) or O(3) on soil C. However, within the community containing only aspen (Populus tremuloides Michx.), elevated CO(2) caused a significant decrease in soil C content. Together with the observations of increased litter inputs, this result strongly suggests accelerated decomposition under elevated CO(2.) In addition, an initial reduction in the formation of new (fumigation-derived) soil C by O(3) under elevated CO(2) proved to be only a temporary effect, mirroring trends in fine root biomass. Our results contradict predictions of increased soil C under elevated CO(2) and decreased soil C under elevated O(3) and should be considered in models simulating the effects of Earth's altered atmosphere.

  19. Determination of solid-liquid partition coefficients (Kd) for the herbicides isoproturon and trifluralin in five UK agricultural soils.

    PubMed

    Cooke, Cindy M; Shaw, George; Collins, Chris D

    2004-12-01

    Isoproturon and trifluralin are herbicides of contrasting chemical characters and modes of action. Standard batch sorption procedures were carried out to investigate the individual sorption behaviour of 14C-isoproturon and 14C-trifluralin in five agricultural soils (1.8-4.2% OC), and the soil solid-liquid partition coefficients (Kd values) were determined. Trifluralin exhibited strong partitioning to the soil solid phase (Kd range 106-294) and low desorption potential, thus should not pose a threat to sensitive waters via leaching, although particle erosion and preferential flow pathways may facilitate transport. For isoproturon, soil adsorption was low (Kd range 1.96-5.75) and desorption was high, suggesting a high leaching potential, consistent with isoproturon being the most frequently found pesticide in UK surface waters. Soil partitioning was directly related to soil organic carbon (OC) content. Accumulation isotherms were modelled using a dual-phase adsorption model to estimate adsorption and desorption rate coefficients. Associations between herbicides and soil humic substances were also shown using gel filtration chromatography.

  20. Air-surface exchange measurements of gaseous elemental mercury over naturally enriched and background terrestrial landscapes in Australia

    NASA Astrophysics Data System (ADS)

    Edwards, G. C.; Howard, D. A.

    2012-10-01

    This paper presents the first gaseous elemental mercury (GEM) air-surface exchange measurements obtained over naturally enriched and background (< 0.1 μg g-1 Hg) terrestrial landscapes in Australia. Two pilot field studies were carried out during the Australian autumn and winter periods at a copper-gold-cobalt-arsenic-mercury mineral field near Pulganbar, NSW. GEM fluxes using a dynamic flux chamber approach were measured, along with controlling environmental parameters over three naturally enriched and three background substrates. The enriched sites results showed net emission to the atmosphere and a strong correlation between flux and substrate Hg concentration, with average fluxes ranging from 14 ± 1 ng m-2 h-1 to 113 ± 6 ng m-2 h-1. Measurements at background sites showed both emission and deposition. The average Hg flux from all background sites showed an overall net emission of 0.36 ± 0.06 ng m-2 h-1. Fluxes show strong relationships with temperature, radiation, and substrate parameters. A compensation point of 2.48, representative of bare soils was determined. Comparison of the Australian data to North American data confirmed the need for Australian specific mercury air-surface exchange data representative of Australia's unique climatic conditions, vegetation types, land use patterns, and soils.

  1. Surface runoff and tile drainage transport of phosphorus in the midwestern United States.

    PubMed

    Smith, Douglas R; King, Kevin W; Johnson, Laura; Francesconi, Wendy; Richards, Pete; Baker, Dave; Sharpley, Andrew N

    2015-03-01

    The midwestern United States offers some of the most productive agricultural soils in the world. Given the cool humid climate, much of the region would not be able to support agriculture without subsurface (tile) drainage because high water tables may damage crops and prevent machinery usage in fields at critical times. Although drainage is designed to remove excess soil water as quickly as possible, it can also rapidly transport agrochemicals, including phosphorus (P). This paper illustrates the potential importance of tile drainage for P transport throughout the midwestern United States. Surface runoff and tile drainage from fields in the St. Joseph River Watershed in northeastern Indiana have been monitored since 2008. Although the traditional concept of tile drainage has been that it slowly removes soil matrix flow, peak tile discharge occurred at the same time as peak surface runoff, which demonstrates a strong surface connection through macropore flow. On our research fields, 49% of soluble P and 48% of total P losses occurred via tile discharge. Edge-of-field soluble P and total P areal loads often exceeded watershed-scale areal loadings from the Maumee River, the primary source of nutrients to the western basin of Lake Erie, where algal blooms have been a pervasive problem for the last 10 yr. As farmers, researchers, and policymakers search for treatments to reduce P loading to surface waters, the present work demonstrates that treating only surface runoff may not be sufficient to reach the goal of 41% reduction in P loading for the Lake Erie Basin. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. Comparison of effects of cold-region soil/snow processes and the uncertainties from model forcing data on permafrost physical characteristics

    DOE PAGES

    Barman, Rahul; Jain, Atul K.

    2016-03-28

    Here, we used a land surface model to (1) evaluate the influence of recent improvements in modeling cold-region soil/snow physics on near-surface permafrost physical characteristics (within 0–3 m soil column) in the northern high latitudes (NHL) and (2) compare them with uncertainties from climate and land-cover data sets. Specifically, four soil/snow processes are investigated: deep soil energetics, soil organic carbon (SOC) effects on soil properties, wind compaction of snow, and depth hoar formation. In the model, together they increased the contemporary NHL permafrost area by 9.2 × 10 6 km 2 (from 2.9 to 12.3—without and with these processes, respectively)more » and reduced historical degradation rates. In comparison, permafrost area using different climate data sets (with annual air temperature difference of ~0.5°C) differed by up to 2.3 × 10 6 km 2, with minimal contribution of up to 0.7 × 10 6 km 2 from substantial land-cover differences. Individually, the strongest role in permafrost increase was from deep soil energetics, followed by contributions from SOC and wind compaction, while depth hoar decreased permafrost. The respective contribution on 0–3 m permafrost stability also followed a similar pattern. However, soil temperature and moisture within vegetation root zone (~0–1 m), which strongly influence soil biogeochemistry, were only affected by the latter three processes. The ecosystem energy and water fluxes were impacted the least due to these soil/snow processes. While it is evident that simulated permafrost physical characteristics benefit from detailed treatment of cold-region biogeophysical processes, we argue that these should also lead to integrated improvements in modeling of biogeochemistry.« less

  3. The effect of fire and permafrost interactions on soil carbon accumulation in an upland black spruce ecosystem of interior Alaska: Implications for post-thaw carbon loss

    USGS Publications Warehouse

    O'Donnell, J. A.; Harden, J.W.; McGuire, A.D.; Kanevskiy, M.Z.; Jorgenson, M.T.; Xu, X.

    2011-01-01

    High-latitude regions store large amounts of organic carbon (OC) in active-layer soils and permafrost, accounting for nearly half of the global belowground OC pool. In the boreal region, recent warming has promoted changes in the fire regime, which may exacerbate rates of permafrost thaw and alter soil OC dynamics in both organic and mineral soil. We examined how interactions between fire and permafrost govern rates of soil OC accumulation in organic horizons, mineral soil of the active layer, and near-surface permafrost in a black spruce ecosystem of interior Alaska. To estimate OC accumulation rates, we used chronosequence, radiocarbon, and modeling approaches. We also developed a simple model to track long-term changes in soil OC stocks over past fire cycles and to evaluate the response of OC stocks to future changes in the fire regime. Our chronosequence and radiocarbon data indicate that OC turnover varies with soil depth, with fastest turnover occurring in shallow organic horizons (~60 years) and slowest turnover in near-surface permafrost (>3000 years). Modeling analysis indicates that OC accumulation in organic horizons was strongly governed by carbon losses via combustion and burial of charred remains in deep organic horizons. OC accumulation in mineral soil was influenced by active layer depth, which determined the proportion of mineral OC in a thawed or frozen state and thus, determined loss rates via decomposition. Our model results suggest that future changes in fire regime will result in substantial reductions in OC stocks, largely from the deep organic horizon. Additional OC losses will result from fire-induced thawing of near-surface permafrost. From these findings, we conclude that the vulnerability of deep OC stocks to future warming is closely linked to the sensitivity of permafrost to wildfire disturbance. ?? 2010 Blackwell Publishing Ltd.

  4. NEHRP soil classifications for estimating site-dependent seismic coefficients in the Upper Mississippi Embayment

    USGS Publications Warehouse

    Street, R.; Woolery, E.W.; Wang, Z.; Harris, J.B.

    2001-01-01

    Local soil conditions have a profound influence on the characteristics of ground shaking during an earthquake. Exceptionally deep soil deposits, on the order of 100-1000 m deep, are found in the Upper Mississippi Embayment of the central United States. Shear waves (SH) from earthquakes in the New Madrid seismic zone are expected to be strongly affected by the sharp impedance contrasts at the bedrock/sediment interface, attenuation of seismic waves in the soil column, and the SH-wave velocities of the more poorly consolidated near-surface (???50 m) soils. SH-wave velocities of the near-surface soils at nearly 400 sites in the Upper Mississippi Embayment were determined using conventional seismic SH-wave refraction and reflection techniques. Based on the average SH-wave velocities of the upper 30 m of the soils, sites in the Mississippi River floodplain portion of the study area are predominantly classified as Site Class D (180-360 m/s) in accordance with the 1997 NEHRP provisions. Sites away from the active floodplains in western Kentucky and western Tennessee, the SH-wave velocities of the upper 30 m of soils typically ranged from mid-200 to mid-300 m/s. Several sites in western Kentucky had averaged SH-wave velocities greater than 360 m/s, thereby qualifying them as Site Class C (360-760 m/s) in accordance with the 1997 NEHRP provisions. One dimensional site effects, including amplification and dynamic site period, were calculated for a representative suite of sites across the Upper Mississippi Embayment at latitude ?? 38.5??. Although seismic attenuation is greater in the Mississippi River floodplain (i.e. thicker, lower velocity material), the site effects tend to be greater than in the uplands of western Tennessee because of larger impedance contrasts within the near-surface soils. ?? 2001 Elsevier Science B.V. All rights reserved.

  5. Quantitative Campylobacter spp., antibiotic resistance genes, and veterinary antibiotics in surface and ground water following manure application: Influence of tile drainage control.

    PubMed

    Frey, Steven K; Topp, Edward; Khan, Izhar U H; Ball, Bonnie R; Edwards, Mark; Gottschall, Natalie; Sunohara, Mark; Lapen, David R

    2015-11-01

    This work investigated chlortetracycline, tylosin, and tetracycline (plus transformation products), and DNA-based quantitative Campylobacter spp. and Campylobacter tetracycline antibiotic resistant genes (tet(O)) in tile drainage, groundwater, and soil before and following a liquid swine manure (LSM) application on clay loam plots under controlled (CD) and free (FD) tile drainage. Chlortetracycline/tetracycline was strongly bound to manure solids while tylosin dominated in the liquid portion of manure. The chlortetracycline transformation product isochlortetracycline was the most persistent analyte in water. Rhodamine WT (RWT) tracer was mixed with manure and monitored in tile and groundwater. RWT and veterinary antibiotic (VA) concentrations were strongly correlated in water which supported the use of RWT as a surrogate tracer. While CD reduced tile discharge and eliminated application-induced VA movement (via tile) to surface water, total VA mass loading to surface water was not affected by CD. At both CD and FD test plots, the biggest 'flush' of VA mass and highest VA concentrations occurred in response to precipitation received 2d after application, which strongly influenced the flow abatement capacity of CD on account of highly elevated water levels in field initiating overflow drainage for CD systems (when water level <0.3m below surface). VA concentrations in tile and groundwater became very low within 10d following application. Both Campylobacter spp. and Campylobacter tet(O) genes were present in groundwater and soil prior to application, and increased thereafter. Unlike the VA compounds, Campylobacter spp. and Campylobacter tet(O) gene loadings in tile drainage were reduced by CD, in relation to FD. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  6. Arsenic in garden soils and vegetable crops in Cornwall, England: Implications for human health.

    PubMed

    Xu, J; Thornton, I

    1985-12-01

    Total concentrations of arsenic in surface (0-15cm) garden soils in the historical mining area of Hayle-Camborne-Godolphin, Cornwall, England are large and range widely (144-892 μg/g). Amounts of water soluble and acid-fluoride extractable soil arsenic are significantly correlated with total content.Examination of 6 salad and vegetable crops grown in 32 gardens has shown arsenic concentrations in the edible tissues to be only slightly elevated. There were strong correlations between arsenic in beetroot, lettuce, onion and peas and soil arsenic (total, water soluble and acid extractable). Regression equations have been calculated. Ridge regression analysis applied to test the importance of other soil variables has shown both iron and phosphorus to influence the uptake of arsenic.Arsenic in all the vegetables sampled was below the statutory limit in the U.K. of 1 mg/kg fresh weight. Implications for health should be assessed in relation to other exposure routesvia water, air and directly ingested dust and soil.

  7. Western US high June 2015 temperatures and their relation to global warming and soil moisture

    NASA Astrophysics Data System (ADS)

    Philip, Sjoukje Y.; Kew, Sarah F.; Hauser, Mathias; Guillod, Benoit P.; Teuling, Adriaan J.; Whan, Kirien; Uhe, Peter; Oldenborgh, Geert Jan van

    2018-04-01

    The Western US states Washington (WA), Oregon (OR) and California (CA) experienced extremely high temperatures in June 2015. The temperature anomalies were so extreme that they cannot be explained with global warming alone. We investigate the hypothesis that soil moisture played an important role as well. We use a land surface model and a large ensemble from the weather@home modelling effort to investigate the coupling between soil moisture and temperature in a warming world. Both models show that May was anomalously dry, satisfying a prerequisite for the extreme heat wave, and they indicate that WA and OR are in a wet-to-dry transitional soil moisture regime. We use two different land surface-atmosphere coupling metrics to show that there was strong coupling between temperature, latent heat flux and the effect of soil moisture deficits on the energy balance in June 2015 in WA and OR. June temperature anomalies conditioned on wet/dry conditions show that both the mean and extreme temperatures become hotter for dry soils, especially in WA and OR. Fitting a Gaussian model to temperatures using soil moisture as a covariate shows that the June 2015 temperature values fit well in the extrapolated empirical temperature/drought lines. The high temperature anomalies in WA and OR are thus to be expected, given the dry soil moisture conditions and that those regions are in the transition from a wet to a dry regime. CA is already in the dry regime and therefore the necessity of taking soil moisture into account is of lower importance.

  8. The influence of variations of vegetation and soil moisture on surface weather and atmospheric circulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, R.

    1992-01-01

    The influence of variations of vegetation and soil moisture on surface weather and atmospheric circulation is studied through the use of the Simple Biosphere Model (SiB) and the Center for Ocean-Land-Atmosphere interactions (COLA) GCM. Tests for the SiB sensitivity to the conversion of the forest to other short vegetation or bare soil were performed at Amazonian and Great Plains sites, and a North Wales spruce forest site respectively. The results show that deforestation has a significant influence on the local surface energy budget and surface weather. The influence is especially prominent at the Amazon and Great Plains sites, and largermore » in summer than in other seasons. The influence on the partitioning of surface incoming radiative energy is generally constrained by the local atmospheric boundary condition. The sensitivity of the COLA GCM to changes in initial soil wetness (ISW) is determined by repeating three 10-day model integrations with the same initial and boundary conditions as the control runs except the values of ISW, which are revised at 69 model grid points covering much of the continental U.S. It is found that the relations between the changes in the 5-day mean forecast surface air temperature/surface specific humidity and the changes in ISW depend upon vegetation type and the values of ISW, and can be approximated by regression equations. These relations are also confirmed with independent data. With the ISW revised based on these regression equations the surface forecasts of the revised runs are consistently improved. The spatial scale of the ISW anomaly determines the degree and range of the influence. The influence of a small regional ISW change is mainly confined to the local region and to low atmospheric levels. The influence on surface fluxes is strong and persists for more than one month, but the effects on precipitation are relatively weak, changeable, and complex, particularly when an interactive cloud scheme is used.« less

  9. Methane Cycling in a Warming Wetland

    NASA Astrophysics Data System (ADS)

    Noyce, G. L.; Megonigal, P.; Rich, R.; Kirwan, M. L.; Herbert, E. R.

    2017-12-01

    Coastal wetlands are global hotspots of carbon (C) storage, but the future of these systems is uncertain. In June 2016, we initiated an in-situ, active, whole-ecosystem warming experiment in the Smithsonian's Global Change Research Wetland to quantify how warming and elevated CO2 affect the stability of coastal wetland soil C pools and contemporary rates of C sequestration. Transects are located in two plant communities, dominated by C3 sedges or C4 grasses. The experiment has a gradient design with air and soil warming treatments ranging from ambient to +5.1 °C and heated plots consistently maintain their target temperature year-round. In April 2017, an elevated CO2 treatment was crossed with temperature in the C3community. Ongoing measurements include soil elevation, C fluxes, porewater chemistry and redox potential, and above- and below-ground growth and biomass. In both years, warming increased methane (CH4) emissions (measured at 3-4 week intervals) from spring through fall at the C3 site, but had little effect on emissions from the C4 site. Winter (Dec-Mar) emissions showed no treatment effect. Stable isotope analysis of dissolved CH4 and DIC also indicated that warming had differing effects on CH4 pathways in the two vegetation communities. To better understand temperature effects on rates of CH4 production and oxidation, 1 m soil cores were collected from control areas of the marsh in summer 2017 and incubated at temperatures ranging from 4 °C to 35 °C. Warming increased CH4 production and oxidation rates in surface samples and oxidation rates in the rooting zone samples from both sites, but temperature responses in deep (1 m) soil samples were minimal. In the surface and rooting zone samples, production rates were also consistently higher in C3 soils compared to C4 soils, but, contrary to our expectations, the temperature response was stronger in the C4 soils. However, oxidation in C3 rooting zone samples did have a strong temperature response. The ratio of CO2:CH4 decreased with increasing temperature in surface samples from both sites, indicating that anaerobic respiration in surface soil may become increasingly methanogenic with warming. In contrast, the rooting zone and deep soil samples showed the opposite trend, again suggesting that the soil profile will not respond consistently to warming.

  10. Sorption potential of alkaline treated straw and a soil for sulfonylurea herbicide removal from aqueous solutions: An environmental management strategy.

    PubMed

    Cara, Irina-Gabriela; Rusu, Bogdan-George; Raus, Lucian; Jitareanu, Gerard

    2017-11-01

    The adsorption potential of alkaline treated straw (wheat and corn) in mixture with soil, has been investigated for the removal of sulfonylurea molecules from an aqueous solutions. The surface characteristics were investigated by scanning electron microscopy and Fourier Transform Infrared - FTIR, while the adsorbent capacity was evaluated using batch sorption tests and liquid chromatography coupled with mass spectrometry. Surface analysis of alkaline treated straw samples by scanning electron microscopy - SEM showed the increasing of the surface roughness improving their functional surface activity. An increase (337.22 mg g -1 ) of adsorption capacity of sulfonylurea molecules was obtained for all studied straw. The Langmuir isotherm model was the best model for the mathematical description of the adsorption process indicating the forming of a surface sorption monolayer with a finite number of identical sites. The kinetics of sulfonylurea herbicide followed the pseudo-second order mechanism corresponding to strong chemical interactions. The results sustained that the alkaline treated straw have biosorption characteristics, being suitable adsorbent materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Observed Local Impacts of Global Irrigation on Surface Temperature

    NASA Astrophysics Data System (ADS)

    Chen, L.; Dirmeyer, P.

    2017-12-01

    Agricultural irrigation has significant potential for altering local climate through reducing soil albedo, increasing evapotranspiration, and enabling greater leaf area. Numerous studies using regional or global climate models have demonstrated the cooling effects of irrigation on mean and extreme temperature, especially over regions where irrigation is extensive. However, these model-based results have not been validated due to the limitations of observational datasets. In this study, multiple satellite-based products, including the Moderate Resolution Imaging Spectroradiometer (MODIS) and Soil Moisture Active Passive (SMAP) data sets, are used to isolate and quantify the local impacts of irrigation on surface climate over the irrigated regions, which are derived from the Global Map of Irrigation Areas (GMIA). The relationships among soil moisture, albedo, evapotranspiration, and surface temperature are explored. Strong evaporative cooling of irrigation on daytime surface temperature is found over the arid and semi-arid regions, such as California's Central Valley, the Great Plains, and central Asia. However, the cooling effects are less evident in most areas of eastern China, India, and the Lower Mississippi River Basin in spite of extensive irrigation over these regions. Results are also compared with irrigation experiments using the Community Earth System Model (CESM) to assess the model's ability to represent land-atmosphere interactions in regards to irrigation.

  12. Soil carbon storage in a small arid catchment in the Negev desert (Israel)

    NASA Astrophysics Data System (ADS)

    Hoffmann, Ulrike; Kuhn, Nikolaus

    2010-05-01

    The mineral soil represents a major pool in the global carbon cycle. The behavior of mineral soil as a carbon reservoir in global climate and environmental issues is far from fully understood and causes a serious lack of comparable data on mineral soil organic carbon (SOC) at regional scale. To improve our understanding of soil carbon sequestration, it is necessary to acquire regional estimates of soil carbon pools in different ecosystem types. So far, little attention has been given to Dryland ecosystems, but they are often considered as highly sensitive to environmental change, with large and rapid responses to even smallest changes of climate conditions. Due to this fact, Drylands, as an ecosystem with extensive surface area across the globe (6.15 billion ha), have been suggested as a potential component for major carbon storage. A priori reasoning suggests that regional spatial patterns of SOC density (kg/m²) in Drylands are mostly affected by vegetation, soil texture, landscape position, soil truncation, wind erosion/deposition and the effect of water supply. Particularly unassigned is the interaction between soil volume, geomorphic processes and SOC density on regional scale. This study aims to enhance our understanding of regional spatial variability in dependence on soil volume, topography and surface parameters in areas susceptible to environmental change. Soil samples were taken in small transects at different representative slope positions across a range of elevations, soil texture, vegetation types, and terrain positions in a small catchment (600 ha) in the Negev desert. Topographic variables were extracted from a high resolution (0.5m) digital elevation model. Subsequently, we estimated the soil volume by excavating the entire soil at the representative sampling position. The volume was then estimated by laser scanning before and after soil excavation. SOC concentration of the soil samples was determined by CHN-analyser. For each sample, carbon densities (in kg/m²) were estimated for the mineral soil layer. The results indicate a large spatial variability of the carbon contents, the soil volume and depths across the landscape. In general, topography exerts a strong control on the carbon contents and the soil depths in the study site. Lowest carbon contents are apparent at the hillslope tops with increasing contents downslope. Because of the significantly larger carbon content at the northern exposed slope, we suggest that solar radiation driven differences of soil moisture content major controls SOC. Regarding the soil depths, the differences are not that clear. Soil depths seem to be higher at the southern exposed slope, but differences with respect to the slope position are not significant. Concerning the total amount of carbon storage in the study area, the results show that soil carbon may not be neglected in arid areas. Our results should provide an indication that carbon contents in dynamic environments are more affected and controlled by surface properties (soil volume) than by climate. Concluding that hint, climate is less important than surface processes in dryland ecosystems.

  13. Modelling the sensitivity of soil mercury storage to climate-induced changes in soil carbon pools

    NASA Astrophysics Data System (ADS)

    Hararuk, O.; Obrist, D.; Luo, Y.

    2013-04-01

    Substantial amounts of mercury (Hg) in the terrestrial environment reside in soils and are associated with soil organic carbon (C) pools, where they accumulated due to increased atmospheric deposition resulting from anthropogenic activities. The purpose of this study was to examine potential sensitivity of surface soil Hg pools to global change variables, particularly affected by predicted changes in soil C pools, in the contiguous US. To investigate, we included a soil Hg component in the Community Land Model based on empirical statistical relationships between soil Hg / C ratios and precipitation, latitude, and clay; and subsequently explored the sensitivity of soil C and soil Hg densities (i.e., areal-mass) to climate scenarios in which we altered annual precipitation, carbon dioxide (CO2) concentrations and temperature. Our model simulations showed that current sequestration of Hg in the contiguous US accounted for 15 230 metric tons of Hg in the top 0-40 cm of soils, or for over 300 000 metric tons when extrapolated globally. In the simulations, US soil Hg pools were most sensitive to changes in precipitation because of strong effects on soil C pools, plus a direct effect of precipitation on soil Hg / C ratios. Soil Hg pools were predicted to increase beyond present-day values following an increase in precipitation amounts and decrease following a reduction in precipitation. We found pronounced regional differences in sensitivity of soil Hg to precipitation, which were particularly high along high-precipitation areas along the West and East Coasts. Modelled increases in CO2 concentrations to 700 ppm stimulated soil C and Hg accrual, while increased air temperatures had small negative effects on soil C and Hg densities. The combined effects of increased CO2, increased temperature and increased or decreased precipitation were strongly governed by precipitation and CO2 showing pronounced regional patterns. Based on these results, we conclude that the combination of precipitation and CO2 should be emphasised when assessing how climate-induced changes in soil C may affect sequestration of Hg in soils.

  14. Interactive effects of wildfire and permafrost on microbial communities and soil processes in an Alaskan black spruce forest

    USGS Publications Warehouse

    Waldrop, M.P.; Harden, J.W.

    2008-01-01

    Boreal forests contain significant quantities of soil carbon that may be oxidized to CO2 given future increases in climate warming and wildfire behavior. At the ecosystem scale, decomposition and heterotrophic respiration are strongly controlled by temperature and moisture, but we questioned whether changes in microbial biomass, activity, or community structure induced by fire might also affect these processes. We particularly wanted to understand whether postfire reductions in microbial biomass could affect rates of decomposition. Additionally, we compared the short-term effects of wildfire to the long-term effects of climate warming and permafrost decline. We compared soil microbial communities between control and recently burned soils that were located in areas with and without permafrost near Delta Junction, AK. In addition to soil physical variables, we quantified changes in microbial biomass, fungal biomass, fungal community composition, and C cycling processes (phenol oxidase enzyme activity, lignin decomposition, and microbial respiration). Five years following fire, organic surface horizons had lower microbial biomass, fungal biomass, and dissolved organic carbon (DOC) concentrations compared with control soils. Reductions in soil fungi were associated with reductions in phenol oxidase activity and lignin decomposition. Effects of wildfire on microbial biomass and activity in the mineral soil were minor. Microbial community composition was affected by wildfire, but the effect was greater in nonpermafrost soils. Although the presence of permafrost increased soil moisture contents, effects on microbial biomass and activity were limited to mineral soils that showed lower fungal biomass but higher activity compared with soils without permafrost. Fungal abundance and moisture were strong predictors of phenol oxidase enzyme activity in soil. Phenol oxidase enzyme activity, in turn, was linearly related to both 13C lignin decomposition and microbial respiration in incubation studies. Taken together, these results indicate that reductions in fungal biomass in postfire soils and lower soil moisture in nonpermafrost soils reduced the potential of soil heterotrophs to decompose soil carbon. Although in the field increased rates of microbial respiration can be observed in postfire soils due to warmer soil conditions, reductions in fungal biomass and activity may limit rates of decomposition. ?? 2008 The Authors Journal compilation ?? 2008 Blackwell Publishing.

  15. An inversion method for retrieving soil moisture information from satellite altimetry observations

    NASA Astrophysics Data System (ADS)

    Uebbing, Bernd; Forootan, Ehsan; Kusche, Jürgen; Braakmann-Folgmann, Anne

    2016-04-01

    Soil moisture represents an important component of the terrestrial water cycle that controls., evapotranspiration and vegetation growth. Consequently, knowledge on soil moisture variability is essential to understand the interactions between land and atmosphere. Yet, terrestrial measurements are sparse and their information content is limited due to the large spatial variability of soil moisture. Therefore, over the last two decades, several active and passive radar and satellite missions such as ERS/SCAT, AMSR, SMOS or SMAP have been providing backscatter information that can be used to estimate surface conditions including soil moisture which is proportional to the dielectric constant of the upper (few cm) soil layers . Another source of soil moisture information are satellite radar altimeters, originally designed to measure sea surface height over the oceans. Measurements of Jason-1/2 (Ku- and C-Band) or Envisat (Ku- and S-Band) nadir radar backscatter provide high-resolution along-track information (~ 300m along-track resolution) on backscatter every ~10 days (Jason-1/2) or ~35 days (Envisat). Recent studies found good correlation between backscatter and soil moisture in upper layers, especially in arid and semi-arid regions, indicating the potential of satellite altimetry both to reconstruct and to monitor soil moisture variability. However, measuring soil moisture using altimetry has some drawbacks that include: (1) the noisy behavior of the altimetry-derived backscatter (due to e.g., existence of surface water in the radar foot-print), (2) the strong assumptions for converting altimetry backscatters to the soil moisture storage changes, and (3) the need for interpolating between the tracks. In this study, we suggest a new inversion framework that allows to retrieve soil moisture information from along-track Jason-2 and Envisat satellite altimetry data, and we test this scheme over the Australian arid and semi-arid regions. Our method consists of: (i) deriving time-invariant spatial patterns (base-functions) by applying principal component analysis (PCA) to simulated soil moisture from a large-scale land surface model. (ii) Estimating time-variable soil moisture evolution by fitting these base functions of (i) to the along-track retracked backscatter coefficients in a least squares sense. (iii) Combining the estimated time-variable amplitudes and the pre-computed base-functions, which results in reconstructed (spatio-temporal) soil moisture information. We will show preliminary results that are compared to available high-resolution soil moisture model data over the region (the Australian Water Resource Assessment, AWRA model). We discuss the possibility of using altimetry-derived soil moisture estimations to improve the simulation skill of soil moisture in the Global Land Data Assimilation System (GLDAS) over Australia.

  16. Short-term effects of prescribed fire for pasture management on soil water repellency in the Central Pyrenees (NE-Spain)

    NASA Astrophysics Data System (ADS)

    Girona García, Antonio; María Armas-Herrera, Cecilia; Martí-Dalmau, Clara; Badía-Villas, David; Ortiz-Perpiñán, Oriol

    2016-04-01

    The decrease of livestock grazing during the last decades in the Central Pyrenees has led to a regression of grasslands in favour of shrublands, mainly composed by Echinospartum horridum. Prescribed burning might be a suitable tool for the control of this species that limits pastures development and therefore, the reclamation of grasslands; although, its effects on soil properties are still uncertain [1]. Controlled burnings are usually performed in spring or autumn, when soil moisture is high and temperature low, being easier to control and also reducing its effects on soil properties. However, burning during the wet seasons can increase the risk of soil erosion as the vegetation cover is partially destroyed. In this sense, soil water repellency (SWR) plays an important role reducing the infiltration rates and, thus, increasing runoff and soil erosion [2]. Then, it is of special interest to study parameters that influence SWR such as soil moisture, soil organic carbon (SOC) content and soil biological activity [3]. The aim of this work is, to analyse the effects of controlled burning on SWR as well as some of the influencing factors on this parameter. To achieve this, soil sampling was carried out in two prescribed fire events that took place in the Central Pyrenees: Tella (April, 2015) and Buisán (November, 2015). Temperature was simultaneously recorded during the fire via thermocouples placed at the surface level and at 1 cm, 2 cm and 3 cm depth. In each event, topsoil was scrapped and sampled from 0-1 cm, 1-2 cm and 2-3 cm depth in each sampling point (3 for Tella and 4 for Buisán) just before and immediately after burning. We analysed SWR persistence (Water Drop Penetration Time, WDPT) and intensity (Ethanol Percentage Test, EPT) as well as total C and N, microbial C, β-glucosidase activity, soil moisture and pH. Temperature measurements indicated a higher fire intensity in Tella than in Buisán burning. Surface unburned samples presented extreme SWR values for Tella (2726 s) and strong values for Buisán (191 s) according to the WDPT test, significantly decreasing with depth. Preliminary results showed that burning affected SWR, significantly reducing WDPT down to 3 cm in Tella (from extreme to strong) and 2 cm depth in Buisán (from strong to slight). EPT results indicated a significant decrease in SWR intensity down to 2 cm in Tella and 1 cm in Buisán with burning. On the other hand, no differences were observed regarding soil moisture between burned and unburned samples, although a trend to decreasing was observed with fire. Further analyses will allow us to explain and support in detail the variations observed in SWR with prescribed burning. [1] Shakesby, R.A. et al. (2015). Impacts of prescribed fire on soil loss and soil quality: An assessment based on an experimentally-burned catchment in central Portugal. Catena 128: 278-293. [2] Bodí, M.B. et al. (2013). Spatial and temporal variations of water repellency and probability of its occurrence in calcareous Mediterranean rangeland soils affected by fire. Catena 108: 14-25. [3] Jordán, A. et al. (2013). Soil water repellency: Origin, assessment and geomorphological consequences. Catena 108: 1-5.

  17. Quantitative characterization of non-classic polarization of cations on clay aggregate stability.

    PubMed

    Hu, Feinan; Li, Hang; Liu, Xinmin; Li, Song; Ding, Wuquan; Xu, Chenyang; Li, Yue; Zhu, Longhui

    2015-01-01

    Soil particle interactions are strongly influenced by the concentration, valence and ion species and the pH of the bulk solution, which will also affect aggregate stability and particle transport. In this study, we investigated clay aggregate stability in the presence of different alkali ions (Li+, Na+, K+, and Cs+) at concentrations from10-5 to 10-1 mol L-1. Strong specific ion effects on clay aggregate stability were observed, and showed the order Cs+>K+>Na+>Li+. We found that it was not the effects of ion size, hydration, and dispersion forces in the cation-surface interactions but strong non-classic polarization of adsorbed cations that resulted in these specific effects. In this study, the non-classic dipole moments of each cation species resulting from the non-classic polarization were estimated. By comparing non-classic dipole moments with classic values, the observed dipole moments of adsorbed cations were up to 104 times larger than the classic values for the same cation. The observed non-classic dipole moments sharply increased with decreasing electrolyte concentration. We conclude that strong non-classic polarization could significantly suppress the thickness of the diffuse layer, thereby weakening the electric field near the clay surface and resulting in improved clay aggregate stability. Even though we only demonstrated specific ion effects on aggregate stability with several alkali ions, our results indicate that these effects could be universally important in soil aggregate stability.

  18. Quantitative Characterization of Non-Classic Polarization of Cations on Clay Aggregate Stability

    PubMed Central

    Hu, Feinan; Li, Hang; Liu, Xinmin; Li, Song; Ding, Wuquan; Xu, Chenyang; Li, Yue; Zhu, Longhui

    2015-01-01

    Soil particle interactions are strongly influenced by the concentration, valence and ion species and the pH of the bulk solution, which will also affect aggregate stability and particle transport. In this study, we investigated clay aggregate stability in the presence of different alkali ions (Li+, Na+, K+, and Cs+) at concentrations from10−5 to 10−1 mol L−1. Strong specific ion effects on clay aggregate stability were observed, and showed the order Cs+>K+>Na+>Li+. We found that it was not the effects of ion size, hydration, and dispersion forces in the cation–surface interactions but strong non-classic polarization of adsorbed cations that resulted in these specific effects. In this study, the non-classic dipole moments of each cation species resulting from the non-classic polarization were estimated. By comparing non-classic dipole moments with classic values, the observed dipole moments of adsorbed cations were up to 104 times larger than the classic values for the same cation. The observed non-classic dipole moments sharply increased with decreasing electrolyte concentration. We conclude that strong non-classic polarization could significantly suppress the thickness of the diffuse layer, thereby weakening the electric field near the clay surface and resulting in improved clay aggregate stability. Even though we only demonstrated specific ion effects on aggregate stability with several alkali ions, our results indicate that these effects could be universally important in soil aggregate stability. PMID:25874864

  19. Fluids and their Effect on Measurements on Lunar Soil Particle size Distribution

    NASA Technical Reports Server (NTRS)

    Cooper, B. L.; McKay, D. S.; Wallace, W. T.; Gonzalex, C. P.

    2011-01-01

    From the late 1960s until now, lunar soil particle size distributions have typically been determined by sieving sometimes dry, and at other times with fluids such as water or Freon. Laser diffraction instruments allow rapid assessment of particle size distribution, and eventually may replace sieve measurements. However, when measuring lunar soils with laser diffraction instruments, care must be taken in choosing a carrier fluid that is compatible with lunar material. Distilled water is the fluid of choice for laser diffraction measurements of substances when there is no concern about adverse effects of water on the material being measured. When we began our analyses of lunar soils using laser diffraction, our first measurements were made with distilled water. Although the medians that we measured were comparable to earlier sieve data, the means tended to be significantly larger than expected. The effect of water vapor on lunar soil has been studied extensively. The particles interact strongly with water vapor, and subsequent adsorptions of nitrogen showed that the specific surface area increased as much as threefold after exposure to moisture. It was observed that significant porosity had been generated by this exposure to water vapor. The possibility of other physical changes in the surfaces of the grains was not studied.

  20. Soil-like bodies on Mars

    NASA Astrophysics Data System (ADS)

    Targulian, V. O.; Mergelov, N. S.; Goryachkin, S. V.

    2017-02-01

    Soils sensu stricto are absent on Mars; most probably, they have never been formed there, because, up to now, we have no evidence of the presence of life, either relict or recent, on this planet. Numerous references to "Martian soils" in scientific literature concern loose substrates rather than Dokuchaev's soils. In this context, surface bodies on Mars can be described using the concept of planetary shells, or exons. Exons can be subdivided into sitons formed via in situ transformation of parent material, transons formed in the course of lateral transportation and deposition of substances, and transsitons formed by the combination of both in situ and lateral processes. Among Martian exons, transons predominate. They represent loose sediments of mainly eolian genesis related to extremely strong winds. Soil-like bodies (soloids) on Mars are represented by sitons and transsitons. These are abiotic formations having the profiles differentiated by the contents of iron oxides, soluble salts, and clay minerals and mainly formed in the presence of liquid water during the paleohumid eras of Mars evolution more than 2.5/3 billion years ago. True deep sitons (Martian weathering mantles) could only be formed under the impact of long-term weathering on stable surfaces during humid eras. Then, they were either buried by later deposited sediments, or eroded. Up to now, such objects have not been discovered on Mars.

  1. A cross-site comparison of factors influencing soil nitrification rates in northeastern USA forested watersheds

    USGS Publications Warehouse

    Ross, D.S.; Wemple, B.C.; Jamison, A.E.; Fredriksen, G.; Shanley, J.B.; Lawrence, G.B.; Bailey, S.W.; Campbell, J.L.

    2009-01-01

    Elevated N deposition is continuing on many forested landscapes around the world and our understanding of ecosystem response is incomplete. Soil processes, especially nitrification, are critical. Many studies of soil N transformations have focused on identifying relationships within a single watershed but these results are often not transferable. We studied 10 small forested research watersheds in the northeastern USA to determine if there were common factors related to soil ammonification and nitrification. Vegetation varied between mixed northern hardwoods and mixed conifers. Watershed surface soils (Oa or A horizons) were sampled at grid or transect points and analyzed for a suite of chemical characteristics. At each sampling point, vegetation and topographic metrics (field and GIS-based) were also obtained. Results were examined by watershed averages (n = 10), seasonal/watershed averages (n = 28), and individual sampling points (n = 608). Using both linear and tree regression techniques, the proportion of conifer species was the single best predictor of nitrification rates, with lower rates at higher conifer dominance. Similar to other studies, the soil C/N ratio was also a good predictor and was well correlated with conifer dominance. Unlike other studies, the presence of Acer saccharum was not by itself a strong predictor, but was when combined with the presence of Betula alleghaniensis. Topographic metrics (slope, aspect, relative elevation, and the topographic index) were not related to N transformation rates across the watersheds. Although found to be significant in other studies, neither soil pH, Ca nor Al was related to nitrification. Results showed a strong relationship between dominant vegetation, soil C, and soil C/N. ?? 2008 Springer Science+Business Media, LLC.

  2. Spatiotemporal characterization of soil moisture fields in agricultural areas using cosmic-ray neutron probes and data fusion

    NASA Astrophysics Data System (ADS)

    Franz, Trenton; Wang, Tiejun

    2015-04-01

    Approximately 40% of global food production comes from irrigated agriculture. With the increasing demand for food even greater pressures will be placed on water resources within these systems. In this work we aimed to characterize the spatial and temporal patterns of soil moisture at the field-scale (~500 m) using the newly developed cosmic-ray neutron rover near Waco, NE USA. Here we mapped soil moisture of 144 quarter section fields (a mix of maize, soybean, and natural areas) each week during the 2014 growing season (May to September). The 12 by 12 km study domain also contained three stationary cosmic-ray neutron probes for independent validation of the rover surveys. Basic statistical analysis of the domain indicated a strong relationship between the mean and variance of soil moisture at several averaging scales. The relationships between the mean and higher order moments were not significant. Scaling analysis indicated strong power law behavior between the variance of soil moisture and averaging area with minimal dependence of mean soil moisture on the slope of the power law function. In addition, we combined the data from the three stationary cosmic-ray neutron probes and mobile surveys using linear regression to derive a daily soil moisture product at 1, 3, and 12 km spatial resolutions for the entire growing season. The statistical relationships derived from the rover dataset offer a novel set of observations that will be useful in: 1) calibrating and validating land surface models, 2) calibrating and validating crop models, 3) soil moisture covariance estimates for statistical downscaling of remote sensing products such as SMOS and SMAP, and 4) provide daily center-pivot scale mean soil moisture data for optimal irrigation timing and volume amounts.

  3. Soil microbial community profiles and functional diversity in limestone cedar glades

    USGS Publications Warehouse

    Cartwright, Jennifer M.; Dzantor, E. Kudjo; Momen, Bahram

    2016-01-01

    Rock outcrop ecosystems, such as limestone cedar glades (LCGs), are known for their rare and endemic plant species adapted to high levels of abiotic stress. Soils in LCGs are thin (< 25 cm), soil-moisture conditions fluctuate seasonally between xeric and saturated, and summer soil temperatures commonly exceed 48 °C. The effects of these stressors on soil microbial communities (SMC) remain largely unstudied, despite the importance of SMC-plant interactions in regulating the structure and function of terrestrial ecosystems. SMC profiles and functional diversity were characterized in LCGs using community level physiological profiling (CLPP) and plate-dilution frequency assays (PDFA). Most-probable number (MPN) estimates and microbial substrate-utilization diversity (H) were positively related to soil thickness, soil organic matter (OM), soil water content, and vegetation density, and were diminished in alkaline soil relative to circumneutral soil. Soil nitrate showed no relationship to SMCs, suggesting lack of N-limitation. Canonical correlation analysis indicated strong correlations between microbial CLPP patterns and several physical and chemical properties of soil, primarily temperature at the ground surface and at 4-cm depth, and secondarily soil-water content, enabling differentiation by season. Thus, it was demonstrated that several well-described abiotic determinants of plant community structure in this ecosystem are also reflected in SMC profiles.

  4. Spectral Behavior of a Linearized Land-Atmosphere Model: Applications to Hydrometeorology

    NASA Astrophysics Data System (ADS)

    Gentine, P.; Entekhabi, D.; Polcher, J.

    2008-12-01

    The present study develops an improved version of the linearized land-atmosphere model first introduced by Lettau (1951). This model is used to investigate the spectral response of land-surface variables to a daily forcing of incoming radiation at the land-surface. An analytical solution of the problem is found in the form of temporal Fourier series and gives the atmospheric boundary-layer and soil profiles of state variables (potential temperature, specific humidity, sensible and latent heat fluxes). Moreover the spectral dependency of surface variables is expressed as function of land-surface parameters (friction velocity, vegetation height, aerodynamic resistance, stomatal conductance). This original approach has several advantages: First, the model only requires little data to work and perform well: only time series of incoming radiation at the land-surface, mean specific humidity and temperature at any given height are required. These inputs being widely available over the globe, the model can easily be run and tested under various conditions. The model will also help analysing the diurnal shape and frequency dependency of surface variables and soil-ABL profiles. In particular, a strong emphasis is being placed on the explanation and prediction of Evaporative Fraction (EF) and Bowen Ratio diurnal shapes. EF is shown to remain a diurnal constant under restricting conditions: fair and dry weather, with strong solar radiation and no clouds. Moreover, the EF pseudo-constancy value is found and given as function of surface parameters, such as aerodynamic resistance and stomatal conductance. Then, application of the model for the conception of remote-sensing tools, according to the temporal resolution of the sensor, will also be discussed. Finally, possible extensions and improvement of the model will be discussed.

  5. Summer Fallowing Helps Establish Cottonwood on Old Fields

    Treesearch

    James B. Baker; B. G. Blackmon

    1973-01-01

    Cottonwood is an ideal crop for many old fields in the Mississippi Delta, but getting the trees established on these sites has proved difficult. Surface soils are often compacted and depleted of nutrients, and grasses and other herbaceous vegetation compete strongly with the young trees for moisture and nutrients. Fallowing in the summer before cottonwood cuttings are...

  6. Improving Evapotranspiration Estimates Using Multi-Platform Remote Sensing

    NASA Astrophysics Data System (ADS)

    Knipper, Kyle; Hogue, Terri; Franz, Kristie; Scott, Russell

    2016-04-01

    Understanding the linkages between energy and water cycles through evapotranspiration (ET) is uniquely challenging given its dependence on a range of climatological parameters and surface/atmospheric heterogeneity. A number of methods have been developed to estimate ET either from primarily remote-sensing observations, in-situ measurements, or a combination of the two. However, the scale of many of these methods may be too large to provide needed information about the spatial and temporal variability of ET that can occur over regions with acute or chronic land cover change and precipitation driven fluxes. The current study aims to improve the spatial and temporal variability of ET utilizing only satellite-based observations by incorporating a potential evapotranspiration (PET) methodology with satellite-based down-scaled soil moisture estimates in southern Arizona, USA. Initially, soil moisture estimates from AMSR2 and SMOS are downscaled to 1km through a triangular relationship between MODIS land surface temperature (MYD11A1), vegetation indices (MOD13Q1/MYD13Q1), and brightness temperature. Downscaled soil moisture values are then used to scale PET to actual ET (AET) at a daily, 1km resolution. Derived AET estimates are compared to observed flux tower estimates, the North American Land Data Assimilation System (NLDAS) model output (i.e. Variable Infiltration Capacity (VIC) Macroscale Hydrologic Model, Mosiac Model, and Noah Model simulations), the Operational Simplified Surface Energy Balance Model (SSEBop), and a calibrated empirical ET model created specifically for the region. Preliminary results indicate a strong increase in correlation when incorporating the downscaling technique to original AMSR2 and SMOS soil moisture values, with the added benefit of being able to decipher small scale heterogeneity in soil moisture (riparian versus desert grassland). AET results show strong correlations with relatively low error and bias when compared to flux tower estimates. In addition, AET results show improved bias to those reported by SSEBop, with similar correlations and errors when compared to the empirical ET model. Spatial patterns of estimated AET display patterns representative of the basin's elevation and vegetation characteristics, with improved spatial resolution and temporal heterogeneity when compared to previous models.

  7. Mercury accumulation in the surface layers of mountain soils: a case study from the Karkonosze Mountains, Poland.

    PubMed

    Szopka, Katarzyna; Karczewska, Anna; Kabała, Cezary

    2011-06-01

    The study was aimed to examine total concentrations and pools of Hg in surface layers of soils in the Karkonosze Mountains, dependent on soil properties and site locality. Soil samples were collected from a litter layer and the layers 0-10 cm and 10-20 cm, at 68 sites belonging to the net of a monitoring system, in two separate areas, and in three altitudinal zones: below 900 m, 900-1100 m, and over 1100 m. Air-borne pollution was the major source of mercury in soils. Hg has accumulated mainly in the litter (where its concentrations were the highest), and in the layer 0-10 cm. Hg concentrations in all samples were in the range 0.04-0.97 mg kg(-1), with mean values 0.38, 0.28, and 0.14 mg kg(-1) for litter and the layers 0-10 cm and 10-20 cm, respectively. The highest Hg concentrations in the litter layer were found in the intermediate altitudinal zone, whereas Hg concentrations in the layer 0-10 cm increased with increasing altitude. Soil quality standard for protected areas (0.50 mg kg(-1)) was exceeded in a few sites. The pools of Hg accumulated in soils were in the range: 0.8-84.8 mg m(-2), with a mean value of 16.5 mg m(-2), and they correlated strongly with the pools of stored organic matter. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Improving prediction of metal uptake by Chinese cabbage (Brassica pekinensis L.) based on a soil-plant stepwise analysis.

    PubMed

    Zhang, Sha; Song, Jing; Gao, Hui; Zhang, Qiang; Lv, Ming-Chao; Wang, Shuang; Liu, Gan; Pan, Yun-Yu; Christie, Peter; Sun, Wenjie

    2016-11-01

    It is crucial to develop predictive soil-plant transfer (SPT) models to derive the threshold values of toxic metals in contaminated arable soils. The present study was designed to examine the heavy metal uptake pattern and to improve the prediction of metal uptake by Chinese cabbage grown in agricultural soils with multiple contamination by Cd, Cu, Ni, Pb, and Zn. Pot experiments were performed with 25 historically contaminated soils to determine metal accumulation in different parts of Chinese cabbage. Different soil bioavailable metal fractions were determined using different extractants (0.43M HNO3, 0.01M CaCl2, 0.005M DTPA, and 0.01M LWMOAs), soil moisture samplers, and diffusive gradients in thin films (DGT), and the fractions were compared with shoot metal uptake using both direct and stepwise multiple regression analysis. The stepwise approach significantly improved the prediction of metal uptake by cabbage over the direct approach. Strongly pH dependent or nonlinear relationships were found for the adsorption of root surfaces and in root-shoot uptake processes. Metals were linearly translocated from the root surface to the root. Therefore, the nonlinearity of uptake pattern is an important explanation for the inadequacy of the direct approach in some cases. The stepwise approach offers an alternative and robust method to study the pattern of metal uptake by Chinese cabbage (Brassica pekinensis L.). Copyright © 2016. Published by Elsevier B.V.

  9. Rain pulse response of soil CO2 exchange by biological soil crusts and grasslands of the semiarid Colorado Plateau, United States

    USGS Publications Warehouse

    Bowling, David R.; Grote, E.E.; Belnap, J.

    2011-01-01

    Biological activity in arid grasslands is strongly dependent on moisture. We examined gas exchange of biological soil crusts (biocrusts), the underlying soil biotic community, and the belowground respiratory activity of C3 and C4 grasses over 2 years in southeast Utah, USA. We used soil surface CO2 flux and the amount and carbon isotope composition (δ13C) of soil CO2 as indicators of belowground and soil surface activity. Soil respiration was always below 2 μmol m-2s-1 and highly responsive to soil moisture. When moisture was available, warm spring and summer temperature was associated with higher fluxes. Moisture pulses led to enhanced soil respiration lasting for a week or more. Biological response to rain was not simply dependent on the amount of rain, but also depended on antecedent conditions (prior moisture pulses). The short-term temperature sensitivity of respiration was very dynamic, showing enhancement within 1-2 days of rain, and diminishing each day afterward. Carbon uptake occurred by cyanobacterially dominated biocrusts following moisture pulses in fall and winter, with a maximal net carbon uptake of 0.5 μmol m-2s-1, although typically the biocrusts were a net carbon source. No difference was detected in the seasonal activity of C3 and C4 grasses, contrasting with studies from other arid regions (where warm- versus cool-season activity is important), and highlighting the unique biophysical environment of this cold desert. Contrary to other studies, the δ13C of belowground respiration in the rooting zone of each photosynthetic type did not reflect the δ13C of C3 and C4 physiology.

  10. Physicochemical properties and stability of thousand-year-old soil organic matter in boreal paleopodzols

    NASA Astrophysics Data System (ADS)

    Feng, Wen-Ting; Klaminder, Jonatan; Boily, Jean-Francois

    2013-04-01

    Soil organic matter (SOM) stabilization mechanisms are key to predict carbon (C) cycle responses to climate change, especially in critically sensitive ecosystems, such as the arctic and boreal ecosystems of Scandinavia (IPCC 2007). Interactions between organic matter and soil mineral components can be of particular importance. Their impacts on SOM stability are however not fully resolved. In this study, we present an exhaustive physicochemical characterization of SOM and soil mineral components of boreal paleopodzols formed over several thousands of years in northern Sweden. We also test the hypothesis that old SOM in these environments is strongly associated to mineral surfaces. This work was specifically focused on two relict podzolic profiles capped by more recently developed podzolic profile. Each of the three profiles consisted of a well developed E-horizon and of an underlying B-horizon enriched in secondary weathering products. Soil C age was greater with increasing depth, with the deepest horizon dating from the mid-Holocene. Organic C loadings, expressed in terms of C mass per mineral surface area, decreased from 0.52 to 0.31 mg C m-2 from deep to the deepest B horizons. A monolayer coating model could thus be used to suggest that C was mainly bonded to unsaturated mineral surfaces. Scanning electron microscopy and energy dispersive X-ray spectroscopy showed that, unlike in younger B-horizon, the oldest C of the deepest B-horizon did not accumulate in clusters. It was instead distributed more homogenously at the micrometer scale with soil mineral particles. X-ray photoelectron spectroscopy moreover showed that the top 1-10 nm of the mineral surfaces contained proportions of aliphatic-C, ether/alcohol-C, and amide-C that varied greatly amongst the three B horizons but not among the three E horizons. Different composition of SOM remained in deep E and B horizons, thereby suggesting a selective SOM preservation process that is controlled by the properties of the mineral matrix. Our findings therefore support the concept that soil mineral surfaces impact SOM stability. The importance of SOM-mineral surfaces complexation was demonstrated further through combined temperature-programmed desorption mass spectrometric Fourier transform infrared (TPD-MS-FTIR) experiments pointing to highly resilient forms of SOM associated to mineral particle surfaces. In summary, our study suggests organic matter sorption on mineral surfaces is important for SOM preservation at the millennial scale. Predicting the long-term fate of C in boreal regions should consequently account for such types of organo-mineral associations.

  11. Simulations of ecosystem hydrological processes using a unified multi-scale model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaofan; Liu, Chongxuan; Fang, Yilin

    2015-01-01

    This paper presents a unified multi-scale model (UMSM) that we developed to simulate hydrological processes in an ecosystem containing both surface water and groundwater. The UMSM approach modifies the Navier–Stokes equation by adding a Darcy force term to formulate a single set of equations to describe fluid momentum and uses a generalized equation to describe fluid mass balance. The advantage of the approach is that the single set of the equations can describe hydrological processes in both surface water and groundwater where different models are traditionally required to simulate fluid flow. This feature of the UMSM significantly facilitates modelling ofmore » hydrological processes in ecosystems, especially at locations where soil/sediment may be frequently inundated and drained in response to precipitation, regional hydrological and climate changes. In this paper, the UMSM was benchmarked using WASH123D, a model commonly used for simulating coupled surface water and groundwater flow. Disney Wilderness Preserve (DWP) site at the Kissimmee, Florida, where active field monitoring and measurements are ongoing to understand hydrological and biogeochemical processes, was then used as an example to illustrate the UMSM modelling approach. The simulations results demonstrated that the DWP site is subject to the frequent changes in soil saturation, the geometry and volume of surface water bodies, and groundwater and surface water exchange. All the hydrological phenomena in surface water and groundwater components including inundation and draining, river bank flow, groundwater table change, soil saturation, hydrological interactions between groundwater and surface water, and the migration of surface water and groundwater interfaces can be simultaneously simulated using the UMSM. Overall, the UMSM offers a cross-scale approach that is particularly suitable to simulate coupled surface and ground water flow in ecosystems with strong surface water and groundwater interactions.« less

  12. Soil Water Balance and Vegetation Dynamics in two Water-limited Mediterranean Ecosystem on Sardinia under past and future climate change

    NASA Astrophysics Data System (ADS)

    Corona, R.; Montaldo, N.; Albertson, J. D.

    2016-12-01

    Water limited conditions strongly impacts soil and vegetation dynamics in Mediterranean regions, which are commonly heterogeneous ecosystems, characterized by inter-annual rainfall variability, topography variability and contrasting plant functional types (PFTs) competing for water use. Historical human influences (e.g., deforestation, urbanization) further altered these ecosystems. Sardinia island is a representative region of Mediterranean ecosystems. It is low urbanized except some plan areas close to the main cities where main agricultural activities are concentrated. Two contrasting case study sites are within the Flumendosa river basin (1700 km2). The first site is a typical grassland on an alluvial plan valley (soil depth > 2m) while the second is a patchy mixture of Mediterranean vegetation species (mainly wild olive trees and C3 herbaceous) that grow in a soil bounded from below by a rocky layer of basalt, partially fractured (soil depth 15 - 40 cm). In both sites land-surface fluxes and CO2 fluxes are estimated by the eddy correlation technique while soil moisture was continuously estimated with water content reflectometers, and periodically leaf area index (LAI) was estimated. The following objectives are addressed:1) pointing out the dynamics of land surface fluxes, soil moisture, CO2 and vegetation cover for two contrasting water-limited ecosystems; 2) assess the impact of the soil depth and type on the CO2 and water balance dynamics; 3) evaluate the impact of past and future climate change scenarios on the two contrasting ecosystems. For reaching the objectives an ecohydrologic model that couples a vegetation dynamic model (VDM), and a 3-component (bare soil, grass and woody vegetation) land surface model (LSM) has been used. Historical meteorological data are available from 1922 and hydro-meteorological scenarios are then generated using a weather generator. The VDM-LSM model predict soil water balance and vegetation dynamics for the generated hydrometeorological scenarios in the two contrasting ecosystems. Results demonstrate that vegetation dynamics are influenced by the inter-annual variability of atmospheric forcing, with vegetation density changing significantly according to seasonal rainfall amount. At the same time the vegetation dynamics affect the soil water balance.

  13. Infiltration and soil erosion modelling on Lausatian post mine sites

    NASA Astrophysics Data System (ADS)

    Kunth, Franziska; Schmidt, Jürgen

    2013-04-01

    Land management of reclaimed lignite mine sites requires long-term and safe structuring of recultivation areas. Erosion by water leads to explicit soil losses, especially on heavily endangered water repellent and non-vegetated soil surfaces. Beyond that, weathering of pyrite-containing lignite burden dumps causes sulfuric acid-formation, and hence the acidification of groundwater, seepage water and surface waters. Pyrite containing sediment is detached by precipitation and transported into worked-out open cuts by draining runoff. In addition to ground water influence, erosion processes are therefore involved in acidification of surface waters. A model-based approach for the conservation of man-made slopes of post mining sites is the objective of this ongoing study. The study shall be completed by modeling of the effectiveness of different mine site recultivation scenarios. Erosion risks on man-made slopes in recultivation areas should be determined by applying the physical, raster- and event based computer model EROSION 2D/3D (Schmidt, 1991, 1992; v. Werner, 1995). The widely used erosion model is able to predict runoff as well as detachment, transport and deposition of sediments. Lignite burden dumps contain hydrophobic substances that cover soil particles. Consequently, these soils show strong water repellency, which influences the processes of infiltration and soil erosion on non-vegetated, coal containing dump soils. The influence of water repellency had to be implemented into EROSION 2D/3D. Required input data for soil erosion modelling (e.g. physical soil parameters, infiltration rates, calibration factors, etc.) were gained by soil sampling and rainfall experiments on non-vegetated as well as recultivated reclaimed mine sites in the Lusatia lignite mining region (southeast of Berlin, Germany). The measured infiltration rates on the non-vegetated water repellent sites were extremely low. Therefore, a newly developed water repellency-factor was applied to depict infiltration and erosion processes on water repellent dump soils. For infiltration modelling with EROSION 2D calibration factors (e.g. water repellency factor, skin-factor, etc.) were determined in different steps by calibrating computer modelled infiltration, respectively volume rate of flow to the measured data.

  14. Estimating sources of Valley Fever pathogen propagation in southern Arizona: A remote sensing approach

    NASA Astrophysics Data System (ADS)

    Pianalto, Frederick S.

    Coccidioidomycosis (Valley Fever) is an environmentally-mediated respiratory disease caused by the inhalation of airborne spores from the fungi Coccidioides spp. The fungi reside in arid and semi-arid soils of the Americas. The disease has increased epidemically in Arizona and other areas within the last two decades. Despite this increase, the ecology of the fungi remains obscure, and environmental antecedents of the disease are largely unstudied. Two sources of soil disturbance, hypothesized to affect soil ecology and initiate spore dissemination, are investigated. Nocturnal desert rodents interact substantially with the soil substrate. Rodents are hypothesized to act as a reservoir of coccidioidomycosis, a mediator of soil properties, and a disseminator of fungal spores. Rodent distributions are poorly mapped for the study area. We build automated multi-linear regression models and decision tree models for ten rodent species using rodent trapping data from the Organ Pipe Cactus National Monument (ORPI) in southwest Arizona with a combination of surface temperature, a vegetation index and its texture, and a suite of topographic rasters. Surface temperature, derived from Landsat TM thermal images, is the most widely selected predictive variable in both automated methods. Construction-related soil disturbance (e.g. road construction, trenching, land stripping, and earthmoving) is a significant source of fugitive dust, which decreases air quality and may carry soil pathogens. Annual differencing of Landsat Thematic Mapper (TM) mid-infrared images is used to create change images, and thresholded change areas are associated with coordinates of local dust inspections. The output metric identifies source areas of soil disturbance, and it estimates the annual amount of dust-producing surface area for eastern Pima County spanning 1994 through 2009. Spatially explicit construction-related soil disturbance and rodent abundance data are compared with coccidioidomycosis incidence data using rank order correlation and regression methods. Construction-related soil disturbance correlates strongly with annual county-wide incidence. It also correlates with Tucson periphery incidence aggregated to zip codes. Abundance values for the desert pocket mouse (Chaetodipus penicillatus), derived from a soil-adjusted vegetation index, aspect (northing) and thermal radiance, correlate with total study period incidence aggregated to zip code.

  15. Hillslope Chromatography in Savannas

    NASA Astrophysics Data System (ADS)

    Hartshorn, A.; Khomo, L.; Chadwick, O.; Rogers, K.; Kurtz, A.; Heimsath, A.

    2005-12-01

    In semiarid ecosystems, vegetation patterns are controlled in part by soil water availability. Along hillslopes in Kruger National Park, South Africa, water availability is strongly dependent on soil texture and textural differences with depth, which are a function of landscape position (convergent or divergent crests, midslopes, and footslopes) and parent material. We are studying weathering and landscape development on the western side of the park, which is underlain by granitic gneisses. Hillslopes in the park are often described as catenas, where rainfall catalyzes chemical weathering and drives the downslope transport of clays and weathering products, forming a predictable sequence of soil types. Sandy crest soils grade to midslope soils where sandy surface horizons overlie clayey subsurface horizons; footslopes generally have higher volumetric clay contents. The boundary between the sandy and clayey soils is of ecological significance because this is the location where run-on from upslope landscape positions is diverted to the surface, initiating overland flow and reducing infiltration. In a geochemical sense these hillslopes can be thought of as chromatographic columns that accentuate differential solute mobility along the long (~1-2 km) potential flowpaths. We use the compound topographic index (a terrain attribute that indexes soil wetness by dividing the upslope contributing area by the slope) to predict the redistribution of clays across these semiarid hillslopes and hope to demonstrate that landscape positions occupying comparable plan and profile curvatures contain clay and organic carbon in proportion to contributing area. Thus far, we have derived contributing area values for 40 soil pits using LiDAR-based digital elevation models and then tested how well contributing area and other terrain attributes predicted clay and carbon content for 218 horizons at these 40 locations. Depth-weighted soil clay ranged from 3 to 25% and total soil carbon ranged from 0.1 to 2.1%. Our preliminary results suggest that greater contributing area only produces greater soil clay content up to a threshold clay content, after which clay illuviation and in situ clay production slows following the diversion of water to the surface.

  16. Spring Hydrology Determines Summer Net Carbon Uptake in Northern Ecosystems

    NASA Technical Reports Server (NTRS)

    Yi, Yonghong; Kimball, John; Reichle, Rolf H.

    2014-01-01

    Increased photosynthetic activity and enhanced seasonal CO2 exchange of northern ecosystems have been observed from a variety of sources including satellite vegetation indices (such as the Normalized Difference Vegetation Index; NDVI) and atmospheric CO2 measurements. Most of these changes have been attributed to strong warming trends in the northern high latitudes (greater than or equal to 50N). Here we analyze the interannual variation of summer net carbon uptake derived from atmospheric CO2 measurements and satellite NDVI in relation to surface meteorology from regional observational records. We find that increases in spring precipitation and snow pack promote summer net carbon uptake of northern ecosystems independent of air temperature effects. However, satellite NDVI measurements still show an overall benefit of summer photosynthetic activity from regional warming and limited impact of spring precipitation. This discrepancy is attributed to a similar response of photosynthesis and respiration to warming and thus reduced sensitivity of net ecosystem carbon uptake to temperature. Further analysis of boreal tower eddy covariance CO2 flux measurements indicates that summer net carbon uptake is positively correlated with early growing-season surface soil moisture, which is also strongly affected by spring precipitation and snow pack based on analysis of satellite soil moisture retrievals. This is attributed to strong regulation of spring hydrology on soil respiration in relatively wet boreal and arctic ecosystems. These results document the important role of spring hydrology in determining summer net carbon uptake and contrast with prevailing assumptions of dominant cold temperature limitations to high-latitude ecosystems. Our results indicate potentially stronger coupling of boreal/arctic water and carbon cycles with continued regional warming trends.

  17. Controlling factors for infiltration on undisturbed hillslopes in unmanaged plantation forests

    NASA Astrophysics Data System (ADS)

    Hiraoka, Marino; Onda, Yuichi; Gomi, Takashi; Mizugaki, Shigeru; Nanko, Kazuki; Kato, Hiroaki

    2017-04-01

    Infiltration into the soil is a crucial factor for predicting overland flow generation. Infiltration capacity strongly relates to ground vegetation, soil characteristics, or both. For revealing controlling factors for infiltration capacity, we conducted in-situ rainfall simulation using an oscillating-nozzle type rainfall simulator at 26 plots with different ground cover conditions of unmanaged Japanese cypress (Chamaecyparis obtusa) plantations. For wide-ranging vegetation cover condition (0-100%), infiltration capacity widely varied (5-322 mm/h) and had positive correlations with indices of ground vegetation and ground litter (p < 0.01). For a limited vegetation cover condition (0-20%), the range of infiltration capacity (7-114 mm/h) was associated with ground litter thickness (p < 0.05), and difference in soil organic matter and difference in soil bulk density. Principal component analysis showed that the first and second principal components (70% of total variation) related to changes in above- and below-ground biomass and changes in pores in soil. Our findings showed that development of ground vegetation alters hydrological processes of surface soil through changes in soil characteristics via the propagation of belowground biomass development.

  18. Resilient modulus of freeze-thaw affected granular soils for pavement design and evaluation. Part 4: Field validation tests at Albany County Airport

    NASA Astrophysics Data System (ADS)

    Johnson, T. C.; Crowe, A.; Erickson, M.; Cole, D. M.

    1986-10-01

    Stress-deformation data for unbound base, subbase, and silty sand subgrade soils in two airfield pavements were obtained from in situ tests and laboratory tests. Surface deflections were measured in the in situ tests, with a falling-weight deflectometer, when the soils were frozen, thawed, and at various stages of recovery from thaw weakening. The measured deflections were used to judge the validity of procedures developed for laboratory triaxial tests to determine nonlinear resilient moduli of specimens in the frozen, thawed and recovering states. The validity of the nonlinear resilient moduli, expressed as functions of externally applied stress and moisture tension, was confirmed by using the expressions to calculate surface deflections that were found to compare well with deflections measured in the in situ tests. The tests on specimens at various stages of recovery are especially significant because they show a strong dependence of the resilient modulus on moisture tension, leading to the conclusion that predictions or in situ measurements of moisture tension can be used to evaluate expected seasonal variation in the resilient modulus of granular soils.

  19. Effect of long term organic amendments and vegetation of vineyard soils on the microscale distribution and biogeochemistry of copper.

    PubMed

    Navel, Aline; Martins, Jean M F

    2014-01-01

    In this study we evaluated the effect of the long term organic management of a vineyard-soil on the biogeochemistry of copper at the micro-aggregate scale. The model vineyard-soil (Mâcon-France) experienced a long-term field-experiment that consisted in amendments and vegetations with various materials and plants. We studied specifically the effect of Straw (S) and Conifer Compost (CC) organic amendments and Clover (Cl) and Fescue (F) vegetation on the fate of copper (fungicide) in the surface layer of this loamy soil, through a comparison with the Non Amended soil (NA). After collection the five soils were immediately physically fractionated in order to obtain 5 granulometric size-fractions. All soils and size-fractions were quantitatively characterized in terms of granulometry, chemical content and copper distribution, speciation and bioavailability to bacteria and plants. The results showed strong increases of soil-constituents aggregation for all treatments (Cl>CC>S>F>NA), in relation with the increased cementation of soil-constituents by organic matter (OM). The distribution patterns of all major elements and organic carbon were found highly variable within the soil sub-fractions and also between the 5 treatments. Due to their specific inorganic and organic composition, soil sub-fractions can thus be considered as a specific microbial habitat. Added OM accumulated preferentially in the 20-2 μm and in the >250 μm of the 5 soils. The distribution patterns of copper as well as its speciation and bioavailability to bacteria in the soil sub-fractions were shown to be strongly different among the five soils, in relation with OM distribution. Our results also suggest that Cu-bioavailability to plants is controlled by soil-rhizosphere structure. Altogether our results permitted to show that long-term organic management of a vineyard soil induced stable modifications of soil physical and chemical properties at both macro and micro-scales. These modifications affected in turn the micro-scale biogeochemistry of copper, and especially its bioavailability to bacteria and plants. © 2013.

  20. Rainfall simulation experiments in ecological and conventional vineyards.

    NASA Astrophysics Data System (ADS)

    Adrian, Alexander; Brings, Christine; Rodrigo Comino, Jesús; Iserloh, Thomas; Ries, Johannes B.

    2015-04-01

    In October 2014, the Trier University started a measurement series, which defines, compares and evaluates the behavior of runoff and soil erosion with different farming productions in vineyards. The research area is located in Kanzem, a traditional wine village in the Saar Valley (Rheinland-Palatinate, Germany). The test fields show different cultivation methods: ecological (with natural vegetation cover under and around the vines) and conventional cultivated rows of wine. By using the small portable rainfall simulator of Trier University it shall be proved if the assumption that there is more runoff and soil erosion in the conventional part than in the ecological part of the tillage system. Rainfall simulations assess the generation of overland flow, soil erosion and infiltration. So, a trend of soil erosion and runoff of the different cultivation techniques are noted. The objective of this work is to compare the geomorphological dynamics of two different tillage systems. Therefore, 30 rainfall simulations plots were evenly distributed on a west exposition hillside with different slope angels (8-25°), vegetation- and stone-covers. In concrete, the plot surface reaches from strongly covered soil across lithoidal surfaces to bare soil often with compacted lanes of typical using machines. In addition, by using the collected substrate, an estimation and distribution of the grain size of the eroded material shall be given. The eroded substrate is compared to soil samples of the test plots. The first results have shown that there is slightly more runoff and soil erosion in the ecological area than on the conventional part of the vineyard.

  1. Concentration and spectroscopic characteristics of DOM in surface runoff and fracture flow in a cropland plot of a loamy soil.

    PubMed

    Xian, Qingsong; Li, Penghui; Liu, Chen; Cui, Junfang; Guan, Zhuo; Tang, Xiangyu

    2018-05-01

    Being crucial for predicting the impact of source inputs on a watershed in rainfall events, an understanding of the dynamics and characteristics of dissolved organic matter (DOM) export from the soil under particular land use types, particularly those associated with underground flows is still largely lacking. A field study was carried out using a 1500m 2 slope farmland plot in the hilly area of Sichuan Basin, Southwest China. The discharge of surface runoff and fracture flow was recorded and samples were collected in four representative rainfall events. For DOM characterization, concentration of dissolved organic carbon (DOC) and absorbance/excitation-emission matrix (EEM) fluorescence were analyzed. Soil water potential was also determined using tensiometers for understanding the runoff generation mechanisms. The DOC values for both surface and fracture flow showed significant responses to rainfall, with hydrological path being the primary factor in determining DOM dynamics. EEM-PARAFAC analyses indicated that the soil DOM mainly consisted of two terrestrial humic-like components with peaks located at Ex/Em 270(380)/480nm (C1) and 250(320)/410nm (C2), respectively. Concentrations of these components also responded strongly to rainfall, fluctuating in good agreement with the corresponding DOCs. Although there was no change in the presence of the components themselves, their relative distributions varied during precipitation, with the C1/C2 ratio increasing with the proportion of soil pre-event water. As the dynamic changes of soil DOM characteristics can be successfully captured using spectroscopic techniques, they may serve as a tracer for understanding hydrological paths based on their potential correlations with water source differences during rains. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Evidence of remediation-induced alteration of subsurface poly- and perfluoroalkyl substance distribution at a former firefighter training area.

    PubMed

    McGuire, Meghan E; Schaefer, Charles; Richards, Trenton; Backe, Will J; Field, Jennifer A; Houtz, Erika; Sedlak, David L; Guelfo, Jennifer L; Wunsch, Assaf; Higgins, Christopher P

    2014-06-17

    Poly- and perfluoroalkyl substances (PFASs) are a class of fluorinated chemicals that are utilized in firefighting and have been reported in groundwater and soil at several firefighter training areas. In this study, soil and groundwater samples were collected from across a former firefighter training area to examine the extent to which remedial activities have altered the composition and spatial distribution of PFASs in the subsurface. Log Koc values for perfluoroalkyl acids (PFAAs), estimated from analysis of paired samples of groundwater and aquifer solids, indicated that solid/water partitioning was not entirely consistent with predictions based on laboratory studies. Differential PFAA transport was not strongly evident in the subsurface, likely due to remediation-induced conditions. When compared to the surface soil spatial distributions, the relative concentrations of perfluorooctanesulfonate (PFOS) and PFAA precursors in groundwater strongly suggest that remedial activities altered the subsurface PFAS distribution, presumably through significant pumping of groundwater and transformation of precursors to PFAAs. Additional evidence for transformation of PFAA precursors during remediation included elevated ratios of perfluorohexanesulfonate (PFHxS) to PFOS in groundwater near oxygen sparging wells.

  3. Assessment of model behavior and acceptable forcing data uncertainty in the context of land surface soil moisture estimation

    NASA Astrophysics Data System (ADS)

    Dumedah, Gift; Walker, Jeffrey P.

    2017-03-01

    The sources of uncertainty in land surface models are numerous and varied, from inaccuracies in forcing data to uncertainties in model structure and parameterizations. Majority of these uncertainties are strongly tied to the overall makeup of the model, but the input forcing data set is independent with its accuracy usually defined by the monitoring or the observation system. The impact of input forcing data on model estimation accuracy has been collectively acknowledged to be significant, yet its quantification and the level of uncertainty that is acceptable in the context of the land surface model to obtain a competitive estimation remain mostly unknown. A better understanding is needed about how models respond to input forcing data and what changes in these forcing variables can be accommodated without deteriorating optimal estimation of the model. As a result, this study determines the level of forcing data uncertainty that is acceptable in the Joint UK Land Environment Simulator (JULES) to competitively estimate soil moisture in the Yanco area in south eastern Australia. The study employs hydro genomic mapping to examine the temporal evolution of model decision variables from an archive of values obtained from soil moisture data assimilation. The data assimilation (DA) was undertaken using the advanced Evolutionary Data Assimilation. Our findings show that the input forcing data have significant impact on model output, 35% in root mean square error (RMSE) for 5cm depth of soil moisture and 15% in RMSE for 15cm depth of soil moisture. This specific quantification is crucial to illustrate the significance of input forcing data spread. The acceptable uncertainty determined based on dominant pathway has been validated and shown to be reliable for all forcing variables, so as to provide optimal soil moisture. These findings are crucial for DA in order to account for uncertainties that are meaningful from the model standpoint. Moreover, our results point to a proper treatment of input forcing data in general land surface and hydrological model estimation.

  4. Emission-dominated gas exchange of elemental mercury vapor over natural surfaces in China

    NASA Astrophysics Data System (ADS)

    Wang, Xun; Lin, Che-Jen; Yuan, Wei; Sommar, Jonas; Zhu, Wei; Feng, Xinbin

    2016-09-01

    Mercury (Hg) emission from natural surfaces plays an important role in global Hg cycling. The present estimate of global natural emission has large uncertainty and remains unverified against field data, particularly for terrestrial surfaces. In this study, a mechanistic model is developed for estimating the emission of elemental mercury vapor (Hg0) from natural surfaces in China. The development implements recent advancements in the understanding of air-soil and air-foliage exchange of Hg0 and redox chemistry in soil and on surfaces, incorporates the effects of soil characteristics and land use changes by agricultural activities, and is examined through a systematic set of sensitivity simulations. Using the model, the net exchange of Hg0 between the atmosphere and natural surfaces of mainland China is estimated to be 465.1 Mg yr-1, including 565.5 Mg yr-1 from soil surfaces, 9.0 Mg yr-1 from water bodies, and -100.4 Mg yr-1 from vegetation. The air-surface exchange is strongly dependent on the land use and meteorology, with 9 % of net emission from forest ecosystems; 50 % from shrubland, savanna, and grassland; 33 % from cropland; and 8 % from other land uses. Given the large agricultural land area in China, farming activities play an important role on the air-surface exchange over farmland. Particularly, rice field shift from a net sink (3.3 Mg uptake) during April-October (rice planting) to a net source when the farmland is not flooded (November-March). Summing up the emission from each land use, more than half of the total emission occurs in summer (51 %), followed by spring (28 %), autumn (13 %), and winter (8 %). Model verification is accomplished using observational data of air-soil/air-water fluxes and Hg deposition through litterfall for forest ecosystems in China and Monte Carlo simulations. In contrast to the earlier estimate by Shetty et al. (2008) that reported large emission from vegetative surfaces using an evapotranspiration approach, the estimate in this study shows natural emissions are primarily from grassland and dry cropland. Such an emission pattern may alter the current understanding of Hg emission outflow from China as reported by Lin et al. (2010b) because a substantial natural Hg emission occurs in West China.

  5. Adsorption of uranium(VI) to manganese oxides: X-ray absorption spectroscopy and surface complexation modeling.

    PubMed

    Wang, Zimeng; Lee, Sung-Woo; Catalano, Jeffrey G; Lezama-Pacheco, Juan S; Bargar, John R; Tebo, Bradley M; Giammar, Daniel E

    2013-01-15

    The mobility of hexavalent uranium in soil and groundwater is strongly governed by adsorption to mineral surfaces. As strong naturally occurring adsorbents, manganese oxides may significantly influence the fate and transport of uranium. Models for U(VI) adsorption over a broad range of chemical conditions can improve predictive capabilities for uranium transport in the subsurface. This study integrated batch experiments of U(VI) adsorption to synthetic and biogenic MnO(2), surface complexation modeling, ζ-potential analysis, and molecular-scale characterization of adsorbed U(VI) with extended X-ray absorption fine structure (EXAFS) spectroscopy. The surface complexation model included inner-sphere monodentate and bidentate surface complexes and a ternary uranyl-carbonato surface complex, which was consistent with the EXAFS analysis. The model could successfully simulate adsorption results over a broad range of pH and dissolved inorganic carbon concentrations. U(VI) adsorption to synthetic δ-MnO(2) appears to be stronger than to biogenic MnO(2), and the differences in adsorption affinity and capacity are not associated with any substantial difference in U(VI) coordination.

  6. The spectroscopic chemical and photophysical properties of Martian soils and their analogs

    NASA Technical Reports Server (NTRS)

    Coyne, Lelia M.

    1987-01-01

    The program of research outlined should advance significantly the understanding of the spectral signal of montmorillonites in general and the variations produced in it by structural and surface ferric and ferrous iron and interlayer water as a function of several environmental conditions that are different between Earth and Mars. In addition, an extensive data base was collected providing spectral characterization of several features (iron, both surface and structural, OH-groups, both structural and from adsorbed water and O(-) centers) that are known, or thought to be, influential in directing the surface activity of these important materials. With this data base with which to assess the results of the Viking labeled release simulation studies, it should be possible to gain important insights into the mechanisms of surface reactivity for this important chemical reaction. The results to be gained from these studies will provide a significant body of ground base truth from which to assess: the presence of smectite clays on Mars; the mineralogical form in which the Martian iron is bound; establish upper limits on the present surface water content of Martian soils; perhaps provide insights on the Martian surface radiation history; and to make strong predictions about the nature of surface chemistry on Mars, if iron-bearing clays are a significant component of the surface mineralogical assemblage.

  7. Mathematical Modelling of Arctic Polygonal Tundra with Ecosys : 1. Microtopography Determines How Active Layer Depths Respond to Changes in Temperature and Precipitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant, R. F.; Mekonnen, Z. A.; Riley, W. J.

    Microtopographic variation that develops among features (troughs, rims, and centers) within polygonal landforms of coastal arctic tundra strongly affects movement of surface water and snow and thereby affects soil water contents (θ) and active layer depth (ALD). Spatial variation in ALD among these features may exceed interannual variation in ALD caused by changes in climate and so needs to be represented in projections of changes in arctic ALD. For this study, increases in near-surface θ with decreasing surface elevation among polygon features at the Barrow Experimental Observatory (BEO) were modeled from topographic effects on redistribution of surface water and snowmore » and from lateral water exchange with a subsurface water table during a model run from 1981 to 2015. These increases in θ caused increases in thermal conductivity that in turn caused increases in soil heat fluxes and hence in ALD of up to 15 cm with lower versus higher surface elevation which were consistent with increases measured at BEO. The modeled effects of θ caused interannual variation in maximum ALD that compared well with measurements from 1985 to 2015 at the Barrow Circumpolar Active Layer Monitoring (CALM) site (R 2 = 0.61, RMSE = 0.03 m). For higher polygon features, interannual variation in ALD was more closely associated with annual precipitation than mean annual temperature, indicating that soil wetting from increases in precipitation may hasten permafrost degradation beyond that caused by soil warming from increases in air temperature. This degradation may be more rapid if increases in precipitation cause sustained wetting in higher features.« less

  8. ORCHIDEE-MICT (v8.4.1), a land surface model for the high latitudes: model description and validation

    NASA Astrophysics Data System (ADS)

    Guimberteau, Matthieu; Zhu, Dan; Maignan, Fabienne; Huang, Ye; Yue, Chao; Dantec-Nédélec, Sarah; Ottlé, Catherine; Jornet-Puig, Albert; Bastos, Ana; Laurent, Pierre; Goll, Daniel; Bowring, Simon; Chang, Jinfeng; Guenet, Bertrand; Tifafi, Marwa; Peng, Shushi; Krinner, Gerhard; Ducharne, Agnès; Wang, Fuxing; Wang, Tao; Wang, Xuhui; Wang, Yilong; Yin, Zun; Lauerwald, Ronny; Joetzjer, Emilie; Qiu, Chunjing; Kim, Hyungjun; Ciais, Philippe

    2018-01-01

    The high-latitude regions of the Northern Hemisphere are a nexus for the interaction between land surface physical properties and their exchange of carbon and energy with the atmosphere. At these latitudes, two carbon pools of planetary significance - those of the permanently frozen soils (permafrost), and of the great expanse of boreal forest - are vulnerable to destabilization in the face of currently observed climatic warming, the speed and intensity of which are expected to increase with time. Improved projections of future Arctic and boreal ecosystem transformation require improved land surface models that integrate processes specific to these cold biomes. To this end, this study lays out relevant new parameterizations in the ORCHIDEE-MICT land surface model. These describe the interactions between soil carbon, soil temperature and hydrology, and their resulting feedbacks on water and CO2 fluxes, in addition to a recently developed fire module. Outputs from ORCHIDEE-MICT, when forced by two climate input datasets, are extensively evaluated against (i) temperature gradients between the atmosphere and deep soils, (ii) the hydrological components comprising the water balance of the largest high-latitude basins, and (iii) CO2 flux and carbon stock observations. The model performance is good with respect to empirical data, despite a simulated excessive plant water stress and a positive land surface temperature bias. In addition, acute model sensitivity to the choice of input forcing data suggests that the calibration of model parameters is strongly forcing-dependent. Overall, we suggest that this new model design is at the forefront of current efforts to reliably estimate future perturbations to the high-latitude terrestrial environment.

  9. Dual permeability modeling of tile drain management influences on hydrologic and nutrient transport characteristics in macroporous soil

    NASA Astrophysics Data System (ADS)

    Frey, Steven K.; Hwang, Hyoun-Tae; Park, Young-Jin; Hussain, Syed I.; Gottschall, Natalie; Edwards, Mark; Lapen, David R.

    2016-04-01

    Tile drainage management is considered a beneficial management practice (BMP) for reducing nutrient loads in surface water. In this study, 2-dimensional dual permeability models were developed to simulate flow and transport following liquid swine manure and rhodamine WT (strongly sorbing) tracer application on macroporous clay loam soils under controlled (CD) and free drainage (FD) tile management. Dominant flow and transport characteristics were successfully replicated, including higher and more continuous tile discharge and lower peak rhodamine WT concentrations in FD tile effluent; in relation to CD, where discharge was intermittent, peak rhodamine concentrations higher, and mass exchange from macropores into the soil matrix greater. Explicit representation of preferential flow was essential, as macropores transmitted >98% of surface infiltration, tile flow, and tile solute loads for both FD and CD. Incorporating an active 3rd type lower boundary condition that facilitated groundwater interaction was imperative for simulating CD, as the higher (relative to FD) water table enhanced water and soluble nutrient movement from the soil profile into deeper groundwater. Scenario analysis revealed that in conditions where slight upwards hydraulic gradients exist beneath tiles, groundwater upwelling can influence the concentration of surface derived solutes in tile effluent under FD conditions; whereas the higher and flatter CD water table can restrict groundwater upwelling. Results show that while CD can reduce tile discharge, it can also lead to an increase in surface-application derived nutrient concentrations in tile effluent and hence surface water receptors, and it can promote NO3 loading into groundwater. This study demonstrates dual permeability modeling as a tool for increasing the conceptual understanding of tile drainage BMPs.

  10. Mathematical Modelling of Arctic Polygonal Tundra with Ecosys : 1. Microtopography Determines How Active Layer Depths Respond to Changes in Temperature and Precipitation

    DOE PAGES

    Grant, R. F.; Mekonnen, Z. A.; Riley, W. J.; ...

    2017-11-17

    Microtopographic variation that develops among features (troughs, rims, and centers) within polygonal landforms of coastal arctic tundra strongly affects movement of surface water and snow and thereby affects soil water contents (θ) and active layer depth (ALD). Spatial variation in ALD among these features may exceed interannual variation in ALD caused by changes in climate and so needs to be represented in projections of changes in arctic ALD. For this study, increases in near-surface θ with decreasing surface elevation among polygon features at the Barrow Experimental Observatory (BEO) were modeled from topographic effects on redistribution of surface water and snowmore » and from lateral water exchange with a subsurface water table during a model run from 1981 to 2015. These increases in θ caused increases in thermal conductivity that in turn caused increases in soil heat fluxes and hence in ALD of up to 15 cm with lower versus higher surface elevation which were consistent with increases measured at BEO. The modeled effects of θ caused interannual variation in maximum ALD that compared well with measurements from 1985 to 2015 at the Barrow Circumpolar Active Layer Monitoring (CALM) site (R 2 = 0.61, RMSE = 0.03 m). For higher polygon features, interannual variation in ALD was more closely associated with annual precipitation than mean annual temperature, indicating that soil wetting from increases in precipitation may hasten permafrost degradation beyond that caused by soil warming from increases in air temperature. This degradation may be more rapid if increases in precipitation cause sustained wetting in higher features.« less

  11. Snowmelt discharge characteristics Sierra Nevada, California

    USGS Publications Warehouse

    Peterson, David; Smith, Richard; Stewart, Iris; Knowles, Noah; Soulard, Chris; Hager, Stephen

    2005-01-01

    Alpine snow is an important water resource in California and the western U.S. Three major features of alpine snowmelt are the spring pulse (the first surge in snowmelt-driven river discharge in spring), maximum snowmelt discharge, and base flow (low river discharge supported by groundwater in fall). A long term data set of hydrologic measurements at 24 gage locations in 20 watersheds in the Sierra Nevada was investigated to relate patterns of snowmelt with stream discharge In wet years, the daily variations in snowmelt discharge at all the gage locations in the Sierra Nevada correlate strongly with the centrally located Merced River at Happy Isles, Yosemite National Park (i.e., in 1983, the mean of the 23 correlations was R= 0.93 + 0.09) ; in dry years, however, this correlation breaks down (i.e., in year 1977, R=0.72 + 0.24). A general trend towards earlier snowmelt was found and modeled using correlations with the timing of the spring pulse and the river discharge center of mass. For the 24 river and creek gage locations in this study, the spring pulse appeared to be a more sensitive measure of early snowmelt than the center of mass. The amplitude of maximum daily snowmelt discharge correlates strongly with initial snow water equivalent. Geologic factors, base rock permeability and soil-to-bedrock ratio, influence snowmelt flow pathways. Although both surface and ground water flows and water levels increase in wet years compared to dry years, the increase was greater for surface water in a watershed with relatively impermeable base rock than for surface water in a watershed with highly permeable base rock The relation was the opposite for base flow (ground water). The increase was greater for groundwater in a watershed with permeable rock compared to ground water in a watershed with impermeable rock. A similar, but weaker, surface/groundwater partitioning was observed in relatively impermeable granitic watersheds with differing soil-to-bedrock ratios. The increase in surface flow was greater in a watershed with a low, compared to a high, soil-to-bedrock ratio; whereas the increase in ground water flow was greater in a watershed with a high, compared to a low, soil-to-bedrock ratio. Transects that include long-term observations of shallow well-water depth and chemistry would complement traditional hydroclimate data and provide a more complete understanding of hydrologic controls of snowmelt.

  12. Measured and modeled dry deposition velocities over the ESCOMPTE area

    NASA Astrophysics Data System (ADS)

    Michou, M.; Laville, P.; Serça, D.; Fotiadi, A.; Bouchou, P.; Peuch, V.-H.

    2005-03-01

    Measurements of the dry deposition velocity of ozone have been made by the eddy correlation method during ESCOMPTE (Etude sur Site pour COntraindre les Modèles de Pollution atmosphérique et de Transport d'Emissions). The strong local variability of natural ecosystems was sampled over several weeks in May, June and July 2001 for four sites with varying surface characteristics. The sites included a maize field, a Mediterranean forest, a Mediterranean shrub-land, and an almost bare soil. Measurements of nitrogen oxide deposition fluxes by the relaxed eddy correlation method have also been carried out at the same bare soil site. An evaluation of the deposition velocities computed by the surface module of the multi-scale Chemistry and Transport Model MOCAGE is presented. This module relies on a resistance approach, with a detailed treatment of the stomatal contribution to the surface resistance. Simulations at the finest model horizontal resolution (around 10 km) are compared to observations. If the seasonal variations are in agreement with the literature, comparisons between raw model outputs and observations, at the different measurement sites and for the specific observing periods, are contrasted. As the simulated meteorology at the scale of 10 km nicely captures the observed situations, the default set of surface characteristics (averaged at the resolution of a grid cell) appears to be one of the main reasons for the discrepancies found with observations. For each case, sensitivity studies have been performed in order to see the impact of adjusting the surface characteristics to the observed ones, when available. Generally, a correct agreement with the observations of deposition velocities is obtained. This advocates for a sub-grid scale representation of surface characteristics for the simulation of dry deposition velocities over such a complex area. Two other aspects appear in the discussion. Firstly, the strong influence of the soil water content to the plant response, specifically in conditions of stress, is confirmed. Second, we point out the difficulty in interpreting measurements of nitrogen oxide deposition velocities: a synergetic approach combining measurements and modeling is practical.

  13. Inversion Build-Up and Cold-Air Outflow in a Small Alpine Sinkhole

    NASA Astrophysics Data System (ADS)

    Lehner, Manuela; Whiteman, C. David; Dorninger, Manfred

    2017-06-01

    Semi-idealized model simulations are made of the nocturnal cold-air pool development in the approximately 1-km wide and 100-200-m deep Grünloch basin, Austria. The simulations show qualitatively good agreement with vertical temperature and wind profiles and surface measurements collected during a meteorological field expedition. A two-layer stable atmosphere forms in the basin, with a very strong inversion in the lowest part, below the approximate height of the lowest gap in the surrounding orography. The upper part of the stable layer is less strongly stratified and extends to the approximate height of the second-lowest gap. The basin atmosphere cools most strongly during the first few hours of the night, after which temperatures decrease only slowly. An outflow of air forms through the lowest gap in the surrounding orography. The outflow connects with a weak inflow of air through a gap on the opposite sidewall, forming a vertically and horizontally confined jet over the basin. Basin cooling shows strong sensitivity to surface-layer characteristics, highlighting the large impact of variations in vegetation and soil cover on cold-air pool development, as well as the importance of surface-layer parametrization in numerical simulations of cold-air-pool development.

  14. Seasonal Changes in Soil Moisture Content in Northern Chile and Southern California Inferred from SAR data

    NASA Astrophysics Data System (ADS)

    Scott, C. P.; Lohman, R. B.

    2015-12-01

    InSAR-based studies of the seismic cycle have focused primarily on the interferometric phase observations, which place constraints on the amount of uplift or subsidence of the ground surface. Recently, coseismic InSAR coherence has also been used to rapidly identify urban damage, surface ruptures, cracking, and soil liquefaction. Here we demonstrate that time-variable correlation and amplitude data contain additional information about surficial processes and material properties that may affect ground deformation and seismic hazard. In the use of correlation for hazard response, distinguishing the coseismic signal from other changes in surface properties associated with variations in soil moisture content, vegetation and snow cover, and wind is critical. Building SAR-based catalogues of ground properties will therefore improve the reliability of rapid response and aid in the designing of future SAR missions to better map surface ruptures, off-fault deformation, and coseismic damage. In this project, we characterize the seasonal variations in the soil moisture content in the Northern Chilean Coastal Cordillera and Southern California. The extreme climate of the Atacama Desert characterized by hyperaridity and coastal fog during the non-summer months creates an ideal landscape for exploring surface properties. We produce interferograms using L-band ALOS data (λ = 23.6 cm) that span 46 days to three years and have perpendicular baselines less than 1500 m. We observe a strong seasonal dependence on correlation that extends to the maximum elevation of the fog penetration. Interferograms with only austral summer acquisitions are more correlated than interferograms with one or both acquisitions in the autumn, winter or spring, even when the summer interferograms span multiple years. We propose that the seasonal dependence is due to small changes in the radar path length caused by variable soil moisture content in the very shallow subsurface. We further consider local variations in correlation surrounding aeolian dunes, quebradas or ravines, cities, and salars. We extend our work to include the Owens Valley and Death Valley in California.

  15. Observation and difference analysis of carbon fluxes in different types of soil in Tianjin coastal zone

    NASA Astrophysics Data System (ADS)

    Li, Ya-Juan; Wang, Ting-Feng; Mao, Tian-Yu

    2018-02-01

    Tianjin Coastal Zone is located in the coastal area of the Bohai Sea, belonging to the typical coastal wetland, with high carbon value. Over the past decade the development of great intensity, there are obvious characteristics of artificial influence. This study focuses on observing the carbon fluxes of different soil types in the coastal area under strong artificial disturbance, summarizing the carbon sink calculation formula according to the soil type, and analyzing the main influencing factors affecting the carbon flux. The results show that there are representative intertidal zones in Tianjin, and the respiration of soil and secondary soil are different. The main influencing factors are soil surface temperature or air temperature. Coastal zones with different ecosystems can basically establish the relationship between temperature and soil carbon flux. (R2 = 0.5990), the relationship between artificial backfill is Q = 0.2061 - 0.2129T - 0.0391T2 (R2 = 0.7469), and the artificial soil is restored by artificial soil and the herbaceous greening is carried out., The relationship is Q = -0.1019 + 0.0327T‧ (R2 = 0.6621), T-soil temperature, T’-air temperature. At the same temperature, soil carbon fluxes in shoal wetlands are generally stronger than artificial backfill, showing more carbon source emissions.

  16. The relationship between soil heterotrophic activity, soil dissolved organic carbon (DOC) leachate, and catchment-scale DOC export in headwater catchments

    USGS Publications Warehouse

    Brooks, P.D.; McKnight, Diane M.; Bencala, K.E.

    1999-01-01

    Dissolved organic carbon (DOC) from terrestrial sources forms the major component of the annual carbon budget in many headwater streams. In high-elevation catchments in the Rocky Mountains, DOC originates in the upper soil horizons and is flushed to the stream primarily during spring snowmelt. To identify controls on the size of the mobile soil DOC pool available to be transported during the annual melt event, we measured soil DOC production across a range of vegetation communities and soil types together with catchment DOC export in paired watersheds in Summit County, Colorado. Both surface water DOC concentrations and watershed DOC export were lower in areas where pyrite weathering resulted in lower soil pH. Similarly, the amount of DOC leached from organic soils was significantly smaller (p < 0.01) at sites having low soil pH. Scaling point source measurements of DOC production and leaching to the two basins and assuming only vegetated areas contribute to DOC production, we calculated that the amount of mobile DOC available to be leached to surface water during melt was 20.3 g C m−2 in the circumneutral basin and 17.8 g C m−2 in the catchment characterized by pyrite weathering. The significant (r2=0.91 and p < 0.05), linear relationship between over-winter CO2 flux and the amount of DOC leached from upper soil horizons during snowmelt suggests that the mechanism for the difference in production of mobile DOC was heterotrophic processing of soil carbon in snow-covered soil. Furthermore, this strong relationship between over-winter heterotrophic activity and the size of the mobile DOC pool present in a range of soil and vegetation types provides a likely mechanism for explaining the interannual variability of DOC export observed in high-elevation catchments.

  17. Biotoxicity of Mars soils: 1. Dry deposition of analog soils on microbial colonies and survival under Martian conditions

    NASA Astrophysics Data System (ADS)

    Schuerger, Andrew C.; Golden, D. C.; Ming, Doug W.

    2012-11-01

    Six Mars analog soils were created to simulate a range of potentially biotoxic geochemistries relevant to the survival of terrestrial microorganisms on Mars, and included basalt-only (non-toxic control), salt, acidic, alkaline, aeolian, and perchlorate rich geochemistries. Experiments were designed to simulate the dry-deposition of Mars soils onto spacecraft surfaces during an active descent landing scenario with propellant engines. Six eubacteria were initially tested for tolerance to desiccation, and the spore-former Bacillus subtilis HA101 and non-spore former Enterococcus faecalis ATCC 29212 were identified to be strongly resistant (HA101) and moderately resistant (29212) to desiccation at 24 °C. Furthermore, tests with B. subtilis and E. faecalis demonstrated that at least 1 mm of Mars analog soil was required to fully attenuate the biocidal effects of a simulated Mars-normal equatorial UV flux. Biotoxicity experiments were conducted under simulated Martian conditions of 6.9 mbar, -10 °C, CO2-enriched anoxic atmosphere, and a simulated equatorial solar spectrum (200-1100 nm) with an optical depth of 0.1. For B. subtilis, the six analog soils were found, in general, to be of low biotoxicity with only the high salt and acidic soils exhibiting the capacity to inactivate a moderate number of spores (<1 log reductions) exposed 7 days to the soils under simulated Martian conditions. In contrast, the overall response of E. faecalis to the analog soils was more dramatic with between two and three orders of magnitude reductions in viable cells for most soils, and between six and seven orders of magnitude reductions observed for the high-salt soil. Results suggest that Mars soils are likely not to be overtly biotoxic to terrestrial microorganisms, and suggest that the soil geochemistries on Mars will not preclude the habitability of the Martian surface.

  18. [Cd Runoff Load and Soil Profile Movement After Implementation of Some Typical Contaminated Agricultural Soil Remediation Strategies].

    PubMed

    Liu, Xiao-li; Zeng, Zhao-xia; Tie, Bai-qing; Chen, Qiu-wen; Wei, Xiang-dong

    2016-02-15

    Owing to the strong ability to immobilize and hyperaccumulate some toxic heavy metals in contaminated soils, the biochar, lime and such as hyperaccumulator ramie received increasing interests from crops and environment safety in recent years. Outdoor pot experiment was conducted to compare the impacts of lime and biochar addition in paddy rice treatment, hyperaccumulator ramie and ramie combined with EDTA of plant Phytoremediation methods on soil available Cd dynamics in rainfall runoff and the mobility along soil profile, under both natural acid precipitation and acid soil conditions. The results showed that, biochar addition at a 2% mass ratio application amount significantly increased soil pH, while ramie with EDTA application obviously decreased soil pH compared to ramie monoculture. Within the same rainfall events, water soluble Cd concentration in surface runoff of ramie treatments was significantly higher than those of waterlogged rice treatments, and Cd concentration in runoff was obviously increased after EDTA addition, whereas lime at a 0.3% mass ratio application amount as additive had no obvious impact on soil pH and Cd speciation change, which may be due to the low application amount. During the whole experimental period , water soluble Cd concentration of rainfall runoff in spring was higher than that in summer, showing the same seasonal characteristics in all treatments. Biochar addition could significantly decrease available Cd content in 0-20 cm soil layer and with certain preferable persistency effects, whereas EDTA addition treatment obviously increased available Cd of 0-20 cm soil layer compared to other treatments, and obvious Cd element activation phenomenon in 20-40 cm soil layer was observed after EDTA addition. In conclusion, lime and biochar as environmental and friendly alkaline Cd immobilization materials showed lower environment risk to surface and ground receiving water, but attention should be paid to phytoremediation enhanced with EDTA or other organic acid before promotion and field application for heavy metals removal from contaminated soils.

  19. The effect of digging activity of little souslik on soils of the first terrace of Khaki Sor in the Botkul'sk-Khaki depression

    NASA Astrophysics Data System (ADS)

    Shabanova, N. P.; Lebedeva Verba, M. P.; Bykov, A. V.

    2014-03-01

    The effect of digging activity of little souslik ( Spermophilus pygmaeus Pall.) on the microtopography and soils was studied in the areas with shallow saline groundwater developing under continental conditions for 10.5-12.7 ka. The portion of microtopographic features related to the digging activity was quantified. It was found that the micromounds formed by sousliks appear on recently dried surfaces with shallow saline groundwater. However, their portion in this case is less than 3% because of the poor vegetation and shallow groundwater. Then, with the lowering of the base of erosion and aging of the territory, the zoogenic effect becomes more pronounced. On the first terrace of Khaki Sor (salt lake), the digging activity of sousliks creates the initial heterogeneity of soils and vegetation. The soil cover is composed of the virgin quasigleyed solonchakous solonetzes under the Atriplex-Artemisia santonica association (Gypsic Salic Solonetz (Albic, Ruptic, Oxiaquic, Siltic)) and of the zooturbated solonetzes under the Artemisia santonica-A. lerchiana association (Endosalic Hypogypsic Gypsisol (Sodic, Siltic, Novic)). A comparative analysis of morphology and some chemical properties of virgin and zooturbated soils is given. The soils of souslik-made mounds are strongly mixed, and the structure of their horizons is completely disturbed. They are characterized by an increased total content of salts mainly due to gypsum accumulation. At the same time, the content of toxic salts in the soil profile remains rather high because of their ascending migration from the strongly saline groundwater. On the first terrace, the process of zoogenic amelioration of solonetzes by sousliks is limited and does not affect deep soil layers.

  20. Ferrate (IV) as a Possible Oxidant on the Martian Surface

    NASA Astrophysics Data System (ADS)

    Tsapin, Alexandre; Goldfeld, M. G.; McDonald, G. D.; Nealson, K. H.; Mohnke, J.; Moskovitz, B.; Solheid, P.; Kemner, K. H.; Orlandini, K.

    Viking experiments showed that Martian soil has a very strong oxidant, which could be responsible for the results of experiments performed on Viking landers. These experiments were designed specifically to detect life on Mars. The nature of that oxidant was not determined during Viking mission. Later several groups tried to reconstruct Viking experiments and find out the nature of Martian oxidant. None of these attempts were completely successful. The general perception was that there are several chemically different oxidants on Martian surface. In this study we suggested that potassium ferrate K_2FeO_4 can be Martian oxidant responsible at least partially for the results of experiments on Viking landers. We characterized liquid and powder preparation of Fe (VI) with EPR, optical spectroscopy, Mossbauer spectroscopy, and by Fe-XANES. All properties of our preparations of (FeVI) are consistent with the proposal role of that compound as a strong oxidant on Martian surface.

  1. Reconciling spatial and temporal soil moisture effects on afternoon rainfall

    PubMed Central

    Guillod, Benoit P.; Orlowsky, Boris; Miralles, Diego G.; Teuling, Adriaan J.; Seneviratne, Sonia I.

    2015-01-01

    Soil moisture impacts on precipitation have been strongly debated. Recent observational evidence of afternoon rain falling preferentially over land parcels that are drier than the surrounding areas (negative spatial effect), contrasts with previous reports of a predominant positive temporal effect. However, whether spatial effects relating to soil moisture heterogeneity translate into similar temporal effects remains unknown. Here we show that afternoon precipitation events tend to occur during wet and heterogeneous soil moisture conditions, while being located over comparatively drier patches. Using remote-sensing data and a common analysis framework, spatial and temporal correlations with opposite signs are shown to coexist within the same region and data set. Positive temporal coupling might enhance precipitation persistence, while negative spatial coupling tends to regionally homogenize land surface conditions. Although the apparent positive temporal coupling does not necessarily imply a causal relationship, these results reconcile the notions of moisture recycling with local, spatially negative feedbacks. PMID:25740589

  2. Soil Water Balance and Vegetation Dynamics in two Contrasting Water-limited Mediterranean Ecosystems on Sardinia, Italy

    NASA Astrophysics Data System (ADS)

    Montaldo, N.; Albertson, J. D.; Corona, R.

    2011-12-01

    Water limited conditions strongly impacts soil and vegetation dynamics in Mediterranean regions, which are commonly heterogeneous ecosystems, characterized by inter-annual rainfall variability, topography variability and contrasting plant functional types (PFTs) competing for water use. Mediterranean regions are characterized by two main ecosystems, grassland and woodland, which for both natural and anthropogenic causes can grow in soils with different characteristics, highly impacting water resources. Water resources and forestal planning need a deep understanding of the dynamics between PFTs, soil and atmosphere and their impacts on water and CO2 distributions of these two main ecosystems. The first step is the monitoring of land surface fluxes, soil moisture, and vegetation dynamics of the two contrasting ecosystems. Moreover, due to the large percentage of soils with low depth (< 50 cm), and due to the quick hydrologic answer to atmospheric forcing in these soils, there is also the need to understand the impact of the soil depth in the vegetation dynamics, and make measurements in these types of soils. Sardinia island is a very interesting and representative region of Mediterranean ecosystems. It is low urbanized, and is not irrigated, except some plan areas close to the main cities where main agricultural activities are concentrated. The case study sites are within the Flumendosa river basin on Sardinia. Two sites, both in the Flumendosa river and with similar height a.s.l., are investigated. The distance between the sites is around 4 km but the first is a typically grass site located on an alluvial plan valley with a soil depth more than 2m, while the second site is a patchy mixture of Mediterranean vegetation types Oaks, creepers of the wild olive trees and C3 herbaceous species and the soil thickness varies from 15-40 cm, bounded from below by a rocky layer of basalt, partially fractured. In both sites land-surface fluxes and CO2 fluxes are estimated by eddy correlation technique based micrometeorological towers. Soil moisture profiles were also continuously estimated using water content reflectometers and gravimetric method, and periodically leaf area index PFTs are estimated during the Spring-Summer 2005. The following objectives are addressed:1) pointing out the dynamics of land surface fluxes, soil moisture, CO2 and vegetation cover for two contrasting water-limited ecosystems; 2) assess the impact of the soil depth and type on the CO2 and water balance dynamics. For reaching the objectives an ecohydrologic model is also successfully used and applied to the case studies. It couples a vegetation dynamic model, which computes the change in biomass over time for the PFTs, and a 3-component (bare soil, grass and woody vegetation) land surface model.

  3. Soil Moisture and Snow Cover: Active or Passive Elements of Climate?

    NASA Technical Reports Server (NTRS)

    Oglesby, Robert J.; Marshall, Susan; Robertson, Franklin R.; Roads, John O.; Arnold, James E. (Technical Monitor)

    2001-01-01

    A key question in the study of the hydrologic cycle is the extent to which surface effects such as soil moisture and snow cover are simply passive elements or whether they can affect the evolution of climate on seasonal and longer time scales. We have constructed ensembles of predictability studies using the NCAR CCM3 in which we compared the relative roles of initial surface and atmospheric conditions over the central and western U.S. GAPP region in determining the subsequent evolution of soil moisture and of snow cover. We have also made sensitivity studies with exaggerated soil moisture and snow cover anomalies in order to determine the physical processes that may be important. Results from simulations with realistic soil moisture anomalies indicate that internal climate variability may be the strongest factor, with some indication that the initial atmospheric state is also important. The initial state of soil moisture does not appear important, a result that held whether simulations were started in late winter or late spring. Model runs with exaggerated soil moisture reductions (near-desert conditions) showed a much larger effect, with warmer surface temperatures, reduced precipitation, and lower surface pressures; the latter indicating a response of the atmospheric circulation. These results suggest the possibility of a threshold effect in soil moisture, whereby an anomaly must be of a sufficient size before it can have a significant impact on the atmospheric circulation and hence climate. Results from simulations with realistic snow cover anomalies indicate that the time of year can be crucial. When introduced in late winter, these anomalies strongly affected the subsequent evolution of snow cover. When introduced in early winter, however, little or no effect is seen on the subsequent snow cover. Runs with greatly exaggerated initial snow cover indicate that the high reflectivity of snow is the most important process by which snow cover can impact climate, through lower surface temperatures and increased surface pressures. In early winter, the amount of solar radiation is very small and so this albedo, effect is inconsequential while in late winter, with the sun higher in the sky and period of daylight longer, the effect is much stronger. The results to date were obtained for model runs with present-day conditions. We are currently analyzing runs made with projected forcings for the 21st century to see if these results are modified in any way under likely scenarios of future climate change.

  4. Evaluating the performance of coupled snow-soil models in SURFEXv8 to simulate the permafrost thermal regime at a high Arctic site

    NASA Astrophysics Data System (ADS)

    Barrere, Mathieu; Domine, Florent; Decharme, Bertrand; Morin, Samuel; Vionnet, Vincent; Lafaysse, Matthieu

    2017-09-01

    Climate change projections still suffer from a limited representation of the permafrost-carbon feedback. Predicting the response of permafrost temperature to climate change requires accurate simulations of Arctic snow and soil properties. This study assesses the capacity of the coupled land surface and snow models ISBA-Crocus and ISBA-ES to simulate snow and soil properties at Bylot Island, a high Arctic site. Field measurements complemented with ERA-Interim reanalyses were used to drive the models and to evaluate simulation outputs. Snow height, density, temperature, thermal conductivity and thermal insulance are examined to determine the critical variables involved in the soil and snow thermal regime. Simulated soil properties are compared to measurements of thermal conductivity, temperature and water content. The simulated snow density profiles are unrealistic, which is most likely caused by the lack of representation in snow models of the upward water vapor fluxes generated by the strong temperature gradients within the snowpack. The resulting vertical profiles of thermal conductivity are inverted compared to observations, with high simulated values at the bottom of the snowpack. Still, ISBA-Crocus manages to successfully simulate the soil temperature in winter. Results are satisfactory in summer, but the temperature of the top soil could be better reproduced by adequately representing surface organic layers, i.e., mosses and litter, and in particular their water retention capacity. Transition periods (soil freezing and thawing) are the least well reproduced because the high basal snow thermal conductivity induces an excessively rapid heat transfer between the soil and the snow in simulations. Hence, global climate models should carefully consider Arctic snow thermal properties, and especially the thermal conductivity of the basal snow layer, to perform accurate predictions of the permafrost evolution under climate change.

  5. Sorption, Uptake, and Translocation of Pharmaceuticals across Multiple Interfaces in Soil Environment

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Liu, C. H.; Bhalsod, G.; Zhang, Y.; Chuang, Y. H.; Boyd, S. A.; Teppen, B. J.; Tiedje, J. M.; Li, H.

    2015-12-01

    Pharmaceuticals are contaminants of emerging concern frequently detected in soil and water environments, raising serious questions on their potential impact on human and ecosystem health. Overuse and environmental release of antibiotics (i.e., a group of pharmaceuticals extensively used in human medicine and animal agriculture) pose enormous threats to the health of human, animal, and the environment, due to proliferation of antibiotic resistant bacteria. Recently, we have examined interactions of pharmaceuticals with soil geosorbents, bacteria, and vegetable crops in order to elucidate pathways of sorption, uptake, and translocation of pharmaceuticals across the multiple interfaces in soils. Sorption of pharmaceuticals by biochars was studied to assess the potential of biochar soil amendment for reducing the transport and bioavailability of antibiotics. Our preliminary results show that carbonaceous materials such as biochars and activated carbon had strong sorption capacities for antibiotics, and consequently decreased the uptake and antibiotic resistance gene expression by an Escherichia coli bioreporter. Thus, biochar soil amendment showed the potential for reducing selection pressure on antibiotic resistant bacteria. Additionally, since consumption of pharmaceutical-tainted food is a direct exposure pathway for humans, it is important to assess the uptake and accumulation of pharmaceuticals in food crops grown in contaminated soils or irrigated with reclaimed water. Therefore, we have investigated the uptake and accumulations of pharmaceuticals in greenhouse-grown lettuce under contrasting irrigation practices (i.e., overhead or surface irrigations). Preliminary results indicate that greater pharmaceutical concentrations were measured in overhead irrigated lettuce than in surface irrigated lettuce. This could have important implications when selecting irrigation scheme to use the reclaimed water for crop irrigation. In summary, proper soil and water management is needed to minimize the transfer of pharmaceuticals from soil and water to biota.

  6. Modeling soil evaporation efficiency in a range of soil and atmospheric conditions using a meta-analysis approach

    NASA Astrophysics Data System (ADS)

    Merlin, O.; Stefan, V. G.; Amazirh, A.; Chanzy, A.; Ceschia, E.; Er-Raki, S.; Gentine, P.; Tallec, T.; Ezzahar, J.; Bircher, S.; Beringer, J.; Khabba, S.

    2016-05-01

    A meta-analysis data-driven approach is developed to represent the soil evaporative efficiency (SEE) defined as the ratio of actual to potential soil evaporation. The new model is tested across a bare soil database composed of more than 30 sites around the world, a clay fraction range of 0.02-0.56, a sand fraction range of 0.05-0.92, and about 30,000 acquisition times. SEE is modeled using a soil resistance (rss) formulation based on surface soil moisture (θ) and two resistance parameters rss,ref and θefolding. The data-driven approach aims to express both parameters as a function of observable data including meteorological forcing, cut-off soil moisture value θ1/2 at which SEE=0.5, and first derivative of SEE at θ1/2, named Δθ1/2-1. An analytical relationship between >(rss,ref;θefolding) and >(θ1/2;Δθ1/2-1>) is first built by running a soil energy balance model for two extreme conditions with rss = 0 and rss˜∞ using meteorological forcing solely, and by approaching the middle point from the two (wet and dry) reference points. Two different methods are then investigated to estimate the pair >(θ1/2;Δθ1/2-1>) either from the time series of SEE and θ observations for a given site, or using the soil texture information for all sites. The first method is based on an algorithm specifically designed to accomodate for strongly nonlinear SEE>(θ>) relationships and potentially large random deviations of observed SEE from the mean observed SEE>(θ>). The second method parameterizes θ1/2 as a multi-linear regression of clay and sand percentages, and sets Δθ1/2-1 to a constant mean value for all sites. The new model significantly outperformed the evaporation modules of ISBA (Interaction Sol-Biosphère-Atmosphère), H-TESSEL (Hydrology-Tiled ECMWF Scheme for Surface Exchange over Land), and CLM (Community Land Model). It has potential for integration in various land-surface schemes, and real calibration capabilities using combined thermal and microwave remote sensing data.

  7. Geochemical Fate and Transport of Sildenafil and Vardenafil

    NASA Astrophysics Data System (ADS)

    Richter, L.; Boudinot, G.; Vulava, V. M.; Cory, W. C.

    2015-12-01

    The geochemical fate of pharmaceuticals and their degradation products is a developing environmental field. The geologic, chemical, and biological fate of these pollutants has become very relevant with the increase in human population and the resulting increase in pollutant concentrations in the environment. In this study, we focus on sildenafil (SDF) and vardenafil (VDF), active compounds in Viagra and Levitra, respectively, two commonly used erectile dysfunction drugs. The main objective is to determine the sorption potential and transport behavior of these two compounds in natural soils. Both SDF and VDF are complex organic molecules with multiple amine functional groups in their structures. Two types of natural acidic soils (pH≈4.5), an organic-rich soil (7.6% OM) and clay-rich soil (5.1% clay) were used in this study to determine which soil components influence sorption behavior of both compounds. Sorption isotherms measured using batch reactors were nearly linear, but sorption was stronger in soil that contained higher clay content. Both compounds have multiple pKas due to the amine functional groups, the relevant pKas of SDF are 5.97 and 7.27, and those of VDF's are 4.72 and 6.21. These values indicate that these compounds likely behave as cations in soil suspensions and hence were strongly sorbed to negatively-charged clay minerals present in both soils. The clay composition in both soils is predominantly kaolinite with smaller amount of montmorillonite, both of which have a predominantly negative surface charge. Transport experiments using glass chromatography columns indicated that both compounds were more strongly retarded in the clay-rich soils. Breakthrough curves from the transport experiments were modeled using convection-dispersion transport equations. The organic matter in the soil seemed to play a less dominant role in the geochemistry in this study, but is likely to transform both compounds into derivative compounds as seen in other studies.

  8. Influences of quaternary climatic changes on processes of soil development on desert loess deposits of the Cima volcanic field, California

    USGS Publications Warehouse

    McFadden, L.D.; Wells, S.G.; Dohrenwend, J.C.

    1986-01-01

    Soils formed in loess are evidence of both relict and buried landscapes developed on Pliocene-to-latest Pleistocene basalt flows of the Cima volcanic field in the eastern Mojave Desert, California. The characteristics of these soils change systematically and as functions of the age and surface morphology of the lava flow. Four distinct phases of soil development are recognized: phase 1 - weakly developed soils on flows less than 0.18 M.y. old; phase 2 - strongly developed soils with thick argillic horizons on 0.18 - 0.7 M.y. old flows; phase 3 - strongly developed soils with truncated argillic horizons massively impregnated by carbonate on 0.7 to 1.1 M.y. old flows; and phase 4 - degraded soils with petrocalcic rubble on Pliocene flows. A critical aspect of the development of stage 1 soils is the evolution of a vesicular A horizon which profoundly affects the infiltration characteristics of the loess parent materials. Laboratory studies show that secondary gypsum and possibly other salt accumulation probably occurred during the period of phase 1 soil development. Slight reddening of the interiors of peds from vesicular-A horizons of phase 1 soils and presence of weakly developed B horizons indicates a slight degree of in situ chemical alteration. However, clay and Fe oxide contents of these soils show that these constituents, as well as carbonates and soluble salts, are incorporated as eolian dust. In contrast to phase 1 soils, chemical and mineralogical analysis of argillic horizons of phase 2 soils indicate proportionally greater degrees of in-situ chemical alteration. These data, the abundant clay films, and the strong reddening in the thick argillic horizons suggest that phase 2 and phase 3 soils formed during long periods of time and periodically were subjected to leaching regimes more intense than those that now exist. Flow-age data and soil-stratigraphic evidence also indicate that several major loess-deposition events occurred during the past ??? 1.0 M.y. Loess events are attributed to past changes in climate, such as the Pleistocene-to-Holocene climatic change, that periodically caused regional desiccation of pluvial lakes, reduction of vegetational density, and exposure of loose, unconsolidated fine materials. During times of warmer interglacial climates, precipitation infiltrates to shallower depths than during glacial periods. Extensive, saline playas which developed in the Mojave Desert during the Holocene are a likely source of much of the carbonates and soluble salts that are accumulating at shallow depths both in phase 1 soils and in the formerly noncalcareous, nongypsiferous argillic horizons of phase 2 and 3 soils. ?? 1986.

  9. Theoretical study of the atrazine pesticide interaction with pyrophyllite and Ca(2+) -montmorillonite clay surfaces.

    PubMed

    Belzunces, Bastien; Hoyau, Sophie; Benoit, Magali; Tarrat, Nathalie; Bessac, Fabienne

    2017-01-30

    Atrazine, a pesticide belonging to the s-triazine family, is one of the most employed pesticides. Due to its negative impact on the environment, it has been forbidden within the European Union since 2004 but remains abundant in soils. For these reasons, its behavior in soils and water at the atomic scale is of great interest. In this article, we have investigated, using DFT, the adsorption of atrazine onto two different clay surfaces: a pyrophyllite clay and an Mg-substituted clay named montmorillonite, with Ca 2+ compensating cations on its surface. The calculations show that the atrazine molecule is physisorbed on the pyrophyllite surface, evidencing the necessity to use dispersion-corrected computational methods. The adsorption energies of atrazine on montmorillonite are two to three times larger than on pyrophyllite, depending on the adsorption pattern. The computed adsorption energy is of about -30 kcal mol -1 for the two most stable montmorillonite-atrazine studied isomers. For these complexes, the large adsorption energy is related to the strong interaction between the chlorine atom of the atrazine molecule and one of the Ca 2+ compensating cations of the clay surface. The structural modifications induced by the adsorption are localized: for the surface, close to substitutions and particularly below the Ca 2+ cations; in the molecule, around the chlorine atom when Ca 2+ interacts strongly with this basic site in a monodentate mode. This study shows the important role of the alkaline earth cations on the adsorption of atrazine on clays, suggesting that the atrazine pesticide retention will be significant in Ca 2+ -montmorillonite clays. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Modelling the impact of climatic conditions and plant species on the nitrogen release from mulch of legumes at the soil surface

    NASA Astrophysics Data System (ADS)

    Gaudinat, Germain; Lorin, Mathieu; Valantin-morison, Muriel; Garnier, Patricia

    2015-04-01

    Cover crops provide multiple services to the agro ecosystem. Among them, the use of legumes as cover crop is one of the solutions for limiting the use of herbicides, mineral fertilizers, and insecticides. However, the dynamic of mineralization is difficult to understand because of the difficulty of measuring nitrogen release from mulch in field. Indeed, residues are degraded at the soil surface as mulch, while the nitrogen uptake by the main crop occurred simultaneously in the soil. This work aims to study the dynamics of nitrogen mineralization from legume residues through i) the use of a model able to describe the physical and biological dynamic of mulch and ii) a data set from a field experiment of intercropping systems "oilseed rape-legumes" from different species (grass pea, lentil, Berseem clover, field pea, vetch). The objective of the simulations is to identify the variations of expected quantities of nitrogen from different legumes. The soil-plant model of mulch decomposition PASTIS-Mulch was used to determine the nitrogen supply from mulch available for rapeseed. These simulation results were compared to the data collected in the experimental field of Grignon (France). We performed analyzes of biochemical and physical characteristics of legume residues and monitored the evolution of mulches (moisture, density, cover surface, biomass) in fields. PASTIS simulations of soil temperature, soil moisture, mulch humidity and mulch decomposition were close to the experimental results. The PASTIS model was suitable to simulate the dynamic of legume mulches in the case of "rape - legume" associations. The model simulated nitrogen restitution of aerial and root parts. We found a more rapid nitrogen release by grass pea than other species. Vetch released less nitrogen than the other species. The scenarios for climate conditions were : i) a freezing in December that causes the destruction of plants, or a destruction by herbicide in March, ii) a strong or a weak rainy spring. Climatic conditions had a strong impact on the simulated release of nitrogen. Nitrogen supply was higher when degradation begun early with a rainy spring. Conversely, the degradation was lower when the degradation started late with a dry spring. Root release was less sensitive to climate and most of the nitrogen in the roots returned to the soil in a few weeks. The impact of "species" on the decomposition was explained not only by their chemical properties but also by their physical properties. The climatic conditions had different effects according to the species.

  11. Spatial variability of soil salinity in coastal saline soil at different scales in the Yellow River Delta, China.

    PubMed

    Wang, Zhuoran; Zhao, Gengxing; Gao, Mingxiu; Chang, Chunyan

    2017-02-01

    The objectives of this study were to explore the spatial variability of soil salinity in coastal saline soil at macro, meso and micro scales in the Yellow River delta, China. Soil electrical conductivities (ECs) were measured at 0-15, 15-30, 30-45 and 45-60 cm soil depths at 49 sampling sites during November 9 to 11, 2013. Soil salinity was converted from soil ECs based on laboratory analyses. Our results indicated that at the macro scale, soil salinity was high with strong variability in each soil layer, and the content increased and the variability weakened with increasing soil depth. From east to west in the region, the farther away from the sea, the lower the soil salinity was. The degrees of soil salinization in three deeper soil layers are 1.14, 1.24 and 1.40 times higher than that in the surface soil. At the meso scale, the sequence of soil salinity in different topographies, soil texture and vegetation decreased, respectively, as follows: depression >flatland >hillock >batture; sandy loam >light loam >medium loam >heavy loam >clay; bare land >suaeda salsa >reed >cogongrass >cotton >paddy >winter wheat. At the micro scale, soil salinity changed with elevation in natural micro-topography and with anthropogenic activities in cultivated land. As the study area narrowed down to different scales, the spatial variability of soil salinity weakened gradually in cultivated land and salt wasteland except the bare land.

  12. Do storage dynamics in hydropedological units control hydrological connectivity? (Invited)

    NASA Astrophysics Data System (ADS)

    Tetzlaff, D.; Birkel, C.; Dick, J.; Geris, J.; Soulsby, C.

    2013-12-01

    In many northern landscapes, peat-dominated riparian wetlands often characterise the zone of connection between terrestrial drainage and the river network. In order to understand the relationship between connectivity and stream flow generation in a montane headwater catchment, we examined the storage dynamics and isotopic composition of soil water in major hydropedological units. These formed a classic catena sequence for northern catchments from free-draining podzols on steep upper hillslopes through to peaty gleysols in lower receiving slopes to deeper peats (Histosols) in the riparian zone. The peaty gleys and peats remained saturated throughout the year, whilst the podzols showed distinct wetting and drying cycles. In this climatic region, most precipitation events are less than 10mm in magnitude, storm runoff is mainly generated from the Histosols and Gleysols, with runoff coefficients (RCs) typically <10%. In larger events the podzolic soils become strongly connected to the saturated areas and RCs can exceed 40%. Isotopic variations in precipitation are significantly damped in the organic-rich surface horizons of the soils due to mixing with larger volumes of stored water. This damping is accentuated in the deeper soil profile and groundwater. Consequently, the isotopic composition of stream water is also damped, but the strongly reflects that of the near surface waters in the riparian peats. Old 'pre-event' water generally accounts for >80% of flow, even in large events, mainly reflecting the displacement of water stored in the riparian peats and peaty gleys. These riparian areas appear to be the dominant zone where different catchment source waters mix; acting as an 'isostat' that regulates the isotopic composition of stream waters and integrates the Transit Time Distribution (TTD) for the catchment.

  13. Atypical soil hardening during the Tohoku earthquake of March 11, 2011 ( M w = 9.0)

    NASA Astrophysics Data System (ADS)

    Pavlenko, O. V.

    2017-10-01

    Based on the records of KiK-net vertical arrays, models of soil behavior down to depths of 100-200 m in the near-fault zones during the Tohoku earthquake are examined. In contrast to the regular pattern observed during strong earthquakes, soft soils have not broadly demonstrated nonlinear behavior, or a reduction (with the onset of strong motions) and recovery (after strong motions finished) of the shear modulus in soil layers. At the stations where anomalously high peak ground accelerations were recorded (PGA > 1g), the values of the shear modulus in soil layers increased with the onset of strong motions and reached a maximum when motions were the most intensive, which indicated hardening of soils. Soil behavior was close to linear, here. The values of the shear moduli decrease along with a decrease in intensity of strong ground motions, and at soft soil stations, this was accompanied by a stepwise decrease in the frequency of motion.

  14. Atypical soil behavior during the 2011 Tohoku earthquake ( Mw = 9)

    NASA Astrophysics Data System (ADS)

    Pavlenko, Olga V.

    2016-07-01

    To understand physical mechanisms of generation of abnormally high peak ground acceleration (PGA; >1 g) during the Tohoku earthquake, models of nonlinear soil behavior in the strong motion were constructed for 27 KiK-net stations located in the near-fault zones to the south of FKSH17. The method of data processing used was developed by Pavlenko and Irikura, Pure Appl Geophys 160:2365-2379, 2003 and previously applied for studying soil behavior at vertical array sites during the 1995 Kobe (Mw = 6.8) and 2000 Tottori (Mw = 6.7) earthquakes. During the Tohoku earthquake, we did not observe a widespread nonlinearity of soft soils and reduction at the beginning of strong motion and recovery at the end of strong motion of shear moduli in soil layers, as usually observed during strong earthquakes. Manifestations of soil nonlinearity and reduction of shear moduli during strong motion were observed at sites located close to the source, in coastal areas. At remote sites, where abnormally high PGAs were recorded, shear moduli in soil layers increased and reached their maxima at the moments of the highest intensity of the strong motion, indicating soil hardening. Then, shear moduli reduced with decreasing the intensity of the strong motion. At soft-soil sites, the reduction of shear moduli was accompanied by a step-like decrease of the predominant frequencies of motion. Evidently, the observed soil hardening at the moments of the highest intensity of the strong motion contributed to the occurrence of abnormally high PGA, recorded during the Tohoku earthquake.

  15. Comprehensive Understanding for Vegetated Scene Radiance Relationships

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.; Deering, D. W.

    1984-01-01

    The improvement of our fundamental understanding of the dynamics of directional scattering properties of vegetation canopies through analysis of field data and model simulation data is discussed. Directional reflectance distributions spanning the entire existance hemisphere were measured in two field studies; one using a Mark III 3-band radiometer and one using rapid scanning bidirectional field instrument called PARABOLA. Surfaces measured included corn, soybeans, bare soils, grass lawn, orchard grass, alfalfa, cotton row crops, plowed field, annual grassland, stipa grass, hard wheat, salt plain shrubland, and irrigated wheat. Some structural and optical measurements were taken. Field data show unique reflectance distributions ranging from bare soil to complete vegetation canopies. Physical mechanisms causing these trends are proposed based on scattering properties of soil and vegetation. Soil exhibited a strong backscattering peak toward the Sun. Complete vegetation exhibited a bowl distribution with the minimum reflectance near nadir. Incomplete vegetation canopies show shifting of the minimum reflectance off of nadir in the forward scattering direction because both the scattering properties or the vegetation and soil are observed.

  16. Postpyrogenic Polycyclic Soils in the Forests of Yakutia and Transbaikal region

    NASA Astrophysics Data System (ADS)

    Chevychelov, A. P.; Shakhmatova, E. Y.

    2018-02-01

    Periodical forest fires are typical natural events under the environmental and climatic conditions of central and southern Yakutia and Transbaikal region of Russia. Strong surface fires activate exogenous geomorphological processes. As a result, soils with polycyclic profiles are developed in the trans-accumulative landscape positions. These soils are specified by the presence of two-three buried humus horizons with abundant charcoal under the modern humus horizon. This indicates that these soils have been subjected to two-three cycles of zonal pedogenesis during their development. The buried pyrogenic humus horizons accumulate are enriched in humus; nitrogen; total and oxalate-extractable iron; exchangeable bases (Ca+2 and Mg+2); and the fractions of coarse silt, physical clay (<0.01 mm), and clay (<0.001 mm) particles in comparison with the neighboring mineral horizons of the soil profile. The humus of buried pyrogenic horizons is characterized by the increased content of humic acids, particularly, those bound with mobile sesquioxides (HA-1) and calcium (HA-2) and by certain changes in the type of humus.

  17. Trend and concentrations of legacy lead (Pb) in highway runoff.

    PubMed

    Kayhanian, Masoud

    2012-01-01

    This study presents the results of lead (Pb) concentrations from both highway runoff and contaminated soil along 32 and 23 highway sites, respectively. In general, the Pb concentration on topsoil (0-15 cm) along highways was much higher than the Pb concentration in subsurface soil (15-60 cm). The Pb deposited on soil appears to be anthropogenic and a strong correlation was found between the Pb concentration in surface soil and highway runoff in urban areas. The concentration of Pb measured during 1980s from highways runoff throughout the world was up to 11 times higher than the measured values in mid 1990 s and 2000s. The current Pb deposited on soil near highways appears to be a mixture of paint, tire weight balance and old leaded gasoline combustion. Overall, the Pb phase-out regulation reduced the Pb deposits in the environment and consequently lowered Pb loading into receiving waters. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Zeolite Formation and Weathering Processes in Dry Valleys of Antartica: Martian Analogs

    NASA Technical Reports Server (NTRS)

    Gibson, E. K., Jr.; Wentworth, S. J.; McKay, D. S.; Socki, R. A.

    2004-01-01

    Terrestrial weathering processes in cold-desert climates such as the Dry Valleys of Antarctica may provide an excellent analog to chemical weathering and diagenesis of soils on Mars. Detailed studies of soil development and the chemical and mineralogical alterations occurring within soil columns in Wright Valley, Antarctica show incredible complexity in the upper meter of soil. Previous workers noted the ice-free Dry Valleys are the best terrestrial approximations to contemporary Mars. Images returned from the Pathfinder and Spirit landers show similarities to surfaces observed within the Dry Valleys. Similarities to Mars that exist in these valleys are: mean temperatures always below freezing (-20 C), no rainfall, sparse snowfall-rapidly removed by sublimation, desiccating winds, diurnal freeze-thaw cycles (even during daylight hours), low humidity, oxidative environment, relatively high solar radiation and low magnetic fields . The Dry Valley soils contain irregular distributions and low abundances of soil microorganisms that are somewhat unusual on Earth. Physical processes-such as sand abrasion-are dominant mechanisms of rock weathering in Antarctica. However, chemical weathering is also an important process even in such extreme climates. For example, ionic migration occurs even in frozen soils along liquid films on individual soil particles. It has also been shown that water with liquid-like properties is present in soils at temperatures on the order of approx.-80 C and it has been observed that the percentage of oxidized iron increases with increasing soil age and enrichments in oxidized iron occurs toward the surface. The presence of evaporates is evident and appear similar to "evaporite sites" within the Pathfinder and Spirit sites. Evaporites indicate ionic migration and chemical activity even in the permanently frozen zone. The presence of evaporates indicates that chemical weathering of rocks and possibly soils has been active. Authogenic zeolites have been identified within the soil columns because they are fragile; i.e. they are euhedral, unabraded, and unfractured, strongly suggesting in situ formation. Their presence in Antarctic samples is another indication that diagenic processes are active in cold-desert environments. The presence of zeolites, and other clays along with halites, sulfates, carbonates, and hydrates are to be expected within the soil columns on Mars at the Gusev and Isidis Planitia regions. The presence of such water-bearing minerals beneath the surface supplies one of the requirements to support biological activity on Mars.

  19. Experimental study on soluble chemical transfer to surface runoff from soil.

    PubMed

    Tong, Juxiu; Yang, Jinzhong; Hu, Bill X; Sun, Huaiwei

    2016-10-01

    Prevention of chemical transfer from soil to surface runoff, under condition of irrigation and subsurface drainage, would improve surface water quality. In this paper, a series of laboratory experiments were conducted to assess the effects of various soil and hydraulic factors on chemical transfer from soil to surface runoff. The factors include maximum depth of ponding water on soil surface, initial volumetric water content of soil, depth of soil with low porosity, type or texture of soil and condition of drainage. In the experiments, two soils, sand and loam, mixed with different quantities of soluble KCl were filled in the sandboxes and prepared under different initial saturated conditions. Simulated rainfall induced surface runoff are operated in the soils, and various ponding water depths on soil surface are simulated. Flow rates and KCl concentration of surface runoff are measured during the experiments. The following conclusions are made from the study results: (1) KCl concentration in surface runoff water would decrease with the increase of the maximum depth of ponding water on soil surface; (2) KCl concentration in surface runoff water would increase with the increase of initial volumetric water content in the soil; (3) smaller depth of soil with less porosity or deeper depth of soil with larger porosity leads to less KCl transfer to surface runoff; (4) the soil with finer texture, such as loam, could keep more fertilizer in soil, which will result in more KCl concentration in surface runoff; and (5) good subsurface drainage condition will increase the infiltration and drainage rates during rainfall event and will decrease KCl concentration in surface runoff. Therefore, it is necessary to reuse drained fertile water effectively during rainfall, without polluting groundwater. These study results should be considered in agriculture management to reduce soluble chemical transfer from soil to surface runoff for reducing non-point sources pollution.

  20. Influential role of black carbon in the soil-air partitioning of polychlorinated biphenyls (PCBs) in the Indus River Basin, Pakistan.

    PubMed

    Ali, Usman; Syed, Jabir Hussain; Mahmood, Adeel; Li, Jun; Zhang, Gan; Jones, Kevin C; Malik, Riffat Naseem

    2015-09-01

    Levels of polychlorinated biphenyls (PCBs) were assessed in surface soils and passive air samples from the Indus River Basin, and the influential role of black carbon (BC) in the soil-air partitioning process was examined. ∑26-PCBs ranged between 0.002-3.03 pg m(-3) and 0.26-1.89 ng g(-1) for passive air and soil samples, respectively. Lower chlorinated (tri- and tetra-) PCBs were abundant in both air (83.9%) and soil (92.1%) samples. Soil-air partitioning of PCBs was investigated through octanol-air partition coefficients (KOA) and black carbon-air partition coefficients (KBC-A). The results of the paired-t test revealed that both models showed statistically significant agreement between measured and predicted model values for the PCB congeners. Ratios of fBCKBC-AδOCT/fOMKOA>5 explicitly suggested the influential role of black carbon in the retention and soil-air partitioning of PCBs. Lower chlorinated PCBs were strongly adsorbed and retained by black carbon during soil-air partitioning because of their dominance at the sampling sites and planarity effect. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. The continuous similarity model of bulk soil-water evaporation

    NASA Technical Reports Server (NTRS)

    Clapp, R. B.

    1983-01-01

    The continuous similarity model of evaporation is described. In it, evaporation is conceptualized as a two stage process. For an initially moist soil, evaporation is first climate limited, but later it becomes soil limited. During the latter stage, the evaporation rate is termed evaporability, and mathematically it is inversely proportional to the evaporation deficit. A functional approximation of the moisture distribution within the soil column is also included in the model. The model was tested using data from four experiments conducted near Phoenix, Arizona; and there was excellent agreement between the simulated and observed evaporation. The model also predicted the time of transition to the soil limited stage reasonably well. For one of the experiments, a third stage of evaporation, when vapor diffusion predominates, was observed. The occurrence of this stage was related to the decrease in moisture at the surface of the soil. The continuous similarity model does not account for vapor flow. The results show that climate, through the potential evaporation rate, has a strong influence on the time of transition to the soil limited stage. After this transition, however, bulk evaporation is independent of climate until the effects of vapor flow within the soil predominate.

  2. Simulations of wind erosion along the Qinghai-Tibet Railway in north-central Tibet

    NASA Astrophysics Data System (ADS)

    Jiang, Yingsha; Gao, Yanhong; Dong, Zhibao; Liu, Benli; Zhao, Lin

    2018-06-01

    Wind erosion along the Qinghai-Tibet Railway causes sand hazard and poses threats to the safety of trains and passengers. A coupled land-surface erosion model (Noah-MPWE) was developed to simulate the wind erosion along the railway. Comparison with the data from the 137Cs isotope analysis shows that this coupled model could simulate the mean erosion amount reasonably. The coupled model was then applied to eight sites along the railway to investigate the wind-erosion distribution and variations from 1979 to 2012. Factors affecting wind erosion spatially and temporally were assessed as well. Majority wind erosion occurs in the non-monsoon season from December to April of the next year except for the site located in desert. The region between Wudaoliang and Tanggula has higher wind erosion occurrences and soil lose amount because of higher frequency of strong wind and relatively lower soil moisture than other sites. Inter-annually, all sites present a significant decreasing trend of annual soil loss with an average rate of -0.18 kg m-2 a-1 in 1979-2012. Decreased frequency of strong wind, increased precipitation and soil moisture contribute to the reduction of wind erosion in 1979-2012. Snow cover duration and vegetation coverage also have great impact on the occurrence of wind erosion.

  3. Glyphosate and AMPA of agricultural soil, surface water, groundwater and sediments in areas prevalent with chronic kidney disease of unknown etiology, Sri Lanka.

    PubMed

    Gunarathna, Shankani; Gunawardana, Buddhika; Jayaweera, Mahesh; Manatunge, Jagath; Zoysa, Kasun

    2018-06-08

    Glyphosate, which is commercially available as Roundup®, was the widely used herbicide in Sri Lanka until 2015 and is suspected to be one of the causal factors for Chronic Kidney Disease of unknown etiology (CKDu). This research, therefore, aims at studying the presence of glyphosate and Aminomethylphosphonic acid (AMPA) in different environmental matrices in CKDu prevalent areas. Topsoil samples from agricultural fields, water samples from nearby shallow wells and lakes, and sediment samples from lakes were collected and analyzed for glyphosate and AMPA using the LC/MS. Glyphosate (270-690 µg/kg) and AMPA (2-8 µg/kg) were detected in all soil samples. Amorphous iron oxides and organic matter content of topsoil showed a strong and a moderate positive linear relationship with glyphosate. The glyphosate and inorganic phosphate levels in topsoil had a strong negative significant linear relationship. Presence of high valence cations such as Fe 3+ and Al 3+ in topsoil resulted in the formation of glyphosate-metal complexes, thus strong retention of glyphosate in soil. Lower levels of AMPA than the corresponding glyphosate levels in topsoil could be attributed to factors such as the strong adsorption capacity of glyphosate to soil and higher LOQ in the quantification of AMPA. The glyphosate levels of lakes were between 28 to 45 µg/L; no AMPA was detected. While trace levels of glyphosate (1-4 µg/L) were detected in all groundwater samples, AMPA (2-11µg/L) was detected only in four out of nine samples. Glyphosate was detected in all sediment samples (85-1000 µg/kg), and a strong linear relationship with the organic matter content was observed. AMPA was detected (1-15 µg/kg) in seven out of nine sediment samples. It could be inferred that the impact on CKDu by the levels of glyphosate and AMPA detected in the study area is marginal when compared with the MCL of the USEPA (700 µg/L).

  4. The Effects of Fine-scale Soil Moisture and Canopy Heterogeneities on Energy and Soil Water Fluxes in a Temperate Mixed Deciduous Forest

    NASA Astrophysics Data System (ADS)

    He, L.; Ivanov, V. Y.; Bohrer, G.; Maurer, K.; Vogel, C. S.; Moghaddam, M.

    2011-12-01

    Vegetation is heterogeneous at different scales, influencing spatially variable energy and water exchanges between land-surface and atmosphere. Current land surface parameterizations of large-scale models consider spatial variability at a scale of a few kilometers and treat vegetation cover as aggregated patches with uniform properties. However, the coupling mechanisms between fine-scale soil moisture, vegetation, and energy fluxes such as evapotranspiration are strongly nonlinear; the aggregation of surface variations may produce biased energy fluxes. This study aims to improve the understanding of the scale impact in atmosphere-biosphere-hydrosphere interactions, which affects predictive capabilities of land surface models. The study uses a high-resolution, physically-based ecohydrological model tRIBS + VEGGIE as a data integration tool to upscale the heterogeneity of canopy distribution resolved at a few meters to the watershed scale. The study was carried out for a spatially heterogeneous, temperate mixed forest environment of Northern Michigan located near the University of Michigan Biological Station (UMBS). Energy and soil water dynamics were simulated at the tree-canopy resolution in the horizontal plane for a small domain (~2 sq. km) located within a footprint of the AmeriFlux tower. A variety of observational data were used to constrain and confirm the model, including a 3-m profile continuous soil moisture dataset and energy flux data (measured at the AmeriFlux tower footprint). A scenario with a spatially uniform canopy, corresponding to the commonly used 'big-leaf' scheme in land surface parameterizations was used to infer the effects of coarse-scale averaging. To gain insights on how heterogeneous canopy and soil moisture interact and contribute to the domain-averaged transpiration, several scenarios of tree-scale leaf area and soil moisture spatial variability were designed. Specifically, for the same mean states, the scenarios of variability of canopy biomass account for the spatial distribution of photosynthesis (and thus the stomatal resistance), the aerodynamic and leaf boundary layer resistances as well as the differential radiation forcing due to tall tree exposure and lateral shading of short trees. The numerical experiments show that by transpiring spatially varying amounts of water, heterogeneous canopies adjust the spatial soil water state to the scaled inverse of the canopy biomass regardless of the initial moisture state. Such a spatial distribution can be further wiped out because of the differential water stress. The aggregation of canopy-scale atmosphere-biosphere-hydrosphere interactions demonstrates non-linear relationship between soil moisture and evapotranspiration, influencing domain-averaged energy fluxes.

  5. Rock pushing and sampling under rocks on Mars

    USGS Publications Warehouse

    Moore, H.J.; Liebes, S.; Crouch, D.S.; Clark, L.V.

    1978-01-01

    Viking Lander 2 acquired samples on Mars from beneath two rocks, where living organisms and organic molecules would be protected from ultraviolet radiation. Selection of rocks to be moved was based on scientific and engineering considerations, including rock size, rock shape, burial depth, and location in a sample field. Rock locations and topography were established using the computerized interactive video-stereophotogrammetric system and plotted on vertical profiles and in plan view. Sampler commands were developed and tested on Earth using a full-size lander and surface mock-up. The use of power by the sampler motor correlates with rock movements, which were by plowing, skidding, and rolling. Provenance of the samples was determined by measurements and interpretation of pictures and positions of the sampler arm. Analytical results demonstrate that the samples were, in fact, from beneath the rocks. Results from the Gas Chromatograph-Mass Spectrometer of the Molecular Analysis experiment and the Gas Exchange instrument of the Biology experiment indicate that more adsorbed(?) water occurs in samples under rocks than in samples exposed to the sun. This is consistent with terrestrial arid environments, where more moisture occurs in near-surface soil un- der rocks than in surrounding soil because the net heat flow is toward the soil beneath the rock and the rock cap inhibits evaporation. Inorganic analyses show that samples of soil from under the rocks have significantly less iron than soil exposed to the sun. The scientific significance of analyses of samples under the rocks is only partly evaluated, but some facts are clear. Detectable quantities of martian organic molecules were not found in the sample from under a rock by the Molecular Analysis experiment. The Biology experiments did not find definitive evidence for Earth-like living organisms in their sample. Significant amounts of adsorbed water may be present in the martian regolith. The response of the soil from under a rock to the aqueous nutrient in the Gas Exchange instrument indicates that adsorbed water and hydrates play an important role in the oxidation potential of the soil. The rock surfaces are strong, because they did not scratch, chip or spall when the sampler pushed them. Fresh surfaces of soil and the undersides of rocks were exposed so that they could be imaged in color. A ledge of soil adhered to one rock that tilted, showing that a crust forms near the surface of Mars. The reason for low amounts of iron in the sampIes from under the rocks is not known at this time.

  6. Quantifying Subsurface Water and Heat Distribution and its Linkage with Landscape Properties in Terrestrial Environment using Hydro-Thermal-Geophysical Monitoring and Coupled Inverse Modeling

    NASA Astrophysics Data System (ADS)

    Dafflon, B.; Tran, A. P.; Wainwright, H. M.; Hubbard, S. S.; Peterson, J.; Ulrich, C.; Williams, K. H.

    2015-12-01

    Quantifying water and heat fluxes in the subsurface is crucial for managing water resources and for understanding the terrestrial ecosystem where hydrological properties drive a variety of biogeochemical processes across a large range of spatial and temporal scales. Here, we present the development of an advanced monitoring strategy where hydro-thermal-geophysical datasets are continuously acquired and further involved in a novel inverse modeling framework to estimate the hydraulic and thermal parameter that control heat and water dynamics in the subsurface and further influence surface processes such as evapotranspiration and vegetation growth. The measured and estimated soil properties are also used to investigate co-interaction between subsurface and surface dynamics by using above-ground aerial imaging. The value of this approach is demonstrated at two different sites, one in the polygonal shaped Arctic tundra where water and heat dynamics have a strong impact on freeze-thaw processes, vegetation and biogeochemical processes, and one in a floodplain along the Colorado River where hydrological fluxes between compartments of the system (surface, vadose zone and groundwater) drive biogeochemical transformations. Results show that the developed strategy using geophysical, point-scale and aerial measurements is successful to delineate the spatial distribution of hydrostratigraphic units having distinct physicochemical properties, to monitor and quantify in high resolution water and heat distribution and its linkage with vegetation, geomorphology and weather conditions, and to estimate hydraulic and thermal parameters for enhanced predictions of water and heat fluxes as well as evapotranspiration. Further, in the Colorado floodplain, results document the potential presence of only periodic infiltration pulses as a key hot moment controlling soil hydro and biogeochemical functioning. In the arctic, results show the strong linkage between soil water content, thermal parameters, thaw layer thickness and vegetation distribution. Overall, results of these efforts demonstrate the value of coupling various datasets at high spatial and temporal resolution to improve predictive understanding of subsurface and surface dynamics.

  7. Surface seismic measurements of near-surface P-and S-wave seismic velocities at earthquake recording stations, Seattle, Washington

    USGS Publications Warehouse

    Williams, R.A.; Stephenson, W.J.; Frankel, A.D.; Odum, J.K.

    1999-01-01

    We measured P-and S-wave seismic velocities to about 40-m depth using seismic-refraction/reflection data on the ground surface at 13 sites in the Seattle, Washington, urban area, where portable digital seismographs recently recorded earthquakes. Sites with the lowest measured Vs correlate with highest ground motion amplification. These sites, such as at Harbor Island and in the Duwamish River industrial area (DRIA) south of the Kingdome, have an average Vs in the upper 30 m (V??s30) of 150 to 170 m/s. These values of V??s30 place these sites in soil profile type E (V??s30 < 180 m/s). A "rock" site, located at Seward Park on Tertiary sedimentary deposits, has a V??S30 of 433 m/s, which is soil type C (V??s30: 360 to 760 m/s). The Seward Park site V??s30 is about equal to, or up to 200 m/s slower than sites that were located on till or glacial outwash. High-amplitude P-and S-wave seismic reflections at several locations appear to correspond to strong resonances observed in earthquake spectra. An S-wave reflector at the Kingdome at about 17 to 22 m depth probably causes strong 2-Hz resonance that is observed in the earthquake data near the Kingdome.

  8. Adsorption and co-adsorption of graphene oxide and Ni(II) on iron oxides: A spectroscopic and microscopic investigation.

    PubMed

    Sheng, Guodong; Huang, Chengcai; Chen, Guohe; Sheng, Jiang; Ren, Xuemei; Hu, Baowei; Ma, Jingyuan; Wang, Xiangke; Huang, Yuying; Alsaedi, Ahmed; Hayat, Tasawar

    2018-02-01

    Graphene oxide (GO) may strongly interact with toxic metal ions and mineral particles upon release into the soil environment. We evaluated the mutual effects between GO and Ni (Ni(II)) with regard to their adsorption and co-adsorption on two minerals (goethite and hematite) in aqueous phase. Results indicated that GO and Ni could mutually facilitate the adsorption of each other on both goethite and hematite over a wide pH range. Addition of Ni promoted GO co-adsorption mainly due to the increased positive charge of minerals and cation-π interactions, while the presence of GO enhanced Ni co-adsorption predominantly due to neutralization of positive charge and strong interaction with oxygen-containing functional groups on adsorbed GO. Increasing adsorption of GO and Ni on minerals as they coexist may thus reduce their mobility in soil. Extended X-ray absorption fine structure (EXAFS) spectroscopy data revealed that GO altered the microstructure of Ni on minerals, i.e., Ni formed edge-sharing surface species (at R Ni-Fe ∼3.2 Å) without GO, while a GO-bridging ternary surface complexes (at R Ni-C ∼2.49 Å and R Ni-Fe ∼4.23 Å) was formed with GO. These findings improved the understanding of potential fate and toxicity of GO as well as the partitioning processes of Ni ions in aquatic and soil environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Eco-geomorphic controls on slope stability

    NASA Astrophysics Data System (ADS)

    Hales, T.; Ford, C.; Hwang, T.; Vose, J.; Band, L.

    2009-04-01

    Vegetation controls soil-mantled landscape evolution primarily through growth of roots into soil and rock. Root-soil interactions affect the spatial distribution and rate of shallow landsliding and other hillslope processes. Yet the distribution and tensile strength of roots depends on a number of geomorphically-influenced parameters, including soil moisture. Our field-based study investigated the effects of topography on root distributions, tensile strengths, and cohesion. Systematic differences in plant species distribution and soil properties are found in the hollow-nose topography of soil-mantled landscapes; with hollows containing thick colluvial soils and mesic tree species and noses containing thinner, more differentiated soils and more xeric species. We investigated whether these topographic variations in geomorphic and ecologic properties affected the spatial distribution of root cohesion by measuring the distribution and tensile strength of roots from soil pits dug downslope of fifteen individual trees in the Coweeta Hydrologic Laboratory, North Carolina. Our soil pits were located to capture variance in plant species (10 species total), topographic positions (nose, hollow), and sizes (a range of DBH between 5 cm and 60 cm). Root tensile strengths showed little variance with different species, but showed strong differences as a function of topography, with nose roots stronger than hollow roots. Similarly, within species, root cellulose content was systematically greater in trees on nose positions compared to those in hollows. For all species, roots were concentrated close to the soil surface (at least 70% of biomass occurred within 50 cm of the surface) and variations in this pattern were primarily a function of topographic position. Hollow roots were more evenly distributed in the soil column than those on noses, yet trees located on noses had higher mean root cohesion than those in hollows because of a higher root tensile force. These data provide an empirical basis for the development of simple geomorphic transport laws that explicitly include vegetation.

  10. Regional Climate Variability Under Model Simulations of Solar Geoengineering

    NASA Astrophysics Data System (ADS)

    Dagon, Katherine; Schrag, Daniel P.

    2017-11-01

    Solar geoengineering has been shown in modeling studies to successfully mitigate global mean surface temperature changes from greenhouse warming. Changes in land surface hydrology are complicated by the direct effect of carbon dioxide (CO2) on vegetation, which alters the flux of water from the land surface to the atmosphere. Here we investigate changes in boreal summer climate variability under solar geoengineering using multiple ensembles of model simulations. We find that spatially uniform solar geoengineering creates a strong meridional gradient in the Northern Hemisphere temperature response, with less consistent patterns in precipitation, evapotranspiration, and soil moisture. Using regional summertime temperature and precipitation results across 31-member ensembles, we show a decrease in the frequency of heat waves and consecutive dry days under solar geoengineering relative to a high-CO2 world. However in some regions solar geoengineering of this amount does not completely reduce summer heat extremes relative to present day climate. In western Russia and Siberia, an increase in heat waves is connected to a decrease in surface soil moisture that favors persistent high temperatures. Heat waves decrease in the central United States and the Sahel, while the hydrologic response increases terrestrial water storage. Regional changes in soil moisture exhibit trends over time as the model adjusts to solar geoengineering, particularly in Siberia and the Sahel, leading to robust shifts in climate variance. These results suggest potential benefits and complications of large-scale uniform climate intervention schemes.

  11. Linking boundary-layer circulations and surface processes during FIFE89. Part 1: Observational analysis

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Wai, Mickey M.-K.; Cooper, Harry J.; Rubes, Michael T.; Hsu, Ann

    1994-01-01

    Surface, aircraft, and satellite observations are analyzed for the 21-day 1989 intensive field campaign of the First ISLSCP Field Experiment (FIFE) to determine the effect of precipitation, vegetation, and soil moisture distributions on the thermal properties of the surface including the heat and moisture fluxes, and the corresponding response in the boundary-layer circulation. Mean and variance properties of the surface variables are first documented at various time and space scales. These calculations are designed to set the stage for Part 2, a modeling study that will focus on how time-space dependent rainfall distribution influences the intensity of the feedback between a vegetated surface and the atmospheric boundary layer. Further analysis shows strongly demarked vegetation and soil moisture gradients extending across the FIFE experimental site that were developed and maintained by the antecedent and ongoing spatial distribution of rainfall over the region. These gradients are shown to have a pronounced influence on the thermodynamic properties of the surface. Furthermore, perturbation surface wind analysis suggests for both short-term steady-state conditions and long-term averaged conditions that the gradient pattern maintained a diurnally oscillating local direct circulation with perturbation vertical velocities of the same order as developing cumulus clouds. Dynamical and scaling considerations suggest that the embedded perturbation circulation is driven by surface heating/cooling gradients and terrain ef fects rather than the manifestation of an inertial oscillation. The implication is that at even relatively small scales (less than 30 km), the differential evolution in vegetation density and soil moisture distribution over a relatively homogenous ecotone can give rise to preferential boundary-layer circulations capable of modifying local-scale horizontal and vertical motions.

  12. Impact of soil water regime on degradation and plant uptake behaviour of the herbicide isoproturon in different soil types.

    PubMed

    Grundmann, Sabine; Doerfler, Ulrike; Munch, Jean Charles; Ruth, Bernhard; Schroll, Reiner

    2011-03-01

    The environmental fate of the worldwide used herbicide isoproturon was studied in four different, undisturbed lysimeters in the temperate zone of Middle Europe. To exclude climatic effects due to location, soils were collected at different regions in southern Germany and analyzed at a lysimeter station under identical environmental conditions. (14)C-isoproturon mineralization varied between 2.59% and 57.95% in the different soils. Barley plants grown on these lysimeters accumulated (14)C-pesticide residues from soil in partially high amounts and emitted (14)CO(2) in an extent between 2.01% and 13.65% of the applied (14)C-pesticide. Plant uptake and (14)CO(2) emissions from plants were inversely linked to the mineralization of the pesticide in the various soils: High isoproturon mineralization in soil resulted in low plant uptake whereas low isoproturon mineralization in soil resulted in high uptake of isoproturon residues in crop plants and high (14)CO(2) emission from plant surfaces. The soil water regime was identified as an essential factor that regulates degradation and plant uptake of isoproturon whereby the intensity of the impact of this factor is strongly dependent on the soil type. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Study of the water transportation characteristics of marsh saline soil in the Yellow River Delta.

    PubMed

    He, Fuhong; Pan, Yinghua; Tan, Lili; Zhang, Zhenhua; Li, Peng; Liu, Jia; Ji, Shuxin; Qin, Zhaohua; Shao, Hongbo; Song, Xueyan

    2017-01-01

    One-dimensional soil column water infiltration and capillary adsorption water tests were conducted in the laboratory to study the water transportation characteristics of marsh saline soil in the Yellow River Delta, providing a theoretical basis for the improvement, utilization and conservation of marsh saline soil. The results indicated the following: (1) For soils with different vegetation covers, the cumulative infiltration capacity increased with the depth of the soil layers. The initial infiltration rate of soils covered by Suaeda and Tamarix chinensis increased with depth of the soil layers, but that of bare soil decreased with soil depth. (2) The initial rate of capillary rise of soils with different vegetation covers showed an increasing trend from the surface toward the deeper layers, but this pattern with respect to soil depth was relatively weak. (3) The initial rates of capillary rise were lower than the initial infiltration rates, but infiltration rate decreased more rapidly than capillary water adsorption rate. (4) The two-parameter Kostiakov model can very well-simulate the changes in the infiltration and capillary rise rates of wetland saline soil. The model simulated the capillary rise rate better than it simulated the infiltration rate. (5) There were strong linear relationships between accumulative infiltration capacity, wetting front, accumulative capillary adsorbed water volume and capillary height. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. How deep does disturbance go? The legacy of hurricanes on tropical forest soil biogeochemistry

    NASA Astrophysics Data System (ADS)

    Gutiérrez del Arroyo, O.; Silver, W. L.

    2016-12-01

    Ecosystem-scale disturbances, such as hurricanes and droughts, are periodic events with the capacity to cycle vast amounts of energy and matter. Such is the case of hurricanes in wet tropical forests, where intense winds defoliate the forest canopy and deposit large quantities of debris on the forest floor. These disturbances strongly affect soil biogeochemistry by altering soil moisture and temperature regimes, as well as litterfall, decomposition rates, and ultimately soil carbon (C) pools. Although these impacts are mostly concentrated near the soil surface, it is critical to consider the long-term effects on hurricanes on the deep soil profile, given the potential for soil C sequestration to occur at depth. Our study was conducted in the Canopy Trimming Experiment, an ongoing experiment within the Luquillo LTER in Puerto Rico. Ten years prior to our study, treatments including canopy trimming and debris deposition, independently and in combination, were imposed on 30 x 30 m plots within Tabonuco forests. We sampled 12 soil profiles (4 treatments, n=3) from 0 to 100 cm, at 10 cm intervals, and measured a suite of biogeochemical properties to explore treatment effects, as well as changes with depth. After a decade of recovery from the imposed treatments, there were no significant differences in soil moisture or soil pH among treatments at any depth, although significant changes with depth occurred for both variables. Iron concentrations, despite showing no treatment effects, decreased markedly with depth, highlighting the biogeochemical thresholds that occur along the soil profile. Notably, debris deposition resulted in significantly higher soil C, nitrogen (N), and phosphorus (P) concentrations in bulk soils, with effects being detected even at depths >50 cm. Moreover, density fractionation analyses of surface and deep soils revealed potential pathways for the measured increases in C, N, and P, including the accumulation of organic matter in the light fraction, as well as physiochemical interactions between organic molecules and minerals in the heavy fraction. Together, our data suggests that hurricane disturbances, by providing unusually large quantities of litterfall, can serve as a periodic subsidy of organic matter to the soil, which helps to maintain soil fertility and promote soil C sequestration.

  15. Timing and magnitude of C partitioning through a young loblolly pine (Pinus taeda L.) stand using 13C labeling and shade treatments.

    PubMed

    Warren, J M; Iversen, C M; Garten, C T; Norby, R J; Childs, J; Brice, D; Evans, R M; Gu, L; Thornton, P; Weston, D J

    2012-06-01

    The dynamics of rapid changes in carbon (C) partitioning within forest ecosystems are not well understood, which limits improvement of mechanistic models of C cycling. Our objective was to inform model processes by describing relationships between C partitioning and accessible environmental or physiological measurements, with a special emphasis on short-term C flux through a forest ecosystem. We exposed eight 7-year-old loblolly pine (Pinus taeda L.) trees to air enriched with (13)CO(2) and then implemented adjacent light shade (LS) and heavy shade (HS) treatments in order to manipulate C uptake and flux. The impacts of shading on photosynthesis, plant water potential, sap flow, basal area growth, root growth and soil CO(2) efflux rate (CER) were assessed for each tree over a 3-week period. The progression of the (13)C label was concurrently tracked from the atmosphere through foliage, phloem, roots and surface soil CO(2) efflux. The HS treatment significantly reduced C uptake, sap flow, stem growth and fine root standing crop, and resulted in greater residual soil water content to 1 m depth. Soil CER was strongly correlated with sap flow on the previous day, but not the current day, with no apparent treatment effect on the relationship. Although there were apparent reductions in new C flux belowground, the HS treatment did not noticeably reduce the magnitude of belowground autotrophic and heterotrophic respiration based on surface soil CER, which was overwhelmingly driven by soil temperature and moisture. The (13)C label was immediately detected in foliage on label day (half-life = 0.5 day), progressed through phloem by Day 2 (half-life = 4.7 days), roots by Days 2-4, and subsequently was evident as respiratory release from soil which peaked between Days 3 and 6. The δ(13)C of soil CO(2) efflux was strongly correlated with phloem δ(13)C on the previous day, or 2 days earlier. While the (13)C label was readily tracked through the ecosystem, the fate of root C through respiratory, mycorrhizal or exudative release pathways was not assessed. These data detail the timing and relative magnitude of C flux through various components of a young pine stand in relation to environmental conditions.

  16. Interactions between iron and organic matter may influence the fate of permafrost carbon in the Arctic

    NASA Astrophysics Data System (ADS)

    Cory, R. M.; Trusiak, A.; Ward, C.; Kling, G. W.; Tfaily, M.; Paša-Tolić, L.; Noel, V.; Bargar, J.

    2017-12-01

    The ongoing thawing of permafrost soils is the only environmental change that allows tremendous stores of organic carbon (C) to be converted into carbon dioxide (CO2) on decadal time scales, thus providing a positive and accelerating feedback to global warming. Evidence suggests that iron enhances abiotic reactions that convert dissolved organic matter (DOM) to CO2 in dark soils and in sunlit surface waters depending on its redox state and association with DOM (i.e., iron-DOM complexation). However, the complexation of iron in surface waters and soils remains too poorly understood to predict how iron influences the rates of oxidation of DOM to CO2. To address this knowledge gap, we characterized iron-DOM complexation in iron-rich soil and surface waters of the Arctic, in combination with measurements of DOM oxidation to CO2. These waters contain high concentrations of dissolved iron and DOM (up to 1 and 2 mM, respectively), and low concentrations of other potential ligands for iron such as sulfide, carbonate, chloride, or bromide. Ultra-high resolution mass spectrometry (FT-ICR MS) was used to identify ligands for iron within the DOM pool, and synchrotron based X-ray analysis (XAS and EXAFS) was used to assess iron's oxidation state, to detect iron complexation, and to constrain the chemical composition of the complexes. Across a natural gradient of dissolved iron and DOM concentrations, many potential ligands were identified within DOM that are expected to complex with iron (e.g., aromatic acids). EXAFS showed substantial complexation of reduced ferrous iron (Fe(II)) to DOM in arctic soil waters, on the basis of comparison to Fe(II)-DOM reference spectra. Identification of iron complexed to DOM in soil waters is consistent with strongly co-varying iron and DOM concentrations in arctic soil and surface waters, and supports our hypothesis that complexation of iron by DOM influences dark and light redox reactions that oxidize DOM to CO2. Understanding the molecular controls on the biogeochemical reactions that convert permafrost carbon to CO2 is critical for understanding the role of the Arctic in current and future climate change.

  17. Respiratory fluxes in a Canary Islands pine forest.

    PubMed

    Wieser, Gerhard; Gruber, Andreas; Bahn, Michael; Catalá, Enrique; Carrillo, Estefanía; Jiménez, Maria Soledad; Morales, Domingo

    2009-03-01

    We estimated component and whole-ecosystem CO(2) efflux (R(ECO)) in a Pinus canariensis Chr. Sm. ex DC stand in Tenerife, Canary Islands, an ecotone with strong seasonal changes in soil water availability. From November 2006 to February 2008, we measured foliage, stem and soil CO(2) efflux by chamber techniques. Site-specific CO(2) efflux models obtained from these chamber measurements were then combined with half-hourly measurements of canopy, stem and soil temperature as well as soil water potential, leaf and stem surface area data for scaling up component-specific CO(2) efflux to R(ECO). Integrated over an entire year, R(ECO) was 938 g of C m(-2) in 2007 and comprised the following component fluxes: 77% from soil, 11% from stems and 12% from foliage. Whole-ecosystem CO(2) efflux varied markedly throughout the year. During the cold and wet season, R(ECO) generally followed the seasonal trends in temperature, and during the warm and dry summer, however, R(ECO) was significantly reduced because of limited soil water availability in the main rooting horizon.

  18. Influences of traffic on Pb, Cu and Zn concentrations in roadside soils of an urban park in Dublin, Ireland.

    PubMed

    Dao, Ligang; Morrison, Liam; Zhang, Hongxuan; Zhang, Chaosheng

    2014-06-01

    Soils in the vicinity of roads are recipients of contaminants from traffic emissions. In order to obtain a better understanding of the impacts of traffic on soils, a total of 225 surface soil samples were collected from an urban park (Phoenix Park, Dublin, Ireland) in a grid system. Metal (Pb, Cu and Zn) concentrations were determined using a portable X-ray fluorescence analyzer. Strong spatial variations for the concentrations of Pb, Cu and Zn were observed. The spatial distribution maps created using geographical information system techniques revealed elevated metal concentrations close to the main traffic route in the park. The relationships between the accumulation of Pb, Cu and Zn in the roadside soils and the distance from the road were well fitted with an exponential model. Elevated metal concentrations from traffic pollution extended to a distance of approximately 40 m from the roadside. The results of this study provide useful information for the management of urban parks particularly in relation to policies aimed at reducing the impact of traffic related pollution on soils.

  19. Comparison of different landform classification methods for digital landform and soil mapping of the Iranian loess plateau

    NASA Astrophysics Data System (ADS)

    Hoffmeister, Dirk; Kramm, Tanja; Curdt, Constanze; Maleki, Sedigheh; Khormali, Farhad; Kehl, Martin

    2016-04-01

    The Iranian loess plateau is covered by loess deposits, up to 70 m thick. Tectonic uplift triggered deep erosion and valley incision into the loess and underlying marine deposits. Soil development strongly relates to the aspect of these incised slopes, because on northern slopes vegetation protects the soil surface against erosion and facilitates formation and preservation of a Cambisol, whereas on south-facing slopes soils were probably eroded and weakly developed Entisols formed. While the whole area is intensively stocked with sheep and goat, rain-fed cropping of winter wheat is practiced on the valley floors. Most time of the year, the soil surface is unprotected against rainfall, which is one of the factors promoting soil erosion and serious flooding. However, little information is available on soil distribution, plant cover and the geomorphological evolution of the plateau, as well as on potentials and problems in land use. Thus, digital landform and soil mapping is needed. As a requirement of digital landform and soil mapping, four different landform classification methods were compared and evaluated. These geomorphometric classifications were run on two different scales. On the whole area an ASTER GDEM and SRTM dataset (30 m pixel resolution) was used. Likewise, two high-resolution digital elevation models were derived from Pléiades satellite stereo-imagery (< 1m pixel resolution, 10 by 10 km). The high-resolution information of this dataset was aggregated to datasets of 5 and 10 m scale. The applied classification methods are the Geomorphons approach, an object-based image approach, the topographical position index and a mainly slope based approach. The accuracy of the classification was checked with a location related image dataset obtained in a field survey (n ~ 150) in September 2015. The accuracy of the DEMs was compared to measured DGPS trenches and map-based elevation data. The overall derived accuracy of the landform classification based on the high-resolution DEM with a resolution of 5 m is approximately 70% and on a 10 m resolution >58%. For the 30 m resolution datasets is the achieved accuracy approximately 40%, as several small scale features are not recognizable in this resolution. Thus, for an accurate differentiation between different important landform types, high-resolution datasets are necessary for this strongly shaped area. One major problem of this approach are the different classes derived by each method and the various class annotations. The result of this evaluation will be regarded for the derivation of landform and soil maps.

  20. Alteration of natural (37)Ar activity concentration in the subsurface by gas transport and water infiltration.

    PubMed

    Guillon, Sophie; Sun, Yunwei; Purtschert, Roland; Raghoo, Lauren; Pili, Eric; Carrigan, Charles R

    2016-05-01

    High (37)Ar activity concentration in soil gas is proposed as a key evidence for the detection of underground nuclear explosion by the Comprehensive Nuclear Test-Ban Treaty. However, such a detection is challenged by the natural background of (37)Ar in the subsurface, mainly due to Ca activation by cosmic rays. A better understanding and improved capability to predict (37)Ar activity concentration in the subsurface and its spatial and temporal variability is thus required. A numerical model integrating (37)Ar production and transport in the subsurface is developed, including variable soil water content and water infiltration at the surface. A parameterized equation for (37)Ar production in the first 15 m below the surface is studied, taking into account the major production reactions and the moderation effect of soil water content. Using sensitivity analysis and uncertainty quantification, a realistic and comprehensive probability distribution of natural (37)Ar activity concentrations in soil gas is proposed, including the effects of water infiltration. Site location and soil composition are identified as the parameters allowing for a most effective reduction of the possible range of (37)Ar activity concentrations. The influence of soil water content on (37)Ar production is shown to be negligible to first order, while (37)Ar activity concentration in soil gas and its temporal variability appear to be strongly influenced by transient water infiltration events. These results will be used as a basis for practical CTBTO concepts of operation during an OSI. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Low-Temperature, Aqueous Alteration of Soil in Wright Valley, Antarctica, Compared with Aqueous Alteration on Mars

    NASA Technical Reports Server (NTRS)

    Wentworth, S. J.; Gibson, E. K., Jr.; McKay, D. S.

    2003-01-01

    The Dry Valleys of Antarctica are possibly one of the best analogs on Earth of the environment at the surface of Mars. Many types of research have been focused on the Dry Valleys, partly because of the potential application to Mars, and also because of the importance of the Dry Valleys in understanding the characteristics and development of terrestrial polar deserts. In 1983, we published a detailed study of weathering products and soil chemistry in a soil pit at Prospect Mesa, Wright Valley, as a possible analog to Mars. Much more is now known about Mars, so we are re-examining that earlier work and comparing it with newer martian data. The Mars information most pertinent to this work includes (A) the strong evidence for recent aqueous activity on Mars, along with more recent evidence for present-day, near-surface water ice on Mars; and (B) the identification of meteorites from Mars and the subsequent, definitive proof that low temperature, aqueous weathering has occurred in these meteorites prior to their ejection from Mars.

  2. Nature's amazing biopolymer: basic mechanical and hydrological properties of soil affected by plant exudates

    NASA Astrophysics Data System (ADS)

    Naveed, Muhammad; Roose, Tiina; Raffan, Annette; George, Timothy; Bengough, Glyn; Brown, Lawrie; Keyes, Sam; Daly, Keith; Hallett, Paul

    2016-04-01

    Plant exudates are known to have a very large impact on soil physical properties through changes in mechanical and hydrological processes driven by long-chain polysaccharides and surface active compounds. Whilst these impacts are well known, the basic physical properties of these exudates have only been reported in a small number of studies. We present data for exudates obtained from barley roots and chia seeds, incorporating treatments examining biological decomposition of the exudates. When these exudates were added to a sandy loam soil, contact angle and drop penetration time increased exponentially with increasing exudate concentration. These wetting properties were strongly correlated with both exudate density and zero-shear viscosity, but not with exudate surface tension. Water holding capacity and water repellency of exudate mixed soil tremendously increased with exudate concentration, however they were significantly reduced on decomposition when measured after 14 days of incubation at 16C. Mechanical stability greatly increased with increasing exudate amendment to soils, which was assessed using a rheological amplitude sweep test near saturation, at -50 cm matric potential (field capacity) using indentation test, and at air-dry condition using the Brazilian test. This reflects that exudates not only attenuate plant water stress but also impart mechanical stability to the rhizosphere. These data are highly relevant to the understanding and modelling of rhizosphere development, which is the next phase of our research.

  3. Impact of water repellency on infiltration of differently concentrated ethanol solutions

    NASA Astrophysics Data System (ADS)

    Dlapa, Pavel; Hrabovský, Andrej; Hriník, Dávid; Kuric, Peter

    2017-04-01

    Infiltration experiments were carried out on an extremely (WDPT > 3600 s) water repellent forest soil in the Little Carpathians Mts (SW Slovakia). Measurements were performed following a long dry warm period using the Mini Disk Infiltrometer (Decagon). Replicated infiltration experiments were conducted with water and five different ethanol solutions. The infiltrometer was set to a capillary pressure head of -2 cm and filled with solutions containing 0, 5, 10, 20, 40, and 95% of ethanol by volume, respectively. Solutions used in infiltration experiments differed in density, viscosity, and surface tension. Combined effect of solution properties on infiltration into soil is strongly dependent on soil surface properties. This may lead to a decrease of infiltration rate with increasing ethanol concentration. Such behaviour should be observable in wettable soils. However, the infiltration experiments revealed a significant increase in the rate of infiltration for increasing concentrations of ethanol. The solutions showed infiltration rates of 10-4, 10-3, and 10-2 cm/s for the 5, 20, and 95% ethanol solutions, respectively. This trend suggests the dominant influence of contact angle (affected by ethanol concentration) on infiltration process. Measurements allow quantifying changes of various infiltration parameters as a function of the solution properties. The obtained results showed that similar approach can be a valuable alternative to other methods used for the evaluation of severity of soil repellency and impacts to hydrological processes.

  4. Kinetics and isotherm analysis of 2,4-dichlorophenoxyl acetic acid adsorption onto soil components under oxic and anoxic conditions.

    PubMed

    Ololade, Isaac A; Alomaja, Folasade; Oladoja, Nurudeen A; Ololade, Oluwaranti O; Oloye, Femi F

    2015-01-01

    2,4-dichlorophenoxyl acetic acid (2,4-D, pKa = 2.8) is used extensively as a herbicide in agricultural practices. Its sorption behavior on both untreated and soils treated to significantly remove specific components (organic and iron and manganese [Fe-Mn] oxides and hydroxides phases) was investigated under oxic and anoxic conditions. The chemical and structural heterogeneity of the soil components were characterized by elemental analysis and X-ray diffraction (XRD). The coexistence of the various components seems to either mask sorption sites on the untreated soil surfaces or inhibit interlayer diffusion of 2,4-D. All sorption data conform to the Freundlich description and a pseudo-second-order kinetic model. There was a strong positive correlation between sorption capacity K(d), and surface area (r(2) ≤ 0.704), but a negative correlation was uncovered with both pH and organic carbon (r(2) ≤ -0.860). The results indicate that 2,4-D is preferably sorbed under oxic rather than anoxic conditions and it is greater on soils containing a high Fe content. There was incomplete 2,4-D sorption reversibility, with desorption occurring more rapidly under anoxic conditions. The study suggests that stimulation of Fe III reduction could be used for the bioremediation of a 2,4-D-contaminated site.

  5. How deep does disturbance go? The long-term effects of canopy disturbance on tropical forest soil biogeochemistry

    NASA Astrophysics Data System (ADS)

    Gutiérrez del Arroyo, O.; Silver, W. L.

    2015-12-01

    We used the Canopy Trimming Experiment (CTE), an ongoing ecosystem manipulation study in the Luquillo Experimental Forest (LEF), Puerto Rico to determine the decadal-scale effects of canopy disturbance and debris deposition on biogeochemistry throughout the soil profile of a wet tropical forest. These manipulations represent the most significant effects of hurricanes, which may increase in frequency or intensity with warming, strengthening their ecosystem-level effects on carbon (C) and nutrient cycling. Four replicated treatments were applied in 2005 using a complete randomized block design: canopy trimming + debris deposition, canopy trimming only, debris deposition only, and untreated control. In 2015, we sampled soils at 10 cm intervals to 1 m depth in each of 12 plots (3 per treatment). We measured gravimetric moisture content, pH, HCl and citrate-ascorbate (CA) extractable iron (Fe) species, organic (Po) and inorganic fractions of NaHCO3 and NaOH phosphorus (P), as well as total C and nitrogen (N). Soil moisture decreased markedly with depth up to ~60-70 cm, and then stabilized at ~33% down to 1 m. Across all treatments, pH increased significantly with depth, ranging from 4.6 in surface soils (0-10 cm) of trimmed plots to 5.2 in deep soils (80-90 cm) of control plots. Canopy trimming decreased pH significantly, possibly due to increased root activity in surface soils as vegetation recovered. Both HCl and CA extractable Fe showed strong depth dependance, decreasing linearly to 50 cm, and stabilizing at very low concentrations (<0.2 mg/g) down to 1 m. Inorganic P concentrations were low and did not vary significantly with depth. The majority of P was associated with organic matter, with significantly higher values in the upper soil profile (<50 cm). Debris deposition significantly increased Po, revealing the role of hurricanes in subsidizing the available soil P pool in these highly productive, low-P wet tropical forests. Debris deposition also increased soil C and N concentrations in surface soils (<20 cm). Our results suggest that the dominant effects of disturbance are limited to the upper soil profile in this wet tropical forest. However, effects were persistent and detectable after ten years of the CTE, suggesting that hurricanes result in long-term changes in tropical forest biogeochemistry.

  6. Relationship of pyrogenic polycyclic aromatic hydrocarbons contamination among environmental solid media.

    PubMed

    Kim, Dong Won; Kim, Seung Kyu; Lee, Dong Soo

    2009-06-01

    This study compared the contamination levels and compositional characteristics of PAHs in soil, SS and sediment to understand the cross media characteristics among the three solid media and ecological risk implications for the purpose to help manage in a more integrated manner the environmental quality objectives or the ecological risk in the media. The study area included urban (metropolis and industrial zone), suburban and rural sites. Seasonal samples were concurrently collected in surface soils, surface waters (dissolved and suspended solid (SS) phases separately) and sediments. The emission estimate and source characterizing PAH indices consistently indicated that PAHs were from pyrogenic sources. The level of total PAHs in soil declined along the wind direction from the urban areas to the rural areas. The sorption power of soil appeared distinctly different between the urban and rural areas. The contamination levels and PAH profiles in soil and sediment were closely related to each other while no such correlation was observed between SS and sediment or SS and soil. Comparisons of the observed partitioning coefficients with three different partitioning equilibrium models strongly suggested that PAHs in water appeared to undergo partitioning among the dissolved phase in water, dissolved organic matter, and organic and soot carbons in SS, which might account for the level and profile of PAHs in SS that were not correlated with those in soil or sediment. The observed results suggested that PAHs of pyrogenic origins entered into soil, sediment, and water by the atmospheric deposition and subsequent other cross-media transfers of PAHs. The results also evidenced that sediments were principally contaminated with PAHs delivered via surface run-off from soil although in the urban areas the run-off influence appeared less immediate than in the rural areas. Environmental quality objectives for PAHs in soil and sediment should be set in a coherent manner and the protection efforts for the sediment quality should be made with the consideration of the soil quality particularly where the river bottom sediment is renewed periodically with eroded soil due to heavy rain and/or large river regime coefficient. In spite of the difference in PAH profiles among the three solid media, BaP commonly appeared to present the greatest TEQ, suggesting that strict regulation of BaP is necessary to efficiently and substantially minimize the total risk of the environmental PAHs.

  7. Hair and toenail arsenic concentrations of residents living in areas with high environmental arsenic concentrations.

    PubMed Central

    Hinwood, Andrea L; Sim, Malcolm R; Jolley, Damien; de Klerk, Nick; Bastone, Elisa B; Gerostamoulos, Jim; Drummer, Olaf H

    2003-01-01

    Surface soil and groundwater in Australia have been found to contain high concentrations of arsenic. The relative importance of long-term human exposure to these sources has not been established. Several studies have investigated long-term exposure to environmental arsenic concentrations using hair and toenails as the measure of exposure. Few have compared the difference in these measures of environmental sources of exposure. In this study we aimed to investigate risk factors for elevated hair and toenail arsenic concentrations in populations exposed to a range of environmental arsenic concentrations in both drinking water and soil as well as in a control population with low arsenic concentrations in both drinking water and soil. In this study, we recruited 153 participants from areas with elevated arsenic concentrations in drinking water and residential soil, as well as a control population with no anticipated arsenic exposures. The median drinking water arsenic concentrations in the exposed population were 43.8 micro g/L (range, 16.0-73 micro g/L) and median soil arsenic concentrations were 92.0 mg/kg (range, 9.1-9,900 mg/kg). In the control group, the median drinking water arsenic concentration was below the limit of detection, and the median soil arsenic concentration was 3.3 mg/kg. Participants were categorized based on household drinking water and residential soil arsenic concentrations. The geometric mean hair arsenic concentrations were 5.52 mg/kg for the drinking water exposure group and 3.31 mg/kg for the soil exposure group. The geometric mean toenail arsenic concentrations were 21.7 mg/kg for the drinking water exposure group and 32.1 mg/kg for the high-soil exposure group. Toenail arsenic concentrations were more strongly correlated with both drinking water and soil arsenic concentrations; however, there is a strong likelihood of significant external contamination. Measures of residential exposure were better predictors of hair and toenail arsenic concentrations than were local environmental concentrations. PMID:12573904

  8. Relative Influence of Initial Surface and Atmospheric Conditions on Seasonal Water and Energy Balances

    NASA Technical Reports Server (NTRS)

    Oglesby, Robert J.; Marshall, Susan; Roads, John O.; Robertson, Franklin R.; Goodman, H. Michael (Technical Monitor)

    2001-01-01

    We constructed and analyzed wet and dry soil moisture composites for the mid-latitude GCIP region of the central US using long climate model simulations made with the NCAR CCM3 and reanalysis products from NCEP. Using the diagnostic composites as a guide, we have completed a series of predictability experiments in which we imposed soil water initial conditions in CCM3 for the GCIP region for June 1 from anomalously wet and dry years, with atmospheric initial conditions taken from June 1 of a year with 'near-normal' soil water, and initial soil water from the near-normal year and atmospheric initial conditions from the wet and dry years. Preliminary results indicate that the initial state of the atmosphere is more important than the initial state of soil water determining the subsequent late spring and summer evolution of sod water over the GCIP region. Surprisingly, neither the composites or the predictability experiments yielded a strong influence of soil moisture on the atmosphere. To explore this further, we have made runs with extreme dry soil moisture initial anomalies imposed over the GCIP region (the soil close to being completely dry). These runs did yield a very strong effect on the atmosphere that persisted for at least three months. We conclude that the magnitude of the initial soil moisture anomaly is crucial, at least in CCM3, and are currently investigating whether a threshold exists, below which little impact is seen. In a complementary study, we compared the impact of the initial condition of snow cover versus the initial atmospheric state over the western US (corresponding to the westward extension of the GAPP program follow-on to GCIP). In this case, the initial prescription of snow cover is far more important than the initial atmospheric state in determining the subsequent evolution of snow cover. We are currently working to understand the very different soil water and snow cover results.

  9. Instrumenting an upland research catchment in Canterbury, New Zealand to study controls on variability of soil moisture, shallow groundwater and streamflow

    NASA Astrophysics Data System (ADS)

    McMillan, Hilary; Srinivasan, Ms

    2015-04-01

    Hydrologists recognise the importance of vertical drainage and deep flow paths in runoff generation, even in headwater catchments. Both soil and groundwater stores are highly variable over multiple scales, and the distribution of water has a strong control on flow rates and timing. In this study, we instrumented an upland headwater catchment in New Zealand to measure the temporal and spatial variation in unsaturated and saturated-zone responses. In NZ, upland catchments are the source of much of the water used in lowland agriculture, but the hydrology of such catchments and their role in water partitioning, storage and transport is poorly understood. The study area is the Langs Gully catchment in the North Branch of the Waipara River, Canterbury: this catchment was chosen to be representative of the foothills environment, with lightly managed dryland pasture and native Matagouri shrub vegetation cover. Over a period of 16 months we measured continuous soil moisture at 32 locations and near-surface water table (< 2 m) at 14 locations, as well as measuring flow at 3 stream gauges. The distributed measurement sites were located to allow comparisons between North and South facing locations, near-stream versus hillslope locations, and convergent versus divergent hillslopes. We found that temporal variability is strongly controlled by the climatic seasonal cycle, for both soil moisture and water table, and for both the mean and extremes of their distributions. Groundwater is a larger water storage component than soil moisture, and the difference increases with catchment wetness. The spatial standard deviation of both soil moisture and groundwater is larger in winter than in summer. It peaks during rainfall events due to partial saturation of the catchment, and also rises in spring as different locations dry out at different rates. The most important controls on spatial variability are aspect and distance from stream. South-facing and near-stream locations have higher water tables and more, larger soil moisture wetting events. Typical hydrological models do not explicitly account for aspect, but our results suggest that it is an important factor in hillslope runoff generation. Co-measurement of soil moisture and water table level allowed us to identify interrelationships between the two. Locations where water tables peaked closest to the surface had consistently wetter soils and higher water tables. These wetter sites were the same across seasons. However, temporary patterns of strong soil moisture response to summer storms did not correspond to the wetter sites. Total catchment spatial variability is composed of multiple variability sources, and the dominant type is sensitive to those stores that are close to a threshold such as field capacity or saturation. Therefore, we classified spatial variability as 'summer mode' or 'winter mode'. In summer mode, variability is controlled by shallow processes e.g. interactions of water with soils and vegetation. In winter mode, variability is controlled by deeper processes e.g. groundwater movement and bypass flow. Double flow peaks observed during some events show the direct impact of groundwater variability on runoff generation. Our results suggest that emergent catchment behaviour depends on the combination of these multiple, time varying components of variability.

  10. Inoculation of soil native cyanobacteria to restore arid degraded soils

    NASA Astrophysics Data System (ADS)

    Raúl Román Fernández, José; Roncero Ramos, Beatriz; Chamizo de la Piedra, Sonia; Rodríguez Caballero, Emilio; Ángeles Muñoz Martín, M.; Mateo, Pilar; Cantón Castilla, Yolanda

    2017-04-01

    Restoration projects in semiarid lands often yield poor results. Water scarcity, low soil fertility, and poor soil structure strongly limit the survival and growth of planted seedlings in these areas. Under these conditions, a previous stage that improves edaphic conditions would turn out to a successful plant restoration. By successfully colonizing arid soils, cyanobacteria naturally provide suitable edaphic conditions, enhancing water availability, soil fertility and soil stability. Furthermore, cyanobacteria can be easily isolated and cultured ex-situ to produce high quantities of biomass, representing a potential tool to restore large areas efficiently. The objective of this study was to test the effect of inoculated cyanobacteria on degraded soils at three different semiarid areas from southeast Spain: Tabernas badlands, a limestone quarry located in Gádor, and grazed grassland in Las Amoladeras (Cabo de Gata). Soil native cyanobacteria belonging to three representative N-fixing genera (Nostoc, Scytonema and Tolypothrix) were isolated from such soils and cultured in BG110 medium. Each strain was inoculated (6 g m-2), separately and mixed (all in the same proportion), on Petri dishes with 80 g of each soil. Biocrust development was monitored during 3 months in these soils under laboratory conditions, at a constant temperature of 25oC. During the experiment, two irrigation treatments were applied simulating a dry (180 mm) and a wet (360 mm) rainfall year (average recorded in the study sites). After 3 months, net CO2 flux, spectral response and soil surface microtopography (1 mm spatial resolution) of inoculated and control soils was measured under wet conditions, all of them as a surrogate of biocrust development. Samples of the surface crust were collected in order to determine total soil organic carbon (SOC) content. The inoculated soils showed positive values of net CO2 flux, thus indicating a net CO2 uptake, whereas control soils showed CO2 fluxes closed to zero. This higher CO2 fixation in the inoculated soils was reflected in the higher SOC content found in these soils with respect to the non-inoculated soils. Soil surface roughness increased with biocrust development in the inoculated soils as compared to control soils. From the different treatments, soil inoculation with the mixture of the three strains promoted the highest SOC contents and absorbance at 680 nm (indicative of higher chlorophyll a content) on the three soil types. Therefore, using a consortium of cyanobacteria to inoculate degraded soils seems to be a more promising strategy to restore soils than inoculating individual species. Finally, differences between irrigation treatments were no significant, suggesting that water availability was not a key driver for cyanobacteria development under control laboratory conditions. Our results underline the viability of cyanobacteria inoculation to form an artificial developed biocrust that contribute to CO2 uptake and increase soil fertility which could facilitate further plant cover establishment. However, more studies are necessaries to test the effectiveness of inoculated crust development under field conditions.

  11. Soil carbon dynamics

    NASA Astrophysics Data System (ADS)

    Trumbore, Susan; Barbosa de Camargo, Plínio

    The amount of organic carbon (C) stored in the upper meter of mineral soils in the Amazon Basin (˜40 Pg C) represents ˜3% of the estimated global store of soil carbon. Adding surface detrital C stocks and soil carbon deeper than 1 m can as much as quadruple this estimate. The potential for Amazon soil carbon to respond to changes in land use, climate, or atmospheric composition depends on the form and dynamics of soil carbon. Much (˜30% in the top ˜10 cm but >85% in soils to 1 m depth) of the carbon in mineral soils of the Oxisols and Ultisols that are the predominant soil types in the Amazon Basin is in forms that are strongly stabilized, with mean ages of centuries to thousands of years. Measurable changes in soil C stocks that accompany land use/land cover change occur in the upper meter of soil, although the presence of deep roots in forests systems drives an active C cycle at depths >1 m. Credible estimates of the potential for changes in Amazon soil C stocks with future land use and climate change are much smaller than predictions of aboveground biomass change. Soil organic matter influences fertility and other key soil properties, and thus is important independent of its role in the global C cycle. Most work on C dynamics is limited to upland soils, and more is needed to investigate C dynamics in poorly drained soils. Work is also needed to relate cycles of C with water, N, P, and other elements.

  12. Phosphorus Release to Floodwater from Calcareous Surface Soils and Their Corresponding Subsurface Soils under Anaerobic Conditions.

    PubMed

    Jayarathne, P D K D; Kumaragamage, D; Indraratne, S; Flaten, D; Goltz, D

    2016-07-01

    Enhanced phosphorus (P) release from soils to overlying water under flooded, anaerobic conditions has been well documented for noncalcareous and surface soils, but little information is available for calcareous and subsurface soils. We compared the magnitude of P released from 12 calcareous surface soils and corresponding subsurface soils to overlying water under flooded, anaerobic conditions and examined the reasons for the differences. Surface (0-15 cm) and subsurface (15-30 cm) soils were packed into vessels and flooded for 8 wk. Soil redox potential and concentrations of dissolved reactive phosphorus (DRP) and total dissolved Ca, Mg, Fe, and Mn in floodwater and pore water were measured weekly. Soil test P was significantly smaller in subsurface soils than in corresponding surface soils; thus, the P release to floodwater from subsurface soils was significantly less than from corresponding surface soils. Under anaerobic conditions, floodwater DRP concentration significantly increased in >80% of calcareous surface soils and in about 40% of subsurface soils. The increase in floodwater DRP concentration was 2- to 17-fold in surface soils but only 4- to 7-fold in subsurface soils. With time of flooding, molar ratios of Ca/P and Mg/P in floodwater increased, whereas Fe/P and Mn/P decreased, suggesting that resorption and/or reprecipitation of P took place involving Fe and Mn. Results indicate that P release to floodwater under anaerobic conditions was enhanced in most calcareous soils. Surface and subsurface calcareous soils in general behaved similarly in releasing P under flooded, anaerobic conditions, with concentrations released mainly governed by initial soil P concentrations. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  13. Runoff initiation, soil detachment and connectivity are enhanced as a consequence of vineyards plantations.

    PubMed

    Cerdà, A; Keesstra, S D; Rodrigo-Comino, J; Novara, A; Pereira, P; Brevik, E; Giménez-Morera, A; Fernández-Raga, M; Pulido, M; di Prima, S; Jordán, A

    2017-11-01

    Rainfall-induced soil erosion is a major threat, especially in agricultural soils. In the Mediterranean belt, vineyards are affected by high soil loss rates, leading to land degradation. Plantation of new vines is carried out after deep ploughing, use of heavy machinery, wheel traffic, and trampling. Those works result in soil physical properties changes and contribute to enhanced runoff rates and increased soil erosion rates. The objective of this paper is to assess the impact of the plantation of vineyards on soil hydrological and erosional response under low frequency - high magnitude rainfall events, the ones that under the Mediterranean climatic conditions trigger extreme soil erosion rates. We determined time to ponding, Tp; time to runoff, Tr; time to runoff outlet, Tro; runoff rate, and soil loss under simulated rainfall (55 mm h -1 , 1 h) at plot scale (0.25 m 2 ) to characterize the runoff initiation and sediment detachment. In recent vine plantations (<1 year since plantation; R) compared to old ones (>50 years; O). Slope gradient, rock fragment cover, soil surface roughness, bulk density, soil organic matter content, soil water content and plant cover were determined. Plantation of new vineyards largely impacted runoff rates and soil erosion risk at plot scale in the short term. Tp, Tr and Tro were much shorter in R plots. Tr-Tp and Tro-Tr periods were used as connectivity indexes of water flow, and decreased to 77.5 and 33.2% in R plots compared to O plots. Runoff coefficients increased significantly from O (42.94%) to R plots (71.92%) and soil losses were approximately one order of magnitude lower (1.8 and 12.6 Mg ha -1 h -1 for O and R plots respectively). Soil surface roughness and bulk density are two key factors that determine the increase in connectivity of flows and sediments in recently planted vineyards. Our results confirm that plantation of new vineyards strongly contributes to runoff initiation and sediment detachment, and those findings confirms that soil erosion control strategies should be applied immediately after or during the plantation of vines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Geologic setting of Apollo 16

    NASA Technical Reports Server (NTRS)

    Hodges, C. A.; Muehlberger, W. R.; Ulrich, G. E.

    1973-01-01

    Prior to the Apollo 16 mission, the materials of the Cayley Plains and the Descartes Mountains were thought to be mostly of volcanic origin. Rock and soil samples from these regions strongly suggest, however, that they may be products of multiring basin forming impacts, although minor local volcanism is not precluded. The smooth planar surfaces may have been formed initially by Imbrium ejecta which flowed into topographic lows at the distal margins of the lineated Fra Mauro ejecta. It is emphasized, however, that the rocks and soils returned from the Apollo 16 site cannot necessarily be considered representative of the lunar crust in the Descartes region from which they were collected.

  15. The importance of nano-porosity in the stalk-derived biochar to the sorption of 17β-estradiol and retention of it in the greenhouse soil.

    PubMed

    Zhang, Fengsong; Li, Yanxia; Zhang, Guixiang; Li, Wei; Yang, Lingsheng

    2017-04-01

    Natural estrogens in greenhouse soils with long-term manure application are becoming a potential threat to adjacent aquatic environment. Porous stalk biochar as a cost-effective adsorbent of estrogen has a strong potential to reduce their transportation from soil to waters. But the dominant adsorption mechanism of estrogen to stalk biochars and retention of estrogen by greenhouse soils amended with biochar are less well known. Element, function groups, total surface area (SA total ), nano-pores of stalk biochars, and chemical structure of 17β-estradiol (E2, length 1.20 nm, width 0.56 nm, thickness 0.48 nm) are integrated in research on E2 sorption behavior in three stalk-derived biochars produced from wheat straw (WS), rice straw (RS), and corn straw (CS), and greenhouse soils amended with optimal biochar. The three biochars had comparable H/C and (O + N)/C, while their aromatic carbon contents and total surface areas (SA total ) both varied as CS > WS > RS. However, WS had the highest sorption capacity (logK oc ), sorption affinity (K f ), and strongest nonlinearity (n). Additionally, the variation of Langmuir maximum adsorption capacity (Q 0 ) was consistent with the trend for SA 1.2-20 (WS > RS > CS) but contrary to the trend for SA total and SA <1.2 (CS > WS > RS). These results indicate that pore-filling dominates the sorption of E2 by biochars and exhibits "sieving effect" and length-directionality-specific via H-bonding between -OH groups on the both ends of E2 in the length direction and polar groups on the inner surface of pores. After the addition of wheat straw biochar, the extent of increase in the sorption affinity for E2 in the soil with low OC content was higher than those in the soil with high OC content. Therefore, the effectiveness for the wheat straw biochar mitigating the risk of E2 in greenhouse soil depended on the compositions of soil, especially organic matter.

  16. Oxygen-17 anomaly in soil nitrate: A new precipitation proxy for desert landscapes

    NASA Astrophysics Data System (ADS)

    Wang, Fan; Ge, Wensheng; Luo, Hao; Seo, Ji-Hye; Michalski, Greg

    2016-03-01

    The nitrogen cycle in desert soil ecosystems is particularly sensitive to changes in precipitation, even of relatively small magnitude and short duration, because it is already under water stress. This suggests that desert soils may have preserved past evidence of small variations in continental precipitation. We have measured nitrate (NO3-) concentrations in soils from the Atacama (Chile), Kumtag (China), Mojave (US), and Thar (India) deserts, and stable nitrogen and oxygen isotope (15N, 17O, and 18O) abundances of the soil NO3-. 17O anomalies (Δ17O), the deviations from the mass-independent isotopic fractionation, were detected in soil NO3- from almost all sites of these four deserts. There was a strong negative correlation between the mean annual precipitation (MAP) and soil NO3- Δ17O values (Δ

  17. Modelling carbon and nitrogen turnover in variably saturated soils

    NASA Astrophysics Data System (ADS)

    Batlle-Aguilar, J.; Brovelli, A.; Porporato, A.; Barry, D. A.

    2009-04-01

    Natural ecosystems provide services such as ameliorating the impacts of deleterious human activities on both surface and groundwater. For example, several studies have shown that a healthy riparian ecosystem can reduce the nutrient loading of agricultural wastewater, thus protecting the receiving surface water body. As a result, in order to develop better protection strategies and/or restore natural conditions, there is a growing interest in understanding ecosystem functioning, including feedbacks and nonlinearities. Biogeochemical transformations in soils are heavily influenced by microbial decomposition of soil organic matter. Carbon and nutrient cycles are in turn strongly sensitive to environmental conditions, and primarily to soil moisture and temperature. These two physical variables affect the reaction rates of almost all soil biogeochemical transformations, including microbial and fungal activity, nutrient uptake and release from plants, etc. Soil water saturation and temperature are not constants, but vary both in space and time, thus further complicating the picture. In order to interpret field experiments and elucidate the different mechanisms taking place, numerical tools are beneficial. In this work we developed a 3D numerical reactive-transport model as an aid in the investigation the complex physical, chemical and biological interactions occurring in soils. The new code couples the USGS models (MODFLOW 2000-VSF, MT3DMS and PHREEQC) using an operator-splitting algorithm, and is a further development an existing reactive/density-dependent flow model PHWAT. The model was tested using simplified test cases. Following verification, a process-based biogeochemical reaction network describing the turnover of carbon and nitrogen in soils was implemented. Using this tool, we investigated the coupled effect of moisture content and temperature fluctuations on nitrogen and organic matter cycling in the riparian zone, in order to help understand the relative sensitivity of biological transformations to these processes.

  18. Soil Moisture (SMAP) and Vapor Pressure Deficit Controls on Evaporative Fraction over the Continental U.S.

    NASA Astrophysics Data System (ADS)

    Salvucci, G.; Rigden, A. J.; Gianotti, D.; Entekhabi, D.

    2017-12-01

    We analyze the control over evapotranspiration (ET) imposed by soil moisture limitations and stomatal closure due to vapor pressure deficit (VPD) across the United States using estimates of satellite-derived soil moisture from SMAP and a meteorological, data-driven ET estimate over a two year period at over 1000 locations. The ET data are developed independent of soil moisture using the emergent relationship between the diurnal cycle of the relative humidity profile and ET based on ETRHEQ (Salvucci and Gentine (2013), PNAS, 110(16): 6287-6291, Rigden and Salvucci, 2015, WRR, 51(4): 2951-2973; Rigden and Salvucci, 2017, GCB, 23(3) 1140-1151). The key advantage of using this approach to estimate ET is that no measurements of surface limiting factors (soil moisture, leaf area, canopy conductance) are required; instead, ET is estimated from only meteorological data. The combination of these two independent datasets allows for a unique spatial analysis of the control on ET imposed by the availability of soil moisture vs. VPD. Spatial patterns of limitations are inferred by fitting the ETRHEQ-inferred surface conductance to a weighted sum of a Jarvis type stomatal conductance model and bare soil evaporation conductance model, with separate moisture-dependent evaporation efficiency relations for bare soil and vegetation. Spatial patterns are visualized by mapping the optimal curve fitting coefficients and by conducting sensitivity analyses of the resulting fitted model across the Unites States. Results indicate regional variations in rate-limiting factors, and suggest that in some areas the VPD effect on stomatal closure is strong enough to induce a decrease in ET under projected climate change, despite an increase in atmospheric drying (and thus evaporative demand).

  19. Hyperarid Soils in the Atacama Desert: A Terrestrial Guide to Mars Soil Formation

    NASA Astrophysics Data System (ADS)

    Amundson, R.; Stephanie, E.; Justine, O.; Brad, S.; Nishiizumi, K.; William, D.; Chris, M.

    2005-12-01

    Hyperarid soils on Earth provide a framework for interpreting the growing Mars regolith database and for developing testable hypotheses for the origin of Mars soils. On Earth, dust and aerosol deposition are strongly coupled with soil formation. Long term atmospheric deposition in the Atacama Desert, coupled with small and highly stochastic rain and fog events, produce a set of soil features diagnostic of pedogenic processes and indicative of the direction of liquid water flow: (1) Extreme hyperaridity results in the retention of nearly all atmospheric inputs within the upper 3 m of the soil profile, but the infrequent rainfall events vertically separate salts by solubility, forming polygonally cracked, sulfate-cemented near-surface crusts which overlie variably concentrated layers of the more soluble chloride, nitrate, and Na-sulfate salts. (2) Pedogenic sulfates in the Atacama desert exhibit unique depth-dependent S, O and Ca isotope trends caused by isotopic fractionation during downward aqueous migration and chemical reaction. (3) Pedogenic sulfates and nitrates contain a distinctive mass independent O isotope signal indicative of a tropospheric origin, and in the case of nitrate, the retention of this signal persists only under near-abiotic conditions. Taken together, the morphology and the depth-dependent chemical and isotopic composition of hyperarid soils provides quantitative information on the origin of solutes, direction of water flow, and degree of biological activity. Depth-dependent measures of these parameters on Mars can therefore be used to test a pedogenic hypothesis for the origin of the widely distributed sulfate layers and can be used to design experiments for future missions that may more fully illuminate the history of Mars surface processes.

  20. Spatial and temporal patterns of pesticide losses in a small Swedish agricultural catchment

    NASA Astrophysics Data System (ADS)

    Sandin, Maria; Piikki, Kristin; Jarvis, Nicholas; Larsbo, Mats; Bishop, Kevin; Kreuger, Jenny

    2017-04-01

    Research at catchment and regional scales shows that losses of pesticides to surface water often originate from a relatively small fraction of the agricultural landscape. These 'hydrologic source areas' represent areas of land that are highly susceptible to fast transport processes, primarily surface runoff or rapid subsurface flows through soil macropores, either to subsurface field drainage systems or as shallow interflow on more strongly sloping land. A good understanding of the nature of transport pathways for pesticides to surface water in agricultural landscapes is essential for cost-effective identification and implementation of mitigation measures. However, the relative importance of surface and subsurface flows for transport of pesticides to surface waters in Sweden remains largely unknown, since very few studies have been performed under Swedish agro-environmental conditions. We conducted a monitoring study in a small sub-surface drained agricultural catchment in one of the main crop production regions in Sweden. Three small sub-catchments were selected for water sampling based on a high-resolution soil map developed from proximal sensing data; one sub-catchment was dominated by clay soils, another by coarse sandy soils while the third comprised a mix of soil types. Samples were collected from the stream, from field drains discharging into the stream and from within-field surface runoff during spring and early summer in three consecutive years. LC-MS/MS analyses of more than 100 compounds, covering the majority of the polar and semi-polar pesticides most frequently used in Swedish agriculture, were performed on all samples using accredited methods. Information on pesticide applications (products, doses and timing) was obtained from annual interviews with the farmers. There were clear and consistent differences in pesticide losses between the three sub-catchments, with the largest losses occurring in the area with clay soils, and negligible losses from the sandy sub-catchment. This suggests that transport of pesticides to the stream is almost entirely occurring along fast flow paths such as macropore flow to drains or surface runoff. Only a very small proportion of fields are directly connected to the stream by overland pathways, which suggests that macropore flow to drains was the dominant loss pathway in the studied area. Data on pesticide use patterns revealed that compounds were detected in drainage and stream water samples that had not been applied for several years. This suggests that despite the predominant role of fast flow paths in determining losses to the stream, long-term storage along the transport pathways also occurs, presumably in subsoil where degradation is slow.

  1. Sorption and Transport of Sildenafil in Natural Soils

    NASA Astrophysics Data System (ADS)

    Boudinot, F. G.; Vulava, V. M.

    2013-12-01

    Pharmaceutical Chemicals (PCs) mainly enter our ecosystems from discharges of treated wastewater and have direct effects on the ecological health of that area. Sildenafil citrate (Viagra) is one such PC, whose presence has been reported in stream waters. Although one study has shown that sildenafil is not harmful in bacterial and fungal environments, there remains much unknown about its fate elsewhere in ecosystems. Sildenafil is a complex organic molecule with two amino functional groups that result in pKa's of 7.27 and 5.97. It also has a high solubility of 3.5 g/L. Given that sildenafil consumption (and concurrently disposal) is on the rise, it is essential that its behavior in the natural environment be better understood. The goal of this study was to quantify the sorption and transport behavior of sildenafil in differing natural soils with varying compositions. Pristine A- and B- horizon soil samples from several soil series were collected in a managed forest near Charleston, SC and used for these studies. The soils were characterized for physical and chemical properties: soil organic matter content ranged between 0.6-7.6%, clay content between 6-20%, and soil pH between 4-5. These soils were then used to perform kinetic reaction, sorption, and column transport experiments. Batch kinetic experiments showed a fast reaction rate in both clay-rich and organic-rich soils and an equilibration time of less than 24 hours. Batch reactor sorption experiments provided data for sorption isotherms (plot of sildenafil in solution, C vs. sildenafil sorbed in soil, q) which were nonlinear. The isotherms were fit using Freundlich model (q=KfCn, where Kf and n are fitting parameters). Sildenafil sorbed more strongly to clay-rich soils compared with organic-rich soils with less clay. It is hypothesized that permanent negative charge on clay mineral surfaces form ionic bonds with positively charged amines in sildenafil in acidic pHs. Transport experiments were conducted using glass chromatography columns, homogenously packed with soil, saturated with 5 mM CaCl2 solution, and injected with 100 mg/L sildenafil. The effluent solution concentrations were plotted as a function of time to plot breakthrough curves. Sildenafil was significantly retarded in clay-rich soil column experiments confirming trends observed in sorption experiments. Overall data indicate very strong sorption of sildenafil to both organic- rich and clay-rich soils, but stronger sorption to clay-rich soils. Strong soil sorption acts as a filter for water, leaving the PC behind in the soils. These results suggest that little sildenafil will reside in groundwater once exposed to natural soils. Further research is needed to better understand how sildenafil's metabolites respond in ecosystems. Given the high metabolic rate and long shelf life of sildenafil, these metabolites may be more prevalent in natural soils.

  2. Surface roughness retrieval by inversion of the Hapke model: A multiscale approach

    NASA Astrophysics Data System (ADS)

    Labarre, S.; Ferrari, C.; Jacquemoud, S.

    2017-07-01

    Surface roughness is a key property of soils that controls many surface processes and influences the scattering of incident electromagnetic waves at a wide range of scales. Hapke (2012b) designed a photometric model providing an approximate analytical solution of the Bidirectional Reflectance Distribution Function (BRDF) of a particulate medium: he introduced the effect of surface roughness as a correction factor of the BRDF of a smooth surface. This photometric roughness is defined as the mean slope angle of the facets composing the surface, integrated over all scales from the grain size to the local topography. Yet its physical meaning is still a question at issue, as the scale at which it occurs is not clearly defined. This work aims at better understanding the relative influence of roughness scales on soil BRDF and to test the ability of the Hapke model to retrieve a roughness that depicts effectively the ground truth. We apply a wavelet transform on millimeter digital terrain models (DTM) acquired over volcanic terrains. This method allows splitting the frequency band of a signal in several sub-bands, each corresponding to a spatial scale. We demonstrate that sub-centimeter surface features dominate both the integrated roughness and the BRDF shape. We investigate the suitability of the Hapke model for surface roughness retrieval by inversion on optical data. A global sensitivity analysis of the model shows that soil BRDF is very sensitive to surface roughness, nearly as much as the single scattering albedo according to the phase angle, but also that these two parameters are strongly correlated. Based on these results, a simplified two-parameter model depending on surface albedo and roughness is proposed. Inversion of this model on BRDF data simulated by a ray-tracing code over natural targets shows a good estimation of surface roughness when the assumptions of the model are verified, with a priori knowledge on surface albedo.

  3. Arsenic in agricultural soils across China: Distribution pattern, accumulation trend, influencing factors, and risk assessment.

    PubMed

    Zhou, Yuting; Niu, Lili; Liu, Kai; Yin, Shanshan; Liu, Weiping

    2018-03-01

    Arsenic (As) in the environment is of concern due to its strong toxicity and high risks to the ecosystems and humans. In this study, soil samples across China collected in 2011 and 2016 were used to determine the concentrations of arsenic in arable soils. The median concentration of arsenic in surface soils was 9.7mg/kg. The inventory of arsenic in the Chinese agricultural surface soils was estimated to be 3.7×10 6 tons. In general, arsenic contamination was found higher in South and Northeast China than in other regions, with means of 18.7 and 15.8mg/kg, respectively. Vertically, arsenic concentrations were higher in top layer (0-15cm) soils (median of 9.8mg/kg) and decreased with soil depth (medians of 8.9mg/kg at 15-30cm and 8.0mg/kg at 30-45cm). By comparing with published data, an increasing accumulation trend over the past decades was found and this enhancement was positively related with the long-term application of fertilizers in agricultural practice, especially phosphate fertilizers. Soil pH was found to affect the movement of arsenic in soil, and high-pH conditions enhanced the pool of arsenic. The ecological risk assessment revealed that arsenic in Chinese agricultural soil posed a low risk to the ecosystem. Regarding human health, the mean hazard indices (HIs) of arsenic were below 1, suggesting an absence of non-carcinogenic risks. In addition, the cancer risks of arsenic in all soil samples were within the acceptable range (below 1×10 -4 ), indicating low to very low risks to the exposed population. Findings from this study are valuable to provide effective management options for risk avoidance and to control the persistent accumulation of arsenic in the agriculture sector across the world. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Solubility of lead and copper in biochar-amended small arms range soils: influence of soil organic carbon and pH.

    PubMed

    Uchimiya, Minori; Bannon, Desmond I

    2013-08-14

    Biochar is often considered a strong heavy metal stabilizing agent. However, biochar in some cases had no effects on, or increased the soluble concentrations of, heavy metals in soil. The objective of this study was to determine the factors causing some biochars to stabilize and others to dissolve heavy metals in soil. Seven small arms range soils with known total organic carbon (TOC), cation exchange capacity, pH, and total Pb and Cu contents were first screened for soluble Pb and Cu concentrations. Over 2 weeks successive equilibrations using weak acid (pH 4.5 sulfuric acid) and acetate buffer (0.1 M at pH 4.9), Alaska soil containing disproportionately high (31.6%) TOC had nearly 100% residual (insoluble) Pb and Cu. This soil was then compared with sandy soils from Maryland containing significantly lower (0.5-2.0%) TOC in the presence of 10 wt % (i) plant biochar activated to increase the surface-bound carboxyl and phosphate ligands (PS450A), (ii) manure biochar enriched with soluble P (BL700), and (iii) unactivated plant biochars produced at 350 °C (CH350) and 700 °C (CH500) and by flash carbonization (corn). In weak acid, the pH was set by soil and biochar, and the biochars increasingly stabilized Pb with repeated extractions. In pH 4.9 acetate buffer, PS450A and BL700 stabilized Pb, and only PS450A stabilized Cu. Surface ligands of PS450A likely complexed and stabilized Pb and Cu even under acidic pH in the presence of competing acetate ligand. Oppositely, unactivated plant biochars (CH350, CH500, and corn) mobilized Pb and Cu in sandy soils; the putative mechanism is the formation of soluble complexes with biochar-borne dissolved organic carbon. In summary, unactivated plant biochars can inadvertently increase dissolved Pb and Cu concentrations of sandy, low TOC soils when used to stabilize other contaminants.

  5. Status of mercury accumulation in agricultural soil across China: Spatial distribution, temporal trend, influencing factor and risk assessment.

    PubMed

    Zhou, Yuting; Aamir, Muhammad; Liu, Kai; Yang, Fangxing; Liu, Weiping

    2018-05-03

    Given its wide distribution in the natural environment and global transport potential, mercury (Hg) is regarded as a ubiquitous pollutant. In this study, we carried out nation-wide sampling campaigns across China to investigate the distribution of Hg in agricultural soils. Concentrations of Hg in the soils collected in 2011 and 2016 ranged from 0.04 to 0.69 and 0.06-0.78 mg kg -1 , respectively. Based on the data from 2016, the reserve of Hg in the surface arable soils (0-20 cm) in China was 4.1 × 10 4 metric tons and Chinese cultivated soils accounted for 63.4-364 metric tons of Hg released to the global atmosphere. The soil Hg concentrations were significantly higher than the reference background level, highlighting the impacts of anthropogenic activities. The vertical distribution pattern showed a clear enrichment at the surface and a decrease with depth of the soils. Comparison of calculated geo-accumulation indexes among individual provinces showed that Northwest China had higher levels of Hg contamination than other regions of China, likely due to long-term energy related combustions in the area. Soil Hg level showed strong positive correlations with organic matter contents of soil, as well as the mean annual precipitation and temperature of the sampling locations. The non-carcinogenic human health risks of soil Hg were below the threshold level, but the general risk to the ecosystem was considerable. The increases in Hg accumulation from 2011 to 2016 at provincial level were found to relate to coal combustion, power generation and per capita GDP. This examination of energy consumption and socioeconomic drivers for China's soil Hg reserve increase is critical for direct Hg control by guiding policy-making and targets of technology development in era of rapid economic growth. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Thermodynamic limits set relevant constraints to the soil-plant-atmosphere system and to optimality in terrestrial vegetation

    NASA Astrophysics Data System (ADS)

    Kleidon, Axel; Renner, Maik

    2016-04-01

    The soil-plant-atmosphere system is a complex system that is strongly shaped by interactions between the physical environment and vegetation. This complexity appears to demand equally as complex models to fully capture the dynamics of the coupled system. What we describe here is an alternative approach that is based on thermodynamics and which allows for comparatively simple formulations free of empirical parameters by assuming that the system is so complex that its emergent dynamics are only constrained by the thermodynamics of the system. This approach specifically makes use of the second law of thermodynamics, a fundamental physical law that is typically not being considered in Earth system science. Its relevance to land surface processes is that it fundamentally sets a direction as well as limits to energy conversions and associated rates of mass exchange, but it requires us to formulate land surface processes as thermodynamic processes that are driven by energy conversions. We describe an application of this approach to the surface energy balance partitioning at the diurnal scale. In this application the turbulent heat fluxes of sensible and latent heat are described as the result of a convective heat engine that is driven by solar radiative heating of the surface and that operates at its thermodynamic limit. The predicted fluxes from this approach compare very well to observations at several sites. This suggests that the turbulent exchange fluxes between the surface and the atmosphere operate at their thermodynamic limit, so that thermodynamics imposes a relevant constraint to the land surface-atmosphere system. Yet, thermodynamic limits do not entirely determine the soil-plant-atmosphere system because vegetation affects these limits, for instance by affecting the magnitude of surface heating by absorption of solar radiation in the canopy layer. These effects are likely to make the conditions at the land surface more favorable for photosynthetic activity, which then links this thermodynamic approach to optimality in vegetation. We also contrast this approach to common, semi-empirical approaches of surface-atmosphere exchange and discuss how thermodynamics may set a broader range of transport limitations and optimality in the soil-plant-atmosphere system.

  7. Global Scale Simultaneous Retrieval of Smoothened Vegetation Optical Depth and Surface Roughness Parameter using AMSR-E X-band Observations

    NASA Astrophysics Data System (ADS)

    Lanka, Karthikeyan; Pan, Ming; Konings, Alexandra; Piles, María; D, Nagesh Kumar; Wood, Eric

    2017-04-01

    Traditionally, passive microwave retrieval algorithms such as Land Parameter Retrieval Model (LPRM) estimate simultaneously soil moisture and Vegetation Optical Depth (VOD) using brightness temperature (Tb) data. The algorithm requires a surface roughness parameter which - despite implications - is generally assumed to be constant at global scale. Due to inherent noise in the satellite data and retrieval algorithm, the VOD retrievals are usually observed to be highly fluctuating at daily scale which may not occur in reality. Such noisy VOD retrievals along with spatially invariable roughness parameter may affect the quality of soil moisture retrievals. The current work aims to smoothen the VOD retrievals (with an assumption that VOD remains constant over a period of time) and simultaneously generate, for the first time, global surface roughness map using multiple descending X-band Tb observations of AMSR-E. The methodology utilizes Tb values under a moving-time-window-setup to estimate concurrently the soil moisture of each day and a constant VOD in the window. Prior to this step, surface roughness parameter is estimated using the complete time series of Tb record. Upon carrying out the necessary sensitivity analysis, the smoothened VOD along with soil moisture retrievals is generated for the 10-year duration of AMSR-E (2002-2011) with a 7-day moving window using the LPRM framework. The spatial patterns of resulted global VOD maps are in coherence with vegetation biomass and climate conditions. The VOD results also exhibit a smoothening effect in terms of lower values of standard deviation. This is also evident from time series comparison of VOD and LPRM VOD retrievals without optimization over moving windows at several grid locations across the globe. The global surface roughness map also exhibited spatial patterns that are strongly influenced by topography and land use conditions. Some of the noticeable features include high roughness over mountainous regions and heavily vegetated tropical rainforests, low roughness in desert areas and moderate roughness value over higher latitudes. The new datasets of VOD and surface roughness can help improving the quality of soil moisture retrievals. Also, the methodology proposed is generic by nature and can be implemented over currently operating AMSR2, SMOS, and SMAP soil moisture missions.

  8. Evaluation of the ORCHIDEE ecosystem model over Africa against 25 years of satellite-based water and carbon measurements

    NASA Astrophysics Data System (ADS)

    Traore, Abdoul Khadre; Ciais, Philippe; Vuichard, Nicolas; Poulter, Benjamin; Viovy, Nicolas; Guimberteau, Matthieu; Jung, Martin; Myneni, Ranga; Fisher, Joshua B.

    2014-08-01

    Few studies have evaluated land surface models for African ecosystems. Here we evaluate the Organizing Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) process-based model for the interannual variability (IAV) of the fraction of absorbed active radiation, the gross primary productivity (GPP), soil moisture, and evapotranspiration (ET). Two ORCHIDEE versions are tested, which differ by their soil hydrology parameterization, one with a two-layer simple bucket and the other a more complex 11-layer soil-water diffusion. In addition, we evaluate the sensitivity of climate forcing data, atmospheric CO2, and soil depth. Beside a very generic vegetation parameterization, ORCHIDEE simulates rather well the IAV of GPP and ET (0.5 < r < 0.9 interannual correlation) over Africa except in forestlands. The ORCHIDEE 11-layer version outperforms the two-layer version for simulating IAV of soil moisture, whereas both versions have similar performance of GPP and ET. Effects of CO2 trends, and of variable soil depth on the IAV of GPP, ET, and soil moisture are small, although these drivers influence the trends of these variables. The meteorological forcing data appear to be quite important for faithfully reproducing the IAV of simulated variables, suggesting that in regions with sparse weather station data, the model uncertainty is strongly related to uncertain meteorological forcing. Simulated variables are positively and strongly correlated with precipitation but negatively and weakly correlated with temperature and solar radiation. Model-derived and observation-based sensitivities are in agreement for the driving role of precipitation. However, the modeled GPP is too sensitive to precipitation, suggesting that processes such as increased water use efficiency during drought need to be incorporated in ORCHIDEE.

  9. Polycyclic aromatic hydrocarbons in soils and lichen from the western Tibetan Plateau: Concentration profiles, distribution and its influencing factors.

    PubMed

    Zhou, Ruichen; Yang, Ruiqiang; Jing, Chuanyong

    2018-05-15

    The Tibetan Plateau (TP) is a huge area and rarely affected by human activity, and is regarded as one of the most remote regions on the earth. Many studies about the long-range atmospheric transport (LRAT) of semi-volatile organic compounds (SVOCs) were conducted in southern and central TP. However, there are very limited studies focused on PAHs in the western TP and the concentrations profiles, distribution and its controlling factors in this area remains unclear. Thus, to explore this knowledge gap, 37 surface soil samples and 23 lichen samples were collected and analyzed for PAHs. The total concentration of 16 US EPA's priority PAHs (∑ 16 PAHs) in western TP ranges 14.4-59.5ng/g and 38.0-133ng/g dry weight (dw) with a mean value of 30.8 and 84.6ng/g dw in soil and lichen, respectively, which is lower than the concentrations in most remote areas worldwide. In the western TP, low molecular weight PAHs (2-3 rings) are dominant (occupied 77.4% and 87.9% on average in soil and lichen, respectively), implying a significant contribution of LRAT in this area. The significant linear correlations (R 2 = 0.372-0.627, p < 0.05) between longitude and soil concentration suggest a strong impact of the westerly wind on the distribution of PAHs in soil. In addition, the concentration ratio of lichen/soil (L/S) was found to linearly increase with the increasing log K OA of individual PAH, suggesting lichen has a strong ability in filtering more lipophilic airborne pollutants in western TP. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Using soil properties as a tool to differentiate landslide generations and constrain their ages - Rogowiec landslide, Sudetes (SW Poland)

    NASA Astrophysics Data System (ADS)

    Kacprzak, Andrzej; Migoń, Piotr

    2013-04-01

    The Sudetes, at the border of Poland and the Czech Republic, are generally considered as a mountain range where landslides play a marginal geomorphic role. Only a few larger landslides have been recorded during historical times, mainly on steep valley sides undercut by rivers. Forested slopes, which dominate in the Sudetes, are usually inferred to be stable, except for near-surface bioturbation and localized accelerated surface erosion at sites subject to strong human impact. Large, apparently relict landslides in the Kamienne Mountains, Middle Sudetes, pose a considerable challenge to this view and two interpretations are possible. First, they may be indeed relict, pre-Holocene features that formed under different environmental conditions and have been completely stabilized since the origin. Second, they may be rare components of the contemporary (Holocene) geomorphic system but their frequency of occurrence is low and this is why none has been reported in written or oral records. If the second scenario captures the reality adequately, this would have significant implications for hazard and risk assessment. To address this issue, an extensive soil survey was carried out on the large landslide of Rogowiec, likely of complex flow nature as suggested by landform mapping. The rationale of the study involved an assumption that soil formation time in the area is limited to the Holocene, since harsh periglacial conditions typified the late Pleistocene. 15 soil pits were excavated within landslide terrain and on adjacent reference slopes which do not bear any evident traces of significant displacements. Despite the small area under investigation, the soil profiles are very diverse in terms of depth, horizonation, organic matter content, development of soil structure, as well as the content and lithology of coarse fragments. A great deal of this diversity can be explained by different duration of pedogenesis controlled by geomorphic processes. Very weakly developed soil profiles in the landslide body do not show evidence of protracted soil evolution under contemporary climate and hence, are interpreted as having been formed during a fraction of the Holocene. This implies a Holocene age of the landslide. In addition, an older shallow translational landslide has been recognized on the valley side, with the toe buried by the main Rogowiec landslide. The depletion area was identified through the occurrence of thin, truncated soils (compared to the neighbouring slopes). This and the occurrence of weakly horizonated and poorly structural soils in the landslide body itself suggest that this valley-side landslide is of the Holocene age too. Thus, soils proved a powerful tool to establish the relative chronology of landslides and give strong evidence of their Holocene age. Soil research is recommended as a part of landslide hazard and risk assessment for landslides of unknown age.

  11. Nonlinear Wave propagation at sediment layers

    NASA Astrophysics Data System (ADS)

    Tsuda, K.; Archuleta, R. J.; O'Connell, D. R.; Bonilla, F. L.

    2002-12-01

    Data from some large earthquakes, such as the 2000 Tottoriken-Seibu earthquake, the 1995 Kobe earthquake, and 1994 Northridge earthquake have reinforced the importance of the effect of surface soil on seismic waves. This is especially true of the Tottoriken-Seibu earthquake where the damage from the liquefaction of surface soil was very severe. The mechanism of the liquefaction of soil is understood as the result of the nonlinear soil behavior-the pore water pressure build up-during the strong shaking. The model to explain the mechanics of pore water pressure build up has been proposed by many studies. In this study, we tried to predict the pore water pressure based on the constitutive model proposed by Iai et al. (1992). This model has been already applied to predict nonlinear soil behavior by Bonilla (2000) whose simulated results showed good agreement with the laboratory data in the VELACS program. We have applied this method to simulate ground motions at Jackson Lake Dam, Wyoming. We constructed a 140 m one-dimensional shear-wave velocity/depth profile for the sediment layers. The water table is at 2 m depth. The elastic material properties are based on in situ measurements. However, the parameters needed for the nonlinear response are taken from generic data for similar materials. To check for consistency we have constructed liquefaction resistance curves using a range of parameters that will be assumed for the soil column. These curves are compared with measured point values of the liquefaction resistance. To estimate the response at Jackson Lake Dam we have used strong motion records-JMA records from the 1995 Kobe earthquake and the Pleasant Valley Pumping Plant records from the 1983 Coalinga earthquake-as input motions at 140 m depth. We have also used synthetic ground motions computed from scenario earthquakes that might occur on the Teton Fault, very close to the dam. In the case of the synthetic input motions, the calculated shear strain approaches 20% in the sand layer. The material between 0 and 10 m shows maximum strain of about 1%, which still produces an increase in the fundamental period of the layer as well as a deamplification of the amplitude of the seismic waves.

  12. Soil hydrological and soil property changes resulting from termite activity on agricultural fields in Burkina Faso

    NASA Astrophysics Data System (ADS)

    Mettrop, I.; Cammeraat, L. H.; Verbeeten, E.

    2009-04-01

    Termites are important ecosystem-engineers in subtropical and tropical regions. The effect of termite activity affecting soil infiltration is well documented in the Sahelian region. Most studies find increased infiltration rates on surfaces that are affected by termite activity in comparison to crusted areas showing non-termite presence. Crusted agricultural fields in the Sanmatenga region in Burkina Faso with clear termite activity were compared to control fields without visual ground dwelling termite activity. Fine scale rainfall simulations were carried out on crusted termite affected and control sites. Furthermore soil moisture change, bulk density, soil organic matter as well as general soil characteristics were studied. The top soils in the study area were strongly crusted (structural crust) after the summer rainfall and harvest of millet. They have a loamy sand texture underlain by a shallow sandy loam Bt horizon. The initial soil moisture conditions were significantly higher on the termite plots when compared to control sites. It was found that the amount of runoff produced on the termite plots was significantly higher, and also the volumetric soil moisture content after the experiments was significantly lower if compared to the control plots. Bulk density showed no difference whereas soil organic matter was significantly higher under termite affected areas, in comparison to the control plots. Lab tests showed no significant difference in hydrophobic behavior of the topsoil and crust material. Micro and macro-structural properties of the topsoil did not differ significantly between the termite sites and the control sites. The texture of the top 5 cm of the soil was also found to be not significantly different. The infiltration results are contradictory to the general literature, which reports increased infiltration rates after prolonged termite activity although mostly under different initial conditions. The number of nest entrances was clearly higher in the termite areas, but apparently did not significantly affect infiltration. The increased soil organic matter contents in the termite affected areas however, are as expected from literature, but did not improve soil aggregation which would be expected given the importance of organic matter in soil aggregation in this type of soils. One of the explanations for the reduced infiltration rates might be that termites bring clay from the finer textured subsoil to the surface to build casts over the organic material on the surface (mainly millet stems). It is speculated that the excavated clay material could be involved in crust formation, only present is in the upper 0.5 cm of the soil crust, which is enough to block pores in the crust surface, hampering infiltration. The topsoil aggregates are slaking under the summer rainfall and the increase in fine textured material, excavated by the termites, could be incorporated into the crust and reduce infiltration. Furthermore this specific effect might also be related to the type of termite involved, as impacts from ecosystem engineers on their environment is highly dependent on the specific species involved.

  13. Earth System Models Underestimate Soil Carbon Diagnostic Times in Dry and Cold Regions.

    NASA Astrophysics Data System (ADS)

    Jing, W.; Xia, J.; Zhou, X.; Huang, K.; Huang, Y.; Jian, Z.; Jiang, L.; Xu, X.; Liang, J.; Wang, Y. P.; Luo, Y.

    2017-12-01

    Soils contain the largest organic carbon (C) reservoir in the Earth's surface and strongly modulate the terrestrial feedback to climate change. Large uncertainty exists in current Earth system models (ESMs) in simulating soil organic C (SOC) dynamics, calling for a systematic diagnosis on their performance based on observations. Here, we built a global database of SOC diagnostic time (i.e.,turnover times; τsoil) measured at 320 sites with four different approaches. We found that the estimated τsoil was comparable among approaches of 14C dating () (median with 25 and 75 percentiles), 13C shifts due to vegetation change () and the ratio of stock over flux (), but was shortest from laboratory incubation studies (). The state-of-the-art ESMs underestimated the τsoil in most biomes, even by >10 and >5 folds in cold and dry regions, respectively. Moreover,we identified clear negative dependences of τsoil on temperature and precipitation in both of the observational and modeling results. Compared with Community Land Model (version 4), the incorporation of soil vertical profile (CLM4.5) could substantially extend the τsoil of SOC. Our findings suggest the accuracy of climate-C cycle feedback in current ESMs could be enhanced by an improved understanding of SOC dynamics under the limited hydrothermal conditions.

  14. What the diurnal cycle of precipitation tells us about land-atmosphere coupling strength

    NASA Astrophysics Data System (ADS)

    Ferguson, Craig; Song, Hyojong; Roundy, Joshua

    2015-04-01

    The key attributes of a coupled forecast model are the coupling strengths between the land-atmosphere and ocean-atmosphere schemes. If a model cannot skillfully capture the diurnal cycle of clouds and precipitation, then it likely cannot be expected to yield accurate long-term climate projections. The seasonal drought forecast skill shortfalls of the U.S. NCEP Coupled Forecast System Version 2 (CFSv2) have been directly linked to its unrealistically strong land-atmosphere coupling strength. Most models can be similarly categorized, which is to say, sensitivity to the land physics (i.e., soil moisture constraints on evapotranspiration) is too strong. In nature, the land signal: noise ratio appears to be at a much lower value. Diagnosing land-atmosphere coupling strength requires at a minimum: surface soil moisture state, surface turbulent heat fluxes, and atmospheric moisture and instability. Full-on diagnosis would entail hacking into the code and inserting a number of tracers. This study addresses the question: What if, given the soil wetness anomaly, model biases in coupling sign and/or strength could be diagnosed from phase shifts in the diurnal precipitation frequency cycle? We use 34-years of output from the North American Regional Reanalysis (NARR) and North American Land Data Assimilation System Phase 2 (NLDAS-2) to investigate the variation in diurnal precipitation frequency cycle between so-called "wet-advantage" and "dry-advantage" coupling regimes over the U.S. southern Great Plains. Wet-advantage occurs when the atmospheric state is closer to the wet adiabatic rate and convection is triggered by a strong increase in the moist static energy from the surface. In contrast, dry-advantage occurs when the atmosphere is drier and the temperature profile is close to the dry adiabatic lapse rate, which favors convection over areas of large boundary layer growth due to high sensible heat fluxes at the surface. We find that there is a significant difference in the phase of the diurnal precipitation frequency between coupling regimes. Specifically, maximum frequency occurs at 1600 LT and 0500 LT for wet- and dry-advantage samples, respectively. For each of these contrasting regimes, we investigate the relative extent to which diurnal phasing may be attributed to local land -- PBL processes versus influences of the Great Plains low-level jet and large-scale atmospheric circulation.

  15. Turbulent transports over tundra

    NASA Technical Reports Server (NTRS)

    Fitzjarrald, David R.; Moore, Kathleen E.

    1992-01-01

    An extensive period of eddy correlation surface flux measurements was conducted at a site distant from the coast on the western Alaskan tundra. The surface exchange of heat and moisture over tundra during the summer was limited by a strong resistance to transfer from the upper soil layer through the ground cover, with canopy resistances to evaporation observed to be approximately 200 s/m. Though July 1988 was anomalously warm and dry in the region and August was close to normal temperature and rainfall, there was no appreciable difference in the canopy resistance between the periods. During the dry sunny period at the end of July, the observed evaporation rate was 2 mm/d. High canopy resistance led to an approximate equipartition of net radiation between latent and sensible heat, each accounting for 40 percent of the available energy, with heat balance apparently going into soil heat flux.

  16. Preliminary Analysis of Vehicle/Soil Interaction for a Mars Sub- Surface Ground Penetrating Mole

    NASA Astrophysics Data System (ADS)

    Reutter, O.; Ellery, A.; Welch, C.; Curley, A.

    2002-01-01

    It is conceived that future robotic Mars missions will have to employ mole penetration of the Martian surface if they are to have any chance of success in detecting possible fossilised biota. At least one European mission of such a nature called Vanguard is being proposed [Ellery et al 2002]. One of the critical technologies from a robotics viewpoint is the deployment of a ground-penetrating mole from a lander or rover. The deployment mechanism must be simple, of low mass, and with low power consumption. These issues place strong constraints on its design. The performance and design of such a mechanism will be determined by the required applied forces to be exerted on the mole during initial penetration into the ground. Presented here is a preliminary analysis of the force/torque characteristics of the mole/soil interaction.

  17. Inclusion of Solar Elevation Angle in Land Surface Albedo Parameterization Over Bare Soil Surface.

    PubMed

    Zheng, Zhiyuan; Wei, Zhigang; Wen, Zhiping; Dong, Wenjie; Li, Zhenchao; Wen, Xiaohang; Zhu, Xian; Ji, Dong; Chen, Chen; Yan, Dongdong

    2017-12-01

    Land surface albedo is a significant parameter for maintaining a balance in surface energy. It is also an important parameter of bare soil surface albedo for developing land surface process models that accurately reflect diurnal variation characteristics and the mechanism behind the solar spectral radiation albedo on bare soil surfaces and for understanding the relationships between climate factors and spectral radiation albedo. Using a data set of field observations, we conducted experiments to analyze the variation characteristics of land surface solar spectral radiation and the corresponding albedo over a typical Gobi bare soil underlying surface and to investigate the relationships between the land surface solar spectral radiation albedo, solar elevation angle, and soil moisture. Based on both solar elevation angle and soil moisture measurements simultaneously, we propose a new two-factor parameterization scheme for spectral radiation albedo over bare soil underlying surfaces. The results of numerical simulation experiments show that the new parameterization scheme can more accurately depict the diurnal variation characteristics of bare soil surface albedo than the previous schemes. Solar elevation angle is one of the most important factors for parameterizing bare soil surface albedo and must be considered in the parameterization scheme, especially in arid and semiarid areas with low soil moisture content. This study reveals the characteristics and mechanism of the diurnal variation of bare soil surface solar spectral radiation albedo and is helpful in developing land surface process models, weather models, and climate models.

  18. Soil sealing and vesicular layer formation as initial structure development and its effect on infiltration

    NASA Astrophysics Data System (ADS)

    Badorreck, A.; Gerke, H. H.; Weller, U.; Vontobel, P.

    2009-04-01

    In the Lusatia mining district (NE-Germany) an artificial catchment was constructed to study initial ecosystem development and runoff generation. As a key process in this early stage, we investigate the surface structure dynamics as it strongly influences erosion, infiltration, matter dynamics, and vegetation establishment. The presented work focuses on observations of soil pore structure formation at the surface at five sites in the catchment and in an adjacent "younger" area composed of comparable sediments. Moreover we've conducted infiltration experiments in the lab and field to relate the soil pore structure to the hydraulic properties. The surface soil was sampled in cylindrical rings (10 cm³) down to 2 cm depth from which bulk density profiles were obtained using X-ray computed tomography (CT) (at UFZ- Halle, Germany) with a resolution of 0.084 mm. The influence of structure on infiltration was investigated using neutron radiography (at the NEUTRA facility of the Paul-Scherrer-Institut, Villigen, Switzerland) to visualise two-dimensional (2D) infiltration patterns. The slab-type samples were equilibrated to different initial water contents and then exposed to drip irrigation (to simulate rainfall) while a series of neutron radiographs were taken. In addition, field measurements with a miniature tension infiltrometer were conduced. The micro-tomographies exhibit formation of surface sealing whose thickness and intensity vary with silt and clay content. The CT images show several coarser- and finer-textured micro-layers at the sample surfaces that were formed as a consequence of repeated washing in of finer particles in underlying coarser sediment. In micro-depressions, the uppermost layers consist of sorted fine sand and silt due to wind erosion. Similar as for desert pavements, a vesicular pore structure developed in these sediments on top, but also scattered in fine sand- and silt-enriched micro-layers. The infiltration rates were severely affected by the surface crusts; however, the rates were independent of the vesicular pore layer.

  19. Annual and latitudinal variations of surface fluxes and meteorological variables at Arctic terrestrial sites

    NASA Astrophysics Data System (ADS)

    Grachev, Andrey; Uttal, Taneil; Persson, Ola; Konopleva-Akish, Elena; Crepinsek, Sara; Cox, Christopher; Fairall, Christopher; Makshtas, Alexander; Repina, Irina

    2016-04-01

    This study analyzes and discusses seasonal and latitudinal variations of surface fluxes (turbulent, radiative, and soil ground heat) and other ancillary surface/snow/permafrost data based on in-situ measurements made at two long-term research observatories near the coast of the Arctic Ocean located in Canada and Russia. The hourly averaged data collected at Eureka (Canadian territory of Nunavut) and Tiksi (East Siberia) located at two quite different latitudes (80.0 N and 71.6 N respectively) are analyzed in details to describe the seasons in the Arctic. Although Eureka and Tiksi are located at the different continents and at the different latitudes, the annual course of the surface meteorology and the surface fluxes are qualitatively very similar. The air and soil temperatures display the familiar strong seasonal trend with maximum of measured temperatures in mid-summer and minimum during winter. According to our data, variation in incoming short-wave solar radiation led the seasonal pattern of the air and soil temperatures, and the turbulent fluxes. During the dark Polar nights, air and ground temperatures are strongly controlled by long-wave radiation associated generally with cloud cover. Due to the fact that in average the higher latitudes receive less solar radiation than lower latitudes, a length of the convective atmospheric boundary layer (warm season) is shorter and middle-summer amplitude of the turbulent fluxes is generally less in Eureka than in Tiksi. However, since solar elevation angle at local midnight in the middle of Arctic summer is higher for Eureka as compared to Tiksi, stable stratification and upward turbulent flux for carbon dioxide is generally did not observed at Eureka site during summer seasons. It was found a high correlation between the turbulent fluxes of sensible and latent heat, carbon dioxide and the net solar radiation. A comprehensive evaluation of energy balance closure problem is performed based on the multi-year data sets collected at the Arctic terrestrial sites. The work is supported by the NOAA Climate Program Office, the U.S. National Science Foundation (NSF) with award ARC 11-07428, and by the U.S. Civilian Research & Development Foundation (CRDF) with award RUG1-2976-ST-10.

  20. Modeling of technical soil-erosion control measures and its impact on soil erosion off-site effects within urban areas

    NASA Astrophysics Data System (ADS)

    Dostal, Tomas; Devaty, Jan

    2013-04-01

    The paper presents results of surface runoff, soil erosion and sediment transport modeling using Erosion 3D software - physically based mathematical simulation model, event oriented, fully distributed. Various methods to simulate technical soil-erosion conservation measures were tested, using alternative digital elevation models of different precision and resolution. Ditches and baulks were simulated by three different approaches, (i) by change of the land-cover parameters to increase infiltration and decrease flow velocity, (ii) by change of the land-cover parameters to completely infiltrate the surface runoff and (iii) by adjusting the height of the digital elevation model by "burning in" the channels of the ditches. Results show advantages and disadvantages of each approach and conclude suitable methods for combinations of particular digital elevation model and purpose of the simulations. Further on a set of simulations was carried out to model situations before and after technical soil-erosion conservation measures application within a small catchment of 4 km2. These simulations were focused on quantitative and qualitative assessment of technical soil-erosion control measures impact on soil erosion off-site effects within urban areas located downstream of intensively used agricultural fields. The scenarios were built upon a raster digital elevation model with spatial resolution of 3 meters derived from LiDAR 5G vector point elevation data. Use of this high-resolution elevation model allowed simulating the technical soil-erosion control measures by direct terrain elevation adjustment. Also the structures within the settlements were emulated by direct change in the elevation of the terrain model. The buildings were lifted up to simulate complicated flow behavior of the surface runoff within urban areas, using approach of Arévalo (Arévalo, 2011) but focusing on the use of commonly available data without extensive detailed editing. Application of the technical soil-erosion control measures induced strong change in overall amount of eroded/deposited material as well as spatial erosion/deposition patterns within the settlement areas. Validation of modeled scenarios and effects on measured data was not possible as no real runoff event was recorded in the target area so the conclusions were made by comparing the different modeled scenarios. Advantages and disadvantages of used approach to simulate technical soil-erosion conservation measures are evaluated and discussed as well as the impact of use of high-resolution elevation data on the intensity and spatial distribution of soil erosion and deposition. Model approved ability to show detailed distribution of damages over target urban area, which is very sensitive for off-site effects of surface runoff, soil erosion and sediment transport and also high sensitivity to input data, especially to DEM, which affects surface runoff pattern and therefore intensity of harmful effects. Acknowledgement: This paper has been supported by projects: Ministry of the interior of the CR VG 20122015092, and project NAZV QI91C008 TPEO.

  1. Effect of soil moisture content on the splash phenomenon reproducibility.

    PubMed

    Ryżak, Magdalena; Bieganowski, Andrzej; Polakowski, Cezary

    2015-01-01

    One of the methods for testing splash (the first phase of water erosion) may be an analysis of photos taken using so-called high-speed cameras. The aim of this study was to determine the reproducibility of measurements using a single drop splash of simulated precipitation. The height from which the drops fell resulted in a splash of 1.5 m. Tests were carried out using two types of soil: Eutric Cambisol (loamy silt) and Orthic Luvisol (sandy loam); three initial pressure heads were applied equal to 16 kPa, 3.1 kPa, and 0.1 kPa. Images for one, five, and 10 drops were recorded at a rate of 2000 frames per second. It was found that (i) the dispersion of soil caused by the striking of the 1st drop was significantly different from the splash impact caused by subsequent drops; (ii) with every drop, the splash phenomenon proceeded more reproducibly, that is, the number of particles of soil and/or water that splashed were increasingly close to each other; (iii) the number of particles that were detached during the splash were strongly correlated with its surface area; and (iv) the higher the water film was on the surface the smaller the width of the crown was.

  2. Effect of Soil Moisture Content on the Splash Phenomenon Reproducibility

    PubMed Central

    Ryżak, Magdalena; Bieganowski, Andrzej; Polakowski, Cezary

    2015-01-01

    One of the methods for testing splash (the first phase of water erosion) may be an analysis of photos taken using so-called high-speed cameras. The aim of this study was to determine the reproducibility of measurements using a single drop splash of simulated precipitation. The height from which the drops fell resulted in a splash of 1.5 m. Tests were carried out using two types of soil: Eutric Cambisol (loamy silt) and Orthic Luvisol (sandy loam); three initial pressure heads were applied equal to 16 kPa, 3.1 kPa, and 0.1 kPa. Images for one, five, and 10 drops were recorded at a rate of 2000 frames per second. It was found that (i) the dispersion of soil caused by the striking of the 1st drop was significantly different from the splash impact caused by subsequent drops; (ii) with every drop, the splash phenomenon proceeded more reproducibly, that is, the number of particles of soil and/or water that splashed were increasingly close to each other; (iii) the number of particles that were detached during the splash were strongly correlated with its surface area; and (iv) the higher the water film was on the surface the smaller the width of the crown was. PMID:25785859

  3. Mercury and Dissolved Organic Matter Dynamics During Snowmelt in the Upper Provo River, Utah, USA

    NASA Astrophysics Data System (ADS)

    Packer, B. N.; Carling, G. T.; Nelson, S.; Aanderud, Z.; Shepherd Barkdull, N.; Gabor, R. S.

    2017-12-01

    Mercury (Hg) is deposited to mountains by atmospheric deposition and mobilized during snowmelt runoff, leading to Hg contamination in otherwise pristine watersheds. Mercury is typically transported with dissolved organic matter (DOM) from soils to streams and lakes. This study focused on Hg and DOM dynamics in the snowmelt-dominated upper Provo River watershed, northern Utah, USA. We sampled Hg, dissolved organic carbon (DOC) concentrations, and DOM fluorescence in river water, snowpack, and ephemeral streams over four years from 2014-2017 to investigate Hg transport mechanisms. During the snowmelt season (April through June), Hg concentrations typically increased from 1 to 8 ng/L showing a strong positive correlation with DOC. The dissolved Hg fraction was dominant in the river, averaging 75% of total Hg concentrations, suggesting that DOC is more important for transport than suspended particulate matter. Ephemeral channels, which represent shallow flow paths with strong interactions with soils, had the highest Hg (>10 ng/L) and DOC (>10 mg/L) concentrations, suggesting a soil water source of Hg and organic matter. Fluorescence spectroscopy results showed important changes in DOM type and quality during the snowmelt season and the soil water flow paths are activated. Changes in DOM characteristics during snowmelt improve the understanding of Hg dynamics with organic matter and elucidate transport pathways from the soil surface, ephemeral channels and groundwater to the Provo River. This study has implications for understanding Hg sources and transport mechanisms in mountain watersheds.

  4. ARRA-funded VS30 measurements using multi-technique approach at strong-motion stations in California and central-eastern United States

    USGS Publications Warehouse

    Yong, Alan; Martin, Antony; Stokoe, Kenneth; Diehl, John

    2013-01-01

    Funded by the 2009 American Recovery and Reinvestment Act (ARRA), we conducted geophysical site characterizations at 191 strong-motion stations: 187 in California and 4 in the Central-Eastern United States (CEUS). The geophysical methods used at each site included passive and active surface-wave and body-wave techniques. Multiple techniques were used at most sites, with the goal of robustly determining VS (shear-wave velocity) profiles and VS30 (the time-averaged shear-wave velocity in the upper 30 meters depth). These techniques included: horizontal-to-vertical spectral ratio (HVSR), two-dimensional (2-D) array microtremor (AM), refraction microtremor (ReMi™), spectral analysis of surface wave (SASW), multi-channel analysis of surface waves (Rayleigh wave: MASRW; and Love wave: MASLW), and compressional- and shear-wave refraction. Of the selected sites, 47 percent have crystalline, volcanic, or sedimentary rock at the surface or at relatively shallow depth, and 53 percent are of Quaternary sediments located in either rural or urban environments. Calculated values of VS30 span almost the full range of the National Earthquake Hazards Reduction Program (NEHRP) Site Classes, from D (stiff soils) to B (rock). The NEHRP Site Classes based on VS30 range from being consistent with the Class expected from analysis of surficial geology, to being one or two Site Classes below expected. In a few cases where differences between the observed and expected Site Class occurred, it was the consequence of inaccurate or coarse geologic mapping, as well as considerable degradation of the near-surface rock. Additionally, several sites mapped as rock have Site Class D (stiff soil) velocities, which is due to the extensive weathering of the surficial rock.

  5. Main features of anthropogenic inner-urban soils in Szeged, Hungary

    NASA Astrophysics Data System (ADS)

    Puskás, Irén.; Farsang, Andrea

    2010-05-01

    At the beginning of the 21st century, due to the intensive urbanization it is necessary to gather more and more information on altered physical, chemical and biological parameters of urban soils in order to ensure their suitable management and protection for appropriate living conditions. Nowadays, these measures are very relevant since negative environmental effects can modify the soil forming factors in cities. Szeged, the 4th largest city of Hungary, proved to be an ideal sampling area for the research of urban soils since its original surface has been altered by intensive anthropogenic activities. The main objectives of my research are the investigation, description and evaluation of the altered soils in Szeged. For the physical and chemical analysis (humus, nitrogen, carbonate content, heavy metals, pH, artefacts etc.) of soils 124 samples were taken from the horizons of 25 profiles in Szeged and its peripherals (as control samples). The profiles were sampled at sites affected by different extent of artificial infill according to infill maps (1. profiles fully made up of infill; 2. so-called mixed profiles consisting of considerable amount of infill material and buried soil horizons; 3. natural profiles located in the peripherals of the city). With the help of the above-mentioned parameters, the studied soils of Szeged were assigned into the classification system of WRB(2006), which classifies the soils of urban and industrial areas as an individual soil group (under the term Technosols) for the first time. In accordance with the WRB(2006) nomenclature three main soil types can be identified in Szeged with respect to the degree of human influence: profiles slightly influenced, strongly modified, completely altered by human activities. During this poster, we present the peculiarities of typical urban profiles strongly and completely altered by human influence. Most profiles were placed into the group of Technosols due to the considerable transformation of their diagnostic properties (e.g. coverage by artificial objects, intensive compaction, horizontal and vertical variability, abrupt colour and textural changes usually high amount of artefacts, irregular fluctuation of diagnostic properties along the profiles, anthropogenic parent material, high pH and carbonate content, poor humus quality, mainly sand, sandy loam texture etc.). Transformations were best reflected by suffixes such as Ekranic, Urbic, Linic. Among the suffix qualifiers Calcaric, Ruptic, Densic and Arenic were used the most frequently. Furthermore, we found that some of the studied profiles were not situated in the city centre. Consequently, the location of these profiles in the city centre is not necessary since local influences can overwhelm the effect of artificial infill. Considering all the profiles, two of them in city centre can be consider to be the most anthropogenic: profile No. 11 [Ekranic Technosol (Ruptic, Toxic, Endoclayic)] and profile No. 22 [Urbic Technosol (Calcaric, Ruptic, Densic, Arenic)]. It can be claimed that profile No. 11 with "technic hard rock" has the least chance to experience pedogenetic processes since the horizons are covered by thick, surface artificial object, and isolated from the outside world. However, in case of profile No. 22 with dense vegetation and without surface artificial object, the high amount of artefact inhibits pedogenesis.

  6. Capturing strain localization behind a geosynthetic-reinforced soil wall

    NASA Astrophysics Data System (ADS)

    Lai, Timothy Y.; Borja, Ronaldo I.; Duvernay, Blaise G.; Meehan, Richard L.

    2003-04-01

    This paper presents the results of finite element (FE) analyses of shear strain localization that occurred in cohesionless soils supported by a geosynthetic-reinforced retaining wall. The innovative aspects of the analyses include capturing of the localized deformation and the accompanying collapse mechanism using a recently developed embedded strong discontinuity model. The case study analysed, reported in previous publications, consists of a 3.5-m tall, full-scale reinforced wall model deforming in plane strain and loaded by surcharge at the surface to failure. Results of the analysis suggest strain localization developing from the toe of the wall and propagating upward to the ground surface, forming a curved failure surface. This is in agreement with a well-documented failure mechanism experienced by the physical wall model showing internal failure surfaces developing behind the wall as a result of the surface loading. Important features of the analyses include mesh sensitivity studies and a comparison of the localization properties predicted by different pre-localization constitutive models, including a family of three-invariant elastoplastic constitutive models appropriate for frictional/dilatant materials. Results of the analysis demonstrate the potential of the enhanced FE method for capturing a collapse mechanism characterized by the presence of a failure, or slip, surface through earthen materials.

  7. Plant-mediated effects on extracellular enzyme activities in distinct soil aggregate size classes in field

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Dorodnikov, Maxim; Splettstößer, Thomas; Kuzyakov, Yakov; Pausch, Johanna

    2017-04-01

    Soil aggregation and microbial activities within the aggregates are important factors regulating soil carbon (C) turnover. A reliable and sensitive proxy for microbial activity is activity of extracellular enzymes (EEA). In the present study, effects of soil aggregates on EEA were investigated under three maize plant densities (Low, Normal, and High). Bulk soil was fractionated into three aggregate size classes (>2000 µm large macroaggregates; 2000-250 µm small macroaggregates; <250 µm microaggregates) by optimal-moisture sieving. Microbial biomass and EEA (β-1,4-glucosidase (BG), β-1,4-N-acetylglucosaminidase (NAG), L-leucine aminopeptidase (LAP) and acid phosphatase (acP)) catalyzing soil organic matter (SOM) decomposition were measured in rooted soil of maize and soil from bare fallow. Microbial biomass C (Cmic) decreased with decreasing aggregate size classes. Potential and specific EEA (per unit of Cmic) increased from macro- to microaggregates. In comparison with bare fallow soil, specific EEA of microaggregates in rooted soil was higher by up to 73%, 31%, 26%, and 92% for BG, NAG, acP and LAP, respectively. Moreover, high plant density decreased macroaggregates by 9% compared to bare fallow. Enhanced EEA in three aggregate size classes demonstrated activation of microorganisms by roots. Strong EEA in microaggregates can be explained by microaggregates' localization within the soil. Originally adhering to surfaces of macroaggregates, microaggregates were preferentially exposed to C substrates and nutrients, thereby promoting microbial activity.

  8. Directional reflectance factors for monitoring spatial changes in soil surface structure and soil organic matter erosion in agricultural systems

    NASA Astrophysics Data System (ADS)

    Croft, H.; Anderson, K.

    2012-04-01

    Soils can experience rapid structural degradation in response to land cover changes, resulting in reduced soil productivity, increased erodibility and a loss of soil organic matter (SOM). The breakdown of soil aggregates through slaking and raindrop impact is linked to organic matter turnover, with subsequently eroded material often displaying proportionally more SOM. A reduction in aggregate stability is reflected in a decline in soil surface roughness (SSR), indicating that a soil structural change can be used to highlight soil vulnerability to SOM loss through mineralisation or erosion. Accurate, spatially-continuous measurements of SSR are therefore needed at a variety of spatial and temporal scales to understand the spatial nature of SOM erosion and deposition. Remotely-sensed data can provide a cost-effective means of monitoring changes in soil surface condition over broad spatial extents. Previous work has demonstrated the ability of directional reflectance factors to monitor soil crusting within a controlled laboratory experiment, due to changes in the levels of self-shadowing effects by soil aggregates. However, further research is needed to test this approach in situ, where other soil variables may affect measured reflectance factors and to investigate the use of directional reflectance factors for monitoring soil erosion processes. This experiment assesses the potential of using directional reflectance factors to monitor changes in SSR, aggregate stability and soil organic carbon (SOC) content for two agricultural conditions. Five soil plots representing tilled and seedbed soils were subjected to different durations of natural rainfall, producing a range of different levels of SSR. Directional reflectance factors were measured concomitantly with sampling for soil structural and biochemical tests at each soil plot. Soil samples were taken to measure aggregate stability (wet sieving), SOC (loss on ignition) and soil moisture (gravimetric method). SSM values varied from 8.70 to 20.05% and SOC from 1.33 to 1.05%, across all soil plots. Each plot was characterised using a close-range laser scanning device with a 2 mm sampling interval. The point laser data were geostatistically analysed to provide a spatially-distributed measure of SSR, giving sill variance values from 3.15 to 22.99. Reflectance factors from the soil states were measured using a ground-based hyperspectral spectroradiometer (400-2500 nm) attached to an A-frame device. This method allowed measurement at a range of viewing zenith angles from extreme forwardscatter (-60°) to extreme backscatter (+60°) at a 10° sampling resolution in the solar principal plane. Reflectance measurements were compared to geostatistically-derived indicators of SSR from the laser profile data. Forward-scattered reflectance factors exhibited a very strong relationship to SSR (R2 = 0.84 at -60°; p< 0.05), demonstrating the operational potential of directional reflectance for providing SSR measurements, despite conflicting variation in SSM. SSM also presented an interesting directional signal (R2 = 0.99 at +20°; p< 0.01). Furthermore, the results showed an important link between SRR decline as measured using directional reflectance, with a decline in aggregate stability and SOC content. These findings provide an empirical and theoretical basis for the future retrieval of spatially-continuous assessments of soil surface structure and carbon turnover within a landscape context.

  9. Differentiate responses of soil structure to natural vegetation and artificial plantation in landslide hazard region of the West Qinling Mountains, China

    NASA Astrophysics Data System (ADS)

    Wang, X.; Huang, Z.; Zhao, Y.; Hong, M.

    2017-12-01

    Natural vegetation and artificial plantation are the most important measures for ecological restoration in soil erosion and landslide hazard-prone regions of China. Previous studies have demonstrated that both measures can significantly change the soil structure and decrease soil and water erosion. Few reports have compared the effects of the two contrasting measures on mechanical and hydrological properties and further tested the differentiate responses of soil structure. In the study areas, two vegetation restoration measures-natural vegetation restoration (NVR) and artificial plantation restoration (APR) compared with control site, with similar topographical and geological backgrounds were selected to investigate the different effects on soil structure based on eight-year ecological restoration projects. The results showed that the surface vegetation played an important role in releasing soil erosion and enhance soil structure stability through change the soil aggregates (SA) and total soil porosity (TSP). The SA<0.25mm content in NVR (36.13%) was higher than that in APR (32.14%). The study indicated that SA and TSP were the principal components (PCs) related to soil structure variation. Soil organic carbon, soil water retention, clay and vegetation biomass were more strongly correlated with the PCs in NVR than those in APR. The study indicated that NVR was more beneficial for soil structure stability than APR. These findings will provide a theoretical basis for the decisions around reasonable land use for ecological restoration and conservation in geological hazard-prone regions.

  10. Soil moisture retrieval by active/passive microwave remote sensing data

    NASA Astrophysics Data System (ADS)

    Wu, Shengli; Yang, Lijuan

    2012-09-01

    This study develops a new algorithm for estimating bare surface soil moisture using combined active / passive microwave remote sensing on the basis of TRMM (Tropical Rainfall Measuring Mission). Tropical Rainfall Measurement Mission was jointly launched by NASA and NASDA in 1997, whose main task was to observe the precipitation of the area in 40 ° N-40 ° S. It was equipped with active microwave radar sensors (PR) and passive sensor microwave imager (TMI). To accurately estimate bare surface soil moisture, precipitation radar (PR) and microwave imager (TMI) are simultaneously used for observation. According to the frequency and incident angle setting of PR and TMI, we first need to establish a database which includes a large range of surface conditions; and then we use Advanced Integral Equation Model (AIEM) to calculate the backscattering coefficient and emissivity. Meanwhile, under the accuracy of resolution, we use a simplified theoretical model (GO model) and the semi-empirical physical model (Qp Model) to redescribe the process of scattering and radiation. There are quite a lot of parameters effecting backscattering coefficient and emissivity, including soil moisture, surface root mean square height, correlation length, and the correlation function etc. Radar backscattering is strongly affected by the surface roughness, which includes the surface root mean square roughness height, surface correlation length and the correlation function we use. And emissivity is differently affected by the root mean square slope under different polarizations. In general, emissivity decreases with the root mean square slope increases in V polarization, and increases with the root mean square slope increases in H polarization. For the GO model, we found that the backscattering coefficient is only related to the root mean square slope and soil moisture when the incident angle is fixed. And for Qp Model, through the analysis, we found that there is a quite good relationship between Qpparameter and root mean square slope. So here, root mean square slope is a parameter that both models shared. Because of its big influence to backscattering and emissivity, we need to throw it out during the process of the combination of GO model and Qp model. The result we obtain from the combined model is the Fresnel reflection coefficient in the normal direction gama(0). It has a good relationship with the soil dielectric constant. In Dobson Model, there is a detailed description about Fresnel reflection coefficient and soil moisture. With the help of Dobson model and gama(0) that we have obtained, we can get the soil moisture that we want. The backscattering coefficient and emissivity data used in combined model is from TRMM/PR, TMI; with this data, we can obtain gama(0); further, we get the soil moisture by the relationship of the two parameters-- gama(0) and soil moisture. To validate the accuracy of the retrieval soil moisture, there is an experiment conducted in Tibet. The soil moisture data which is used to validate the retrieval algorithm is from GAME-Tibet IOP98 Soil Moisture and Temperature Measuring System (SMTMS). There are 9 observing sites in SMTMS to validate soil moisture. Meanwhile, we use the SMTMS soil moisture data obtained by Time Domain Reflectometer (TDR) to do the validation. And the result shows the comparison of retrieval and measured results is very good. Through the analysis, we can see that the retrieval and measured results in D66 is nearly close; and in MS3608, the measured result is a little higher than retrieval result; in MS3637, the retrieval result is a little higher than measured result. According to the analysis of the simulation results, we found that this combined active and passive approach to retrieve the soil moisture improves the retrieval accuracy.

  11. Hydrology of two slopes in subarctic Yukon, Canada

    NASA Astrophysics Data System (ADS)

    Carey, Sean K.; Woo, Ming-Ko

    1999-11-01

    Two subarctic forested slopes in central Wolf Creek basin, Yukon, were studied in 1996-1997 to determine the seasonal pattern of the hydrologic processes. A south-facing slope has a dense aspen forest on silty soils with seasonal frost only and a north-facing slope has open stands of black spruce and an organic layer on top of clay sediments with permafrost. Snowmelt is advanced by approximately one month on the south-facing slope due to greater radiation receipt. Meltwater infiltrates its seasonally frozen soil with low ice content, recharging the soil moisture reservoir but yielding no lateral surface or subsurface flow. Summer evaporation depletes this recharged moisture and any additional rainfall input, at the expense of surface or subsurface flow. The north-facing slope with an ice rich substrate hinders deep percolation. Snow meltwater is impounded within the organic layer to produce surface runoff in rills and gullies, and subsurface flow along pipes and within the matrix of the organic soil. During the summer, most subsurface flows are confined to the organic layer which has hydraulic conductivities orders of magnitudes larger than the underlying boulder-clay. Evaporation on the north-facing slope declines as both the frost table and the water table descend in the summer. A water balance of the two slopes demonstrates that vertical processes of infiltration and evaporation dominate moisture exchanges on the south-facing slope, whereas the retardation of deep drainage by frost and by clayey soil on the permafrost slope promotes a strong lateral flow component, principally within the organic layer. These results have the important implication that permafrost slopes and organic horizons are the principal controls on streamflow generation in subarctic catchments.

  12. Non-point source pollution of glyphosate and AMPA in a rural basin from the southeast Pampas, Argentina.

    PubMed

    Okada, Elena; Pérez, Débora; De Gerónimo, Eduardo; Aparicio, Virginia; Massone, Héctor; Costa, José Luis

    2018-05-01

    We measured the occurrence and seasonal variations of glyphosate and its metabolite, aminomethylphosphonic acid (AMPA), in different environmental compartments within the limits of an agricultural basin. This topic is of high relevance since glyphosate is the most applied pesticide in agricultural systems worldwide. We were able to quantify the seasonal variations of glyphosate that result mainly from endo-drift inputs, that is, from direct spraying either onto genetically modified (GM) crops (i.e., soybean and maize) or onto weeds in no-till practices. We found that both glyphosate and AMPA accumulate in soil, but the metabolite accumulates to a greater extent due to its higher persistence. Knowing that glyphosate and AMPA were present in soils (> 93% of detection for both compounds), we aimed to study the dispersion to other environmental compartments (surface water, stream sediments, and groundwater), in order to establish the degree of non-point source pollution. Also, we assessed the relationship between the water-table depth and glyphosate and AMPA levels in groundwater. All of the studied compartments had variable levels of glyphosate and AMPA. The highest frequency of detections was found in the stream sediments samples (glyphosate 95%, AMPA 100%), followed by surface water (glyphosate 28%, AMPA 50%) and then groundwater (glyphosate 24%, AMPA 33%). Despite glyphosate being considered a molecule with low vertical mobility in soils, we found that its detection in groundwater was strongly associated with the month where glyphosate concentration in soil was the highest. However, we did not find a direct relation between groundwater table depth and glyphosate or AMPA detections. This is the first simultaneous study of glyphosate and AMPA seasonal variations in soil, groundwater, surface water, and sediments within a rural basin.

  13. Characteristics and functions of semi-desert soils in the Negev (Israel) depending on precipitation, relief and vegetation

    NASA Astrophysics Data System (ADS)

    Felde, V.; Drahorad, S.; Felix-Henningsen, P.

    2009-04-01

    The Negev desert in south western Israel has been the subject of several investigations concerning soil forming processes and matter fluxes in desert soils. In order to investigate the influence of the ‘global change' on semi-desert ecosystems, study sites along a steep rainfall gradient are of great advantage. The study site "Nizzana 69", which is in the focus of this study, lies about 25 km south of the Mediterranean Sea near the border between Israel and Egypt. The area has an annual rainfall of approximately 170 mm * a-1. A catena consisting of six profiles, three under the legume Retama raetam and three in the bare interspace between shrubs was investigated in order to show the impact of this perennial plant and the relief on soil properties. The results show a strong influence of the shrub due to accumulation of nutrients, carbonates and soluble salts, which were precipitated with dust and rainfall, or which derive from mineralisation of plant litter. The interspace between the plants is covered by a biological soil crust, which also strongly influences the matter fluxes by creating runoff, nitrogen-fixation and stabilizing the soil surface and protecting it against deflation. The distribution of salts and carbonates in the profiles indicate leaching processes. All soils of the study site "Nizzana 69" are weekly developed Arenosols without horizons of carbonate or salt enrichment to a depth of 1 m. The comparison with other areas along the rainfall gradient shows higher inputs of soluble salts with increasing precipitation due to wet deposition, while carbonate contents increase with decreasing precipitation due to deposition of dust, which was generated in the lime stone Negev. On the other hand leaching of soluble soil constituents decreases and accumulation in the upper soil horizon increases with decreasing annual precipitation. Furthermore the importance of local relief aspects for plant growth decreases with increasing rainfall.

  14. Quantifying the Interactions Between Soil Thermal Characteristics, Soil Physical Properties, Hydro-geomorphological Conditions and Vegetation Distribution in an Arctic Watershed

    NASA Astrophysics Data System (ADS)

    Dafflon, B.; Leger, E.; Robert, Y.; Ulrich, C.; Peterson, J. E.; Soom, F.; Biraud, S.; Tran, A. P.; Hubbard, S. S.

    2017-12-01

    Improving understanding of Arctic ecosystem functioning and parameterization of process-rich hydro-biogeochemical models require advances in quantifying ecosystem properties, from the bedrock to the top of the canopy. In Arctic regions having significant subsurface heterogeneity, understanding the link between soil physical properties (incl. fraction of soil constituents, bedrock depth, permafrost characteristics), thermal behavior, hydrological conditions and landscape properties is particularly challenging yet is critical for predicting the storage and flux of carbon in a changing climate. This study takes place in Seward Peninsula Watersheds near Nome AK and Council AK, which are characterized by an elevation gradient, shallow bedrock, and discontinuous permafrost. To characterize permafrost distribution where the top of permafrost cannot be easily identified with a tile probe (due to rocky soil and/or large thaw layer thickness), we developed a novel technique using vertically resolved thermistor probes to directly sense the temperature regime at multiple depths and locations. These measurements complement electrical imaging, seismic refraction and point-scale data for identification of the various thermal behavior and soil characteristics. Also, we evaluate linkages between the soil physical-thermal properties and the surface properties (hydrological conditions, geomorphic characteristics and vegetation distribution) using UAV-based aerial imaging. Data integration and analysis is supported by numerical approaches that simulate hydrological and thermal processes. Overall, this study enables the identification of watershed structure and the links between various subsurface and landscape properties in representative Arctic watersheds. Results show very distinct trends in vertically resolved soil temperature profiles and strong lateral variations over tens of meters that are linked to zones with various hydrological conditions, soil properties and vegetation types. The interaction between these zones is of strong interest to understand the evolution of the landscape and the permafrost distribution. The obtained information is expected to be useful for improving predictions of Arctic ecosystem feedbacks to climate.

  15. Evaluating of the spatial heterogeneity of soil loss tolerance and its effects on erosion risk in the carbonate areas of southern China

    NASA Astrophysics Data System (ADS)

    Li, Yue; Bai, Xiao Yong; Jie Wang, Shi; Qin, Luo Yi; Chao Tian, Yi; Jie Luo, Guang

    2017-05-01

    Soil loss tolerance (T value) is one of the criteria in determining the necessity of erosion control measures and ecological restoration strategy. However, the validity of this criterion in subtropical karst regions is strongly disputed. In this study, T value is calculated based on soil formation rate by using a digital distribution map of carbonate rock assemblage types. Results indicated a spatial heterogeneity and diversity in soil loss tolerance. Instead of only one criterion, a minimum of three criteria should be considered when investigating the carbonate areas of southern China because the one region, one T value concept may not be applicable to this region. T value is proportionate to the amount of argillaceous material, which determines the surface soil thickness of the formations in homogenous carbonate rock areas. Homogenous carbonate rock, carbonate rock intercalated with clastic rock areas and carbonate/clastic rock alternation areas have T values of 20, 50 and 100 t/(km2 a), and they are extremely, severely and moderately sensitive to soil erosion. Karst rocky desertification (KRD) is defined as extreme soil erosion and reflects the risks of erosion. Thus, the relationship between T value and erosion risk is determined using KRD as a parameter. The existence of KRD land is unrelated to the T value, although this parameter indicates erosion sensitivity. Erosion risk is strongly dependent on the relationship between real soil loss (RL) and T value rather than on either erosion intensity or the T value itself. If RL > > T, then the erosion risk is high despite of a low RL. Conversely, if T > > RL, then the soil is safe although RL is high. Overall, these findings may clarify the heterogeneity of T value and its effect on erosion risk in a karst environment.

  16. Biochar in vineyards: impact on soil quality and crop yield four years after the application

    NASA Astrophysics Data System (ADS)

    Ferreira, Carla; Verheijen, Frank; Puga, João; Keizer, Jacob; Ferreira, António

    2017-04-01

    Biochar is a recalcitrant organic carbon compound, created by biomass heating at high temperatures (300-1000°C) under low oxygen concentrations. Biochar application to agricultural soils has received increasing attention over the last years, due to its climate change mitigation and adaptation potential and reported improved soil properties and functions relevant to agronomic and environmental performance. Reported impacts are linked with increased cation exchange capacity, enhanced nutrient and water retention, and positive influences on soil microbial communities, which influence crop yields. Nevertheless, few studies have focused on mid-to-long term impacts of biochar application. This study investigated the impact of biochar on soil quality and crop yield four years after biochar application in a vineyard in North-Central Portugal. The site has a Mediterranean climate with a strong Atlantic Ocean influence, with mean annual rainfall and temperature of 1100 mm and 15°C, respectively. The soil is a relatively deep ( 80cm) sandy loam Cambisol, with gentle slopes (3°). The experimental design included three treatments: (i) control, without biochar; (ii) high biochar application rate (40 ton/ha); and (iii) biochar compost (40 ton/ha, 10% biochar). Three plots per treatment (2m×3m) were installed in March 2012, using a mini-rotavator (0-15cm depth). In May 2016, soil quality was also assessed through soil surveys and sampling. Penetration resistance was performed at the soil surface with a pocket penetrometer, and soil surface sampling rings were used for bulk density analyses (100 cm3). Bulked soil samples (0-30 cm) were collected in each plot for aggregate stability, microbial biomass (by chloroform fumigation extraction) and net mineralization rate (through photometric determination of non-incubated and incubated samples). Decomposition rate and litter stabilisation was assessed over a 3-month period through the Tea Bag Index (Keuskamp et al., 2013). The number, type and biomass of earthworms was recorded in each plot, at the soil surface (through excavation, 30cm×30cm×30cm) and sub-surface (using a mustard-tap water solution in the excavated hole). Crop yield was evaluated during harvesting (August 2016), through the number and weight of grape clusters. The potential impact of biochar on grape quality was investigated by total acidity, pH, potential alcoholic strength and total sugar in must analyses. Four years after the application, plots with high biochar showed lowest soil resistance, slightly lower bulk density, higher crop yield and must quality, than control plots. However, the soil of biochar plots also displayed slightly lower aggregate stability, microbial biomass, number and biodiversity of earthworms, although higher net-N mineralization, decomposition rate and litter stabilization. Plots with biochar and compost showed lowest earthworms, decomposition rate and litter stabilization, but highest crop yield that the other two treatments. Nevertheless, minor differences between three treatment plots suggest that potential impacts of biochar on soil quality and crop yield may persist during a relatively short period.

  17. The impact of in-canopy wind profile formulations on heat flux estimation in an open orchard using the remote sensing-based two-source model

    NASA Astrophysics Data System (ADS)

    Cammalleri, C.; Anderson, M. C.; Ciraolo, G.; Durso, G.; Kustas, W. P.; La Loggia, G.; Minacapilli, M.

    2010-12-01

    For open orchard and vineyard canopies containing significant fractions of exposed soil (>50%), typical of Mediterranean agricultural regions, the energy balance of the vegetation elements is strongly influenced by heat exchange with the bare soil/substrate. For these agricultural systems a "two-source" approach, where radiation and turbulent exchange between the soil and canopy elements are explicitly modelled, appears to be the only suitable methodology for reliably assessing energy fluxes. In strongly clumped canopies, the effective wind speed profile inside and below the canopy layer can strongly influence the partitioning of energy fluxes between the soil and vegetation components. To assess the impact of in-canopy wind profile on model flux estimates, an analysis of three different formulations is presented, including algorithms from Goudriaan (1977), Massman (1987) and Lalic et al. (2003). The in-canopy wind profile formulations are applied to the thermal-based two-source energy balance (TSEB) model developed by Norman et al. (1995) and modified by Kustas and Norman (1999). High resolution airborne remote sensing images, collected over an agricultural area located in the western part of Sicily (Italy) comprised primarily of vineyards, olive and citrus orchards, are used to derive all the input parameters needed to apply the TSEB. The images were acquired from June to October 2008 and include a relatively wide range of meteorological and soil moisture conditions. A preliminary sensitivity analysis of the three wind profile algorithms highlights the dependence of wind speed just above the soil/substrate to leaf area index and canopy height over the typical range of canopy properties encountered in these agricultural areas. It is found that differences among the models in wind just above the soil surface are most significant under sparse and medium fractional cover conditions (15-50%). The TSEB model heat flux estimates are compared with micro-meteorological measurements from a small aperture scintillometer and an eddy covariance tower collected over an olive orchard characterized by moderate fractional vegetation cover (≍35%) and relatively tall crop (≍3.5 m). TSEB fluxes for the 7 image acquisition dates generated using both the Massman and Goudriaan in-canopy wind profile formulations give close agreement with measured fluxes, while the Lalic et al. equations yield poor results. The Massman wind profile scheme slightly outperforms that of Goudriaan, but it requires an additional parameter accounting for the roughness sub-layer of the underlying vegetative surface. The analysis also suggests that within-canopy wind profile model discrepancies become important, in terms of impact on modelled sensible heat flux, only for sparse canopies with moderate vegetation coverage.

  18. Theoretical considerations of soil retention. [dirtying of solar energy devices

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.

    1980-01-01

    The performance of solar energy devices is adversely affected by surface soiling, and generally, the loss of performance increases with increases in the quantity of soil retained on their surfaces. To minimize performance losses caused by soiling, solar devices should not only be deployed in low soiling geographical areas, but employ surfaces or surfacing materials having low affinity for soil retention, maximum susceptibility to be naturally cleaned by wind, rain and snow, and to be readily cleanable by simple and inexpensive maintenance cleaning techniques. This article describes known and postulated mechanisms of soil retention on surfaces, and infers from these mechanisms that low soiling and easily cleanable surfaces should have low surface energy, and be hard, smooth, hydrophobic and chemically clean of sticky materials and water soluble salts.

  19. Silicic acid competes for dimethylarsinic acid (DMA) immobilization by the iron hydroxide plaque mineral goethite.

    PubMed

    Kersten, Michael; Daus, Birgit

    2015-03-01

    A surface complexation modeling approach was used to extend the knowledge about processes that affect the availability of dimethylarsinic acid (DMA) in the soil rhizosphere in presence of a strong sorbent, e.g., Fe plaques on rice roots. Published spectroscopic and molecular modeling information suggest for the organoarsenical agent to form bidentate-binuclear inner-sphere surface complexes with Fe hydroxides similar to the inorganic As oxyanions. However, since also the ubiquitous silicic acid oxyanion form the same bidentate binuclear surface complexes, our hypothesis was that it may have an effect on the adsorption of DMA by Fe hydroxides in soil. Our experimental batch equilibrium data show that DMA is strongly adsorbed in the acidic pH range, with a steep adsorption edge in the circumneutral pH region between the DMA acidity constant (pKa=6.3) and the point of zero charge value of the goethite adsorbent (pHpzc=8.6). A 1-pK CD-MUSIC surface complexation model was chosen to fit the experimental adsorption vs. pH data. The same was done for silicic acid batch equilibrium data with our goethite adsorbent. Both model parameters for individual DMA and silicic acid adsorption were then merged into one CD-MUSIC model to predict the binary DMA+Si adsorption behavior. Silicic acid (500 μM) was thus predicted by the model to strongly compete for DMA with up to 60% mobilization of the latter at a pH6. This model result could be verified subsequently by experimental batch equilibrium data with zero adjustable parameters. The thus quantified antagonistic relation between DMA and silicic acid is discussed as one of factors to explain the increase of the DMA proportion in rice grains as observed upon silica fertilization of rice fields. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Heavy metals in Iberian soils: Removal by current adsorbents/amendments and prospective for aerogels.

    PubMed

    Vareda, João P; Valente, Artur J M; Durães, Luisa

    2016-11-01

    Heavy metals are dangerous pollutants that in spite of occurring naturally are released in major amounts to the environment due to anthropogenic activities. After being released in the environment, the heavy metals end up in the soils where they accumulate as they do not degrade, adversely affecting the biota. Because of the dynamic equilibria between soil constituents, the heavy metals may be present in different phases such as the solid phase (immobilized contaminants) or dissolved in soil solution. The latter form is the most dangerous because the ions are mobile, can leach and be absorbed by living organisms. Different methods for the decontamination of polluted soils have been proposed and they make use of two different approaches: mobilizing the heavy metals, which allows their removal from soil, or immobilization that maintains the metal concentrations in soils but keeps them in an inert form due to mechanisms like precipitation, complexation or adsorption. Mobilization of the heavy metals is known to cause leaching and increase plant uptake, so this treatment can cause greater problems. Aerogels are incredible nanostructured, lightweight materials with high surface area and tailorable surface chemistry. Their application in environmental cleaning has been increasing in recent years and very promising results have been obtained. The functionalization of the aerogels can give them the ability to interact with heavy metals, retaining the latter via strong adsorptive interactions. Thus, this review surveys the existing literature for remediation of soils using an immobilization approach, i.e. with soil amendments that increase the soil sorption/retention capacity for heavy metals. The considered framework was a set of heavy metals with relevance in polluted Iberian soils, namely Cd, Cr, Cu, Ni, Pb and Zn. Moreover, other adsorbents, especially aerogels, have been used for the removal of these contaminants from aqueous media; because groundwater and soil solution have dynamic equilibria with the soil solid phase, these works allowed to draw conclusions and perspectives for the use of aerogels not only as adsorbents in aqueous media but also as amendments for the remediation of heavy metal polluted soils. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Estimating Thermal Inertia with a Maximum Entropy Boundary Condition

    NASA Astrophysics Data System (ADS)

    Nearing, G.; Moran, M. S.; Scott, R.; Ponce-Campos, G.

    2012-04-01

    Thermal inertia, P [Jm-2s-1/2K-1], is a physical property the land surface which determines resistance to temperature change under seasonal or diurnal heating. It is a function of volumetric heat capacity, c [Jm-3K-1], and thermal conductivity, k [Wm-1K-1] of the soil near the surface: P=√ck. Thermal inertia of soil varies with moisture content due the difference between thermal properties of water and air, and a number of studies have demonstrated that it is feasible to estimate soil moisture given thermal inertia (e.g. Lu et al, 2009, Murray and Verhoef, 2007). We take the common approach to estimating thermal inertia using measurements of surface temperature by modeling the Earth's surface as a 1-dimensional homogeneous diffusive half-space. In this case, surface temperature is a function of the ground heat flux (G) boundary condition and thermal inertia and a daily value of P was estimated by matching measured and modeled diurnal surface temperature fluctuations. The difficulty is in measuring G; we demonstrate that the new maximum entropy production (MEP) method for partitioning net radiation into surface energy fluxes (Wang and Bras, 2011) provides a suitable boundary condition for estimating P. Adding the diffusion representation of heat transfer in the soil reduces the number of free parameters in the MEP model from two to one, and we provided a sensitivity analysis which suggests that, for the purpose of estimating P, it is preferable to parameterize the coupled MEP-diffusion model by the ratio of thermal inertia of the soil to the effective thermal inertia of convective heat transfer to the atmosphere. We used this technique to estimate thermal inertia at two semiarid, non-vegetated locations in the Walnut Gulch Experimental Watershed in southeast AZ, USA and compared these estimates to estimates of P made using the Xue and Cracknell (1995) solution for a linearized ground heat flux boundary condition, and we found that the MEP-diffusion model produced superior thermal inertia estimates. The MEP-diffusion estimates also agreed well with P estimates made using a boundary condition measured with buried flux plates. We further demonstrated the new method using diurnal surface temperature fluctuations estimated from day/night MODIS image pairs and, excluding instances where the soil was extremely dry, found a strong relationship between estimated thermal inertia and measured 5 cm soil moisture. Lu, S., Ju, Z.Q., Ren, T.S. & Horton, R. (2009). A general approach to estimate soil water content from thermal inertia. Agricultural and Forest Meteorology, 149, 1693-1698. Murray, T. & Verhoef, A. (2007). Moving towards a more mechanistic approach in the determination of soil heat flux from remote measurements - I. A universal approach to calculate thermal inertia. Agricultural and Forest Meteorology, 147, 80-87. Wang, J.F. & Bras, R.L. (2011). A model of evapotranspiration based on the theory of maximum entropy production. Water Resources Research, 47. Xue, Y. & Cracknell, A.P. (1995). Advanced thermal inertia modeling. International Journal of Remote Sensing, 16, 431-446.

  2. Feedbacks Between Topographic Stress and Drainage Basin Evolution

    NASA Astrophysics Data System (ADS)

    Perron, J.; Martel, S. J.; Singha, K.; Slim, M. I.

    2013-12-01

    Theoretical calculations imply that stresses produced by gravity acting on topography may be large enough in some scenarios to fracture rock. Predicted stress fields beneath ridges and valleys can differ dramatically, which has led several authors to hypothesize feedbacks between topographic stress, rock fracture and landscape evolution. However, there have been few attempts to explore these feedbacks. We use a coupled model to identify possible feedbacks between topographic stress and drainage basin evolution. The domain is a cross-section of a valley consisting of a bedrock channel and adjacent soil-mantled hillslopes. The bedrock surface evolves due to channel incision, soil production, and rock uplift, and soil thickness evolves due to soil production and transport. Plane stresses at and below the bedrock surface are calculated with a boundary element method that accounts for both ambient tectonic stress and topographic stress. We assume that the stress field experienced by rock as it is exhumed influences the likelihood that it will develop fractures, which make the rock more susceptible to weathering, disaggregation and erosion. A measure of susceptibility to shear fracture, the most likely failure mode under regional compression, serves as a proxy for rock damage. We couple the landscape evolution model to the stress model by assuming that rock damage accelerates the rates of soil production and channel incision, with two endmember cases: rates scale with the magnitude of the damage proxy at the bedrock surface, or with cumulative damage acquired during rock exhumation. The stress-induced variations in soil production and channel incision alter the soil thickness and topography, which in turn alter the stress field. Comparing model simulations with and without these feedbacks, we note several predicted consequences of topographic stress for drainage basin evolution. Rock damage is typically focused at or near the foot of hillslopes, which creates thicker soils near the valley bottom than near the ridgetop. This gradient in soil thickness is largest, and the thickest soil furthest downslope, if most rock damage is assumed to occur near the surface. Ambient tectonic stress also has a strong effect on hillslopes, with more compressive horizontal stress steepening the soil thickness gradient and displacing the thickest soil farther downslope. Rock damage in the valley bottom scales with valley depth, creating a positive feedback between relief and channel incision. This produces higher relief during transient channel incision, but steady-state relief is insensitive to stress effects because the positive feedback is limited by reduction of the channel slope. However, the fact that valleys are typically deepest in the middle of a drainage basin implies that channel profiles will be more concave if stresses enhance channel incision. Observational tests of these qualitative predictions will help evaluate the significance of suspected feedbacks between topographic stress and landscape evolution.

  3. Collective Structural Changes in Vermiculite Clay Suspensions Induced by Cesium Ions

    NASA Astrophysics Data System (ADS)

    Motokawa, Ryuhei; Endo, Hitoshi; Yokoyama, Shingo; Nishitsuji, Shotaro; Kobayashi, Tohru; Suzuki, Shinichi; Yaita, Tsuyoshi

    2014-10-01

    Following the Fukushima Daiichi nuclear disaster in 2011, Cs radioisotopes have been dispersed over a wide area. Most of the Cs has remained on the surface of the soil because Cs+ is strongly adsorbed in the interlayer spaces of soil clays, particularly vermiculite. We have investigated the microscopic structure of an aqueous suspension of vermiculite clay over a wide length scale (1-1000 Å) by small-angle X-ray scattering. We determined the effect of the adsorption behavior of Cs+ on the structural changes in the clay. It was found that the abruption of the clay sheets was induced by the localization of Cs+ at the interlayer. This work provides important information for predicting the environmental fate of radioactive Cs in polluted areas, and for developing methods to extract Cs from the soil and reduce radioactivity.

  4. Measuring surface energy and evapotranspiration across Caribbean mangrove forests

    NASA Astrophysics Data System (ADS)

    Lagomasino, D.; Fatoyinbo, T. E.; Price, R.

    2014-12-01

    Coastal mangroves lose large amounts of water through evapotranspiration (ET) that can be equivalent to the amount of annual rainfall in certain years. Satellite remote sensing has been used to estimate surface energy and ET variability in many forested ecosystems, yet has been widely overlooked in mangrove forests. Using a combination of long-term datasets (30-year) acquired from the NASA Landsat 5 and 7 satellite databases, the present study investigated ET and surface energy balance variability between two mangrove forest sites in the Caribbean: 1) Everglades National Park (ENP; Florida, USA) and 2) Sian Ka'an Biosphere Reserve (SKBR; Quintana Roo, Mexico). A satellite-derived surface energy balance model was used to estimate ET in tall and scrub mangroves environments at ENP and SKBR. Results identified significant differences in soil heat flux measurements and ET between the tall and scrub mangrove environments. Scrub mangroves exhibited the highest soil heat flux coincident with the lowest biophysical indices (i.e., Fractional Vegetation Cover, Normalized Difference Vegetation Index, and Soil-Adjusted Vegetation Index) and ET rates. Mangrove damage and mortality was observed on the satellite images following strong tropical storms and associated with anthropogenic modifications and resulted in low values in spectral vegetation indices, higher soil heat flux, and higher ET. Recovery of the spectral characteristics, soil heat flux and ET was within 1-2 years following hurricane disturbance while, degradation caused by human disturbance persisted for many years. Remotely sensed ET of mangrove forests can provide estimates over a few decades and provide us with some understanding of how these environments respond to disturbances to the landscape in periods where no ground data exists or in locations that are difficult to access. Moreover, relationships between energy and water balance components developed for the coastal mangroves of Florida and Mexico could be extrapolated to other mangroves systems in the Caribbean to measure changes caused by natural events and human modifications.

  5. Dissecting the Hydrobiogeochemical Box

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Alves Meira Neto, A.; Sengupta, A.; Root, R. A.; Dontsova, K.; Troch, P. A. A.; Chorover, J.

    2015-12-01

    Soil genesis is a coupled hydrologic and biogeochemical process that involves the interaction of weathering rock surfaces and water. Due to strong nonlinear coupling, it is extremely difficult to predict biogeochemical changes from hydrological modeling in natural field systems. A fully controlled and monitored system with known initial conditions could be utilized to isolate variables and simplify these natural processes. To investigate the initial weathering of host rock to soil, we employed a 10° sloping soil lysimeter containing one cubic meter of crushed and homogenized basaltic rock. A major experiment of the Periodic Tracer Hierarchy (PERTH) method (Harman and Kim, 2014) coupled with its bonus experiment were performed in the past two years. These experimental applications successfully described the transit-time distribution (TTD) of a tracer-enriched water breakthrough curve in this unique hydrological system (Harman, 2015). With intensive irrigation and high volume of water storage throughout the experiments, rapid biological changes have been observed on the soil surface, such as algal and grass growth. These observations imply that geochemical hotspots may be established within the soil lysimeter. To understand the detailed 2D spatial distribution of biogeochemical changes, 100 selected and undisturbed soil blocks, among a total 1000 sub-gridded equal sized, are tested with several geochemical tools. Each selected soil block was subjected to elemental analysis by pXRF to determine if elemental migration is detectable in the dynamic proto-soil development. Synchrotron XRD quantification with Reitveld refinement will follow to clarify mineralogical transformations in the soil blocks. The combined techniques aim to confirm the development of geochemical hotspots; and link these findings with previous hydrological findings from the PERTH experiment as well as other hydrological modeling, such as conducted with Hydrus and CATHY. This work provides insight to the detailed correlations between hydrological and biogeochemical processes during incipient soil formation, as well as aiding the development of advanced tools and methods to study complex Earth-system dynamics.

  6. Hillslope Soils and Life (Invited)

    NASA Astrophysics Data System (ADS)

    Amundson, R.; Owen, J. J.; Heimsath, A. M.; Yoo, K.; Dietrich, W. E.

    2013-12-01

    That hillslope processes are impacted by biology has been long understood, but the complexities of the abiotic-biotic processes and their feedbacks are quantitatively emerging with the growing body of pertinent literature. The concept that plants modulate both the disaggregation and transport of soil particles on hillslopes was clearly articulated by G.K. Gilbert. Yet earlier, James Hutton (starting from very different intellectual boundary conditions) argued that soil, which results from the dynamic balance of rock destruction and removal, is a prerequisite for plants - a concept that underscores the need to more deeply examine the feedback of geomorphic processes on terrestrial ecosystems. We compiled the results of recent studies that have been conducted on gentle convex hillslopes across a broad range of rainfall. We found that vegetated landscapes appear to have strong controls on hillslope soil thickness, landscape denudation rates, and soil residence times. The restricted range in residence times - despite large differences in climate - appear in turn to sustain relatively high levels of both nitrogen (N) and phosphorus (P) fertility, suggesting ecological resilience and resistance to non-anthropogenic environmental perturbations. At the most arid end of Earth's climate vegetation disappears, but not all water. The loss of plants shifts soil erosion to abiotic processes, with a corresponding thinning or loss of the soil mantle. This reinforces the hypothesis that a planet without vegetation, but with a hydrologic cycle, would be largely devoid of soil-mantled hillslopes and would be driven toward hillslope morphologies that differ from the familiar convex-up forms of biotic landscapes. While our synthesis of the effects of vegetation on soil production and soil thickness provides a quantitative view of the suggestions of Gilbert, it also identifies that vegetation itself responds to the geomorphic processes, as believed by Hutton. There is a complex interplay between physical and biological processes on the Earth's surface that requires further elucidation in order to fully understand the ramifications of further climatic and physical alteration of our planet's surface.

  7. Coupled nitrogen and calcium cycles in forests of the Oregon Coast Range

    USGS Publications Warehouse

    Perakis, S.S.; Maguire, D.A.; Bullen, T.D.; Cromack, K.; Waring, R.H.; Boyle, J.R.

    2006-01-01

    Nitrogen (N) is a critical limiting nutrient that regulates plant productivity and the cycling of other essential elements in forests. We measured foliar and soil nutrients in 22 young Douglas-fir stands in the Oregon Coast Range to examine patterns of nutrient availability across a gradient of N-poor to N-rich soils. N in surface mineral soil ranged from 0.15 to 1.05% N, and was positively related to a doubling of foliar N across sites. Foliar N in half of the sites exceeded 1.4% N, which is considered above the threshold of N-limitation in coastal Oregon Douglas-fir. Available nitrate increased five-fold across this gradient, whereas exchangeable magnesium (Mg) and calcium (Ca) in soils declined, suggesting that nitrate leaching influences base cation availability more than soil parent material across our sites. Natural abundance strontium isotopes (87Sr/86Sr) of a single site indicated that 97% of available base cations can originate from atmospheric inputs of marine aerosols, with negligible contributions from weathering. Low annual inputs of Ca relative to Douglas-fir growth requirements may explain why foliar Ca concentrations are highly sensitive to variations in soil Ca across our sites. Natural abundance calcium isotopes (??44Ca) in exchangeable and acid leachable pools of surface soil measured at a single site showed 1 per mil depletion relative to deep soil, suggesting strong Ca recycling to meet tree demands. Overall, the biogeochemical response of these Douglas-fir forests to gradients in soil N is similar to changes associated with chronic N deposition in more polluted temperate regions, and raises the possibility that Ca may be deficient on excessively N-rich sites. We conclude that wide gradients in soil N can drive non-linear changes in base-cation biogeochemistry, particularly as forests cross a threshold from N-limitation to N-saturation. The most acute changes may occur in forests where base cations are derived principally from atmospheric inputs. ?? 2006 Springer Science+Business Media, Inc.

  8. Role of Biotic and Abiotic Processes on Soil CO2 Dynamics in the McMurdo Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    Risk, D. A.; Macintyre, C. M.; Lee, C.; Cary, C.; Shanhun, F.; Almond, P. C.

    2016-12-01

    In the harsh conditions of the Antarctic Dry Valleys, microbial activity has been recorded via measurements of soil carbon dioxide (CO2) concentration and surface efflux. However, high temporal resolution studies in the Dry Valleys have also shown that abiotic solubility-driven processes can strongly influence (and perhaps even dominate) the CO2 dynamics in these low flux environments and suggests that biological activity may be lower than previously thought. In this study, we aim to improve our understanding of CO2 dynamics (biotic and abiotic) in Antarctic Dry Valley soils using long-term automated measurements of soil CO2 surface flux and soil profile concentration at several sites, often at sub-diel frequency. We hypothesize that soil CO2 variations are driven primarily by environmental factors affecting CO2 solubility in soil solution, mainly temperature, and that these processes may even overprint biologic production in representative Dry Valley soils. Monitoring of all sites revealed only one likely biotic CO2 production event, lasting three weeks during the Austral summer and reaching fluxes of 0.4 µmol/m2/s. Under more typical low flux conditions (<0.10 µmol/m2/s) we observed a cyclical daily sink/source pattern consistent with CO2 solubility cycling that would not generally have been evident with normal synoptic afternoon sampling campaigns. Subsurface CO2 monitoring and a lab-controlled Antarctic soil simulation experiment confirmed that abiotic processes are capable of dominating soil CO2 variability. Diel temperature cycles crossing the freezing boundary revealed a dual abiotic cycle of solubility cycling and gas exclusion from ice formation observed only by high temporal frequency measurements (30 min). This work demonstrates a need for a numerical model to partition the dynamic abiotic processes underlying any biotic CO2 production in order to understand potential climate-change induced increases in microbial productivity in terrestrial Antarctica.

  9. Changes in microbial communities along redox gradients in polygonized Arctic wet tundra soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipson, David A.; Raab, Theodore K.; Parker, Melanie

    2015-08-01

    Summary This study investigated how microbial community structure and diversity varied with depth and topography in ice wedge polygons of wet tundra of the Arctic Coastal Plain in northern Alaska and what soil variables explain these patterns. We observed strong changes in community structure and diversity with depth, and more subtle changes between areas of high and low topography, with the largest differences apparent near the soil surface. These patterns are most strongly correlated with redox gradients (measured using the ratio of reduced Fe to total Fe in acid extracts as a proxy): conditions grew more reducing with depth andmore » were most oxidized in shallow regions of polygon rims. Organic matter and pH also changed with depth and topography but were less effective predictors of the microbial community structure and relative abundance of specific taxa. Of all other measured variables, lactic acid concentration was the best, in combination with redox, for describing the microbial community. We conclude that redox conditions are the dominant force in shaping microbial communities in this landscape. Oxygen and other electron acceptors allowed for the greatest diversity of microbes: at depth the community was reduced to a simpler core of anaerobes,« less

  10. Soil fertility in deserts: a review on the influence of biological soil crusts and the effect of soil surface disturbance on nutrient inputs and losses

    USGS Publications Warehouse

    Reynolds, R.; Phillips, S.; Duniway, M.; Belnap, J.

    2003-01-01

    Sources of desert soil fertility include parent material weathering, aeolian deposition, and on-site C and N biotic fixation. While parent materials provide many soil nutrients, aeolian deposition can provide up to 75% of plant-essential nutrients including N, P, K, Mg, Na, Mn, Cu, and Fe. Soil surface biota are often sticky, and help retain wind-deposited nutrients, as well as providing much of the N inputs. Carbon inputs are from both plants and soil surface biota. Most desert soils are protected by cyanobacterial-lichen-moss soil crusts, chemical crusts and/or desert pavement. Experimental disturbances applied in US deserts show disruption of soil surfaces result in decreased N and C inputs from soil biota by up to 100%. The ability to glue aeolian deposits in place is compromised, and underlying soils are exposed to erosion. The ability to withstand wind increases with biological and physical soil crust development. While most undisturbed sites show little sediment production, disturbance by vehicles or livestock produce up to 36 times more sediment production, with soil movement initiated at wind velocities well below commonly-occurring wind speeds. Soil fines and flora are often concentrated in the top 3 mm of the soil surface. Winds across disturbed areas can quickly remove this material from the soil surface, thereby potentially removing much of current and future soil fertility. Thus, disturbances of desert soil surfaces can both reduce fertility inputs and accelerate fertility losses.

  11. Kalman filters for assimilating near-surface observations into the Richards equation - Part 2: A dual filter approach for simultaneous retrieval of states and parameters

    NASA Astrophysics Data System (ADS)

    Medina, H.; Romano, N.; Chirico, G. B.

    2014-07-01

    This study presents a dual Kalman filter (DSUKF - dual standard-unscented Kalman filter) for retrieving states and parameters controlling the soil water dynamics in a homogeneous soil column, by assimilating near-surface state observations. The DSUKF couples a standard Kalman filter for retrieving the states of a linear solver of the Richards equation, and an unscented Kalman filter for retrieving the parameters of the soil hydraulic functions, which are defined according to the van Genuchten-Mualem closed-form model. The accuracy and the computational expense of the DSUKF are compared with those of the dual ensemble Kalman filter (DEnKF) implemented with a nonlinear solver of the Richards equation. Both the DSUKF and the DEnKF are applied with two alternative state-space formulations of the Richards equation, respectively differentiated by the type of variable employed for representing the states: either the soil water content (θ) or the soil water matric pressure head (h). The comparison analyses are conducted with reference to synthetic time series of the true states, noise corrupted observations, and synthetic time series of the meteorological forcing. The performance of the retrieval algorithms are examined accounting for the effects exerted on the output by the input parameters, the observation depth and assimilation frequency, as well as by the relationship between retrieved states and assimilated variables. The uncertainty of the states retrieved with DSUKF is considerably reduced, for any initial wrong parameterization, with similar accuracy but less computational effort than the DEnKF, when this is implemented with ensembles of 25 members. For ensemble sizes of the same order of those involved in the DSUKF, the DEnKF fails to provide reliable posterior estimates of states and parameters. The retrieval performance of the soil hydraulic parameters is strongly affected by several factors, such as the initial guess of the unknown parameters, the wet or dry range of the retrieved states, the boundary conditions, as well as the form (h-based or θ-based) of the state-space formulation. Several analyses are reported to show that the identifiability of the saturated hydraulic conductivity is hindered by the strong correlation with other parameters of the soil hydraulic functions defined according to the van Genuchten-Mualem closed-form model.

  12. Timing and magnitude of C partitioning through a young loblolly pine ( Pinus taeda L.) stand using 13C labeling and shade treatments

    DOE PAGES

    Warren, Jeffrey M.; Iversen, Colleen M.; Garten, Jr., Charles T.; ...

    2011-12-30

    The dynamics of rapid changes in carbon (C) partitioning within forest ecosystems are not well understood, which limits improvement of mechanistic models of C cycling. Our objective was to inform model processes by describing relationships between C partitioning and accessible environmental or physiological measurements, with a special emphasis on short-term C flux through a forest ecosystem. We exposed eight 7-year-old loblolly pine ( Pinus taeda L.) trees to air enriched with 13CO 2 and then implemented adjacent light shade (LS) and heavy shade (HS) treatments in order to manipulate C uptake and flux. The impacts of shading on photosynthesis, plantmore » water potential, sap flow, basal area growth, root growth, and soil CO 2 efflux rate (CER) were assessed for each tree over a three-week period. The progression of the 13C label was concurrently tracked from the atmosphere through foliage, phloem, roots, and surface soil CO 2 efflux. The HS treatment significantly reduced C uptake, sap flow, stem growth and fine root standing crop, and resulted in greater residual soil water content to 1 m depth. Sap flow was strongly correlated with CER on the previous day, but not the current day, with no apparent treatment effect on the relationship. Although there were apparent reductions in new C flux belowground, the heavy shade treatment did not noticeably reduce the magnitude of belowground autotrophic and heterotrophic respiration based on surface soil CO 2 efflux rate (CER), which was overwhelmingly driven by soil temperature and moisture. The 13C label was immediately detected in foliage on label day (half-life = 0.5 d), progressed through phloem by day 2 (half-life = 4.7 d), roots by day 2-4, and subsequently was evident as respiratory release from soil which peaked between days 3-6. The δ 13C of soil CO 2 efflux was strongly correlated with phloem 13C on the previous day, or two days earlier. While the 13C label was readily tracked through the ecosystem, the fate of root C through respiratory, mycorrhizal or exudative release pathways were not assessed. Lastly, these data detail the timing and relative magnitude of C flux through various components of a young pine stand in relation to environmental conditions.« less

  13. Linking precipitation, evapotranspiration and soil moisture content for the improvement of predictability over land

    NASA Astrophysics Data System (ADS)

    Catalano, Franco; Alessandri, Andrea; De Felice, Matteo

    2013-04-01

    Climate change scenarios are expected to show an intensification of the hydrological cycle together with modifications of evapotranspiration and soil moisture content. Evapotranspiration changes have been already evidenced for the end of the 20th century. The variance of evapotranspiration has been shown to be strongly related to the variance of precipitation over land. Nevertheless, the feedbacks between evapotranspiration, soil moisture and precipitation have not yet been completely understood at present-day. Furthermore, soil moisture reservoirs are associated to a memory and thus their proper initialization may have a strong influence on predictability. In particular, the linkage between precipitation and soil moisture is modulated by the effects on evapotranspiration. Therefore, the investigation of the coupling between these variables appear to be of primary importance for the improvement of predictability over the continents. The coupled manifold (CM) technique (Navarra and Tribbia 2005) is a method designed to separate the effects of the variability of two variables which are connected. This method has proved to be successful for the analysis of different climate fields, like precipitation, vegetation and sea surface temperature. In particular, the coupled variables reveal patterns that may be connected with specific phenomena, thus providing hints regarding potential predictability. In this study we applied the CM to recent observational datasets of precipitation (from CRU), evapotranspiration (from GIMMS and MODIS satellite-based estimates) and soil moisture content (from ESA) spanning a time period of 23 years (1984-2006) with a monthly frequency. Different data stratification (monthly, seasonal, summer JJA) have been employed to analyze the persistence of the patterns and their characteristical time scales and seasonality. The three variables considered show a significant coupling among each other. Interestingly, most of the signal of the evapotranspiration-precipitation coupled terms comes from the summer (JJA), when convective motions increase sensitivity to surface conditions over land. The CM analysis of the response of evapotranspiration to soil moisture allowed a characterization of the robustness of the coupling between these two variables which has been identified as a key requirement for precipitation predictability (Koster et al. 2000). References Navarra, A., and J. Tribbia (2005), The coupled manifold, J. Atmos. Sci., 62, 310-330. Koster, R. D., M. J. Suarez, and M. Heiser (2000), Variance and predictability of precipitation at seasonal-to-interannual timescales, J. Hydrometeor., 1, 26-46.

  14. Using Remote Sensing Platforms to Estimate Near-Surface Soil Properties

    NASA Technical Reports Server (NTRS)

    Sullivan, D. G.; Shaw, J. N.; Rickman, D.; Mask, P. L.; Wersinger, J. M.; Luvall, J.

    2003-01-01

    Evaluation of near-surface soil properties via remote sensing (RS) could facilitate soil survey mapping, erosion prediction, fertilization regimes, and allocation of agrochemicals. The objective of this study was to evaluate the relationship between soil spectral signature and near surface soil properties in conventionally managed row crop systems. High resolution RS data were acquired over bare fields in the Coastal Plain, Appalachian Plateau, and Ridge and Valley provinces of Alabama using the Airborne Terrestrial Applications Sensor (ATLAS) multispectral scanner. Soils ranged from sandy Kandiudults to fine textured Rhodudults. Surface soil samples (0-1 cm) were collected from 163 sampling points for soil water content, soil organic carbon (SOC), particle size distribution (PSD), and citrate dithionite extractable iron (Fed) content. Surface roughness, soil water content, and crusting were also measured at sampling. Results showed RS data acquired from lands with less than 4 % surface soil water content best approximated near-surface soil properties at the Coastal Plain site where loamy sand textured surfaces were predominant. Utilizing a combination of band ratios in stepwise regression, Fed (r2 = 0.61), SOC (r2 = 0.36), sand (r2 = 0.52), and clay (r2 = 0.76) were related to RS data at the Coastal Plain site. In contrast, the more clayey Ridge and Valley soils had r-squares of 0.50, 0.36, 0.17, and 0.57. for Fed, SOC, sand and clay, respectively. Use of estimated eEmissivity did not generally improve estimates of near-surface soil attributes.

  15. Modeling the Soil Water and Energy Balance of a Mixed Grass Rangeland and Evaluating a Soil Water Based Drought Index in Wyoming

    NASA Astrophysics Data System (ADS)

    Engda, T. A.; Kelleners, T. J.; Paige, G. B.

    2013-12-01

    Soil water content plays an important role in the complex interaction between terrestrial ecosystems and the atmosphere. Automated soil water content sensing is increasingly being used to assess agricultural drought conditions. A one-dimensional vertical model that calculates incoming solar radiation, canopy energy balance, surface energy balance, snow pack dynamics, soil water flow, snow-soil heat exchange is applied to calculate water flow and heat transport in a Rangeland soil located near Lingel, Wyoming. The model is calibrated and validated using three years of measured soil water content data. Long-term average soil water content dynamics are calculated using a 30 year historical data record. The difference between long-term average soil water content and observed soil water content is compared with plant biomass to evaluate the usefulness of soil water content as a drought indicator. Strong correlation between soil moisture surplus/deficit and plant biomass may prove our hypothesis that soil water content is a good indicator of drought conditions. Soil moisture based drought index is calculated using modeled and measured soil water data input and is compared with measured plant biomass data. A drought index that captures local drought conditions proves the importance of a soil water monitoring network for Wyoming Rangelands to fill the gap between large scale drought indices, which are not detailed enough to assess conditions at local level, and local drought conditions. Results from a combined soil moisture monitoring and computer modeling, and soil water based drought index soil are presented to quantify vertical soil water flow, heat transport, historical soil water variations and drought conditions in the study area.

  16. Biological soil crusts exhibit a dynamic response to seasonal rain and release from grazing with implications for soil stability

    USGS Publications Warehouse

    Jimenez, Aguilar A.; Huber-Sannwald, E.; Belnap, J.; Smart, D.R.; Arredondo, Moreno J.T.

    2009-01-01

    In Northern Mexico, long-term grazing has substantially degraded semiarid landscapes. In semiarid systems, ecological and hydrological processes are strongly coupled by patchy plant distribution and biological soil crust (BSC) cover in plant-free interspaces. In this study, we asked: 1) how responsive are BSC cover/composition to a drying/wetting cycle and two-year grazing removal, and 2) what are the implications for soil erosion? We characterized BSC morphotypes and their influence on soil stability under grazed/non-grazed conditions during a dry and wet season. Light- and dark-colored cyanobacteria were dominant at the plant tussock and community level. Cover changes in these two groups differed after a rainy season and in response to grazing removal. Lichens with continuous thalli were more vulnerable to grazing than those with semi-continuous/discontinuous thalli after the dry season. Microsites around tussocks facilitated BSC colonization compared to interspaces. Lichen and cyanobacteria morphotypes differentially enhanced resistance to soil erosion; consequently, surface soil stability depends on the spatial distribution of BSC morphotypes, suggesting soil stability may be as dynamic as changes in the type of BSC cover. Longer-term spatially detailed studies are necessary to elicit spatiotemporal dynamics of BSC communities and their functional role in biotically and abiotically variable environments. ?? 2009 Elsevier Ltd.

  17. Induced polarization for characterizing and monitoring soil stabilization processes

    NASA Astrophysics Data System (ADS)

    Saneiyan, S.; Ntarlagiannis, D.; Werkema, D. D., Jr.

    2017-12-01

    Soil stabilization is critical in addressing engineering problems related to building foundation support, road construction and soil erosion among others. To increase soil strength, the stiffness of the soil is enhanced through injection/precipitation of a chemical agents or minerals. Methods such as cement injection and microbial induced carbonate precipitation (MICP) are commonly applied. Verification of a successful soil stabilization project is often challenging as treatment areas are spatially extensive and invasive sampling is expensive, time consuming and limited to sporadic points at discrete times. The geophysical method, complex conductivity (CC), is sensitive to mineral surface properties, hence a promising method to monitor soil stabilization projects. Previous laboratory work has established the sensitivity of CC on MICP processes. We performed a MICP soil stabilization projects and collected CC data for the duration of the treatment (15 days). Subsurface images show small, but very clear changes, in the area of MICP treatment; the changes observed fully agree with the bio-geochemical monitoring, and previous laboratory experiments. Our results strongly suggest that CC is sensitive to field MICP treatments. Finally, our results show that good quality data alone are not adequate for the correct interpretation of field CC data, at least when the signals are low. Informed data processing routines and the inverse modeling parameters are required to produce optimal results.

  18. Occurrence of glyphosate and AMPA in an agricultural watershed from the southeastern region of Argentina.

    PubMed

    Lupi, Leonardo; Miglioranza, Karina S B; Aparicio, Virginia C; Marino, Damian; Bedmar, Francisco; Wunderlin, Daniel A

    2015-12-01

    Glyphosate (GLY) and AMPA concentrations were determined in sandy soil profiles, during pre- and post-application events in two agricultural soybean fields (S1 and S2). Streamwater and sediment samples were also analyzed. Post-application sampling was carried out one month later from the event. Concentrations of GLY+AMPA in surface soils (0-5 cm depth) during pre-application period showed values 20-fold higher (0.093-0.163 μg/g d.w.) than control area (0.005 μg/g d.w.). After application event soils showed markedly higher pesticide concentrations. A predominance of AMPA (80%) was observed in S1 (early application), while 34% in S2 for surface soils. GLY+AMPA concentrations decreased with depth and correlated strongly with organic carbon (r between 0.74 and 0.88, p<0.05) and pH (r between -0.81 and -0.76, p<0.001). The slight enrichment of pesticides observed from 25 cm depth to deeper layer, in addition to the alkaline pH along the profile, is of high concern about groundwater contamination. Sediments from pre-application period showed relatively lower pesticide levels (0.0053-0.0263 μg/g d.w.) than surface soil with a predominance of glyphosate, indicating a limited degradation. Levels of contaminants (mainly AMPA) in streamwater (ND-0.5 ng/mL) denote the low persistence of these compounds. However, a direct relationship in AMPA concentration was observed between sediment and streamwater. Despite the known relatively short half-life of glyphosate in soils, GLY+AMPA occurrence is registered in almost all matrices at different sampling times (pre- and post-application events). The physicochemical characteristics (organic carbon, texture, pH) and structure of soils and sediment in addition to the time elapsed from application determined the behavior of these contaminants in the environment. As a whole, the results warn us about vertical transport trough soil profile with the possibility of reaching groundwater. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Coupled Land Surface-Subsurface Hydrogeophysical Inverse Modeling to Estimate Soil Organic Carbon Content in an Arctic Tundra

    NASA Astrophysics Data System (ADS)

    Tran, A. P.; Dafflon, B.; Hubbard, S.

    2017-12-01

    Soil organic carbon (SOC) is crucial for predicting carbon climate feedbacks in the vulnerable organic-rich Arctic region. However, it is challenging to achieve this property due to the general limitations of conventional core sampling and analysis methods. In this study, we develop an inversion scheme that uses single or multiple datasets, including soil liquid water content, temperature and ERT data, to estimate the vertical profile of SOC content. Our approach relies on the fact that SOC content strongly influences soil hydrological-thermal parameters, and therefore, indirectly controls the spatiotemporal dynamics of soil liquid water content, temperature and their correlated electrical resistivity. The scheme includes several advantages. First, this is the first time SOC content is estimated by using a coupled hydrogeophysical inversion. Second, by using the Community Land Model, we can account for the land surface dynamics (evapotranspiration, snow accumulation and melting) and ice/liquid phase transition. Third, we combine a deterministic and an adaptive Markov chain Monte Carlo optimization algorithm to better estimate the posterior distributions of desired model parameters. Finally, the simulated subsurface variables are explicitly linked to soil electrical resistivity via petrophysical and geophysical models. We validate the developed scheme using synthetic experiments. The results show that compared to inversion of single dataset, joint inversion of these datasets significantly reduces parameter uncertainty. The joint inversion approach is able to estimate SOC content within the shallow active layer with high reliability. Next, we apply the scheme to estimate OC content along an intensive ERT transect in Barrow, Alaska using multiple datasets acquired in the 2013-2015 period. The preliminary results show a good agreement between modeled and measured soil temperature, thaw layer thickness and electrical resistivity. The accuracy of estimated SOC content will be evaluated by comparison with measurements from soil samples along the transect. Our study presents a new surface-subsurface, deterministic-stochastic hydrogeophysical inversion approach, as well as the benefit of including multiple types of data to estimate SOC and associated hydrological-thermal dynamics.

  20. Biological soil crusts: a fundamental organizing agent in global drylands

    NASA Astrophysics Data System (ADS)

    Belnap, J.; Zhang, Y.

    2013-12-01

    Ecosystem function is profoundly affected by plant community composition, which is ultimately determined by factors that govern seed retention. Dryland ecosystems constitute ~35% of terrestrial surfaces, with most soils in these regions covered by biological soil crusts (biocrusts), a community whose autotrophs are dominated by cyanobacteria, lichens, and mosses. Studies at 550 sites revealed that plant community composition was controlled by the interaction among biocrust type, disturbance regime, and external morphology of seeds. In bare soils (due to disturbance), all seed types were present in the seedbank and plant community. As biocrusts became better developed (i.e., the cover of lichens and mosses increased), they more strongly filtered out seeds with appendages. Thus, soils under late successional biocrusts contained seedbanks dominated by smooth seeds and vascular plants growing in late successional biocrusts were dominated by those with smooth seeds. Therefore, the tension between the removal of biocrusts by soil surface disturbance and their recovery creates a shifting mosaic of plant patch types in both space and time. Because changes in vascular plant communities reverberate throughout both below ground and above ground food webs and thus affect multiple trophic levels, we propose that biocrusts are a fundamental organizing agent in drylands worldwide. Future increased demand for resources will intensify land use both temporally and spatially, resulting in an increased rate of biocrust loss across larger areas. As a result, we can expect shifts in the composition and distribution of plant communities, accompanied by concomitant changes in many aspects of dryland ecosystems. Conceptual model of shifting dryland plant mosaics through space and time. Within the large circles, soil surface type changes with time in the same space, going from bare uncrusted soil (B) to cyanobacterial biocrust (C) to lichen/moss (L/M) biocrust. Disturbance (D) drives the cycle back towards U, and recovery (R) drives it towards L/M. Larger disturbances and dispersal of biocrust organisms among the larger circles result in mosaics that shift in space as well. The bar chart shows the proportion of smooth (left side) and rough (right side) seeds under different crust types.

  1. Understanding Decreases in Land Relative Humidity with Global Warming: Conceptual Model and GCM Simulations

    NASA Astrophysics Data System (ADS)

    Byrne, Michael P.; O'Gorman, Paul A.

    2016-12-01

    Climate models simulate a strong land-ocean contrast in the response of near-surface relative humidity to global warming: relative humidity tends to increase slightly over oceans but decrease substantially over land. Surface energy balance arguments have been used to understand the response over ocean but are difficult to apply over more complex land surfaces. Here, a conceptual box model is introduced, involving moisture transport between the land and ocean boundary layers and evapotranspiration, to investigate the decreases in land relative humidity as the climate warms. The box model is applied to idealized and full-complexity (CMIP5) general circulation model simulations, and it is found to capture many of the features of the simulated changes in land relative humidity. The box model suggests there is a strong link between fractional changes in specific humidity over land and ocean, and the greater warming over land than ocean then implies a decrease in land relative humidity. Evapotranspiration is of secondary importance for the increase in specific humidity over land, but it matters more for the decrease in relative humidity. Further analysis shows there is a strong feedback between changes in surface-air temperature and relative humidity, and this can amplify the influence on relative humidity of factors such as stomatal conductance and soil moisture.

  2. The Evolution and Development of the Lunar Regolith and Implications for Lunar Surface Operations and Construction

    NASA Technical Reports Server (NTRS)

    McKay, David

    2009-01-01

    The lunar regolith consists of about 90% submillimeter particles traditionally termed lunar soil. The remainder consists of larger particles ranging up to boulder size rocks. At the lower size end, soil particles in the 10s of nanometer sizes are present in all soil samples. Lunar regolith overlies bedrock which consists of either lava flows in mare regions or impact-produced megaregolith in highland regions. Lunar regolith has been produced over billions of years by a combination of breaking and communition of bedrock by meteorite bombardment coupled with a variety of complex space weathering processes including solar wind implantation, solar flare and cosmic ray bombardment with attendant radiation damage, melting, vaporization, and vapor condensation driven by impact, and gardening and turnover of the resultant soil. Lunar regolith is poorly sorted compared to most terrestrial soils, and has interesting engineering properties including strong grain adhesion, over-compacted soil density, an abundance of agglutinates with sharp corners, and a variety of properties related to soil maturity. The NASA program has supported a variety of engineering test research projects, the production of bricks by solar or microwave sintering, the production of concrete, the in situ sintering and glazing of regolith by microwave, and the extraction of useful resources such as oxygen, hydrogen, iron, aluminum, silicon and other products. Future requirements for a lunar surface base or outpost will include construction of protective berms, construction of paved roadways, construction of shelters, movement and emplacement of regolith for radiation shielding and thermal control, and extraction of useful products. One early need is for light weight but powerful digging, trenching, and regolith-moving equipment.

  3. Porewater biogeochemistry and soil metabolism in dwarf red mangrove habitats (Twin Cays, Belize)

    USGS Publications Warehouse

    Lee, R.Y.; Porubsky, W.P.; Feller, Ilka C.; McKee, K.L.; Joye, S.B.

    2008-01-01

    Seasonal variability in biogeochemical signatures was used to elucidate the dominant pathways of soil microbial metabolism and elemental cycling in an oligotrophic mangrove system. Three interior dwarf mangrove habitats (Twin Cays, Belize) where surface soils were overlain by microbial mats were sampled during wet and dry periods of the year. Porewater equilibration meters and standard biogeochemical methods provided steady-state porewater profiles of pH, chloride, sulfate, sulfide, ammonium, nitrate/nitrite, phosphate, dissolved organic carbon, nitrogen, and phosphorus, reduced iron and manganese, dissolved inorganic carbon, methane and nitrous oxide. During the wet season, the salinity of overlying pond water and shallow porewaters decreased. Increased rainwater infiltration through soils combined with higher tidal heights appeared to result in increased organic carbon inventories and more reducing soil porewaters. During the dry season, evaporation increased both surface water and porewater salinities, while lower tidal heights resulted in less reduced soil porewaters. Rainfall strongly influenced inventories of dissolved organic carbon and nitrogen, possibly due to more rapid decay of mangrove litter during the wet season. During both times of year, high concentrations of reduced metabolites accumulated at depth, indicating substantial rates of organic matter mineralization coupled primarily to sulfate reduction. Nitrous oxide and methane concentrations were supersaturated indicating considerable rates of nitrification and/or incomplete denitrification and methanogenesis, respectively. More reducing soil conditions during the wet season promoted the production of reduced manganese. Contemporaneous activity of sulfate reduction and methanogenesis was likely fueled by the presence of noncompetitive substrates. The findings indicate that these interior dwarf areas are unique sites of nutrient and energy regeneration and may be critical to the overall persistence and productivity of mangrove-dominated islands in oligotrophic settings. ?? 2008 Springer Science+Business Media B.V.

  4. Composition and molecular scale structure of nanophases formed by precipitation of biotite weathering products

    NASA Astrophysics Data System (ADS)

    Tamrat, Wuhib Zewde; Rose, Jérôme; Grauby, Olivier; Doelsch, Emmanuel; Levard, Clément; Chaurand, Perrine; Basile-Doelsch, Isabelle

    2018-05-01

    Because of their large surface area and reactivity, nanometric-size soil mineral phases have a high potential for soil organic matter stabilization, contaminant sorption or soil aggregation. In the literature, Fe and Al phases have been the main targets of batch-synthesized nanomineral studies while nano-aluminosilicates (Al and Si phases) have been mainly studied in Andic soils. In the present work, we synthesized secondary nanophases of Fe, Al and Si. To simulate a system as close as possible to soil conditions, we conducted laboratory simulations of the processes of (1) biotite alteration in acidic conditions producing a Al Si Fe Mg K leachate solution and (2) the following neoformation of secondary nanophases by titrating the leachate solution to pH 4.2, 5 and 7. The morphology of the nanophases, their size, crystallinity and chemistry were characterized by TEM-EDX on single particles and their local atomic structure by EXAFS (Extended X-ray Absorption Fine Structure) at the Fe absorption K-edge. The main nanophases formed were amorphous particles 10-60 nm in size whose composition (dominated by Fe and Si) was strongly controlled by the pH conditions at the end of the titration. At pH 4.2 and pH 7, the structure of the nanophases was dominated by the polymerization of Fe, which was hindered by Al, Si, Mg and K. Conversely, at pH 5, the polymerization of Fe was counteracted by precipitation of high amounts of Si. The synthetized nanophases were estimated to be rather analogous to nanophases formed in natural biotite-bearing soils. Because of their small size and potential high surface reactivity, the adsorption capacities of these nanophases with respect to the OM should be revisited in the framework of soil C storage.

  5. Assessing the seasonality and uncertainty in evapotranspiration partitioning using a tracer-aided model

    NASA Astrophysics Data System (ADS)

    Smith, A. A.; Welch, C.; Stadnyk, T. A.

    2018-05-01

    Evapotranspiration (ET) partitioning is a growing field of research in hydrology due to the significant fraction of watershed water loss it represents. The use of tracer-aided models has improved understanding of watershed processes, and has significant potential for identifying time-variable partitioning of evaporation (E) from ET. A tracer-aided model was used to establish a time-series of E/ET using differences in riverine δ18O and δ2H in four northern Canadian watersheds (lower Nelson River, Manitoba, Canada). On average E/ET follows a parabolic trend ranging from 0.7 in the spring and autumn to 0.15 (three watersheds) and 0.5 (fourth watershed) during the summer growing season. In the fourth watershed wetlands and shrubs dominate land cover. During the summer, E/ET ratios are highest in wetlands for three watersheds (10% higher than unsaturated soil storage), while lowest for the fourth watershed (20% lower than unsaturated soil storage). Uncertainty of the ET partition parameters is strongly influenced by storage volumes, with large storage volumes increasing partition uncertainty. In addition, higher simulated soil moisture increases estimated E/ET. Although unsaturated soil storage accounts for larger surface areas in these watersheds than wetlands, riverine isotopic composition is more strongly affected by E from wetlands. Comparisons of E/ET to measurement-intensive studies in similar ecoregions indicate that the methodology proposed here adequately partitions ET.

  6. Production of herbicide-resistant transgenic Panax ginseng through the introduction of the phosphinothricin acetyl transferase gene and successful soil transfer.

    PubMed

    Choi, Y E; Jeong, J H; In, J K; Yang, D C

    2003-02-01

    Herbicide-resistant transgenic Panax ginseng plants were produced by introducing the phosphinothricin acetyl transferase (PAT) gene that confers resistance to the herbicide Basta (bialaphos) through Agrobacterium tumefaciens co-cultivation. Embryogenic callus gathered from cotyledon explants of P. ginseng were pre-treated with 0.5 M sucrose or 0.05 M MgSO(4 )before Agrobacterium infection. This pre-treatment process markedly enhanced the transient expression of the beta-glucuronidase (GUS) gene. Embryogenic callus was initially cultured on MS medium supplemented with 400 mg/l cefotaxime for 3 weeks and subsequently subcultured five times to a medium containing 25 mg/l kanamycin and 300 mg/l cefotaxime. Somatic embryos formed on the surfaces of kanamycin-resistant callus. Upon development into the cotyledonary stage, these somatic embryos were transferred to a medium containing 50 mg/l kanamycin and 5 mg/l gibberellic acid to induce germination and strong selection. Integration of the transgene into the plants was confirmed by polymerase chain reaction and Southern analyses. Transfer of the transgenic ginseng plantlets to soil was successfully accomplished via acclimatization in autoclaved perlite. Not all of the plantlets survived in soil that had not been autoclaved because of fungal infection, particularly in the region between the roots and leaves. Transgenic plants growing in soil were observed to be strongly resistant to Basta application.

  7. Microstrip transmission line for soil moisture measurement

    NASA Astrophysics Data System (ADS)

    Chen, Xuemin; Li, Jing; Liang, Renyue; Sun, Yijie; Liu, C. Richard; Rogers, Richard; Claros, German

    2004-12-01

    Pavement life span is often affected by the amount of voids in the base and subgrade soils, especially moisture content in pavement. Most available moisture sensors are based on the capacitive sensing using planar blades. Since the planar sensor blades are fabricated on the same surface to reduce the overall size of the sensor, such structure cannot provide very high accuracy for moisture content measurement. As a consequence, a typical capacitive moisture sensor has an error in the range of 30%. A more accurate measurement is based on the time domain refelctometer (TDR) measurement. However, typical TDR system is fairly expensive equipment, very large in size, and difficult to operate, the moisture content measurement is limited. In this paper, a novel microstrip transmission line based moisture sensor is presented. This sensor uses the phase shift measurement of RF signal going through a transmission line buried in the soil to be measured. Since the amplitude of the transmission measurement is a strong function of the conductivity (loss of the media) and the imaginary part of dielectric constant, and the phase is mainly a strong function of the real part of the dielectric constant, measuring phase shift in transmission mode can directly obtain the soil moisture information. This sensor was designed and implemented. Sensor networking was devised. Both lab and field data show that this sensor is sensitive and accurate.

  8. Detecting surface runoff location in a small catchment using distributed and simple observation method

    NASA Astrophysics Data System (ADS)

    Dehotin, Judicaël; Breil, Pascal; Braud, Isabelle; de Lavenne, Alban; Lagouy, Mickaël; Sarrazin, Benoît

    2015-06-01

    Surface runoff is one of the hydrological processes involved in floods, pollution transfer, soil erosion and mudslide. Many models allow the simulation and the mapping of surface runoff and erosion hazards. Field observations of this hydrological process are not common although they are crucial to evaluate surface runoff models and to investigate or assess different kinds of hazards linked to this process. In this study, a simple field monitoring network is implemented to assess the relevance of a surface runoff susceptibility mapping method. The network is based on spatially distributed observations (nine different locations in the catchment) of soil water content and rainfall events. These data are analyzed to determine if surface runoff occurs. Two surface runoff mechanisms are considered: surface runoff by saturation of the soil surface horizon and surface runoff by infiltration excess (also called hortonian runoff). The monitoring strategy includes continuous records of soil surface water content and rainfall with a 5 min time step. Soil infiltration capacity time series are calculated using field soil water content and in situ measurements of soil hydraulic conductivity. Comparison of soil infiltration capacity and rainfall intensity time series allows detecting the occurrence of surface runoff by infiltration-excess. Comparison of surface soil water content with saturated water content values allows detecting the occurrence of surface runoff by saturation of the soil surface horizon. Automatic records were complemented with direct field observations of surface runoff in the experimental catchment after each significant rainfall event. The presented observation method allows the identification of fast and short-lived surface runoff processes at a small spatial and temporal resolution in natural conditions. The results also highlight the relationship between surface runoff and factors usually integrated in surface runoff mapping such as topography, rainfall parameters, soil or land cover. This study opens interesting prospects for the use of spatially distributed measurement for surface runoff detection, spatially distributed hydrological models implementation and validation at a reasonable cost.

  9. Analysis of soil hydraulic and thermal properties for land surface modeling over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhao, Hong; Zeng, Yijian; Lv, Shaoning; Su, Zhongbo

    2018-06-01

    Soil information (e.g., soil texture and porosity) from existing soil datasets over the Tibetan Plateau (TP) is claimed to be inadequate and even inaccurate for determining soil hydraulic properties (SHP) and soil thermal properties (STP), hampering the understanding of the land surface process over TP. As the soil varies across three dominant climate zones (i.e., arid, semi-arid and subhumid) over the TP, the associated SHP and STP are expected to vary correspondingly. To obtain an explicit insight into the soil hydrothermal properties over the TP, in situ and laboratory measurements of over 30 soil property profiles were obtained across the climate zones. Results show that porosity and SHP and STP differ across the climate zones and strongly depend on soil texture. In particular, it is proposed that gravel impact on porosity and SHP and STP are both considered in the arid zone and in deep layers of the semi-arid zone. Parameterization schemes for porosity, SHP and STP are investigated and compared with measurements taken. To determine the SHP, including soil water retention curves (SWRCs) and hydraulic conductivities, the pedotransfer functions (PTFs) developed by Cosby et al. (1984) (for the Clapp-Hornberger model) and the continuous PTFs given by Wösten et al. (1999) (for the Van Genuchten-Mualem model) are recommended. The STP parameterization scheme proposed by Farouki (1981) based on the model of De Vries (1963) performed better across the TP than other schemes. Using the parameterization schemes mentioned above, the uncertainties of five existing regional and global soil datasets and their derived SHP and STP over the TP are quantified through comparison with in situ and laboratory measurements. The measured soil physical properties dataset is available at https://data.4tu.nl/repository/uuid:c712717c-6ac0-47ff-9d58-97f88082ddc0.

  10. Biological soil crusts in deserts: A short review of their role in soil fertility, stabilization, and water relations

    USGS Publications Warehouse

    Belnap, Jayne

    2003-01-01

    Cyanobacteria and cyanolichens dominate most desert soil surfaces as the major component of biological soil crusts (BSC). BSCs contribute to soil fertility in many ways. BSC can increase weathering of parent materials by up to 100 times. Soil surface biota are often sticky, and help retain dust falling on the soil surface; this dust provides many plant-essential nutrients including N, P, K, Mg, Na, Mn, Cu, and Fe. BSCs also provide roughened soil surfaces that slow water runoff and aid in retaining seeds and organic matter. They provide inputs of newly-fixed carbon and nitrogen to soils. They are essential in stabilizing soil surfaces by linking soil particles together with filamentous sheaths, enabling soils to resist both water and wind erosion. These same sheaths are important in keeping soil nutrients from becoming bound into plant-unavailable forms. Experimental disturbances applied in US deserts show soil surface impacts decrease N and C inputs from soil biota by up to 100%. The ability to hold aeolian deposits in place is compromised, and underlying soils are exposed to erosion. While most undisturbed sites show little sediment production, disturbance by vehicles or livestock produces up to 36 times more sediment production, with soil movement initiated at wind velocities well below commonly-occurring wind speeds. Winds across disturbed areas can quickly remove this material from the soil surface, thereby potentially removing much of current and future soil fertility. Thus, reduction in the cover of cyanophytes in desert soils can both reduce fertility inputs and accelerate fertility losses.

  11. Human Effects and Soil Surface CO2 fluxes in Tropical Urban Green Areas, Singapore

    NASA Astrophysics Data System (ADS)

    Ng, Bernard; Gandois, Laure; Kai, Fuu Ming; Chua, Amy; Cobb, Alex; Harvey, Charles; Hutyra, Lucy

    2013-04-01

    Urban green spaces are appreciated for their amenity value, with increasing interest in the ecosystem services they could provide (e.g. climate amelioration and increasingly as possible sites for carbon sequestration). In Singapore, turfgrass occupies approximately 20% of the total land area and is readily found on both planned and residual spaces. This project aims at understanding carbon fluxes in tropical urban green areas, including controls of soil environmental factors and the effect of urban management techniques. Given the large pool of potentially labile carbon, management regimes are recognised to have an influence on soil environmental factors (temperature and moisture), this would affect soil respiration and feedbacks to the greenhouse effect. A modified closed dynamic chamber method was employed to measure total soil respiration fluxes. In addition to soil respiration rates, environmental factors such as soil moisture and temperature, and ambient air temperature were monitored for the site in an attempt to evaluate their control on the observed fluxes. Measurements of soil-atmosphere CO2 exchanges are reported for four experimental plots within the Singtel-Kranji Radio Transmission Station (103o43'49E, 1o25'53N), an area dominated by Axonopus compressus. Different treatments such as the removal of turf, and application of clippings were effected as a means to determine the fluxes from the various components (respiration of soil and turf, and decomposition of clippings), and to explore the effects of human intervention on observed effluxes. The soil surface CO2 fluxes observed during the daylight hours ranges from 2.835 + 0.772 umol m-2 s-1 for the bare plot as compared to 6.654 + 1.134 umol m-2 s-1 for the turfed plot; this could be attributed to both autotrophic and heterotrophic respiration. Strong controls of both soil temperature and soil moisture are observed on measured soil fluxes. On the base soils, fluxes were positively correlated to soil temperature and negatively to soil moisture. Above the grass, fluxes are negatively correlated soil temperature and positively to soil moisture. The measured values will be combined to carbon stock evaluation in the different compartments to assess carbon budget for green area under different grass management in Singapore.

  12. Metsulfuron-methyl sorption/desorption behavior on volcanic ash-derived soils. effect of phosphate and pH.

    PubMed

    Cáceres, Lizethly; Fuentes, Roxana; Escudey, Mauricio; Fuentes, Edwar; Báez, María E

    2010-06-09

    Metsulfuron-methyl sorption/desorption behavior was studied through batch sorption experiments in three typical volcanic ash-derived soils belonging to Andisol and Ultisol orders. Their distinctive physical and chemical properties are acidic pH and variable surface charge. Organic matter content and mineral composition affected in different ways sorption of metsulfuron-methyl (K(OC) ranging from 113 to 646 mL g(-1)): organic matter and iron and aluminum oxides mainly through hydrophilic rather than hydrophobic interactions in Andisols, and Kaolinite group minerals, as major constituents of Ultisols, and iron and aluminum oxides only through hydrophilic interactions. The Freundlich model described metsulfuron-methyl behavior in all cases (R(2) > 0.992). K(f) values (3.1-14.4 microg(1-1/n) mL(1/n) g(-1)) were higher than those reported for different class of soils including some with variable charge. Hysteresis was more significant in Ultisols. A strong influence of pH and phosphate was established for both kinds of soil, intensive soil fertilization and liming being the most probable scenario for leaching of metsulfuron-methyl, particularly in Ultisols.

  13. Exploring functional relationships between post-fire soil water repellency, soil structure and physico-chemical properties

    NASA Astrophysics Data System (ADS)

    Quarfeld, Jamie; Brook, Anna; Keestra, Saskia; Wittenberg, Lea

    2016-04-01

    Soil water repellency (WR) and aggregate stability (AS) are two soil properties that are typically modified after burning and impose significant influence on subsequent hydrological and geomorphological dynamics. The response of AS and soil WR to fire depends upon how fire has influenced other key soil properties (e.g. soil OM, mineralogy). Meanwhile, routine thinning of trees and woody vegetation may alter soil properties (e.g. structure and porosity, wettability) by use of heavy machinery and species selection. The study area is situated along a north-facing slope of Mount Carmel national park (Israel). The selected sites are presented as a continuum of management intensity and fire histories. To date, the natural baseline of soil WR has yet to be thoroughly assessed and must be investigated alongside associated soil aggregating parameters in order to understand its overall impact. This study examines (i) the natural baseline of soil WR and physical properties compared to those of disturbed sites in the immediate (controlled burn) and long-term (10-years), and (ii) the interactions of soil properties with different control factors (management, surface cover, seasonal-temporal, burn temperature, soil organic carbon (OC) and mineralogy) in Mediterranean calcareous soils. Analysis of surface soil samples before and after destruction of WR by heating (200-600°C) was implemented using a combination of traditional methods and infrared (IR) spectroscopy. Management and surface cover type conditioned the wettability, soil structure and porosity of soils in the field, although this largely did not affect the heat-induced changes observed in the lab. A positive correlation was observed along an increasing temperature gradient, with relative maxima of MWD and BD reached by most soils at the threshold of 400-500°C. Preliminary analyses of soil OC (MIR) and mineralogical composition (VIS-NIR) support existing research regarding: (i) the importance of soil OC quality and composition in determining wettability rather than quantity, as evidenced both by the high variation observed in the field and the strong presence of aliphatic functional groups in the absence of WR; and (ii) commonly proposed mechanisms affecting soil aggregate properties - albeit with differing temperature thresholds and longer exposure times employed in this study. Namely, these mechanisms tend to involve: (i) soil OM and WR reduction at low to moderate temperatures, and (ii) thermal fusion of particles within moderate to high temperatures. Overall, results suggest a positive influence of management on soil properties as well as high soil resilience to moderate severity fire disturbance in the studied areas. However, the specific changes in soil OM and mineral composition that are responsible for destruction of WR and subsequent changes in AS remain poorly understood. Based on these results, a key next step within this study will entail a closer examination of OC ratios and their potential links with certain mineral species known to influence soil aggregation and soil WR. Noting the importance of soil OM-mineralogical interactions on run-off and erosion processes, results may contribute to better prediction of post-fire responses in the future and improve the ability to fine-tune site specific management approaches accordingly.

  14. Geomorphological characterization of conservation agriculture

    NASA Astrophysics Data System (ADS)

    Tarolli, Paolo; Cecchin, Marco; Prosdocimi, Massimo; Masin, Roberta

    2017-04-01

    Soil water erosion is one of the major threats to soil resources throughout the world. Conventional agriculture has worsened the situation. Therefore, agriculture is facing multiple challenges: it has to produce more food to feed a growing population, and, on the other hand, safeguard natural resources adopting more sustainable production practices. In this perspective, more conservation-minded soil management practices should be taken to achieve an environmental sustainability of crop production. Indeed, conservation agriculture is considered to produce relevant environmental positive outcomes (e.g. reducing runoff and soil erosion, improving soil organic matter content and soil structure, and promoting biological activity). However, as mechanical weed control is limited or absent, in conservation agriculture, dependence on herbicides increases especially in the first years of transition from the conventional system. Consequently, also the risk of herbicide losses via runoff or adsorbed to eroded soil particles could be increased. To better analyse the complexity of soil water erosion and runoff processes in landscapes characterised by conservation agriculture, first, it is necessary to demonstrate if such different practices can significantly affect the surface morphology. Indeed, surface processes such erosion and runoff strongly depend on the shape of the surface. The questions are: are the lands treated with conservation and conventional agriculture different from each other regarding surface morphology? If so, can these differences provide a better understanding of hydrogeomorphic processes as the basis for a better and sustainable land management? To give an answer to these questions, we considered six study areas (three cultivated with no-tillage techniques, three with tillage techniques) in an experimental farm. High-resolution topography, derived from low-cost and fast photogrammetric techniques Structure-from-Motion (SfM), served as the basis to characterise the surface morphology. For each of derived Digital Elevation Model, seven morphometric indexes, such as slope, curvature, flow direction, contributing area, roughness, and connectivity was calculated. We showed then the variations of the morphology in the areas converted to the conservation agriculture, and, consequently, a possible modification of processes such as erosion and runoff. The results suggested that the agricultural surfaces interested by no-tillage practices are different from those tilled with conventional systems. The topography is rougher, with chaotic flow directions, and more concave areas, thus resulting in potential water storages, mitigating the intensity of soil erosion and runoff processes. On the other hand, the topography of traditional tillage area is more regular and smooth, with flow directions that tend to follow the same direction on the surface. These results are a novelty in the Earth Science and Agronomy: we demonstrated and quantified, from the geomorphological point of view, the potential role of conservative agriculture in mitigating, not only land degradation phenomena, but also the distribution of pollutants, and rainfall-runoff processes. References Prosdocimi, M., Tarolli, P., Cerdà, A. (2016). Mulching practice for reducing soil water erosion: A review. Earth-Science Reviews, 161, 191-203. Prosdocimi, M., Burguet, M., Di Prima, S., Sofia, G., Terol, E, Rodrigo Comino J., Cerdà, A., Tarolli, P. (2017). Rainfall simulation and Structure-from-Motion photogrammetry for the analysis of soil water erosion in Mediterranean vineyards. Science of the Total Environment, 574, 204-215. Tarolli, P., Sofia G. (2016). Human topographic signatures and derived geomorphic processes across landscapes, Geomorphology, 255, 140-161.

  15. Coupled land surface-subsurface hydrogeophysical inverse modeling to estimate soil organic carbon content and explore associated hydrological and thermal dynamics in the Arctic tundra

    NASA Astrophysics Data System (ADS)

    Phuong Tran, Anh; Dafflon, Baptiste; Hubbard, Susan S.

    2017-09-01

    Quantitative characterization of soil organic carbon (OC) content is essential due to its significant impacts on surface-subsurface hydrological-thermal processes and microbial decomposition of OC, which both in turn are important for predicting carbon-climate feedbacks. While such quantification is particularly important in the vulnerable organic-rich Arctic region, it is challenging to achieve due to the general limitations of conventional core sampling and analysis methods, and to the extremely dynamic nature of hydrological-thermal processes associated with annual freeze-thaw events. In this study, we develop and test an inversion scheme that can flexibly use single or multiple datasets - including soil liquid water content, temperature and electrical resistivity tomography (ERT) data - to estimate the vertical distribution of OC content. Our approach relies on the fact that OC content strongly influences soil hydrological-thermal parameters and, therefore, indirectly controls the spatiotemporal dynamics of soil liquid water content, temperature and their correlated electrical resistivity. We employ the Community Land Model to simulate nonisothermal surface-subsurface hydrological dynamics from the bedrock to the top of canopy, with consideration of land surface processes (e.g., solar radiation balance, evapotranspiration, snow accumulation and melting) and ice-liquid water phase transitions. For inversion, we combine a deterministic and an adaptive Markov chain Monte Carlo (MCMC) optimization algorithm to estimate a posteriori distributions of desired model parameters. For hydrological-thermal-to-geophysical variable transformation, the simulated subsurface temperature, liquid water content and ice content are explicitly linked to soil electrical resistivity via petrophysical and geophysical models. We validate the developed scheme using different numerical experiments and evaluate the influence of measurement errors and benefit of joint inversion on the estimation of OC and other parameters. We also quantify the propagation of uncertainty from the estimated parameters to prediction of hydrological-thermal responses. We find that, compared to inversion of single dataset (temperature, liquid water content or apparent resistivity), joint inversion of these datasets significantly reduces parameter uncertainty. We find that the joint inversion approach is able to estimate OC and sand content within the shallow active layer (top 0.3 m of soil) with high reliability. Due to the small variations of temperature and moisture within the shallow permafrost (here at about 0.6 m depth), the approach is unable to estimate OC with confidence. However, if the soil porosity is functionally related to the OC and mineral content, which is often observed in organic-rich Arctic soil, the uncertainty of OC estimate at this depth remarkably decreases. Our study documents the value of the new surface-subsurface, deterministic-stochastic inversion approach, as well as the benefit of including multiple types of data to estimate OC and associated hydrological-thermal dynamics.

  16. Aluminum-based water treatment residual use in a constructed wetland for capturing urban runoff phosphorus: Column study

    USDA-ARS?s Scientific Manuscript database

    Aluminum-based water treatment residuals (Al-WTR) have a strong affinity to sorb phosphorus. In a proof-of-concept greenhouse column study, Al-WTR was surface-applied at 0, 62, 124, and 248 Mg/ha to 15 cm of soil on top of 46 cm of sand; Al-WTR rates were estimated to capture 0, 10, 20, and 40 year...

  17. Modeling the dust cycle from sand dunes to haboobs

    NASA Astrophysics Data System (ADS)

    Kallos, George; Patlakas, Platon; Bartsotas, Nikolaos; Spyrou, Christos; Qahtani, Jumaan Al; Alexiou, Ioannis; Bar, Ayman M.

    2017-04-01

    The dust cycle is a rather complicated mechanism depending on various factors. The most important factors affecting dust production is soil characteristics (soil composi-tion, physical and chemical properties, water content, temperature etc). The most known production mechanism at small scale is the saltation-bombardment. This mechanism is able to accurately predict uptake of dust particles up to about 10 μm. Larger dust particles are heavier and fall relatively fast due to the gravitational influ-ence. The other controlling factors of dust uptake and transport are wind speed (to be above a threshold) and turbulence. Weather conditions affecting dust produc-tion/transport/deposition are of multi-scale ranging from small surface inhomoge-neities to mesoscale and large-scale systems. While the typical dust transport mech-anism is related to wind conditions near the surface, larger scale systems play an important role on dust production. Such systems are associated with mesoscale phenomena typical of the specific regions. Usually they are associated with deep convection and strong downdrafts and are known as haboobs. Density currents are formed in the surface with strong winds and turbulence. Density currents can be considered as dust sources by themselves due to high productivity of dust. In this presentation we will discuss characteristics of the dust production mechanisms at multiscale over the Arabian Peninsula by utilizing the RAMS/ICLAMS multiscale model. A series of simulations at small-scale have been performed and mitigation actions will be explored.

  18. Soil Moisture Sensing Using Spaceborne GNSS Reflections: Comparison of CYGNSS Reflectivity to SMAP Soil Moisture

    NASA Astrophysics Data System (ADS)

    Chew, C. C.; Small, E. E.

    2018-05-01

    This paper quantifies the relationship between forward scattered L-band Global Navigation Satellite System (GNSS) signals, recorded by the Cyclone Global Navigation Satellite System (CYGNSS) constellation and Soil Moisture Active Passive (SMAP) soil moisture (SM). Although designed for tropical ocean surface wind sensing, the CYGNSS receivers also record GNSS reflections over land. The CYGNSS observations of reflection power are compared to SMAP SM between March 2017 and February 2018. A strong, positive linear relationship exists between changes in CYGNSS reflectivity and changes in SMAP SM, but not between the absolute magnitudes of the two observations. The sensitivity of CYGNSS reflectivity to SM varies spatially and can be used to convert reflectivity to estimates of SM. The unbiased root-mean-square difference between daily averaged CYGNSS-derived SM and SMAP SM is 0.045 cm3/cm3 and is similarly low between CYGNSS and in situ SM. These results show that CYGNSS, and future GNSS reflection missions, could provide global SM observations.

  19. Role of interlayer hydration in lincomycin sorption by smectite clays.

    PubMed

    Wang, Cuiping; Ding, Yunjie; Teppen, Brian J; Boyd, Stephen A; Song, Cunyi; Li, Hui

    2009-08-15

    Lincomycin, an antibiotic widely administered as a veterinary medicine, is frequently detected in water. Little is known about the soil-water distribution of lincomycin despite the fact that this is a major determinant of its environmental fate and potential for exposure. Cation exchange was found to be the primary mechanism responsible for lincomycin sorption by soil clay minerals. This was evidenced by pH-dependent sorption, and competition with inorganic cations for sorptive sites. As solution pH increased, lincomycin sorption decreased. The extent of reduction was consistent with the decrease in cationic lincomycin species in solution. The presence of Ca2+ in solution diminished lincomycin sorption. Clay interlayer hydration status strongly influenced lincomycin adsorption. Smectites with the charge deficit from isomorphic substitution in tetrahedral layers (i.e., saponite) manifest a less hydrated interlayer environment resulting in greater sorption than that by octahedrally substituted clays (i.e., montmorillonite). Strongly hydrated exchangeable cations resulted in a more hydrated clay interlayer environment reducing sorption in the order of Ca- < K- < Cs-smectite. X-ray diffraction revealed that lincomycin was intercalated in smectite clay interlayers. Sorption capacity was limited by clay surface area rather than by cation exchange capacity. Smectite interlayer hydration was shown to be a major, yet previously unrecognized, factor influencing the cation exchange process of lincomycin on aluminosilicate mineral surfaces.

  20. Seasonal dynamics of threshold friction velocity and dust emission in Central Asia.

    PubMed

    Xi, Xin; Sokolik, Irina N

    2015-02-27

    An improved model representation of mineral dust cycle is critical to reducing the uncertainty of dust-induced environmental and climatic impact. Here we present a mesoscale model study of the seasonal dust activity in the semiarid drylands of Central Asia, focusing on the effects of wind speed, soil moisture, surface roughness heterogeneity, and vegetation phenology on the threshold friction velocity ( u *t ) and dust emission during the dust season of 1 March to 31 October 2001. The dust model WRF-Chem-DuMo allows us to examine the uncertainties in seasonal dust emissions due to the selection of dust emission scheme and soil grain size distribution data. To account for the vegetation effects on the u *t , we use the Moderate Resolution Imaging Spectroradiometer monthly normalized difference vegetation index to derive the dynamic surface roughness parameters required by the physically based dust schemes of Marticorena and Bergametti (1995, hereinafter MB) and Shao et al. (1996, hereinafter Shao). We find the springtime u *t is strongly enhanced by the roughness effects of temperate steppe and desert ephemeral plants and, to less extent, the binding effects of increased soil moisture. The u *t decreases as the aboveground biomass dies back and soil moisture depletes during summer. The u *t dynamics determines the dust seasonality by causing more summer dust emission, despite a higher frequency of strong winds during spring. Due to the presence of more erodible materials in the saltation diameter range of 60-200 µm, the dry-sieved soil size distribution data lead to eight times more season-total dust emission than the soil texture data, but with minor differences in the temporal distribution. On the other hand, the Shao scheme produces almost the same amount of season-total dust emission as the MB scheme, but with a strong shift toward summer due to the strong sensitivity of the u *t to vegetation. By simply averaging the MB and Shao model experiments, we obtain a mean estimate (Exp_mean) of season-total dust emission of 255.6 Mt (megaton), of which 26.8%, 50.4%, and 22.8% are produced in spring (March-April-May), summer (June-July-August), and autumn (September-October), respectively. The Exp_mean estimate identifies the Ustyurt Plateau, dried seabed of Aral Sea (called Aralkum), Caspian Sea coast, and loess deserts as the strongest dust source areas in Central Asia. The spatial distribution and seasonality of the Exp_mean estimate are in general agreement with ground station dusty weather observations and satellite aerosol optical depth and absorbing aerosol index products. Compared to Cakmur et al. (2006), the Exp_mean estimate suggests Central Asia contributes 10-17% to the global dust emission in 2001. The WRF-Chem-DuMo model is used to study dust seasonality in Central Asia An accurate representation of u *t is critical for dust seasonality Multiexperiment mean dust emission estimate agrees with observations.

Top