Glass heat pipe evacuated tube solar collector
McConnell, Robert D.; Vansant, James H.
1984-01-01
A glass heat pipe is adapted for use as a solar energy absorber in an evacuated tube solar collector and for transferring the absorbed solar energy to a working fluid medium or heat sink for storage or practical use. A capillary wick is formed of granular glass particles fused together by heat on the inside surface of the heat pipe with a water glass binder solution to enhance capillary drive distribution of the thermal transfer fluid in the heat pipe throughout the entire inside surface of the evaporator portion of the heat pipe. Selective coatings are used on the heat pipe surface to maximize solar absorption and minimize energy radiation, and the glass wick can alternatively be fabricated with granular particles of black glass or obsidian.
Energy Conservation Strategies for Windows and Glazed Surfaces
1998-07-01
When activated, photochromies reduce only the visual transmittance, not the infrared, so much of the solar heat gain is unaffected. • Thermochromic ...Strategies Windows and Glazed Surfaces by Brian M. Deal, Robert J. Nemeth, and Lee P. DeBaille for Solar Radiation Reflected Transmitted Absorbed...10 Fenestration Design 12 3 Heat Transfer Fundamentals 14 Mechanisms of Heat Transfer 14 Heat Transfer Process Through Glass 16 Solar Heat Gain
Unglazed transpired solar collector having a low thermal-conductance absorber
Christensen, Craig B.; Kutscher, Charles F.; Gawlik, Keith M.
1997-01-01
An unglazed transpired solar collector using solar radiation to heat incoming air for distribution, comprising an unglazed absorber formed of low thermal-conductance material having a front surface for receiving the solar radiation and openings in the unglazed absorber for passage of the incoming air such that the incoming air is heated as it passes towards the front surface of the absorber and the heated air passes through the openings in the absorber for distribution.
Unglazed transpired solar collector having a low thermal-conductance absorber
Christensen, C.B.; Kutscher, C.F.; Gawlik, K.M.
1997-12-02
An unglazed transpired solar collector using solar radiation to heat incoming air for distribution, comprises an unglazed absorber formed of low thermal-conductance material having a front surface for receiving the solar radiation and openings in the unglazed absorber for passage of the incoming air such that the incoming air is heated as it passes towards the front surface of the absorber and the heated air passes through the openings in the absorber for distribution. 3 figs.
NASA Technical Reports Server (NTRS)
Throckmorton, D. A.
1982-01-01
Temperatures measured at the aerodynamic surface of the Orbiter's thermal protection system (TPS), and calorimeter measurements, are used to determine heating rates to the TPS surface during atmospheric entry. On the Orbiter leeside, where convective heating rates are low, it is possible that a significant portion of the total energy input may result from solar radiation, and for the wing, cross radiation from the hot (relatively) Orbiter fuselage. In order to account for the potential impact of these sources, values of solar- and cross-radiation heat transfer are computed, based upon vehicle trajectory and attitude information and measured surface temperatures. Leeside heat-transfer data from the STS-2 mission are presented, and the significance of solar radiation and fuselage-to-wing cross-radiation contributions to total energy input to Orbiter leeside surfaces is assessed.
Battle Keeps Solar Energy in Receiver
NASA Technical Reports Server (NTRS)
Mcdougal, A. R.; Hale, R. R.
1982-01-01
Mirror structure in solar concentrator reduces heat loss by reflection and reradiation. Baffle reflects entering rays back and forth in solar-concentrator receiver until they reach heat exchanger. Similarly, infrared energy reradiated by heat exchanger is prevented from leaving receiver. Surfaces of baffle and inside wall of receiver are polished and highly reflective at solar and infrared wavelengths.
Heat pipes in solar collectors
NASA Astrophysics Data System (ADS)
Bairamov, R.; Toiliev, K.
The diode property of heat pipes is evaluated for use in solar collectors. Model experiments show that the effect of heat pipes in solar collectors is most pronounced during the nighttime, when solar radiation is zero, due to a significant reduction in the heat loss from the transparent cover surface of the collector compared to that for conventional collectors. For a solar collector with a glass cover area of one square meter during the summer season when the maximum water temperature is 60 C and the discharge is 85 l/sq m/day, the water temperature in the accumulator tank of the solar collector with a heat pipe is 10-11 C higher than in the solar collector lacking a heat pipe. In addition, the design of a solar house with passive systems in which heat pipes serve as the heat eliminating mechanism is discussed
Mehos, Mark S.; Anselmo, Kenneth M.; Moreno, James B.; Andraka, Charles E.; Rawlinson, K. Scott; Corey, John; Bohn, Mark S.
2002-01-01
A hybrid high-temperature solar receiver is provided which comprises a solar heat-pipe-receiver including a front dome having a solar absorber surface for receiving concentrated solar energy, a heat pipe wick, a rear dome, a sidewall joining the front and the rear dome, and a vapor and a return liquid tube connecting to an engine, and a fossil fuel fired combustion system in radial integration with the sidewall for simultaneous operation with the solar heat pipe receiver, the combustion system comprising an air and fuel pre-mixer, an outer cooling jacket for tangentially introducing and cooling the mixture, a recuperator for preheating the mixture, a burner plenum having an inner and an outer wall, a porous cylindrical metal matrix burner firing radially inward facing a sodium vapor sink, the mixture ignited downstream of the matrix forming combustion products, an exhaust plenum, a fossil-fuel heat-input surface having an outer surface covered with a pin-fin array, the combustion products flowing through the array to give up additional heat to the receiver, and an inner surface covered with an extension of the heat-pipe wick, a pin-fin shroud sealed to the burner and exhaust plenums, an end seal, a flue-gas diversion tube and a flue-gas valve for use at off-design conditions to limit the temperature of the pre-heated air and fuel mixture, preventing pre-ignition.
Heat Pumps With Direct Expansion Solar Collectors
NASA Astrophysics Data System (ADS)
Ito, Sadasuke
In this paper, the studies of heat pump systems using solar collectors as the evaporators, which have been done so far by reserchers, are reviwed. Usually, a solar collector without any cover is preferable to one with ac over because of the necessity of absorbing heat from the ambient air when the intensity of the solar energy on the collector is not enough. The performance of the collector depends on its area and the intensity of the convective heat transfer on the surface. Fins are fixed on the backside of the collector-surface or on the tube in which the refrigerant flows in order to increase the convective heat transfer. For the purpose of using a heat pump efficiently throughout year, a compressor with variable capacity is applied. The solar assisted heat pump can be used for air conditioning at night during the summer. Only a few groups of people have studied cooling by using solar assisted heat pump systems. In Japan, a kind of system for hot water supply has been produced commercially in a company and a kind of system for air conditioning has been installed in buildings commercially by another company.
Simulating 3-D radiative transfer effects over the Sierra Nevada Mountains using WRF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Y.; Liou, K. N.; Lee, W. -L.
2012-01-01
A surface solar radiation parameterization based on deviations between 3-D and conventional plane-parallel radiative transfer models has been incorporated into the Weather Research and Forecasting (WRF) model to understand the solar insolation over mountain/snow areas and to investigate the impact of the spatial and temporal distribution and variation of surface solar fluxes on land-surface processes. Using the Sierra-Nevada in the western United States as a testbed, we show that mountain effect could produce up to -50 to + 50 W m -2 deviations in the surface solar fluxes over the mountain areas, resulting in a temperature increase of up tomore » 1 °C on the sunny side. Upward surface sensible and latent heat fluxes are modulated accordingly to compensate for the change in surface solar fluxes. Snow water equivalent and surface albedo both show decreases on the sunny side of the mountains, indicating more snowmelt and hence reduced snow albedo associated with more solar insolation due to mountain effect. Soil moisture increases on the sunny side of the mountains due to enhanced snowmelt, while decreases on the shaded side. Substantial differences are found in the morning hours from 8–10 a.m. and in the afternoon around 3–5 p.m., while differences around noon and in the early morning and late afternoon are comparatively smaller. Variation in the surface energy balance can also affect atmospheric processes, such as cloud fields, through the modulation of vertical thermal structure. Negative changes of up to -40 g m -2 are found in the cloud water path, associated with reductions in the surface insolation over the cloud region. The day-averaged deviations in the surface solar flux are positive over the mountain areas and negative in the valleys, with a range between -12~12 W m -2. Changes in sensible and latent heat fluxes and surface skin temperature follow the solar insolation pattern. Differences in the domain-averaged diurnal variation over the Sierras show that the mountain area receives more solar insolation during early morning and late afternoon, resulting in enhanced upward sensible heat and latent heat fluxes from the surface and a corresponding increase in surface skin temperature. During the middle of the day, however, the surface insolation and heat fluxes show negative changes, indicating a cooling effect. Hence overall, the diurnal variations of surface temperature and surface fluxes in the Sierra-Nevada are reduced through the interactions of radiative transfer and mountains. Finally, the hourly differences of the surface solar insolation in higher elevated regions, however, show smaller magnitude in negative changes during the middle of the day and possibly more solar fluxes received during the whole day.« less
Zhang, Lianbin; Tang, Bo; Wu, Jinbo; Li, Renyuan; Wang, Peng
2015-09-02
Self-healing hydrophobic light-to-heat conversion membranes for interfacial solar heating are fabricated by deposition of light-to-heat conversion material of polypyrrole onto a porous stainless-steel mesh, followed by hydrophobic fluoroalkylsilane modification. The mesh-based membranes spontaneously stay at the water-air interface, collect and convert solar light into heat, and locally heat only the water surface for enhanced evaporation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cermet Coatings for Solar Stirling Space Power
NASA Technical Reports Server (NTRS)
Jaworske, Donald A.; Raack, Taylor
2004-01-01
Cermet coatings, molecular mixtures of metal and ceramic are being considered for the heat inlet surface of a solar Stirling space power converter. This paper will discuss the solar absorption characteristics of as-deposited cermet coatings as well as the solar absorption characteristics of the coatings after heating. The role of diffusion and island formation, during the deposition process and during heating will also be discussed.
Solar Selective Coatings Prepared From Thin-Film Molecular Mixtures and Evaluated
NASA Technical Reports Server (NTRS)
Jaworske, Don A.
2003-01-01
Thin films composed of molecular mixtures of metal and dielectric are being considered for use as solar selective coatings for a variety of space power applications. By controlling molecular mixing during ion-beam sputter deposition, researchers can tailor the solar selective coatings to have the combined properties of high solar absorptance and low infrared emittance. On orbit, these combined properties simultaneously maximize the amount of solar energy captured by the coating and minimize the amount of thermal energy radiated. The solar selective coatings are envisioned for use on minisatellites, for applications where solar energy is used to power heat engines or to heat remote regions in the interior of the spacecraft. Such systems may be useful for various missions, particularly those to middle Earth orbit. Sunlight must be concentrated by a factor of 100 or more to achieve the desired heat inlet operating temperature. At lower concentration factors, the temperature of the heat inlet surface of the heat engine is too low for efficient operation, and at high concentration factors, cavity type heat receivers become attractive. The an artist's concept of a heat engine, with the annular heat absorbing surface near the focus of the concentrator coated with a solar selective coating is shown. In this artist's concept, the heat absorbing surface powers a small Stirling convertor. The astronaut's gloved hand is provided for scale. Several thin-film molecular mixtures have been prepared and evaluated to date, including mixtures of aluminum and aluminum oxide, nickel and aluminum oxide, titanium and aluminum oxide, and platinum and aluminum oxide. For example, a 2400- Angstrom thick mixture of titanium and aluminum oxide was found to have a solar absorptance of 0.93 and an infrared emittance of 0.06. On the basis of tests performed under flowing nitrogen at temperatures as high as 680 C, the coating appeared to be durable at elevated temperatures. Additional durability testing is planned, including exposure to atomic oxygen, vacuum ultraviolet radiation, and high-energy electrons.
NASA Technical Reports Server (NTRS)
Chou, Ming-Dah; Chou, Shu-Hsien; Zhao, Wenzhong
1999-01-01
The energy budget of the tropical western Pacific (TWP) is particularly important because this is one of the most energetic convection regions on the Earth. Nearly half of the solar radiation incident at the top of atmosphere is absorbed at the surface and only about 22% absorbed in the atmosphere. A large portion of the excess heat absorbed at the surface is transferred to the atmosphere through evaporation, which provides energy and water for convection and precipitation. The western equatorial Pacific is characterized by the highest sea surface temperature (SST) and heaviest rainfall in the world ocean. A small variation of SST associated with the eastward shift of the warm pool during El-Nino/Souther Oscillation changes the atmospheric circulation pattern and affects the global climate. In a study of the TWP surface heat and momentum fluxes during the Tropical Ocean and Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE) Intensive observing period (IOP) from November 1992 to February have found that the solar radiation is the most important component of the surface energy budget, which undergoes significant temporal and spatial variation. The variations are influenced by the two 40-50 days Madden Julian Oscillations (MJOs) which propagated eastward from the Indian Ocean to the Central Pacific during the IOP. The TWP surface solar radiation during the COARE IOP was investigated by a number of studies. In addition, the effects of clouds on the solar heating of the atmosphere in the TWP was studied using energy budget analysis. In this study, we present some results of the TWP surface solar shortwave or SW radiation budget and the effect of clouds on the atmospheric solar heating using the surface radiation measurements and Japan's Geostationary Meteorological Satellite 4 radiance measurements during COARE IOP.
A scheme for computing surface layer turbulent fluxes from mean flow surface observations
NASA Technical Reports Server (NTRS)
Hoffert, M. I.; Storch, J.
1978-01-01
A physical model and computational scheme are developed for generating turbulent surface stress, sensible heat flux and humidity flux from mean velocity, temperature and humidity at some fixed height in the atmospheric surface layer, where conditions at this reference level are presumed known from observations or the evolving state of a numerical atmospheric circulation model. The method is based on coupling the Monin-Obukov surface layer similarity profiles which include buoyant stability effects on mean velocity, temperature and humidity to a force-restore formulation for the evolution of surface soil temperature to yield the local values of shear stress, heat flux and surface temperature. A self-contained formulation is presented including parameterizations for solar and infrared radiant fluxes at the surface. Additional parameters needed to implement the scheme are the thermal heat capacity of the soil per unit surface area, surface aerodynamic roughness, latitude, solar declination, surface albedo, surface emissivity and atmospheric transmissivity to solar radiation.
Optimal nonimaging integrated evacuated solar collector
NASA Astrophysics Data System (ADS)
Garrison, John D.; Duff, W. S.; O'Gallagher, Joseph J.; Winston, Roland
1993-11-01
A non imaging integrated evacuated solar collector for solar thermal energy collection is discussed which has the lower portion of the tubular glass vacuum enveloped shaped and inside surface mirrored to optimally concentrate sunlight onto an absorber tube in the vacuum. This design uses vacuum to eliminate heat loss from the absorber surface by conduction and convection of air, soda lime glass for the vacuum envelope material to lower cost, optimal non imaging concentration integrated with the glass vacuum envelope to lower cost and improve solar energy collection, and a selective absorber for the absorbing surface which has high absorptance and low emittance to lower heat loss by radiation and improve energy collection efficiency. This leads to a very low heat loss collector with high optical collection efficiency, which can operate at temperatures up to the order of 250 degree(s)C with good efficiency while being lower in cost than current evacuated solar collectors. Cost estimates are presented which indicate a cost for this solar collector system which can be competitive with the cost of fossil fuel heat energy sources when the collector system is produced in sufficient volume. Non imaging concentration, which reduces cost while improving performance, and which allows efficient solar energy collection without tracking the sun, is a key element in this solar collector design.
Regional Climate Variability Under Model Simulations of Solar Geoengineering
NASA Astrophysics Data System (ADS)
Dagon, Katherine; Schrag, Daniel P.
2017-11-01
Solar geoengineering has been shown in modeling studies to successfully mitigate global mean surface temperature changes from greenhouse warming. Changes in land surface hydrology are complicated by the direct effect of carbon dioxide (CO2) on vegetation, which alters the flux of water from the land surface to the atmosphere. Here we investigate changes in boreal summer climate variability under solar geoengineering using multiple ensembles of model simulations. We find that spatially uniform solar geoengineering creates a strong meridional gradient in the Northern Hemisphere temperature response, with less consistent patterns in precipitation, evapotranspiration, and soil moisture. Using regional summertime temperature and precipitation results across 31-member ensembles, we show a decrease in the frequency of heat waves and consecutive dry days under solar geoengineering relative to a high-CO2 world. However in some regions solar geoengineering of this amount does not completely reduce summer heat extremes relative to present day climate. In western Russia and Siberia, an increase in heat waves is connected to a decrease in surface soil moisture that favors persistent high temperatures. Heat waves decrease in the central United States and the Sahel, while the hydrologic response increases terrestrial water storage. Regional changes in soil moisture exhibit trends over time as the model adjusts to solar geoengineering, particularly in Siberia and the Sahel, leading to robust shifts in climate variance. These results suggest potential benefits and complications of large-scale uniform climate intervention schemes.
Surface Heat Budgets and Sea Surface Temperature in the Pacific Warm Pool During TOGA COARE
NASA Technical Reports Server (NTRS)
Chou, Shu-Hsien; Zhao, Wenzhong; Chou, Ming-Dah
1998-01-01
The daily mean heat and momentum fluxes at the surface derived from the SSM/I and Japan's GMS radiance measurements are used to study the temporal and spatial variability of the surface energy budgets and their relationship to the sea surface temperature during the COARE intensive observing period (IOP). For the three time legs observed during the IOP, the retrieved surface fluxes compare reasonably well with those from the IMET buoy, RV Moana Wave, and RV Wecoma. The characteristics of surface heat and momentum fluxes are very different between the southern and northern warm pool. In the southern warm pool, the net surface heat flux is dominated by solar radiation which is, in turn, modulated by the two Madden-Julian oscillations. The surface winds are generally weak, leading to a shallow ocean mixed layer. The solar radiation penetrating through the bottom of the mixed layer is significant, and the change in the sea surface temperature during the IOP does not follow the net surface heat flux. In the northern warm pool, the northeasterly trade wind is strong and undergoes strong seasonal variation. The variation of the net surface heat flux is dominated by evaporation. The two westerly wind bursts associated with the Madden-Julian oscillations seem to have little effect on the net surface heat flux. The ocean mixed layer is deep, and the solar radiation penetrating through the bottom of the mixed layer is small. As opposed to the southern warm pool, the trend of the sea surface temperature in the northern warm pool during the IOP is in agreement with the variation of the net heat flux at the surface.
NASA Technical Reports Server (NTRS)
Chen, Dake; Busalacchi, Antonio J.; Rothstein, Lewis M.
1994-01-01
The climatological seasonal cycle of sea surface temperature (SST) in the tropical Pacific is simulated using a newly developed upper ocean model. The roles of vertical mixing, solar radiation, and wind stress are investigated in a hierarchy of numerical experiments with various combinations of vertical mixing algorithms and surface-forcing products. It is found that the large SST annual cycle in the eastern equatorial Pacific is, to a large extent, controlled by the annually varying mixed layer depth which, in turn, is mainly determined by the competing effects of solar radiation and wind forcing. With the application of our hybrid vertical mixing scheme the model-simulated SST annual cycle is much improved in both amplitude and phase as compared to the case of a constant mixed layer depth. Beside the strong effects on vertical mixing, solar radiation is the primary heating term in the surface layer heat budget, and wind forcing influences SST by driving oceanic advective processes that redistribute heat in the upper ocean. For example, the SST seasonal cycle in the western Pacific basically follows the semiannual variation of solar heating, and the cycle in the central equatorial region is significantly affected by the zonal advective heat flux associated with the seasonally reversing South Equatorial Current. It has been shown in our experiments that the amount of heat flux modification needed to eliminate the annual mean SST errors in the model is, on average, no larger than the annual mean uncertainties among the various surface flux products used in this study. Whereas a bias correction is needed to account for remaining uncertainties in the annual mean heat flux, this study demonstrates that with proper treatment of mixed layer physics and realistic forcing functions the seasonal variability of SST is capable of being simulated successfully in response to external forcing without relying on a relaxation or damping formulation for the dominant surface heat flux contributions.
NASA Astrophysics Data System (ADS)
Veziroglu, T. N.
1982-10-01
Aspects of solar measurements, solar collectors, selective coatings, thermal storage, phase change storage, and heat exchangers are discussed. The analysis and testing of flat-plate solar collectors are addressed. The development and uses of plastic collectors, a solar water heating system, solar energy collecting oil barrels, a glass collector panel, and a two-phase thermosyphon system are considered. Studies of stratification in thermal storage, of packed bed and fluidized bed systems, and of thermal storage in solar towers, in wall passive systems, and in reversible chemical reactions are reported. Phase change storage by direct contact processes and in residential solar space heating and cooling is examined, as are new materials and surface characteristics for solar heat storage. The use of R-11 and Freon-113 in heat exchange is discussed. No individual items are abstracted in this volume
NASA Technical Reports Server (NTRS)
deGroh, Kim K.; Smith, Daniela C.
1999-01-01
Solar-dynamic space power systems require durable, high-emittance surfaces on a number of critical components, such as heat receiver interior surfaces and parasitic load radiator (PLR) elements. An alumina-titania coating, which has been evaluated for solar-dynamic heat receiver canister applications, has been chosen for a PLR application (an electrical sink for excess power from the turboalternator/compressor) because of its demonstrated high emittance and high-temperature durability in vacuum. Under high vacuum conditions (+/- 10(exp -6) torr), the alumina-titania coating was found to be durable at temperatures of 1520 F (827 C) for approx. 2700 hours with no degradation in optical properties. This coating has been successfully applied to the 2-kW solar-dynamic ground test demonstrator at the NASA Lewis Research Center, to the 500 thermal-energy-storage containment canisters inside the heat receiver and to the PLR radiator. The solar-dynamic demonstrator has successfully operated for over 800 hours in Lewis large thermal/vacuum space environment facility, demonstrating the feasibility of solar-dynamic power generation for space applications.
NASA Technical Reports Server (NTRS)
Chou, S.-H.; Curran, R. J.; Ohring, G.
1981-01-01
The effects of two different evaporation parameterizations on the sensitivity of simulated climate to solar constant variations are investigated by using a zonally averaged climate model. One parameterization is a nonlinear formulation in which the evaporation is nonlinearly proportional to the sensible heat flux, with the Bowen ratio determined by the predicted vertical temperature and humidity gradients near the earth's surface (model A). The other is the formulation of Saltzman (1968) with the evaporation linearly proportional to the sensible heat flux (model B). The computed climates of models A and B are in good agreement except for the energy partition between sensible and latent heat at the earth's surface. The difference in evaporation parameterizations causes a difference in the response of temperature lapse rate to solar constant variations and a difference in the sensitivity of longwave radiation to surface temperature which leads to a smaller sensitivity of surface temperature to solar constant variations in model A than in model B. The results of model A are qualitatively in agreement with those of the general circulation model calculations of Wetherald and Manabe (1975).
Thermal elastic deformations of the planet Mercury
NASA Technical Reports Server (NTRS)
Liu, H.
1971-01-01
The variation in solar heating due to the resonance rotation of Mercury produces periodic elastic deformations on the surface of the planet. The thermal stress and strain fields under Mercury's surface are calculated after certain simplifications. It is shown that deformations penetrate to a greater depth than the variation of solar heating, and that the thermal strain on the surface of the planet pulsates with an amplitude of 0.004 and a period of 176 days.
Thermal elastic deformations of the planet Mercury.
NASA Technical Reports Server (NTRS)
Liu, H.-S.
1972-01-01
The variation in solar heating due to the resonance rotation of Mercury produces periodic elastic deformations on the surface of the planet. The thermal stress and strain fields under Mercury's surface are calculated after certain simplifications. It is found that deformations penetrate to a greater depth than the variation of solar heating, and that the thermal strain on the surface of the planet pulsates with an amplitude of .004 and a period of 176 days.
Discussion on the solar concentrating thermoelectric generation using micro-channel heat pipe array
NASA Astrophysics Data System (ADS)
Li, Guiqiang; Feng, Wei; Jin, Yi; Chen, Xiao; Ji, Jie
2017-11-01
Heat pipe is a high efficient tool in solar energy applications. In this paper, a novel solar concentrating thermoelectric generation using micro-channel heat pipe array (STEG-MCHP) was presented. The flat-plate micro-channel heat pipe array not only has a higher heat transfer performance than the common heat pipe, but also can be placed on the surface of TEG closely, which can further reduce the thermal resistance between the heat pipe and the TEG. A preliminary comparison experiment was also conducted to indicate the advantages of the STEG-MCHP. The optimization based on the model verified by the experiment was demonstrated, and the concentration ratio and selective absorbing coating area were also discussed. In addition, the cost analysis was also performed to compare between the STEG-MCHP and the common solar concentrating TEGs in series. The outcome showed that the solar concentrating thermoelectric generation using micro-channel heat pipe array has the higher electrical efficiency and lower cost, which may provide a suitable way for solar TEG applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramsey, J.W.; Charmchi, M.
1980-11-01
The performance of several solar collector configurations has been predicted using both inappropriate and appropriate relations to evaluate the wind-related heat transfer coefficient. The combinations analyzed are: one or two covers and a selectively absorbing surface coating, and one or two covers and a nonselectively absorbing surface coating all collectors are of the basic liquid heating type. It is shown that the optimum results are obtained by using a global correlation equation proposed by Sparrow et al. (1979).
Solar energy storage and utilization
NASA Technical Reports Server (NTRS)
Yuan, S. W.; Bloom, A. M.
1976-01-01
A method of storing solar energy in the ground for heating residential buildings is described. The method would utilize heat exchanger pipes with a circulating fluid to transfer the energy beneath the surface as well as to extract the stored energy.
Optically Transparent Thermally Insulating Silica Aerogels for Solar Thermal Insulation.
Günay, A Alperen; Kim, Hannah; Nagarajan, Naveen; Lopez, Mateusz; Kantharaj, Rajath; Alsaati, Albraa; Marconnet, Amy; Lenert, Andrej; Miljkovic, Nenad
2018-04-18
Rooftop solar thermal collectors have the potential to meet residential heating demands if deployed efficiently at low solar irradiance (i.e., 1 sun). The efficiency of solar thermal collectors depends on their ability to absorb incoming solar energy and minimize thermal losses. Most techniques utilize a vacuum gap between the solar absorber and the surroundings to eliminate conduction and convection losses, in combination with surface coatings to minimize reradiation losses. Here, we present an alternative approach that operates at atmospheric pressure with simple, black, absorbing surfaces. Silica based aerogels coated on black surfaces have the potential to act as simple and inexpensive solar thermal collectors because of their high transmission to solar radiation and low transmission to thermal radiation. To demonstrate their heat-trapping properties, we fabricated tetramethyl orthosilicate-based silica aerogels. A hydrophilic aerogel with a thickness of 1 cm exhibited a solar-averaged transmission of 76% and thermally averaged transmission of ≈1% (at 100 °C). To minimize unwanted solar absorption by O-H groups, we functionalized the aerogel to be hydrophobic, resulting in a solar-averaged transmission of 88%. To provide a deeper understanding of the link between aerogel properties and overall efficiency, we developed a coupled radiative-conductive heat transfer model and used it to predict solar thermal performance. Instantaneous solar thermal efficiencies approaching 55% at 1 sun and 80 °C were predicted. This study sheds light on the applicability of silica aerogels on black coatings for solar thermal collectors and offers design priorities for next-generation solar thermal aerogels.
Advanced Heat/Mass Exchanger Technology for Geothermal and Solar Renewable Energy Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greiner, Miles; Childress, Amy; Hiibel, Sage
2014-12-16
Northern Nevada has abundant geothermal and solar energy resources, and these renewable energy sources provide an ample opportunity to produce economically viable power. Heat/mass exchangers are essential components to any energy conversion system. Improvements in the heat/mass exchange process will lead to smaller, less costly (more efficient) systems. There is an emerging heat transfer technology, based on micro/nano/molecular-scale surface science that can be applied to heat/mass exchanger design. The objective is to develop and characterize unique coating materials, surface configurations and membranes capable of accommodating a 10-fold increase in heat/mass exchanger performance via phase change processes (boiling, condensation, etc.) andmore » single phase convective heat/mass transfer.« less
NASA Astrophysics Data System (ADS)
Kumar, Khushmeet; Prajapati, D. R.; Samir, Sushant
2018-02-01
Solar air heater uses the energy coming from the sun to heat the air. The conversion rate of solar energy to heat depends upon the efficiency of the solar air heater and this efficiency can be increased by the use of artificial roughness on the surface of absorber plate. Various studies were carried out to analyse the effect of different roughness geometries on heat transfer and friction factor characteristics. The thermo-hydraulic performance of solar air heater can be evaluated in terms of effective efficiency, thermo-hydraulic performance parameter and exergetic efficiency. In this study various geometries used for artificial roughness and to improve the performance of solar air heaters were studied. Also correlations developed by various researchers are presented in this paper.
Solar power satellites - Heat engine or solar cells
NASA Technical Reports Server (NTRS)
Oman, H.; Gregory, D. L.
1978-01-01
A solar power satellite is the energy-converting element of a system that can deliver some 10 GW of power to utilities on the earth's surface. We evaluated heat engines and solar cells for converting sunshine to electric power at the satellite. A potassium Rankine cycle was the best of the heat engines, and 50 microns thick single-crystal silicon cells were the best of the photovoltaic converters. Neither solar cells nor heat engines had a clear advantage when all factors were considered. The potassium-turbine power plant, however, was more difficult to assemble and required a more expensive orbital assembly base. We therefore based our cost analyses on solar-cell energy conversion, concluding that satellite-generated power could be delivered to utilities for around 4 to 5 cents a kWh.
The impact of solar radiation on the heating and cooling of buildings
NASA Astrophysics Data System (ADS)
Witmer, Lucas
This work focuses on the impact of solar energy on the heating and cooling of buildings. The sun can be the primary driver for building cooling loads as well as a significant source of heat in the winter. Methods are presented for the calculation of solar energy incident on tilted surfaces and the irradiance data source options. A key deficiency in current building energy modeling softwares is reviewed with a demonstration of the impact of calculating for shade on opaque surfaces. Several tools include methods for calculating shade incident on windows, while none do so automatically for opaque surfaces. The resulting calculations for fully irradiated wall surfaces underestimate building energy consumption in the winter and overestimate in the summer by significant margins. A method has been developed for processing and filtering solar irradiance data based on local shading. This method is used to compare situations where a model predictive control system can make poor decisions for building comfort control. An MPC system informed by poor quality solar data will negatively impact comfort in perimeter building zones during the cooling season. The direct component of irradiance is necessary for the calculation of irradiance on a tilted surface. Using graphical analysis and conditional probability distributions, this work demonstrates a proof of concept for estimating direct normal irradiance from a multi-pyranometer array by leveraging inter-surface relationships without directly inverting a sky model.
NASA Technical Reports Server (NTRS)
Chou, Shu-Hsien; Chou, Ming-Dah; Chan, Pui-King; Lin, Po-Hsiung; Wang, Kung-Hwa
2003-01-01
Seasonal and interannual variations of the net surface heating F(sub NET) and sea surface temperature tendency (T(sub s)/dt) in the tropical eastern Indian and western Pacific Oceans are studied. The surface heat fluxes are derived from the Special Sensor Microwave/Imager and Japanese Geostationary Meteorological Satellite radiance measurements for the period October 1997-September 2000. It is found that the magnitude of solar heating is lager than that of evaporative cooling, but the spatial variation of the latter is significantly large than the former. As a result, the spatial variations of seasonal and interannual variability of F(sub NET), follow closely that of evaporative cooling. Seasonal variations of F(sub NET) and T(sub s)/dt are significantly correlated, except for the equatorial western Pacific. The high correlation is primarily attributable to high correlation between seasonal cycles of solar heating and T(sub s)/dt. The change of F(sub NET) between 1997-98 El Nino and 1998-99 La Nina is significantly larger in the tropical eastern Indian Ocean than tropical western Pacific. For the former region, the reduced evaporative cooling arising from weakened winds during the El Nino is generally associated with enhanced solar heating due to decreased cloudiness, and thus increases the interannual variability of F(sub NET). For the latter region, the reduced evaporative cooling due to weakened winds is generally associated with but exceeds the reduced solar heating arising from increased cloudiness, and vise versa. Thus the interannual variability of F(sub NET) is reduced due to this offsetting effect. Interannual variations of F(sub NET) and T(sub s)/dt have very low correlation. This is most likely related to interannual variability of ocean dynamics, which includes the variations of solar radiation penetrating through oceanic mixed layer, upwelling of cold thermocline water, Indonesian throughflow for transporting heat from the Pacific to Indian Ocean, and interhemispheric transport in the Indian Ocean.
Heat Pipe Solar Receiver for Oxygen Production of Lunar Regolith
NASA Astrophysics Data System (ADS)
Hartenstine, John R.; Anderson, William G.; Walker, Kara L.; Ellis, Michael C.
2009-03-01
A heat pipe solar receiver operating in the 1050° C range is proposed for use in the hydrogen reduction process for the extraction of oxygen from the lunar soil. The heat pipe solar receiver is designed to accept, isothermalize and transfer solar thermal energy to reactors for oxygen production. This increases the available area for heat transfer, and increases throughput and efficiency. The heat pipe uses sodium as the working fluid, and Haynes 230 as the heat pipe envelope material. Initial design requirements have been established for the heat pipe solar receiver design based on information from the NASA In-Situ Resource Utilization (ISRU) program. Multiple heat pipe solar receiver designs were evaluated based on thermal performance, temperature uniformity, and integration with the solar concentrator and the regolith reactor(s). Two designs were selected based on these criteria: an annular heat pipe contained within the regolith reactor and an annular heat pipe with a remote location for the reactor. Additional design concepts have been developed that would use a single concentrator with a single solar receiver to supply and regulate power to multiple reactors. These designs use variable conductance or pressure controlled heat pipes for passive power distribution management between reactors. Following the design study, a demonstration heat pipe solar receiver was fabricated and tested. Test results demonstrated near uniform temperature on the outer surface of the pipe, which will ultimately be in contact with the regolith reactor.
NASA Astrophysics Data System (ADS)
Volobuev, D. M.; Makarenko, N. G.
2014-12-01
Because of the small amplitude of insolation variations (1365.2-1366.6 W m-2 or 0.1%) from the 11-year solar cycle minimum to the cycle maximum and the structural complexity of the climatic dynamics, it is difficult to directly observe a solar signal in the surface temperature. The main difficulty is reduced to two factors: (1) a delay in the temperature response to external action due to thermal inertia, and (2) powerful internal fluctuations of the climatic dynamics suppressing the solar-driven component. In this work we take into account the first factor, solving the inverse problem of thermal conductivity in order to calculate the vertical heat flux from the measured temperature near the Earth's surface. The main model parameter—apparent thermal inertia—is calculated from the local seasonal extremums of temperature and albedo. We level the second factor by averaging mean annual heat fluxes in a latitudinal belt. The obtained mean heat fluxes significantly correlate with a difference between the insolation and optical depth of volcanic aerosol in the atmosphere, converted into a hindered heat flux. The calculated correlation smoothly increases with increasing latitude to 0.4-0.6, and the revealed latitudinal dependence is explained by the known effect of polar amplification.
Photovoltaic-thermal collectors
Cox, III, Charles H.
1984-04-24
A photovoltaic-thermal solar cell including a semiconductor body having antireflective top and bottom surfaces and coated on each said surface with a patterned electrode covering less than 10% of the surface area. A thermal-absorbing surface is spaced apart from the bottom surface of the semiconductor and a heat-exchange fluid is passed between the bottom surface and the heat-absorbing surface.
Solar steam generation by heat localization.
Ghasemi, Hadi; Ni, George; Marconnet, Amy Marie; Loomis, James; Yerci, Selcuk; Miljkovic, Nenad; Chen, Gang
2014-07-21
Currently, steam generation using solar energy is based on heating bulk liquid to high temperatures. This approach requires either costly high optical concentrations leading to heat loss by the hot bulk liquid and heated surfaces or vacuum. New solar receiver concepts such as porous volumetric receivers or nanofluids have been proposed to decrease these losses. Here we report development of an approach and corresponding material structure for solar steam generation while maintaining low optical concentration and keeping the bulk liquid at low temperature with no vacuum. We achieve solar thermal efficiency up to 85% at only 10 kW m(-2). This high performance results from four structure characteristics: absorbing in the solar spectrum, thermally insulating, hydrophilic and interconnected pores. The structure concentrates thermal energy and fluid flow where needed for phase change and minimizes dissipated energy. This new structure provides a novel approach to harvesting solar energy for a broad range of phase-change applications.
Controlling solar light and heat in a forest by managing shadow sources
Howard G. Halverson; James L. Smith
1974-01-01
Control of solar light and heat to develop the proper growth environment is a desirable goal in forest management. The amount of sunlight and heat reaching the surface is affected by shadows cast by nearby objects, including trees. In timbered areas, the type of forest management practiced can help develop desired microclimates. The results depend on the size and...
Orbegoso, Elder Mendoza; Saavedra, Rafael; Marcelo, Daniel; La Madrid, Raúl
2017-12-01
In the northern coastal and jungle areas of Peru, cocoa beans are dried using artisan methods, such as direct exposure to sunlight. This traditional process is time intensive, leading to a reduction in productivity and, therefore, delays in delivery times. The present study was intended to numerically characterise the thermal behaviour of three configurations of solar air heating collectors in order to determine which demonstrated the best thermal performance under several controlled operating conditions. For this purpose, a computational fluid dynamics model was developed to describe the simultaneous convective and radiative heat transfer phenomena under several operation conditions. The constructed computational fluid dynamics model was firstly validated through comparison with the data measurements of a one-step solar air heating collector. We then simulated two further three-step solar air heating collectors in order to identify which demonstrated the best thermal performance in terms of outlet air temperature and thermal efficiency. The numerical results show that under the same solar irradiation area of exposition and operating conditions, the three-step solar air heating collector with the collector plate mounted between the second and third channels was 67% more thermally efficient compared to the one-step solar air heating collector. This is because the air exposition with the surface of the collector plate for the three-step solar air heating collector former device was twice than the one-step solar air heating collector. Copyright © 2017 Elsevier Ltd. All rights reserved.
A high performance porous flat-plate solar collector
NASA Technical Reports Server (NTRS)
Lansing, F. L.; Clarke, V.; Reynolds, R.
1979-01-01
A solar collector employing a porous matrix as a solar absorber and heat exchanger is presented and its application in solar air heaters is discussed. The collector is composed of a metallic matrix with a porous surface which acts as a large set of cavity radiators; cold air flows through the matrix plate and exchanges heat with the thermally stratified layers of the matrix. A steady-state thermal analysis of the collector is used to determine collector temperature distributions for the cases of an opaque surface matrix with total absorption of solar energy at the surface, and a diathermanous matrix with successive solar energy absorption at each depth. The theoretical performance of the porous flat plate collector is shown to exceed greatly that of a solid flat plate collector using air as the working medium for any given set of operational conditions. An experimental collector constructed using commercially available, low cost steel wool as the matrix has been found to have thermal efficiencies from 73 to 86%.
Response of the Land-Atmosphere System Over North-Central Oklahoma During the 2017 Eclipse
NASA Astrophysics Data System (ADS)
Turner, D. D.; Wulfmeyer, V.; Behrendt, A.; Bonin, T. A.; Choukulkar, A.; Newsom, R. K.; Brewer, W. A.; Cook, D. R.
2018-02-01
On 21 August 2017, a solar eclipse occurred over the continental United States resulting in a rapid reduction and subsequent increase of solar radiation over a large region of the country. The eclipse's effect on the land-atmosphere system is documented in unprecedented detail using a unique array of sensors deployed at three sites in north-central Oklahoma. The observations showed that turbulent fluxes of heat and momentum at the surface responded quickly to the change in solar radiation. The decrease in the sensible heat flux resulted in a decrease in the air temperature below 200 m, and a large decrease in turbulent motions throughout the boundary layer. Furthermore, the turbulent mixing in the boundary layer lagged behind the change in the surface fluxes, and this lag depended on the height above the surface. The turbulent motions increased and the convective boundary layer was reestablished as the sensible heat flux recovered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, D. D.; Wulfmeyer, V.; Behrendt, A.
On 21 August 2017, a solar eclipse occurred over the continental United States resulting in a rapid reduction and subsequent increase of solar radiation over a large region of the country. The eclipse’s effect on the land-atmosphere system is documented in unprecedented detail using a unique array of sensors deployed at three sites in north-central Oklahoma. The observations showed that turbulent fluxes of heat and momentum at the surface responded quickly to the change in solar radiation. The decrease in the sensible heat flux resulted in a decrease in the air temperature below 200 m, and a large decrease inmore » turbulent motions throughout the boundary layer. Furthermore, the turbulent mixing in the boundary layer lagged behind the change in the surface fluxes, and this lag depended on the height above the surface. The turbulent motions increased and the convective boundary layer was reestablished as the sensible heat flux recovered.« less
NASA Astrophysics Data System (ADS)
Tokano, T.; Lorenz, R. D.
2015-10-01
Density-driven circulation in Titan's seas forced by solar heating and methane evaporation/precipitation is simulated by an ocean circulation model. If the sea is transparent to sunlight, solar heating can induce anti-clockwise gyres near the sea surface and clockwise gyres near the sea bottom. The gyres are in geostrophic balance between the radially symmetric pressure gradient force and Coriolis force. If instead the sea is turbid and most sunlight is absorbed near the sea surface, the sea gets stratified in warm seasons and the circulation remains weak. Strong summer precipitation at high latitudes causes compositional stratification and increase of the nearsurface methane mole fraction towards the north pole. The resultant latitudinal density contrast drives a meridional overturning with equatorward currents near the sea surface and poleward currents near the sea bottom. Weak precipitation induces gyres rather than meridional overturning.
NASA Astrophysics Data System (ADS)
Tokano, Tetsuya; Lorenz, Ralph D.
2016-05-01
Density-driven circulation in Titan's seas forced by solar heating and methane evaporation/precipitation is simulated by an ocean circulation model. If the sea is transparent to sunlight, solar heating can induce anti-clockwise gyres near the sea surface and clockwise gyres near the sea bottom. The gyres are in geostrophic balance between the radially symmetric pressure gradient force and Coriolis force. If instead the sea is turbid and most sunlight is absorbed near the sea surface, the sea gets stratified in warm seasons and the circulation remains weak. Precipitation causes compositional stratification of the sea to an extent that the sea surface temperature can be lower than the sea interior temperature without causing a convective overturning. Non-uniform precipitation can also generate a latitudinal gradient in the methane mole fraction and density, which drives a meridional overturning with equatorward currents near the sea surface and poleward currents near the sea bottom. However, gyres are more ubiquitous than meridional overturning.
Solar Powered Automobile Interior Climate Control System
NASA Technical Reports Server (NTRS)
Howard, Richard T. (Inventor)
2003-01-01
There is provided a climate control system for a parked vehicle that includes a solar panel, thermostatic switch, fans, and thermoelectric coolers. The solar panel can serve as the sole source of electricity for the system. The system affords convenient installation and removal by including solar panels that are removably attached to the exterior of a vehicle. A connecting wire electrically connects the solar panels to a housing that is removably mounted to a partially opened window on the vehicle. The thermostatic switch, fans, and thermoelectric coolers are included within the housing. The thermostatic switch alternates the direction of the current flow through the thermoelectric coolers to selectively heat or cool the interior of the vehicle. The interior surface of the thermoelectric coolers are in contact with interior heat sinks that have air circulated across them by an interior fan. Similarly, the exterior surface of the thermoelectric coolers are in contact with exterior heat sinks that have air circulated across them by an exterior fan.
Heating of the Solar Corona and its Loops
NASA Technical Reports Server (NTRS)
Klimchuk, James A.
2009-01-01
At several million degrees, the solar corona is more than two orders of magnitude hotter than the underlying solar surface. The reason for these extreme conditions has been a puzzle for decades and is considered one of the fundamental problems in astrophysics. Much of the coronal plasma is organized by the magnetic field into arch-like structures called loops. Recent observational and theoretical advances have led to great progress in understanding the nature of these loops. In particular, we now believe they are bundles of unresolved magnetic strands that are heated by storms of impulsive energy bursts called nanoflares. Turbulent convection at the solar surface shuffles the footpoints of the strands and causes them to become tangled. A nanoflare occurs when the magnetic stresses reach a critical threshold, probably by way of a mechanism called the secondary instability. I will describe our current state of knowledge concerning the corona, its loops, and how they are heated.
What heated the parent meteorite planets?
NASA Technical Reports Server (NTRS)
Wood, John A.; Pellas, Paul
1991-01-01
The plausibility of the two most wide discussed mechanisms, decay of short-lived Al-26 and solar wind induction heating, for heating the small planetesimals in which the meteorites formed are examined and shown to have significant problems. The main problem for the Al-26 decay mechanism is the fact that eucritic lavas, melted by the mysterious heating mechanism in some early planetesimal, did not contain enough Al-26 to decay to radiogenic Mg-26 when they erupted to their planetesimal surface and cooled. It is necessary to postulate that the lavas lingered underground while their Al-26 decayed away. The solar wind induction heat concept has the problem that astrophysical evidence has made is seem increasingly unlikely that an intense solar wind flux blew past planetesimals in the early solar system. Instead, it was probably collimated in the direction of the sun's poles by the persistence of the solar nebula during the T Tauri epoch.
NASA Astrophysics Data System (ADS)
Xie, Y.; Wen, J.; Liu, R.; Wang, X.; JIA, D.
2017-12-01
Wetland underlying surface is sensitive to climate change. Analysis of the degree of coupling between wetlands and the atmosphere and a quantitative assessment of how environmental factors influence latent heat flux have considerable scientific significance. Previous studies, which focused on the forest, grassland and farmland ecosystems, lack research on the alpine wetlands. In addition, research on the environmental control mechanism of latent heat flux is still qualitative and lacks quantitative evaluations and calculations. Using data from the observational tests of the Maduo Observatory of Climate and Environment of the Northwest Institute of Eco-Environment and Resource, CAS, from June 1 to August 31, 2014, this study analysed the time-varying characteristics and causes of the degree of coupling between alpine wetlands underlying surface and the atmosphere and quantitatively calculated the influences of different environmental factors (solar radiation and vapour pressure deficit) on latent heat flux. The results were as follows: Due to the diurnal variations of solar radiation and wind speed, the diurnal variations of the Ω factor present a trend in which the Ω factor are small in the morning and large in the evening. Due to the vegetation growing cycle, the seasonal variations of the Ω factor present a reverse "U" trend . These trends are similar to the diurnal and seasonal variations of the absolute control exercised by solar radiation over the latent heat flux. This conforms to omega theory. The values for average absolute atmospheric factor (surface factor or total ) control exercised by solar radiation and water vapour pressure are 0.20 (0.02 or 0.22 ) and 0.005 (-0.07 or -0.06) W·m-2·Pa-1, respectively.. Generally speaking, solar radiation and water vapour pressure deficit exert opposite forces on the latent heat flux. The average Ω factor is high during the vegetation growing season, with a value of 0.38, and the degree of coupling between the alpine wetland surface and the atmosphere system is low. The actual measurements agree with omega theory. The latent heat flux is mainly influenced by solar radiation. From the above, our study has provided reference information for exploring the influences of environmental factors on the latent heat flux over the alpine wetlands of the Yellow River source region.
Greiner, Leonard
1984-01-01
A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.
Greiner, Leonard
1981-01-01
A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.
Greiner, Leonard
1984-01-01
A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate intallation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.
Greiner, Leonard
1984-01-01
A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to faciliate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.
Performance and durability of high emittance heat receiver surfaces for solar dynamic power systems
NASA Technical Reports Server (NTRS)
Degroh, Kim K.; Roig, David M.; Burke, Christopher A.; Shah, Dilipkumar R.
1994-01-01
Haynes 188, a cobalt-based superalloy, will be used to make thermal energy storage (TES) containment canisters for a 2 kW solar dynamic ground test demonstrator (SD GTD). Haynes 188 containment canisters with a high thermal emittance (epsilon) are desired for radiating heat away from local hot spots, improving the heating distribution, which will in turn improve canister service life. In addition to needing a high emittance, the surface needs to be durable in an elevated temperature, high vacuum environment for an extended time period. Thirty-five Haynes 188 samples were exposed to 14 different types of surface modification techniques for emittance and vacuum heat treatment (VHT) durability enhancement evaluation. Optical properties were obtained for the modified surfaces. Emittance enhanced samples were exposed to VHT for up to 2692 hours at 827 C and less than or equal to 10(exp -6) torr with integral thermal cycling. Optical properties were taken intermittently during exposure, and after final VHT exposure. The various surface modification treatments increased the emittance of pristine Haynes 188 from 0.11 up to 0.86. Seven different surface modification techniques were found to provide surfaces which met the SD GTD receiver VHT durability requirement. Of the 7 surface treatments, 2 were found to display excellent VHT durability: an alumina based (AB) coating and a zirconia based coating. The alumina based coating was chosen for the epsilon enhancement surface modification technique for the SD GTD receiver. Details of the performance and vacuum heat treatment durability of this coating and other Haynes 188 emittance surface modification techniques are discussed. Technology from this program will lead to successful demonstration of solar dynamic power for space applications, and has potential for application in other systems requiring high emittance surfaces.
Optical and heat transfer performance of a novel non-imaging concentrator
NASA Astrophysics Data System (ADS)
Sellami, Nazmi; Meng, Xian-long; Xia, Xin-Lin; Knox, Andrew R.; Mallick, Tapas K.
2015-09-01
In this study, the Crossed Compound Parabolic Concentrator CCPC is modified to demonstrate for the first time a new generation of solar concentrators working simultaneously as an electricity generator and thermal collector. It is designed to have two complementary surfaces, one reflective and one absorptive, and is called an absorptive/reflective CCPC (AR-CCPC). Usually, the height of the CCPC is truncated with a minor sacrifice of the geometric concentration. These truncated surfaces rather than being eliminated are instead replaced with absorbent surfaces to collect heat from solar radiation. The optical, thermal and total efficiency of the AR-CCPC was simulated and compared for different geometric concentration ratios varying from 3.6x to 4x. It was found that the combined electrical and thermal efficiency of the AR-CCPC 3.6x/4x remains constant and high all day long and the overall efficiency reach up to 94%. In addition, the temperature distributions of AR-CCPC surfaces and the assembled solar cell were simulated based on those heat flux boundary conditions. It shows that the adding of thermal absorbent surface can apparently increase the wall temperature.
Measuring Solar Radiation Incident on Earth: Solar Constant-3 (SOLCON-3)
NASA Technical Reports Server (NTRS)
Crommelynck, Dominique; Joukoff, Alexandre; Dewitte, Steven
2002-01-01
Life on Earth is possible because the climate conditions on Earth are relatively mild. One element of the climate on Earth, the temperature, is determined by the heat exchanges between the Earth and its surroundings, outer space. The heat exchanges take place in the form of electromagnetic radiation. The Earth gains energy because it absorbs solar radiation, and it loses energy because it emits thermal infrared radiation to cold space. The heat exchanges are in balance: the heat gained by the Earth through solar radiation equals the heat lost through thermal radiation. When the balance is perturbed, a temperature change and hence a climate change of the Earth will occur. One possible perturbation of the balance is the CO2 greenhouse effect: when the amount of CO2 in the atmosphere increases, this will reduce the loss of thermal infrared radiation to cold space. Earth will gain more heat and hence the temperature will rise. Another perturbation of the balance can occur through variation of the amount of energy emitted by the sun. When the sun emits more energy, this will directly cause a rise of temperature on Earth. For a long time scientists believed that the energy emitted by the sun was constant. The 'solar constant' is defined as the amount of solar energy received per unit surface at a distance of one astronomical unit (the average distance of Earth's orbit) from the sun. Accurate measurements of the variations of the solar constant have been made since 1978. From these we know that the solar constant varies approximately with the 11-year solar cycle observed in other solar phenomena, such as the occurrence of sunspots, dark spots that are sometimes visible on the solar surface. When a sunspot occurs on the sun, since the spot is dark, the radiation (light) emitted by the sun drops instantaneously. Oddly, periods of high solar activity, when a lot of sunspot numbers increase, correspond to periods when the average solar constant is high. This indicates that the background on which the sunspots occur becomes brighter during high solar activity.
Greiner, Leonard
1980-01-01
A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.
Development and evaluation of an empirical diurnal sea surface temperature model
NASA Astrophysics Data System (ADS)
Weihs, R. R.; Bourassa, M. A.
2013-12-01
An innovative method is developed to determine the diurnal heating amplitude of sea surface temperatures (SSTs) using observations of high-quality satellite SST measurements and NWP atmospheric meteorological data. The diurnal cycle results from heating that develops at the surface of the ocean from low mechanical or shear produced turbulence and large solar radiation absorption. During these typically calm weather conditions, the absorption of solar radiation causes heating of the upper few meters of the ocean, which become buoyantly stable; this heating causes a temperature differential between the surface and the mixed [or bulk] layer on the order of a few degrees. It has been shown that capturing the diurnal cycle is important for a variety of applications, including surface heat flux estimates, which have been shown to be underestimated when neglecting diurnal warming, and satellite and buoy calibrations, which can be complicated because of the heating differential. An empirical algorithm using a pre-dawn sea surface temperature, peak solar radiation, and accumulated wind stress is used to estimate the cycle. The empirical algorithm is derived from a multistep process in which SSTs from MTG's SEVIRI SST experimental hourly data set are combined with hourly wind stress fields derived from a bulk flux algorithm. Inputs for the flux model are taken from NASA's MERRA reanalysis product. NWP inputs are necessary because the inputs need to incorporate diurnal and air-sea interactive processes, which are vital to the ocean surface dynamics, with a high enough temporal resolution. The MERRA winds are adjusted with CCMP winds to obtain more realistic spatial and variance characteristics and the other atmospheric inputs (air temperature, specific humidity) are further corrected on the basis of in situ comparisons. The SSTs are fitted to a Gaussian curve (using one or two peaks), forming a set of coefficients used to fit the data. The coefficient data are combined with accumulated wind stress and peak solar radiation to create an empirical relationship that approximates physical processes such as turbulence and heating memory (capacity) of the ocean. Weaknesses and strengths of the model, including potential spatial biases, will be discussed.
Development of an integrated heat pipe-thermal storage system for a solar receiver
NASA Technical Reports Server (NTRS)
Keddy, E.; Sena, J. Tom; Merrigan, M.; Heidenreich, Gary; Johnson, Steve
1988-01-01
An integrated heat pipe-thermal storage system was developed as part of the Organic Rankine Cycle Solar Dynamic Power System solar receiver for space station application. The solar receiver incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain thermal energy storage (TES) canisters within the vapor space with a toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the earth orbit, solar energy is delivered to the heat pipe. Part of this thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of earth orbit, the stored energy in the TES units is transferred by the potassium vapor to the toluene heater tube. A developmental heat pipe element was constructed that contains axial arteries and a distribution wick connecting the toluene heater and the TES units to the solar insolation surface of the heat pipe. Tests were conducted to demonstrate the heat pipe, TES units, and the heater tube operation. The heat pipe element was operated at design input power of 4.8 kW. Thermal cycle tests were conducted to demonstrate the successful charge and discharge of the TES units. Axial power flux levels up to 15 watts/sq cm were demonstrated and transient tests were conducted on the heat pipe element. Details of the heat pipe development and test procedures are presented.
NASA Astrophysics Data System (ADS)
Zhang, G.; McFarquhar, G.; Poellot, M.; Verlinde, J.; Heymsfield, A.; Kok, G.
2005-12-01
Arctic stratus clouds play an important role in the energy balance of the Arctic region. Previous studies have suggested that Arctic stratus persist due to a balance among cloud top radiation cooling, latent heating, ice crystal fall out and large scale forcing. In this study, radiative heating profiles through Arctic stratus are computed using cloud, surface and thermodynamic observations obtained during the Mixed-Phase Arctic Cloud Experiment (M-PACE) as input to the radiative transfer model STREAMER. In particular, microphysical and macrophycial cloud properties such as phase, water content, effective particle size, particle shape, cloud height and cloud thickness were derived using data collected by in-situ sensors on the University of North Dakota (UND) Citation and ground-based remote sensors at Barrow and Oliktok Point. Temperature profiles were derived from radiosonde launches and a fresh snow surface was assumed. One series of sensitivity studies explored the dependence of the heating profile on the solar zenith angle. For smaller solar zenith angles, more incoming solar radiation is received at cloud top acting to counterbalance infrared cooling. As solar zenith angle in the Arctic is large compared to low latitudes, a large solar zenith angle may contribute to the longevity of these clouds.
NASA Astrophysics Data System (ADS)
Michaelian, K.
2013-12-01
The most important thermodynamic work performed by life today is the dissipation of the solar photon flux into heat through organic pigments in water. From this thermodynamic perspective, biological evolution is thus just the dispersal of organic pigments and water throughout Earth's surface, while adjusting the gases of Earth's atmosphere to allow the most intense part of the solar spectrum to penetrate the atmosphere and reach the surface to be intercepted by these pigments. The covalent bonding of atoms in organic pigments provides excited levels compatible with the energies of these photons. Internal conversion through vibrational relaxation to the ground state of these excited molecules when in water leads to rapid dissipation of the solar photons into heat, and this is the major source of entropy production on Earth. A non-linear irreversible thermodynamic analysis shows that the proliferation of organic pigments on Earth is a direct consequence of the pigments catalytic properties in dissipating the solar photon flux. A small part of the energy of the photon goes into the production of more organic pigments and supporting biomass, while most of the energy is dissipated and channeled into the hydrological cycle through the latent heat of vaporization of surface water. By dissipating the surface to atmosphere temperature gradient, the hydrological cycle further increases the entropy production of Earth. This thermodynamic perspective of solar photon dissipation by life has implications to the possibility of finding extra-terrestrial life in our solar system and the Universe.
Optimization of the functional domain of flat plate collectors
NASA Astrophysics Data System (ADS)
Ritoux, G.; Irigaray, J.-L.
1981-12-01
The variations of the extracted heat flux as function of the temperature of the heat transfer fluid in black and selective surface solar collectors are examined. The heat flux is calculated based on the difference of the initial to the stage of thermal equilibrium of the fluid. A nonlinear system of equations is developed and solved by a fast, iterative method to obtain the equilibrium temperatures. It is found that more flux can be extracted from the solar heat by a collector with only one glass cover than with more than one cover. The captured flux is proportional to the coefficient of transmission of the glass coverings, to the coefficient of absorption of the collector, and to the incident flux. Black painted surfaces were more absorbent than selective surfaces, and highest collection efficiencies were displayed by low temperature collectors. Charts of effective uses of the respective types of collectors for heating swimming pools, hot water, home heat, and for refrigeration and air-conditioning are provided.
Fluid absorption solar energy receiver
NASA Technical Reports Server (NTRS)
Bair, Edward J.
1993-01-01
A conventional solar dynamic system transmits solar energy to the flowing fluid of a thermodynamic cycle through structures which contain the gas and thermal energy storage material. Such a heat transfer mechanism dictates that the structure operate at a higher temperature than the fluid. This investigation reports on a fluid absorption receiver where only a part of the solar energy is transmitted to the structure. The other part is absorbed directly by the fluid. By proportioning these two heat transfer paths the energy to the structure can preheat the fluid, while the energy absorbed directly by the fluid raises the fluid to its final working temperature. The surface temperatures need not exceed the output temperature of the fluid. This makes the output temperature of the gas the maximum temperature in the system. The gas can have local maximum temperatures higher than the output working temperature. However local high temperatures are quickly equilibrated, and since the gas does not emit radiation, local high temperatures do not result in a radiative heat loss. Thermal radiation, thermal conductivity, and heat exchange with the gas all help equilibrate the surface temperature.
Development of an integrated heat pipe-thermal storage system for a solar receiver
NASA Technical Reports Server (NTRS)
Keddy, E. S.; Sena, J. T.; Merrigan, M. A.; Heidenreich, G.; Johnson, S.
1987-01-01
The Organic Rankine Cycle (ORC) Solar Dynamic Power System (SDPS) is one of the candidates for Space Station prime power application. In the low Earth orbit of the Space Station approximately 34 minutes of the 94-minute orbital period is spent in eclipse with no solar energy input to the power system. For this period the SDPS will use thermal energy storage (TES) material to provide a constant power output. An integrated heat-pipe thermal storage receiver system is being developed as part of the ORC-SDPS solar receiver. This system incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain the TES canisters within the potassium vapor space with the toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the Earth orbit, solar energy is delivered to the heat pipe in the ORC-SDPS receiver cavity. The heat pipe transforms the non-uniform solar flux incident in the heat pipe surface within the receiver cavity to an essentially uniform flux at the potassium vapor condensation interface in the heat pipe. During solar insolation, part of the thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of the orbit, the balance stored in the TES units is transferred by the potassium vapor to the toluene heater tube.
Effects of Solar Photovoltaic Panels on Roof Heat Transfer
NASA Technical Reports Server (NTRS)
Dominguez, A.; Klessl, J.; Samady, M.; Luvall, J. C.
2010-01-01
Building Heating, Ventilation and Air Conditioning (HVAC) is a major contributor to urban energy use. In single story buildings with large surface area such as warehouses most of the heat enters through the roof. A rooftop modification that has not been examined experimentally is solar photovoltaic (PV) arrays. In California alone, several GW in residential and commercial rooftop PV are approved or in the planning stages. With the PV solar conversion efficiency ranging from 5-20% and a typical installed PV solar reflectance of 16-27%, 53-79% of the solar energy heats the panel. Most of this heat is then either transferred to the atmosphere or the building underneath. Consequently solar PV has indirect effects on roof heat transfer. The effect of rooftop PV systems on the building roof and indoor energy balance as well as their economic impacts on building HVAC costs have not been investigated. Roof calculator models currently do not account for rooftop modifications such as PV arrays. In this study, we report extensive measurements of a building containing a flush mount and a tilted solar PV array as well as exposed reference roof. Exterior air and surface temperature, wind speed, and solar radiation were measured and thermal infrared (TIR) images of the interior ceiling were taken. We found that in daytime the ceiling surface temperature under the PV arrays was significantly cooler than under the exposed roof. The maximum difference of 2.5 C was observed at around 1800h, close to typical time of peak energy demand. Conversely at night, the ceiling temperature under the PV arrays was warmer, especially for the array mounted flat onto the roof. A one dimensional conductive heat flux model was used to calculate the temperature profile through the roof. The heat flux into the bottom layer was used as an estimate of the heat flux into the building. The mean daytime heat flux (1200-2000 PST) under the exposed roof in the model was 14.0 Watts per square meter larger than under the tilted PV array. The maximum downward heat flux was 18.7 Watts per square meters for the exposed roof and 7.0 Watts per square meters under the tilted PV array, a 63% reduction due to the PV array. This study is unique as the impact of tilted and flush PV arrays could be compared against a typical exposed roof at the same roof for a commercial uninhabited building with exposed ceiling and consisting only of the building envelope. Our results indicate a more comfortable indoor environment in PV covered buildings without HVAC both in hotter and cooler seasons.
Influence of Transient Atmospheric Circulation on the Surface Heating of the Pacific Warm Pool
NASA Technical Reports Server (NTRS)
Chou, Ming-Dah; Chou, Shu-Hsien; Chan, Pui-King
2003-01-01
Analyses of data on clouds, winds, and surface heat fluxes show that the transient behavior of basin-wide large-scale circulation has a significant influence on the warm pool sea surface temperature (SST). Trade winds converge to regions of the highest SST in the equatorial western Pacific. These regions have the largest cloud cover and smallest wind speed. Both surface solar heating and evaporative cooling are weak. The reduced evaporative cooling due to weakened winds exceeds the reduced solar heating due to enhanced cloudiness. The result is a maximum surface heating in the strong convective and high SST regions. Data also show that the maximum surface heating in strong convective regions is interrupted by transient atmospheric and oceanic circulation. Due to the seasonal variation of the insolation at the top of the atmosphere, trade winds and clouds also experience seasonal variations. Regions of high SST and low-level convergence follow the Sun, where the surface heating is a maximum. As the Sun moves away from a convective region, the strong trade winds set in, and the evaporative cooling enhances, resulting in a net cooling of the surface. During an El Nino, the maximum SST and convective region shifts eastward from the maritime continent to the equatorial central Pacific. Following the eastward shift of the maximum SST, the region of maximum cloudiness and surface heating also shift eastward. As the atmospheric and oceanic circulation returns to normal situations, the trade winds increase and the surface heating decreases. We conclude that the evaporative cooling associated with the seasonal and interannual variations of trade winds is one of the major factors that modulate the SST distribution of the Pacific warm pool.
Consolidation of lunar regolith: Microwave versus direct solar heating
NASA Technical Reports Server (NTRS)
Kunitzer, J.; Strenski, D. G.; Yankee, S. J.; Pletka, B. J.
1991-01-01
The production of construction materials on the lunar surface will require an appropriate fabrication technique. Two processing methods considered as being suitable for producing dense, consolidated products such as bricks are direct solar heating and microwave heating. An analysis was performed to compare the two processes in terms of the amount of power and time required to fabricate bricks of various size. The regolith was considered to be a mare basalt with an overall density of 60 pct. of theoretical. Densification was assumed to take place by vitrification since this process requires moderate amounts of energy and time while still producing dense products. Microwave heating was shown to be significantly faster compared to solar furnace heating for rapid production of realistic-size bricks.
Development of flat-plate solar collectors for the heating and cooling of buildings
NASA Technical Reports Server (NTRS)
Ramsey, J. W.; Borzoni, J. T.; Holland, T. H.
1975-01-01
The relevant design parameters in the fabrication of a solar collector for heating liquids were examined. The objective was to design, fabricate, and test a low-cost, flat-plate solar collector with high collection efficiency, high durability, and requiring little maintenance. Computer-aided math models of the heat transfer processes in the collector assisted in the design. The preferred physical design parameters were determined from a heat transfer standpoint and the absorber panel configuration, the surface treatment of the absorber panel, the type and thickness of insulation, and the number, spacing and material of the covers were defined. Variations of this configuration were identified, prototypes built, and performance tests performed using a solar simulator. Simulated operation of the baseline collector configuration was combined with insolation data for a number of locations and compared with a predicted load to determine the degree of solar utilization.
Importance of solar subsurface heating in ocean general circulation models
NASA Astrophysics Data System (ADS)
Rochford, Peter A.; Kara, A. Birol; Wallcraft, Alan J.; Arnone, Robert A.
2001-12-01
The importance of subsurface heating on surface mixed layer properties in an ocean general circulation model (OGCM) is examined using attenuation of solar irradiance with depth below the ocean surface. The depth-dependent attenuation of subsurface heating is given by global monthly mean fields for the attenuation of photosynthetically available radiation (PAR), kPAR. These global fields of kPAR are derived from Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data on the spectral diffuse attenuation coefficient at 490 nm (k490), and have been processed to have the smoothly varying and continuous coverage necessary for use in OGCM applications. These monthly fields provide the first complete global data sets of subsurface optical fields that can be used for OGCM applications of subsurface heating and bio-optical processes. The effect on global OGCM prediction of sea surface temperature (SST) and surface mixed layer depth (MLD) is examined when solar heating, as given by monthly mean kPAR and PAR fields, is included in the model. It is found that subsurface heating yields a marked increase in the SST predictive skill of the OGCM at low latitudes. No significant improvement in MLD predictive skill is obtained when including subsurface heating. Use of the monthly mean kPAR produces an SST decrease of up to 0.8°C and a MLD increase of up to only 4-5 m for climatological surface forcing, with this primarily confined to the equatorial regions. Remarkably, a constant kPAR value of 0.06 m-1, which is indicative of optically clear open ocean conditions, is found to serve very well for OGCM prediction of SST and MLD over most of the global ocean.
Response of the Land-Atmosphere System Over North-Central Oklahoma During the 2017 Eclipse
Turner, D. D.; Wulfmeyer, V.; Behrendt, A.; ...
2018-02-05
On 21 August 2017, a solar eclipse occurred over the continental United States resulting in a rapid reduction and subsequent increase of solar radiation over a large region of the country. The eclipse’s effect on the land-atmosphere system is documented in unprecedented detail using a unique array of sensors deployed at three sites in north-central Oklahoma. The observations showed that turbulent fluxes of heat and momentum at the surface responded quickly to the change in solar radiation. The decrease in the sensible heat flux resulted in a decrease in the air temperature below 200 m, and a large decrease inmore » turbulent motions throughout the boundary layer. Furthermore, the turbulent mixing in the boundary layer lagged behind the change in the surface fluxes, and this lag depended on the height above the surface. The turbulent motions increased and the convective boundary layer was reestablished as the sensible heat flux recovered.« less
Response of the Land-Atmosphere System Over North-Central Oklahoma During the 2017 Eclipse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, D. D.; Wulfmeyer, V.; Behrendt, A.
On 21 August 2017, a solar eclipse occurred over the continental United States resulting in a rapid reduction and subsequent increase of solar radiation over a large region of the country. The eclipse’s effect on the land-atmosphere system is documented in unprecedented detail using a unique array of sensors deployed at three sites in north-central Oklahoma. The observations showed that turbulent fluxes of heat and momentum at the surface responded quickly to the change in solar radiation. The decrease in the sensible heat flux resulted in a decrease in the air temperature below 200 m, and a large decrease inmore » turbulent motions throughout the boundary layer. Furthermore, the turbulent mixing in the boundary layer lagged behind the change in the surface fluxes, and this lag depended on the height above the surface. The turbulent motions increased and the convective boundary layer was reestablished as the sensible heat flux recovered.« less
NASA Astrophysics Data System (ADS)
Tudora, C.; Abrudeanu, M.; Stanciu, S.; Anghel, D.; Plaiaşu, G. A.; Rizea, V.; Ştirbu, I.; Cimpoeşu, N.
2018-06-01
It is highly accepted that martensitic transformation can be induced by temperature variation and by stress solicitation. Using a solar concentrator, we manage to increase the material surface temperature (till 573 respectively 873 K) in very short periods of time in order to analyze the material behavior under thermal shocks. The heating/cooling process was registered and analyzed during the experiments. Material surface was analyzed before and after thermal shocks by microstructure point of view using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The experiments follow the material behavior during fast heating and propose the possibility of activating smart materials using the sun heat for aerospace applications.
Farmer, Joseph C.
2015-07-28
A solar-powered adsorption-desorption refrigeration and air conditioning system that uses nanostructural materials such as aerogels, zeolites, and sol gels as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material while the material is at a relatively low temperature, perhaps at night. During daylight hours, when the nanostructural materials is heated by the sun, the refrigerant are thermally desorbed from the surface of the aerogel, thereby creating a pressurized gas phase in the vessel that contains the aerogel. This solar-driven pressurization forces the heated gaseous refrigerant through a condenser, followed by an expansion valve. In the condenser, heat is removed from the refrigerant, first by circulating air or water. Eventually, the cooled gaseous refrigerant expands isenthalpically through a throttle valve into an evaporator, in a fashion similar to that in more conventional vapor recompression systems.
Recent advances in coronal heating
NASA Astrophysics Data System (ADS)
De Moortel, Ineke; Browning, Philippa
2015-04-01
The solar corona, the tenuous outer atmosphere of the Sun, is orders of magnitude hotter than the solar surface. This 'coronal heating problem' requires the identification of a heat source to balance losses due to thermal conduction, radiation and (in some locations) convection. The review papers in this Theo Murphy meeting issue present an overview of recent observational findings, large- and small-scale numerical modelling of physical processes occurring in the solar atmosphere and other aspects which may affect our understanding of the proposed heating mechanisms. At the same time, they also set out the directions and challenges which must be tackled by future research. In this brief introduction, we summarize some of the issues and themes which reoccur throughout this issue.
Europa, tidally heated oceans, and habitable zones around giant planets.
Reynolds, R T; McKay, C P; Kasting, J F
1987-01-01
Tidal dissipation in the satellites of a giant planet may provide sufficient heating to maintain an environment favorable to life on the satellite surface or just below a thin ice layer. In our own solar system, Europa, one of the Galilean satellites of Jupiter, could have a liquid ocean which may occasionally receive sunlight through cracks in the overlying ice shell. In such case, sufficient solar energy could reach liquid water that organisms similar to those found under Antarctic ice could grow. In other solar systems, larger satellites with more significant heat flow could represent environments that are stable over an order of Aeons and in which life could perhaps evolve. We define a zone around a giant planet in which such satellites could exist as a tidally-heated habitable zone. This zone can be compared to the habitable zone which results from heating due to the radiation of a central star. In our solar system, this radiatively-heated habitable zone contains the Earth.
Physical Processing of Cometary Nuclei
NASA Technical Reports Server (NTRS)
Weissman, Paul R.; Stern, S. Alan
1997-01-01
Cometary nuclei preserve a cosmo-chemical record of conditions and processes in the primordial solar nebula, and possibly even the interstellar medium. However, that record is not perfectly preserved over the age of the solar system due to a variety of physical processes which act to modify cometary surfaces and interiors. Possible structural and/or internal processes include: collisional accretion, disruption, and reassembly during formation; internal heating by long and short-lived radionuclides; amorphous to crystalline phase transitions, and thermal stresses. Identified surface modification processes include: irradiation by galactic cosmic rays, solar protons, UV photons, and the Sun's T Tauri stage mass outflow; heating by passing stars and nearby supernovae; gardening by debris impacts; the accretion of interstellar dust and gas and accompanying erosion by hypervelocity dust impacts and sputtering; and solar heating with accompanying crust formation. These modification processes must be taken into account in both the planning and the interpretation of the results of a Comet Nucleus Sample Return Mission. Sampling of nuclei should be done at as great a depth below the surface crust as technically feasible, and at vents or fissures leading to exposed volatiles at depth. Samples of the expected cometary crust and near-surface layers also need to be returned for analysis to achieve a better understanding of the effects of these physical processes. We stress that comets are still likely less modified dm any other solar system bodies, but the degree of modification can vary greatly from one comet to the next.
Wood-Graphene Oxide Composite for Highly Efficient Solar Steam Generation and Desalination.
Liu, Keng-Ku; Jiang, Qisheng; Tadepalli, Sirimuvva; Raliya, Ramesh; Biswas, Pratim; Naik, Rajesh R; Singamaneni, Srikanth
2017-03-01
Solar steam generation is a highly promising technology for harvesting solar energy, desalination and water purification. We introduce a novel bilayered structure composed of wood and graphene oxide (GO) for highly efficient solar steam generation. The GO layer deposited on the microporous wood provides broad optical absorption and high photothermal conversion resulting in rapid increase in the temperature at the liquid surface. On the other hand, wood serves as a thermal insulator to confine the photothermal heat to the evaporative surface and to facilitate the efficient transport of water from the bulk to the photothermally active space. Owing to the tailored bilayer structure and the optimal thermo-optical properties of the individual components, the wood-GO composite structure exhibited a solar thermal efficiency of ∼83% under simulated solar excitation at a power density of 12 kW/m 2 . The novel composite structure demonstrated here is highly scalable and cost-efficient, making it an attractive material for various applications involving large light absorption, photothermal conversion and heat localization.
Interaction between Solar Wind and Lunar Magnetic Anomalies observed by Kaguya MAP-PACE
NASA Astrophysics Data System (ADS)
Saito, Yoshifumi; Yokota, Shoichiro; Tanaka, Takaaki; Asamura, Kazushi; Nishino, Masaki; Yamamoto, Tadateru; Uemura, Kota; Tsunakawa, Hideo
2010-05-01
It is known that Moon has neither global intrinsic magnetic field nor thick atmosphere. Different from the Earth's case where the intrinsic global magnetic field prevents the solar wind from penetrating into the magnetosphere, solar wind directly impacts the lunar surface. Since the discovery of the lunar crustal magnetic field in 1960s, several papers have been published concerning the interaction between the solar wind and the lunar magnetic anomalies. MAG/ER on Lunar Prospector found heating of the solar wind electrons presumably due to the interaction between the solar wind and the lunar magnetic anomalies and the existence of the mini-magnetosphere was suggested. However, the detailed mechanism of the interaction has been unclear mainly due to the lack of the in-situ observed data of low energy ions. MAgnetic field and Plasma experiment - Plasma energy Angle and Composition Experiment (MAP-PACE) on Kaguya (SELENE) completed its ˜1.5-year observation of the low energy charged particles around the Moon on 10 June, 2009. Kaguya was launched on 14 September 2007 by H2A launch vehicle from Tanegashima Space Center in Japan. Kaguya was inserted into a circular lunar polar orbit of 100km altitude and continued observation for nearly 1.5 years till it impacted the Moon on 10 June 2009. During the last 5 months, the orbit was lowered to ˜50km-altitude between January 2009 and April 2009, and some orbits had further lower perilune altitude of ˜10km after April 2009. MAP-PACE consisted of 4 sensors: ESA (Electron Spectrum Analyzer)-S1, ESA-S2, IMA (Ion Mass Analyzer), and IEA (Ion Energy Analyzer). All the sensors performed quite well as expected from the laboratory experiment carried out before launch. Since each sensor had hemispherical field of view, two electron sensors and two ion sensors that were installed on the spacecraft panels opposite to each other could cover full 3-dimensional phase space of low energy electrons and ions. One of the ion sensors IMA was an energy mass spectrometer. IMA measured mass identified ion energy spectra that had never been obtained at 100km altitude polar orbit around the Moon. When Kaguya flew over South Pole Aitken region, where strong magnetic anomalies exist, solar wind ions reflected by magnetic anomalies were observed. These ions had much higher flux than the solar wind protons scattered at the lunar surface. The magnetically reflected ions had nearly the same energy as the incident solar wind ions while the solar wind protons scattered at the lunar surface had slightly lower energy than the incident solar wind ions. At 100km altitude, when the reflected ions were observed, the simultaneously measured electrons were often heated and the incident solar wind ions were sometimes slightly decelerated. At ~50km altitude, when the reflected ions were observed, proton scattering at the lunar surface clearly disappeared. It suggests that there exists an area on the lunar surface where solar wind does not impact. At ~10km altitude, the interaction between the solar wind ions and the lunar magnetic anomalies was remarkable with clear deceleration of the incident solar wind ions and heating of the reflected ions as well as significant heating of the electrons. Calculating velocity moments including density, velocity, temperature of the ions and electrons, we have found that there exists 100km scale regions over strong magnetic anomalies where plasma parameters are quite different from the outside. Solar wind ions observed at 10km altitude show several different behaviors such as deceleration without heating and heating in a limited region inside the magnetic anomalies that may be caused by the magnetic field structure. The deceleration of the solar wind has the same ΔE/q (ΔE : deceleration energy, q: charge) for different species, which constraints the possible mechanisms of the interaction between solar wind and magnetic anomalies.
Selective coating for solar panels. [using black chrome and black nickel
NASA Technical Reports Server (NTRS)
Mcdonald, G. E. (Inventor)
1977-01-01
The energy absorbing properties of solar heating panels are improved by depositing a black chrome coating of controlled thickness on a specially prepared surface of a metal substrate. The surface is prepared by depositing a dull nickel on the substrate, and the black chrome is plated on this low emittance surface to a thickness between 0.5 micron and 2.5 microns.
Radiative effect of black carbon aerosol on a squall line case in North China
NASA Astrophysics Data System (ADS)
Fu, Shizuo; Deng, Xin; Li, Zhe; Xue, Huiwen
2017-11-01
The radiative effect of black carbon aerosol (BC) on a squall line case in north China is studied with the Weather Research and Forecasting model. Before the initiation of the squall line, the surface-emitted BC is mixed only in the boundary layer (BL). BC is then transported from the BL into the free troposphere by the updrafts in the squall line system. Once distributed in the atmosphere, BC absorbs solar radiation and heats the surrounding air. The maximum increase of temperature is 0.05 K for the moderately polluted case bc2 and 0.37 K for the heavily polluted case bc20. In case bc2, where the BC concentration is not very high, the solar flux reaching the surface, the sensible heat flux, and the latent heat flux are not significantly affected by BC. In case bc20, the solar flux reaching the surface, the sensible heat flux, and the latent heat flux are reduced by up to 80, 30, and 21 W m- 2, respectively. The reduced surface evaporation leads to a reduced vapor amount at the early stage. After some time, the heating effect causes a large-scale convergence and brings slightly more vapor into the domain. The effect of BC on the cold pool strength and low-level wind shear is small and hence does not significantly affect the triggering of new convections. In addition, our results show that the effect of BC is negligible on the strength and rain rate of the squall line case.
NASA Astrophysics Data System (ADS)
Doering, E.; Lippe, W.
1982-08-01
The technical and economic performances of a complementary solar heating installation for a new swimming pool added to a two-floor dwelling were examined after measurements were taken over a period of 12 months and analyzed. In particular, the heat absorption and utilization were measured and modifications were carried out to improve pipe insulation and regulation of mixer valve motor running and volume flow. The collector system efficiency was evaluated at 15.4%, the proportion of solar energy of the total consumption being 6.1%. The solar plant and the measuring instruments are described and recommendations are made for improved design and performance, including enlargement of the collector surface area, further modification of the regulation system, utilization of temperature stratification in the storage tanks and avoiding mutual overshadowing of the collectors.
The development of an air Brayton and a steam Rankine solar receiver
NASA Technical Reports Server (NTRS)
Greeven, M. V.
1980-01-01
An air Brayton and a steam Rankine solar receiver now under development are described. These cavity receivers accept concentrated insolation from a single point focus, parabolic concentrator, and use this energy to heat the working fluid. Both receivers were designed for a solar input of 85 kw. The air Brayton receiver heats the air to 816 C. A metallic plate-fin heat transfer surface is used in this unit to effect the energy transfer. The steam Rankine receiver was designed as a once-through boiler with reheat. The receiver heats the water to 704 C to produce steam at 17.22 MPa in the boiler section. The reheat section operates at 1.2 MPA, reheating the steam to 704 C.
Recent advances in coronal heating
De Moortel, Ineke; Browning, Philippa
2015-01-01
The solar corona, the tenuous outer atmosphere of the Sun, is orders of magnitude hotter than the solar surface. This ‘coronal heating problem’ requires the identification of a heat source to balance losses due to thermal conduction, radiation and (in some locations) convection. The review papers in this Theo Murphy meeting issue present an overview of recent observational findings, large- and small-scale numerical modelling of physical processes occurring in the solar atmosphere and other aspects which may affect our understanding of the proposed heating mechanisms. At the same time, they also set out the directions and challenges which must be tackled by future research. In this brief introduction, we summarize some of the issues and themes which reoccur throughout this issue. PMID:25897095
NASA Astrophysics Data System (ADS)
Coso, Dusan
The first part of the dissertation presents a study that implements micro and nano scale engineered surfaces for enhancement of evaporation and boiling phase change heat transfer in both capillary wick structures and pool boiling systems. Capillary wicking surfaces are integral components of heat pipes and vapor chamber thermal spreaders often used for thermal management of microelectronic devices. In addition, pool boiling systems can be encountered in immersion cooling systems which are becoming more commonly investigated for thermal management applications of microelectronic devices and even data centers. The latent heat associated with the change of state from liquid to vapor, and the small temperature differences required to drive this process yield great heat transfer characteristics. Additionally, since no external energy is required to drive the phase change process, these systems are great for portable devices and favorable for reduction of cost and energy consumption over alternate thermal management technologies. Most state of the art capillary wicks used in these devices are typically constructed from sintered copper media. These porous structures yield high surface areas of thin liquid film where evaporation occurs, thus promoting phase change heat transfer. However, thermal interfaces at particle point contacts formed during the sintering process and complex liquid/vapor flow within these wick structures yield high thermal and liquid flow resistances and limit the maximum heat flux they can dissipate. In capillary wicks the maximum heat flux is typically governed by the capillary or boiling limits and engineering surfaces that delay these limitations and yield structures with large surface areas of thin liquid film where phase change heat transfer is promoted is highly desired. In this study, biporous media consisting of microscale pin fins separated by microchannels are examined as candidate structures for the evaporator wick of a vapor chamber heat pipe. Smaller pores are used to generate high capillary suction, while larger microchannels are used to alleviate flow resistance. The heat transfer coefficient is found to depend on the area coverage of a liquid film with thickness on the order of a few microns near the meniscus of the triple phase contact line. We manipulate the area coverage and film thickness by varying the surface area-to-volume ratio through the use of microstructuring. In some samples, a transition from evaporative heat transfer to nucleate boiling is observed. While it is difficult to identify when the transition occurs, one can identify regimes where evaporation dominates over nucleate boiling and vice versa. Heat fluxes of 277.0 (+/- 9.7) W/cm2 can be dissipated by wicks with heaters of area 1 cm2, while heat fluxes up to 733.1 (+/- 103.4) W/cm2 can be dissipated by wicks with smaller heaters intended to simulate local hot-spots. In pool boiling systems that are encountered in immersion cooling applications, the heat transfer coefficient (HTC) is governed by the bubble nucleation site density and the agitation in the liquid/vapor flow these bubbles produce when they detach from the surface. The nucleation site density and release rate is usually determined by the surface morphology. Another important parameter in pool boiling systems is the maximum heat flux (CHF) that can safely be dissipated. In practice, this quantity is about two orders of magnitude smaller than limitations suggested by kinetic theory. For essentially infinite, smooth, well wetted surfaces, hydrodynamic instability theories capturing liquid/vapor interactions away from the heated surface have been successful in predicting CHF. On finite micro and nano structured surfaces where applying the hydrodynamic theory formulation is not easily justified, other effects may contribute to phase change heat transfer characteristics. Here, we also present a pool boiling study on biporous microstructured surfaces used in capillary wick experiments. Structures are manipulated by reduction of pore size to determine if increased capillary pressure can enhance rewetting from heater edges and delay CHF. A comparative study between the two experimental systems indicates that while the capillary limitation is significant in capillary wick experiments, for these well wetted microstructured surfaces used in pool boiling systems the hydrodynamic limitation defined based on heater size causes the occurrence of CHF. Other hierarchical nanowire surfaces containing periodic microscale cavities are investigated as well and are seen to yield a ˜2.4 fold increase in heat transfer coefficient characteristics while not compromising CHF compared to surfaces where cavities are not present. These studies indicate pathways for enhancement of heat transfer coefficient via implementing hierarchical structures, while no clear method in increasing CHF is determined for finite size surfaces of various morphologies. In the second part of this dissertation, solar energy storage is sought in 'phase change' of photochromic molecular systems: the storage of solar energy in the chemical bonds of photosensitive molecules (a photochemical reaction) and subsequent recovery of the energy in a back reaction in the form of heat, reversibly. These molecular systems are interesting alternatives to photovoltaic and solar thermal technologies which cannot satisfy the needs of load leveling, or for portable municipal heating applications. Typically made of organic compounds, these molecules have become known for rapid decomposition, short energy storage time scales and poor energy storing efficiencies. Thus, they have been abandoned as practical solar energy storage systems in the past several decades. On the other hand, organometallic molecular systems have not been extensively probed for these applications. Recent research has indicated that organometallic (fulvalene)diruthenium FvRu2 has demonstrated excellent energy storage characteristic and durability. Here, we report on a full cycle molecular solar thermal (MOST) microfluidic system based on a bis(1,1-dimethyltridecyl) substituted derivative of FvRu2 that allows for long term solar energy storage (110 J/g), and "on demand" energy release upon exposure to a catalyst. The microfluidic systems developed here are excellent for photoconversion characterization and scrutinizing potential catalysts and can be extended to studying many other molecular systems. The objective of the work presented here is to demonstrate that "on demand" solar energy storage and release in MOST systems is viable and motivate future research on other photochromic organometallic systems.
Improved atmosphere-ocean coupled modeling in the tropics for climate prediction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Minghua
2015-01-01
We investigated the initial development of the double ITCZ in the Community Climate System Model (CCSM Version 3) in the central Pacific. Starting from a resting initial condition of the ocean in January, the model developed a warm bias of sea-surface temperature (SST) in the central Pacific from 5oS to 10oS in the first three months. We found this initial bias to be caused by excessive surface shortwave radiation that is also present in the standalone atmospheric model. The initial bias is further amplified by biases in both surface latent heat flux and horizontal heat transport in the upper ocean.more » These biases are caused by the responses of surface winds to SST bias and the thermocline structure to surface wind curls. We also showed that the warming biases in surface solar radiation and latent heat fluxes are seasonally offset by cooling biases from reduced solar radiation after the austral summer due to cloud responses and in the austral fall due to enhanced evaporation when the maximum SST is closest to the equator. The warming biases from the dynamic heat transport by ocean currents however stay throughout all seasons once they are developed, which are eventually balanced by enhanced energy exchange and penetration of solar radiation below the mixed layer. Our results also showed that the equatorial cold tongue develops after the warm biases in the south central Pacific, and the overestimation of surface shortwave radiation recurs in the austral summer in each year.« less
Heat treatment of bulk gallium arsenide using a phosphosilicate glass cap
NASA Technical Reports Server (NTRS)
Mathur, G.; Wheaton, M. L.; Borrego, J. M.; Ghandhi, S. K.
1985-01-01
n-type bulk GaAs crystals, capped with chemically vapor-deposited phosphosilicate glass, were heat treated at temperatures in the range of 600 to 950 C. Measurements on Schottky diodes and solar cells fabricated on the heat-treated material, after removal of a damaged surface layer, show an increase in free-carrier concentration, in minority-carrier-diffusion length, and in solar-cell short-circuit current. The observed changes are attributed to a removal of lifetime-reducing acceptorlike impurities, defects, or their complexes.
Remote Sensing and Monitoring of Earthen Flood-Control Structures
2017-07-01
The source of energy in passive techniques is derived from incident solar radiation or sunlight that reacts with the atmosphere, hydrosphere, and...the energy reflected or emitted from the earth’s surface. The source of energy in passive techniques involves incident solar radiation or sunlight... solar radiation is reflected back into the atmosphere, or where heat energy is emitted from the earth’s surface. As shown by Figure 2-3, certain regions
The impact of surface chemistry on the performance of localized solar-driven evaporation system
Yu, Shengtao; Zhang, Yao; Duan, Haoze; Liu, Yanming; Quan, Xiaojun; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao
2015-01-01
This report investigates the influence of surface chemistry (or wettability) on the evaporation performance of free-standing double-layered thin film on the surface of water. Such newly developed evaporation system is composed of top plasmonic light-to-heat conversion layer and bottom porous supporting layer. Under solar light illumination, the induced plasmonic heat will be localized within the film. By modulating the wettability of such evaporation system through the control of surface chemistry, the evaporation rates are differentiated between hydrophilized and hydrophobized anodic aluminum oxide membrane-based double layered thin films. Additionally, this work demonstrated that the evaporation rate mainly depends on the wettability of bottom supporting layer rather than that of top light-to-heat conversion layer. The findings in this study not only elucidate the role of surface chemistry of each layer of such double-layered evaporation system, but also provide additional design guidelines for such localized evaporation system in applications including desalination, distillation and power generation. PMID:26337561
The impact of surface chemistry on the performance of localized solar-driven evaporation system.
Yu, Shengtao; Zhang, Yao; Duan, Haoze; Liu, Yanming; Quan, Xiaojun; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao
2015-09-04
This report investigates the influence of surface chemistry (or wettability) on the evaporation performance of free-standing double-layered thin film on the surface of water. Such newly developed evaporation system is composed of top plasmonic light-to-heat conversion layer and bottom porous supporting layer. Under solar light illumination, the induced plasmonic heat will be localized within the film. By modulating the wettability of such evaporation system through the control of surface chemistry, the evaporation rates are differentiated between hydrophilized and hydrophobized anodic aluminum oxide membrane-based double layered thin films. Additionally, this work demonstrated that the evaporation rate mainly depends on the wettability of bottom supporting layer rather than that of top light-to-heat conversion layer. The findings in this study not only elucidate the role of surface chemistry of each layer of such double-layered evaporation system, but also provide additional design guidelines for such localized evaporation system in applications including desalination, distillation and power generation.
Atmospheric Science Data Center
2015-11-24
... Parameters: Clouds Irradiance Latent Heat Flux Liquid Water Content Precipitation Rate Sea Surface ... Solar Transmittance Specific Humidity Surface Stress System Optical Depth Temperature Wind Direction Wind Speed ...
NASA Astrophysics Data System (ADS)
Gottschalk, Matthias; Lauermann, Felix; Ehrlich, André; Siebert, Holger; Wendisch, Manfred
2017-04-01
Stratocumulus covers approximately 20 % (annually averaged) of the Earth's surface and thus strongly influences the atmospheric and surface radiative energy budget resulting in radiative cooling and heating effects. Globally, the solar cooling effect of the widespread sub-tropical stratocumulus dominates. However, in the Arctic the solar cloud albedo effect (cooling) is often smaller than the thermal-infrared greenhouse effect (warming), which is a result of the lower incoming solar radiation and the low cloud base height. Therefore, Arctic stratocumulus mostly warms the atmosphere and surface below the cloud. Additionally, different environmental conditions lead to differences between sub-tropical and Arctic stratocumulus. Broadband pyranometers and pyrgeometers will be used to measure heating and cooling rate profiles in and above stratocumulus. For this purpose two slowly moving platforms are used (helicopter and tethered balloon) in order to consider for the long response times of both broadband radiation sensors. Two new instrument packages are developed for the applied tethered balloon and helicopter platforms, which will be operated within Arctic and sub-tropical stratocumulus, respectively. In June 2017, the balloon will be launched from a sea ice floe north of 80 °N during the Arctic Balloon-borne profiling Experiment (ABEX) as part of (AC)3 (Arctic Amplification: Climate Relevant Atmospheric and Surface Processes and Feedback Mechanisms) Transregional Collaborative Research Center. The helicopter will sample sub-tropical stratocumulus over the Azores in July 2017.
Magnetic tornadoes as energy channels into the solar corona.
Wedemeyer-Böhm, Sven; Scullion, Eamon; Steiner, Oskar; van der Voort, Luc Rouppe; de la Cruz Rodriguez, Jaime; Fedun, Viktor; Erdélyi, Robert
2012-06-27
Heating the outer layers of the magnetically quiet solar atmosphere to more than one million kelvin and accelerating the solar wind requires an energy flux of approximately 100 to 300 watts per square metre, but how this energy is transferred and dissipated there is a puzzle and several alternative solutions have been proposed. Braiding and twisting of magnetic field structures, which is caused by the convective flows at the solar surface, was suggested as an efficient mechanism for atmospheric heating. Convectively driven vortex flows that harbour magnetic fields are observed to be abundant in the photosphere (the visible surface of the Sun). Recently, corresponding swirling motions have been discovered in the chromosphere, the atmospheric layer sandwiched between the photosphere and the corona. Here we report the imprints of these chromospheric swirls in the transition region and low corona, and identify them as observational signatures of rapidly rotating magnetic structures. These ubiquitous structures, which resemble super-tornadoes under solar conditions, reach from the convection zone into the upper solar atmosphere and provide an alternative mechanism for channelling energy from the lower into the upper solar atmosphere.
Europa, tidally heated oceans, and habitable zones around giant planets
NASA Astrophysics Data System (ADS)
Reynolds, R. T.; McKay, C. P.; Kasting, J. F.
Tidal dissipation in the satellites of a giant planet may provide sufficient heating to maintain an environment favorable to life on the satellite surface or just below a thin ice layer. Europa could have a liquid ocean which may occasionally receive sunlight through cracks in the overlying ice shell. In such a case, sufficient solar energy could reach liquid water that organisms similar to those found under Antarctic ice could grow. In other solar systems, larger satellites with more significant heat flow could represent environments that are stable over an order of eons and in which life could perhaps evolve. A zone around a giant planet is defined in which such satellites could exist as a tidally-heated habitable zone. This zone can be compared to the habitable zone which results from heating due to the radiation of a central star. In this solar system, this radiatively-heated habitable zone contains the earth.
Europa, tidally heated oceans, and habitable zones around giant planets
NASA Technical Reports Server (NTRS)
Reynolds, Ray T.; Mckay, Christopher P.; Kasting, James F.
1987-01-01
Tidal dissipation in the satellites of a giant planet may provide sufficient heating to maintain an environment favorable to life on the satellite surface or just below a thin ice layer. Europa could have a liquid ocean which may occasionally receive sunlight through cracks in the overlying ice shell. In such a case, sufficient solar energy could reach liquid water that organisms similar to those found under Antarctic ice could grow. In other solar systems, larger satellites with more significant heat flow could represent environments that are stable over an order of eons and in which life could perhaps evolve. A zone around a giant planet is defined in which such satellites could exist as a tidally-heated habitable zone. This zone can be compared to the habitable zone which results from heating due to the radiation of a central star. In this solar system, this radiatively-heated habitable zone contains the earth.
A process-level attribution of the annual cycle of surface temperature over the Maritime Continent
NASA Astrophysics Data System (ADS)
Li, Yana; Yang, Song; Deng, Yi; Hu, Xiaoming; Cai, Ming
2017-12-01
The annual cycle of the surface temperature over the Maritime Continent (MC) is characterized by two periods of rapid warming in March-April and September-October, respectively, and a period of rapid cooling in June-July. Based upon an analysis of energy balance within individual atmosphere-surface columns, the seasonal variations of surface temperature in the MC are partitioned into partial temperature changes associated with various radiative and non-radiative (dynamical) processes. The seasonal variations in direct solar forcing and surface latent heat flux show the largest positive contributions to the annual cycle of MC surface temperature while the changes in oceanic dynamics (including ocean heat content change) work against the temperature changes related to the annual cycle. The rapid warming in March-April is mainly a result of the changes in atmospheric quick processes and ocean-atmosphere coupling such as water vapor, surface latent heat flux, clouds, and atmospheric dynamics while the contributions from direct solar forcing and oceanic dynamics are negative. This feature is in contrast to that associated with the warming in September-October, which is driven mainly by the changes in solar forcing with a certain amount of contributions from water vapor and latent heat flux change. More contribution from atmospheric quick processes and ocean-atmosphere coupling in March-April coincides with the sudden northward movement of deep convection belt, while less contribution from these quick processes and coupling is accompanied with the convection belt slowly moving southward. The main contributors to the rapid cooling in June-July are the same as those to the rapid warming in March-April, and the cooling is also negatively contributed by direct solar forcing and oceanic dynamics. The changes in water vapor in all three periods contribute positively to the change in total temperature and they are associated with the change in the location of the center of large-scale moisture convergence during the onset and demise stages of the East Asian summer monsoon.
Air Pollution, Greenhouse Gases and Climate Change
NASA Astrophysics Data System (ADS)
Ramanathan, V.
2007-12-01
The global build up of greenhouse gases (GHGs), is the most significant environmental issue facing the planet. GHGs warm the surface and the atmosphere with significant implications for, rainfall, retreat of glaciers and sea ice, sea level, among other factors. What is less recognized, however, is a comparably major global problem dealing with air pollution. Until about ten years ago, air pollution was thought to be just an urban or a local problem. But new data have revealed that, due to fast long range transport, air pollution is transported across continents and ocean basins, resulting in trans-oceanic and trans-continental plumes of atmospheric brown clouds (ABCs) containing sub micron size particles, i.e, aerosols. ABCs intercept sunlight by absorbing as well as reflecting it, both of which lead to a large surface dimming. The dimming effect is enhanced further because aerosols nucleate more cloud drops which makes the clouds reflect more solar radiation. While the solar heating at the surface is reduced by aerosols in ABCs, the atmospheric solar heating increases due to soot solar absorption. The net difference between the dimming and the atmospheric solar heating is estimated be negative which contributes to a global cooling effect. The global cooling from this negative ABC forcing may have masked as much as 50% of the warming due to GHGs. We will identify regional and mega-city hot spots of ABCs. Long range transport from these hot spots gives rise to wide spread plumes over the adjacent oceans. Such a pattern of regionally concentrated surface dimming and atmospheric solar heating, accompanied by wide spread dimming over the oceans, gives rise to large regional effects. Only during the last decade, we have begun to comprehend the surprisingly large regional impacts. The large north-south gradient in the ABC dimming has altered the north-south gradients in sea surface temperatures, which in turn has been shown by models to decrease rainfall over the continents. The uncertainties in our understanding of the ABC effects are large, but we are discovering new ways in which human activities are changing the climate and the environment.
Interaction between solar wind and lunar magnetic anomalies observed by MAP-PACE on Kaguya
NASA Astrophysics Data System (ADS)
Saito, Yoshifumi; Yokota, Shoichiro; Tanaka, Takaaki; Asamura, Kazushi; Nishino, Masaki N.; Yamamoto, Tadateru I.; Tsunakawa, Hideo
It is well known that the Moon has neither global intrinsic magnetic field nor thick atmosphere. Different from the Earth's case where the intrinsic global magnetic field prevents the solar wind from penetrating into the magnetosphere, solar wind directly impacts the lunar surface. MAgnetic field and Plasma experiment -Plasma energy Angle and Composition Experiment (MAP-PACE) on Kaguya (SELENE) completed its 1.5-year observation of the low energy charged particles around the Moon on 10 June 2009. Kaguya was launched on 14 September 2007 by H2A launch vehicle from Tanegashima Space Center in Japan. Kaguya was inserted into a circular lunar polar orbit of 100km altitude and continued observation for nearly 1.5 years till it impacted the Moon on 10 June 2009. During the last 5 months, the orbit was lowered to 50km-altitude between January 2009 and April 2009, and some orbits had further lower perilune altitude of 10km after April 2009. MAP-PACE consisted of 4 sensors: ESA (Electron Spectrum Analyzer)-S1, ESA-S2, IMA (Ion Mass Analyzer), and IEA (Ion Energy Analyzer). Since each sensor had hemispherical field of view, two electron sensors and two ion sensors that were installed on the spacecraft panels opposite to each other could cover full 3-dimensional phase space of low energy electrons and ions. One of the ion sensors IMA was an energy mass spectrometer. IMA measured mass identified ion energy spectra that had never been obtained at 100km altitude polar orbit around the Moon. When Kaguya flew over South Pole Aitken region, where strong magnetic anomalies exist, solar wind ions reflected by magnetic anomalies were observed. These ions had much higher flux than the solar wind protons scattered at the lunar surface. The magnetically reflected ions had nearly the same energy as the incident solar wind ions while the solar wind protons scattered at the lunar surface had slightly lower energy than the incident solar wind ions. At 100km altitude, when the reflected ions were observed, the simultaneously measured electrons were often heated and the incident solar wind ions were sometimes slightly decelerated. At 50km altitude, when the reflected ions were observed, proton scattering at the lunar surface clearly disappeared. It suggests that there exists an area on the lunar surface where solar wind does not impact. At 10km altitude, the interaction between the solar wind ions and the lunar magnetic anomalies was remarkable with clear deceleration of the incident solar wind ions and heating of the reflected ions as well as significant heating of the electrons. Calculating velocity moments including density, velocity, temperature of the ions and electrons, we have found that there exists 100km scale regions over strong magnetic anomalies where plasma parameters are quite different from the outside. Solar wind ions observed at 10km altitude show several different behaviors such as deceleration without heating and heating in a limited region inside the magnetic anomalies that may be caused by the magnetic field structure. The deceleration of the solar wind has the same ∆E/q (∆E : deceleration energy, q: charge) for different species, which constraints the possible mechanisms of the interaction between solar wind and magnetic anomalies.
The solar wind - Moon interaction discovered by MAP-PACE on KAGUYA
NASA Astrophysics Data System (ADS)
Saito, Y.; Yokota, S.; Tanaka, T.; Asamura, K.; Nishino, M. N.; Yamamoto, T.; Tsunakawa, H.; Shibuya, H.; Shimizu, H.; Takahashi, F.
2009-12-01
Magnetic field And Plasma experiment - Plasma energy Angle and Composition Experiment (MAP-PACE) on KAGUYA (SELENE) completed its ˜1.5-year observation of the low energy charged particles around the Moon. SELENE was successfully launched on 14 September 2007 by H2A launch vehicle from Tanegashima Space Center in Japan. SELENE was inserted into a circular lunar polar orbit of 100km altitude and continued observation for nearly 1.5 years till it impacted the Moon on 10 June 2009. During the last 5 months, the orbit was lowered to ˜50km-altitude between January 2009 and April 2009, and some orbits had further lower perilune altitude of ˜10km after April 2009. The newly observed data showed characteristic ion distributions around the Moon. Besides the solar wind, one of the MAP-PACE sensors MAP-PACE-IMA (Ion Mass Analyzer) discovered four clearly distinguishable ion distributions on the dayside of the Moon: 1) Solar wind ions backscattered at the lunar surface, 2) Solar wind ions reflected by magnetic anomalies on the lunar surface, 3) Ions that are originating from the reflected / backscattered solar wind ions and are pick-up accelerated by the solar wind convection electric field, and 4) Ions originating from the lunar surface / lunar atmosphere. One of the most important discoveries of the ion mass spectrometer (MAP-PACE-IMA) is the first in-situ measurements of the alkali ions originating from the Moon surface / atmosphere. The ions generated on the lunar surface by solar wind sputtering, solar photon stimulated desorption, or micro-meteorite vaporization are accelerated by the solar wind convection electric field and detected by IMA. The mass profiles of these ions show ions including He+, C+, O+, Na+, and K+/Ar+. The heavy ions were also observed when the Moon was in the Earth’s magnetotail where no solar wind ions impinged on the lunar surface. This discovery strongly restricts the possible generation mechanisms of the ionized alkali atmosphere around the Moon. When KAGUYA flew over South Pole Aitken region, where strong magnetic anomalies exist, solar wind ions reflected by magnetic anomalies were observed. These reflected ions had nearly the same energy as the incident solar wind ions, and their flux was more than 10% of the incident solar wind ions. At 100km altitude, when the reflected ions were observed, the simultaneously measured electrons were often heated and the incident solar wind ions were sometimes slightly decelerated. At ~50km altitude, when the reflected ions were observed, proton scattering at the lunar surface clearly disappeared. At ~10km altitude, the interaction between the solar wind ions and the lunar magnetic anomalies was remarkable with clear deceleration of the incident solar wind ions and heating of the reflected ions as well as significant heating of the electrons. These newly discovered plasma signatures around the Moon are the evidences of the smallest magnetosphere ever observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghasemi, Hadi; Marconnet, Amy Marie; Chen, Gang
A localized heating structure, and method of forming same, for use in solar systems includes a thermally insulating layer having interconnected pores, a density of less than about 3000 kg/m.sup.3, and a hydrophilic surface, and an expanded carbon structure adjacent to the thermally insulating layer. The expanded carbon structure has a porosity of greater than about 80% and a hydrophilic surface.
The role of turbulence in coronal heating and solar wind expansion
Cranmer, Steven R.; Asgari-Targhi, Mahboubeh; Miralles, Mari Paz; Raymond, John C.; Strachan, Leonard; Tian, Hui; Woolsey, Lauren N.
2015-01-01
Plasma in the Sun's hot corona expands into the heliosphere as a supersonic and highly magnetized solar wind. This paper provides an overview of our current understanding of how the corona is heated and how the solar wind is accelerated. Recent models of magnetohydrodynamic turbulence have progressed to the point of successfully predicting many observed properties of this complex, multi-scale system. However, it is not clear whether the heating in open-field regions comes mainly from the dissipation of turbulent fluctuations that are launched from the solar surface, or whether the chaotic ‘magnetic carpet’ in the low corona energizes the system via magnetic reconnection. To help pin down the physics, we also review some key observational results from ultraviolet spectroscopy of the collisionless outer corona. PMID:25848083
NASA Technical Reports Server (NTRS)
deGroh, Kim, K.; Dever, Joyce A.; Snyder, Aaron; Kaminski, Sharon; McCarthy, Catherine E.; Rapoport, Alison L.; Rucker, Rochelle N.
2006-01-01
A section of the retrieved Hubble Space Telescope (HST) solar array drive arm (SADA) multilayer insulation (MLI), which experienced 8.25 years of space exposure, was analyzed for environmental durability of the top layer of silver-Teflon (DuPont) fluorinated ethylene propylene (Ag-FEP). Because the SADA MLI had solar and anti-solar facing surfaces and was exposed to the space environment for a long duration, it provided a unique opportunity to study solar effects on the environmental degradation of Ag-FEP, a commonly used spacecraft thermal control material. Data obtained included tensile properties, solar absorptance, surface morphology and chemistry. The solar facing surface was found to be extremely embrittled and contained numerous through-thickness cracks. Tensile testing indicated that the solar facing surface lost 60% of its mechanical strength and 90% of its elasticity while the anti-solar facing surface had ductility similar to pristine FEP. The solar absorptance of both the solar facing surface (0.155 plus or minus 0.032) and the anti-solar facing surface (0.208 plus or minus 0.012) were found to be greater than pristine Ag-FEP (0.074). Solar facing and anti-solar facing surfaces were microscopically textured, and locations of isolated contamination were present on the anti-solar surface resulting in increased localized texturing. Yet, the overall texture was significantly more pronounced on the solar facing surface indicating a synergistic effect of combined solar exposure and increased heating with atomic oxygen erosion. The results indicate a very strong dependence of degradation, particularly embrittlement, upon solar exposure with orbital thermal cycling having a significant effect.
Validation and Sensitivity Analysis of a New Atmosphere-Soil-Vegetation Model.
NASA Astrophysics Data System (ADS)
Nagai, Haruyasu
2002-02-01
This paper describes details, validation, and sensitivity analysis of a new atmosphere-soil-vegetation model. The model consists of one-dimensional multilayer submodels for atmosphere, soil, and vegetation and radiation schemes for the transmission of solar and longwave radiations in canopy. The atmosphere submodel solves prognostic equations for horizontal wind components, potential temperature, specific humidity, fog water, and turbulence statistics by using a second-order closure model. The soil submodel calculates the transport of heat, liquid water, and water vapor. The vegetation submodel evaluates the heat and water budget on leaf surface and the downward liquid water flux. The model performance was tested by using measured data of the Cooperative Atmosphere-Surface Exchange Study (CASES). Calculated ground surface fluxes were mainly compared with observations at a winter wheat field, concerning the diurnal variation and change in 32 days of the first CASES field program in 1997, CASES-97. The measured surface fluxes did not satisfy the energy balance, so sensible and latent heat fluxes obtained by the eddy correlation method were corrected. By using options of the solar radiation scheme, which addresses the effect of the direct solar radiation component, calculated albedo agreed well with the observations. Some sensitivity analyses were also done for model settings. Model calculations of surface fluxes and surface temperature were in good agreement with measurements as a whole.
NASA Technical Reports Server (NTRS)
Allen, N. C.
1978-01-01
Implementation of SOLARES will input large quantities of heat continuously into a stationary location on the Earth's surface. The quantity of heat released by each of the SOlARES ground receivers, having a reflector orbit height of 6378 km, exceeds by 30 times that released by large power parks which were studied in detail. Using atmospheric models, estimates are presented for the local weather effects, the synoptic scale effects, and the global scale effects from such intense thermal radiation.
Design for On-Sun Evaluation of Evaporator Receivers
NASA Technical Reports Server (NTRS)
Jaworske, Donald A.; Colozza, Anthony; Sechkar, Edward A.
2011-01-01
A heat pipe designed for operation as a solar power receiver should be optimized to accept the solar energy flux and transfer this heat into a reactor. Optical properties of the surface, thermal conductance of the receiver wall, contact resistance of the heat pipe wick, and other heat pipe wick properties ultimately define the maximum amount of power that can be extracted from the concentrated sunlight impinging on the evaporator surface. Modeling of solar power receivers utilizing optical and physical properties provides guidance to their design. On-sun testing is another important means of gathering information on performance. A test rig is being designed and built to conduct on-sun testing. The test rig is incorporating a composite strip mirror concentrator developed as part of a Small Business Innovative Research effort and delivered to NASA Glenn Research Center. In the strip concentrator numerous, lightweight composite parabolic strips of simple curvature were combined to form an array 1.5 m x 1.5 m in size. The line focus of each strip is superimposed in a central area simulating a point of focus. A test stand is currently being developed to hold the parabolic strip concentrator, track the sun, and turn the beam downward towards the ground. The hardware is intended to be sufficiently versatile to accommodate on-sun testing of several receiver concepts, including those incorporating heat pipe evaporators. Characterization devices are also being developed to evaluate the effectiveness of the solar concentrator, including a receiver designed to conduct calorimetry. This paper describes the design and the characterization devices of the on-sun test rig, and the prospect of coupling the concentrated sunlight to a heat pipe solar power receiver developed as part of another Small Business Innovative Research effort.
Climate Sensitivity to Realistic Solar Heating of Snow and Ice
NASA Astrophysics Data System (ADS)
Flanner, M.; Zender, C. S.
2004-12-01
Snow and ice-covered surfaces are highly reflective and play an integral role in the planetary radiation budget. However, GCMs typically prescribe snow reflection and absorption based on minimal knowledge of snow physical characteristics. We performed climate sensitivity simulations with the NCAR CCSM including a new physically-based multi-layer snow radiative transfer model. The model predicts the effects of vertically resolved heating, absorbing aerosol, and snowpack transparency on snowpack evolution and climate. These processes significantly reduce the model's near-infrared albedo bias over deep snowpacks. While the current CCSM implementation prescribes all solar radiative absorption to occur in the top 2 cm of snow, we estimate that about 65% occurs beneath this level. Accounting for the vertical distribution of snowpack heating and more realistic reflectance significantly alters snowpack depth, surface albedo, and surface air temperature over Northern Hemisphere regions. Implications for the strength of the ice-albedo feedback will be discussed.
Holland, Marika M; Landrum, Laura
2015-07-13
We use a large ensemble of simulations from the Community Earth System Model to quantify simulated changes in the twentieth and twenty-first century Arctic surface shortwave heating associated with changing incoming solar radiation and changing ice conditions. For increases in shortwave absorption associated with albedo reductions, the relative influence of changing sea ice surface properties and changing sea ice areal coverage is assessed. Changes in the surface sea ice properties are associated with an earlier melt season onset, a longer snow-free season and enhanced surface ponding. Because many of these changes occur during peak solar insolation, they have a considerable influence on Arctic surface shortwave heating that is comparable to the influence of ice area loss in the early twenty-first century. As ice area loss continues through the twenty-first century, it overwhelms the influence of changes in the sea ice surface state, and is responsible for a majority of the net shortwave increases by the mid-twenty-first century. A comparison with the Arctic surface albedo and shortwave heating in CMIP5 models indicates a large spread in projected twenty-first century change. This is in part related to different ice loss rates among the models and different representations of the late twentieth century ice albedo and associated sea ice surface state. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Holland, Marika M.; Landrum, Laura
2015-01-01
We use a large ensemble of simulations from the Community Earth System Model to quantify simulated changes in the twentieth and twenty-first century Arctic surface shortwave heating associated with changing incoming solar radiation and changing ice conditions. For increases in shortwave absorption associated with albedo reductions, the relative influence of changing sea ice surface properties and changing sea ice areal coverage is assessed. Changes in the surface sea ice properties are associated with an earlier melt season onset, a longer snow-free season and enhanced surface ponding. Because many of these changes occur during peak solar insolation, they have a considerable influence on Arctic surface shortwave heating that is comparable to the influence of ice area loss in the early twenty-first century. As ice area loss continues through the twenty-first century, it overwhelms the influence of changes in the sea ice surface state, and is responsible for a majority of the net shortwave increases by the mid-twenty-first century. A comparison with the Arctic surface albedo and shortwave heating in CMIP5 models indicates a large spread in projected twenty-first century change. This is in part related to different ice loss rates among the models and different representations of the late twentieth century ice albedo and associated sea ice surface state. PMID:26032318
Low earth orbit durability evaluation of Haynes 188 solar receiver material
NASA Technical Reports Server (NTRS)
De Groh, Kim K.; Rutledge, Sharon K.; Burke, Christopher A.; Dever, Therese M.; Olle, Raymond M.; Terlep, Judith A.
1992-01-01
The effects of elevated-temperature vacuum and elevated-temperature atomic oxygen exposure on the mass, surface chemistry, surface morphology, and optical properties of Haynes 188, a possible heat receiver material for space-based solar dynamic power systems, have been studied. Pristine and surface modified Haynes 188 were exposed to vacuum less than or equal to 10 exp -6 torr at 820 C for 5215.5 h, and to atomic oxygen in an air plasma asher at 34 and 827 C for fluences up to 5.6 x 10 exp 21 atoms/sq cm. Results obtained indicate that vacuum heat treatment caused surface morphology and chemistry changes with corresponding optical property changes. Atomic oxygen exposure caused optical property changes which diminished with time. Mass changes are considered to be negligible for both exposures.
Solar dynamic heat receiver thermal characteristics in low earth orbit
NASA Technical Reports Server (NTRS)
Wu, Y. C.; Roschke, E. J.; Birur, G. C.
1988-01-01
A simplified system model is under development for evaluating the thermal characteristics and thermal performance of a solar dynamic spacecraft energy system's heat receiver. Results based on baseline orbit, power system configuration, and operational conditions, are generated for three basic receiver concepts and three concentrator surface slope errors. Receiver thermal characteristics and thermal behavior in LEO conditions are presented. The configuration in which heat is directly transferred to the working fluid is noted to generate the best system and thermal characteristics. as well as the lowest performance degradation with increasing slope error.
NASA Astrophysics Data System (ADS)
Hu, Xiaoming; Sejas, Sergio A.; Cai, Ming; Taylor, Patrick C.; Deng, Yi; Yang, Song
2018-05-01
The global-mean surface temperature has experienced a rapid warming from the 1980s to early-2000s but a muted warming since, referred to as the global warming hiatus in the literature. Decadal changes in deep ocean heat uptake are thought to primarily account for the rapid warming and subsequent slowdown. Here, we examine the role of ocean heat uptake in establishing the fast warming and warming hiatus periods in the ERA-Interim through a decomposition of the global-mean surface energy budget. We find the increase of carbon dioxide alone yields a nearly steady increase of the downward longwave radiation at the surface from the 1980s to the present, but neither accounts for the fast warming nor warming hiatus periods. During the global warming hiatus period, the transfer of latent heat energy from the ocean to atmosphere increases and the total downward radiative energy flux to the surface decreases due to a reduction of solar absorption caused primarily by an increase of clouds. The reduction of radiative energy into the ocean and the surface latent heat flux increase cause the ocean heat uptake to decrease and thus contribute to the slowdown of the global-mean surface warming. Our analysis also finds that in addition to a reduction of deep ocean heat uptake, the fast warming period is also driven by enhanced solar absorption due predominantly to a decrease of clouds and by enhanced longwave absorption mainly attributed to the air temperature feedback.
Bionics in textiles: flexible and translucent thermal insulations for solar thermal applications.
Stegmaier, Thomas; Linke, Michael; Planck, Heinrich
2009-05-13
Solar thermal collectors used at present consist of rigid and heavy materials, which are the reasons for their immobility. Based on the solar function of polar bear fur and skin, new collector systems are in development, which are flexible and mobile. The developed transparent heat insulation material consists of a spacer textile based on translucent polymer fibres coated with transparent silicone rubber. For incident light of the visible spectrum the system is translucent, but impermeable for ultraviolet radiation. Owing to its structure it shows a reduced heat loss by convection. Heat loss by the emission of long-wave radiation can be prevented by a suitable low-emission coating. Suitable treatment of the silicone surface protects it against soiling. In combination with further insulation materials and flow systems, complete flexible solar collector systems are in development.
Study Design And Realization Of Solar Water Heater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lounis, M.; Boudjemaa, F.; Akil, S. Kouider
2011-01-17
Solar is one of the most easily exploitable energy, it is moreover inexhaustible. His applications are many and are varied. The heating of the domestic water is one of the most immediate, simplest and also of most widespread exploitation of the solar energy. Algeria, from its geographical situation, it deposits one of the largest high sun surface expositions in the world. The exposition duration of the almost territory exceeds 2000 hours annually and can reach the 3900 hours (high plateaus and Sahara). By knowing the daily energy received by 1 m{sup 2} of a horizontal surface of the solar thermalmore » panel is nearly around 1700 KWh/m{sup 2} a year in the north and 2263 KWh/m{sup 2} a year in the south of the country, we release the most important and strategic place of the solar technologies in the present and in the future for Algeria. This work consists to study, conceive and manufacture solar water heating with the available local materials so, this type of the energy will be profitable for all, particularly the poor countries. If we consider the illumination duration of the panel around 6 hours a day, the water heat panel manufactured in our laboratory produce an equivalent energy of 11.615 KWh a day so, 4239 KWh a year. These values of energy can be easily increased with performing the panel manufacture.« less
Design of a pool boiler heat transport system for a 25 kWe advanced Stirling conversion system
NASA Technical Reports Server (NTRS)
Anderson, W. G.; Rosenfeld, J. H.; Noble, J.; Kesseli, J.
1991-01-01
The overall operating temperature and efficiency of solar-powered Stirling engines can be improved by adding a heat transport system to more uniformly supply heat to the heater head tubes. One heat transport system with favorable characteristics is an alkali metal pool boiler. An alkali metal pool boiler heat transport system was designed for a 25-kW advanced Stirling conversion system (ASCS). Solar energy concentrated on the absorber dome boils a eutectic mixture of sodium and potassium. The alkali metal vapors condense on the heater head tubes, supplying the Stirling engine with a uniform heat flux at a constant temperature. Boiling stability is achieved with the use of an enhanced boiling surface and noncondensible gas.
Why is there net surface heating over the Antarctic Circumpolar Current?
NASA Astrophysics Data System (ADS)
Czaja, Arnaud; Marshall, John
2015-05-01
Using a combination of atmospheric reanalysis data, climate model outputs and a simple model, key mechanisms controlling net surface heating over the Southern Ocean are identified. All data sources used suggest that, in a streamline-averaged view, net surface heating over the Antarctic Circumpolar Current (ACC) is a result of net accumulation of solar radiation rather than a result of heat gain through turbulent fluxes (the latter systematically cool the upper ocean). It is proposed that the fraction of this net radiative heat gain realized as net ACC heating is set by two factors. First, the sea surface temperature at the southern edge of the ACC. Second, the relative strength of the negative heatflux feedbacks associated with evaporation at the sea surface and advection of heat by the residual flow in the oceanic mixed layer. A large advective feedback and a weak evaporative feedback maximize net ACC heating. It is shown that the present Southern Ocean and its circumpolar current are in this heating regime.
HIGH ALBEDO AND ENVIRONMENT-FRIENDLY CONCRETE FOR SMART GROWTH AND SUSTAINABLE DEVELOPMENT
Concrete surfaces absorb heat from sunlight due to their low solar reflectivity (albedo). This increases the local ambient temperature in urban areas (the so-called "heat-island" effect). The heat-island effect leads to a waste of energy because of increased cooling costs. ...
Profiling Transboundary Aerosols over Taiwan and Assessing Their Radiative Effects
NASA Technical Reports Server (NTRS)
Wang, Sheng-Hsiang; Lin, Neng-Huei; Chou, Ming-Dah; Tsay, Si-Chee; Welton, Ellsworth J.; Hsu, N. Christina; Giles, David M.; Liu, Gin-Rong; Holben, Brent N.
2010-01-01
A synergistic process was developed to study the vertical distributions of aerosol optical properties and their effects on solar heating using data retrieved from ground-based radiation measurements and radiative transfer simulations. Continuous MPLNET and AERONET observations were made at a rural site in northern Taiwan from 2005 to 2007. The aerosol vertical extinction profiles retrieved from ground-based lidar measurements were categorized into near-surface, mixed, and two-layer transport types, representing 76% of all cases. Fine-mode (Angstrom exponent, alpha, approx.1.4) and moderate-absorbing aerosols (columnar single-scattering albedo approx.0.93, asymmetry factor approx.0.73 at 440 nm wavelength) dominated in this region. The column-integrated aerosol optical thickness at 500 nm (tau(sub 500nm)) ranges from 0.1 to 0.6 for the near-surface transport type, but can be doubled in the presence of upper-layer aerosol transport. We utilize aerosol radiative efficiency (ARE; the impact on solar radiation per unit change of tau(sub 500nm)) to quantify the radiative effects due to different vertical distributions of aerosols. Our results show that the ARE at the top-of-atmosphere (-23 W/ sq m) is weakly sensitive to aerosol vertical distributions confined in the lower troposphere. On the other hand, values of the ARE at the surface are -44.3, -40.6 and -39.7 W/sq m 38 for near-surface, mixed, and two-layer transport types, respectively. Further analyses show that the impact of aerosols on the vertical profile of solar heating is larger for the near-surface transport type than that of two-layer transport type. The impacts of aerosol on the surface radiation and the solar heating profiles have implications for the stability and convection in the lower troposphere.
NASA Astrophysics Data System (ADS)
Kudo, Rei; Nishizawa, Tomoaki; Aoyagi, Toshinori
2016-07-01
The SKYLIDAR algorithm was developed to estimate vertical profiles of aerosol optical properties from sky radiometer (SKYNET) and lidar (AD-Net) measurements. The solar heating rate was also estimated from the SKYLIDAR retrievals. The algorithm consists of two retrieval steps: (1) columnar properties are retrieved from the sky radiometer measurements and the vertically mean depolarization ratio obtained from the lidar measurements and (2) vertical profiles are retrieved from the lidar measurements and the results of the first step. The derived parameters are the vertical profiles of the size distribution, refractive index (real and imaginary parts), extinction coefficient, single-scattering albedo, and asymmetry factor. Sensitivity tests were conducted by applying the SKYLIDAR algorithm to the simulated sky radiometer and lidar data for vertical profiles of three different aerosols, continental average, transported dust, and pollution aerosols. The vertical profiles of the size distribution, extinction coefficient, and asymmetry factor were well estimated in all cases. The vertical profiles of the refractive index and single-scattering albedo of transported dust, but not those of transported pollution aerosol, were well estimated. To demonstrate the performance and validity of the SKYLIDAR algorithm, we applied the SKYLIDAR algorithm to the actual measurements at Tsukuba, Japan. The detailed vertical structures of the aerosol optical properties and solar heating rate of transported dust and smoke were investigated. Examination of the relationship between the solar heating rate and the aerosol optical properties showed that the vertical profile of the asymmetry factor played an important role in creating vertical variation in the solar heating rate. We then compared the columnar optical properties retrieved with the SKYLIDAR algorithm to those produced with the more established scheme SKYRAD.PACK, and the surface solar irradiance calculated from the SKYLIDAR retrievals was compared with pyranometer measurement. The results showed good agreements: the columnar values of the SKYLIDAR retrievals agreed with reliable SKYRAD.PACK retrievals, and the SKYLIDAR retrievals were sufficiently accurate to evaluate the surface solar irradiance.
Thermoregulatory responses of goats in hot environments.
Maia, Alex Sandro Campos; da Silva, Roberto Gomes; Nascimento, Sheila Tavares; Nascimento, Carolina Cardoso Nagib; Pedroza, Heloisa Paula; Domingos, Herica Girlane Tertulino
2015-08-01
Notwithstanding the solar radiation is recognized as a detrimental factor to the thermal balance and responses of animals on the range in tropical conditions, studies on the amount of thermal radiation absorbed by goats therein associated with data on their production and heat exchange are still lacking. Metabolic heat production and the heat exchange of goats in the sun and in the shade were measured simultaneously, aiming to observe its thermal equilibrium. The results showed that black goats absorb twice as much as the white goats under intense solar radiation (higher than 800 W m(-2)). This observation leads to a higher surface temperature of black goats, but it must not be seen as a disadvantage, because they increase their sensible heat flow in the coat-air interface, especially the convection heat flow at high wind speeds. In the shade, no difference between the coat colours was observed and both presented a lower absorption of heat and a lower sensible heat flow gain. When solar radiation levels increases from 300 to 1000 W m(-2), we observed an increase of the heat losses through latent flow in both respiratory and cutaneous surface. Cutaneous evaporation was responsible for almost 90 % of the latent heat losses, independently of the coat colour. Goats decrease the metabolic heat production under solar radiation levels up to 800 W m(-2), and increase in levels higher than this, because there is an increase of the respiratory rate and of the respiratory flow, but the fractions of consumed oxygen and produced carbon dioxide are maintained stable. The respiratory rate of black goats was higher than the white ones, under 300 W m(-2) (55 and 45 resp min(-1)) and 1000 W m(-2) (120 and 95 resp min(-1), respectively). It was concluded that shade or any protection against solar radiation levels above 800 Wm(-2) is critical to guarantee goat's thermal equilibrium. Strategies concerning the grazing period in accordance with the time of the day alone are not appropriate, because the levels of radiation depend on the latitude of the location.
Thermoregulatory responses of goats in hot environments
NASA Astrophysics Data System (ADS)
Maia, Alex Sandro Campos; da Silva, Roberto Gomes; Nascimento, Sheila Tavares; Nascimento, Carolina Cardoso Nagib; Pedroza, Heloisa Paula; Domingos, Herica Girlane Tertulino
2015-08-01
Notwithstanding the solar radiation is recognized as a detrimental factor to the thermal balance and responses of animals on the range in tropical conditions, studies on the amount of thermal radiation absorbed by goats therein associated with data on their production and heat exchange are still lacking. Metabolic heat production and the heat exchange of goats in the sun and in the shade were measured simultaneously, aiming to observe its thermal equilibrium. The results showed that black goats absorb twice as much as the white goats under intense solar radiation (higher than 800 W m-2). This observation leads to a higher surface temperature of black goats, but it must not be seen as a disadvantage, because they increase their sensible heat flow in the coat-air interface, especially the convection heat flow at high wind speeds. In the shade, no difference between the coat colours was observed and both presented a lower absorption of heat and a lower sensible heat flow gain. When solar radiation levels increases from 300 to 1000 W m-2, we observed an increase of the heat losses through latent flow in both respiratory and cutaneous surface. Cutaneous evaporation was responsible for almost 90 % of the latent heat losses, independently of the coat colour. Goats decrease the metabolic heat production under solar radiation levels up to 800 W m-2, and increase in levels higher than this, because there is an increase of the respiratory rate and of the respiratory flow, but the fractions of consumed oxygen and produced carbon dioxide are maintained stable. The respiratory rate of black goats was higher than the white ones, under 300 W m-2 (55 and 45 resp min-1) and 1000 W m-2 (120 and 95 resp min-1, respectively). It was concluded that shade or any protection against solar radiation levels above 800 Wm-2 is critical to guarantee goat's thermal equilibrium. Strategies concerning the grazing period in accordance with the time of the day alone are not appropriate, because the levels of radiation depend on the latitude of the location.
Reducing Heat Gains and Cooling Loads Through Roof Structure Configurations of A House in Medan
NASA Astrophysics Data System (ADS)
Handayani Lubis, Irma; Donny Koerniawan, Mochamad
2018-05-01
Heat gains and heat losses through building surfaces are the main factors that determine the building’s cooling and heating loads. Roof as a building surface that has the most exposed area to the sun, contribute most of heat gains in the building. Therefore, the amount of solar heat gains on the roofs need to be minimized by roof structure configurations. This research aims to discover the optimization of roof structure configurations (coating material, structure material, inclination, overhang, and insulation) as one of passive design strategies that reduce heat gains and cooling loads of a house in Medan. The result showed that case four, white-painted metal roof combined with 45° roof pitched, 1.5m overhang, and addition of insulation, indicates the minimum heat gains production and the less cooling loads during clear sky day but not in the overcast sky condition. In conclusion, heat gains and cooling loads of a house in Medan could be diminished during clear sky day by the addition of roof coating with high reflectance low solar absorbtance, the slope roof, the extension of wider veranda, and the addition of insulation in the roof structure.
Nanoflare Heating of Solar and Stellar Coronae
NASA Technical Reports Server (NTRS)
Klimchuk, James A.
2010-01-01
A combination of observational and theoretical evidence suggests that much, and perhaps most, of the Sun's corona is heated by small unresolved bursts of energy called nanoflares. It seems likely that stellar coronae are heated in a similar fashion. Kanoflares are here taken to mean any impulsive heating that occurs within a magnetic flux strand. Many mechanisms have this property, including waves, but we prefer Parker's picture of tangled magnetic fields. The tangling is caused by turbulent convection at the stellar surface, and magnetic energy is released when the stresses reach a critical level. We suggest that the mechanism of energy release is the "secondary instability" of electric current sheets that are present at the boundaries between misaligned strands. I will discuss the collective evidence for solar and stellar nanoflares and hopefully present new results from the Solar Dynamics Observatory that was just launched.
NASA Astrophysics Data System (ADS)
Shah, Syed Afaq Ali; Sayyad, Muhammad Hassan; Abdulkarim, Salem; Qiao, Qiquan
2018-05-01
A step-by-step heat treatment was applied to ruthenium-based N719 dye solution for its potential application in dye-sensitized solar cells (DSSCs). The effects were analyzed and compared with standard untreated devices. A significant increase in short circuit current density was observed by employing a step-by-step heating method for dye solution in DSSCs. This increase of J sc is attributed to the enhancement in dye adsorption by the surface of the semiconductor and the higher number of charge carriers generated. DSSCs fabricated by a heated dye solution have achieved an overall power conversion efficiency of 8.41% which is significantly higher than the efficiency of 7.31% achieved with DSSCs fabricated without heated dye. Electrochemical impedance spectroscopy and capacitance voltage studies were performed to understand the better performance of the device fabricated with heated dye. Furthermore, transient photocurrent and transient photovoltage measurements were also performed to gain an insight into interfacial charge carrier recombinations.
Synoptic, Global Mhd Model For The Solar Corona
NASA Astrophysics Data System (ADS)
Cohen, Ofer; Sokolov, I. V.; Roussev, I. I.; Gombosi, T. I.
2007-05-01
The common techniques for mimic the solar corona heating and the solar wind acceleration in global MHD models are as follow. 1) Additional terms in the momentum and energy equations derived from the WKB approximation for the Alfv’en wave turbulence; 2) some empirical heat source in the energy equation; 3) a non-uniform distribution of the polytropic index, γ, used in the energy equation. In our model, we choose the latter approach. However, in order to get a more realistic distribution of γ, we use the empirical Wang-Sheeley-Arge (WSA) model to constrain the MHD solution. The WSA model provides the distribution of the asymptotic solar wind speed from the potential field approximation; therefore it also provides the distribution of the kinetic energy. Assuming that far from the Sun the total energy is dominated by the energy of the bulk motion and assuming the conservation of the Bernoulli integral, we can trace the total energy along a magnetic field line to the solar surface. On the surface the gravity is known and the kinetic energy is negligible. Therefore, we can get the surface distribution of γ as a function of the final speed originating from this point. By interpolation γ to spherically uniform value on the source surface, we use this spatial distribution of γ in the energy equation to obtain a self-consistent, steady state MHD solution for the solar corona. We present the model result for different Carrington Rotations.
An introduction to selective surfaces for solar applications
NASA Astrophysics Data System (ADS)
Neal, W. E. J.
1983-12-01
The desired characteristics of spectrally selective surfaces for solar thermal applications include a high-level absorption of radiation in the solar region of the spectrum (from 0.3 to 2.5 microns) combined with a low value of emission in the IR region (greater than two microns). There are three energy collector temperature ranges for specific solar applications, taking into account a range from 25 to 40 C for swimming pools, a range from 40 to 150 C for space and water heating and air conditioning, and temperatures above 150 C for the production of steam and the generation of electricity. Flat plate and low concentrating collectors with suitable selective surfaces can be employed in connection with the first two temperature ranges. Various types of selective surfaces are presented in a table, giving attention to the absorptive properties for solar radiation and the emissive properties in the IR region.
Practical issues for using solar-reflective materials to mitigate urban heat islands
NASA Astrophysics Data System (ADS)
Bretz, Sarah; Akbari, Hashem; Rosenfeld, Arthur
Solar-reflective or high-albedo, alternatives to traditionally absorptive urban surfaces such as rooftops and roadways can reduce cooling energy use and improve urban air quality at almost no cost. This paper presents information to support programs that mitigate urban heat islands with solar-reflective surfaces: estimates of the achievable increase in albedo for a variety of surfaces, issues related to the selection of materials and costs and benefits of using them. As an example, we present data for Sacramento, California. In Sacramento, we estimate that 20% of the 96 square mile area is dark roofing and 10% is dark pavement. Based on the change in albedo that is achievable for these surfaces, the overall albedo of Sacramento could be increased by 18%, a change that would produce significant energy savings and increase comfort within the city. Roofing market data indicate which roofing materials should be targeted for incentive programs. In 1995, asphalt shingle was used for over 65% of residential roofing area in the U.S. and 6% of commercial. Built-up roofing was used for about 5% of residential roofing and about 30% of commercial roofing. Single-ply membranes covered about 9% of the residential roofing area and over 30% of the commercial area. White, solar-reflective alternatives are presently available for these roofing materials but a low- first-cost, solar-reflective alternative to asphalt shingles is needed to capture the sloped-roof market. Since incoming solar radiation has a large non-visible component, solar-reflective materials can also be produced in a variety of colors.
Nedbal, Václav; Brom, Jakub
2018-08-15
Extensive construction of highways has a major impact on the landscape and its structure. They can also influence local climate and heat fluxes in the surrounding area. After the removal of vegetation due to highway construction, the amount of solar radiation energy used for plant evapotranspiration (latent heat flux) decreases, bringing about an increase in landscape surface temperature, changing the local climate and increasing surface run-off. In this study, we evaluated the impact of the D8 highway construction (Central Bohemia, Czech Republic) on the distribution of solar radiation energy into the various heat fluxes (latent, sensible and ground heat flux) and related surface functional parameters (surface temperature and surface wetness). The aim was to describe the severity of the impact and the distance from the actual highway in which it can be observed. LANDSAT multispectral satellite images and field meteorological measurements were used to calculate surface functional parameters and heat balance before and during the highway construction. Construction of a four-lane highway can influence the heat balance of the landscape surface as far as 90m in the perpendicular direction from the highway axis, i.e. up to 75m perpendicular from its edge. During a summer day, the decrease in evapotranspired water can reach up to 43.7m 3 per highway kilometre. This means a reduced cooling effect, expressed as the decrease in latent heat flux, by an average of 29.7MWh per day per highway kilometre and its surroundings. The loss of the cooling ability of the land surface by evaporation can lead to a rise in surface temperature by as much as 7°C. Thus, the results indicate the impact of extensive line constructions on the local climate. Copyright © 2018 Elsevier B.V. All rights reserved.
Metal-halide mixtures for latent heat energy storage
NASA Astrophysics Data System (ADS)
Chen, K.; Manvi, R.
Some candidates for alkali metal and alkali halide mixtures suitable for thermal energy storage at temperatures 600 C are identified. A solar thermal system application which offer advantages such as precipitation of salt crystals away from heat transfer surfaces, increased thermal conductivity of phase change materials, corrosion inhibition, and a constant monotectic temperature, independent of mixture concentrations. By using the lighters, metal rich phase as a heat transfer medium and the denser, salt rich phase as a phase change material for latent heat storage, undesirable solidification on the heat transfer surface may be prevented, is presented.
Metal-halide mixtures for latent heat energy storage
NASA Technical Reports Server (NTRS)
Chen, K.; Manvi, R.
1981-01-01
Some candidates for alkali metal and alkali halide mixtures suitable for thermal energy storage at temperatures 600 C are identified. A solar thermal system application which offer advantages such as precipitation of salt crystals away from heat transfer surfaces, increased thermal conductivity of phase change materials, corrosion inhibition, and a constant monotectic temperature, independent of mixture concentrations. By using the lighters, metal rich phase as a heat transfer medium and the denser, salt rich phase as a phase change material for latent heat storage, undesirable solidification on the heat transfer surface may be prevented, is presented.
NaOH-based high temperature heat-of-fusion thermal energy storage device
NASA Technical Reports Server (NTRS)
Cohen, B. M.; Rice, R. E.
1978-01-01
A material called Thermkeep, developed as a low-cost method for the storage of thermal energy for solar electric power generating systems is discussed. The storage device consists of an insulated cylinder containing Thermkeep in which coiled tubular heat exchangers are immersed. A one-tenth scale model of the design contains 25 heat-exchanger tubes and 1500 kg of Thermkeep. Its instrumentation includes thermocouples to measure internal Thermkeep temperatures, vessel surface, heated shroud surface, and pressure gauges to indicate heat-exchanger pressure drops. The test-circuit design is presented and experimental results are discussed.
NASA Astrophysics Data System (ADS)
Zemenkova, M. Yu; Zemenkov, Yu D.
2016-10-01
Researchers in Tyumen State Oil and Gas University (TSOGU) have conducted a complex research of the heat and mass transfer processes and thermophysical properties of hydrocarbons, taking into account their impact on the reliability and safety of the hydrocarbon transport and storage processes. It has been shown that the thermodynamic conditions on the surface and the color of oil influence the degree of temperature rise in the upper layers of oil when exposed to direct solar radiation. In order to establish the nature of solar radiation impact on the surface temperature the experimental studies were conducted in TSOGU on the hydrocarbon evaporation and the temperature change of various petroleum and petroleum products on the free surface with varying degrees of thermal insulation of the side walls and bottom of the vessel.
NASA Astrophysics Data System (ADS)
Song, Yutian; Wang, Xueqiang; Bi, Shengshan; Wu, Jiangtao; Huang, Shaopeng
2017-09-01
Surface temperature at the nearside of the Moon (Ts,n) embraces an abundance of valuable information to be explored, and its measurement contributes to studying Earth's energy budget. On a basis of a one-dimensional unsteady heat-transfer model, this paper ran a quantitative calculation that how much the Ts,n varies with the changes of different heat sources, including solar radiation, terrestrial radiation, and lunar interior heat flow. The results reveal that solar radiation always has the most important influence on Ts,n not only during lunar daytime (by means of radiation balance) but also during lunar nighttime (by means of lunar regolith heat conduction). Besides, the effect of terrestrial radiation is also unavoidable, and measuring the variation of lunar nighttime low temperature is exactly helpful in observing Earth outgoing radiation. Accordingly, it is practical to establish a Moon-base observatory on the Moon. For verification, the Apollo 15 mission temperature data was used and analyzed as well. Moreover, other 9 typical lunar areas were selected and the simulation was run one after another in these areas after proper model amendation. It is shown that the polar regions on the Moon are the best areas for establishing Moon-base observatory.
Ship Integration of Energy Scavenging Technology for Sea Base Operations
2009-07-01
operates similar to the common commercial refrigerating system in reverse like a heat pump.3 However, cold water pipes do pose a 12 Naval Surface...sunlight at the focal point in a solar collector , more light can be converted to electricity for less solar cell material. Solar concentrators come in...Kotter, D.K., et al. (2008). Proceeding from ES2008: Solar Nantenna Electromagnetic Collectors . Jacksonville, Florida: Energy Sustainability 2008
Kim, Kwanghyun; Yu, Sunyoung; An, Cheolwon; Kim, Sung-Wook; Jang, Ji-Hyun
2018-05-09
Solar desalination via thermal evaporation of seawater is one of the most promising technologies for addressing the serious problem of global water scarcity because it does not require additional supporting energy other than infinite solar energy for generating clean water. However, low efficiency and a large amount of heat loss are considered critical limitations of solar desalination technology. The combination of mesoporous three-dimensional graphene networks (3DGNs) with a high solar absorption property and water-transporting wood pieces with a thermal insulation property has exhibited greatly enhanced solar-to-vapor conversion efficiency. 3DGN deposited on a wood piece provides an outstanding value of solar-to-vapor conversion efficiency, about 91.8%, under 1 sun illumination and excellent desalination efficiency of 5 orders salinity decrement. The mass-producible 3DGN enriched with many mesopores efficiently releases the vapors from an enormous area of the surface by heat localization on the top surface of the wood piece. Because the efficient solar desalination device made by 3DGN on the wood piece is highly scalable and inexpensive, it could serve as one of the main sources for the worldwide supply of purified water achieved via earth-abundant materials without an extra supporting energy source.
NASA Technical Reports Server (NTRS)
Chou, Ming-Dah; Chan, Pui-King; Yan, Michael M.-H.
2000-01-01
The sea-surface shortwave and longwave radiative fluxes have been retrieved from the radiances measured by Japan's Geostationary Meteorological Satellite 5. The surface radiation data set covers the domain 40S-40N and 90E-170W. The temporal resolution is 1 day, and the spatial resolution is 0.5 deg x 0.5 deg latitude-longitude. The retrieved surface radiation have been validated with the radiometric measurements at the Atmospheric Radiation Measuring (ARM) site on Manus island in the equatorial western Pacific for a period of 15 months. It has also been validated with the measurements at the radiation site on Dungsha island in the South China Sea during the South China Sea Monsoon Experiment (SCSMEX) Intensive Observing Period (May and June 1998). The data set is used to study the effect of El Nino and East Asian Summer monsoon on the heating of the ocean in the tropical western Pacific and the South China Sea. Interannual variations of clouds associated with El Nino and the East Asian Summer monsoon have a large impact on the radiative heating of the ocean. It has been found that the magnitude of the interannual variation of the seasonal mean surface radiative heating exceeds 40 W/sq m over large areas. Together with the Clouds and the Earth's Radiant Energy System (CERES) shortwave fluxes at top of the atmosphere and the radiative transfer calculations of clear-sky fluxes, this surface radiation data set is also used to study the impact of clouds on the solar heating of the atmosphere. It is found that clouds enhance the atmospheric solar heating by approx. 20 W/sq m in the tropical western Pacific and the South China Sea. This result is important for evaluating the accuracy of solar flux calculations in clear and cloudy atmospheres.
Salt-gradient Solar Ponds: Summary of US Department of Energy Sponsored Research
NASA Technical Reports Server (NTRS)
French, R. L.; Johnson, D. H.; Jones, G. F.; Zangrando, F.
1984-01-01
The solar pond research program conducted by the United States Department of Energy was discontinued after 1983. This document summarizes the results of the program, reviews the state of the art, and identifies the remaining outstanding issues. Solar ponds is a generic term but, in the context of this report, the term solar pond refers specifically to saltgradient solar pond. Several small research solar ponds have been built and successfully tested. Procedures for filling the pond, maintaining the gradient, adjusting the zone boundaries, and extracting heat were developed. Theories and models were developed and verified. The major remaining unknowns or issues involve the physical behavior of large ponds; i.e., wind mixing of the surface, lateral range or reach of horizontally injected fluids, ground thermal losses, and gradient zone boundary erosion caused by pumping fluid for heat extraction. These issues cannot be scaled and must be studied in a large outdoor solar pond.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afrin, Samia; Dagdelen, John; Ma, Zhiwen
Highly-specular reflective surfaces that can withstand elevated-temperatures are desirable for many applications including reflective heat shielding in solar receivers and secondary reflectors, which can be used between primary concentrators and heat collectors. A high-efficiency, high-temperature solar receiver design based on arrays of cavities needs a highly-specular reflective surface on its front section to help sunlight penetrate into the absorber tubes for effective flux spreading. Since this application is for high-temperature solar receivers, this surface needs to be durable and to maintain its optical properties through the usable life. Degradation mechanisms associated with elevated temperatures and thermal cycling, which include cracking,more » delamination, corrosion/oxidation, and environmental effects, could cause the optical properties of surfaces to degrade rapidly in these conditions. Protected mirror surfaces for these applications have been tested by depositing a thin layer of SiO2 on top of electrodeposited silver by means of the sol-gel method. To obtain an effective thin film structure, this sol-gel procedure has been investigated extensively by varying process parameters that affect film porosity and thickness. Endurance tests have been performed in a furnace at 150 degrees C for thousands of hours. This paper presents the sol-gel process for intermediate-temperature specular reflective coatings and provides the long-term reliability test results of sol-gel protected silver-coated surfaces.« less
Improved Statistical Model Of 10.7-cm Solar Radiation
NASA Technical Reports Server (NTRS)
Vedder, John D.; Tabor, Jill L.
1993-01-01
Improved mathematical model simulates short-term fluctuations of flux of 10.7-cm-wavelength solar radiation during 91-day averaging period. Called "F10.7 flux", important as measure of solar activity and because it is highly correlated with ultraviolet radiation causing fluctuations in heating and density of upper atmosphere. F10.7 flux easily measureable at surface of Earth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Nathan H.; Chen, Zhen; Fan, Shanhui
Solar thermal energy conversion has attracted substantial renewed interest due to its applications in industrial heating, air conditioning, and electricity generation. Achieving stagnation temperatures exceeding 200 °C, pertinent to these technologies, with unconcentrated sunlight requires spectrally selective absorbers with exceptionally low emissivity in the thermal wavelength range and high visible absorptivity for the solar spectrum. In this Communication, we then report a semiconductor-based multilayer selective absorber that exploits the sharp drop in optical absorption at the bandgap energy to achieve a measured absorptance of 76% at solar wavelengths and a low emittance of approximately 5% at thermal wavelengths. In fieldmore » tests, we obtain a peak temperature of 225 °C, comparable to that achieved with state-of-the-art selective surfaces. Furthemore, with straightforward optimization to improve solar absorption, our work shows the potential for unconcentrated solar thermal systems to reach stagnation temperatures exceeding 300 °C, thereby eliminating the need for solar concentrators for mid-temperature solar applications such as supplying process heat« less
Thomas, Nathan H.; Chen, Zhen; Fan, Shanhui; ...
2017-07-13
Solar thermal energy conversion has attracted substantial renewed interest due to its applications in industrial heating, air conditioning, and electricity generation. Achieving stagnation temperatures exceeding 200 °C, pertinent to these technologies, with unconcentrated sunlight requires spectrally selective absorbers with exceptionally low emissivity in the thermal wavelength range and high visible absorptivity for the solar spectrum. In this Communication, we then report a semiconductor-based multilayer selective absorber that exploits the sharp drop in optical absorption at the bandgap energy to achieve a measured absorptance of 76% at solar wavelengths and a low emittance of approximately 5% at thermal wavelengths. In fieldmore » tests, we obtain a peak temperature of 225 °C, comparable to that achieved with state-of-the-art selective surfaces. Furthemore, with straightforward optimization to improve solar absorption, our work shows the potential for unconcentrated solar thermal systems to reach stagnation temperatures exceeding 300 °C, thereby eliminating the need for solar concentrators for mid-temperature solar applications such as supplying process heat« less
Thomas, Nathan H; Chen, Zhen; Fan, Shanhui; Minnich, Austin J
2017-07-13
Solar thermal energy conversion has attracted substantial renewed interest due to its applications in industrial heating, air conditioning, and electricity generation. Achieving stagnation temperatures exceeding 200 °C, pertinent to these technologies, with unconcentrated sunlight requires spectrally selective absorbers with exceptionally low emissivity in the thermal wavelength range and high visible absorptivity for the solar spectrum. In this Communication, we report a semiconductor-based multilayer selective absorber that exploits the sharp drop in optical absorption at the bandgap energy to achieve a measured absorptance of 76% at solar wavelengths and a low emittance of approximately 5% at thermal wavelengths. In field tests, we obtain a peak temperature of 225 °C, comparable to that achieved with state-of-the-art selective surfaces. With straightforward optimization to improve solar absorption, our work shows the potential for unconcentrated solar thermal systems to reach stagnation temperatures exceeding 300 °C, thereby eliminating the need for solar concentrators for mid-temperature solar applications such as supplying process heat.
Fiber-Based, Double-Sided, Reduced Graphene Oxide Films for Efficient Solar Vapor Generation.
Guo, Ankang; Ming, Xin; Fu, Yang; Wang, Gang; Wang, Xianbao
2017-09-06
Solar vapor generation is a promising and whole new branch of photothermal conversion for harvesting solar energy. Various materials and devices for solar thermal conversion were successively produced and reported for higher solar energy utilization in the past few years. Herein, a compact device of reduced graphene oxides (rGO) and paper fibers was designed and assembled for efficient solar steam generation under light illumination, and it consists of water supply pipelines (WSP), a thermal insulator (TI) and a double-sided absorbing film (DSF). Heat localization is enabled by the black DSF due to its broad absorption of sunlight. More importantly, the heat transfer, from the hot DSF to the cold base fluid (water), was suppressed by TI with a low thermal conductivity. Meanwhile, bulk water was continuously transported to the DSF by WSP through TI, which was driven by the surface energy and surface tension based on the capillary effect. The effects of reduction degrees of rGO on the photothermal conversion were explored, and the evaporation efficiency reached 89.2% under one sun with 60 mg rGO. This new microdevice provided a basic technical support for distillation, desalination, sewage treatment, and related technologies.
Large Eddy Simulation of complex sidearms subject to solar radiation and surface cooling.
Dittko, Karl A; Kirkpatrick, Michael P; Armfield, Steven W
2013-09-15
Large Eddy Simulation (LES) is used to model two lake sidearms subject to heating from solar radiation and cooling from a surface flux. The sidearms are part of Lake Audrey, NJ, USA and Lake Alexandrina, SA, Australia. The simulation domains are created using bathymetry data and the boundary is modelled with an Immersed Boundary Method. We investigate the cooling and heating phases with separate quasi-steady state simulations. Differential heating occurs in the cavity due to the changing depth. The resulting temperature gradients drive lateral flows. These flows are the dominant transport process in the absence of wind. Study in this area is important in water quality management as the lateral circulation can carry particles and various pollutants, transporting them to and mixing them with the main lake body. Copyright © 2013 Elsevier Ltd. All rights reserved.
Method for cleaning a solar cell surface opening made with a solar etch paste
Rohatgi, Ajeet; Meemongkolkiat, Vichai
2010-06-22
A thin silicon solar cell having a back dielectric passivation and rear contact with local back surface field is described. Specifically, the solar cell may be fabricated from a crystalline silicon wafer having a thickness from 50 to 500 micrometers. A barrier layer and a dielectric layer are applied at least to the back surface of the silicon wafer to protect the silicon wafer from deformation when the rear contact is formed. At least one opening is made to the dielectric layer. An aluminum contact that provides a back surface field is formed in the opening and on the dielectric layer. The aluminum contact may be applied by screen printing an aluminum paste having from one to 12 atomic percent silicon and then applying a heat treatment at 750 degrees Celsius.
Yadav, Anil Singh; Bhagoria, J. L.
2013-01-01
Solar air heater is a type of heat exchanger which transforms solar radiation into heat energy. The thermal performance of conventional solar air heater has been found to be poor because of the low convective heat transfer coefficient from the absorber plate to the air. Use of artificial roughness on a surface is an effective technique to enhance the rate of heat transfer. A CFD-based investigation of turbulent flow through a solar air heater roughened with square-sectioned transverse rib roughness has been performed. Three different values of rib-pitch (P) and rib-height (e) have been taken such that the relative roughness pitch (P/e = 14.29) remains constant. The relative roughness height, e/D, varies from 0.021 to 0.06, and the Reynolds number, Re, varies from 3800 to 18,000. The results predicted by CFD show that the average heat transfer, average flow friction, and thermohydraulic performance parameter are strongly dependent on the relative roughness height. A maximum value of thermohydraulic performance parameter has been found to be 1.8 for the range of parameters investigated. Comparisons with previously published work have been performed and found to be in excellent agreement. PMID:24222752
Yadav, Anil Singh; Bhagoria, J L
2013-01-01
Solar air heater is a type of heat exchanger which transforms solar radiation into heat energy. The thermal performance of conventional solar air heater has been found to be poor because of the low convective heat transfer coefficient from the absorber plate to the air. Use of artificial roughness on a surface is an effective technique to enhance the rate of heat transfer. A CFD-based investigation of turbulent flow through a solar air heater roughened with square-sectioned transverse rib roughness has been performed. Three different values of rib-pitch (P) and rib-height (e) have been taken such that the relative roughness pitch (P/e = 14.29) remains constant. The relative roughness height, e/D, varies from 0.021 to 0.06, and the Reynolds number, Re, varies from 3800 to 18,000. The results predicted by CFD show that the average heat transfer, average flow friction, and thermohydraulic performance parameter are strongly dependent on the relative roughness height. A maximum value of thermohydraulic performance parameter has been found to be 1.8 for the range of parameters investigated. Comparisons with previously published work have been performed and found to be in excellent agreement.
A vacuum tube vee-trough collector for solar heating and air conditioning applications
NASA Technical Reports Server (NTRS)
Selcuk, M. K.
1978-01-01
An analysis is conducted of the performance of a vee-trough vacuum tube collector proposed for use in solar heating and cooling applications. The vee-trough reflector is a triangular sectioned, flat surfaced reflector, whose axis is laid in the East-West direction. A vacuum tube receiver placed at the bottom of the vee-trough collects solar heat most efficiently since convection is completely eliminated. Radiation losses are reduced by use of selective coatings on the absorber. Owing to its high temperature capabilities (300-400 F), the proposed scheme could also be used for power generation applications in combination with an organic Rankine conversion system. It is especially recommended for unattended pumping stations since the reflectors only require reversal once every six months.
NASA Astrophysics Data System (ADS)
Jakub, Fabian; Mayer, Bernhard
2017-11-01
The formation of shallow cumulus cloud streets was historically attributed primarily to dynamics. Here, we focus on the interaction between radiatively induced surface heterogeneities and the resulting patterns in the flow. Our results suggest that solar radiative heating has the potential to organize clouds perpendicular to the sun's incidence angle. To quantify the extent of organization, we performed a high-resolution large-eddy simulation (LES) parameter study. We varied the horizontal wind speed, the surface heat capacity, the solar zenith and azimuth angles, and radiative transfer parameterizations (1-D and 3-D). As a quantitative measure we introduce a simple algorithm that provides a scalar quantity for the degree of organization and the alignment. We find that, even in the absence of a horizontal wind, 3-D radiative transfer produces cloud streets perpendicular to the sun's incident direction, whereas the 1-D approximation or constant surface fluxes produce randomly positioned circular clouds. Our reasoning for the enhancement or reduction of organization is the geometric position of the cloud's shadow and its corresponding surface fluxes. Furthermore, when increasing horizontal wind speeds to 5 or 10 m s-1, we observe the development of dynamically induced cloud streets. If, in addition, solar radiation illuminates the surface beneath the cloud, i.e., when the sun is positioned orthogonally to the mean wind field and the solar zenith angle is larger than 20°, the cloud-radiative feedback has the potential to significantly enhance the tendency to organize in cloud streets. In contrast, in the case of the 1-D approximation (or overhead sun), the tendency to organize is weaker or even prohibited because the shadow is cast directly beneath the cloud. In a land-surface-type situation, we find the organization of convection happening on a timescale of half an hour. The radiative feedback, which creates surface heterogeneities, is generally diminished for large surface heat capacities. We therefore expect radiative feedbacks to be strongest over land surfaces and weaker over the ocean. Given the results of this study we expect that simulations including shallow cumulus convection will have difficulties producing cloud streets if they employ 1-D radiative transfer solvers or may need unrealistically high wind speeds to excite cloud street organization.
Nanostructured refractory thin films for solar applications
NASA Astrophysics Data System (ADS)
Ollier, E.; Dunoyer, N.; Dellea, O.; Szambolics, H.
2014-08-01
Selective solar absorbers are key elements of all solar thermal systems. Solar thermal panels and Concentrated Solar Power (CSP) systems aim respectively at producing heat and electricity. In both cases, a surface receives the solar radiation and is designed to have the highest optical absorption (lowest optical reflectivity) of the solar radiation in the visible wavelength range where the solar intensity is the highest. It also has a low emissivity in the infrared (IR) range in order to avoid radiative thermal losses. Current solutions in the state of the art usually consist in deposited interferential thin films or in cermets [1]. Structured surfaces have been proposed and have been simulated because they are supposed to be more efficient when the solar radiation is not normal to the receiving surface and because they could potentially be fabricated with refractory materials able to sustain high operating temperatures. This work presents a new method to fabricate micro/nanostructured surfaces on molybdenum (refractory metal with a melting temperature of 2623°C). This method now allows obtaining a refractory selective surface with an excellent optical selectivity and a very high absorption in the visible range. This high absorption performance was obtained by achieving a double structuration at micro and nano scales thanks to an innovative process flow.
Zhang, Lulu; Xing, Jun; Wen, Xinglin; Chai, Jianwei; Wang, Shijie; Xiong, Qihua
2017-09-14
Passive solar evaporation represents a promising and environmentally benign method of water purification/desalination. Plasmonic nanoparticles have been demonstrated as an effective approach for enhancing solar steam generation through a plasmonic heating effect, nonetheless the efficiency is constrained by unnecessary bulk heating of the entire liquid volume, while the noble metals commonly used are not cost-effective in terms of availability and their sophisticated preparation. Herein, a paper-like plasmonic device consisting of a microporous membrane and indium nanoparticles (In NPs/MPM) is fabricated through a simple thermal evaporation method. Due to the light-weight and porous nature of the device, the broadband light absorption properties, and theoretically the excellent plasmonic heating effect from In NP which could be even higher than gold, silver and aluminium nanoparticles, our device can effectively enhance solar water evaporation by floating on the water surface and its utility has been demonstrated in the solar desalination of a real seawater sample. The durability of the device in solar seawater desalination has also been investigated over multiple cycles with stable performances. This portable device could provide a solution for individuals to do water/seawater purification in under-developed areas with limited/no access to electricity or a centralized drinking water supply.
Two Fixed, Evacuated, Glass, Solar Collectors Using Nonimaging Concentration
NASA Astrophysics Data System (ADS)
Garrison, John D.; Winston, Roland; O'Gallagher, Joseph; Ford, Gary
1984-01-01
Two fixed, evacuated, glass solar thermal collectors have been designed. The incorporation of nonimaging concentration, selective absorption and vacuum insulation into their design is essential for obtaining high efficiency through low heat loss, while operating at high temperatures. Nonimaging, approximately ideal concentration with wide acceptance angle permits solar radiation collection without tracking the sun, and insures collection of much of the diffuse radiation. It also minimizes the area of the absorbing surface, thereby reducing the radiation heat loss. Functional integration, where different parts of these two collectors serve more than one function, is also important in achieving high efficiency, and it reduces cost.
Study toward high-performance thermally driven air-conditioning systems
NASA Astrophysics Data System (ADS)
Miyazaki, Takahiko; Miyawaki, Jin; Ohba, Tomonori; Yoon, Seong-Ho; Saha, Bidyut Baran; Koyama, Shigeru
2017-01-01
The Adsorption heat pump is a technology for cooling and heating by using hot water as a driving heat source. It will largely contribute to energy savings when it is driven by solar thermal energy or waste heat. The system is available in the market worldwide, and there are many examples of application to heat recovery in factories and to solar cooling systems. In the present system, silica gel and zeolite are popular adsorbents in combination with water refrigerant. Our study focused on activated carbon-ethanol pair for adsorption cooling system because of the potential to compete with conventional systems in terms of coefficient of performance. In addition, activated-ethanol pair can generally produce larger cooling effect by an adsorption-desorption cycle compared with that of the conventional pairs in terms of cooling effect per unit adsorbent mass. After the potential of a commercially available activated carbon with highest level specific surface area was evaluated, we developed a new activated carbon that has the optimum pore characteristics for the purpose of solar or waste heat driven cooling systems. In this paper, comparison of refrigerants for adsorption heat pump application is presented, and a newly developed activated carbon for ethanol adsorption heat pump is introduced.
Non-climatic thermal adaptation: implications for species' responses to climate warming.
Marshall, David J; McQuaid, Christopher D; Williams, Gray A
2010-10-23
There is considerable interest in understanding how ectothermic animals may physiologically and behaviourally buffer the effects of climate warming. Much less consideration is being given to how organisms might adapt to non-climatic heat sources in ways that could confound predictions for responses of species and communities to climate warming. Although adaptation to non-climatic heat sources (solar and geothermal) seems likely in some marine species, climate warming predictions for marine ectotherms are largely based on adaptation to climatically relevant heat sources (air or surface sea water temperature). Here, we show that non-climatic solar heating underlies thermal resistance adaptation in a rocky-eulittoral-fringe snail. Comparisons of the maximum temperatures of the air, the snail's body and the rock substratum with solar irradiance and physiological performance show that the highest body temperature is primarily controlled by solar heating and re-radiation, and that the snail's upper lethal temperature exceeds the highest climatically relevant regional air temperature by approximately 22°C. Non-climatic thermal adaptation probably features widely among marine and terrestrial ectotherms and because it could enable species to tolerate climatic rises in air temperature, it deserves more consideration in general and for inclusion into climate warming models.
NASA Astrophysics Data System (ADS)
Salamanca, F.; Georgescu, M.; Mahalov, A.; Moustaoui, M.; Martilli, A.
2016-10-01
Assessment of mitigation strategies that combat global warming, urban heat islands (UHIs), and urban energy demand can be crucial for urban planners and energy providers, especially for hot, semi-arid urban environments where summertime cooling demands are excessive. Within this context, summertime regional impacts of cool roof and rooftop solar photovoltaic deployment on near-surface air temperature and cooling energy demand are examined for the two major USA cities of Arizona: Phoenix and Tucson. A detailed physics-based parametrization of solar photovoltaic panels is developed and implemented in a multilayer building energy model that is fully coupled to the Weather Research and Forecasting mesoscale numerical model. We conduct a suite of sensitivity experiments (with different coverage rates of cool roof and rooftop solar photovoltaic deployment) for a 10-day clear-sky extreme heat period over the Phoenix and Tucson metropolitan areas at high spatial resolution (1-km horizontal grid spacing). Results show that deployment of cool roofs and rooftop solar photovoltaic panels reduce near-surface air temperature across the diurnal cycle and decrease daily citywide cooling energy demand. During the day, cool roofs are more effective at cooling than rooftop solar photovoltaic systems, but during the night, solar panels are more efficient at reducing the UHI effect. For the maximum coverage rate deployment, cool roofs reduced daily citywide cooling energy demand by 13-14 %, while rooftop solar photovoltaic panels by 8-11 % (without considering the additional savings derived from their electricity production). The results presented here demonstrate that deployment of both roofing technologies have multiple benefits for the urban environment, while solar photovoltaic panels add additional value because they reduce the dependence on fossil fuel consumption for electricity generation.
Metasurfaces Leveraging Solar Energy for Icephobicity.
Mitridis, Efstratios; Schutzius, Thomas M; Sicher, Alba; Hail, Claudio U; Eghlidi, Hadi; Poulikakos, Dimos
2018-06-29
Inhibiting ice accumulation on surfaces is an energy-intensive task and is of significant importance in nature and technology where it has found applications in windshields, automobiles, aviation, renewable energy generation, and infrastructure. Existing methods rely on on-site electrical heat generation, chemicals, or mechanical removal, with drawbacks ranging from financial costs to disruptive technical interventions and environmental incompatibility. Here we focus on applications where surface transparency is desirable and propose metasurfaces with embedded plasmonically enhanced light absorption heating, using ultrathin hybrid metal-dielectric coatings, as a passive, viable approach for de-icing and anti-icing, in which the sole heat source is renewable solar energy. The balancing of transparency and absorption is achieved with rationally nanoengineered coatings consisting of gold nanoparticle inclusions in a dielectric (titanium dioxide), concentrating broadband absorbed solar energy into a small volume. This causes a > 10 °C temperature increase with respect to ambient at the air-solid interface, where ice is most likely to form, delaying freezing, reducing ice adhesion, when it occurs, to negligible levels (de-icing) and inhibiting frost formation (anti-icing). Our results illustrate an effective unexplored pathway toward environmentally compatible, solar-energy-driven icephobicity, enabled by respectively tailored plasmonic metasurfaces, with the ability to design the balance of transparency and light absorption.
Dawson, Terence J; Webster, Koa N; Maloney, Shane K
2014-02-01
The furs of mammals have varied and complex functions. Other than for thermoregulation, fur is involved in physical protection, sensory input, waterproofing and colouration, the latter being important for crypsis or camouflage. Some of these diverse functions potentially conflict. We have investigated how variation in cryptic colouration and thermal features may interact in the coats of mammals and influence potential heat inflows from solar radiation, much of which is outside the visible spectral range. The coats of the polar bear (Ursus maritimus) and the marsupial koala (Phascolarctus cinereus) have insulative similarities but, while they feature cryptic colouration, they are of contrasting colour, i.e. whitish and dark grey. The reflectance of solar radiation by coats was measured across the full solar spectrum using a spectroradiometer. The modulation of incident solar radiation and resultant heat flows in these coats were determined at a range of wind speeds by mounting them on a heat flux transducer/temperature-controlled plate apparatus in a wind tunnel. A lamp with a spectral distribution of radiation similar to the solar spectrum was used as a proxy for the sun. Crypsis by colour matching was apparent within the visible spectrum for the two species, U. maritimus being matched against snow and P. cinereus against Eucalyptus forest foliage. While reflectances across the full solar spectrum differed markedly, that of U. maritimus being 66 % as opposed to 10 % for P. cinereus, the heat influxes from solar radiation reaching the skin were similar. For both coats at low wind speed (1 m s(-1)), 19 % of incident solar radiation impacted as heat at the skin surface; at higher wind speed (10 m s(-1)) this decreased to approximately 10 %. Ursus maritimus and P. cinereus have high and comparable levels of fur insulation and although the patterns of reflectance and depths of penetrance of solar radiation differ for the coats, the considerable insulation limited the radiant heat reaching the skin. These data suggest that generally, if mammal coats have high insulation then heat flow from solar radiation into an animal is much restricted and the impact of coat colour is negligible. However, comparisons with published data from other species suggest that as fur insulation decreases, colour increasingly influences the heat inflow associated with solar radiation.
NASA Astrophysics Data System (ADS)
Rumpf, M. E.; Fagents, S. A.; Crawford, I. A.; Joy, K. H.
2009-12-01
The ever-changing environment on the Earth’s surface has erased any record of the early solar system. However, the antiquity of lunar surface combined with its negligible atmosphere and magnetosphere would have created conditions favorable for the preservation of ancient solar wind particles, galactic cosmic ray particles, and material that originated on other bodies in the inner solar system. Ancient particles emplaced in the regolith and subsequently buried beneath mare lava flows may have been preserved from subsequent bombardment provided the volatiles survived heat introduced by the lava flow. Discovery and extraction of such particles will aid in the advancement of several current solar system exploration goals, including studying the record of solar wind gases and investigating ancient atmospheric compositions on Earth and other inner planets. It has been shown that different volatile species will be released from the regolith when heated to specific temperature ranges between 573 and 973 K. We have developed a finite-volume numerical model that simulates heat transfer between a mare lava flow and the underlying regolith, to predict the preservation potential of ancient particles within layered deposits in the lunar maria. Results show that a 1 m thick basalt flow initially at 1500 K will heat an underlying regolith deposit to release implanted volatile species buried to a depth of 3.7 to 28 cm beneath the regolith surface; pristine samples would be preserved beneath these depths. At the estimated regolith formation rate of ~5 mm/Ma during the peak of mare volcanism (~3.6-3.8 Ga), an exposure time exceeding 7.4 to 56 Ma would be required prior to burial by the ensuing lava flow. Heating depths and required regolith formation times scale in direct proportion to the thickness of the overlying flow. Emplacement of multiple flow units over several hundred Ma would create intercalated stacks of lavas and regolith units, which could be radiometrically dated to provide a time series of the variability in intensity and composition of the solar wind. Suitable locations include Oceanus Procellarum, which contains numerous lava units ranging in age from 3.5-1.2 Ga. Extraction of implanted volatiles of a range of ages would require drilling through perhaps tens of meters of flow units and intervening paleoregoliths, which in turn indicates the need for tens to hundreds of km surface mobility and the provision for adequate sample collection and return. Detection of suitable paleoregolith deposits would be aided by tools such as ground penetrating radar. Although it may be argued that long-range robotic rover and sample return missions could tackle this objective, we propose that the complexity of the task is most readily addressed by a sortie-class human expedition to key sites in the lunar maria.
NASA Technical Reports Server (NTRS)
Langseth, M. G.
1977-01-01
The principal components of the experiment were probes, each with twelve thermometers of exceptional accuracy and stability, that recorded temperature variations at the surface and in the regolith down to 2.5 m. The Apollo 15 experiment and the Apollo 17 probes recorded lunar surface and subsurface temperatures. These data provided a unique and valuable history of the interaction of solar energy with lunar surface and the effects of heat flowing from the deep interior out through the surface of the moon. The interpretation of these data resulted in a clearer definition of the thermal and mechanical properties of the upper two meters of lunar regolith, direct measurements of the gradient in mean temperature due to heat flow from the interior and a determination of the heat flow at the Apollo 15 and Apollo 17 sites.
Opto-thermal analysis of a lightweighted mirror for solar telescope.
Banyal, Ravinder K; Ravindra, B; Chatterjee, S
2013-03-25
In this paper, an opto-thermal analysis of a moderately heated lightweighted solar telescope mirror is carried out using 3D finite element analysis (FEA). A physically realistic heat transfer model is developed to account for the radiative heating and energy exchange of the mirror with surroundings. The numerical simulations show the non-uniform temperature distribution and associated thermo-elastic distortions of the mirror blank clearly mimicking the underlying discrete geometry of the lightweighted substrate. The computed mechanical deformation data is analyzed with surface polynomials and the optical quality of the mirror is evaluated with the help of a ray-tracing software. The thermal print-through distortions are further shown to contribute to optical figure changes and mid-spatial frequency errors of the mirror surface. A comparative study presented for three commonly used substrate materials, namely, Zerodur, Pyrex and Silicon Carbide (SiC) is relevant to vast area of large optics requirements in ground and space applications.
Solid-state greenhouses and their implications for icy satellites
NASA Technical Reports Server (NTRS)
Matson, Dennis L.; Brown, Robert H.
1989-01-01
The 'solid-state greenhouse effect' model constituted by the subsurface solar heating of translucent, high-albedo materials is presently applied to the study of planetary surfaces, with attention to frost and ice surfaces of the solar system's outer satellites. Temperature is computed as a function of depth for an illustrative range of thermal variables, and it is discovered that the surfaces and interiors of such bodies can be warmer than otherwise suspected. Mechanisms are identified through which the modest alteration of surface properties can substantially change the solid-state greenhouse and force an interior temperature adjustment.
ERIC Educational Resources Information Center
School Science Review, 1983
1983-01-01
Describes a soap bubble motor, house insulation models, using hot-water bottles as heat sources, solar mobile, surface tension boat, evaporative cooling experiments, six activities on heat, and a magic trick based on friction. Also discusses using the Cambion Electronics Kit to introduce junior high students to the subject. (JM)
Coronagraphic and low-emissivity astronomical reflector (CLEAR): heat trap design
NASA Astrophysics Data System (ADS)
Siegmund, Walter A.
1998-08-01
The heat trap in a coronagraphic telescope is located at its prime focus and blocks the transmission of radiation from unwanted portions of the solar disk to subsequent optics in the telescope. This reduces light scattered and heat absorbed by these optics. For observations of the corona, the solar disk is completely blocked, whereas for observations of the disk, typically 90% or more of the disk is blocked. The proposed heat trap design is constructed largely of fused silica plates, partially coated with platinum, and cooled with air. It is robust and handles high irradiance, i.e., almost f megawatt/m(superscript 2) at f/3.75, without degrading the image quality of the telescope or contributing significant stray light to the focal surface.
Convective and radiative components of wind chill in sheep: Estimation from meteorological records
NASA Astrophysics Data System (ADS)
Brown, D.; Mount, L. E.
1987-06-01
Wind chill is defined as the excess of sensible heat loss over what would occur at zero wind speed with other conditions unchanged. Wind chill can be broken down into a part that is determined by air temperature and a radiative part that comprises wind-dependent effects on additional long-wave radiative exchange and on solar radiation (by reducing solar warming). Radiative exchange and gain from solar radiation are affected by changes that are produced by wind in both surface and fleece insulations. Coefficients are derived for (a) converting the components of sensible heat exchange (air-temperature-dependent including both convective and associated long-wave radiative, additional long-wave radiative and solar) into the components of the total heat loss that are associated with wind and (b) for calculating equivalent air temperature changes. The coefficients contain terms only in wind speed, wetting of the fleece and fleece depth; these determine the external insulation. Calculation from standard meteorological records, using Plymouth and Aberdeen in 1973 as examples, indicate that in April September 1973 at Plymouth reduction in effective solar warming constituted 28% of the 24-h total wind chill, and 7% in the other months of the year combined; at Aberdeen the corresponding percentages were 25% and 6%. Mean hour-of-day estimates for the months of April and October showed that at midday reduction in solar warming due to wind rose to the order of half the air-temperature-dependent component of wind chill, with a much smaller effect in January. For about six hours at midday in July reduction in solar warming due to wind was similar in magnitude to the air-temperature-dependent component. It is concluded that realistic estimates of wind chill cannot be obtained unless the effect of solar radiation is taken into account. Failure to include solar radiation results not only in omitting solar warming but also in omitting the effects of wind in reducing that warming. The exchange of sensible (non-evaporative) heat loss between a homeothermic animal and its environment can be divided into two parts: one part is due to the temperature difference between the animal and the surrounding air, and the other part is due to additional long-wave radiative exchange between animal and environment and to solar radiation. Both parts of the heat exchange are determined in magnitude by the animal's thermal insulation, which is itself affected by windspeed and wetting. Wind diminishes as animal's external insulation, so increasing heat loss under all conditions when the air temperature is lower than the animal's surface temperature: this effect is termed wind chill. Wind chill has previously been investigated more commonly in relation to man (Burton an Edholm, 1955; Smithson and Baldwin, 1978; Mumford, 1979; Baldwin and Smithson, 1979). This paper is concerned with the separate contributions to wind chill calculated for sheep that can be associated with convective and radiative heat exchanges.
NOX AND CO EMISSIONS FROM SOIL AND SURFACE LITTER IN A BRAZILIAN SAVANNA
Land clearing and burning in the tropics often results in increased solar irradiation of soil and surface organic matter. This increased light exposure and surface heating may impact the emissions of nitrogen oxides (NOx) and carbon monoxide (CO), trace gases that play an importa...
Opportunities for Saving Energy and Improving Air Quality in Urban Heat Islands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akbari, Hashem
2007-07-01
World energy use is the main contributor to atmospheric CO2. In 2002, about 7.0 giga metric tons of carbon (GtC) were emitted internationally by combustion of gas, liquid, and solid fuels (CDIAC, 2006), 2 to 5 times the amount contributed by deforestation (Brown et al., 1988). The share of atmospheric carbon emissions for the United States from fossil fuel combustion was 1.6 GtC. Increasing use of fossil fuel and deforestation together have raised atmospheric CO{sub 2} concentration some 25% over the last 150 years. According to global climate models and preliminary measurements, these changes in the composition of the atmospheremore » have already begun raising the Earth's average temperature. If current energy trends continue, these changes could drastically alter the Earth's temperature, with unknown but potentially catastrophic physical and political consequences. During the last three decades, increased energy awareness has led to conservation efforts and leveling of energy consumption in the industrialized countries. An important byproduct of this reduced energy use is the lowering of CO{sub 2} emissions. Of all electricity generated in the United States, about one-sixth is used to air-condition buildings. The air-conditioning use is about 400 tera-watt-hours (TWh), equivalent to about 80 million metric tons of carbon (MtC) emissions, and translating to about $40 billion (B) per year. Of this $40 B/year, about half is used in cities that have pronounced 'heat islands'. The contribution of the urban heat island to the air-conditioning demand has increased over the last 40 years and it is currently at about 10%. Metropolitan areas in the United States (e.g., Los Angeles, Phoenix, Houston, Atlanta, and New York City) have typically pronounced heat islands that warrant special attention by anyone concerned with broad-scale energy efficiency (HIG, 2006). The ambient air is primarily heated through three processes: direct absorption of solar radiation, convection of heat from hot surfaces, and man-made heat (exhaust from cars, buildings, etc.). Air is fairly transparent to light--the direct absorption of solar radiation in atmospheric air only raises the air temperature by a small amount. Typically about 90% of solar radiation reaches the Earth's surface and then is either absorbed or reflected. The absorbed radiation on the surface increases the surface temperature. And in turn the hot surfaces heat the air. This convective heating is responsible for the majority of the diurnal temperature range. The contribution of man-made heat (e.g., air conditioning, cars) is very small, compared to the heating of air by hot surfaces, except for the downtown high-rise areas.« less
Solar thermophotovoltaic system using nanostructures.
Ungaro, Craig; Gray, Stephen K; Gupta, Mool C
2015-09-21
This paper presents results on a highly efficient experimental solar thermophotovoltaic (STPV) system using simulated solar energy. An overall power conversion efficiency of 6.2% was recorded under solar simulation. This was matched with a thermodynamic model, and the losses within the system, as well as a path forward to mitigate these losses, have been investigated. The system consists of a planar, tungsten absorbing/emitting structure with an anti-reflection layer coated laser-microtextured absorbing surface and single-layer dielectric coated emitting surface. A GaSb PV cell was used to capture the emitted radiation and convert it into electrical energy. This simple structure is both easy to fabricate and temperature stable, and contains no moving parts or heat exchange fluids.
A solar escalator on Mars: Self-lifting of dust layers by radiative heating
NASA Astrophysics Data System (ADS)
Daerden, F.; Whiteway, J. A.; Neary, L.; Komguem, L.; Lemmon, M. T.; Heavens, N. G.; Cantor, B. A.; Hébrard, E.; Smith, M. D.
2015-09-01
Dust layers detected in the atmosphere of Mars by the light detection and ranging (LIDAR) instrument on the Phoenix Mars mission are explained using an atmospheric general circulation model. The layers were traced back to observed dust storm activity near the edge of the north polar ice cap where simulated surface winds exceeded the threshold for dust lifting by saltation. Heating of the atmospheric dust by solar radiation caused buoyant instability and mixing across the top of the planetary boundary layer (PBL). Differential advection by wind shear created detached dust layers above the PBL that ascended due to radiative heating and arrived at the Phoenix site at heights corresponding to the LIDAR observations. The self-lifting of the dust layers is similar to the "solar escalator" mechanism for aerosol layers in the Earth's stratosphere.
Bae, Kyuyoung; Kang, Gumin; Cho, Suehyun K; Park, Wounjhang; Kim, Kyoungsik; Padilla, Willie J
2015-12-14
Solar steam generation has been achieved by surface plasmon heating with metallic nanoshells or nanoparticles, which have inherently narrow absorption bandwidth. For efficient light-to-heat conversion from a wider solar spectrum, we employ adiabatic plasmonic nanofocusing to attain both polarization-independent ultrabroadband light absorption and high plasmon dissipation loss. Here we demonstrate large area, flexible thin-film black gold membranes, which have multiscale structures of varying metallic nanoscale gaps (0-200 nm) as well as microscale funnel structures. The adiabatic nanofocusing of self-aggregated metallic nanowire bundle arrays produces average absorption of 91% at 400-2,500 nm and the microscale funnel structures lead to average reflection of 7% at 2.5-17 μm. This membrane allows heat localization within the few micrometre-thick layer and continuous water provision through micropores. We efficiently generate water vapour with solar thermal conversion efficiency up to 57% at 20 kW m(-2). This new structure has a variety of applications in solar energy harvesting, thermoplasmonics and related technologies.
Bae, Kyuyoung; Kang, Gumin; Cho, Suehyun K.; Park, Wounjhang; Kim, Kyoungsik; Padilla, Willie J.
2015-01-01
Solar steam generation has been achieved by surface plasmon heating with metallic nanoshells or nanoparticles, which have inherently narrow absorption bandwidth. For efficient light-to-heat conversion from a wider solar spectrum, we employ adiabatic plasmonic nanofocusing to attain both polarization-independent ultrabroadband light absorption and high plasmon dissipation loss. Here we demonstrate large area, flexible thin-film black gold membranes, which have multiscale structures of varying metallic nanoscale gaps (0–200 nm) as well as microscale funnel structures. The adiabatic nanofocusing of self-aggregated metallic nanowire bundle arrays produces average absorption of 91% at 400–2,500 nm and the microscale funnel structures lead to average reflection of 7% at 2.5–17 μm. This membrane allows heat localization within the few micrometre-thick layer and continuous water provision through micropores. We efficiently generate water vapour with solar thermal conversion efficiency up to 57% at 20 kW m−2. This new structure has a variety of applications in solar energy harvesting, thermoplasmonics and related technologies. PMID:26657535
Synthetic-rubber extrusions form low cost roll-on solar collector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smay, V.E.
1979-06-01
Synthetic rubber extrusions composed of ethylene propylene diene monomer (EPDM) have been developed in 4.4-inch-wide mats as solar absorbers that are light weight and simple to install. The mats, which come in rolls up to 600 ft long, have 6 small tubes alternating with thin webbing. EPDM has a lifespan of 30-50 yrs and maintains its flexibility within a temperature range of -80 to 375/sup 0/F. The mats are laid over rigid insulation and covered with glazing, detailed assembly instructions are provided. EPDM is not subject to corrosion and is not damaged by freezing water, a second EPDM extrusion ismore » used for glazed solar collectors. The efficiency of the design is attributed to the greater surface-to-mass ratio, permitting more heat collection, and the smaller mass of the synthetic rubber, which allows faster heat-up. The total cost for a complete, installed solar heating system of this type, including pumps, tanks, and plumbing, is about $12/ft/sup 2/.« less
Increasing the collected energy and reducing the water requirements in salt-gradient solar ponds
NASA Astrophysics Data System (ADS)
Suarez, F. I.; Ruskowitz, J. A.; Tyler, S. W.; Childress, A. E.
2013-12-01
Salt-gradient solar ponds are low-cost, large-scale solar collectors with integrated storage that can be used as an energy source in many thermal systems. For instance, solar ponds have proven to be a promising solution to drive thermal desalination in arid zones. However, in zones with limited water availability, where evaporation constrains the use of solar ponds in areas with the greatest potential for solar energy development, evaporation losses at the surface of the pond constrain their use. Therefore, evaporation represents a significant challenge for development of these low-cost solar systems in arid settings. In this investigation, different transparent floating elements were tested to suppress evaporation: flat discs, hemispheres, and a continuous cover. Flat discs were the most effective evaporation suppression element. Evaporation decreased from 4.8 to 2.5 mm/day when 88% of the pond was covered with the flat discs. In addition, the highest temperature increased from 34 to 43°C and the heat content increased from 179 to 220 MJ (a 22% increase). Reduced evaporative losses at the surface of the pond resulted in lower conductive losses from the storage zone and increased the collected energy. The magnitude of evaporation reduction observed in this work is important as it allows solar pond operation in locations with limited water supply for replenishment. The increase in stored heat allows more energy to be withdrawn from the pond for use in external applications, which significantly improves the thermal efficiencies of solar ponds.
Influence of nanofluids on the efficiency of Flat-Plate Solar Collectors (FPSC)
NASA Astrophysics Data System (ADS)
Nejad, Marjan B.; Mohammed, H. A.; Sadeghi, O.; Zubeer, Swar A.
2017-11-01
A numerical investigation is performed using finite volume method to study the laminar heat transfer in a three-dimensional flat-plate solar collector using different nanofluids as working fluids. Three nanofluids with different types of nanoparticles (Ag, MWCNT and Al2O3 dispersed in water) with 1-2 wt% volume fractions are analyzed. A constant heat flux, equivalent to solar radiation absorbed by the collector, is applied at the top surface of the absorber plate. In this study, several parameters including boundary conditions (different volume flow rates, different fluid inlet temperatures and different solar irradiance at Skudai, Malaysia), different types of nanoparticles, and different solar collector tilt angles are investigated to identify their effects on the heat transfer performance of FPSC. The numerical results reveal that the three types of nanofluid enhance the thermal performance of solar collector compared to pure water and FPSC with Ag nanofluid has the best thermal performance enhancement. For all the cases, the collector efficiency increased with the increase of volume flow rate while fluid outlet temperature decreased. It is found that FPSC with tilt angle of 10° and fluid inlet temperature of 301.15 K has the best thermal performance.
Error-Tolerant Quasi-Paraboloidal Solar Concentrator
NASA Technical Reports Server (NTRS)
Wagner, Howard A.
1988-01-01
Scalloping reflector surface reduces sensitivity to manufacturing and aiming errors. Contrary to intuition, most effective shape of concentrating reflector for solar heat engine is not perfect paraboloid. According to design studies for Space Station solar concentrator, scalloped, nonimaging approximation to perfect paraboloid offers better overall performance in view of finite apparent size of Sun, imperfections of real equipment, and cost of accommodating these complexities. Scalloped-reflector concept also applied to improve performance while reducing cost of manufacturing and operation of terrestrial solar concentrator.
NASA Astrophysics Data System (ADS)
White, Warren B.; Cayan, Daniel R.; Lean, Judith
1998-09-01
We constructed gridded fields of diabatic heat storage changes in the upper ocean from 20°S to 60°N from historical temperature profiles collected from 1955 to 1996. We filtered these 42 year records for periods of 8 to 15 years and 15 to 30 years, producing depth-weighted vertical average temperature (DVT) changes from the sea surface to the top of the main pycnocline. Basin and global averages of these DVT changes reveal decadal and interdecadal variability in phase across the Indian, Pacific, Atlantic, and Global Oceans, each significantly correlated with changing surface solar radiative forcing at a lag of 0+/-2 years. Decadal and interdecadal changes in global average DVT are 0.06°+/-0.01°K and 0.04°K+/-0.01°K, respectively, the same as those expected from consideration of the Stefan-Boltzmann radiation balance (i.e., 0.3°K per Wm-2) in response to 0.1% changes in surface solar radiative forcing of 0.2 Wm-2 and 0.15 Wm-2, respectively. Global spatial patterns of DVT changes are similar to temperature changes simulated in coupled ocean-atmosphere models, suggesting that natural modes of Earth's variability are phase-locked to the solar irradiance cycle. A trend in global average DVT of 0.15°K over this 42 year record cannot be explained by changing surface solar radiative forcing. But when we consider the 0.5 Wm-2 increase in surface radiative forcing estimated from the increase in atmospheric greenhouse gas and aerosol (GGA) concentrations over this period [Intergovernmental Panel on Climate Change, 1995], the Stefan-Boltzmann radiation balance yields this observed change. Moreover, the sum of solar and GGA surface radiative forcing can explain the relatively sharp increase in global and basin average DVT in the late 1970's.
A contemporary view of coronal heating.
Parnell, Clare E; De Moortel, Ineke
2012-07-13
Determining the heating mechanism (or mechanisms) that causes the outer atmosphere of the Sun, and many other stars, to reach temperatures orders of magnitude higher than their surface temperatures has long been a key problem. For decades, the problem has been known as the coronal heating problem, but it is now clear that 'coronal heating' cannot be treated or explained in isolation and that the heating of the whole solar atmosphere must be studied as a highly coupled system. The magnetic field of the star is known to play a key role, but, despite significant advancements in solar telescopes, computing power and much greater understanding of theoretical mechanisms, the question of which mechanism or mechanisms are the dominant supplier of energy to the chromosphere and corona is still open. Following substantial recent progress, we consider the most likely contenders and discuss the key factors that have made, and still make, determining the actual (coronal) heating mechanism (or mechanisms) so difficult.
Space environment and lunar surface processes, 2
NASA Technical Reports Server (NTRS)
Comstock, G. M.
1982-01-01
The top few millimeters of a surface exposed to space represents a physically and chemically active zone with properties different from those of a surface in the environment of a planetary atmosphere. To meet the need or a quantitative synthesis of the various processes contributing to the evolution of surfaces of the Moon, Mercury, the asteroids, and similar bodies, (exposure to solar wind, solar flare particles, galactic cosmic rays, heating from solar radiation, and meteoroid bombardment), the MESS 2 computer program was developed. This program differs from earlier work in that the surface processes are broken down as a function of size scale and treated in three dimensions with good resolution on each scale. The results obtained apply to the development of soil near the surface and is based on lunar conditions. Parameters can be adjusted to describe asteroid regoliths and other space-related bodies.
Numerical evaluation of an innovative cup layout for open volumetric solar air receivers
NASA Astrophysics Data System (ADS)
Cagnoli, Mattia; Savoldi, Laura; Zanino, Roberto; Zaversky, Fritz
2016-05-01
This paper proposes an innovative volumetric solar absorber design to be used in high-temperature air receivers of solar power tower plants. The innovative absorber, a so-called CPC-stacked-plate configuration, applies the well-known principle of a compound parabolic concentrator (CPC) for the first time in a volumetric solar receiver, heating air to high temperatures. The proposed absorber configuration is analyzed numerically, applying first the open-source ray-tracing software Tonatiuh in order to obtain the solar flux distribution on the absorber's surfaces. Next, a Computational Fluid Dynamic (CFD) analysis of a representative single channel of the innovative receiver is performed, using the commercial CFD software ANSYS Fluent. The solution of the conjugate heat transfer problem shows that the behavior of the new absorber concept is promising, however further optimization of the geometry will be necessary in order to exceed the performance of the classical absorber designs.
Environmental testing of flat plate solar cell modules
NASA Technical Reports Server (NTRS)
Griffith, J.; Dumas, L.; Hoffman, A.
1978-01-01
Commercially available flat-plate solar cell modules have been subjected to a variety of environmental tests designed to simulate service conditions. Among the tests are those simulating heat and rain, wind-driven rains, humidity and freezing, humidity and heat, humidity with a voltage bias, salt fog, hail impact, and fungus infestation. Tests for optical surface soiling and the combined effects of temperature, humidity and UV irradiation are under development. A correlation has been demonstrated between degradation caused by the qualification tests and such observed field effects as power loss.
Climate Responses to Changes in Land-surface Properties due to Wildfires
NASA Astrophysics Data System (ADS)
Liu, Y.; Hao, X.; Qu, J. J.
2015-12-01
Wildfires can feedback the atmosphere by impacting atmospheric radiation transfer and cloud microphysics through emitting smoke particles and the land-air heat and water fluxes through modifying land-surface properties. While the impacts through smoke particles have been extensively investigated recently, very few studies have been conducted to examine the impacts through land-surface property change. This study is to fill this gap by examining the climate responses to the changes in land-surface properties induced by several large wildfires in the United States. Satellite remote sensing tools including MODIS and Landsat are used to quantitatively evaluate the land-surface changes characterized by reduced vegetation coverage and increased albedo over long post-fire periods. Variations in air and soil temperature and moisture of the burned areas are also monitored. Climate modeling is conducted to simulate climate responses and understand the related physical processes and interactions. The preliminary results indicate noticeable changes in water and heat transfers from the ground to the atmosphere through several mechanisms. Larger albedo reduces solar radiation absorbed on the ground, leading to less energy for latent and sensible heat fluxes. With smaller vegetation coverage, water transfer from the soil to the atmosphere through transpiration is reduced. Meanwhile, the Bowen ratio becomes larger after burning and therefore more solar energy absorbed on the ground is converted into sensible heat instead of being used as latent energy for water phase change. In addition, reduced vegetation coverage reduces roughness and increases wind speed, which modify dynamic resistances to water and heat movements. As a result of the changes in the land-air heat and water fluxes, clouds and precipitation as well as other atmospheric processes are affected by wildfires.
The Energy Under Our Feet: A Study of Solar Radiation
NASA Astrophysics Data System (ADS)
Weiss, I.
2016-12-01
In this experiment I tested if asphalt pavement can produce enough solar heat to produce energy through a system that uses water, solar energy and heat. A setup that can conserve the water and prevent it from evaporating, as well as measuring the energy production is required to run this experiment. I have done a lot of research on this experiment and found that there are several variables that impact the results of this experiment. 1. The surface temperature compared to the air temperature 2. The Geographical location of the pavement 3. The time of the year 4. Cloud coverage for the day Overall there will be many variables I will have to keep out of the experiment such as temperature ranges, season changes and geographical location. My constant will be my location at 33.7086o North and 117.9564o West. Asphalt pavements do not reflect the sunlight and hence heat up faster than a light surface that would reflect the sunlight. This means the Asphalt absorbs the solar radiation, which increases the temperature of the air around the asphalt contributing to what is known as the urban heat island effect. This heating in turn contributes to the formation of smog and ozone products. With the population still growing this would also mean an increase in this temperature and hence an increase in smog and ozone, creating a significant health concern. Cities need to start looking at ways to cool their pavement and find ways to harvest the energy created by their streets. Installing pipes with water can provide that solution and not only reduce the heat reflected from the pavement but also harvest energy from this setup, and decrease the smog production and maintain a balance in ozone levels. As well as the asphalt needed to run the testing, a Stirling engine is required. A Stirling Engine is a highly efficient engine that can run on a variety of heat sources. Because it is highly compatible with alternative energy and renewable energy sources it could become increasingly significant as the cost of fuel keeps rising. One additional item I researched was the Solar Noon. This is the data that provides us with the best angle of the sun onto our pavement and the timeframe that would give us the highest concentration of solar radiation. For the testing location at my home the Solar Noon data was calculated on http://susdesign.com/sunangle.
Solar receiver with integrated optics
NASA Astrophysics Data System (ADS)
Jiang, Lun; Winston, Roland
2012-10-01
The current challenge for PV/Thermal (PV/T) systems is the reduction of radiation heat loss. Compared to solar thermal selective coating, the solar cells cannot be used as an efficient thermal absorber due to their large emissivity of the encapsulation material. Many commercial PV/T products therefore require a high concentration (more than 10x) to reach an acceptable thermal efficiency for their receivers. Such a concentration system inevitably has to track or semi-track, which induces additional cost and collects only the direct radiation from the sun. We propose a new PV/T design using a vacuum encapsulated thin film cell to solve this problem. The proposed design also collects the diffuse sun light efficiently by using an external compound parabolic concentrator (XCPC). Since the transparent electrode (TCO) of thin film cell is inherently transparent in visible light and reflective beyond infrared, this design uses this layer instead of the conventional solar cell encapsulation as the outmost heat loss surface. By integrating such a vacuum design with a tube shaped absorber, we reduce the complexity of conducting the heat energy and electricity out of the device. A low concentration standalone non-tracking solar collector is proposed in this paper. We also analyzed the thermosyphon system configuration using heat transfer and ray tracing models. The economics of such a receiver are presented.
Steady state model for the thermal regimes of shells of airships and hot air balloons
NASA Astrophysics Data System (ADS)
Luchev, Oleg A.
1992-10-01
A steady state model of the temperature regime of airships and hot air balloons shells is developed. The model includes three governing equations: the equation of the temperature field of airships or balloons shell, the integral equation for the radiative fluxes on the internal surface of the shell, and the integral equation for the natural convective heat exchange between the shell and the internal gas. In the model the following radiative fluxes on the shell external surface are considered: the direct and the earth reflected solar radiation, the diffuse solar radiation, the infrared radiation of the earth surface and that of the atmosphere. For the calculations of the infrared external radiation the model of the plane layer of the atmosphere is used. The convective heat transfer on the external surface of the shell is considered for the cases of the forced and the natural convection. To solve the mentioned set of the equations the numerical iterative procedure is developed. The model and the numerical procedure are used for the simulation study of the temperature fields of an airship shell under the forced and the natural convective heat transfer.
NASA Technical Reports Server (NTRS)
Jaworske, Donald A.; Tuan, George C.; Westheimer, David T.; Peters, Wanda C.; Kauder, Lonny R.
2008-01-01
Spacecraft radiators reject heat to their surroundings and coatings play an important role in this heat rejection. The coatings provide the combined optical properties of low solar absorptance and high infrared emittance. The coatings are applied to the radiator panel in a number of ways, including conventional spraying, plasma spraying, or as an applique. Not designed for a terrestrial weathering environment, the durability of spacecraft paints, coatings, and appliques upon exposure to weathering and subsequent exposure to ascent heating, solar wind, and ultraviolet radiation was studied. In addition to traditional aluminum panels, new isocyanate ester composite panels were exposed for a total of 90 days at the Atmospheric Exposure Site of Kennedy Space Center's (KSC) Beach Corrosion Facility for the purpose of identifying their durability to weathering. Selected panel coupons were subsequently exposed to simulated ascent heating, solar wind, and vacuum ultraviolet (UV) radiation to identify the effect of a simulated space environment on as-weathered surfaces. Optical properties and adhesion testing were used to document the durability of the paints, coatings, and appliques.
Method of manufacturing large dish reflectors for a solar concentrator apparatus
Angel, Roger P [Tucson, AZ; Olbert, Blain H [Tucson, AZ
2011-12-27
A method of manufacturing monolithic glass reflectors for concentrating sunlight in a solar energy system is disclosed. The method of manufacturing allows large monolithic glass reflectors to be made from float glass in order to realize significant cost savings on the total system cost for a solar energy system. The method of manufacture includes steps of heating a sheet of float glass positioned over a concave mold until the sheet of glass sags and stretches to conform to the shape of the mold. The edges of the dish-shaped glass are rolled for structural stiffening around the periphery. The dish-shaped glass is then silvered to create a dish-shaped mirror that reflects solar radiation to a focus. The surface of the mold that contacts the float glass preferably has a grooved surface profile comprising a plurality of cusps and concave valleys. This grooved profile minimizes the contact area and marring of the specular glass surface, reduces parasitic heat transfer into the mold and increases mold lifetime. The disclosed method of manufacture is capable of high production rates sufficiently fast to accommodate the output of a conventional float glass production line so that monolithic glass reflectors can be produced as quickly as a float glass production can make sheets of float glass to be used in the process.
Liu, Yiming; Chen, Jingwei; Guo, Dawei; Cao, Moyuan; Jiang, Lei
2015-06-24
Efficient solar evaporation plays an indispensable role in nature as well as the industry process. However, the traditional evaporation process depends on the total temperature increase of bulk water. Recently, localized heating at the air-water interface has been demonstrated as a potential strategy for the improvement of solar evaporation. Here, we show that the carbon-black-based superhydrophobic gauze was able to float on the surface of water and selectively heat the surface water under irradiation, resulting in an enhanced evaporation rate. The fabrication process of the superhydrophobic black gauze was low-cost, scalable, and easy-to-prepare. Control experiments were conducted under different light intensities, and the results proved that the floating black gauze achieved an evaporation rate 2-3 times higher than that of the traditional process. A higher temperature of the surface water was observed in the floating gauze group, revealing a main reason for the evaporation enhancement. Furthermore, the self-cleaning ability of the superhydrophobic black gauze enabled a convenient recycling and reusing process toward practical application. The present material may open a new avenue for application of the superhydrophobic substrate and meet extensive requirements in the fields related to solar evaporation.
Hotspots in Fountains on the Sun's Surface Help Explain Coronal Heating Mystery
2017-12-08
NASA image release January 6, 2010 Caption: Spicules on the sun, as observed by the Solar Dynamics Observatory. These bursts of gas jet off the surface of the sun at 150,000 miles per hour and contain gas that reaches temperatures over a million degrees. GREENBELT, Md. -- Observations from NASA's Solar Dynamics Observatory (SDO) and the Japanese satellite Hinode show that some gas in the giant, fountain-like jets in the sun's atmosphere known as spicules can reach temperatures of millions of degrees. The finding offers a possible new framework for how the sun's high atmosphere gets so much hotter than the surface of the sun. What makes the high atmosphere, or corona, so hot – over a million degrees, compared to the sun surface's 10,000 degrees Fahrenheit -- remains a poorly understood aspect of the sun's complicated space weather system. That weather system can reach Earth, causing auroral lights and, if strong enough, disrupting Earth's communications and power systems. Understanding such phenomena, therefore, is an important step towards better protecting our satellites and power grids. "The traditional view is that all the heating happens higher up in the corona," says Dean Pesnell, who is SDO's project scientist at NASA's Goddard Space Flight Center in Greenbelt, Md. "The suggestion in this paper is that cool gas is being ejected from the sun's surface in spicules and getting heated on its way to the corona." Spicules were first named in the 1940s, but were hard to study in detail until recently, says Bart De Pontieu of Lockheed Martin's Solar and Astrophysics Laboratory, Palo Alto, Calif. who is the lead author on a paper on this subject in the January 7, 2011 issue of Science magazine. In visible light, spicules can be seen to send large masses of so-called plasma – the electromagnetic gas that surrounds the sun – up through the lower solar atmosphere or photosphere. The amount of material sent up is stunning, some 100 times as much as streams away from the sun in the solar wind towards the edges of the solar system. But nobody knew if they contained hot gas. "Heating of spicules to the necessary hot temperatures has never been observed, so their role in coronal heating had been dismissed as unlikely," says De Pontieu. Now, De Pontieu's team -- which included researchers at Lockheed Martin, the High Altitude Observatory of the National Center for Atmospheric Research (NCAR) in Colorado and the University of Oslo, Norway -- was able to combine images from SDO and Hinode to produce a more complete picture of the gas inside these gigantic fountains. The scientists found that a large fraction of the gas is heated to a hundred thousand degrees, while a small fraction is heated to millions of degrees. Time-lapsed images show that this material spews up into the corona, with most falling back down towards the surface of the sun. However, the small fraction of the gas that is heated to millions of degrees does not immediately return to the surface. Given the large number of spicules on the Sun, and the amount of material in the spicules, the scientists believe that if even some of that super hot plasma stays aloft it would make a contribution to coronal heating. Astrophysicist Jonathan Cirtain, who is the U.S. project scientist for Hinode at NASA's Marshall Space Flight Center, Huntsville, Ala., says that incorporating such new information helps address an important question that reaches far beyond the sun. "This breakthrough in our understanding of the mechanisms which transfer energy from the solar photosphere to the corona addresses one of the most compelling questions in stellar astrophysics: How is the atmosphere of a star heated?" he says. "This is a fantastic discovery, and demonstrates the muscle of the NASA Heliophysics System Observatory, comprised of numerous instruments on multiple observatories." Hinode is the second mission in NASA's Solar Terrestrial Probes program, the goal of which is to improve understanding of fundamental solar and space physics processes. The mission is led by the Japan Aerospace Exploration Agency (JAXA) and the National Astronomical Observatory of Japan (NAOJ). The collaborative mission includes the U.S., the United Kingdom, Norway and Europe. NASA Marshall manages Hinode U.S. science operations and oversaw development of the scientific instrumentation provided for the mission by NASA, academia and industry. The Lockheed Martin Advanced Technology Center is the lead U.S. investigator for the Solar Optical Telescope on Hinode. SDO is the first mission in a NASA science program called Living With a Star, the goal of which is to develop the scientific understanding necessary to address those aspects of the sun-Earth system that directly affect our lives and society. NASA Goddard built, operates, and manages the SDO spacecraft for NASA's Science Mission Directorate in Washington. To learn more go to: www.nasa.gov/mission_pages/sdo/news/news20110106-spicules... Credit: NASA Goddard/SDO/AIA NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook
Semiconductor structural damage attendant to contact formation in III-V solar cells
NASA Technical Reports Server (NTRS)
Fatemi, Navid S.; Weizer, Victor G.
1991-01-01
In order to keep the resistive losses in solar cells to a minimum, it is often necessary for the ohmic contacts to be heat treated to lower the metal-semiconductor contact resistivity to acceptable values. Sintering of the contacts, however can result in extensive mechanical damage of the semiconductor surface under the metallization. An investigation of the detailed mechanisms involved in the process of contact formation during heat treatment may control the structural damage incurred by the semiconductor surface to acceptable levels, while achieving the desired values of contact resistivity for the ohmic contacts. The reaction kinetics of sintered gold contacts to InP were determined. It was found that the Au-InP interaction involves three consecutive stages marked by distinct color changes observed on the surface of the Au, and that each stage is governed by a different mechanism. A detailed description of these mechanisms and options to control them are presented.
Enhanced Passive Cooling for Waterless-Power Production Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, Salvador B.
2016-06-14
Recent advances in the literature and at SNL indicate the strong potential for passive, specialized surfaces to significantly enhance power production output. Our exploratory computational and experimental research indicates that fractal and swirl surfaces can help enable waterless-power production by increasing the amount of heat transfer and turbulence, when compared with conventional surfaces. Small modular reactors, advanced reactors, and non-nuclear plants (e.g., solar and coal) are ideally suited for sCO2 coolant loops. The sCO2 loop converts the thermal heat into electricity, while the specialized surfaces passively and securely reject the waste process heat in an environmentally benign manner. The resultant,more » integrated energy systems are highly suitable for small grids, rural areas, and arid regions.« less
Semi-transparent solar energy thermal storage device
McClelland, John F.
1986-04-08
A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls. Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.
Semi-transparent solar energy thermal storage device
McClelland, John F.
1985-06-18
A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls, Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.
NASA Astrophysics Data System (ADS)
Li, H.; Xiao, Z.; Wei, J.
2016-12-01
Characteristics of the Surface Turbulent Flux and the Components of Radiation Balance over the Grasslands in the Southeastern Tibetan PlateauHongyi Li 1, Ziniu Xiao 2 and Junhong Wei31 China Meteorological Administration Training Centre, Beijing, China2 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China 3Theory of Atmospheric Dynamics and Climate, Institute for Atmospheric and Environmental Sciences, Goethe University of Frankfurt, Campus Riedberg, GermanyAbstract:Based on the field observation data over the grasslands in the southeastern Tibetan Plateau and the observational datasets in Nyingchi weather station for the period from May 20 to July 9, 2013, the variation characteristics of the basic meteorological elements in Nyingchi weather station, the surface turbulent fluxes and the components of radiation balance over the grasslands, as well as their relationships, are analyzed in this paper. The results show that in Nyingchi weather station, the daily variations of relative humidity and average total cloud cover are consistent with that of precipitation, but that those of daily average air temperature, daily average ground temperature, daily average wind speed and daily sunshine duration have an opposite change to that of precipitation. During the observation period, latent heat exchange is greater than sensible heat exchange, and latent heat flux is significantly higher when there is rainfall, but sensible heat flux and soil heat flux are lower. The daily variation of the total solar radiation (DR) is synchronous with that of sensible heat flux, and the daily variations of reflective solar radiation (UR), long wave radiation by earth (ULR), net radiation (Rn) and surface albedo are consistent with DR, but that of the long wave radiation by atmosphere (DLR) has an opposite change. The diurnal variations of sensible heat flux, latent heat flux, soil heat flux and the components of surface radiation balance over the grasslands are characterized by higher values at noon and lower values in the morning and evening. Keywords: surface turbulent flux, components of radiation balance, grasslands, southeastern Tibetan Plateau
Numerical simulation of thermally induced near-surface flows over Martian terrain
NASA Technical Reports Server (NTRS)
Parish, T. R.; Howard, A. D.
1993-01-01
Numerical simulations of the Martian near-surface wind regime using a mesoscale atmospheric model have shown that the thermally induced near-surface winds are analogous to terrestrial circulations. In particular, katabatic wind displays a striking similarity to flow observed over Antarctica. Introduction of solar radiation strongly perturbs the slope flows; anabatic conditions develop in middle to high latitudes during the daytime hours due to the solar heating of the sloping terrain. There appears to be a rapid transition from the katabatic to the anabatic flow regimes, emphasizing the primary importance of radiative exchanges at the surface in specifying the horizontal pressure gradient force.
Solar thermophotovoltaic system using nanostructures
Ungaro, Craig; Gray, Stephen K.; Gupta, Mool C.
2015-08-20
This paper presents results on a highly efficient experimental solar thermophotovoltaic (STPV) system using simulated solar energy. An overall power conversion efficiency of 6.2% was recorded under solar simulation. This was matched with a thermodynamic model, and the losses within the system, as well as a path forward to mitigate these losses, have been investigated. The system consists of a planar, tungsten absorbing/emitting structure with an anti-reflection layer coated laser-microtextured absorbing surface and single-layer dielectric coated emitting surface. A GaSb PV cell was used to capture the emitted radiation and convert it into electrical energy. This simple structure is bothmore » easy to fabricate and temperature stable, and contains no moving parts or heat exchange fluids.« less
Spectral radiation analyses of the GOES solar illuminated hexagonal cell scan mirror back
NASA Technical Reports Server (NTRS)
Fantano, Louis G.
1993-01-01
A ray tracing analytical tool has been developed for the simulation of spectral radiation exchange in complex systems. Algorithms are used to account for heat source spectral energy, surface directional radiation properties, and surface spectral absorptivity properties. This tool has been used to calculate the effective solar absorptivity of the geostationary operational environmental satellites (GOES) scan mirror in the calibration position. The development and design of Sounder and Imager instruments on board GOES is reviewed and the problem of calculating the effective solar absorptivity associated with the GOES hexagonal cell configuration is presented. The analytical methodology based on the Monte Carlo ray tracing technique is described and results are presented and verified by experimental measurements for selected solar incidence angles.
Development of selective solar absorbers on the basis of aluminum roll-bond heat exchangers
NASA Astrophysics Data System (ADS)
Moeller, M.
1981-11-01
A deposition technique comparable to two-stage anodizing and especially suited for solar absorber panels, using roll-bond Al 99.5 and AlMnZr alloys as a substrate, was developed. The coating is of the nickel structure filter type and provides average solar absorptivity values of 94% and thermal emission values of 14%. The setup of a production plant capable of coating surfaces up to 2 sq m is described as well as the development of corrosion resistent hermetically sealed collectors. By means of an appropriate surface treatment the same corrosion resistance was achieved for absorbers mounted in ventilated collectors.
Small-scale dynamo magnetism as the driver for heating the solar atmosphere.
Amari, Tahar; Luciani, Jean-François; Aly, Jean-Jacques
2015-06-11
The long-standing problem of how the solar atmosphere is heated has been addressed by many theoretical studies, which have stressed the relevance of two specific mechanisms, involving magnetic reconnection and waves, as well as the necessity of treating the chromosphere and corona together. But a fully consistent model has not yet been constructed and debate continues, in particular about the possibility of coronal plasma being heated by energetic phenomena observed in the chromosphere. Here we report modelling of the heating of the quiet Sun, in which magnetic fields are generated by a subphotospheric fluid dynamo intrinsically connected to granulation. We find that the fields expand into the chromosphere, where plasma is heated at the rate required to match observations (4,500 watts per square metre) by small-scale eruptions that release magnetic energy and drive sonic motions. Some energetic eruptions can even reach heights of 10 million metres above the surface of the Sun, thereby affecting the very low corona. Extending the model by also taking into account the vertical weak network magnetic field allows for the existence of a mechanism able to heat the corona above, while leaving unchanged the physics of chromospheric eruptions. Such a mechanism rests on the eventual dissipation of Alfvén waves generated inside the chromosphere and that carry upwards the required energy flux of 300 watts per square metre. The model shows a topologically complex magnetic field of 160 gauss on the Sun's surface, agreeing with inferences obtained from spectropolarimetric observations, chromospheric features (contributing only weakly to the coronal heating) that can be identified with observed spicules and blinkers, and vortices that may be possibly associated with observed solar tornadoes.
Method of fabricating a solar cell
Pass, Thomas; Rogers, Robert
2016-02-16
Methods of fabricating solar cells are described. A porous layer may be formed on a surface of a substrate, the porous layer including a plurality of particles and a plurality of voids. A solution may be dispensed into one or more regions of the porous layer to provide a patterned composite layer. The substrate may then be heated.
Method of fabricating a solar cell
Pass, Thomas; Rogers, Robert
2014-02-25
Methods of fabricating solar cells are described. A porous layer may be formed on a surface of a substrate, the porous layer including a plurality of particles and a plurality of voids. A solution may be dispensed into one or more regions of the porous layer to provide a patterned composite layer. The substrate may then be heated.
IREPS (Integrated Refractive Effects Prediction System) 3.0. (User’s Manual).
1987-09-01
heating from exhaust vents or solar-heated surfaces. These measurements are best performed with a psychrometer on the most windward side of the ship...Celsius and is best measured with a hand-held psychrometer at any location above 6 meters (20 feet). Care should be taken to minimize any ship-induced
Characteristics of the Time Variable Component of the Coronal Heating Process
NASA Technical Reports Server (NTRS)
Habbal, Shadia R.; Poland, Art (Technical Monitor)
2001-01-01
The goal of the proposed study was to explore the non-steady nature of the coronal heating processes and its manifestations in the inner corona and interplanetary space by coordinating coronal SOHO observations in white light, ultraviolet, and extreme ultraviolet, with complementary radio occultation measurements during an unprecedented and rare coincidence of a total solar eclipse with the superior conjunction of a planetary spacecraft, Galileo, in February 1998. In addition, radio occultation measurements by the Mars Global Surveyor spacecraft in May 1998 spanned the inner heliosphere observed by coronal SOHO instruments and probing it to within 0.5 R(sub S), above the solar surface. Inferences of physical properties derived from these simultaneous observations were subsequently used in solar wind model computations to yield the range of plasma parameters characteristic of the fast and slow solar wind.
Thermal Switch for Satellite Temperature Control
NASA Technical Reports Server (NTRS)
Ziad, H.; Slater, T.; vanGerwen, P.; Masure, E.; Preudhomme, F.; Baert, K.
1995-01-01
An active radiator tile (ART) thermal valve has been fabricated using silicon micromachining. Intended for orbital satellite heat control applications, the operational principal of the ART is to control heat flow between two thermally isolated surfaces by bring the surfaces into intimate mechanical contact using electrostatic actuation. Prototype devices have been tested in a vacuum and demonstrate thermal actuation voltages as low as 40 volts, very good thermal insulation in the OFF state, and a large increase in radiative heat flow in the ON state. Thin, anodized aluminum was developed as a coating for high infrared emissivity and high solar reflectance.
HEATING MECHANISMS IN THE LOW SOLAR ATMOSPHERE THROUGH MAGNETIC RECONNECTION IN CURRENT SHEETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ni, Lei; Lin, Jun; Roussev, Ilia I.
2016-12-01
We simulate several magnetic reconnection processes in the low solar chromosphere/photosphere; the radiation cooling, heat conduction and ambipolar diffusion are all included. Our numerical results indicate that both the high temperature (≳8 × 10{sup 4} K) and low temperature (∼10{sup 4} K) magnetic reconnection events can happen in the low solar atmosphere (100–600 km above the solar surface). The plasma β controlled by plasma density and magnetic fields is one important factor to decide how much the plasma can be heated up. The low temperature event is formed in a high β magnetic reconnection process, Joule heating is the mainmore » mechanism to heat plasma and the maximum temperature increase is only several thousand Kelvin. The high temperature explosions can be generated in a low β magnetic reconnection process, slow and fast-mode shocks attached at the edges of the well developed plasmoids are the main physical mechanisms to heat the plasma from several thousand Kelvin to over 8 × 10{sup 4} K. Gravity in the low chromosphere can strongly hinder the plasmoid instability and the formation of slow-mode shocks in a vertical current sheet. Only small secondary islands are formed; these islands, however, are not as well developed as those in the horizontal current sheets. This work can be applied to understand the heating mechanism in the low solar atmosphere and could possibly be extended to explain the formation of common low temperature Ellerman bombs (∼10{sup 4} K) and the high temperature Interface Region Imaging Spectrograph (IRIS) bombs (≳8 × 10{sup 4}) in the future.« less
Ice ages and the thermal equilibrium of the earth, II
Adam, D.P.
1975-01-01
The energy required to sustain midlatitude continental glaciations comes from solar radiation absorbed by the oceans. It is made available through changes in relative amounts of energy lost from the sea surface as net outgoing infrared radiation, sensible heat loss, and latent heat loss. Ice sheets form in response to the initial occurrence of a large perennial snowfield in the subarctic. When such a snowfield forms, it undergoes a drastic reduction in absorbed solar energy because of its high albedo. When the absorbed solar energy cannot supply local infrared radiation losses, the snowfield cools, thus increasing the energy gradient between itself and external, warmer areas that can act as energy sources. Cooling of the snowfield progresses until the energy gradients between the snowfield and external heat sources are sufficient to bring in enough (latent plus sensible) energy to balance the energy budget over the snowfield. Much of the energy is imported as latent heat. The snow that falls and nourishes the ice sheet is a by-product of the process used to satisfy the energy balance requirements of the snowfield. The oceans are the primary energy source for the ice sheet because only the ocean can supply large amounts of latent heat. At first, some of the energy extracted by the ice sheet from the ocean is stored heat, so the ocean cools. As it cools, less energy is lost as net outgoing infrared radiation, and the energy thus saved is then available to augment evaporation. The ratio between sensible and latent heat lost by the ocean is the Bowen ratio; it depends in part on the sea surface temperature. As the sea surface temperature falls during a glaciation, the Bowen ratio increases, until most of the available energy leaves the oceans as sensible, rather than latent heat. The ice sheet starves, and an interglacial period begins. The oscillations between stadial and interstadial intervals within a glaciation are caused by the effects of varying amounts of glacial meltwater entering the oceans as a surface layer that acts to reduce the amount of energy available for glacial nourishment. This causes the ice sheet to melt back, which continues the supply of meltwater until the ice sheet diminishes to a size consistent with the reduced rate of nourishment. The meltwater supply then decreases, the rate of nourishment increases, and a new stadial begins. ?? 1975.
Theoretical studies of volatile processes in the outer solar system
NASA Technical Reports Server (NTRS)
Lunine, Jonathan I.
1991-01-01
Four studies of volatile processes in the outer solar system are discussed. Researchers suggest that the convective and conductive regions of Triton's atmosphere join at the tropopause near 10 km. A model of volatile transport on Triton's surface was constructed that predicts that Triton's surface north of 15 degrees north latitude is experiencing deposition of nitrogen frosts, as are the bright portions of the south polar cap near the equator. Also discussed are numerical models of the evolution of Titan's surface and atmosphere. Results of a study of the rheology of ammonia-water liquids were applied to the icy satellites of the outer solar system. Finally, the researchers examined the frictional heating, sublimation, and re-condensation of grains free-falling into the solar nebula from a surrounding interstellar cloud. The sublimation model includes the effect of various volatile species and accounts for the poor radiating properties of small grains using Mie theory.
Natural convection of Al2O3-water nanofluid in a wavy enclosure
NASA Astrophysics Data System (ADS)
Leonard, Mitchell; Mozumder, Aloke K.; Mahmud, Shohel; Das, Prodip K.
2017-06-01
Natural convection heat transfer and fluid flow inside enclosures filled with fluids, such as air, water or oil, have been extensively analysed for thermal enhancement and optimisation due to their applications in many engineering problems, including solar collectors, electronic cooling, lubrication technologies, food processing and nuclear reactors. In comparison, little effort has been given to the problem of natural convection inside enclosures filled with nanofluids, while the addition of nanoparticles into a fluid base to alter thermal properties can be a feasible solution for many heat transfer problems. In this study, the problem of natural convection heat transfer and fluid flow inside a wavy enclosure filled with Al2O3-water nanofluid is investigated numerically using ANSYS-FLUENT. The effects of surface waviness and aspect ratio of the wavy enclosure on the heat transfer and fluid flow are analysed for various concentrations of Al2O3 nanoparticles in water. Flow fields and temperature fields are investigated and heat transfer rate is examined for different values of Rayleigh number. Results show that heat transfer within the enclosure can be enhanced by increasing surface waviness, aspect ratio or nanoparticles volume fraction. Changes in surface waviness have little effect on the heat transfer rate at low Rayleigh numbers, but when Ra ≥ 105 heat transfer increases with the increase of surface waviness from zero to higher values. Increasing the aspect ratio causes an increase in heat transfer rate, as the Rayleigh number increases the effect of changing aspect ratio is more apparent with the greatest heat transfer enhancement seen at higher Rayleigh numbers. Nanoparticles volume fraction has a little effect on the average Nusselt number at lower Rayleigh numbers when Ra ≥ 105 average Nusselt number increases with the increase of volume fraction. These findings provide insight into the heat transfer effects of using Al2O3-water nanofluid as a heat transfer medium and the effects of changing geometrical parameters, which will help in developing novel geometries with enhanced and controlled heat-transfer for solar collectors, electronic cooling, and food processing industries.
NASA Astrophysics Data System (ADS)
Wong, E.; Minnett, P. J.
2016-12-01
There is much evidence that the ocean is heating due to an increase in concentrations of greenhouse gases (GHG) in the atmosphere from human activities. GHGs absorbs infrared (IR) radiation and re-emits the radiation back to the ocean's surface which is subsequently absorbed resulting in a rise in the ocean heat content. However, the incoming longwave radiation, LWin, is absorbed within the top micrometers of the ocean's surface, where the thermal skin layer (TSL) exists and does not directly heat the upper few meters of the ocean. We are therefore motivated to investigate the physical mechanism between the absorption of IR radiation and its effect on heat transfer at the air-sea boundary. The hypothesis is that since heat lost through the air-sea interface is controlled by the TSL, which is directly influenced by the absorption and emission of IR radiation, the heat flow through the TSL adjusts to maintain the surface heat loss, and thus modulates the upper ocean heat content. This hypothesis is investigated through utilizing clouds to represent an increase in LWin and analyzing retrieved TSL vertical profiles from a shipboard IR spectrometer from two research cruises. The data is limited to night-time, no precipitation and low winds of < 2 m/s to remove effects of solar radiation, wind-driven shear and possibilities of TSL disruption. The results show independence between the turbulent fluxes and radiative fluxes which rules out the immediate release of heat from the absorption of the cloud infrared irradiance back into the atmosphere through processes such as evaporation. Instead, we observe the surplus energy, from absorbing increasing levels of LWin, adjusts the curvature of the TSL such that there is a lower gradient at the interface between the TSL and the mixed layer. The release of heat stored within the mixed layer is therefore hindered while the additional energy within the TSL is cycled back into the atmosphere. This results in heat beneath the TSL, which is a product of the absorption of solar radiation during the day, to be retained and cause an increase in upper ocean heat content.
The Role of the Persian Gulf in Shaping Southwest Asian Surface Climate
NASA Astrophysics Data System (ADS)
Pal, J. S.; Eltahir, E. A. B.
2015-12-01
Summer surface climate of the Persian Gulf region is characterized by hot and humid conditions. Despite such conditions - which in other regions tends to trigger moist convection - typically this region experiences clear sky conditions and very little rainfall in the summer. In this study, we customize the MIT Regional Climate Model specifically for the Southwest Asia region and apply it at a 25-km grid spacing using reanalysis boundary conditions for present-day climate (1975-2005). Specific customizations include accurate representations of surface albedo and emissivity as well as mineral dust processes, all of which improve model bias. To assess the role of the Persian Gulf in shaping the region's climate, a 30-year experiment is performed without the Persian Gulf characterized. Results suggest that observed conditions over the Persian Gulf are due to a combination of physical processes involving adiabatic and diabatic descent. First, virtually clear sky conditions, due to subsidence during summer associated with the rising air motion over the monsoon region to the east, suppress upward motion and deep convection and increase incoming solar radiation. Second, the low surface albedo of the Persian Gulf results in enhanced absorption of solar radiation and total heat flux. Third, high evaporation rates increase water vapor, and therefore trap heat at the surface via the greenhouse effect for water vapor. Fourth, the relatively shallow boundary layer over the Persian Gulf concentrates water vapor and heat close to the surface. These combined factors maximize the total flux of heat in the boundary layer and hence moist static energy over the Persian Gulf.
Integrated Solar Concentrator and Shielded Radiator
NASA Technical Reports Server (NTRS)
Clark, David Larry
2010-01-01
A shielded radiator is integrated within a solar concentrator for applications that require protection from high ambient temperatures with little convective heat transfer. This innovation uses a reflective surface to deflect ambient thermal radiation, shielding the radiator. The interior of the shield is also reflective to provide a view factor to deep space. A key feature of the shield is the parabolic shape that focuses incoming solar radiation to a line above the radiator along the length of the trough. This keeps the solar energy from adding to the radiator load. By placing solar cells along this focal line, the concentration of solar energy reduces the number and mass of required cells. By shielding the radiator, the effective reject temperature is much lower, allowing lower radiator temperatures. This is particularly important for lower-temperature processes, like habitat heat rejection and fuel cell operations where a high radiator temperature is not feasible. Adding the solar cells in the focal line uses the concentrating effect of the shield to advantage to accomplish two processes with a single device. This shield can be a deployable, lightweight Mylar structure for compact transport.
Transient analysis of a molten salt central receiver (MSCR) in a solar power plant
NASA Astrophysics Data System (ADS)
Joshi, A.; Wang, C.; Akinjiola, O.; Lou, X.; Neuschaefer, C.; Quinn, J.
2016-05-01
Alstom is developing solar power tower plants utilizing molten salt as the working fluid. In solar power tower, the molten salt central receiver (MSCR) atop of the tower is constructed of banks of tubes arranged in panels creating a heat transfer surface exposed to the solar irradiation from the heliostat field. The molten salt heat transfer fluid (HTF), in this case 60/40%wt NaNO3-KNO3, flows in serpentine flow through the surface collecting sensible heat thus raising the HTF temperature from 290°C to 565°C. The hot molten salt is stored and dispatched to produce superheated steam in a steam generator, which in turn produces electricity in the steam turbine generator. The MSCR based power plant with a thermal energy storage system (TESS) is a fully dispatchable renewable power plant with a number of opportunities for operational and economic optimization. This paper presents operation and controls challenges to the MSCR and the overall power plant, and the use of dynamic model computer simulation based transient analyses applied to molten salt based solar thermal power plant. This study presents the evaluation of the current MSCR design, using a dynamic model, with emphasis on severe events affecting critical process response, such as MS temperature deviations, and recommend MSCR control design improvements based on the results. Cloud events are the scope of the transient analysis presented in this paper. The paper presents results from a comparative study to examine impacts or effects on key process variables related to controls and operation of the MSCR plant.
Kim, Haeri; Park, Se Jin; Kim, Byungwoo; Hwang, Yun Jeong; Min, Byoung Koun
2018-02-05
CuIn 1-x Ga x S 2-y Se y (CIGSSe) thin films have attracted a great deal of attention as promising absorbing materials for solar cell applications, owing to their favorable optical properties (e.g. a direct band gap and high absorption coefficients) and stable structure. Many studies have sought to improve the efficiency of solar cells using these films, and it has been found that surface modification through post-heat treatment can lead to surface passivation of surface defects and a subsequent increase in efficiency. The surface properties of solution-processed CIGSSe films are considered to be particularly important in this respect, owing to the fact that they are more prone to defects. In this work, CIGSSe thin films with differing S/Se ratios at their surface were synthesized by using a precursor solution and post-sulfurization heat treatment. These CIGSSe thin films were investigated with current-voltage and Kelvin probe force microscope (KPFM) analyses. Surface photovoltage (SPV), which is the difference in the work function in the dark and under illumination, was measured by using KPFM, which can examine the screening and the modification of surface charge through carrier trapping. As the concentration of S increases on the CIGSSe film surface, higher work functions and more positive SPV values were observed. Based on these measurements, we inferred the band-bending behavior of CIGSSe absorber films and proposed reasons for the improvement in solar cell performance. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Transition of surface energy budget in the Gobi Desert between spring and summer seasons
NASA Technical Reports Server (NTRS)
Smith, Eric A.; Reiter, Elmar R.; Gao, Youxi
1986-01-01
The surface energetics of the southwest Gobi Desert, including the temporal variations and diurnally averaged properties of the surface energy budget components, was investigated. The field program was conducted during the spring and summer of 1984, with the measurement system designed to monitor radiative exchange, heat/moisture storage in the soil, and sensible and latent heat exhange between the ground and the atmosphere. Results of the analysis reveal a seasonal transition feature not expected of a midlatitude desert. Namely, the differences in both surface radiation exchange and the distibution of sensible and latent heat transfer arise within a radiatively forced environment that barely deviates from spring to summer in terms of available solar energy at the surface. Both similarities and differences in the spring and summer surface energy budgets arise from differences imparted to the system by an increase in the summertime atmospheric moisture content. Changes in the near-surface mixing ratio are shown to alter the effectiveness of the desert surface in absorbing radiative energy and redistibuting it to the lower atmosphere through sensible and latent heat exchange.
Numerical simulation of the world ocean circulation
NASA Technical Reports Server (NTRS)
Takano, K.; Mintz, Y.; Han, Y. J.
1973-01-01
A multi-level model, based on the primitive equations, is developed for simulating the temperature and velocity fields produced in the world ocean by differential heating and surface wind stress. The model ocean has constant depth, free slip at the lower boundary, and neglects momentum advection; so that there is no energy exchange between the barotropic and baroclinic components of the motion, although the former influences the latter through temperature advection. The ocean model was designed to be coupled to the UCLA atmospheric general circulation model, for the study of the dynamics of climate and climate changes. But here, the model is tested by prescribing the observed seasonally varying surface wind stress and the incident solar radiation, the surface air temperature and humidity, cloudiness and the surface wind speed, which, together with the predicted ocean surface temperature, determine the surface flux of radiant energy, sensible heat and latent heat.
NASA Astrophysics Data System (ADS)
Krawczyk, Piotr; Badyda, Krzysztof
2011-12-01
The paper presents key assumptions of the mathematical model which describes heat and mass transfer phenomena in a solar sewage drying process, as well as techniques used for solving this model with the Fluent computational fluid dynamics (CFD) software. Special attention was paid to implementation of boundary conditions on the sludge surface, which is a physical boundary between the gaseous phase - air, and solid phase - dried matter. Those conditions allow to model heat and mass transfer between the media during first and second drying stages. Selection of the computational geometry is also discussed - it is a fragment of the entire drying facility. Selected modelling results are presented in the final part of the paper.
Haussener, Sophia; Steinfeld, Aldo
2012-01-01
High-resolution X-ray computed tomography is employed to obtain the exact 3D geometrical configuration of porous anisotropic ceria applied in solar-driven thermochemical cycles for splitting H2O and CO2. The tomography data are, in turn, used in direct pore-level numerical simulations for determining the morphological and effective heat/mass transport properties of porous ceria, namely: porosity, specific surface area, pore size distribution, extinction coefficient, thermal conductivity, convective heat transfer coefficient, permeability, Dupuit-Forchheimer coefficient, and tortuosity and residence time distributions. Tailored foam designs for enhanced transport properties are examined by means of adjusting morphologies of artificial ceria samples composed of bimodal distributed overlapping transparent spheres in an opaque medium. PMID:28817039
Stable N-CuInSe.sub.2 /iodide-iodine photoelectrochemical cell
Cahen, David; Chen, Yih W.
1985-01-01
In a photoelectrochemical solar cell, stable output and solar efficiency in excess of 10% are achieved with a photoanode of n-CuInSe.sub.2 electrode material and an iodine/iodide redox couple used in a liquid electrolyte. The photoanode is prepared by treating the electrode material by chemical etching, for example in Br.sub.2 /MeOH; heating the etched electrode material in air or oxygen; depositing a surface film coating of indium on the electrode material after the initial heating; and thereafter again heating the electrode material in air or oxygen to oxidize the indium. The electrolyte is treated by the addition of Cu.sup.+ or Cu.sup.2+ salts and In.sup.3+ salts.
Stable n-CuInSe/sub 2/iodide-iodine photoelectrochemical cell
Cahen, D.; Chen, Y.W.
1984-09-20
In a photoelectrochemical solar cell, stable output and solar efficiency in excess of 10% are achieved with a photoanode of n-CuInSe/sub 2/ electrode material and an iodine/iodide redox couple used in a liquid electrolyte. The photoanode is prepared by treating the electrode material by chemical etching, for example in Br/sub 2//MeOH; heating the etched electrode material in air or oxygen; depositing a surface film coating of indium on the electrode material after the initial heating; and thereafter again heating the electrode material in air or oxygen to oxidize the indium. The electrolyte is treated by the addition of Cu/sup +/ or Cu/sup 2 +/ salts and in In/sup 3 +/ salts.
NASA Technical Reports Server (NTRS)
Miller, James R.; Russell, Gary L.; Hansen, James E. (Technical Monitor)
2001-01-01
The annual energy budget of the Arctic Ocean is characterized by a net heat loss at the air-sea interface that is balanced by oceanic heat transport into the Arctic. The energy loss at the air-sea interface is due to the combined effects of radiative, sensible, and latent heat fluxes. The inflow of heat by the ocean can be divided into two components: the transport of water masses of different temperatures between the Arctic and the Atlantic and Pacific Oceans and the export of sea ice, primarily through Fram Strait. Two 150-year simulations (1950-2099) of a global climate model are used to examine how this balance might change if atmospheric greenhouse gases (GHGs) increase. One is a control simulation for the present climate with constant 1950 atmospheric composition, and the other is a transient experiment with observed GHGs from 1950 to 1990 and 0.5% annual compounded increases of CO2 after 1990. For the present climate the model agrees well with observations of radiative fluxes at the top of the atmosphere, atmospheric advective energy transport into the Arctic, and surface air temperature. It also simulates the seasonal cycle and summer increase of cloud cover and the seasonal cycle of sea-ice cover. In addition, the changes in high-latitude surface air temperature and sea-ice cover in the GHG experiment are consistent with observed changes during the last 40 and 20 years, respectively. Relative to the control, the last 50-year period of the GHG experiment indicates that even though the net annual incident solar radiation at the surface decreases by 4.6 W(per square meters) (because of greater cloud cover and increased cloud optical depth), the absorbed solar radiation increases by 2.8 W(per square meters) (because of less sea ice). Increased cloud cover and warmer air also cause increased downward thermal radiation at the surface so that the net radiation into the ocean increases by 5.0 Wm-2. The annual increase in radiation into the ocean, however, is compensated by larger increases in sensible and latent heat fluxes out of the ocean. Although the net energy loss from the ocean surface increases by 0.8 W (per square meters), this is less than the interannual variability, and the increase may not indicate a long-term trend. The seasonal cycle of heat fluxes is significantly enhanced. The downward surface heat flux increases in summer (maximum 2 of 19 W per square meters or 23% in June) while the upward heat flux increases in winter (maximum of 16 W per square meters or 28% in November). The increased downward flux in summer is due to a combination of increases in absorbed solar and thermal radiation and smaller losses of sensible and latent heat. The increased heat loss in winter is due to increased sensible and latent heat fluxes, which in turn are due to reduced sea-ice cover. On the other hand, the seasonal cycle of surface air temperature is damped, as there is a large increase in winter temperature but little change in summer.
NASA Astrophysics Data System (ADS)
Salvador, A.; Massol, H.; Davaille, A.; Marcq, E.; Sarda, P.; Chassefière, E.
2017-07-01
How the volatile content influences the primordial surface conditions of terrestrial planets and, thus, their future geodynamic evolution is an important question to answer. We simulate the secular convective cooling of a 1-D magma ocean (MO) in interaction with its outgassed atmosphere. The heat transfer in the atmosphere is computed either using the grey approximation or using a k-correlated method. We vary the initial CO2 and H2O contents (respectively from 0.1 × 10-2 to 14 × 10-2 wt % and from 0.03 to 1.4 times the Earth Ocean current mass) and the solar distance—from 0.63 to 1.30 AU. A first rapid cooling stage, where efficient MO cooling and degassing take place, producing the atmosphere, is followed by a second quasi steady state where the heat flux balance is dominated by the solar flux. The end of the rapid cooling stage (ERCS) is reached when the mantle heat flux becomes negligible compared to the absorbed solar flux. The resulting surface conditions at ERCS, including water ocean's formation, strongly depend both on the initial volatile content and solar distance D. For D > DC, the "critical distance," the volatile content controls water condensation and a new scaling law is derived for the water condensation limit. Although today's Venus is located beyond DC due to its high albedo, its high CO2/H2O ratio prevents any water ocean formation. Depending on the formation time of its cloud cover and resulting albedo, only 0.3 Earth ocean mass might be sufficient to form a water ocean on early Venus.
Apparatus and method for solar coal gasification
Gregg, David W.
1980-01-01
Apparatus for using focused solar radiation to gasify coal and other carbonaceous materials. Incident solar radiation is focused from an array of heliostats onto a tower-mounted secondary mirror which redirects the focused solar radiation down through a window onto the surface of a vertically-moving bed of coal, or a fluidized bed of coal, contained within a gasification reactor. The reactor is designed to minimize contact between the window and solids in the reactor. Steam introduced into the gasification reactor reacts with the heated coal to produce gas consisting mainly of carbon monoxide and hydrogen, commonly called "synthesis gas", which can be converted to methane, methanol, gasoline, and other useful products. One of the novel features of the invention is the generation of process steam at the rear surface of the secondary mirror.
Apparatus for solar coal gasification
Gregg, D.W.
Apparatus for using focused solar radiation to gasify coal and other carbonaceous materials is described. Incident solar radiation is focused from an array of heliostats onto a tower-mounted secondary mirror which redirects the focused solar radiation down through a window onto the surface of a vertically-moving bed of coal, or a fluidized bed of coal, contained within a gasification reactor. The reactor is designed to minimize contact between the window and solids in the reactor. Steam introduced into the gasification reactor reacts with the heated coal to produce gas consisting mainly of carbon monoxide and hydrogen, commonly called synthesis gas, which can be converted to methane, methanol, gasoline, and other useful products. One of the novel features of the invention is the generation of process steam at the rear surface of the secondary mirror.
Is magnetic topology important for heating the solar atmosphere?
Parnell, Clare E; Stevenson, Julie E H; Threlfall, James; Edwards, Sarah J
2015-05-28
Magnetic fields permeate the entire solar atmosphere weaving an extremely complex pattern on both local and global scales. In order to understand the nature of this tangled web of magnetic fields, its magnetic skeleton, which forms the boundaries between topologically distinct flux domains, may be determined. The magnetic skeleton consists of null points, separatrix surfaces, spines and separators. The skeleton is often used to clearly visualize key elements of the magnetic configuration, but parts of the skeleton are also locations where currents and waves may collect and dissipate. In this review, the nature of the magnetic skeleton on both global and local scales, over solar cycle time scales, is explained. The behaviour of wave pulses in the vicinity of both nulls and separators is discussed and so too is the formation of current layers and reconnection at the same features. Each of these processes leads to heating of the solar atmosphere, but collectively do they provide enough heat, spread over a wide enough area, to explain the energy losses throughout the solar atmosphere? Here, we consider this question for the three different solar regions: active regions, open-field regions and the quiet Sun. We find that the heating of active regions and open-field regions is highly unlikely to be due to reconnection or wave dissipation at topological features, but it is possible that these may play a role in the heating of the quiet Sun. In active regions, the absence of a complex topology may play an important role in allowing large energies to build up and then, subsequently, be explosively released in the form of a solar flare. Additionally, knowledge of the intricate boundaries of open-field regions (which the magnetic skeleton provides) could be very important in determining the main acceleration mechanism(s) of the solar wind. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Exploiting absorption-induced self-heating in solar cells (Conference Presentation)
NASA Astrophysics Data System (ADS)
Ullbrich, Sascha; Fischer, Axel; Erdenebileg, Enkhtur; Koerner, Christian; Reineke, Sebastian; Leo, Karl; Vandewal, Koen
2017-04-01
Absorption of light inevitably leads to a self-heating of each type of solar cell, either due to the excess energy of absorbed photons or non-radiative recombination of charge carriers. Although the effect of temperature on solar cell parameters such as the open-circuit voltage are well known, it is often ignored in Suns-Voc measurements [1]. This measurement technique enables direct access to the diode ideality factor without an influence by series resistance. A frequently seen decrease of the ideality factor or a saturation of the open-circuit voltage at high illumination intensities is often attributed solely to surface recombination [2], the shape of the density of states (DOS) [3], or the quality of the back contact in inorganic solar cells [4]. In this work, we present an analytical model for taking into account absorption induced self-heating in Suns-Voc measurements and validate it for various solar cell technologies such as small molecule organic solar cells, perovskite solar cells, and inorganic solar cells. Furthermore, with an adapted Suns-Voc technique, we are able to not only correctly determine the ideality factor, but also the relevant energy gap of the solar cell, which is especially of interest in the field of novel solar cell technologies. [1] R.A. Sinton and A. Cuevas, EU PVSEC, 1152-1155 (2000) [2] K. Tvingstedt and C. Deibel, Adv. Energy Mater. 6, 1502230 (2016) [3] T. Kirchartz and J. Nelson, Phys. Rev. B 86, 165201 (2012) [4] S. Glunz, J. Nekarda, H. Maeckel et al., EU PVSEC, 849-853 (2007)
Ortega, Jesus; Khivsara, Sagar; Christian, Joshua; ...
2016-05-30
In single phase performance and appealing thermo-physical properties supercritical carbon dioxide (s-CO 2) make a good heat transfer fluid candidate for concentrating solar power (CSP) technologies. The development of a solar receiver capable of delivering s-CO 2 at outlet temperatures ~973 K is required in order to merge CSP and s-CO 2 Brayton cycle technologies. A coupled optical and thermal-fluid modeling effort for a tubular receiver is undertaken to evaluate the direct tubular s-CO 2 receiver’s thermal performance when exposed to a concentrated solar power input of ~0.3–0.5 MW. Ray tracing, using SolTrace, is performed to determine the heat fluxmore » profiles on the receiver and computational fluid dynamics (CFD) determines the thermal performance of the receiver under the specified heating conditions. Moreover, an in-house MATLAB code is developed to couple SolTrace and ANSYS Fluent. CFD modeling is performed using ANSYS Fluent to predict the thermal performance of the receiver by evaluating radiation and convection heat loss mechanisms. Understanding the effects of variation in heliostat aiming strategy and flow configurations on the thermal performance of the receiver was achieved through parametric analyses. Finally, a receiver thermal efficiency ~85% was predicted and the surface temperatures were observed to be within the allowable limit for the materials under consideration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortega, Jesus; Khivsara, Sagar; Christian, Joshua
In single phase performance and appealing thermo-physical properties supercritical carbon dioxide (s-CO 2) make a good heat transfer fluid candidate for concentrating solar power (CSP) technologies. The development of a solar receiver capable of delivering s-CO 2 at outlet temperatures ~973 K is required in order to merge CSP and s-CO 2 Brayton cycle technologies. A coupled optical and thermal-fluid modeling effort for a tubular receiver is undertaken to evaluate the direct tubular s-CO 2 receiver’s thermal performance when exposed to a concentrated solar power input of ~0.3–0.5 MW. Ray tracing, using SolTrace, is performed to determine the heat fluxmore » profiles on the receiver and computational fluid dynamics (CFD) determines the thermal performance of the receiver under the specified heating conditions. Moreover, an in-house MATLAB code is developed to couple SolTrace and ANSYS Fluent. CFD modeling is performed using ANSYS Fluent to predict the thermal performance of the receiver by evaluating radiation and convection heat loss mechanisms. Understanding the effects of variation in heliostat aiming strategy and flow configurations on the thermal performance of the receiver was achieved through parametric analyses. Finally, a receiver thermal efficiency ~85% was predicted and the surface temperatures were observed to be within the allowable limit for the materials under consideration.« less
Study on the CFD simulation of refrigerated container
NASA Astrophysics Data System (ADS)
Arif Budiyanto, Muhammad; Shinoda, Takeshi; Nasruddin
2017-10-01
The objective this study is to performed Computational Fluid Dynamic (CFD) simulation of refrigerated container in the container port. Refrigerated container is a thermal cargo container constructed from an insulation wall to carry kind of perishable goods. CFD simulation was carried out use cross sectional of container walls to predict surface temperatures of refrigerated container and to estimate its cooling load. The simulation model is based on the solution of the partial differential equations governing the fluid flow and heat transfer processes. The physical model of heat-transfer processes considered in this simulation are consist of solar radiation from the sun, heat conduction on the container walls, heat convection on the container surfaces and thermal radiation among the solid surfaces. The validation of simulation model was assessed uses surface temperatures at center points on each container walls obtained from the measurement experimentation in the previous study. The results shows the surface temperatures of simulation model has good agreement with the measurement data on all container walls.
Adaptability of solar energy conversion systems on ships
NASA Astrophysics Data System (ADS)
Visa, I.; Cotorcea, A.; Neagoe, M.; Moldovan, M.
2016-08-01
International trade of goods largely uses maritime/transoceanic ships driven by engines using fossil fuels. This two centuries tradition is technologically mature but significantly adds to the CO2 emissions; therefore, recent trends focus on on-board implementation of systems converting the solar energy into power (photovoltaic systems) or heat (solar-thermal systems). These systems are carbon-emissions free but are still under research and plenty of effort is devoted to fast reach maturity and feasibility. Unlike the systems implemented in a specific continental location, the design of solar energy conversion systems installed on shipboard has to face the problem generated by the system base motion along with the ship travelling on routes at different latitudes: the navigation direction and sense and roll-pitch combined motion with reduced amplitude, but with relatively high frequency. These raise highly interesting challenges in the design and development of mechanical systems that support the maximal output in terms of electricity or heat. The paper addresses the modelling of the relative position of a solar energy conversion surface installed on a ship according to the current position of the sun; the model is based on the navigation trajectory/route, ship motion generated by waves and the relative sun-earth motion. The model describes the incidence angle of the sunray on the conversion surface through five characteristic angles: three used to define the ship orientation and two for the solar angles; based on, their influence on the efficiency in solar energy collection is analyzed by numerical simulations and appropriate recommendations are formulated for increasing the solar energy conversion systems adaptability on ships.
NASA Technical Reports Server (NTRS)
Splinter, Scott C.; Daryabeigi, Kamran; Horvath, Thomas J.; Mercer, David C.; Ghanbari, Cheryl M.; Ross, Martin N.; Tietjen, Alan; Schwartz, Richard J.
2008-01-01
The NASA Engineering and Safety Center sponsored Hypersonic Thermodynamic Infrared Measurements assessment team has a task to perform radiometric calibration and validation of land-based and airborne infrared imaging assets and tools for remote thermographic imaging. The IR assets and tools will be used for thermographic imaging of the Space Shuttle Orbiter during entry aero-heating to provide flight boundary layer transition thermography data that could be utilized for calibration and validation of empirical and theoretical aero-heating tools. A series of tests at the Sandia National Laboratories National Solar Thermal Test Facility were designed for this task where reflected solar radiation from a field of heliostats was used to heat a 4 foot by 4 foot test panel consisting of LI 900 ceramic tiles located on top of the 200 foot tall Solar Tower. The test panel provided an Orbiter-like entry temperature for the purposes of radiometric calibration and validation. The Solar Tower provided an ideal test bed for this series of radiometric calibration and validation tests because it had the potential to rapidly heat the large test panel to spatially uniform and non-uniform elevated temperatures. Also, the unsheltered-open-air environment of the Solar Tower was conducive to obtaining unobstructed radiometric data by land-based and airborne IR imaging assets. Various thermocouples installed on the test panel and an infrared imager located in close proximity to the test panel were used to obtain surface temperature measurements for evaluation and calibration of the radiometric data from the infrared imaging assets. The overall test environment, test article, test approach, and typical test results are discussed.
JSUS solar thermal thruster and its integration with thermionic power converter
NASA Astrophysics Data System (ADS)
Shimizu, Morio; Eguchi, Kunihisa; Itoh, Katsuya; Sato, Hitoshi; Fujii, Tadayuki; Okamoto, Ken-Ichi; Igarashi, Tadashi
1998-01-01
This paper describes solar heating test results of a single crystal Mo thruster of solar thermal propulsion (STP) with super high-temperature brazing of Mo/Ru for hydrogen-gas sealing, using the paraboloidal concentrator of 1.6 m diameter newly installed in NAL in the Japan Solar Upper Stage (JSUS) research program. The designed thruster has a target Isp about 800 sec for 2,250 K or higher temperatures of hydrogen propellant. Additionally, tungsten CVD-coating was applied to a outer surface of the thruster in order to prevent vaporization of the wall material and Mo/Ru under the condition of high temperature over 2,500K and high vacuum. Also addressed in our paper is solar thermionic power module design for the integration with the STP receiver. The thermionic converter (TIC) module is of a planar type in a Knudsen-mode operation and provides a high conversion efficiency of 23% at the TIC emitter temperature of nearly 1,850 K for a heat input flux of 24 W/cm2.
Heat pipes in space and on earth
NASA Technical Reports Server (NTRS)
Ollendorf, S.
1978-01-01
The performance of heat pipes used in the thermal control system of spacecraft such as OAO-III and ATS-6 is discussed, and applications of heat pipes to permafrost stabilization on the Alaska Pipeline and to heat recovery systems are described. Particular attention is given to the ATS-6, launched in 1974, which employs 55 heat pipes to carry solar and internal power loads to radiator surfaces. In addition, experiments involving radiative cooling based on cryogenic heat pipes have been planned for the Long Duration Exposure Facility spacecraft and for Spacelab. The role of heat pipes in Space Shuttle heat rejection services is also mentioned.
Coyle, R.T.; Barrett, J.M.
1982-05-04
Disclosed is a process for substantially reducing the series resistance of a solar cell having a thick film metal contact assembly thereon while simultaneously removing oxide coatings from the surface of the assembly prior to applying solder therewith. The process includes applying a flux to the contact assembly and heating the cell for a period of time sufficient to substantially remove the series resistance associated with the assembly by etching the assembly with the flux while simultaneously removing metal oxides from said surface of said assembly.
Coyle, R. T.; Barrett, Joy M.
1984-01-01
Disclosed is a process for substantially reducing the series resistance of a solar cell having a thick film metal contact assembly thereon while simultaneously removing oxide coatings from the surface of the assembly prior to applying solder therewith. The process includes applying a flux to the contact assembly and heating the cell for a period of time sufficient to substantially remove the series resistance associated with the assembly by etching the assembly with the flux while simultaneously removing metal oxides from said surface of said assembly.
GSFC_2010306_M12882_Name_to_Sun
2018-03-06
NASA’s historic Parker Solar Probe mission will launch in summer 2018 to travel through the Sun’s atmosphere, closer to the solar surface than any spacecraft before it, facing brutal heat and radiation conditions — and you can send your name along for the ride. To commemorate humanity’s first visit to the star we live with, NASA invites the public to submit their names to be included on a microchip headed to the Sun aboard NASA’s Parker Solar Probe.
Energy efficiency of a solar domestic hot water system
NASA Astrophysics Data System (ADS)
Zukowski, Miroslaw
2017-11-01
The solar domestic hot water (SDHW) system located on the campus of Bialystok University of Technology is the object of the research described in the current paper. The solar thermal system is composed of 35 flat plate collectors, 21 evacuated tube collectors and eight hot water tanks with the capacity of 1 m3 of each. Solar facility is equipped with hardware for automatic data collection. Additionally, the weather station located on the roof of the building provides measurements of basic parameters of ambient air and solar radiation. The main objective of Regional Operational Program was the assessment of the effectiveness of this solar energy technology in the climatic conditions of the north-eastern Poland. Energy efficiency of SDHW system was defined in this research as the ratio between the useful heat energy supplied to the domestic hot water system and solar energy incident on the surface of solar panels. Heat loss from water storage tanks, and from the pipe network to the surrounding air, as well as the electrical energy consumed by the pumps have been included in the calculations. The paper presents the detailed results and conclusions obtained from this energy analysis.
Martinek, Janna; Wendelin, Timothy; Ma, Zhiwen
2018-04-05
Concentrating solar power (CSP) plants can provide dispatchable power with a thermal energy storage capability for increased renewable-energy grid penetration. Particle-based CSP systems permit higher temperatures, and thus, potentially higher solar-to-electric efficiency than state-of-the-art molten-salt heat-transfer systems. This paper describes a detailed numerical analysis framework for estimating the performance of a novel, geometrically complex, enclosed particle receiver design. The receiver configuration uses arrays of small tubular absorbers to collect and subsequently transfer solar energy to a flowing particulate medium. The enclosed nature of the receiver design renders it amenable to either an inert heat-transfer medium, or a reactive heat-transfer medium that requires a controllable ambient environment. The numerical analysis framework described in this study is demonstrated for the case of thermal reduction of CaCr 0.1Mn 0.9O 3-more » $$\\delta$$ for thermochemical energy storage. The modeling strategy consists of Monte Carlo ray tracing for absorbed solar-energy distributions from a surround heliostat field, computational fluid dynamics modeling of small-scale local tubular arrays, surrogate response surfaces that approximately capture simulated tubular array performance, a quasi-two-dimensional reduced-order description of counter-flow reactive solids and purge gas, and a radiative exchange model applied to embedded-cavity structures at the size scale of the full receiver. In this work we apply the numerical analysis strategy to a single receiver configuration, but the framework can be generically applicable to alternative enclosed designs. In conclusion, we assess sensitivity of receiver performance to surface optical properties, heat-transfer coefficients, solids outlet temperature, and purge-gas feed rates, and discuss the significance of model assumptions and results for future receiver development.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinek, Janna; Wendelin, Timothy; Ma, Zhiwen
Concentrating solar power (CSP) plants can provide dispatchable power with a thermal energy storage capability for increased renewable-energy grid penetration. Particle-based CSP systems permit higher temperatures, and thus, potentially higher solar-to-electric efficiency than state-of-the-art molten-salt heat-transfer systems. This paper describes a detailed numerical analysis framework for estimating the performance of a novel, geometrically complex, enclosed particle receiver design. The receiver configuration uses arrays of small tubular absorbers to collect and subsequently transfer solar energy to a flowing particulate medium. The enclosed nature of the receiver design renders it amenable to either an inert heat-transfer medium, or a reactive heat-transfer medium that requires a controllable ambient environment. The numerical analysis framework described in this study is demonstrated for the case of thermal reduction of CaCr 0.1Mn 0.9O 3-more » $$\\delta$$ for thermochemical energy storage. The modeling strategy consists of Monte Carlo ray tracing for absorbed solar-energy distributions from a surround heliostat field, computational fluid dynamics modeling of small-scale local tubular arrays, surrogate response surfaces that approximately capture simulated tubular array performance, a quasi-two-dimensional reduced-order description of counter-flow reactive solids and purge gas, and a radiative exchange model applied to embedded-cavity structures at the size scale of the full receiver. In this work we apply the numerical analysis strategy to a single receiver configuration, but the framework can be generically applicable to alternative enclosed designs. In conclusion, we assess sensitivity of receiver performance to surface optical properties, heat-transfer coefficients, solids outlet temperature, and purge-gas feed rates, and discuss the significance of model assumptions and results for future receiver development.« less
NASA Technical Reports Server (NTRS)
Jacobson, Nathan S.; Jacobson, Nathan S.; Miller, Robert A.
1999-01-01
Recently, refractive secondary solar concentrator systems were developed for solar thermal power and propulsion (ref. 1). Single-crystal oxides-such as yttria-stabilized zirconia (Y2O3-ZrO2), yttrium aluminum garnet (Y3Al5O12, or YAG), magnesium oxide (MgO), and sapphire (Al2O3)-are candidate refractive secondary concentrator materials. However, the refractive concentrator system will experience high-temperature thermal cycling in the solar thermal engine during the sun/shade transition of a space mission. The thermal mechanical reliability of these components in severe thermal environments is of great concern. Simulated mission tests are important for evaluating these candidate oxide materials under a variety of transient and steady-state heat flux conditions. In this research at the NASA Lewis Research Center, a controlled heat flux test approach was developed for investigating the thermal mechanical stability of the candidate oxide. This approach used a 3.0-kW continuous-wave (wavelength, 10.6 mm) carbon dioxide (CO2) laser (ref. 2). The CO2 laser is especially well-suited for single-crystal thermal shock tests because it can directly deliver well-characterized heat energy to the oxide surfaces. Since the oxides are opaque at the 10.6-mm wavelength of the laser beam, the light energy is absorbed at the surfaces rather than transmitting into the crystals, and thus generates the required temperature gradients within the specimens. The following figure is a schematic diagram of the test rig.
NASA Astrophysics Data System (ADS)
Hong, Yu; Moore, John C.; Jevrejeva, Svetlana; Ji, Duoying; Phipps, Steven J.; Lenton, Andrew; Tilmes, Simone; Watanabe, Shingo; Zhao, Liyun
2017-03-01
We analyze the multi-earth system model responses of ocean temperatures and the Atlantic Meridional Overturning Circulation (AMOC) under an idealized solar radiation management scenario (G1) from the Geoengineering Model Intercomparison Project. All models simulate warming of the northern North Atlantic relative to no geoengineering, despite geoengineering substantially offsetting the increases in mean global ocean temperatures. Increases in the temperature of the North Atlantic Ocean at the surface (˜0.25 K) and at a depth of 500 m (˜0.10 K) are mainly due to a 10 Wm-2 reduction of total heat flux from ocean to atmosphere. Although the AMOC is slightly reduced under the solar dimming scenario, G1, relative to piControl, it is about 37% stronger than under abrupt4 × CO2 . The reduction of the AMOC under G1 is mainly a response to the heat flux change at the northern North Atlantic rather than to changes in the water flux and the wind stress. The AMOC transfers heat from tropics to high latitudes, helping to warm the high latitudes, and its strength is maintained under solar dimming rather than weakened by greenhouse gas forcing acting alone. Hence the relative reduction in high latitude ocean temperatures provided by solar radiation geoengineering, would tend to be counteracted by the correspondingly active AMOC circulation which furthermore transports warm surface waters towards the Greenland ice sheet, warming Arctic sea ice and permafrost.
Mercury's helium exosphere after Mariner 10's third encounter
NASA Technical Reports Server (NTRS)
Curtis, S. A.; Hartle, R. E.
1977-01-01
From Mariner 10 third encounter UV data, a value of .00045 was calculated as the fraction of the solar wind He++ flux intercepted and captured by Mercury's magnetosphere if the observed He atmosphere is maintained by the solar wind. If an internal source for He prevails, the corresponding upper bound for the global outgassing rate is estimated to be 4.5 x 10 to the 22nd power per sec. A surface temperature distribution was used which satisfies the heat equation over Mercury's entire surface using Mariner 10 determined mean surface thermal characteristics. The means stand off distance of Mercury's magnetopause averaged over Mercury's orbit was also used.
Assessment of Global Annual Atmospheric Energy Balance from Satellite Observations
NASA Technical Reports Server (NTRS)
Lin, Bing; Stackhouse, Paul; Minnis, Patrick; Wielicki, Bruce A.; Hu, Yongxiang; Sun, Wenbo; Fan, Tai-Fang (Alice); Hinkelman, Laura
2008-01-01
Global atmospheric energy balance is one of the fundamental processes for the earth's climate system. This study uses currently available satellite data sets of radiative energy at the top of atmosphere (TOA) and surface and latent and sensible heat over oceans for the year 2000 to assess the global annual energy budget. Over land, surface radiation data are used to constrain assimilated results and to force the radiation, turbulent heat, and heat storage into balance due to a lack of observation-based turbulent heat flux estimations. Global annual means of the TOA net radiation obtained from both direct measurements and calculations are close to zero. The net radiative energy fluxes into the surface and the surface latent heat transported into the atmosphere are about 113 and 86 Watts per square meter, respectively. The estimated atmospheric and surface heat imbalances are about -8 9 Watts per square meter, values that are within the uncertainties of surface radiation and sea surface turbulent flux estimates and likely systematic biases in the analyzed observations. The potential significant additional absorption of solar radiation within the atmosphere suggested by previous studies does not appear to be required to balance the energy budget the spurious heat imbalances in the current data are much smaller (about half) than those obtained previously and debated at about a decade ago. Progress in surface radiation and oceanic turbulent heat flux estimations from satellite measurements significantly reduces the bias errors in the observed global energy budgets of the climate system.
Theoretical studies of the physics of the solar atmosphere
NASA Technical Reports Server (NTRS)
Hollweg, Joseph V.
1992-01-01
Significant advances in our theoretical basis for understanding several physical processes related to dynamical phenomena on the sun were achieved. We have advanced a new model for spicules and fibrils. We have provided a simple physical view of resonance absorption of MHD surface waves; this allowed an approximate mathematical procedure for obtaining a wealth of new analytical results which we applied to coronal heating and p-mode absorption at magnetic regions. We provided the first comprehensive models for the heating and acceleration of the transition region, corona, and solar wind. We provided a new view of viscosity under coronal conditions. We provided new insights into Alfven wave propagation in the solar atmosphere. And recently we have begun work in a new direction: parametric instabilities of Alfven waves.
VISCOELASTIC MODELS OF TIDALLY HEATED EXOMOONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobos, Vera; Turner, Edwin L., E-mail: dobos@konkoly.hu
2015-05-01
Tidal heating of exomoons may play a key role in their habitability, since the elevated temperature can melt the ice on the body even without significant solar radiation. The possibility of life has been intensely studied on solar system moons such as Europa or Enceladus where the surface ice layer covers a tidally heated water ocean. Tidal forces may be even stronger in extrasolar systems, depending on the properties of the moon and its orbit. To study the tidally heated surface temperature of exomoons, we used a viscoelastic model for the first time. This model is more realistic than themore » widely used, so-called fixed Q models because it takes into account the temperature dependence of the tidal heat flux and the melting of the inner material. Using this model, we introduced the circumplanetary Tidal Temperate Zone (TTZ), which strongly depends on the orbital period of the moon and less on its radius. We compared the results with the fixed Q model and investigated the statistical volume of the TTZ using both models. We have found that the viscoelastic model predicts 2.8 times more exomoons in the TTZ with orbital periods between 0.1 and 3.5 days than the fixed Q model for plausible distributions of physical and orbital parameters. The viscoelastic model provides more promising results in terms of habitability because the inner melting of the body moderates the surface temperature, acting like a thermostat.« less
NASA Astrophysics Data System (ADS)
Fan, Peixun; Wu, Hui; Zhong, Minlin; Zhang, Hongjun; Bai, Benfeng; Jin, Guofan
2016-07-01
Efficient solar energy harvesting and photothermal conversion have essential importance for many practical applications. Here, we present a laser-induced cauliflower-shaped hierarchical surface nanostructure on a copper surface, which exhibits extremely high omnidirectional absorption efficiency over a broad electromagnetic spectral range from the UV to the near-infrared region. The measured average hemispherical absorptance is as high as 98% within the wavelength range of 200-800 nm, and the angle dependent specular reflectance stays below 0.1% within the 0-60° incident angle. Such a structured copper surface can exhibit an apparent heating up effect under the sunlight illumination. In the experiment of evaporating water, the structured surface yields an overall photothermal conversion efficiency over 60% under an illuminating solar power density of ~1 kW m-2. The presented technology provides a cost-effective, reliable, and simple way for realizing broadband omnidirectional light absorptive metal surfaces for efficient solar energy harvesting and utilization, which is highly demanded in various light harvesting, anti-reflection, and photothermal conversion applications. Since the structure is directly formed by femtosecond laser writing, it is quite suitable for mass production and can be easily extended to a large surface area.Efficient solar energy harvesting and photothermal conversion have essential importance for many practical applications. Here, we present a laser-induced cauliflower-shaped hierarchical surface nanostructure on a copper surface, which exhibits extremely high omnidirectional absorption efficiency over a broad electromagnetic spectral range from the UV to the near-infrared region. The measured average hemispherical absorptance is as high as 98% within the wavelength range of 200-800 nm, and the angle dependent specular reflectance stays below 0.1% within the 0-60° incident angle. Such a structured copper surface can exhibit an apparent heating up effect under the sunlight illumination. In the experiment of evaporating water, the structured surface yields an overall photothermal conversion efficiency over 60% under an illuminating solar power density of ~1 kW m-2. The presented technology provides a cost-effective, reliable, and simple way for realizing broadband omnidirectional light absorptive metal surfaces for efficient solar energy harvesting and utilization, which is highly demanded in various light harvesting, anti-reflection, and photothermal conversion applications. Since the structure is directly formed by femtosecond laser writing, it is quite suitable for mass production and can be easily extended to a large surface area. Electronic supplementary information (ESI) available: XRD patterns of the fs laser structured Cu surface as produced and after the photothermal conversion test, directly measured temperature values on Cu surfaces, temperature rise on Cu surfaces at varied solar irradiation angles, comparison of the white light and IR images of the structured Cu surface with the polished Cu surface, temperature rise on the peripheral zones of the blue coating surface. See DOI: 10.1039/c6nr03662g
The Space Transportation System summer environment on launch pad
NASA Technical Reports Server (NTRS)
Ahmad, R. A.
1992-01-01
This paper describes a 2D flow and thermalanalysis to determine the solar effect on the Space Shuttle launch components subsequent to the external tank (ET) loading operation in extremely hot conditions. An existing CFD code Parabolic Hyperbolic or Elliptical Numerical Integration Code Series was used in the study. The analysis was done for a 2D slice between planes perpendicular to the longitudinal axis of the STS and passing through the lower portions of the Redesigned Solid Rocket Motors (RSRMs), the ET, and the wing of the Orbiter. The results are presented as local and average values of the heat transfer coefficient, and the Nusselt number, and the surface temperature around the RSRMs and the ET. Solar heating effects increased the surface temperatures of the RSRMs by 9-11 F. Higher prelaunch surface temperatures measured on the east and west RSRMs (in the inboard region between the RSRMs and the ET) during 19 most recent launches of the STS are correlated as a function of the ambient temperature.
NASA Technical Reports Server (NTRS)
Sud, Yogesh C.; Lau, William K. M.; Walker, G. K.; Mehta, V. M.
2001-01-01
Annual cycle of climate and precipitation is related to annual cycle of sunshine and sea-surface temperatures. Understanding its behavior is important for the welfare of humans worldwide. For example, failure of Asian monsoons can cause widespread famine and grave economic disaster in the subtropical regions. For centuries meteorologists have struggled to understand the importance of the summer sunshine and associated heating and the annual cycle of sea-surface temperatures (SSTs) on rainfall in the subtropics. Because the solar income is pretty steady from year to year, while SSTs depict large interannual variability as consequence of the variability of ocean dynamics, the influence of SSTs on the monsoons are better understood through observational and modeling studies whereas the relationship of annual rainfall to sunshine remains elusive. However, using NASA's state of the art climate model(s) that can generate realistic climate in a computer simulation, one can answer such questions. We asked the question: if there was no annual cycle of the sunshine (and its associated land-heating) or the SST and its associated influence on global circulation, what will happen to the annual cycle of monsoon rains? By comparing the simulation of a 4-year integration of a baseline Control case with two parallel anomaly experiments: 1) with annual mean solar and 2) with annual mean sea-surface temperatures, we were able to draw the following conclusions: (1) Tropical convergence zone and rainfall which moves with the Sun into the northern and southern hemispheres, specifically over the Indian, African, South American and Australian regions, is strongly modulated by the annual cycles of SSTs as well as solar forcings. The influence of the annual cycle of solar heating over land, however, is much stronger than the corresponding SST influence for almost all regions, particularly the subtropics; (2) The seasonal circulation patterns over the vast land-masses of the Northern Hemisphere at mid and high latitudes also get strongly influenced by the annual cycles of solar heating. The SST influence is largely limited to the oceanic regions of these latitudes; (3) The annual mode of precipitation over Amazonia has an equatorial regime revealing a maxima in the month of March associated with SST, and another maxima in the month of January associated with the solar annual cycles, respectively. The baseline simulation, which has both annual cycles, depicts both annual modes and its rainfall is virtually equal to the sum of those two modes; (4) Rainfall over Sahelian-Africa is significantly reduced (increased) in simulations lacking (invoking) solar irradiation with (without) the annual cycle. In fact, the dominant influence of solar irradiation emerges in almost all monsoonal-land regions: India, Southeast Asia, as well as Australia. The only exception is the Continental United States, where solar annual cycle shows only a relatively minor influence on the annual mode of rainfall.
Colloidal Engineering for Infrared-Bandgap Solution-Processed Quantum Dot Solar Cells
NASA Astrophysics Data System (ADS)
Kiani, Amirreza
Ever-increasing global energy demand and a diminishing fossil fuel supply have prompted the development of technologies for sustainable energy production. Solar photovoltaic (PV) devices have huge potential for energy harvesting and production since the sun delivers more energy to the earth in one hour than the global population consumes in one year. The solar cell industry is now dominated by silicon PV devices. The cost of silicon modules has decreased substantially over the past two decades and the number of installed silicon PV devices has increased dramatically. There remains a need for emerging solar technologies that can harvest the untapped portion of the solar spectrum and can be integrated on flexible and curved surfaces. This thesis focuses on colloidal quantum dot (CQD) PV devices. CQDs are nanoparticles fabricated using a low-temperature and cost-effective solution technique. These materials suffer from a high density of surface traps derived from the large surface-to-volume ratio of CQD nanoparticles, combined with limited carrier mobility. These result in a short carrier diffusion length, a main limiting factor in CQD solar cell performance. This thesis seeks to address the poor diffusion length in lead sulfide (PbS) CQD films and pave the way for new applications for CQD PV devices in infrared solar harvesting and waste heat recovery. A two-fold reduction in surface trap density is demonstrated using molecular halide treatment. Iodine molecules introduced prior to the film formation replace the otherwise unpassivated surface sulfur atoms. This results in a 35% increase in the diffusion length and enables charge extraction over thicker active layer leading to the world's most efficient CQD PV devices from June 2015 to July 2016 with the certified power conversion efficiency of 9.9%. This represents a 30% increase over the best-certified PCE (7.5%) prior to this thesis. The colloidal engineering highlighted herein enables infrared (IR) solar harvesting for the first time. Addition of short bromothiol ligands during the synthesis significantly reduces the agglomeration of 1 eV bandgap CQDs and maintains efficient charge extraction into the selective electrodes. The devices can augment the performance of the best silicon cells by 7 power points where 0.8 additive power points are demonstrated experimentally. A tailored solution exchanged process developed for 1 eV bandgap CQDs results in air-stable IR PV devices with improved manufacturability. The process utilizes a tailored combination of lead iodide (PbI2) and ammonium acetate for the solution exchange and hexylamine + MEK as the final solvent to yield solar thick films with the filtered (1100 nm and beyond) performance of 0.4%. This thesis pushes the limit of CQD device applications to waste heat recovery. I demonstrate successful harvesting of low energy photons emitted from a hot object by designing and developing the first solution-processed thermophotovoltaic devices. These devices are comprised of 0.7 eV bandgap CQDs that successfully harvest photons emitted from an 800°C heat source.
Effects of Variable Surface Temperatures on the Dynamics of Convection within Enceladus' Ice Shell
NASA Astrophysics Data System (ADS)
Weller, M. B.; Fuchs, L.; Becker, T. W.; Soderlund, K. M.
2017-12-01
Despite Enceladus' relatively small size, observations reveal it as one of the more geologically active bodies in the solar system. Its surface is heavily deformed, including ridges, grooves, grabens, rifts, and folds that cover a significant fraction of the planet. Perhaps most notably, there is evidence of a hemispheric dichotomy between the south (the South Polar Terrain - SPT), and the remainder of the satellite. While the origin of the SPT has spurred much debate, ranging from oceans and tides to impacts, its existence suggests some form of localization process. Here, we use the mantle convection code CitcomS with temperature-dependent viscosity to address the effects of latitudinally variable surface temperature (due to differences in solar heating) for a range of internal heating rates (as proxy for tidal heating)on the convective vigor and planform within Enceladus' ice shell. Heterogeneous surface temperatures can produce a large, degree-1 upwelling with the other hemisphere fully dominated by a slower, colder downwelling. As internal heating decreases, the degree-1 upwelling forms and localizes, resulting in larger strain rates that arerestricted to 5-20% of the satellite. The remaining 80-95% of the surface remains cold and relatively quiescent, in general agreement with observations of Enceladus and the SPT today. These results show the initial degree-1 structure forms at a polar latitude, the region of greatest radial temperature contrast. This configuration is unstable, however, with the plume structure migrating towards a stable orientation at equatorial latitudes, the region of the highest absolute surface temperature. While an equatorial configuration is currently not witnessed on Enceladus,such a large and persistent dynamic structure could lead to reorientation of the satellite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kutscher, C.; Burkholder, F.; Netter, J.
2011-08-01
Modern parabolic trough solar collectors operated at high temperatures to provide the heat input to Rankine steam power cycles employ evacuated receiver tubes along the collector focal line. High performance is achieved via the use of a selective surface with a high absorptance for incoming short-wave solar radiation and a low emittance for outgoing long-wave infrared radiation, as well as the use of a hard vacuum to essentially eliminate convective and conductive heat losses. This paper describes a new method that determines receiver overall optical efficiency by exposing a fluid-filled, pre-cooled receiver to one sun outdoors and measuring the slopemore » of the temperature curve at the point where the receiver temperature passes the glass envelope temperature (that is, the point at which there is no heat gain or loss from the absorber). This transient test method offers the potential advantages of simplicity, high accuracy, and the use of the actual solar spectrum.« less
Solar collector with improved thermal concentration
Barak, Amitzur Z.
1976-01-01
Reduced heat loss from the absorbing surface of the energy receiver of a cylindrical radiant energy collector is achieved by providing individual, insulated, cooling tubes for adjacent parallel longitudinal segments of the receiver. Control means allow fluid for removing heat absorbed by the tubes to flow only in those tubes upon which energy is then being directed by the reflective wall of the collector.
The effects of solar radiation and black body re-radiation on thermal comfort.
Hodder, Simon; Parsons, Ken
2008-04-01
When the sun shines on people in enclosed spaces, such as in buildings or vehicles, it directly affects thermal comfort. There is also an indirect effect as surrounding surfaces are heated exposing a person to re-radiation. This laboratory study investigated the effects of long wave re-radiation on thermal comfort, individually and when combined with direct solar radiation. Nine male participants (26.0 +/- 4.7 years) took part in three experimental sessions where they were exposed to radiation from a hot black panel heated to 100 degrees C; direct simulated solar radiation of 600 Wm(-2) and the combined simulated solar radiation and black panel radiation. Exposures were for 30 min, during which subjective responses and mean skin temperatures were recorded. The results showed that, at a surface temperature of 100 degrees C (close to maximum in practice), radiation from the flat black panel provided thermal discomfort but that this was relatively small when compared with the effects of direct solar radiation. It was concluded that re-radiation, from a dashboard in a vehicle, for example, will not have a major direct influence on thermal comfort and that existing models of thermal comfort do not require a specific modification. These results showed that, for the conditions investigated, the addition of re-radiation from internal components has an effect on thermal sensation when combined with direct solar radiation. However, it is not considered that it will be a major factor in a real world situation. This is because, in practice, dashboards are unlikely to maintain very high surface temperatures in vehicles without an unacceptably high air temperature. This study quantifies the contribution of short- and long-wave radiation to thermal comfort. The results will aid vehicle designers to have a better understanding of the complex radiation environment. These include direct radiation from the sun as well as re-radiation from the dashboard and other internal surfaces.
Predicting optical and thermal characteristics of transparent single-glazed domed skylights
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laouadi, A.; Atif, M.R.
1999-07-01
Optical and thermal characteristics of domed skylights are important to solve the trade-off between daylighting and thermal design. However, there is a lack of daylighting and thermal design tools for domed skylights. Optical and thermal characteristics of transparent single-glazed hemispherical domed skylights under sun and sky light are evaluated based on an optical model for domed skylights. The optical model is based on tracing the beam and diffuse radiation transmission through the dome surface. A simple method is proposed to replace single-glazed hemispherical domed skylights by optically and thermally equivalent single-glazed planar skylights to accommodate limitations of energy computer programs.more » Under sunlight, single-glazed hemispherical domed skylights yield slightly lower equivalent solar transmittance and solar heat gain coefficient (SHGC) at near normal zenith angles than those of single-glazed planar skylights. However, single-glazed hemispherical domed skylights yield substantially higher equivalent solar transmittance and SHGC at high zenith angles and around the horizon. Under isotropic skylight, single-glazed hemispherical domed skylights yield slightly lower equivalent solar transmittance and SHGC than those of single-glazed planar skylights. Daily solar heat gains of single-glazed hemispherical domed skylights are higher than those of single-glazed horizontal planar skylights in both winter and summer. In summer, the solar heat gain of single-glazed hemispherical domed skylights can reach 3% to 9% higher than those of horizontal single-glazed planar skylights for latitudes varying between 0 and 55{degree} (north/south). In winter, however, the solar heat gains of single-glazed hemispherical domed skylights increase significantly with the increase of the site latitude and can reach 232% higher than those of horizontal single-glazed planar skylights, particularly for high latitude countries.« less
HEAT.PRO - THERMAL IMBALANCE FORCE SIMULATION AND ANALYSIS USING PDE2D
NASA Technical Reports Server (NTRS)
Vigue, Y.
1994-01-01
HEAT.PRO calculates the thermal imbalance force resulting from satellite surface heating. The heated body of a satellite re-radiates energy at a rate that is proportional to its temperature, losing the energy in the form of photons. By conservation of momentum, this momentum flux out of the body creates a reaction force against the radiation surface, and the net thermal force can be observed as a small perturbation that affects long term orbital behavior of the satellite. HEAT.PRO calculates this thermal imbalance force and then determines its effects on satellite orbits, especially where the Earth's shadowing of an orbiting satellite causes periodic changes in the spacecraft's thermal environment. HEAT.PRO implements a finite element method routine called PDE2D which incorporates material properties to determine the solar panel surface temperatures. The nodal temperatures are computed at specified time steps and are used to determine the magnitude and direction of the thermal force on the spacecraft. These calculations are based on the solar panel orientation and satellite's position with respect to the earth and sun. It is necessary to have accurate, current knowledge of surface emissivity, thermal conductivity, heat capacity, and material density. These parameters, which may change due to degradation of materials in the environment of space, influence the nodal temperatures that are computed and thus the thermal force calculations. HEAT.PRO was written in FORTRAN 77 for Cray series computers running UNICOS. The source code contains directives for and is used as input to the required partial differential equation solver, PDE2D. HEAT.PRO is available on a 9-track 1600 BPI magnetic tape in UNIX tar format (standard distribution medium) or a .25 inch streaming magnetic tape cartridge in UNIX tar format. An electronic copy of the documentation in Macintosh Microsoft Word format is included on the distribution tape. HEAT.PRO was developed in 1991. Cray and UNICOS are registered trademarks of Cray Research, Inc. UNIX is a trademark of AT&T Bell Laboratories. PDE2D is available from Granville Sewell, Mathematics Dept., University of Texas at El Paso, El Paso, Texas 79968.
Aeroheating Thermal Model Correlation for Mars Global Surveyor (MGS) Solar Array
NASA Technical Reports Server (NTRS)
Amundsen, Ruth M.; Dec, John A.; George, Benjamin E.
2003-01-01
The Mars Global Surveyor (MGS) Spacecraft made use of aerobraking to gradually reduce its orbit period from a highly elliptical insertion orbit to its final science orbit. Aerobraking produces a high heat load on the solar arrays, which have a large surface area exposed to the airflow and relatively low mass. To accurately model the complex behavior during aerobraking, the thermal analysis needed to be tightly coupled to the spatially varying, time dependent aerodynamic heating. Also, the thermal model itself needed to accurately capture the behavior of the solar array and its response to changing heat load conditions. The correlation of the thermal model to flight data allowed a validation of the modeling process, as well as information on what processes dominate the thermal behavior. Correlation in this case primarily involved detailing the thermal sensor nodes, using as-built mass to modify material property estimates, refining solar cell assembly properties, and adding detail to radiation and heat flux boundary conditions. This paper describes the methods used to develop finite element thermal models of the MGS solar array and the correlation of the thermal model to flight data from the spacecraft drag passes. Correlation was made to data from four flight thermal sensors over three of the early drag passes. Good correlation of the model was achieved, with a maximum difference between the predicted model maximum and the observed flight maximum temperature of less than 5%. Lessons learned in the correlation of this model assisted in validating a similar model and method used for the Mars Odyssey solar array aeroheating analysis, which were used during onorbit operations.
Divergent global precipitation changes induced by natural versus anthropogenic forcing.
Liu, Jian; Wang, Bin; Cane, Mark A; Yim, So-Young; Lee, June-Yi
2013-01-31
As a result of global warming, precipitation is likely to increase in high latitudes and the tropics and to decrease in already dry subtropical regions. The absolute magnitude and regional details of such changes, however, remain intensely debated. As is well known from El Niño studies, sea-surface-temperature gradients across the tropical Pacific Ocean can strongly influence global rainfall. Palaeoproxy evidence indicates that the difference between the warm west Pacific and the colder east Pacific increased in past periods when the Earth warmed as a result of increased solar radiation. In contrast, in most model projections of future greenhouse warming this gradient weakens. It has not been clear how to reconcile these two findings. Here we show in climate model simulations that the tropical Pacific sea-surface-temperature gradient increases when the warming is due to increased solar radiation and decreases when it is due to increased greenhouse-gas forcing. For the same global surface temperature increase the latter pattern produces less rainfall, notably over tropical land, which explains why in the model the late twentieth century is warmer than in the Medieval Warm Period (around AD 1000-1250) but precipitation is less. This difference is consistent with the global tropospheric energy budget, which requires a balance between the latent heat released in precipitation and radiative cooling. The tropospheric cooling is less for increased greenhouse gases, which add radiative absorbers to the troposphere, than for increased solar heating, which is concentrated at the Earth's surface. Thus warming due to increased greenhouse gases produces a climate signature different from that of warming due to solar radiation changes.
NASA Technical Reports Server (NTRS)
Cahalan, Robert
2002-01-01
We provide an overview of the impact of the Sun on the Earth atmosphere and climate system, focused on heating of Earth's atmosphere and oceans. We emphasize the importance of the spectral measurements of SIM and SOLSTICE- that we must know how solar variations are distributed over ultraviolet, visible, and infrared wavelengths, since these have separate characteristic influences on Earth's ozone layer, clouds, and upper layers of the oceans. Emphasis is also given to understanding both direct and indirect influences of the Sun on the Earth, which involve feedbacks between Earth's stratosphere, troposphere, and oceans, each with unique time scales, dynamics, chemistry, and biology, interacting non-linearly. Especially crucial is the role of all three phases of water on Earth, water vapor being the primary greenhouse gas in the atmosphere, the importance of trace gases such as CO2 arising from their absorption in the "water vapor window" at 800 - 1250/cm (12.5 to 8 microns). Melting of polar ice is one major response to the post-industrial global warming, enhanced due to "ice-albedo" feedback. Finally, water in liquid form has a major influence due to cloud albedo feedback, and also due to the oceans' absorption of solar radiation, particularly at visible wavelengths, through the visible "liquid water window" that allows penetration of visible light deep into the mixed layer, while nearby ultraviolet and infrared wavelengths do not penetrate past the upper centimeter ocean surface skin layer. A large fraction of solar energy absorbed by the oceans goes into the latent heat of evaporation. Thus the solar heating of the atmosphere-ocean system is strongly coupled through the water cycle of evaporation, cloud formation, precipitation, surface runoff and ice formation, to Earth's energy budget and climate, each different climate component responding to variations in different solar spectral bands, at ultraviolet, visible and infrared wavelengths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None,
1981-09-01
Ninety-three project summaries are presented which discuss the following aspects of active solar heating and cooling: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology. (LEW)
NASA Astrophysics Data System (ADS)
Chaabane, Monia; Mhiri, Hatem; Bournot, Philippe
2013-01-01
The thermal behavior of an integrated collector storage solar water heater (ICSSWH) is numerically studied using the package Fluent 6.3. Based on the good agreement between the numerical results and the experimental data of Chaouachi and Gabsi (Renew Energy Revue 9(2):75-82, 2006), an attempt to improve this solar system operating was made by equipping the storage tank with radial fins of rectangular profile. A second 3D CFD model was developed and a series of numerical simulations were conducted for various SWH designs which differ in the depth of this extended surface for heat exchange. As the modified surface presents a higher characteristic length for convective heat transfer from the storage tank to the water, the fins equipped storage tank based SWH is determined to have a higher water temperature and a reduced thermal losses coefficient during the day-time period. Regarding the night operating of this water heater, the results suggest that the modified system presents higher thermal losses.
Aeroheating Thermal Analysis Methods for Aerobraking Mars Missions
NASA Technical Reports Server (NTRS)
Amundsen, Ruth M.; Dec, John A.; George, Benjamin E.
2002-01-01
Mars missions often employ aerobraking upon arrival at Mars as a low-mass method to gradually reduce the orbit period from a high-altitude, highly elliptical insertion orbit to the final science orbit. Two recent missions that made use of aerobraking were Mars Global Surveyor (MGS) and Mars Odyssey. Both spacecraft had solar arrays as the main aerobraking surface area. Aerobraking produces a high heat load on the solar arrays, which have a large surface area exposed to the airflow and relatively low mass. To accurately model the complex behavior during aerobraking, the thermal analysis must be tightly coupled to the flight mechanics, aerodynamics, and atmospheric modeling efforts being performed during operations. To properly represent the temperatures prior to and during the drag pass, the model must include the orbital solar and planetary heat fluxes. The correlation of the thermal model to flight data allows a validation of the modeling process, as well as information on what processes dominate the thermal behavior. This paper describes the thermal modeling method that was developed for this purpose, as well as correlation for two flight missions, and a discussion of improvements to the methodology.
Code of Federal Regulations, 2011 CFR
2011-04-01
... certification program for solar water heating system. 200.950 Section 200.950 Housing and Urban Development... solar water heating system. (a) Applicable standards. (1) All solar water heating systems shall be...) Document OG-300-93, Operating Guidelines and Minimum Standards for Certifying Solar Water Heating Systems...
Code of Federal Regulations, 2010 CFR
2010-04-01
... certification program for solar water heating system. 200.950 Section 200.950 Housing and Urban Development... solar water heating system. (a) Applicable standards. (1) All solar water heating systems shall be...) Document OG-300-93, Operating Guidelines and Minimum Standards for Certifying Solar Water Heating Systems...
Measured performance of a 1089 K (1500 deg F) heat storage device for sun-shade orbital missions
NASA Technical Reports Server (NTRS)
Namkoong, D.
1972-01-01
Tubes designed for a solar heat receiver to serve as an energy source for a Brayton power system were tested for 2002 hours and 1251 sun-shade cycles. The tubes were designed to transfer a constant thermal input to the Brayton system during an orbit. Excess solar energy during a sun period is stored as heat of fusion of lithium fluoride. The niobium - 1% zirconium tubes accommodate the 23 percent volume decrease of LiF during freezing. Test results showed slight, local distortions. The gas discharge temperature varied from 16 K (29 F) below to 28 K (50 F) above the nominal value of 1089 K (1500 F). The tube surface temperatures ranged from 1039 K (1410 F) to 1183 K (1670 F).
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-02-01
Formation of a coronal jet from twisted field lines that have reconnected with the ambient field. The colors show the radial velocity of the plasma. [Adapted from Szente et al. 2017]How do jets emitted from the Suns surface contribute to its corona and to the solar wind? In a recent study, a team of scientists performed complex three-dimensional simulations of coronal jets to answer these questions.Small ExplosionsCoronal jets are relatively small eruptions from the Suns surface, with heights of roughly 100 to 10,000 km, speeds of 10 to 1,000 km/s, and lifetimes of a few minutes to around ten hours. These jets are constantly present theyre emitted even from the quiet Sun, when activity is otherwise low and weve observed them with a fleet of Sun-watching space telescopes spanning the visible, extreme ultraviolet (EUV), and X-ray wavelength bands.A comparison of simulated observations based on the authors model (left panels) to actual EUV and X-ray observations of jets (right panels). [Szente et al. 2017]Due to their ubiquity, we speculate that these jets might contribute to heating the global solar corona (which is significantly hotter than the surface below it, a curiosity known as the coronal heating problem). We can also wonder what role these jets might play in driving the overall solar wind.Launching a JetLed by Judit Szente (University of Michigan), a team of scientists has explored the impact of coronal jets on the global corona and solar wind with a series of numerical simulations. Szente and collaborators used three-dimensional, magnetohydrodynamic simulations that provide realistic treatment of the solar atmosphere, the solar wind acceleration, and the complexities of heat transfer throughout the corona.In the authors simulations, a jet is initiated as a magnetic dipole rotates at the solar surface, winding up field lines. Magnetic reconnection between the twisted lines and the background field then launches the jet from the dense and hot solar chromosphere, and erupting plasma is released outward into the solar corona.A second comparison of simulated observations based on the authors model (left panels) to actual EUV observations of jets (right panels). [Szente et al. 2017]Global InfluencesAfter demonstrating that their models could successfully lead to jet production and propagation, Szente and collaborators compared their results to actual observations of solar jets. The authors constructed simulated EUV and X-ray observations of their modeled events, and they verified that the behavior and structures in these simulated observations were very similar to real observations of coronal jet events from telescopes like SDO/AIA and Hinode.With this confirmed, the authors then used their models to determine how the jets influence the global solar corona and the solar wind. They found that the large-scale corona is significantly affected by the plasma waves from the jet, which travel across 40 in latitude and out to 24 solar radii. In spite of this, the simulated jets contributed only a few percent to the steady-state solar-wind energy outflow.These simulations represent an important step in realistic modeling of the quiet Sun. Because the models make specific predictions about temperature and density gradients within the corona, we can look forward to testing them with upcoming missions like Solar Probe Plus, which should be able to explore the Sun all the way down to ninesolar radii.CitationJ. Szente et al 2017 ApJ 834 123. doi:10.3847/1538-4357/834/2/123
Design, construction, and measurement of a large solar powered thermoacoustic cooler
NASA Astrophysics Data System (ADS)
Chen, Reh-Lin
2001-07-01
A device based on harnessing concentrated solar power in combination with using thermoacoustic principles has been built, instrumented, and tested. Its acoustic power is generated by solar radiation and is subsequently used to pump heat from external loads. The direct conversion between thermal and mechanical energy without going through any electronic stage makes the mechanism simple. Construction of the solar collector is also rather unsophisticated. It was converted from a 10-ft satellite dish with aluminized Mylar glued on the surface. The thermoacoustic device was mounted on the dish with its engine's hot side positioned near the focus of the parabolic dish, about 1 meter above the center of the dish. A 2-dimensional solar tracking system was built, using two servo motors to position the dish at pre-calculated coordinates. The solar powered thermoacoustic cooler is intended to be used where solar power is abundant and electricity may not be available or reliable. The cooler provides cooling during solar availability. Cooling can be maintained by the latent heat of ice when solar power is unattainable. The device has achieved cooling although compromised by gas leakage and thermal losses and was not able to provide temperatures low enough to freeze water. Improvements of the device are expected through modifications suggested herein.
Simulations of the general circulation of the Martian atmosphere. II - Seasonal pressure variations
NASA Technical Reports Server (NTRS)
Pollack, James B.; Haberle, Robert M.; Murphy, James R.; Schaeffer, James; Lee, Hilda
1993-01-01
The CO2 seasonal cycle of the Martian atmosphere and surface is simulated with a hybrid energy balance model that incorporates dynamical and radiation information from a large number of general circulation model runs. This information includes: heating due to atmospheric heat advection, the seasonally varying ratio of the surface pressure at the two Viking landing sites to the globally averaged pressure, the rate of CO2 condensation in the atmosphere, and solar heating of the atmosphere and surface. The predictions of the energy balance model are compared with the seasonal pressure variations measured at the two Viking landing sites and the springtime retreat of the seasonal polar cap boundaries. The following quantities are found to have a strong influence on the seasonal pressures at the Viking landing sites: albedo of the seasonal CO2 ice deposits, emissivity of this deposit, atmospheric heat advection, and the pressure ratio.
Temperature of ground water at Philadelphia, Pennsylvania, 1979- 1981
Paulachok, Gary N.
1986-01-01
Anthropogenic heat production has undoubtedly caused increased ground-water temperatures in many parts of Philadelphia, Pennsylvania, as shown by temperatures of 98 samples and logs of 40 wells measured during 1979-81. Most sample temperatures were higher than 12.6 degrees Celsius (the local mean annual air temperature), and many logs depict cooling trends with depth (anomalous gradients). Heating of surface and shallow-subsurface materials has likely caused the elevated temperatures and anomalous gradients. Solar radiation on widespread concrete and asphalt surfaces, fossil-fuel combustion, and radiant losses from buried pipelines containing steam and process chemicals are believed to be the chief sources of heat. Some heat from these and other sources is transferred to deeper zones, mainly by conduction. Temperatures in densely urbanized areas are commonly highest directly beneath the land surface and decrease progressively with depth. Temperatures in sparsely urbanized areas generally follow the natural geothermal gradient and increase downward at about that same rate.
NASA Technical Reports Server (NTRS)
Kirk, R. L.; Brown, R. H.
1991-01-01
The effect of sunlight on the surface of Triton was studied. Widely disparate models of the active geysers observed during Voyager 2 flyby were proposed, with a solar energy source almost their only feature. Yet Triton derives more of its heat from internal sources (energy released by the radioactive decay) than any other icy satellite. The effect of this relatively large internal heat on the observable behavior of volatiles on Triton's surface is investigated. The following subject areas are covered: the Global Energy Budget; insulation polar caps; effect on frost stability; mantle convection; and cryovolcanism.
NASA Astrophysics Data System (ADS)
Mahmood, Asif; Aziz, Asim; Jamshed, Wasim; Hussain, Sajid
Solar energy is the cleanest, renewable and most abundant source of energy available on earth. The main use of solar energy is to heat and cool buildings, heat water and to generate electricity. There are two types of solar energy collection system, the photovoltaic systems and the solar thermal collectors. The efficiency of any solar thermal system depend on the thermophysical properties of the operating fluids and the geometry/length of the system in which fluid is flowing. In the present research a simplified mathematical model for the solar thermal collectors is considered in the form of non-uniform unsteady stretching surface. The flow is induced by a non-uniform stretching of the porous sheet and the uniform magnetic field is applied in the transverse direction to the flow. The non-Newtonian Maxwell fluid model is utilized for the working fluid along with slip boundary conditions. Moreover the high temperature effect of thermal radiation and temperature dependent thermal conductivity are also included in the present model. The mathematical formulation is carried out through a boundary layer approach and the numerical computations are carried out for cu-water and TiO2 -water nanofluids. Results are presented for the velocity and temperature profiles as well as the skin friction coefficient and Nusselt number and the discussion is concluded on the effect of various governing parameters on the motion, temperature variation, velocity gradient and the rate of heat transfer at the boundary.
NASA Technical Reports Server (NTRS)
Liu, W. Timothy
1994-01-01
After numerical studies showed that global climate is sensitive to small changes in sea surface temperature (Ts), considerabel effort has been devoted to examine the role of surface fluxes in changing upper ocean heat balance and Ts, particularly in the tropical Pacific where interannual signals, such as El Nino Southern Oscillation (ENSO), have major economic and ecological impacts.
Climate Fundamentals for Solar Heating.
ERIC Educational Resources Information Center
Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.
The design of any solar heating system is influenced heavily by climate; in this bulletin, information on climate as related to solar heating is as related to solar heating is provided. Topics discussed include: (1) solar radiation; (2) degree days; (3) climate and calculations which make use of solar radiation and degree days; and (4)…
NASA Astrophysics Data System (ADS)
Kleidon, Axel; Renner, Maik
2016-04-01
The soil-plant-atmosphere system is a complex system that is strongly shaped by interactions between the physical environment and vegetation. This complexity appears to demand equally as complex models to fully capture the dynamics of the coupled system. What we describe here is an alternative approach that is based on thermodynamics and which allows for comparatively simple formulations free of empirical parameters by assuming that the system is so complex that its emergent dynamics are only constrained by the thermodynamics of the system. This approach specifically makes use of the second law of thermodynamics, a fundamental physical law that is typically not being considered in Earth system science. Its relevance to land surface processes is that it fundamentally sets a direction as well as limits to energy conversions and associated rates of mass exchange, but it requires us to formulate land surface processes as thermodynamic processes that are driven by energy conversions. We describe an application of this approach to the surface energy balance partitioning at the diurnal scale. In this application the turbulent heat fluxes of sensible and latent heat are described as the result of a convective heat engine that is driven by solar radiative heating of the surface and that operates at its thermodynamic limit. The predicted fluxes from this approach compare very well to observations at several sites. This suggests that the turbulent exchange fluxes between the surface and the atmosphere operate at their thermodynamic limit, so that thermodynamics imposes a relevant constraint to the land surface-atmosphere system. Yet, thermodynamic limits do not entirely determine the soil-plant-atmosphere system because vegetation affects these limits, for instance by affecting the magnitude of surface heating by absorption of solar radiation in the canopy layer. These effects are likely to make the conditions at the land surface more favorable for photosynthetic activity, which then links this thermodynamic approach to optimality in vegetation. We also contrast this approach to common, semi-empirical approaches of surface-atmosphere exchange and discuss how thermodynamics may set a broader range of transport limitations and optimality in the soil-plant-atmosphere system.
NASA Astrophysics Data System (ADS)
Roeb, Martin; Steinfeld, Aldo; Borchardt, Günter; Feldmann, Claus; Schmücker, Martin; Sattler, Christian; Pitz-Paal, Robert
2016-05-01
The Helmholtz Virtual Institute (VI) SolarSynGas brings together expertise from solar energy research and materials science to develop metal oxide based redox materials and to integrate them in a suitable way into related process technologies for two-step thermochemical production of hydrogen and carbon monoxide from water and CO2. One of the foci of experimental investigation was exploring the impact of doping on the feasibility of ceria-based materials - mainly by Zr-doping. The results indicate that a certain Zr-content enhances the reducibility and therefore the splitting performance. Increasing the Zr-content to x = 0.15 improved the specific CO2-splitting performance by 50% compared to pure ceria. This finding agrees with theoretical studies attributing the improvements to lattice modification caused by the introduction of Zr4+. Thermogravimetric relaxation experiments and equilibrium oxygen isotope exchange experiments with subsequent depth profiling analysis were carried out on ceria. As a result the reduction reaction of even dense samples of pure ceria with a grain size of about 20 µm is surface reaction controlled. The structure of the derived expression for the apparent activation energy suggests that the chemical surface exchange coefficient should show only a very weak dependence on temperature for ceria doped with lower valence cations. A solar receiver reactor exhibiting a foam-type reticulated porous ceramics made of ceria was tested. It could be shown that applying dual-scale porosity to those foams with mm-size pores for effective radiative heat transfer during reduction and μm-size pores within its struts for enhanced kinetics during oxidation allows enhancing the performance of the reactor significantly. Also a particle process concept applying solid-solid heat recovery from redox particles in a high temperature solar thermochemical process was analysed that uses ceramic spheres as solid heat transfer medium. This concept can be implemented into any particle reactor and offers sufficiently high heat recovery rates and thus high overall system efficiencies. A detailed model to calculate the performance of the concept in consideration of temperature dependent material data and several other influencing factors was developed. It was found that the molar flow ratio needs to be optimized regarding the contact time and the heat recovery rate only increases slightly over a contact time of τ=10s. The system reaches a heat recovery rate over 70% in case of six stages, connected in a quasi-counter-current principle.
Microclimatic modeling of the desert in the United Arab Emirates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalil, A.K.; Abdrabboh, M.A.; Kamel, K.A.
1996-10-01
The present study is concerned with the prediction of the weather parameters in the microclimate layer (less than 2 m above the ground surface) in the desert and sparsely vegetated areas in the United Arab Emirates. A survey was made of the weather data in these regions including solar radiation, wind speed, screen temperatures and relative humidity. Additionally, wind speed data were obtained at heights below two meters and surface albedo was recorded for various soil and vegetation conditions. A survey was also carried out for the different plant species in various areas of the U.A.E. Data on soil andmore » surface temperature were then analyzed. An energy balance model was formulated including incident short- and long-wave length radiation between earth and sky, convective heat transfer to/from earth surface, surface reflection of solar radiation and soil/plant evapotranspiration. An explicit one dimensional finite difference scheme was adapted to solve the resulting algebraic finite difference equations. The equation for surface nodes included thermal radiation as well as convection effects. The heat transfer coefficient was evaluated on the basis of wind speed and surface roughness at the site where the energy balance was set. Theoretical predictions of air and soil temperatures were accordingly compared to experimental measurements in selected sites, where reasonable agreements were observed.« less
Arctic haze and the radiation balance
NASA Technical Reports Server (NTRS)
Valero, Francisco P. J.; Ackerman, Thomas P.
1985-01-01
Airborne measurements of the absorption of solar radiation by the Arctic haze indicate atmospheric heating rates of 0.15 to 0.25/Kday at latitudes between 72.6 and 74.0 N during the early spring. The haze interaction with solar radiation alters the radiative balance of the atmosphere-surface system. Generally, this interaction results in an increase of the solar energy absorbed by the atmosphere and in a decrease of the radiation absorbed by the ground. The cumulative deposition of black carbon over the surface produces a change in the optical properties of the ice which may results in an accelerating rate of ice melt. Experimental evidence of the magnitude of this effect is necessary to properly evaluate its consequences. An extended monitoring program is suggested.
Internal absorber solar collector
Sletten, Carlyle J.; Herskovitz, Sheldon B.; Holt, F. S.; Sletten, E. J.
1981-01-01
Thin solar collecting panels are described made from arrays of small rod collectors consisting of a refracting dielectric rod lens with an absorber imbedded within it and a reflecting mirror coated on the back side of the dielectric rod. Non-tracking collector panels on vertical walls or roof tops receive approximately 90% of solar radiation within an acceptance zone 60.degree. in elevation angle by 120.degree. or more in the azimuth sectors with a collector concentration ratio of approximately 3.0. Miniaturized construction of the circular dielectric rods with internal absorbers reduces the weight per area of glass, plastic and metal used in the collector panels. No external parts or insulation are needed as heat losses are low due to partial vacuum or low conductivity gas surrounding heated portions of the collector. The miniature internal absorbers are generally made of solid copper with black selective surface and the collected solar heat is extracted at the collector ends by thermal conductivity along the absorber rods. Heat is removed from end fittings by use of liquid circulants. Several alternate constructions are provided for simplifying collector panel fabrication and for preventing the thermal expansion and contraction of the heated absorber or circulant tubes from damaging vacuum seals. In a modified version of the internal absorber collector, oil with temperature dependent viscosity is pumped through a segmented absorber which is now composed of closely spaced insulated metal tubes. In this way the circulant is automatically diverted through heated portions of the absorber giving higher collector concentration ratios than theoretically possible for an unsegmented absorber.
Solar heating and cooling of buildings
NASA Technical Reports Server (NTRS)
Bourke, R. D.; Davis, E. S.
1975-01-01
Solar energy has been used for space heating and water heating for many years. A less common application, although technically feasible, is solar cooling. This paper describes the techniques employed in the heating and cooling of buildings, and in water heating. The potential for solar energy to displace conventional energy sources is discussed. Water heating for new apartments appears to have some features which could make it a place to begin the resurgence of solar energy applications in the United States. A project to investigate apartment solar water heating, currently in the pilot plant construction phase, is described.
Solar heating and cooling: Technical data and systems analysis
NASA Technical Reports Server (NTRS)
Christensen, D. L.
1975-01-01
The solar energy research is reported including climatic data, architectural data, heating and cooling equipment, thermal loads, and economic data. Lists of data sources presented include: selected data sources for solar energy heating and cooling; bibliography of solar energy, and other energy sources; sources for manufacturing and sales, solar energy collectors; and solar energy heating and cooling projects.
NASA Astrophysics Data System (ADS)
Persad, G.; Paynter, D.; Ming, Y.; Ramaswamy, V.
2015-12-01
Absorbing aerosols, by attenuating shortwave radiation within the atmosphere and reemitting it as longwave radiation, redistribute energy both vertically within the surface-atmosphere column and horizontally between polluted and unpolluted regions. East Asia has the largest concentrations of anthropogenic absorbing aerosols globally, and these, along with the region's scattering aerosols, have both reduced the amount of solar radiation reaching the Earth's surface regionally ("solar dimming") and increased shortwave absorption within the atmosphere, particularly during the peak months of the East Asian Summer Monsoon (EASM). We here analyze how atmospheric absorption and surface solar dimming compete in driving the response of EASM circulation to anthropogenic absorbing aerosols, which dominates, and why—issues of particular importance for predicting how the EASM will respond to projected changes in absorbing and scattering aerosol emissions in the future. We probe these questions in a state-of-the-art general circulation model (GCM) using a combination of realistic and idealized aerosol perturbations that allow us to analyze the relative influence of absorbing aerosols' atmospheric and surface-driven impacts on EASM circulation. In combination, our results make clear that, although absorption-driven dimming has a less detrimental effect on EASM circulation than purely scattering-driven dimming, aerosol absorption is still a net impairment to EASM strength when both its atmospheric and surface effects are considered. Because atmospheric heating is not efficiently conveyed to the surface, the surface dimming and associated cooling from even a pure absorber is sufficient to counteract its atmospheric heating, resulting in a net reduction in EASM strength. These findings elevate the current understanding of the impacts of aerosol absorption on the EASM, improving our ability to diagnose EASM responses to current and future regional changes in aerosol emissions.
In-situ Plasma Analysis of Ion Kinetics in the Solar Wind and Hermean Magnetosphere
NASA Astrophysics Data System (ADS)
Tracy, Patrick J.
The heating of the solar wind and its interaction with the unique planetary magnetosphere of Mercury is the primary focus of this work. The first aspect of this study focused on the heavy ion population of the solar wind (A > 4 amu), and how well the signature of the heating process responsible for creating the solar wind is preserved in this heavy ion population. We found that this signature in the heavy ion population is primarily erased (thermalized) via Coulomb collisional interactions with solar wind protons. The heavy ions observed in collisionally young solar wind reveal a clear, stable dependence on mass, along with non-thermal heating that is not in agreement with current predictions based on turbulent transport and kinetic dissipation. Due to its weak magnetic dipole, the solar wind can impinge on the surface of Mercury, one of the processes contributing to the desorption of neutrals and, through ionization, ions that make up the planet's exosphere. Differentiating between surface mechanisms and analyzing magnetospheric plasma dynamics requires the quantification of a variety of ion species. A detailed forward model and a robust statistical method were created to identify new ion signatures in the measurement space of the FIPS instrument, formerly orbiting Mercury onboard the MESSENGER spacecraft. The recovery of new heavy ions species, including Al, Ne, Si, and Mg, along with tentative recoveries of S, Ar, K, and C, enable in depth studies of the plasma dynamics in the Hermean magnetosphere. The interaction of the solar wind with the bow shock of the Hermean magnetosphere leads to the creation of a foreshock region. New tools and methods were created to enable the analysis of the diffuse and Field Aligned Beam (FAB) populations in unique parameter regime of the Hermean foreshock. One result suggests that the energization process for the observed FABs can be explained by Shock Drift Acceleration, and not limited by the small spatial size of Mercury's bow shock. Analysis of diffuse populations shows that a connection time limited diffusive shock acceleration is likely responsible for the behavior of the observed energy distributions.
Alternative Energy Sources for United States Air Force Installations
1975-08-01
easy to maintain, and have a relatively long life expectancy. b. Linear Focus Parabolic trough collectors have been fabricated by two primary methods...engineered and economically manufactured and dis- tributed solar collectors . Development, optimization, production design, and manufacture of these units is...193 and domestic hnt water heating. These systems function by converting the solar energy incident on a collector surface to thermal energy in a working
Liu, Zhejun; Song, Haomin; Ji, Dengxin; Li, Chenyu; Cheney, Alec; Liu, Youhai; Zhang, Nan; Zeng, Xie; Chen, Borui; Gao, Jun; Li, Yuesheng; Liu, Xiang; Aga, Diana; Jiang, Suhua; Yu, Zongfu
2017-01-01
Passive solar vapor generation represents a promising and environmentally benign method of water purification/desalination. However, conventional solar steam generation techniques usually rely on costly and cumbersome optical concentration systems and have relatively low efficiency due to bulk heating of the entire liquid volume. Here, an efficient strategy using extremely low‐cost materials, i.e., carbon black (powder), hydrophilic porous paper, and expanded polystyrene foam is reported. Due to the excellent thermal insulation between the surface liquid and the bulk volume of the water and the suppressed radiative and convective losses from the absorber surface to the adjacent heated vapor, a record thermal efficiency of ≈88% is obtained under 1 sun without concentration, corresponding to the evaporation rate of 1.28 kg (m2 h)−1. When scaled up to a 100 cm2 array in a portable solar water still system and placed in an outdoor environment, the freshwater generation rate is 2.4 times of that of a leading commercial product. By simultaneously addressing both the need for high‐efficiency operation as well as production cost limitations, this system can provide an approach for individuals to purify water for personal needs, which is particularly suitable for undeveloped regions with limited/no access to electricity. PMID:28616256
Liu, Zhejun; Song, Haomin; Ji, Dengxin; Li, Chenyu; Cheney, Alec; Liu, Youhai; Zhang, Nan; Zeng, Xie; Chen, Borui; Gao, Jun; Li, Yuesheng; Liu, Xiang; Aga, Diana; Jiang, Suhua; Yu, Zongfu; Gan, Qiaoqiang
2017-02-27
Passive solar vapor generation represents a promising and environmentally benign method of water purification/desalination. However, conventional solar steam generation techniques usually rely on costly and cumbersome optical concentration systems and have relatively low efficiency due to bulk heating of the entire liquid volume. Here, an efficient strategy using extremely low-cost materials, i.e., carbon black (powder), hydrophilic porous paper, and expanded polystyrene foam is reported. Due to the excellent thermal insulation between the surface liquid and the bulk volume of the water and the suppressed radiative and convective losses from the absorber surface to the adjacent heated vapor, a record thermal efficiency of ≈88% is obtained under 1 sun without concentration, corresponding to the evaporation rate of 1.28 kg (m 2 h) -1 . When scaled up to a 100 cm 2 array in a portable solar water still system and placed in an outdoor environment, the freshwater generation rate is 2.4 times of that of a leading commercial product. By simultaneously addressing both the need for high-efficiency operation as well as production cost limitations, this system can provide an approach for individuals to purify water for personal needs, which is particularly suitable for undeveloped regions with limited/no access to electricity.
NASA Technical Reports Server (NTRS)
Gordon, Pierce E. C.; Colozza, Anthony J.; Hepp, Aloysius F.; Heller, Richard S.; Gustafson, Robert; Stern, Ted; Nakamura, Takashi
2011-01-01
Oxygen production from lunar raw materials is critical for sustaining a manned lunar base but is very power intensive. Solar concentrators are a well-developed technology for harnessing the Sun s energy to heat regolith to high temperatures (over 1375 K). The high temperature and potential material incompatibilities present numerous technical challenges. This study compares and contrasts different solar concentrator designs that have been developed, such as Cassegrains, offset parabolas, compound parabolic concentrators, and secondary concentrators. Differences between concentrators made from lenses and mirrors, and between rigid and flexible concentrators are also discussed. Possible substrate elements for a rigid mirror concentrator are selected and then compared, using the following (target) criteria: (low) coefficient of thermal expansion, (high) modulus of elasticity, and (low) density. Several potential lunar locations for solar concentrators are compared; environmental and processing-related challenges related to dust and optical surfaces are addressed. This brief technology survey examines various sources of thermal energy that can be utilized for materials processing on the lunar surface. These include heat from nuclear or electric sources and solar concentrators. Options for collecting and transporting thermal energy to processing reactors for each source are examined. Overall system requirements for each thermal source are compared and system limitations, such as maximum achievable temperature are discussed.
A low-cost efficient and durable low-temperature solar collector
NASA Astrophysics Data System (ADS)
Odonnell, T. P.
The considered collector utilizes a material made of ethylene-propylene-diene-monomer (EPDM). This material has been used in solar systems to heat domestic water, pools, spas, and homes by radiant energy. EPDM or ethylene propylene rubber compounds are synthetic elastomers. EPDM elastomers combine superior ozone, good heat and oxygen resistance, and very good low temperature properties to produce a compound with excellent overall age resistance. The material is extruded into 4.4 inch wide mats. Each mat has six small tubes alternating with thin webbing. The absorber mat will adhere to any clean building surface with the use of thermosetting construction-grade mastic adhesive. Carbon black contained in the mat material acts to increase the solar absorptivity. Their low cost makes the elastomers commercially very attractive. The efficiency and durability of the material are discussed.
NASA Astrophysics Data System (ADS)
Habbal, Shadia Rifai; Ding, Adalbert; Druckmuller, Miloslav; Solar Wind Sherpas
2018-01-01
The visible wavelength range, encompassing forbidden coronal emission lines, offers unique diagnostic tools for exploring the physics of the solar corona, such as its chemical composition and the dynamics of its major and minor constituents. These tools are best exploited during total solar eclipses, when the field of view spans several solar radii, starting from the solar surface. This spatial span is currently untenable from any observing platform. Imaging and spectroscopic eclipse observations, including the 2017 August 21 event, are shown to be the first to yield the temperature distribution in the corona as a function of solar cycle. They are also the first to lead to the discovery of cool prominence material at less than 10,000 to 50,000 K, within more than a radius above the solar surface, streaming away from the Sun, while maintaining its compositional identity. These data underscore the importance of capturing emission from coronal forbidden lines with the next generation space-based instrumentation to address the general problem of coronal heating.
An energy balance climate model with cloud feedbacks
NASA Technical Reports Server (NTRS)
Roads, J. O.; Vallis, G. K.
1984-01-01
The present two-level global climate model, which is based on the atmosphere-surface energy balance, includes physically based parameterizations for the exchange of heat and moisture across latitude belts and between the surface and the atmosphere, precipitation and cloud formation, and solar and IR radiation. The model field predictions obtained encompass surface and atmospheric temperature, precipitation, relative humidity, and cloudiness. In the model integrations presented, it is noted that cloudiness is generally constant with changing temperature at low latitudes. High altitude cloudiness increases with temperature, although the cloud feedback effect on the radiation field remains small because of compensating effects on thermal and solar radiation. The net global feedback by the cloud field is negative, but small.
NASA Technical Reports Server (NTRS)
deGroh, Kim K.; Smith, Daniela C.; Wheeler, Donald R.; MacLachlam, Brian J.
1998-01-01
Solar dynamic (SD) space power systems require durable, high emittance surfaces on a number of critical components, such as heat receiver interior surfaces and parasitic load radiator (PLR) elements. To enhance surface characteristics, an alumina-titania coating has been applied to 500 heat receiver thermal energy containment canisters and the PLR of NASA Lewis Research Center's (LeRC) 2 kW SD ground test demonstrator (GTD). The alumina-titania coating was chosen because it had been found to maintain its high emittance under vacuum (less than or equal to 10(exp -6) torr) at high temperatures (1457 F (827 C)) for an extended period (approximately 2,700 hours). However, preflight verification of SD systems components, such as the PLR require operation at ambient pressure and high temperatures. Therefore, the purpose of this research was to evaluate the durability of the alumina-titania coating at high temperature in air. Fifteen of sixteen alumina-titania coated Incoloy samples were exposed to high temperatures (600 F (316 C) to l500 F (816 C)) for various durations (2 to 32 hours). Samples, were characterized prior to and after heat treatment for reflectance, solar absorptance, room temperature emittance and emittance at 1,200 F (649 C). Samples were also examined to detect physical defects and to determine surface chemistry using optical microscopy, scanning electron microscopy operated with an energy dispersive spectroscopy (EDS) system, and x ray photoelectron spectroscopy (XPS). Visual examination of the heat-treated samples showed a whitening of samples exposed to temperatures of 1,000 F (538 C) and above. Correspondingly, the optical properties of these samples had degraded. A sample exposed to 1,500 F (816 C) for 24 hours had whitened and the thermal emittance at 1,200 F (649 C) had decreased from the non-heat treated value of 0.94 to 0.62. The coating on this sample had become embrittled with spalling off the substrate noticeable at several locations. Based on this research it is recommended that preflight testing of SD components with alumina-titania coatings be restricted to temperatures no greater than 600 F (316 C) in air to avoid optical degradation. Moreover, components with the alumina-titania coating are likely to experience optical property degradation with direct atomic oxygen exposure in space.
Solar heated fluidized bed gasification system
NASA Technical Reports Server (NTRS)
Qader, S. A. (Inventor)
1981-01-01
A solar-powered fluidized bed gasification system for gasifying carbonaceous material is presented. The system includes a solar gasifier which is heated by fluidizing gas and steam. Energy to heat the gas and steam is supplied by a high heat capacity refractory honeycomb which surrounds the fluid bed reactor zone. The high heat capacity refractory honeycomb is heated by solar energy focused on the honeycomb by solar concentrator through solar window. The fluid bed reaction zone is also heated directly and uniformly by thermal contact of the high heat capacity ceramic honeycomb with the walls of the fluidized bed reactor. Provisions are also made for recovering and recycling catalysts used in the gasification process. Back-up furnace is provided for start-up procedures and for supplying heat to the fluid bed reaction zone when adequate supplies of solar energy are not available.
A new method for estimating the turbulent heat flux at the bottom of the daily mixed layer
NASA Technical Reports Server (NTRS)
Imawaki, Shiro; Niiler, Pearn P.; Gautier, Catherine H.; Knox, Robert A.; Halpern, David
1988-01-01
Temperature data in the mixed layer and net solar irradiance data at the sea surface are used to estimate the vertical turbulent heat flux at the bottom of the daily mixed layer. The method is applied to data obtained in the eastern tropical Pacific, where the daily cycle in the temperature field is confined to the upper 10-25 m. Equatorial turbulence measurements indicate that the turbulent heat flux is much greater during nighttime than daytime.
Oxidation-Resistant Surfaces For Solar Reflectors
NASA Technical Reports Server (NTRS)
Gulino, Daniel A.; Egger, Robert A.; Banholzer, William F.
1988-01-01
Thin films on silver provide highly-reflective, corrosion-resistant mirrors. Study evaluated variety of oxidation-resistant reflective materials for use in solar dynamic power system, one that generates electricity by focusing Sunlight onto reciever of heat engine. Thin films of platinum and rhodium deposited by ion-beam sputtering on various substrate materials. Solar reflectances measured as function of time of exposure to radio-frequency-generated air plasma. Several protective coating materials deposited on silver-coated substrates and exposed to plasma. Analyzed before and after exposure by electon spectroscopy for chemical analysis and by Auger spectroscopy.
Prediction of moisture and temperature changes in composites during atmospheric exposure
NASA Technical Reports Server (NTRS)
Tompkins, S. S.; Tenney, D. R.; Unnan, J.
1978-01-01
The effects of variations in diffusion coefficients, surface properties of the composite, panel tilt, ground reflection, and geographical location on the moisture concentration profiles and average moisture content of composite laminates were studied analytically. A heat balance which included heat input due to direct and sky diffuse solar radiation, ground reflection, and heat loss due to reradiation and convection was used to determine the temperature of composites during atmospheric exposure. The equilibrium moisture content was assumed proportional to the relative humidity of the air in the boundary layer of the composite. Condensation on the surface was neglected. Histograms of composite temperatures were determined and compared with those for the ambient environment.
VOLATILE LOSS AND CLASSIFICATION OF KUIPER BELT OBJECTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, R. E.; Schmidt, C.; Oza, A.
Observations indicate that some of the largest Kuiper Belt Objects (KBOs) have retained volatiles in the gas phase (e.g., Pluto), while others have surface volatiles that might support a seasonal atmosphere (e.g., Eris). Since the presence of an atmosphere can affect their reflectance spectra and thermal balance, Schaller and Brown examined the role of volatile escape driven by solar heating of the surface. Guided by recent simulations, we estimate the loss of primordial N{sub 2} for several large KBOs, accounting for escape driven by UV/EUV heating of the upper atmosphere as well as by solar heating of the surface. Formore » the latter we present new simulations and for the former we scale recent detailed simulations of escape from Pluto using the energy limited escape model validated recently by molecular kinetic simulations. Unlike what has been assumed to date, we show that unless the N{sub 2} atmosphere is thin (<∼10{sup 18} N{sub 2} cm{sup −2}) and/or the radius small (<∼200–300 km), escape is primarily driven by the UV/EUV radiation absorbed in the upper atmosphere. This affects the discussion of the relationship between atmospheric loss and the observed surface properties for a number of the KBOs examined. Our long-term goal is to connect detailed atmospheric loss simulations with a model for volatile transport for individual KBOs.« less
Code of Federal Regulations, 2012 CFR
2012-04-01
... certification program for solar water heating system. 200.950 Section 200.950 Housing and Urban Development... solar water heating system. (a) Applicable standards. (1) All solar water heating systems shall be designed, manufactured, and tested in compliance with Solar Rating and Certification Corporation (SRCC...
Code of Federal Regulations, 2013 CFR
2013-04-01
... certification program for solar water heating system. 200.950 Section 200.950 Housing and Urban Development... solar water heating system. (a) Applicable standards. (1) All solar water heating systems shall be designed, manufactured, and tested in compliance with Solar Rating and Certification Corporation (SRCC...
Code of Federal Regulations, 2014 CFR
2014-04-01
... certification program for solar water heating system. 200.950 Section 200.950 Housing and Urban Development... solar water heating system. (a) Applicable standards. (1) All solar water heating systems shall be designed, manufactured, and tested in compliance with Solar Rating and Certification Corporation (SRCC...
NASA Astrophysics Data System (ADS)
Moore, William B.; Simon, Justin I.; Webb, A. Alexander G.
2017-09-01
Observations of the surfaces of all terrestrial bodies other than Earth reveal remarkable but unexplained similarities: endogenic resurfacing is dominated by plains-forming volcanism with few identifiable centers, magma compositions are highly magnesian (mafic to ultra-mafic), tectonic structures are dominantly contractional, and ancient topographic and gravity anomalies are preserved to the present. Here we show that cooling via volcanic heat pipes may explain these observations and provide a universal model of the way terrestrial bodies transition from a magma-ocean state into subsequent single-plate, stagnant-lid convection or plate tectonic phases. In the heat-pipe cooling mode, magma moves from a high melt-fraction asthenosphere through the lithosphere to erupt and cool at the surface via narrow channels. Despite high surface heat flow, the rapid volcanic resurfacing produces a thick, cold, and strong lithosphere which undergoes contractional strain forced by downward advection of the surface toward smaller radii. We hypothesize that heat-pipe cooling is the last significant endogenic resurfacing process experienced by most terrestrial bodies in the solar system, because subsequent stagnant-lid convection produces only weak tectonic deformation. Terrestrial exoplanets appreciably larger than Earth may remain in heat-pipe mode for much of the lifespan of a Sun-like star.
1984-04-01
The Long Duration Exposure Facility (LDEF) was designed by the Marshall Space Flight Center (MSFC) to test the performance of spacecraft materials, components, and systems that have been exposed to the environment of micrometeoroids and space debris for an extended period of time. The LDEF proved invaluable to the development of future spacecraft and the International Space Station (ISS). The LDEF carried 57 science and technology experiments, the work of more than 200 investigators. MSFC`s experiments included: Trapped Proton Energy Determination to determine protons trapped in the Earth's magnetic field and the impact of radiation particles; Linear Energy Transfer Spectrum Measurement Experiment which measures the linear energy transfer spectrum behind different shielding configurations; Atomic oxygen-Simulated Out-gassing, an experiment that exposes thermal control surfaces to atomic oxygen to measure the damaging out-gassed products; Thermal Control Surfaces Experiment to determine the effects of the near-Earth orbital environment and the shuttle induced environment on spacecraft thermal control surfaces; Transverse Flat-Plate Heat Pipe Experiment, to evaluate the zero-gravity performance of a number of transverse flat plate heat pipe modules and their ability to transport large quantities of heat; Solar Array Materials Passive LDEF Experiment to examine the effects of space on mechanical, electrical, and optical properties of lightweight solar array materials; and the Effects of Solar Radiation on Glasses. Launched aboard the Space Shuttle Orbiter Challenger's STS-41C mission April 6, 1984, the LDEF remained in orbit for five years until January 1990 when it was retrieved by the Space Shuttle Orbiter Columbia STS-32 mission and brought back to Earth for close examination and analysis.
Long Duration Exposure Facility (LDEF)
NASA Technical Reports Server (NTRS)
1984-01-01
The Long Duration Exposure Facility (LDEF) was designed by the Marshall Space Flight Center (MSFC) to test the performance of spacecraft materials, components, and systems that have been exposed to the environment of micrometeoroids and space debris for an extended period of time. The LDEF proved invaluable to the development of future spacecraft and the International Space Station (ISS). The LDEF carried 57 science and technology experiments, the work of more than 200 investigators. MSFC`s experiments included: Trapped Proton Energy Determination to determine protons trapped in the Earth's magnetic field and the impact of radiation particles; Linear Energy Transfer Spectrum Measurement Experiment which measures the linear energy transfer spectrum behind different shielding configurations; Atomic oxygen-Simulated Out-gassing, an experiment that exposes thermal control surfaces to atomic oxygen to measure the damaging out-gassed products; Thermal Control Surfaces Experiment to determine the effects of the near-Earth orbital environment and the shuttle induced environment on spacecraft thermal control surfaces; Transverse Flat-Plate Heat Pipe Experiment, to evaluate the zero-gravity performance of a number of transverse flat plate heat pipe modules and their ability to transport large quantities of heat; Solar Array Materials Passive LDEF Experiment to examine the effects of space on mechanical, electrical, and optical properties of lightweight solar array materials; and the Effects of Solar Radiation on Glasses. Launched aboard the Space Shuttle Orbiter Challenger's STS-41C mission April 6, 1984, the LDEF remained in orbit for five years until January 1990 when it was retrieved by the Space Shuttle Orbiter Columbia STS-32 mission and brought back to Earth for close examination and analysis.
Investigation of nitrate salts for solar latent heat storage
NASA Astrophysics Data System (ADS)
Kamimoto, M.; Tanaka, T.; Tani, T.; Horigome, T.
1980-01-01
The properties of heat transfer in the discharging of a model solar latent heat storage unit based on various nitrate salts and salt mixtures are investigated. A shell-and-tube-type passive heat exchanger containing NaNO3 or eutectic or off-eutectic mixtures of NaNO3 with KNO3 and Ca(NO3)2 was heated to 40 K above the melting temperature of the salt, when air was made to flow through a heat transfer tube at a constant flow rate, and heat transfer material and air temperatures were monitored. Thermal conductivity and the apparent heat transfer coefficient are estimated from the heat extraction rate and temperature profiles, and it is found that although the thermal conductivities of the materials are similar, the off-eutectic salts exhibit higher heat transfer coefficients. Temperature distributions in the NaNO3-KNO3 mixtures are found to be in fairly good agreement with those predicted by numerical solutions of a one-dimensional finite difference equation, and with approximate analytical solutions. It is observed that the temperature of the heat transfer surface drops rapidly after the appearance of a solid phase, due to the low thermal conductivity of the salts, and means of avoiding this temperature drop are considered.
Increasing the efficiency of solar thermal panels
NASA Astrophysics Data System (ADS)
Dobrnjac, M.; Latinović, T.; Dobrnjac, S.; Živković, P.
2016-08-01
The popularity of solar heating systems is increasing for several reasons. These systems are reliable, adaptable and pollution-free, because the renewable solar energy is used. There are many variants of solar systems in the market mainly constructed with copper pipes and absorbers with different quality of absorption surface. Taking into account the advantages and disadvantages of existing solutions, in order to increase efficiency and improve the design of solar panel, the innovative solution has been done. This new solar panel presents connection of an attractive design and the use of constructive appropriate materials with special geometric shapes. Hydraulic and thermotechnical tests that have been performed on this panel showed high hydraulic and structural stability. Further development of the solar panel will be done in the future in order to improve some noticed disadvantages.
Impact of thermal energy storage properties on solar dynamic space power conversion system mass
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.; Coles-Hamilton, Carolyn E.; Lacy, Dovie E.
1987-01-01
A 16 parameter solar concentrator/heat receiver mass model is used in conjunction with Stirling and Brayton Power Conversion System (PCS) performance and mass computer codes to determine the effect of thermal energy storage (TES) material property changes on overall PCS mass as a function of steady state electrical power output. Included in the PCS mass model are component masses as a function of thermal power for: concentrator, heat receiver, heat exchangers (source unless integral with heat receiver, heat sink, regenerator), heat engine units with optional parallel redundancy, power conditioning and control (PC and C), PC and C radiator, main radiator, and structure. Critical TES properties are: melting temperature, heat of fusion, density of the liquid phase, and the ratio of solid-to-liquid density. Preliminary results indicate that even though overalll system efficiency increases with TES melting temperature up to 1400 K for concentrator surface accuracies of 1 mrad or better, reductions in the overall system mass beyond that achievable with lithium fluoride (LiF) can be accomplished only if the heat of fusion is at least 800 kJ/kg and the liquid density is comparable to that of LiF (1880 kg/cu m.
Impact of thermal energy storage properties on solar dynamic space power conversion system mass
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.; Coles-Hamilton, Carolyn E.; Lacy, Dovie E.
1987-01-01
A 16 parameter solar concentrator/heat receiver mass model is used in conjunction with Stirling and Brayton Power Conversion System (PCS) performance and mass computer codes to determine the effect of thermal energy storage (TES) material property changes on overall PCS mass as a function of steady state electrical power output. Included in the PCS mass model are component masses as a function of thermal power for: concentrator, heat receiver, heat exchangers (source unless integral with heat receiver, heat sink, regenerator), heat engine units with optional parallel redundancy, power conditioning and control (PC and C), PC and C radiator, main radiator, and structure. Critical TES properties are: melting temperature, heat of fusion, density of the liquid phase, and the ratio of solid-to-liquid density. Preliminary results indicate that even though overall system efficiency increases with TES melting temperature up to 1400 K for concentrator surface accuracies of 1 mrad or better, reductions in the overall system mass beyond that achievable with lithium fluoride (LiF) can be accomplished only if the heat of fusion is at least 800 kJ/kg and the liquid density is comparable to that of LiF (1800 kg/cu m).
NASA Technical Reports Server (NTRS)
Bhandari, Pradeep
2015-01-01
Future missions to deep space, such as those to the outer planets (Jupiter, Saturn, etc.), which would rely on solar photovoltaic power, would need extremely large solar arrays to produce sufficient power for their operations because solar intensity is so low at those locations. Hence any additional power that would be needed for thermal control is extremely limited. Previous deep space missions like Juno (to Jupiter) required almost 200 W of electrical power for thermal control. This is prohibitively large for many future mission concepts, and leads to them needing very large solar arrays. For Saturn, where the solar flux is 1/4th the flux at Jupiter, this would entail an extremely large increase in the solar array size to accommodate the need for thermal survival power, which would be prohibitively large in size and mass, and very expensive. Hence there is a need to come up with a thermal architecture and design options that would not need such prohibitively large thermal power levels. One solution relies on harvesting the pre-existing waste heat from all the heat dissipation that would be present from operation of electronics, instruments, etc. for their own functionality. For example, for a generic Saturn mission, the various electronics would already dissipate about 200 Watts of heat that is simply "thrown away" to space from the spacecraft surfaces. The amount of thermal power that would be required for the safe thermal control of components within the spacecraft in deep space would be roughly of this magnitude for this class of spacecraft. So it makes good sense to try to harvest the waste heat and employ it to maintain the temperatures of all the components within their allowable limits. In particular, propulsion systems typically need to be kept above their freezing limits, around room temperature (15 C). Electronics needs to be kept typically above -40 C and batteries above -20 C. The next question becomes how to harvest this waste heat and direct it to the components that would need it for their survival. The proposed system utilizes a mechanically pumped, single phase fluid loop to pick up the waste heat from components attached to this loop's tubing and then directed to a thermal flask that has tubing attached to it. The thermal flask is cylindrically shaped and contains essentially all systems and components in the spacecraft within it, with the exception of the solar array, antennae, thrusters and various apertures of instruments, etc. to allow them an unobstructed view of space. Waste heat from the heat-dissipating components warms up the fluid and is carried to the flask surface and deposited on it via the fluid loop's flow. The entire flask is covered with Multi-Layered Insulation (MLI) to minimize the heat loss from the flask and allow it to remain warm. Hence the flask essentially creates a thermal environment within which the spacecraft components reside. The temperature of the components within the flask is then essentially the same as the temperature of the flask. This approach could be a very enabling feature for deep space missions. This paper describes the approach utilized for this thermal architecture, along with its mechanical and implementation aspects. Additionally it will compare and contrast this approach with the more conventional solutions utilized earlier.
Passivation of silicon surfaces by heat treatment in liquid water at 110 °C
NASA Astrophysics Data System (ADS)
Nakamura, Tomohiko; Sameshima, Toshiyuki; Hasumi, Masahiko; Mizuno, Tomohisa
2015-10-01
We report the effective passivation of silicon surfaces by heating single-crystalline silicon substrates in liquid water at 110 °C for 1 h. High photo-induced effective minority carrier lifetimes τeff were obtained ranging from 8.3 × 10-4 to 3.1 × 10-3 s and from 1.2 × 10-4 to 6.0 × 10-4 s for the n- and p-type samples, respectively, under 635 nm light illumination, while the τeff values of the initial bare samples were lower than 1.2 × 10-5 s. The heat treatment in liquid water at 110 °C for 1 h resulted in low surface recombination velocities ranging from 7 to 34 cm/s and from 49 to 250 cm/s for the n- and p-type samples, respectively. The photo-conductivity of the n-type sample was increased from 3.8 × 10-3 (initial) to 1.4 × 10-1 S/cm by the present heat treatment under air-mass (AM) 1.5 light illumination at 100 mW/cm2. The thickness of the passivation layer was estimated to be only approximately 0.7 nm. Metal-insulator-semiconductor-type solar cells were demonstrated with Al and Au metal formation on the passivated surface. Rectified current voltage and solar cell characteristics were observed. The open circuit voltages were obtained to be 0.52 and 0.49 V under AM 1.5 light illumination at 100 mW/cm2 for the n- and p-type samples, respectively.
Heat pumps could inject life into solar energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, P.
1977-07-14
Prospects for the use of solar energy in Great Britain are discussed. The only economically feasible solar system is considered to be a solar assisted heat pump. One of the factors included in an economic assessment of the solar system include the degree to which the house is insulated. Government incentives were suggested to increase solar consumerism. Detailed calculations showed that solar collectors on small British houses were currently uneconomical. The most promising market for solar collectors is outside the domestic market. The lack of standardization of solar collectors also is a hindrance to public acceptance of solar. Heat pumpsmore » with a coefficient of performance of 3:1 and giving a heat output of 3 kW for every 1 kW of electricity are considered economically feasible. Wind powered heat pumps are considered. Estimates of future heat pump use are as high as 30% of the domestic heating market. The US is considered technically more advanced than Britain for many types of solar applications. Technology of solar cells in the United States as opposed to Britain is also discussed.« less
NASA Astrophysics Data System (ADS)
Charvat, P.; Pech, O.; Hejcik, J.
2013-04-01
The paper deals with experimental investigations of the performance of a solar air collector with latent heat thermal storage integrated with the solarabsorber. The main purpose of heat storage in solar thermal systems is to store heat when the supply of solar heat exceeds demand and release it when otherwise. A number of heat storage materials can be used for this purpose; the phase change materials among them. Short-term latent heat thermal storage integrated with the solar absorber can stabilize the air temperature at the outlet of the collector on cloudy days when solar radiation intensity incident on a solar collector fluctuates significantly. Two experimental front-and-back pass solar air collectors of the same dimensions have been built for the experimental investigations. One collector had a "conventional" solar absorber made of a metal sheet while the solar absorber of the other collector consisted of containers filled with organic phase change material. The experimental collectors were positioned side by side during the investigations to ensure the same operating conditions (incident solar radiation, outdoor temperature).
Radiation Testing of PICA at the Solar Power Tower
NASA Technical Reports Server (NTRS)
White, Susan M.
2010-01-01
Sandia National Laboratory's Solar Power Tower was used to irradiate specimens of Phenolic Impregnated Carbon Ablator (PICA), in order to evaluate whether this thermal protection system material responded differently to potential shock layer radiative heating than to convective heating. Tests were run at 50, 100 and 150 Watts per square centimeter levels of concentrated solar radiation. Experimental results are presented both from spectral measurements on 1- 10 mm thick specimens of PICA, as well as from in-depth temperature measurements on instrumented thicker test specimens. Both spectral measurements and measured in-depth temperature profiles showed that, although it is a porous, low-density material, PICA does not exhibit problematic transparency to the tested high levels of NIR radiation, for all pragmatic cm-to-inch scale thicknesses. PICA acted as a surface absorber to efficiently absorb the incident visible and near infrared incident radiation in the top 2 millimeter layer in the Solar Power Tower tests up to 150 Watts per square centimeter.
Assessment of solar-assisted gas-fired heat pump systems
NASA Technical Reports Server (NTRS)
Lansing, F. L.
1981-01-01
As a possible application for the Goldstone Energy Project, the performance of a 10 ton heat pump unit using a hybrid solar gas energy source was evaluated in an effort to optimize the solar collector size. The heat pump system is designed to provide all the cooling and/or heating requirements of a selected office building. The system performance is to be augmented in the heating mode by utilizing the waste heat from the power cycle. A simplified system analysis is described to assess and compute interrrelationships of the engine, heat pump, and solar and building performance parameters, and to optimize the solar concentrator/building area ratio for a minimum total system cost. In addition, four alternative heating cooling systems, commonly used for building comfort, are described; their costs are compared, and are found to be less competitive with the gas solar heat pump system at the projected solar equipment costs.
NASA Astrophysics Data System (ADS)
Oki, Sae; Natsui, Shungo; Suzuki, Ryosuke O.
2018-01-01
System design of a thermoelectric (TE) power generation module is pursued in order to improve the TE performance. Square truncated pyramid shaped P-N pairs of TE elements are connected electronically in series in the open space between two flat insulator boards. The performance of the TE module consisting of 2-paired elements is numerically simulated using commercial software and original TE programs. Assuming that the heat radiating into the hot surface is regulated, i.e., the amount of heat from the hot surface to the cold one is steadily constant, as it happens for solar radiation heating, the performance is significantly improved by changing the shape and the alignment pattern of the elements. When the angle θ between the edge and the base is smaller than 72°, and when the cold surface is kept at a constant temperature, two patterns in particular, amongst the 17 studied, show the largest TE power and efficiency. In comparison to other geometries, the smarter square truncated pyramid shape can provide higher performance using a large cold bath and constant heat transfer by heat radiation.
NASA Astrophysics Data System (ADS)
Oki, Sae; Natsui, Shungo; Suzuki, Ryosuke O.
2018-06-01
System design of a thermoelectric (TE) power generation module is pursued in order to improve the TE performance. Square truncated pyramid shaped P-N pairs of TE elements are connected electronically in series in the open space between two flat insulator boards. The performance of the TE module consisting of 2-paired elements is numerically simulated using commercial software and original TE programs. Assuming that the heat radiating into the hot surface is regulated, i.e., the amount of heat from the hot surface to the cold one is steadily constant, as it happens for solar radiation heating, the performance is significantly improved by changing the shape and the alignment pattern of the elements. When the angle θ between the edge and the base is smaller than 72°, and when the cold surface is kept at a constant temperature, two patterns in particular, amongst the 17 studied, show the largest TE power and efficiency. In comparison to other geometries, the smarter square truncated pyramid shape can provide higher performance using a large cold bath and constant heat transfer by heat radiation.
NASA Technical Reports Server (NTRS)
Shih, K.
1977-01-01
The test procedures used and the test results obtained from an evaluation test program conducted on a double-covered liquid solar collector under simulated conditions are presented. The test article was a flat plate solar collector using liquid as the heat transfer medium. The absorber plate was steel with the copper tubes bonded on the upper surface. The plate was coated with black chrome with an absorptivity factor of .95 and emissivity factor of .12. A time constant test and incident angle modifier test were conducted to determine the transient effect and the incident angle effect on the collector.
A microscale three-dimensional urban energy balance model for studying surface temperatures
NASA Astrophysics Data System (ADS)
Krayenhoff, E. Scott; Voogt, James A.
2007-06-01
A microscale three-dimensional (3-D) urban energy balance model, Temperatures of Urban Facets in 3-D (TUF-3D), is developed to predict urban surface temperatures for a variety of surface geometries and properties, weather conditions, and solar angles. The surface is composed of plane-parallel facets: roofs, walls, and streets, which are further sub-divided into identical square patches, resulting in a 3-D raster-type model geometry. The model code is structured into radiation, conduction and convection sub-models. The radiation sub-model uses the radiosity approach and accounts for multiple reflections and shading of direct solar radiation. Conduction is solved by finite differencing of the heat conduction equation, and convection is modelled by empirically relating patch heat transfer coefficients to the momentum forcing and the building morphology. The radiation and conduction sub-models are tested individually against measurements, and the complete model is tested against full-scale urban surface temperature and energy balance observations. Modelled surface temperatures perform well at both the facet-average and the sub-facet scales given the precision of the observations and the uncertainties in the model inputs. The model has several potential applications, such as the calculation of radiative loads, and the investigation of effective thermal anisotropy (when combined with a sensor-view model).
Global lake evaporation accelerated by changes in surface energy allocation in a warmer climate
NASA Astrophysics Data System (ADS)
Wang, Wei; Lee, Xuhui; Xiao, Wei; Liu, Shoudong; Schultz, Natalie; Wang, Yongwei; Zhang, Mi; Zhao, Lei
2018-06-01
Lake evaporation is a sensitive indicator of the hydrological response to climate change. Variability in annual lake evaporation has been assumed to be controlled primarily by the incoming surface solar radiation. Here we report simulations with a numerical model of lake surface fluxes, with input data based on a high-emissions climate change scenario (Representative Concentration Pathway 8.5). In our simulations, the global annual lake evaporation increases by 16% by the end of the century, despite little change in incoming solar radiation at the surface. We attribute about half of this projected increase to two effects: periods of ice cover are shorter in a warmer climate and the ratio of sensible to latent heat flux decreases, thus channelling more energy into evaporation. At low latitudes, annual lake evaporation is further enhanced because the lake surface warms more slowly than the air, leading to more long-wave radiation energy available for evaporation. We suggest that an analogous change in the ratio of sensible to latent heat fluxes in the open ocean can help to explain some of the spread among climate models in terms of their sensitivity of precipitation to warming. We conclude that an accurate prediction of the energy balance at the Earth's surface is crucial for evaluating the hydrological response to climate change.
ERIC Educational Resources Information Center
Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.
This booklet provides an introduction to solar energy by discussing: (1) how a home is heated; (2) how solar energy can help in the heating process; (3) the characteristics of passive solar houses; (4) the characteristics of active solar houses; (5) how solar heat is stored; and (6) other uses of solar energy. Also provided are 10 questions to…
Evaluation of thermal control coatings for use on solar dynamic radiators in low earth orbit
NASA Technical Reports Server (NTRS)
Dever, Joyce A.; Rodriguez, Elvin; Slemp, Wayne S.; Stoyack, Joseph E.
1991-01-01
Thermal control coatings with high thermal emittance and low solar absorptance are needed for Space Station Freedom (SSF) solar dynamic power module radiator (SDR) surfaces for efficient heat rejection. Additionally, these coatings must be durable to low earth orbital (LEO) environmental effects of atomic oxygen, ultraviolet radiation and deep thermal cycles which occur as a result of start-up and shut-down of the solar dynamic power system. Eleven candidate coatings were characterized for their solar absorptance and emittance before and after exposure to ultraviolet (UV) radiation (200 to 400 nm), vacuum UV (VUV) radiation (100 to 200 nm) and atomic oxygen. Results indicated that the most durable and best performing coatings were white paint thermal control coatings Z-93, zinc oxide pigment in potassium silicate binder, and YB-71, zinc orthotitanate pigment in potassium silicate binder. Optical micrographs of these materials exposed to the individual environmental effects of atomic oxygen and vacuum thermal cycling showed that no surface cracking occurred.
Evaluation of thermal control coatings for use on solar dynamic radiators in low Earth orbit
NASA Technical Reports Server (NTRS)
Dever, Joyce A.; Rodriguez, Elvin; Slemp, Wayne S.; Stoyack, Joseph E.
1991-01-01
Thermal control coatings with high thermal emittance and low solar absorptance are needed for Space Station Freedom (SSF) solar dynamic power module radiator (SDR) surfaces for efficient heat rejection. Additionally, these coatings must be durable to low earth orbital (LEO) environmental effects of atomic oxygen, ultraviolet radiation and deep thermal cycles which occur as a result of start-up and shut-down of the solar dynamic power system. Eleven candidate coatings were characterized for their solar absorptance and emittance before and after exposure to ultraviolet (UV) radiation (200 to 400 nm), vacuum UV (VUV) radiation (100 to 200 nm) and atomic oxygen. Results indicated that the most durable and best performing coatings were white paint thermal control coatings Z-93, zinc oxide pigment in potassium silicate binder, and YB-71, zinc orthotitanate pigment in potassium silicate binder. Optical micrographs of these materials exposed to the individual environmental effects of atomic oxygen and vacuum thermal cycling showed that no surface cracking occurred.
NASA Astrophysics Data System (ADS)
Cook, K. H.; Vizy, E. K.; Sun, X.
2016-12-01
Multiple atmospheric and ocean reanalyses are analyzed for 1980-2015 to understand annual-mean adjustments of the surface heat balance over the tropical oceans as the climate warms. Linear trends are examined, with statistical significance evaluated. While surface heat budgets and sea surface temperatures are mutually adjusted fields, insights into the physical processes of this adjustment and the implications for temperature trends can be identified. Two second-generation reanalyses, ERA-Interim and JRA-55, agree well on the distributions and magnitudes of trends in the net heat flux from the atmosphere to the ocean. Trends in the net longwave and sensible heat fluxes are generally small, and trends in solar radiation absorbed are only influential regionally and vary among the reanalyses. The largest contribution is from latent heat flux trends. Contributions to these trends associated with surface temperature (thermal-driving), 10-m wind (dynamical-driving) and specific humidity (hydrological-driving) trends are estimated. The dynamically-driven latent heat flux dominates and explains much of the regionality of the multi-decadal heat flux trends. However, trends in the net surface heat flux alone do not match the observed SSTs trends well, indicating that the redistribution of heat within the ocean mixed layer is also important. Ocean mixed layer heat budgets in various ocean reanalyses are examined to understand this redistribution, and we again identify a crucial role for changes in the surface wind. Acceleration of the tropical easterlies is associated with strengthening of the equatorial undercurrents in both the tropical Pacific and Atlantic. In the Pacific, where the EUC is also shoaling, the result is enhanced warm-water advection into the central Pacific. This advective warming is superimposed on cooling due to enhanced evaporation and equatorial upwelling, which are also associated with wind trends, to determine the observed pattern of SST trends.
NASA Astrophysics Data System (ADS)
Nandy, Dibyendu; Bhowmik, Prantika; Yeates, Anthony R.; Panda, Suman; Tarafder, Rajashik; Dash, Soumyaranjan
2018-01-01
On 2017 August 21, a total solar eclipse swept across the contiguous United States, providing excellent opportunities for diagnostics of the Sun’s corona. The Sun’s coronal structure is notoriously difficult to observe except during solar eclipses; thus, theoretical models must be relied upon for inferring the underlying magnetic structure of the Sun’s outer atmosphere. These models are necessary for understanding the role of magnetic fields in the heating of the corona to a million degrees and the generation of severe space weather. Here we present a methodology for predicting the structure of the coronal field based on model forward runs of a solar surface flux transport model, whose predicted surface field is utilized to extrapolate future coronal magnetic field structures. This prescription was applied to the 2017 August 21 solar eclipse. A post-eclipse analysis shows good agreement between model simulated and observed coronal structures and their locations on the limb. We demonstrate that slow changes in the Sun’s surface magnetic field distribution driven by long-term flux emergence and its evolution governs large-scale coronal structures with a (plausibly cycle-phase dependent) dynamical memory timescale on the order of a few solar rotations, opening up the possibility for large-scale, global corona predictions at least a month in advance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duff, W.S.; Loef, G.O.G.
1981-03-01
Operation of CSU Solar House I during the heating season of 1978-1979 and during the 1979 cooling season was based on the use of systems comprising an experimental evacuated tubular solar collector, a non-freezing aqueous collection medium, heat exchange to an insulated conventional vertical cylindrical storage tank and to a built-up rectangular insulated storage tank, heating of circulating air by solar heated water and by electric auxiliary in an off-peak heat storage unit, space cooling by lithium bromide absorption chiller, and service water heating by solar exchange and electric auxiliary. Automatic system control and automatic data acquisition and computation aremore » provided. This system is compared with others evaluated in CSU Solar Houses I, II and III, and with computer predictions based on mathematical models. Of the 69,513 MJ total energy requirement for space heating and hot water during a record cold winter, solar provided 33,281 MJ equivalent to 48 percent. Thirty percent of the incident solar energy was collected and 29 percent was delivered and used for heating and hot water. Of 33,320 MJ required for cooling and hot water during the summer, 79 percent or 26,202 MJ were supplied by solar. Thirty-five percent of the incident solar energy was collected and 26 percent was used for hot water and cooling in the summer. Although not as efficient as the Corning evacuated tube collector previously used, the Philips experimental collector provides solar heating and cooling with minimum operational problems. Improved performance, particularly for cooling, resulted from the use of a very well-insulated heat storage tank. Day time (on-peak) electric auxiliary heating was completely avoided by use of off-peak electric heat storage. A well-designed and operated solar heating and cooling system provided 56 percent of the total energy requirements for heating, cooling, and hot water.« less
Fundamentals of Solar Heating. Correspondence Course.
ERIC Educational Resources Information Center
Sheet Metal and Air Conditioning Contractors National Association, Vienna, VA.
This course is designed for the use of employees of the air conditioning industry, and offers supervised correspondence instruction about solar technology. The following aspects of applied solar technology are covered: solar heating and cooling, solar radiation, solar collectors, heat storage control devices and specialty items, sizing solar…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Kaushik; Miller, William A; Childs, Phillip W
2011-01-01
Three test attics were constructed to evaluate a new sustainable method of re-roofing utilizing photo-voltaic (PV) laminates, metal roofing panels, and PCM heat sink in the Envelope Systems Research Apparatus (ESRA) facility in the ORNL campus. Figure 1 is a picture of the three attic roofs located adjacent to each other. The leftmost roof is the conventional shingle roof, followed by the metal panel roof incorporating the cool-roof coating, and third from left is the roof with the PCM. On the PCM roof, the PV panels are seen as well; they're labelled from left-to-right as panels 5, 6 and 7.more » The metal panel roof consists of three metal panels with the cool-roof coating; in further discussion this is referred to as the infrared reflective (IRR) metal roof. The IRR metal panels reflect the incoming solar radiation and then quickly re-emit the remaining absorbed portion, thereby reducing the solar heat gain of the attic. Surface reflectance of the panels were measured using a Solar Spectrum Reflectometer. In the 0.35-2.0 {mu}m wavelength interval, which accounts for more than 94% of the solar energy, the IRR panels have an average reflectance of 0.303. In the infrared portion of the spectrum, the IRR panel reflectance is 0.633. The PCM roof consists of a layer of macro-encapsulated bio-based PCM at the bottom, followed by a 2-cm thick layer of dense fiberglass insulation with a reflective surface on top, and metal panels with pre-installed PV laminates on top. The PCM has a melting point of 29 C (84.2 F) and total enthalpy between 180 and 190 J/g. The PCM was macro-packaged in between two layers of heavy-duty plastic foil forming arrays of PCM cells. Two air cavities, between PCM cells and above the fiberglass insulation, helped the over-the-deck natural air ventilation. It is anticipated that during summer, this extra ventilation will help in reducing the attic-generated cooling loads. The extra ventilation, in conjunction with the PCM heat sink, are used to minimize thermal stresses due to the PV laminates on sunny days. In PV laminates sunlight is converted into electricity and heat simultaneous. In case of building integrated applications, a relatively high solar absorption of amorphous silicon laminates can be utilized during the winter for solar heating purposes with PCM providing necessary heat storage capacity. However, PV laminates may also generate increased building cooling loads during the summer months. Therefore, in this project, the PCM heat sink was to minimize summer heat gains as well. The PCM-fibreglass-PV assembly and the IRR metal panels are capable of being installed directly on top of existing shingle roofs during re-roofing, precluding the need for recycling or disposal of waste materials. The PV laminates installed on the PCM attic are PVL-144 models from Uni-Solar. Each laminate contains 22 triple junction amorphous silicon solar cells connected in series. The silicon cells are of dimensions 356 mm x 239 mm (14-in. x 9.4-in.). The PVL-144 laminate is encapsulated in durable ETFE (poly-ethylene-co-tetrafluoroethylene) high light-transmissive polymer. Table 1 lists the power, voltage and current ratings of the PVL-144 panel.« less
Transparent, Conductive Coatings Developed for Arc-Proof Solar Arrays
NASA Technical Reports Server (NTRS)
1996-01-01
Transparent, conductive thin-film coatings have many potential applications where a surface must be able to dissipate electrical charges without sacrificing its optical properties. Such applications include automotive and aircraft windows, heat mirrors, optoelectronic devices, gas sensors, and solar cell array surfaces for space applications. Many spacecraft missions require that solar cell array surfaces dissipate charges in order to avoid damage such as electronic upsets, formation of pinholes in the protective coatings on solar array blankets, and contamination due to deposition of sputtered products. In tests at the NASA Lewis Research Center, mixed thin-films of sputter-deposited indium tin oxide (ITO) and magnesium fluoride (MgF2) that could be tailored to the desired sheet resistivity, showed transmittance values of greater than 90 percent. The samples evaluated were composed of mixed, thin-film ITO/MgF2 coatings, with a nominal thickness of 650 angstroms, deposited onto glass substrates. Preliminary results indicated that these coatings were durable to vacuum ultraviolet radiation and atomic oxygen. These coatings show promise for use on solar array surfaces in polar low-Earth-orbit environments, where a sheet resistivity of less than 10(exp 8)/square is required, and in geosynchronous orbit environments, where a resistivity of less than 10(exp 9)/square is required.
High temperature solar thermal receiver
NASA Technical Reports Server (NTRS)
1979-01-01
A design concept for a high temperature solar thermal receiver to operate at 3 atmospheres pressure and 2500 F outlet was developed. The performance and complexity of windowed matrix, tube-header, and extended surface receivers were evaluated. The windowed matrix receiver proved to offer substantial cost and performance benefits. An efficient and cost effective hardware design was evaluated for a receiver which can be readily interfaced to fuel and chemical processes or to heat engines for power generation.
NASA Astrophysics Data System (ADS)
Woolsey, L. N.; Cranmer, S. R.
2013-12-01
The study of solar wind acceleration has made several important advances recently due to improvements in modeling techniques. Existing code and simulations test the competing theories for coronal heating, which include reconnection/loop-opening (RLO) models and wave/turbulence-driven (WTD) models. In order to compare and contrast the validity of these theories, we need flexible tools that predict the emergent solar wind properties from a wide range of coronal magnetic field structures such as coronal holes, pseudostreamers, and helmet streamers. ZEPHYR (Cranmer et al. 2007) is a one-dimensional magnetohydrodynamics code that includes Alfven wave generation and reflection and the resulting turbulent heating to accelerate solar wind in open flux tubes. We present the ZEPHYR output for a wide range of magnetic field geometries to show the effect of the magnetic field profiles on wind properties. We also investigate the competing acceleration mechanisms found in ZEPHYR to determine the relative importance of increased gas pressure from turbulent heating and the separate pressure source from the Alfven waves. To do so, we developed a code that will become publicly available for solar wind prediction. This code, TEMPEST, provides an outflow solution based on only one input: the magnetic field strength as a function of height above the photosphere. It uses correlations found in ZEPHYR between the magnetic field strength at the source surface and the temperature profile of the outflow solution to compute the wind speed profile based on the increased gas pressure from turbulent heating. With this initial solution, TEMPEST then adds in the Alfven wave pressure term to the modified Parker equation and iterates to find a stable solution for the wind speed. This code, therefore, can make predictions of the wind speeds that will be observed at 1 AU based on extrapolations from magnetogram data, providing a useful tool for empirical forecasting of the sol! ar wind.
Solar heating and hot water system installed at Arlington Raquetball Club, Arlington, Virginia
NASA Technical Reports Server (NTRS)
1981-01-01
A solar space and water heating system is described. The solar energy system consists of 2,520 sq. ft. of flat plate solar collectors and a 4,000 gallon solar storage tank. The transfer medium in the forced closed loop is a nontoxic antifreeze solution (50 percent water, 50 percent propylene glycol). The service hot water system consists of a preheat coil (60 ft. of 1 1/4 in copper tubing) located in the upper third of the solar storage tank and a recirculation loop between the preheat coil and the existing electric water heaters. The space heating system consists of two separate water to air heat exchangers located in the ducts of the existing space heating/cooling systems. The heating water is supplied from the solar storage tank. Extracts from site files, specification references for solar modifications to existing building heating and hot water systems, and installation, operation and maintenance instructions are included.
Ivlev, Y F; Lavrenchenko, L A
2016-01-01
The results of the body-surface infrared thermography of rodents of the genus Lophuromys suggest that heat insulation of the black-clawed brush-furred rat L. melanonyx, a large specialized species of the AfroAlpine zone, is worse than that of the related smaller species, the golden-footed (L. chrysopus) and shorttailed (L. brevicaudus) brush-furred rats, that inhabit tropical forest and Erica shrub, respectively. A decrease in heat insulation of the alpine species may facilitate the use of solar radiation for supporting heat balance of these diurnal animals.
NASA Astrophysics Data System (ADS)
Hamed Alemohammad, Seyed; Fang, Bin; Konings, Alexandra G.; Aires, Filipe; Green, Julia K.; Kolassa, Jana; Miralles, Diego; Prigent, Catherine; Gentine, Pierre
2017-09-01
A new global estimate of surface turbulent fluxes, latent heat flux (LE) and sensible heat flux (H), and gross primary production (GPP) is developed using a machine learning approach informed by novel remotely sensed solar-induced fluorescence (SIF) and other radiative and meteorological variables. This is the first study to jointly retrieve LE, H, and GPP using SIF observations. The approach uses an artificial neural network (ANN) with a target dataset generated from three independent data sources, weighted based on a triple collocation (TC) algorithm. The new retrieval, named Water, Energy, and Carbon with Artificial Neural Networks (WECANN), provides estimates of LE, H, and GPP from 2007 to 2015 at 1° × 1° spatial resolution and at monthly time resolution. The quality of ANN training is assessed using the target data, and the WECANN retrievals are evaluated using eddy covariance tower estimates from the FLUXNET network across various climates and conditions. When compared to eddy covariance estimates, WECANN typically outperforms other products, particularly for sensible and latent heat fluxes. Analyzing WECANN retrievals across three extreme drought and heat wave events demonstrates the capability of the retrievals to capture the extent of these events. Uncertainty estimates of the retrievals are analyzed and the interannual variability in average global and regional fluxes shows the impact of distinct climatic events - such as the 2015 El Niño - on surface turbulent fluxes and GPP.
A Multidisciplinary Approach to Assessing the Causal Components of Climate Change
NASA Astrophysics Data System (ADS)
Gosnold, W. D.; Todhunter, P. E.; Dong, X.; Rundquist, B.; Majorowicz, J.; Blackwell, D. D.
2004-05-01
Separation of climate forcing by anthropogenic greenhouse gases from natural radiative climate forcing is difficult because the composite temperature signal in the meteorological and multi-proxy temperature records cannot be resolved directly into radiative forcing components. To address this problem, we have initiated a large-scale, multidisciplinary project to test coherence between ground surface temperatures (GST) reconstructed from borehole T-z profiles, surface air temperatures (SAT), soil temperatures, and solar radiation. Our hypothesis is that radiative heating and heat exchange between the ground and the air directly control the ground surface temperature. Consequently, borehole T-z measurements at multi-year intervals spanning time periods when solar radiation, soil and air temperatures have been recorded should enable comparison of the thermal energy stored in the ground to these quantities. If coherence between energy storage, solar radiation, GST, SAT and multi-proxy temperature data can be discerned for a one or two decade scale, synthesis of GST and multi-proxy data over the past several centuries may enable us to separately determine the anthropogenic and natural forcings of climate change. The data we are acquiring include: (1) New T-z measurements in boreholes previously used in paleoclimate and heat flow research in Canada and the United States from the 1970's to the present. (2) Meteorological data from the US Historical Climatology Network and the Automated Weather Data Network of the High Plains Regional Climate Center, and Environment Canada. (3) Direct and remotely sensed data on land use, environment, and soil properties at selected borehole and meteorological sites for the periods between borehole observations. The project addresses three related questions: What is the coherence between the GST, SAT, soil temperatures and solar radiation? Have microclimate changes at borehole sites and climate stations affected temperature trends? If good coherence is obtained, can the coherence between thermal energy stored in the ground and radiative forcing during the time between T-z measurements be extended several centuries into the past?
The magnetic particle plume solar sail concept
NASA Astrophysics Data System (ADS)
Knuth, William H.
2000-01-01
A magnetic particle space radiator was proposed in the late 1950s as a means to dissipate waste heat from space nuclear systems. The concept was a plume of hot magnetic particles confined to and traversing a magnetic field produced by super conducting magnets in the space vehicle. The large surface area of the hot particles was expected to effectively radiate away the heat. The cooling particles followed along the lines of the magnetic field and eventually returned to the vehicle where they again picked up a fresh charge of waste heat for return out to the plume. This paper presents a new concept for consideration. The same basic magnetic particle plume idea is proposed in this paper, except the purpose of the plume would be to receive momentum (and possibly electric power) from the solar wind in the manner of a solar sail. Recent nano-technologies allow the magnetic particles to be 2-3 orders of magnitude smaller than envisioned for the heat radiator, and the magnetic field would be stronger than we envisioned in the '50s. The application of the magnetic solar sail would be for propelling space-faring vehicles on long duration exploration of the solar system and possibly beyond. A first look is provided at the elements of the system, together with an estimate of the thrust potential and the approximate weights of the system. The system appears to have the potential to develop on the order of 50lb and 100lb of thrust and weight on the order of 15,000lb .
Numerical Study on Natural Vacuum Solar Desalination System with Varying Heat Source Temperature
NASA Astrophysics Data System (ADS)
Ambarita, H.
2017-03-01
A natural vacuum desalination unit with varying low grade heat source temperature is investigated numerically. The objective is to explore the effects of the variable temperature of the low grade heat source on performances and characteristics of the desalination unit. The specifications of the desalination unit are naturally vacuumed with surface area of seawater in evaporator and heating coil are 0.2 m2 and 0.188 m2, respectively. Temperature of the heating coil is simulated based on the solar radiation in the Medan city. A program to solve the governing equations in forward time step marching technique is developed. Temperature of the evaporator, fresh water production rate, and thermal efficiency of the desalination unit are analysed. Simulation is performed for 9 hours, it starts from 8.00 and finishes at 17.00 of local time. The results show that, the desalination unit with operation time of 9 hours can produce 5.705 L of freshwater and thermal efficiency is 81.8 %. This reveals that varying temperature of the heat source of natural vacuum desalination unit shows better performance in comparison with constant temperature of the heat source.
NASA Astrophysics Data System (ADS)
Yellowhair, Julius; Ho, Clifford K.; Ortega, Jesus D.; Christian, Joshua M.; Andraka, Charles E.
2015-09-01
Concentrating solar power receivers are comprised of panels of tubes arranged in a cylindrical or cubical shape on top of a tower. The tubes contain heat-transfer fluid that absorbs energy from the concentrated sunlight incident on the tubes. To increase the solar absorptance, black paint or a solar selective coating is applied to the surface of the tubes. However, these coatings degrade over time and must be reapplied, which reduces the system performance and increases costs. This paper presents an evaluation of novel receiver shapes and geometries that create a light-trapping effect, thereby increasing the effective solar absorptance and efficiency of the solar receiver. Several prototype shapes were fabricated from Inconel 718 and tested in Sandia's solar furnace at an irradiance of ~30 W/cm2. Photographic methods were used to capture the irradiance distribution on the receiver surfaces. The irradiance profiles were compared to results from raytracing models. The effective solar absorptance was also evaluated using the ray-tracing models. Results showed that relative to a flat plate, the new geometries could increase the effective solar absorptance from 86% to 92% for an intrinsic material absorptance of 86%, and from 60% to 73% for an intrinsic material absorptance of 60%.
Solar energy collector including a weightless balloon with sun tracking means
Hall, Frederick F.
1978-01-01
A solar energy collector having a weightless balloon, the balloon including a transparent polyvinylfluoride hemisphere reinforced with a mesh of ropes secured to its outside surface, and a laminated reflector hemisphere, the inner layer being clear and aluminized on its outside surface and the outer layer being opaque, the balloon being inflated with lighter-than-air gas. A heat collection probe extends into the balloon along the focus of reflection of the reflective hemisphere for conducting coolant into and out of the balloon. The probe is mounted on apparatus for keeping the probe aligned with the sun's path, the apparatus being founded in the earth for withstanding wind pressure on the balloon. The balloon is lashed to the probe by ropes adhered to the outer surface of the balloon for withstanding wind pressures of 100 miles per hour. Preferably, the coolant is liquid sodium-potassium eutectic alloy which will not normally freeze at night in the temperate zones, and when heated to 4,000.degree. R exerts a pressure of only a few atmospheres.
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-07-01
The Nuclear Spectroscopic Telescope Array (NuSTAR) is a space telescope primarily designed to detect high-energy X-rays from faint, distant astrophysical sources. Recently, however, its occasionally been pointing much closer to home, with the goal of solving a few longstanding mysteries about the Sun.Intensity maps from an observation of a quiet-Sun region near the north solar pole and an active region just below the solar limb. The quiet-Sun data will be searched for small flares that could be heating the solar corona, and the high-altitude emission above the limb may provide clues about particle acceleration. [Adapted from Grefenstette et al. 2016]An Unexpected TargetThough we have a small fleet of space telescopes designed to observe the Sun, theres an important gap: until recently, there was no focusing telescope making solar observations in the hard X-ray band (above ~3 keV). Conveniently, there is a tool capable of doing this: NuSTAR.Though NuSTARs primary mission is to observe faint astrophysical X-ray sources, a team of scientists has recently conducted a series of observations in which NuSTAR was temporarily repurposed and turned to focus on the Sun instead.These observations pose an interesting challenge precisely because of NuSTARs extreme sensitivity: pointing at such a nearby, bright source can quickly swamp the detectors. But though the instrument cant be used to observe the bright flares and outbursts from the Sun, its the perfect tool for examining the parts of the Sun weve been unable to explore in hard X-rays before now such as faint flares, or the quiet, inactive solar surface.In a recently published study led by Brian Grefenstette (California Institute of Technology), the team describes the purpose and initial results of NuSTARs first observations of the Sun.Solar MysteriesWhat is NuSTAR hoping to accomplish with its solar observations? There are two main questions that hard X-ray observations may help to answer.How are particles accelerated in solar flares?The process of electron acceleration during solar flares is not well understood. When a flare-producing active region is occulted by the solar limb, NuSTAR will able to directly observe the flare loop above the solar surface which is where that acceleration is thought to happen.How is the solar corona heated?The solar corona is a toasty 13 million Kelvin significantly warmer than the ~6000 K solar photosphere. So how is the corona heated? One proposed explanation is that the Suns surface constantly emits tiny nanoflares in active regions, or even in the quiet Sun that are so faint that we havent detected them. But with its high sensitivity, NuSTAR may be able to!The first NuSTAR full-disk mosaic of the Sun. The checkerboard pattern is an artifact of the detectors being hit by particles from active regions outside of the field of view a problem which will be reduced as the Sun enters the upcoming quieter part of the solar cycle. [Adapted from Grefenstette et al. 2016]First ObservationsIn NuSTARs first four observations of the Sun, the team unexpectedly observed a major flare (which unsurprisingly swamped the detectors), watched the emission above an active region that was hidden by the solar limb, stared at a section of quiet Sun near the north solar pole, and composed a full-disk mosaic of the solar surface from 16 12 x 12 tiles.All of these initial observations are currently being carefully analyzed and will be presented in detail in future publications. In the meantime, NuSTAR has demonstrated its effectiveness in detecting faint emission in solar hard X-rays, proving that it will be a powerful tool for heliophysics as well as for astrophysics. We look forward to seeing the future results from this campaign!CitationBrian W. Grefenstette et al 2016 ApJ 826 20. doi:10.3847/0004-637X/826/1/20
Aerosol-Water Cycle Interaction: A New Challenge in Monsoon Climate Research
NASA Technical Reports Server (NTRS)
Lau, William K. M.
2006-01-01
Long recognized as a major environmental hazard, aerosol is now known to have strong impacts on both regional and global climate. It has been estimated that aerosol may reduce by up to 10% of the seasonal mean solar radiation reaching the earth surface, producing a global cooling effect that opposes global warming (Climate Change 2001). This means that the potential perils that humans have committed to global warming may be far greater than what we can detect at the present. As a key component of the Earth climate system, the water cycle is profoundly affected by the presence of aerosols in the atmosphere. Through the so-called "direct effect", aerosol scatters and/or absorbs solar radiation, thus cooling the earth surface and changing the horizontal and vertical radiational heating contrast in the atmosphere. The heating contrast drives anomalous atmospheric circulation, resulting in changes in convection, clouds, and rainfall. Another way aerosol can affect the water cycle is through the so-called "indirect effects", whereby aerosol increases the number of cloud condensation nuclei, prolongs life time of clouds, and inhibits the growth of cloud drops to raindrops. This leads to more clouds, and increased reflection of solar radiation, and further cooling at the earth surface. In monsoon regions, the response of the water cycle to aerosol forcing is especially complex, not only because of presence of diverse mix of aerosol species with vastly different radiative properties, but also because the monsoon is strongly influenced by ocean and land surface processes, land use, land change, as well as regional and global greenhouse warming effects. Thus, sorting out the impacts of aerosol forcing, and interaction with the monsoon water cycle is a very challenging problem. In this talk, I will offer some insights into how aerosols may impact the Asian monsoon based on preliminary results from satellite observations and climate model experiments. Specifically, I will discuss the "elevated heat pump" hypothesis, involving atmospheric heating by absorbing aerosols (dust and black carbon) over the southern slopes of the Himalayas, and feedback with the deep convection, in modifying monsoon water cycle over South and East Asia. The role of aerosol forcing relative to those due to sea surface temperature and land surface processes, as well as observation requirements to verify such a hypothesis will also be discussed.
Aerosol-Water Cycle Interaction: A New Challenge in Monsoon Climate Research
NASA Technical Reports Server (NTRS)
Lau, William K. M.
2006-01-01
Long recognized as a major environmental hazard, aerosol is now known to have strong impacts on both regional and global climate. It has been estimated that aerosol may reduce by up to 10% of the seasonal mean solar radiation reaching the earth surface, producing a global cooling effect that opposes global warming (Climate Change 2001). This means that the potential perils that humans have committed to global warming may be far greater than what we can detect at the present. As a key component of the Earth climate system, the water cycle is profoundly affected by the presence of aerosols in the atmosphere. Through the so-called direct effect , aerosol scatters and/or absorbs solar radiation, thus cooling the earth surface and changing the horizontal and vertical radiational heating contrast in the atmosphere. The heating contrast drives anomalous atmospheric circulation, resulting in changes in convection, clouds, and rainfall. Another way aerosol can affect the water cycle is through the so-called indirect effects, whereby aerosol increases the number of cloud condensation nuclei, prolongs life time of clouds, and inhibits the growth of cloud drops to raindrops. This leads to more clouds, and increased reflection of solar radiation, and further cooling at the earth surface. In monsoon regions, the response of the water cycle to aerosol forcing is especially complex, not only because of presence of diverse mix of aerosol species with vastly different radiative properties, but also because the monsoon is strongly influenced by ocean and land surface processes, land use, land change, as well as regional and global greenhouse warming effects. Thus, sorting out the impacts of aerosol forcing, and interaction with the monsoon water cycle is a very challenging problem. In this talk, I will offer some insights into how aerosols may impact the Asian monsoon based on preliminary results from satellite observations and climate model experiments. Specifically, I will discuss the elevated heat pump hypothesis, involving atmospheric heating by absorbing aerosols (dust and black carbon) over the southern slopes of the Himalayas, and feedback with the deep convection, in modifying monsoon water cycle over South .and East Asia. The role of aerosol forcing relative to those due to sea surface temperature and land surface processes, as well as observation requirements to verify such a hypothesis will also be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korol, A.A.; Korol, Y.A.; Kasich-Pilipenko, I.Y.
Melted slip coatings were obtained and the structural changes in the coatings and their substrates upon simultaneous heating by concentrated solar radiant energy fluxes were studied. Well known wear and corrosion resistant TiC-Ni-B and WC-Ni-B coatings 50 to 300 microns thick applied by the slip method to flat or cylindrical stainless steel and titanium specimens were examined. The specimens were heated in an SGU-5 solar heating installation with a 2 m diameter parabolic mirror concentrator in a process chamber with a quartz window under a vacuum. Metallographic analysis revealed a finely dispersed heterogeneous structure with no visible porosity, good bondingmore » of coating to substrate, and uniform distribution of carbide phase in the metal matrix of the TiC-Ni-B coatings on titanium. Results were similar for the other coatings, indicating that concentrated solar energy can produce coatings with satisfactory surface quality, good density, and a framework structure. The coating interacted with the substrate by diffusion. Most of the volume of the substrate underwent no significant changes, indicating good bond strength between coatings and substrate.« less
Lava-substrate heat transfer: Laboratory experiments and thermodynamic modeling
NASA Astrophysics Data System (ADS)
Rumpf, M.; Fagents, S. A.; Hamilton, C. W.; Wright, R.; Crawford, I.
2012-12-01
We have performed laboratory experiments and numerical modeling to investigate the heat transfer from a lava flow into various substrate materials, focusing on the effects of the differing thermophysical properties of substrate materials. Initial motivation for this project developed from the desire to understand the loss of solar wind volatiles embedded in lunar regolith deposits that were subsequently covered by a lava flow. The Moon lacks a significant atmosphere and magnetosphere, leaving the surface regolith exposed to bombardment by solar flare and solar wind particles, and by the cosmogenic products of galactic cosmic rays. Preservation of particle-rich regolith deposits may have occurred by the emplacement of an active lava flow on top of the regolith layer, provided the embedded particles survive heating by the lava. During future expeditions to the lunar surface, ancient regolith deposits could be sampled through surface drilling to extract the extra-lunar particles, revealing a history of the solar activity and galactic events not available on the Earth. This project also has important implications for terrestrial lava flows, particularly in the prediction of lava flow hazards. Lava erupted on Earth may be emplaced on various substrates, including solid lava rock, volcanic tephra, sands, soils, etc. The composition, grain size, consolidation, moisture content, etc. of these materials will vary greatly and have different effects on the cooling of the flow. Accounting for specific properties of the substrate could be an important improvement in lava flow models We have performed laboratory experiments in collaboration with the Department of Art and Art History at the University of Hawaii at Manoa in which ~5-6 kg of basalt, collected at Kilauea Volcano, Hawaii, is melted to ~1200 °C. The lava is poured into a device constructed of calcium silicate sheeting that has been filled with a solid or particulate substrate material and embedded with thermocouples. Internal temperatures are monitored by the thermocouple array, while external temperatures are monitored by a Forward Looking Infrared Radiometer (FLIR) video camera. The experimental data thus describe the cooling rates of the system, and reveal the release of latent heat of crystallization within the cooling lava. These experiments have been conducted in conjunction with numerical simulations of the heat transfer from a lava flow into various substrates, to quantify the depth reached by the heat pulse as it penetrates the substrate. Models include material-specific, temperature-dependent thermophysical properties, including thermal conductivity, specific heat capacity, and latent heat of crystallization. We find that particulate materials, such as lunar regolith, sand, and soils will be heated to depths shallower than solid materials. In addition, the particulate materials will act as insulators, shielding the lava flow from basal cooling and maintaining high temperatures in the flow core. These results suggest that lava flows emplaced on a dry particulate terrain will remain above solidus for a longer duration, allowing the lava to flow further than when emplaced on a solid substrate.
America's Urban Forests: Keeping Our Cities Cool
NASA Technical Reports Server (NTRS)
Luvall, Jeffrey C.; Quattrochi, Dale A.
1997-01-01
The additional heating of the air over the city is the result of the replacement of naturally vegetated surfaces with those composed of asphalt, concrete, rooftops and other man-made materials. The temperatures of these artificial surfaces can be 20 to 40 C higher than vegetated surfaces. Materials such as asphalt store much of the sun's energy and remains hot long after sunset. This produces a dome of elevated air temperatures 5 to 8 C greater over the city, compared to the air temperatures over adjacent rural areas. This effect is called the "urban heat island". Tree canopies can reduce the urban heat island effect by dissipating the solar energy received by transpiring water from leaf surfaces which cools the air by taking "heat" from the air to evaporate the water and by shading surfaces like asphalt, roofs, and concrete parking lots which prevents initial heating and storage of heat. It is difficult to take enough temperature measurements over a large city area to characterize the surface temperature variability and quantify the temperature reduction effects of tree canopies. However, the use of remotely sensed thermal data from airborne scanners are ideal for the task. In a study funded by NASA, a series of flights over Huntsville AL were performed in September 1994 and over Atlanta in May 1997. In this article we will examine the techniques of analyzing remotely sensed data for measuring the effect of tree canopies in reducing the urban heat island effect.
A phenomenological model of solar flares
NASA Technical Reports Server (NTRS)
Colgate, S. A.
1978-01-01
The energy of solar flares is derived from the magnetic energy of fields convected to the sun's surface and subsequently converted to heat and energetic particles within the chromosphere. The circumstances of this conversion in most current models is magnetic flux annihilation at a neutral sheet. An analysis is conducted of the constraints of flux annihilation. It is shown that the present evidence of solar cosmic rays, X-rays, gamma-rays, and total energy suggests a choice of annihilation not at a neutral point, but by an enhanced dissipation of a field-aligned current. The field configuration is related both to its origin and to the extensive theory and laboratory experiments concerned with this configuration in magnetic fusion. The magnetic field model is applied to the August 4 flare. It is shown how the plasma heating in the annihilation region balanced by thermal conduction leads to a plasma temperature of about 20 million deg K.
Atmospheric solar heating rate in the water vapor bands
NASA Technical Reports Server (NTRS)
Chou, Ming-Dah
1986-01-01
The total absorption of solar radiation by water vapor in clear atmospheres is parameterized as a simple function of the scaled water vapor amount. For applications to cloudy and hazy atmospheres, the flux-weighted k-distribution functions are computed for individual absorption bands and for the total near-infrared region. The parameterization is based upon monochromatic calculations and follows essentially the scaling approximation of Chou and Arking, but the effect of temperature variation with height is taken into account in order to enhance the accuracy. Furthermore, the spectral range is extended to cover the two weak bands centered at 0.72 and 0.82 micron. Comparisons with monochromatic calculations show that the atmospheric heating rate and the surface radiation can be accurately computed from the parameterization. Comparisons are also made with other parameterizations. It is found that the absorption of solar radiation can be computed reasonably well using the Goody band model and the Curtis-Godson approximation.
The Response of the Ocean Thermal Skin Layer to Air-Sea Surface Heat Fluxes
NASA Astrophysics Data System (ADS)
Wong, Elizabeth Wing-See
There is much evidence that the ocean is heating as a result of an increase in concentrations of greenhouse gases (GHGs) in the atmosphere from human activities. GHGs absorb infrared radiation and re-emit infrared radiation back to the ocean's surface which is subsequently absorbed. However, the incoming infrared radiation is absorbed within the top micrometers of the ocean's surface which is where the thermal skin layer exists. Thus the incident infrared radiation does not directly heat the upper few meters of the ocean. We are therefore motivated to investigate the physical mechanism between the absorption of infrared radiation and its effect on heat transfer at the air-sea boundary. The hypothesis is that since heat lost through the air-sea interface is controlled by the thermal skin layer, which is directly influenced by the absorption and emission of infrared radiation, the heat flow through the thermal skin layer adjusts to maintain the surface heat loss, assuming the surface heat loss does not vary, and thus modulates the upper ocean heat content. This hypothesis is investigated through utilizing clouds to represent an increase in incoming longwave radiation and analyzing retrieved thermal skin layer vertical temperature profiles from a shipboard infrared spectrometer from two research cruises. The data are limited to night-time, no precipitation and low winds of less than 2 m/s to remove effects of solar radiation, wind-driven shear and possibilities of thermal skin layer disruption. The results show independence of the turbulent fluxes and emitted radiation on the incident radiative fluxes which rules out the immediate release of heat from the absorption of the cloud infrared irradiance back into the atmosphere through processes such as evaporation and increase infrared emission. Furthermore, independence was confirmed between the incoming and outgoing radiative flux which implies the heat sink for upward flowing heat at the air-sea interface is more-or-less fixed. The surplus energy, from absorbing increasing levels of infrared radiation, is found to adjust the curvature of the thermal skin layer such that there is a smaller gradient at the interface between the thermal skin layer and the mixed layer beneath. The vertical conduction of heat from the mixed layer to the surface is therefore hindered while the additional energy within the thermal skin layer is supporting the gradient changes of the skin layer's temperature profile. This results in heat beneath the thermal skin layer, which is a product of the absorption of solar radiation during the day, to be retained and cause an increase in upper ocean heat content. The accuracy of four published skin layer models were evaluated by comparison with the field results. The results show a need to include radiative effects, which are currently absent, in such models as they do not replicate the findings from the field data and do not elucidate the effects of the absorption of infrared radiation.
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.; Fincannon, James
1995-01-01
The United States and Russia have agreed to jointly develop a solar dynamic (SD) system for flight demonstration on the Russian MIR space station starting in late 1997. Two important components of this SD system are the solar concentrator and heat receiver provided by Russia and the U.S., respectively. This paper describes optical analysis of the concentrator and solar flux predictions on target receiver surfaces. The optical analysis is performed using the code CIRCE2. These analyses account for finite sun size with limb darkening, concentrator surface slope and position errors, concentrator petal thermal deformation, gaps between petals, and the shading effect of the receiver support struts. The receiver spatial flux distributions are then combined with concentrator shadowing predictions. Geometric shadowing patterns are traced from the concentrator to the target receiver surfaces. These patterns vary with time depending on the chosen MIR flight attitude and orbital mechanics of the MIR spacecraft. The resulting predictions provide spatial and temporal receiver flux distributions for any specified mission profile. The impact these flux distributions have on receiver design and control of the Brayton engine are discussed.
Variable Emittance Electrochromics Using Ionic Electrolytes and Low Solar Absorptance Coatings
NASA Technical Reports Server (NTRS)
Chandrasekhar, Prasanna
2011-01-01
One of the last remaining technical hurdles with variable emittance devices or skins based on conducting polymer electrochromics is the high solar absorptance of their top surfaces. This high solar absorptance causes overheating of the skin when facing the Sun in space. Existing technologies such as mechanical louvers or loop heat pipes are virtually inapplicable to micro (< 20 kg) and nano (< 5 kg) spacecraft. Novel coatings lower the solar absorption to Alpha(s) of between 0.30 and 0.46. Coupled with the emittance properties of the variable emittance skins, this lowers the surface temperature of the skins facing the Sun to between 30 and 60 C, which is much lower than previous results of 100 C, and is well within acceptable satellite operations ranges. The performance of this technology is better than that of current new technologies such as microelectromechanical systems (MEMS), electrostatics, and electrophoretics, especially in applications involving micro and nano spacecraft. The coatings are deposited inside a high vacuum, layering multiple coatings onto the top surfaces of variable emittance skins. They are completely transparent in the entire relevant infrared region (about 2 to 45 microns), but highly reflective in the visible-NIR (near infrared) region of relevance to solar absorptance.
Zhao, Shanguo; Xu, Guoying; Wang, Ning; Zhang, Xiaosong
2018-01-28
The solar gravity heat pipe has been widely used for solar thermal water heating because of its high efficient heat transfer and thermal diode characteristics. Operated on fluctuant and low intensity solar radiation conditions, a solar gravity heat pipe may frequently start up. This severely affects its solar collection performance. To enhance the thermal performance of the solar gravity heat pipe, this study proposes using graphene/water nanofluid as the working fluid instead of deionized water. The stability of the prepared graphene/water nanofluid added with PVP was firstly investigated to obtain the optimum mass ratios of the added dispersant. Thermophysical properties-including the thermal conductivity and viscosity-of nanofluid with various graphene nanoplatelets (GNPs) concentrations were measured at different temperatures for further analysis. Furthermore, based on the operational evaluation on a single heat pipe's start-up process, the performance of nanofluid-enhanced solar gravity heat pipes using different concentrations of GNPs were compared by using water heating experiments. Results indicated that the use of 0.05 wt % graphene/water nanofluid instead of water could achieve a 15.1% and 10.7% reduction in start-up time under 30 and 60 W input heating conditions, respectively. Consequently, a higher thermal efficiency for solar collection could be expected.
Zhao, Shanguo; Xu, Guoying; Wang, Ning; Zhang, Xiaosong
2018-01-01
The solar gravity heat pipe has been widely used for solar thermal water heating because of its high efficient heat transfer and thermal diode characteristics. Operated on fluctuant and low intensity solar radiation conditions, a solar gravity heat pipe may frequently start up. This severely affects its solar collection performance. To enhance the thermal performance of the solar gravity heat pipe, this study proposes using graphene/water nanofluid as the working fluid instead of deionized water. The stability of the prepared graphene/water nanofluid added with PVP was firstly investigated to obtain the optimum mass ratios of the added dispersant. Thermophysical properties—including the thermal conductivity and viscosity—of nanofluid with various graphene nanoplatelets (GNPs) concentrations were measured at different temperatures for further analysis. Furthermore, based on the operational evaluation on a single heat pipe’s start-up process, the performance of nanofluid-enhanced solar gravity heat pipes using different concentrations of GNPs were compared by using water heating experiments. Results indicated that the use of 0.05 wt % graphene/water nanofluid instead of water could achieve a 15.1% and 10.7% reduction in start-up time under 30 and 60 W input heating conditions, respectively. Consequently, a higher thermal efficiency for solar collection could be expected. PMID:29382094
Corbala-Robles, L; Volcke, E I P; Samijn, A; Ronsse, F; Pieters, J G
2016-05-15
Heat is an important resource in wastewater treatment plants (WWTPs) which can be recovered. A prerequisite to determine the theoretical heat recovery potential is an accurate heat balance model for temperature prediction. The insulating effect of foam present on the basin surface and its influence on temperature prediction were assessed in this study. Experiments were carried out to characterize the foam layer and its insulating properties. A refined dynamic temperature prediction model, taking into account the effect of foam, was set up. Simulation studies for a WWTP treating highly concentrated (manure) wastewater revealed that the foam layer had a significant effect on temperature prediction (3.8 ± 0.7 K over the year) and thus on the theoretical heat recovery potential (30% reduction when foam is not considered). Seasonal effects on the individual heat losses and heat gains were assessed. Additionally, the effects of the critical basin temperature above which heat is recovered, foam thickness, surface evaporation rate reduction and the non-absorbed solar radiation on the theoretical heat recovery potential were evaluated. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.
2001-01-01
The purpose of this report was to analyze the heat-transfer problem posed by the determination of spacecraft temperatures and to incorporate the theoretically derived relationships in the computational code TSCALC. The basis for the code was a theoretical analysis of the thermal radiative equilibrium in space, particularly in the Solar System. Beginning with the solar luminosity, the code takes into account these key variables: (1) the spacecraft-to-Sun distance expressed in astronomical units (AU), where 1 AU represents the average Sun-to-Earth distance of 149.6 million km; (2) the angle (arc degrees) at which solar radiation is incident upon a spacecraft surface (ILUMANG); (3) the spacecraft surface temperature (a radiator or photovoltaic array) in kelvin, the surface absorptivity-to-emissivity ratio alpha/epsilon with respect to the solar radiation and (alpha/epsilon)(sub 2) with respect to planetary radiation; and (4) the surface view factor to space F. Outputs from the code have been used to determine environmental temperatures in various Earth orbits. The code was also utilized as a subprogram in the design of power system radiators for deep-space probes.
Initial operation of a solar heating and cooling system in a full-scale solar building test facility
NASA Technical Reports Server (NTRS)
Knoll, R. H.; Miao, D.; Hamlet, I. L.; Jensen, R. N.
1976-01-01
The Solar Building Test Facility (SBTF) was constructed to advance the technology for heating and cooling of office buildings with solar energy. Its purposes are to (1) test system components which include high-performing collectors, (2) test the performance of a complete solar heating and cooling system, (3) investigate component interactions, and (4) investigate durability, maintenance and reliability of components. The SBTF consists of a 50,000 square foot office building modified to accept solar heated water for operation of an absorption air conditioner and for the baseboard heating system. A 12,666 square foot solar collector field with a 30,000 gallon storage tank provides the solar heated water. A description of the system and the collectors selected is printed along with the objectives, test approach, expected system performance, and some preliminary results.
Silicon crystals: Process for manufacturing wafer-like silicon crystals with a columnar structure
NASA Technical Reports Server (NTRS)
Authier, B.
1978-01-01
Wafer-like crystals suitable for making solar cells are formed by pouring molten Si containing suitable dopants into a mold of the desired shape and allowing it to solidify in a temperature gradient, whereby the large surface of the melt in contact with the mold is kept at less than 200 D and the free surface is kept at a temperature of 200-1000 D higher, but below the melting point of Si. The mold can also be made in the form of a slit, whereby the 2 sides of the mold are kept at different temperatures. A mold was milled in the surface of a cylindrical graphite block 200 mm in diameter. The granite block was induction heated and the bottom of the mold was cooled by means of a water-cooled Cu plate, so that the surface of the mold in contact with one of the largest surfaces of the melt was held at approximately 800 D. The free surface of the melt was subjected to thermal radiation from a graphite plate located 2 mm from the surface and heated to 1500 D. The Si crystal formed after slow cooling to room temperature had a columnar structure and was cut with a diamond saw into wafers approximately 500 mm thick. Solar cells prepared from these wafers had efficiencies of 10 to 11%.
NASA Astrophysics Data System (ADS)
Choi, M. K.; Morehouse, J. H.; Hughes, P. J.
1981-07-01
An analysis is performed of ground-coupled stand-alone and series configured solar-assisted liquid-to-air heat pump systems for residences. The year-round thermal performance of these systems for space heating, space cooling, and water heating is determined by simulation and compared against non-ground-coupled solar heat pump systems as well as conventional heating and cooling systems in three geographic locations: Washington, DC; Fort Worth, Texas; and Madison, Wisconsin. The results indicate that without tax credits a combined solar/ground-coupled heat pump system for space heating and cooling is not cost competitive with conventional systems. Its thermal performance is considerably better than non-ground-coupled solar heat pumps in Fort Worth. Though the ground-coupled stand-alone heat pump provides 51 percent of the heating and cooling load with non-purchased energy in Fort Worth, its thermal performance in Washington and Madison is poor.
Increment of specific heat capacity of solar salt with SiO2 nanoparticles.
Andreu-Cabedo, Patricia; Mondragon, Rosa; Hernandez, Leonor; Martinez-Cuenca, Raul; Cabedo, Luis; Julia, J Enrique
2014-01-01
Thermal energy storage (TES) is extremely important in concentrated solar power (CSP) plants since it represents the main difference and advantage of CSP plants with respect to other renewable energy sources such as wind, photovoltaic, etc. CSP represents a low-carbon emission renewable source of energy, and TES allows CSP plants to have energy availability and dispatchability using available industrial technologies. Molten salts are used in CSP plants as a TES material because of their high operational temperature and stability of up to 500°C. Their main drawbacks are their relative poor thermal properties and energy storage density. A simple cost-effective way to improve thermal properties of fluids is to dope them with nanoparticles, thus obtaining the so-called salt-based nanofluids. In this work, solar salt used in CSP plants (60% NaNO3 + 40% KNO3) was doped with silica nanoparticles at different solid mass concentrations (from 0.5% to 2%). Specific heat was measured by means of differential scanning calorimetry (DSC). A maximum increase of 25.03% was found at an optimal concentration of 1 wt.% of nanoparticles. The size distribution of nanoparticle clusters present in the salt at each concentration was evaluated by means of scanning electron microscopy (SEM) and image processing, as well as by means of dynamic light scattering (DLS). The cluster size and the specific surface available depended on the solid content, and a relationship between the specific heat increment and the available particle surface area was obtained. It was proved that the mechanism involved in the specific heat increment is based on a surface phenomenon. Stability of samples was tested for several thermal cycles and thermogravimetric analysis at high temperature was carried out, the samples being stable. 65.: Thermal properties of condensed matter; 65.20.-w: Thermal properties of liquids; 65.20.Jk: Studies of thermodynamic properties of specific liquids.
Increment of specific heat capacity of solar salt with SiO2 nanoparticles
2014-01-01
Thermal energy storage (TES) is extremely important in concentrated solar power (CSP) plants since it represents the main difference and advantage of CSP plants with respect to other renewable energy sources such as wind, photovoltaic, etc. CSP represents a low-carbon emission renewable source of energy, and TES allows CSP plants to have energy availability and dispatchability using available industrial technologies. Molten salts are used in CSP plants as a TES material because of their high operational temperature and stability of up to 500°C. Their main drawbacks are their relative poor thermal properties and energy storage density. A simple cost-effective way to improve thermal properties of fluids is to dope them with nanoparticles, thus obtaining the so-called salt-based nanofluids. In this work, solar salt used in CSP plants (60% NaNO3 + 40% KNO3) was doped with silica nanoparticles at different solid mass concentrations (from 0.5% to 2%). Specific heat was measured by means of differential scanning calorimetry (DSC). A maximum increase of 25.03% was found at an optimal concentration of 1 wt.% of nanoparticles. The size distribution of nanoparticle clusters present in the salt at each concentration was evaluated by means of scanning electron microscopy (SEM) and image processing, as well as by means of dynamic light scattering (DLS). The cluster size and the specific surface available depended on the solid content, and a relationship between the specific heat increment and the available particle surface area was obtained. It was proved that the mechanism involved in the specific heat increment is based on a surface phenomenon. Stability of samples was tested for several thermal cycles and thermogravimetric analysis at high temperature was carried out, the samples being stable. PACS 65.: Thermal properties of condensed matter; 65.20.-w: Thermal properties of liquids; 65.20.Jk: Studies of thermodynamic properties of specific liquids PMID:25346648
NASA Astrophysics Data System (ADS)
Huang, J. Y.; Tung, C. P.
2017-12-01
There is an important book called "Peasant Calendar" in the Chinese society. The Peasant Calendar is originally based on the orbit of the Sun and each year is divided into 24 solar terms. Each term has its own special meaning and conception. For example, "Spring Begins" means the end of winter and the beginning of spring. In Taiwan, 24 solar terms play an important role in agriculture because farmers always use the Peasant Calendar to decide when to sow. However, the current solar term in Taiwan is fixed about 15 days. This way doesn't show the temporal variability of climate and also can't truly reflect the regional climate characteristics in different areas.The number of days in each solar term should be more flexible. Since weather is associated with climate, all weather phenomena can be regarded as a multiple fluctuation signal. In this research, 30 years observation data of surface temperature and precipitation from 1976 2016 are used. The data is cut into different time series, such as a week, a month, six months to one year and so on. Signal analysis tools such as wavelet, change point analysis and Fourier transform are used to determine the length of each solar term. After determining the days of each solar term, statistical tests are used to find the relationships between the length of solar terms and climate turbulent (e.g., ENSO and PDO).For example, one of the solar terms called "Major Heat" should typically be more than 20 days in Taiwan due to global warming and heat island effect. The advance of Peasant Calendar can help farmers to make better decision, controlling crop schedule and using the farmland more efficient. For instance, warmer condition can accelerate the accumulation of accumulated temperature, which is the key of crop's growth stage. The result also can be used on disaster reduction (e.g., preventing agricultural damage) and water resources project.
Coupling Solar Energy into Reactions: Materials Design for Surface Plasmon-Mediated Catalysis.
Long, Ran; Li, Yu; Song, Li; Xiong, Yujie
2015-08-26
Enabled by surface plasmons, noble metal nanostructures can interact with and harvest incident light. As such, they may serve as unique media to generate heat, supply energetic electrons, and provide strong local electromagnetic fields for chemical reactions through different mechanisms. This solar-to-chemical pathway provides a new approach to solar energy utilization, alternative to conventional semiconductor-based photocatalysis. To provide readers with a clear picture of this newly recognized process, this review presents coupling solar energy into chemical reactions through plasmonic nanostructures. It starts with a brief introduction of surface plasmons in metallic nanostructures, followed by a demonstration of tuning plasmonic features by tailoring their physical parameters. Owing to their tunable plasmonic properties, metallic materials offer a platform to trigger and drive chemical reactions at the nanoscale, as systematically overviewed in this article. The design rules for plasmonic materials for catalytic applications are further outlined based on existing examples. At the end of this article, the challenges and opportunities for further development of plasmonic-mediated catalysis toward energy and environmental applications are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
German central solar heating plants with seasonal heat storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, D.; Marx, R.; Nussbicker-Lux, J.
2010-04-15
Central solar heating plants contribute to the reduction of CO{sub 2}-emissions and global warming. The combination of central solar heating plants with seasonal heat storage enables high solar fractions of 50% and more. Several pilot central solar heating plants with seasonal heat storage (CSHPSS) built in Germany since 1996 have proven the appropriate operation of these systems and confirmed the high solar fractions. Four different types of seasonal thermal energy stores have been developed, tested and monitored under realistic operation conditions: Hot-water thermal energy store (e.g. in Friedrichshafen), gravel-water thermal energy store (e.g. in Steinfurt-Borghorst), borehole thermal energy store (inmore » Neckarsulm) and aquifer thermal energy store (in Rostock). In this paper, measured heat balances of several German CSHPSS are presented. The different types of thermal energy stores and the affiliated central solar heating plants and district heating systems are described. Their operational characteristics are compared using measured data gained from an extensive monitoring program. Thus long-term operational experiences such as the influence of net return temperatures are shown. (author)« less
Ground coupled solar heat pumps: analysis of four options
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, J.W.
Heat pump systems which utilize both solar energy and energy withdrawn from the ground are analyzed using a simplified procedure which optimizes the solar storage temperature on a monthly basis. Four ways of introducing collected solar energy to the system are optimized and compared. These include use of actively collected thermal input to the heat pump; use of collected solar energy to heat the load directly (two different ways); and use of a passive option to reduce the effective heating load.
Seasonal and latitudinal variations of surface fluxes at two Arctic terrestrial sites
NASA Astrophysics Data System (ADS)
Grachev, Andrey A.; Persson, P. Ola G.; Uttal, Taneil; Akish, Elena A.; Cox, Christopher J.; Morris, Sara M.; Fairall, Christopher W.; Stone, Robert S.; Lesins, Glen; Makshtas, Alexander P.; Repina, Irina A.
2017-11-01
This observational study compares seasonal variations of surface fluxes (turbulent, radiative, and soil heat) and other ancillary atmospheric/surface/permafrost data based on in-situ measurements made at terrestrial research observatories located near the coast of the Arctic Ocean. Hourly-averaged multiyear data sets collected at Eureka (Nunavut, Canada) and Tiksi (East Siberia, Russia) are analyzed in more detail to elucidate similarities and differences in the seasonal cycles at these two Arctic stations, which are situated at significantly different latitudes (80.0°N and 71.6°N, respectively). While significant gross similarities exist in the annual cycles of various meteorological parameters and fluxes, the differences in latitude, local topography, cloud cover, snowfall, and soil characteristics produce noticeable differences in fluxes and in the structures of the atmospheric boundary layer and upper soil temperature profiles. An important factor is that even though higher latitude sites (in this case Eureka) generally receive less annual incoming solar radiation but more total daily incoming solar radiation throughout the summer months than lower latitude sites (in this case Tiksi). This leads to a counter-intuitive state where the average active layer (or thaw line) is deeper and the topsoil temperature in midsummer are higher in Eureka which is located almost 10° north of Tiksi. The study further highlights the differences in the seasonal and latitudinal variations of the incoming shortwave and net radiation as well as the moderating cloudiness effects that lead to temporal and spatial differences in the structure of the atmospheric boundary layer and the uppermost ground layer. Specifically the warm season (Arctic summer) is shorter and mid-summer amplitude of the surface fluxes near solar noon is generally less in Eureka than in Tiksi. During the dark Polar night and cold seasons (Arctic winter) when the ground is covered with snow and air temperatures are sufficiently below freezing, the near-surface environment is generally stably stratified and the hourly averaged turbulent fluxes are quite small and irregular with on average small downward sensible heat fluxes and upward latent heat and carbon dioxide fluxes. The magnitude of the turbulent fluxes increases rapidly when surface snow disappears and the air temperatures rise above freezing during spring melt and eventually reaches a summer maximum. Throughout the summer months strong upward sensible and latent heat fluxes and downward carbon dioxide (uptake by the surface) are typically observed indicating persistent unstable (convective) stratification. Due to the combined effects of day length and solar zenith angle, the convective boundary layer forms in the High Arctic (e.g., in Eureka) and can reach long-lived quasi-stationary states in summer. During late summer and early autumn all turbulent fluxes rapidly decrease in magnitude when the air temperature decreases and falls below freezing. Unlike Eureka, a pronounced zero-curtain effect consisting of a sustained surface temperature hiatus at the freezing point is observed in Tiksi during fall due to wetter and/or water saturated soils.
Robust and Low-Cost Flame-Treated Wood for High-Performance Solar Steam Generation.
Xue, Guobin; Liu, Kang; Chen, Qian; Yang, Peihua; Li, Jia; Ding, Tianpeng; Duan, Jiangjiang; Qi, Bei; Zhou, Jun
2017-05-03
Solar-enabled steam generation has attracted increasing interest in recent years because of its potential applications in power generation, desalination, and wastewater treatment, among others. Recent studies have reported many strategies for promoting the efficiency of steam generation by employing absorbers based on carbon materials or plasmonic metal nanoparticles with well-defined pores. In this work, we report that natural wood can be utilized as an ideal solar absorber after a simple flame treatment. With ultrahigh solar absorbance (∼99%), low thermal conductivity (0.33 W m -1 K -1 ), and good hydrophilicity, the flame-treated wood can localize the solar heating at the evaporation surface and enable a solar-thermal efficiency of ∼72% under a solar intensity of 1 kW m -2 , and it thus represents a renewable, scalable, low-cost, and robust material for solar steam applications.
Formation of the lunar crust - An electrical source of heating
NASA Technical Reports Server (NTRS)
Sonett, C. P.; Colburn, D. S.; Schwartz, K.
1975-01-01
A model for formation of the lunar crust based on heating by electrical induction is explored, while adherence is maintained to certain constraints associated with existing models of the solar system. The heating mechanism is based on eddy current induction from disordered magnetic fields swept outwards by an intense (T Tauri-like) plasma flow from the sun. The electrical theory is an alternative to intense short-period accretion as a source of heat for the evolution of lunar maria and highlands, provided that long-lived radioactives are not swept to the surface from too large a melt volume during the initial thermal episode. This formation of the lunar highlands does not intrinsically require rapid accretion, nor on this basis is the time of formation of the planets generally restricted to a very short time. The threshold temperature for eddy current heating is attained by either a solar nebula at 300-400 C during formation of the moon or a very low energy long-period accumulation of the moon, both leading to melting in ten to the fifth to ten to the seventh power years.
Foaming of aluminium-silicon alloy using concentrated solar energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cambronero, L.E.G.; Ruiz-Roman, J.M.; Canadas, I.
2010-06-15
Solar energy is used for the work reported here as a nonconventional heating system to produce aluminium foam from Al-Si alloy precursors produced by powder metallurgy. A commercial precursor in cylindrical bars enclosed in a stainless-steel mould was heated under concentrated solar radiation in a solar furnace with varied heating conditions (heating rate, time, and temperature). Concentrated solar energy close to 300 W/cm{sup 2} on the mould is high enough to achieve complete foaming after heating for only 200 s. Under these conditions, the density and pore distribution in the foam change depending on the solar heating parameters and mouldmore » design. (author)« less
Mineralogy and noble gas isotopes of micrometeorites collected from Antarctic snow
NASA Astrophysics Data System (ADS)
Okazaki, Ryuji; Noguchi, Takaaki; Tsujimoto, Shin-ichi; Tobimatsu, Yu; Nakamura, Tomoki; Ebihara, Mitsuru; Itoh, Shoichi; Nagahara, Hiroko; Tachibana, Shogo; Terada, Kentaro; Yabuta, Hikaru
2015-06-01
We have investigated seven micrometeorites (MMs) from Antarctic snow collected in 2003 and 2010 by means of electron microscopy, X-ray diffraction, micro-Raman spectroscopy, transmission electron microscopy (TEM) observation, and noble-gas isotope analysis. Isotopic ratios of He and Ne indicate that the noble gases in these MMs are mostly of solar wind (SW). Based on the release patterns of SW 4He, which should reflect the degree of heating during atmospheric entry, the seven MMs were classified into three types including two least heated, three moderately heated, and two severely heated MMs. The heating degrees are well correlated to their mineralogical features determined by TEM observation. One of the least heated MMs is composed of phyllosilicates, whereas the other consists of anhydrous minerals within which solar flare tracks were observed. The two severely heated MMs show clear evidence of atmospheric heating such as partial melt of the uppermost surface layer in one and abundant patches of dendritic magnetite and Si-rich glass within an olivine grain in the other. It is noteworthy that a moderately heated MM composed of a single crystal of olivine has a 3He/4He ratio of 8.44 × 10-4, which is higher than the SW value of 4.64 × 10-4, but does not show a cosmogenic 21Ne signature such as 20Ne/21Ne/22Ne = 12.83/0.0284/1. The isotopic compositions of He and Ne in this sample cannot be explained by mixing of a galactic cosmic ray (GCR)-produced component and SW gases. The high 3He/4He ratio without cosmogenic 21Ne signature likely indicates the presence of a 3He-enriched component derived from solar energetic particles.
Comparison of heat exchanger and solar block wall in a swine nursery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, D.D.; Friday, W.H.; Thieme, R.H.
1984-01-01
A pig nursery building was divided into two equal rooms, one with a heat exchanger and one with a solar block wall. The average air inlet temperatures were 16.4/sup 0/C in the heat exchanger room and 11.9/sup 0/C in the solar heated room. Supplemental heating costs were 67% higher in the solar block wall room.
Effectiveness of Cool Roof Coatings with Ceramic Particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brehob, Ellen G; Desjarlais, Andre Omer; Atchley, Jerald Allen
2011-01-01
Liquid applied coatings promoted as cool roof coatings, including several with ceramic particles, were tested at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tenn., for the purpose of quantifying their thermal performances. Solar reflectance measurements were made for new samples and aged samples using a portable reflectometer (ASTM C1549, Standard Test Method for Determination of Solar Reflectance Near Ambient Temperature Using a Portable Solar Reflectometer) and for new samples using the integrating spheres method (ASTM E903, Standard Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres). Thermal emittance was measured for the new samples using amore » portable emissometer (ASTM C1371, Standard Test Method for Determination of Emittance of Materials Near Room 1 Proceedings of the 2011 International Roofing Symposium Temperature Using Portable Emissometers). Thermal conductivity of the coatings was measured using a FOX 304 heat flow meter (ASTM C518, Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus). The surface properties of the cool roof coatings had higher solar reflectance than the reference black and white material, but there were no significant differences among coatings with and without ceramics. The coatings were applied to EPDM (ethylene propylene diene monomer) membranes and installed on the Roof Thermal Research Apparatus (RTRA), an instrumented facility at ORNL for testing roofs. Roof temperatures and heat flux through the roof were obtained for a year of exposure in east Tennessee. The field tests showed significant reduction in cooling required compared with the black reference roof (~80 percent) and a modest reduction in cooling compared with the white reference roof (~33 percent). The coating material with the highest solar reflectivity (no ceramic particles) demonstrated the best overall thermal performance (combination of reducing the cooling load cost and not incurring a large heating penalty cost) and suggests solar reflectivity is the significant characteristic for selecting cool roof coatings.« less
Estimating Summer Ocean Heating in the Arctic Ice Pack Using High-Resolution Satellite Imagery
2014-09-01
Left Image: small domed solar sensor on the left-most arm of the meteorology tree collects shortwave (visible) surface solar intensity time series...2012). The replacement of MYI by FYI in the region also enhances this positive feedback loop. Hudson et al. (2013) suggest that the increase in the...larger meltponds being identified as open water, it is valid based on Hudson et al. (2013), were they found larger meltponds share similar albedo
Sweat Rate Prediction Equations for Outdoor Exercise with Transient Solar Radiation
2012-01-01
AD] 15 Interchangeable variables gSL W/m2 Global solar load Direct weather station data; pyranometer values 25 Direct measurement from weather station ...Fanger equations 2, 4, 13, Direct or weather station values Rdif W Diffuse irradiance Rref W Reflected irradiance AD m2 Body surface area (BSA) from DuBois...assuming the given weather station uses standard meteorological measuring instru- ments. In the heat flow form expressed by Matthew et al. (25
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christensen, C.; Horowitz, S.
In subdivisions, house orientations are largely determined by street layout. The resulting house orientations affect energy consumption (annual and on-peak) for heating and cooling, depending on window area distributions and shading from neighboring houses. House orientations also affect energy production (annual and on-peak) from solar thermal and photovoltaic systems, depending on available roof surfaces. Therefore, house orientations fundamentally influence both energy consumption and production, and an appropriate street layout is a prerequisite for taking full advantage of energy efficiency and renewable energy opportunities. The potential influence of street layout on solar performance is often acknowledged, but solar and energy issuesmore » must compete with many other criteria and constraints that influence subdivision street layout. When only general guidelines regarding energy are available, these factors may be ignored or have limited effect. Also, typical guidelines are often not site-specific and do not account for local parameters such as climate and the time value of energy. For energy to be given its due consideration in subdivision design, energy impacts need to be accurately quantified and displayed interactively to facilitate analysis of design alternatives. This paper describes a new computerized Subdivision Energy Analysis Tool being developed to allow users to interactively design subdivision street layouts while receiving feedback about energy impacts based on user-specified building design variants and availability of roof surfaces for photovoltaic and solar water heating systems.« less
Stratospheric solar geoengineering without ozone loss.
Keith, David W; Weisenstein, Debra K; Dykema, John A; Keutsch, Frank N
2016-12-27
Injecting sulfate aerosol into the stratosphere, the most frequently analyzed proposal for solar geoengineering, may reduce some climate risks, but it would also entail new risks, including ozone loss and heating of the lower tropical stratosphere, which, in turn, would increase water vapor concentration causing additional ozone loss and surface warming. We propose a method for stratospheric aerosol climate modification that uses a solid aerosol composed of alkaline metal salts that will convert hydrogen halides and nitric and sulfuric acids into stable salts to enable stratospheric geoengineering while reducing or reversing ozone depletion. Rather than minimizing reactive effects by reducing surface area using high refractive index materials, this method tailors the chemical reactivity. Specifically, we calculate that injection of calcite (CaCO 3 ) aerosol particles might reduce net radiative forcing while simultaneously increasing column ozone toward its preanthropogenic baseline. A radiative forcing of -1 W⋅m -2 , for example, might be achieved with a simultaneous 3.8% increase in column ozone using 2.1 Tg⋅y -1 of 275-nm radius calcite aerosol. Moreover, the radiative heating of the lower stratosphere would be roughly 10-fold less than if that same radiative forcing had been produced using sulfate aerosol. Although solar geoengineering cannot substitute for emissions cuts, it may supplement them by reducing some of the risks of climate change. Further research on this and similar methods could lead to reductions in risks and improved efficacy of solar geoengineering methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jiachen; Zhang, Kai; Liu, Junfeng
Solar reflective “cool roofs” absorb less sunlight than traditional dark roofs, reducing solar heat gain, and decreasing the amount of heat transferred to the atmosphere. Widespread adoption of cool roofs could therefore reduce temperatures in urban areas, partially mitigating the urban heat island effect, and contributing to reversing the local impacts of global climate change. The impacts of cool roofs on global climate remain debated by past research and are uncertain. Using a sophisticated Earth system model, the impacts of cool roofs on climate are investigated at urban, continental, and global scales. We find that global adoption of cool roofsmore » in urban areas reduces urban heat islands everywhere, with an annual- and global-mean decrease from 1.6 to 1.2 K. Decreases are statistically significant, except for some areas in Africa and Mexico where urban fraction is low, and some high-latitude areas during wintertime. Analysis of the surface and TOA energy budget in urban regions at continental-scale shows cool roofs causing increases in solar radiation leaving the Earth-atmosphere system in most regions around the globe, though the presence of aerosols and clouds are found to partially offset increases in upward radiation. Aerosols dampen cool roof-induced increases in upward solar radiation, ranging from 4% in the United States to 18% in more polluted China. Adoption of cool roofs also causes statistically significant reductions in surface air temperatures in urbanized regions of China (0.11±0.10 K) and the United States (0.14±0.12 K); India and Europe show statistically insignificant changes. The research presented here indicates that adoption of cool roofs around the globe would lead to statistically insignificant reductions in global mean air temperature (0.0021 ±0.026 K). This counters past research suggesting that cool roofs can reduce, or even increase global mean temperatures. Thus, we suggest that while cool roofs are an effective tool for reducing building energy use in hot climates, urban heat islands, and regional air temperatures, their influence on global climate is likely negligible.« less
Revisiting the climate impacts of cool roofs around the globe using an Earth system model
NASA Astrophysics Data System (ADS)
Zhang, Jiachen; Zhang, Kai; Liu, Junfeng; Ban-Weiss, George
2016-08-01
Solar reflective ‘cool roofs’ absorb less sunlight than traditional dark roofs, reducing solar heat gain, and decreasing the amount of heat transferred to the atmosphere. Widespread adoption of cool roofs could therefore reduce temperatures in urban areas, partially mitigating the urban heat island effect, and contributing to reversing the local impacts of global climate change. The impacts of cool roofs on global climate remain debated by past research and are uncertain. Using a sophisticated Earth system model, the impacts of cool roofs on climate are investigated at urban, continental, and global scales. We find that global adoption of cool roofs in urban areas reduces urban heat islands everywhere, with an annual- and global-mean decrease from 1.6 to 1.2 K. Decreases are statistically significant, except for some areas in Africa and Mexico where urban fraction is low, and some high-latitude areas during wintertime. Analysis of the surface and TOA energy budget in urban regions at continental-scale shows cool roofs causing increases in solar radiation leaving the Earth-atmosphere system in most regions around the globe, though the presence of aerosols and clouds are found to partially offset increases in upward radiation. Aerosols dampen cool roof-induced increases in upward solar radiation, ranging from 4% in the United States to 18% in more polluted China. Adoption of cool roofs also causes statistically significant reductions in surface air temperatures in urbanized regions of China (-0.11 ± 0.10 K) and the United States (-0.14 ± 0.12 K); India and Europe show statistically insignificant changes. Though past research has disagreed on whether widespread adoption of cool roofs would cool or warm global climate, these studies have lacked analysis on the statistical significance of global temperature changes. The research presented here indicates that adoption of cool roofs around the globe would lead to statistically insignificant reductions in global mean air temperature (-0.0021 ± 0.026 K). Thus, we suggest that while cool roofs are an effective tool for reducing building energy use in hot climates, urban heat islands, and regional air temperatures, their influence on global climate is likely negligible.
Revisiting the Climate Impacts of Cool Roofs around the Globe Using an Earth System Model
NASA Astrophysics Data System (ADS)
Zhang, J.; Ban-Weiss, G. A.; Zhang, K.; Liu, J.
2016-12-01
Solar reflective "cool roofs" absorb less sunlight than traditional dark roofs, reducing solar heat gain, and decreasing the amount of heat transferred to the atmosphere. Widespread adoption of cool roofs could therefore reduce temperatures in urban areas, partially mitigating the urban heat island effect, and contributing to reversing the local impacts of global climate change. The impacts of cool roofs on global climate remain debated by past research and are uncertain. Using a sophisticated Earth system model, the impacts of cool roofs on climate are investigated at urban, continental, and global scales. We find that global adoption of cool roofs in urban areas reduces urban heat islands everywhere, with an annual- and global-mean decrease from 1.6 to 1.2 K. Decreases are statistically significant, except for some areas in Africa and Mexico where urban fraction is low, and some high-latitude areas during wintertime. Analysis of the surface and TOA energy budget in urban regions at continental-scale shows cool roofs causing increases in solar radiation leaving the Earth-atmosphere system in most regions around the globe, though the presence of aerosols and clouds are found to partially offset increases in upward radiation. Aerosols dampen cool roof-induced increases in upward solar radiation, ranging from 4% in the United States to 18% in more polluted China. Adoption of cool roofs also causes statistically significant reductions in surface air temperatures in urbanized regions of China (-0.11±0.10 K) and the United States (-0.14±0.12 K); India and Europe show statistically insignificant changes. Though past research has disagreed on whether widespread adoption of cool roofs would cool or warm global climate, these studies have lacked analysis on the statistical significance of global temperature changes. The research presented here indicates that adoption of cool roofs around the globe would lead to statistically insignificant reductions in global mean air temperature (-0.0021 ± 0.026 K). Thus, we suggest that while cool roofs are an effective tool for reducing building energy use in hot climates, urban heat islands, and regional air temperatures, their influence on global climate is likely negligible.
A regional comparison of solar, heat pump, and solar-heat pump systems
NASA Astrophysics Data System (ADS)
Manton, B. E.; Mitchell, J. W.
1982-08-01
A comparative study of the thermal and economic performance of the parallel and series solar heat pump systems, stand alone solar and stand alone heat pump systems for residential space and domestic hot water heating for the U.S. using FCHART 4.0 is presented. Results show that the parallel solar heat pump system yields the greatest energy savings in the south. Very low cost collectors (50-150 dollars/sq m) are required for a series solar heat pump system in order for it to compete economically with the better of the parallel or solar systems. Conventional oil or gas furnaces need to have a seasonal efficiency of at least 70-85% in order to save as much primary energy as the best primary system in the northeast. In addition, the implications of these results for current or proposed federal tax credit measures are discussed.
Performance and economics of residential solar space heating
NASA Astrophysics Data System (ADS)
Zehr, F. J.; Vineyard, T. A.; Barnes, R. W.; Oneal, D. L.
1982-11-01
The performance and economics of residential solar space heating were studied for various locations in the contiguous United States. Common types of active and passive solar heating systems were analyzed with respect to an average-size, single-family house designed to meet or exceed the thermal requirements of the Department of Housing and Urban Development Minimum Property Standards (HUD-MPS). The solar systems were evaluated in seventeen cities to provide a broad range of climatic conditions. Active systems evaluated consist of air and liquid flat plate collectors with single- and double-glazing: passive systems include Trombe wall, water wall, direct gain, and sunspace systems. The active system solar heating performance was computed using the University of Wisconsin's F-CHART computer program. The Los Alamos Scientific Laboratory's Solar Load Ratio (SLR) method was employed to compute solar heating performance for the passive systems. Heating costs were computed with gas, oil, and electricity as backups and as conventional heating system fuels.
A heat receiver design for solar dynamic space power systems
NASA Technical Reports Server (NTRS)
Baker, Karl W.; Dustin, Miles O.; Crane, Roger
1990-01-01
An advanced heat pipe receiver designed for a solar dynamic space power system is described. The power system consists of a solar concentrator, solar heat receiver, Stirling heat engine, linear alternator and waste heat radiator. The solar concentrator focuses the sun's energy into a heat receiver. The engine and alternator convert a portion of this energy to electric power and the remaining heat is rejected by a waste heat radiator. Primary liquid metal heat pipes transport heat energy to the Stirling engine. Thermal energy storage allows this power system to operate during the shade portion of an orbit. Lithium fluoride/calcium fluoride eutectic is the thermal energy storage material. Thermal energy storage canisters are attached to the midsection of each heat pipe. The primary heat pipes pass through a secondary vapor cavity heat pipe near the engine and receiver interface. The secondary vapor cavity heat pipe serves three important functions. First, it smooths out hot spots in the solar cavity and provides even distribution of heat to the engine. Second, the event of a heat pipe failure, the secondary heat pipe cavity can efficiently transfer heat from other operating primary heat pipes to the engine heat exchanger of the defunct heat pipe. Third, the secondary heat pipe vapor cavity reduces temperature drops caused by heat flow into the engine. This unique design provides a high level of reliability and performance.
Solar heating and cooling systems design and development
NASA Technical Reports Server (NTRS)
1976-01-01
Solar heating and heating/cooling systems were designed for single family, multifamily, and commercial applications. Subsystems considered included solar collectors, heat storage systems, auxiliary energy sources, working fluids, and supplementary controls, piping, and pumps.
System Concept for Remote Measurement of Asteroid Molecular Composition
NASA Astrophysics Data System (ADS)
Hughes, G. B.; Lubin, P. M.; Zhang, Q.; Brashears, T.; Cohen, A. N.; Madajian, J.
2016-12-01
We propose a method for probing the molecular composition of cold solar system targets (asteroids, comets, planets, moons) from a distant vantage, such as from a spacecraft orbiting the object. A directed energy beam is focused on the target. With sufficient flux, the spot temperature rises rapidly, and evaporation of surface materials occurs. The melted spot creates a high-temperature blackbody source, and ejected material creates a plume of surface materials in front of the spot. Molecular and atomic absorption of the blackbody radiation occurs within the ejected plume. Bulk composition of the surface material is investigated by using a spectrometer to view the heated spot through the ejected material. Our proposed method differs from technologies such as Laser-Induced Breakdown Spectroscopy (LIBS), which atomizes and ionizes materials in the target; scattered ions emit characteristic radiation, and the LIBS detector performs atomic composition analysis by observing emission spectra. Standoff distance for LIBS is limited by the strength of characteristic emission, and distances greater than 10 m are problematic. Our proposed method detects atomic and molecular absorption spectra in the plume; standoff distance is limited by the size of heated spot, and the plume opacity; distances on the order of tens of kilometers are immediately feasible. Simulations have been developed for laser heating of a rocky target, with concomitant evaporation. Evaporation rates lead to determination of plume density and opacity. Absorption profiles for selected materials are estimated from plume properties. Initial simulations of absorption profiles with laser heating show great promise for molecular composition analysis from tens of kilometers distance. This paper explores the feasibility a hypothetical mission that seeks to perform surface molecular composition analysis of a near-earth asteroid while the craft orbits the asteroid. Such a system has compelling potential benefit for solar system exploration.
A method for obtaining distributed surface flux measurements in complex terrain
NASA Astrophysics Data System (ADS)
Daniels, M. H.; Pardyjak, E.; Nadeau, D. F.; Barrenetxea, G.; Brutsaert, W. H.; Parlange, M. B.
2011-12-01
Sonic anemometers and gas analyzers can be used to measure fluxes of momentum, heat, and moisture over flat terrain, and with the proper corrections, over sloping terrain as well. While this method of obtaining fluxes is currently the most accurate available, the instruments themselves are costly, making installation of many stations impossible for most campaign budgets. Small, commercial automatic weather stations (Sensorscope) are available at a fraction of the cost of sonic anemometers or gas analyzers. Sensorscope stations use slow-response instruments to measure standard meteorological variables, including wind speed and direction, air temperature, humidity, surface skin temperature, and incoming solar radiation. The method presented here makes use of one sonic anemometer and one gas analyzer along with a dozen Sensorscope stations installed throughout the Val Ferret catchment in southern Switzerland in the summers of 2009, 2010 and 2011. Daytime fluxes are calculated using Monin-Obukhov similarity theory in conjunction with the surface energy balance at each Sensorscope station as well as at the location of the sonic anemometer and gas analyzer, where a suite of additional slow-response instruments were co-located. Corrections related to slope angle were made for wind speeds and incoming shortwave radiation measured by the horizontally-mounted cup anemometers and incoming solar radiation sensors respectively. A temperature correction was also applied to account for daytime heating inside the radiation shield on the slow-response temperature/humidity sensors. With these corrections, we find a correlation coefficient of 0.77 between u* derived using Monin-Obukhov similarity theory and that of the sonic anemometer. Calculated versus measured heat fluxes also compare well and local patterns of latent heat flux and measured surface soil moisture are correlated.
Development of high-efficiency solar cells on silicon web
NASA Technical Reports Server (NTRS)
Rohatgi, A.; Meier, D. L.; Campbell, R. B.; Seidensticker, R. G.; Rai-Choudhury, P.
1985-01-01
High-efficiency dendritic cells were discussed. The influence of twin planes and heat treatment on the location and effect of trace impurities was of particular interest. Proper heat treatment often increases efficiency by causing impurities to pile up at twin planes. Oxide passivation had a beneficial effect on efficiency. A very efficient antireflective (AR) coating of zinc selenide and magnesium fluoride was designed and fabricated. An aluminum back-surface reflector was also effective.
NASA Astrophysics Data System (ADS)
Jung, Y.; Kim, J.; Cho, H.; Lee, B.
2006-12-01
The polar region play a critical role in the surface energy balance and the climate system of the Earth. The important question in the region is that what is the role of the Antarctic atmospheric heat sink of global climate. Thus, this study shows the trends of global solar irradiance, infrared irradiance, air temperature and cloudiness measured at the King Sejong station, Antarctica, during the period of 1996-2004 and determines their relationship and variability of the surface energy balance. Annual average of solar radiation and cloudiness is 81.8 Wm-2 and 6.8 oktas and their trends show the decrease of -0.24 Wm-2yr-1(-0.30 %yr-1) and 0.02 oktas yr-1(0.30 %yr-1). The change of solar irradiance is directly related to change of cloudiness and decrease of solar irradiance presents radiative cooling at the surface. Monthly mean infrared irradiance, air temperature and specific humidity shows the decrease of -2.11 Wm^{- 2}yr-1(-0.75 %yr-1), -0.07 'Cyr-1(-5.15 %yr-1) and -0.044 gkg-1yr-1(-1.42 %yr-1), respectively. Annual average of the infrared irradiance is 279.9 Wm-2 and correlated with the air temperature, specific humidity and cloudiness. A multiple regression model for estimation of the infrared irradiance using the components has been developed. Effects of the components on the infrared irradiance changes show 52 %, 19 % and 10 % for air temperature, specific humidity and cloudiness, respectively. Among the components, air temperature has a great influence on infrared irradiance. Despite the increase of cloudiness, the decrease in the infrared irradiance is due to the decrease of air temperature and specific humidity which have a cooling effect. Therefore, the net radiation of the surface energy balance shows radiative cooling of negative 11-24 Wm^{- 2} during winter and radiative warming of positive 32-83 Wm-2 during the summer. Thus, the amount of shortage and surplus at the surface is mostly balanced by turbulent flux of sensible and latent heat.
Method and making group IIB metal - telluride films and solar cells
Basol, Bulent M.; Kapur, Vijay K.
1990-08-21
A technique is disclosed forming thin films (13) of group IIB metal-telluride, such as Cd.sub.x Zn.sub.1-x Te (0.ltoreq.x.ltoreq.1), on a substrate (10) which comprises depositing Te (18) and at least one of the elements (19) of Cd, Zn, and Hg onto a substrate and then heating the elements to form the telluride. A technique is also provided for doping this material by chemically forming a thin layer of a dopant on the surface of the unreacted elements and then heating the elements along with the layer of dopant. A method is disclosed of fabricating a thin film photovoltaic cell which comprises depositing Te and at least one of the elements of Cd, Zn, and Hg onto a substrate which contains on its surface a semiconductor film (12) and then heating the elements in the presence of a halide of the Group IIB metals, causing the formation of solar cell grade Group IIB metal-telluride film and also causing the formation of a rectifying junction, in situ, between the semiconductor film on the substrate and the Group IIB metal-telluride layer which has been formed.
Direct measurement of bull's-eye nanoantenna metal loss
NASA Astrophysics Data System (ADS)
Hassani Nia, Iman; Jang, Sung J.; Memis, Omer G.; Gelfand, Ryan; Mohseni, Hooman
2013-09-01
The loss in optical antennas can affect their performance for their practical use in many branches of science such as biological and solar cell applications. However the big question is that how much loss is due to the joule heating in the metals. This would affect the efficiency of solar cells and is very important for single photon detection and also for some applications where high heat generation in nanoantennas is desirable, for example, payload release for cancer treatment. There are few groups who have done temperature measurements by methods such as Raman spectroscopy or fluorescence polarization anisotropy. The latter method, which is more reliable than Raman spectroscopy, requires the deposition of fluorescent molecules on the antenna surface. The molecules and the polarization of radiation rotate depending upon the surface temperature. The reported temperature measurement accuracy in this method is about 0.1° C. Here we present a method based on thermo-reflectance that allows better temperature accuracy as well as spatial resolution of 500 nm. Moreover, this method does not require the addition of new materials to the nanoantenna. We present the measured heat dissipation from bull's-eye nanoantennas and compare them with 3D simulation results.
Bohn, Mark S.; Anselmo, Mark
2001-01-01
Computer simulation was used in the development of an inward-burning, radial matrix gas burner and heat pipe heat exchanger. The burner and exchanger can be used to heat a Stirling engine on cloudy days when a solar dish, the normal source of heat, cannot be used. Geometrical requirements of the application forced the use of the inward burning approach, which presents difficulty in achieving a good flow distribution and air/fuel mixing. The present invention solved the problem by providing a plenum with just the right properties, which include good flow distribution and good air/fuel mixing with minimum residence time. CFD simulations were also used to help design the primary heat exchanger needed for this application which includes a plurality of pins emanating from the heat pipe. The system uses multiple inlet ports, an extended distance from the fuel inlet to the burner matrix, flow divider vanes, and a ring-shaped, porous grid to obtain a high-temperature uniform-heat radial burner. Ideal applications include dish/Stirling engines, steam reforming of hydrocarbons, glass working, and any process requiring high temperature heating of the outside surface of a cylindrical surface.
A Study of the Structure of the Source Region of the Solar Wind in Support of a Solar Probe Mission
NASA Technical Reports Server (NTRS)
Habbal, Shadia R.; Forman, M. A. (Technical Monitor)
2001-01-01
Despite the richness of the information about the physical properties and the structure of the solar wind provided by the Ulysses and SOHO (Solar and Heliospheric Observatory) observations, fundamental questions regarding the nature of the coronal heating mechanisms, their source, and the manifestations of the fast and slow solar wind, still remain unanswered. The last unexplored frontier to establish the connection between the structure and dynamics of the solar atmosphere, its extension into interplanetary space, and the mechanisms responsible for the evolution of the solar wind, is the corona between 1 and 30 R(sub s). A Solar Probe mission offers an unprecedented opportunity to explore this frontier. Its uniqueness stems from its trajectory in a plane perpendicular to the ecliptic which reaches within 9 R(sub s) of the solar surface over the poles and 3 - 9 R(sub s) at the equator. With a complement of simultaneous in situ and remote sensing observations, this mission is destined to detect remnants and signatures of the processes which heat the corona and accelerate the solar wind. In support of this mission, we fulfilled the following two long-term projects: (1) Study of the evolution of waves and turbulence in the solar wind (2) Exploration of signatures of physical processes and structures in the corona. A summary of the tasks achieved in support of these projects are given below. In addition, funds were provided to support the Solar Wind 9 International Conference which was held in October 1998. A brief report on the conference is also described in what follows.
Three story residence with solar heat--Manchester, New Hampshire
NASA Technical Reports Server (NTRS)
1981-01-01
When heat lost through ducts is counted for accurate performance assessment, solar energy supplied 56 percent of building's space heating load. Average outdoor temperature was 53 degrees F; average indoor temperature was 69 degrees F. System operating modes included heating from solar collectors, storing heat, heating from storage, auxiliary heating with oil fired furnace, summer venting, and hot water preheating.
NASA Astrophysics Data System (ADS)
Roberts, J. H.; Nimmo, F.
2007-12-01
Rapid strike-slip motion is predicted to be a consequence of diurnal tidal stresses in most satellites of the outer solar system with short orbital timescales [1]. Such motion can lead to near-surface heating through friction or viscous dissipation [2]. Here we discuss the effect of near-surface shear heating on convection in the underlying ice shells of icy satellites [3], with a focus on Enceladus and a possible origin of the south polar thermal anomaly [4]. We present models of convection in spherical ice shells including both spatially variable volumetric tidal heating [5] and regional shear heating localized in the top 5 km at either the pole or the equator. We observe that the presence of the near-surface heating strongly controls the convective pattern, increasing the wavelength, and promoting the formation of a hot upwelling beneath the shear zone. Our results suggest that localized near- surface heating may result in a degree-1 convective planform in an ice shell of a thickness that may be appropriate for a differentiated Enceladus (d < 0.36 Rsat). The near-surface heating and convection pattern will produce a localized heat flow anomaly. The upwelling beneath the shear zone also produces a few hundred meters of long-wavelength dynamic topography. The ℓ=2 component of the topography may cause reorientation of the satellite [6]. [1] Hoppa, G., B. R. Tufts, R. Greenberg, and P. Geissler, Icarus, 141, 287-298, 1999. [2] Nimmo, F., E. Gaidos, JGR, 107, 5021, 2002. [3] Han, L., A. P. Showman, LPSC XXXVIII, #2277, 2007. [4] Spencer, J. R., et al., Science, 311, 1401-1405. [5] Tobie, G., A. Mocquet, C. Sotin, Icarus, 177 534-549. [6] Nimmo, F., R. T. Pappalardo, Nature, 441, 614-616.
Thermal and economic assessment of ground-coupled storage for residential solar heat pump systems
NASA Astrophysics Data System (ADS)
Choi, M. K.; Morehouse, J. H.
1980-11-01
This study performed an analysis of ground-coupled stand-alone and series configured solar-assisted liquid-to-air heat pump systems for residences. The year-round thermal performance of these systems for space heating, space cooling, and water heating were determined by simulation and compared against non-ground-coupled solar heat pump systems as well as conventional heating and cooling systems in three geographic locations: Washington, D.C., Fort Worth, Tex., and Madison, Wis. The results indicate that without tax credits a combined solar/ground-coupled heat pump system for space heating and cooling is not cost competitive with conventional systems. Its thermal performance is considerably better than non-ground-coupled solar heat pumps in Forth Worth. Though the ground-coupled stand-alone heat pump provides 51% of the heating and cooling load with non-purchased energy in Forth Worth, its thermal performance in Washington and Madison is poor.
Implications of summertime marine stratocumulus on the North American climate
NASA Technical Reports Server (NTRS)
Clark, John H. E.
1994-01-01
This study focuses on the effects of summertime stratocumulus over the eastern Pacific. This cloud is linked to the semi-permanent sub-tropical highs that dominate the low-level circulation over the Pacific and Atlantic. Subsidence on the eastern flank of these highs creates an inversion based about 800 m above sea level that caps moist air near the surface. This air overlies cool waters driven by upwelling along the coastal regions of North America. Strong surface north-westerlies mix the boundary layer enough to saturate the air just below the capping inversion. Widespread stratocumulus is thus formed. All calculations were carried out using the GENESIS general circulation model that was run at MSFC. Among the more important properties of the model is that it includes radiative forcing due to absorption of solar radiation and the emission of infrared radiation, interactive clouds (both stratocumulus and cumulus types), exchanges of heat and moisture with the lower boundary. Clouds are interactive in the sense that they impact the circulation by modifying the fields of radiative heating and turbulent fluxes of heat and moisture in the boundary layer. In turn, clouds are modified by the winds through the advection of moisture. In order to isolate the effects of mid- and high-latitude stratocumulus, two runs were made with the model: one with and the other without stratocumulus. The runs were made for a year, but with perpetual July conditions, i.e., solar forcing was fixed. The diurnal solar cycle, however, was allowed for. The sea surface temperature distribution was fixed in both runs to represent climatological July conditions. All dependent variables were represented at 12 surfaces of constant sigma = p/p(sub O), where p is pressure and p(sub O) is surface pressure. To facilitate analysis, model output was transformed to constant pressure surfaces. Structures no smaller in size than 7.5 degrees longitude and 4.5 degrees in latitude were resolved. Smaller features of the circulation were parameterized. The model thus captures synoptic- and planetary-scale circulation features.
NASA Astrophysics Data System (ADS)
Januševičius, Karolis; Streckienė, Giedrė
2013-12-01
In near zero energy buildings (NZEB) built in Baltic countries, heat production systems meet the challenge of large share domestic hot water demand and high required heating capacity. Due to passive solar design, cooling demand in residential buildings also needs an assessment and solution. Heat pump systems are a widespread solution to reduce energy use. A combination of heat pump and solar thermal collectors helps to meet standard requirements and increases the share of renewable energy use in total energy balance of country. The presented paper describes a simulation study of solar assisted heat pump systems carried out in TRNSYS. The purpose of this simulation was to investigate how the performance of a solar assisted heat pump combination varies in near zero energy building. Results of three systems were compared to autonomous (independent) systems simulated performance. Different solar assisted heat pump design solutions with serial and parallel solar thermal collector connections to the heat pump loop were modelled and a passive cooling possibility was assessed. Simulations were performed for three Baltic countries: Lithuania, Latvia and Estonia.
Classifications of central solar domestic hot water systems
NASA Astrophysics Data System (ADS)
Guo, J. Y.; Hao, B.; Peng, C.; Wang, S. S.
2016-08-01
Currently, there are many means by which to classify solar domestic hot water systems, which are often categorized according to their scope of supply, solar collector positions, and type of heat storage tank. However, the lack of systematic and scientific classification as well as the general disregard of the thermal performance of the auxiliary heat source is important to DHW systems. Thus, the primary focus of this paper is to determine a classification system for solar domestic hot water systems based on the positions of the solar collector and auxiliary heating device, both respectively and in combination. Field-testing data regarding many central solar DHW systems demonstrates that the position of the auxiliary heat source clearly reflects the operational energy consumption. The consumption of collective auxiliary heating hot water system is much higher than individual auxiliary heating hot water system. In addition, costs are significantly reduced by the separation of the heat storage tank and the auxiliary heating device.
Key techniques for space-based solar pumped semiconductor lasers
NASA Astrophysics Data System (ADS)
He, Yang; Xiong, Sheng-jun; Liu, Xiao-long; Han, Wei-hua
2014-12-01
In space, the absence of atmospheric turbulence, absorption, dispersion and aerosol factors on laser transmission. Therefore, space-based laser has important values in satellite communication, satellite attitude controlling, space debris clearing, and long distance energy transmission, etc. On the other hand, solar energy is a kind of clean and renewable resources, the average intensity of solar irradiation on the earth is 1353W/m2, and it is even higher in space. Therefore, the space-based solar pumped lasers has attracted much research in recent years, most research focuses on solar pumped solid state lasers and solar pumped fiber lasers. The two lasing principle is based on stimulated emission of the rare earth ions such as Nd, Yb, Cr. The rare earth ions absorb light only in narrow bands. This leads to inefficient absorption of the broad-band solar spectrum, and increases the system heating load, which make the system solar to laser power conversion efficiency very low. As a solar pumped semiconductor lasers could absorb all photons with energy greater than the bandgap. Thus, solar pumped semiconductor lasers could have considerably higher efficiencies than other solar pumped lasers. Besides, solar pumped semiconductor lasers has smaller volume chip, simpler structure and better heat dissipation, it can be mounted on a small satellite platform, can compose satellite array, which can greatly improve the output power of the system, and have flexible character. This paper summarizes the research progress of space-based solar pumped semiconductor lasers, analyses of the key technologies based on several application areas, including the processing of semiconductor chip, the design of small and efficient solar condenser, and the cooling system of lasers, etc. We conclude that the solar pumped vertical cavity surface-emitting semiconductor lasers will have a wide application prospects in the space.
Method for formation of high quality back contact with screen-printed local back surface field
Rohatgi, Ajeet; Meemongkolkiat, Vichai
2010-11-30
A thin silicon solar cell having a back dielectric passivation and rear contact with local back surface field is described. Specifically, the solar cell may be fabricated from a crystalline silicon wafer having a thickness from 50 to 500 micrometers. A barrier layer and a dielectric layer are applied at least to the back surface of the silicon wafer to protect the silicon wafer from deformation when the rear contact is formed. At least one opening is made to the dielectric layer. An aluminum contact that provides a back surface field is formed in the opening and on the dielectric layer. The aluminum contact may be applied by screen printing an aluminum paste having from one to 12 atomic percent silicon and then applying a heat treatment at 750 degrees Celsius.
NASA Astrophysics Data System (ADS)
Chhiber, Rohit; Usmanov, Arcadi V.; DeForest, Craig E.; Matthaeus, William H.; Parashar, Tulasi N.; Goldstein, Melvyn L.
2018-04-01
Recent analysis of Solar-Terrestrial Relations Observatory (STEREO) imaging observations have described the early stages of the development of turbulence in the young solar wind in solar minimum conditions. Here we extend this analysis to a global magnetohydrodynamic (MHD) simulation of the corona and solar wind based on inner boundary conditions, either dipole or magnetogram type, that emulate solar minimum. The simulations have been calibrated using Ulysses and 1 au observations, and allow, within a well-understood context, a precise determination of the location of the Alfvén critical surfaces and the first plasma beta equals unity surfaces. The compatibility of the the STEREO observations and the simulations is revealed by direct comparisons. Computation of the radial evolution of second-order magnetic field structure functions in the simulations indicates a shift toward more isotropic conditions at scales of a few Gm, as seen in the STEREO observations in the range 40–60 R ⊙. We affirm that the isotropization occurs in the vicinity of the first beta unity surface. The interpretation based on early stages of in situ solar wind turbulence evolution is further elaborated, emphasizing the relationship of the observed length scales to the much smaller scales that eventually become the familiar turbulence inertial range cascade. We argue that the observed dynamics is the very early manifestation of large-scale in situ nonlinear couplings that drive turbulence and heating in the solar wind.
Introduction to solar heating and cooling design and sizing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This manual is designed to introduce the practical aspects of solar heating/cooling systems to HVAC contractors, architects, engineers, and other interested individuals. It is intended to enable readers to assess potential solar heating/cooling applications in specific geographical areas, and includes tools necessary to do a preliminary design of the system and to analyze its economic benefits. The following are included: the case for solar energy; solar radiation and weather; passive solar design; system characteristics and selection; component performance criteria; determining solar system thermal performance and economic feasibility; requirements, availability, and applications of solar heating systems; and sources of additional information.more » (MHR)« less
NASA Technical Reports Server (NTRS)
Miller, C. G.; Stephens, J. B. (Inventor)
1978-01-01
Shallow pools of liquid to collect low-temperature solar generated thermal energy are described. Narrow elongated trenches, grouped together over a wide area, are lined with a heat-absorbing black liner. The heat-absorbing liquid is kept separate from the thermal energy removing fluid by means such as clear polyethylene material. The covering for the pond may be a fluid or solid. If the covering is a fluid, fire fighting foam, continuously generated, or siloons are used to keep the surface covering clean and insulated. If the thermal energy removing fluid is a gas, a fluid insulation layer contained in a flat polyethlene tubing is used to cover the pond. The side of the tube directed towards the sun is treated to block out ultraviolet radiation and trap in infrared radiation.
Diode laser satellite systems for beamed power transmission
NASA Technical Reports Server (NTRS)
Williams, M. D.; Kwon, J. H.; Walker, G. H.; Humes, D. H.
1990-01-01
A power system composed of an orbiting laser satellite and a surface-based receiver/converter is described. Power is transmitted from the satellite to the receiver/converter by laser beam. The satellite components are: (1) solar collector; (2) blackbody; (3) photovoltaic cells; (4) heat radiators; (5) laser system; and (6) transmission optics. The receiver/converter components are: receiver dish; lenticular lens; photocells; and heat radiator. Although the system can be adapted to missions at many locations in the solar system, only two are examined here: powering a lunar habitat; and powering a lunar rover. Power system components are described and their masses, dimensions, operating powers, and temperatures, are estimated using known or feasible component capabilities. The critical technologies involved are discussed and other potential missions are mentioned.
Sopori, Bhushan L.
1995-01-01
A method and apparatus for improving the accuracy of the simulation of sunlight reaching the earth's surface includes a relatively small heated chamber having an optical inlet and an optical outlet, the chamber having a cavity that can be filled with a heated stream of CO.sub.2 and water vapor. A simulated beam comprising infrared and near infrared light can be directed through the chamber cavity containing the CO.sub.2 and water vapor, whereby the spectral characteristics of the beam are altered so that the output beam from the chamber contains wavelength bands that accurately replicate atmospheric absorption of solar energy due to atmospheric CO.sub.2 and moisture.
Sopori, B.L.
1995-06-20
A method and apparatus for improving the accuracy of the simulation of sunlight reaching the earth`s surface includes a relatively small heated chamber having an optical inlet and an optical outlet, the chamber having a cavity that can be filled with a heated stream of CO{sub 2} and water vapor. A simulated beam comprising infrared and near infrared light can be directed through the chamber cavity containing the CO{sub 2} and water vapor, whereby the spectral characteristics of the beam are altered so that the output beam from the chamber contains wavelength bands that accurately replicate atmospheric absorption of solar energy due to atmospheric CO{sub 2} and moisture. 8 figs.
Fan, Peixun; Wu, Hui; Zhong, Minlin; Zhang, Hongjun; Bai, Benfeng; Jin, Guofan
2016-08-14
Efficient solar energy harvesting and photothermal conversion have essential importance for many practical applications. Here, we present a laser-induced cauliflower-shaped hierarchical surface nanostructure on a copper surface, which exhibits extremely high omnidirectional absorption efficiency over a broad electromagnetic spectral range from the UV to the near-infrared region. The measured average hemispherical absorptance is as high as 98% within the wavelength range of 200-800 nm, and the angle dependent specular reflectance stays below 0.1% within the 0-60° incident angle. Such a structured copper surface can exhibit an apparent heating up effect under the sunlight illumination. In the experiment of evaporating water, the structured surface yields an overall photothermal conversion efficiency over 60% under an illuminating solar power density of ∼1 kW m(-2). The presented technology provides a cost-effective, reliable, and simple way for realizing broadband omnidirectional light absorptive metal surfaces for efficient solar energy harvesting and utilization, which is highly demanded in various light harvesting, anti-reflection, and photothermal conversion applications. Since the structure is directly formed by femtosecond laser writing, it is quite suitable for mass production and can be easily extended to a large surface area.
NASA Technical Reports Server (NTRS)
Lee, S. S.; Sengupta, S.; Nwadike, E. V.
1980-01-01
A one dimensional model for studying the thermal dynamics of cooling lakes was developed and verified. The model is essentially a set of partial differential equations which are solved by finite difference methods. The model includes the effects of variation of area with depth, surface heating due to solar radiation absorbed at the upper layer, and internal heating due to the transmission of solar radiation to the sub-surface layers. The exchange of mechanical energy between the lake and the atmosphere is included through the coupling of thermal diffusivity and wind speed. The effects of discharge and intake by power plants are also included. The numerical model was calibrated by applying it to Cayuga Lake. The model was then verified through a long term simulation using Lake Keowee data base. The comparison between measured and predicted vertical temperature profiles for the nine years is good. The physical limnology of Lake Keowee is presented through a set of graphical representations of the measured data base.
A comparison of microwave versus direct solar heating for lunar brick production
NASA Technical Reports Server (NTRS)
Yankee, S. J.; Strenski, D. G.; Pletka, B. J.; Patil, D. S.; Mutsuddy, B. C.
1990-01-01
Two processing techniques considered suitable for producing bricks from lunar regolith are examined: direct solar heating and microwave heating. An analysis was performed to compare the two processes in terms of the amount of power and time required to fabricate bricks of various sizes. Microwave heating was shown to be significantly faster than solar heating for rapid production of realistic-size bricks. However, the relative simplicity of the solar collector(s) used for the solar furnace compared to the equipment necessary for microwave generation may present an economic tradeoff.
Test bench HEATREC for heat loss measurement on solar receiver tubes
NASA Astrophysics Data System (ADS)
Márquez, José M.; López-Martín, Rafael; Valenzuela, Loreto; Zarza, Eduardo
2016-05-01
In Solar Thermal Electricity (STE) plants the thermal energy of solar radiation is absorbed by solar receiver tubes (HCEs) and it is transferred to a heat transfer fluid. Therefore, heat losses of receiver tubes have a direct influence on STE plants efficiency. A new test bench called HEATREC has been developed by Plataforma Solar de Almería (PSA) in order to determinate the heat losses of receiver tubes under laboratory conditions. The innovation of this test bench consists in the possibility to determine heat losses under controlled vacuum.
Bennett, Charles L.
2007-09-18
A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.
Megawatt solar power systems for lunar surface operations
NASA Technical Reports Server (NTRS)
Adams, Brian; Alhadeff, Sam; Beard, Shawn; Carlile, David; Cook, David; Douglas, Craig; Garcia, Don; Gillespie, David; Golingo, Raymond; Gonzalez, Drew
1990-01-01
Lunar surface operations require habitation, transportation, life support, scientific, and manufacturing systems, all of which require some form of power. As an alternative to nuclear power, the development of a modular one megawatt solar power system is studied, examining both photovoltaic and dynamic cycle conversion methods, along with energy storage, heat rejection, and power backup subsystems. For photovoltaic power conversion, two systems are examined. First, a substantial increase in photovoltaic conversion efficiency is realized with the use of new GaAs/GaSb tandem photovoltaic cells, offering an impressive overall array efficiency of 23.5 percent. Since these new cells are still in the experimental phase of development, a currently available GaAs cell providing 18 percent efficiency is examined as an alternate to the experimental cells. Both Brayton and Stirling cycles, powered by linear parabolic solar concentrators, are examined for dynamic cycle power conversion. The Brayton cycle is studied in depth since it is already well developed and can provide high power levels fairly efficiently in a compact, low mass system. The dynamic conversion system requires large scale waste heat rejection capability. To provide this heat rejection, a comparison is made between a heat pipe/radiative fin system using advanced composites, and a potentially less massive liquid droplet radiator system. To supply power through the lunar night, both a low temperature alkaline fuel cell system and an experimental high temperature monolithic solid-oxide fuel cell system are considered. The reactants for the fuel cells are stored cryogenically in order to avoid the high tankage mass required by conventional gaseous storage. In addition, it is proposed that the propellant tanks from a spent, prototype lunar excursion vehicle be used for this purpose, therefore resulting in a significant overall reduction in effective storage system mass.
The Impact of Wet Soil and Canopy Temperatures on Daytime Boundary-Layer Growth.
NASA Astrophysics Data System (ADS)
Segal, M.; Garratt, J. R.; Kallos, G.; Pielke, R. A.
1989-12-01
The impact of very wet soil and canopy temperatures on the surface sensible heat flux, and on related daytime boundary-layer properties is evaluated. For very wet soils, two winter situations are considered, related to significant changes in soil surface temperature: (1) due to weather perturbations at a given location, and (2) due to the climatological north-south temperature gradient. Analyses and scaling of the various boundary-layer properties, and soil surface fluxes affecting the sensible beat flux, have been made; related evaluations show that changes in the sensible heat flux at a given location by a factor of 2 to 3 due to temperature changes related to weather perturbations is not uncommon. These changes result in significant alterations in the boundary-layer depth; in the atmospheric boundary-layer warming; and in the break-up time of the nocturnal surface temperature inversion. Investigation of the impact of the winter latitudinal temperature gradient on the above characteristics indicated that the relative increase in very wet soil sensible heat flux, due to the climatological reduction in the surface temperature in northern latitudes, moderates to some extent its reduction due to the corresponding decrease in solar radiation. Numerical model simulations confirmed these analytical evaluations.In addition, the impact of synoptic temperature perturbations during the transition seasons (fall and spring) on canopy sensible heal fluxes, and the related boundary-layer characteristics mentioned above, was evaluated. Analogous features to those found for very wet soil surfaces occurred also for the canopy situations. Likewise, evaluations were also carried out to explore the impact of high midlatitude foreste areas on the boundary-layer characteristics during the winter as compared to those during the summer. Similar impacts were found in both seasons, regardless of the substantial difference in the daily total solar radiation.
Orbital foamed material extruder
NASA Technical Reports Server (NTRS)
Tucker, Dennis S. (Inventor)
2009-01-01
This invention is a process for producing foamed material in space comprising the steps of: rotating the material to simulate the force of gravity; heating the rotating material until it is molten; extruding the rotating, molten material; injecting gas into the extruded, rotating, molten material to produce molten foamed material; allowing the molten foamed material to cool to below melting temperature to produce the foamed material. The surface of the extruded foam may be heated to above melting temperature and allowed to cool to below melting temperature. The extruded foam may also be cut to predetermined length. The starting material may be metal or glass. Heating may be accomplished by electrical heating elements or by solar heating.
Computer modeling of dendritic web growth processes and characterization of the material
NASA Technical Reports Server (NTRS)
Seidensticker, R. G.; Kothmann, R. E.; Mchugh, J. P.; Duncan, C. S.; Hopkins, R. H.; Blais, P. D.; Davis, J. R.; Rohatgi, A.
1978-01-01
High area throughput rate will be required for the economical production of silicon dendritic web for solar cells. Web width depends largely on the temperature distribution on the melt surface while growth speed is controlled by the dissipation of the latent heat of fusion. Thermal models were developed to investigate each of these aspects, and were used to engineer the design of laboratory equipment capable of producing crystals over 4 cm wide; growth speeds up to 10 cm/min were achieved. The web crystals were characterized by resistivity, lifetime and etch pit density data as well as by detailed solar cell I-V data. Solar cells ranged in efficiency from about 10 to 14.5% (AM-1) depending on growth conditions. Cells with lower efficiency displayed lowered bulk lifetime believed to be due to surface contamination.
NASA Astrophysics Data System (ADS)
Alifanov, O. M.; Paleshkin, A. V.; Terent‧ev, V. V.; Firsyuk, S. O.
2016-01-01
A methodological approach to determination of the thermal state at a point on the surface of an isothermal element of a small spacecraft has been developed. A mathematical model of heat transfer between surfaces of intricate geometric configuration has been described. In this model, account was taken of the external field of radiant fluxes and of the differentiated mutual influence of the surfaces. An algorithm for calculation of the distribution of the density of the radiation absorbed by surface elements of the object under study has been proposed. The temperature field on the lateral surface of the spacecraft exposed to sunlight and on its shady side has been calculated. By determining the thermal state of magnetic controls of the orientation system as an example, the authors have assessed the contribution of the radiation coming from the solar-cell panels and from the spacecraft surface.
NASA Technical Reports Server (NTRS)
1980-01-01
The solar heating system installer guidelines are presented for each subsystem. This single family residential heating system is a solar-assisted, hydronic-to-warm-air system with solar-assisted domestic water heating. It is composed of the following major components: (1) liquid cooled flat plate collectors; (2) water storage tank; (3) passive solar-fired domestic water preheater; (4) electric hot water heater; (5) heat pump with electric backup; (6) solar hot water coil unit; (7) tube-and-shell heat exchanger, three pumps, and associated pipes and valving in an energy transport module; (8) control system; and (9) air-cooled heat purge unit. Information is provided on the operating procedures, controls, caution requirements, and routine and schedule maintenance in the form of written descriptions, schematics, detail drawings, pictures, and manufacturer's component data.
Thermo-mechanical and optical optimization of the molten salt receiver for a given heliostat field
NASA Astrophysics Data System (ADS)
Augsburger, Germain; Das, Apurba K.; Boschek, Erik; Clark, Michael M.
2016-05-01
The tower type molten salt solar thermal power plant has proven to be advantageous over other utility scale solar power plant configurations due to its scalability and provision of storage, thereby improving the dispatchability. The configuration consists of a molten salt central receiver (MSCR) located atop an optimally located tower within a heliostat field with thousands of mirrors. The MSCR receives the concentrated energy from the heliostat field which heats a molten salt heat transfer fluid for thermal storage and utilization in producing steam as and when required for power generation. The MSCR heat transfer surface consists of banks of tangent tubes arranged in panels. The combined cost of the heliostat field and the receiver is 40%-50% of the total plant cost, which calls for optimization to maximize their utilization. Several previous studies have looked into the optimum solar power plant size based on various site conditions. However, the combined optimization of the receiver and the heliostat field has not been reported before. This study looks into the optimum configuration of the receiver for a given heliostat field. An in-house tool has been developed to select and rank a few receiver surface configurations (typically <50) from a list of hundreds of thousands of possible options. The operating limits which the heliostat field needs to obey are defined for the ranked surface configurations based on several different design considerations (e.g. mechanical integrity, corrosion limits). The thermal output of the receiver configurations for a given heliostat field is maximized. A combined rank indicating the optimum configurations in descending order of preference is presented based on the performance and various other practical considerations (e.g. total surface area, cost of material, ability of aiming strategies to distribute the flux). The methodology thus provided can be used as a guideline to arrive at an optimum receiver configuration for a given heliostat field.
NASA Technical Reports Server (NTRS)
Hinkelman, Laura M.; Evans, K. Franklin; Clothiaux, Eugene E.; Ackerman, Thomas P.; Stackhouse, Paul W., Jr.
2006-01-01
Cumulus clouds can become tilted or elongated in the presence of wind shear. Nevertheless, most studies of the interaction of cumulus clouds and radiation have assumed these clouds to be isotropic. This paper describes an investigation of the effect of fair-weather cumulus cloud field anisotropy on domain-averaged solar fluxes and atmospheric heating rate profiles. A stochastic field generation algorithm was used to produce twenty three-dimensional liquid water content fields based on the statistical properties of cloud scenes from a large eddy simulation. Progressively greater degrees of x-z plane tilting and horizontal stretching were imposed on each of these scenes, so that an ensemble of scenes was produced for each level of distortion. The resulting scenes were used as input to a three-dimensional Monte Carlo radiative transfer model. Domain-average transmission, reflection, and absorption of broadband solar radiation were computed for each scene along with the average heating rate profile. Both tilt and horizontal stretching were found to significantly affect calculated fluxes, with the amount and sign of flux differences depending strongly on sun position relative to cloud distortion geometry. The mechanisms by which anisotropy interacts with solar fluxes were investigated by comparisons to independent pixel approximation and tilted independent pixel approximation computations for the same scenes. Cumulus anisotropy was found to most strongly impact solar radiative transfer by changing the effective cloud fraction, i.e., the cloud fraction when the field is projected on a surface perpendicular to the direction of the incident solar beam.
Solar Probe Plus: Report of the Science and Technology Definition Team
NASA Technical Reports Server (NTRS)
2008-01-01
Solar Probe+ will be an extraordinary and historic mission, exploring what is arguably the last region of the solar system to be visited by a spacecraft, the Sun s outer atmosphere or corona as it extends out into space. Approaching as close as 9.5 RS* (8.5 RS above the Sun s surface), Solar Probe+ will repeatedly sample the near-Sun environment, revolutionizing our knowledge and understanding of coronal heating and of the origin and evolution of the solar wind and answering critical questions in heliophysics that have been ranked as top priorities for decades. Moreover, by making direct, in-situ measurements of the region where some of the most hazardous solar energetic particles are energized, Solar Probe+ will make a fundamental contribution to our ability to characterize and forecast the radiation environment in which future space explorers will work and live.
Weld Repair of Thin Aluminum Sheet
NASA Technical Reports Server (NTRS)
Beuyukian, C. S.; Mitchell, M. J.
1986-01-01
Weld repairing of thin aluminum sheets now possible, using niobium shield and copper heat sinks. Refractory niobium shield protects aluminum adjacent to hole, while copper heat sinks help conduct heat away from repair site. Technique limits tungsten/inert-gas (TIG) welding bombardment zone to melt area, leaving surrounding areas around weld unaffected. Used successfully to repair aluminum cold plates on Space Shuttle, Commercial applications, especially in sealing fractures, dents, and holes in thin aluminum face sheets or clad brazing sheet in cold plates, heat exchangers, coolers, and Solar panels. While particularly suited to thin aluminum sheet, this process also used in thicker aluminum material to prevent surface damage near weld area.
A generalized analysis of solar space heating
NASA Astrophysics Data System (ADS)
Clark, J. A.
A life-cycle model is developed for solar space heating within the United States. The model consists of an analytical relationship among five dimensionless parameters that include all pertinent technical, climatological, solar, operating and economic factors that influence the performance of a solar space heating system. An important optimum condition presented is the break-even metered cost of conventional fuel at which the cost of the solar system is equal to that of a conventional heating system. The effect of Federal (1980) and State (1979) income tax credits on these costs is determined. A parameter that includes both solar availability and solar system utilization is derived and plotted on a map of the U.S. This parameter shows the most favorable present locations for solar space heating application to be in the Central and Mountain States. The data employed are related to the rehabilitated solar data recently made available by the National Climatic Center.
Economical solar-heating for homes
NASA Technical Reports Server (NTRS)
Allred, J. W.; Shinn, J. M., Jr.; Kirby, C. E.; Barringer, S. R.
1977-01-01
Do-it-yourself supplementary solar-heating system is available for purchase at approximately $2,000. Report describes design, construction, testing, and economic analysis of low-cost solar heating system.
Solar cooling system performance, Frenchman's Reef Hotel, Virgin Islands
NASA Astrophysics Data System (ADS)
Harber, H.
1981-09-01
The operational and thermal performance of a variety of solar systems are described. The Solar Cooling System was installed in a hotel at St. Thomas, U. S. Virgin Islands. The system consists of the evacuated glass tube collectors, two 2500 gallon tanks, pumps, computerized controller, a large solar optimized industrial sized lithium bromide absorption chiller, and associated plumbing. Solar heated water is pumped through the system to the designed public areas such as lobby, lounges, restaurant and hallways. Auxiliary heat is provided by steam and a heat exchanger to supplement the solar heat.
Solar cooling system performance, Frenchman's Reef Hotel, Virgin Islands
NASA Technical Reports Server (NTRS)
Harber, H.
1981-01-01
The operational and thermal performance of a variety of solar systems are described. The Solar Cooling System was installed in a hotel at St. Thomas, U. S. Virgin Islands. The system consists of the evacuated glass tube collectors, two 2500 gallon tanks, pumps, computerized controller, a large solar optimized industrial sized lithium bromide absorption chiller, and associated plumbing. Solar heated water is pumped through the system to the designed public areas such as lobby, lounges, restaurant and hallways. Auxiliary heat is provided by steam and a heat exchanger to supplement the solar heat.
Performance and operational analysis of a liquid desiccant open-flow solar collector
NASA Astrophysics Data System (ADS)
Grodzka, P. G.; Rico, S. S.
1982-10-01
Theoretical predictions of the heat and mass transfer in an open flow solar collector used in conjunction with an absorption chiller are compared with performance data from a rooftop system. The study focuses on aqueous solutions of a hygroscopic salt, e.g., LiCl, flowing continuously over a solar absorbing surface. Water in the solution sublimes to a region of lower vapor pressure, i.e., the atmosphere. Direction of the water-depleted dessiccant to a storage volume and then to circulation around an evaporator unit permits operation of a solar-powered air conditioner. A closed form solution was defined for the heat and mass transfer, along with a finite difference solution. The system studied comprised a sloped roof top with 2500 sq ft of asphalt shingles, collector pipes beneath the shingles, and two 500 gal storage tanks. Relatively good agreement was found between the models and the recorded data, although some discrepancies were present when considering temperatures and performance at specific times of day. The measured 30-40% efficiencies indicated that further development of the system is warranted.
A Mechanism For Solar Forcing of Climate: Did the Maunder Minimum Cause the Little Ice Age?
NASA Technical Reports Server (NTRS)
Yung, Yuk L.
2004-01-01
The mechanism we wish to demonstrate exploits chemical, radiative, and dynamical sensitivities in the stratosphere to affect the climate of the troposphere. The sun, while its variability in total radiative output over the course of the solar cycle is on the order of 0.1%, exhibits variability in the UV output on the order of 5%. We expect to show that a substantially decreased solar UV output lessened the heating of the Earth's stratosphere during the Maunder Minimum, through decreased radiative absorption by ozone and oxygen. These changes in stratospheric heating would lead to major changes in the stratospheric zonal wind pattern which would in turn affect the propagation characteristics of planetary-scale waves launched in the winter hemisphere. Until recently, there was no quantitative data to relate the changes in the stratosphere to those at the surface. There is now empirical evidence from the NCEP Reanalysis data that a definitive effect of the solar cycle on climate in the troposphere exists. Our recent work is summarized as follows (see complete list of publications in later part of this report).
Heat-Transfer Fluids for Solar-Energy Systems
NASA Technical Reports Server (NTRS)
Parker, J. C.
1982-01-01
43-page report investigates noncorrosive heat-transport fluids compatible with both metallic and nonmetallic solar collectors and plumbing systems. Report includes tables and figures of X-ray inspections for corrosion and schematics of solar-heat transport systems and heat rejection systems.
Apparatus for solar coal gasification
Gregg, D.W.
1980-08-04
Apparatus for using focused solar radiation to gasify coal and other carbonaceous materials is described. Incident solar radiation is focused from an array of heliostats through a window onto the surface of a moving bed of coal, contained within a gasification reactor. The reactor is designed to minimize contact between the window and solids in the reactor. Steam introduced into the gasification reactor reacts with the heated coal to produce gas consisting mainly of carbon monoxide and hydrogen, commonly called synthesis gas, which can be converted to methane, methanol, gasoline, and other useful products. One of the novel features of the invention is the generation of process steam in one embodiment at the rear surface of a secondary mirror used to redirect the focused sunlight. Another novel feature of the invention is the location and arrangement of the array of mirrors on an inclined surface (e.g., a hillside) to provide for direct optical communication of said mirrors and the carbonaceous feed without a secondary redirecting mirror.
Interim Feasibility Assessment Method for Solar Heating and Cooling of Army Buildings
1976-05-01
Solar Heating and Cooling System Diagram Conventional Flat-Plate Collector ...tank. The sunlight falling on the array warms a fluid (usually glycol and water), which is pumped through the solar collectors . The heat from this...the system an SYSTEM DIAGRAM auxiliary healer capable of supplying all or part of the heating or cooling demand. Solar Collectors The function
ERIC Educational Resources Information Center
Sheet Metal and Air Conditioning Contractors National Association, Vienna, VA.
This study guide groups eleven lessons into four study units. The first unit discusses the development and basic concepts of solar heating. The second unit deals with the nomenclature of the solar heating system. The third study unit covers sizing of the solar heating system to meet demand and discusses the operation of the total system. The…
NASA Technical Reports Server (NTRS)
Jones, C. B.; Smetana, F. O.
1979-01-01
It was found that if the upper and lower ends of a collector were opened, large free convention currents may be set up between the collector surface and the cover glass(es) which can result in appreciable heat rejection. If the collector is so designed that both plates surfaces are exposed to convection currents when the upper and lower ends of the collector enclosure are opened, the heat rejection rate is 300 watts sq m when the plate is 13 C above ambient. This is sufficient to permit a collector array designed to provide 100 percent of the heating needs of a home to reject the accumulated daily air conditioning load during the course of a summer night. This also permits the overall energy requirements for cooling to be reduced by at least 15 percent and shift the load on the utility entirely to the nighttime hours.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alemohammad, Seyed Hamed; Fang, Bin; Konings, Alexandra G.
A new global estimate of surface turbulent fluxes, latent heat flux (LE) and sensible heat flux ( H), and gross primary production (GPP) is developed using a machine learning approach informed by novel remotely sensed solar-induced fluorescence (SIF) and other radiative and meteorological variables. This is the first study to jointly retrieve LE, H, and GPP using SIF observations. The approach uses an artificial neural network (ANN) with a target dataset generated from three independent data sources, weighted based on a triple collocation (TC) algorithm. The new retrieval, named Water, Energy, and Carbon with Artificial Neural Networks (WECANN), provides estimatesmore » of LE, H, and GPP from 2007 to 2015 at 1° × 1° spatial resolution and at monthly time resolution. The quality of ANN training is assessed using the target data, and the WECANN retrievals are evaluated using eddy covariance tower estimates from the FLUXNET network across various climates and conditions. When compared to eddy covariance estimates, WECANN typically outperforms other products, particularly for sensible and latent heat fluxes. Analyzing WECANN retrievals across three extreme drought and heat wave events demonstrates the capability of the retrievals to capture the extent of these events. Uncertainty estimates of the retrievals are analyzed and the interannual variability in average global and regional fluxes shows the impact of distinct climatic events – such as the 2015 El Niño – on surface turbulent fluxes and GPP.« less
Alemohammad, Seyed Hamed; Fang, Bin; Konings, Alexandra G.; ...
2017-09-20
A new global estimate of surface turbulent fluxes, latent heat flux (LE) and sensible heat flux ( H), and gross primary production (GPP) is developed using a machine learning approach informed by novel remotely sensed solar-induced fluorescence (SIF) and other radiative and meteorological variables. This is the first study to jointly retrieve LE, H, and GPP using SIF observations. The approach uses an artificial neural network (ANN) with a target dataset generated from three independent data sources, weighted based on a triple collocation (TC) algorithm. The new retrieval, named Water, Energy, and Carbon with Artificial Neural Networks (WECANN), provides estimatesmore » of LE, H, and GPP from 2007 to 2015 at 1° × 1° spatial resolution and at monthly time resolution. The quality of ANN training is assessed using the target data, and the WECANN retrievals are evaluated using eddy covariance tower estimates from the FLUXNET network across various climates and conditions. When compared to eddy covariance estimates, WECANN typically outperforms other products, particularly for sensible and latent heat fluxes. Analyzing WECANN retrievals across three extreme drought and heat wave events demonstrates the capability of the retrievals to capture the extent of these events. Uncertainty estimates of the retrievals are analyzed and the interannual variability in average global and regional fluxes shows the impact of distinct climatic events – such as the 2015 El Niño – on surface turbulent fluxes and GPP.« less
NASA Astrophysics Data System (ADS)
Audigié, Pauline; Bizien, Nicolas; Baráibar, Ignacio; Rodríguez, Sergio; Pastor, Ana; Hernández, Marta; Agüero, Alina
2017-06-01
Molten nitrates can be employed as heat storage fluids in solar concentration power plants. However molten nitrates are corrosive and if operating temperatures are raised to increase efficiencies, the corrosion rates will also increase. High temperature corrosion resistant coatings based on Al have demonstrated excellent results in other sectors such as gas turbines. Aluminide slurry coated and uncoated P92 steel specimens were exposed to the so called Solar Salt (industrial grade), a binary eutectic mixture of 60 % NaNO3 - 40 % KNO3, in air for 2000 hours at 550°C and 580°C in order to analyze their behavior as candidates to be used in future solar concentration power plants employing molten nitrates as heat transfer fluids. Coated ferritic steels constitute a lower cost technology than Ni based alloy. Two different coating morphologies resulting from two heat treatment performed at 700 and 1050°C after slurry application were tested. The coated systems exhibited excellent corrosion resistance at both temperatures, whereas uncoated P92 showed significant mass loss from the beginning of the test. The coatings showed very slow reaction with the molten Solar Salt. In contrast, uncoated P92 developed a stratified, unprotected Fe, Cr oxide with low adherence which shows oscillating Cr content as a function of coating depth. NaFeO2 was also found at the oxide surface as well as within the Fe, Cr oxide.
Furler, Philipp; Scheffe, Jonathan; Marxer, Daniel; Gorbar, Michal; Bonk, Alexander; Vogt, Ulrich; Steinfeld, Aldo
2014-06-14
Efficient heat transfer of concentrated solar energy and rapid chemical kinetics are desired characteristics of solar thermochemical redox cycles for splitting CO2. We have fabricated reticulated porous ceramic (foam-type) structures made of ceria with dual-scale porosity in the millimeter and micrometer ranges. The larger void size range, with dmean = 2.5 mm and porosity = 0.76-0.82, enables volumetric absorption of concentrated solar radiation for efficient heat transfer to the reaction site during endothermic reduction, while the smaller void size range within the struts, with dmean = 10 μm and strut porosity = 0-0.44, increases the specific surface area for enhanced reaction kinetics during exothermic oxidation with CO2. Characterization is performed via mercury intrusion porosimetry, scanning electron microscopy, and thermogravimetric analysis (TGA). Samples are thermally reduced at 1773 K and subsequently oxidized with CO2 at temperatures in the range 873-1273 K. On average, CO production rates are ten times higher for samples with 0.44 strut porosity than for samples with non-porous struts. The oxidation rate scales with specific surface area and the apparent activation energy ranges from 90 to 135.7 kJ mol(-1). Twenty consecutive redox cycles exhibited stable CO production yield per cycle. Testing of the dual-scale RPC in a solar cavity-receiver exposed to high-flux thermal radiation (3.8 kW radiative power at 3015 suns) corroborated the superior performance observed in the TGA, yielding a shorter cycle time and a mean solar-to-fuel energy conversion efficiency of 1.72%.
Solar Process Heat Basics | NREL
Process Heat Basics Solar Process Heat Basics Commercial and industrial buildings may use the same , black metal panel mounted on a south-facing wall to absorb the sun's heat. Air passes through the many nonresidential buildings. A typical system includes solar collectors that work along with a pump, heat exchanger
Economic analysis of solar-heated broiler houses in Arkanasas. [Simulation study of 4 locations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunderson, R.O.
A simulation study of the heating energy requirements was made for a prototype broiler house for four locations in Arkansas. In addition, a simulation of the operation of four solar heating systems was made to determine the amount of solar radiation which was available at each location and the portion of the building heat load which could be accounted for by the solar heating systems. The major objectives of this study were: (1) to calculate the heating energy requirements for a broiler house and the supply of solar radiation for four locations in Arkansas: Little Rock, texarkana, Fort Smith andmore » Fayetteville, (2) calculate the auxiliary fuel requirements for each location in the study and for each heating system under examination, (3) compare the cost of a conventional heating system versus the cost of a solar-assisted heating system, and (4) examine the relative financial position of the broiler enterprise amine the relative financial position of the broiler enterprise for each heating system under a variety of economic assumptions.« less
NASA Technical Reports Server (NTRS)
1979-01-01
The home shown at right is specially designed to accommodate solar heating units; it has roof planes in four directions, allowing placement of solar collectors for best exposure to the sun. Plans (bottom) and complete working blueprints for the solar-heated house are being marketed by Home Building Plan Service, Portland, Oregon. The company also offers an inexpensive schematic (center) showing how a homeowner only moderately skilled in the use of tools can build his own solar energy system, applicable to new or existing structures. The schematic is based upon the design of a low-cost solar home heating system built and tested by NASA's Langley Research Center; used to supplement a warm-air heating system, it can save the homeowner about 40 percent of his annual heating bill for a modest investment in materials and components. Home Building Plan Service saved considerable research time by obtaining a NASA technical report which details the Langley work. The resulting schematic includes construction plans and simplified explanations of solar heat collection, collectors and other components, passive heat factors, domestic hot water supply and how to work with local heating engineers.
Modeling runoff generation in a small snow-dominated mountainous catchment
USDA-ARS?s Scientific Manuscript database
Snowmelt in mountainous areas is an important contributor to river water flows in the western United States. We developed a distributed model that calculates solar radiation, canopy energy balance, surface energy balance, snow pack dynamics, soil water flow, snow–soil–bedrock heat exchange, soil wat...
Bench-scale screening tests for a boiling sodium-potassium alloy solar receiver
NASA Astrophysics Data System (ADS)
Moreno, J. B.; Moss, T. A.
1993-06-01
Bench-scale tests were carried out in support of the design of a second-generation 75-kW(sub t) reflux pool-boiler solar receiver. The receiver will be made from Haynes Alloy 230 and will contain the sodium-potassium alloy NaK-78. The bench-scale tests used quartz lamp heated boilers to screen candidate boiling stabilization materials and methods at temperatures up to 750 degree C. Candidates that provided stable boiling were tested for hot-restart behavior. Poor stability was obtained with single 1/4-inch diameter patches of powdered metal hot press sintered onto the wetted side of the heat-input area. Laser-drilled and electric discharge machined cavities in the heated surface also performed poorly. Small additions of xenon, and heated-surface tilt out of the vertical, dramatically improved poor boiling stability; additions of helium or oxygen did not. The most stable boiling was obtained when the entire heat-input area was covered by a powdered-metal coating. The effect of heated-area size was assessed for one coating: at low incident fluxes, when even this coating performed poorly, increasing the heated-area size markedly improved boiling stability. Good hot-restart behavior was not observed with any candidate, although results were significantly better with added xenon in a boiler shortened from 3 to 2 feet. In addition to the screening tests, flash-radiography imaging of metal-vapor bubbles during boiling was attempted. Contrary to the Cole-Rohsenow correlation, these bubble-size estimates did not vary with pressure; instead they were constant, consistent with the only other alkali metal measurements, but about 1/2 their size.
Bombs and Flares at the Surface and Lower Atmosphere of the Sun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansteen, V. H.; Pereira, T. M. D.; Carlsson, M.
A spectacular manifestation of solar activity is the appearance of transient brightenings in the far wings of the H α line, known as Ellerman bombs (EBs). Recent observations obtained by the Interface Region Imaging Spectrograph have revealed another type of plasma “bombs” (UV bursts) with high temperatures of perhaps up to 8 × 10{sup 4} K within the cooler lower solar atmosphere. Realistic numerical modeling showing such events is needed to explain their nature. Here, we report on 3D radiative magnetohydrodynamic simulations of magnetic flux emergence in the solar atmosphere. We find that ubiquitous reconnection between emerging bipolar magnetic fieldsmore » can trigger EBs in the photosphere, UV bursts in the mid/low chromosphere and small (nano-/micro-) flares (10{sup 6} K) in the upper chromosphere. These results provide new insights into the emergence and build up of the coronal magnetic field and the dynamics and heating of the solar surface and lower atmosphere.« less
Terrestrial cooling and solar variability
NASA Technical Reports Server (NTRS)
Agee, E. M.
1982-01-01
Observational evidence from surface temperature records is presented and discussed which suggests a significant cooling trend over the Northern Hemisphere from 1940 to the present. This cooling trend is associated with an increase of the latitudinal gradient of temperature and the lapse rate, as predicted by climate models with decreased solar input and feedback mechanisms. Evidence suggests that four of these 80- to 100-year cycles of global surface temperature fluctuation may have occurred, and in succession, from 1600 to the present. Interpretation of sunspot activity were used to infer a direct thermal response of terrestrial temperature to solar variability on the time scale of the Gleissberg cycle (90 years, an amplitude of the 11-year cycles). A physical link between the sunspot activity and the solar parameter is hypothesized. Observations of sensible heat flux by stationary planetary waves and transient eddies, as well as general circulation modeling results of these processes, were examined from the viewpoint of the hypothesis of cooling due to reduced insolation.
Initial operation of a solar heating and cooling system in a full-scale solar building test facility
NASA Technical Reports Server (NTRS)
Knoll, R. H.; Miao, D.; Hamlet, I. L.; Jensen, R. N.
1976-01-01
The Solar Building Test Facility (SBTF) located at Hampton, Virginia became operational in early summer of 1976. This facility is a joint effort by NASA-Lewis and NASA-Langley to advance the technology for heating and cooling of office buildings with solar energy. Its purposes are to (1) test system components which include high-performing collectors, (2) test performance of complete solar heating and cooling system, (3) investigate component interactions and (4) investigate durability, maintenance and reliability of components. The SBTF consists of a 50,000 square foot office building modified to accept solar heated water for operation of an absorption air conditioner and for the baseboard heating system. A 12,666 square foot solar collector field with a 30,000 gallon storage tank provides the solar heated water. A description of the system and the collectors selected is given here, along with the objectives, test approach, expected system performance and some preliminary results.
Solar space heating for the Visitors Center, Stephens College, Columbia, Missouri
NASA Technical Reports Server (NTRS)
1980-01-01
The solar energy system located at the Visitors' Center on the Stephens College Campus, Columbia, Missouri is discussed. The system is installed in a four-story, 15,000 square foot building. The solar energy system is an integral design of the building and utilizes 176 hydronic flat plate collectors which use a 50 percent water ethylene blycol solution and water-to-water heat exchanger. Solar heated water is stored in a 5,000 gallon water storage tank located in the basement equipment room. A natural gas fired hot water boiler supplies hot water when the solar energy heat supply fails to meet the demand. The designed solar contribution is 71 percent of the heating load.
Absorption of solar energy heats up our planet's surface and the atmosphere and makes life for us po
NASA Technical Reports Server (NTRS)
2002-01-01
Credit: Image courtesy Barbara Summey, NASA Goddard Visualization Analysis Lab, based upon data processed by Takmeng Wong, CERES Science Team, NASA Langley Research Center Satellite: Terra Sensor: CERES Image Date: 09-30-2001 VE Record ID: 11546 Description: Absorption of solar energy heats up our planet's surface and the atmosphere and makes life for us possible. But the energy cannot stay bound up in the Earth's environment forever. If it did then the Earth would be as hot as the Sun. Instead, as the surface and the atmosphere warm, they emit thermal longwave radiation, some of which escapes into space and allows the Earth to cool. This false-color image of the Earth was produced on September 30, 2001, by the Clouds and the Earth's Radiant Energy System (CERES) instrument flying aboard NASA's Terra spacecraft. The image shows where more or less heat, in the form of longwave radiation, is emanating from the top of Earth's atmosphere. As one can see in the image, the thermal radiation leaving the oceans is fairly uniform. The blue swaths across the central Pacific represent thick clouds, the tops of which are so high they are among the coldest places on Earth. In the American Southwest, which can be seen in the upper righthand corner of the globe, there is often little cloud cover to block outgoing radiation and relatively little water to absorb solar energy. Consequently, the amount of outgoing radiation in the American Southwest exceeds that of the oceans. Also, that region was experiencing an extreme heatwave when these data were acquired. Recently, NASA researchers discovered that incoming solar radiation and outgoing thermal radiation increased in the tropics from the 1980s to the 1990s. (Click to read the press release .) They believe that the reason for the unexpected increase has to do with an apparent change in circulation patterns around the globe, which effectively reduced the amount of water vapor and cloud cover in the upper reaches of the atmosphere. Without the clouds, more sunlight was allowed to enter the tropical zones and more thermal energy was allowed to leave. The findings may have big implications for climate change and future global warming. 'This suggests that the tropical heat engine increased its speed,' observes Dr. Bruce Wielicki, of NASA Langley Research Center. 'It's as if the heat engine in the tropics has become less efficient, using more fuel in the 1990s than in the 1980s.'
What land covers are effective in mitigating a heat island in urban building rooftop?
NASA Astrophysics Data System (ADS)
Lee, S.; Ryu, Y.
2014-12-01
Since the 20th century, due to the rapid urbanization many urban environment problems have got blossomed and above all heat island has been recognized as an important issue. There are several causes of urban heat island, but land cover change occupies the largest portion of them. Owing to urban expansion, vegetation is changed into asphalt pavements and concrete buildings, which reduces latent heat flux. To mitigate the problems, people enlarge vegetation covers such as planting street trees, making rooftop gardens and constructing parks or install white roofs that feature high albedo on a building. While the white roofs reflect about 70% of solar radiation and absorb less radiation, vegetation has low albedo but cools the air through transpiration and fixes carbon dioxide through photosynthesis. There are some studies concerning which one is more effective to mitigate heat island between the green roof and white roof. This study compares the green roof and white roof and additionally considers carbon fixation that has not been treated in other studies. Furthermore, this study ascertains an efficiency of solar-cell panel that is used for building roof recently. The panel produces electric power but has low albedo which could warm the air. The experiment is conducted at the rooftop in Seoul, Korea and compares green roof (grass), white roof (painted cover), black roof (solar panel) and normal painted roof. Surface temperature and albedo are observed for the four roof types and incoming shortwave, outgoing longwave and carbon flux are measured in green roof solely. In the case of solar panels, the electricity generation is calculated from the incoming radiation. We compute global warming potentials for the four roof types and test which roof type is most effective in reducing global warming potential.
A generalized analysis of solar space heating in the United States
NASA Astrophysics Data System (ADS)
Clark, J. A.
A life-cycle model is developed for solar space heating within the United States that is based on the solar design data from the Los Alamos Scientific Laboratory. The model consists of an analytical relationship among five dimensionless parameters that include all pertinent technical, climatological, solar, operating and economic factors that influence the performance of a Solar Space Heating System. An important optimum condition presented is the 'Breakeven' metered cost of conventional fuel at which the cost of the solar system is equal to that of a conventional heating system. The effect of Federal (1980) and State (1979) income tax credits on these costs is determined. A parameter that includes both solar availability and solar system utilization is derived and plotted on a map of the U.S. This parameter shows the most favorable present locations for solar space heating application to be in the Central and Mountain States. The data employed are related to the rehabilitated solar data recently made available by the National Climatic Center (SOLMET).
NASA Technical Reports Server (NTRS)
Buckley, J. D.; Fox, R. L.; Swain, R. J.
1980-01-01
Low-cost, self-contained, portable welder joins plastic parts by induction heating. Welder is useable in any atmosphere or in vacuum and with most types of thermoplastic; plastic components can be joined in situ. Device is applicable to aerospace industry and in automobile, furniture, and construction industries. Power requirements are easily met by battery or solar energy. In welder, toroidal inductor transfers magnetic flux through thermoplastic to screen. Heated screen causes plastic surface on either side to melt and flow into it to form joint.
The development of a solar-powered residential heating and cooling system
NASA Technical Reports Server (NTRS)
1974-01-01
Efforts to demonstrate the engineering feasibility of utilizing solar power for residential heating and cooling are described. These efforts were concentrated on the analysis, design, and test of a full-scale demonstration system which is currently under construction at the National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville, Alabama. The basic solar heating and cooling system under development utilizes a flat plate solar energy collector, a large water tank for thermal energy storage, heat exchangers for space heating and water heating, and an absorption cycle air conditioner for space cooling.
Pool boiler heat transport system for a 25 kWe advanced Stirling conversion system
NASA Astrophysics Data System (ADS)
Anderson, W. G.; Rosenfeld, J. H.; Saaski, E. L.; Noble, J.; Tower, L.
Experiments to determine alkali metal/enhanced surface combinations that have stable boiling at the temperatures and heat fluxes that occur in the Stirling engine are reported. Two enhanced surfaces and two alkali metal working fluids were evaluated. The enhanced surfaces were an EDM hole covered surface and a sintered-powder-metal porous layer surface. The working fluids tested were potassium and eutectic sodium-potasium alloy (NaK), both with and without undissolved noncondensible gas. Noncondensible gas (He and Xe) was added to the system to provide gas in the nucleation sites, preventing quenching of the sites. The experiments demonstrated the potential of an alkali metal pool boiler heat transport system for use in a solar-powered Stirling engine. The most favorable fluid/surface combination tested was NaK boiling on a -100 +140 mesh 304L stainless steel sintered porous layer with no undissolved noncondensible gas. This combination provided stable, high-performance boiling at the operating temperature of 700 C. Heat fluxes into the system ranged from 10 to 50 W/sq cm. The transition from free convection to nucleate boiling occurred at temperatures near 540 C. Based on these experiments, a pool boiler was designed for a full-scale 25-kWe Stirling system.
Pool boiler heat transport system for a 25 kWe advanced Stirling conversion system
NASA Technical Reports Server (NTRS)
Anderson, W. G.; Rosenfeld, J. H.; Saaski, E. L.; Noble, J.; Tower, L.
1990-01-01
Experiments to determine alkali metal/enhanced surface combinations that have stable boiling at the temperatures and heat fluxes that occur in the Stirling engine are reported. Two enhanced surfaces and two alkali metal working fluids were evaluated. The enhanced surfaces were an EDM hole covered surface and a sintered-powder-metal porous layer surface. The working fluids tested were potassium and eutectic sodium-potasium alloy (NaK), both with and without undissolved noncondensible gas. Noncondensible gas (He and Xe) was added to the system to provide gas in the nucleation sites, preventing quenching of the sites. The experiments demonstrated the potential of an alkali metal pool boiler heat transport system for use in a solar-powered Stirling engine. The most favorable fluid/surface combination tested was NaK boiling on a -100 +140 mesh 304L stainless steel sintered porous layer with no undissolved noncondensible gas. This combination provided stable, high-performance boiling at the operating temperature of 700 C. Heat fluxes into the system ranged from 10 to 50 W/sq cm. The transition from free convection to nucleate boiling occurred at temperatures near 540 C. Based on these experiments, a pool boiler was designed for a full-scale 25-kWe Stirling system.
A numerical forecast model for road meteorology
NASA Astrophysics Data System (ADS)
Meng, Chunlei
2017-05-01
A fine-scale numerical model for road surface parameters prediction (BJ-ROME) is developed based on the Common Land Model. The model is validated using in situ observation data measured by the ROSA road weather stations of Vaisala Company, Finland. BJ-ROME not only takes into account road surface factors, such as imperviousness, relatively low albedo, high heat capacity, and high heat conductivity, but also considers the influence of urban anthropogenic heat, impervious surface evaporation, and urban land-use/land-cover changes. The forecast time span and the update interval of BJ-ROME in vocational operation are 24 and 3 h, respectively. The validation results indicate that BJ-ROME can successfully simulate the diurnal variation of road surface temperature both under clear-sky and rainfall conditions. BJ-ROME can simulate road water and snow depth well if the artificial removing was considered. Road surface energy balance in rainy days is quite different from that in clear-sky conditions. Road evaporation could not be neglected in road surface water cycle research. The results of sensitivity analysis show solar radiation correction coefficient, asphalt depth, and asphalt heat conductivity are important parameters in road interface temperatures simulation. The prediction results could be used as a reference of maintenance decision support system to mitigate the traffic jam and urban water logging especially in large cities.
Duffie, J A
1976-01-01
Solar energy is discussed as an energy resource that can be converted into useful energy forms to meet a variety of energy needs. The review briefly explains the nature of this energy resource, the kinds of applications that can be made useful, and the status of several systems to which it has been applied. More specifically, information on solar collectors, solar water heating, solar heating of buildings, solar cooling plus other applications, are included.
The USDOE Reflux Receiver Development Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klimas, P.C.; Andraka, C.E.; Moreno, J.B.
1992-01-01
The US DOE's Solar Thermal Electric Program, through its Sandia and Renewable Energy National Laboratories, has been actively developing liquid metal reflux receivers for application to modular parabolic dish concentrator/Stirling cycle converter solar energy systems. These systems are intended for use in high-value remote and grid-connected utility applications. The liquid-metal reflux-receiver concept was selected because this type of solar receiver (1) can optically mate a given dish with a given engine, and (2) can provide an isothermal environment for the high-temperature heat-input portion of the l engine, thus enhancing reliability. The Program is investigating two types of reflux receivers: heatmore » pipes and pool boilers. Sintered-nickel-wick sodium heat-pipe receivers rated at 30 kW[sub t] have been extensively tested as part of DOE/Cummins cooperative commercialization programs. One recent test article was tested at rated and power temperature for 500 hours. This same receiver demonstrated a 40 kW[sub t] throughput, believed to be the most ever for a solar heated heat-pipe receiver. Another 30-kW[sub t] sodium heat-pipe receiver, this one using a stainless-steel-screen wick design, was also tested as part of these cooperative programs. Much of experimental reflux receiver work conducted at the program's laboratories involves the pool-boiler concept. During nearly 50 hours of solar testing, the Sandia 75-kW[sub t] pool-boiler receiver demonstrated stable sodium boiling over a wide range of temperatures. Hot restarts after simulated cloud passages were investigated using various quantities of added non-condensible gases. Novel x-ray techniques provided information on instantaneous void fractions in the receiver. Present work is focusing on longer lived designs having low-cost, high-strength boiling surface enhancements and using eutectic NaK as the working fluid. The paper will summarize the developments leading to the present and describe future plans.« less
The USDOE Reflux Receiver Development Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klimas, P.C.; Andraka, C.E.; Moreno, J.B.
1992-11-01
The US DOE`s Solar Thermal Electric Program, through its Sandia and Renewable Energy National Laboratories, has been actively developing liquid metal reflux receivers for application to modular parabolic dish concentrator/Stirling cycle converter solar energy systems. These systems are intended for use in high-value remote and grid-connected utility applications. The liquid-metal reflux-receiver concept was selected because this type of solar receiver (1) can optically mate a given dish with a given engine, and (2) can provide an isothermal environment for the high-temperature heat-input portion of the l engine, thus enhancing reliability. The Program is investigating two types of reflux receivers: heatmore » pipes and pool boilers. Sintered-nickel-wick sodium heat-pipe receivers rated at 30 kW{sub t} have been extensively tested as part of DOE/Cummins cooperative commercialization programs. One recent test article was tested at rated and power temperature for 500 hours. This same receiver demonstrated a 40 kW{sub t} throughput, believed to be the most ever for a solar heated heat-pipe receiver. Another 30-kW{sub t} sodium heat-pipe receiver, this one using a stainless-steel-screen wick design, was also tested as part of these cooperative programs. Much of experimental reflux receiver work conducted at the program`s laboratories involves the pool-boiler concept. During nearly 50 hours of solar testing, the Sandia 75-kW{sub t} pool-boiler receiver demonstrated stable sodium boiling over a wide range of temperatures. Hot restarts after simulated cloud passages were investigated using various quantities of added non-condensible gases. Novel x-ray techniques provided information on instantaneous void fractions in the receiver. Present work is focusing on longer lived designs having low-cost, high-strength boiling surface enhancements and using eutectic NaK as the working fluid. The paper will summarize the developments leading to the present and describe future plans.« less
Medium Deep High Temperature Heat Storage
NASA Astrophysics Data System (ADS)
Bär, Kristian; Rühaak, Wolfram; Schulte, Daniel; Welsch, Bastian; Chauhan, Swarup; Homuth, Sebastian; Sass, Ingo
2015-04-01
Heating of buildings requires more than 25 % of the total end energy consumption in Germany. Shallow geothermal systems for indirect use as well as shallow geothermal heat storage systems like aquifer thermal energy storage (ATES) or borehole thermal energy storage (BTES) typically provide low exergy heat. The temperature levels and ranges typically require a coupling with heat pumps. By storing hot water from solar panels or thermal power stations with temperatures of up to 110 °C a medium deep high temperature heat storage (MDHTS) can be operated on relatively high temperature levels of more than 45 °C. Storage depths of 500 m to 1,500 m below surface avoid conflicts with groundwater use for drinking water or other purposes. Permeability is typically also decreasing with greater depth; especially in the crystalline basement therefore conduction becomes the dominant heat transport process. Solar-thermal charging of a MDHTS is a very beneficial option for supplying heat in urban and rural systems. Feasibility and design criteria of different system configurations (depth, distance and number of BHE) are discussed. One system is designed to store and supply heat (300 kW) for an office building. The required boreholes are located in granodioritic bedrock. Resulting from this setup several challenges have to be addressed. The drilling and completion has to be planned carefully under consideration of the geological and tectonical situation at the specific site.
Solar cycle modulation of Southern Annular Mode -Energy-momentum analysis-
NASA Astrophysics Data System (ADS)
Kuroda, Y.
2016-12-01
Climate is affected by various factors, including oceanic changes and volcanic eruptions. 11-year solar cycle change is one of such important factors. Observational analysis shows that the Southern Annular Mode (SAM) in late-winter/spring show structural modulation associated with 11-year solar cycle. In fact, SAM-related signal tends to extend from surface to upper stratosphere and persistent longer period in the High Solar (HS) years, whereas it is restricted in the troposphere and not persist in the Low Solar (LS) years. In the present study, we used 35-year record of ERA-Interim reanalysis data and performed wave-energy and momentum analysis on the solar-cycle modulation of the SAM to examine key factors to create such solar-SAM relationship. It is found that enhanced wave-mean flow interaction tends to take place in the middle stratosphere in association with enhanced energy input from diabatic heating on September only in HS years. The result suggests atmospheric and solar conditions on September are keys to create solar-SAM relationship.
Solar energy system performance evaluation: Seasonal report for Contemporary Newman, Newman, Georgia
NASA Technical Reports Server (NTRS)
1980-01-01
A hot solar heating and hot water system's operational performance from June 1979 through April 1980 is evaluated. Solar energy satisfied 42 percent of the total measure load (hot water plus space heating), which was somewhat higher than the solar fraction of 32 percent. When system losses into the heating space from duct leaks and storage are included, the heating solar fraction increases from 42 to 64 percent. Net electrical energy savings were 5.47 million BTUs.
Code of Federal Regulations, 2011 CFR
2011-07-01
... improvement. An improvement to an existing dwelling or farm residence through the installation of a solar heating system, a solar heating and cooling system, or a combined solar heating and cooling system or...
Solar-heated municipal swimming pools, a case study: Dade County, Florida
NASA Astrophysics Data System (ADS)
Levin, M.
1981-09-01
The installation of a solar energy system to heat the water in the swimming pool in one of Dade County, Florida's major parks is described. The mechanics of solar heated swimming pools are explained. The solar heating system consists of 216 unglazed polypropylene tube collectors, a differential thermostat, and the distribution system. The systems performance and economics as well as future plants are discussed.
Storage systems for solar thermal power
NASA Technical Reports Server (NTRS)
Calogeras, J. E.; Gordon, L. H.
1978-01-01
The development status is reviewed of some thermal energy storage technologies specifically oriented towards providing diurnal heat storage for solar central power systems and solar total energy systems. These technologies include sensible heat storage in caverns and latent heat storage using both active and passive heat exchange processes. In addition, selected thermal storage concepts which appear promising to a variety of advanced solar thermal system applications are discussed.
Theoretical studies of thermionic conversion of solar energy with graphene as emitter and collector
NASA Astrophysics Data System (ADS)
Olawole, Olukunle C.; De, Dilip Kumar
2018-01-01
Thermionic energy conversion (TEC) using nanomaterials is an emerging field of research. It is known that graphene can withstand temperatures as high as 4600 K in vacuum, and it has been shown that its work function can be engineered from a high value (for monolayer/bilayer) of 4.6 eV to as low as 0.7 eV. Such attractive electronic properties (e.g., good electrical conductivity and high dielectric constant) make engineered graphene a good candidate as an emitter and collector in a thermionic energy converter for harnessing solar energy efficiently. We have used a modified Richardson-Dushman equation and have adopted a model where the collector temperature could be controlled through heat extraction in a calculated amount and a magnet can be attached on the back surface of the collector for future control of the space-charge effect. Our work shows that the efficiency of solar energy conversion also depends on power density falling on the emitter surface, and that a power conversion efficiency of graphene-based solar TEC as high as 55% can be easily achieved (in the absence of the space-charge effect) through proper choice of work functions, collector temperature, and emissivity of emitter surfaces. Such solar energy conversion would reduce our dependence on silicon solar panels and offers great potential for future renewable energy utilization.
Performance analysis of a solar still coupled with evacuated heat pipes
NASA Astrophysics Data System (ADS)
Pramod, B. V. N.; Prudhvi Raj, J.; Krishnan, S. S. Hari; Kotebavi, Vinod
2018-02-01
In developing countries the need for better quality drinking water is increasing steadily. We can overcome this need by using solar energy for desalination purpose. This process includes fabrication and analysis of a pyramid type solar still coupled with evacuated heat pipes. This experiment using evacuated heat pipes are carried in mainly three modes namely 1) Still alone 2) Using heat pipe with evacuated tubes 3)Using evacuated heat pipe. For this work single basin pyramid type solar still with 1m2 basin area is fabricated. Black stones and Black paint are utilised in solar still to increase evaporation rate of water in basin. The heat pipe’s evaporator section is placed inside evacuated tube and the heat pipe’s condenser section is connected directly to the pyramid type solar still’s lower portion. The output of distillate water from still with evacuated heat pipe is found to be 40% more than the still using only evacuated tubes.
Solar Collector With Image-Forming Mirror Cavity to Irradiate Small Central Volume
NASA Technical Reports Server (NTRS)
Buchele, Don; Castle, Charles; Bonoetti, Joseph A.
2001-01-01
A unique solar thermal chamber has been designed and fabricated to produce the maximum concentration of solar energy and higher temperature possible. Its primary purpose was for solar plasma propulsion experiments and related material specimen testing above 3000 K. The design not only maximized solar concentration, but also, minimized infrared heat loss. This paper provides the underlying theory and operation of the chamber and initial optical correlation to the actual fabricated hardware. The chamber is placed at the focal point of an existing primary concentrator with a 2.74 m (9 ft) focal length. A quartz lens focuses a small sun image at the inlet hole of the mirrored cavity. The lens focuses two image planes at prescribed positions; the sun at the cavity's entrance hole and the primary concentrator at the junction plane of two surfaces that form the cavity chamber. The back half is an ellipsoid reflector that produces a 1.27 cm diameter final sun image. The image is "suspended in space," 7.1 cm away from the nearest cavity surface, to minimize thermal and contaminate damage to the mirror surfaces. A hemisphere mirror makes up the front chamber and has its center of curvature at the target image, where rays leaving the target are reflected back upon themselves, minimizing radiation losses.
Climatic Effects of Medium-Sized Asteroid Impacts on Land
NASA Astrophysics Data System (ADS)
Bardeen, C.; Garcia, R. R.; Toon, O. B.; Otto-Bliesner, B. L.; Wolf, E. T.
2015-12-01
Using the Community Earth System Model (CESM), a three-dimensional coupled climate model with interactive chemistry, we have simulated the climate response to a medium-sized (1 km) asteroid impact on the land. An impact of this size would cause local fires and may also generate submicron dust particles. Dust aerosols are injected into the upper atmosphere where they persist for ~3 years. Soot aerosols from fires are injected into the troposphere and absorb solar radiation heating the air which helps loft the soot into the stratosphere where it persists for ~10 years. Initially, these aerosols cause a heating of over 240 K in the stratosphere and up to a 70% reduction in downwelling solar radiation at the surface. Global average surface temperature cools by as much as -8.5 K, ocean temperature cools by -4.5 K, precipitation is reduced by 50%, and the ozone column is reduced by 55%. The surface UV Index exceeds 20 in the tropics for several years. These changes represent a significant hazard to life on a global scale. These results extend the work of Pierazzo et al. (2010), also using CESM, which found a significant impact on stratospheric ozone, but little change in surface temperature or precipitation, from a 1 km asteroid impact in the ocean.
Bright Idea: Solar Energy Primer.
ERIC Educational Resources Information Center
Missouri State Dept. of Natural Resources, Jefferson City.
This booklet is intended to address questions most frequently asked about solar energy. It provides basic information and a starting point for prospective solar energy users. Information includes discussion of solar space heating, solar water heating, and solar greenhouses. (Author/RE)
IUS materials outgassing condensation effects on sensitive spacecraft surfaces
NASA Technical Reports Server (NTRS)
Mullen, C. R.; Shaw, C. G.; Crutcher, E. R.
1982-01-01
Four materials used on the inertial upper state (IUS) were subjected to vacuum conditions and heated to near-operational temperatures (93 to 316 C), releasing volatile materials. A fraction of the volatile materials were collected on 25 C solar cells, optical solar reflectors (OSR's) or aluminized Mylar. The contaminated surfaces were exposed to 26 equivalent sun hours of simulated solar ultraviolet (UV) radiation. Measurements of contamination deposit mass, structure, reflectance and effects on solar cell power output were made before and after UV irradiation. Standard total mass loss - volatile condensible materials (TML - VCM) tests were also performed. A 2500 A thick contaminant layer produced by EPDM rubber motor-case insulation outgassing increased the solar absorptance of the OSR's from 0.07 to 0.14, and to 0.18 after UV exposure. An 83,000 A layer caused an increase from 0.07 to 0.21, and then the 0.46 after UV exposure. The Kevlar-epoxy motor-case material outgassing condensation raised the absorptance from 0.07 to 0.13, but UV had no effect. Outgassing from multilayer insulation and carbon-carbon nozzle materials did not affect the solar absorptance of the OSR's.
Solar energy conversion with tunable plasmonic nanostructures for thermoelectric devices.
Xiong, Yujie; Long, Ran; Liu, Dong; Zhong, Xiaolan; Wang, Chengming; Li, Zhi-Yuan; Xie, Yi
2012-08-07
The photothermal effect in localized surface plasmon resonance (LSPR) should be fully utilized when integrating plasmonics into solar technologies for improved light absorption. In this communication, we demonstrate that the photothermal effect of silver nanostructures can provide a heat source for thermoelectric devices for the first time. The plasmonic band of silver nanostructures can be facilely manoeuvred by tailoring their shapes, enabling them to interact with photons in different spectral ranges for the efficient utilization of solar light. It is anticipated that this concept can be extended to design a photovoltaic-thermoelectric tandem cell structure with plasmonics as mediation for light harvesting.
Code of Federal Regulations, 2011 CFR
2011-07-01
... a solar heating system, a solar heating and cooling system, or a combined solar heating and cooling system, or through application of a residential energy conservation measure as prescribed in 38 U.S.C...
Code of Federal Regulations, 2010 CFR
2010-07-01
... a solar heating system, a solar heating and cooling system, or a combined solar heating and cooling system, or through application of a residential energy conservation measure as prescribed in 38 U.S.C...
The energy impacts of solar heating.
Whipple, C
1980-04-18
The energy required to build and install solar space- and water-heating equipment is compared to the energy it saves under two solar growth paths corresponding to high and low rates of implementation projected by the Domestic Policy Review of Solar Energy. For the rapid growth case, the cumulative energy invested to the year 2000 is calculated to be (1/2) to 1(1/2) times the amount saved. An impact of rapid solar heating implementation is to shift energy demand from premium heating fuels (natural gas and oil) to coal and nuclear power use in the industries that provide materials for solar equipment.
NASA Astrophysics Data System (ADS)
Uhlig, Ralf; Frantz, Cathy; Fritsch, Andreas
2016-05-01
External receiver configurations are directly exposed to ambient wind. Therefore, a precise determination of the convective losses is a key factor in the prediction and evaluation of the efficiency of the solar absorbers. Based on several studies, the forced convective losses of external receivers are modeled using correlations for a roughened cylinder in a cross-flow of air. However at high wind velocities, the thermal efficiency measured during the Solar Two experiment was considerably lower than the efficiency predicted by these correlations. A detailed review of the available literature on the convective losses of external receivers has been made. Three CFD models of different level of detail have been developed to analyze the influence of the actual shape of the receiver and tower configuration, of the receiver shape and of the absorber panels on the forced convective heat transfer coefficients. The heat transfer coefficients deduced from the correlations have been compared to the results of the CFD simulations. In a final step the influence of both modeling approaches on the thermal efficiency of an external tubular receiver has been studied in a thermal FE model of the Solar Two receiver.
The temperature structure, mass, and energy flow in the corona and inner solar wind
NASA Technical Reports Server (NTRS)
Withbroe, George L.
1988-01-01
Remote-sensing and in situ data are used to constrain a radiative energy balance model in order to study the radial variations of coronal temperatures, densities, and outflow speeds in several types of coronal holes and in an unstructured quiet region of the corona. A one-fluid solar wind model is used which takes into account the effects of radiative and inward conductive losses in the low corona and the chromospheric-coronal transition region. The results show that the total nonradiative energy input in magnetically open coronal regions is 5 + or - 10 to the 5th ergs/sq cm, and that most of the energy heating the coronal plasma is dissipated within 2 solar radii of the solar surface.
Study on the Fabrication of Paint-Type Si Quantum Dot-Sensitized Solar Cells
NASA Astrophysics Data System (ADS)
Seo, Hyunwoong; Son, Min-Kyu; Kim, Hee-Je; Wang, Yuting; Uchida, Giichiro; Kamataki, Kunihiro; Itagaki, Naho; Koga, Kazunori; Shiratani, Masaharu
2013-10-01
Quantum dots (QDs) have attracted much attention with their quantum characteristics in the research field of photochemical solar cells. Si QD was introduced as one of alternatives to conventional QD materials. However, their large particles could not penetrate inside TiO2 layer. Therefore, this work proposed the paint-type Si QD-sensitized solar cell. Its heat durability was suitable for the fabrication of paint-type solar cell. Si QDs were fabricated by multihollow discharge plasma chemical vapor deposition and characterized. The paste type, sintering temperature, and Si ratio were controlled and analyzed for better performance. Finally, its performance was enhanced by ZnS surface modification and the whole process was much simplified without sensitizing process.
A heat budget for the Stratus mooring in the southeast Pacific
NASA Astrophysics Data System (ADS)
Holte, J.; Straneo, F.; Weller, R. A.; Farrar, J. T.
2012-12-01
The surface layer of the southeast Pacific Ocean (SEP) requires an input of fresh, cold water to balance evaporation and heat gain from incoming solar radiation. Numerous processes contribute to closing the SEP's upper-ocean heat budget, including gyre circulation, Ekman transport and pumping, vertical mixing, and horizontal eddy heat flux divergence. However, there is little consensus on which processes are most important, as many modeling and observational studies have reported conflicting results. To examine how the SEP maintains relatively cool surface temperatures despite such strong surface forcing, we calculate a heat budget for the upper 250 m of the Stratus mooring. The Stratus mooring, deployed at 85(^o)W 20(^o)S since 2000, is in the center of the stratus cloud region. The surface buoy measures meteorological conditions and air-sea fluxes; the mooring line is heavily instrumented, measuring temperature, salinity, and velocity at approximately 15 to 20 depth levels. Our heat budget covers 2004 - 2010. The net air-sea heat flux over this period is 32 W m(^{-2}), approximately 2/3 of the flux over earlier periods. We use Argo profiles, relatively abundant in the region since 2004, to calculate horizontal temperature gradients. These gradients, coupled with the mooring velocity record, are used to estimate the advective heat flux. We find that the cool advective heat flux largely compensates the air-sea heat flux at the mooring; in our calculation this term includes the mean gyre circulation, horizontal Ekman transport, and some contribution from eddies. The passage of numerous eddies is evident in the mooring velocity record, but with the available data we cannot separate the eddy heat flux divergence from the mean heat advection. Vertical mixing and Ekman pumping across the base of the layer are both small.
Self-pressurizing Stirling engine
Bennett, Charles L.
2010-10-12
A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.
NASA Technical Reports Server (NTRS)
1980-01-01
Installation procedures for the single family residential solar heating system at the William O'Brien State Park, Stillwater, Minnesota, are presented. The system is a solar-assisted, hydronic-to-warm-air system with solar-assisted domestic water heating. It is composed of the following major components: liquid cooled flat plate collectors; water storage tank; passive solar-fired domestic water preheater; electric hot water heater; heat pump with electric backup; solar hot water coil unit; tube-and-shell heat exchanger, three pumps, and associated pipes and valving in an energy transport module; control system; and air-cooled heat purge unit. Installer guidelines are provided for each subsystem and includes testing and filling the system. Information is also given on the operating procedures, controls, caution requirements and routine and schedule maintenance.
Solar-powered Rankine heat pump for heating and cooling
NASA Technical Reports Server (NTRS)
Rousseau, J.
1978-01-01
The design, operation and performance of a familyy of solar heating and cooling systems are discussed. The systems feature a reversible heat pump operating with R-11 as the working fluid and using a motor-driven centrifugal compressor. In the cooling mode, solar energy provides the heat source for a Rankine power loop. The system is operational with heat source temperatures ranging from 155 to 220 F; the estimated coefficient of performance is 0.7. In the heating mode, the vapor-cycle heat pump processes solar energy collected at low temperatures (40 to 80 F). The speed of the compressor can be adjusted so that the heat pump capacity matches the load, allowing a seasonal coefficient of performance of about 8 to be attained.
Solar synthesis of advanced materials: A solar industrial program initiative
NASA Astrophysics Data System (ADS)
Lewandowski, A.
1992-06-01
This is an initiative for accelerating the use of solar energy in the advanced materials manufacturing industry in the United States. The initiative will be based on government-industry collaborations that will develop the technology and help US industry compete in the rapidly expanding global advanced materials marketplace. Breakthroughs in solar technology over the last 5 years have created exceptional new tools for developing advanced materials. Concentrated sunlight from solar furnaces can produce intensities that approach those on the surface of the sun and can generate temperatures well over 2000 C. Very thin layers of illuminated surfaces can be driven to remarkably high temperatures in a fraction of a second. Concentrated solar energy can be delivered over large areas, allowing for rapid processing and high production rates. By using this technology, researchers are transforming low-cost raw materials into high-performance products. Solar synthesis of advanced materials uses bulk materials and energy more efficiently, lowers processing costs, and reduces the need for strategic materials -- all with a technology that does not harm the environment. The Solar Industrial Program has built a unique, world class solar furnace at NREL to help meet the growing need for applied research in advanced materials. Many new advanced materials processes have been successfully demonstrated in this facility, including metalorganic deposition, ceramic powders, diamond-like carbon materials, rapid heat treating, and cladding (hard coating).
1981-10-01
Storage Locations . . .. 7 2.3 Heat Transfer Mechanisms of Thermal Storage Walls ......... 11 2.4 Heating of Living Space with Solar Greenhouse ...12 2.5 Schematic of North-Side Greenhouse Retrofit ........... . .. 12 2.6 The Roof Pond in Warm Climate . . . . . . . . . . . . . . . . 14 2.7...Profile .......... ... 47 5 Calculation of Solar Heating Contribution ............. .. 51 5A Adjusted Net Solar Greenhouse Heat Gain
Performance evaluation of the Solar Building Test Facility
NASA Technical Reports Server (NTRS)
Jensen, R. N.
1981-01-01
The general performance of the NASA Solar Building Test Facility (SBTF) and its subsystems and components over a four year operational period is discussed, and data are provided for a typical one year period. The facility consists of a 4645 sq office building modified to accept solar heated water for operation of an absorption air conditioner and a baseboard heating system. An adjoining 1176 sq solar flat plate collector field with a 114 cu tank provides the solar heated water. The solar system provided 57 percent of the energy required for heating and cooling on an annual basis. The average efficiency of the solar collectors was 26 percent over a one year period.
NASA Astrophysics Data System (ADS)
Schöttl, Peter; Bern, Gregor; van Rooyen, De Wet; Heimsath, Anna; Fluri, Thomas; Nitz, Peter
2017-06-01
A transient simulation methodology for cavity receivers for Solar Tower Central Receiver Systems with molten salt as heat transfer fluid is described. Absorbed solar radiation is modeled with ray tracing and a sky discretization approach to reduce computational effort. Solar radiation re-distribution in the cavity as well as thermal radiation exchange are modeled based on view factors, which are also calculated with ray tracing. An analytical approach is used to represent convective heat transfer in the cavity. Heat transfer fluid flow is simulated with a discrete tube model, where the boundary conditions at the outer tube surface mainly depend on inputs from the previously mentioned modeling aspects. A specific focus is put on the integration of optical and thermo-hydraulic models. Furthermore, aiming point and control strategies are described, which are used during the transient performance assessment. Eventually, the developed simulation methodology is used for the optimization of the aperture opening size of a PS10-like reference scenario with cavity receiver and heliostat field. The objective function is based on the cumulative gain of one representative day. Results include optimized aperture opening size, transient receiver characteristics and benefits of the implemented aiming point strategy compared to a single aiming point approach. Future work will include annual simulations, cost assessment and optimization of a larger range of receiver parameters.
The relative influence of H2O and CO2 on the primitive surface conditions of Venus
NASA Astrophysics Data System (ADS)
Salvador, A.; Massol, H.; Davaille, A.; Marcq, E.; Sarda, P.; Chassefiere, E.
2017-12-01
How the volatile content influences the primordial surface conditions of terrestrial planets and, thus, their future geodynamic evolution is an important question to answer. We simulate the secular convective cooling of a 1-D magma ocean (MO) in interaction with its outgassed atmosphere. A first rapid cooling stage, where efficient MO cooling and degassing take place, producing the atmosphere, is followed by a second quasi steady state where the heat flux balance is dominated by the solar flux. The end ofthe rapid cooling stage (ERCS) is reached when the mantle heat flux becomes negligible compared tothe absorbed solar flux. Varying the initial CO2 and H2O contents and the solar distance, we showed that the resulting surface conditions at ERCS strongly depend on these parameters and that water ocean's formation obeys simple scaling laws.Although today's Venus is located beyond the inner edge of the habitable zone due to its high albedo, its high CO2/H2O ratio prevents any water ocean formation.We already showed that depending on the formation time of its cloudcover and resulting albedo, only 0.3 Earth ocean mass might be sufficient to form a water ocean onearly Venus. Here we investigate more precisely these results by taking into account the effect of shortwave radiation on the radiative budget by computing the feedbacks between atmospheric composition and incident stellar flux instead of using a prescribed albedo value.
Solar Water-Heater Design and Installation
NASA Technical Reports Server (NTRS)
Harlamert, P.; Kennard, J.; Ciriunas, J.
1982-01-01
Solar/Water heater system works as follows: Solar--heated air is pumped from collectors through rock bin from top to bottom. Air handler circulates heated air through an air-to-water heat exchanger, which transfers heat to incoming well water. In one application, it may reduce oil use by 40 percent.
NASA Astrophysics Data System (ADS)
Yamaguchi, R.; Suga, T.
2016-12-01
Recent observational studies show that, during the warming season, a large amount of heat flux is penetrated through the base of thin mixed layer by vertical eddy diffusion, in addition to penetration of solar radiation [1]. In order to understand this heat penetration process due to vertical eddy diffusivity and its contribution to seasonal variation of sea surface temperature, we investigated the evolution of thermal stratification below the summertime thin mixed layer (i.e. evolution of seasonal thermocline) and its vertical structure in the North Pacific using high vertical resolution temperature profile observed by Argo floats. We quantified the vertical structure of seasonal thermocline as deviations from the linear structure where the vertical gradient of temperature is constant, that is, "shape anomaly". The shape anomaly is variable representing the extent of the bend of temperature profiles. We found that there are larger values of shape anomaly in the region where the seasonal sea surface temperature warming is relatively faster. To understand the regional difference of shape anomalies, we investigated the relationship between time changes in shape anomalies and net surface heat flux and surface kinetic energy flux. From May to July, the analysis indicated that, in a large part of North Pacific, there's a tendency for shape anomalies to develop strongly (weakly) under the conditions of large (small) downward net surface heat flux and small (large) downward surface kinetic energy flux. Since weak (strong) development of shape anomalies means efficient (inefficient) downward heat transport from the surface, these results suggest that the regional difference of the downward heat penetration below mixed layer is explained reasonably well by differences in surface heat forcing and surface wind forcing in a vertical one dimensional framework. [1] Hosoda et al. (2015), J. Oceanogr., 71, 541-556.
Rectification of the Diurnal Cycle and the Impact of Islands on the Tropical Climate
NASA Astrophysics Data System (ADS)
Cronin, T. W.; Emanuel, K.
2012-12-01
Tropical islands are observed to be rainier than nearby ocean areas, and rainfall over the islands of the Maritime Continent plays an important role in the atmospheric general circulation. Convective heating over tropical islands is also strongly modulated by the diurnal cycle of solar insolation and surface enthalpy fluxes, and convective parameterizations in general circulation models are known to reproduce the phase and amplitude of the observed diurnal cycle of convection rather poorly. Connecting these ideas suggests that poor representation of the diurnal cycle of convection and precipitation over tropical islands in climate models may be a significant source of model biases. Here, we explore how a highly idealized island, which differs only in heat capacity from the surrounding ocean, could rectify the diurnal cycle and impact the tropical climate, especially the spatial distribution of rainfall. We perform simulations of radiative-convective equilibrium with the System for Atmospheric Modeling cloud-system-resolving model, with interactive surface temperature and a varied surface heat capacity. For the case of relatively small-scale simulations, where a shallow (~5 cm) slab-ocean "swamp island" surface is embedded in a deeper (~1 m) slab-ocean domain, the precipitation rate over the island is more than double the domain average value, with island rainfall occurring primarily in a strong regular convective event each afternoon. In addition to this island precipitation enhancement, the upper troposphere also warms with the inclusion of a low- heat capacity island. We discuss two radiative mechanisms that contribute to both island precipitation enhancement and free tropospheric warming, by producing a top-of-atmosphere radiative surplus over the island. The first radiative mechanism is a clear-sky effect, related to nonlinearities in the surface energy budget, and differences in how surface energy balance is achieved over surfaces of different heat capacities. The second radiative mechanism is a cloudy-sky effect, related to the timing of clouds with respect to solar forcing, as well as to the mean cloud fraction and height. We also discuss an advective mechanism for island precipitation enhancement, related to both the moist static energy convergence by the diurnally-reversing land/sea breeze, and the enhanced variability of moist static energy in the island subcloud layer. Preliminary results from larger-domain equatorial beta-channel simulations are also discussed, with potentially greater applicability to the impacts of islands on the large-scale tropical circulation.
Thermal Characteristics of Urban Landscapes
NASA Technical Reports Server (NTRS)
Luvall, Jeffrey C.; Quattrochi, Dale A.
1998-01-01
Although satellite data are very useful for analysis of the urban heat island effect at a coarse scale, they do not lend themselves to developing a better understanding of which surfaces across the city contribute or drive the development of the urban heat island effect. Analysis of thermal energy responses for specific or discrete surfaces typical of the urban landscape (e.g., asphalt, building rooftops, vegetation) requires measurements at a very fine spatial scale (i.e., less than 15 m) to adequately resolve these surfaces and their attendant thermal energy regimes. Additionally, very fine scale spatial resolution thermal infrared data, such as that obtained from aircraft, are very useful for demonstrating to planning officials, policy makers, and the general populace the benefits of the urban forest. These benefits include mitigating the urban heat island effect, making cities more aesthetically pleasing and more habitable environments, and aid in overall cooling of the community. High spatial resolution thermal data are required to quantify how artificial surfaces within the city contribute to an increase in urban heating and the benefit of cool surfaces (e.g., surface coatings that reflect much of the incoming solar radiation as opposed to absorbing it thereby lowering urban temperatures). The TRN (thermal response number) is a technique using aircraft remotely sensed surface temperatures to quantify the thermal response of urban surfaces. The TRN was used to quantify the thermal response of various urban surface types ranging from completely vegetated surfaces to asphalt and concrete parking lots for Huntsville, AL.
A slightly more massive young Sun as an explanation for warm temperatures on early Mars.
Whitmire, D P; Doyle, L R; Reynolds, R T; Matese, J J
1995-03-25
The valley network channels on the heavily cratered ancient surface of Mars suggest the presence of liquid water approximately 3.8 Gyr ago. However, the implied warm climate is difficult to explain in the context of the standard solar model, even allowing for the maximum CO2 greenhouse heating. In this paper we investigate the astronomical and planetary implications of a nonstandard solar model in which the zero-age, main-sequence Sun had a mass of 1.05 +/- 0.02 M solar. The excess mass was subsequently lost in a solar wind during the first 1.2(-0.2, +0.4) Gyr of the Sun's main sequence phase. The implied mass-loss rate of 4(+3, -2) x 10(-11) M solar yr-1, or about 10(3)x that of the current Sun, may be detectable in several nearby young solar type stars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tombari, C.
2005-09-01
The U.S. Department of Energy's Million Solar Roofs Initiative (MSR) is a unique public-private partnership aimed at overcoming market barriers for photovoltaics (PV), solar water heating, transpired solar collectors, solar space heating and cooling, and pool heating. This report contains annual progress reports from 866 partners across the United States.
Biodiesel production from waste frying oil using waste animal bone and solar heat.
Corro, Grisel; Sánchez, Nallely; Pal, Umapada; Bañuelos, Fortino
2016-01-01
A two-step catalytic process for the production of biodiesel from waste frying oil (WFO) at low cost, utilizing waste animal-bone as catalyst and solar radiation as heat source is reported in this work. In the first step, the free fatty acids (FFA) in WFO were esterified with methanol by a catalytic process using calcined waste animal-bone as catalyst, which remains active even after 10 esterification runs. The trans-esterification step was catalyzed by NaOH through thermal activation process. Produced biodiesel fulfills all the international requirements for its utilization as a fuel. A probable reaction mechanism for the esterification process is proposed considering the presence of hydroxyapatite at the surface of calcined animal bones. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayat, T.; Nonlinear Analysis and Applied Mathematics; Muhammad, Taseer
Development of human society greatly depends upon solar energy. Heat, electricity and water from nature can be obtained through solar power. Sustainable energy generation at present is a critical issue in human society development. Solar energy is regarded one of the best sources of renewable energy. Hence the purpose of present study is to construct a model for radiative effects in three-dimensional of nanofluid. Flow of second grade fluid by an exponentially stretching surface is considered. Thermophoresis and Brownian motion effects are taken into account in presence of heat source/sink and chemical reaction. Results are derived for the dimensionless velocities,more » temperature and concentration. Graphs are plotted to examine the impacts of physical parameters on the temperature and concentration. Numerical computations are presented to examine the values of skin-friction coefficients, Nusselt and Sherwood numbers. It is observed that the values of skin-friction coefficients are more for larger values of second grade parameter. Moreover the radiative effects on the temperature and concentration are quite reverse.« less
NASA Astrophysics Data System (ADS)
1980-04-01
A solar energy system was installed in a 2100 sq ft house located in Big Fork, Montana. The system is designed to provide solar energy for heating and domestic hot water. Solar energy is collected by flat plate collectors with a gross area of 792 square feet. The collector banks are mounted on the roof of the house and face due south at an angle of 45 deg to the horizontal optimizing solar energy collection. Solar energy is transferred from the collector array to a 1500 gallon storage tank. Water is used as the heat collection, transfer and storage medium. Freeze protection is provided by use of a drain down system. Space heating demands are met by circulating hot water from storage through baseboard units in the distribution system of the house. Auxiliary space heating is provided by an electrical heating element in the boiler. Similarly, an electrical heating element in the DHW tank provides energy for water heating. The dwelling was fully instrumented for performance evaluation since October 1977 and the data is integrated into the National Solar Data Network.
NASA Astrophysics Data System (ADS)
Ortega, Jesus Daniel
This work focuses on the development of a solar power thermal receiver for a supercritical-carbon dioxide (sCO2), Brayton power-cycle to produce ~1 MWe. Closed-loop sCO2 Brayton cycles are being evaluated in combination with concentrating solar power to provide higher thermal-to-electric conversion efficiencies relative to conventional steam Rankine cycles. High temperatures (923--973 K) and pressures (20--25 MPa) are required in the solar receiver to achieve thermal efficiencies of ~50%, making concentrating solar power (CSP) technologies a competitive alternative to current power generation methods. In this study, the CSP receiver is required to achieve an outlet temperature of 923 K at 25 MPa or 973 K at 20 MPa to meet the operating needs. To obtain compatible receiver tube material, an extensive material review was performed based the ASME Boiler and Pressure Vessel Code, ASME B31.1 and ASME B313.3 codes respectively. Subsequently, a thermal-structural model was developed using a commercial computational fluid (CFD) dynamics and structural mechanics software for designing and analyzing the tubular receiver that could provide the heat input for a ~2 MWth plant. These results were used to perform an analytical cumulative damage creep-fatigue analysis to estimate the work-life of the tubes. In sequence, an optical-thermal-fluid model was developed to evaluate the resulting thermal efficiency of the tubular receiver from the NSTTF heliostat field. The ray-tracing tool SolTrace was used to obtain the heat-flux distribution on the surfaces of the receiver. The K-ω SST turbulence model and P-1 radiation model used in Fluent were coupled with SolTrace to provide the heat flux distribution on the receiver surface. The creep-fatigue analysis displays the damage accumulated due to the cycling and the permanent deformation of the tubes. Nonetheless, they are able to support the required lifetime. The receiver surface temperatures were found to be within the safe operational limit while exhibiting a receiver thermal efficiency of ~85%. Future work includes the completion of a cyclic loading analysis to be performed using the Larson-Miller creep model in nCode Design Life to corroborate the structural integrity of the receiver over the desired lifetime of ~10,000 cycles.
Improvement of Electropolishing of 1100 Al Alloy for Solar Thermal Applications
NASA Astrophysics Data System (ADS)
Aguilar-Sierra, Sara María; Echeverría E, Félix
2018-03-01
Aluminum sheets-based mirrors are finding applicability in high-temperature solar concentrating technologies because they are cost-effective, lightweight and have high mechanical properties. Nonetheless, the reflectance percentages obtained by electropolishing are not close to the reflectance values of the currently used evaporated films. Therefore, controlling key factors affecting electropolishing processes became essential in order to achieve highly reflective aluminum surfaces. This study investigated the effect of both the electropolishing process and previous heat treatment on the total reflectance of the AA 1100 aluminum alloy. An acid electrolyte and a modified Brytal process were evaluated. Total reflectance was measured by means of UV-Vis spectrophotometry. Reflectance values higher than 80% at 600 nm were achieved for both electrolytes. Optical microscopy and scanning electron microscopy images showed uneven dissolution for the acid electropolished samples causing a reflectance drop in the 200-450 nm region. The influence of heat treatment, previously to electropolishing, was tested at two different temperatures and various holding times. It was found that reflectance increases around 15% for the heat-treated and electropolished samples versus the non-heat-treated ones. A heat treatment at low temperature combined with a short holding time was enough to improve the sample total reflectance.
Near-term viability of solar heat applications for the federal sector
NASA Astrophysics Data System (ADS)
Williams, T. A.
1991-12-01
Solar thermal technologies are capable of providing heat across a wide range of temperatures, making them potentially attractive for meeting energy requirements for industrial process heat applications and institutional heating. The energy savings that could be realized by solar thermal heat are quite large, potentially several quads annually. Although technologies for delivering heat at temperatures above 100 C currently exist within industry, only a fairly small number of commercial systems have been installed to date. The objective of this paper is to investigate and discuss the prospects for near term solar heat sales to federal facilities as a mechanism for providing an early market niche to the aid the widespread development and implementation of the technology. The specific technical focus is on mid-temperature (100 to 350 C) heat demands that could be met with parabolic trough systems. Federal facilities have several features relative to private industry that may make them attractive for solar heat applications relative to other sectors. Key features are specific policy mandates for conserving energy, a long term planning horizon with well defined decision criteria, and prescribed economic return criteria for conservation and solar investments that are generally less stringent than the investment criteria used by private industry. Federal facilities also have specific difficulties in the sale of solar heat technologies that are different from those of other sectors, and strategies to mitigate these difficulties will be important. For the baseline scenario developed in this paper, the solar heat application was economically competitive with heat provided by natural gas. The system levelized energy cost was $5.9/MBtu for the solar heat case, compared to $6.8/MBtu for the life cycle fuel cost of a natural gas case. A third-party ownership would also be attractive to federal users, since it would guarantee energy savings and would not need initial federal funds.
Basics of Solar Heating & Hot Water Systems.
ERIC Educational Resources Information Center
American Inst. of Architects, Washington, DC.
In presenting the basics of solar heating and hot water systems, this publication is organized from the general to the specific. It begins by presenting functional and operational descriptions of solar heating and domestic hot water systems, outlining the basic concepts and terminology. This is followed by a description of solar energy utilization…
A Practical Application of Microcomputers to Control an Active Solar System.
ERIC Educational Resources Information Center
Goldman, David S.; Warren, William
1984-01-01
Describes the design and implementation of a microcomputer-based model active solar heating system. Includes discussions of: (1) the active solar components (solar collector, heat exchanger, pump, and fan necessary to provide forced air heating); (2) software components; and (3) hardware components (in the form of sensors and actuators). (JN)
40 CFR 1066.845 - AC17 air conditioning efficiency test procedure.
Code of Federal Regulations, 2014 CFR
2014-07-01
... solar heating is disabled for certain test intervals as described in this section. (d) Interior air... vehicle's windows and operate the vehicle over a preconditioning UDDS with no solar heating and with the... cooling fans. (3) Turn on solar heating within one minute after turning off the engine. Once the solar...
1993-12-21
Latent(Lower Solid), Net Infrared (Dashed), and Net viii Heat Loss (Upper Solid - the Other 3 Surmmed) are Plotted, with Positive Values :ndicating...gained from solar insolation, Qs, and the heat lost from the surface due to latent, Qe, sensible, Qh, and net infrared radiation, Qb is positive...five empirically derived dimensionless constants in the model. With the introduction of two new unknowns, <E> and < ww2 >, the prediction of the upper
Solar-thermal jet pumping for irrigation
NASA Astrophysics Data System (ADS)
Clements, L. D.; Dellenback, P. A.; Bell, C. A.
1980-01-01
This paper describes a novel concept in solar powered irrigation pumping, gives measured performance data for the pump unit, and projected system performance. The solar-thermal jet pumping concept is centered around a conventional jet eductor pump which is commercially available at low cost. The jet eductor pump is powered by moderate temperature, moderate pressure Refrigerant-113 vapor supplied by a concentrating solar collector field. The R-113 vapor is direct condensed by the produced water and the two fluids are separated at the surface. The water goes on to use and the R-113 is repressurized and returned to the solar field. The key issue in the solar-thermal jet eductor concept is the efficiency of pump operation. Performance data from a small scale experimental unit which utilizes an electrically heated boiler in place of the solar field is presented. The solar-thermal jet eductor concept is compared with other solar irrigation concepts and optimal application situations are identified. Though having lower efficiencies than existing Rankine cycle solar-thermal irrigation systems, the mechanical and operational simplicity of this concept make it competitive with other solar powered irrigation schemes.
Marginal sea surface temperature variation as a pre-cursor of heat waves over the Korean Peninsula
NASA Astrophysics Data System (ADS)
Ham, Yoo-Geun; Na, Hye-Yun
2017-11-01
This study examines the role of the marginal sea surface temperature (SST) on heat waves over Korea. It is found that sea surface warming in the south sea of Korea/Japan (122-138°E, 24- 33°N) causes heat waves after about a week. Due to the frictional force, the positive geopotential height anomalies associated with the south sea warming induce divergent flows over the boundary layer. This divergent flow induces the southerly in Korea, which leads to a positive temperature advection. On the other hand, over the freeatmosphere, the geostrophic wind around high-pressure anomalies flows in a westerly direction over Korea during the south sea warming, which is not effective in temperature advection. Therefore, the positive temperature advection in Korea due to the south sea warming decreases with height. This reduces the vertical potential temperature gradient, which indicates a negative potential vorticity (PV) tendency over Korea. Therefore, the high-pressure anomaly over the south sea of Korea is propagated northward, which results in heat waves due to more incoming solar radiation.
Passive-solar directional-radiating cooling system
Hull, J.R.; Schertz, W.W.
1985-06-27
A radiative cooling system for use with an ice-making system having a radiating surface aimed at the sky for radiating energy at one or more wavelength bands for which the atmosphere is transparent and a cover thermally isolated from the radiating surface and transparent at least to the selected wavelength or wavelengths, the thermal isolation reducing the formation of condensation on the radiating surface and/or cover and permitting the radiation to continue when the radiating surface is below the dewpoint of the atmosphere, and a housing supporting the radiating surface, cover and heat transfer means to an ice storage reservoir.
Passive-solar directional-radiating cooling system
Hull, John R.; Schertz, William W.
1986-01-01
A radiative cooling system for use with an ice-making system having a radiating surface aimed at the sky for radiating energy at one or more wavelength bands for which the atmosphere is transparent and a cover thermally isolated from the radiating surface and transparent at least to the selected wavelength or wavelengths, the thermal isolation reducing the formation of condensation on the radiating surface and/or cover and permitting the radiation to continue when the radiating surface is below the dewpoint of the atmosphere, and a housing supporting the radiating surface, cover and heat transfer means to an ice storage reservoir.
The Unique Scientific Assets of Multi-Wavelength Total Solar Eclipse Observations
NASA Astrophysics Data System (ADS)
Habbal, S. R.; Druckmuller, M.; Ding, A.
2017-12-01
Total solar eclipses continue to yield new discoveries regarding the dynamics and thermodynamics of the corona, due to the radial span of the field of view available during totality, starting from the solar surface out to several solar radii, and due to the diagnostic potential provided by coronal emission lines. Scientific highlights from past eclipse observations as well as from the 21 August 2017 eclipse, now spanning a solar cycle, will be presented. These include white light and spectral line imaging as well as imaging spectrometry. Emphasis will be placed on the unique insights into the origin of dynamic structures captured in eclipse images, and the temperature distribution in the corona derived from these eclipse observations. Implications of these results for the general problem of coronal heating, as well as for the next generation of space instrumentation will be discussed.
Space-based Solar Power: Possible Defense Applications and Opportunities for NRL Contributions
2009-10-23
missions. At the spacecraft system level, a two-phase system can be used to transfer heat from a heat source (such as solar collectors and power...The solar arrays’ position allows them to radiate waste heat from both faces, as in conventional spacecraft practice. Both the antenna structure...Brayton cycle engine heated by a point-focus solar concentrator. NRL worked with NASA Glenn Research Center in developing means to integrate their
1981-10-01
and Storage Locations . ... 7 2.3 Heat Transfer Mechanisms of Thermal Storage Walls ...... ... 11 2.4 Heating of Living Space with Solar Greenhouse ...12 2.5 Schematic of North-Side Greenhouse Retrofit .... ......... 12 2.6 The Roof Pond in Warm Climate ................... ... 14 2.7...Building Thermal Load Profile ... ........ 48 5 Calculation of Solar Heating Contribution ............. 52 5A Adjusted Net Solar Greenhouse Heat Gain
The development of a residential heating and cooling system using NASA derived technology
NASA Technical Reports Server (NTRS)
Oneill, M. J.; Mcdanal, A. J.; Sims, W. H.
1972-01-01
A study to determine the technical and economic feasibility of a solar-powered space heating, air-conditioning, and hot water heating system for residential applications is presented. The basic system utilizes a flat-plate solar collector to process incident solar radiation, a thermal energy storage system to store the collected energy for use during night and heavily overcast periods, and an absorption cycle heat pump for actually heating and cooling the residence. In addition, heat from the energy storage system is used to provide domestic hot water. The analyses of the three major components of the system (the solar collector, the energy storage system, and the heat pump package) are discussed and results are presented. The total system analysis is discussed in detail, including the technical performance of the solar-powered system and a cost comparison between the solar-powered system and a conventional system. The projected applicability of the system to different regions of the nation is described.
Unprecedented 2015/2016 Indo-Pacific Heat Transfer Speeds Up Tropical Pacific Heat Recharge
NASA Astrophysics Data System (ADS)
Mayer, Michael; Alonso Balmaseda, Magdalena; Haimberger, Leopold
2018-04-01
El Niño events are characterized by anomalously warm tropical Pacific surface waters and concurrent ocean heat discharge, a precursor of subsequent cold La Niña conditions. Here we show that El Niño 2015/2016 departed from this norm: despite extreme peak surface temperatures, tropical Pacific (30°N-30°S) upper ocean heat content increased by 9.6 ± 1.7 ZJ (1 ZJ = 1021 J), in stark contrast to the previous strong El Niño in 1997/1998 (-11.5 ± 2.9 ZJ). Unprecedented reduction of Indonesian Throughflow volume and heat transport played a key role in the anomalous 2015/2016 event. We argue that this anomaly is linked with the previously documented intensified warming and associated rising sea levels in the Indian Ocean during the last decade. Additionally, increased absorption of solar radiation acted to dampen Pacific ocean heat content discharge. These results explain the weak and short-lived La Niña conditions in 2016/2017 and indicate the need for realistic representation of Indo-Pacific energy transfers for skillful seasonal-to-decadal predictions.
NASA Technical Reports Server (NTRS)
Rapp, D.
1981-01-01
The book opens with a review of the patterns of energy use and resources in the United States, and an exploration of the potential of solar energy to supply some of this energy in the future. This is followed by background material on solar geometry, solar intensities, flat plate collectors, and economics. Detailed attention is then given to a variety of solar units and systems, including domestic hot water systems, space heating systems, solar-assisted heat pumps, intermediate temperature collectors, space heating/cooling systems, concentrating collectors for high temperatures, storage systems, and solar total energy systems. Finally, rights to solar access are discussed.
Antenna for Measuring Electric Fields Within the Inner Heliosphere
NASA Technical Reports Server (NTRS)
Sittler, Edward Charles
2007-01-01
A document discusses concepts for the design of an antenna to be deployed from a spacecraft for measuring the ambient electric field associated with plasma waves at a location within 3 solar radii from the solar photosphere. The antenna must be long enough to extend beyond the photoelectron and plasma sheaths of the spacecraft (expected to be of the order of meters thick) and to enable measurements at frequencies from 20 Hz to 10 MHz without contamination by spacecraft electric-field noise. The antenna must, therefore, extend beyond the thermal protection system (TPS) of the main body of the spacecraft and must withstand solar heating to a temperature as high as 2,000 C while not conducting excessive heat to the interior of the spacecraft. The TPS would be conical and its axis would be pointed toward the Sun. The antenna would include monopole halves of dipoles that would be deployed from within the shadow of the TPS. The outer potion of each monopole would be composed of a carbon-carbon (C-C) composite surface exposed to direct sunlight (hot side) and a C-C side in shadow (cold side) with yttria-stabilized zirconia spacers in-between. The hot side cannot view the spacecraft bus, while the cold side can. The booms also can be tilted to minimize heat input to spacecraft bus. This design allows one to reduce heat input to the spacecraft bus to acceptable levels.
Prediction of three sigma maximum dispersed density for aerospace applications
NASA Technical Reports Server (NTRS)
Charles, Terri L.; Nitschke, Michael D.
1993-01-01
Free molecular heating (FMH) is caused by the transfer of energy during collisions between the upper atmosphere molecules and a space vehicle. The dispersed free molecular heating on a surface is an important constraint for space vehicle thermal analyses since it can be a significant source of heating. To reduce FMH to a spacecraft, the parking orbit is often designed to a higher altitude at the expense of payload capability. Dispersed FMH is a function of both space vehicle velocity and atmospheric density, however, the space vehicle velocity variations are insignificant when compared to the atmospheric density variations. The density of the upper atmosphere molecules is a function of altitude, but also varies with other environmental factors, such as solar activity, geomagnetic activity, location, and time. A method has been developed to predict three sigma maximum dispersed density for up to 15 years into the future. This method uses a state-of-the-art atmospheric density code, MSIS 86, along with 50 years of solar data, NASA and NOAA solar activity predictions for the next 15 years, and an Aerospace Corporation correlation to account for density code inaccuracies to generate dispersed maximum density ratios denoted as 'K-factors'. The calculated K-factors can be used on a mission unique basis to calculate dispersed density, and hence dispersed free molecular heating rates. These more accurate K-factors can allow lower parking orbit altitudes, resulting in increased payload capability.
NASA Astrophysics Data System (ADS)
Frantz, Cathy; Fritsch, Andreas; Uhlig, Ralf
2017-06-01
In solar tower power plants the receiver is one of the critical components. It converts the solar radiation into heat and must withstand high heat flux densities and high daily or even hourly gradients (due to passage of clouds). For this reason, the challenge during receiver design is to find a reasonable compromise between receiver efficiency, reliability, lifetime and cost. There is a strong interaction between the heliostat field, the receiver and the heat transfer fluid. Therefore, a proper receiver design needs to consider these components within the receiver optimization. There are several design and optimization tools for receivers, but most of them focus only on the receiver, ignoring the heliostat field and other parts of the plant. During the last years DLR developed the ASTRIDcode for tubular receiver concept simulation. The code comprises both a high and a low-detail model. The low-detail model utilizes a number of simplifications which allow the user to screen a high number of receiver concepts for optimization purposes. The high-detail model uses a FE model and is able to compute local absorber and salt temperatures with high accuracy. One key strength of the ASTRIDcode is its interface to a ray tracing software which simulates a realistic heat flux distributions on the receiver surface. The results generated by the ASTRIDcode have been validated by CFD simulations and measurement data.
Prototype solar heating and combined heating and cooling systems
NASA Technical Reports Server (NTRS)
1977-01-01
Schedules and technical progress in the development of eight prototype solar heating and combined solar heating and cooling systems are reported. Particular emphasis is given to the analysis and preliminary design for the cooling subsystem, and the setup and testing of a horizontal thermal energy storage tank configuration and collector shroud evaluation.