Science.gov

Sample records for surface solar irradiance

  1. Extraterrestrial spectral solar irradiance data for modeling spectral solar irradiance at the earth's surface

    SciTech Connect

    Riordan, C.

    1987-05-01

    This report describes the extraterrestrial (air mass zero, AMO) spectral solar irradiance data used by the Solar Energy Research Institute's Resource Assessment Branch in models to calculate spectral solar irradiance at the earth's surface. The report contains tables and graphs of the AMO spectrum updated by the World Radiation Center in Daveos, Switzerland, in 1985.

  2. Open Surface Solar Irradiance Observations - A Challenge

    NASA Astrophysics Data System (ADS)

    Menard, Lionel; Nüst, Daniel; Jirka, Simon; Maso, Joan; Ranchin, Thierry; Wald, Lucien

    2015-04-01

    The newly started project ConnectinGEO funded by the European Commission aims at improving the understanding on which environmental observations are currently available in Europe and subsequently providing an informational basis to close gaps in diverse observation networks. The project complements supporting actions and networking activities with practical challenges to test and improve the procedures and methods for identifying observation data gaps, and to ensure viability in real world scenarios. We present a challenge on future concepts for building a data sharing portal for the solar energy industry as well as the state of the art in the domain. Decision makers and project developers of solar power plants have identified the Surface Solar Irradiance (SSI) and its components as an important factor for their business development. SSI observations are crucial in the process of selecting suitable locations for building new plants. Since in-situ pyranometric stations form a sparse network, the search for locations starts with global satellite data and is followed by the deployment of in-situ sensors in selected areas for at least one year. To form a convincing picture, answers must be sought in the conjunction of these EO systems, and although companies collecting SSI observations are willing to share this information, the means to exchange in-situ measurements across companies and between stakeholders in the market are still missing. We present a solution for interoperable exchange of SSI data comprising in-situ time-series observations as well as sensor descriptions based on practical experiences from other domains. More concretely, we will apply concepts and implementations of the Sensor Web Enablement (SWE) framework of the Open Geospatial Consortium (OGC). The work is based on an existing spatial data infrastructure (SDI), which currently comprises metadata, maps and coverage data, but no in-situ observations yet. This catalogue is already registered in the

  3. Solar Irradiance Variability is Caused by the Magnetic Activity on the Solar Surface.

    PubMed

    Yeo, Kok Leng; Solanki, Sami K; Norris, Charlotte M; Beeck, Benjamin; Unruh, Yvonne C; Krivova, Natalie A

    2017-09-01

    The variation in the radiative output of the Sun, described in terms of solar irradiance, is important to climatology. A common assumption is that solar irradiance variability is driven by its surface magnetism. Verifying this assumption has, however, been hampered by the fact that models of solar irradiance variability based on solar surface magnetism have to be calibrated to observed variability. Making use of realistic three-dimensional magnetohydrodynamic simulations of the solar atmosphere and state-of-the-art solar magnetograms from the Solar Dynamics Observatory, we present a model of total solar irradiance (TSI) that does not require any such calibration. In doing so, the modeled irradiance variability is entirely independent of the observational record. (The absolute level is calibrated to the TSI record from the Total Irradiance Monitor.) The model replicates 95% of the observed variability between April 2010 and July 2016, leaving little scope for alternative drivers of solar irradiance variability at least over the time scales examined (days to years).

  4. Solar Irradiance Variability is Caused by the Magnetic Activity on the Solar Surface

    NASA Astrophysics Data System (ADS)

    Yeo, K. L.; Solanki, S. K.; Norris, C. M.; Beeck, B.; Unruh, Y. C.; Krivova, N. A.

    2017-09-01

    The variation in the radiative output of the Sun, described in terms of solar irradiance, is important to climatology. A common assumption is that solar irradiance variability is driven by its surface magnetism. Verifying this assumption has, however, been hampered by the fact that models of solar irradiance variability based on solar surface magnetism have to be calibrated to observed variability. Making use of realistic three-dimensional magnetohydrodynamic simulations of the solar atmosphere and state-of-the-art solar magnetograms from the Solar Dynamics Observatory, we present a model of total solar irradiance (TSI) that does not require any such calibration. In doing so, the modeled irradiance variability is entirely independent of the observational record. (The absolute level is calibrated to the TSI record from the Total Irradiance Monitor.) The model replicates 95% of the observed variability between April 2010 and July 2016, leaving little scope for alternative drivers of solar irradiance variability at least over the time scales examined (days to years).

  5. Surface solar irradiance from SCIAMACHY measurements: algorithm and validation

    NASA Astrophysics Data System (ADS)

    Wang, P.; Stammes, P.; Mueller, R.

    2011-05-01

    Broadband surface solar irradiances (SSI) are, for the first time, derived from SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY) satellite measurements. The retrieval algorithm, called FRESCO (Fast REtrieval Scheme for Clouds from the Oxygen A band) SSI, is similar to the Heliosat method. In contrast to the standard Heliosat method, the cloud index is replaced by the effective cloud fraction derived from the FRESCO cloud algorithm. The MAGIC (Mesoscale Atmospheric Global Irradiance Code) algorithm is used to calculate clear-sky SSI. The SCIAMACHY SSI product is validated against globally distributed BSRN (Baseline Surface Radiation Network) measurements and compared with ISCCP-FD (International Satellite Cloud Climatology Project Flux Dataset) surface shortwave downwelling fluxes (SDF). For one year of data in 2008, the mean difference between the instantaneous SCIAMACHY SSI and the hourly mean BSRN global irradiances is -4 W m-2 (-1 %) with a standard deviation of 101 W m-2 (20 %). The mean difference between the globally monthly mean SCIAMACHY SSI and ISCCP-FD SDF is less than -12 W m-2 (-2 %) for every month in 2006 and the standard deviation is 62 W m-2 (12 %). The correlation coefficient is 0.93 between SCIAMACHY SSI and BSRN global irradiances and is greater than 0.96 between SCIAMACHY SSI and ISCCP-FD SDF. The evaluation results suggest that the SCIAMACHY SSI product achieves similar mean bias error and root mean square error as the surface solar irradiances derived from polar orbiting satellites with higher spatial resolution.

  6. Surface solar irradiance from SCIAMACHY measurements: algorithm and validation

    NASA Astrophysics Data System (ADS)

    Wang, P.; Stammes, P.; Mueller, R.

    2011-02-01

    Broadband surface solar irradiances (SSI) are, for the first time, derived from SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY) satellite measurements. The retrieval algorithm, called FRESCO (Fast REtrieval Scheme for Clouds from Oxygen A band) SSI, is similar to the Heliosat method. In contrast to the standard Heliosat method, the cloud index is replaced by the effective cloud fraction derived from the FRESCO cloud algorithm. The MAGIC (Mesoscale Atmospheric Global Irradiance Code) algorithm is used to calculate clear-sky SSI. The SCIAMACHY SSI product is validated against the globally distributed BSRN (Baseline Surface Radiation Network) measurements and compared with the ISCCP-FD (International Satellite Cloud Climatology Project Flux Dataset) surface shortwave downwelling fluxes (SDF). For one year of data in 2008, the mean difference between the instantaneous SCIAMACHY SSI and the hourly mean BSRN global irradiances is -4 W m-2(-1%) with a standard deviation of 101 W m-2 (20%). The mean difference between the globally monthly mean SCIAMACHY SSI and ISCCP-FD SDF is less than -12 W m-2 (-2%) for every month in 2006 and the standard deviation is 62 W m-2 (12%). The correlation coefficient is 0.93 between SCIAMACHY SSI and BSRN global irradiances and is greater than 0.96 between SCIAMACHY SSI and ISCCP-FD SDF. The evaluation results suggest that the SCIAMACHY SSI product achieves similar mean bias error and root mean square error as the surface solar irradiances derived from polar orbiting satellites with higher spatial resolution.

  7. Solar UV irradiation conditions on the surface of Mars.

    PubMed

    Rontó, Györgyi; Bérces, Attila; Lammer, Helmut; Cockell, Charles S; Molina-Cuberos, Gregorio J; Patel, Manish R; Selsis, Franck

    2003-01-01

    The UV radiation environment on planetary surfaces and within atmospheres is of importance in a wide range of scientific disciplines. Solar UV radiation is a driving force of chemical and organic evolution and serves also as a constraint in biological evolution. In this work we modeled the transmission of present and early solar UV radiation from 200 to 400 nm through the present-day and early (3.5 Gyr ago) Martian atmosphere for a variety of possible cases, including dust loading, observed and modeled O3 concentrations. The UV stress on microorganisms and/or molecules essential for life was estimated by using DNA damaging effects (specifically bacteriophage T7 killing and uracil dimerization) for various irradiation conditions on the present and ancient Martian surface. Our study suggests that the UV irradiance on the early Martian surface 3.5 Gyr ago may have been comparable with that of present-day Earth, and though the current Martian UV environment is still quite severe from a biological viewpoint, we show that substantial protection can still be afforded under dust and ice.

  8. A technique for global monitoring of net solar irradiance at the ocean surface. I - Model

    NASA Technical Reports Server (NTRS)

    Frouin, Robert; Chertock, Beth

    1992-01-01

    An accurate long-term (84-month) climatology of net surface solar irradiance over the global oceans from Nimbus-7 earth radiation budget (ERB) wide-field-of-view planetary-albedo data is generated via an algorithm based on radiative transfer theory. Net surface solar irradiance is computed as the difference between the top-of-atmosphere incident solar irradiance (known) and the sum of the solar irradiance reflected back to space by the earth-atmosphere system (observed) and the solar irradiance absorbed by atmospheric constituents (modeled). It is shown that the effects of clouds and clear-atmosphere constituents can be decoupled on a monthly time scale, which makes it possible to directly apply the algorithm with monthly averages of ERB planetary-albedo data. Compared theoretically with the algorithm of Gautier et al. (1980), the present algorithm yields higher solar irradiance values in clear and thin cloud conditions and lower values in thick cloud conditions.

  9. Solar irradiance over Earth's surface and relations with temperature rise

    NASA Astrophysics Data System (ADS)

    Jimenez, Marta; Cony, Marco, ,, Dr; Fernández, Irene; Weisenberg, Ralf, ,, Dr

    2017-04-01

    The present study analyzes if exist a relation between Temperature and Solar Irradiance Components during a large time period, and how it affects to Solar Energy production. The study was made in three different places over the planet since 2000 to 2013, and methodology used is based on choosing one monthly data, corresponding to highest Temperature day of each month, for to determine its respective differences. In first approximation, a proportional relation between variables is observed both GHI component and DNI component regarding T, considering that all of them have similar trends. Keeping in mind solar energy flux definition in function of solar radiation, solar energy production haves the same trends than temperature. This result gives cause for future studies about exact relation which connect temperature with solar radiation, which can be useful in terms of solar forecast.

  10. Numerical modeling of solar irradiance on earth's surface

    NASA Astrophysics Data System (ADS)

    Mera, E.; Gutierez, L.; Da Silva, L.; Miranda, E.

    2016-05-01

    Modeling studies and estimation of solar radiation in base area, touch from the problems of estimating equation of time, distance equation solar space, solar declination, calculation of surface irradiance, considering that there are a lot of studies you reported the inability of these theoretical equations to be accurate estimates of radiation, many authors have proceeded to make corrections through calibrations with Pyranometers field (solarimeters) or the use of satellites, this being very poor technique last because there a differentiation between radiation and radiant kinetic effects. Because of the above and considering that there is a weather station properly calibrated ground in the Susques Salar in the Jujuy Province, Republic of Argentina, proceeded to make the following modeling of the variable in question, it proceeded to perform the following process: 1. Theoretical Modeling, 2. graphic study of the theoretical and actual data, 3. Adjust primary calibration data through data segmentation on an hourly basis, through horizontal and adding asymptotic constant, 4. Analysis of scatter plot and contrast series. Based on the above steps, the modeling data obtained: Step One: Theoretical data were generated, Step Two: The theoretical data moved 5 hours, Step Three: an asymptote of all negative emissivity values applied, Solve Excel algorithm was applied to least squares minimization between actual and modeled values, obtaining new values of asymptotes with the corresponding theoretical reformulation of data. Add a constant value by month, over time range set (4:00 pm to 6:00 pm). Step Four: The modeling equation coefficients had monthly correlation between actual and theoretical data ranging from 0.7 to 0.9.

  11. Global surface solar irradiance product derived from SCIAMACHY FRESCO cloud fraction

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Stammes, Piet; Müller, Richard

    The FRESCO cloud retrieval algorithm has been developed as a simple but fast and efficient algorithm for GOME and SCIAMACHY (Koelemeijer et al., 2001; Fournier et al., 2006; Wang et al., 2008). FRESCO employs the O2 A band at 760 nm to retrieve the effective cloud fraction and cloud pressure using a simple Lambertian cloud model. The effective cloud fraction is a combination of geometric cloud fraction and cloud optical thickness, which yield the same reflectance at the top of the atmosphere as the cloud in the scene. It is well-known that clouds reduce the surface solar irradiance. Therefore the all-sky irradiance can be derived from the clear-sky irradiance with a scaling factor related to the cloud index. The cloud index is very similar to the effective cloud fraction by definition. The MAGIC (Mesoscale Atmospheric Global Irradiance Code) software converts the cloud index to the surface solar irradiance using the Heliosat method (Mueller et al. 2009). The MAGIC algorithm is also used by the CM-SAF surface solar irradiance product for clear sky cases. We applied the MAGIC software to FRESCO effective cloud fraction with slight modifications. In this presentation we will show the FRESCO-SSI monthly mean product and the comparison with the BSRN global irradiance data at Cabauw, the Netherlands and surface solar irradiance measurement at Tibetan plateau in China.

  12. Temporal Variability of Surface Solar Irradiance as a Function of Satellite-retrieved Cloud

    NASA Astrophysics Data System (ADS)

    Hinkelman, L. M.; Sengupta, M.; Habte, A.

    2014-12-01

    Studies of the impact of renewables on the electrical transmission grid are needed as power production from renewable energy resources increases. These studies require estimates of high temporal and spatial resolution power output under various scenarios. Satellite-based solar resource estimates are the best source of long-term irradiance data but are generally of lower temporal and spatial resolution than needed and thus require downscaling. Likewise, weather forecast models cannot provide high spatial or temporal irradiance predictions. Downscaling requires information about solar irradiance variability in both space and time, which is primarily a function of cloud properties. In this study, we analyze the relationships between the temporal variability of surface solar irradiance and satellite-based cloud properties. One-minute resolution surface solar irradiance data were obtained from the National Oceanic and Atmospheric Administration's Surface Radiation (SURFRAD) network. These sites are distributed across the United States to cover a range of meteorological conditions. Cloud information at a nominal 4 km resolution and half hour intervals was retrieved from NOAA's Geostationary Operation Environmental Satellites (GOES). The retrieved cloud properties were then used to select and composite irradiance data from the measurement sites in order to identify the cloud properties that exert the strongest control over short-term irradiance variability. The irradiance variability was characterized using statistics of both the irradiances themselves and of irradiance differences computed for short time scales (minutes). The relationships derived using this method will be presented, comparing and contrasting the statistics computed for the different cloud properties. The implications for downscaling irradiance from satellites or forecast models will also be discussed.

  13. A technique for global monitoring of net solar irradiance at the ocean surface. II - Validation

    NASA Technical Reports Server (NTRS)

    Chertock, Beth; Frouin, Robert; Gautier, Catherine

    1992-01-01

    The generation and validation of the first satellite-based long-term record of surface solar irradiance over the global oceans are addressed. The record is generated using Nimbus-7 earth radiation budget (ERB) wide-field-of-view plentary-albedo data as input to a numerical algorithm designed and implemented based on radiative transfer theory. The mean monthly values of net surface solar irradiance are computed on a 9-deg latitude-longitude spatial grid for November 1978-October 1985. The new data set is validated in comparisons with short-term, regional, high-resolution, satellite-based records. The ERB-based values of net surface solar irradiance are compared with corresponding values based on radiance measurements taken by the Visible-Infrared Spin Scan Radiometer aboard GOES series satellites. Errors in the new data set are estimated to lie between 10 and 20 W/sq m on monthly time scales.

  14. A new method for assessing surface solar irradiance: Heliosat-4

    NASA Astrophysics Data System (ADS)

    Qu, Z.; Oumbe, A.; Blanc, P.; Lefèvre, M.; Wald, L.; Schroedter-Homscheidt, M.; Gesell, G.

    2012-04-01

    Downwelling shortwave irradiance at surface (SSI) is more and more often assessed by means of satellite-derived estimates of optical properties of the atmosphere. Performances are judged satisfactory for the time being but there is an increasing need for the assessment of the direct and diffuse components of the SSI. MINES ParisTech and the German Aerospace Center (DLR) are currently developing the Heliosat-4 method to assess the SSI and its components in a more accurate way than current practices. This method is composed by two parts: a clear sky module based on the radiative transfer model libRadtran, and a cloud-ground module using two-stream and delta-Eddington approximations for clouds and a database of ground albedo. Advanced products derived from geostationary satellites and recent Earth Observation missions are the inputs of the Heliosat-4 method. Such products are: cloud optical depth, cloud phase, cloud type and cloud coverage from APOLLO of DLR, aerosol optical depth, aerosol type, water vapor in clear-sky, ozone from MACC products (FP7), and ground albedo from MODIS of NASA. In this communication, we briefly present Heliosat-4 and focus on its performances. The results of Heliosat-4 for the period 2004-2010 will be compared to the measurements made in five stations within the Baseline Surface Radiation Network. Extensive statistic analysis as well as case studies are performed in order to better understand Heliosat-4 and have an in-depth view of the performance of Heliosat-4, to understand its advantages comparing to existing methods and to identify its defaults for future improvements. The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement no. 218793 (MACC project) and no. 283576 (MACC-II project).

  15. Simulation Study of Effects of Solar Irradiance and Sea Surface Temperature on Monsoons and Global Circulation

    NASA Technical Reports Server (NTRS)

    Sud, Y. C.; Walker, G. K.; Mehta, V.; Lau, W. K.-M.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    A recent version of the GEOS 2 GCM was used to isolate the roles of the annual cycles of solar irradiation and/or sea-surface temperatures (SSTs) on the simulated circulation and rainfall. Four 4-year long integrations were generated with the GCM. The first integration, called Control Case, used daily-interpolated SSTs from a 30 year monthly SST climatology that was obtained from the analyzed SST-data, while the solar irradiation at the top of the atmosphere was calculated normally at hourly intervals. The next two cases prescribed the SSTs or the incoming solar irradiance at the top of the atmosphere at their annual mean values, respectively while everything else was kept the same as in the Control Case. In this way the influence of the annual cycles of both external forcings was isolated.

  16. Measurements of solar ultraviolet irradiance with respect to the human body surface

    NASA Astrophysics Data System (ADS)

    Stick, Carsten; Harms, Volker; Pielke, Liane

    1994-07-01

    Solar UV irradiance is measured in Westerland, Germany (54.9 degree(s) N, 8.3 degree(s) E) in the immediate vicinity of the North Sea shoreline. Measurements have been done since July 1993, focussing on the biologically effective UV radiation and the human body geometry. A grid double monochromator radiometer (DM 150, Bentham Instruments Comp., Reading, England) is used to measure the spectral resolution of 1 nm. Weighting the spectral irradiance by the action spectrum for the erythema is more appropriate for determining the biological effectiveness than simply dividing the UV radiation into the UV-A and UV-B wavebands. The erythemal irradiance shows a close relation to the sun angle during the course of a day. The exposure times, calculated from the irradiance and the minimal erythemal doses, suggest that people might underestimate the risk of getting sunburnt before noon. Diffuse radiation scattered from the sky contribute about 70% of the erythemal irradiance at a 45 degree(s) sun angle. A receiver oriented directly to the sun, i.e. 45 degree(s) inclined, receives an additional 30% of the erythemal irradiance measured by a horizontally adjusted cosine response sensor. The relative irradiance of curved surfaces like the skin is determined by UV- B-sensitive paper placed around a cylinder. This device detected UV radiation reflected by the sea, which hardly is measured by horizontally adjusted receivers.

  17. Solar Irradiance Changes And Photobiological Effects At Earth's Surface Following Astrophysical Ionizing Radiation Events

    NASA Astrophysics Data System (ADS)

    Thomas, Brian; Neale, Patrick

    2016-01-01

    Astrophysical ionizing radiation events have been recognized as a potential threat to life on Earth for decades. Although there is some direct biological damage on the surface from redistributed radiation several studies have indicated that the greatest long term threat is from ozone depletion and subsequent heightened solar ultraviolet (UV) radiation. It is known that organisms exposed to this irradiation experience harmful effects such as sunburn and even direct damage to DNA, proteins, or other cellular structures. Simulations of the atmospheric effects of a variety of events (such as supernovae, gamma-ray bursts, and solar proton events) have been previously published, along with estimates of biological damage at Earth's surface. In the present work, we employed a radiative transfer model to expand and improve calculations of surface-level irradiance and biological impacts following an ionizing radiation event. We considered changes in surface-level UVB, UVA, and photosynthetically active radiation (visible light). Using biological weighting functions we have considered a wide range of effects, including: erythema and skin cancer in humans; inhibition of photosynthesis in the diatom Phaeodactylum sp. and dinoflagellate Prorocentrum micans inhibition of carbon fixation in Antarctic phytoplankton; inhibition of growth of oat (Avena sativa L. cv. Otana) seedlings; and cataracts. We found that past work overestimated UVB irradiance, but that relative estimates for increase in exposure to DNA damaging radiation are still similar to our improved calculations. We also found that the intensity of biologically damaging radiation varies widely with organism and specific impact considered; these results have implications for biosphere-level damage following astrophysical ionizing radiation events. When considering changes in surface-level visible light irradiance, we found that, contrary to previous assumptions, a decrease in irradiance is only present for a short time in

  18. Solar total irradiance variations and the global sea surface temperature record

    SciTech Connect

    Reid, G.C. Univ. of Colorado, Boulder )

    1991-02-20

    The record of globally averaged sea surface temperature (SST) over the past 130 years shows a highly significant correlation with the envelope of the 11-year cycle of solar activity over the same period. This correlation could be explained by a variation in the sun's total irradiance (the solar constant) that is in phase with the solar-cycle envelope, supporting and updating an earlier conclusion by Eddy (1976) that such variations could have played a major role in climate change over the past millennium. Measurements of the total irradiance from spacecraft, rockets, and balloons over the past 25 years have provided evidence of long-term variations and have been used to develop a simple linear relationship between irradiance and the envelope of the sunspot cycle. This relationship has been used to force a one-dimensional model of the thermal structure of the ocean, consisting of a 100-m mixed layer coupled to a deep ocean and including a thermohaline circulation. The model was started in the mid-seventeenth century, at the time of the Maunder Minimum of solar activity, and mixed-layer temperatures were calculated at 6-month intervals up to the present. The total range of irradiance values during the period was about 1%, and the total range of SST was about 1C. Cool periods, when temperatures were about 0.5C below present-day values, were found in the early decades of both the nineteenth and twentieth centuries. The results can be taken as indicating that solar variability has been an important contributor to global climate variations in recent decades. The growing atmospheric burden of greenhouse gases may well have played an important role in the immediate past.

  19. Dependence of Lunar Surface Charging on Solar Wind Plasma Conditions and Solar Irradiation

    NASA Technical Reports Server (NTRS)

    Stubbs, T. J.; Farrell, W. M.; Halekas, J. S.; Burchill, J. K.; Collier, M. R.; Zimmerman, M. I.; Vondrak, R. R.; Delory, G. T.; Pfaff, R. F.

    2014-01-01

    The surface of the Moon is electrically charged by exposure to solar radiation on its dayside, as well as by the continuous flux of charged particles from the various plasma environments that surround it. An electric potential develops between the lunar surface and ambient plasma, which manifests itself in a near-surface plasma sheath with a scale height of order the Debye length. This study investigates surface charging on the lunar dayside and near-terminator regions in the solar wind, for which the dominant current sources are usually from the pohotoemission of electrons, J(sub p), and the collection of plasma electrons J(sub e) and ions J(sub i). These currents are dependent on the following six parameters: plasma concentration n(sub 0), electron temperature T(sub e), ion temperature T(sub i), bulk flow velocity V, photoemission current at normal incidence J(sub P0), and photo electron temperature T(sub p). Using a numerical model, derived from a set of eleven basic assumptions, the influence of these six parameters on surface charging - characterized by the equilibrium surface potential, Debye length, and surface electric field - is investigated as a function of solar zenith angle. Overall, T(sub e) is the most important parameter, especially near the terminator, while J(sub P0) and T(sub p) dominate over most of the dayside.

  20. Dependence of Lunar Surface Charging on Solar Wind Plasma Conditions and Solar Irradiation

    NASA Technical Reports Server (NTRS)

    Stubbs, T. J.; Farrell, W. M.; Halekas, J. S.; Burchill, J. K.; Collier, M. R.; Zimmerman, M. I.; Vondrak, R. R.; Delory, G. T.; Pfaff, R. F.

    2014-01-01

    The surface of the Moon is electrically charged by exposure to solar radiation on its dayside, as well as by the continuous flux of charged particles from the various plasma environments that surround it. An electric potential develops between the lunar surface and ambient plasma, which manifests itself in a near-surface plasma sheath with a scale height of order the Debye length. This study investigates surface charging on the lunar dayside and near-terminator regions in the solar wind, for which the dominant current sources are usually from the pohotoemission of electrons, J(sub p), and the collection of plasma electrons J(sub e) and ions J(sub i). These currents are dependent on the following six parameters: plasma concentration n(sub 0), electron temperature T(sub e), ion temperature T(sub i), bulk flow velocity V, photoemission current at normal incidence J(sub P0), and photo electron temperature T(sub p). Using a numerical model, derived from a set of eleven basic assumptions, the influence of these six parameters on surface charging - characterized by the equilibrium surface potential, Debye length, and surface electric field - is investigated as a function of solar zenith angle. Overall, T(sub e) is the most important parameter, especially near the terminator, while J(sub P0) and T(sub p) dominate over most of the dayside.

  1. Solar irradiance changes and photobiological effects at earth's surface following astrophysical ionizing radiation events.

    PubMed

    Thomas, Brian C; Neale, Patrick J; Snyder, Brock R

    2015-03-01

    Astrophysical ionizing radiation events have been recognized as a potential threat to life on Earth, primarily through depletion of stratospheric ozone and subsequent increase in surface-level solar ultraviolet radiation. Simulations of the atmospheric effects of a variety of events (such as supernovae, gamma-ray bursts, and solar proton events) have been previously published, along with estimates of biological damage at Earth's surface. In this work, we employed the Tropospheric Ultraviolet and Visible (TUV) radiative transfer model to expand and improve calculations of surface-level irradiance and biological impacts following an ionizing radiation event. We considered changes in surface-level UVB, UVA, and photosynthetically active radiation (visible light) for clear-sky conditions and fixed aerosol parameter values. We also considered a wide range of biological effects on organisms ranging from humans to phytoplankton. We found that past work overestimated UVB irradiance but that relative estimates for increase in exposure to DNA-damaging radiation are still similar to our improved calculations. We also found that the intensity of biologically damaging radiation varies widely with organism and specific impact considered; these results have implications for biosphere-level damage following astrophysical ionizing radiation events. When considering changes in surface-level visible light irradiance, we found that, contrary to previous assumptions, a decrease in irradiance is only present for a short time in very limited geographical areas; instead we found a net increase for most of the modeled time-space region. This result has implications for proposed climate changes associated with ionizing radiation events.

  2. Atmospheric aerosols and their impact on surface solar irradiation in Kerkennah Islands (eastern Tunisia)

    NASA Astrophysics Data System (ADS)

    Trabelsi, A.; Saad, M.; Masmoudi, M.; Alfaro, S. C.

    2015-07-01

    In order to assess the impact of the atmospheric particle load on the characteristics of the surface solar irradiation in Central Tunisia, four measurement campaigns have been carried out in periods selected in each season of 2010/2011 on the Kerkennah Islands. During each of these periods, the direct normal and global horizontal components of solar irradiation were measured, which allows determination of the atmospheric turbidity (Linke turbidity factor, TL, and Angström exponent, β) and of the diffuse fraction (DF) of the irradiation. In parallel, surface aerosols were sampled on filters and subsequently submitted to X-ray fluorescence (XRF) analysis for determination of their elemental composition and apportionment between the mineral dust (MD), sea salt (SS), and non sea salt sulfate (nSS) species. A significant positive correlation is found between the total aerosol concentration and both TL and DF, which indicates that over the measurement period surface aerosol is representative of the columnar particulate content of the atmosphere. A least square iterative routine used to separate the effects of each aerosol type shows that if on average MD, SS, and nSS explain 4, 19 and 12%, respectively, of the TL values, the increase of the MD concentrations during short-duration dust event is responsible for the largest observed values (TL = 6 on 15 April 2010). Similarly, if on average only about 9% of the global horizontal surface irradiation can be ascribed to aerosols, during the aforementioned dust event this share reaches 28%, 19% of which are due to mineral dust.

  3. Comparison of several databases of downward solar daily irradiation data at ocean surface with PIRATA measurements

    NASA Astrophysics Data System (ADS)

    Trolliet, Mélodie; Wald, Lucien

    2017-04-01

    The solar radiation impinging at sea surface is an essential variable in climate system. There are several means to assess the daily irradiation at surface, such as pyranometers aboard ship or on buoys, meteorological re-analyses and satellite-derived databases. Among the latter, assessments made from the series of geostationary Meteosat satellites offer synoptic views of the tropical and equatorial Atlantic Ocean every 15 min with a spatial resolution of approximately 5 km. Such Meteosat-derived databases are fairly recent and the quality of the estimates of the daily irradiation must be established. Efforts have been made for the land masses and must be repeated for the Atlantic Ocean. The Prediction and Research Moored Array in the Tropical Atlantic (PIRATA) network of moorings in the Tropical Atlantic Ocean is considered as a reference for oceanographic data. It consists in 17 long-term Autonomous Temperature Line Acquisition System (ATLAS) buoys equipped with sensors to measure near-surface meteorological and subsurface oceanic parameters, including downward solar irradiation. Corrected downward solar daily irradiation from PIRATA were downloaded from the NOAA web site and were compared to several databases: CAMS RAD, HelioClim-1, HelioClim-3 v4 and HelioClim-3 v5. CAMS-RAD, the CAMS radiation service, combines products of the Copernicus Atmosphere Monitoring Service (CAMS) on gaseous content and aerosols in the atmosphere together with cloud optical properties deduced every 15 min from Meteosat imagery to supply estimates of the solar irradiation. Part of this service is the McClear clear sky model that provides estimates of the solar irradiation that should be observed in cloud-free conditions. The second and third databases are HelioClim-1 and HelioClim-3 v4 that are derived from Meteosat images using the Heliosat-2 method and the ESRA clear sky model, based on the Linke turbidity factor. HelioClim-3 v5 is the fourth database and differs from v4 by the

  4. Evaporation and solar irradiance as regulators of sea surface temperature in annual and interannual changes

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Zhang, Anzhen; Bishop, James K. B.

    1994-01-01

    Seven years of net surface solar irradiance (S) derived from cloud information provided by the International Satellite Cloud Climatology Project (ISCCP) and 4 years of surface latent heat flux (E) derived from the observations of the special sensor microwave imager (SSM/I) were used to examine the relation between surface heat fluxes and sea surface temperature (T(sub s)) in their global geographical distribution, seasonal cycle, and interannual variation. The relations of seasonal changes imply that evaporation cooling is significant over most of the ocean and that solar heating is the main drive for the change of T(sub s) away from the equatorial wave guide where ocean dynamics may be more important. However, T(sub s) is not the most direct and significant factor in the seasonal changes of S and E over most of the ocean; the solar incident angle may be more important to S, and wind speed and air humidity are found to correlate better with E. Significant local correlations between anomalies of T(sub s) and S and between anomalies of T(sub s) and E are found in the central equatorial Pacific; both types of correlation are negative. The influence of ocean dynamics in changing T(sub s) in the tropical ocean cannot be ignored.

  5. Reconstruction of solar spectral surface UV irradiances using radiative transfer simulations.

    PubMed

    Lindfors, Anders; Heikkilä, Anu; Kaurola, Jussi; Koskela, Tapani; Lakkala, Kaisa

    2009-01-01

    UV radiation exerts several effects concerning life on Earth, and spectral information on the prevailing UV radiation conditions is needed in order to study each of these effects. In this paper, we present a method for reconstruction of solar spectral UV irradiances at the Earth's surface. The method, which is a further development of an earlier published method for reconstruction of erythemally weighted UV, relies on radiative transfer simulations, and takes as input (1) the effective cloud optical depth as inferred from pyranometer measurements of global radiation (300-3000 nm); (2) the total ozone column; (3) the surface albedo as estimated from measurements of snow depth; (4) the total water vapor column; and (5) the altitude of the location. Reconstructed daily cumulative spectral irradiances at Jokioinen and Sodankylä in Finland are, in general, in good agreement with measurements. The mean percentage difference, for instance, is mostly within +/-8%, and the root mean square of the percentage difference is around 10% or below for wavelengths over 310 nm and daily minimum solar zenith angles (SZA) less than 70 degrees . In this study, we used pseudospherical radiative transfer simulations, which were shown to improve the performance of our method under large SZA (low Sun).

  6. A simple analytical formula to compute clear sky total and photosynthetically available solar irradiance at the ocean surface

    NASA Technical Reports Server (NTRS)

    Frouin, Robert; Lingner, David W.; Gautier, Catherine; Baker, Karen S.; Smith, Ray C.

    1989-01-01

    A simple but accurate analytical formula was developed for computing the total and the photosynthetically available solar irradiances at the ocean surface under clear skies, which takes into account the processes of scattering by molecules and aerosols within the atmosphere and of absorption by the water vapor, ozone, and aerosols. These processes are parameterized as a function of solar zenith angle, aerosol type, atmospheric visibility, and vertically integrated water-vapor and ozone amounts. Comparisons of the calculated and measured total and photosynthetically available solar irradiances for several experiments in tropical and mid-latitude ocean regions show 39 and 14 Wm/sq m rms errors (6.5 and 4.7 percent of the average measured values) on an hourly time scale, respectively. The proposed forumula is unique in its ability to predict surface solar irradiance in the photosynthetically active spectral interval.

  7. The Variability of Solar Spectral Irradiance and Solar Surface Indices Through the Solar Activity Cycles 21-23

    NASA Astrophysics Data System (ADS)

    Deniz Goker, Umit

    2016-07-01

    A study of variations of solar spectral irradiance (SSI) in the wavelength ranges 121.5 nm-300.5 nm for the period 1981-2009 is presented. We used various data for ultraviolet (UV) spectral lines and international sunspot number (ISSN) from interactive data centers as SME (NSSDC), UARS (GDAAC), SORCE (LISIRD) and SIDC, respectively. We developed a special software for extracting the data and reduced this data by using the MATLAB. In this respect, we revealed negative correlations of intensities of UV (289.5 nm-300.5 nm) emission lines originating in the solar chromosphere with the ISSN index during the unusually prolonged minimum between the solar cycles (SCs) 23 and 24. We also compared our results with the ground-based telescopes as Solar Irradiance Platform, Stanford Data (SFO), Kodaikanal Data (KKL) and NGDC Homepage (Rome and Learmonth Solar Observatories). We studied the variations of total solar irradiance (TSI), magnetic field, sunspots/sunspot groups, Ca II K-flux, faculae and plage areas data with these ground-based telescopes, respectively. We reduced the selected data using the Phyton programming language and plot with the IDL programme. Therefore, we found that there was a decrease in the area of bright faculae and chromospheric plages while the percentage of dark faculae and plage decrease, as well. However, these decreases mainly occurred in small sunspots, contrary to this, these terms in large sunspot groups were comparable to previous SCs or even larger. Nevertheless, negative correlations between ISSN and SSI data indicate that these emissions are in close connection with the classes of sunspots/sunspot groups and "PLAGE" regions. Finally, we applied the time series of the chemical elements correspond to the wavelengths 121.5 nm-300.5 nm and compared with the ISSN data. We found an unexpected increasing in the 298.5 nm for the Fe II element. The variability of Fe II (298.5 nm) is in close connection with the plage regions and the sizes of the

  8. Do modelled or satellite-based estimates of surface solar irradiance accurately describe its temporal variability?

    NASA Astrophysics Data System (ADS)

    Bengulescu, Marc; Blanc, Philippe; Boilley, Alexandre; Wald, Lucien

    2017-02-01

    This study investigates the characteristic time-scales of variability found in long-term time-series of daily means of estimates of surface solar irradiance (SSI). The study is performed at various levels to better understand the causes of variability in the SSI. First, the variability of the solar irradiance at the top of the atmosphere is scrutinized. Then, estimates of the SSI in cloud-free conditions as provided by the McClear model are dealt with, in order to reveal the influence of the clear atmosphere (aerosols, water vapour, etc.). Lastly, the role of clouds on variability is inferred by the analysis of in-situ measurements. A description of how the atmosphere affects SSI variability is thus obtained on a time-scale basis. The analysis is also performed with estimates of the SSI provided by the satellite-derived HelioClim-3 database and by two numerical weather re-analyses: ERA-Interim and MERRA2. It is found that HelioClim-3 estimates render an accurate picture of the variability found in ground measurements, not only globally, but also with respect to individual characteristic time-scales. On the contrary, the variability found in re-analyses correlates poorly with all scales of ground measurements variability.

  9. Midwestern streamflow, precipitation, and atmospheric vorticity influenced by Pacific sea-surface temperatures and total solar-irradiance variations

    USGS Publications Warehouse

    Perry, C.A.

    2006-01-01

    A solar effect on streamflow in the Midwestern United States is described and supported in a six-step physical connection between total solar irradiance (TSI), tropical sea-surface temperatures (SSTs), extratropical SSTs, jet-stream vorticity, surface-layer vorticity, precipitation, and streamflow. Variations in the correlations among the individual steps indicate that the solar/hydroclimatic mechanism is complex and has a time element (lag) that may not be constant. Correct phasing, supported by consistent spectral peaks between 0.092 and 0.096 cycles per year in all data sets within the mechanism is strong evidence for its existence. A significant correlation exists between total solar irradiance and the 3-year moving average of annual streamflow for Iowa (R = 0.67) and for the Mississippi River at St Louis, Missouri (R = 0.60), during the period 1950-2000. Published in 2005 by John Wiley & Sons, Ltd.

  10. Changes in surface solar UV irradiances and total ozone during the solar eclipse of August 11, 1999

    NASA Astrophysics Data System (ADS)

    Zerefos, C. S.; Balis, D. S.; Meleti, C.; Bais, A. F.; Tourpali, K.; Kourtidis, K.; Vanicek, K.; Cappellani, F.; Kaminski, U.; Colombo, T.; Stübi, R.; Manea, L.; Formenti, P.; Andreae, M. O.

    2000-11-01

    During the solar eclipse of August 11, 1999, intensive measurements of UV solar irradiance and total ozone were performed at a number of observatories located near the path of the Moon's shadow. At the Laboratory of Atmospheric Physics (LAP) of the Aristotle University of Thessaloniki, Greece, global and direct spectra of UV solar irradiances (285-365 nm) were recorded with a double monochromator, and erythemal irradiances were measured with broadband pyranometers. In addition, higher-frequency measurements of global and direct irradiances at six UV wavelengths were performed with a single Brewer spectrophotometer. Total ozone measurements were also performed with Dobson and Brewer spectrophotometers at Hradec Kralove (Czech Republic), Ispra (Italy), Sestola (Italy), Hohenpeissenberg (Germany), Bucharest (Romania), Arosa (Switzerland), and Thessaloniki (Greece). From the spectral UV measurements the limb darkening effect of the solar disk was tentatively quantified from differences of measured solar spectral irradiances at the peak of the eclipse (near to limb conditions) and before the eclipse. Two blackbody curves were fit to the preeclipse and peak eclipse spectra, which have shown a difference in effective temperatures of about 165°K between the limb and the whole of the solar disk. The limb darkening effect is larger at the shorter UV wavelengths. The ratio of the diffuse to direct solar irradiances during the eclipse shows that the diffuse component is reduced much less compared to the decline of the direct solar irradiance at the shorter wavelengths. Moreover, a 20-min oscillation of erythemal UV-B solar irradiance was observed before and after the time of the eclipse maximum under clear skies, indicating a possible 20-min fluctuation in total ozone, presumably caused by the eclipse-induced gravity waves. This work also shows that routine total ozone measurements with a Brewer or a Dobson spectrophotometer should be used with caution during a solar eclipse

  11. Data on total and spectral solar irradiance

    SciTech Connect

    Mecherikunnel, A.T.; Gatlin, J.A.; Richmond, J.C.

    1983-05-01

    This paper presents a brief survey of the data available on solar constant and extraterrestrial solar spectral irradiance. The spectral distribution of solar radiation at ground surface, computed from extraterrestrial solar spectral irradiance for several air mass values and for four levels of atmospheric pollution, is also presented. The total irradiance at ground level is obtained by integration of the area under the spectral irradiance curves. It is significant that, as air mass increases or as turbidity increases, the amount of energy in the infrared relative to the total increases and that the energy in the UV and visible decreases.

  12. Impact of differences in the solar irradiance spectrum on surface reflectance retrieval with different radiative transfer codes

    NASA Technical Reports Server (NTRS)

    Staenz, K.; Williams, D. J.; Fedosejevs, G.; Teillet, P. M.

    1995-01-01

    Surface reflectance retrieval from imaging spectrometer data as acquired with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has become important for quantitative analysis. In order to calculate surface reflectance from remotely measured radiance, radiative transfer codes such as 5S and MODTRAN2 play an increasing role for removal of scattering and absorption effects of the atmosphere. Accurate knowledge of the exo-atmospheric solar irradiance (E(sub 0)) spectrum at the spectral resolution of the sensor is important for this purpose. The present study investigates the impact of differences in the solar irradiance function, as implemented in a modified version of 5S (M5S), 6S, and MODTRAN2, and as proposed by Green and Gao, on the surface reflectance retrieved from AVIRIS data. Reflectance measured in situ is used as a basis of comparison.

  13. Formation of chlorinated intermediate from bisphenol A in surface saline water under simulated solar light irradiation.

    PubMed

    Liu, Hui; Zhao, Huimin; Quan, Xie; Zhang, Yaobin; Chen, Shuo

    2009-10-15

    Chlorinated organic compounds are generally of great concern, but many uncertainties exist regarding how they are generated. To illustrate the possibility of photochemical formation of organochlorine compounds in natural water, the phototransformation of bisphenol A (BPA) in aqueous saline solution containing Fe(lll) and fulvic acid (FA), and in coastal seawater under simulated solar light irradiation was investigated. 2-(3-Chloro-4-hydroxyphenyl)-2-(4-hydroxyphenyl) propane (3-CIBPA) and 2,2-bis(3-chloro-4-hydroxyphenyl) propane (3,3-diCIBPA) were the main chlorinated derivatives during the processes. Laser flash photolysis (LFP) and electron spin resonance (ESR) results indicated that the chlorination of BPA was most likely due to the formation of Cl2(*-) radical as a consequence of Fe(III) irradiation, yielding Cl* and OH* radical species and finally forming Cl2(*-) radical upon further reaction with chloride. The formation of Fe(III)-FA complex, which is a normal coexistence configuration of Fe(III) and FA in natural water, promoted the BPA chlorination through producing more Cl2(*-) radical. Moreover, FA had two opposite effects: forming Fe(III)-FA complex to enhance Cl2(*-) formation and competing radicals with BPA, which resulted in different overall effects at different concentrations: BPA chlorination was enhanced with the increasing of FA concentration ([FA]) when [FA] < 3.2 mg L(-1); when the concentration of FA was as high as 10 mg L(-1), it slowed down obviously. The described BPA photochlorination process took place from pH 6.3 to 8.5 and increased with the increasing of chloride concentration, indicating it could occur universally in natural saline surface water. These results propose a natural photochemical source for organochlorine compounds.

  14. An assessment of models which use satellite data to estimate solar irradiance at the earth's surface

    NASA Astrophysics Data System (ADS)

    Raphael, C.; Hay, J. E.

    1984-05-01

    The performances of three models which use satellite data to estimate solar irradiance at the earth's surface are assessed using measured radiation data from a midlatitude location. Assessment of the models is made possible through the accurate earth location of the satellite imagery (to within + or - 2 pixels). Evaluations of the models for a variety of conditions reveal the need for revised coefficients for the Hay and Hanson (1978) model and Tarpley (1979) model and demonstrate the superior performance of the pysically-based Gautier et al. (1980) model on an hourly basis for partly cloudy and overcast conditions. However, compared to the clear-sky case all three models give poor results under partly cloudy and overcast conditions. An increase in the averaging period leads to marked decreases in the rms errors observed for the three models under all conditions, with the greatest improvement occuring for the Hay and Hanson model. Suggestions for improvements include a more accurate and explicit treatment of cloud absorption in all three models and the inclusion of the effects of aerosols under clear skies and the accurate and objective specification of a cloud threshold separating clear from partly cloudy and partly cloudy from overcast conditions in the Gautier et al. and Tarpley models.

  15. Air pollution is pushing wind speed into a regulator of surface solar irradiance in China

    NASA Astrophysics Data System (ADS)

    Wang, Y. W.; Yang, Y. H.; Zhou, X. Y.; Zhao, N.; Zhang, J. H.

    2014-05-01

    Analysis in 27 cities across China shows that surface solar irradiance (SSI) and wind speed track similar decadal trends in 1961-2011, suggesting wind speed as a possible regulator of SSI. This assumption is further confirmed by the continuously widening gap in annually averaged daily SSI between windy and windless clear-sky days with worsening air pollution. Wider gaps are noted for more polluted cities and seasons. The gap in SSI between windy and windless conditions could therefore serve as a good indicator for air quality. The regulatory effect of wind speed on SSI starts to be important when air pollution index exceeds the boundary of 125. A plausible mechanism of wind speed regulating SSI through interactions with aerosols is proposed. There are two cut-off points of 2.5 m s-1 and 3.5 m s-1 wind speeds. Winds <2.5 m s-1 noticeably disperse air pollutants and thereby enhance SSI. Above the 2.5 m s-1 threshold, air pollution and SSI become largely insensitive to changing wind speeds. Winds in excess of 3.5 m s-1 could enhance aerosol concentration probably by inducing dust-storms, which in turn attenuate SSI.

  16. A critical evaluation of modeled solar irradiance over California for hydrologic and land surface modeling

    NASA Astrophysics Data System (ADS)

    Lapo, Karl E.; Hinkelman, Laura M.; Sumargo, Edwin; Hughes, Mimi; Lundquist, Jessica D.

    2017-01-01

    Studies of land surface processes in complex terrain often require estimates of meteorological variables, i.e., the incoming solar irradiance (Qsi), to force land surface models. However, estimates of Qsi are rarely evaluated within mountainous environments. We evaluated four methods of estimating Qsi: the CERES Synoptic Radiative Fluxes and Clouds (SYN) product, MTCLIM, a regional reanalysis product derived from a long-term Weather Research and Forecast simulation, and Mountain Microclimate Simulation Model (MTCLIM). These products are evaluated over the Central Valley and Sierra Nevada mountains in California, a region with meteorology strongly impacted by complex topography. We used a spatially dense network of Qsi observations (n = 70) to characterize the spatial characteristics of Qsi uncertainty. Observation sites were grouped into five subregions, and Qsi estimates were evaluated against observations in each subregion. Large monthly biases (up to 80 W m-2) outside the observational uncertainty were found for all estimates in all subregions examined, typically reaching a maximum in the spring. We found that MTCLIM and SYN generally perform the best across all subregions. Differences between Qsi estimates were largest over the Sierra Nevada, with seasonal differences exceeding 50 W m-2. Disagreements in Qsi were especially pronounced when averaging over high-elevation basins, with monthly differences up to 80 W m-2. Biases in estimated Qsi predominantly occurred with darker than normal conditions associated with precipitation (a proxy for cloud cover), while the presence of aerosols and water vapor was unable to explain the biases. Users of Qsi estimates in regions of complex topography, especially those estimating Qsi to force land surface models, need to be aware of this source of uncertainty.

  17. Downward solar global irradiance at the surface in São Paulo city - The climatological effects of aerosol and clouds

    NASA Astrophysics Data System (ADS)

    Yamasoe, M. A.; Rosário, N. M. E.; Barros, K. M.

    2017-01-01

    We analyzed the variability of downward solar irradiance reaching the surface at São Paulo city, Brazil, and estimated the climatological aerosol and cloud radiative effects. Eleven years of irradiance were analyzed, from 2005 to 2015. To distinguish the aerosol from the cloud effect, the radiative transfer code LibRadtran was used to calculate downward solar irradiance. Two runs were performed, one considering only ozone and water vapor daily variability, with AOD set to zero and the second allowing the three variables to change, according to mean climatological values. The difference of the 24 h mean irradiance calculated with and without aerosol resulted in the shortwave aerosol direct radiative effect, while the difference between the measured and calculated, including the aerosol, represented the cloud effect. Results showed that, climatologically, clouds can be 4 times more effective than aerosols. The cloud shortwave radiative effect presented a maximum reduction of about -170 W m-2 in January and a minimum in July, of -37 W m-2. The aerosol direct radiative effect was maximum in spring, when the transport of smoke from the Amazon and central parts of South America is frequent toward São Paulo. Around mid-September, the 24 h radiative effect due to aerosol only was estimated to be -50 W m-2. Throughout the rest of the year, the mean aerosol effect was around -20 W m-2 and was attributed to local urban sources. The effect of the cloud fraction on the cloud modification factor, defined as the ratio of all-sky irradiation to cloudless sky irradiation, showed dependence on the cloud height. Low clouds presented the highest impact while the presence of high clouds only almost did not affect solar transmittance, even in overcast conditions.

  18. Surface measurements of solar irradiance: A study of the spatial correlation between simultaneous measurements at separated sites

    NASA Technical Reports Server (NTRS)

    Long, Charles N.; Ackerman, Thomas P.

    1995-01-01

    Pyranometers have been used for many years to measure broadband surface incoming solar irradiance, data that is necessary for surface energy budget, cloud forcing, and satellite validation research. Because such measurements are made at a specific location, it is unclear how representative they may be of a larger area. This study attempts to determine a reasonable spacing between measurement sites for such research by computing the correlation, and standard deviation from perfect correlation, between simultaneous measurements of incoming solar irradiance for a network of surface measurement sites covering a 75 km x 75 km area. Using 1-min data collected from this network of 11 sites during the NASA First ISSCP Radiation Experiment/Surface Radiation Budget (FIRE/SRB) Project temporal averages were calculated. The correlation between any two of these sites was determined by comparing simultaneous measurement averages for the 55 possible combinations of site pairs, along with the distances between them. In an attempt to remove the effect of the diurnal cycle, thus leaving clouds as the primary influence on correlation of the radiation field, model results for a clear day were used to normalize measured irradiances and correlations were again calculated.

  19. Dust impact on surface solar irradiance assessed with model simulations, satellite observations and ground-based measurements

    NASA Astrophysics Data System (ADS)

    Kosmopoulos, Panagiotis G.; Kazadzis, Stelios; Taylor, Michael; Athanasopoulou, Eleni; Speyer, Orestis; Raptis, Panagiotis I.; Marinou, Eleni; Proestakis, Emmanouil; Solomos, Stavros; Gerasopoulos, Evangelos; Amiridis, Vassilis; Bais, Alkiviadis; Kontoes, Charalabos

    2017-07-01

    This study assesses the impact of dust on surface solar radiation focussing on an extreme dust event. For this purpose, we exploited the synergy of AERONET measurements and passive and active satellite remote sensing (MODIS and CALIPSO) observations, in conjunction with radiative transfer model (RTM) and chemical transport model (CTM) simulations and the 1-day forecasts from the Copernicus Atmosphere Monitoring Service (CAMS). The area of interest is the eastern Mediterranean where anomalously high aerosol loads were recorded between 30 January and 3 February 2015. The intensity of the event was extremely high, with aerosol optical depth (AOD) reaching 3.5, and optical/microphysical properties suggesting aged dust. RTM and CTM simulations were able to quantify the extent of dust impact on surface irradiances and reveal substantial reduction in solar energy exploitation capacity of PV and CSP installations under this high aerosol load. We found that such an extreme dust event can result in Global Horizontal Irradiance (GHI) attenuation by as much as 40-50 % and a much stronger Direct Normal Irradiance (DNI) decrease (80-90 %), while spectrally this attenuation is distributed to 37 % in the UV region, 33 % in the visible and around 30 % in the infrared. CAMS forecasts provided a reliable available energy assessment (accuracy within 10 % of that obtained from MODIS). Spatially, the dust plume resulted in a zonally averaged reduction of GHI and DNI of the order of 150 W m-2 in southern Greece, and a mean increase of 20 W m-2 in the northern Greece as a result of lower AOD values combined with local atmospheric processes. This analysis of a real-world scenario contributes to the understanding and quantification of the impact range of high aerosol loads on solar energy and the potential for forecasting power generation failures at sunshine-privileged locations where solar power plants exist, are under construction or are being planned.

  20. The Next Spaceflight Solar Irradiance Sensor: TSIS

    NASA Astrophysics Data System (ADS)

    Kopp, Greg; Pilewskie, Peter; Richard, Erik

    2016-05-01

    The Total and Spectral Solar Irradiance Sensor (TSIS) will continue measurements of the solar irradiance with improved accuracies and stabilities over extant spaceflight instruments. The two TSIS solar-observing instruments include the Total Irradiance Monitor (TIM) and the Spectral Irradiance Monitor (SIM) for measuring total- and spectral- solar-irradiance, respectively. The former provides the net energy powering the Earth’s climate system while the latter helps attribute where that energy is absorbed by the Earth’s atmosphere and surface. Both spaceflight instruments are assembled and being prepared for integration on the International Space Station. With operations commencing in late 2017, the TSIS is intended to overlap with NASA’s ongoing SOlar Radiation and Climate Experiment (SORCE) mission, which launched in 2003 and contains the first versions of both the TIM and SIM instruments, as well as with the TSI Calibration Transfer Experiment (TCTE), which began total solar irradiance measurements in 2013. We summarize the TSIS’s instrument improvements and intended solar-irradiance measurements.

  1. Modeling of the environmental factors influence on solar irradiance reflectance and transmittance through the wind-ruffled sea surface

    NASA Astrophysics Data System (ADS)

    Wozniak, Slawomir B.

    1997-02-01

    The spectral model of solar irradiance transmittance through the wind - ruffled sea surface was developed. Modified dependencies for both wind - ruffled sea surface slope distribution based on Cox and Munk and foam coverage of the sea surface based on Gordon and Jacobs were used, with incorporation of effects of hydrometeorological factors and basin geometry. Snell and Fresnel laws were applied for light transmission through the surface. Spectral dependencies of light refraction in the range 350-18000 nm were taken into account. Polarization effects were neglected. This approach seems to be much more accurate than presented in known monographs, such as Mullamaa. This model is a part of the model of radiation inflow to the Baltic developed by the team from the Institute of Oceanology PAS Sopot.

  2. Models of Solar Irradiance Variability

    NASA Astrophysics Data System (ADS)

    Solanki, Sami K.

    2015-08-01

    Models of solar irradiance variability have an important role to play due to the relatively short (although steadily increasing) length of measured irradiance time series. Advanced models also allow identifying the source of solar irradiance variations and give insight into the variation of irradiance as a function of wavelength. The first generation of models of solar irradiance were proxy-based, i.e. purely empirical. These were followed by models that combine spectra computed from semi-empirical model atmospheres, with a measure of solar activity variations. In future, models will build increasingly on 3D MHD simulations instead of 1D model atmospheres to compute the spectra. On longer timescales models are generally simpler, although there too considerable progress has been made, with irradiance reconstructions now available for multiple millennia, albeit with lower resolution and accuracy than at shorter timescales.

  3. Dependence of Lunar Surface Charging on Ambient Plasma Conditions and Solar Irradiation

    NASA Astrophysics Data System (ADS)

    Stubbs, T. J.; Halekas, J. S.; Farrell, W. M.; Vondrak, R. R.; Burchill, J. K.; Delory, G. T.; Pfaff, R. F.

    2007-05-01

    The surface of the Moon is electrically charged by solar ultraviolet radiation incident on its dayside and the highly variable plasma environment that surrounds it. Lunar surface charging and the associated transport of charged dust could present hazards to future explorers, so developing a predictive capability for this environment will be a high priority. The main electric current sources come from the photoemission of electrons, plasma electrons, plasma ions, and the secondary emission of electrons. All four current sources can be very dynamic, which in turn results in a highly variable electrostatic potential and electric field at the lunar surface, both temporally and spatially. We present predictions for lunar surface potentials and electric fields for a variety of steady-state solar wind conditions. In addition, we also consider what happens when the Moon enters the hotter and more tenuous lobe and plasma sheet regions in the Earth's magnetotail. The main assumptions in deriving these predictions are that all the charged particle populations have a Maxwellian velocity distribution, and that as far as these populations are concerned the Moon's surface is an infinite plane. Since we focus mainly on the solar wind-lunar interaction, we initially neglect the effects of secondary electron emission, since this is often not a significant current source. The intention of this work is to develop a basic theoretical approach to making lunar surface charging predictions, which can be augmented by improvements in (1) our understanding of the current sources, (2) observational constraints, and (3) laboratory measurements. These initial predictions establish a "baseline" against which future theoretical and observational results may be compared, not just for the lunar case, but for all airless bodies such as Mercury and asteroids.

  4. Assessment of performances of sun zenith angle and altitude parameterisations of atmospheric radiative transfer for spectral surface downwelling solar irradiance

    NASA Astrophysics Data System (ADS)

    Wald, L.; Blanc, Ph.

    2010-09-01

    Satellite-derived assessments of surface downwelling solar irradiance are more and more used by engineering companies in solar energy. Performances are judged satisfactory for the time being. Nevertheless, requests for more accuracy are increasing, in particular in the spectral definition and in the decomposition of the global radiation into direct and diffuse radiations. One approach to reach this goal is to improve both the modelling of the radiative transfer and the quality of the inputs describing the optical state. Within their joint project Heliosat-4, DLR and MINES ParisTech have adopted this approach to create advanced databases of solar irradiance succeeding to the current ones HelioClim and SolEMi. Regarding the model, we have opted for libRadtran, a well-known model of proven quality. As many similar models, running libRadtran is very time-consuming when it comes to process millions or more pixels or grid cells. This is incompatible with real-time operational process. One may adopt the abacus approach, or look-up tables, to overcome the problem. The model is run for a limited number of cases, covering the whole range of values taken by the various inputs of the model. Abaci are such constructed. For each real case, the irradiance value is computed by interpolating within the abaci. In this way, real-time can be envisioned. Nevertheless, the computation of the abaci themselves requires large computing capabilities. In addition, searching the abaci to find the values to interpolate can be time-consuming as the abaci are very large: several millions of values in total. Moreover, it raises the extrapolation problem of parameter out-of-range during the utilisation of the abaci. Parameterisation, when possible, is a means to reduce the amount of computations to be made and subsequently, the computation effort to create the abaci, the size of the abaci, the extrapolation and the searching time. It describes in analytical manner and with a few parameters the

  5. Estimation of atmospheric turbidity and surface radiative parameters using broadband clear sky solar irradiance models in Rio de Janeiro-Brasil

    NASA Astrophysics Data System (ADS)

    Flores, José L.; Karam, Hugo A.; Marques Filho, Edson P.; Pereira Filho, Augusto J.

    2016-02-01

    The main goal of this paper is to estimate a set of optimal seasonal, daily, and hourly values of atmospheric turbidity and surface radiative parameters Ångström's turbidity coefficient ( β), Ångström's wavelength exponent ( α), aerosol single scattering albedo ( ω o ), forward scatterance ( F c ) and average surface albedo ( ρ g ), using the Brute Force multidimensional minimization method to minimize the difference between measured and simulated solar irradiance components, expressed as cost functions. In order to simulate the components of short-wave solar irradiance (direct, diffuse and global) for clear sky conditions, incidents on a horizontal surface in the Metropolitan Area of Rio de Janeiro (MARJ), Brazil (22° 51' 27″ S, 43° 13' 58″ W), we use two parameterized broadband solar irradiance models, called CPCR2 and Iqbal C, based on synoptic information. The meteorological variables such as precipitable water ( u w ) and ozone concentration ( u o ) required by the broadband solar models were obtained from moderate-resolution imaging spectroradiometer (MODIS) sensor on Terra and Aqua NASA platforms. For the implementation and validation processes, we use global and diffuse solar irradiance data measured by the radiometric platform of LabMiM, located in the north area of the MARJ. The data were measured between the years 2010 and 2012 at 1-min intervals. The performance of solar irradiance models using optimal parameters was evaluated with several quantitative statistical indicators and a subset of measured solar irradiance data. Some daily results for Ångström's wavelength exponent α were compared with Ångström's parameter (440-870 nm) values obtained by aerosol robotic network (AERONET) for 11 days, showing an acceptable level of agreement. Results for Ångström's turbidity coefficient β, associated with the amount of aerosols in the atmosphere, show a seasonal pattern according with increased precipitation during summer months (December

  6. Computing Solar EUV Irradiance Variability

    NASA Astrophysics Data System (ADS)

    Warren, H. P.

    2014-12-01

    The solar EUV irradiance plays a central role in determining the state of the Earth's upper atmosphere. The EUV irradiance at the shortest wavelengths, which is highly variable over time scales from seconds to decades, is particularly important for many aspects of space weather. Systematic spectrally resolved observations at the shortest EUV wavelengths, however, have been rare and there is a need to develop a methodology for estimating and forecasting the solar irradiance at all EUV wavelengths from sparse data sets. In this presentation we report on our efforts to use AIA DEM calculations to estimate the solar EUV irradiance at wavelength below 450 Å, where the emission is predominately optically thin. To validate our AIA DEM calculations we have performed extensive comparisons with simultaneous observations from the EVE instrument on SDO and the EIS instrument on Hinode and find that with the proper constraints we can generally reproduce the results obtained with detailed spectroscopic observations. Using a proxy for solar activity derived from photospheric magnetic field measurements we extend our model calculations to previous solar cycles and discuss how the model can be used to forecast EUV irradiance variability over short time scales. Finally, we speculate on what is needed to further develop semi-empirical and physical models for use in understanding the solar spectral irradiance at these wavelengths.

  7. Development and comparison of HP-41C software to predict solar irradiation of tilted surfaces, based upon cloud cover factors

    SciTech Connect

    Nawrocki, A.D.; Anderson, S.P.

    1982-01-01

    Summarized is a comparison between predicted and measured solar radiation and cloud cover data from NOAA weather stations and Solar Energy Meterological Research and Training Sites at various locations throughout the US, based upon a semiempirical method which was used recently to generate synthetic insolation data for correlation with measured solar performance under the SUEDE program. This method is unique, since it predicts irradiation of a tilted surface from sky cover estimates by weather observers, using a modified ASHRAE method to compute direct and diffuse insolation on a clear day. Data comparisons were made using an HP-41C programmable calculator, card reader, printer, and eight magnetic cards. Although a more detailed study with a larger data base is desirable, these particular findings, using hourly summations to obtain monthly averages in 1980, indicate that approximately -5 to 15% difference between measured and calculated monthly results is typical of continental US sites. A sensitivity study indicated that monthly percentage differences are reduced by centering ASHRAE constants and earth declination on the 15th day of each month instead of the 21st day.

  8. Toward Improved Solar Irradiance Forecasts: Derivation of Downwelling Surface Shortwave Radiation in Arizona from Satellite

    NASA Astrophysics Data System (ADS)

    Kim, Chang Ki; Holmgren, William F.; Stovern, Michael; Betterton, Eric A.

    2016-07-01

    Over the past few decades, substantial progress has been made in the retrieval of surface shortwave radiation from satellite measurements for the Earth's energy budget as well as solar energy applications. We present a new algorithm to derive the downwelling surface shortwave radiation for the Southwestern US using geostationary satellite products. A look-up table generated by the Goddard Space Flight Center Radiative Transfer Model is employed to derive the shortwave radiation at the ground by comparing observed and modeled top of atmosphere shortwave albedo. The algorithm was compared to ground observation stations at three locations, such as the University of Arizona, the University of Nevada, Las Vegas, and Desert Rock, NV. For all sky conditions, the average values of root-mean-square error between the instantaneous estimates and in situ measurements ranged from 84.2 to 89.4 W m-2 and were 30 W m-2 when evaluated on daily time scales. The error statistics were considerably better for clear sky than for cloudy sky. The average values of instantaneous root-mean-square error for the clear-sky conditions range from 39.4 to 43.7 W m-2, while average root-mean-square error for the cloudy-sky conditions is between 137.0 and 141.2 W m-2.

  9. Solar irradiance computations compared with observations at the Baseline Surface Radiation Network Payerne site

    SciTech Connect

    Nowak, Daniela; Vuilleumier, Laurent; Long, Charles N.; Ohmura, Atsumu

    2008-07-18

    Radiative transfer model calculations of solar fluxes during cloud free periods often show considerable discrepancies with surface radiation observations. Many efforts have been undertaken to explain the differences between modeled and observed shortwave downward radiation (SDR). In this study, MODTRAN4v3r1TM (designed later simply as MODTRANTM) was used for model simulations and compared with high quality radiation observations of the Baseline Surface Radiation Network (BSRN) site at Payerne, Switzerland. Results are presented for cloud free shortwave downward radiation calculations. The median differences of modeled minus observed global SDR are small (< 1%) and within the instrumental error. The differences of modeled and observed direct and diffuse SDR show larger discrepancies of -1.8% and 5.2% respectively. The diffuse SDR is generally overestimated by the model and more important, the model to observation linear regression slope and zero-intercept differs significantly from their ideal values of 1 and 0. Possible reasons for the discrepancies are presented and discussed and some modifications are investigated for decreasing such differences between modeled and observed diffuse SDR. However, we could not resolve all the discrepancies. The best agreement is obtained when comparing model simulations whose 550nm aerosol optical depth input is inferred from observations using nine spectral channels, and using BSRN observations performed with a new and more precise shading disk and sun tracker system. In this case, the median bias between model simulations and observed diffuse SDR is -0.4 Wm-2 (< 1%).

  10. Modeling Solar Lyman Alpha Irradiance

    NASA Technical Reports Server (NTRS)

    Pap, J.; Hudson, H. S.; Rottman, G. J.; Willson, R. C.; Donnelly, R. F.; London, J.

    1990-01-01

    Solar Lyman alpha irradiance is estimated from various solar indices using linear regression analyses. Models developed with multiple linear regression analysis, including daily values and 81-day running means of solar indices, predict reasonably well both the short- and long-term variations observed in Lyman alpha. It is shown that the full disk equivalent width of the He line at 1083 nm offers the best proxy for Lyman alpha, and that the total irradiance corrected for sunspot effect also has a high correlation with Lyman alpha.

  11. Electron irradiation of modern solar cells

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Miyahira, T. F.

    1977-01-01

    A number of modern solar cell types representing 1976 technology (as well as some older types) were irradiated with 1 MeV electrons (and a limited number with 2 MeV electrons and 10 MeV protons). After irradiation, the cells were annealed, with I-V curves measured under AMO at 30 C. The purpose was to provide data to be incorporated in the revision of the solar cell radiation handbook. Cell resistivities ranged from 2 to 20 ohm-cm, and cell thickness from 0.05 to 0.46 mm. Cell types examined were conventional, shallow junction, back surface field (BSF), textured, and textured with BSF.

  12. Analysis of the total solar irradiance composite and their contribution to global mean air surface temperature rise

    NASA Astrophysics Data System (ADS)

    Scafetta, N.

    2008-12-01

    Herein I discuss and propose updated satellite composites of the total solar irradiance covering the period 1978-2008. The composites are compiled from measurements made with the three ACRIM experiments. Measurements from the NIMBUS7/ERB, the ERBS/ERBE satellite experiments and a total solar irradiance proxy reconstruction are used to fill the gap from June 1989 to October 1991 between ACRIM1 and ACRIM2 experiments. The result of the analysis does suggests that the total solar irradiance did increase from 1980 to 2002. The climate implications of the alternative satellite composites are discussed by using a phenomenological climate model which depends on two characteristics time response at tau1 =0.4 year and tau2=8-12 years, as determined phenomenologically [Scafetta, JGR 2008]. Reconstructions of total solar irradiance signature on climate during the last four centuries are discussed. The solar variability appears to have significantly contributed to climate change during the last four centuries, including the last century. Indirectly, the model suggests that the preindustrial climate experienced a large variability which is incompatible with an Hockey Stick temperature graph.

  13. Comparison of ocean surface solar irradiance in the GLA General Circulation Model and satellite-based calculations

    NASA Technical Reports Server (NTRS)

    Chertock, Beth; Sud, Y. C.

    1993-01-01

    A global, 7-year satellite-based record of ocean surface solar irradiance (SSI) is used to assess the realism of ocean SSI simulated by the nine-layer Goddard Laboratory for Atmospheres (GLA) General Circulation Model (GCM). January and July climatologies of net SSI produced by the model are compared with corresponding satellite climatologies for the world oceans between 54 deg N and 54 deg S. This comparison of climatologies indicates areas of strengths and weaknesses in the GCM treatment of cloud-radiation interactions, the major source of model uncertainty. Realism of ocean SSI is also important for applications such as incorporating the GLA GCM into a coupled ocean-atmosphere GCM. The results show that the GLA GCM simulates too much SSI in the extratropics and too little in the tropics, especially in the summer hemisphere. These discrepancies reach magnitudes of 60 W/sq m and more. The discrepancies are particularly large in the July case off the western coast of North America. Positive and negative discrepancies in SSI are shown to be consistent with discrepancies in planetary albedo.

  14. Comparison of ocean surface solar irradiance in the GLA General Circulation Model and satellite-based calculations

    SciTech Connect

    Chertock, B. ); Sud, Y.C. )

    1993-03-01

    A global, 7-year satellite-based record of ocean surface solar irradiance (SSI) is used to assess the realism of ocean SSI simulated by the nine-layer Goddard Laboratory for Atmospheres (GLA) General Circulation Model (GCM). January and July climatologies of net SSI produced by the model are compared with corresponding satellite climatologies for the world oceans between 54[degrees]N and 54[degrees]S. This comparison of climatologies indicates areas of strengths and weaknesses in the GCM treatment of cloud-radiation interactions, the major source of model uncertainty. Realism of ocean SSI is also important for applications such as incorporating the GLA GCM into a coupled ocean-atmosphere GCM. The results show that the GLA GCM simulates too much SSI in the extratropics and too little in the tropics, especially in the summer hemisphere. These discrepancies reach magnitudes of 60 W m[sup [minus]2] and more. The discrepancies are particularly large in the July case off the western coast of North America. In this region of persistent marine stratus, the GCM climatological values exceed the satellite climatological values by as much as 131 W m[sup [minus]2]. Positive and negative discrepancies in SSI are shown to be consistent with discrepancies in planetary albedo.

  15. Solar Activity and the Sea-surface Temperature Record-evidence of a Long-period Variation in Solar Total Irradiance

    NASA Technical Reports Server (NTRS)

    Reid, George C.

    1990-01-01

    There have been many suggestions over the years of a connection between solar activity and the Earth's climate on time scales long compared to the 11-year sunspot cycle. They have remained little more than suggestions largely because of the major uncertainties in the climate record itself, and the difficulty in trying to compile a global average from an assembly of measurements that are uneven in both quality and distribution. Different climate time response to solar activity, some suggesting a positive correlation, some a negative correlation, and some no correlation at all. The only excuse for making yet another such suggestion is that much effort has been devoted in recent years to compiling climate records for the past century or more that are internally consistent and believable, and that a decadal-scale record of solar total irradiance is emerging from spacecraft measurements, and can be used to set limits on the variation that is likely to have occurred on these time scales. The work described here was originally inspired by the observation that the time series of globally averaged sea-surface temperatures over the past 120 years or so, as compiled by the British Meteorological Office group (Folland and Kates, 1984), bore a resonable similarity to the long-term average sunspot number, which is an indicator of the secular variability of solar activity. The two time series are shown where the sunspot number is shown as the 135-month running mean, and the SST variation is shown as the departure from an arbitrary average value. The simplest explanation of the similarity, if one accepts it as other than coincidental, is that the sun's luminosity may have been varying more or less in step with the level of solar activity, or in other words that there is a close coupling between the sun's magnetic condition and its radiative output on time scales longer than the 11-year cycle. Such an idea is not new, and in fact the time series shown can be regarded as a modern

  16. Evaporation and Solar Irradiance as Regulators of Sea Surface Temparature in Annual and Interrannual Changes

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy

    1994-01-01

    After numerical studies showed that global climate is sensitive to small changes in sea surface temperature (Ts), considerabel effort has been devoted to examine the role of surface fluxes in changing upper ocean heat balance and Ts, particularly in the tropical Pacific where interannual signals, such as El Nino Southern Oscillation (ENSO), have major economic and ecological impacts.

  17. Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the earth's surface for cloudless atmospheres

    SciTech Connect

    Bird, R.; Riordan, C.

    1984-12-01

    A new, simple model for calculating clear-sky direct and diffuse spectral irradiance on horizontal and tilted surfaces is presented. The model is based on previously reported simple algorithms and on comparisons with rigorous radiative transfer calculations and limited outdoor measurements. Equations for direct normal irradiance are outlined; and include: Raleigh scattering; aerosol scattering and absorption; water vapor absorption; and ozone and uniformly mixed gas absorption. Inputs to the model include solar zenith angle, collector tilt angle, atmospheric turbidity, amount of ozone and precipitable water vapor, surface pressure, and ground albedo. The model calculates terrestrial spectra from 0.3 to 4.0 ..mu..m with approximately 10 nm resolution. A major goal of this work is to provide researchers with the capability to calculate spectral irradiance for different atmospheric conditions and different collector geometries using microcomputers. A listing of the computer program is provided.

  18. Variability of solar ultraviolet irradiance

    NASA Technical Reports Server (NTRS)

    Pap, J. M.; Donnelly, R. F.; Hudson, H. S.; Rottman, G. J.; Willson, R. C.

    1991-01-01

    A model of solar Lyman alpha irradiance developed by multiple linear regression analysis, including the daily values and 81-day running means of the full disk equivalent width of the Helium line at 1083 nm, predicts reasonably well both the short- and long-term variations observed in Lyman alpha. In contrast, Lyman alpha models calculated from the 10.7-cm radio flux overestimate the observed variations in the rising portion and maximum period of solar cycle, and underestimates them during solar minimum. Models are shown of Lyman alpha based on the He-line equivalent width and 10.7-cm radio flux for those time intervals when no satellite observations exist, namely back to 1974 and after April 1989, when the measurements of the Solar Mesosphere Satellite were terminated.

  19. Surface Disinfection Enabled by a Layer-by-Layer Thin Film of Polyelectrolyte-Stabilized Reduced Graphene Oxide upon Solar Near-Infrared Irradiation.

    PubMed

    Hui, Liwei; Auletta, Jeffrey T; Huang, Zhiyu; Chen, Xiang; Xia, Fei; Yang, Shangfeng; Liu, Haitao; Yang, Lihua

    2015-05-20

    We report an antibacterial surface that kills airborne bacteria on contact upon minutes of solar near-infrared (NIR) irradiation. This antibacterial surface employs reduced graphene oxide (rGO), a well-known near-infrared photothermal conversion agent, as the photosensitizer and is prepared by assembling oppositely charged polyelectrolyte-stabilized rGO sheets (PEL-rGO) on a quartz substrate with the layer-by-layer (LBL) technique. Upon solar irradiation, the resulting PEL-rGO LBL multilayer efficiently generates rapid localized heating and, within minutes, kills >90% airborne bacteria, including antibiotic-tolerant persisters, on contact, likely by permeabilizing their cellular membranes. The observed activity is retained even when the PEL-rGO LBL multilayer is placed underneath a piece of 3 mm thick pork tissue, indicating that solar light in the near-infrared region plays dominant roles in the observed activity. This work may pave the way toward NIR-light-activated antibacterial surfaces, and our PEL-rGO LBL multilayer may be a novel surface coating material for conveniently disinfecting biomedical implants and common objects touched by people in daily life in the looming postantibiotic era with only minutes of solar exposure.

  20. Surface segregation during irradiation

    SciTech Connect

    Rehn, L.E.; Lam, N.Q.

    1985-10-01

    Gibbsian adsorption is known to alter the surface composition of many alloys. During irradiation, four additional processes that affect the near-surface alloy composition become operative: preferential sputtering, displacement mixing, radiation-enhanced diffusion and radiation-induced segregation. Because of the mutual competition of these five processes, near-surface compositional changes in an irradiation environment can be extremely complex. Although ion-beam induced surface compositional changes were noted as long as fifty years ago, it is only during the past several years that individual mechanisms have been clearly identified. In this paper, a simple physical description of each of the processes is given, and selected examples of recent important progress are discussed. With the notable exception of preferential sputtering, it is shown that a reasonable qualitative understanding of the relative contributions from the individual processes under various irradiation conditions has been attained. However, considerably more effort will be required before a quantitative, predictive capability can be achieved. 29 refs., 8 figs.

  1. Future Satellite Observations of Solar Irradiance

    NASA Technical Reports Server (NTRS)

    Cahalan, R. F.; Rottman, G.; Woods, T.; Lawrence, G.; Harder, J.; McClintock, W.; Kopp, G.

    2003-01-01

    Required solar irradiance measurements for climate studies include those now being made by the Total Irradiance Monitor (TIM) and the Spectral Irradiance Monitor (SIM) onboard the SORCE satellite, part of the Earth Observing System fleet of NASA satellites. Equivalent or better measures of Total Solar Irradiance (TSI) and Spectral Solar Irradiance (SSI, 200 to 2000 nm) are planned for the post-2010 satellites of the National Polar-orbiting Operational Environmental Satellite System ("OESS). The design life of SORCE is 5 years, so a "Solar Irradiance Gap Filler" EOS mission is being planned for launch in the 2007 time frame, to include the same TSI and SSI measurements. Besides avoiding any gap, overlap of the data sources is also necessary for determination of possible multi-decadal trends in solar irradiance. We discuss these requirements and the impacts of data gaps, and data overlaps, that may occur in the monitoring of the critical solar radiative forcing.

  2. Solar variability in irradiance and oscillations

    NASA Technical Reports Server (NTRS)

    Kuhn, Jeff R.

    1995-01-01

    The signature of the solar cycle appears in helioseismic frequencies and splittings. It is known that the changing outer superadiabatic region of the sun is responsible for this. The deeper solar-cycle mechanism from the surface changes, and, in particular, how magnetic fields perturb the global modes, the solar irradiance and the luminosity, is discussed. The irradiance and helioseismic changes are described. The interpretation of seismic and photometric data is discussed, considering current one-dimensional models and phenomenology. It is discussed how the long term solar-cycle luminosity effect could be caused by changes occurring near the base of the convection zone (CZ). It is shown that a thin toroidal flux sheath at the top of the radiative zone changed the thermal stratification immediately below the CZ over a solar-cycle timescale in two ways: the temperature of the magnetized fluid becomes hotter than the surrounding fluid, and the temperature gradient steepens above the magnetized region. The testing of CZ dynamics and extension of numerical experiments to global scales are considered.

  3. Solar variability in irradiance and oscillations

    NASA Technical Reports Server (NTRS)

    Kuhn, Jeff R.

    1995-01-01

    The signature of the solar cycle appears in helioseismic frequencies and splittings. It is known that the changing outer superadiabatic region of the sun is responsible for this. The deeper solar-cycle mechanism from the surface changes, and, in particular, how magnetic fields perturb the global modes, the solar irradiance and the luminosity, is discussed. The irradiance and helioseismic changes are described. The interpretation of seismic and photometric data is discussed, considering current one-dimensional models and phenomenology. It is discussed how the long term solar-cycle luminosity effect could be caused by changes occurring near the base of the convection zone (CZ). It is shown that a thin toroidal flux sheath at the top of the radiative zone changed the thermal stratification immediately below the CZ over a solar-cycle timescale in two ways: the temperature of the magnetized fluid becomes hotter than the surrounding fluid, and the temperature gradient steepens above the magnetized region. The testing of CZ dynamics and extension of numerical experiments to global scales are considered.

  4. A database of multi-year (2004-2010) quality-assured surface solar hourly irradiation measurements for the Egyptian territory

    NASA Astrophysics Data System (ADS)

    Korany, Mohamed; Boraiy, Mohamed; Eissa, Yehia; Aoun, Youva; Abdel Wahab, Magdy M.; Alfaro, Stéphane C.; Blanc, Philippe; El-Metwally, Mossad; Ghedira, Hosni; Hungershoefer, Katja; Wald, Lucien

    2016-03-01

    A database containing the global and diffuse components of the surface solar hourly irradiation measured from 1 January 2004 to 31 December 2010 at eight stations of the Egyptian Meteorological Authority is presented. For three of these sites (Cairo, Aswan and El-Farafra), the direct component is also available. In addition, a series of meteorological variables including surface pressure, relative humidity, temperature, wind speed and direction is provided at the same hourly resolution at all stations. The details of the experimental sites and instruments used for the acquisition are given. Special attention is paid to the quality of the data and the procedure applied to flag suspicious or erroneous measurements is described in detail. Between 88 and 99 % of the daytime measurements are validated by this quality control. Except at Barrani where the number is lower (13 500), between 20 000 and 29 000 measurements of global and diffuse hourly irradiation are available at all sites for the 7-year period. Similarly, from 9000 to 13 000 measurements of direct hourly irradiation values are provided for the three sites where this component is measured. With its high temporal resolution this consistent irradiation and meteorological database constitutes a reliable source to estimate the potential of solar energy in Egypt. It is also adapted to the study of high-frequency atmospheric processes such as the impact of aerosols on atmospheric radiative transfer. It is planned to update regularly the current 2004-2010 database, which has been placed on the PANGAEA repository (doi: 10.1594/PANGAEA.848804) and contains the individual meteorological and irradiation data files of the eight stations.

  5. Historical Variations in Solar UV Irradiance

    NASA Astrophysics Data System (ADS)

    DeLand, M. T.

    2011-12-01

    Satellite measurements of solar UV variability have been made by at least fifteen different instruments since 1978. While it is difficult to keep a single UV irradiance instrument operating throughout a complete solar cycle, many of these instruments (Nimbus-7 SBUV, SME, NOAA-9 SBUV/2, NOAA-11 SBUV/2, UARS SUSIM, UARS SOLSTICE) were able to observe both maximum and minimum irradiance levels during either rising or declining phases of solar activity. Comparisons of these published results for solar cycles 21, 22, and 23 show consistent solar cycle irradiance changes at key wavelengths for terrestrial effects (e.g. 205 nm, 240 nm) within instrumental uncertainties. All historical data sets also show the same relative spectral dependence in the ultraviolet for both short-term (rotational) and long-term (solar cycle) variations. Empirical solar irradiance models that employ multiple proxy data sets to represent spectral irradiance produce long-term solar UV variations that are in good agreement with merged observational data through 2005. Recent UV irradiance data from the SORCE mission covering the declining phase of Cycle 23 present a different picture of long-term solar variations, with significantly larger temporal changes and different spectral dependence. We present comparisons of the SORCE irradiance data with previous solar UV observations and current model predictions. Scaling factors for use with solar UV proxy indexes have been derived from SORCE SIM and SORCE SOLSTICE data during 2004-2005. These scale factors, based on short-term irradiance variations, agree very well with results derived from concurrent NOAA-17 SBUV/2 and UARS SUSIM measurements. The 2004-2005 scale factors are consistent with previously derived scale factors that produce calculated long-term irradiance changes in good agreement with observations. The SORCE long-term solar UV irradiance results, corresponding to the early part of the mission, are consistent with undercorrection of

  6. Improving HelioClim-3 estimates of surface solar irradiance using the McClear clear-sky model and recent advances in atmosphere composition

    NASA Astrophysics Data System (ADS)

    Qu, Z.; Gschwind, B.; Lefevre, M.; Wald, L.

    2014-11-01

    The HelioClim-3 database (HC3v3) provides records of surface solar irradiation every 15 min, estimated by processing images from the geostationary meteorological Meteosat satellites using climatological data sets of the atmospheric Linke turbidity factor. This technical note proposes a method to improve a posteriori HC3v3 by combining it with data records of the irradiation under clear skies from the new McClear clear-sky model, whose inputs are the advanced global aerosol property forecasts and physically consistent total column content in water vapour and ozone produced by the MACC (Monitoring Atmosphere Composition and Climate) projects. The method is validated by comparison with a series of ground measurements for 15 min and 1 h for 6 stations and for daily irradiation for 23 stations. The correlation coefficient is large, greater than respectively 0.92, 0.94, and 0.97, for 15 min, 1 h and daily irradiation. The bias ranges from -4 to 4% of the mean observed irradiation for most sites. The relative root mean square difference (RMSD) varies between 14 and 38% for 15 min, 12 and 33% for 1 h irradiation, and 6 and 20% for daily irradiation. As a rule of thumb, the farther from the nadir of the Meteosat satellite located at latitude 0° and longitude 0°, and the greater the occurrence of fragmented cloud cover, the greater the relative RMSD. The method improves HC3v3 in most cases, and with no degradation in the others. A systematic correction of HC3v3 with McClear is recommended.

  7. Toward Improved Solar Irradiance Forecasts: Comparison of Downwelling Surface Shortwave Radiation in Arizona Derived from Satellite with the Gridded Datasets

    NASA Astrophysics Data System (ADS)

    Kim, Chang Ki; Holmgren, William F.; Stovern, Michael; Betterton, Eric A.

    2016-08-01

    The downwelling surface shortwave radiation derived from geostationary satellite imagery was compared with the available datasets for the Southwestern United States. The averaged root mean square errors for our instantaneous estimates ranged from 95.0 to 122.7 W m-2, which is lower than those derived from the MODerate resolution Imaging Spectroradiometer (MODIS). The Modern Era Retrospective-analysis for Research and Applications (MERRA) products were used to compare the hourly mean solar insolation. The three hourly mean downwelling surface shortwave radiation was evaluated by comparing the North American Regional Reanalysis (NARR) and the Clouds and the Earth's Radiant Energy System (CERES) products. Our estimates show the better performance than MERRA, NARR and CERES datasets because of coarse resolution that limits determining the solar dimming due to small clouds.

  8. Magnitudes and timescales of total solar irradiance variability

    NASA Astrophysics Data System (ADS)

    Kopp, Greg

    2016-07-01

    The Sun's net radiative output varies on timescales of minutes to gigayears. Direct measurements of the total solar irradiance (TSI) show changes in the spatially- and spectrally-integrated radiant energy on timescales as short as minutes to as long as a solar cycle. Variations of ~0.01% over a few minutes are caused by the ever-present superposition of convection and oscillations with very large solar flares on rare occasion causing slightly-larger measurable signals. On timescales of days to weeks, changing photospheric magnetic activity affects solar brightness at the ~0.1% level. The 11-year solar cycle shows variations of comparable magnitude with irradiances peaking near solar maximum. Secular variations are more difficult to discern, being limited by instrument stability and the relatively short duration of the space-borne record. Historical reconstructions of the Sun's irradiance based on indicators of solar-surface magnetic activity, such as sunspots, faculae, and cosmogenic isotope records, suggest solar brightness changes over decades to millennia, although the magnitudes of these variations have high uncertainties due to the indirect historical records on which they rely. Stellar evolution affects yet longer timescales and is responsible for the greatest solar variabilities. In this manuscript I summarize the Sun's variability magnitudes over different temporal regimes and discuss the irradiance record's relevance for solar and climate studies as well as for detections of exo-solar planets transiting Sun-like stars.

  9. Computation of glint, glare, and solar irradiance distribution

    DOEpatents

    Ho, Clifford Kuofei; Khalsa, Siri Sahib Singh

    2015-08-11

    Described herein are technologies pertaining to computing the solar irradiance distribution on a surface of a receiver in a concentrating solar power system or glint/glare emitted from a reflective entity. At least one camera captures images of the Sun and the entity of interest, wherein the images have pluralities of pixels having respective pluralities of intensity values. Based upon the intensity values of the pixels in the respective images, the solar irradiance distribution on the surface of the entity or glint/glare corresponding to the entity is computed.

  10. Computation of glint, glare, and solar irradiance distribution

    DOEpatents

    Ho, Clifford Kuofei; Khalsa, Siri Sahib Singh

    2017-08-01

    Described herein are technologies pertaining to computing the solar irradiance distribution on a surface of a receiver in a concentrating solar power system or glint/glare emitted from a reflective entity. At least one camera captures images of the Sun and the entity of interest, wherein the images have pluralities of pixels having respective pluralities of intensity values. Based upon the intensity values of the pixels in the respective images, the solar irradiance distribution on the surface of the entity or glint/glare corresponding to the entity is computed.

  11. Analysis of satellite-derived solar irradiance over the Netherlands

    NASA Astrophysics Data System (ADS)

    Dirksen, Marieke; Fokke Meirink, Jan; Sluiter, Raymond

    2017-04-01

    Measurements from geostationary satellites allow the retrieval of surface solar irradiance homogeneously over large areas, thereby providing essential information for the solar energy sector. In this paper, the SICCS solar irradiance data record derived from 12 years of Meteosat Second Generation satellite measurements is analysed with a focus on the Netherlands, where the spatial resolution is about 6 by 3 km2. Extensive validation of the SICCS data with pyranometer observations is performed, indicating a bias of approximately 3 W/m2 and RMSE of 11 W/m2 for daily data. Long term averages and seasonal variations of solar irradiance show regional patterns related to the surface type (e.g., coastal waters, forests, cities). The inter-annual variability over the time frame of the data record is quantified. Methods to merge satellite and surface observations into an optimized data record are explored.

  12. Origin of Solar Irradiance Variability

    NASA Astrophysics Data System (ADS)

    Fröhlich, C.; Appourchaux, T.; Gough, D.

    2003-04-01

    The changes of total solar irradiance during the course of the solar cycle correlate extremely well with changes of low-degree p-mode frequencies as observed in intensity and velocity by VIRGO/SOHO and BISON. Moreover, the slope of the linear regression between the two quantities depend on the degree of the mode, indicating an asphericity of the responsible perturbation, and the observed increase of the correlation coefficient with the degree of the modes points to the importance of higher orders in the expansion of the perturbation in latitude on the Sun. Using only degrees 0dots2, two peaks are determined, one at the equator and the other at the poles, and interestingly enough the polar peak is about 20% higher than the equatorial one and about three times the minimum value. On the other hand, the analysis of the latitudinal distribution of the excitation of low degree p modes shows a shift towards the poles with increasing activity. When first detected this was a rather unexpected result. In the light of the former results, however, it may indicate that still another component, other than from the direct effects of magnetic fields, is contributing to the change of both, the luminosity and p-mode oscillation frequencies.

  13. Solar irradiance measurements - Minimum through maximum solar activity

    NASA Technical Reports Server (NTRS)

    Lee, R. B., III; Gibson, M. A.; Shivakumar, N.; Wilson, R.; Kyle, H. L.; Mecherikunnel, A. T.

    1991-01-01

    The Earth Radiation Budget Satellite (ERBS) and the NOAA-9 spacecraft solar monitors were used to measure the total solar irradiance during the period October 1984 to December 1989. Decreasing trends in the irradiance measurements were observed as sunspot activity decreased to minimum levels in 1986; after 1986, increasing trends were observed as sunspot activity increased. The magnitude of the irradiance variability was found to be approximately 0.1 percent between sunspot minimum and maximum (late 1989). When compared with the 1984 to 1989 indices of solar magnetic activity, the irradiance trends appear to be in phase with the 11-year sunspot cycle. Both irradiance series yielded 1,365/sq Wm as the mean value of the solar irradiance, normalized to the mean earth/sun distance. The monitors are electrical substitution, active-cavity radiometers with estimated measurement precisions and accuracies of less than 0.02 and 0.2 percent, respectively.

  14. Solar irradiance measurements - Minimum through maximum solar activity

    NASA Technical Reports Server (NTRS)

    Lee, R. B., III; Gibson, M. A.; Shivakumar, N.; Wilson, R.; Kyle, H. L.; Mecherikunnel, A. T.

    1991-01-01

    The Earth Radiation Budget Satellite (ERBS) and the NOAA-9 spacecraft solar monitors were used to measure the total solar irradiance during the period October 1984 to December 1989. Decreasing trends in the irradiance measurements were observed as sunspot activity decreased to minimum levels in 1986; after 1986, increasing trends were observed as sunspot activity increased. The magnitude of the irradiance variability was found to be approximately 0.1 percent between sunspot minimum and maximum (late 1989). When compared with the 1984 to 1989 indices of solar magnetic activity, the irradiance trends appear to be in phase with the 11-year sunspot cycle. Both irradiance series yielded 1,365/sq Wm as the mean value of the solar irradiance, normalized to the mean earth/sun distance. The monitors are electrical substitution, active-cavity radiometers with estimated measurement precisions and accuracies of less than 0.02 and 0.2 percent, respectively.

  15. Reconstructions of solar irradiance on centennial time scales

    NASA Astrophysics Data System (ADS)

    Krivova, Natalie; Solanki, Sami K.; Dasi Espuig, Maria; Kok Leng, Yeo

    Solar irradiance is the main external source of energy to Earth's climate system. The record of direct measurements covering less than 40 years is too short to study solar influence on Earth's climate, which calls for reconstructions of solar irradiance into the past with the help of appropriate models. An obvious requirement to a competitive model is its ability to reproduce observed irradiance changes, and a successful example of such a model is presented by the SATIRE family of models. As most state-of-the-art models, SATIRE assumes that irradiance changes on time scales longer than approximately a day are caused by the evolving distribution of dark and bright magnetic features on the solar surface. The surface coverage by such features as a function of time is derived from solar observations. The choice of these depends on the time scale in question. Most accurate is the version of the model that employs full-disc spatially-resolved solar magnetograms and reproduces over 90% of the measured irradiance variation, including the overall decreasing trend in the total solar irradiance over the last four cycles. Since such magnetograms are only available for about four decades, reconstructions on time scales of centuries have to rely on disc-integrated proxies of solar magnetic activity, such as sunspot areas and numbers. Employing a surface flux transport model and sunspot observations as input, we have being able to produce synthetic magnetograms since 1700. This improves the temporal resolution of the irradiance reconstructions on centennial time scales. The most critical aspect of such reconstructions remains the uncertainty in the magnitude of the secular change.

  16. UV solar irradiance low during recent solar minimum

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2011-10-01

    Solar irradiance, which varies with the 11-year solar cycle and on longer time scales, can affect temperatures and winds in the atmosphere, influencing Earth's climate. As the Sun currently wakes up from a period of low sunspot activity, researchers want to know how irradiance during the recent solar minimum compares to historical levels. In addition to understanding the total received power, it is important to know how various spectral bands behave, in particular, the ultraviolet, which causes heating and winds in the stratosphere. Lockwood analyzed solar ultraviolet spectral irradiance data from May 2003 to August 2005 from both the Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) instrument on board the Upper Atmosphere Research Satellite (UARS) and the Solar Stellar Irradiance Comparison Experiment (SOLSTICE) instrument on the Solar Radiation and Climate Experiment (SORCE) satellite. Using several different methods to intercalibrate the data, he developed a data composite that can be used to determine differences between the recent solar minimum and previous minima. The author found that solar irradiance during the recent sunspot minimum has been especially low. (Journal of Geophysical Research-Atmospheres, doi:10.1029/2010JD014746, 2011)

  17. Evidence for Trends, and Lack Thereof, in Surface Solar Irradiance as Seen in Calibration-error-free Records of Cloud Shortwave Transmission for the Past Three Decades at Five Globally Diverse Sites

    NASA Astrophysics Data System (ADS)

    Dutton, E. G.

    2004-05-01

    Prior to the mid 1970's there did not exist a method of making observations of solar irradiance to an absolute accuracy better than a few percent. Until the mid 1980s, even that low level of accuracy was only achievable through extraordinary effort because commercial pyranometers are known to drift in sensitivity by up to several percent per year under some conditions. To maintain a stable measurement it is necessary to physically relate routine field measurements to international reference standards using transfer standards. Prior to the early 1980s many of these transfer standards were of less than desirable stability, especially in some countries, and while at the same time international reference standards were just undergoing development. Since the early 1990's considerable effort has gone into maintaining the absolute accuracy of ground-based solar irradiance observations. A brief review of this documented history will be presented for background along with the long-term variability in a number of surface irradiance records. To further analyze long-term observational records extending back into the period of dubious calibration pedigree, rationing or differencing methods are often utilized where the parameter of interest is the short term change in radiation, often over diurnal cycles or between periods of clear and cloudy skies. These short term changes can be expressed in percent or as the ratio of the irradiance and hence only the linearity and zero of the irradiance sensor are required to be known and not sensor's correspondence to an absolute irradiance scale. In this manner, conditions that contribute to affecting the amount of solar irradiance reaching the ground can be monitored over the long term. Using this general differencing procedure, we have examined the long-term changes in clear sky and cloudy sky irradiance relative to closely associated reference irradiances thereby having a tool to continuously monitor the solar transmission of clouds or

  18. Temporal solar irradiance variability analysis using neural networks

    NASA Astrophysics Data System (ADS)

    Tebabal, Ambelu; Damtie, Baylie; Nigussie, Melessew

    A feed-forward neural network which can account for nonlinear relationship was used to model total solar irradiance (TSI). A single layer feed-forward neural network with Levenberg-marquardt back-propagation algorithm have been implemented for modeling daily total solar irradiance from daily photometric sunspot index, and core-to-wing ratio of Mg II index data. In order to obtain the optimum neural network for TSI modeling, the root mean square error (RMSE) and mean absolute error (MAE) have been taken into account. The modeled and measured TSI have the correlation coefficient of about R=0.97. The neural networks (NNs) model output indicates that reconstructed TSI from solar proxies (photometric sunspot index and Mg II) can explain 94% of the variance of TSI. This modeled TSI using NNs further strengthens the view that surface magnetism indeed plays a dominant role in modulating solar irradiance.

  19. A Solar Irradiance Climate Data Record

    NASA Astrophysics Data System (ADS)

    Coddington, O.; Lean, J. L.; Pilewskie, P.; Snow, M.; Lindholm, D.

    2016-08-01

    We present a new climate data record for total solar irradiance and solar spectral irradiance between 1610 and the present day with associated wavelength and time-dependent uncertainties and quarterly updates. The data record, which is part of the National Oceanic and Atmospheric Administration’s (NOAA) Climate Data Record (CDR) program, provides a robust, sustainable, and scientifically defensible record of solar irradiance that is of sufficient length, consistency, and continuity for use in studies of climate variability and climate change on multiple time scales and for user groups spanning climate modeling, remote sensing, and natural resource and renewable energy industries. The data record, jointly developed by the University of Colorado’s Laboratory for Atmospheric and Space Physics (LASP) and the Naval Research Laboratory (NRL), is constructed from solar irradiance models that determine the changes with respect to quiet sun conditions when facular brightening and sunspot darkening features are present on the solar disk where the magnitude of the changes in irradiance are determined from the linear regression of a proxy magnesium (Mg) II index and sunspot area indices against the approximately decade-long solar irradiance measurements of the Solar Radiation and Climate Experiment (SORCE). To promote long-term data usage and sharing for a broad range of users, the source code, the dataset itself, and supporting documentation are archived at NOAA's National Centers for Environmental Information (NCEI). In the future, the dataset will also be available through the LASP Interactive Solar Irradiance Data Center (LISIRD) for user-specified time periods and spectral ranges of interest.

  20. Principal Component Analysis of Arctic Solar Irradiance Spectra

    NASA Technical Reports Server (NTRS)

    Rabbette, Maura; Pilewskie, Peter; Gore, Warren J. (Technical Monitor)

    2000-01-01

    During the FIRE (First ISCPP Regional Experiment) Arctic Cloud Experiment and coincident SHEBA (Surface Heat Budget of the Arctic Ocean) campaign, detailed moderate resolution solar spectral measurements were made to study the radiative energy budget of the coupled Arctic Ocean - Atmosphere system. The NASA Ames Solar Spectral Flux Radiometers (SSFRs) were deployed on the NASA ER-2 and at the SHEBA ice camp. Using the SSFRs we acquired continuous solar spectral irradiance (380-2200 nm) throughout the atmospheric column. Principal Component Analysis (PCA) was used to characterize the several tens of thousands of retrieved SSFR spectra and to determine the number of independent pieces of information that exist in the visible to near-infrared solar irradiance spectra. It was found in both the upwelling and downwelling cases that almost 100% of the spectral information (irradiance retrieved from 1820 wavelength channels) was contained in the first six extracted principal components. The majority of the variability in the Arctic downwelling solar irradiance spectra was explained by a few fundamental components including infrared absorption, scattering, water vapor and ozone. PCA analysis of the SSFR upwelling Arctic irradiance spectra successfully separated surface ice and snow reflection from overlying cloud into distinct components.

  1. Principal Component Analysis of Arctic Solar Irradiance Spectra

    NASA Technical Reports Server (NTRS)

    Rabbette, Maura; Pilewskie, Peter; Gore, Warren J. (Technical Monitor)

    2000-01-01

    During the FIRE (First ISCPP Regional Experiment) Arctic Cloud Experiment and coincident SHEBA (Surface Heat Budget of the Arctic Ocean) campaign, detailed moderate resolution solar spectral measurements were made to study the radiative energy budget of the coupled Arctic Ocean - Atmosphere system. The NASA Ames Solar Spectral Flux Radiometers (SSFRs) were deployed on the NASA ER-2 and at the SHEBA ice camp. Using the SSFRs we acquired continuous solar spectral irradiance (380-2200 nm) throughout the atmospheric column. Principal Component Analysis (PCA) was used to characterize the several tens of thousands of retrieved SSFR spectra and to determine the number of independent pieces of information that exist in the visible to near-infrared solar irradiance spectra. It was found in both the upwelling and downwelling cases that almost 100% of the spectral information (irradiance retrieved from 1820 wavelength channels) was contained in the first six extracted principal components. The majority of the variability in the Arctic downwelling solar irradiance spectra was explained by a few fundamental components including infrared absorption, scattering, water vapor and ozone. PCA analysis of the SSFR upwelling Arctic irradiance spectra successfully separated surface ice and snow reflection from overlying cloud into distinct components.

  2. Solar EUV irradiance for space weather applications

    NASA Astrophysics Data System (ADS)

    Viereck, R. A.

    2015-12-01

    Solar EUV irradiance is an important driver of space weather models. Large changes in EUV and x-ray irradiances create large variability in the ionosphere and thermosphere. Proxies such as the F10.7 cm radio flux, have provided reasonable estimates of the EUV flux but as the space weather models become more accurate and the demands of the customers become more stringent, proxies are no longer adequate. Furthermore, proxies are often provided only on a daily basis and shorter time scales are becoming important. Also, there is a growing need for multi-day forecasts of solar EUV irradiance to drive space weather forecast models. In this presentation we will describe the needs and requirements for solar EUV irradiance information from the space weather modeler's perspective. We will then translate these requirements into solar observational requirements such as spectral resolution and irradiance accuracy. We will also describe the activities at NOAA to provide long-term solar EUV irradiance observations and derived products that are needed for real-time space weather modeling.

  3. The LASP Interactive Solar IRradiance Datacenter (LISIRD)

    NASA Astrophysics Data System (ADS)

    Snow, M.; Woods, T. N.; Eparvier, F. G.; Fontenla, J.; Harder, J.; McClintock, W. E.; Pankratz, C.; Richard, E.; Windnagel, A.; Woodraska, D.

    2005-12-01

    LASP has created an online resource for combined solar irradiance datasets from the SORCE, TIMED, UARS, and SME missions. The LASP Interactive Solar IRradiance Datacenter (LISIRD) not only provides unified access to the individual datasets, but also combines them for ease of use by scientists, educators, and the general public. In particular, LISIRD makes available composite spectra and time series. The TIMED SEE, SORCE SOLSTICE, and SORCE SIM instruments produce spectra that together cover the solar spectrum from 1 to 2700 nm. Through the LISIRD interface, the user can get data that bridges the various missions in both wavelength and time. LISIRD also hosts data products of interest to the space weather community. They have slightly different needs than the atmospheric modelers that are the typical users of irradiance data. For space weather applications, high time cadence and near real-time data delivery are key. For these users, we make our observations available shortly after spacecraft contact, and append the observations to a single data file which they can retrieve using anonymous ftp every few hours. The third component of LISIRD is the Solar Physical Radiation Model (SPRM) results of Fontenla et al. It provides a model of current solar activity, the synthetic spectral irradiance, and tools that permit one to model the solar activity source of the spectral irradiance variations.

  4. Solar oscillations and helioseismology from ACRIM/SMM irradiance data.

    NASA Astrophysics Data System (ADS)

    Fröhlich, C.

    An introduction to solar oscillations, their properties and diagnostic potential, and a review of our present knowledge is presented. The solar irradiance data from the ACRIM (Active Cavity Radiometer for Irradiance Monitoring) solar constant experiment on board the Solar Maximum Mission satellite (SMM) are used to search for solar gravity modes, which yield a direct information on the structure of the solar core.

  5. Models of Solar Irradiance Variability and the Instrumental Temperature Record

    NASA Technical Reports Server (NTRS)

    Marcus, S. L.; Ghil, M.; Ide, K.

    1998-01-01

    The effects of decade-to-century (Dec-Cen) variations in total solar irradiance (TSI) on global mean surface temperature Ts during the pre-Pinatubo instrumental era (1854-1991) are studied by using two different proxies for TSI and a simplified version of the IPCC climate model.

  6. Solar UV irradiation-induced production of N2O from plant surfaces - low emissions rates but all over the world.

    NASA Astrophysics Data System (ADS)

    Mikkelsen, T. N.; Bruhn, D.; Ambus, P.

    2016-12-01

    Nitrous oxide (N2O) is an important long-lived greenhouse gas and precursor of stratospheric ozone depleting mono-nitrogen oxides. The atmospheric concentration of N2O is persistently increasing; however, large uncertainties are associated with the distinct source strengths. Here we investigate for the first time N2O emission from terrestrial vegetation in response to natural solar ultra violet radiation. We conducted field site measurements to investigate N2O atmosphere exchange from grass vegetation exposed to solar irradiance with and without UV-screening. Further laboratory tests were conducted with a range of species to study the controls and possible loci of UV-induced N2O emission from plants. Plants released N2O in response to natural sunlight at rates of c. 20-50 nmol m-2 h-1, mostly due to the UV component. The emission rate is temperature dependent with a rather high activation energy indicative for an abiotic process. The prevailing zone for the N2O formation appears to be at the very surface of leaves. However, only c. 26% of the UV-induced N2O appears to originate from plant-N. Further, the process is dependent on atmospheric oxygen concentration. Our work demonstrates that ecosystem emission of the important greenhouse gas, N2O, may be up to c. 30% higher than hitherto assumed.

  7. Fracture surfaces of irradiated composites

    NASA Technical Reports Server (NTRS)

    Milkovich, Scott M.; Sykes, George F., Jr.; Herakovich, Carl T.

    1987-01-01

    Electron microscopy was used to analyze the fracture surfaces of T300/934 graphite/epoxy unidirectional off-axis tensile coupons which were subjected to 1.0-MeV electron radiation at a rate of 50 Mrad/h for a total dose of 10 Grad. Fracture surfaces from irradiated and nonirradiated specimens tested at 116 K, room temperature, and 394 K were analyzed to assess the influence of radiation and temperature on the mode of failure and variations in constituent material as a function of environmental exposure. Micrographs of fracture surfaces indicate that irradiated specimens are more brittle than nonirradiated specimens at low temperatures. However, at elevated temperatures the irradiated specimens exhibit significantly more plasticity than nonirradiated specimens.

  8. Nanostructured Solar Irradiation Control Materials for Solar Energy Conversion

    NASA Technical Reports Server (NTRS)

    Kang, Jinho; Marshall, I. A.; Torrico, M. N.; Taylor, C. R.; Ely, Jeffry; Henderson, Angel Z.; Kim, J.-W.; Sauti, G.; Gibbons, L. J.; Park, C.; hide

    2012-01-01

    Tailoring the solar absorptivity (alpha(sub s)) and thermal emissivity (epsilon(sub T)) of materials constitutes an innovative approach to solar energy control and energy conversion. Numerous ceramic and metallic materials are currently available for solar absorbance/thermal emittance control. However, conventional metal oxides and dielectric/metal/dielectric multi-coatings have limited utility due to residual shear stresses resulting from the different coefficient of thermal expansion of the layered materials. This research presents an alternate approach based on nanoparticle-filled polymers to afford mechanically durable solar-absorptive and thermally-emissive polymer nanocomposites. The alpha(sub s) and epsilon(sub T) were measured with various nano inclusions, such as carbon nanophase particles (CNPs), at different concentrations. Research has shown that adding only 5 wt% CNPs increased the alpha(sub s) and epsilon(sub T) by a factor of about 47 and 2, respectively, compared to the pristine polymer. The effect of solar irradiation control of the nanocomposite on solar energy conversion was studied. The solar irradiation control coatings increased the power generation of solar thermoelectric cells by more than 380% compared to that of a control power cell without solar irradiation control coatings.

  9. Solar Total and Spectral Irradiance Reconstruction over Last 9000 Years

    NASA Astrophysics Data System (ADS)

    Wu, C. J.; Krivova, N.; Solanki, S. K.; Usoskin, I. G.

    2016-12-01

    Although the mechanisms of solar influence on Earth climate system are not yet fully understood, solar total and spectral irradiance are considered to be among the main determinants. Solar total irradiance is the total flux of solar radiative energy entering Earth's climate system, whereas the spectral irradiance describes this energy is distributed over the spectrum. Solar irradiance in the UV band is of special importance since it governs chemical processes in the middle and upper atmosphere. On timescales of the 11-year solar cycle and shorter, solar irradiance is measured by space-based instruments while models are needed to reconstruct solar irradiance on longer timescale. The SATIRE-M model (Spectral And Total Irradiance Reconstruction over millennia) is employed in this study to reconstruct solar irradiance from decadal radionuclide isotope data such as 14C and 10Be stored in tree rings and ice cores, respectively. A reconstruction over the last 9000 years will be presented.

  10. Solar Rotational Modulations of Spectral Irradiance and Correlations with the Variability of Total Solar Irradiance

    NASA Technical Reports Server (NTRS)

    Lee, Jae N.; Cahalan, Robert F.; Wu, Dong L.

    2016-01-01

    Aims: We characterize the solar rotational modulations of spectral solar irradiance (SSI) and compare them with the corresponding changes of total solar irradiance (TSI). Solar rotational modulations of TSI and SSI at wavelengths between 120 and 1600 nm are identified over one hundred Carrington rotational cycles during 2003-2013. Methods: The SORCE (Solar Radiation and Climate Experiment) and TIMED (Thermosphere Ionosphere Mesosphere Energetics and Dynamics)/SEE (Solar EUV Experiment) measured and SATIRE-S modeled solar irradiances are analyzed using the EEMD (Ensemble Empirical Mode Decomposition) method to determine the phase and amplitude of 27-day solar rotational variation in TSI and SSI. Results: The mode decomposition clearly identifies 27-day solar rotational variations in SSI between 120 and 1600 nm, and there is a robust wavelength dependence in the phase of the rotational mode relative to that of TSI. The rotational modes of visible (VIS) and near infrared (NIR) are in phase with the mode of TSI, but the phase of the rotational mode of ultraviolet (UV) exhibits differences from that of TSI. While it is questionable that the VIS to NIR portion of the solar spectrum has yet been observed with sufficient accuracy and precision to determine the 11-year solar cycle variations, the temporal variations over one hundred cycles of 27-day solar rotation, independent of the two solar cycles in which they are embedded, show distinct solar rotational modulations at each wavelength.

  11. Solar Rotational Modulations of Spectral Irradiance and Correlations with the Variability of Total Solar Irradiance

    NASA Technical Reports Server (NTRS)

    Lee, Jae N.; Cahalan, Robert F.; Wu, Dong L.

    2016-01-01

    Aims: We characterize the solar rotational modulations of spectral solar irradiance (SSI) and compare them with the corresponding changes of total solar irradiance (TSI). Solar rotational modulations of TSI and SSI at wavelengths between 120 and 1600 nm are identified over one hundred Carrington rotational cycles during 2003-2013. Methods: The SORCE (Solar Radiation and Climate Experiment) and TIMED (Thermosphere Ionosphere Mesosphere Energetics and Dynamics)/SEE (Solar EUV Experiment) measured and SATIRE-S modeled solar irradiances are analyzed using the EEMD (Ensemble Empirical Mode Decomposition) method to determine the phase and amplitude of 27-day solar rotational variation in TSI and SSI. Results: The mode decomposition clearly identifies 27-day solar rotational variations in SSI between 120 and 1600 nm, and there is a robust wavelength dependence in the phase of the rotational mode relative to that of TSI. The rotational modes of visible (VIS) and near infrared (NIR) are in phase with the mode of TSI, but the phase of the rotational mode of ultraviolet (UV) exhibits differences from that of TSI. While it is questionable that the VIS to NIR portion of the solar spectrum has yet been observed with sufficient accuracy and precision to determine the 11-year solar cycle variations, the temporal variations over one hundred cycles of 27-day solar rotation, independent of the two solar cycles in which they are embedded, show distinct solar rotational modulations at each wavelength.

  12. Solar rotational modulations of spectral irradiance and correlations with the variability of total solar irradiance

    NASA Astrophysics Data System (ADS)

    Lee, Jae N.; Cahalan, Robert F.; Wu, Dong L.

    2016-09-01

    Aims: We characterize the solar rotational modulations of spectral solar irradiance (SSI) and compare them with the corresponding changes of total solar irradiance (TSI). Solar rotational modulations of TSI and SSI at wavelengths between 120 and 1600 nm are identified over one hundred Carrington rotational cycles during 2003-2013. Methods: The SORCE (Solar Radiation and Climate Experiment) and TIMED (Thermosphere Ionosphere Mesosphere Energetics and Dynamics)/SEE (Solar EUV Experiment) measured and SATIRE-S modeled solar irradiances are analyzed using the EEMD (Ensemble Empirical Mode Decomposition) method to determine the phase and amplitude of 27-day solar rotational variation in TSI and SSI. Results: The mode decomposition clearly identifies 27-day solar rotational variations in SSI between 120 and 1600 nm, and there is a robust wavelength dependence in the phase of the rotational mode relative to that of TSI. The rotational modes of visible (VIS) and near infrared (NIR) are in phase with the mode of TSI, but the phase of the rotational mode of ultraviolet (UV) exhibits differences from that of TSI. While it is questionable that the VIS to NIR portion of the solar spectrum has yet been observed with sufficient accuracy and precision to determine the 11-year solar cycle variations, the temporal variations over one hundred cycles of 27-day solar rotation, independent of the two solar cycles in which they are embedded, show distinct solar rotational modulations at each wavelength.

  13. Ionospheric Change and Solar EUV Irradiance

    NASA Astrophysics Data System (ADS)

    Sojka, J. J.; David, M.; Jensen, J. B.; Schunk, R. W.

    2011-12-01

    The ionosphere has been quantitatively monitored for the past six solar cycles. The past few years of observations are showing trends that differ from the prior cycles! Our good statistical relationships between the solar radio flux index at 10.7 cm, the solar EUV Irradiance, and the ionospheric F-layer peak density are showing indications of divergence! Present day discussion of the Sun-Earth entering a Dalton Minimum would suggest change is occurring in the Sun, as the driver, followed by the Earth, as the receptor. The dayside ionosphere is driven by the solar EUV Irradiance. But different components of this spectrum affect the ionospheric layers differently. For a first time the continuous high cadence EUV spectra from the SDO EVE instrument enable ionospheric scientists the opportunity to evaluate solar EUV variability as a driver of ionospheric variability. A definitive understanding of which spectral components are responsible for the E- and F-layers of the ionosphere will enable assessments of how over 50 years of ionospheric observations, the solar EUV Irradiance has changed. If indeed the evidence suggesting the Sun-Earth system is entering a Dalton Minimum periods is correct, then the comprehensive EVE solar EUV Irradiance data base combined with the ongoing ionospheric data bases will provide a most fortuitous fiduciary reference baseline for Sun-Earth dependencies. Using the EVE EUV Irradiances, a physics based ionospheric model (TDIM), and 50 plus years of ionospheric observation from Wallops Island (Virginia) the above Sun-Earth ionospheric relationship will be reported on.

  14. Solar Irradiance Observations during Solar Cycles 22 and 23

    NASA Astrophysics Data System (ADS)

    White, O. R.; de Toma, G.; Chapman, G. A.; Walton, S. R.; Preminger, D. G.; Cookson, A. M.; Harvey, K. L.; Livingston, W. C.

    2002-05-01

    We present a study of Total Solar Irradiance (TSI) variations during solar cycles 22 and 23 from 1986 to the present. We will review the recent measurements of solar magnetism, solar activity, and radiative variability from both ground-based and space observatories and compare TSI observations with empirical models of solar irradiance variability based on facular and sunspot observations. To estimate facular/plage and sunspot contribution to TSI we use the photometric indices derived from the SFO full-disk solar images from 1988 to the present in the CaIIK line at 393.4nm and in the red continuum at 672.3 nm. In these indices, each solar structure is included with its measured contrast and area. We also use the MgII core-to-wing index from space observatories as an alternative index for plages and network. Comparison of the rising and maximum phases of the two solar cycles, shows that cycle 23 is magnetically weaker with sunspot and facular area almost a factor of two lower than in solar cycle 22. However, analysis of multi-wavelength observations indicate that different wavelengths respond differently to the decreased magnetic activity during solar cycle 23.

  15. Parameterization of daily solar global ultraviolet irradiation.

    PubMed

    Feister, U; Jäkel, E; Gericke, K

    2002-09-01

    Daily values of solar global ultraviolet (UV) B and UVA irradiation as well as erythemal irradiation have been parameterized to be estimated from pyranometer measurements of daily global and diffuse irradiation as well as from atmospheric column ozone. Data recorded at the Meteorological Observatory Potsdam (52 degrees N, 107 m asl) in Germany over the time period 1997-2000 have been used to derive sets of regression coefficients. The validation of the method against independent data sets of measured UV irradiation shows that the parameterization provides a gain of information for UVB, UVA and erythemal irradiation referring to their averages. A comparison between parameterized daily UV irradiation and independent values of UV irradiation measured at a mountain station in southern Germany (Meteorological Observatory Hohenpeissenberg at 48 degrees N, 977 m asl) indicates that the parameterization also holds even under completely different climatic conditions. On a long-term average (1953-2000), parameterized annual UV irradiation values are 15% and 21% higher for UVA and UVB, respectively, at Hohenpeissenberg than they are at Potsdam. Daily global and diffuse irradiation measured at 28 weather stations of the Deutscher Wetterdienst German Radiation Network and grid values of column ozone from the EPTOMS satellite experiment served as inputs to calculate the estimates of the spatial distribution of daily and annual values of UV irradiation across Germany. Using daily values of global and diffuse irradiation recorded at Potsdam since 1937 as well as atmospheric column ozone measured since 1964 at the same site, estimates of daily and annual UV irradiation have been derived for this site over the period from 1937 through 2000, which include the effects of changes in cloudiness, in aerosols and, at least for the period of ozone measurements from 1964 to 2000, in atmospheric ozone. It is shown that the extremely low ozone values observed mainly after the eruption of Mt

  16. The Total Solar Irradiance Climate Data Record

    NASA Astrophysics Data System (ADS)

    Dewitte, Steven; Nevens, Stijn

    2016-10-01

    We present the composite measurements of total solar irradiance (TSI) as measured by an ensemble of space instruments. The measurements of the individual instruments are put on a common absolute scale, and their quality is assessed by intercomparison. The composite time series is the average of all available measurements. From 1984 April to the present the TSI shows a variation in phase with the 11 yr solar cycle and no significant changes of the quiet-Sun level in between the three covered solar minima.

  17. Studies of Solar EUV Irradiance from SOHO

    NASA Technical Reports Server (NTRS)

    Floyd, Linton

    2002-01-01

    The Extreme Ultraviolet (EUV) irradiance central and first order channel time series (COC and FOC) from the Solar EUV Monitor aboard the Solar and Heliospheric observatory (SOHO) issued in early 2002 covering the time period 1/1/96-31/1201 were analyzed in terms of other solar measurements and indices. A significant solar proton effect in the first order irradiance was found and characterized. When this effect is removed, the two irradiance time series are almost perfectly correlated. Earlier studies have shown good correlation between the FOC and the Hall core-to-wing ratio and likewise, it was the strongest component of the COC. Analysis of the FOC showed dependence on the F10.7 radio flux. Analysis of the CDC signals showed additional dependences on F10.7 and the GOES x-ray fluxes. The SEM FOC was also well correlated with thein 30.4 nm channel of the SOHO EUV Imaging Telescope (EIT). The irradiance derived from all four EIT channels (30.4 nm, 17.1 nm, 28.4 nm, and 19.5 nm) showed better correlation with MgII than F10.7.

  18. A discussion of plausible solar irradiance variations, 1700-1992

    NASA Technical Reports Server (NTRS)

    Hoyt, Douglas V.; Schatten, Kenneth H.

    1993-01-01

    From satellite observations the solar total irradiance is known to vary. Sunspot blocking, facular emission, and network emission are three identified causes for the variations. In this paper we examine several different solar indices measured over the past century that are potential proxy measures for the Sun's irradiance. These indices are (1) the equatorial solar rotation rate, (2) the sunspot structure, the decay rate of individual sunspots, and the number of sunspots without umbrae, and (3) the length and decay rate of the sunspot cycle. Each index can be used to develop a model for the Sun's total irradiance as seen at the Earth. Three solar indices allow the irradiance to be modeled back to the mid-1700s. The indices are (1) the length of the solar cycle, (2) the normalized decay rate of the solar cycle, and (3) the mean level of solar activity. All the indices are well correlated, and one possible explanation for their nearly simultaneous variations is changes in the Sun's convective energy transport. Although changes in the Sun's convective energy transport are outside the realm of normal stellar structure theory (e.g., mixing length theory), one can imagine variations arising from even the simplest view of sunspots as vertical tubes of magnetic flux, which would serve as rigid pillas affecting the energy flow patterns by ensuring larger-scale eddies. A composite solar irradiance model, based upon these proxies, is compared to the northern hemisphere temperature depatures for 1700-1992. Approximately 71% of the decadal variance in the last century can be modeled with these solar indices, although this analysis does not include anthropogenic or other variations which would affect the results. Over the entire three centuries, approx. 50% of the variance is modeled. Both this analysis and previous similar analyses have correlations of model solar irradiances and measured Earth surface temperatures that are significant at better than the 95% confidence level

  19. Solar absorption surface panel

    DOEpatents

    Santala, Teuvo J.

    1978-01-01

    A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.

  20. Solar EUV and UV spectral irradiances and solar indices

    NASA Astrophysics Data System (ADS)

    Floyd, Linton; Newmark, Jeff; Cook, John; Herring, Lynn; McMullin, Don

    2005-01-01

    Several experiments have measured solar EUV/UV flux in the last 10 15 years including SUSIM UARS, SOHO CELIAS SEM, and SOHO EIT and have generated multi-year spectral irradiance time series. Empirical models of these important sources of radiant energy are often based on solar activity proxies, most often, the solar 10.7 cm radio flux (F10.7). The short- and long-term correspondence of four solar activity index time series International Sunspot Number, the He 1083 Equivalent Width, F10.7, and the Mg II core-to-wing ratio are analyzed. All of these show well-correlated long-term behavior with F10.7 and Mg II showing the greatest long-term agreement among all of the index pairs. However, during the recent maximum period of solar cycle 23, both the ISN and He 1083 have diverged significantly from the others. Recent UV and EUV measurements are compared with Mg II and F10.7 to assess their value as solar activity proxies. In every case, Mg II was found to correlate more strongly than F10.7 with the UV and EUV time series which correspond to a range of solar atmospheric temperatures of 4000K 2 MK. This correspondence indicates that the mechanisms underlying irradiances changes from upper photospheric chromospheric, transition region, and lower coronal solar atmospheric layers are closely linked.

  1. Forecasting solar extreme and far ultraviolet irradiance

    NASA Astrophysics Data System (ADS)

    Henney, C. J.; Hock, R. A.; Schooley, A. K.; Toussaint, W. A.; White, S. M.; Arge, C. N.

    2015-03-01

    A new method is presented to forecast the solar irradiance of selected wavelength ranges within the extreme ultraviolet (EUV) and far ultraviolet (FUV) bands. The technique is similar to a method recently published by Henney et al. (2012) to predict solar 10.7 cm (2.8 GHz) radio flux, abbreviated F10.7, utilizing advanced predictions of the global solar magnetic field generated by a flux transport model. In this and the previous study, we find good correlation between the absolute value of the observed photospheric magnetic field and selected EUV/FUV spectral bands. By evolving solar magnetic maps forward 1 to 7 days with a flux transport model, estimations of the Earth side solar magnetic field distribution are generated and used to forecast irradiance. For example, Pearson correlation coefficient values of 0.99, 0.99, and 0.98 are found for 1 day, 3 day, and 7 day predictions, respectively, of the EUV band from 29 to 32 nm. In the FUV, for example, the 160 to 165 nm spectral band, correlation values of 0.98, 0.97, and 0.96 are found for 1 day, 3 day, and 7 day predictions, respectively. In the previous study, the observed F10.7 signal is found to correlate well with strong magnetic field (i.e., sunspot) regions. Here we find that solar EUV and FUV signals are significantly correlated with the weaker magnetic fields associated with plage regions, suggesting that solar magnetic indices may provide an improved indicator (relative to the widely used F10.7 signal) of EUV and FUV nonflaring irradiance variability as input to ionospheric and thermospheric models.

  2. Spectral solar irradiance before and during a Harmattan dust spell

    SciTech Connect

    Adeyefa, Z.D.; Holmgren, B.

    1996-09-01

    Measurements of the ground-level spectral distributions of the direct, diffuse and global solar irradiance between 300 and 1100 nm were made at Akure (7.15{degree}N, 5.5{degree}E), Nigeria, in December 1991 before and during a Harmattan dust spell employing a spectroradiometer (LICOR LI-1800) with 6 nm resolution. The direct spectral solar irradiance which was initially reduced before the dust storm was further attenuated by about 50% after the spell. Estimated values of the Angstrom turbidity coefficient {beta} indicated an increase of about 146% of this parameter while the Angstrom wavelength-exponent {alpha} decreased by about 65% within the 2-day study period. The spectral diffuse-to-direct and diffuse-to-global ratios suggest that the main cause of the significant reduction in solar irradiance at the surface was the scattering by the aerosol which led to an increase in the diffuse component. The global irradiance though reduced, was less sensitive to changing Harmattan conditions. It is recommended that solar energy devices that use radiation from Sun and sky be used under fluctuating Harmattan conditions. There are some deviations from the Angstrom formula under very turbid Harmattan conditions which could be explained by the relative increase of the particle sizes. 31 refs., 12 figs., 3 tabs.

  3. Study of the MLB parameterisation for change in surface solar irradiance with sun zenith angle in clear sky

    NASA Astrophysics Data System (ADS)

    Qu, Z.; Blanc, P.; Lefèvre, M.; Wald, L.; Oumbe, A.

    2011-08-01

    The MLB parameterisation (Modified Lambert-Beer, Mueller et al., 2004) describes the change in SSI with sun zenith angle (SZA) in clear-sky conditions. It applies to the direct and global SSI as well as their spectral distribution. We assess its performances by comparing its results to the outputs of the radiative transfer model libRadtran and standard interpolation procedures. The standard two-point fitting MLB function performs very well at SZA between 0° and 60° and fairly bad from 60° to 89.9°. A parameterisation made of four MLBs for four intervals (0°, 60°), (60°, 75°), (75°, 85°) and (85°, 89.9°) is also tested. This piecewise MLB parameterisation exhibits satisfactory performances at any SZA and outperforms standard linear interpolation techniques. 95 % of errors in global SSI are less than 1 W m-2 for each band and less than 5 W m-2 for total irradiance.

  4. The effects of sunspots on solar irradiance

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.; Silva, S.; Woodard, M.; Willson, R. C.

    1982-01-01

    It is pointed out that the darkness of a sunspot on the visible hemisphere of the sun will reduce the solar irradiance on the earth. Approaches are discussed for obtaining a crude estimate of the irradiance deficit produced by sunspots and of the total luminosity reduction for the whole global population of sunspots. Attention is given to a photometric sunspot index, a global measure of spot flux deficit, and models for the compensating flux excess. A model is shown for extrapolating visible-hemisphere spot areas to the invisible hemisphere. As an illustration, this extrapolation is used to calculate a very simple model for the reradiation necessary to balance the flux deficit.

  5. Temporal Variations in Solar Irradiance Since 1947

    NASA Astrophysics Data System (ADS)

    Tebabal, A.; Damtie, B.; Nigussie, M.; Yizengaw, E.

    2017-08-01

    The study of variations in total solar irradiance (TSI) and spectral irradiance is important for understanding how the Sun affects the Earth's climate. A data-driven approach is used in this article to analyze and model the temporal variation of the TSI and Mg ii index back to 1947. In both cases, observed data in the time interval of the satellite era, 1978 - 2013, were used for neural network (NN) model-design and testing. For this particular purpose, the evolution of the solar magnetic field is assumed to be the main driver for the day-to-day irradiance variability. First, we design a model for the Mg ii index data from F10.7 cm solar radio-flux using the NN approach in the time span of 1978 through 2013. Results of Mg ii index model were tested using various numbers of hidden nodes. The predicted values of the hidden layer with five nodes correspond well to the composite Mg ii values. The model reproduces 94% of the variability in the composite Mg ii index, including the secular decline between the 1996 and 2008 solar cycle minima. Finally, the extrapolation of the Mg ii index was performed using the developed model from F10.7 cm back to 1947. Similarly, the NN model was designed for TSI variability study over the time span of the satellite era using data from the Physikalisch-Meteorologisches Observatorium Davos (PMOD) as a target, and solar activity indices as model inputs. This model was able to reproduce the daily irradiance variations with a correlation coefficient of 0.937 from sunspot and facular measurements in the time span of 1978 - 2013. Finally, the temporal variation of the TSI was analyzed using the designed NN model back to 1947 from the Photometric Sunspot Index (PSI) and the extrapolated Mg ii index. The extrapolated TSI result indicates that the amplitudes of Solar Cycles 19 and 21 are closely comparable to each other, and Solar Cycle 20 appears to be of lower irradiance during its maximum.

  6. Parameterization of Solar Global Uv Irradiation

    NASA Astrophysics Data System (ADS)

    Feister, U.; Jaekel, E.; Gericke, K.

    Daily doses of solar global UV-B, UV-A, and erythemal irradiation have been param- eterized to be calculated from pyranometer data of global and diffuse irradiation as well as from atmospheric column ozone measured at Potsdam (52 N, 107 m asl). The method has been validated against independent data of measured UV irradiation. A gain of information is provided by use of the parameterization for the three UV compo- nents (UV-B, UV-A and erythemal) referring to average values of UV irradiation. Ap- plying the method to UV irradiation measured at the mountain site Hohenpeissenberg (48 N, 977 m asl) shows that the parameterization even holds under completely differ- ent climatic conditions. On a long-term average (1953 - 2000), parameterized annual UV irradiation values are by 15 % (UV-A) and 21 % (UV-B), respectively, higher at Hohenpeissenberg, than they are at Potsdam. Using measured input data from 27 Ger- man weather stations, the method has been also applied to estimate the spatial distribu- tion of UV irradiation across Germany. Daily global and diffuse irradiation measured at Potsdam (1937 -2000) as well as atmospheric column ozone measured at Potsdam between1964 - 2000 have been used to derive long-term estimates of daily and annual totals of UV irradiation that include the effects of changes in cloudiness, in aerosols and, at least for the period 1964 to 2000, also in atmospheric ozone. It is shown that the extremely low ozone values observed mainly after the volcanic eruptions of Mt. Pinatubo in 1991 have substantially enhanced UV-B irradiation in the first half of the 90ies of the last century. The non-linear long-term changes between 1968 and 2000 amount to +4% ...+5% for annual global and UV-A irradiation mainly due to changing cloudiness, and +14% ... +15% for UV-B and erythemal irradiation due to both chang- ing cloudiness and decreasing column ozone. Estimates of long-term changes in UV irradiation derived from data measured at other German sites are

  7. Active-region evolution and solar rotation variations in solar UV irradiance, total solar irradiance, and soft X rays

    NASA Technical Reports Server (NTRS)

    Donnelly, R. F.; Heath, D. F.; Lean, J. L.

    1982-01-01

    Variations in the total solar irradiance, solar UV spectral irradiance, and solar soft X-ray emission caused by active region evolution and solar rotation are analyzed by using concurrent measurements from the NIMBUS 7 and GOES satellites. The observations are interpreted by using simple empirical models that relate ground-based observations of the size and location of sunspots and plages to the full-disk temporal variations. It is found that the major dips in the photospheric total solar irradiance S, which are evident in both satellite measurements and model predictions, are usually not accompanied by outstanding enhancements in the chromospheric and upper photospheric UV spectral irradiance or coronal X rays. The main cause of this difference between the variability of S and of the UV flux is that the total chromospheric plage enhancements are not outstanding at those times when the total sunspot are outstanding. X rays are even more variable because of a much wider CMD sensitivity.

  8. Evolution of the solar irradiance during the Holocene

    NASA Astrophysics Data System (ADS)

    Vieira, L. E. A.; Solanki, S. K.; Krivova, N. A.; Usoskin, I.

    2011-07-01

    Context. Long-term records of solar radiative output are vital for understanding solar variability and past climate change. Measurements of solar irradiance are available for only the last three decades, which calls for reconstructions of this quantity over longer time scales using suitable models. Aims: We present a physically consistent reconstruction of the total solar irradiance for the Holocene. Methods: We extend the SATIRE (Spectral And Total Irradiance REconstruction) models to estimate the evolution of the total (and partly spectral) solar irradiance over the Holocene. The basic assumption is that the variations of the solar irradiance are due to the evolution of the dark and bright magnetic features on the solar surface. The evolution of the decadally averaged magnetic flux is computed from decadal values of cosmogenic isotope concentrations recorded in natural archives employing a series of physics-based models connecting the processes from the modulation of the cosmic ray flux in the heliosphere to their record in natural archives. We then compute the total solar irradiance (TSI) as a linear combination of the jth and jth + 1 decadal values of the open magnetic flux. In order to evaluate the uncertainties due to the evolution of the Earth's magnetic dipole moment, we employ four reconstructions of the open flux which are based on conceptually different paleomagnetic models. Results: Reconstructions of the TSI over the Holocene, each valid for a different paleomagnetic time series, are presented. Our analysis suggests that major sources of uncertainty in the TSI in this model are the heritage of the uncertainty of the TSI since 1610 reconstructed from sunspot data and the uncertainty of the evolution of the Earth's magnetic dipole moment. The analysis of the distribution functions of the reconstructed irradiance for the last 3000 years, which is the period that the reconstructions overlap, indicates that the estimates based on the virtual axial dipole

  9. Solar Irradiance, Plage and SOHO UV Images

    NASA Astrophysics Data System (ADS)

    Lopresto, James C.; Manross, Kevin

    1996-05-01

    Calcium K and H alpha plage and sunspot area have been monitored using Big Bear Observatory images on the INTERNET since November of 1992. The purpose of the project is to determine the correlation of changing plage area and solar irradiance changes. We also monitor changes in the K2 spec- tral index provided daily from Sacramento Peak. With the recent launching of the SOHO satellite, we are able to monitor the plage in the He II 304 Angstroms UV image. This image is near the top of the chromosphere nar or just under the transition region. The images show limb brightening as expected. Since it is widely believed that short time scale changes in the UV may be the dominant cause for low amplitude solar irradiance changes, the comparison of the "plage" ara in these UV images to those in conventional visible images should prove instructive.

  10. New insights on short-term solar irradiance forecast for space weather applications

    NASA Astrophysics Data System (ADS)

    Vieira, L. A.; Dudok de Wit, T.; Balmaceda, L. A.; Dal Lago, A.; Da Silva, L. A.; Gonzalez, W. D.

    2013-12-01

    The conditions of the thermosphere, the ionosphere, the neutral atmosphere, and the oceans on time scales from days to millennia are highly dependent on the solar electromagnetic output, the solar irradiance. The development of physics-based solar irradiance models during the last decade improved significantly our understanding of the solar forcing on Earth's climate. These models are based on the assumption that most of the solar irradiance variability is related to the magnetic field structure of the Sun. Recently, these models were extended to allow short-term forecast (1 to 15 days) of the total and spectral solar irradiance. The extension of the irradiance models is based on solar surface magnetic flux models and/or artificial neural network models. Here, we discuss in details the irradiance forecast models based on observations of the solar surface magnetic field realized by the HMI instrument on board of SDO spacecraft. We constrained and validated the models by comparing the output of the models and observations of the solar irradiance made by instruments onboard The SORCE spacecraft. This study received funding from the European Community's Seventh Framework Programme (FP7/2007-2013, FP7-SPACE-2010-1) under the grant agreement nrs. 218816 (SOTERIA project, www.soteria-space.eu) and 261948 (ATMOP,www.atmop.eu), and by the CNPq/Brazil under the grant number 312488/2012-2. We also gratefully thank the instrument teams for making their data available.

  11. Solar Irradiance Data Products at the LASP Interactive Solar IRradiance Datacenter (LISIRD)

    NASA Astrophysics Data System (ADS)

    Lindholm, D. M.; Ware DeWolfe, A.; Wilson, A.; Pankratz, C. K.; Snow, M. A.; Woods, T. N.

    2011-12-01

    The Laboratory for Atmospheric and Space Physics (LASP) has developed the LASP Interactive Solar IRradiance Datacenter (LISIRD, http://lasp.colorado.edu/lisird/) web site to provide access to a comprehensive set of solar irradiance measurements and related datasets. Current data holdings include products from NASA missions SORCE, UARS, SME, and TIMED-SEE. The data provided covers a wavelength range from soft X-ray (XUV) at 0.1 nm up to the near infrared (NIR) at 2400 nm, as well as Total Solar Irradiance (TSI). Other datasets include solar indices, spectral and flare models, solar images, and more. The LISIRD web site features updated plotting, browsing, and download capabilities enabled by dygraphs, JavaScript, and Ajax calls to the LASP Time Series Server (LaTiS). In addition to the web browser interface, most of the LISIRD datasets can be accessed via the LaTiS web service interface that supports the OPeNDAP standard. OPeNDAP clients and other programming APIs are available for making requests that subset, aggregate, or filter data on the server before it is transported to the user. This poster provides an overview of the LISIRD system, summarizes the datasets currently available, and provides details on how to access solar irradiance data products through LISIRD's interfaces.

  12. Solar flare irradiation records in Antarctic meteorites

    NASA Technical Reports Server (NTRS)

    Goswami, J. N.

    1981-01-01

    The observation of tracks from solar flare heavy nuclei in Antarctic meteorite samples is reported. In an analysis of nuclear track densities in eight L and H chondrites of low metamorphic grade, it was found that two interior specimens of sample 77216, an L-3 chondrite, contain olivine grains with track densities much higher than the average track densities, indicating precompaction irradiation by solar flares in different shielding conditions. Preliminary data from mass spectroscopic analyses show a large excess of noble gases, with a Ne-20/Ne-22 ratio of greater than or equal to 10, indicating the presence of solar-type noble gas. Results of track density measurements in the other Antarctic meteorites range from 10,000 to 4,000,000/sq cm, which is within the range observed in non-Antarctic L-group meteorites

  13. Total solar irradiance reconstruction using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Tebabal Yirdaw, Ambelu; Damtie, Baylie; Nigussie, Melessew; Bires, Abiyot; Yizengaw, Endawoke

    2015-08-01

    A feed-forward neural network which can account for nonlinear relationships was used to reconstruct total solar irradiance (TSI). A single layer feed forward neural network with back-propagation algorithm have been implemented for reconstructing daily total solar irradiance from daily photometric sunspot index, and core to wing ratio of Mg II index data. The data year from 1978 to 2013 was used for the training, validation and testing purpose. In order to obtain the optimum neural network for TSI reconstruction, the root mean square error (RMSE), mean absolute error (MAE) and regression coefficient have been taken into account. We have carried out the analysis is made by comparing the reconstructed TSI from neural networks (NNs ) and TSI measurement from satellite. We have found out that the reconstructed TSI and the PMOD composite have the correlation coefficient of about R=0.9307 over the span of the recorded, 1978 to 2013. The NNs model output indicates that reconstructed TSI from solar proxies (photometric index and MgII ) can explain 86.6% of the variance of TSI. Neural network is able to recreate TSI observations on a time scale of a day. This reconstructed TSI using NNs further strengthens the view that surface magnetism indeed plays a dominant role in modulating solar irradiance.

  14. Estimating probability distributions of solar irradiance

    NASA Astrophysics Data System (ADS)

    Voskrebenzev, A.; Riechelmann, S.; Bais, A.; Slaper, H.; Seckmeyer, G.

    2015-02-01

    In the presence of clouds the ability to calculate instantaneous spectral irradiance values is limited by the ability to acquire appropriate input parameters for radiative transfer solvers. However, the knowledge of the statistical characteristics of spectral irradiance as a function of season and time of the day is relevant for solar energy and health applications. For this purpose a method to derive the wavelength dependent probability density functions (PDFs) and its seasonal site variability is presented. In contrast to the UVB range, the derived PDFS at three stations in Europe (Bilthoven, Garmisch-Partenkirchen and Thessaloniki) show only minor wavelength dependence above 315 nm. But there are major differences of the PDFs that are attributed to the site specific cloud climatology at these stations. Furthermore the results suggest that the previously described relationship between air mass and bimodality is the consequence of seasonal cloud variations. For Thessaloniki it is shown that the pyranometer sample spread around the cloudless value is proportional to the secant of the solar zenith angle and therefore scales according to air mass. Cloud amount observations are utilized to associate the local maxima of the multimodal PDFs with rough cloudiness states confirming the already established interpretation of broadband data for spectral data as well. As one application example the likelihood of irradiance enhancements over the clear sky case due to clouds is assessed.

  15. Multivariate Analysis of Solar Spectral Irradiance Measurements

    NASA Technical Reports Server (NTRS)

    Pilewskie, P.; Rabbette, M.

    2001-01-01

    Principal component analysis is used to characterize approximately 7000 downwelling solar irradiance spectra retrieved at the Southern Great Plains site during an Atmospheric Radiation Measurement (ARM) shortwave intensive operating period. This analysis technique has proven to be very effective in reducing a large set of variables into a much smaller set of independent variables while retaining the information content. It is used to determine the minimum number of parameters necessary to characterize atmospheric spectral irradiance or the dimensionality of atmospheric variability. It was found that well over 99% of the spectral information was contained in the first six mutually orthogonal linear combinations of the observed variables (flux at various wavelengths). Rotation of the principal components was effective in separating various components by their independent physical influences. The majority of the variability in the downwelling solar irradiance (380-1000 nm) was explained by the following fundamental atmospheric parameters (in order of their importance): cloud scattering, water vapor absorption, molecular scattering, and ozone absorption. In contrast to what has been proposed as a resolution to a clear-sky absorption anomaly, no unexpected gaseous absorption signature was found in any of the significant components.

  16. Variability in solar irradiance observed at two contrasting Antarctic sites

    NASA Astrophysics Data System (ADS)

    Petkov, Boyan H.; Láska, Kamil; Vitale, Vito; Lanconelli, Christian; Lupi, Angelo; Mazzola, Mauro; Budíková, Marie

    2016-05-01

    The features of erythemally weighted (EW) and short-wave downwelling (SWD) solar irradiances, observed during the spring-summer months of 2007-2011 at Johann Gregor Mendel (63°48‧S, 57°53‧W, 7 m a.s.l.) and Dome Concordia (75°06‧S, 123°21‧E, 3233 m a.s.l.) stations, placed at the Antarctic coastal region and on the interior plateau respectively, have been analysed and compared to each other. The EW and SWD spectral components have been presented by the corresponding daily integrated values and were examined taking into account the different geographic positions and different environmental conditions at both sites. The results indicate that at Mendel station the surface solar irradiance is strongly affected by the changes in the cloud cover, aerosols and albedo that cause a decrease in EW between 20% and 35%, and from 0% to 50% in SWD component, which contributions are slightly lower than the seasonal SWD variations evaluated to be about 71%. On the contrary, the changes in the cloud cover features at Concordia station produce only a 5% reduction of the solar irradiance, whilst the seasonal oscillations of 94% turn out to be the predominant mode. The present analysis leads to the conclusion that the variations in the ozone column cause an average decrease of about 46% in EW irradiance with respect to the value found in the case of minimum ozone content at each of the stations. In addition, the ratio between EW and SWD spectral components can be used to achieve a realistic assessment of the radiation amplification factor that quantifies the relationship between the atmospheric ozone and the surface UV irradiance.

  17. Bolometric imager for solar irradiance studies

    NASA Astrophysics Data System (ADS)

    Foukal, Peter V.

    1998-11-01

    We are presently developing a solar imager with spectrally uniform photometric response over all wavelengths between the UV and IR. Such a Solar Bolometric Imager (SBI) will be capable of accurately measuring heat flow inhomogeneities at the sun's photosphere and will provide an innovative new tool for identifying mechanisms of long-term solar luminosity variation. Our work builds on recent advances in uncooled, relatively high-definition thermal arrays. We have shown that the spectral absorptance of these arrays can be modified by deposition of gold blacks, to provide spectrally uniform response over at least the wavelength range between about 0.3(mu) and 2.5(mu) containing over 95 percent of the total solar irradiance. Our ongoing work is intended to show that quantitative photometry of the solar disc can be performed with such a modified array. We are constructing a breadboard SBI for immediate use with an 8-bit ferro- electric camera, developing a 12-bit camera to make full use of the ferro-electric array's capabilities, and optimizing our process of gold-blacking the TI arrays. Much of the science potential of the SBI could be realized in a balloon experiment. The combination of the SBI and a cavity radiometer would also constitute an excellent SMEX experiment to address a key challenge identified in the Sun- Earth Connection Roadmap recently issued by NASA/OSS.

  18. Solar Irradiance Variations on Active Region Time Scales

    NASA Technical Reports Server (NTRS)

    Labonte, B. J. (Editor); Chapman, G. A. (Editor); Hudson, H. S. (Editor); Willson, R. C. (Editor)

    1984-01-01

    The variations of the total solar irradiance is an important tool for studying the Sun, thanks to the development of very precise sensors such as the ACRIM instrument on board the Solar Maximum Mission. The largest variations of the total irradiance occur on time scales of a few days are caused by solar active regions, especially sunspots. Efforts were made to describe the active region effects on total and spectral irradiance.

  19. Reconstructing the Solar VUV Irradiance Over the Past 60 Years

    NASA Technical Reports Server (NTRS)

    Chamberlin, Phillip C.

    2011-01-01

    Actual observations of the solar spectral irradiance are extremely limited on climate time scales; therefore, various empirical models use solar proxies to reconstruct the actual output of the Sun over long time scales. The Flare Irradiance Spectral Model (FISM) is an empirical model of the solar irradiance spectrum from 0.1 to 190 nm at 1 nm spectral resolution and on a I-minute time cadence. The goal of FISM is to provide accurate solar spectral irradiances over the vacuum ultraviolet (VUV: 0-200 nm) range as input for ionospheric and thermospheric. A brief overview of the proxies used in the FISM model will be given, and also discussed is how the Solar Dynamics Observatory (SDO) EUV Variability Experiment (EVE) will contribute to improving FISM estimates and its accuracies. Also presented will be a discussion of other solar irradiance proxies and measurements, and their associated uncertainties, used for solar spectral reconstructions.

  20. CIRA Solar Irradiances and Solar/Geomagnetic Indices

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent

    Solar and geomagnetic inputs are required for use in empirical thermospheric density models. The constituent species in the thermosphere absorb spectrally resolved solar irradiances from soft X-ray (XUV) to Far Ultraviolet (FUV) wavelengths which deposit their energy at varying optical depths. In the high latitude regions, Joule heating and particle precipitation contribute secondary heating, which can be transported to lower latitudes by meridional winds. However, empirical models generally do not use the sophistication of spectrally resolved solar irradiances or Joule heating and particle precipitation. Instead, simplification of an energy input is accomplished in the form solar and geomagnetic surrogates, i.e., proxies and indices. A proxy is a substitute for a distinctly different energy input while an index expresses the activity level of an energy input. Recently, in addition to the traditional 10.7-cm flux (F10.7) that is a proxy for solar Extreme Ultraviolet (EUV) irradiances, a new solar irradiance index (S10.7) and a new proxy (M10.7) have been developed for use in empirical thermospheric density models. These three solar indices and proxies best represent the complex interaction between the solar emission source (photosphere, chromosphere, corona) with the irradiances' penetration into the thermosphere (unit optical depth in the middle and lower thermosphere) and the length of time for energy transfer between thermospheric layers (thermal process of molecular conduction or kinetic process of molecular diffusion). The S10.7 index (previously called SEUV) accounts for the majority of the daily density variability with a 1-day lag, is reported in units of F10.7, is the chromospheric EUV energy between 26-34 nm as measured by the SOHO SEM instrument, and is deposited above 200 km. The M10.7 proxy accounts for the next significant factor of the daily density variability with a 5-day lag and is the Mg II core-to-wing ratio reported in units of F10.7. It is

  1. Solar Spectral Irradiance Changes During Cycle 24

    NASA Technical Reports Server (NTRS)

    Marchenko, Sergey; Deland, Matthew

    2014-01-01

    We use solar spectra obtained by the Ozone Monitoring Instrument (OMI) on board the Aura satellite to detect and follow long-term (years) and short-term (weeks) changes in the solar spectral irradiance (SSI) in the 265-500 nm spectral range. During solar Cycle 24, in the relatively line-free regions the SSI changed by approximately 0.6% +/- 0.2% around 265 nm. These changes gradually diminish to 0.15% +/- 0.20% at 500 nm. All strong spectral lines and blends, with the notable exception of the upper Balmer lines, vary in unison with the solar "continuum." Besides the lines with strong chromospheric components, the most involved species include Fe I blends and all prominent CH, NH, and CN spectral bands. Following the general trend seen in the solar "continuum," the variability of spectral lines also decreases toward longer wavelengths. The long-term solar cycle SSI changes are closely, to within the quoted 0.1%-0.2% uncertainties, matched by the appropriately adjusted short-term SSI variations derived from the 27 day rotational modulation cycles. This further strengthens and broadens the prevailing notion about the general scalability of the UV SSI variability to the emissivity changes in the Mg II 280 nm doublet on timescales from weeks to years. We also detect subtle deviations from this general rule: the prominent spectral lines and blends at lambda approximately or greater than 350 nm show slightly more pronounced 27 day SSI changes when compared to the long-term (years) trends. We merge the solar data from Cycle 21 with the current Cycle 24 OMI and GOME-2 observations and provide normalized SSI variations for the 170-795 nm spectral region.

  2. Solar spectral irradiance changes during cycle 24

    SciTech Connect

    Marchenko, S. V.; DeLand, M. T.

    2014-07-10

    We use solar spectra obtained by the Ozone Monitoring Instrument (OMI) on board the Aura satellite to detect and follow long-term (years) and short-term (weeks) changes in the solar spectral irradiance (SSI) in the 265-500 nm spectral range. During solar Cycle 24, in the relatively line-free regions the SSI changed by ∼0.6% ± 0.2% around 265 nm. These changes gradually diminish to 0.15% ± 0.20% at 500 nm. All strong spectral lines and blends, with the notable exception of the upper Balmer lines, vary in unison with the solar 'continuum'. Besides the lines with strong chromospheric components, the most involved species include Fe I blends and all prominent CH, NH, and CN spectral bands. Following the general trend seen in the solar 'continuum', the variability of spectral lines also decreases toward longer wavelengths. The long-term solar cycle SSI changes are closely, to within the quoted 0.1%-0.2% uncertainties, matched by the appropriately adjusted short-term SSI variations derived from the 27 day rotational modulation cycles. This further strengthens and broadens the prevailing notion about the general scalability of the UV SSI variability to the emissivity changes in the Mg II 280 nm doublet on timescales from weeks to years. We also detect subtle deviations from this general rule: the prominent spectral lines and blends at λ ≳ 350 nm show slightly more pronounced 27 day SSI changes when compared to the long-term (years) trends. We merge the solar data from Cycle 21 with the current Cycle 24 OMI and GOME-2 observations and provide normalized SSI variations for the 170-795 nm spectral region.

  3. The total and spectral solar irradiance and its possible variations

    NASA Technical Reports Server (NTRS)

    Thekaekara, M. P.

    1975-01-01

    The present status of knowledge of the total and spectral irradiance of the sun is briefly reviewed. Currently accepted values of the solar constant and the extraterrestrial solar spectral irradiance are presented along with a discussion of how they were derived. Data on the variability of the solar constant are shown to be conflicting and inconclusive. Some of the alleged sun-weather relationships are cited in support of the need of knowing more precisely the variations in total and spectral solar irradiance. An overview of a solar monitoring program is discussed, with special emphasis on the Solar Energy Monitor in Space experiment which was proposed for several spacecraft missions. It is a combination of a solar constant detector and a prism monochromator. The determination of absolute values and the possible variations of the total and spectral solar irradiance, from measurements outside of the atmosphere is discussed.

  4. Accessing Solar Irradiance Data Products From the LASP Interactive Solar IRradiance Datacenter (LISIRD)

    NASA Astrophysics Data System (ADS)

    Ware Dewolfe, A.; Wilson, A.; Lindholm, D. M.; Pankratz, C. K.; Snow, M.; Woods, T. N.

    2009-12-01

    The Laboratory for Atmospheric and Space Physics (LASP) is enhancing the LASP Interactive Solar IRradiance Datacenter (LISIRD) to provide access to a comprehensive set of solar spectral irradiance measurements. LISIRD has recently been updated to serve many new datasets and models, including sunspot index, photometric sunspot index, Lyman-alpha, and magnesium-II core-to-wing ratio. A new user interface emphasizes web-based interactive visualizations, allowing users to explore and compare this data before downloading it for analysis. The data provided covers a wavelength range from soft X-ray (XUV) at 0.1 nm up to the near infrared (NIR) at 2400 nm, as well as wavelength-independent Total Solar Irradiance (TSI). Combined data from the SORCE, TIMED-SEE, UARS-SOLSTICE, and SME instruments provide almost continuous coverage from 1981 to the present, while Hydrogen Lyman-alpha (121.6 nm) measurements / models date from 1947 to the present. This poster provides an overview of the LISIRD system, summarizes the data sets currently available, describes future plans and capabilities, and provides details on how to access solar irradiance data through LISIRD interfaces at http://lasp.colorado.edu/lisird/.

  5. Solar spectral irradiance variability in cycle 24: observations and models

    NASA Astrophysics Data System (ADS)

    Marchenko, Sergey V.; DeLand, Matthew T.; Lean, Judith L.

    2016-12-01

    Utilizing the excellent stability of the Ozone Monitoring Instrument (OMI), we characterize both short-term (solar rotation) and long-term (solar cycle) changes of the solar spectral irradiance (SSI) between 265 and 500 nm during the ongoing cycle 24. We supplement the OMI data with concurrent observations from the Global Ozone Monitoring Experiment-2 (GOME-2) and Solar Radiation and Climate Experiment (SORCE) instruments and find fair-to-excellent, depending on wavelength, agreement among the observations, and predictions of the Naval Research Laboratory Solar Spectral Irradiance (NRLSSI2) and Spectral And Total Irradiance REconstruction for the Satellite era (SATIRE-S) models.

  6. Deriving historical total solar irradiance from lunar borehole temperatures

    NASA Astrophysics Data System (ADS)

    Miyahara, Hiroko; Wen, Guoyong; Cahalan, Robert F.; Ohmura, Atsumu

    2008-01-01

    We study the feasibility of deriving historical TSI (Total Solar Irradiance) from lunar borehole temperatures. As the Moon lacks Earth's dynamic features, lunar borehole temperatures are primarily driven by solar forcing. Using Apollo observed lunar regolith properties, we computed present-day lunar regolith temperature profiles for lunar tropical, mid-latitude, and polar regions for two scenarios of solar forcing reconstructed by Lean (2000) and Wang et al. (2005). Results show that these scenarios can be distinguished by small but potentially detectable differences in temperature, on the order of 0.01 K and larger depending on latitude, within ~10 m depth of the Moon's surface. Our results provide a physical basis and guidelines for reconstructing historical TSI from data obtainable in future lunar exploration.

  7. Solar Irradiance Observed from PVO and Inferred Solar Rotation

    NASA Technical Reports Server (NTRS)

    Wolff, Charles L.; Hoegy, Walter R.

    1990-01-01

    Solar irradiance in the extreme ultraviolet flux (EUV) has been monitored for 11 years by the Pioneer Venus Orbiter (PVO). Since the experiment moves around the Sun with the orbital rate of Venus rather than that of Earth, the measurement gives us a second viewing location from which to begin unravelling which irradiance variations are intrinsic to the Sun, and which are merely rotational modulations whose periods depend on the motion of the observer. Researchers confirm an earlier detection, made with only 8.6 years of data, that the EUV irradiance is modulated by rotation rates of two families of global oscillation modes. One family is assumed to be r-modes occupying the convective envelope and sharing its rotation, while the other family (g-modes) lies in the radiative interior which as a slower rotation. Measured power in r-modes of low angular harmonic number indicates that the Sun's envelope rotated about 0.7 percent faster near the last solar maximum (1979 thru 1982) than it did during the next rise to maximum (1986 to 1989). No change was seen in the g-mode family of lines, as would be expected from the much greater rotational inertia of the radiative interior.

  8. LISIRD: LASP Interactive Solar Irradiance Data Center

    NASA Astrophysics Data System (ADS)

    Lindholm, D. M.; Wilson, A.

    2013-12-01

    The Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado Boulder has been involved in numerous space-borne missions to directly measure and understand the variability of the Sun's energy output and its impact on global climate change. The LASP Interactive Solar Irradiance Data Center (LISIRD) provides a web site with interactive graphics to explore, subset, and download these and other solar related datasets. The LISIRD collections include observations of total and spectral irradiance with coverage from the X-ray to the infrared from projects such as SME, UARS SOLSTICE, SNOE, TIMED SEE, SORCE, and SDO EVE plus a growing number of related data products, proxies, and models. The LISIRD data services are backed by the LaTiS data server which presents a unified RESTful web service interface to slice, dice, and perform select server-side operations as the data are dynamically streamed to files of your desired format or directly into your code or analysis tools. Come see the data products and services that LISIRD has available and help us to improve them to better meet your needs.

  9. Transformation of surface albedo to surface: Atmosphere surface and irradiance, and their spectral and temporal averages

    NASA Technical Reports Server (NTRS)

    Nack, M. L.; Curran, R. J.

    1978-01-01

    The dependence of the albedo at the top of a realistic atmosphere upon the surface albedo, solar zenith angle, and cloud optical thickness is examined for the cases of clear sky, total cloud cover, and fractional cloud cover. The radiative transfer calculations of Dave and Braslau (1975) for particular values of surface albedo and solar zenith angle, and a single value of cloud optical thickness are used as the basis of a parametric albedo model. The question of spectral and temporal averages of albedos and reflected irradiances is addressed, and unique weighting functions for the spectral and temporal albedo averages are developed.

  10. Optimal measurement of surface shortwave irradiance using current instrumentation.

    SciTech Connect

    Michalsky, J.; Dutton, E.; Rubes, M.; Nelson, D.; Stoffel, T.; Wesely, M.; Splitt, M.; Deluisi, J.; Environmental Research; State Univ. of New York; Climate Monitoring and Diagnostics Lab.; Cooperative Inst. for Research in Environmental Studies; National Renewable Energy Lab.; Univ. of Oklahoma; Surface Radiation Research Branch

    1999-01-01

    Although most measurements of total downwelling shortwave irradiance are made with pyranometers, the World Climate Research Program's Baseline Surface Radiation Network has recommended the use of the summation of shortwave components in which the direct normal irradiance is measured and multiplied by the cosine of the solar zenith angle and then added to the diffuse horizontal irradiance measured by a pyranometer that is shaded from direct solar radiation by a disk. The nonideal angular response of most pyranometers limits their accuracy to about 3%, or 20-30 W m{sup -2}, for instantaneous clear-sky measurements. An intensive study of 21 separate measurements of total horizontal irradiance was conducted during extreme winter conditions of low sun and cold temperatures over 12 days at the National Oceanic and Atmospheric Administration's Climate Monitoring and Diagnostics Laboratory. The experiment showed that the component sum methodology could lower the uncertainty by a factor of 2 or 3. A clear demonstration of this improvement was realized in a separate experiment conducted at the Atmospheric Radiation Measurement Southern Great Plains Cloud and Radiation Testbed site during April 1996. Four independent measurements of downwelling shortwave irradiance using the component sum technique showed typical differences at solar noon of about 10 W m{sup -2}. The mean of these summed measurements at solar noon was lower than the mean of the most-well-calibrated pyranometer measurements, acquired simultaneously, by about 30 W m{sup -2}, which is consistent with the typical angular response of many pyranometers.

  11. Analysis of Cumulus Solar Irradiance Reflectance (CSIR) Events

    NASA Technical Reports Server (NTRS)

    Laird, John L.; Harshvardham

    1996-01-01

    Clouds are extremely important with regard to the transfer of solar radiation at the earth's surface. This study investigates Cumulus Solar Irradiance Reflection (CSIR) using ground-based pyranometers. CSIR events are short-term increases in solar radiation observed at the surface as a result of reflection off the sides of convective clouds. When sun-cloud observer geometry is favorable, these occurrences produce characteristic spikes in the pyranometer traces and solar irradiance values may exceed expected clear-sky values. Ultraviolet CSIR events were investigated during the summer of 1995 using Yankee Environmental Systems UVA-1 and UVB-1 pyranometers. Observed data were compared to clear-sky curves which were generated using a third degree polynomial best-fit line technique. Periods during which the observed data exceeded this clear-sky curve were identified as CSIR events. The magnitude of a CSIR event was determined by two different quantitative calculations. The MAC (magnitude above clear-sky) is an absolute measure of the difference between the observed and clear-sky irradiances. Maximum MAC values of 3.4 Wm(exp -2) and 0.069 Wm(exp -2) were observed at the UV-A and UV-B wavelengths, respectively. The second calculation determined the percentage above clear-sky (PAC) which indicated the relative magnitude of a CSIR event. Maximum UV-A and UV-B PAC magnitudes of 10.1% and 7.8%, respectively, were observed during the study. Also of interest was the duration of the CSIR events which is a function of sun-cloud-sensor geometry and the speed of cloud propagation over the measuring site. In both the UV-A and UV-B wavelengths, significant CSIR durations of up to 30 minutes were observed.

  12. Analysis of cumulus solar irradiance reflectance (CSIR) events

    NASA Astrophysics Data System (ADS)

    Laird, John L.; Harshvardhan

    Clouds are extremely important with regard to the transfer of solar radiation at Earth's surface. This study investigates Cumulus Solar Irradiance Reflection (CSIR) using ground-based pyranometers. CSIR events are short-term increases in solar radiation observed at the surface as a result of reflection off the sides of convective clouds. When Sun-cloud observer geometry is favorable, these occurrences produce characteristic spikes in the pyranometer traces and solar irradiance values may exceed expected clear-sky values. Ultraviolet CSIR events were investigated during the summer of 1995 using UVA and UVB pyranometers. Observed data were compared to clear-sky curves which were generated using a third degree polynomial best-fit line technique. Periods during which the observed data exceeded this clear-sky curve were identified as CSIR events. The magnitude of a CSIR event was determined by two different quantitative calculations. The MAC (magnitude above clear-sky) is an absolute measure of the difference between the observed and clear-sky irradiances. Maximum MAC values of 3.4 Win -2 and 0.0169 Wm -2 were observed at the UV-A and UV-B wavelengths, respectively. The second calculation determined the percentage above clear-sky (PAC) which indicated the relative magnitude of a CSIR event. Maximum UV-A and UV-B PAC magnitudes of 10.1% and 7.8%, respectively, were observed during the study. Also of interest was the duration of the CSIR events which is a function of Sun-cloud-sensor geometry and the speed of cloud propagation over the measuring site. In both the UV-A and UV-B wavelengths, significant CSIR durations of up to 30 minutes were observed. C 1997 Elsevier Science B.V.

  13. Modeling the total solar irradiance: recent progress and new questions

    NASA Astrophysics Data System (ADS)

    Walton, Stephen R.; Preminger, Dora G.; Chapman, Gary A.

    2003-09-01

    We report on the recent results from the San Fernando Observatory (SFO) in our efforts to understand the sources of solar irradiance variability. The results are based on the SFO's ongoing full disk photometric images program, which has now accumulated about 1-1/2 solar cycles of data. The results are in three parts: (1) statistics of solar active regions and their possible variation during the solar cycle; (2) modeling of the total solar irradiance using the photometry of both individual features and the entire disk; and (3) the relative contribution of bright features to increases in total solar irradiance. Our main conclusions are, respectively: solar active regions change in ways which affect their use in total irradiance modeling; the solar cycle change in total irradiance is dominated by changes in the line blanketing; and that large faculae dominate the solar cycle in irradiance. Because resolved absolute photometry of the solar disk has not yet been carried out, all of these results are based on regression analyses. We discuss what progress we can still make with such analyses, and close with a prediction of what future absolute solar photometry may tell us.

  14. Long-term Solar Irradiance Variability: 1984-1989 Observations

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III

    1990-01-01

    Long-term variability in the total solar irradiance has been observed in the Earth Radiation Budget Experiment (ERBE) solar monitor measurements. The monitors have been used to measure the irradiance from the Earth Radiation Budget Satellite (ERBS) and the National Oceanic and Atmospheric Administration NOAA-9 and NOAA-10 spacecraft platforms since October 25, 1984, January 23, 1985, and October 22, 1986, respectively. Before September 1986, the ERBS irradiance values were found to be decreasing -0.03 percent per year. This period was marked by decreasing solar magnetic activity. Between September 1986 and mid-1989, the irradiance values increased approximately 0.1 percent. The latter period was marked by increasing solar activity which was associated with the initiations of the sunspot cycle number 22 and of a new 22-year Hale solar magnetic cycle. Therefore, long-term solar-irradiance variability appears to be correlated directly with solar activity. The maximum smoothed sunspot number occurred during September 1989, according to the Sunspot Index Data Center. Therefore, the recent irradiance increasing trend should disappear during early 1990 and change into a decreasing trend if the observed irradiance variability is correlated more so with the 11-year sunspot cycle than the 22-year Hale cycle. The ERBE irradiance values are presented and compared with sunspot activity for the 1984 to 1989 period. The ERBE values are compared with those available from the Nimbus-7 and Solar Maximum Mission spacecraft experiments.

  15. Solar irradiance variations due to active regions

    SciTech Connect

    Oster, L.; Schatten, K.H.; Sofia, S.

    1982-05-15

    We have been able to reproduce the variations of the solar irradiance observed by ACRIM to an accuracy of better than +- 0.4 W m/sup -2/, assuming that during the 6 month observation period in 1980 the solar luminosity was constant. The improvement over previous attempts is primarily due to the inclusion of faculae. The reproduction scheme uses simple geometrical data on spot and facula areas, and conventional parameters for the respective fluxes and angular dependencies. The quality of reproduction is not very sensitive to most of the details of these parameters; nevertheless, there conventional parameters cannot be very different from their actual values in the solar atmosphere. It is interesting that the time average of the integrated excess emission (over directions) of the faculae cancels out the integrated deficit produced by the spots, within an accuracy of about 10%. If this behavior were maintained over longer periods of time, say, on the order of an activity cycle, active regions could be viewed as a kind of lighthouse where the energy deficit near the normal direction, associated with the spots, is primarily reemitted close to the tangential directions by the faculae. The currently available data suggest that energy ''storage'' associated with the redirection of flux near active regions on the Sun is comparable to the lifetime of the faculae.

  16. Observing Changes of Surface Solar Irradiance in Oregon: A Comparison of Satellite and Ground-Based Long-Term Time-Series

    NASA Astrophysics Data System (ADS)

    Riihimaki, L. D.; Vignola, F. E.; Lohmann, S.; Meyer, R.

    2005-12-01

    Significant increases over time are found in direct normal irradiance (DNI) in Oregon using both ground and satellite-derived measurements of DNI. Linear regression of all locations in both data sets shows strong positive trends of .4% to .6% per year. Ground measurements are analyzed from 1980 (and at one site from 1978) until 2004. These 25 years of ground measurements come from three climatically diverse sites in the state of Oregon using an Eppley Normal Incidence Pyrheliometer (NIP). The NIP is a good candidate for long term trend analysis as its responsivity remains consistent over time. The sensitivity of the Eppley Precision Spectral Pyranometer (PSP) which measures total radiation, on the other hand, degrades over time, approximately .5% to 2% per year. This uniquely long data set is compared to DNI calculated from the International Satellite Cloud Climatology Project (ISCCP). The ISCCP D series applied here has 280 km x 280 km boxes, each of which includes one of the ground based sites, giving cloud and atmospheric input data from 1983 until 2001. Radiative transfer calculations are done using the two-stream method from the library for radiative transfer (libRadtran). The three hourly satellite observations allow comparison of different time integration periods. Besides annual average comparisons, monthly averages are examined to look for seasonal variation and confirm that the observations show a regional trend. Ground measurements of DNI for this length of time are rare, making this study a unique opportunity to test the capability to calculate direct normal irradiance based on ISCCP results. The agreement of the ISCCP derived irradiances to the measurements is very good: the trends differ between .08 and .3 W/m{2 depending on the site. From 1998 through 2002 satellite data were used to produce a solar radiation database on a 0.1i° grid. Comparisons between the modeled beam irradiance for the coordinates of the ground based station will be compared to

  17. The SORCE Solar Spectral Irradiance Data and Degradation Models

    NASA Astrophysics Data System (ADS)

    Beland, S.; Harder, J. W.; Snow, M. A.; Woods, T. N.; Vanier, B.; Lindholm, C.; Elliott, J. P.; Sandoval, L.

    2016-12-01

    The Spectral Irradiance Monitor (SIM) and the SOlar Stellar Irradiance Comparison Experiment (SOLSTICE) instruments on board the Solar Radiation and Climate Experiment (SORCE) mission have been taking daily Solar spectral irradiance (SSI) measurements since April 2003. It is critical to accurately track the instrument degradation over time to be able to measure the small SSI variations with the solar cycle over the wavelength range covered by SOLSTICE (115-310nm) and by SIM (220-2400nm). The instrument degradation is constantly being updated and the corresponding model has been refined over the years to account for changes and a better understanding of the instrument's behavior over time. We present the improvements made in the latest versions of the SOLSTICE and SIM data, and the work in progress in preparation of the upcoming releases. We compare these new data release with the Total Solar Irradiance (TSI) measured by the SORCE Total Irradiance Monitor (TIM) instrument.

  18. Reconstruction of spectral solar irradiance since 1700 from simulated magnetograms

    NASA Astrophysics Data System (ADS)

    Dasi-Espuig, M.; Jiang, J.; Krivova, N. A.; Solanki, S. K.; Unruh, Y. C.; Yeo, K. L.

    2016-05-01

    Aims: We present a reconstruction of the spectral solar irradiance since 1700 using the SATIRE-T2 (Spectral And Total Irradiance REconstructions for the Telescope era version 2) model. This model uses as input magnetograms simulated with a surface flux transport model fed with semi-synthetic records of emerging sunspot groups. Methods: The record of sunspot group areas and positions from the Royal Greenwich Observatory (RGO) is only available since 1874. We used statistical relationships between the properties of sunspot group emergence, such as the latitude, area, and tilt angle, and the sunspot cycle strength and phase to produce semi-synthetic sunspot group records starting in the year 1700. The semi-synthetic records are fed into a surface flux transport model to obtain daily simulated magnetograms that map the distribution of the magnetic flux in active regions (sunspots and faculae) and their decay products on the solar surface. The magnetic flux emerging in ephemeral regions is accounted for separately based on the concept of extended cycles whose length and amplitude are linked to those of the sunspot cycles through the sunspot number. The magnetic flux in each surface component (sunspots, faculae and network, and ephemeral regions) was used to compute the spectral and total solar irradiance (TSI) between the years 1700 and 2009. This reconstruction is aimed at timescales of months or longer although the model returns daily values. Results: We found that SATIRE-T2, besides reproducing other relevant observations such as the total magnetic flux, reconstructs the TSI on timescales of months or longer in good agreement with the PMOD composite of observations, as well as with the reconstruction starting in 1878 based on the RGO-SOON data. The model predicts an increase in the TSI of 1.2+0.2-0.3 Wm-2 between 1700 and the present. The spectral irradiance reconstruction is in good agreement with the UARS/SUSIM measurements as well as the Lyman-α composite. The

  19. Solar irradiance modulation by active regions from 1969 through 1980

    SciTech Connect

    Schatten, K.H.; Miller, N.; Sofia, S.; Oster, L.

    1982-01-01

    The solar irradiance variations resulting from sunspot deficits and facular excesses in emission have been calculated from 1969 through 1980. Agreement appears to exist between our calculations and the major features seen with the Nimbus 7 cavity pyrheliometer and with both the major and minor features detected by The Solar Maximum Mission ACRIM experiment. The 12-year irradiance variations we calculate suggest a larger variance with increased solar activity, and little change in the average irradiance with solar activity. The largest excursions over these 12 years show a 0.4% variation. Removal of the activity influences upon solar irradiance during the numerous rocket experiments observing the solar ''constant'' may allow a better value for this quantity to be determined.

  20. Long-term variations in total solar irradiance

    NASA Technical Reports Server (NTRS)

    Pap, Judit M.; Willson, Richard C.; Froelich, Claus; Donnelly, Richard F.; Puga, Larry

    1994-01-01

    For more than a decade total solar irradiance has been monitored simultaneously from space by different satellites. The detection of total solar irradiance variations by satellite-based experiments during the past decade and a half has stimulated modeling efforts to help identify their causes and to provide estimates of irradiance data, using `proxy' indicators of solar activity, for time intervals when no satellite observations exist. In this paper total solar irradiance observed by the Nimbus-7/Earth Radiation Budget (ERB), Solar Maximum Mission (SMM)/Active Cavity Radiometer Irradiance Monitor (ACRIM) 1, and Upper Atmosphere Research Satellite (UARS)/ACRIM 2 radiometers is modeled with the Photometric Sunspot Index and the Mg II core-to-wing ratio. Since the formation of the Mg II line is very similar to that of the Ca II K line, the Mg core-to-wing ratio, derived from the irradiance observations of the Nimbus-7 and NOAA9 satellites, is used as a proxy for the bright magnetic elements. It is shown that the observed changes in solar irradiance are underestimated by the proxy models at the time of maximum and during the beginning of the declining portion of solar cycle 22 similar to behavior just before the maximum of solar cycle 21. This disagreement between total irradiance observations and their model estimates is indicative of the fact that the underlying physical mechanism of the changes observed in the solar radiative output is not well-understood. Furthermore, the uncertainties in the proxy data used for irradiance modeling and the resulting limitation of the models should be taken into account, especially when the irradiance models are used for climatic studies.

  1. Modelling solar irradiance from HRV images of Meteosat Second Generation

    NASA Astrophysics Data System (ADS)

    Cony, Marco; Zarzalejo, Luis; Polo, Jesús; Marchante, Ruth; Martín, Luis

    2010-05-01

    Knowledge of solar radiation at the earth's surface is a need in designing any solar energy application. In particular both photovoltaic and solar thermal systems required high accurate data of solar radiation components. Nowadays the use of satellite images as input to models for deriving solar irradiance time series is accepted as a reliable methodology with good accuracy. In this sense, there are several models aimed at this objective. Among them it can be pointed out the Heliosat-2 method, based upon the first generation of Meteosat satellites, which has been broadly used. Taken this approach as reference a modified model was proposed including additional independent variables to the cloud index, such as the moments of the cloud index distribution and the air mass. This model was successfully assessed with about 30 ground data sites in Spain showing a good response. However, since 2006 the Meteosat Second Generation (MSG) is observing the earth-atmosphere system centred in zero longitude. This new satellite generation has improved technical characteristics compared to the former one, particularly those focused on radiometric, spectral, spatial and time resolutions. This work is aimed at describing the work to accommodate the former model based on Heliosat-2 to operate with the MSG images and characteristics. A comparison with the old model will be made in the overlapping period, 2006, and an assessment with available ground data will also be performed as well.

  2. Solar spectral irradiance and summary outputs using excel.

    PubMed

    Diffey, Brian

    2015-01-01

    The development of an Excel spreadsheet is described that calculates solar spectral irradiance between 290-3000 nm on an unshaded, horizontal surface under a cloudless sky at sea level, together with summary outputs such as global UV index, illuminance and percentage of energy in different wavebands. A deliberate goal of the project was to adopt the principle of Ockham's razor and to develop a model that is as simple as it can be commensurate with delivering results of adequate accuracy. Consequently, just four inputs are required-geographical latitude, month, day of month and time of day-resulting in a spreadsheet that is easily usable by anyone with an interest in sunlight and solar power irrespective of their background. The accuracy of the calculated data is sufficient for many applications where knowledge of the ultraviolet, visible and infrared levels in sunlight is of interest.

  3. Interpretation of solar irradiance monitor measurements through analysis of 3D MHD simulations

    SciTech Connect

    Criscuoli, S.; Uitenbroek, H.

    2014-06-20

    Measurements from the Spectral Irradiance Monitor (SIM) on board the Solar Radiation and Climate Experiment mission indicate that solar spectral irradiance at visible and IR wavelengths varies in counter phase with the solar activity cycle. The sign of these variations is not reproduced by most of the irradiance reconstruction techniques based on variations of surface magnetism employed so far, and it is not yet clear whether SIM calibration procedures need to be improved or if instead new physical mechanisms must be invoked to explain such variations. We employ three-dimensional magnetohydrodynamic simulations of the solar photosphere to investigate the dependence of solar radiance in SIM visible and IR spectral ranges on variations of the filling factor of surface magnetic fields. We find that the contribution of magnetic features to solar radiance is strongly dependent on the location on the disk of the features, which are negative close to disk center and positive toward the limb. If features are homogeneously distributed over a region around the equator (activity belt), then their contribution to irradiance is positive with respect to the contribution of HD snapshots, but decreases with the increase of their magnetic flux for average magnetic flux larger than 50 G in at least two of the visible and IR spectral bands monitored by SIM. Under the assumption that the 50 G snapshots are representative of quiet-Sun regions, we thus find that the Spectral Irradiance can be in counter-phase with the solar magnetic activity cycle.

  4. Solar irradiance dictates settlement timing and intensity of marine mussels

    NASA Astrophysics Data System (ADS)

    Fuentes-Santos, Isabel; Labarta, Uxío; Álvarez-Salgado, X. Antón; Fernández-Reiriz, Mª José

    2016-07-01

    Identifying the environmental factors driving larval settlement processes is crucial to understand the population dynamics of marine invertebrates. This work aims to go a step ahead and predict larval presence and intensity. For this purpose we consider the influence of solar irradiance, wind regime and continental runoff on the settlement processes. For the first time, we conducted a 5-years weekly monitoring of Mytilus galloprovincialis settlement on artificial suspended substrates, which allowed us to search for interannual variability in the settlement patterns. Comparison between the seasonal pattern of larval settlement and solar irradiance, as well as the well-known effect of solar irradiance on water temperature and food availability, suggest that solar irradiance indirectly influences the settlement process, and support the use of this meteorological variable to predict settlement occurrence. Our results show that solar irradiance allows predicting the beginning and end of the settlement cycle a month in advance: Particularly we have observed that solar irradiance during late winter indirectly drives the timing and intensity of the settlement onset, Finally, a functional generalise additive model, which considers the influence of solar irradiance and continental runoff on the settlement process, provides an accurate prediction of settlement intensity a fortnight in advance.

  5. Solar irradiance dictates settlement timing and intensity of marine mussels

    PubMed Central

    Fuentes-Santos, Isabel; Labarta, Uxío; Álvarez-Salgado, X. Antón; Fernández-Reiriz, Mª José

    2016-01-01

    Identifying the environmental factors driving larval settlement processes is crucial to understand the population dynamics of marine invertebrates. This work aims to go a step ahead and predict larval presence and intensity. For this purpose we consider the influence of solar irradiance, wind regime and continental runoff on the settlement processes. For the first time, we conducted a 5-years weekly monitoring of Mytilus galloprovincialis settlement on artificial suspended substrates, which allowed us to search for interannual variability in the settlement patterns. Comparison between the seasonal pattern of larval settlement and solar irradiance, as well as the well-known effect of solar irradiance on water temperature and food availability, suggest that solar irradiance indirectly influences the settlement process, and support the use of this meteorological variable to predict settlement occurrence. Our results show that solar irradiance allows predicting the beginning and end of the settlement cycle a month in advance: Particularly we have observed that solar irradiance during late winter indirectly drives the timing and intensity of the settlement onset, Finally, a functional generalise additive model, which considers the influence of solar irradiance and continental runoff on the settlement process, provides an accurate prediction of settlement intensity a fortnight in advance. PMID:27384527

  6. Guide to solar reference spectra and irradiance models

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent

    The international standard for determining solar irradiances was published by the International Standards Organization (ISO) in May 2007. The document, ISO 21348 Space Environment (natural and artificial) - Process for determining solar irradiances, describes the process for representing solar irradiances. We report on the next progression of standards work, i.e., the development of a guide that identifies solar reference spectra and irradiance models for use in engineering design or scientific research. This document will be produced as an AIAA Guideline and ISO Technical Report. It will describe the content of the reference spectra and models, uncertainties and limitations, technical basis, data bases from which the reference spectra and models are formed, publication references, and sources of computer code for reference spectra and solar irradiance models, including those which provide spectrally-resolved lines as well as solar indices and proxies and which are generally recognized in the solar sciences. The document is intended to assist aircraft and space vehicle designers and developers, heliophysicists, geophysicists, aeronomers, meteorologists, and climatologists in understanding available models, comparing sources of data, and interpreting engineering and scientific results based on different solar reference spectra and irradiance models.

  7. The observation of structural defects in neutron-irradiated lithium-doped silicon solar cells

    NASA Technical Reports Server (NTRS)

    Sargent, G. A.

    1971-01-01

    Electron microscopy has been used to observe the distribution and morphology of lattice defects introduced into lithium-doped silicon solar cells by neutron irradiation. Upon etching the surface of the solar cells after irradiation, crater-like defects are observed that are thought to be associated with the space charge region around vacancy clusters. Thermal annealing experiments showed that the crater defects were stable in the temperature range 300 to 1200 K in all of the lithium-doped samples. Some annealing of the crater defects was observed to occur in the undoped cells which were irradiated at the lowest doses.

  8. Absolute, Extreme-Ultraviolet, Solar Spectral Irradiance Monitor (AESSIM)

    NASA Technical Reports Server (NTRS)

    Huber, Martin C. E.; Smith, Peter L.; Parkinson, W. H.; Kuehne, M.; Kock, M.

    1988-01-01

    AESSIM, the Absolute, Extreme-Ultraviolet, Solar Spectral Irradiance Monitor, is designed to measure the absolute solar spectral irradiance at extreme-ultraviolet (EUV) wavelengths. The data are required for studies of the processes that occur in the earth's upper atmosphere and for predictions of atmospheric drag on space vehicles. AESSIM is comprised of sun-pointed spectrometers and newly-developed, secondary standards of spectral irradiance for the EUV. Use of the in-orbit standard sources will eliminate the uncertainties caused by changes in spectrometer efficiency that have plagued all previous measurements of the solar spectral EUV flux.

  9. Spatio-Temporal Patterns of Surface Irradiance in the Himalaya

    NASA Astrophysics Data System (ADS)

    Dobreva, I. D.; Bishop, M. P.

    2014-12-01

    Climate-glacier dynamics in the Himalaya are complex. Research indicates extreme local variability in glacier fluctuations and the presence of regional trends. The glaciers in the Karakoram Himalaya depart from world trends of glacier recession, as many are advancing or surging. Nevertheless, glacier sensitivity to climate change has yet to be quantitatively assessed given numerous controlling factors. We attempt to address part of the problem by evaluating the role of topography in explaining variations in surface irradiance. Specifically, we developed a spectral-based topographic solar radiation model that accounts for multi-scale topographic effects. We evaluate surface irradiance simulations over a multitude of glaciers across the Karakoram and Nepalese Himalaya and examine spatio-temporal patterns to determine which alpine glaciers are more susceptible to radiation forcing. Simulation results reveal that many Nepalese glaciers characterized by rapid downwasting, retreat and expanding proglacial lakes, exhibit relatively high-magnitude daily irradiance patterns spatially focused over the terminus region, while other glacier surface areas received less short-wave irradiance. These results were found to be associated with basin-scale relief conditions and topographic shielding. Altitudinal variation in glacier surface irradiance was found to increase during the later portion of the ablation season, as changes in solar geometry produce more cast shadows that protect glaciers given extreme relief. Topographic effects on surface irradiance vary significantly from glacier to glacier, demonstrating the important role of glacier and mountain geodynamics on glacier sensitivity to climate change. Spatial and altitudinal patterns, coupled with information regarding supraglacial debris distribution, depth and ice-flow velocities, may potentially explain glacier sensitivity to climate change and the local variability of glacier fluctuations in the Himalaya.

  10. Recent changes in solar irradiance in Antarctica

    SciTech Connect

    Stanhill, G.; Cohen, S.

    1997-08-01

    A significant decrease in the annual sums of global irradiance reaching the surface in Antarctica, averaging -0.28 W m{sup -2} yr{sup -1}, was derived from an analysis of all complete years of measurement available from 12 pyranometer stations, 10 of which were on the coast. The decrease was greater than could be attributed to the nonhomogeneous nature of the database, the estimated errors of measurement, or changes in the amount of cloud cover. The smaller database of radiation balance measurements available showed no statistically significant change. Possible causes of these results are discussed, as is the implication that the recent surface warming in Antarctica is not due to radiative forcing. 49 refs., 3 figs., 5 tabs.

  11. Long-term downward trend in total solar irradiance

    SciTech Connect

    Willson, R.C.; Hudson, H.S.; Frohlich, C.; Brusa, R.W.

    1986-11-28

    The first 5 years (from 1980 to 1985) of total solar irradiance observations by the first Active Cavity Radiometer Irradiance Monitor (ACRIM I) experiment on board the Solar Maximum Mission spacecraft show a clearly defined downward trends of -0.019% per year. The existence of this trend has been confirmed by the internal self-calibrations of ACRIM I, by independent measurements from sounding rockets and balloons, and by observations from the Nimbus-7 spacecraft. The trend appears to be due to unpredicted variations of solar luminosity on time scales of years, and it may be related to solar cycle magnetic activity.

  12. Direct Solar Irradiance measurements with a Cryogenic Solar Absolute Radiometer

    NASA Astrophysics Data System (ADS)

    Walter, Benjamin; Winkler, Rainer; Graber, Florian; Finsterle, Wolfgang; Fox, Nigel; Li, Vivian; Schmutz, Werner

    2017-02-01

    The World Radiometric Reference (WRR) is an artefact based reference for Direct Solar Irradiance (DSI) measurements. The WRR is realized by a group of electrical substitution radiometers, the World Standard Group (WSG). In recent years, a relative difference of about -0.3% between the International System of Units (SI) scale and the WRR scale was observed with the SI scale being lower. The Cryogenic Solar Absolute Radiometer (CSAR) aims for i) providing direct traceability of DSI measurements to the SI system, ii) reducing the overall uncertainty of DSI measurements towards 0.01% and for iii) replacing the WSG in future. The latest SI-WRR intercomparisons performed with CSAR revealed a relative difference of -0.29% ± 0.064% (k = 1) between the SI and the WRR scale, a result that agrees well with previous findings. The uncertainty of corrections for the window transmittance results currently in the largest contribution to the total uncertainty for the CSAR measurements. The formal transition from the WRR to the SI-scale for DSI measurements is currently being discussed in the WMO/CIMO Task Team on Radiation References.

  13. Evidence of a long-term trend in total solar irradiance

    NASA Astrophysics Data System (ADS)

    Fröhlich, C.

    2009-07-01

    Aims: During the solar minimum of 2008, the value of total solar irradiance at 1 AU (TSI) was more than 0.2 Wm-2 lower than during the last minimum in 1996, indicating for the first time a directly observed long-term change. On the other hand, chromospheric indices and hence solar UV irradiance do not exhibit a similar change. Methods: Comparison of TSI with other activity parameters indicates that only the open solar magnetic field, BR, observed from satellites at 1 AU show a similar long-term behaviour. The values at the minima correlate well and the linear fit provides a direct physical relationship between TSI and BR during the minimum times. Results: This correlation allows an unambiguous reconstruction of TSI back in time, provided the open solar magnetic field can be determined from e.g. geomagnetic indices or cosmogenic radionucleides. Since the solar UV irradiance has no long-term trend, the mechanism for the secular change of TSI must differ from the effect of surface magnetism, as manifested by sunspots, faculae, and network which indeed explain well the intra-cycle variability of both total and spectral irradiance. Conclusions: The long-term trend of TSI is most probably caused by a global temperature change of the Sun that does not influence the UV irradiance in the same way as the surface magnetic fields. Appendix is only available in electronic form at http://www.aanda.org

  14. Atmosphere, Ocean, Land, and Solar Irradiance Data Sets

    NASA Technical Reports Server (NTRS)

    Johnson, James; Ahmad, Suraiya

    2003-01-01

    The report present the atmosphere, ocean color, land and solar irradiation data sets. The data presented: total ozone, aerosol, cloud optical and physical parameters, temperature and humidity profiles, radiances, rain fall, drop size distribution.

  15. The satellite total solar irradiance database

    NASA Astrophysics Data System (ADS)

    Willson, R. C.

    2009-12-01

    A precise knowledge of the total solar irradiance (TSI) over time is essential to understanding the physics of solar luminosity variation and its impact on the Earth in the form of climate change. A National Research Council study found that sustained trends as small as 0.25% per century were the most likely forcing for ‘little ice age’ climate minima during the 12th - 19th centuries. Recent phenomenological analyses of TSI observations and proxies indicate that TSI variation is an important climate change forcing on many timescales including the industrial era. The profound sociological and economic implications of understanding the relative climate change contributions of natural and anthropogenic forcings makes it essential that the satellite TSI database be precisely sustained into the foreseeable future. There are currently three satellite TSI monitoring experiments in operation: SOHO/VIRGO, ACRIMSAT/ACRIM3 and SORCE/TIM, in order of deployment (1996, 2000 and 2003, resp.). Results reported on their ‘native scales show the same basic variations in TSI over time, yet some smaller variations detected by ACRIM3 are less well defined or absent in the results of VIRGO and TIM. There is also a scale difference issue: TIM results are 0.35% lower than those of ACRIM3 and VIRGO, outside the ± 0.1% uncertainty bounds predicted for ACRIM3 and VIRGO, and well outside TIM’s ± 0.01% uncertainty design goal. TIM’s failure to achieve 0.01% uncertainty in flight demonstrates that the TSI monitoring paradigm shift of relying on measurement accuracy rather than a redundant/overlap strategy to provide long term traceability cannot be realized with current ‘ambient temperature’ technology. The only viable monitoring approach for the foreseeable future continues to be the redundant/overlap strategy that has provided the 31 year satellite TSI database to date with useful traceability. Intercomparisons of flight experiments at their levels of mutual precision can

  16. Analysis of clear hour solar irradiation for seven Canadian stations

    SciTech Connect

    Garrison, J.; Sahami, K.

    1995-12-31

    Hourly global and diffuse irradiation and corresponding surface meteorological data have been analyzed for the seven Canadian stations at Edmonton, Goose Bay, Montreal, Port Hardy, Resolute, Toronto, and Winnipeg. The variation of the most probable clear hour values of clearness index k{sub t}, diffuse index k{sub d}, direct beam index k{sub b}, and Angstrom turbidity coefficient {beta} with solar elevation, atmospheric precipitable water, and snow depth are obtained. Values of these quantities are presented which are consistent with the attenuation and scattering of solar radiation by the atmosphere which is expected. The most probable values of {beta} tend to be lower than the average values of {beta} recently reported by Gueymard. The data indicate a drift in the calibration of the instruments used for measurements of the irradiation data for the stations at Goose Bay and Resolute. The data for the other five stations indicate that the instrument calibration is maintained over the years of the data. 4 refs., 8 figs., 5 tabs.

  17. Performance of single crystalline silicon solar cell with irradiance

    NASA Astrophysics Data System (ADS)

    Chander, Subhash; Purohit, A.; Nehra, Anshu; Nehra, S. P.; Dhaka, M. S.

    2015-06-01

    In this paper, the effect of irradiance on the performance parameters of single crystalline silicon solar cell is undertaken. The experiment was carried out employing solar cell simulator with varying irradiance in the range 115-550W/m2 at constant cell temperature 25°C. The results show that the short circuit current is found to be increased linearly with irradiance and the open circuit voltage is increased slightly. The fill factor, maximum power and cell efficiency are also found to be increased with irradiance. The efficiency is increased linearly at lower irradiance while slightly increased at higher. The results revealed that the irradiance has a dominant effect on the performance parameters. The results are in good agreement with the available literature.

  18. Variations in solar Lyman alpha irradiance on short time scales

    NASA Technical Reports Server (NTRS)

    Pap, J. M.

    1992-01-01

    Variations in solar UV irradiance at Lyman alpha are studied on short time scales (from days to months) after removing the long-term changes over the solar cycle. The SME/Lyman alpha irradiance is estimated from various solar indices using linear regression analysis. In order to study the nonlinear effects, Lyman alpha irradiance is modeled with a 5th-degree polynomial as well. It is shown that the full-disk equivalent width of the He line at 1083 nm, which is used as a proxy for the plages and active network, can best reproduce the changes observed in Lyman alpha. Approximately 72 percent of the solar-activity-related changes in Lyman alpha irradiance arise from plages and the network. The network contribution is estimated by the correlation analysis to be about 19 percent. It is shown that significant variability remains in Lyman alpha irradiance, with periods around 300, 27, and 13.5d, which is not explained by the solar activity indices. It is shown that the nonlinear effects cannot account for a significant part of the unexplained variation in Lyman alpha irradiance. Therefore, additional events (e.g., large-scale motions and/or a systematic difference in the area and intensity of the plages and network observed in the lines of Ca-K, He 1083, and Lyman alpha) may explain the discrepancies found between the observed and estimated irradiance values.

  19. White Paper on SBUV/2 Solar Irradiance Measurements

    NASA Technical Reports Server (NTRS)

    Hilsenrath, Ernest; DeLand, Matthew T.; Cebula, Richard P.

    1996-01-01

    The importance of solar irradiance measurements by the Solar Backscatter Ultraviolet, Model 2 (SBUV/2) instruments on NOAA's operational satellites is described. These measurements are necessary accurately monitor the long-term changes in the global column ozone amount, the altitude distribution of ozone in the upper stratosphere, and the degree to which ozone changes are caused by anthropogenic sources. Needed to accomplish these goals are weekly solar irradiance measurements at the operational ozone wavelengths, daily measurements of the Mg II proxy index, instrument-specific Mg II scale factors, and daily measurements of the solar spectral irradiance at photochemically important wavelengths. Two solar measurement schedules are provided: (1) a baseline schedule for all instruments except the NOAA-14 instrument and (2) a modified schedule for the NOAA-14 SBUV/2 instrument. This latter schedule is needed due to the NOAA-14 grating drive problems.

  20. On the variation of the Nimbus 7 total solar irradiance

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1992-01-01

    For the interval December 1978 to April 1991, the value of the mean total solar irradiance, as measured by the Nimbus-7 Earth Radiation Budget Experiment channel 10C, was 1,372.02 Wm(exp -2), having a standard deviation of 0.65 Wm(exp -2), a coefficient of variation (mean divided by the standard deviation) of 0.047 percent, and a normal deviate z (a measure of the randomness of the data) of -8.019 (inferring a highly significant non-random variation in the solar irradiance measurements, presumably related to the action of the solar cycle). Comparison of the 12-month moving average (also called the 13-month running mean) of solar irradiance to those of the usual descriptors of the solar cycle (i.e., sunspot number, 10.7-cm solar radio flux, and total corrected sunspot area) suggests possibly significant temporal differences. For example, solar irradiance is found to have been greatest on or before mid 1979 (leading solar maximum for cycle 21), lowest in early 1987 (lagging solar minimum for cycle 22), and was rising again through late 1990 (thus, lagging solar maximum for cycle 22), having last reported values below those that were seen in 1979 (even though cycles 21 and 22 were of comparable strength). Presuming a genuine correlation between solar irradiance and the solar cycle (in particular, sunspot number) one infers that the correlation is weak (having a coefficient of correlation r less than 0.84) and that major excursions (both as 'excesses' and 'deficits') have occurred (about every 2 to 3 years, perhaps suggesting a pulsating Sun).

  1. Surface solar radiation from geostationary satellites for renewable energy

    NASA Astrophysics Data System (ADS)

    Laszlo, Istvan; Liu, Hongqing; Heidinger, Andrew; Goldberg, Mitchell

    With the launch of the new Geostationary Operational Environmental Satellite, GOES-R, the US National Oceanic and Atmospheric Administration (NOAA) will begin a new era of geostationary remote sensing. One of its flagship instruments, the Advanced Baseline Imager (ABI), will expand frequency and coverage of multispectral remote sensing of atmospheric and surface properties. Products derived from ABI measurements will primarily be heritage meteorological products (cloud and aerosol properties, precipitation, winds, etc.), but some will be for interdisciplinary use, such as for the solar energy industry. The planned rapid observations (5-15 minutes) from ABI provide an opportunity to obtain information needed for solar energy applications where frequent observations of solar radiation reaching the surface are essential for planning and load management. In this paper we describe a physical, radiative-transfer-based algorithm for the retrieval of surface solar irradiance that uses atmospheric and surface parameters derived independently from multispectral ABI radiances. The algorithm is designed to provide basic radiation budget products (total solar irradiance at the surface), as well as products specifically needed for the solar energy industry (average, midday and clear-sky insolation, clear-sky days, diffuse and direct normal radiation, etc.). Two alternative algorithms, which require less ABI atmosphere and surface products or no explicit knowledge of the surface albedo, are also explored along with their limitations. The accuracy of surface solar radiation retrievals are assessed using long-term MODIS and GOES satellite data and surface measurements at the Surface Radiation (SURFRAD) network.

  2. Aeronomic Impacts of a Revision to the Solar Irradiance Forcing for CMIP6

    NASA Astrophysics Data System (ADS)

    Marsh, D. R.; Chiodo, G.

    2016-12-01

    In preparation for the sixth phase of the Coupled Model Intercomparison Project (CMIP6), a revised solar forcing dataset has been the assembled as part of the Solar Influences activity of the Stratospheretroposphere Processes And their Role in Climate (SPARC) project. The new dataset differs significantly from the previous dataset used by CMIP5 models in the distribution of the mean solar spectral irradiance, particularly in the ultraviolet (UV). For example, in the 300 to 350 nm band the irradiance in the new model is reduced by approximately 0.7 Wm2. To put this in perspective, that change amounts to approximately 4 to 6 times the magnitude of the solar cycle variation in that band. Using the NCAR Whole Atmosphere Community Climate Model (WACCM), we assess the impact on stratospheric composition and dynamics of this revision to the solar irradiance by comparing WACCM experiments that are forced by either the CMIP5 or CMIP6 solar forcing dataset. We find that ozone in the middle stratosphere decreases by approximately 3% in the experiments forced with the CMIP6 dataset. At the stratopause ozone increases by over 1.6% in response to a 2% decrease in odd-hydrogen species (HOx = {H, OH and HO2} ) above 35 km. HOx reductions are caused by a decrease in the Hartley band irradiance that creates O(1D) from ozone photolysis; the reaction with O(1D) being the primary way in which H2O is converted to HOx. The reduction in UV irradiance in the CMIP6 forcing dataset also leads to a cooling of the stratosphere and lower mesosphere of up to 1.6K. Considering that smaller irradiance changes that occur over the solar cycle have been implicated in changes in surface climate, our study suggest that the mean state of climate models used in CMIP6 may be significantly different than those used in CMIP5, as a result of changes in the mean solar irradiance forcing.

  3. Evaluation of CERES surface irradiance products

    NASA Astrophysics Data System (ADS)

    Kato, S.; Loeb, N. G.; Rose, F. G.; Rutan, D. A.; Doelling, D.; Radkevich, A.; Ham, S. H.

    2014-12-01

    Understanding the surface radiation budget is important for several reasons. At the global and large temporal scales, it should balance with the sum of surface latent and sensible heat fluxes and ocean heating. At regional scales, it is an indispensable boundary condition for ocean or snow models or any other models that need energy input to the surface. NASA's Clouds and the Earth's Radiant Energy System (CERES) project provides surface irradiance data products for a range of temporal and spatial scales computed using a radiative transfer model initialized using satellite-derived cloud and aerosol properties. Other inputs to the radiative transfer model include temperature and humidity profiles from NASA Global Modeling and Assimilation Office's (GMAO) reanalysis. The CERES team uses more than 80 surface observation sites located over land and ocean to evaluate computed irradiances. When computed monthly 1° by 1° gridded mean downward irradiances are compared with 10 years of observed irradiances, the bias averaged over all land and ocean sites are, respectively, -1.7 Wm-2 and 4.7 Wm-2 for shortwave and -1.0 Wm-2 and -2.0 Wm-2 for longwave. The shortwave agreement is significantly better than other satellite-based surface irradiance products. One of reasons for the better agreement is careful treatment of diurnal cycle of clouds by merging 3-hourly geostationary satellite-derived cloud properties. In addition, computed surface irradiance variability shows a remarkable agreement with observed variability. However, these data sets have their shortcomings. The uncertainty in nighttime surface longwave irradiance over polar regions is larger than that of other regions primarily due to the difficulty of cloud detection and large uncertainties in skin temperature and near-surface temperature and humidity. The large uncertainty in polar region surface irradiances hampers, for example, investigation of surface radiation budget changes in response to changes in sea ice

  4. A Solar Minimum Irradiance Spectrum for Wavelengths below 1200 Å

    NASA Astrophysics Data System (ADS)

    Warren, Harry P.

    2005-03-01

    NRLEUV represents an independent approach to modeling the Sun's EUV irradiance and its variability. Our model utilizes differential emission measure distributions derived from spatially and spectrally resolved solar observations, full-disk solar images, and a database of atomic physics parameters to calculate the solar EUV irradiance. In this paper we present a new solar minimum irradiance spectrum for wavelengths below 1200 Å. This spectrum is based on extensive observations of the quiet Sun taken with the CDS and SUMER spectrometers on the Solar and Heliospheric Observatory (SOHO) and the most recent version of the CHIANTI atomic physics database. In general, we find excellent agreement between this new irradiance spectrum and our previous quiet-Sun reference spectrum derived primarily from Harvard Skylab observations. Our analysis does show that the quiet-Sun emission measure above about 1 MK declines more rapidly than in our earlier emission measure distribution and that the intensities of the EUV free-bound continua at some wavelengths are somewhat smaller than indicated by the Harvard observations. Our new reference spectrum is also generally consistent with recent irradiance observations taken near solar minimum. There are, however, two areas of persistent disagreement. Our solar spectrum indicates that the irradiance measurements overestimate the contribution of the EUV free-bound continua at some wavelengths by as much as a factor of 10. Our model also cannot reproduce the observed irradiances at wavelengths below about 150 Å. Comparisons with spectrally resolved solar and stellar observations indicate that only a small fraction of the emission lines in the 60-120 Å wavelength range are accounted for in CHIANTI.

  5. Vacuum-ultraviolet instrumentation for solar irradiance and thermospheric airglow

    SciTech Connect

    Woods, T.N.; Rottman, G.J. . High Altitude Observatory); Bailey, S.M.; Solomon, S.C. . Lab. for Atmospheric and Space Physics)

    1994-02-01

    A NASA sounding rocket experiment was developed to study the solar extreme-ultraviolet (EUV) spectral irradiance and its effect on the upper atmosphere. Both the solar flux and the terrestrial molecular nitrogen via the Lyman-Birge-Hopfield bands in the far-ultraviolet (FUV) region were measured remotely from a sounding rocket on October 27, 1992. The rocket experiments also includes EUV instruments from Boston University, but only the National Center for Atmospheric Research's (NCAR)/University of Colorado's (CU) four solar instruments and one airglow instrument are discussed. The primary solar EUV instrument is a 0.25-m Rowland circle EUV spectrograph that has flown on three rockets since 1988 measuring the solar spectral irradiance from 30 to 110 nm with 0.2-nm resolution. Another solar irradiance instrument is an array of six silicon soft x-ray (XUV) photodiodes, each having different metallic filters coated directly on the photodiodes. The other solar irradiance instrument is a silicon avalanche photodiode coupled with pulse height analyzer electronics. The fourth solar instrument is a XUV imager that images the sun at 17.5 nm with a spatial resolution of 20 arc sec. The airglow spectrograph measures the terrestrial FUV airglow emissions along the horizon from 125 to 160 nm with 0.2-nm spectral resolution.

  6. Equivalence between solar irradiance and solar simulators in aging tests of sunglasses.

    PubMed

    Masili, Mauro; Ventura, Liliane

    2016-08-26

    This work is part of a broader research that focuses on ocular health. Three outlines are the basis of the pyramid that comprehend the research as a whole: authors' previous work, which has provided the public to self-check their own sunglasses regarding the ultraviolet protection compatible to their category; Brazilian national survey in order to improve nationalization of sunglasses standards; and studies conducted on revisiting requirements of worldwide sunglasses standards, in which this work is inserted. It is still controversial on the literature the ultraviolet (UV) radiation effects on the ocular media, but the World Health Organization has established safe limits on the exposure of eyes to UV radiation based on the studies reported in literature. Sunglasses play an important role in providing safety, and their lenses should provide adequate UV filters. Regarding UV protection for ocular media, the resistance-to-irradiance test for sunglasses under many national standards requires irradiating lenses for 50 uninterrupted hours with a 450 W solar simulator. This artificial aging test may provide a corresponding evaluation of exposure to the sun. Calculating the direct and diffuse solar irradiance at a vertical surface and the corresponding radiant exposure for the entire year, we compare the latter with the 50-h radiant exposure of a 450 W xenon arc lamp from a solar simulator required by national standards. Our calculations indicate that this stress test is ineffective in its present form. We provide evidence of the need to re-evaluate the parameters of the tests to establish appropriate safe limits for UV irradiance. This work is potentially significant for scientists and legislators in the field of sunglasses standards to improve the requirements of sunglasses quality and safety.

  7. Solar Simulator Represents the Mars Surface Solar Environment

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Dawson, Stephen F.; Mueller, Robert L.; Mardesich, Nick; Rapp, Donald

    2009-01-01

    A report discusses the development of a Mars surface, laboratory-based solar simulator to create solar cells that can function better on Mars. The Mars Optimized Solar cell Technology (MOST) required defining the surface incident spectrum, developing an appropriate laboratory solar simulator measurement capability, and developing and testing commercial cells modified for the Mars surface spectrum.

  8. Compact Flyeye concentrator with improved irradiance uniformity on solar cell

    NASA Astrophysics Data System (ADS)

    Zhuang, Zhenfeng; Yu, Feihong

    2013-08-01

    A Flyeye concentrator with improved irradiance distribution on the solar cell in a concentrator photovoltaic system is proposed. This Flyeye concentrator is composed of four surfaces: a refractive surface, mirror surface, freeform surface, and transmissive surface. Based on the principles of geometrical optics, the contours of the proposed Flyeye concentrator are calculated according to Fermat's principle, the edge-ray principle, and the ray reversibility principle without solving partial differential equations or using an optimization algorithm, therefore a slope angle control method is used to construct the freeform surface. The solid model is established by applying a symmetry of revolution around the optical axis. Additionally, the optical performance for the Flyeye concentrator is simulated and analyzed by Monte-Carlo method. Results show that the Flyeye concentrator optical efficiency of >96.2% is achievable with 1333× concentration ratio and ±1.3 deg acceptance angle, and 1.3 low aspect ratio (average thickness to entry aperture diameter ratio). Moreover, comparing the Flyeye concentrator specification to that of the Köhler concentrator and the traditional Fresnel-type concentrator, results indicate that this concentrator has the advantages of improved uniformity, reduced thickness, and increased tolerance to the incident sunlight.

  9. A technique for determining solar irradiance deficits. [photovoltaic arrays design

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.; Ross, R. G., Jr.

    1982-01-01

    An analytic technique which determines the variation of solar irradiance from long term averages is presented. The technique involves computer-assisted data reduction techniques, and was designed to improve system reliability by determining the amount of storage capability required to supplement a baseline system. Variations in time intervals of up to 60 days can be determined, and 10 years of data collection are reviewed. The technique involves first calculating average monthly irradiance values, then examining the average irradiance deviation over time intervals. The calculation procedure is clarified by determining solar energy level probabilities and the long term solar energy deviation (achieved by repeatedly integrating actual irradiance figures). It is found that a 15% increase in collector area and the addition of energy storage or backup are essential contributions to achieving cost-effectiveness. In addition, one to seven no-sun day storage capacities are required to accommodate weather caused deficits.

  10. The solar spectral irradiances from x ray to radio wavelengths

    NASA Technical Reports Server (NTRS)

    White, O. R.

    1993-01-01

    Sources of new measurements of the solar EUV, UV, and visible spectrum are presented together with discussion of formation of the solar spectrum as a problem in stellar atmospheres. Agreement between the data and a modern synthetic spectrum shows that observed radiative variability is a minor perturbation on a photosphere in radiative equilibrium and local thermodynamic equilibrium (LTE). Newly observed solar variability in 1992 defines a magnetic episode on the Sun closely associated with changes in both spectral irradiances and the total irradiance. This episode offers the opportunity to track the relationship between radiation and magnetic flux evolution.

  11. Ground-Based Correlates of Solar Irradiance Variation

    NASA Technical Reports Server (NTRS)

    Jones, Harrison P.

    2001-01-01

    Ground-based instruments cannot directly measure solar irradiance variability at the 0.1% level at which it occurs because of the earth's atmosphere. However, many forms of ground-based solar observations correlate well with solar irradiance variations, and this fact has been used to construct facular-sunspot models which can explain about 90% of the variance of total solar irradiance as observed by spacecraft radiometers. It is not yet clear whether remaining discrepancies are observational or require additional sources in the model. This paper is a selective review of the current status of the use of ground-based data to understand spacecraft observations of solar irradiance and to apply this understanding to periods before space-based measurements were available. New results from the extension of the histogram analysis of NASA/NSO spectromagnetograph observations (Jones et al., 2000, ApJ529, 1070) to the period from Nov. 1992 to Sep. 2000 are reported which confirm that strong mixed polarity magnetic regions (quiet network) are not significantly correlated with total solar irradiance and which show an unexplained linear trend in the residuals of a multiple regression.

  12. Near-term Forecasting of Solar Total and Direct Irradiance for Solar Energy Applications

    NASA Astrophysics Data System (ADS)

    Long, C. N.; Riihimaki, L. D.; Berg, L. K.

    2012-12-01

    Integration of solar renewable energy into the power grid, like wind energy, is hindered by the variable nature of the solar resource. One challenge of the integration problem for shorter time periods is the phenomenon of "ramping events" where the electrical output of the solar power system increases or decreases significantly and rapidly over periods of minutes or less. Advance warning, of even just a few minutes, allows power system operators to compensate for the ramping. However, the ability for short-term prediction on such local "point" scales is beyond the abilities of typical model-based weather forecasting. Use of surface-based solar radiation measurements has been recognized as a likely solution for providing input for near-term (5 to 30 minute) forecasts of solar energy availability and variability. However, it must be noted that while fixed-orientation photovoltaic panel systems use the total (global) downwelling solar radiation, tracking photovoltaic and solar concentrator systems use only the direct normal component of the solar radiation. Thus even accurate near-term forecasts of total solar radiation will under many circumstances include inherent inaccuracies with respect to tracking systems due to lack of information of the direct component of the solar radiation. We will present examples and statistical analyses of solar radiation partitioning showing the differences in the behavior of the total/direct radiation with respect to the near-term forecast issue. We will present an overview of the possibility of using a network of unique new commercially available total/diffuse radiometers in conjunction with a near-real-time adaptation of the Shortwave Radiative Flux Analysis methodology (Long and Ackerman, 2000; Long et al., 2006). The results are used, in conjunction with persistence and tendency forecast techniques, to provide more accurate near-term forecasts of cloudiness, and both total and direct normal solar irradiance availability and

  13. Variations in Solar Activity and Irradiance and Their Implications for Energy Input Into the Terrestrial Atmosphere

    NASA Astrophysics Data System (ADS)

    Parker, Daryl Gray

    This dissertation presents research into the question of how variations in the physical properties of resolved solar magnetic surface features combine to produce variations in the physical properties of the integrated Sun and the possible impacts of those variations on the terrestrial climate system. The core approach to the research was development of techniques to apply automated Bayesian statistical pattern recognition methods as implemented in the AutoClass software to magnetic and intensity-like solar images from the Mount Wilson Solar Observatory (MWO) 150 Foot Solar Telescope. The goals were to: (1) identify in an objective and quantifiable manner the solar surface features responsible for changes in solar irradiance, (2) enhance understanding of the evolution of these features and the resultant solar irradiance variations over the most recent solar cycles, (3) develop methods to identify the specific features responsible for variations in specific wavelengths, (4) use global observations of global solar irradiance indices to identify the spatially resolved features which contribute to them, (5) attempt to apply these results to specific topics of current interest in solar-stellar astronomy. Using these techniques, a method was developed to identify classes of features from thousands of MWO solar images based on the per pixel values of absolute magnetic field strength and an intensity measure known as a "ratio-gram" in MWO images. Using these classes along with observations from independent, usually satellite based, sources in different wavelengths, models were constructed of total solar irradiance (TSI) and solar UV indices. These models were able to reproduce with high correlations solar observations in a number of different solar wavelengths. These classes were also used to construct images mapping different wavelength emissions to the areas to the solar surface features from which they originated. These techniques proved able to reproduce with high

  14. Quantifying solar spectral irradiance in aquatic habitats for the assessment of photoenhanced toxicity

    USGS Publications Warehouse

    Barron, M.G.; Little, E.E.; Calfee, R.; Diamond, S.

    2000-01-01

    The spectra and intensity of solar radiation (solar spectral irradiance [SSI]) was quantified in selected aquatic habitats in the vicinity of an oil field on the California coast. Solar spectral irradiance measurements consisted of spectral scans (280–700 nm) and radiometric measurements of ultraviolet (UV): UVB (280–320 nm) and UVA (320–400 nm). Solar spectral irradiance measurements were taken at the surface and at various depths in two marsh ponds, a shallow wetland, an estuary lagoon, and the intertidal area of a high-energy sandy beach. Daily fluctuation in SSI showed a general parabolic relationship with time; maximum structure–activity relationship (SAR) was observed at approximate solar noon. Solar spectral irradiance measurements taken at 10-cm depth at approximate solar noon in multiple aquatic habitats exhibited only a twofold variation in visible light and UVA and a 4.5-fold variation in UVB. Visible light ranged from 11,000 to 19,000 μW/cm2, UVA ranged from 460 to 1,100 μW/cm2, and UVB ranged from 8.4 to 38 μW/cm2. In each habitat, the attenuation of light intensity with increasing water depth was differentially affected over specific wavelengths of SSI. The study results allowed the development of environmentally realistic light regimes necessary for photoenhanced toxicity studies.

  15. Quantifying solar spectral irradiance in aquatic habitats for the assessment of photoenhanced toxicity

    SciTech Connect

    Barron, M.G.; Little, E.E.; Calfee, R.; Diamond, S.

    2000-04-01

    The spectra and intensity of solar radiation (solar spectral irradiance [SSI]) was quantified in selected aquatic habitats in the vicinity of an oil field on the California coast. Solar spectral irradiance measurements consisted of spectral scans and radiometric measurements of ultraviolet (UV): UVB and UVA. Solar spectral irradiance measurements were taken at the surface and at various depths in two marsh ponds, a shallow wetland, an estuary lagoon, and the intertidal area of a high-energy sandy beach. Daily fluctuation in SSI showed a general parabolic relationship with time; maximum structure-activity relationship (SAR) was observed at approximate solar noon. Solar spectral irradiance measurements taken at 10-cm depth at approximate solar noon in multiple aquatic habitats exhibited only a twofold variation in visible light and UVA and a 4.5-fold variation in UVB. Visible light ranged from 11,000 to 19,000 {micro}W/cm{sup 2}, UVA ranged from 460 to 1,100 {micro}W/cm{sup 2}, and UVB ranged from 8.4 to 38 {micro}W/cm{sup 2}. In each habitat, the attenuation of light intensity with increasing water depth was differentially affected over specific wavelengths of SSI. The study results allowed the development of environmentally realistic light regimes necessary for photoenhanced toxicity studies.

  16. Characterization of solar cells for space applications. Volume 12: Electrical characteristics of Solarex BSF, 2-ohm-cm, 50-micron solar cells (1978 pilot line) as a function of intensity, temperature, and irradiation

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Beckert, D. M.; Downing, R. G.; Miyahira, T. F.; Weiss, R. S.

    1980-01-01

    Electrical characteristics of Solarex back-surface-field, 2-ohm-cm, 50-micron N/P silicon solar cells are presented in graphical and tabular format as a function of solar illumination intensity, temperature, and irradiation.

  17. Nb2O5 Nanostructure Evolution on Nb Surfaces via Low-Energy He(+) Ion Irradiation.

    PubMed

    Novakowski, Theodore Joseph; Tripathi, Jitendra Kumar; Hassanein, Ahmed

    2016-12-21

    We propose low-energy, broad-beam He(+) ion irradiation as a novel processing technique for the generation of Nb2O5 surface nanostructures due to its relative simplicity and scalability in a commercial setting. Since there have been relatively few studies involving the interaction of high-fluence, low-energy He(+) ion irradiation and Nb (or its oxidized states), this systematic study explores both effects of fluence and sample temperature during irradiation on resulting surface morphology. Detailed normal and cross-sectional scanning electron microscopy (SEM) studies reveal subsurface He bubble formation and elucidate potential driving mechanisms for nanostructure evolution. A combination of specular optical reflectivity and X-ray photoelectron spectroscopy (XPS) is also used to gain additional information on roughness and stoichiometry of irradiated surfaces. Our investigations show significant surface modification for all tested irradiation conditions; the resulting surface structure size and geometry have a strong dependence on both sample temperature during irradiation and total ion fluence. Optical reflectivity measurements on irradiated surfaces demonstrate increased surface roughening with increasing ion fluence, and XPS shows higher oxidation levels for samples irradiated at lower temperatures, suggesting larger surface roughness and porosity. Overall, it was found that low-energy He(+) ion irradiation is an efficient processing technique for nanostructure formation, and surface structures are highly tunable by adjusting ion fluence and Nb2O5 sample temperature during irradiation. These findings may have excellent potential applications for solar energy conversion through improved efficiency due to effective light absorption.

  18. Forecasting solar irradiation using WRF model and refining statistics for Northeastern Brazil

    NASA Astrophysics Data System (ADS)

    Pereira, E. B.; Lima, F. J. L.; Martins, F. R.

    2015-12-01

    Solar energy is referred to as variable generation sources because their electricity production varies based on the availability of sun irradiance. To accommodate this variability, electricity grid operators use a variety of tools to maintain a reliable electricity supply, one of them is to forecast solar irradiation, and to adjust other electricity sources as needed. This work reports an approach to forecast solar irradiation in the Brazilian Northeastern region (NEB) by using statistically post-processing data from mesoscale model outputs. The method assimilates the diversity of climate characteristics occurring in the region presenting the largest solar energy potentials in Brazil. Untreated solar irradiance forecasts for 24h in advance were obtained using the WRF model runs. Cluster analysis technique was employed to find out areas presenting similar climate characteristics and to reduce uncertainties. Comparison analysis between WRF model outputs and site-specific measured data were performed to evaluate the model skill in forecasting the surface solar irradiation. After that, post-processing of WRF outputs using artificial neural networks (ANNs) and multiple regression methods refined the short-term solar irradiation forecasts. A set of pre-selected variables of the WRF model outputs representing the forecasted atmospheric conditions were used as predictors by the ANNs. Several predictors were tested in the adjustment and simulation of the ANNs. We found the best ANNs architecture and a group of 10 predictors, with which more in-depth analyzes were carried out, including performance evaluation for fall and spring of 2011 (rainy and dry season in NEB). The site-specific measured solar radiation data came from 110 stations distributed throughout the NEB. Data for the rainy season were acquired from March to May, and for the dry season from September to November. We concluded that the untreated numerical forecasts of solar irradiation provided by WRF exhibited a

  19. The origin of Total Solar Irradiance variability on timescales less than a day

    NASA Astrophysics Data System (ADS)

    Shapiro, Alexander; Krivova, Natalie; Schmutz, Werner; Solanki, Sami K.; Leng Yeo, Kok; Cameron, Robert; Beeck, Benjamin

    2016-07-01

    Total Solar Irradiance (TSI) varies on timescales from minutes to decades. It is generally accepted that variability on timescales of a day and longer is dominated by solar surface magnetic fields. For shorter time scales, several additional sources of variability have been proposed, including convection and oscillation. However, available simplified and highly parameterised models could not accurately explain the observed variability in high-cadence TSI records. We employed the high-cadence solar imagery from the Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory and the SATIRE (Spectral And Total Irradiance Reconstruction) model of solar irradiance variability to recreate the magnetic component of TSI variability. The recent 3D simulations of solar near-surface convection with MURAM code have been used to calculate the TSI variability caused by convection. This allowed us to determine the threshold timescale between TSI variability caused by the magnetic field and convection. Our model successfully replicates the TSI measurements by the PICARD/PREMOS radiometer which span the period of July 2010 to February 2014 at 2-minute cadence. Hence, we demonstrate that solar magnetism and convection can account for TSI variability at all timescale it has ever been measured (sans the 5-minute component from p-modes).

  20. LISIRD: Where to go for Solar Irradiance Data

    NASA Astrophysics Data System (ADS)

    Wilson, A.; Pankratz, C. K.; Lindholm, D. M.; Snow, M.; Knapp, B.; Woodraska, D.; Templeman, B.; Woods, T.; Eparvier, F.; Fontenla, J.; Harder, J.; Bill, M.

    2008-12-01

    LASP, the Laboratory for Atmospheric and Space Physics, has been providing web access to solar irradiance measurements, reference spectra, composites and model data covering the solar spectrum from .1 to 2400 nm through LISIRD, the LASP Interactive Solar IRradiance Datacenter. No single instrument can measure the solar spectral irradiance from X-rays to the IR, but the ensemble of LASP instruments can. LISIRD uses a single interface to provide easy, logical access to a variety of mission data, merged in time and wavelength. Daily space weather measurements are available, including total solar irradiance (TSI), Lyman Alpha (121 nm), Magnesium II Index (280 nm), He II (30.4 nm), FE XVI (33.5 nm), and the FUV continuum (145 to 165 nm). More recently, LISIRD has recently added the Whole Heliosphere Interval (WHI) Solar Irradiance time series, which provides a quiet sun reference spectra for the period of April 10-16 of 2008. LISIRD also recently added a composite solar spectral irradiance product over the range of 120 to 400 nm for the time period from November 8, 1978 to August 1, 2005. This product, created by Mathew Deland at SSAI, merges data from six different satellites into a single SSI product. And, we are currently adding a time series for daily solar spectral irradiance from 1950 to 2006, created by Judith Lean of the Naval Research Lab. This product adjusts observed irradiance for a given wavelength with parameters that represent known sources of variability at that wavelength. LISIRD remains committed to improving data access in a variety of ways. We are planning and developing a means for the broader community of scientists to easily determine data availability for a particular date range without having to know mission or instrument details. Improved data subsetting will allow users to request only the time range or spectra that users need, making data management generally easier. We expect to continue to enhance our data offerings. Future vision for

  1. A method for estimating direct normal solar irradiation from satellite data for a tropical environment

    SciTech Connect

    Janjai, Serm

    2010-09-15

    In order to investigate a potential use of concentrating solar power technologies and select an optimum site for these technologies, it is necessary to obtain information on the geographical distribution of direct normal solar irradiation over an area of interest. In this work, we have developed a method for estimating direct normal irradiation from satellite data for a tropical environment. The method starts with the estimation of global irradiation on a horizontal surface from MTSAT-1R satellite data and other ground-based ancillary data. Then a satellite-based diffuse fraction model was developed and used to estimate the diffuse component of the satellite-derived global irradiation. Based on this estimated global and diffuse irradiation and the solar radiation incident angle, the direct normal irradiation was finally calculated. To evaluate its performance, the method was used to estimate the monthly average hourly direct normal irradiation at seven pyrheliometer stations in Thailand. It was found that values of monthly average hourly direct normal irradiation from the measurements and those estimated from the proposed method are in reasonable agreement, with a root mean square difference of 16% and a mean bias of -1.6%, with respect to mean measured values. After the validation, this method was used to estimate the monthly average hourly direct normal irradiation over Thailand by using MTSAT-1R satellite data for the period from June 2005 to December 2008. Results from the calculation were displayed as hourly and yearly irradiation maps. These maps reveal that the direct normal irradiation in Thailand was strongly affected by the tropical monsoons and local topography of the country. (author)

  2. Impact of Cirrus Crystal Shape on Solar Spectral Irradiance: A Case Study for Subtropical Cirrus

    NASA Technical Reports Server (NTRS)

    Wendisch, Manfred; Pilewskie, Peter; Pommier, John; Howard, Steve; Yang, Ping; Heymsfield, Andrew J.; Schmitt, Carl G.; Baumgardner, Darrel; Mayer, Barnhard

    2005-01-01

    Profiles of in situ measurements of ice crystal size distribution of subtropical cirrus were used to calculate solar spectral irradiances above and below the clouds. Spheres and nonspherical ice crystal habits (columns, hollows, plates, bullets, and aggregates) were assumed in the calculations. The simulation results were compared to irradiance measurements from the NASA Solar Spectral Flux Radiometer. The microphysical and radiation data were collected by three aircraft during CRYSTAL-FACE. Two cirrus cases (optical thickness of about 1 and 7) from two mission dates (26 and 23 July 2002) were investigated in detail. The measured downwelling and upwelling irradiance spectra above the cirrus could mostly be reproduced by the radiation model to within +/- 5-10% for most ice crystal habits. Below the cirrus the simulations disagreed with the measured irradiances due to surface albedo variability along the flight track, and nonoptimal colocation between the microphysical and irradiance measurements. The impact of shape characteristics of the crystals was important for the reflected irradiances above the optically thin cirrus, especially for small solar zenith angles, because in this case single-scattering dominated the solar radiation field. For the cirrus of moderate optical thickness the enhanced multiple scattering tended to diminish particular shape features caused by nonspherical single-scattering. Within the ice absorption bands the shape-related differences in the absorption characteristics of the individual nonspherical ice crystals were amplified if multiple scattering prevailed. Furthermore, it was found that below the cloud the shape sensitivity of the downwelling irradiance spectra is larger compared to the nonsphericity effects on reflected irradiances above the cirrus. Finally, it was shown that the calculated cirrus solar radiative forcing could vary by as much as 26% depending on the ice crystal habit.

  3. Spectrum line intensity as a surrogate for solar irradiance variations.

    PubMed

    Livingston, W C; Wallace, L; White, O R

    1988-06-24

    Active Cavity Radiometer Irradiance Monitor (ACRIM) solar constant measurements from 1980 to 1986 are compared with ground-based, irradiance spectrophotometry of selected Fraunhofer lines. Both data sets were identically sampled and smoothed with an 85-day running mean, and the ACRIM total solar irradiance (S) values were corrected for sunspot blocking (S(c)). The strength of the mid-photospheric manganese 539.4-nanometer line tracks almost perfectly with ACRIM S(e), Other spectral features formed high in the photosphere and chromosphere also track well. These comparisons independently confirm the variability in the ACRIM S(e), signal, indicate that the source of irradiance is faculae, and indicate that ACRIM S(e), follows the 11-year activity cycle.

  4. Surface changes of implants after laser irradiation

    NASA Astrophysics Data System (ADS)

    Rechmann, Peter; Sadegh, Hamid M. M.; Goldin, Dan S.; Hennig, Thomas

    1999-05-01

    Periimplantitis is one of the major factors for the loss of dental implants. Due to the minor defense ability of the tissue surrounding the implant compared to natural teeth treatment of periimplantitis in the early stage is very important. Reducing bacteria with a laser might be the most successful step in therapy of periimplantitis. Aim of the study was to observe changes in surface morphology of seven different implants after irradiation with three different lasers. Two kinds of flat round samles were prepared by the manufacturers either identical to the body surface or to the cervical area of the corresponding implants. The samples were irradiated using different power settings. The lasers used were a CO2 laser (Uni Laser 450P, ASAH Medico Denmark; fiber guided, wavelength 10.6 μm, max. average power 8.3 W, "soft-pulse" and cw) an Er:YAG laser (KaVo Key Laser II, wavelength 2.94 μm, pulse duration 250-500μs, pulse energy 60-500 mJ, pulse repetition rate 1-15 Hz, focus diameter 620 μm, air-water cooling; Biberach, Germany; a frequency doubled Alexandrite laser (laboratory prototype, q-switched, fiber guided, wavelength 377 nm, pulse duration 1 μs, pulse repetition rate 30 Hz, water cooling). After irradiation the implant surfaces were investigated with a Scanning Electron Microscope. Ablation thresholds were determined. After CO2 laser irradiation no changes in surface morphology were observed whereas using the pulsed Er:YAG laser or frequency doubled Alexandrite laser even at low energies loss of integrity or melting of the surface was observed. The changes in surface morphology seem to depend very strongly on the type of surface coating.

  5. Influence of Solar Irradiance on Polar Ionospheric Convection

    NASA Astrophysics Data System (ADS)

    Burrell, A. G.; Yeoman, T. K.; Stephen, M.; Lester, M.

    2016-12-01

    Plasma convection over the poles shows the result of direct interactions between the terrestrial atmosphere, magnetosphere, and the sun. The paths that the ionospheric plasma takes in the polar cap form a variety of patterns, which have been shown to depend strongly on the direction of the Interplanetary Magnetic Field (IMF) and the reconnection rate. While the IMF and level of geomagnetic activity clearly alter the plasma convection patterns, the influence of changing solar irradiance is also important. The solar irradiance and magnetospheric particle precipitation regulate the rate of plasma production, and thus the ionospheric conductivity. Previous work has demonstrated how season alters the convection patterns observed over the poles, demonstrating the importance that solar photoionisation has on plasma convection. This study investigates the role of solar photoionisation on convection more directly, using measurements of ionospheric convection made by the Super Dual Auroral Radar Network (SuperDARN) and solar irradiance observations made by the Solar EUV Experiment (SEE) to explore the influence of the solar cycle on ionospheric convection, and the implications this may have on magnetosphere-ionosphere coupling.

  6. Measuring Broadband IR Irradiance in the Direct Solar Beam (Presentation)

    SciTech Connect

    Reda, I.

    2015-03-01

    Solar and atmospheric science radiometers, e.g. pyranometers, pyrheliometers, and photovoltaic cells are calibrated with traceability to a consensus reference, which is maintained by Absolute Cavity Radiometers (ACRs). The ACR is an open cavity with no window, developed to measure extended broadband direct solar irradiance beyond the ultraviolet and infrared bands below and above 0.2 um and 50 um, respectively. On the other hand, pyranometers and pyrheliometers are developed to measure broadband shortwave irradiance from approximately 0.3 um to 3 um, while the present photovoltaic cells are limited to approximately 0.3 um to 1 um. The broadband mismatch of ACR versus such radiometers causes discrepancy in radiometers' calibration methods that has not been discussed or addressed in the solar and atmospheric science literature. Pyrgeometers are also used for solar and atmospheric science applications and are calibrated with traceability to consensus reference, yet are calibrated during nighttime only, because no consensus reference has yet been established for the daytime longwave irradiance. This poster shows a method to measure the broadband IR irradiance in the direct solar beam from 3 um to 50 um, as a first step that might be used to help develop calibration methods to address the mismatch between broadband ACR and shortwave radiometers, and the lack of a daytime reference for pyrgeometers. The irradiance was measured from sunrise to sunset for 5 days when the sun disk was cloudless; the irradiance varied from approximately 1 Wm-2 to 16 Wm-2 for solar zenith angle from 80 degrees to 16 degrees respectively; estimated uncertainty is 1.5 Wm-2.

  7. Measuring Broadband IR Irradiance in the Direct Solar Beam (Poster)

    SciTech Connect

    Reda, I.; Konings, J.; Xie, Y.; Dooraghi, M.; Sengupta, M.

    2015-03-01

    Solar and atmospheric science radiometers, e.g. pyranometers, pyrheliometers, and photovoltaic cells are calibrated with traceability to a consensus reference, which is maintained by Absolute Cavity Radiometers (ACRs). The ACR is an open cavity with no window, developed to measure extended broadband direct solar irradiance beyond the ultraviolet and infrared bands below and above 0.2 micrometers and 50 micrometers, respectively. On the other hand, pyranometers and pyrheliometers are developed to measure broadband shortwave irradiance from approximately 0.3 micrometers to 3 micrcometers, while the present photovoltaic cells are limited to approximately 0.3 micrometers to 1 micrometers. The broadband mismatch of ACR versus such radiometers causes discrepancy in radiometers' calibration methods that has not been discussed or addressed in the solar and atmospheric science literature. Pyrgeometers are also used for solar and atmospheric science applications and calibrated with traceability to consensus reference, yet calibrated during nighttime only, because no consensus reference has yet been established for the daytime longwave irradiance. This poster shows a method to measure the broadband IR irradiance in the direct solar beam from 3 micrometers to 50 micrometers, as first step that might be used to help develop calibration methods to address the mismatch between broadband ACR and shortwave radiometers, and the lack of a daytime reference for pyrgeometers. The irradiance was measured from sunrise to sunset for 5 days when the sun disk was cloudless; the irradiance varied from approximately 1 Wm-2 to 16 Wm-2 for solar zenith angle from 80 degres to 16 degrees respectively; estimated uncertainty is 1.5 Wm-2.

  8. Penetration of solar irradiances through the atmosphere and plant canopies.

    NASA Technical Reports Server (NTRS)

    Weinman, J. A.; Guetter, P. J.

    1972-01-01

    The equation of radiative transfer is applied to an analysis of solar irradiances penetrating into a plant canopy covered by a turbid atmosphere. The method of discrete coordinates is applied to vertically inhomogeneous atmospheres and plant canopies. It is shown that four-point quadrature yields results with an accuracy that is consistent with irradiance measurements. It is believed that the presented computational scheme may have considerable agricultural applications.

  9. Analyzing UV-B narrowband solar irradiance: comparison with erythemal and vitamin D production irradiances.

    PubMed

    Sola, Yolanda; Lorente, Jerónimo; Ossó, Albert

    2012-12-05

    The heliotherapy and the phototherapy are mainly focused on taking benefit of the therapeutic effects of the ultraviolet (UV) irradiance on different skin diseases. The use of UV-B narrowband lamps, with emissions centered at 311 nm, has spread out among the dermatologist community because of its high therapeutic effect in comparison with its low erythema dose. For cloudless sun exposure, the balance of solar erythemal and solar narrowband (NB)-equivalent irradiances depends on several factors such as the solar zenith angle (SZA), the total ozone column (TOC) and the altitude. For SZA below 55°, the ratio of solar UV-B narrowband and erythemal irradiances increases with the SZA whereas the ratio of vitamin D production and erythemal irradiances decreases with the SZA with the maximum around midday. Furthermore, the solar NB ratio also increases with the TOC because the shorter wavelengths of the erythemal action spectrum are more affected by the ozone absorption processes. Considering the daily variations of the ratio between narrowband and erythemal irradiance, sun exposures avoiding midday hours are recommended in order to prevent negative side-effects. However to accumulate great NB doses and sufficient vitamin D in winter months is difficult because the time exposures may be longer than the day duration. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Effect of openings collectors and solar irradiance on the thermal efficiency of flat plate-finned collector for indirect-type passive solar dryer

    NASA Astrophysics Data System (ADS)

    Batubara, Fatimah; Dina, Sari Farah; Klaudia Kathryn Y., M.; Turmuzi, M.; Siregar, Fitri; Panjaitan, Nora

    2017-06-01

    Research on the effect of openings solar collector and solar irradiance to thermal efficiency has been done. Solar collector by flat plate-finned type consists of 3 ply insulator namely wood, Styrofoam and Rockwool with thickness respectively are 10 mm, 25 mm and 50 mm. Absorber plate made of aluminum sheet with thickness of 0.30 mm, painted by black-doff. Installation of 19 units fins (length x height x thickness: 1000x20x10 mm) on the collector will increase surface area of absorber so it can receive much more solar energy. The solar collector cover is made of glass (thickness of 5 mm). During the research, the solar irradiance and temperature of collector are measured and recorded every five minutes. Temperature measurement performed on the surface of the absorber plate, inside of collector, surface cover and the outer side insulator (plywood). This data is used to calculate the heat loss due to conduction, convection and radiation on the collector. Openings of collectors vary as follows: 100%, 75%, 15% and 0% (total enclosed). The data collecting was conducted from 09.00 am to 17.00 pm and triplicates. The collector thermal efficiency calculated based on the ratio of the amount of heat received to the solar irradiance absorbed. The results show that each of openings solar collector has different solar irradiance (because it was done on a different day) which is in units of W/m2: 390 (100% open), 376 (75% open), 429 (15% open), and 359 (totally enclosed). The highest thermal efficiency is in openings variation of 15% opened. These results indicate that the efficiency of the collector is influenced by the solar irradiance received by the collector and the temperature on the collector plate. The highest thermal efficiency is in variation of openings 15%. These indicate that the efficiency of the collector was influenced by solar irradiance received by the collector and openings of the collector plate.

  11. Modeling the spectral solar irradiance in the SOTERIA Project Framework

    NASA Astrophysics Data System (ADS)

    Vieira, Luis Eduardo; Dudok de Wit, Thierry; Kretzschmar, Matthieu; Cessateur, Gaël

    The evolution of the radiative energy input is a key element to understand the variability of the Earth's neutral and ionized atmospheric components. However, reliable observations are limited to the last decades, when observations realized above the Earth's atmosphere became possible. These observations have provide insights about the variability of the spectral solar irradiance on time scales from days to years, but there is still large uncertainties on the evolu-tion on time scales from decades to centuries. Here we discuss the physics-based modeling of the ultraviolet solar irradiance under development in the Solar-Terrestrial Investigations and Archives (SOTERIA) project framework. In addition, we compare the modeled solar emission with variability observed by LYRA instrument onboard of Proba2 spacecraft.

  12. Modelling Solar Spectral Irradiance Variations at Ultraviolet Wavelengths

    NASA Technical Reports Server (NTRS)

    Lean, J. L.; Livingston, W. C.; White, O. R.; Skumanich, A.

    1984-01-01

    Solar UV irradiance variations with solar activity are examined using a three component model of the CaII K chromospheric emission. This model, developed from ground based observations of the location, area and relative intensity of CaII K plage, in conjunction with measurements throughout solar cycle 21 of the full disc CaII K emission, includes the contributions to the ultraviolet flux from both plage and active network emission. The model successfully replicates changes in the Lyman alpha flux related to the 27 day rotation of solar plage, outbreaks (or rounds) of activity over periods of a year or more, and the growth and accumulation of active regions over the eleven year solar activity cycles. Estimates of the magnitude of the solar cycle variability of the UV emission between 200 and 300 nm are presented but cannot currently be verified by available observations.

  13. Lyman alpha solar spectral irradiance line profile observations and models

    NASA Astrophysics Data System (ADS)

    Snow, Martin; Machol, Janet; Quemerais, Eric; Curdt, Werner; Kretschmar, Matthieu; Haberreiter, Margit

    2016-04-01

    Solar lyman alpha solar spectral irradiance measurements are available on a daily basis, but only the 1-nm integrated flux is typically published. The International Space Science Institute (ISSI) in Bern, Switzerland has sponsored a team to make higher spectral resolution data available to the community. Using a combination of SORCE/SOLSTICE and SOHO/SUMER observations plus empirical and semi-empirical modeling, we will produce a dataset of the line profile. Our poster will describe progress towards this goal.

  14. Solar ultraviolet spectral irradiance monitor experiment on OSS-1

    NASA Technical Reports Server (NTRS)

    Vanhossier, M. E.

    1983-01-01

    The need to improve the accuracy of measurement of the absolute solar flux within the wavelength range 120 nm to 400 nm requires an extensive effort in contamination control and in tracking the instruments' stability. The techniques used in the solar ultraviolet irradiance monitor are described. These methods resulted in very high calibration stability as proved by preflight and postflight calibration. In-flight calibrating and the pointing accuracy provided by the shuttle attitude control system are discussed.

  15. Continuing the Solar Irradiance Data Record with TSIS

    NASA Astrophysics Data System (ADS)

    Richard, E. C.; Pilewskie, P.; Kopp, G.; Coddington, O.; Woods, T. N.; Wu, D. L.

    2016-12-01

    The Total and Spectral Solar Irradiance Sensor (TSIS), first selected in 1998 for the National Polar-orbiting Operational Environmental Satellite System (NPOESS), re-manifested in 2010 on the NOAA-NASA Joint Polar Satellite System (JPSS), then the NOAA Polar Free Flyer, is now scheduled for deployment in 2017 on the International Space Station. The TSIS will acquire measurements of total and spectral solar irradiance (TSI and SSI, respectively). TSIS provides continuation of the Total Irradiance Monitor (TIM) and the Spectral Irradiance Monitor (SIM), currently flying on the NASA Solar Radiation and Climate Experiment (SORCE). Launched in 2003, SORCE is now more than eight years beyond its prime-mission lifetime. The launch failure of the NASA's Glory mission in 2011 coupled with diminished battery capacity on SORCE and delays in the launch of TSIS have put the continuous 38-year TSI record at risk. In 2012, a plan to maintain continuity of the TSI calibration scale between SORCE and TSIS was rapidly implemented through the USAF Space Test Program STPSat-3 that launched in late 2013. The shorter SSI record faces a likely gap between SORCE and TSIS. This paper summarizes the importance of highly accurate and stable observations of solar irradiance in understanding the present climate epoch and for predicting future climate; why continuity in the solar irradiance data record is required; improvements in the TSIS TIM and SIM, including verification of their calibration using ground-based NIST-traceable cryogenic standards; and how these improvements will impact Sun-climate studies in the near future.

  16. Analysis of Solar Irradiation Anomalies in Long Term Over India

    NASA Astrophysics Data System (ADS)

    Cony, M.; Polo, J.; Martin, L.; Navarro, A.; Serra, I.

    2012-04-01

    India has a high potential for solar energy applications due to its geographic position within the Sun Belt and the large number of cloudless days in many regions of the country. However, certain regions of India, particularly those largely populated, can exhibit large aerosol loading in the atmosphere as a consequence of anthropogenic emissions that could have a negative feedback in the solar resource potential. This effect, named as solar dimming, has already been observed in India, and in some other regions in the world, by some authors using ground data from the last two decades. The recent interest in the promotion of solar energy applications in India highlights the need of extending and improving the knowledge of the solar radiation resources in this country, since most of the long term measurements available correspond to global horizontal radiation and most of them are also located big cities or highly populated areas. In addition, accurate knowledge on the aerosol column quantification and on its dynamical behavior with high spatial resolution is particularly important in the case of India, due to their impact on direct normal irradiation. Long term studies of solar irradiation over India can be performed using monthly means of global hemispheric irradiation measurements from the Indian Meteorological Department. Ground data are available from 1964 till today through the World Radiation Data Centre that publish these values in the web. This work shows a long term analysis of solar irradiation in India using anomalies techniques and trends in ten places over India. Most of the places have exhibit a decreasing trend and negative anomalies confirming thus the darkening effect already reported by solar dimming studies. The analysis of anomalies has also found two periods of different behavior. From 1964 till 1988 the anomalies observed were positive and the last 20 years seems to be a period of negative anomalies. This observation is also consequent with

  17. Solar ultraviolet irradiance observed from southern Argentina: September 1990 to March 1991

    SciTech Connect

    Frederick, J.E.; Soulen, P.F. ); Daiz, S.B.; Smolskaia, I. ); Booth, C.R.; Lucas, T.; Neuschuler, D. )

    1993-05-20

    The authors report on data which measures the solar ultraviolet irradiance between 300 and 310nm at Ushuaia, Argentina over the period Sept 1990 to Mar 1991. Ushuaia is 10[degrees] or more north of the Antarctic ozone hole, though it may or may not be in the fringe of the polar vortex. Over the Antarctic there has been an observed enhancement in solar ultraviolet irradiance on the surface of the Earth, though it has little relevance due to the sparse population density. In the northern hemisphere there has been observed an overall decrease in column ozone, but no recorded change in spectral irradiance, though there are several possible explanations for this observation. In the southern hemisphere the question of whether polar air masses could migrate north following the collapse of the polar vortex, and produce regions of depleted ozone, with consequent ultraviolet irradiance increase is looked at in this paper. Substantial increases in ultraviolet irradiance are observed from this observation period, but because of the limited data set it is difficult to say for sure that such an air mass migration was the origin. However, the net effect is still a substantial increase in solar ultraviolet irradiance, with possible biological consequences.

  18. How the inclination of Earth's orbit affects incoming solar irradiance

    NASA Astrophysics Data System (ADS)

    Vieira, L. E. A.; Norton, A.; Dudok de Wit, T.; Kretzschmar, M.; Schmidt, G. A.; Cheung, M. C. M.

    2012-08-01

    The variability in solar irradiance, the main external energy source of the Earth's system, must be critically studied in order to place the effects of human-driven climate change into perspective and allow plausible predictions of the evolution of climate. Accurate measurements of total solar irradiance (TSI) variability by instruments onboard space platforms during the last three solar cycles indicate changes of approximately 0.1% over the sunspot cycle. Physics-based models also suggest variations of the same magnitude on centennial to millennia time-scales. Additionally, long-term changes in Earth's orbit modulate the solar irradiance reaching the top of the atmosphere. Variations of orbital inclination in relation to the Sun's equator could potentially impact incoming solar irradiance as a result of the anisotropy of the distribution of active regions. Due to a lack of quantitative estimates, this effect has never been assessed. Here, we show that although observers with different orbital inclinations experience various levels of irradiance, modulations in TSI are not sufficient to drive observed 100 kyr climate variations. Based on our model we find that, due to orbital inclination alone, the maximum change in the average TSI over timescales of kyrs is ˜0.003 Wm-2, much smaller than the ˜1.5 Wm-2 annually integrated change related to orbital eccentricity variations, or the 1-8 Wm-2 variability due to solar magnetic activity. Here, we stress that out-of-ecliptic measurements are needed in order to constrain models for the long-term evolution of TSI and its impact on climate.

  19. Total and Spectral Solar Irradiance Sensor (TSIS) Project Overview

    NASA Technical Reports Server (NTRS)

    Carlisle, Candace; Wedge, Ronnice; Wu, Dong; Stello, Harry; Robinson, Renee

    2015-01-01

    The main objective of the Total and Spectral solar Irradiance Sensor (TSIS) is to acquire measurements to determine the direct and indirect effects of solar radiation on climate. TSIS total solar irradiance measurements will extend a 37-year long uninterrupted measurement record of incoming solar radiation, the dominant energy source driving the Earths climate and the most precise indicator of changes in the Suns energy output. TSIS solar spectral irradiance measurements will determine the regions of the Earths multi-layered atmosphere that are affected by solar variability, from which the solar forcing mechanisms causing changes in climate can be quantified. TSIS includes two instruments: the Total Irradiance Monitor (TIM) and the Spectral Irradiance Monitor (SIM), integrated into a single payload. The TSIS TIM and SIM instruments are upgraded versions of the two instruments that are flying on the Solar Radiation and Climate Experiment (SORCE) mission launched in January 2003. TSIS was originally planned for the nadir-pointing National Polar-orbiting Operational Environmental Satellite System (NPOESS) spacecraft. The TSIS instrument passed a Critical Design Review (CDR) for NPOESS in December 2009. In 2010, TSIS was re-planned for the Joint Polar Satellite System (JPSS) Polar Free Flyer (PFF). The TSIS TIM, SIM, and associated electronics were built, tested, and successfully completed pre-ship review as of December 2013.In early 2014, NOAA and NASA agreed to fly TSIS on the International Space Station (ISS). In the FY16 Presidents Budget, NASA assumes responsibility for the TSIS mission on ISS. The TSIS project includes requirements, interface, design, build and test of the TSIS payload, including an updated pointing system, for accommodation on the ISS. It takes advantage of the prior development of the TSIS sensors and electronics. The International Space Station (ISS) program contributions include launch services and robotic installation of the TSIS payload

  20. The New Climate Data Record of Solar Irradiance: Comparisons with Observations and Solar Irradiance Models Over a Range of Solar Activity Time Scales

    NASA Astrophysics Data System (ADS)

    Coddington, O.; Lean, J.; Pilewskie, P.; Richard, E. C.; Snow, M. A.; Kopp, G.; Lindholm, C.

    2016-12-01

    A new publically available climate data record (CDR) of total and spectral solar irradiance became operational in November 2015 as part of the National Oceanographic and Atmospheric Administration's (NOAA's) National Centers for Environmental Information (NCEI) Climate Data Record Program. The data record, which is updated regularly, is available from 1610 to the present day as yearly-average values and from 1882 to the present day as monthly- and daily-averages, with associated time and wavelength-dependent uncertainties. It was developed jointly by the University of Colorado at Boulder's Laboratory for Atmospheric and Space Physics (LASP) and the Naval Research Laboratory (NRL) and, together with the source code and supporting documentation, is available at https://www.ncdc.noaa.gov/cdr/. Total solar irradiance (TSI) and solar spectral irradiance (SSI) are estimated from models that determine the changes from quiet Sun conditions arising from bright faculae and dark sunspots on the solar disk. The models are constructed using linear regression of proxies of solar sunspot and facular features with the approximately decade-long irradiance observations from the SOlar Radiation and Climate Experiment (SORCE). We describe the model formulation, uncertainty estimates, and validation approach. We present comparisons of the modeled TSI and SSI with observational records and with other solar irradiance models on solar-rotational, solar-cycle, and multi-decadal timescales. We discuss ongoing efforts to improve the irradiance uncertainty estimates arising from model assumptions and the operational approach to make these updated uncertainty estimates publicly available in a future revision of the Solar Irradiance CDR.

  1. Solar Spectral Proxy Irradiance from GOES (SSPRING): a model for solar EUV irradiance

    NASA Astrophysics Data System (ADS)

    Suess, Katherine; Snow, Martin; Viereck, Rodney; Machol, Janet

    2016-02-01

    Several currently operating instruments are able to measure the full EUV spectrum at sufficient wavelength resolution for use in upper-atmosphere modeling, the effects of space weather, and modeling satellite drag. However, no missions are planned at present to succeed the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) and Solar Dynamics Observatory (SDO) missions, which currently provide these data sources. To develop a suitable replacement for these measurements, we use two broadband EUV channels on the NOAA GOES satellites, the magnesium core-to-wing ratio (Mg II index) from the SOlar Radiation and Climate Experiment (SORCE) as well as EUV and Mg II time averages to model the EUV spectrum from 0.1 to 105 nm at 5-nm spectral resolution and daily time resolution. A Levenberg-Marquardt least squares fitting algorithm is used to determine a coefficient matrix that best reproduces a reference data set when multiplied by input data. The coefficient matrix is then applied to model data outside of the fitting interval. Three different fitting intervals are tested, with a variable fitting interval utilizing all days of data before the prediction date producing the best results. The correlation between the model results and the observed spectrum is found to be above 95% for the 0.1-50 nm range, and between 74% and 95% for the 50-105 nm range. We also find a favorable comparison between our results and the Flare Irradiance Spectral Model (FISM). These results provide a promising potential source for an empirical EUV spectral model after direct EUV measurements are no longer available, and utilize a similar EUV modeling technique as the upcoming GOES-R satellites.

  2. Basin-scale solar irradiance estimates in semiarid regions using GOES 7

    SciTech Connect

    Pinker, R.T.; Laszlo, I.; Kustas, W.P.

    1994-05-01

    This paper evaluates the ability of satellite observations from GOES 7 to provide basin-scale surface solar irradiance (SW) estimates in a semiarid region during a period of strong convective activity with highly variable cloud conditions. A physical inference model is used to derive the SW. Information of surface albedo is a prerequisite in all such models. In this study the albedo is first derived from the clear sky radiances as observed from the same satellite. 29 refs., 12 figs, 5 tabs.

  3. SORCE and Future Satellite Observations of Solar Irradiance

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.; Rottman, G.; Woods, T.; Lawrence, G.; Kopp, G.; Harder, J.; McClintock, W.

    2003-01-01

    With solar activity just passing the maximum of cycle 23, SORCE is beginning a 5 year mission to measure total solar irradiance (TSI) with unprecedented accuracy using phase-sensitive detection, and to measure spectral solar irradiance (SSI) with unprecedented spectral coverage, from 1 to 2000 nm. The new Total Irradiance Monitor (TIM) has 4 active cavity radiometers, any one of which can be used as a fixed-temperature reference against any other that is exposed to the Sun via a shutter that cycles at a rate designed to minimize noise at the shutter frequency. The new Spectral Irradiance Monitor (SIM) is a dual Fery prism spectrometer that can employ either prism as a monochromatic source on the other prism, thus monitoring its transmission during the mission lifetime. Either prism can measure SSI from 200 to 2000 nm, employing the same phase-sensitive electrical substitution strategy as TIM. SORCE also carries dual SOLSTICE instruments to cover the spectral range 100-320 nm, similar to the instruments onboard UARS, and also an XUV Photometer System (XPS) similar to that on TIMED. SSI has now been added to TSI as a requirement of EOS and NPOESS, because different spectral components drive different components of the climate system - UV into upper atmosphere and stratospheric ozone, IR into tropospheric water vapor and clouds, and Visible into the oceans and biosphere. Succeeding satellite missions being planned for 2006 and 2011 will continue to monitor these critical solar variables.

  4. Preliminary Low Temperature Electron Irradiation of Triple Junction Solar Cells

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Mueller, Robert L.; Scrivner, Roy L.; Helizon, Roger S.

    2007-01-01

    For many years extending solar power missions far from the sun has been a challenge not only due to the rapid falloff in solar intensity (intensity varies as inverse square of solar distance) but also because some of the solar cells in an array may exhibit a LILT (low intensity low temperature) degradation that reduces array performance. Recent LILT tests performed on commercial triple junction solar cells have shown that high performance can be obtained at solar distances as great as approx. 5 AU1. As a result, their use for missions going far from the sun has become very attractive. One additional question that remains is whether the radiation damage experienced by solar cells under low temperature conditions will be more severe than when measured during room temperature radiation tests where thermal annealing may take place. This is especially pertinent to missions such as the New Frontiers mission Juno, which will experience cell irradiation from the trapped electron environment at Jupiter. Recent testing2 has shown that low temperature proton irradiation (10 MeV) produces cell degradation results similar to room temperature irradiations and that thermal annealing does not play a factor. Although it is suggestive to propose the same would be observed for low temperature electron irradiations, this has not been verified. JPL has routinely performed radiation testing on commercial solar cells and has also performed LILT testing to characterize cell performance under far sun operating conditions. This research activity was intended to combine the features of both capabilities to investigate the possibility of any room temperature annealing that might influence the measured radiation damage. Although it was not possible to maintain the test cells at a constant low temperature between irradiation and electrical measurements, it was possible to obtain measurements with the cell temperature kept well below room temperature. A fluence of 1E15 1MeV electrons was

  5. 1978-1988 Total Solar Irradiance (TSI) Variability Trends

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III; Priestley, Kory J.; Wilson, Robert S.; Al-Hajjah, Aiman; Paden, Jack; Pandey, Dhirendra K.; Thomas, Susan

    1999-01-01

    Total solar irradiance (TSI), normalized to the mean earth-sun distance, is analyzed to assess long-term solar variability which may affect climate. TSI data sets are reviewed primarily from the 1984-1999 Earth Radiation Budgets Satellite (ERBS), 1978-1993 Nimbus7, 1980-1989 Solar Maximum Mission (SMM), 19911998 Upper Atmospheric Research Satellite (UARS), and 1996-1998 Solar and Heliospheric Observatory (SOHO)/ Variability of solar IRradiance and Gravity Oscillations (VIRGO) Spacecraft missions. The data sets indicate that 1365 W/sq m [Watts per meter square] is the most likely TSI amplitude at minimum solar magnetic activity as indicated by minimum sunspot numbers. The TSI long-term variability component was found to vary with a period of approximately 10 years and with an amplitude of 2 W/sq m. An empirical TSI fit model, based upon 10.7-cm solar radio fluxes and prompt photometric sunspot indices, was used to characterize TSI variability. Comparisons among TSI measurements and empirical fit trends are reviewed as well as inconsistencies among current spacecraft TSI data set trends. The 1996-1998, SOHO/VIRGO measurement indicate stronger TSI increasing trends than those suggested by the corresponding ERBS and UARS measurement and by the empirical model fit. 1978-1999 TSI data sets are analyzed to identify the probable existence of another long-term TSI variability component.

  6. Ion-irradiation of complex hydrocarbons: implications for small Solar System bodies

    NASA Astrophysics Data System (ADS)

    Moroz, L.; Baratta, G.; Distefano, E.; Strazzulla, G.; Dotto, E.; Barucci, M.; Arnold, G.

    2003-04-01

    Trans-Neptunian Objects (TNOs) and cometary nuclei show remarkable color variations. In the visual and near-infrared spectral regions their colors may range from red to gray or bluish. This probably indicates that surface alteration processes such as space weathering and impact resurfacing plays an essential role in the color diversity of such bodies. In particular, some previous laboratory ion-irradiation experiments demonstrated a transformation of surface colors of ices from gray to red and further to gray. Additional possibility is a transformation of originally red dark refractory organic surface components into a gray carbonized material as a result of ion irradiation. We simulated such an "ageing" effect by an irradiation of a natural dark red organic samples (asphaltite and kerite). The samples were irradiated by 30-60 keV H+, N+ and Ar++ ions and their reflectance spectra were measured before and after irradiation. The results indicate that initially red spectra of organics progressively flatten with increasing ion fluences. The laboratory spectra have been compared with astronomical spectra of TNOs. We demonstrate that an observed variety of TNO’ spectral slopes can be reproduced by our laboratory spectra corresponding to different ion fluences. If we assume that fresh surfaces of some TNOs are red due to their refractory organic components, then their irradiation by ion populations in the Solar System in combination with collisional evolution exposing these fresh surfaces could have produced a variety of colors.

  7. Physical interpretation of variations in total solar irradiance

    SciTech Connect

    Foukal, P.

    1987-01-20

    Radiometry from the Solar Maximum Mission and Nimbus 7 satellites has demonstrated that the solar constant varies at a peak-to-peak level of up to 0.2% on time scales of weeks. The rotation and evolution of dark spots and bright faculae across the sun's disk accounts for most of that variation. Reasonable explanations have been put forward to explain how the spot-blocked heat flow might be stored and to explain the source of the intense radiation that gives rise to the increased irradiance produced by the bright magnetic faculae. Time-dependent models of the response of the solar convection zone to small perturbations also indicate that slower variations in total solar irradiance of camparable magnitude are likely. More precise observations of the total solar irradiance and radius over long time scales are required to demonstrate the existence of such climatologically relevant changes and to test models that would enable us to interpret and, possibly, to predict these changes. copyright American Geophysical Union 1987

  8. Reconstructing the Solar VUV Irradiance over the Past 60 Years

    NASA Technical Reports Server (NTRS)

    Chamberlin, Phillip

    2010-01-01

    The Flare Irradiance Spectral Model (FISM) is an empirical model of the solar irradiance spectrum from 0.1 to 190 nm at I nm spectral resolution and on a 1-minute time cadence. The goal of FISM is to provide accurate solar spectral irradiances over the vacuum ultraviolet (VUV: 0-200 nm) range as input for ionospheric and thermospheric models, as well as climate studies over 60 years. A brief overview of the FISM model will be given, and also discussed is how the Solar Dynamics Observatory (SDO) EUV Variability Experiment (EVE) will contribute to improving FISM and its accuracies. Results will also be shown quantifying the VUV contributions to the total flare energy budget, and more importantly discuss the increased errors associated by not including flares in the solar energy input to the Earth's system. Concluding the talk will be a discussion of the proxies, and their associated uncertainties, used for solar spectral reconstructions prior to 1947 going back hundreds of years.

  9. Solar irradiance variability: progress in measurement and empirical analysis

    NASA Astrophysics Data System (ADS)

    de Toma, G.; White, O. R.; Chapman, G. A.; Walton, S. R.

    2004-01-01

    Here we report the progress in both measurements and analysis of total solar irradiance (TSI) during the last 24 years. Recent TSI measurements made by ACRIM III and VIRGO in the last two years agree to within 0.5 W m -2 and show the same pattern of short-term variability. A 24-year composite record of TSI measurements gives estimates of its variation for two solar cycles. Such composites give the first estimates of secular variation of the solar output. Our analysis of TSI data from solar minimum to maximum for cycles 22 and 23 gives nearly identical regression equations because of improvement in VIRGO degradation corrections, thus, resolving the empirical issue raised by de Toma et al. [Astrophys. J. Lett. 549 (2001) L131]. This agreement occurs despite a decrease in cycle 23 of sunspot number by ≈33% below solar maximum values for cycles 21 and 22.

  10. Surface Modification of a Nanoporous Carbon Photoanode upon Irradiation.

    PubMed

    Gomis-Berenguer, Alicia; Velo-Gala, Inmaculada; Rodríguez-Castellón, Enrique; Ania, Conchi O

    2016-11-23

    The photocorrosion of a nanoporous carbon photoanode, with low surface functionalization and high performance towards the photoelectrochemical oxidation of water using simulated solar light, was investigated. Two different light configurations were used to isolate the effect of the irradiation wavelength (UV and visible light) on the textural and chemical features of the carbon photoanode, and its long-term photocatalytic performance for the oxygen evolution reaction. A complete characterization of the carbon showed that the photocorrosion of carbon anodes of low functionalization follows a different pathway than highly functionalized carbons. The carbon matrix gets slightly oxidized, with the formation of carboxylic and carbonyl-like moieties in the surface of the carbon anode after light exposure. The oxidation of the carbon occurred due to the photogeneration of oxygen reactive species upon the decomposition of water during the irradiation of the photoanodes. Furthermore, the photoinduced surface reactions depend on the nature of the carbon anode and its ability to photogenerate reactive species in solution, rather than on the wavelength of the irradiation source. This surface modification is responsible for the decreased efficiency of the carbon photoanode throughout long illumination periods, due to the effect of the oxidation of the carbon matrix on the charge transfer. In this work, we have corroborated that, in the case of a low functionalization carbon material, the photocorrosion also occurs although it proceeds through a different pathway. The carbon anode gets gradually slightly oxidized due to the photogeneration of O-reactive species, being the incorporation of the O-groups responsible for the decreased performance of the anode upon long-term irradiation due to the effect of the oxidation of the carbon matrix on the electron transfer.

  11. Surface meteorology and Solar Energy

    NASA Technical Reports Server (NTRS)

    Stackhouse, Paul W. (Principal Investigator)

    The Release 5.1 Surface meteorology and Solar Energy (SSE) data contains parameters formulated for assessing and designing renewable energy systems. Parameters fall under 11 categories including: Solar cooking, solar thermal applications, solar geometry, tilted solar panels, energy storage systems, surplus product storage systems, cloud information, temperature, wind, other meteorological factors, and supporting information. This latest release contains new parameters based on recommendations by the renewable energy industry and it is more accurate than previous releases. On-line plotting capabilities allow quick evaluation of potential renewable energy projects for any region of the world. The SSE data set is formulated from NASA satellite- and reanalysis-derived insolation and meteorological data for the 10-year period July 1983 through June 1993. Results are provided for 1 degree latitude by 1 degree longitude grid cells over the globe. Average daily and monthly measurements for 1195 World Radiation Data Centre ground sites are also available. [Mission Objectives] The SSE project contains insolation and meteorology data intended to aid in the development of renewable energy systems. Collaboration between SSE and technology industries such as the Hybrid Optimization Model for Electric Renewables ( HOMER ) may aid in designing electric power systems that employ some combination of wind turbines, photovoltaic panels, or diesel generators to produce electricity. [Temporal_Coverage: Start_Date=1983-07-01; Stop_Date=1993-06-30] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180].

  12. Surface meteorology and Solar Energy

    NASA Technical Reports Server (NTRS)

    Stackhouse, Paul W. (Principal Investigator)

    The Release 5.1 Surface meteorology and Solar Energy (SSE) data contains parameters formulated for assessing and designing renewable energy systems. Parameters fall under 11 categories including: Solar cooking, solar thermal applications, solar geometry, tilted solar panels, energy storage systems, surplus product storage systems, cloud information, temperature, wind, other meteorological factors, and supporting information. This latest release contains new parameters based on recommendations by the renewable energy industry and it is more accurate than previous releases. On-line plotting capabilities allow quick evaluation of potential renewable energy projects for any region of the world. The SSE data set is formulated from NASA satellite- and reanalysis-derived insolation and meteorological data for the 10-year period July 1983 through June 1993. Results are provided for 1 degree latitude by 1 degree longitude grid cells over the globe. Average daily and monthly measurements for 1195 World Radiation Data Centre ground sites are also available. [Mission Objectives] The SSE project contains insolation and meteorology data intended to aid in the development of renewable energy systems. Collaboration between SSE and technology industries such as the Hybrid Optimization Model for Electric Renewables ( HOMER ) may aid in designing electric power systems that employ some combination of wind turbines, photovoltaic panels, or diesel generators to produce electricity. [Temporal_Coverage: Start_Date=1983-07-01; Stop_Date=1993-06-30] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180].

  13. Energetic proton irradiation history of the HED parent body regolith and implications for ancient solar activity

    NASA Astrophysics Data System (ADS)

    Rao, M. N.; Garrison, D. H.; Palma, R. L.; Bogard, D. D.

    1997-07-01

    Previous studies have shown that the Kapoeta howardite, as well as several other meteorites, contain excess concentrations of cosmogenic neon in the darkened, solar-irradiated phase compared to the light, non-irradiated phase. The two explanations offered for the nuclear production of these Ne excesses in the parent body regolith are either from galactic particle (GCR) irradiation or from a greatly enhanced flux of energetic solar protons (SCR), as compared to the recent solar flux. Combining new isotopic data we obtained on acid-etched, separated feldspar from Kapoeta light and dark phases with literature data, we show that the cosmogenic 21Ne /22Ne ratio of light phase feldspar (0.80) is consistent with only GCR irradiation in space for ~3 Myr. However, the 21Ne/22Ne ratio (0.68) derived for irradiation of dark phase feldspar in the Kapoeta regolith indicates that cosmogenic Ne was produced in roughly equal proportions from galactic and solar protons. Considering a simple model of an immature Kapoeta parent body regolith, the duration of this early galactic exposure was only ~3-6 Myr, which would be an upper limit to the solar exposure time of individual grains. Concentrations of cosmogenic 21Ne in pyroxene separates and of cosmogenic 126Xe in both feldspar and pyroxene are consistent with this interpretation. The near-surface irradiation time of individual grains in the Kapoeta regolith probably varied considerably due to regolith mixing to an average GCR irradiation depth of ~10 cm. Because of the very different depth scales for production of solar ~Fe tracks, SCR Ne, and GCR Ne, the actual regolith exposure times for average grains probably differed correspondingly. However, both the SCR 21Ne and solar track ages appear to be longer because of enhanced production by early solar activity. The SCR/GCR production ratio of 21Ne inferred from the Kapoeta data is larger by a at least a factor of 10 and possibly as much as a factor of ~50 compared to recent solar

  14. Surface Structures of UV-Irradiated Polymers

    NASA Astrophysics Data System (ADS)

    Zhang, Renwu; Chen, Hongmin; Ying, Li; Huang, Chia-Ming; Zhang, Junjie; Mallon, Peter; Zhu, D. M.; Huang, Y. Y.; Sandreczki, T. C.; Peng, Q.; Richardson, J. R.; Wu, Yichu; Jean, Y. C.

    2001-03-01

    Photodegradation of polyurethane coatings and polyurethane-based paints is induced by UV irradiation using different light sources: 340nm-UVA, 313nm-UVB, Xe lamps and Florida weathering. Positron annihilation spectroscopy (PAS) is applied to measure the nano-structural changes at the atomic level from the surface to the bulk. Significant variations of sub-nanometer defect parameters determined from PAS results are observed as a function of depth, of exposure time, and of weathering conditions.1 The loss of durability at the early stage of UV irradiation is interpreted in terms of changes in crosslink density and formation of free radicals after chemical bonds are broken. This is correlated with results obtained using other methods, including AFM, ESR, NMR, FTIR, DSC, UV-vis absorption, and mechanical measurements. R. Zhang, et al, Rad. Phys. Chem., 58, 639 (2000). * Supported by NSF-CMS-9812717; AFOSR:F49629-97-0162,F49629-98-1-0309

  15. Realistic Solar Surface Convection Simulations

    NASA Technical Reports Server (NTRS)

    Stein, Robert F.; Nordlund, Ake

    2000-01-01

    We perform essentially parameter free simulations with realistic physics of convection near the solar surface. We summarize the physics that is included and compare the simulation results with observations. Excellent agreement is obtained for the depth of the convection zone, the p-mode frequencies, the p-mode excitation rate, the distribution of the emergent continuum intensity, and the profiles of weak photospheric lines. We describe how solar convection is nonlocal. It is driven from a thin surface thermal boundary layer where radiative cooling produces low entropy gas which forms the cores of the downdrafts in which most of the buoyancy work occurs. We show that turbulence and vorticity are mostly confined to the intergranular lanes and underlying downdrafts. Finally, we illustrate our current work on magneto-convection.

  16. Annealing characteristics of irradiated hydrogenated amorphous silicon solar cells

    NASA Technical Reports Server (NTRS)

    Payson, J. S.; Abdulaziz, S.; Li, Y.; Woodyard, J. R.

    1991-01-01

    It was shown that 1 MeV proton irradiation with fluences of 1.25E14 and 1.25E15/sq cm reduces the normalized I(sub SC) of a-Si:H solar cell. Solar cells recently fabricated showed superior radiation tolerance compared with cells fabricated four years ago; the improvement is probably due to the fact that the new cells are thinner and fabricated from improved materials. Room temperature annealing was observed for the first time in both new and old cells. New cells anneal at a faster rate than old cells for the same fluence. From the annealing work it is apparent that there are at least two types of defects and/or annealing mechanisms. One cell had improved I-V characteristics following irradiation as compared to the virgin cell. The work shows that the photothermal deflection spectroscopy (PDS) and annealing measurements may be used to predict the qualitative behavior of a-Si:H solar cells. It was anticipated that the modeling work will quantitatively link thin film measurements with solar cell properties. Quantitative predictions of the operation of a-Si:H solar cells in a space environment will require a knowledge of the defect creation mechanisms, defect structures, role of defects on degradation, and defect passivation and annealing mechanisms. The engineering data and knowledge base for justifying space flight testing of a-Si:H alloy based solar cells is being developed.

  17. Diffuse and global solar spectral irradiance under cloudless skies

    SciTech Connect

    Brine, D.T.; Iqbal, M.

    1982-01-01

    A simple empirical model to calculate solar spectral diffuse and global irradiance under cloudless skies was investigated. This formulation takes into account absorption of radiation by molecules such as O/sub 3/, H/sub 2/O and the uniformly-mixed absorbing gases CO/sub 2/ and O/sub 2/. Attenuation by Rayleigh-scattering and aerosol extinction are included. Aerosol attenuation is calculated through Angstroem's turbidity parameters ..cap alpha.. and ..beta... The diffuse radiation is assumed to be composed of three parts: (1) Rayleigh-scattered diffuse irradiance; (2) aerosol-scattered diffuse irradiance; and (3) irradiance arising out of multiple reflections between the atmosphere and the ground. The global irradiance is the sum of these three components of diffuse irradiance plus the direct irradiance. The input parameters include an extraterrestrial spectrum, zenith angle theta, turbidity coefficient ..beta.., wavelength exponent ..cap alpha.., ground albedo rho/sub g/, water vapor content and ozone content. The model is shown to yield very good results up to air mass two when compared to accurate theoretical calculations. No comparisons with measured spectra are presented because of a lack of accurate specifications of the input parameters. Results are presented to show the effect of variation of certain of the input parameters.

  18. The Impact of Different Absolute Solar Irradiance Values on Current Climate Model Simulations

    NASA Technical Reports Server (NTRS)

    Rind, David H.; Lean, Judith L.; Jonas, Jeffrey

    2014-01-01

    Simulations of the preindustrial and doubled CO2 climates are made with the GISS Global Climate Middle Atmosphere Model 3 using two different estimates of the absolute solar irradiance value: a higher value measured by solar radiometers in the 1990s and a lower value measured recently by the Solar Radiation and Climate Experiment. Each of the model simulations is adjusted to achieve global energy balance; without this adjustment the difference in irradiance produces a global temperature change of 0.48C, comparable to the cooling estimated for the Maunder Minimum. The results indicate that by altering cloud cover the model properly compensates for the different absolute solar irradiance values on a global level when simulating both preindustrial and doubled CO2 climates. On a regional level, the preindustrial climate simulations and the patterns of change with doubled CO2 concentrations are again remarkably similar, but there are some differences. Using a higher absolute solar irradiance value and the requisite cloud cover affects the model's depictions of high-latitude surface air temperature, sea level pressure, and stratospheric ozone, as well as tropical precipitation. In the climate change experiments it leads to an underestimation of North Atlantic warming, reduced precipitation in the tropical western Pacific, and smaller total ozone growth at high northern latitudes. Although significant, these differences are typically modest compared with the magnitude of the regional changes expected for doubled greenhouse gas concentrations. Nevertheless, the model simulations demonstrate that achieving the highest possible fidelity when simulating regional climate change requires that climate models use as input the most accurate (lower) solar irradiance value.

  19. Solar Cycle Spectral Irradiance Variation and Stratospheric Ozone

    NASA Astrophysics Data System (ADS)

    Stolarski, R. S.; Swartz, W. H.; Jackman, C. H.; Fleming, E. L.

    2011-12-01

    Recent measurements from the SIM instrument on the SORCE satellite have been interpreted by Harder et al (Geophys. Res. Lett., 36, L07801, doi:10.1029/2008GL036797, 2009) as implying a different spectral irradiance variation over the solar cycle than that put forward by Lean (Geophys. Res. Lett., 27, 2425-2428, 2000). When we inserted this new wavelength dependent solar cycle variation into our 3D CCM we found a different solar cycle dependence of the ozone concentration as a function of altitude from that we derived using the traditional Lean wavelength dependence. Examination of these results led us to realize that the main issue is the solar cycle variation of radiation at wavelengths less than 240 nm versus the solar cycle variation of radiation at wavelengths between 240 nm and 300 nm. The impact of wavelengths less than 240 nm occurs through photodissociation of O2 leading to the production of ozone. The impact of wavelengths between 240 nm and 300 nm occurs through photodissociation of O3 leading to an increase in O atoms and enhanced ozone destruction. Thus one wavelength region gives an in-phase relationship of ozone with the solar cycle while the other wavelength region gives an out-of-phase relationship of ozone with the solar cycle. We have used the Goddard two-dimensional (2D) photochemistry transport model to examine this relationship in more detail. We calculate the altitude and latitude sensitivity of ozone to changes in the solar UV irradiance as a function of wavelength. These results can be used to construct the ozone response to arbitrary wavelength dependencies of solar UV variation.

  20. Design and calibration of the solar irradiance monitor

    NASA Astrophysics Data System (ADS)

    Yang, Dong-jun; Fang, Wei; Ye, Xin; Wang, Yu-peng; Gong, Cheng-hu; Zhang, Guang-wei

    2011-08-01

    The solar irradiance monitor (SIM), with the design accuracy of 5%, used to monitor the secular changes of the total solar irradiance on FY-3 satellite, takes the sun-scanning measurement method on-orbit. Compared to the sun-tracking measurement method, this method simplifies the structure and cuts the cost, but the measuring accuracy is affected by the sun-synchronous orbit, sunlight incidence angle and the installing angle of the SIM in the satellite. Through the ground calibration experiment, studies on the affection of different sunlight incidence angles to the measurement accuracy. First, by the satellite tool kit (STK) simulation software, simulates the orbital parameters of the sun-synchronous satellite, and calculates the Sun ascension and declination at any time. By the orbit coordinate transformation matrix gets the components of the Sun vectors to the axes of the satellite, and base on the components designs the field of view and the installing angles of the SIM. Then, designs and completes the calibration experiment to calibrate the affection of the incidence angles. Selecting 11 different angles between the sunlight and the satellite X-axis, measures the total solar irradiance by the SIM at each angle, and compares to the irradiances of the SIAR reference radiometers, and gets the coefficient curves of the three channels of the SIM. Finally, by the quadratic fitting, gets the correction equations on the incidence angles: 5 2 3 R1 5.71x10-5α2 - 2.453 10-5 α2 1.0302, R2 = 2.84×10-5α2-1.965x10-3α+1.0314 and R3 =1.72x10-5α2-4.184x10-4α+0.9946. The equations will improve the on-orbit measurement accuracy of the solar irradiance, and are very important to the on-orbit data processing after the satellite launched.

  1. Modelling Variations in Total Solar Irradiance during Cycle 22

    NASA Astrophysics Data System (ADS)

    Chapman, G. A.; Cookson, A. M.; Dobias, J. J.

    1995-12-01

    We have compared total solar irradiance from Nimbus-7 and ACRIM1 with ground- based photometry from the San Fernando Observatory (SFO). The ground-based photometry consisted of photometric sunspot deficits and a photometric facular index. In some instances, we have included UV data from NOAA-9. For Nimbus-7 data, from 30 May 1988 to 13 December 1993, using all three sets of data, we find for 745 days of data a coefficient of multiple correlation, R\\^2, of 0.89. The value of the quiet sun irradiance was 1371.67 +/- 0.21 W/m\\^2. For a subset of these Nimbus-7 data, the rms noise was 0.19 W/m\\^2. For ACRIM1 data, for the period from March 1985 to July 1989 the value of R\\^2 was 0.81 for 685 days of data. For this interval, only the photometric sunspot deficit and NOAA9 UV data were used. The quiet sun irradiance was 1366.96 +/- 0.21 W/m\\^2. The Nimbus-7 analysis, from 30 May 1988 to 13 December 1993, covers the rise, peak, and decline for solar cycle 22. The residuals show no evidence of the rise and decline in irradiance that can be seen in the Nimbus-7 data. We conclude that, to an uncertainty of about 200 parts per million of the mean irradiance, sunspots, faculae, and the network appear to explain all of the long term variation in the total solar irradiance. This research has been partially supported by grants from NSF (ATM-9115111) and NASA (NAGW-3017). Most of the SFO observations have been obtained by students to numerous to list.

  2. Irradiance optimization of outdoor microalgal cultures using solar tracked photobioreactors.

    PubMed

    Hindersin, Stefan; Leupold, Marco; Kerner, Martin; Hanelt, Dieter

    2013-03-01

    Photosynthetic activity and temperature regulation of microalgal cultures (Chlorella vulgaris and Scenedesmus obliquus) under different irradiances controlled by a solar tracker and different cell densities were studied in outdoor flat panel photobioreactors. An automated process control unit regulated light and temperature as well as pH value and nutrient concentration in the culture medium. CO2 was supplied using flue gas from an attached combined block heat and power station. Photosynthetic activity was determined by pulse amplitude modulation fluorometry. Compared to the horizontal irradiance of 55 mol photons m(-2) d(-1) on a clear day, the solar tracked photobioreactors enabled a decrease and increase in the overall light absorption from 19 mol photons m(-2) d(-1) (by rotation out of direct irradiance) to 79 mol photons m(-2) d(-1) (following the position of the sun). At biomass concentrations below 1.1 g cell dry weight (CDW) L(-1), photoinhibition of about 35 % occurred at irradiances of ≥1,000 μmol photons m(-2) s(-1) photosynthetic active radiation (PAR). Using solar tracked photobioreactors, photoinhibition can be reduced and at optimum biomass concentration (≥2.3 g CDW L(-1)), the culture was irradiated up to 2,000 μmol photons m(-2) s(-1) to overcome light limitation with biomass yields of 0.7 g CDW mol photons(-1) and high photosynthetic activities indicated by an effective quantum yield of 0.68 and a maximum quantum yield of 0.80 (F v/F m). Overheating due to high irradiance was avoided by turning the PBR out of the sun or using a cooling system, which maintained the temperature close to the species-specific temperature optima.

  3. Vacuum ultraviolet instrumentation for solar irradiance and thermospheric airglow

    NASA Technical Reports Server (NTRS)

    Woods, Thomas N.; Rottman, Gary J.; Bailey, Scott M.; Solomon, Stanley C.

    1993-01-01

    A NASA sounding rocket experiment was developed to study the solar extreme ultraviolet (EUV) spectral irradiance and its effect on the upper atmosphere. Both the solar flux and the terrestrial molecular nitrogen via the Lyman-Birge-Hopfield bands in the far ultraviolet (FUV) were measured remotely from a sounding rocket on October 27, 1992. The rocket experiment also includes EUV instruments from Boston University (Supriya Chakrabarti), but only the National Center for Atmospheric Research (NCAR)/University of Colorado (CU) four solar instruments and one airglow instrument are discussed here. The primary solar EUV instrument is a 1/4 meter Rowland circle EUV spectrograph which has flown on three rockets since 1988 measuring the solar spectral irradiance from 30 to 110 nm with 0.2 nm resolution. Another solar irradiance instrument is an array of six silicon XUV photodiodes, each having different metallic filters coated directly on the photodiodes. This photodiode system provides a spectral coverage from 0.1 to 80 nm with about 15 nm resolution. The other solar irradiance instrument is a silicon avalanche photodiode coupled with pulse height analyzer electronics. This avalanche photodiode package measures the XUV photon energy providing a solar spectrum from 50 to 12,400 eV (25 to 0.1 nm) with an energy resolution of about 50 eV. The fourth solar instrument is an XUV imager that images the sun at 17.5 nm with a spatial resolution of 20 arc-seconds. The airglow spectrograph measures the terrestrial FUV airglow emissions along the horizon from 125 to 160 nm with 0.2 nm spectral resolution. The photon-counting CODACON detectors are used for three of these instruments and consist of coded arrays of anodes behind microchannel plates. The one-dimensional and two-dimensional CODACON detectors were developed at CU by Dr. George Lawrence. The pre-flight and post-flight photometric calibrations were performed at our calibration laboratory and at the Synchrotron Ultraviolet

  4. Irradiation and measurements of fluorinated ethylene-propylene-A on silicon solar cells in vacuum

    NASA Technical Reports Server (NTRS)

    Marsik, S. J.; Broder, J. D.

    1975-01-01

    Silicon monoxide (SiO) coated silicon solar cells covered with fluorinated ethylene-propylene-A (FEP-A) were irradiated by 1-MeV electrons in vacuum. The effect of irradiation on the light transmittance of FEP-A was checked by measuring the short-circuit current of the cells while in vacuum after each dose increment, immediately after the irradiation, and again after a minimum elapsed time of 16 hr. The results indicated no apparent loss in transmission due to irradiation of FEP-A and no delamination from the SiO surface while the cells were in vacuum, but embrittlement of FEP-A occurred at the accumulated dose.

  5. Modeling total solar irradiance from PMOD composite using feed-forward neural networks

    NASA Astrophysics Data System (ADS)

    Tebabal, A.; Damtie, B.; Nigussie, M.; Bires, A.; Yizengaw, E.

    2015-12-01

    The variability of the solar activity dominates the variability of the earth's atmosphere, which affects human life and technology on earth. To understand the effects of solar activity on earth's atmosphere different efforts are underway to model the variations of total solar irradiance (TSI) associated to the variations of photometric sunspot index (PSI) and core to wing ratio of Mg II index, for example, linear regression approach. In this study, feed-forward neural networks (NNs) algorithm, which takes the non-linear relationship between the dependent and independent variables, has been implemented to model daily TSI using PSI and Mg II index. First, data between 1978 and 2008 have been used to train and validate NNs, through which the parameters such as weights and biases are estimated. Therefore, NNs has been used to predict TSI between the years 2008 and 2013 from test data. The output of NNs have been compared with PMOD composite TSI and result has shown good agreement. Linear correlation between NNs predicted TSI and PMOD composite is found to be about 0.9307 for the years between 1978 and 2013. This means that NNs predicted TSI from solar proxies explains about 86.6% of the variance of TSI for solar cycles 21-24, and over 90% during solar cycle 23. Predicting TSI using NNs further strengthens the view that surface magnetism indeed plays a dominant role in modulating solar irradiance.

  6. The Missing Solar Irradiance Spectrum: 1 to 7 nm

    NASA Astrophysics Data System (ADS)

    Sojka, J. J.; Lewis, M.; David, M.; Schunk, R. W.; Woods, T. N.; Eparvier, F. G.; Warren, H. P.

    2015-12-01

    During large X-class flares the Earth's upper atmospheric E-region responds immediately to solar photons in the 1 to 7 nm range. The response can change the E-region density by factors approaching 10, create large changes in conductivity, and plague HF communications. GOES-XRS provide 0.1 to 0.8 nm and a 0.05 to 0.4 nm integral channels; SOHO-SEM provided a 0 to 50 nm irradiance; TIMED and SORCE-XPS diode measurements also integrated down to 0.1 nm; and most recently SDO-EVE provided a 0.1 to 7 nm irradiance. For atmospheric response to solar flares the cadence is also crucial. Both GOES and SDO provided integral measurements at 10 seconds or better. Unfortunately these measurements have failed to capture the 1 to 7 nm spectral changes that occur during flares. It is these spectral changes that create the major impact since the ionization cross-section of the dominant atmospheric species, N2 and O2, both contain step function changes in the cross-sections. Models of the solar irradiance over this critical wavelength regime have suffered from the need to model the spectral variability based on incomplete measurements. The most sophisticated empirical model FISM [Chamberlin et al., 2008] used 1 nm spectral binning and various implementations of the above integral measurements to describe the 1 to 7 nm irradiance. Since excellent solar observations exist at other wavelengths it is possible to construct an empirical model of the solar atmosphere and then use this model to infer the spectral distribution at wavelengths below 5 nm. This differential emission measure approach has been used successfully in other contexts [e.g., Warren, 2005, Chamberlin et al., 2009]. This paper contrasts the broadband versus spectrally resolved descriptions of the incoming irradiance that affects the upper atmospheric E-layer. The results provide a prescription of what wavelength resolution would be needed to adequately measure the incoming solar irradiance in the 1 to 7 nm range.

  7. Photometric measurements of solar irradiance variations due to sunspots

    NASA Technical Reports Server (NTRS)

    Chapman, G. A.; Herzog, A. D.; Laico, D. E.; Lawrence, J. K.; Templer, M. S.

    1989-01-01

    A photometric telescope constructed to obtain photometric sunspot areas and deficits on a daily basis is described. Data from this Cartesian full disk telescope (CFDT) are analyzed with attention given to the period between June 4 and June 17, 1985 because of the availability of overlapping sunspot area and irradiance deficit data from high-resolution digital spectroheliograms made with the San Fernando Observatory 28 cm vacuum solar telescope and spectroheliograph. The CFDT sunspot deficits suggest a substantial irradiance contribution from faculae and active region plage.

  8. Effect of solar irradiation on extracellular enzymes of Aeromonas proteolytica

    NASA Technical Reports Server (NTRS)

    Foster, B. G.

    1973-01-01

    The bacterium Aeromonas proteolytica was selected for studying the effects of solar irradiation on extracellular enzymes because it produces an endopeptidase that is capable of degrading proteins and a hemolysin that is active in lysing human erythrocytes. Possible alterations in the rate of enzyme production in response to the test conditions are currently underway and are not available for this preliminary report. Completed viability studies are indicative that little difference exists among the survival curves derived for cells exposed to various components of ultraviolet irradiation in space.

  9. Effect of solar irradiation on extracellular enzymes of Aeromonas proteolytica

    NASA Technical Reports Server (NTRS)

    Foster, B. G.

    1973-01-01

    The bacterium Aeromonas proteolytica was selected for studying the effects of solar irradiation on extracellular enzymes because it produces an endopeptidase that is capable of degrading proteins and a hemolysin that is active in lysing human erythrocytes. Possible alterations in the rate of enzyme production in response to the test conditions are currently underway and are not available for this preliminary report. Completed viability studies are indicative that little difference exists among the survival curves derived for cells exposed to various components of ultraviolet irradiation in space.

  10. Measurement of the absolute solar UV irradiance and variability

    NASA Technical Reports Server (NTRS)

    Mentall, James E.

    1990-01-01

    Radiation in the wavelength interval 150-350 nm initiates chemical reactions in the lower mesosphere and the stratosphere through the photodissociation of ambient molecular species. This experiment measures the total solar irradiance, above the Earth's atmosphere, in this wavelength interval, using three spectrometers. Measurements are made from rockets on a once-a-year basis and are used with satellite observations to determine both the absolute irradiance and the long term variability of the sun in the UV. A fourth spectrometer is being added to the payload to measure the emission in the hydrogen Lyman-alpha emission at 121.67 nm.

  11. Some Impacts of Solar Irradiance Variation on Terrestrial Climate

    NASA Technical Reports Server (NTRS)

    Jordan, Stuart D.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    As chairman of the Special Session addressing the above topic, a brief overview of the problem will be offered, after which 20-minute talks will be given on the determination of solar irradiance variations from space observations (Dr. Judit Pap) and from groundbased measurements of solar magnetic fields (Dr. Harrison Jones). The chairman will then introduce four panel members representing different areas of expertise bearing on the topic. Each panel member will offer a brief 5-minute summary of his views. Panel members are: Chick Keller, Los Alamos National Laboratory; Drew Shindell, Goddard Institute for Space Science, Columbia University; Michael Schlesinger, University of Illinois; Sabatino Sofia, Yale University. General Circulation Models of the terrestrial atmosphere, the possible impact on this atmosphere of large percentage changes in the solar EUV over a solar cycle, and the role of strong magnetic field in the solar convection zone on irradiance variation will all be considered in brief summaries. The chairman will conclude the session by facilitating a discussion between the audience, the main speakers, and the panel members.

  12. Accessing Solar Irradiance Data via LISIRD, the Laboratory for Atmospheric and Space Physics Interactive Solar Irradiance Datacenter

    NASA Astrophysics Data System (ADS)

    Pankratz, C. K.; Wilson, A.; Snow, M. A.; Lindholm, D. M.; Woods, T. N.; Traver, T.; Woodraska, D.

    2015-12-01

    The LASP Interactive Solar Irradiance Datacenter, LISIRD, http://lasp.colorado.edu/lisird, allows the science community and the public to explore and access solar irradiance and related data sets using convenient, interactive or scriptable, standards-based interfaces. LISIRD's interactive plotting allows users to investigate and download irradiance data sets from a variety of sources, including space missions, ground observatories, and modeling efforts. LISIRD's programmatic interfaces allow software-level data retrievals and facilitate automation. This presentation will describe the current state of LISIRD, provide details of the data sets it serves, outline data access methods, identify key technologies in-use, and address other related aspects of serving spectral and other time series data. We continue to improve LISIRD by integrating new data sets, and also by advancing its data management and presentation capabilities to meet evolving best practices and community needs. LISIRD is hosted and operated by the Laboratory for Atmospheric and Space Physics, LASP, which has been a leader in Atmospheric and Heliophysics science for over 60 years. LASP makes a variety of space-based measurements of solar irradiance, which provide crucial input for research and modeling in solar-terrestrial interactions, space physics, planetary, atmospheric, and climate sciences. These data sets consist of fundamental measurements, composite data sets, solar indices, space weather products, and models. Current data sets available through LISIRD originate from the SORCE, SDO (EVE), UARS (SOLSTICE), TIMED (SEE), and SME space missions, as well as several other space and ground-based projects. LISIRD leverages several technologies to provide flexible and standards-based access to the data holdings available through LISIRD. This includes internet-accessible interfaces that permit data access in a variety of formats, data subsetting, as well as program-level access from data analysis

  13. Temperature dependence of damage coefficient in electron irradiated solar cells

    NASA Technical Reports Server (NTRS)

    Faith, T. J.

    1973-01-01

    Measurements of light-generated current vs cell temperature on electron-irradiated n/p silicon solar cells show the temperature coefficient of this current to increase with increasing fluence for both 10-ohm and 20-ohm cells. A relationship between minority-carrier diffusion length and light-generated current was derived by combining measurements of these two parameters: vs fluence at room temperature, and vs cell temperature in cells irradiated to a fluence of 1 x 10 to the 15th power e/sq cm. This relationship was used, together with the light-generated current data, to calculate the temperature dependence of the diffusion-length damage coefficient. The results show a strong decrease in the damage coefficient with increasing temperature in the range experienced by solar panels in synchronous earth orbit.

  14. Multidecadal variations in the direct and diffuse solar irradiance

    NASA Astrophysics Data System (ADS)

    Liepert, B. G.

    2005-12-01

    It has been reported that diffuse radiation plays a relatively more important role in photosynthesis and hence in carbon uptake by plants than the total solar irradiance reaching the canopy. Clouds scatter sunlight and also are responsible for the rainfall patterns. Many sites worldwide exist where diffuse solar irradiance has been measured at the ground for several decades. Here we plan to present an overview of existing data sets and their possible temporal variability. The possible causes of this variability will be discussed together with the possible impacts on the water and carbon cycle. Clouds scatter sunlight and increase diffuse light but also form rain whereas aerosols scatter sunlight and potentially dry the atmosphere. An assessment of the magnitude of diffuse radiative variability and the impacts of various natural (volcanic eruptions, clouds) and anthropogenic disturbances will be discussed.

  15. Evaluating solar radiation on a tilted surfaces - a study case in Timis (Romania)

    NASA Astrophysics Data System (ADS)

    Vasar, C.; Prostean, O.; Prostean, G.

    2016-02-01

    In the last years the usage of solar energy has grown considerably in Romania, as well as in Europe, stimulated by various factors as government programs, green pricing policies, decreasing of photovoltaic components cost etc. Also, the rising demand of using Solar Energy Conversion Systems (SECS) is driven by the desire of individuals or companies to obtain energy from a clean renewable source. In many applications, remote consumers far from other energetic grids can use solar systems more cost-effectively than extending the grid to reach the location. Usually the solar energy is measured or forecast on horizontal surface, but in SECS there is needed the total solar radiation incident on the collector surface, that is oriented in a position that maximize the harvested energy. There are many models that convert the solar radiation from horizontal surface to a tilted surface, but they use empirical coefficients and the accuracy is influenced by different facts as geographical location or sky conditions. Such models were used considering measured values for solar radiation on horizontal plane, in the western part of Romania. Hourly values measured for global solar irradiation on the horizontal plane, diffuse solar irradiation on the horizontal plane and reflected solar irradiation by ground are used to compute the total solar radiation incident on different tilted surfaces. The calculated incident radiation is then compared with the real radiation measured on tilted surface in order to evaluate the performance of the considered conversion models.

  16. Influence of synoptic weather patterns on solar irradiance variability in Europe

    NASA Astrophysics Data System (ADS)

    Parding, Kajsa; Hinkelman, Laura; Liepert, Beate; Ackerman, Thomas; Dagestad, Knut-Frode; Asle Olseth, Jan

    2014-05-01

    Solar radiation is important for many aspects of existence on Earth, including the biosphere, the hydrological cycle, and creatures living on the planet. Previous studies have reported decadal trends in observational records of surface shortwave (SW) irradiance around the world, too strong to be caused by varying solar output. These observed decadal trends have been dubbed "solar dimming and brightening" and are believed to be related to changes in atmospheric aerosols and cloud cover. Because the observed solar variability coincides with qualitative air pollution histories, the dimming and brightening have become almost synonymous with shortwave attenuation by anthropogenic aerosols. However, there are indications that atmospheric circulation patterns have influenced the dimming and brightening in some regions, e.g., Alaska and Scandinavia. In this work, we focus on the role of atmospheric circulation patterns in modifying shortwave irradiance. An examination of European SW irradiance data from the Global Energy Balance Archive (GEBA) shows that while there are periods of predominantly decreasing (~1970-1985) and increasing (~1985-2007) SW irradiance, the changes are not spatially uniform within Europe and in a majority of locations not statistically significant. To establish a connection between weather patterns and sunshine, regression models of SW irradiance are fitted using a daily classification of European weather called Grosswetterlagen (GWL). The GWL reconstructions of shortwave irradiance represent the part of the solar variability that is related to large scale weather patterns, which should be effectively separated from the influence of varying anthropogenic aerosol emissions. The correlation (R) between observed and reconstruced SW irradiance is between 0.31 and 0.75, depending on station and season, all statistically significant (p<0.05, estimated with a bootstrap test). In central and eastern parts of Europe, the observed decadal SW variability is

  17. Variations of solar irradiance due to magnetic activity

    NASA Astrophysics Data System (ADS)

    Chapman, G. A.

    The variability of the solar luminosity (as detected by the SMM Active Cavity Irradiance Monitor and by the Nimbus-7 Earth Radiation Budget experiment) and its relation to magnetic activity on the sun are discussed, reviewing the results of recent investigations. Topics addressed include the use of indirect (area-type and magnetic) luminosity measurements, direct photometry of active regions, observing programs and instrumentation, and theoretical models. Diagrams, graphs, and photographs are provided.

  18. Solar Surface Magneto-Convection

    NASA Astrophysics Data System (ADS)

    Stein, Robert F.

    2012-12-01

    We review the properties of solar magneto-convection in the top half of the convection zones scale heights (from 20 Mm below the visible surface to the surface, and then through the photosphere to the temperature minimum). Convection is a highly non-linear and nonlocal process, so it is best studied by numerical simulations. We focus on simulations that include sufficient detailed physics so that their results can be quantitatively compared with observations. The solar surface is covered with magnetic features with spatial sizes ranging from unobservably small to hundreds of megameters. Three orders of magnitude more magnetic flux emerges in the quiet Sun than emerges in active regions. In this review we focus mainly on the properties of the quiet Sun magnetic field. The Sun's magnetic field is produced by dynamo action throughout the convection zone, primarily by stretching and twisting in the turbulent downflows. Diverging convective upflows and magnetic buoyancy carry magnetic flux toward the surface and sweep the field into the surrounding downflow lanes where the field is dragged downward. The result is a hierarchy of undulating magnetic Ω- and U-loops of different sizes. New magnetic flux first appears at the surface in a mixed polarity random pattern and then collects into isolated unipolar regions due to underlying larger scale magnetic structures. Rising magnetic structures are not coherent, but develop a filamentary structure. Emerging magnetic flux alters the convection properties, producing larger, darker granules. Strong field concentrations inhibit transverse plasma motions and, as a result, reduce convective heat transport toward the surface which cools. Being cooler, these magnetic field concentrations have a shorter scale height and become evacuated. The field becomes further compressed and can reach strengths in balance with the surrounding gas pressure. Because of their small internal density, photons escape from deeper in the atmosphere. Narrow

  19. Method to Calculate Uncertainty Estimate of Measuring Shortwave Solar Irradiance using Thermopile and Semiconductor Solar Radiometers

    SciTech Connect

    Reda, I.

    2011-07-01

    The uncertainty of measuring solar irradiance is fundamentally important for solar energy and atmospheric science applications. Without an uncertainty statement, the quality of a result, model, or testing method cannot be quantified, the chain of traceability is broken, and confidence cannot be maintained in the measurement. Measurement results are incomplete and meaningless without a statement of the estimated uncertainty with traceability to the International System of Units (SI) or to another internationally recognized standard. This report explains how to use International Guidelines of Uncertainty in Measurement (GUM) to calculate such uncertainty. The report also shows that without appropriate corrections to solar measuring instruments (solar radiometers), the uncertainty of measuring shortwave solar irradiance can exceed 4% using present state-of-the-art pyranometers and 2.7% using present state-of-the-art pyrheliometers. Finally, the report demonstrates that by applying the appropriate corrections, uncertainties may be reduced by at least 50%. The uncertainties, with or without the appropriate corrections might not be compatible with the needs of solar energy and atmospheric science applications; yet, this report may shed some light on the sources of uncertainties and the means to reduce overall uncertainty in measuring solar irradiance.

  20. WHAT CAUSES THE INTER-SOLAR-CYCLE VARIATION OF TOTAL SOLAR IRRADIANCE?

    SciTech Connect

    Xiang, N. B.; Kong, D. F.

    2015-12-15

    The Physikalisch Meteorologisches Observatorium Davos total solar irradiance (TSI), Active Cavity Radiometer Irradiance Monitoring TSI, and Royal Meteorological Institute of Belgium TSI are three typical TSI composites. Magnetic Plage Strength Index (MPSI) and Mount Wilson Sunspot Index (MWSI) should indicate the weak and strong magnetic field activity on the solar full disk, respectively. Cross-correlation (CC) analysis of MWSI with three TSI composites shows that TSI should be weakly correlated with MWSI, and not be in phase with MWSI at timescales of solar cycles. The wavelet coherence (WTC) and partial wavelet coherence (PWC) of TSI with MWSI indicate that the inter-solar-cycle variation of TSI is also not related to solar strong magnetic field activity, which is represented by MWSI. However, CC analysis of MPSI with three TSI composites indicates that TSI should be moderately correlated and accurately in phase with MPSI at timescales of solar cycles, and that the statistical significance test indicates that the correlation coefficient of three TSI composites with MPSI is statistically significantly higher than that of three TSI composites with MWSI. Furthermore, the cross wavelet transform (XWT) and WTC of TSI with MPSI show that the TSI is highly related and actually in phase with MPSI at a timescale of a solar cycle as well. Consequently, the CC analysis, XWT, and WTC indicate that the solar weak magnetic activity on the full disk, which is represented by MPSI, dominates the inter-solar-cycle variation of TSI.

  1. The high-resolution extraterrestrial solar spectrum (QASUMEFTS) determined from ground-based solar irradiance measurements

    NASA Astrophysics Data System (ADS)

    Gröbner, Julian; Kröger, Ingo; Egli, Luca; Hülsen, Gregor; Riechelmann, Stefan; Sperfeld, Peter

    2017-09-01

    A high-resolution extraterrestrial solar spectrum has been determined from ground-based measurements of direct solar spectral irradiance (SSI) over the wavelength range from 300 to 500 nm using the Langley-plot technique. The measurements were obtained at the Izaña Atmospheric Research Centre from the Agencia Estatal de Meteorología, Tenerife, Spain, during the period 12 to 24 September 2016. This solar spectrum (QASUMEFTS) was combined from medium-resolution (bandpass of 0.86 nm) measurements of the QASUME (Quality Assurance of Spectral Ultraviolet Measurements in Europe) spectroradiometer in the wavelength range from 300 to 500 nm and high-resolution measurements (0.025 nm) from a Fourier transform spectroradiometer (FTS) over the wavelength range from 305 to 380 nm. The Kitt Peak solar flux atlas was used to extend this high-resolution solar spectrum to 500 nm. The expanded uncertainties of this solar spectrum are 2 % between 310 and 500 nm and 4 % at 300 nm. The comparison of this solar spectrum with solar spectra measured in space (top of the atmosphere) gave very good agreements in some cases, while in some other cases discrepancies of up to 5 % were observed. The QASUMEFTS solar spectrum represents a benchmark dataset with uncertainties lower than anything previously published. The metrological traceability of the measurements to the International System of Units (SI) is assured by an unbroken chain of calibrations leading to the primary spectral irradiance standard of the Physikalisch-Technische Bundesanstalt in Germany.

  2. What Causes the Inter-solar-cycle Variation of Total Solar Irradiance?

    NASA Astrophysics Data System (ADS)

    Xiang, N. B.; Kong, D. F.

    2015-12-01

    The Physikalisch Meteorologisches Observatorium Davos total solar irradiance (TSI), Active Cavity Radiometer Irradiance Monitoring TSI, and Royal Meteorological Institute of Belgium TSI are three typical TSI composites. Magnetic Plage Strength Index (MPSI) and Mount Wilson Sunspot Index (MWSI) should indicate the weak and strong magnetic field activity on the solar full disk, respectively. Cross-correlation (CC) analysis of MWSI with three TSI composites shows that TSI should be weakly correlated with MWSI, and not be in phase with MWSI at timescales of solar cycles. The wavelet coherence (WTC) and partial wavelet coherence (PWC) of TSI with MWSI indicate that the inter-solar-cycle variation of TSI is also not related to solar strong magnetic field activity, which is represented by MWSI. However, CC analysis of MPSI with three TSI composites indicates that TSI should be moderately correlated and accurately in phase with MPSI at timescales of solar cycles, and that the statistical significance test indicates that the correlation coefficient of three TSI composites with MPSI is statistically significantly higher than that of three TSI composites with MWSI. Furthermore, the cross wavelet transform (XWT) and WTC of TSI with MPSI show that the TSI is highly related and actually in phase with MPSI at a timescale of a solar cycle as well. Consequently, the CC analysis, XWT, and WTC indicate that the solar weak magnetic activity on the full disk, which is represented by MPSI, dominates the inter-solar-cycle variation of TSI.

  3. Tuning surface porosity on vanadium surface by low energy He+ ion irradiation

    NASA Astrophysics Data System (ADS)

    Tripathi, J. K.; Novakowski, T. J.; Hassanein, A.

    2016-08-01

    In the present study, we report on tuning the surface porosity on vanadium surfaces using high-flux, low-energy He+ ion irradiation as function of sample temperature. Polished, mirror-finished vanadium samples were irradiated with 100 eV He+ ions at a constant ion-flux of 7.2 × 1020 ions m-2 s-1 for 1 h duration at constant sample temperatures in the wide range of 823-1173 K. Our results show that the surface porosity of V2O5 (naturally oxidized vanadium porous structure, after taking out from UHV) is strongly correlated to the sample temperature and is highly tunable. In fact, the surface porosity significantly increases with reducing sample temperature and reaches up to ∼87%. Optical reflectivity on these highly porous V2O5 surfaces show ∼0% optical reflectivity at 670 nm wavelength, which is very similar to that of "black metal". Combined with the naturally high melting point of V2O5, this very low optical reflectivity suggests potential application in solar power concentration technology. Additionally, this top-down approach guarantees relatively good contact between the different crystallites and avoids electrical conductivity limitations (if required). Since V2O5 is naturally a potential photocatalytic material, the resulting sub-micron-sized cube-shaped porous structures could be used in solar water splitting for hydrogen production in energy applications.

  4. Change in Surface Conductivity of Elastically Deformed p-Si Crystals Irradiated by X-Rays

    NASA Astrophysics Data System (ADS)

    Lys, R.; Pavlyk, B.; Didyk, R.; Shykorjak, J.

    2017-07-01

    Changes in conductivity of irradiated and non-irradiated p-Si mono-crystals under the influence of elastic uniaxial mechanical stress were investigated in this paper. An analytical expression was suggested to describe the dependence of surface conductivity as a function of mechanical stress and X-ray irradiation dose. It was shown that 4-angular nano-particles on the surface of "solar" silicon affect the electroconductivity changes under mechanical stress. It was established that X-ray irradiation causes the generation of point defects in silicon. These defects suppress the dislocations movement. It was shown that the resistivity of previously irradiated samples of "electronic" silicon is only slightly sensitive to the influence of uniaxial compression at certain deformation rate.

  5. Interannual variability of solar irradiance over the Amazon Basin including the 1982-83 El Nino Year

    NASA Technical Reports Server (NTRS)

    Pinker, Rachel T.; Laszlo, I.

    1992-01-01

    Surface solar irradiance was derived over the extended Amazon Basin using AVHRR observations from polar-orbiting satellites during four July months (1983-1986). Observations from the geostationary satellite GOES for July 1983 were also used to assess diurnal effects. Both satellite datasets are part of the Satellite Cloud Climatology Project (ISCCP) B3 product. It was demonstrated that it is now possible to derive long-term surface solar irradiance, which can be useful in climate studies, and that the accuracy of the derived fields is sufficient to detect interannual differences that can exceed at times 70 W/sq m.

  6. Measurements and Modeling of Total Solar Irradiance in X-class Solar Flares

    NASA Technical Reports Server (NTRS)

    Moore, Christopher S.; Chamberlin, Phillip Clyde; Hock, Rachel

    2014-01-01

    The Total Irradiance Monitor (TIM) from NASA's SOlar Radiation and Climate Experiment can detect changes in the total solar irradiance (TSI) to a precision of 2 ppm, allowing observations of variations due to the largest X-class solar flares for the first time. Presented here is a robust algorithm for determining the radiative output in the TIM TSI measurements, in both the impulsive and gradual phases, for the four solar flares presented in Woods et al., as well as an additional flare measured on 2006 December 6. The radiative outputs for both phases of these five flares are then compared to the vacuum ultraviolet (VUV) irradiance output from the Flare Irradiance Spectral Model (FISM) in order to derive an empirical relationship between the FISM VUV model and the TIM TSI data output to estimate the TSI radiative output for eight other X-class flares. This model provides the basis for the bolometric energy estimates for the solar flares analyzed in the Emslie et al. study.

  7. Measurements and modeling of total solar irradiance in X-class solar flares

    SciTech Connect

    Moore, Christopher Samuel; Chamberlin, Phillip Clyde; Hock, Rachel

    2014-05-20

    The Total Irradiance Monitor (TIM) from NASA's SOlar Radiation and Climate Experiment can detect changes in the total solar irradiance (TSI) to a precision of 2 ppm, allowing observations of variations due to the largest X-class solar flares for the first time. Presented here is a robust algorithm for determining the radiative output in the TIM TSI measurements, in both the impulsive and gradual phases, for the four solar flares presented in Woods et al., as well as an additional flare measured on 2006 December 6. The radiative outputs for both phases of these five flares are then compared to the vacuum ultraviolet (VUV) irradiance output from the Flare Irradiance Spectral Model (FISM) in order to derive an empirical relationship between the FISM VUV model and the TIM TSI data output to estimate the TSI radiative output for eight other X-class flares. This model provides the basis for the bolometric energy estimates for the solar flares analyzed in the Emslie et al. study.

  8. Satellite Observations of Solar Irradiance and Sun-climate Impacts

    NASA Astrophysics Data System (ADS)

    Cahalan, R.

    Solar activity is now near its maximum, with events such as the 2001"Bastille Day Event", a Coronal Mass Ejection which merited a full session at AGU's annual meet- ing - and two major sunspot groupings earlier this year, with associated variations in TSI (Total Solar Irradiance). We discuss recent satellite measurements of TSI by ACRIM 2 and 3 and Virgo, and new precision observations of TSI and SSI (Solar Spectral Irradiance) expected from the SORCE mission, planned to launch in fall 2002. SSI has been added to TSI as a required EOS and NPOESS measurement be- cause different spectral components provide energy inputs to different components of the climate system - UV into upper atmosphere and ozone, IR into lower atmo- sphere and clouds, and Visible into the biosphere. Succeeding satellite missions being planned for 2006 and 2010 will continue to monitor both TSI and SSI. We summarize current ideas about the potential impact of solar variability on Earth's climate on time scales from days to decades to centuries.

  9. Satellite Observations of Solar Irradiance and Sun-Climate Impacts

    NASA Technical Reports Server (NTRS)

    Cahalan, R.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Solar activity is now near its maximum, with events such as the 2001 "Bastille Day Event", a Coronal Mass Ejection which merited a full session at AGO'S annual meeting - and two major sunspot groupings earlier this year, with associated variations in TSI (Total Solar Irradiance). We discuss recent satellite measurements of TSI by ACRIM 2 and 3 And Virgo, and new precision observations of TSI and SSI (Solar Spectral Irradiance) expected from the SORCE mission, planned to launch in fall 2002. SSG has been added to TSI as a required EOS and NPOESS measurement because different spectral components provide energy inputs to different components of the climate system - UV into upper atmosphere and ozone, IR into lower atmosphere and clouds, and Visible into the biosphere. Succeeding satellite missions being planned for 2006 and 2010 will continue to monitor both TSI and SSI. We summarize current ideas about the potential impact of solar variability on Earth's climate on time scales from days to decades to centuries.

  10. Satellite Observations of Solar Irradiance and Sun-Climate Impacts

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Solar activity is now near its maximum, with events such as the 2001 "Bastille Day Event", a Coronal Mass Ejection which merited a full session at AGUs annual meeting - and two major sunspot groupings earlier this year, with associated variations in TSI (Total Solar Irradiance). We discuss recent satellite measurements of TSI by ACRIM 2 and 3 and Virgo, and new precision observations of TSI and SSI (Solar Spectral Irradiance) expected from the SORCE mission, planned to launch in fall 2002. SSI has been added to TSI as a required EOS and NPOESS measurement because different spectral components provide energy inputs to different components of the climate system - UV into upper atmosphere and ozone, IR into lower atmosphere and clouds, and Visible into the biosphere. Succeeding satellite missions being planned for 2006 and 2010 will continue to monitor both TSI and SSI. We summarize current ideas about the potential impact of solar variability on Earth's climate on time scales from days to decades to centuries.

  11. Satellite Observations of Solar Irradiance and Sun-Climate Impacts

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Solar activity is now near its maximum, with events such as the 2001 "Bastille Day Event", a Coronal Mass Ejection which merited a full session at AGUs annual meeting - and two major sunspot groupings earlier this year, with associated variations in TSI (Total Solar Irradiance). We discuss recent satellite measurements of TSI by ACRIM 2 and 3 and Virgo, and new precision observations of TSI and SSI (Solar Spectral Irradiance) expected from the SORCE mission, planned to launch in fall 2002. SSI has been added to TSI as a required EOS and NPOESS measurement because different spectral components provide energy inputs to different components of the climate system - UV into upper atmosphere and ozone, IR into lower atmosphere and clouds, and Visible into the biosphere. Succeeding satellite missions being planned for 2006 and 2010 will continue to monitor both TSI and SSI. We summarize current ideas about the potential impact of solar variability on Earth's climate on time scales from days to decades to centuries.

  12. Satellite Observations of Solar Irradiance and Sun-Climate Impacts

    NASA Technical Reports Server (NTRS)

    Cahalan, R.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Solar activity is now near its maximum, with events such as the 2001 "Bastille Day Event", a Coronal Mass Ejection which merited a full session at AGO'S annual meeting - and two major sunspot groupings earlier this year, with associated variations in TSI (Total Solar Irradiance). We discuss recent satellite measurements of TSI by ACRIM 2 and 3 And Virgo, and new precision observations of TSI and SSI (Solar Spectral Irradiance) expected from the SORCE mission, planned to launch in fall 2002. SSG has been added to TSI as a required EOS and NPOESS measurement because different spectral components provide energy inputs to different components of the climate system - UV into upper atmosphere and ozone, IR into lower atmosphere and clouds, and Visible into the biosphere. Succeeding satellite missions being planned for 2006 and 2010 will continue to monitor both TSI and SSI. We summarize current ideas about the potential impact of solar variability on Earth's climate on time scales from days to decades to centuries.

  13. Excimer laser irradiation of metal surfaces

    NASA Astrophysics Data System (ADS)

    Kinsman, Grant

    In this work a new method of enhancing CO2 laser processing by modifying the radiative properties of a metal surface is studied. In this procedure, an excimer laser (XeCl) or KrF) exposes the metal surface to overlapping pulses of high intensity, 10(exp 8) - 10(exp 9) W cm(exp -2), and short pulse duration, 30 nsec FWHM (Full Width Half Maximum), to promote structural and chemical change. The major processing effect at these intensities is the production of a surface plasma which can lead to the formation of a laser supported detonation wave (LSD wave). This shock wave can interact with the thin molten layer on the metal surface influencing to a varying degree surface oxidation and roughness features. The possibility of the expulsion, oxidation and redeposition of molten droplets, leading to the formation of micron thick oxide layers, is related to bulk metal properties and the incident laser intensity. A correlation is found between the expulsion of molten droplets and a Reynolds number, showing the interaction is turbulent. The permanent effects of these interactions on metal surfaces are observed through scanning electron microscopy (SEM), transient calorimetric measurements and Fourier transform infrared (FTIR) spectroscopy. Observed surface textures are related to the scanning procedures used to irradiate the metal surface. Fundamental radiative properties of a metal surface, the total hemispherical emissivity, the near-normal spectral absorptivity, and others are examined in this study as they are affected by excimer laser radiation. It is determined that for heavily exposed Al surface, alpha' (10.6 microns) can be increased to values close to unity. Data relating to material removal rates and chemical surface modification for excimer laser radiation is also discussed. The resultant reduction in the near-normal reflectivity solves the fundamental problem of coupling laser radiation into highly reflective and conductive metals such as copper and aluminum. The

  14. Spectral Irradiance Variations and Magnetic Field Changes During Solar Cycle 23.

    NASA Astrophysics Data System (ADS)

    Pap, J. M.; Bertello, L.; Chapman, G.; Floyd, L. E.; Harder, J.; Jones, H.; Malanuskenko, O.; Preminger, D.; Turmon, M.

    2008-12-01

    Both total irradiance and the Mg core-to-wing ratio was high at the maximum of weak solar cycle 23. However, photometric observations from the San Fernando Observatory show that both the number and size of active regions (spots and faculae) were low at the maximum of solar cycle 23 which points to the importance of the role of weak magnetic fields in irradiance variations. The purpose of this paper is to use new SOLIS spectromagnetograph observations in conjunction with a newly developed image analysis technique to compare irradiance time series as function of wavelengths with various surface magnetic features. One major goal is to compare features derived from the SOLIS images using the new technique with well-established features from SFO. Another important goal is to determine the contribution of active regions/weak fields to irradiance variations at various wavelengths, using the SOHO/VIRGO and SORCE/SIM data. A third goal is to determine the extent of irradiance variations not explained by magnetic structures. To do this, we use a new analysis technique to evaluate SOLIS spectromagnetograph observations.

  15. A novel procedure for generating solar irradiance TSYs

    NASA Astrophysics Data System (ADS)

    Fanego, Vicente Lara; Rubio, Jesús Pulgar; Peruchena, Carlos M. Fernández; Romeo, Martín Gastón; Tejera, Sara Moreno; Santigosa, Lourdes Ramírez; Balderrama, Rita X. Valenzuela; Tirado, Luis F. Zarzalejo; Pantaleón, Diego Bermejo; Pérez, Manuel Silva; Contreras, Manuel Pavón; García, Ana Bernardos; Anarte, Sergio Macías

    2017-06-01

    Typical Solar Years (TSYs) are key parameters for the solar energy industry. In particular, TSYs are mainly used for the design and bankability analysis of solar projects. In essence, a TSY intends to describe the expected long-term behavior of the solar resource (direct and/or global irradiance) into a condensed period of one year at the specific location of interest. A TSY differs from a conventional Typical Meteorological Year (TMY) by its absence of meteorological variables other than solar radiation. Concerning the probability of exceedance (Pe) needed for bankability, various scenarios are commonly used, with Pe90, Pe95 or even Pe99 being most usually required as unfavorable scenarios, along with the most widely used median scenario (Pe50). There is no consensus in the scientific community regarding the methodology for generating TSYs for any Pe scenario. Furthermore, the application of two different construction methods to the same original dataset could produce differing TSYs. Within this framework, a group of experts has been established by the Spanish Association for Standardization and Certification (AENOR) in order to propose a method that can be standardized. The method developed by this working group, referred to as the EVA method, is presented in this contribution. Its evaluation shows that it provides reasonable results for the two main irradiance components (direct and global), with low errors in the annual estimations for any given Pe. The EVA method also preserves the long-term statistics when the computed TSYs for a specific Pe are expanded from the monthly basis used in the generation of the TSY to higher time resolutions, such as 1 hour, which are necessary for the precise energy simulation of solar systems.

  16. Direct solar radiation - Spectrum and irradiance derived from sun-photometer measurements

    NASA Astrophysics Data System (ADS)

    Wobrock, Wolfram; Eiden, Reiner

    1988-06-01

    The continuous spectrum of the direct solar radiation from wavelength = 330 to 2690 nm, penetrating a cloudless atmosphere and arriving on the earth surface, is determined by measuring the solar irradiance in ten selected discrete spectral ranges defined by interference filters. Heretofore knowledge of the extraterrestrial solar spectrum has been required as well as of the transmittance functions to describe the spectral optical properties of the atmosphere. A set of appropriate and simple functions is given and discussed, which allows calculation of the molecular, aerosol, oxygen, and ozone optical thicknesses. The influence of atmospheric water vapor is considered through line by line calculations. The dominant and most fluctuating extinction parameters are the aerosol optical thickness and the content of precipitable water vapor. These are obtained by measurements with two sun photometers, developed according to the World Meteorological Organization recommendation. To test the derived solar spectrum at ground level the photometers are also run with nine broadband filters. The values observed differ little from those obtained by integration of the deduced spectral irradiance. Furthermore, the integral value of the resulting entire spectrum agrees reasonably well with the total direct irradiance gained from actinometer measurements.

  17. Direct solar radiation: spectrum and irradiance derived from sun-photometer measurements.

    PubMed

    Wobrock, W; Eiden, R

    1988-06-01

    The continuous spectrum of the direct solar radiation from lambda= 330 to 2690 nm, penetrating a cloudless atmosphere and arriving on the earth surface, is determined by measuring the solar irradiance in ten selected discrete spectral ranges defined by interference filters. Heretofore knowledge of the extraterrestrial solar spectrum has been required as well as of the transmittance functions to describe the spectral optical properties of the atmosphere. A set of appropriate and simple functions is given and discussed, which allows calculation of the molecular, aerosol, oxygen, and ozone optical thicknesses. The influence of atmospheric water vapor is considered through line by line calculations. The dominant and most fluctuating extinction parameters are the aerosol optical thickness and the content of precipitable water vapor. These are obtained by measurements with two sun photometers, developed according to the WMO recommendation. To test the derived solar spectrum at ground level the photometers are also run with nine broadband filters. The values observed differ little from those obtained by integration of the deduced spectral irradiance. Furthermore, the integral value of the resulting entire spectrum agrees reasonably well with the total direct irradiance gained from actinometer measurements.

  18. Optimal measurement of surface shortwave irradiance using current instrumentation -- the ARM experience

    SciTech Connect

    Michalsky, J.; Rubes, M.; Stoffel, T.; Wesley, M.; Splitt, M.; DeLuisi, J.

    1997-03-01

    Shortwave (solar) measurements of surface irradiance for clear sky conditions disagree with a number of different models. Betts used the European Center for Medium-range Forecasts (ECMWF) shortwave model to calculate surface irradiance that were 5-10 percent higher than measurements. Wild used a different formulation of the ECMWF shortwave model, but found that the model overpredicted clear-sky shortwave and average of 3 percent. Ding and Wang used data from the Atmospheric Radiation Measurement (ARM) program and found that the GENESIS GCM shortwave model, likewise, overpredicted clear-sky irradiance by about 4 percent. To help resolve the measurement dilemma, reference instruments were deployed in April 1996 at the Southern Great Plains ARM site central facility very near the shortwave measurements. The rest of the paper describes the experiment undertaken to ascertain total horizontal shortwave irradiance at the surface, including a separation of the direct normal and diffuse horizontal components. Results and a discussion of same concludes the paper.

  19. The influence of solar system oscillation on the variability of the total solar irradiance

    NASA Astrophysics Data System (ADS)

    Yndestad, Harald; Solheim, Jan-Erik

    2017-02-01

    Total solar irradiance (TSI) is the primary quantity of energy that is provided to the Earth. The properties of the TSI variability are critical for understanding the cause of the irradiation variability and its expected influence on climate variations. A deterministic property of TSI variability can provide information about future irradiation variability and expected long-term climate variation, whereas a non-deterministic variability can only explain the past. This study of solar variability is based on an analysis of two TSI data series, one since 1700 A.D. and one since 1000 A.D.; a sunspot data series since 1610 A.D.; and a solar orbit data series from 1000 A.D. The study is based on a wavelet spectrum analysis. First, the TSI data series are transformed into a wavelet spectrum. Then, the wavelet spectrum is transformed into an autocorrelation spectrum to identify stationary, subharmonic and coincidence periods in the TSI variability. The results indicate that the TSI and sunspot data series have periodic cycles that are correlated with the oscillations of the solar position relative to the barycenter of the solar system, which is controlled by gravity force variations from the large planets Jupiter, Saturn, Uranus and Neptune. A possible explanation for solar activity variations is forced oscillations between the large planets and the solar dynamo. We find that a stationary component of the solar variability is controlled by the 12-year Jupiter period and the 84-year Uranus period with subharmonics. For TSI and sunspot variations, we find stationary periods related to the 84-year Uranus period. Deterministic models based on the stationary periods confirm the results through a close relation to known long solar minima since 1000 A.D. and suggest a modern maximum period from 1940 to 2015. The model computes a new Dalton-type sunspot minimum from approximately 2025 to 2050 and a new Dalton-type period TSI minimum from approximately 2040 to 2065.

  20. The observation of damage regions produced by neutron irradiation in lithium-doped silicon solar cells.

    NASA Technical Reports Server (NTRS)

    Ghosh, S.; Sargent, G. A.

    1972-01-01

    Study regions of lattice disorder produced in lithium-doped float-zone melted n/p-type silicon solar cells by irradiation with monoenergetic neutrons at doses between 10 to the 10th and 10 to the 13th per cu cm. The defect regions were revealed by chemically etching the surface of the solar cells and by observing carbon replicas in an electron microscope. It was found that the defect density increased with increasing irradiation dose and increased lithium content, whereas the average defect diameter was found to decrease. From thermal annealing experiments it was found that in the lithium-doped material the defect structure was stable at temperatures between 300 and 1200 K. This was found to be in contrast to the undoped material where at the lowest doses considerable annealing was observed to occur. These results are discussed in terms of the theoretical predictions and models of defect clusters proposed by Gossick (1959) and Crawford and Cleland (1959).

  1. The observation of damage regions produced by neutron irradiation in lithium-doped silicon solar cells.

    NASA Technical Reports Server (NTRS)

    Ghosh, S.; Sargent, G. A.

    1972-01-01

    Study regions of lattice disorder produced in lithium-doped float-zone melted n/p-type silicon solar cells by irradiation with monoenergetic neutrons at doses between 10 to the 10th and 10 to the 13th per cu cm. The defect regions were revealed by chemically etching the surface of the solar cells and by observing carbon replicas in an electron microscope. It was found that the defect density increased with increasing irradiation dose and increased lithium content, whereas the average defect diameter was found to decrease. From thermal annealing experiments it was found that in the lithium-doped material the defect structure was stable at temperatures between 300 and 1200 K. This was found to be in contrast to the undoped material where at the lowest doses considerable annealing was observed to occur. These results are discussed in terms of the theoretical predictions and models of defect clusters proposed by Gossick (1959) and Crawford and Cleland (1959).

  2. Development, Production and Validation of the NOAA Solar Irradiance Climate Data Record

    NASA Astrophysics Data System (ADS)

    Coddington, O.; Lean, J.; Pilewskie, P.; Snow, M. A.; Lindholm, D. M.

    2015-12-01

    A new climate data record of Total Solar Irradiance (TSI) and Solar Spectral Irradiance (SSI), including source code and supporting documentation is now publicly available as part of the National Oceanographic and Atmospheric Administration's (NOAA) National Centers for Environmental Information (NCEI) Climate Data Record (CDR) Program. Daily and monthly averaged values of TSI and SSI, with associated time and wavelength dependent uncertainties, are estimated from 1882 to the present with yearly averaged values since 1610, updated quarterly for the foreseeable future. The new Solar Irradiance Climate Data Record, jointly developed by the University of Colorado at Boulder's Laboratory for Atmospheric and Space Physics (LASP) and the Naval Research Laboratory (NRL), is constructed from solar irradiance models that determine the changes from quiet Sun conditions when bright faculae and dark sunspots are present on the solar disk. The magnitudes of the irradiance changes that these features produce are determined from linear regression of the proxy Mg II index and sunspot area indices against the approximately decade-long solar irradiance measurements made by instruments on the SOlar Radiation and Climate Experiment (SORCE) spacecraft. We describe the model formulation, uncertainty estimates, operational implementation and validation approach. Future efforts to improve the uncertainty estimates of the Solar Irradiance CDR arising from model assumptions, and augmentation of the solar irradiance reconstructions with direct measurements from the Total and Spectral Solar Irradiance Sensor (TSIS: launch date, July 2017) are also discussed.

  3. Measuring solar spectral and angle-of-incidence effects on photovoltaic modules and solar irradiance sensors

    SciTech Connect

    King, D.L.; Kratochvil, J.A.; Boyson, W.E.

    1997-11-01

    Historically, two time-of-day dependent factors have complicated the characterization of photovoltaic module and array performance; namely, changes in the solar spectrum over the day and optical effects in the module that vary with the solar angle-of-incidence. This paper describes straightforward methods for directly measuring the effects of these two factors. Measured results for commercial modules, as well as for typical solar irradiance sensors (pyranometers) are provided. The empirical relationships obtained from the measurements can be used to improve the methods used for system design, verification of performance after installation, and diagnostic monitoring of performance during operation.

  4. Nimbus 7 Solar Backscatter Ultraviolet (SBUV) spectral scan solar irradiance and Earth radiance product user's guide

    NASA Technical Reports Server (NTRS)

    Schlesinger, Barry M.; Cebula, Richard P.; Heath, Donald F.; Fleig, Albert J.

    1988-01-01

    The archived tape products from the spectral scan mode measurements of solar irradiance (SUNC tapes) and Earth radiance (EARTH tapes) by the Solar Backscatter UV (SBUV) instrument aboard Nimbus 7 are described. Incoming radiation from 160 to 400 nm is measured at intervals of 0.2 nm. The scan-to-scan repeatability of the solar irradiance measurements ranges from approximately 0.5 to 1 percent longward of 280 nm, to 2 percent around 210 nm and 4 percent near 175 nm. The repeatability of the Earth radiance values ranges from 2 to 3 percent at longer wavelengths and low zenith angles to 10 percent at shorter wavelengths and high zenith angles. The tape formats are described in detail, including file structure and contents of each type of record. Catalogs of the tapes and the time period covered are provided, along with lists of the days lacking solar irradiance measurements and the days dedicated to Earth radiance measurements. The method for production of the tapes is outlined and quality control measures are described. How radiances and irradiances are derived from the raw counts, the corrections for changes in instrument sensitivity, and related uncertainties are discussed.

  5. Browsing, Understanding, and Accessing Solar Irradiance Data via LISIRD

    NASA Astrophysics Data System (ADS)

    Wilson, A.; Lindholm, D. M.; Pankratz, C. K.

    2012-12-01

    The Laboratory for Atmospheric and Space Physics, LASP, has been conducting research in Atmospheric and Space science for over 60 years. In particular, LASP has made a variety of space-based measurements of solar irradiance, which provide crucial input for research and modeling in solar-terrestrial interactions, space physics, planetary, atmospheric, and climate sciences. These data sets are generally time series of measurements, solar indices, and spectra. Unlike many Earth science data sets, they are not geolocated and so cannot be referenced via latitude and longitude coordinates. Thus they are not appropriate for or interoperable with many existing geo scientific data access and analysis tools and need somewhat specialized tools to aid users in their understanding and use. The LASP Solar Irradiance Data Center, LISIRD, http://lasp.colorado.edu/lisird, is designed to allow the science community and the public to explore and access solar irradiance and related data sets. LISIRD's interactive plotting allows users to investigate and download spectral data sets from a variety of missions. We have recently expanded our offerings and now serve TIMED SEE Level 2, Level 3, and Level 4 data sets. We continue to serve SORCE Solar Spectral Irradiance, Total Solar Irradiance, and Magnesium II and well as the Flare Irradiance Spectral Model (FISM) and other data sets. LISIRD leverages middleware, the LASP Time series Server (LaTiS), that provides access to time series data based on time, wavelength, and parameter. LaTiS can read a wide variety of input formats from both local and remote sources, so many data sets can be served in their native format. It also supports dynamic data reformatting, so users can request the data and times in formats of their choice. LaTiS supports data subsetting so that users may download only regions of interest, and can stream the data directly into a computer program via a RESTful API in an automated fashion. We continue to improve LISIRD not

  6. 8 years of Solar Spectral Irradiance Observations from the ISS with the SOLAR/SOLSPEC Instrument

    NASA Astrophysics Data System (ADS)

    Damé, L.; Bolsée, D.; Meftah, M.; Irbah, A.; Hauchecorne, A.; Bekki, S.; Pereira, N.; Cessateur, G.; Marchand, M.; Thiéblemont, R.; Foujols, T.

    2016-12-01

    Accurate measurements of Solar Spectral Irradiance (SSI) are of primary importance for a better understanding of solar physics and of the impact of solar variability on climate (via Earth's atmospheric photochemistry). The acquisition of a top of atmosphere reference solar spectrum and of its temporal and spectral variability during the unusual solar cycle 24 is of prime interest for these studies. These measurements are performed since April 2008 with the SOLSPEC spectro-radiometer from the far ultraviolet to the infrared (166 nm to 3088 nm). This instrument, developed under a fruitful LATMOS/BIRA-IASB collaboration, is part of the Solar Monitoring Observatory (SOLAR) payload, externally mounted on the Columbus module of the International Space Station (ISS). The SOLAR mission, with its actual 8 years duration, will cover almost the entire solar cycle 24. We present here the in-flight operations and performances of the SOLSPEC instrument, including the engineering corrections, calibrations and improved know-how procedure for aging corrections. Accordingly, a SSI reference spectrum from the UV to the NIR will be presented, together with its UV variability, as measured by SOLAR/SOLSPEC. Uncertainties on these measurements and comparisons with other instruments will be briefly discussed.

  7. Forecast Method of Solar Irradiance with Just-In-Time Modeling

    NASA Astrophysics Data System (ADS)

    Suzuki, Takanobu; Goto, Yusuke; Terazono, Takahiro; Wakao, Shinji; Oozeki, Takashi

    PV power output mainly depends on the solar irradiance which is affected by various meteorological factors. So, it is required to predict solar irradiance in the future for the efficient operation of PV systems. In this paper, we develop a novel approach for solar irradiance forecast, in which we introduce to combine the black-box model (JIT Modeling) with the physical model (GPV data). We investigate the predictive accuracy of solar irradiance over wide controlled-area of each electric power company by utilizing the measured data on the 44 observation points throughout Japan offered by JMA and the 64 points around Kanto by NEDO. Finally, we propose the application forecast method of solar irradiance to the point which is difficulty in compiling the database. And we consider the influence of different GPV default time on solar irradiance prediction.

  8. A Semantically Enabled Metadata Repository for Solar Irradiance Data Products

    NASA Astrophysics Data System (ADS)

    Wilson, A.; Cox, M.; Lindholm, D. M.; Nadiadi, I.; Traver, T.

    2014-12-01

    The Laboratory for Atmospheric and Space Physics, LASP, has been conducting research in Atmospheric and Space science for over 60 years, and providing the associated data products to the public. LASP has a long history, in particular, of making space-based measurements of the solar irradiance, which serves as crucial input to several areas of scientific research, including solar-terrestrial interactions, atmospheric, and climate. LISIRD, the LASP Interactive Solar Irradiance Data Center, serves these datasets to the public, including solar spectral irradiance (SSI) and total solar irradiance (TSI) data. The LASP extended metadata repository, LEMR, is a database of information about the datasets served by LASP, such as parameters, uncertainties, temporal and spectral ranges, current version, alerts, etc. It serves as the definitive, single source of truth for that information. The database is populated with information garnered via web forms and automated processes. Dataset owners keep the information current and verified for datasets under their purview. This information can be pulled dynamically for many purposes. Web sites such as LISIRD can include this information in web page content as it is rendered, ensuring users get current, accurate information. It can also be pulled to create metadata records in various metadata formats, such as SPASE (for heliophysics) and ISO 19115. Once these records are be made available to the appropriate registries, our data will be discoverable by users coming in via those organizations. The database is implemented as a RDF triplestore, a collection of instances of subject-object-predicate data entities identifiable with a URI. This capability coupled with SPARQL over HTTP read access enables semantic queries over the repository contents. To create the repository we leveraged VIVO, an open source semantic web application, to manage and create new ontologies and populate repository content. A variety of ontologies were used in

  9. Effect of electron irradiation in vacuum on FEP-A silicon solar cell covers

    NASA Technical Reports Server (NTRS)

    Marsik, S. J.; Broder, J. D.

    1975-01-01

    Fluorinated ethylene-propylene-A (FEP-A) covers on silicon solar cells were irradiated with 1-MeV electrons, in vacuum, to an accumulated fluence equivalent to approximately 28 years in synchronous orbit. The effect of irradiation on the light transmittance of FEP-A was checked by measuring the short-circuit current of the cells after each dose increment. The results indicate no apparent overall loss in transmission due to irradiation of FEP-A. Filter wheel measurements revealed some darkening of the FEP-A at the blue end of the spectrum. Although no delamination from the cell surface was observed while in vacuum, embrittlement of FEP-A occurred at the accumulated dose.

  10. Wavelength Dependence of Solar Rotation and Solar Cycle UV Irradiance Variations

    NASA Technical Reports Server (NTRS)

    London, Julius; Rottman, Gary J.

    1990-01-01

    It is shown that for the 5-year period 1982 to 1987 the solar irradiance decrease is estimated to be about 5 to 7 percent over the spectral interval 195 to 225 nm. This change becomes progressively smaller with increasing wavelength. For the 2-1/3 year period, January 1987 to April 1989, the irradiance increases about 6 percent at 195 to 205 nm and about 2 percent between 215 to 250 nm. Both 27-day and 13.5-day relative amplitudes peak at the time near solar maximum (1982) but remain comparatively small between 1983 and the onset of solar cycle 22. An average 280 day oscillation is noted for wavelengths up to 230 nm. No physical mechanism is offered for this variation.

  11. Modeling electron density, temperature distribution in the solar corona based on solar surface magnetic field observations

    NASA Astrophysics Data System (ADS)

    Lago, A.; Rodríguez, J. M.; Vieira, L.; Coelho Stekel, T. R.; Costa, J. E. R.; Pinto, T. S. N.

    2015-12-01

    Magnetic fields constitute a natural link between the Sun, the Earth and the Heliosphere in general. The solar dynamo action maintains and strengthens the magnetic field in the solar interior. The structure of the solar corona is mostly determined by the configuration and evolution of the magnetic field. While open magnetic field lines carry plasma into the heliosphere, closed field lines confine plasma. Additionally, key physical processes that impact the evolution of Earth's atmosphere on time-scale from days to millennia, such as the soft X-ray and EUV emission, are also determined by the solar magnetic field. However, observations of the solar spectral irradiance are restricted to the last few solar cycles and are subject to large uncertainties. Here we present a physics-based model to reconstruct in near-real time the evolution of the solar EUV emission based on the configuration of the magnetic field imprinted on the solar surface and assuming that the emission lines are optically thin. The structure of the coronal magnetic field is estimated employing a potential field source surface extrapolation based on the synoptic charts. The coronal plasma temperature and density are described by a hydrostatic model. The emission is estimated to employ the CHIANTI database. The performance of the model is compared to the emission observed by EVE instrument on board SDO spacecraft. The preliminary results and uncertainties are discussed in details. Furthermore, we examine the possibility of delivery the reconstruction of the solar spectral irradiance in near-real time using the infrastructure provided by the Brazilian Space weather program (EMBRACE/INPE). This work is partially supported by CNPq/Brazil under the grant agreement no. 140779/2015-9.

  12. Estimating Exospheric Hydrogen Density Using Lyman-a Solar Irradiance Measurements From SOLSTICE

    NASA Astrophysics Data System (ADS)

    Pierrat, Z.; Snow, M. A.; Machol, J. L.

    2016-12-01

    The final layer of the earth's atmosphere, the exosphere, extends from 500km-10,000km above the earth's surface and is characterized by atomic densities of hydrogen so low that atomic collisions seldom occur. The small amount of hydrogen, however, still has a significant impact on satellite drag and satellite sensor observations that must look through the exosphere. The Solar Radiation Comparison Experiment (SORCE), which orbits well within the exosphere, at 645km, exemplifies this effect. The Solar-Stellar Irradiance Comparison Experiment (SOLSTICE) on SORCE samples a wide range of solar spectral irradiances, including Lyman-a, and is impacted by the effects of exospheric hydrogen. As solar photons enter the exosphere, hydrogen scatters Lyman-a out of the line of sight to SOLSTICE. SOLSTICE measures over a range of path lengths through the exosphere as it orbits, dependent on the angle between the satellite and the sun. The longer the path length, the more scattering of light occurs before reaching the satellite. By correcting the data from SOLSTICE for Lyman-a scattering, we not only produce a better solar irradiance data set for climate and other studies, but we can also learn more about the density of hydrogen in the exosphere. SORCE has been in orbit since 2003, so we can track the changes in the density of exospheric hydrogen through the solar cycle. This research is aimed at determining the impact of Lyman-a scattering on the SOLSTICE data set, finding a function to model the density of hydrogen in the exosphere, and tracking the changes in exospheric hydrogen density through time. This information will improve our understanding of the interactions between the sun and the upper atmosphere, as well as helping improve satellite drag models.

  13. High intensity solar irradiation testing of UV optics. [OSO-8 instruments

    NASA Technical Reports Server (NTRS)

    Greyerbiehl, J. M.; Oberright, J. E.

    1976-01-01

    The Orbiting Solar Observatory-I (OSO-8 in orbit) incorporates two high resolution solar pointing spectrometers operating from 1000 A to 4000 A. Energy from the sun enters a Cassegrainian telescope and is focused on a slit while the solar disk is scanned to one arc-second resolution. The stability of the secondary mirrors reflectance was of concern since they would be exposed to intense focused solar energy up to 27 suns. A test program was initiated to simulate this energy input on sample UV mirrors of the MgF2 and LiF types and to evaluate their performance after irradiation. Tests were conducted to simulate the solar spectrum at high intensities (25 suns) and at a single wavelength near Lyman-alpha, but with twenty times the solar intensity at Lyman-alpha. Post-test measurements after every exposure were made at wavelengths from 1025 A to 1849 A. After 75 simulated 'orbits', reflectance changes due to temperature effects were noted to be less than 10%. Reductions in reflectance under high intensity solar radiation were generally greater than 10%. Polymerization of surface contaminations on the LiF mirrors reduced reflectances at short wavelengths by 40%.

  14. Preliminary low temperature electron irradiation of triple junction solar cells

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Mueller, Robert L.; Scrivner, Roy L.; Helizon, Roger S.

    2005-01-01

    JPL has routinely performed radiation testing on commercial solar cells and has also performed LILT testing to characterize cell performance under far sun operating conditions. This research activity was intended to combine the features of both capabilities to investigate the possibility of any room temperature annealing that might influence the measured radiation damage. Although it was not possible to maintain the test cells at a constant low temperature between irradiation and electrical measurements, it was possible to obtain measurements with the cell temperature kept well below room temperature.

  15. Radiation damage in proton irradiated indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.; Yamaguchi, Masafumi

    1986-01-01

    Indium phosphide solar cells exposed to 10 MeV proton irradiations were found to have significantly greater radiation resistance than either GaAs or Si. Performance predictions were obtained for two proton dominated orbits and one in which both protons and electrons were significant cell degradation factors. Array specific power was calculated using lightweight blanket technology, a SEP array structure, and projected cell efficiencies. Results indicate that arrays using fully developed InP cells should out-perform those using GaAs or Si in orbits where radiation is a significant cell degradation factor.

  16. The Total Solar Irradiance as measured by PREMOS/PICARD

    NASA Astrophysics Data System (ADS)

    Cessateur, Gaël; Schmutz, Werner; Ball, William; Finsterle, Wolfgang; Walter, Benjamin

    2017-04-01

    We present the Total Solar Irradiance (TSI) time series of the PREMOS radiometer, a PMOD/WRC experiment, on board the PICARD satellite from July 2010 to April 2014. Divergent trends among various TSI composites demonstrate the need to have more reliable independent TSI observations. We have assessed radiometer degradation by using either internal calibration, or through statistical methods based on external observations. The two methods lead to different trends with respect to other TSI instruments. Despite various composites that combine TSI observations, sufficient stability of TSI measurements to estimate decadal and centennial trends is still out of reach.

  17. Radiation damage in proton irradiated indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.; Yamaguchi, Masafumi

    1986-01-01

    Indium phosphide solar cells exposed to 10 MeV proton irradiations were found to have significantly greater radiation resistance than either GaAs or Si. Performance predictions were obtained for two proton dominated orbits and one in which both protons and electrons were significant cell degradation factors. Array specific power was calculated using lightweight blanket technology, a SEP array structure, and projected cell efficiencies. Results indicate that arrays using fully developed InP cells should out-perform those using GaAs or Si in orbits where radiation is a significant cell degradation factor.

  18. Total & Spectral Solar Irradiance Sensor (TSIS) EVA Tool Fitchecks

    NASA Image and Video Library

    2017-09-28

    In the high bay of Kennedy Space Center's Space Station Processing Facility, Chris Hardcastle of Stinger-Ghaffarian Technologies, and other payload team members performs spacewalk tool fit-checks of the integrated Total and Spectral Solar Irradiance Sensor-1 (TSIS-1) payload and the EXPRESS Pallet Adapter. TSIS-1 is designed to measure the Sun's energy input into Earth by seeing how it is distributed across different wavelengths of light. These measurements help scientists establish Earth's total energy and how our planet's atmosphere responds to changes in the Sun's energy output. TSIS-1 will launch on SpaceX's 13th commercial resupply mission to the International Space Station.

  19. Surface Irradiances Consistent With CERES-Derived Top-of-Atmosphere Shortwave and Longwave Irradiances

    NASA Technical Reports Server (NTRS)

    Kato, Seiji; Loeb, Norman G.; Rose, Fred G.; Doelling, David R.; Rutan, David A.; Caldwell, Thomas E.; Yu, Lisan; Weller, Robert A.

    2013-01-01

    The estimate of surface irradiance on a global scale is possible through radiative transfer calculations using satellite-retrieved surface, cloud, and aerosol properties as input. Computed top-of-atmosphere (TOA) irradiances, however, do not necessarily agree with observation-based values, for example, from the Clouds and the Earth's Radiant Energy System (CERES). This paper presents amethod to determine surface irradiances using observational constraints of TOA irradiance from CERES. A Lagrange multiplier procedure is used to objectively adjust inputs based on their uncertainties such that the computed TOA irradiance is consistent with CERES-derived irradiance to within the uncertainty. These input adjustments are then used to determine surface irradiance adjustments. Observations by the Atmospheric Infrared Sounder (AIRS), Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), CloudSat, andModerate Resolution Imaging Spectroradiometer (MODIS) that are a part of the NASA A-Train constellation provide the uncertainty estimates. A comparison with surface observations from a number of sites shows that the bias [root-mean-square (RMS) difference] between computed and observed monthlymean irradiances calculated with 10 years of data is 4.7 (13.3) W/sq m for downward shortwave and 22.5 (7.1) W/sq m for downward longwave irradiances over ocean and 21.7 (7.8) W m22 for downward shortwave and 21.0 (7.6) W/sq m for downward longwave irradiances over land. The bias andRMS error for the downward longwave and shortwave irradiances over ocean are decreased from those without constraint. Similarly, the bias and RMS error for downward longwave over land improves, although the constraint does not improve downward shortwave over land. This study demonstrates how synergetic use of multiple instruments (CERES,MODIS, CALIPSO, CloudSat, AIRS, and geostationary satellites) improves the accuracy of surface irradiance computations.

  20. Panel Discussions on Total Solar Irradiance Variations and the Maunder Minimum

    NASA Technical Reports Server (NTRS)

    Pap, J. M.; White, O. R.

    1993-01-01

    For more than a decade, total solar irradiance has been monitored from several satellites, namely and Nimbus-7, Solar Maximum Mission (SMM), the NASA ERBS, NOAA9 and NOAA10,EURECA, and the Upper Atmospheric Research Satellite (SARS).

  1. Solar EUV irradiance derived from a sounding rocket experiment on November 10, 1988

    NASA Astrophysics Data System (ADS)

    Woods, Thomas N.; Rottman, Gary J.

    1990-05-01

    Results are presented on the solar EUV irradiance measurements in the range 30-100 nm obtained in a sounding rocket experiment launched from the White Sands Missile Range, New Mexico, on November 10, 1988. The observed solar EUV irradiance was found to be about 20 percent less than the solar EUV flux from a proxy model based on the daily 10.7-cm solar flux and its 81-day mean and the AE-E solar EUV data taken in the 1970s. The November 10 measurement of the solar EUV flux provides a good calibration reference spectrum for the solar EUV instruments on the San Marco satellite.

  2. Solar EUV irradiance derived from a sounding rocket experiment on November 10, 1988

    NASA Technical Reports Server (NTRS)

    Woods, Thomas N.; Rottman, Gary J.

    1990-01-01

    Results are presented on the solar EUV irradiance measurements in the range 30-100 nm obtained in a sounding rocket experiment launched from the White Sands Missile Range, New Mexico, on November 10, 1988. The observed solar EUV irradiance was found to be about 20 percent less than the solar EUV flux from a proxy model based on the daily 10.7-cm solar flux and its 81-day mean and the AE-E solar EUV data taken in the 1970s. The November 10 measurement of the solar EUV flux provides a good calibration reference spectrum for the solar EUV instruments on the San Marco satellite.

  3. Device performance and lifetime of polymer:fullerene solar cells with UV-ozone-irradiated hole-collecting buffer layers.

    PubMed

    Lee, Seungsoo; Nam, Sungho; Lee, Hyena; Kim, Hwajeong; Kim, Youngkyoo

    2011-11-18

    We report the influence of UV-ozone irradiation of the hole-collecting buffer layers on the performance and lifetime of polymer:fullerene solar cells. UV-ozone irradiation was targeted at the surface of the poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) layers by varying the irradiation time up to 600 s. The change of the surface characteristics in the PEDOT:PSS after UV-ozone irradiation was measured by employing optical absorption spectroscopy, photoelectron yield spectroscopy, and contact angle measurements, while Raman and X-ray photoelectron spectroscopy techniques were introduced for more microscopic analysis. Results showed that the UV-ozone irradiation changed the chemical structure/composition of the surface of the PEDOT:PSS layers leading to the gradual increase of ionization potential with irradiation time in the presence of up-and-down variations in the contact angle (polarity). This surface property change was attributed to the formation of oxidative components, as evidenced by XPS and Auger electron images, which affected the sheet resistance of the PEDOT:PSS layers. Interestingly, device performance was slightly improved by short irradiation (up to 10 s), whereas it was gradually decreased by further irradiation. The short-duration illumination test showed that the lifetime of solar cells with the UV-ozone irradiated PEDOT:PSS layer was improved due to the protective role of the oxidative components formed upon UV-ozone irradiation against the attack of sulfonic acid groups in the PEDOT:PSS layer to the active layer. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Ultraviolet spectral distribution and erythema-weighted irradiance from indoor tanning devices compared with solar radiation exposures.

    PubMed

    Sola, Yolanda; Baeza, David; Gómez, Miguel; Lorente, Jerónimo

    2016-08-01

    Concern regarding the impact of indoor tanning devices on human health has led to different regulations and recommendations, which set limits on erythema-weighted irradiance. Here, we analyze spectral emissions from 52 tanning devices in Spanish facilities and compare them with surface solar irradiance for different solar zenith angles. Whereas most of the devices emitted less UV-B radiation than the midday summer sun, the unweighted UV-A irradiance was 2-6 times higher than solar radiation. Moreover, the spectral distributions of indoor devices were completely different from that of solar radiation, differing in one order of magnitude at some UV-A wavelengths, depending on the lamp characteristics. In 21% of the devices tested, the erythema-weighted irradiance exceeded 0.3Wm(-2): the limit fixed by the European standard and the Spanish regulation. Moreover, 29% of the devices fall within the UV type 4 classification, for which medical advice is required. The high variability in erythema-weighted irradiance results in a wide range of exposure times to reach 1 standard erythemal dose (SED: 100Jm(-2)), with 62% of devices requiring exposures of <10min to reach 1 SED. Nevertheless, the unweighted UV-A dose during this time period would be from 1.4 to 10.3 times more than the solar UV-A dose.

  5. The new climate data record of total and spectral solar irradiance: Current progress and future steps

    NASA Astrophysics Data System (ADS)

    Coddington, Odele; Lean, Judith; Rottman, Gary; Pilewskie, Peter; Snow, Martin; Lindholm, Doug

    2016-04-01

    We present a climate data record of Total Solar Irradiance (TSI) and Solar Spectral Irradiance (SSI), with associated time and wavelength dependent uncertainties, from 1610 to the present. The data record was developed jointly by the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado Boulder and the Naval Research Laboratory (NRL) as part of the National Oceanographic and Atmospheric Administration's (NOAA) National Centers for Environmental Information (NCEI) Climate Data Record (CDR) Program, where the data record, source code, and supporting documentation are archived. TSI and SSI are constructed from models that determine the changes from quiet Sun conditions arising from bright faculae and dark sunspots on the solar disk using linear regression of proxies of solar magnetic activity with observations from the SOlar Radiation and Climate Experiment (SORCE) Total Irradiance Monitor (TIM), Spectral Irradiance Monitor (SIM), and SOlar Stellar Irradiance Comparison Experiment (SOLSTICE). We show that TSI can be separately modeled to within TIM's measurement accuracy from solar rotational to solar cycle time scales and we assume that SSI measurements are reliable on solar rotational time scales. We discuss the model formulation, uncertainty estimates, and operational implementation and present comparisons of the modeled TSI and SSI with the measurement record and with other solar irradiance models. We also discuss ongoing work to assess the sensitivity of the modeled irradiances to model assumptions, namely, the scaling of solar variability from rotational-to-cycle time scales and the representation of the sunspot darkening index.

  6. Recent variability of the solar spectral irradiance and its impact on climate modelling

    NASA Astrophysics Data System (ADS)

    Ermolli, I.; Matthes, K.; Dudok de Wit, T.; Krivova, N. A.; Tourpali, K.; Weber, M.; Unruh, Y. C.; Gray, L.; Langematz, U.; Pilewskie, P.; Rozanov, E.; Schmutz, W.; Shapiro, A.; Solanki, S. K.; Woods, T. N.

    2013-04-01

    measurements. However, the integral of the SSI computed with this model over the entire spectral range does not reproduce the measured cyclical changes of the total solar irradiance, which is an essential requisite for realistic evaluations of solar effects on the Earth's climate in CCMs. We show that within the range provided by the recent SSI observations and semi-empirical models discussed here, the NRLSSI model and SORCE observations represent the lower and upper limits in the magnitude of the SSI solar cycle variation. The results of the CCM simulations, forced with the SSI solar cycle variations estimated from the NRLSSI model and from SORCE measurements, show that the direct solar response in the stratosphere is larger for the SORCE than for the NRLSSI data. Correspondingly, larger UV forcing also leads to a larger surface response. Finally, we discuss the reliability of the available data and we propose additional coordinated work, first to build composite SSI data sets out of scattered observations and to refine current SSI models, and second, to run coordinated CCM experiments.

  7. Solar irradiance measurements by means of optical fibers and silicon detectors.

    PubMed

    Corrons, A; Pons, A

    1979-08-15

    An experimental system has been constructed for the continuous measurement of solar irradiance using silicon diode detectors not directly exposed to solar radiation. The received incident solar radiation is conducted from the roof of the building to the detectors by an optical fiber. An electronic computer receives the signal and processes it, introducing the necessary corrections to calculate the total solar irradiance in W m(-2). The system measures with a proved accuracy to better than 3%.

  8. Solar Spectral Irradiance Variability in Cycle 24: Model Predictions and OMI Observations

    NASA Technical Reports Server (NTRS)

    Marchenko, S.; DeLand, M.; Lean, J.

    2016-01-01

    Utilizing the excellent stability of the Ozone Monitoring Instrument (OMI), we characterize both short-term (solar rotation) and long-term (solar cycle) changes of the solar spectral irradiance (SSI) between 265-500 nanometers during the ongoing Cycle 24. We supplement the OMI data with concurrent observations from the GOME-2 (Global Ozone Monitoring Experiment - 2) and SORCE (Solar Radiation and Climate Experiment) instruments and find fair-to-excellent agreement between the observations and predictions of the NRLSSI2 (Naval Research Laboratory Solar Spectral Irradiance - post SORCE) and SATIRE-S (the Naval Research Laboratory's Spectral And Total Irradiance REconstruction for the Satellite era) models.

  9. Surface Irradiation of Jupiter's Moon Europa

    NASA Astrophysics Data System (ADS)

    Rubin, M.; Tenishev, V.; Combi, M. R.; Jia, X.; Hansen, K. C.; Gombosi, T. I.

    2010-12-01

    currently under consideration by NASA (JEO) and ESA (JGO). We will show energy dependent surface irradiation maps and calculate the source of the sputtered exospheric neutrals.

  10. The Mg 280-nm doublet as a monitor of changes in solar ultraviolet irradiance

    NASA Technical Reports Server (NTRS)

    Heath, D. F.; Schlesinger, B. M.

    1986-01-01

    Solar irradiance data gathered with the Nimbus 7 spacecraft from 1978-1985 are compared with atmospheric MG 289-nm doublet emission line data to evaluate the possibility of using the rotational line data to calculate the total solar UV input. The satellite instrumentation is described, including the calibration equipment and procedures. The spacecraft records solar irradiance once per day and the remainder of the time records irradiance scattered by the atmosphere. The measured irradiances are converted to equivalent brightness temperatures, which can be interpolated for specific layers of the atmosphere. Sample daily data are provided to illustrate the correlation between variations in the Mg-II core radiation and the soalr UV irradiance. Techniques are defined for correcting for periodic variations in instrument performance to quantify long-term solar UV radiance variations. Using the atmospheric Mg-II doublet radiation for measuring soalr UV irradiance is concluded of value for characterizing the effects of solar radiation on the atmosphere.

  11. Skin Cancer, Irradiation, and Sunspots: The Solar Cycle Effect

    PubMed Central

    Zurbenko, Igor

    2014-01-01

    Skin cancer is diagnosed in more than 2 million individuals annually in the United States. It is strongly associated with ultraviolet exposure, with melanoma risk doubling after five or more sunburns. Solar activity, characterized by features such as irradiance and sunspots, undergoes an 11-year solar cycle. This fingerprint frequency accounts for relatively small variation on Earth when compared to other uncorrelated time scales such as daily and seasonal cycles. Kolmogorov-Zurbenko filters, applied to the solar cycle and skin cancer data, separate the components of different time scales to detect weaker long term signals and investigate the relationships between long term trends. Analyses of crosscorrelations reveal epidemiologically consistent latencies between variables which can then be used for regression analysis to calculate a coefficient of influence. This method reveals that strong numerical associations, with correlations >0.5, exist between these small but distinct long term trends in the solar cycle and skin cancer. This improves modeling skin cancer trends on long time scales despite the stronger variation in other time scales and the destructive presence of noise. PMID:25126567

  12. Skin cancer, irradiation, and sunspots: the solar cycle effect.

    PubMed

    Valachovic, Edward; Zurbenko, Igor

    2014-01-01

    Skin cancer is diagnosed in more than 2 million individuals annually in the United States. It is strongly associated with ultraviolet exposure, with melanoma risk doubling after five or more sunburns. Solar activity, characterized by features such as irradiance and sunspots, undergoes an 11-year solar cycle. This fingerprint frequency accounts for relatively small variation on Earth when compared to other uncorrelated time scales such as daily and seasonal cycles. Kolmogorov-Zurbenko filters, applied to the solar cycle and skin cancer data, separate the components of different time scales to detect weaker long term signals and investigate the relationships between long term trends. Analyses of crosscorrelations reveal epidemiologically consistent latencies between variables which can then be used for regression analysis to calculate a coefficient of influence. This method reveals that strong numerical associations, with correlations >0.5, exist between these small but distinct long term trends in the solar cycle and skin cancer. This improves modeling skin cancer trends on long time scales despite the stronger variation in other time scales and the destructive presence of noise.

  13. Tilt to horizontal global solar irradiance conversion: application to PV systems data

    NASA Astrophysics Data System (ADS)

    Housmans, Caroline; Leloux, Jonathan; Bertrand, Cédric

    2017-04-01

    Many transposition models have been proposed in the literature to convert solar irradiance on the horizontal plane to that on a tilted plane requiring that at least two of the three solar components (i.e. global, direct and diffuse) are known. When only global irradiance measurements are available, the conversion from horizontal to tilted planes is still possible but in this case transposition models have to be coupled with decomposition models (i.e. models that predict the direct and diffuse components from the global one). Here, two different approaches have been considered to solve the reverse process, i.e. the conversion from tilted to horizontal: (i) one-sensor approach and (ii) multi-sensors approach. Because only one tilted plane is involved in the one-sensor approach, a decomposition model need to be coupled with a transposition model to solve the problem. By contrast, at least two tilted planes being considered in the multi-sensors approach, only a transposition model is required to perform the conversion. First, global solar irradiance measurements recorded on the roof of the Royal Meteorological Institute of Belgium's radiation tower in Uccle were used to evaluate the performance of both approaches. Four pyranometers (one mounted in the horizontal plane and three on inclined surfaces with different tilts and orientations) were involved in the validation exercise. Second, the inverse transposition was applied to tilted global solar irradiance values retrieved from the energy production registered at residential PV systems located in the vicinity of Belgian radiometric stations operated by RMI (for validation purposes).

  14. The influence of mixed and phase clouds on surface shortwave irradiance during the Arctic spring

    SciTech Connect

    Lubin D.; Vogelmann A.

    2011-10-13

    The influence of mixed-phase stratiform clouds on the surface shortwave irradiance is examined using unique spectral shortwave irradiance measurements made during the Indirect and Semi-Direct Aerosol Campaign (ISDAC), supported by the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program. An Analytical Spectral Devices (ASD, Inc.) spectroradiometer measured downwelling spectral irradiance from 350 to 2200 nm in one-minute averages throughout April-May 2008 from the ARM Climate Research Facility's North Slope of Alaska (NSA) site at Barrow. This study examines spectral irradiance measurements made under single-layer, overcast cloud decks having geometric thickness < 3000 m. Cloud optical depth is retrieved from irradiance in the interval 1022-1033 nm. The contrasting surface radiative influences of mixed-phase clouds and liquid-water clouds are discerned using irradiances in the 1.6-{micro}m window. Compared with liquid-water clouds, mixed-phase clouds during the Arctic spring cause a greater reduction of shortwave irradiance at the surface. At fixed conservative-scattering optical depth (constant optical depth for wavelengths {lambda} < 1100 nm), the presence of ice water in cloud reduces the near-IR surface irradiance by an additional several watts-per-meter-squared. This additional reduction, or supplemental ice absorption, is typically {approx}5 W m{sup -2} near solar noon over Barrow, and decreases with increasing solar zenith angle. However, for some cloud decks this additional absorption can be as large as 8-10 W m{sup -2}.

  15. Temporal Variations of Solar UV Spectral Irradiance Caused by Solar Rotation and Active Region Evolution

    NASA Technical Reports Server (NTRS)

    Donnelly, R. F.; Heath, D. F.; Lean, J. L.; Rottman, G. J.

    1984-01-01

    Variations in the solar 100 to 400 nm UV spectral irradiance caused by solar rotation and active region evolution, are discussed as a function of UV wavelength, CMD dependence, and in relation to the temporal variations in the total solar irradiance, 10.7 cm radio flux, sunspot number and Ca K plage data. Active region radiation at cm wavelengths includes a component proportional to the magnetic field. Active region evolution involves a more rapid growth, peak and decay of sunspots and their strong magnetic fields than the Ca K plages and their related UV enhancements. Major plages often last a rotation or more longer than the active region's sunspots. Large active regions, including those associated with major dips in the total solar irradiance, tend to produce the strongest peaks in 10.7 cm and sunspot numbers on their first rotation, while the Ca K plages and UV enhancements peak on the next rotation and decay more slowly on subsequent rotations. Differences in CMD dependencies cause temporal differences including the stronger presence of 13 day variations in the UV flux.

  16. Free surface damage induced by irradiation of BCC iron

    NASA Astrophysics Data System (ADS)

    Korchuganov, Aleksandr V.

    2016-11-01

    The influence of the crystallographic orientation of bcc iron samples on the character of structural changes near the free surface irradiated with ions was studied in the framework of a molecular dynamics method. Irradiation of the (111) surface leads to the formation of craters surrounded by atoms escaped on the surface (adatoms). In the case of the (110) surface irradiation, a vacancy-type dislocation loop with the Burgers vector a <100> or a/2 <111> was formed. The number of adatoms and survived point defects was greater in the sample with the (110) surface than in the sample with the (111) surface for the atomic displacement cascade energies lower than 20 keV. The influence of the irradiated surface orientation on the number of generated point defects decreased with the increasing atomic displacement cascade energy.

  17. Enhanced efficiency of the dye-sensitized solar cells by excimer laser irradiated carbon nanotube network counter electrode

    SciTech Connect

    Chien, Yun-San Fu, Wei-En; Yang, Po-Yu; Lee, I-Che; Chu, Chih-Chieh; Chou, Chia-Hsin; Cheng, Huang-Chung

    2014-02-03

    The carbon nanotube network decorated with Pt nanoparticles (PtCNT) irradiated by excimer laser as counter electrode (CE) of dye-sensitized solar cells (DSSCs) has been systematically demonstrated. The conversion efficiency would be improved from 7.12% to 9.28% with respect to conventional Pt-film one. It was attributed to the enhanced catalytic surface from Pt nanoparticles and the improved conductivity due to the adjoining phenomenon of PtCNTs irradiated by laser. Moreover, the laser annealing could also promote the interface contact between CE and conductive glass. Therefore, such a simple laser-irradiated PtCNT network is promising for the future flexible DSSCs applications.

  18. Modelling short-term Solar Spectral Irradiance (SSI) using coronal electron density and temperature profiles based on solar magnetic field observations

    NASA Astrophysics Data System (ADS)

    Gómez, J. M. Rodríguez; Vieira, L. E. Antunes; Lago, A. Dal; Palacios, J.; Balmaceda, L. A.; Stekel, T.

    2017-10-01

    Some key physical processes that impact the evolution of Earth's atmosphere on time-scale from days to millennia, such as the EUV emissions, are determined by the solar magnetic field. However, observations of the solar spectral irradiance are restricted to the last few solar cycles and are subject to large uncertainties. We present a physics-based model to reconstruct short-term solar spectral irradiance (SSI) variability. The coronal magnetic field is estimated to employ the Potential Field Source Surface extrapolation (PFSS) based on observational synoptic charts and magnetic flux transport model. The emission is estimated to employ the CHIANTI atomic database 8.0. The performance of the model is compared to the emission observed by TIMED/SORCE.

  19. DREAMS-SIS: The Solar Irradiance Sensor on-board the ExoMars 2016 lander

    NASA Astrophysics Data System (ADS)

    Arruego, I.; Apéstigue, V.; Jiménez-Martín, J.; Martínez-Oter, J.; Álvarez-Ríos, F. J.; González-Guerrero, M.; Rivas, J.; Azcue, J.; Martín, I.; Toledo, D.; Gómez, L.; Jiménez-Michavila, M.; Yela, M.

    2017-07-01

    The Solar Irradiance Sensor (SIS) was part of the DREAMS (Dust characterization, Risk assessment, and Environment Analyzer on the Martian Surface) payload package on board the ExoMars 2016 Entry and Descent Module (EDM), ;Schiaparelli;. DREAMS was a meteorological station aimed at the measurement of several atmospheric parameters, as well as the presence of electric fields, during the surface operations of EDM. DREAMS-SIS is a highly miniaturized lightweight sensor designed for small meteorological stations, capable of estimating the aerosol optical depth (AOD) several times per sol, as well as performing a direct measurement of the global (direct plus scattered) irradiance on the Martian surface in the spectral range between 200 and 1100 nm. AOD is estimated from the irradiance measurements at two different spectral bands - Ultraviolet (UV) and near infrared (NIR) - which also enables color index (CI) analysis for the detection of clouds. Despite the failure in the landing of Schiaparelli, DREAMS-SIS is a valuable precursor for new developments being carried-on at present. The concept and design of DREAMS-SIS are here presented and its operating principles, supported by preliminary results from a short validation test, are described. Lessons learnt and future work towards a new generation of Sun irradiance sensors is also outlined.

  20. Surface Solar Radiation from Geostationary Satellites for Renewable Energy

    NASA Astrophysics Data System (ADS)

    Laszlo, I.; Kondratovich, V.; Liu, H.

    2011-12-01

    Solar radiation available at the surface has been routinely derived in real time from Geostationary Operational Environmental Satellite (GOES) data at the National Oceanic and Atmospheric Administration (NOAA), National Environmental Satellite, Data and Information Service (NESDIS) in a processing system known as the GOES Surface and Insolation Product (GSIP) system. The GSIP system has recently been upgraded to provide retrievals experimentally at a spatial resolution of ~ 4 km. The planned rapid observations (5-15 minutes) from the Advanced Baseline Imager (ABI) on the upcoming GOES-R satellite will enhance the capabilities realized in the current GCIP for solar resources where frequent observations of solar radiation reaching the surface are essential for planning and load management. The algorithms used in GSIP and with ABI are based on radiative transfer, represented in look-up-tables, and internally retrieve clear-sky and cloudy-sky transmittances (GSIP), or use atmospheric and surface parameters derived independently from multispectral radiances (ABI) for calculating these transmittances. Tests, performed using the Moderate Resolution Imaging Spectroradiometer (MODIS) data, have shown that the ABI algorithm is superior to the GSIP algorithm. The algorithms are designed to provide basic radiation budget products (e.g., total solar irradiance at the surface), as well as products specifically needed in the solar energy sector (average, midday and clear-sky insolation, clear-sky days, diffuse and direct normal radiation, etc.). The accuracy of surface solar radiation retrievals are assessed using long-term GOES and MODIS satellite data and surface measurements at the Surface Radiation (SURFRAD) network.

  1. EMPIRE: A robust empirical reconstruction of solar irradiance variability

    NASA Astrophysics Data System (ADS)

    Yeo, K. L.; Krivova, N. A.; Solanki, S. K.

    2017-04-01

    We present a new empirical model of total and spectral solar irradiance (TSI and SSI) variability entitled EMPirical Irradiance REconstruction (EMPIRE). As with existing empirical models, TSI and SSI variability is given by the linear combination of solar activity indices. In empirical models, UV SSI variability is usually determined by fitting the rotational variability in activity indices to that in measurements. Such models have to date relied on ordinary least squares regression, which ignores the uncertainty in the activity indices. In an advance from earlier efforts, the uncertainty in the activity indices is accounted for in EMPIRE by the application of an error-in-variables regression scheme, making the resultant UV SSI variability more robust. The result is consistent with observations and unprecedentedly, with that from other modeling approaches, resolving the long-standing controversy between existing empirical models and other types of models. We demonstrate that earlier empirical models, by neglecting the uncertainty in activity indices, underestimate UV SSI variability. The reconstruction of TSI and visible and IR SSI from EMPIRE is also shown to be consistent with observations. The EMPIRE reconstruction is of utility to climate studies as a more robust alternative to earlier empirical reconstructions.

  2. SOLAR SPECTRAL IRRADIANCE, SOLAR ACTIVITY, AND THE NEAR-ULTRA-VIOLET

    SciTech Connect

    Fontenla, J. M.; Stancil, P. C.; Landi, E. E-mail: stancil@physast.uga.edu

    2015-08-20

    The previous calculations of the Solar Spectral Irradiance (SSI) by the Solar Radiation Physical Modeling, version 2 system, are updated in this work by including new molecular photodissociation cross-sections of important species, and many more levels and lines in its treatment of non-LTE radiative transfer. The current calculations including the new molecular photodissociation opacities produce a reduced over-ionizaton of heavy elements in the lower chromosphere and solve the problems with prior studies of the UV SSI in the wavelength range 160–400 nm and now reproduce the available observations with much greater accuracy. Calculations and observations of the near-UV at 0.1 nm resolution and higher are compared. The current set of physical models includes four quiet-Sun and five active-region components, from which radiance is computed for ten observing angles. These radiances are combined with images of the solar disk to obtain the SSI and Total Solar Irradiance and their variations. The computed SSI is compared with measurements from space at several nm resolution and agreement is found within the accuracy level of these measurements. An important result is that the near-UV SSI increase with solar activity is significant for the photodissociation of ozone in the terrestrial atmosphere because a number of highly variable upper chromospheric lines overlap the ozone Hartley band.

  3. Observations of Solar Cycle Variations in UV Spectral Irradiance Since 1978

    NASA Astrophysics Data System (ADS)

    Cebula, R. P.; Deland, M. T.

    2010-12-01

    The spectrally resolved amplitude of solar UV irradiance variations over a solar cycle is an important parameter for estimating long-term changes in the Earth’s climate system. Satellite measurements of solar UV variability have been made by at least eight different instruments since 1978, covering both rising and declining phases of solar activity. Determining solar cycle variations from these data sets requires careful consideration of both time-dependent and wavelength-dependent uncertainties for each instrument. We have previously presented irradiance variation results for solar cycles 21, 22, and 23 using spectral irradiance data from Nimbus-7 SBUV, SME, NOAA-9 SBUV/2, NOAA-11 SBUV/2, UARS SUSIM, and UARS SOLSTICE. These results have shown consistent solar cycle irradiance changes within instrumental uncertainties, and also show the same relative spectral dependence for both short-term (rotational) and long-term (solar cycle) variations. In this work, we compare these results to recent UV irradiance data from the SORCE SIM and SORCE SOLSTICE instruments covering the declining phase of Cycle 23. Implementation of the SORCE solar data in atmospheric models leads to substantial changes in stratospheric heating and ozone concentrations compared to previous calculations. We will examine the agreement in solar cycle behavior between different irradiance data sets for their respective time periods, as well as the agreement with proxy model predictions of solar activity.

  4. Evaluation of various procedures transposing global tilted irradiance to horizontal surface irradiance

    NASA Astrophysics Data System (ADS)

    Housmans, Caroline; Bertrand, Cédric

    2017-02-01

    Many transposition models have been proposed in the literature to convert solar irradiance on the horizontal plane to that on a tilted plane. The inverse process, i.e. the conversion from tilted to horizontal is investigated here based upon seven months of in-plane global solar irradiance measurements recorded on the roof of the Royal Meteorological Institute of Belgium's radiation tower in Uccle (Longitude 4.35° E, Latitude 50.79° N). Up to three pyranometers mounted on inclined planes of different tilts and orientations were involved in the inverse transposition process. Our results indicate that (1) the tilt to horizontal irradiance conversion is improved when measurements from more than one tilted pyranometer are considered (i.e. by using a multi-pyranometer approach) and (2) the improvement from using an isotropic model to anisotropic models in the inverse transposition problem is not significant.

  5. Surface modification of multilayer graphene using Ga ion irradiation

    SciTech Connect

    Wang, Quan; Shao, Ying; Ge, Daohan; Ren, Naifei; Yang, Qizhi

    2015-04-28

    The effect of Ga ion irradiation intensity on the surface of multilayer graphene was examined. Using Raman spectroscopy, we determined that the irradiation caused defects in the crystal structure of graphene. The density of defects increased with the increase in dwell times. Furthermore, the strain induced by the irradiation changed the crystallite size and the distance between defects. These defects had the effect of doping the multilayer graphene and increasing its work function. The increase in work function was determined using contact potential difference measurements. The surface morphology of the multilayer graphene changed following irradiation as determined by atomic force microscopy. Additionally, the adhesion between the atomic force microscopy tip and sample increased further indicating that the irradiation had caused surface modification, important for devices that incorporate graphene.

  6. Crystalline nanostructures on Ge surfaces induced by ion irradiation

    NASA Astrophysics Data System (ADS)

    Ou, Xin; Facsko, Stefan

    2014-12-01

    Besides conventional low efficiency lithographic techniques broad ion beam irradiation is a simple and potentially mass productive technique to fabricate nanoscale patterns on various semiconductor surfaces. The main drawback of this method is that the irradiated semiconductor surfaces are amorphized, which strongly limits the potential application of these nanostructures in electronic and optoelectronic devices. In this work we report that high-quality crystalline nanostructure patterns are formed on Ge surfaces via Ar+ irradiation at elevated temperatures. This pattern formation process resembles the pattern formation in homoepitaxy. Therefore, the process is discussed based on a 'reverse epitaxy' mechanism.

  7. The Contribution of the Solcon Instrument to the Long Term Total Solar Irradiance Observation

    NASA Technical Reports Server (NTRS)

    Dewitte, S.; Joukoff, A.; Crommelynck, D.; Lee, R. B., III; Helizon, R.

    1999-01-01

    On century time scales, the variation in the total solar irradiance received by the earth is believed to be a major climate change driver. Therefore accurate and time stable measurements of the total solar irradiance are necessary. We present the latest contribution of the SOLar CONstant (SOLCON) instrument to these measurements, namely its measurements during the International Extreme Ultraviolet Hitchhiker (IEH) 3 space shuttle flight, and its results: the verification of the ageing of the Earth Radiation Budget Satellite (ERBS), and the measurement of the Space Absolute Radiometric Reference (SARR) adjustment coefficients for the Variability of solar IRradiance and Gravity Oscillations (VIRGO) radiometers.

  8. SOHO/CELIAS Solar EUV Monitor (SEM) Absolute Solar EUV Irradiance Measurements Spanning Two Solar Minima (Invited)

    NASA Astrophysics Data System (ADS)

    Wieman, S. R.; Didkovsky, L. V.; Judge, D.

    2010-12-01

    The SOHO/CELIAS Solar EUV Monitor (SEM) has measured absolute EUV solar irradiance nearly continuously over a 15 year period that includes both the cycle 22/23 (1996) and cycle 23/24 (2008) solar minima. These measurements indicate that irradiance in the 26-34 nm spectral range, including the dominant He II 30.4 nm spectral line, was about 15% ± 6% lower during the more recent minimum compared to the previous minimum. The SEM data have been verified against measurements from seven sounding rocket calibration underflights that included a NIST calibrated SEM clone instrument as well as a Rare Gas Ionization Cell (RGIC) absolute extreme ultraviolet (EUV) detector. Additionally, the SEM measurements are in good agreement with measurements from the EUV Spectrophotomer (ESP) part of the EUV Variability Experiment (EVE) on SDO. ESP measurements from the EVE sounding rocket flight (2008) confirmed the very low solar EUV irradiance observed during the 23/24 minimum. A comparison of SEM and ESP data in the 30.4 nm spectral windows is presented.

  9. Surface, structural and tensile properties of proton beam irradiated zirconium

    NASA Astrophysics Data System (ADS)

    Rafique, Mohsin; Chae, San; Kim, Yong-Soo

    2016-02-01

    This paper reports the surface, structural and tensile properties of proton beam irradiated pure zirconium (99.8%). The Zr samples were irradiated by 3.5 MeV protons using MC-50 cyclotron accelerator at different doses ranging from 1 × 1013 to 1 × 1016 protons/cm2. Both un-irradiated and irradiated samples were characterized using Field Emission Scanning Electron Microscope (FESEM), X-ray Diffraction (XRD) and Universal Testing Machine (UTM). The average surface roughness of the specimens was determined by using Nanotech WSxM 5.0 develop 7.0 software. The FESEM results revealed the formation of bubbles, cracks and black spots on the samples' surface at different doses whereas the XRD results indicated the presence of residual stresses in the irradiated specimens. Williamson-Hall analysis of the diffraction peaks was carried out to investigate changes in crystallite size and lattice strain in the irradiated specimens. The tensile properties such as the yield stress, ultimate tensile stress and percentage elongation exhibited a decreasing trend after irradiation in general, however, an inconsistent behavior was observed in their dependence on proton dose. The changes in tensile properties of Zr were associated with the production of radiation-induced defects including bubbles, cracks, precipitates and simultaneous recovery by the thermal energy generated with the increase of irradiation dose.

  10. A New Climate Data Record of Solar Spectral Irradiance from 1610 to Present

    NASA Astrophysics Data System (ADS)

    Coddington, O.; Lean, J.; Pilewskie, P.; Snow, M. A.; Lindholm, D. M.

    2015-12-01

    We present a climate data record of Solar Spectral Irradiance (SSI), with associated time and wavelength dependent uncertainties, from 1610 to the present. The data record was developed jointly by the University of Colorado at Boulder's Laboratory for Atmospheric and Space Physics (LASP) and the Naval Research Laboratory (NRL) as part of the National Oceanographic and Atmospheric Administration's (NOAA) National Centers for Environmental Information (NCEI) Climate Data Record (CDR) Program, where the data record, source code, and supporting documentation are archived. SSI is constructed from models that determine the changes from quiet Sun conditions arising from bright faculae and dark sunspots on the solar disk using linear regression of proxies of solar magnetic activity with observations from the SOlar Radiation and Climate Experiment (SORCE) Spectral Irradiance Monitor (SIM); the measurements are assumed to be reliable on solar rotational time scales. We extend the SSI record to longer time scales by reproducing the integral of the SSI with independent measurements of Total Solar Irradiance (TSI) measurements made by the SORCE Total Irradiance Monitor (TIM); TSI can be separately modeled to within TIM's measurement accuracy from solar rotational to solar cycle time scales. We discuss the model formulation, uncertainty estimates, and operational implementation and present comparisons of the modeled SSI with the measurement record and with other solar irradiance models. We also discuss future work to improve the Solar Irradiance Climate Data Record with new measurements from the Total and Spectral Solar Irradiance Sensor (TSIS), different proxy representations of sunspot darkening and facular brightening, including the improved composite record of Mg II index being developed as part of the European-led SOlar Irradiance Data exploitation (SOLID) project, and to expand the uncertainty estimates to include model assumptions.

  11. Correlation of solar irradiance and atmospheric temperature variations derived from spacecraft radiometry

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III; Bolden, William C.; Gibson, M. A.; Paden, Jack; Pandey, Dhirendra K.; Thomas, Susan; Wilson, Robert S.

    1992-01-01

    Long-term changes in the mean global atmospheric temperature and the total solar irradiance were examined utilizing 1979-1989 spacecraft measurements. Outgoing longwave radiation at the top of the atmosphere was employed to infer global atmospheric temperatures. Evidence was determined that indicates the global temperatures should decline in the 1990-1997 period as the magnitude of the incoming solar irradiance declines with decreasing solar magnetic activity.

  12. Detectability of active triangulation range finder: a solar irradiance approach.

    PubMed

    Liu, Huizhe; Gao, Jason; Bui, Viet Phuong; Liu, Zhengtong; Lee, Kenneth Eng Kian; Peh, Li-Shiuan; Png, Ching Eng

    2016-06-27

    Active triangulation range finders are widely used in a variety of applications such as robotics and assistive technologies. The power of the laser source should be carefully selected in order to satisfy detectability and still remain eye-safe. In this paper, we present a systematic approach to assess the detectability of an active triangulation range finder in an outdoor environment. For the first time, we accurately quantify the background noise of a laser system due to solar irradiance by coupling the Perez all-weather sky model and ray tracing techniques. The model is validated with measurements with a modeling error of less than 14.0%. Being highly generic and sufficiently flexible, the proposed model serves as a guide to define a laser system for any geographical location and microclimate.

  13. A Surface-Controlled Solar Cell

    NASA Technical Reports Server (NTRS)

    Daud, T.; Crotty, G. T.

    1987-01-01

    Open-circuit voltage and cell efficiency increased. Proposed technique for controlling recombination velocity on solar-cell surfaces provides cells of increased efficiency and open-circuit voltage. In present cells, uncontrolled surface recombination velocity degrades opencircuit voltage and efficiency. In cell using proposed technique, transparent conducting layer, insulated from cell contacts, biased to enable variable control of surface recombination velocity.

  14. A Surface-Controlled Solar Cell

    NASA Technical Reports Server (NTRS)

    Daud, T.; Crotty, G. T.

    1987-01-01

    Open-circuit voltage and cell efficiency increased. Proposed technique for controlling recombination velocity on solar-cell surfaces provides cells of increased efficiency and open-circuit voltage. In present cells, uncontrolled surface recombination velocity degrades opencircuit voltage and efficiency. In cell using proposed technique, transparent conducting layer, insulated from cell contacts, biased to enable variable control of surface recombination velocity.

  15. Silicon solar cell characterization at low temperatures and low illumination as a function of particulate irradiation

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F.; Little, S. A.; Peacock, C. L., Jr.

    1983-01-01

    Various configurations of back surface reflector silicon solar cells including small (2 x 2) cm and large (approx. 6 x 6) cm cells with conventional and wraparound contacts were subjected to 1 MeV electron irradiation and characterized under both Earth orbital and deep space conditions of temperatures and illuminations. Current-Voltage (I-V) data were generated from +65 C to -150 C and at incident illuminations from 135.3 mW/sq cm to 5.4 mW/sq cm for these cells. Degradation in cell performance which is manifested only under deep space conditions is emphasized. In addition, the effect of particle irradiation on the high temperature and high intensity and low temperature and low intensity performance of the cells is described. The cells with wraparound contacts were found to have lower efficiencies at Earth orbital conditions than the cells with conventional contacts.

  16. NEW SOLAR EXTREME-ULTRAVIOLET IRRADIANCE OBSERVATIONS DURING FLARES

    SciTech Connect

    Woods, Thomas N.; Hock, Rachel; Eparvier, Frank; Jones, Andrew R.; Chamberlin, Phillip C.; Klimchuk, James A.; Didkovsky, Leonid; Judge, Darrell; Mariska, John; Warren, Harry; Schrijver, Carolus J.; Webb, David F.; Bailey, Scott; Tobiska, W. Kent

    2011-10-01

    New solar extreme-ultraviolet (EUV) irradiance observations from the NASA Solar Dynamics Observatory (SDO) EUV Variability Experiment provide full coverage in the EUV range from 0.1 to 106 nm and continuously at a cadence of 10 s for spectra at 0.1 nm resolution and even faster, 0.25 s, for six EUV bands. These observations can be decomposed into four distinct characteristics during flares. First, the emissions that dominate during the flare's impulsive phase are the transition region emissions, such as the He II 30.4 nm. Second, the hot coronal emissions above 5 MK dominate during the gradual phase and are highly correlated with the GOES X-ray. A third flare characteristic in the EUV is coronal dimming, seen best in the cool corona, such as the Fe IX 17.1 nm. As the post-flare loops reconnect and cool, many of the EUV coronal emissions peak a few minutes after the GOES X-ray peak. One interesting variation of the post-eruptive loop reconnection is that warm coronal emissions (e.g., Fe XVI 33.5 nm) sometimes exhibit a second large peak separated from the primary flare event by many minutes to hours, with EUV emission originating not from the original flare site and its immediate vicinity, but rather from a volume of higher loops. We refer to this second peak as the EUV late phase. The characterization of many flares during the SDO mission is provided, including quantification of the spectral irradiance from the EUV late phase that cannot be inferred from GOES X-ray diagnostics.

  17. Soft X-ray irradiance measured by the Solar Aspect Monitor on the Solar Dynamic Observatory Extreme ultraviolet Variability Experiment

    NASA Astrophysics Data System (ADS)

    Lin, C. Y.; Bailey, S. M.; Jones, A.; Woodraska, D.; Caspi, A.; Woods, T. N.; Eparvier, F. G.; Wieman, S. R.; Didkovsky, L. V.

    2016-04-01

    The Solar Aspect Monitor (SAM) is a pinhole camera on the Extreme ultraviolet Variability Experiment (EVE) aboard the Solar Dynamics Observatory. SAM projects the solar disk onto the CCD through a metallic filter designed to allow only solar photons shortward of 7 nm to pass. Contamination from energetic particles and out-of-band irradiance is, however, significant in the SAM observations. We present a technique for isolating the 0.01-7 nm integrated irradiance from the SAM signal to produce the first results of broadband irradiance for the time period from May 2010 to May 2014. The results of this analysis agree with a similar data product from EVE's EUV SpectroPhotometer to within 25%. We compare our results with measurements from the Student Nitric Oxide Explorer Solar X-ray Photometer and the Thermosphere Ionosphere Mesosphere Energetics and Dynamics Solar EUV Experiment at similar levels of solar activity. We show that the full-disk SAM broadband results compared well to the other measurements of the 0.01-7 nm irradiance. We also explore SAM's capability toward resolving spatial contribution from regions of solar disk in irradiance and demonstrate this feature with a case study of several strong flares that erupted from active regions on 11 March 2011.

  18. Solar spectral irradiance and atmospheric transmission at Mauna Loa Observatory

    SciTech Connect

    Shaw, G.E.

    1982-06-01

    A radiometer was operated at the Mauna Loa Observatory during calendar year 1980 to estimate the spectral irradiance of the sun and its possible fluctuation in time near the peak of solar activity. Data were also acquired on seasonal trends of atmospheric transmissivity above the marine mixing layer in the central Pacific. Spectral irradiance remained c constant to at least 1/2% at all wavelengths monitored. Furthermore its absolute magnitude was in agreement with the Labs and Neckel values to +- 2% except at blue wavelengths where the Mauna Loa values are from 4 to 12% higher and at lambda = 850 nm where the Mauna Loa value is 9% lower. The residual aerosol optical depth above Mauna Loa Observatory during 1980 averaged tau/sub 0/ = 0.020. An intrusion of dust into the central Pacific from the Gobi Desert (as deduced by the composition of collected particles) invaded the Central Pacific from Mar. to May 19890 and caused a perturbation in optical depth (at lambda = 500 nm) of ..delta..tau/sub 0/approx.0.01--0.02. The optical depth increment caused by the Mt. St. Helens volcano was <0.005 in the 2-month period following the eruption.

  19. Solar spectral irradiance and atmospheric transmission at Mauna Loa Observatory.

    PubMed

    Shaw, G E

    1982-06-01

    A radiometer was operated at the Mauna Loa Observatory during calendar year 1980 to estimate the spectral irradiance of the sun and its possible fluctuation in time near the peak of solar activity. Data were also acquired on seasonal trends of atmospheric transmissivity above the marine mixing layer in the central Pacific. Spectral irradiance remained constant to at least (1/2)% at all wavelengths monitored. Furthermore its absolute magnitude was in agreement with the Labs and Neckel values to +/-2% except at blue wavelengths where the Mauna Loa values are from 4 to 12% higher and at lambda = 850 nm where the Mauna Loa value is 9% lower. The residual aerosol optical depth above Mauna Loa Observatory during 1980 averaged tau(0) = 0.020. An intrusion of dust into the central Pacific from the Gobi Desert (as deduced by the composition of collected particles) invaded the Central Pacific from Mar. to May 1980 and caused a perturbation in optical depth (at lambda = 500 nm) of Deltatau(0) ~ 0.01-0.02. The optical depth increment caused by the Mt. St. Helens volcano was <0.005 in the 2-month period following the eruption.

  20. Prediction of global solar irradiance based on time series analysis: Application to solar thermal power plants energy production planning

    SciTech Connect

    Martin, Luis; Marchante, Ruth; Cony, Marco; Zarzalejo, Luis F.; Polo, Jesus; Navarro, Ana

    2010-10-15

    Due to strong increase of solar power generation, the predictions of incoming solar energy are acquiring more importance. Photovoltaic and solar thermal are the main sources of electricity generation from solar energy. In the case of solar thermal energy plants with storage energy system, its management and operation need reliable predictions of solar irradiance with the same temporal resolution as the temporal capacity of the back-up system. These plants can work like a conventional power plant and compete in the energy stock market avoiding intermittence in electricity production. This work presents a comparisons of statistical models based on time series applied to predict half daily values of global solar irradiance with a temporal horizon of 3 days. Half daily values consist of accumulated hourly global solar irradiance from solar raise to solar noon and from noon until dawn for each day. The dataset of ground solar radiation used belongs to stations of Spanish National Weather Service (AEMet). The models tested are autoregressive, neural networks and fuzzy logic models. Due to the fact that half daily solar irradiance time series is non-stationary, it has been necessary to transform it to two new stationary variables (clearness index and lost component) which are used as input of the predictive models. Improvement in terms of RMSD of the models essayed is compared against the model based on persistence. The validation process shows that all models essayed improve persistence. The best approach to forecast half daily values of solar irradiance is neural network models with lost component as input, except Lerida station where models based on clearness index have less uncertainty because this magnitude has a linear behaviour and it is easier to simulate by models. (author)

  1. Surface Modification of Polymer Substrates by Oxygen Ion Irradiation

    SciTech Connect

    Takaoka, G. H.; Ryuto, H.; Araki, R.; Yakushiji, T.

    2008-11-03

    Oxygen cluster ions and/or monomer ions were used for the sputtering and the surface modification of polymers such as polycarbonate (PC) and polyethylene terephthalate (PET). For the case of oxygen cluster ion irradiation, the sputtered depth increased with increase of the acceleration voltage, and the sputtering yield was much larger than that by the monomer ion irradiation. The sputtered particles represented the polymer structure, which indicated that the bond scission by the cluster ion irradiation resulted in an ejection of monomer molecule through the intermolecular collision. On the other hand, for the oxygen monomer ion irradiation, the implanted depth increased with increase of the acceleration voltage, and the bond scission occurred at the deep region through the binary collision with the high energetic ions. Therefore, the sputtering yield for the polymer surfaces decreased, and the sputtering effect became very small. Furthermore, the simultaneous use of oxygen cluster and monomer ions was more effective for oxidation of the PET surfaces rather than the monomer ion irradiation or the cluster ion irradiation. As a result, the contact angle measurement showed that the wettability of the PET surfaces irradiated by the simultaneous use of oxygen cluster and monomer ions was much enhanced.

  2. Surface Modification of Polymer Substrates by Oxygen Ion Irradiation

    NASA Astrophysics Data System (ADS)

    Takaoka, G. H.; Ryuto, H.; Araki, R.; Yakushiji, T.

    2008-11-01

    Oxygen cluster ions and/or monomer ions were used for the sputtering and the surface modification of polymers such as polycarbonate (PC) and polyethylene terephthalate (PET). For the case of oxygen cluster ion irradiation, the sputtered depth increased with increase of the acceleration voltage, and the sputtering yield was much larger than that by the monomer ion irradiation. The sputtered particles represented the polymer structure, which indicated that the bond scission by the cluster ion irradiation resulted in an ejection of monomer molecule through the intermolecular collision. On the other hand, for the oxygen monomer ion irradiation, the implanted depth increased with increase of the acceleration voltage, and the bond scission occurred at the deep region through the binary collision with the high energetic ions. Therefore, the sputtering yield for the polymer surfaces decreased, and the sputtering effect became very small. Furthermore, the simultaneous use of oxygen cluster and monomer ions was more effective for oxidation of the PET surfaces rather than the monomer ion irradiation or the cluster ion irradiation. As a result, the contact angle measurement showed that the wettability of the PET surfaces irradiated by the simultaneous use of oxygen cluster and monomer ions was much enhanced.

  3. Electrokinetic and surface chemical characterizations of an irradiated microfiltration polysulfone membrane: comparison of two irradiation doses.

    PubMed

    de Lara, R; Benavente, J

    2007-06-15

    The effect of ionizing radiation on the surface and electrokinetic characteristic parameters for a porous membrane of pore size 0.2 mum is determined and correlated with the irradiation dose (10 and 80 J/kg). Changes in NaCl permeability and membrane system electrical resistance determined from diffusion and impedance spectroscopy measurements are consistent with the increase of membrane pore radii/porosity, in agreement with SEM micrographs and reported results. Low irradiation dose seems to clean the membrane surface of impurities, according to XPS results, but the increase of irradiation doses could affect surface roughness. Due to the relatively high pore radius, ion transport numbers are practically independent of radiation and dose, but irradiation slightly modifies the membrane solution interface by increasing its weakly electronegative character, which could be of interest in the ultrafiltration of proteins or macromolecules.

  4. Solar Irradiance from 165 to 400 nm in 2008 and UV Variations in Three Spectral Bands During Solar Cycle 24

    NASA Astrophysics Data System (ADS)

    Meftah, M.; Bolsée, D.; Damé, L.; Hauchecorne, A.; Pereira, N.; Irbah, A.; Bekki, S.; Cessateur, G.; Foujols, T.; Thiéblemont, R.

    2016-12-01

    Accurate measurements of the solar spectral irradiance (SSI) and its temporal variations are of primary interest to better understand solar mechanisms, and the links between solar variability and Earth's atmosphere and climate. The SOLar SPECtrum (SOLSPEC) instrument of the Solar Monitoring Observatory (SOLAR) payload onboard the International Space Station (ISS) has been built to carry out SSI measurements from 165 to 3088 nm. We focus here on the ultraviolet (UV) part of the measured solar spectrum (wavelengths less than 400 nm) because the UV part is potentially important for understanding the solar forcing of Earth's atmosphere and climate. We present here SOLAR/SOLSPEC UV data obtained since 2008, and their variations in three spectral bands during Solar Cycle 24. They are compared with previously reported UV measurements and model reconstructions, and differences are discussed.

  5. Surface tension profiles of nanofluid containing surfactant during microwave irradiation

    NASA Astrophysics Data System (ADS)

    Tanaka, K.; Asakuma, Y.; Saptoro, A.; Phan, C.

    2017-06-01

    Manipulation of the surface tension is useful in improving heat and mass transfer performances of nanofluids in thermal systems. In our previous study, the effect of microwave irradiation on the reduction of surface tension of nanofluids (Fe2O3) was found even after it was turned off. In this study, a synergistic effect of microwave irradiation and surfactant addition (SDS) was investigated to obtain further surface tension reduction of nanofluid. Experimental results indicate that surfactant addition is effective for wider particle number density in reducing surface tension, and the reduction level strongly depends on the surfactant concentration. On the other hand, effect of the number density on the surface tension reduction is less significant for the same concentration of surfactant. From the obtained data, a combination of microwave irradiation and surfactant addition shows potential to be used as a promising method to manipulate surface tension of nanofluids.

  6. Surface Measurements of Solar Spectral Radiative Flux in the Cloud-Free Atmosphere

    NASA Technical Reports Server (NTRS)

    Pilewskie, Peter; Goetz, A. F. H.; Bergstrom, R.; Beal, D.; Gore, Warren J. Y. (Technical Monitor)

    1997-01-01

    Recent studies (Charlock, et al.; Kato, et. al) have indicated a potential discrepancy between measured solar irradiance in the cloud-free atmosphere and model derived downwelling solar irradiance. These conclusions were based primarily on broadband integrated solar flux. Extinction (both absorption and scattering) phenomena, however, typically have spectral characteristics that would be present in moderate resolution (e.g., 10 nm) spectra, indicating the need for such measurements to thoroughly investigate the cause of any discrepancies. The 1996 Department of Energy Atmospheric Radiation Measurement Program (ARM) Intensive Observation Period (IOP), held simultaneously with the NASA Subsonic Aircraft: Contrail and Cloud Effects Special Study (SUCCESS) Program, provided an opportunity for two simultaneous but independent measurements of moderate resolution solar spectral downwelling irradiance at the surface. The instruments were the NASA Ames Solar Spectral Flux Radiometer and the Analytical Spectral Devices, Inc., FieldSpecT-FR. Spectral and band integrated quantities from both sets of measurements will be presented, along with estimates of the downwelling solar irradiance from band model and line by line calculations, in an effort to determine the compatibility between measured and calculated solar irradiance in the cloud-free atmosphere.

  7. Climate variability related to the 11 year solar cycle as represented in different spectral solar irradiance reconstructions

    NASA Astrophysics Data System (ADS)

    Kruschke, Tim; Kunze, Markus; Misios, Stergios; Matthes, Katja; Langematz, Ulrike; Tourpali, Kleareti

    2016-04-01

    Advanced spectral solar irradiance (SSI) reconstructions differ significantly from each other in terms of the mean solar spectrum, that is the spectral distribution of energy, and solar cycle variability. Largest uncertainties - relative to mean irradiance - are found for the ultraviolet range of the spectrum, a spectral region highly important for radiative heating and chemistry in the stratosphere and troposphere. This study systematically analyzes the effects of employing different SSI reconstructions in long-term (40 years) chemistry-climate model (CCM) simulations to estimate related uncertainties of the atmospheric response. These analyses are highly relevant for the next round of CCM studies as well as climate models within the CMIP6 exercise. The simulations are conducted by means of two state-of-the-art CCMs - CESM1(WACCM) and EMAC - run in "atmosphere-only"-mode. These models are quite different with respect to the complexity of the implemented radiation and chemistry schemes. CESM1(WACCM) features a chemistry module with considerably higher spectral resolution of the photolysis scheme while EMAC employs a radiation code with notably higher spectral resolution. For all simulations, concentrations of greenhouse gases and ozone depleting substances, as well as observed sea surface temperatures (SST) are set to average conditions representative for the year 2000 (for SSTs: mean of decade centered over year 2000) to exclude anthropogenic influences and differences due to variable SST forcing. Only the SSI forcing differs for the various simulations. Four different forcing datasets are used: NRLSSI1 (used as a reference in all previous climate modeling intercomparisons, i.e. CMIP5, CCMVal, CCMI), NRLSSI2, SATIRE-S, and the SSI forcing dataset recommended for the CMIP6 exercise. For each dataset, a solar maximum and minimum timeslice is integrated, respectively. The results of these simulations - eight in total - are compared to each other with respect to their

  8. The solar irradiance registered at a flat- hemispherical field of view- bolometric oscillation sensor on board PICARD satellite

    NASA Astrophysics Data System (ADS)

    Zhu, Ping; Karatekin, Ozgur; van Ruymbeke, Michel; Dewitte, Steven; Thuillier, Gerard

    2014-05-01

    The value of the Total Solar Irradiance (TSI) is varying over the 11-year sunspot cycle. The cycle amplitude is about 0.1% solar constant, which could be traced with the absolute radiometers onboard dedicated space missions. The operating principle of the absolute radiometer is measuring the electrical heating power of the heat sensing unit during the closed and opened phase of each measurement cycle. The difference between the power integrated cross the closed phase and the power integrated cross the open phase gives the value of the solar irradiance. The cadence of the measurement is usually from one to several minutes. The final TSI value in physics unit is obtained after taking into account the electronic calibration, correction of the instruments effects, and normalizing to 1 AU. The Bolometric Oscillation Sensor on board PICARD microsatellite is a new designed remote sensing instrument. The BOS is operated continually with a 10 seconds cadence to fill the time gaps between open and close phases of the SOVAP absolute radiometer. The BOS has two sensing surfaces, the main one with a light mass is black coated, the second surface is white painted with a heavier mass. The sensor has a hemispherical field of view. The heat flux absorbed by the main detector is thermally conducted by a thin shunt to the heat sink. The principle of the measurements is that the sum of the power of the blacked coated surface and the power along the shunt is equal to the incoming electromagnetic radiation. However as the BOS has a HFOV, the incoming radiation caught by it, has three kinds of origin: the solar irradiance, the reflected solar visible light form the Earth and the terrestrial infrared radiation. In this work, we are going to discuss the solar irradiance isolated from the measurements of the BOS instrument as well as the comparison with the sunspot number and the TSI composite from the VIRGO/SOHO and TIM/SORCE experiments.

  9. Solar cell having improved back surface reflector

    NASA Technical Reports Server (NTRS)

    Chai, A. T. (Inventor)

    1982-01-01

    The operating temperature is reduced and the output of a solar cell is increased by using a solar cell which carries electrodes in a grid finger pattern on its back surface. These electrodes are sintered at the proper temperature to provide good ohmic contact. After sintering, a reflective material is deposited on the back surface by vacuum evaporation. Thus, the application of the back surface reflector is separate from the back contact formation. Back surface reflectors formed in conjunction with separate grid finger configuration back contacts are more effective than those formed by full back metallization of the reflector material.

  10. ISS-SOLAR: Total (TSI) and spectral (SSI) irradiance measurements

    NASA Astrophysics Data System (ADS)

    Schmidtke, G.; Fröhlich, C.; Thuillier, G.

    The primary objective of the ISS-SOLAR mission on Columbus (to be launched in 2006) is the quasi-continuous measurement of the solar irradiance variability with highest possible accuracy. For this reason the total spectral range will be recorded simultaneously from 3000 to 17 nm by three sets of instruments: SOVIM is combining two types of absolute radiometers and three-channel filter radiometers. SOLSPEC is composed of three double monochromators using concave gratings, covering the wavelength range from 3000 to 180 nm. SOL-ACES has four grazing incidence planar grating spectrometers plus two three-signal ionization chambers (two signals from a two stage chamber plus a third signal from a silicon diode at the end of the chamber) with exchangeable band pass filters to determine the absolute fluxes from 220 to 17 nm repeatedly during the mission. For the TSI the relative standard uncertainty (RSU) to be achieved is of the order of 0.15% and for the SSI from 1% in the IR/Vis, 2% in the UV, 5% in the FUV up to 10% in the XUV spectral regions. The general requirements for the TSI and SSI measurements and their conceptual realization within this payload will be discussed with emphasis on instrumental realization and calibration aspects.

  11. ISS-SOLAR: Total (TSI) and Spectral (SSI) Irradiance Measurements

    NASA Astrophysics Data System (ADS)

    Schmidtke, G.; Thuillier, G.; Fröhlich, C.

    Related to the climatic aspects in atmospheric science the primary objective of the ISS-SOLAR Mission on Columbus (to be launched in 2006) is the quasi-continuous measurement of the solar irradiance variation with highest possible accuracy. For this reason the total spectral range will be recorded simultaneously for the first time from 3000-16 nm by three sets of instruments: SOVIM(3) is combining two types of absolute radiometers and three-channel filterradiometers. SOLSPEC(2) is composed of three concave grating spectrometers with two monochromators, each, covering the wavelength range from 3000-180 nm. SOL-ACES(1) has four grazing incidence planar grating spectrometers plus two three-signal ionization chambers with exchangeable band pass filters to determine the absolute fluxes from 220-16 nm repeatedly during the mission. For the TSI the absolute accuracy to be achieved is of the order of 0.1 % and for the SSI from 1 % in the VIS, 2 % in the UV, 5 % in the FUV to 10 % in the XUV spectral regions. The general requirements for the TSI and SSI measurements and their conceptual realization within the payload will be discussed with emphasis on instrumental realization and calibration aspects.

  12. New model of Mars surface irradiation for the climate simulation chamber 'Artificial Mars'

    NASA Astrophysics Data System (ADS)

    Tarasashvili, M. V.; Sabashvili, Sh. A.; Tsereteli, S. L.; Aleksidze, N. G.

    2013-04-01

    A new model of the Mars surface irradiation has been developed for the imitation of radiation-temperature parameters within Mars Climate Simulation Chamber (MCSC). In order to determine the values of annual and diurnal variations of the irradiance on the Martian surface, the Solar illumination E has been expressed by the distance r between the Sun and Mars and the Sun's altitude z in the Martian sky, along with its midday zenith distance z min. The arrangements of spring and autumn equinoxes as well as summer and winter solstice points in the Martian sky are discussed regarding the perihelion of Mars. Annual orbital points and variability of Solar z min for different planetary latitudes have been calculated for the 15 selected values of Mars's true anomaly, along with the illumination E for 12 hourly moments of Martian daytime on the Martian equator. These original calculations and the data which have been obtained are used for the construction of technical tools imitating variations of the surface irradiation and temperature within MCSC, programming of the supporting computer and the electric scheme, which provide proper remote control and set the environmental parameters that are analogues to the 24 hours 39 minutes circadian cycle on planet Mars. Spectral distribution as monochromatic irradiance, humidity control, atmospheric composition and other environmental parameters of planet Mars are also imitated and remotely controlled within MCSC, however, are not discussed in this particular article.

  13. Aerosols attenuating the solar radiation collected by solar tower plants: The horizontal pathway at surface level

    NASA Astrophysics Data System (ADS)

    Elias, Thierry; Ramon, Didier; Dubus, Laurent; Bourdil, Charles; Cuevas-Agulló, Emilio; Zaidouni, Taoufik; Formenti, Paola

    2016-05-01

    Aerosols attenuate the solar radiation collected by solar tower plants (STP), along two pathways: 1) the atmospheric column pathway, between the top of the atmosphere and the heliostats, resulting in Direct Normal Irradiance (DNI) changes; 2) the grazing pathway close to surface level, between the heliostats and the optical receiver. The attenuation along the surface-level grazing pathway has been less studied than the aerosol impact on changes of DNI, while it becomes significant in STP of 100 MW or more. Indeed aerosols mostly lay within the surface atmospheric layer, called the boundary layer, and the attenuation increases with the distance covered by the solar radiation in the boundary layer. In STP of 100 MW or more, the distance between the heliostats and the optical receiver becomes large enough to produce a significant attenuation by aerosols. We used measured aerosol optical thickness and computed boundary layer height to estimate the attenuation of the solar radiation at surface level at Ouarzazate (Morocco). High variabilities in aerosol amount and in vertical layering generated a significant magnitude in the annual cycle and significant inter-annual changes. Indeed the annual mean of the attenuation caused by aerosols over a 1-km heliostat-receiver distance was 3.7% in 2013, and 5.4% in 2014 because of a longest desert dust season. The monthly minimum attenuation of less than 3% was observed in winter and the maximum of more than 7% was observed in summer.

  14. Model Calculations of Solar Spectral Irradiance in the 3.7 Micron Band for Earth Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Platnick, Steven; Fontenla, Juan M.

    2006-01-01

    Since the launch of the first Advanced Very High Resolution Radiometer (AVHRR) instrument aboard TIROS-N, measurements in the 3.7 micron atmospheric window have been exploited for use in cloud detection and screening, cloud thermodynamic phase and surface snow/ice discrimination, and quantitative cloud particle size retrievals. The utility of the band has led to the incorporation of similar channels on a number of existing satellite imagers and future operational imagers. Daytime observations in the band include both reflected solar and thermal emission energy. Since 3.7 micron channels are calibrated to a radiance scale (via onboard blackbodies), knowledge of the top-of-atmosphere solar irradiance in the spectral region is required to infer reflectance. Despite the ubiquity of 3.7 micron channels, absolute solar spectral irradiance data comes from either a single measurement campaign (Thekaekara et al. 1969) or synthetic spectra. In this study, we compare historical 3.7 micron band spectral irradiance data sets with the recent semi-empirical solar model of the quiet-Sun by Fontenla et al. (2006). The model has expected uncertainties of about 2 % in the 3.7 pm spectral region. We find that channel-averaged spectral irradiances using the observations reported by Thekaekara et al. are 3.2-4.1% greater than those derived from the Fontenla et al. model for MODIS and AVHRR instrument bandpasses; the Kurucz spectrum (1995) as included in the MODTRAN4 distribution, gives channel-averaged irradiances 1.2-1.5 % smaller than the Fontenla model. For the MODIS instrument, these solar irradiance uncertainties result in cloud microphysical retrievals uncertainties comparable with other fundamental reflectance error sources.

  15. Simulating irradiation power density on body surface in postmortem cooling.

    PubMed

    Mall, Gita; Hubig, Michael; Büttner, Andreas; Eisenmenger, Wolfgang

    2004-04-01

    Irradiation poses a major problem to determining the time since death by temperature-based methods. Neither empirical nor heat-flow postmortem cooling models have so far been able to assess irradiation. Heat-flow models seem overall better suited to calculate irradiation because of their direct relation to the physics of heat transfer. An implementation of irradiation boundary conditions in heat-transfer models requires the knowledge of the irradiation power density on the body surface. The present study develops formulae and implements them in a computer program to simulate the radiation power density on a semi-cylindrical body surface coming from irradiation by a rectangular radiant heater nearby or from the sun. The formulae are valid for deliberate geometrical arrangements of either body and radiant heater or body and sun. In case of the radiant heater scenario shading functions for the shading of the semi-cylinder by itself and by the rear panel of the radiant heater are developed. In case of the sun scenario only the shading by the semi-cylinder is relevant. In examplary analyses of typical irradiation scenarios the power density coming from a 2000W radiant heater nearby on the body surface amounted to a maximum of 418W/m2, the radiation power density originating from sunlight on a clear summer afternoon in middle-Europe amounted to a maximum of 422W/m2.

  16. The measurement of solar spectral irradiances at wavelengths between 40 and 4000 A

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1983-01-01

    Two 1/8-meter Ebert-Fastie spectrometers were refurbished and upgraded in order to measure the solar spectral irradiances between 1160 A and 3100 A. An evacuated 1/4-meter normal-incidence spectrometer was also fabricated for spectral irradiance measurements over the wavelength range from 1250 A to 250 A. Procedures were developed for the calibration of all three instruments utilizing standards at the National Bureau of Standards. The two 1/8-meter spectrometers were flown to measure the solar spectral irradiances near solar maximum on two different dates. Data from these flights were analyzed. The performance of the spectrometers, and the results of an analysis of the variabilities of the solar spectral irradiances over the solar cycles 20 and 21 are discussed.

  17. Charged Particle Alterations of Surfaces in the Solar System

    NASA Technical Reports Server (NTRS)

    Johnson, R. E.

    1995-01-01

    The surfaces of 'airless' bodies in the solar system are exposed to the ambient plasma, micrometeorites, and the solar UV. The effects of these space weathering agents on surfaces in the solar system has been studied in this project. In the last three years work was carried out on volatile depletion at Mars, on sputtering of the lunar surface, on absorption by implanted S in vapor-deposited H2O and its relevance to observations of Europa's surface in the UV, and on the spectral changes produced on irradiating SO2 and its possible relevance to Io. In addition, the role of plasma-induced charging of E-ring grains was evaluated because of its relevance to E-ring particle source and the lifetime of the E-ring. Finally, the detection of sputtered material from Dione by the CAPS instrument on CASSINI was evaluated as a tool for analysis of satellite surface composition, and the role of sputtering on the ambient OH in the vicinity of the ice satellites and the E-ring was evaluated.

  18. A Fundamental Study on Spectrum Center Estimation of Solar Spectral Irradiation by the Statistical Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Iijima, Aya; Suzuki, Kazumi; Wakao, Shinji; Kawasaki, Norihiro; Usami, Akira

    With a background of environmental problems and energy issues, it is expected that PV systems will be introduced rapidly and connected with power grids on a large scale in the future. For this reason, the concern to which PV power generation will affect supply and demand adjustment in electric power in the future arises and the technique of correctly grasping the PV power generation becomes increasingly important. The PV power generation depends on solar irradiance, temperature of a module and solar spectral irradiance. Solar spectral irradiance is distribution of the strength of the light for every wavelength. As the spectrum sensitivity of solar cell depends on kind of solar cell, it becomes important for exact grasp of PV power generation. Especially the preparation of solar spectral irradiance is, however, not easy because the observational instrument of solar spectral irradiance is expensive. With this background, in this paper, we propose a new method based on statistical pattern recognition for estimating the spectrum center which is representative index of solar spectral irradiance. Some numerical examples obtained by the proposed method are also presented.

  19. Modeled Dust Distributions and their Impact on Surface Irradiance at Wavelengths Vital to Phytoplankton Growth

    NASA Astrophysics Data System (ADS)

    Colarco, A. M.; Gregg, W. W.; Colarco, P. R.; da Silva, A.

    2010-12-01

    A key component of an atmosphere represented by any radiative transfer model in order to generate realistic surface irradiances is the accurate representation of the absorption and scattering rates of atmospheric aerosols. When looking specifically at the effects of aerosol properties’ impact on ocean systems over time, the distribution and deposition rates of the dust component of aerosols becomes significant. The deposition of dust particles provides a source of iron in nutrient limited regions of the ocean, while the iron in dust attenuates light entering the ocean surface at wavelengths important to marine photosynthesis and other processes important to the ocean system. These processes depend on the input of solar irradiance in select bands primarily in the visible wavelengths. The Ocean-Atmosphere Spectral Irradiance Model (OASIM) has been shown to provide sufficiently accurate surface irradiances within the spectral bands of importance without sacrificing computer time, correlating very well with in situ measurements, resulting in root-mean-square differences of about 11%, and bias below 1%. The results of a study using the Global Earth Observation System (GEOS) version 5 aerosol product to parameterize the OASIM model will be presented. By using the modeled aerosol product, the specific effects of dust are able to be isolated from other aerosol types. This provides a global picture of impacts on irradiance of dust aerosols with high temporal resolution, and in selectable wavelength regions, unavailable from current satellite platform. The GEOS5 aerosol product was used to determine how sensitive surface irradiance is to dust concentrations and spatial distributions. The seasonal variability and spectral dependence of surface irradiance will also be shown.

  20. The Impact of the Revised Sunspot Record on Solar Irradiance Reconstructions

    NASA Astrophysics Data System (ADS)

    Kopp, G.; Krivova, N.; Wu, C. J.; Lean, J.

    2016-11-01

    Reliable historical records of the total solar irradiance (TSI) are needed to assess the extent to which long-term variations in the Sun's radiant energy that is incident upon Earth may exacerbate (or mitigate) the more dominant warming in recent centuries that is due to increasing concentrations of greenhouse gases. We investigate the effects that the new Sunspot Index and Long-term Solar Observations (SILSO) sunspot-number time series may have on model reconstructions of the TSI. In contemporary TSI records, variations on timescales longer than about a day are dominated by the opposing effects of sunspot darkening and facular brightening. These two surface magnetic features, retrieved either from direct observations or from solar-activity proxies, are combined in TSI models to reproduce the current TSI observational record. Indices that manifest solar-surface magnetic activity, in particular the sunspot-number record, then enable reconstructing historical TSI. Revisions of the sunspot-number record therefore affect the magnitude and temporal structure of TSI variability on centennial timescales according to the model reconstruction methods that are employed. We estimate the effects of the new SILSO record on two widely used TSI reconstructions, namely the NRLTSI2 and the SATIRE models. We find that the SILSO record has little effect on either model after 1885, but leads to solar-cycle fluctuations with greater amplitude in the TSI reconstructions prior. This suggests that many eighteenth- and nineteenth-century cycles could be similar in amplitude to those of the current Modern Maximum. TSI records based on the revised sunspot data do not suggest a significant change in Maunder Minimum TSI values, and from comparing this era to the present, we find only very small potential differences in the estimated solar contributions to the climate with this new sunspot record.

  1. Emerging NOAA Surface Solar Radiation for Solar Energy

    NASA Astrophysics Data System (ADS)

    Kondratovich, V.; Laszlo, I.; Liu, H.

    2012-12-01

    Solar power has been growing at an annual rate of 40% in recent years. By 2025 it could grow to 10% of U.S. power needs. Sunlight is the fuel for solar power generation technologies, and as such one needs to know the quality and future availability of the fuel for accurate analysis of system performance. Sunlight (solar radiation) at the surface has been routinely estimated in real time from measurements of the Geostationary Operational Environmental Satellite (GOES) operated by the US National Oceanic and Atmospheric Administration (NOAA), National Environmental Satellite, Data and Information Service (NESDIS). The GOES solar radiation data have been made available in the GOES Surface and Insolation Product (GSIP) suite since January 1996 for the contiguous U.S. every daytime hour at a spatial resolution of ~50 km (GSIP-V1). Since April 2009, solar radiation retrievals have been performed at a higher spatial resolution (~14 km) and cover larger areas (GSIP-V2). The GSIP-V1 data have recently been screened for quality, adjusted for changes in calibration, and parameters useful for the solar energy sector have been derived for the period of 1999-2009. In this presentation, we describe the quality control process and various adjustments applied, and provide examples of selected solar energy parameters (average, midday and clear-sky insolation, clear-sky days, diffuse and direct normal radiation, etc.) and their evaluation. The Advanced Baseline Imager (ABI), one of the flagship instruments of NOAA's new geostationary satellite, GOES-R, will expand frequency and coverage of multispectral remote sensing of atmospheric and surface properties. The planned rapid observations (5-15 minutes) from ABI provide an opportunity to obtain information needed for solar energy applications where frequent observations of solar radiation reaching the surface are essential for planning and load management. The ABI algorithm, that is quite different from the one applied in GSIP-V1 and V

  2. Validation of the UARS solar ultraviolet irradiances: Comparison with the ATLAS 1 and 2 measurements

    NASA Astrophysics Data System (ADS)

    Woods, T. N.; Prinz, D. K.; Rottman, G. J.; London, J.; Crane, P. C.; Cebula, R. P.; Hilsenrath, E.; Brueckner, G. E.; Andrews, M. D.; White, O. R.; VanHoosier, M. E.; Floyd, L. E.; Herring, L. C.; Knapp, B. G.; Pankratz, C. K.; Reiser, P. A.

    1996-04-01

    The measurements of the solar ultraviolet spectral irradiance made by the two Upper Atmosphere Research Satellite (UARS) solar instruments, Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) and SOLar STellar Irradiance Comparison Experiment (SOLSTICE), are compared with same-day measurements by two solar instruments on the shuttle ATmospheric Laboratory for Applications and Science (ATLAS) missions, ATLAS SUSIM and Shuttle Solar Backscatter Ultra Violet (SSBUV) experiment. These measurements from the four instruments agree to within the 2σ uncertainty of any one instrument, which is 5 to 10% for all wavelengths above 160 nm and for strong emission features below 160 nm. Additionally, the long-term relative accuracy of the two UARS data sets is better than the original 2% goal, especially at wavelengths greater than 160 nm. This level of agreement is credited to accurate preflight calibrations coupled with comprehensive inflight calibrations to track instrument degradation. Two solar irradiance spectra, 119 to 410 nm, are presented; the first combines observations from UARS SUSIM and UARS SOLSTICE taken on March 29, 1992, during the ATLAS 1 mission, and the second combines spectra for April 15, 1993, during the ATLAS 2 mission. The ATLAS 1 mission coincided with the initial decline from the maximum of solar cycle 22 when solar activity was relatively high. The ATLAS 2 mission occurred somewhat later during the declining phase of the solar cycle 22 when solar activity was more moderate.

  3. Comparing Sunspot Area and Sunspot Number as Proxies for Long-term Solar Irradiance Variation

    NASA Technical Reports Server (NTRS)

    Jordan, Stuart D.; Garcia, A. G.; Oegerle, William (Technical Monitor)

    2002-01-01

    Because relevant observations from space began only in 1979 with Nimbus-7, it is impossible to correlate direct measurements of small changes in solar irradiance with terrestrial temperature over a number of solar cycles. Yet there is recent evidence that some feature of solar change over a cycle may have a larger influence on climate than would result from merely introducing the additional amount of heat delivered to Earth's atmosphere at solar minimum. It would be useful to check this possibility over several solar cycles. To do this, we would need a sufficiently reliable proxy for irradiance change that at least survives a test against the space observations. Sunspot area is a fairly straightforward parameter to measure, and is associated with the extent of magnetic activity known to correlate strongly with solar irradiance change. We have tested the use of sunspot area as a long-term proxy for solar irradiance change, using observations made at the Coimbra Solar Observatory, from which we obtain both statistically weighted sunspot numbers and sunspot areas over the period 1980-1992. These are both correlated with solar irradiance values measured from Nimbus-7 spacecraft over the same time period, to see if sunspot area offers affords a strong positive correlation and also a distinct advantage over sunspot number as a useful proxy that can then be compared with terrestrial temperature records. Preliminary results yield a positive correlation of 0.71 for sunspot area, but further tests are being conducted and will be reported.

  4. Space observations of the variability of solar irradiance in the near and far ultraviolet

    NASA Technical Reports Server (NTRS)

    Heath, D. F.

    1972-01-01

    Satellite observations of the ultraviolet solar irradiance in selected wavelength bands between 1200 and 3000 a were made continuously by photometers consisting of broad-band sensors operated on Numbus 3 and 4 which were launched in April 1969 and 1970. In addition, spectrophotometer measurements of the solar irradiance were made with a dispersive instrument at 12 selected wavelengths from 2550 to 3400 a with a 10 a bandpass on Nimbus 4. Variations of the solar irradiance associated with the solar rotational period were observed since the launch of Nimbus 3. These variations are apparently associated with two source regions separated by about 180 deg in solar longitude. The change in irradiance with solar rotation was found to increase with decreasing wavelengths. Different types of the observed variations in uv solar irradiance can be classified in accordance with characteristics times, e.g. in the order of increasing periods as follows: (1)flare associated enhancements (2) 27-day variations due to solar rotation; (3) a possible biennial effect; and (4) long term variations associated with the 11-year solar cycle.

  5. Variations of solar UV irradiance related to short-term and medium-term changes of solar activity

    NASA Astrophysics Data System (ADS)

    Troshichev, O. A.; Gabis, I. P.

    1998-09-01

    Index of variability of the solar ultraviolet (UV) radiation, the composite Mg II core-to-wing ratio, has been used to study relationship between the short-term (τ<27days) changes of solar activity and solar UV irradiance. Such manifestations of the solar activity have been examined, as the solar central meridian passage of active regions, the solar proton events, and the central meridian passage of hypothetical regions responsible for the Forbush decrease in the galactic cosmic rays. Our results show that all these short-term changes of the solar activity are accompanied by an increase of the solar UV irradiance. The interplanetary magnetic field sector structure is also related to changes in the UV irradiance. After a proper adjustment of the dates of the sector boundary occurrence for the solar disk, the irradiance was found to be maximal on the toward/away boundary and minimal on the away/toward boundary. It has been found that the UV irradiance undergoes quasi-biennial periodicity (QBP), reaching maximum in years of the east QBP phase and decreasing in years of the west QBP phase. Superposition of the quasi-biennial periodicity and effects connected with short-term variations in the solar activity account for the change of the Mg II index up to 2% of the mean level. Thus a new very important agent was found to be responsible for a short-term and medium-term influence of the solar activity upon atmospheric processes and hence on the weather and climate.

  6. Developing and testing solar irradiance forecasting techniques in the Hawaiian Islands region

    NASA Astrophysics Data System (ADS)

    Matthews, D. K.; Souza, J. M.; Stein, K.

    2014-12-01

    Irradiance variability, primarily driven by cloud formation and advection, can be problematic in the state of Hawaíi, because of the high penetration of distributed solar and the small scale of the island electrical grids. The Hawaíi Natural Energy Institute (HNEI) is developing an operational system in order to research and test new techniques to generate solar forecasts for the Hawaiian Islands. The operational system comprises the following three components.(i) A ground-observation-based advection model, using sky imagers and a ceilometer located at the University of Hawaíi at Mānoa. Every 10 minutes (during daylight hours), this component generates a high-resolution 1 hour Global Horizontal Irradiance (GHI) prediction for a region that is within ~15 km of the instrumentation. (ii) A satellite-image-based advection model, using Geostationary Operational Environmental Satellite (GOES) imagery and the Heliosat-II method. Every 30 minutes (during daylight hours), this component generates a 1 km resolution, 6 hour GHI prediction for the entire Hawaiian Archipelago. (iii) A coupled ocean-atmosphere model, using the Regional Ocean Modeling System (ROMS) model and the Weather Research and Forecasting (WRF) model, including newly available microphysics, shallow convection parameterization, and radiative transfer model options. Nightly, this component generates 48 hour GHI, Direct Normal Irradiance (DNI), and Diffuse Horizontal Irradiance (DHI) predictions for (a) a 10 km resolution domain covering the full Hawaiian Archipelago and (b) a nested 2 km resolution domain covering the islands of Maui, Óahu, and Hawaíi. We discuss the development and validation of the system, and the scales of forecasting accuracy for each component. We also examine the impact of the coupled model on the simulations of surface flux processeses and ocean-atmosphere feedbacks, both of which influence the prediction of regional cloud properties.

  7. Multijunction Solar Cells Optimized for the Mars Surface Solar Spectrum

    NASA Technical Reports Server (NTRS)

    Edmondson, Kenneth M.; Fetzer, Chris; Karam, Nasser H.; Stella, Paul; Mardesich, Nick; Mueller, Robert

    2007-01-01

    This paper gives an update on the performance of the Mars Exploration Rovers (MER) which have been continually performing for more than 3 years beyond their original 90-day missions. The paper also gives the latest results on the optimization of a multijunction solar cell that is optimized to give more power on the surface of Mars.

  8. Solar Spectral Irradiance Variability of Some Chromospheric Emission Lines Through the Solar Activity Cycles 21-23

    NASA Astrophysics Data System (ADS)

    Göker, Ü. D.; Gigolashvili, M. Sh.; Kapanadze, N.

    2017-02-01

    A study of variations of solar spectral irradiance (SSI) in the wavelength ranges 121.5 nm-300.5 nm for the period 1981-2009 is presented. We used various data for ultraviolet (UV) spectral lines and international sunspot number (ISSN) from interactive data centers such as SME (NSSDC), UARS (GDAAC), SORCE (LISIRD) and SIDC, respectively. We reduced these data by using the MATLAB software package. In this respect, we revealed negative correlations of intensities of UV (289.5 nm-300.5 nm) spectral lines originating in the solar chromosphere with the ISSN index during the unusually prolonged minimum between the solar activity cycles (SACs) 23 and 24. We also compared our results with the variations of solar activity indices obtained by the ground-based telescopes. Therefore, we found that plage regions decrease while facular areas are increasing in SAC 23. However, the decrease in plage regions is seen in small sunspot groups (SGs), contrary to this, these regions in large SGs are comparable to previous SACs or even larger as is also seen in facular areas. Nevertheless, negative correlations between ISSN and SSI data indicate that these variations are in close connection with the classes of sunspots/SGs, faculae and plage regions. Finally, we applied the time series analysis of spectral lines corresponding to the wavelengths 121.5 nm-300.5 nm and made comparisons with the ISSN data. We found an unexpected increase in the 298.5 nm line for the Fe II ion. The variability of Fe II ion 298.5 nm line is in close connection with the facular areas and plage regions, and the sizes of these solar surface indices play an important role for the SSI variability, as well. So, we compared the connection between the sizes of faculae and plage regions, sunspots/SGs, chemical elements and SSI variability. Our future work will be the theoretical study of this connection and developing of a corresponding model.

  9. Solar Spectral Irradiance Variability of Some Chromospheric Emission Lines Through the Solar Activity Cycles 21-23

    NASA Astrophysics Data System (ADS)

    Göker, Ü. D.; Gigolashvili, M. Sh.; Kapanadze, N.

    2017-06-01

    A study of variations of solar spectral irradiance (SSI) in the wavelength ranges 121.5 nm-300.5 nm for the period 1981-2009 is presented. We used various data for ultraviolet (UV) spectral lines and international sunspot number (ISSN) from interactive data centers such as SME (NSSDC), UARS (GDAAC), SORCE (LISIRD) and SIDC, respectively. We reduced these data by using the MATLAB software package. In this respect, we revealed negative correlations of intensities of UV (289.5 nm-300.5 nm) spectral lines originating in the solar chromosphere with the ISSN index during the unusually prolonged minimum between the solar activity cycles (SACs) 23 and 24. We also compared our results with the variations of solar activity indices obtained by the ground-based telescopes. Therefore, we found that plage regions decrease while facular areas are increasing in SAC 23. However, the decrease in plage regions is seen in small sunspot groups (SGs), contrary to this, these regions in large SGs are comparable to previous SACs or even larger as is also seen in facular areas. Nevertheless, negative correlations between ISSN and SSI data indicate that these variations are in close connection with the classes of sunspots/SGs, faculae and plage regions. Finally, we applied the time series analysis of spectral lines corresponding to the wavelengths 121.5 nm-300.5 nm and made comparisons with the ISSN data. We found an unexpected increase in the 298.5 nm line for the Fe II ion. The variability of Fe II ion 298.5 nm line is in close connection with the facular areas and plage regions, and the sizes of these solar surface indices play an important role for the SSI variability, as well. So, we compared the connection between the sizes of faculae and plage regions, sunspots/SGs, chemical elements and SSI variability. Our future work will be the theoretical study of this connection and developing of a corresponding model.

  10. Photodegradation of dissolved organic matter in ice under solar irradiation.

    PubMed

    Xue, Shuang; Wang, Chao; Zhang, Zhaohong; Song, Youtao; Liu, Qiang

    2016-02-01

    The photodegradation behavior of dissolved organic matter (DOM) with different origins in ice under solar irradiation was investigated. Exposure to sunlight at 2.7 × 10(5) J m(-2) resulted in dissolved organic carbon (DOC) reductions of 22.1-36.5% in ice. The naturally occurring DOM had higher photodegradation potentials than the wastewater-derived DOM in ice. Ultraviolet (UV)-absorbing compounds in DOM, regardless of DOM origin, had much higher photodegradation potentials than gross DOC in ice. The susceptibility of UV-absorbing compounds with natural origin to sunlight exposure in ice was higher than those derived from wastewater. Trihalomethane (THM) precursors were more susceptible to photochemical reactions than gross DOC and haloacetic acid (HAA) precursors in ice. THM precursors in naturally occurring DOM were more photoreactive than those in wastewater-derived DOM in ice, while the photoreactivity of HAA precursors in ice was independent of DOM origin. In ice, the photoreactivity of humic-like fluorescent materials, regardless of DOM origin, was higher than that of gross DOC and protein-like fluorescent materials. DOC reductions caused by sunlight irradiation were found to be negatively correlated to DOC levels, and positively correlated to the aromaticity of DOM. The photodegradation of both wastewater-derived and naturally occurring DOM in ice was significantly facilitated at both acid and alkaline pH, as compared to neutral pH. The photodegradation of DOM in ice, regardless of the origin, was facilitated by nitrate ion [Formula: see text] , nitrite ion [Formula: see text] , ferric ion (Fe(3+)) and ferrous ion (Fe(2+)), and on the other hand, was inhibited by chloridion ion (Cl(-)) and copper ion (Cu(2+)). Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Ion irradiation of porous silicon : the role of surface states

    SciTech Connect

    Jacobsohn, L. G.; Bennett, B. L.; Cooke, D. W.; Muenchausen, Ross E.; Nastasi, Michael Anthony,

    2004-01-01

    The summary and conclusions of this paper are: (1) Ion irradiation induces PL quenching from po-Si; (2) Interaction of the implanted ions with defects generated during the irradiation process plays a major role in the PL quenching mechanism; (3) Quenching was associated with the creation of nonradiative states within the gap; and (4) Exposition to air and consequently the oxidation of the surface is shown to enhance PL emission efficiency.

  12. Surface modification by electron irradiation for improved immunoassay

    NASA Astrophysics Data System (ADS)

    Safrany, Agnes; Deelder, André

    1999-08-01

    Polystyrene microtitration (ELISA) plates modified by electron beam irradiation were used for a monoclonal antibody based sandwich immunoassay for quantitation of circulating anodic antigen levels in Schistosoma-infected individuals. The plates irradiated with 15 kGy showed 2-4-fold lower detection level compared to untreated plates, and a 10-fold lower antibody coating concentration than usually used was still detectable. These results were reproducible and the modified surfaces were stable even after 2 years when kept at room temperature.

  13. The influence of cloud cover index on the accuracy of solar irradiance model estimates

    NASA Astrophysics Data System (ADS)

    Martins, F. R.; Silva, S. A. B.; Pereira, E. B.; Abreu, S. L.

    2008-04-01

    Cloud cover index ( CCI) obtained from satellite images contains information on cloud amount and their optical thickness. It is the chief climate data for the assessment of solar energy resources in most radiative transfer models, particularly for the model BRASIL-SR that is currently operational at CPTEC. The wide range of climate environments in Brazil turns CCI determination into a challenging activity and great effort has been directed to develop new methods and procedures to improve the accuracy of these estimations from satellite images (Martins 2001; Martins et al. 2003a; Ceballos et al. 2004). This work demonstrates the influence of CCI determination methods on estimates of surface solar irradiances obtained by the model BRASIL-SR comparing deviations among ground data and model results. Three techniques using visible and/or thermal infrared images of GOES-8 were employed to generate the CCI for input into the model BRASIL-SR. The ground-truth data was provided by the solar radiation station located at Caicó/PE, in Brazilian Northeast region, which is part of the UNEP/GEF project SWERA (Solar and Wind Energy Resources Assessment). Results have shown that the application of the bi-spectral techniques have reduced mean bias error up to 66% and root mean square error up to 50% when compared to the usual technique for CCI determination based on the straightforward determination of month-by-month extremes for maximum and minimum cloud states.

  14. Prediction and measurement of direct-normal solar irradiance: A closure experiment

    SciTech Connect

    Halthore, R.N.; Schwartz, S.E.; Michalsky, J.J.; Anderson, G.P.; Ferrare, R.A.; Ten Brink, H.M.

    1997-03-01

    Direct-normal solar irradiance (DNSI), the total energy in the solar spectrum incident on a plane perpendicular to the Sun`s direction on a unit area at the earth`s surface in unit time, depends only on the atmospheric extinction of sunlight without regard to the details of extinction--whether absorption or scattering. Here the authors describe a set of closure experiments performed in north-central Oklahoma, wherein measured atmospheric composition is input to a radiative transfer model, MODTRAN-3, to predict DNSI, which is then compared to measured values. Thirty six independent comparisons are presented; the agreement between predicted and measured values falls within the combined uncertainties in the prediction (2%) and measurement (0.2%) albeit with a slight bias ({approximately} 1% overprediction) that is independent of the solar zenith angle. Thus these results establish the adequacy of current knowledge of the solar spectrum and atmospheric extinction as embodied in MODTRAN-3 for use in climate models. An important consequence is the overwhelming likelihood that the atmospheric clear-sky absorption is accurately described to within comparable uncertainties.

  15. Improvements in NOAA SURFRAD and ISIS sites for near real-time solar irradiance for verification of NWP solar forecasts for the DOE NOAA Solar Forecast Improvement Project (SFIP)

    NASA Astrophysics Data System (ADS)

    Lantz, K. O.; McComiskey, A. C.; Long, C. N.; Marquis, M.; Olson, J. B.; James, E.; Benjamin, S.; Clack, C.

    2015-12-01

    The DOE-NOAA Solar Forecasting Improvement Project's (SFIP) main goal is to improve solar forecasting and thereby increase penetration of solar renewable energy on the electric grid. NOAA's ISIS and SURFRAD network is part of this initiative by providing high quality solar irradiance measurements for verification of improvements in solar forecasting for the short-term, day ahead, and ramp events. There are 14 ISIS and SURFRAD stations across the continental United States. We will give an overview of recent improvements in the networks for this project. The NOAA SURFRAD team has three main components: 1) In addition to the existing stations, two mobile SURFRAD stations have been built and deployed for 1 year each at two separate solar utility plants. 2) NOAA SURFRAD/ISIS will update the communications at their sites to provide near real-time data for verification activities at the 14 sites. 3) Global horizontal irradiance (GHI), direct normal solar irradiance (DNI), and aerosol optical depth at various spatial and temporal averaging will be compared to forecasts from the 3-km High-Resolution Rapid Refresh (HRRR) and an advanced version of the 13-km Rapid Refresh (RAP) models. We will explore statistical correlations between in-coming and out-going shortwave radiation and longwave radiation at the surface for specific meteorological regimes and how well these are captured by NWP models.

  16. Irradiation of bioresorbable biomaterials for controlled surface degradation

    NASA Astrophysics Data System (ADS)

    Simpson, M.; Gilmore, B. F.; Miller, A.; Helt-Hansen, J.; Buchanan, F. J.

    2014-01-01

    Bioresorbable polymers increasingly are the materials of choice for implantable orthopaedic fixation devices. Controlled degradation of these polymers is vital for preservation of mechanical properties during tissue repair and controlled release of incorporated agents such as osteoconductive or anti-microbial additives. The work outlined in this paper investigates the use of low energy electron beam irradiation to surface modify polyhydroxyacid samples incorporating beta tricalcium phosphate (β-TCP). This work uniquely demonstrates that surface modification of bioresorbable polymers through electron beam irradiation allows for the early release of incorporated agents such as bioactive additives. Samples were e-beam irradiated at an energy of 125 keV and doses of either 150 kGy or 500 kGy. Irradiated and non-irradiated samples were degraded in phosphate buffered saline (PBS), to simulate bioresorption, followed by characterisation. The results show that low energy e-beam irradiation enhances surface hydrolytic degradation in comparison to bulk and furthermore allows for earlier release of incorporated calcium via dissolution into the surrounding medium.

  17. ISS SOLAR Spectrometers: Solar Spectral Irradiance Variability and its 2008 Minimum

    NASA Astrophysics Data System (ADS)

    Thuillier, Gérard

    2014-05-01

    Onboard the SOLAR payload of the International Space Station (ISS), the SOLSPEC and SolACES spectrometers measure the solar spectral irradiance (SSI) from 16 to 2900 nm. The status of their operations will be presented. In 2008, a SSI minimum occurred. Data from the SOLSPEC and SolACES spectrometers have been merged to generate a spectrum extending from 16 to 2900 nm. We shall present its properties and comparison with other instruments running at the same time. As SSI reconstructions play an important role in climate modeling to provide SSI at different epochs, we have reconstructed this spectrum using available proxies. The accuracy of these reconstructions will be also discussed. The ISS orientation generally does not permit to permanently point the Sun. Periods of no Sun visibility varies from 14 days to a few days per month, season dependent, which consequently does not allow the measurements of the effects of the active regions during a complete solar rotation. In December 2012 a continuous period of measurements has been achieved. We shall present these measurements. For this period, a comparison between all available SSI in absolute unit will be shown as well as reconstructions using solar proxies by several models.

  18. Solar Cycle Modulation of Total Irradiance: an Empirical Model from 1874 to 1988

    NASA Technical Reports Server (NTRS)

    Lean, J.; Foukal, P.

    1990-01-01

    Evidence acquired during the past decade indicates that over time scales of the solar cycle, enhanced emission from bright solar faculae cause significant variations in the sun's total irradiance even though, on shorter time scales, the most pronounced variations are those resulting from the passage of dark sunspots across the solar disc. An empirical model which accounts for the competing effects of dark sunspots and bright faculae has been developed from the available radiometry in cycle 21, and extended back to the beginning of solar cycle 12. According to this model, the largest 11-year modulation of total irradiance during the C20th occurred in the most recent cycle 21.

  19. The use of satellite data assimilation methods in regional NWP for solar irradiance forecasting

    NASA Astrophysics Data System (ADS)

    Kurzrock, Frederik; Cros, Sylvain; Chane-Ming, Fabrice; Potthast, Roland; Linguet, Laurent; Sébastien, Nicolas

    2016-04-01

    As an intermittent energy source, the injection of solar power into electricity grids requires irradiance forecasting in order to ensure grid stability. On time scales of more than six hours ahead, numerical weather prediction (NWP) is recognized as the most appropriate solution. However, the current representation of clouds in NWP models is not sufficiently precise for an accurate forecast of solar irradiance at ground level. Dynamical downscaling does not necessarily increase the quality of irradiance forecasts. Furthermore, incorrectly simulated cloud evolution is often the cause of inaccurate atmospheric analyses. In non-interconnected tropical areas, the large amplitudes of solar irradiance variability provide abundant solar yield but present significant problems for grid safety. Irradiance forecasting is particularly important for solar power stakeholders in these regions where PV electricity penetration is increasing. At the same time, NWP is markedly more challenging in tropic areas than in mid-latitudes due to the special characteristics of tropical homogeneous convective air masses. Numerous data assimilation methods and strategies have evolved and been applied to a large variety of global and regional NWP models in the recent decades. Assimilating data from geostationary meteorological satellites is an appropriate approach. Indeed, models converting radiances measured by satellites into cloud properties already exist. Moreover, data are available at high temporal frequencies, which enable a pertinent cloud cover evolution modelling for solar energy forecasts. In this work, we present a survey of different approaches which aim at improving cloud cover forecasts using the assimilation of geostationary meteorological satellite data into regional NWP models. Various approaches have been applied to a variety of models and satellites and in different regions of the world. Current methods focus on the assimilation of cloud-top information, derived from infrared

  20. A comparison of solar total irradiance observations from spacecraft: 1985-1992

    NASA Technical Reports Server (NTRS)

    Mecherikunnel, A. T.

    1994-01-01

    This paper presents a statistical comparison of the solar total irradiance measured from the Nimbus-7, the Solar Maximum Mission (SMM), the Earth Radiation Budget Satellite (ERBS), and the Upper Atmosphere Research Satellite (UARS) spacecraft platforms, for the period 1985-1992. The mean irradiance, standard deviation, and the correlation among the daily irradiance remained high during periods of high solar activity. Linear regression models are established to estimate the irradiance measurements from one platform by the others. The results are consistent with the observations. However, the Nimbus-7 ERB responses show a drift during 1989-1992. The absolute irradiance observed by each instrument varies within the uncertainty associated with the corresponding radiometer.

  1. Surface Plasmon-Assisted Solar Energy Conversion.

    PubMed

    Dodekatos, Georgios; Schünemann, Stefan; Tüysüz, Harun

    2016-01-01

    The utilization of localized surface plasmon resonance (LSPR) from plasmonic noble metals in combination with semiconductors promises great improvements for visible light-driven photocatalysis, in particular for energy conversion. This review summarizes the basic principles of plasmonic photocatalysis, giving a comprehensive overview about the proposed mechanisms for enhancing the performance of photocatalytically active semiconductors with plasmonic devices and their applications for surface plasmon-assisted solar energy conversion. The main focus is on gold and, to a lesser extent, silver nanoparticles in combination with titania as semiconductor and their usage as active plasmonic photocatalysts. Recent advances in water splitting, hydrogen generation with sacrificial organic compounds, and CO2 reduction to hydrocarbons for solar fuel production are highlighted. Finally, further improvements for plasmonic photocatalysts, regarding performance, stability, and economic feasibility, are discussed for surface plasmon-assisted solar energy conversion.

  2. Initial Results of Aperture Area Comparisons for Exo-Atmospheric Total Solar Irradiance Measurements

    NASA Technical Reports Server (NTRS)

    Johnson, B. Carol; Litorja, Maritoni; Fowler, Joel B.; Butler, James J.

    2009-01-01

    In the measurement of exo-atmospheric total solar irradiance (TSI), instrument aperture area is a critical component in converting solar radiant flux to irradiance. In a May 2000 calibration workshop for the Total Irradiance Monitor (TIM) on the Earth Observing System (EOS) Solar Radiation and Climate Experiment (SORCE), the solar irradiance measurement community recommended that NASA and NISI coordinate an aperture area measurement comparison to quantify and validate aperture area uncertainties and their overall effect on TSI uncertainties. From May 2003 to February 2006, apertures from 4 institutions with links to the historical TSI database were measured by NIST and the results were compared to the aperture area determined by each institution. The initial results of these comparisons are presented and preliminary assessments of the participants' uncertainties are discussed.

  3. Initial Results of Aperture Area Comparisons for Exo-Atmospheric Total Solar Irradiance Measurements

    NASA Technical Reports Server (NTRS)

    Johnson, B. Carol; Litorja, Maritoni; Fowler, Joel B.; Butler, James J.

    2009-01-01

    In the measurement of exo-atmospheric total solar irradiance (TSI), instrument aperture area is a critical component in converting solar radiant flux to irradiance. In a May 2000 calibration workshop for the Total Irradiance Monitor (TIM) on the Earth Observing System (EOS) Solar Radiation and Climate Experiment (SORCE), the solar irradiance measurement community recommended that NASA and NISI coordinate an aperture area measurement comparison to quantify and validate aperture area uncertainties and their overall effect on TSI uncertainties. From May 2003 to February 2006, apertures from 4 institutions with links to the historical TSI database were measured by NIST and the results were compared to the aperture area determined by each institution. The initial results of these comparisons are presented and preliminary assessments of the participants' uncertainties are discussed.

  4. Five Years of Synthesis of Solar Spectral Irradiance from SDID/SISA and SDO/AIA Images

    NASA Astrophysics Data System (ADS)

    Fontenla, J. M.; Codrescu, M.; Fedrizzi, M.; Fuller-Rowell, T.; Hill, F.; Landi, E.; Woods, T.

    2017-01-01

    In this paper we describe the synthetic solar spectral irradiance (SSI) calculated from 2010 to 2015 using data from the Atmospheric Imaging Assembly (AIA) instrument, on board the Solar Dynamics Observatory spacecraft. We used the algorithms for solar disk image decomposition (SDID) and the spectral irradiance synthesis algorithm (SISA) that we had developed over several years. The SDID algorithm decomposes the images of the solar disk into areas occupied by nine types of chromospheric and 5 types of coronal physical structures. With this decomposition and a set of pre-computed angle-dependent spectra for each of the features, the SISA algorithm is used to calculate the SSI. We discuss the application of the basic SDID/SISA algorithm to a subset of the AIA images and the observed variation occurring in the 2010-2015 period of the relative areas of the solar disk covered by the various solar surface features. Our results consist of the SSI and total solar irradiance variations over the 2010-2015 period. The SSI results include soft X-ray, ultraviolet, visible, infrared, and far-infrared observations and can be used for studies of the solar radiative forcing of the Earth’s atmosphere. These SSI estimates were used to drive a thermosphere-ionosphere physical simulation model. Predictions of neutral mass density at low Earth orbit altitudes in the thermosphere and peak plasma densities at mid-latitudes are in reasonable agreement with the observations. The correlation between the simulation results and the observations was consistently better when fluxes computed by SDID/SISA procedures were used.

  5. Long-term total solar irradiance variability during sunspot cycle 22

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III; Gibson, M. Alan; Wilson, Robert S.; Thomas, Susan

    1995-01-01

    Total solar irradiance measurements from the 1984-1993 Earth Radiation Budget Satellite (ERBS) active cavity radiometer and 1978-1993 Nimbus 7 transfer cavity radiometer spacecraft experiments are analyzed to detect the presence of 11-, 22-, and 80-year irradiance variability components. The analyses confirmed the existence of a significant 11-year irradiance variability component, associated with solar magnetic activity and the sunspot cycle. The analyses also suggest the presence of a 22- or 80-year variability component. The earlier Nimbus 7 and Solar Maximum Mission (SMM) spacecraft irradiance measurements decreased approximately 1.2 and 1.3 W/sq m, respectively, between 1980 and 1986. The Nimbus 7 values increased 1.2 W/sq m between 1986 and 1989. The ERBS irradiance measurements increased 1.3 W/sq m during 1986-1989, and then decreased 0.4 W/sq m (at an annual rate of 0.14 W/sq. m/yr) during 1990-1993. Considering the correlations between ERBS, Nimbus 7, and SMM irradiance trends and solar magnetic activity, the total solar irradiance should decrease to minimum levels by 1997 as solar activity decreases to minimum levels, and then increase to maximum levels by the year 2000 as solar activity rises. The ERBS measurements yielded 165.4 +/- 0.7 W/sq m as the mean irradiance value with measurement accuracies and precisions of 0.2% and 0.02%, respectively. The ERBS mean irradiance value is within 0.2% of the 1367.4, 1365.9, and 1366.9 W/sq m mean values for the SMM, Upper Atmosphere Research Satellite (UARS), and Space Shuttle Atmospheric Laboratory for Applications and Science (ATLAS 1) Solar Constant (SOLCON) active cavity radiometer spacecraft experiments, respectively. The Nimbus 7 measurements yielded 1372.1 W/sq m as the mean value with a measurement accuracy of 0.5%. Empirical irradiance model fits, based upon 10.7 -cm solar radio flux (F10) and photometric sunspot index (PSI), were used to assess the quality of the ERBS, Numbus 7, SMM, and the UARS

  6. Detection of solar wind-produced water in irradiated rims on silicate minerals

    PubMed Central

    Bradley, John P.; Ishii, Hope A.; Gillis-Davis, Jeffrey J.; Ciston, James; Nielsen, Michael H.; Bechtel, Hans A.; Martin, Michael C.

    2014-01-01

    The solar wind (SW), composed of predominantly ∼1-keV H+ ions, produces amorphous rims up to ∼150 nm thick on the surfaces of minerals exposed in space. Silicates with amorphous rims are observed on interplanetary dust particles and on lunar and asteroid soil regolith grains. Implanted H+ may react with oxygen in the minerals to form trace amounts of hydroxyl (−OH) and/or water (H2O). Previous studies have detected hydroxyl in lunar soils, but its chemical state, physical location in the soils, and source(s) are debated. If −OH or H2O is generated in rims on silicate grains, there are important implications for the origins of water in the solar system and other astrophysical environments. By exploiting the high spatial resolution of transmission electron microscopy and valence electron energy-loss spectroscopy, we detect water sealed in vesicles within amorphous rims produced by SW irradiation of silicate mineral grains on the exterior surfaces of interplanetary dust particles. Our findings establish that water is a byproduct of SW space weathering. We conclude, on the basis of the pervasiveness of the SW and silicate materials, that the production of radiolytic SW water on airless bodies is a ubiquitous process throughout the solar system. PMID:24449869

  7. Accuracy and sensitivity analysis for 54 models of computing hourly diffuse solar irradiation on clear sky

    NASA Astrophysics Data System (ADS)

    Badescu, Viorel; Gueymard, Christian A.; Cheval, Sorin; Oprea, Cristian; Baciu, Madalina; Dumitrescu, Alexandru; Iacobescu, Flavius; Milos, Ioan; Rada, Costel

    2013-02-01

    Fifty-four broadband models for computation of solar diffuse irradiation on horizontal surface were tested in Romania (South-Eastern Europe). The input data consist of surface meteorological data, column integrated data, and data derived from satellite measurements. The testing procedure is performed in 21 stages intended to provide information about the sensitivity of the models to various sets of input data. There is no model to be ranked "the best" for all sets of input data. However, some of the models performed better than others, in the sense that they were ranked among the best for most of the testing stages. The best models for solar diffuse radiation computation are, on equal footing, ASHRAE 2005 model (ASHRAE 2005) and King model (King and Buckius, Solar Energy 22:297-301, 1979). The second best model is MAC model (Davies, Bound Layer Meteor 9:33-52, 1975). Details about the performance of each model in the 21 testing stages are found in the Electronic Supplementary Material.

  8. Detection of solar wind-produced water in irradiated rims on silicate minerals.

    PubMed

    Bradley, John P; Ishii, Hope A; Gillis-Davis, Jeffrey J; Ciston, James; Nielsen, Michael H; Bechtel, Hans A; Martin, Michael C

    2014-02-04

    The solar wind (SW), composed of predominantly ∼1-keV H(+) ions, produces amorphous rims up to ∼150 nm thick on the surfaces of minerals exposed in space. Silicates with amorphous rims are observed on interplanetary dust particles and on lunar and asteroid soil regolith grains. Implanted H(+) may react with oxygen in the minerals to form trace amounts of hydroxyl (-OH) and/or water (H2O). Previous studies have detected hydroxyl in lunar soils, but its chemical state, physical location in the soils, and source(s) are debated. If -OH or H2O is generated in rims on silicate grains, there are important implications for the origins of water in the solar system and other astrophysical environments. By exploiting the high spatial resolution of transmission electron microscopy and valence electron energy-loss spectroscopy, we detect water sealed in vesicles within amorphous rims produced by SW irradiation of silicate mineral grains on the exterior surfaces of interplanetary dust particles. Our findings establish that water is a byproduct of SW space weathering. We conclude, on the basis of the pervasiveness of the SW and silicate materials, that the production of radiolytic SW water on airless bodies is a ubiquitous process throughout the solar system.

  9. Analysis of Ca II K images aiming to determine long-term trends in solar irradiance variability

    NASA Astrophysics Data System (ADS)

    Kar, Anuradha; Ermolli, Ilaria; Krivova, Natalie; Solanki, Sami

    2013-04-01

    The change in radiative output of the Sun on time scales longer than a day is attributed to the variability in solar surface magnetic fields. Direct irradiance measurements are only available for less than four decades. To reconstruct long term trends in solar total and spectral irradiance, proxies of solar surface magnetism like sunspot, facular and network areas are needed. Currently, sunspot records alone are used for this purpose, from which the deduction of facular and network areas is rather indirect. Historical records of full disk images of the Sun taken in the Ca II K spectral line (393.3 nm) have the potential to provide far more direct information about the distribution and evolution of faculae and network elements. The latter appear as bright regions in the Ca II K spectroheliograms and their intensity is correlated with the magnetic field strength of the features on the solar surface. Solar full disk images in the Ca II K line have been recorded since the beginning of the 20th century at a number of solar observatories such as at Arcetri (Italy), Mount Wilson(California, US) and Kodaikanal (India). The images are available in digitized archives that contain the data processed for standard instrumental calibrations. To utilize these records for irradiance studies, the next step is to identify the bright magnetic features from the images using feature recognition techniques. We test different feature identification methods which are first applied to a set of recent images from the PSPT instrument at the Osservatorio Astronomico di Roma, taken during three periods characterized by high, medium and low levels of activity. Then the performance of these methods to historical images from Arcetri, Mt. Wilson and Kodaikanal archives is tested. The results will be presented and discussed here.

  10. SOLAR2000 irradiances for climate change research, aeronomy and space system engineering

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent

    2004-01-01

    Improvements to spectral and temporal solar irradiances are often based upon increasingly accurate and precise measurements as well as upon better understood physics. This paper reports on one example in an emerging trend for solar irradiance models that can be characterized as hybrid irradiance modeling. Empirical and physics-based modeling of irradiances are combined and take advantage of strengths within both methods to provide a variety of solar irradiance products to science and engineering users. The SOLAR2000 (S2K) version 1.24 model (v1.24) described in this paper has gone through 17 upgrades since it was originally released in 1999 as v0.10 and now incorporates three theoretical continua, 13 rocket spectra, and time series data from five satellites using 17 instruments. S2K currently produces six integrated irradiance proxies for science and engineering applications in addition to spectrally resolved irradiances in three common wavelength formats. Integrated irradiance proxies include the E10.7 integrated EUV energy flux, QEUV total thermospheric EUV heating rate, PEUV hemispheric EUV power, T∞ exospheric temperature, RSN derived sunspot number, and S integrated spectrum. Besides three spectral wavelength and six integrated irradiance formats there are three time frames of historical, nowcast, and forecast irradiance products produced by four model grades. The Research Grade (RG) model is developed for aeronomical and climate change research, the Professional Grade (PG) model is developed for space system engineering applications, the Operational Grade (OP) model is developed for institutional and agency real-time operational space weather applications, and the System Grade (SY) model is developed for commercial operational and production applications. This report describes these model characteristics as well as the current state of operational irradiances which are now in the second release of a first generation forecast methodology. Forecast Generation

  11. Exposure amount and timing of solar irradiation during pregnancy and the risk of sensitization in children.

    PubMed

    Koh, Hyun Yong; Cho, Eunhae; Lee, So-Yeon; Kim, Woo Kyung; Park, Yong Mean; Kim, Jihyun; Ahn, Kangmo; Lee, Seung Won; Kim, Mi Ae; Hahm, Myung-Il; Chae, Yoomi; Lee, Kee-Jae; Kwon, Ho-Jang; Han, Man Yong

    2017-09-04

    Solar irradiation affects sensitization to aeroallergens and the prevalence of allergic diseases. Little is known, however, about how the time and amount of solar irradiation during pregnancy affects such risks in children. We aimed to find out how solar irradiation during pregnancy affects sensitization to aero-allergens and the prevalence of allergic diseases in children. This population-based cross-sectional study involved 7301 aged 6 years and aged 12 years children. Maternal exposure to solar irradiation during pregnancy was evaluated using data from weather stations closest to each child's birthplace. Monthly average solar irradiation during the second and third trimesters was calculated with rank by quartiles. Risks of allergic sensitization and allergic disease were estimated. Relative to the first (lowest) quartile, the adjusted odds ratio (aOR) for allergic sensitization in the fourth (highest) quartile was lowest within solar irradiation during pregnancy months 5-6 (aOR = 0.823, 95% CI 0.720-0.942, p < 0.05). During months 9-10, the aOR for allergic sensitization for the fourth was higher than the first quartile of solar irradiation (aOR = 1.167, 95% CI 1.022-1.333, p < 0.05). Similar results were observed when solar irradiation was analyzed as a continuous variable during months 5 (aOR = 0.975, 95% CI 0.962-0.989, p < 0.001) and month 9 (aOR = 1.018, 95% CI 1.004-1.031, p = 0.003). Increased solar irradiation during months 7-8 increased the risk of asthma (aOR = 1.309, 95% CI 1.024-1.674, p = 0.032). Maternal exposure to solar irradiation during the second trimester of pregnancy associated with reduced aeroallergen sensitization, whereas solar irradiation during the third trimester was related to increased sensitization to aeroallergens. Copyright © 2017 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All rights reserved.

  12. Aniline chlorination by in situ formed Ag-Cl complexes under simulated solar light irradiation.

    PubMed

    Hu, Xuefeng; Wang, Xiaowen; Dong, Liuliu; Chang, Fei; Luo, Yongming

    2015-01-01

    Ag speciation in a chloride medium was dependent upon the Cl/Ag ratio after releasing into surface water. In this study, the photoreaction of in situ formed Ag-Cl species and their effects on aniline photochlorination were systematically investigated. Our results suggested that formation of chloroaniline was strongly relevant to the Cl/Ag ratio and could be interpreted using the thermodynamically expected speciation of Ag in the presence of Cl-. AgCl was the main species responsible for the photochlorination of aniline. Both photoinduced hole and •OH drove the oxidation of Cl- to radical •Cl, which promoted the chlorination of aniline. Ag0 formation was observed from the surface plasmon resonance absorption during AgCl photoreaction. This study revealed that Ag+ released into Cl--containing water may result in the formation of chlorinated intermediates of organic compounds under solar light irradiation.

  13. A new approach to the long-term reconstruction of the solar irradiance leads to large historical solar forcing

    NASA Astrophysics Data System (ADS)

    Shapiro, A. I.; Schmutz, W.; Rozanov, E.; Schoell, M.; Haberreiter, M.; Shapiro, A. V.; Nyeki, S.

    2011-05-01

    Context. The variable Sun is the most likely candidate for the natural forcing of past climate changes on time scales of 50 to 1000 years. Evidence for this understanding is that the terrestrial climate correlates positively with the solar activity. During the past 10 000 years, the Sun has experienced the substantial variations in activity and there have been numerous attempts to reconstruct solar irradiance. While there is general agreement on how solar forcing varied during the last several hundred years - all reconstructions are proportional to the solar activity - there is scientific controversy on the magnitude of solar forcing. Aims: We present a reconstruction of the total and spectral solar irradiance covering 130 nm-10 μm from 1610 to the present with an annual resolution and for the Holocene with a 22-year resolution. Methods: We assume that the minimum state of the quiet Sun in time corresponds to the observed quietest area on the present Sun. Then we use available long-term proxies of the solar activity, which are 10Be isotope concentrations in ice cores and 22-year smoothed neutron monitor data, to interpolate between the present quiet Sun and the minimum state of the quiet Sun. This determines the long-term trend in the solar variability, which is then superposed with the 11-year activity cycle calculated from the sunspot number. The time-dependent solar spectral irradiance from about 7000 BC to the present is then derived using a state-of-the-art radiation code. Results: We derive a total and spectral solar irradiance that was substantially lower during the Maunder minimum than the one observed today. The difference is remarkably larger than other estimations published in the recent literature. The magnitude of the solar UV variability, which indirectly affects the climate, is also found to exceed previous estimates.We discuss in detail the assumptions that lead us to this conclusion. Appendix is only available in electronic form at http://www.aanda.org

  14. Back surface reflectors for solar cells

    NASA Technical Reports Server (NTRS)

    Chai, A. T.

    1980-01-01

    Sample solar cells were fabricated to study the effects of various back surface reflectors on the device performance. They are typical 50 micrometers thick, space quality, silicon solar cells except for variations of the back contact configuration. The back surfaces of the sample cells are polished to a mirror like finish, and have either conventional full contacts or grid finger contacts. Measurements and evaluation of various metallic back surface reflectors, as well as cells with total internal reflection, are presented. Results indicate that back surface reflectors formed using a grid finger back contact are more effective reflectors than cells with full back metallization and that Au, Ag, or Cu are better back surface reflector metals than Al.

  15. Morphological study of borosilicate glass surface irradiated by heavy ions

    SciTech Connect

    Wang, T. S.; Du, X.; Yuan, W.; Duan, B. H.; D. Zhang, J.; Chen, L.; Peng, H. B.; Yang, D.; Zhang, G. F.; Zhu, Z. H.

    2016-11-01

    Borosilicate glass is a candidate material for radiation waste formation and other optical applications in various fields. To understand the radiation effect of borosilicate glass, heavy ion (Arq+, Krq+ and Xeq+) irradiations were used to simulate the alpha and recoiled nuclei irradiations in this study. The surface morphology of glass has been compared to ion irradiation doses and ion energies. The surface topography evolution of irradiated samples is characterized by optical microscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM) and secondary ion mass spectrometry (SIMS). Micro-bumps are observed on the sample surface after irradiationwith 5 MeV Xeq+ over 5 × 1013 ions·cm-2. The size and density of the bumps increaseswith increasing irradiation dose. At a lowdose, bumps are on the nanometer (nm) scale and rather rare.While the dose is higher than 9 × 1015 ions·cm-2, the size of bumps is on the scale of a few microns, and the density is saturated. However, the height of the bumps increases froma fewnmto over 150nmwith further irradiation. The distribution of micro-bumps is nearly homogeneous. The bumps are condensed and swell up, and there is no crystallized structure according to the TEMdiffraction pattern. Elementmigration and concentrations are observedwith SIMS imaging. The arrayed micro-bumps are a new finding, and they might be used to change the surface properties. Bump formation is caused by phase separation, and volume swelling is induced by ion irradiation.

  16. Towards a long-term record of solar total and spectral irradiance

    NASA Astrophysics Data System (ADS)

    Krivova, N. A.; Solanki, S. K.; Unruh, Y. C.

    2011-02-01

    The variation of total solar irradiance (TSI) has been measured since 1978 and that of the spectral irradiance for an even shorter amount of time. Semi-empirical models are now available that reproduce over 80% of the measured irradiance variations. An extension of these models into the more distant past is needed in order to serve as input to climate simulations. Here we review our most recent efforts to model solar total and spectral irradiance on time scales from days to centuries and even longer. Solar spectral irradiance has been reconstructed since 1947. Reconstruction of solar total irradiance goes back to 1610 and suggests a value of about 1-1.5W/m2 for the increase in the cycle-averaged TSI since the end of the Maunder minimum, which is significantly lower than previously assumed but agrees with other modern models. First steps have also been made towards reconstructions of solar total and spectral irradiance on time scales of millennia.

  17. New Solar Irradiance Measurements from the Miniature X-Ray Solar Spectrometer CubeSat

    NASA Astrophysics Data System (ADS)

    Woods, Thomas N.; Caspi, Amir; Chamberlin, Phillip C.; Jones, Andrew; Kohnert, Richard; Mason, James Paul; Moore, Christopher S.; Palo, Scott; Rouleau, Colden; Solomon, Stanley C.; Machol, Janet; Viereck, Rodney

    2017-02-01

    The goal of the Miniature X-ray Solar Spectrometer (MinXSS) CubeSat is to explore the energy distribution of soft X-ray (SXR) emissions from the quiescent Sun, active regions, and during solar flares and to model the impact on Earth's ionosphere and thermosphere. The energy emitted in the SXR range (0.1-10 keV) can vary by more than a factor of 100, yet we have limited spectral measurements in the SXRs to accurately quantify the spectral dependence of this variability. The MinXSS primary science instrument is an Amptek, Inc. X123 X-ray spectrometer that has an energy range of 0.5-30 keV with a nominal 0.15 keV energy resolution. Two flight models have been built. The first, MinXSS-1, has been making science observations since 2016 June 9 and has observed numerous flares, including more than 40 C-class and 7 M-class flares. These SXR spectral measurements have advantages over broadband SXR observations, such as providing the capability to derive multiple-temperature components and elemental abundances of coronal plasma, improved irradiance accuracy, and higher resolution spectral irradiance as input to planetary ionosphere simulations. MinXSS spectra obtained during the M5.0 flare on 2016 July 23 highlight these advantages and indicate how the elemental abundance appears to change from primarily coronal to more photospheric during the flare. MinXSS-1 observations are compared to the Geostationary Operational Environmental Satellite (GOES) X-ray Sensor (XRS) measurements of SXR irradiance and estimated corona temperature. Additionally, a suggested improvement to the calibration of the GOES XRS data is presented.

  18. Satellite Estimation of Spectral Surface UV Irradiance. 2; Effect of Horizontally Homogeneous Clouds

    NASA Technical Reports Server (NTRS)

    Krothov, N.; Herman, J. R.; Bhartia, P. K.; Ahmad, Z.a; Fioletov, V.

    1998-01-01

    The local variability of UV irradiance at the Earth's surface is mostly caused by clouds in addition to the seasonal variability. Parametric representations of radiative transfer RT calculations are presented for the convenient solution of the transmission T of ultraviolet radiation through plane parallel clouds over a surface with reflectivity R(sub s). The calculations are intended for use with the Total Ozone Mapping Spectrometer (TOMS) measured radiances to obtain the calculated Lambert equivalent scene reflectivity R for scenes with and without clouds. The purpose is to extend the theoretical analysis of the estimation of UV irradiance from satellite data for a cloudy atmosphere. Results are presented for a range of cloud optical depths and solar zenith angles for the cases of clouds over a low reflectivity surface R(sub s) less than 0.1, over a snow or ice surface R(sub s) greater than 0.3, and for transmission through a non-conservative scattering cloud with single scattering albedo omega(sub 0) = 0.999. The key finding for conservative scattering is that the cloud-transmission function C(sub T), the ratio of cloudy-to clear-sky transmission, is roughly C(sub T) = 1 - R(sub c) with an error of less than 20% for nearly overhead sun and snow-free surfaces. For TOMS estimates of UV irradiance in the presence of both snow and clouds, independent information about snow albedo is needed for conservative cloud scattering. For non-conservative scattering with R(sub s) greater than 0.5 (snow) the satellite measured scene reflectance cannot be used to estimate surface irradiance. The cloud transmission function has been applied to the calculation of UV irradiance at the Earth's surface and compared with ground-based measurements.

  19. Implications of solar irradiance variability upon long-term changes in the Earth's atmospheric temperatures

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III

    1992-01-01

    From 1979 through 1987, it is believed that variability in the incoming solar energy played a significant role in changing the Earth's climate. Using high-precision spacecraft radiometric measurements, the incoming total solar irradiance (total amount of solar power per unit area) and the Earth's mean, global atmospheric temperatures were found to vary in phase with each other. The observed irradiance and temperature changes appeared to be correlated with the 11-year cycle of solar magnetic activity. During the period from 1979 through 1985, both the irradiance and temperature decreased. From 1985 to 1987, they increased. The irradiance changed approximately 0.1 percent, while the temperature varied as much as 0.6 C. During the 1979-1987 period, the temperatures were forecasted to rise linearly because of the anthropogenic build-up of carbon dioxide and the hypothesized 'global warming', 'greenhouse effect', scenarios. Contrary to these scenarios, the temperatures were found to vary in a periodic manner in phase with the solar irradiance changes. The observed correlations between irradiance and temperature variabilily suggest that the mean, global temperature of the Earth may decline between 1990 and 1997 as solar magnetic activity decreases.

  20. Results of aperture area comparisons for exo-atmospheric total solar irradiance measurements.

    PubMed

    Johnson, B Carol; Litorja, Maritoni; Fowler, Joel B; Shirley, Eric L; Barnes, Robert A; Butler, James J

    2013-11-20

    Exo-atmospheric solar irradiance measurements made by the solar irradiance community since 1978 have incorporated limiting apertures with diameters measured by a number of metrology laboratories using a variety of techniques. Knowledge of the aperture area is a critical component in the conversion of radiant flux measurements to solar irradiance. A National Aeronautics and Space Administration (NASA) Earth Observing System (EOS) sponsored international comparison of aperture area measurements of limiting apertures provided by solar irradiance researchers was performed, the effort being executed by the National Institute of Standards and Technology (NIST) in coordination with the EOS Project Science Office. Apertures that had institutional heritage with historical solar irradiance measurements were measured using the absolute aperture measurement facility at NIST. The measurement technique employed noncontact video microscopy using high-accuracy translation stages. We have quantified the differences between the participating institutions' aperture area measurements and find no evidence to support the hypothesis that preflight aperture area measurements were the root cause of discrepancies in long-term total solar irradiance satellite measurements. Another result is the assessment of uncertainties assigned to methods used by participants. We find that uncertainties assigned to a participant's values may be underestimated.

  1. Combined effects of wind and solar irradiance on the spatial variation of midday air temperature over a mountainous terrain

    NASA Astrophysics Data System (ADS)

    Kim, Soo-Ock; Kim, Jin-Hee; Kim, Dae-Jun; Shim, Kyo Moon; Yun, Jin I.

    2015-08-01

    When the midday temperature distribution in a mountainous region was estimated using data from a nearby weather station, the correction of elevation difference based on temperature lapse caused a large error. An empirical approach reflecting the effects of solar irradiance and advection was suggested in order to increase the reliability of the results. The normalized slope irradiance, which was determined by normalizing the solar irradiance difference between a horizontal surface and a sloping surface from 1100 to 1500 LST on a clear day, and the deviation relationship between the horizontal surface and the sloping surface at the 1500 LST temperature on each day were presented as simple empirical formulas. In order to simulate the phenomenon that causes immigrant air parcels to push out or mix with the existing air parcels in order to decrease the solar radiation effects, an advection correction factor was added to exponentially reduce the solar radiation effect with an increase in wind speed. In order to validate this technique, we estimated the 1500 LST air temperatures on 177 clear days in 2012 and 2013 at 10 sites with different slope aspects in a mountainous catchment and compared these values to the actual measured data. The results showed that this technique greatly improved the error bias and the overestimation of the solar radiation effect in comparison with the existing methods. By applying this technique to the Korea Meteorological Administration's 5-km grid data, it was possible to determine the temperature distribution at a 30-m resolution over a mountainous rural area south of Jiri Mountain National Park, Korea.

  2. Atmospheric Sensitivity to Spectral Top-of-Atmosphere Solar Irradiance Perturbations, Using MODTRAN-5 Radiative Transfer Algorithm

    NASA Astrophysics Data System (ADS)

    Anderson, G.; Berk, A.; Harder, G.; Fontenla, J.; Shettle, E.; Pilewski, P.; Kindel, B.; Chetwynd, J.; Gardner, J.; Hoke, M.; Jordan, A.; Lockwood, R.; Felde, G.; Archarya, P.

    2006-12-01

    The opportunity to insert state-of-the-art solar irradiance measurements and calculations, with subtle perturbations, into a narrow spectral resolution radiative transfer model has recently been facilitated through release of MODTRAN-5 (MOD5). The new solar data are from: (1) SORCE satellite measurements of solar variability over solar rotation cycle, & (2) ultra-narrow calculation of a new solar source irradiance, extending over the full MOD5 spectral range, from 0.2 um to far-IR. MODTRAN-5, MODerate resolution radiance and TRANsmittance code, has been developed collaboratively by Air Force Research Laboratory and Spectral Sciences, Inc., with history dating back to LOWTRAN. It includes approximations for all local thermodynamic equilibrium terms associated with molecular, cloud, aerosol and surface components for emission, scattering, and reflectance, including multiple scattering, refraction and a statistical implementation of Correlated-k averaging. The band model is based on 0.1 cm-1 (also 1.0, 5.0 and 15.0 cm-1 statistical binning for line centers within the interval, captured through an exact formulation of the full Voigt line shape. Spectroscopic parameters are from HITRAN 2004 with user-defined options for additional gases. Recent validation studies show MOD5 replicates line-by-line brightness temperatures to within ~0.02ºK average and <1.0ºK RMS. MOD5 can then serve as a surrogate for a variety of perturbation studies, including the two modes for the solar source function, Io. (1) Data from the Solar Radiation and Climate Experiment (SORCE) satellite mission provide state-of-the-art measurements of UV, visible, near-IR, plus total solar radiation, on near real-time basis. These internally consistent estimates of Sun's output over solar rotation and longer time scales are valuable inputs for studying effects of Sun's radiation on Earth's atmosphere and climate. When solar rotation encounters bright plage and dark sunspots, relative variations are

  3. Solar Spectral Irradiance at 782 nm as Measured by the SES Sensor Onboard Picard

    NASA Astrophysics Data System (ADS)

    Meftah, M.; Hauchecorne, A.; Irbah, A.; Cessateur, G.; Bekki, S.; Damé, L.; Bolsée, D.; Pereira, N.

    2016-04-01

    Picard is a satellite dedicated to the simultaneous measurement of the total and solar spectral irradiance, the solar diameter, the solar shape, and to the Sun's interior through the methods of helioseismology. The satellite was launched on June 15, 2010, and pursued its data acquisitions until March 2014. A Sun Ecartometry Sensor (SES) was developed to provide the stringent pointing requirements of the satellite. The SES sensor produced an image of the Sun at 782 ± 2.5 nm. From the SES data, we obtained a new time series of the solar spectral irradiance at 782 nm from 2010 to 2014. During this period of Solar Cycle 24, the amplitude of the changes has been of the order of ± 0.08 %, corresponding to a range of about 2× 10^{-3} W m^{-2} nm^{-1}. SES observations provided a qualitatively consistent evolution of the solar spectral irradiance variability at 782 nm. SES data show similar amplitude variations with the semi-empirical model Spectral And Total Irradiance REconstruction for the Satellite era (SATIRE-S), whereas the Spectral Irradiance Monitor instrument (SIM) onboard the SOlar Radiation and Climate Experiment satellite (SORCE) highlights higher amplitudes.

  4. Elimination of disinfection byproduct formation potential in reclaimed water during solar light irradiation.

    PubMed

    Qian-Yuan, Wu; Chao, Li; Ye, Du; Wen-Long, Wang; Huang, Huang; Hong-Ying, Hu

    2016-05-15

    Ecological storage of reclaimed water in ponds and lakes is widely applied in water reuse. During reclaimed water storage, solar light can degrade pollutants and improve water quality. This study investigated the effects of solar light irradiation on the disinfection byproduct formation potential in reclaimed water, including haloacetonitriles (HANs), trichloronitromethane (TCNM), trihalomethanes (THMs), haloketones (HKs) and chloral hydrate (CH). Natural solar light significantly decreased the formation potential of HANs, TCNM, and HKs in reclaimed water, but had a limited effect on the formation potential of THMs and CH. Ultraviolet (UV) light in solar radiation played a dominant role in the decrease of the formation potential of HANs, TCNM and HKs. Among the disinfection byproducts, the removal kinetic constant of dichloroacetonitrile (DCAN) with irradiation dose was much larger than those for dichloropropanone (1,1-DCP), trichloropropanone (1,1,1-TCP) and TCNM. During solar irradiation, fluorescence spectra intensities of reclaimed water also decreased significantly. The removal of tyrosine (Tyr)-like and tryptophan (Trp)-like protein fluorescence spectra intensity volumes was correlated to the decrease in DCAN formation potential. Solar irradiation was demonstrated to degrade Trp, Tyr and their DCAN formation potential. The photolysis products of Trp after solar irradiation were detected as kynurenine and tryptamine, which had chloroform, CH and DCAN formation potential lower than those of Trp.

  5. Formation of Polymeres on the Mineral Surface Preliminary Irradiated by UV Light.

    NASA Astrophysics Data System (ADS)

    Otroshchenko, Vladimir; Vasilyeva, Nelly; Bach, A. N.

    Questions of studying of synthesis of biologically active molecules from low-molecular percussors on firm inorganic surface (mineral matrix) draw attention of researchers in connection with studying of abiogenesis, and also can have practical value for working out synthesis on firm surface of oligonucleotides, peptides etc. During the formation of planets or their development at later stages, high concentrations of mineral particles generated due to high volcanic activity might be accumulated in the upper atmosphere. These mineral particles experience the influence of solar ultraviolet radiation and could change their composition under the action of light. Simul-taneously, their surfaces adsorb gas molecules that could react with each other and form some more complicated products. Thus probable site of organic molecules is perhaps the surface of mineral particles where there is a formation of an organic matter which then gets on a surface of planets. We assumed, that in the top layers of ancient atmosphere volcanic dust (ashes), clay and gases has been concentrated. The opportunity of synthesis biologically significant polymers on a surface of particles of volcanic ashes and clay, preliminary irradiated UV was studied (the solar spectrum was modeled). Results coincide that earlier has been received at synthesis these molecules on a surface of particles clays or SiO2 at adsorption on it more simple molecules-percursors and subsequent UV irradiation. By us it has been shown now, that on a surface of particles of the montmorillonite or volcanic ashes preliminary irradiated UV by light, also there is a formation of biologically significant polymers on the basis of adsorbed molecules-percursores, in addition, really, probably formation linear polymeres. Some addi-tional experiments, concerning the possible molecular mechanism of formation ligonucleotides has been lead also. They are based on the assumption, that molecules of the water connected with mineral structure

  6. Measuring Broadband IR Irradiance in the Direct Solar Beam and Recent Developments

    SciTech Connect

    Reda, Ibrahim; Andreas, Afshin; Dooraghi, Mike; Habte, Aron; Sengupta, Manajit; Kutchenreiter, Mark

    2016-12-14

    Solar and atmospheric science radiometers such as pyranometers, pyrheliometers, and photovoltaic cells are calibrated with traceability to a consensus reference which is maintained by Absolute Cavity Radiometers (ACRs). An ACR is an open cavity with no window, developed to measure the extended broadband spectrum of the terrestrial direct solar beam irradiance that extends beyond the ultraviolet and infrared bands; i.e. below 0.2 um and above 50 um, respectively. On the other hand, the pyranometers and pyrheliometers were developed to measure broadband shortwave irradiance from approximately 0.3 um to 3 um, while the present photovoltaic cells are limited to the spectral range of approximately 0.3 um to 1 um. The broadband mismatch of ACR versus such radiometers causes discrepancy in radiometers' calibration methods that has not been discussed or addressed in the solar and atmospheric science literature. Pyrgeometers, which measure the atmospheric longwave irradiance, are also used for solar and atmospheric science applications and calibrated with traceability to a consensus reference, yet they are calibrated during nighttime only, because no consensus reference has been established for the daytime longwave irradiance. This poster describes a method to measure the broadband longwave irradiance in the terrestrial direct solar beam from 3 um to 50 um, as a first step that might be used to help develop calibration methods to address the mismatch between broadband ACR and shortwave radiometers, and the lack of a daytime reference for pyrgeometers. The described method is used to measure the irradiance from sunrise to sunset; the irradiance varied from approximately 1 Wm-2 to 16 Wm-2 with an estimated uncertainty of 1.5 Wm-2, for a solar zenith angle range from 80 degrees to 16 degrees, respectively. Recent development shows that there is greater than 1.1 percent bias in measuring shortwave solar irradiance.

  7. The MAVEN EUVM model of solar spectral irradiance variability at Mars: Algorithms and results

    NASA Astrophysics Data System (ADS)

    Thiemann, Edward M. B.; Chamberlin, Phillip C.; Eparvier, Francis G.; Templeman, Brian; Woods, Thomas N.; Bougher, Stephen W.; Jakosky, Bruce M.

    2017-03-01

    Solar extreme ultraviolet (EUV) radiation is a primary energy input to the Mars atmosphere, causing ionization and driving photochemical processes above approximately 100 km. Because solar EUV radiation varies with wavelength and time, measurements must be spectrally resolved to accurately quantify its impact on the Mars atmosphere. The Mars Atmosphere and Volatile EvolutioN (MAVEN) EUV Monitor (EUVM) measures solar EUV irradiance incident on the Mars atmosphere in three bands. These three bands drive a spectral irradiance variability model called the Flare Irradiance Spectral Model (FISM)-Mars (FISM-M) which is an iteration of the FISM model by Chamberlin et al. (2007, 2008) for spectral irradiance at Earth. In this paper, we report the algorithms used to derive FISM-M and its associated uncertainties, focusing on differences from the original FISM. FISM-M spectrally resolves the solar EUV irradiance at Mars from 0.5 to 189.5 nm at 1min cadence, and 0.1 nm resolution in the 6-106 nm range or 1 nm resolution otherwise. FISM-M is suitable for both daily average and flaring spectral irradiance estimates and is based on the linear association of the broadband EUVM measurements with spectral irradiance measurements, including recent high time cadence 0.1 nm resolution measurements from the EUV Variability Experiment (EVE) on the Space Dynamics Observatory (SDO) between 6 and 106 nm. In addition, we present examples of model outputs for EUV irradiance variability due to solar flares, solar rotations, Mars orbit eccentricity, and the solar cycle, between October 2015 and November 2016.

  8. Harnessing surface plasmons for solar energy conversion

    NASA Technical Reports Server (NTRS)

    Anderson, L. M.

    1983-01-01

    NASA research on the feasibility of solar-energy conversion using surface plasmons is reviewed, with a focus on inelastic-tunnel-diode techniques for power extraction. The need for more efficient solar converters for planned space missions is indicated, and it is shown that a device with 50-percent efficiency could cost up to 40 times as much per sq cm as current Si cells and still be competitive. The parallel-processing approach using broadband carriers and tunable diodes is explained, and the physics of surface plasmons on metal surfaces is outlined. Technical problems being addressed include phase-matching sunlight to surface plasmons, minimizing ohmic losses and reradiation in energy transport, coupling into the tunnels by mode conversion, and gaining an understanding of the tunnel-diode energy-conversion process. Diagrams illustrating the design concepts are provided.

  9. Harnessing surface plasmons for solar energy conversion

    NASA Technical Reports Server (NTRS)

    Anderson, L. M.

    1983-01-01

    NASA research on the feasibility of solar-energy conversion using surface plasmons is reviewed, with a focus on inelastic-tunnel-diode techniques for power extraction. The need for more efficient solar converters for planned space missions is indicated, and it is shown that a device with 50-percent efficiency could cost up to 40 times as much per sq cm as current Si cells and still be competitive. The parallel-processing approach using broadband carriers and tunable diodes is explained, and the physics of surface plasmons on metal surfaces is outlined. Technical problems being addressed include phase-matching sunlight to surface plasmons, minimizing ohmic losses and reradiation in energy transport, coupling into the tunnels by mode conversion, and gaining an understanding of the tunnel-diode energy-conversion process. Diagrams illustrating the design concepts are provided.

  10. Advancing Solar Irradiance Measurement for Climate-Related Studies: Accurate Constraint on Direct Aerosol Radiative Effect (DARE)

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Ji, Q. Jack

    2011-01-01

    Earth's climate is driven primarily by solar radiation. As summarized in various IPCC reports, the global average of radiative forcing for different agents and mechanisms, such as aerosols or CO2 doubling, is in the range of a few W/sq m. However, when solar irradiance is measured by broadband radiometers, such as the fleet of Eppley Precision Solar Pyranometers (PSP) and equivalent instrumentation employed worldwide, the measurement uncertainty is larger than 2% (e.g., WMO specification of pyranometer, 2008). Thus, out of the approx. 184 W/sq m (approx.263 W/sq m if cloud-free) surface solar insolation (Trenberth et al. 2009), the measurement uncertainty is greater than +/-3.6 W/sq m, overwhelming the climate change signals. To discern these signals, less than a 1 % measurement uncertainty is required and is currently achievable only by means of a newly developed methodology employing a modified PSP-like pyranometer and an updated calibration equation to account for its thermal effects (li and Tsay, 2010). In this talk, we will show that some auxiliary measurements, such as those from a collocated pyrgeometer or air temperature sensors, can help correct historical datasets. Additionally, we will also demonstrate that a pyrheliometer is not free of the thermal effect; therefore, comparing to a high cost yet still not thermal-effect-free "direct + diffuse" approach in measuring surface solar irradiance, our new method is more economical, and more likely to be suitable for correcting a wide variety of historical datasets. Modeling simulations will be presented that a corrected solar irradiance measurement has a significant impact on aerosol forcing, and thus plays an important role in climate studies.

  11. Solar spectral irradiance variation and its impact on earth's atmosphere as observed by SCIAMACHY

    NASA Astrophysics Data System (ADS)

    Weber, M.; Pagaran, J.; Burrows, J. P.; Dikty, S.; von Savigny, C.; DeLand, M. T.; Floyd, L. E.; Harder, J. W.; Langematz, U.

    2011-12-01

    SCIAMACHY is a UV/vis/NIR spectrometer aboard ENVISAT which provides routine observations of ozone and other trace gases in the earth's atmosphere since 2002. Ozone profile data are provided from limb, lunar, and solar occultation observations, while the nadir viewing geometry allows measurements of total ozone columns. For normalizing observed backscattered earth radiances for trace gas retrievals, daily measurements of solar irradiance at moderately high spectral resolution (<1.5 nm) from 230 nm to 2400 nm, with some gaps in the NIR, are made. From the solar observations a Mg II index can be derived that in combination with other satellite data becomes a useful solar UV activity proxy indicator during the satellite era (since 1978). Using solar proxies for faculae brightening and sunspot darkening fitted to SCIAMACHY irradiance time-series a SCIA proxy model has been derived that allows us to describe solar cycle irradiance changes covering several decades. This talk will present highlights from SCIAMACHY solar observations, comparisons with other satellite data, and presents results on solar influence on ozone, i. e. 27 day solar rotation signal in the upper stratosphere and solar cycle effects on polar ozone losses.

  12. On the Cause of Solar Differential Rotations in the Solar Interior and Near the Solar Surface

    NASA Astrophysics Data System (ADS)

    Lyu, L.

    2012-12-01

    A theoretical model is proposed to explain the cause of solar differential rotations observed in the solar interior and near the solar surface. We propose that the latitudinal differential rotation in the solar convection zone is a manifestation of an easterly wind in the mid latitude. The speed of the easterly wind is controlled by the magnitude of the poleward temperature gradient in the lower part of the solar convection zone. The poleward temperature gradient depends on the orientation and strength of the magnetic fields at different latitudes in the solar convection zone. The north-south asymmetry in the wind speed can lead to north-south asymmetry in the evolution of the solar cycle. The easterly wind is known to be unstable for a west-to-east rotating star or planet. Based on the observed differential rotations in the solar convection zone, we can estimate the easterly wind speed at about 60-degree latitude and determine the azimuthal wave number of the unstable wave modes along the zonal flow. The lowest azimuthal wave number is about m=7~8. This result is consistent with the average width of the elephant-trunk coronal hole shown in the solar X-ray images. The nonlinear evolution of the unstable easterly wind can lead to transpolar migration of coronal holes and can change the poloidal magnetic field in a very efficient way. In the study of radial differential rotation near the solar surface, we propose that the radial differential rotation depends on the radial temperature gradient. The radial temperature gradient depends on the magnetic field structure above the solar surface. The non-uniform magnetic field distribution above the solar surface can lead to non-uniform radial convections and formation of magnetic flux rope at different spatial scales. The possible cause of continuous formation and eruption of prominences near an active region will also be discussed.

  13. Solar irradiance assessment in insular areas using Himawari-8 satellite images

    NASA Astrophysics Data System (ADS)

    Liandrat, O.; Cros, S.; Turpin, M.; Pineau, J. F.

    2016-12-01

    The high amount of surface solar irradiance (SSI) in the tropics is an advantage for a profitable PV production. It will allow many tropical islands to pursue their economic growth with a clean, affordable and locally produced energy. However, the local meteorological conditions induce a very high variability which is problematic for a safe and gainful injection into the power grid. This issue is even more critical in non-interconnected territories where network stability is an absolute necessity. Therefore, the injection of PV power is legally limited in some European oversea territories. In this context, intraday irradiance forecasting (several hours ahead) is particularly useful to mitigate the production variability by reducing the cost of power storage management. At this time scale, cloud cover evolves with a stochastic behaviour not properly represented in numerical weather prediction (NWP) models. Analysing cloud motion using images from geostationary meteorological satellites is a well-known alternative to forecasting SSI up to 6 hours ahead with a better accuracy than NWP models. In this study, we present and apply our satellite-based solar irradiance forecasting methods over two measurement sites located in the field of view of the satellite Himawari-8: Cocos (Keeling) Islands (Australia) and New Caledonia (France). In particular, we converted 4 months of images from Himawari-8 visible channel into cloud index maps. Then, we applied an algorithm computing a cloud motion vector field from a short sequence of consecutive images. Comparisons between forecasted SSI at 1 hour of time horizon and collocated pyranometric measurements show a relative RMSE between 20 and 27%. Error sources related to the tropic insular context (coastal area heterogeneity, sub-pixel scale orographic cloud appearance, convective situation…) are discussed at every implementation step for the different methods.

  14. Short-term solar irradiance forecast for the efficiency assessment of photovoltaic systems in Poland.

    NASA Astrophysics Data System (ADS)

    Sobotka, K.; Struzewska, J.; Kaminski, J. W.

    2010-09-01

    Efficiency of solar based energy generation systems depend to a large extent on weather conditions. In Poland, the solar irradiance is often highly variable due to passages of frontal zones and extratropical cyclones. Consequently, electricity generation varies in time and often energy production pattern does not follow load demand. Efficient management of a solar electricity production system requires reliable short-term forecast of solar irradiance and energy yield. The existing methodologies are based on different approaches depending on the forecast length, e.g. satellite images, statistical models and numerical weather prediction models. Although the use of short-term meteorological forecast products to predict energy production from photovoltaic systems does not seem to be a complicated issue, the outcome from such experiments is very often inconclusive and in general less accurate than from statistical models. In Poland there is a growing effort to expand installations of photovoltaic systems; however, there is no foresting system for solar energy production and the existing maps of solar irradiance are based mainly on measurements from a sparse network of stations. An attempt will be made to develop a short-term solar electricity production forecast for Poland based on the environmental forecast prepared by EcoForecast.EU. The GEM-AQ meteorological and air quality model is used as a computational platform. We will present modeling results for solar irradiance and a comparison with available measurement and climatological data. In addition, the developed parameterization of the energy production using GEM-AQ forecast will be presented.

  15. Description and primary results of Total Solar Irradiance Monitor, a solar-pointing instrument on an Earth observing satellite

    NASA Astrophysics Data System (ADS)

    Wang, Hongrui; Fang, Wei; Li, Huiduan

    2015-04-01

    Solar driving mechanism for Earth climate has been a controversial problem for centuries. Long-time data of solar activity is required by the investigations of the solar driving mechanism, such as Total Solar Irradiance (TSI) record. Three Total Solar Irradiance Monitors (TSIM) have been developed by Changchun Institute of Optics, Fine Mechanics and Physics for China Meteorological Administration to maintain continuities of TSI data series which lasted for nearly 4 decades.The newest TSIM has recorded TSI daily with accurate solar pointing on the FY-3C meteorological satellite since Oct 2013. TSIM/FY-3C has a pointing system for automatic solar tracking, onboard the satellite designed mainly for Earth observing. Most payloads of FY-3C are developed for observation of land, ocean and atmosphere. Consequently, the FY-3C satellite is a nadir-pointing spacecraft with its z axis to be pointed at the center of the Earth. Previous TSIMs onboard the FY-3A and FY-3B satellites had no pointing system, solar observations were only performed when the sun swept through field-of-view of the instruments. And TSI measurements are influenced inevitably by the solar pointing errors. Corrections of the solar pointing errors were complex. The problem is now removed by TSIM/FY-3C.TSIM/FY-3C follows the sun accurately by itself using its pointing system based on scheme of visual servo control. The pointing system is consisted of a radiometer package, two motors for solar tracking, a sun sensor and etc. TSIM/FY-3C has made daily observations of TSI for more than one year, with nearly zero solar pointing errors. Short time-scale variations in TSI detected by TSIM/FY-3C are nearly the same with VIRGO/SOHO and TIM/SORCE.Instrument details, primary results of solar pointing control, solar observations and etc will be given in the presentation.

  16. Evaluating the spatio-temporal performance of sky imager based solar irradiance analysis and forecasts

    NASA Astrophysics Data System (ADS)

    Schmidt, T.; Kalisch, J.; Lorenz, E.; Heinemann, D.

    2015-10-01

    Clouds are the dominant source of variability in surface solar radiation and uncertainty in its prediction. However, the increasing share of solar energy in the world-wide electric power supply increases the need for accurate solar radiation forecasts. In this work, we present results of a shortest-term global horizontal irradiance (GHI) forecast experiment based on hemispheric sky images. A two month dataset with images from one sky imager and high resolutive GHI measurements from 99 pyranometers distributed over 10 km by 12 km is used for validation. We developed a multi-step model and processed GHI forecasts up to 25 min with an update interval of 15 s. A cloud type classification is used to separate the time series in different cloud scenarios. Overall, the sky imager based forecasts do not outperform the reference persistence forecasts. Nevertheless, we find that analysis and forecast performance depend strongly on the predominant cloud conditions. Especially convective type clouds lead to high temporal and spatial GHI variability. For cumulus cloud conditions, the analysis error is found to be lower than that introduced by a single pyranometer if it is used representatively for the whole area in distances from the camera larger than 1-2 km. Moreover, forecast skill is much higher for these conditions compared to overcast or clear sky situations causing low GHI variability which is easier to predict by persistence. In order to generalize the cloud-induced forecast error, we identify a variability threshold indicating conditions with positive forecast skill.

  17. Effect of Water on the Surface Composition of Irradiated Minerals

    NASA Astrophysics Data System (ADS)

    Dukes, C. A.; Baragiola, R. A.

    2010-03-01

    Sections of olivine and augite exposed to 10^17 Ar cm-2 ion irradiation and then rinsed in water or exposed to a humid enviornment show up to 60% depletion of surface cations. This has implications for sample return and curation.

  18. Coloration and darkening of methane clathrate and other ices by charged particle irradiation - Applications to the outer solar system

    NASA Technical Reports Server (NTRS)

    Thompson, W. Reid; Murray, B. G. J. P. T.; Khare, B. N.; Sagan, Carl

    1987-01-01

    The results of laboratory experiments simulating the irradiation of hydrocarbon-H2O or hydrocarbon-H2O/NH3 clathrates by charged particles in the outer solar system are reported. Ices produced by condensing and boiling liquid CH4 on an H2O frost surface at 100 K or by cocondensing frosts from gaseous mixtures were exposed to coronal-discharge electron irradiation at 77 K, and the spectral properties of the irradiated surfaces were determined. Significant darkening of the initially white ices was observed at doses of 1 Gerg/sq cm, corresponding to 8-500 yrs of irradiation by Uranian magnetospheric electrons on the surfaces of the principal Uranian satellites, or to total destruction of CH4 in the upper 1 mm of the satellite surfaces after 0.05-3.0 Myr. It is estimated that 10 m or more of icy satellite or comet surfaces would be radiation-hardened to a CH4-free ice-tholin mixture over 4 Gyr.

  19. Coloration and darkening of methane clathrate and other ices by charged particle irradiation - Applications to the outer solar system

    NASA Technical Reports Server (NTRS)

    Thompson, W. Reid; Murray, B. G. J. P. T.; Khare, B. N.; Sagan, Carl

    1987-01-01

    The results of laboratory experiments simulating the irradiation of hydrocarbon-H2O or hydrocarbon-H2O/NH3 clathrates by charged particles in the outer solar system are reported. Ices produced by condensing and boiling liquid CH4 on an H2O frost surface at 100 K or by cocondensing frosts from gaseous mixtures were exposed to coronal-discharge electron irradiation at 77 K, and the spectral properties of the irradiated surfaces were determined. Significant darkening of the initially white ices was observed at doses of 1 Gerg/sq cm, corresponding to 8-500 yrs of irradiation by Uranian magnetospheric electrons on the surfaces of the principal Uranian satellites, or to total destruction of CH4 in the upper 1 mm of the satellite surfaces after 0.05-3.0 Myr. It is estimated that 10 m or more of icy satellite or comet surfaces would be radiation-hardened to a CH4-free ice-tholin mixture over 4 Gyr.

  20. Solar Versus Fission Surface Power for Mars

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.; Oleson, Steve; George, Pat; Landis, Geoffrey A.; Fincannon, James; Bogner, Amee; Jones, Robert E.; Turnbull, Elizabeth; McNatt, Jeremiah; Martini, Michael C.; Gyekenyesi, John Z.; Colozza, Anthony J.; Schmitz, Paul C.; Packard, Thomas W.

    2016-01-01

    A multi-discipline team of experts from the National Aeronautics and Space Administration (NASA) developed Mars surface power system point design solutions for two conceptual missions to Mars using In-situ resource utilization (ISRU). The primary goal of this study was to compare the relative merits of solar- versus fission-powered versions of each surface mission. First, the team compared three different solar-power options against a fission power system concept for a sub-scale, uncrewed demonstration mission. This “pathfinder” design utilized a 4.5 meter diameter lander. Its primary mission would be to demonstrate Mars entry, descent, and landing techniques. Once on the Martian surface, the lander’s ISRU payload would demonstrate liquid oxygen propellant production from atmospheric resources. For the purpose of this exercise, location was assumed to be at the Martian equator. The three solar concepts considered included a system that only operated during daylight hours (at roughly half the daily propellant production rate of a round-the-clock fission design), a battery-augmented system that operated through the night (matching the fission concept’s propellant production rate), and a system that operated only during daylight, but at a higher rate (again, matching the fission concept’s propellant production rate). Including 30% mass growth allowance, total payload masses for the three solar concepts ranged from 1,128 to 2,425 kg, versus the 2,751 kg fission power scheme. However, solar power masses increase as landing sites are selected further from the equator, making landing site selection a key driver in the final power system decision. The team also noted that detailed reliability analysis should be performed on daytime-only solar power schemes to assess potential issues with frequent ISRU system on/off cycling.

  1. Ion irradiation of TNO surface analogue ice mixtures: the chemistry .

    NASA Astrophysics Data System (ADS)

    Baratta, G. A.; Brunetto, R.; Caniglia, G.; Fulvio, D.; Ioppolo, S.; Leto, G.; Palumbo, M. E.; Spinella, F.; Strazzulla, G.

    Vis-NIR spectra of some Centaurs and Trans-Neptunian Objects (TNOs) indicate surfaces rich in H_2O, N_2, CO_2, CH_4 e CH_3OH. Cosmic ion irradiation is one of the processes driving the evolution of TNO surfaces. A main role is played by the chemistry induced by colliding ions; many molecular bonds are broken along the ion track, and this may lead to the formation of byproduct molecules. Starting from laboratory experiments, it is possible to infer the presence of molecules still undetected on TNOs. For instance, carbonic acid (H_2CO_3) is produced after irradiation of H_2O:CO_2 icy mixtures, while irradiation of H_2O:N_2 icy mixtures causes the production of N_2O, NO, and NO_2. From H_2O:CH_4:N_2 mixtures, many species are formed, such as CO, CO_2, HCN, HNCO, N_2O, and molecules including CN bonds. Moreover, ion irradiation may modify the relative intensity of NIR features, as in the case of solid methanol, whose 2.34 mu m band decreases in intensity with respect to the 2.27 mu m band, after increasing irradiation doses. We suggest that this effect may be observed on Centaur Pholus.

  2. Exposure testing of solar absorber surfaces

    SciTech Connect

    Moore, S.W.

    1986-01-01

    The Los Alamos National Laboratory has been involved in supporting, monitoring and conducting exposure testing of solar materials for approximately ten years. The Laboratory has provided technical monitoring of the IITRI, DSET, Lockheed, and Berry contracts and has operated the Los Alamos exposure Facility for over five years. This report will outline some of the past exposure testing, the testing still in progress, and describe some of the major findings. While this report will primarily emphasize solar absorber surfaces, some of the significant findings relative to advanced glazing will be discussed.

  3. Contamination of Optical Surfaces Under Irradiation by Outgassed Volatile Products

    SciTech Connect

    Khasanshin, R. H.; Grigorevskiy, A. V.; Galygin, A. N.; Alexandrov, N. G.

    2009-01-05

    Deposition of outgassed products of a polymeric composite on model material surfaces being irradiated by electrons and protons with initial energies of E{sub e} = 40 keV and E{sub p} = 30 keV respectively was studied. It was shown that deposition of volatile products on model material surfaces being under ionizing radiations results in increase of organic film growth rate.

  4. A I-V analysis of irradiated Gallium Arsenide solar cells

    NASA Technical Reports Server (NTRS)

    Heulenberg, A.; Maurer, R. H.; Kinnison, J. D.

    1991-01-01

    A computer program was used to analyze the illuminated I-V characteristics of four sets of gallium arsenide (GaAs) solar cells irradiated with 1-MeV electrons and 10-MeV protons. It was concluded that junction regions (J sub r) dominate nearly all GaAs cells tested, except for irradiated Mitsubishi cells, which appear to have a different doping profile. Irradiation maintains or increases the dominance by J sub r. Proton irradiation increases J sub r more than does electron irradiation. The U.S. cells were optimized for beginning of life (BOL) and the Japanese for end of life (EOL). I-V analysis indicates ways of improving both the BOL and EOL performance of GaAs solar cells.

  5. A I-V analysis of irradiated Gallium Arsenide solar cells

    NASA Astrophysics Data System (ADS)

    Heulenberg, A.; Maurer, R. H.; Kinnison, J. D.

    1991-08-01

    A computer program was used to analyze the illuminated I-V characteristics of four sets of gallium arsenide (GaAs) solar cells irradiated with 1-MeV electrons and 10-MeV protons. It was concluded that junction regions (J sub r) dominate nearly all GaAs cells tested, except for irradiated Mitsubishi cells, which appear to have a different doping profile. Irradiation maintains or increases the dominance by J sub r. Proton irradiation increases J sub r more than does electron irradiation. The U.S. cells were optimized for beginning of life (BOL) and the Japanese for end of life (EOL). I-V analysis indicates ways of improving both the BOL and EOL performance of GaAs solar cells.

  6. Electrostatic lofting variability of lunar dust under solar wind and solar uv irradiance

    NASA Astrophysics Data System (ADS)

    Cihan Örger, Necmi; Rodrigo Cordova Alarcon, Jose; Cho, Mengu; Toyoda, Kazuhiro

    2016-07-01

    It has been considered that lunar horizon glow is produced by forward scattering of the sunlight above the terminator region by the electrically charged dust grains. Previous lunar missions showed that lunar horizon glow is highly varying phenomenon; therefore, it is required to understand how this physical mechanism fundamentally occurs in order to be able to observe it. Therefore, terminator region and the dayside of the moon are the focus areas of this study in order to explain forward scattering of the sunlight towards night side region in the future steps of this work. In this paper, the results of lunar dust height calculations are presented as a function of solar zenith angle and solar wind properties. First, equilibrium surface potential, Debye length and surface electric field have been calculated to be used in the dust model to predict the lofting of lunar dust under various solar wind conditions. Dependence of the dust lofting on different parameters such as electron temperature or plasma density can be explained from the initial results. In addition, these results showed that zero potential occurs between subsolar point and terminator region as it is expected, where the maximum height of dust particles are minimum, and its position changes according to the solar wind properties and photoemission electron temperature. Relative to this work, a CubeSat mission is currently being developed in Kyushu Institute of Technology to observe lunar horizon glow.

  7. Influence of Topographic Shading on Multi-decadal Average Solar Irradiance: Implications for Fine Scale Eco-physiological and Climate Research

    NASA Astrophysics Data System (ADS)

    Bogren, W.; Bright, R. M.; Astrup, R. A.

    2015-12-01

    We have prepared a monthly topoclimatology covering the 385,000 km2 land area of Norway at 1 km2 resolution. The NASA/GEWEX Surface Radiation Budget (SRB) provides cloud cover as well as downwelling shortwave solar flux at the top of the atmosphere and surface, with global coverage at 1◦ spatial resolution, spanning 23 years at 3-hour temporal resolution. Solar positions and topographic influence are computed separately for each 1 km2 grid cell at each 3-hour timestep. Coupling the spatially coarse trends in cloudcover and irradiance from the course resolution SRB product with topography and solar position at significantly higher spatial resolution produces an improved dataset for linking seasonal trends in surface irradiance with a wide variety of physical and ecological processes sensitive to surface energy budgets.

  8. Total solar irradiance variations: The construction of a composite and its comparison with models

    NASA Technical Reports Server (NTRS)

    Froehlich, Claus; Lean, Judith

    1997-01-01

    Measurements of the total solar irradiance (TSI) during the last 18 years from spacecraft are reviewed. Corrections are determined for the early measurements made by the HF radiometer within the ERB experiment on NIMBUS 7 and the factor to refer active cavity radiometer irradiation monitoring (ACRIM) 2 to the ACRIM 1 irradiance scale. With these corrections, a composite TSI is constructed with a model that combines a magnetic brightness proxy with observed sunspot darkening and explains nearly 90 percent of the observed short and long term variance. Possible, but still unverified degradation of the radiometers hampers conclusions about irradiance changes on decadal time scales and longer.

  9. TiO2 film/Cu2O microgrid heterojunction with photocatalytic activity under solar light irradiation.

    PubMed

    Zhang, Junying; Zhu, Hailing; Zheng, Shukai; Pan, Feng; Wang, Tianmin

    2009-10-01

    Coupling a narrow-band-gap semiconductor with TiO(2) is an effective method to produce photocatalysts that work under UV-vis light irradiation. Usually photocatalytic coupled-semiconductors exist mainly as powders, and photocatalytic activity is only favored when a small loading amount of narrow-band-gap semiconductor is used. Here we propose a heavy-loading photocatalyst configuration in which 51% of the surface of the TiO(2) film is covered by a Cu(2)O microgrid. The coupled system shows higher photocatalytic activity under solar light irradiation than TiO(2) and Cu(2)O films. This improved performance is due to the efficient charge transfer between the two phases and the similar opportunity each has to be exposed to irradiation and adsorbates.

  10. EUV dynamic spectral map-a new tool to look into the variety of solar irradiance

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Wang, Y.; Liu, K.

    2013-12-01

    As The Solar Dynamics Observatory (SDO) Launched on February 11, 2010 , the instrument EVE aboard on it has measured the solar extreme ultraviolet irradiance variations for three years. Due to flares solar radiation varies rapidly and for different spectrums has different responses . So the different type flares viewed by the EVE present different morphology . As for a longer term, the solar radiation also changes for solar rotation in 28 days and solar cycles for 11-year sunspot cycle. We come up with a new tool to display these changes-EUV dynamic spectral map.This paper will briefly present how we produce this map and make a classification of the solar flare base on the EUV map and shows the long-term EUV background emission variations of three years during the Solar Cycle 24.

  11. Solar energy converter using surface plasma waves

    NASA Technical Reports Server (NTRS)

    Anderson, L. M. (Inventor)

    1984-01-01

    Sunlight is dispersed over a diffraction grating formed on the surface of a conducting film on a substrate. The angular dispersion controls the effective grating period so that a matching spectrum of surface plasmons is excited for parallel processing on the conducting film. The resulting surface plasmons carry energy to an array of inelastic tunnel diodes. This solar energy converter does not require different materials for each frequency band, and sunlight is directly converted to electricity in an efficient manner by extracting more energy from the more energetic photons.

  12. Altering the characteristics of a leaf litter-derived humic substance by adsorptive fractionation versus simulated solar irradiation.

    PubMed

    Hur, Jin; Jung, Ka-Young; Schlautman, Mark A

    2011-11-15

    Changes in the characteristics of a leaf litter-derived humic substance (LLHS) that resulted from its adsorption onto kaolinite or exposure to simulated solar irradiation were tracked using selected spectroscopic descriptors, apparent weight-average molecular weight (MW(w)) and pyrene binding. Heterogeneity within the original bulk LLHS was confirmed by a range of different characteristics obtained from ultrafiltration-based size fractions. In general, trends of some changing LLHS characteristics were similar for the adsorption and irradiation processes when tracked against percent carbon removal. For example, the overall values of specific ultraviolet absorbance (SUVA), MW(w), and humification index (HIX) all decreased with increasing irradiation time and with increasing concentration of mineral adsorbent in the respective experiments, indicating that both processes resulted in less aromatic and smaller-sized LLHS components remaining in solution. In addition, both the adsorption and irradiation experiments resulted in enrichment of the relative distribution of protein-like fluorescence (PLF), implying the PLF-related components had low affinities for phototransformation and mineral surface adsorption. Despite these apparently similar overall trends in LLHS characteristics caused by the adsorption and irradiation processes, closer examination revealed considerable differences in how the two processes altered the original material. Net production of intermediate-sized constituents was observed only with the irradiation experiments. In addition, residual LLHS resulting from the adsorptive fractionation experiments exhibited consistently higher pyrene binding versus the irradiated LLHS despite having comparable MW(w) values. Changes in LLHS characteristics due to adsorption by kaolinite were likely caused by physical mechanisms (primarily hydrophobic interactions between LLHS components and the kaolinite surface) whereas the irradiation-induced changes appear to have

  13. Solar vs. Fission Surface Power for Mars

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.; Oleson, Steve; George, Pat; Landis, Geoffrey A.; Fincannon, James; Bogner, Amee; Jones, Robert E.; Turnbull, Elizabeth; Martini, Michael C.; Gyekenyesi, John Z.; hide

    2016-01-01

    A multi-discipline team of experts from the National Aeronautics and Space Administration (NASA) developed Mars surface power system point design solutions for two conceptual missions. The primary goal of this study was to compare the relative merits of solar- versus fission-powered versions of each surface mission. First, the team compared three different solar power options against a fission power system concept for a sub-scale, uncrewed demonstration mission. The 4.5 meter (m) diameter pathfinder lander's primary mission would be to demonstrate Mars entry, descent, and landing techniques. Once on the Martian surface, the lander's In Situ Resource Utilization (ISRU) payload would demonstrate liquid oxygen propellant production using atmospheric resources. For the purpose of this exercise, location was assumed to be at the Martian equator. The three solar concepts considered included a system that only operated during daylight hours (at roughly half the daily propellant production rate of a round-the-clock fission design), a battery-augmented system that operated through the night (matching the fission concept's propellant production rate), and a system that operated only during daylight, but at a higher rate (again, matching the fission concept's propellant production rate). Including 30% mass growth allowance, total payload masses for the three solar concepts ranged from 1,116 to 2,396 kg, versus the 2,686 kg fission power scheme. However, solar power masses are expected to approach or exceed the fission payload mass at landing sites further from the equator, making landing site selection a key driver in the final power system decision. The team also noted that detailed reliability analysis should be performed on daytime-only solar power schemes to assess potential issues with frequent ISRU system on/off cycling. Next, the team developed a solar-powered point design solution for a conceptual four-crew, 500-day surface mission consisting of up to four landers per

  14. Towards a surface radiation climatology: Retrieval of downward irradiances from satellites

    NASA Astrophysics Data System (ADS)

    Schmetz, Johannes

    Methods are reviewed for retrieving the downward shortwave (0.3-4 μm) and longwave (4-100 μm) irradiances at the earth's surface from satellites. Emphasis is placed on elucidating the physical aspects relevant to the satellite retrieval. For the shortwave irradiance an example of a retrieval is presented. The shortwave retrieval is facilitated by a close linear coupling between the reflected radiance field at the top of the atmosphere and the surface irradiance. A linear relationship between planetary albedo and surface irradiance does also account properly for cloud absorption, since cloud absorption and albedo are linearly related. In the longwave the retrieval is more difficult since only atmospheric window radiances at the top of the atmosphere can bear information on the near-surface radiation field. For the remainder of the longwave spectrum the radiation regimes at the top of the atmosphere and at the surface are decoupled. More than 80% of the clear-sky longwave flux reaching the surface is emitted within the lowest 500 m of the atmosphere. In cloudy conditions the radiation fields at the surface and at the top of the atmosphere are entirely decoupled. Cloud contributions to the surface irradiance are important within the atmospheric window (8-13 μm) and the relative contribution increases in drier climates. Summaries are presented of various techniques devised for both the solar and longwave surface irradiances. A compilation of reported standard errors of shortwave techniques in comparison with ground measurements yields median values of about 5% and 10% for monthly and daily mean values, respectively. Standard errors for the longwave are of the order of 10-25 W m -2. Reported biases are typically of the order of 5 W m -2. For the shortwave retrieval there are fairly good prospects to obtain monthly mean estimates with the requested accuracy of about 10 W m -2 over regional scale areas. The inherent problems of the longwave still entails improvements

  15. Variability of Electrostatically Charged Lunar Dust Lofting Due to Solar Wind and Solar Irradiance

    NASA Astrophysics Data System (ADS)

    Orger, N. C.; Cordova Alarcon, J. R.; Toyoda, K.; Cho, M.

    2016-12-01

    Lunar horizon glow has been considered as a production of electrically charged dust grains, which causes forward scattering of sunlight above the terminator region; however, previous lunar missions showed that lunar horizon glow is highly varying phenomenon. For this reason, it is required to understand how this physical phenomenon occurs in order to increase the chance for future observations. Since it is related to terminator region and forward scattering of sunlight, the focus areas of this study have been selected as the regions from subsolar point to terminator on the lunar surface. In this work, the lunar dust height calculations are presented as a function solar zenith angle and solar wind properties. First, equilibrium surface potential, Debye length and surface electric field have been calculated to be used in the dust model. These results are used to predict the dust lofting under various solar wind conditions in order to investigate dependence on different parameters such as electron temperature or plasma density. In addition, these results showed that there is a location where the heights of lofted dust grains are minimum between subsolar point and terminator region as it is expected, and its position changes according to the solar wind properties and photoemission electron current. In the near future, laboratory experiments will be performed in order to improve the dust model by focusing on the electrostatic interaction between charged dust grains in plasma by utilizing the surface charge and electric field results, and the simulation environment will be improved. Relative to this work, a CubeSat mission is currently being planned in Kyushu Institute of Technology to observe lunar horizon glow.

  16. High resolution irradiance tailoring using multiple freeform surfaces.

    PubMed

    Bruneton, Adrien; Bäuerle, Axel; Wester, Rolf; Stollenwerk, Jochen; Loosen, Peter

    2013-05-06

    More and more lighting applications require the design of dedicated optics to achieve a given radiant intensity or irradiance distribution. Freeform optics has the advantage of providing such a functionality with a compact design. It was previously demonstrated in [Bäuerle et al., Opt. Exp. 20, 14477-14485 (2012)] that the up-front computation of the light path through the optical system (ray mapping) provides a satisfactory approximation to the problem, and allows the design of multiple freeform surfaces in transmission or in reflection. This article presents one natural extension of this work by introducing an efficient optimization procedure based on the physics of the system. The procedure allows the design of multiple freeform surfaces and can render high resolution irradiance patterns, as demonstrated by several examples, in particular by a lens made of two freeform surfaces projecting a high resolution logo (530 × 160 pixels).

  17. Association of Supergranule Mean Scales with Solar Cycle Strengths and Total Solar Irradiance

    NASA Astrophysics Data System (ADS)

    Mandal, Sudip; Chatterjee, Subhamoy; Banerjee, Dipankar

    2017-07-01

    We analyze the long-term behavior of the supergranule scale parameter, in active regions (ARs) and quiet regions (QRs), using the Kodaikanal digitized data archive. This database provides century-long daily full disk observations of the Sun in Ca ii K wavelengths. In this paper, we study the distributions of the supergranular scales, over the whole data duration, which show identical shape in these two regimes. We found that the AR mean scale values are always higher than that of the QR for every solar cycle. The mean scale values are highly correlated with the sunspot number cycle amplitude and also with total solar irradiance (TSI) variations. Such a correlation establishes the cycle-wise mean scale as a potential calibrator for the historical data reconstructions. We also see an upward trend in the mean scales, as has already been reported in TSI. This may provide new input for climate forcing models. These results also give us insight into the different evolutionary scenarios of the supergranules in the presence of strong (AR) and weak (QR) magnetic fields.

  18. Free Flyer Total and Spectral Solar Irradiance Sensor (TSIS) and Climate Services Mission

    NASA Technical Reports Server (NTRS)

    Cahalan, R.; Pilewskie, P.; Woods, T.

    2012-01-01

    NOAA's planned Total and Spectral Solar Irradiance Sensor (TSIS) mission will fly along with the NOAA user service payloads Advanced Data Collection System (ADCS) and Search and Rescue Satellite Aided Tracking (SARSAT). In ' order to guarantee continuity in the 33-year solar irradiance climate data record, TSIS must be launched in time to overlap with current on-orbit solar irradiance instruments. Currently TSIS is moving towards a launch rcadinss date of January 2015. TSIS provides for continuation of the Total Irradiance Monitor (TIM) and the Spectral Irradiance Monitor (SIM) ,currently onboard NASA's Solar Radiation and Climate Experiment (SORCE) platform, launched in January 2003. The difficulty of ensuring continuity has increased due to the launch failure of NASA's Glory mission with its improved TIM. Achieving the needed overlap must now rely on extending SORCE. and maintaining the TSIS schedule. TSIS is one component of a NASA-NOAA joint program (JPSS) planned to transition certain climate observations to operational mode. We summarize issues of continuity, improvements being made to the TIM and 81M sensors, and plans to provide for traceability of total and spectral irradiance measurements to ground-based cryogenic standards.

  19. Influence of spatiotemporally distributed irradiance data input on temperature evolution in parabolic trough solar field simulations

    NASA Astrophysics Data System (ADS)

    Bubolz, K.; Schenk, H.; Hirsch, T.

    2016-05-01

    Concentrating solar field operation is affected by shadowing through cloud movement. For line focusing systems the impact of varying irradiance has been studied before by several authors with simulations of relevant thermodynamics assuming spatially homogeneous irradiance or using artificial test signals. While today's simulation capabilities allow more and more a higher spatiotemporal resolution of plant processes there are only few studies on influence of spatially distributed irradiance due to lack of available data. Based on recent work on generating real irradiance maps with high spatial resolution this paper demonstrates their influence on solar field thermodynamics. For a case study an irradiance time series is chosen. One solar field section with several loops and collecting header is modeled for simulation purpose of parabolic trough collectors and oil as heat transfer medium. Assuming homogeneous mass flow distribution among all loops we observe spatially varying temperature characteristics. They are analysed without and with mass flow control and their impact on solar field control design is discussed. Finally, the potential of distributed irradiance data is outlined.

  20. Free Flyer Total and Spectral Solar Irradiance Sensor (TSIS) and Climate Services Mission

    NASA Astrophysics Data System (ADS)

    Cahalan, R.; Pilewskie, P.; Woods, T.

    2012-04-01

    NOAA's planned Total and Spectral Solar Irradiance Sensor (TSIS) mission will fly along with the NOAA user service payloads Advanced Data Collection System (ADCS) and Search and Rescue Satellite Aided Tracking (SARSAT). In order to guarantee continuity in the 33-year solar irradiance climate data record, TSIS must be launched in time to overlap with current on-orbit solar irradiance instruments. Currently TSIS is moving towards a launch readiness date of January 2015. TSIS provides for continuation of the Total Irradiance Monitor (TIM) and the Spectral Irradiance Monitor (SIM) currently onboard NASA's Solar Radiation and Climate Experiment (SORCE) platform, launched in January 2003. The difficulty of ensuring continuity has increased due to the launch failure of NASA's Glory mission with its improved TIM. Achieving the needed overlap must now rely on extending SORCE, and maintaining the TSIS schedule. TSIS is one component of a NASA-NOAA joint program (JPSS) planned to transition certain climate observations to operational mode. We summarize issues of continuity, improvements being made to the TIM and SIM sensors, and plans to provide for traceability of total and spectral irradiance measurements to ground-based cryogenic standards.

  1. Solar UVB and plant damage irradiances for different Argentinean regions.

    PubMed

    Micheletti, Maria Isabel; Piacentini, Rubén D

    2002-09-01

    We calculated the integrated UVB and plant damage irradiances for Argentina, a country in the Southern Hemisphere spread over a large latitudinal range. The irradiances were calculated for clear sky days using the Madronich code for the average conditions of the months corresponding to the summer and winter solstices and the fall and spring equinoxes. Ozone, aerosol and ground albedo typical for each region and for each period of the year have been considered. A comparison was made of the behavior of these irradiances at the different locations. A more pronounced time dependence of the plant damage irradiance was obtained because of the fact that the corresponding spectrum is largely concentrated at a small wavelength of the UVB interval. We established a correlation between both irradiances, which can be approximated by a quadratic function. Because the plant damage irradiance is a quantity that is not directly measured by instruments, we showed the utility of the correlation by determining this biological effectiveness from the integrated UVB irradiance measured at the Astronomical Observatory of Rosario, Argentina, on clear sky days of the year 2001, as a characteristic example of the midlatitude near-sea level location of a highly productive agricultural region, which can be extended to other regions of the world. The plant damage results are relative ones (as is the case for the erythemal irradiance). So, they can be used to determine the maximum/minimum and asymmetry ratios, to study the influence of atmospheric variables and to make comparisons with other geographical locations.

  2. Photocatalytic oxidation of pesticides by solar-irradiated TiO[sub 2] systems

    SciTech Connect

    Sullivan, J.M.; Grinstead, J.H. Jr.

    1992-01-01

    Research at the Tennessee Valley Authority's National Fertilizer and Environmental Research Center has been directed toward the development of passive basin type solar evaporators as a simple means of reducing the volume of fertilizer and pesticide contaminated rinsewater generated at fertilizer and agrichemical dealerships. In conjunction with this work, investigations are also devoted to TiO[sub 2] catalyzed solar photooxidation as a potential procedure for destroying pesticides in dilute aqueous systems. Initial tests in which dilute samples of the herbicides; Bicep (atrazine and metolachlor), Lasso (alachlor), and Sencor (metribuzin); were recirculated continuously over TiO[sub 2] impregnated fiberglass gauze, under solar irradiation, gave promising results. In the case of metribuzin, solar irradiation induced oxidation appeared effective at concentrations as high as 600 ppM. Catalytic efficiency did not appear greatly affected by using tap water rather than distilled water to dilute the pesticides. Two solar reactor designs will be discussed.

  3. Photocatalytic oxidation of pesticides by solar-irradiated TiO{sub 2} systems

    SciTech Connect

    Sullivan, J.M.; Grinstead, J.H. Jr.

    1992-12-01

    Research at the Tennessee Valley Authority`s National Fertilizer and Environmental Research Center has been directed toward the development of passive basin type solar evaporators as a simple means of reducing the volume of fertilizer and pesticide contaminated rinsewater generated at fertilizer and agrichemical dealerships. In conjunction with this work, investigations are also devoted to TiO{sub 2} catalyzed solar photooxidation as a potential procedure for destroying pesticides in dilute aqueous systems. Initial tests in which dilute samples of the herbicides; Bicep (atrazine and metolachlor), Lasso (alachlor), and Sencor (metribuzin); were recirculated continuously over TiO{sub 2} impregnated fiberglass gauze, under solar irradiation, gave promising results. In the case of metribuzin, solar irradiation induced oxidation appeared effective at concentrations as high as 600 ppM. Catalytic efficiency did not appear greatly affected by using tap water rather than distilled water to dilute the pesticides. Two solar reactor designs will be discussed.

  4. Estimation of daily global solar irradiation under different sky conditions in central and southern Iran

    NASA Astrophysics Data System (ADS)

    Didari, Shohreh; Zand-Parsa, Shahrokh

    2017-02-01

    Daily global solar irradiation ( R s) is one of the main inputs in environmental modeling. Because of the lack of its measuring facilities, high-quality and long-term data are limited. In this research, R s values were estimated based on measured sunshine duration and cloud cover of our synoptic meteorological stations in central and southern Iran during 2008, 2009, and 2011. Clear sky solar irradiation was estimated from linear regression using extraterrestrial solar irradiation as the independent variable with normalized root mean square error (NRMSE) of 4.69 %. Daily R s was calibrated using measured sunshine duration and cloud cover data under different sky conditions during 2008 and 2009. The 2011 data were used for model validation. According to the results, in the presence of clouds, the R s model using sunshine duration data was more accurate when compared with the model using cloud cover data (NRMSE = 11. 69 %). In both models, with increasing sky cloudiness, the accuracy decreased. In the study region, more than 92 % of sunshine durations were clear or partly cloudy, which received close to 95 % of total solar irradiation. Hence, it was possible to estimate solar irradiation with a good accuracy in most days with the measurements of sunshine duration.

  5. An Experimental Approach to Thermal and Solar Weathering of Mercury's Surface

    NASA Astrophysics Data System (ADS)

    Brown, S. M.; Elkins-Tanton, L. T.

    2010-12-01

    The surface of Mercury is heated to 450°C during the day and is periodically bombarded by the solar wind - processes that have likely been occurring for billions of years. Mercury’s ion tail is composed of ions including Na, K, and Ca and is thought to be the result of surface mineral damage from heat and irradiation processes, possibly including photon-stimulated desorption, thermal desorption, and impact vaporization. We are seeking to quantify the results of irradiation and thermal damage on likely surface minerals that make up the regolith by simulating space weathering. We irradiate anorthoclase, enstatite, diopside, and ilmenite with fast neutrons for 12hrs, and then heat these minerals to 1300°C. We also heat grains that have not been irradiated. The irradiation is equivalent to 40,000 Earth years on the surface of Mercury. The grains are analyzed in an electron microprobe before and after irradiation and/or heating. Our initial results take the form of compositional profiles from the interior to the exterior of grains, showing ion losses from both irradiation and heating; we compare our curves with those from diffusion models. The results of these studies should indicate the species and volumes of ions likely to be released from each mineral, and should pave the way for measuring spectra of damaged minerals in labs, with the goal of comparing the spectra of damaged minerals with spectra obtained from MESSENGER.

  6. Albumin grafting on biomaterial surfaces using gamma-irradiation

    SciTech Connect

    Kamath, K.R.

    1993-01-01

    Surface modification has been used extensively in various fields to introduce desirable surface properties without affecting the bulk properties of the material. In the area of biomaterials, the approach of surface modification offers an effective alternative to the synthesis of new biomaterials. The specific objective of this study was to modify different biomaterial surfaces by albumin grafting to improve their blood compatibility. The modified surfaces were characterized for surface-induced platelet activation and thrombus formation. This behavior was correlated with the conditions used for grafting. In particular, albumin was functionalized to introduce pendant double bonds into the molecule. The functionalized albumin was covalently attached to various surfaces, such as dimethyldichlorosilane-coated glass, polypropylene, polycarbonate, poly(vinyl chloride), and polyethylene by gamma-irradiation. Platelet adhesion and activation on these surfaces was examined using video microscopy and scanning electron microscopy. The extent of grafting was found to be dependent on the albumin concentration used for adsorption and the gamma-irradiation time. Release of the grafted albumin during exposure to blood was minimal. The albumin-grafted fibers maintained their thromboresistant properties even after storage at elevated temperatures for prolonged time periods. Finally, the approach was used to graft albumin on the PLEXUS Adult Hollow Fiber Oxygenators (Shiley). The blood compatibility of the grafted oxygenators improved significantly when compared to controls.

  7. The Contribution of Faculae and Network to Long-Term Changes in the Total Solar Irradiance

    NASA Astrophysics Data System (ADS)

    Walton, Stephen R.; Preminger, Dora G.; Chapman, Gary A.

    2003-06-01

    A new database of individual solar features has been compiled from the full-disk photometric Ca II K images taken at the San Fernando Observatory (SFO) during solar cycle 22. The distribution of facular region sizes differs at different phases of the solar cycle; the area coverage of large active regions is reduced by a factor of about 20 at solar minimum compared to solar maximum, while the smaller regions cover about half as much area at minimum as at maximum. The irradiance contribution of large features is about 10 times greater at maximum than at minimum, while that of small features is about twice as large. We have used this data set to model the fraction of variation in the total solar irradiance S that is due to solar features of various sizes. The data show that large-scale bright solar features, i.e., faculae, dominate the ~0.1% change in S between solar maximum and solar minimum. Using a variety of data sets, we conclude that large active regions produce about 80% of the total change.

  8. Analysis of solar spectral irradiance measurements from the SBUV/2-series and the SSBUV instruments

    NASA Astrophysics Data System (ADS)

    Cebula, Richard P.; Deland, Matthew P.; Hilsenrath, Ernest

    1994-12-01

    The measurements of the solar ultraviolet spectral irradiance by the two Upper Atmosphere Research Satellite (UARS) solar instruments are validated to agree within their 2-Sigma calibration uncertainties of about 7 percent, as well as with measurements from the two solar instruments on the Shuttle Atmospheric Laboratory for Applications and Science (ATLAS) missions. Additionally, the precision of the two UARS data sets is better than the original 2 percent goal, especially at wavelengths greater than 160 nm. This excellent agreement can be credited to accurate pre-flight calibrations, comprehensive in-flight calibrations to track instrument degradation, and a coordinated validation program among the UARS and ATLAS solar instrument teams. The solar irradiance results presented here include those derived from UARS SUSIM, UARS SOLSTICE, ATLAS SUSIM and ATLAS SSBUV measurements on 29 March 1992 during the ATLAS-1 mission and on 15 April 1993 during the ATLAS-2 mission. Two ultraviolet spectra from 119 to 410 nm are derived as the weighted average of the UARS SOLSTICE and SUSIM measurements and are recommended as representative solar spectra for the period of the ATLAS-1 and ATLAS-2 missions. The ATLAS-1 mission occurred during the initial phase of the solar cycle 22 decline when solar activity was moderately high. The ATLAS-2 mission occurred later during the declining phase of the solar cycle 22 when solar activity was more moderate.

  9. A facile approach for TiO2-based superhydrophobic-superhydrophilic patterns by UV or solar irradiation without a photomask.

    PubMed

    Yanqing, Zhu; Jifu, Shi; Qizhang, Huang; Leilei, Wang; Gang, Xu

    2017-02-16

    A novel and facile approach to produce TiO2-based superhydrophobic-superhydrophilic patterns by UV or solar irradiation without a photomask is presented. The fabricated superhydrophobic-superhydrophilic patterns with excellent mechanical properties have long lifetimes in outdoor applications or other UV environments because of a self-supply of low surface tension material.

  10. Improved broadband solar irradiance from the multi-filter rotating shadowband radiometer

    SciTech Connect

    Michalsky, J.J.; Augustine, J.A.; Kiedron, P.W.

    2009-12-15

    Approximations to total and diffuse horizontal and direct normal, broadband solar irradiance (280-4000 nm) can be obtained from the multi-filter rotating shadowband radiometer (MFRSR) using the unfiltered silicon channel of this seven-channel instrument. However, the unfiltered silicon channel only responds to wavelengths between 300 and 1100 nm and does not have a uniform spectral response. In contrast, the best, more expensive, first-class, thermopile-based radiometers respond fairly uniformly to all solar wavelengths. While the total horizontal and direct normal solar irradiance measurements made with the MFRSR unfiltered silicon channel are reasonable if carefully calibrated with a thermopile radiometer, the diffuse horizontal irradiance calibrated in this way has a large bias. These issues are common to all inexpensive, silicon-cell, solar pyranometers. In this paper we use a multivariate, linear regression technique for approximating the thermopile-measured total, diffuse, and direct broadband solar irradiances using the six, narrowband filters and the open-channel of an MFRSR. The calibration of the MFRSR for broadband solar by comparing various combinations of MFRSR channels to first-class thermopile instruments is illustrated, and methods to track the instrument response during field deployments are investigated. We also suggest an approach to calibrate the open-channel for all three components that could improve measurements that are made using typical, commercial, silicon-cell pyranometers. (author)

  11. Smartphone-Based Android app for Determining UVA Aerosol Optical Depth and Direct Solar Irradiances.

    PubMed

    Igoe, Damien P; Parisi, Alfio; Carter, Brad

    2014-01-01

    This research describes the development and evaluation of the accuracy and precision of an Android app specifically designed, written and installed on a smartphone for detecting and quantifying incident solar UVA radiation and subsequently, aerosol optical depth at 340 and 380 nm. Earlier studies demonstrated that a smartphone image sensor can detect UVA radiation and the responsivity can be calibrated to measured direct solar irradiance. This current research provides the data collection, calibration, processing, calculations and display all on a smartphone. A very strong coefficient of determination of 0.98 was achieved when the digital response was recalibrated and compared to the Microtops sun photometer direct UVA irradiance observations. The mean percentage discrepancy for derived direct solar irradiance was only 4% and 6% for observations at 380 and 340 nm, respectively, lessening with decreasing solar zenith angle. An 8% mean percent difference discrepancy was observed when comparing aerosol optical depth, also decreasing as solar zenith angle decreases. The results indicate that a specifically designed Android app linking and using a smartphone image sensor, calendar and clock, with additional external narrow bandpass and neutral density filters can be used as a field sensor to evaluate both direct solar UVA irradiance and low aerosol optical depths for areas with low aerosol loads. © 2013 The American Society of Photobiology.

  12. Wavelength Dependence of Solar Flare Irradiation and its Influence on the Thermosphere

    NASA Technical Reports Server (NTRS)

    Huang, Yanshi; Richmond, Arthur D.; Deng, Yue; Qian, L.; Solomon, S.; Chamberlin, P.

    2012-01-01

    The wavelength dependence of solar flare enhancement is one of the important factors determining how the Thermosphere-Ionosphere (T-I) system response to flares. To investigate the wavelength dependence of solar flare, the Flare Irradiance Spectral Model (FISM) has been run for 34 X-class flares. The results show that the percentage increases of solar irradiance at flare peak comparing to pre-flare condition have a clear wavelength dependence. In the wavelength range between 0 - 195 nm, it can vary from 1% to 10000%. The solar irradiance enhancement is largest ( 1000%) in the XUV range (0 - 25 nm), and is about 100% in EUV range (25 - 120 nm). The influence of different wavebands on the T-I system during the October 28th, 2003 flare (X17.2-class) has also been examined using the latest version of National Center for Atmospheric Research (NCAR) Thermosphere- Ionosphere-Electrodynamics General Circulation Model (TIE-GCM). While the globally integrated solar energy deposition is largest in the 0 - 14 nm waveband, the impact of solar irradiance enhancement on the thermosphere at 400 km is largest for 25 - 105 nm waveband. The effect of 122 - 195 nm is small in magnitude, but it decays slowly.

  13. Solar Ion Processing of Major Element Surface Compositions of Mature Mare Soils: Insights from Combined XPS and Analytical TEM Observations

    NASA Technical Reports Server (NTRS)

    Christoffersen, R.; Dukes, C.; Keller, L. P.; Baragiola, R.

    2012-01-01

    Solar wind ions are capable of altering the sur-face chemistry of the lunar regolith by a number of mechanisms including preferential sputtering, radiation-enhanced diffusion and sputter erosion of space weathered surfaces containing pre-existing compositional profiles. We have previously reported in-situ ion irradiation experiments supported by X-ray photoelectron spectroscopy (XPS) and analytical TEM that show how solar ions potentially drive Fe and Ti reduction at the monolayer scale as well as the 10-100 nm depth scale in lunar soils [1]. Here we report experimental data on the effect of ion irradiation on the major element surface composition in a mature mare soil.

  14. Manipulation of the graphene surface potential by ion irradiation

    SciTech Connect

    Ochedowski, O.; Kleine Bussmann, B.; Schleberger, M.; Ban d'Etat, B.; Lebius, H.

    2013-04-15

    We show that the work function of exfoliated single layer graphene can be modified by irradiation with swift (E{sub kin}=92 MeV) heavy ions under glancing angles of incidence. Upon ion impact individual surface tracks are created in graphene on silicon carbide. Due to the very localized energy deposition characteristic for ions in this energy range, the surface area which is structurally altered is limited to Almost-Equal-To 0.01 {mu}m{sup 2} per track. Kelvin probe force microscopy reveals that those surface tracks consist of electronically modified material and that a few tracks suffice to shift the surface potential of the whole single layer flake by Almost-Equal-To 400 meV. Thus, the irradiation turns the initially n-doped graphene into p-doped graphene with a hole density of 8.5 Multiplication-Sign 10{sup 12} holes/cm{sup 2}. This doping effect persists even after heating the irradiated samples to 500 Degree-Sign C. Therefore, this charge transfer is not due to adsorbates but must instead be attributed to implanted atoms. The method presented here opens up a way to efficiently manipulate the charge carrier concentration of graphene.

  15. Gene Expression in the Scleractinian Acropora microphthalma Exposed to High Solar Irradiance Reveals Elements of Photoprotection and Coral Bleaching

    PubMed Central

    Starcevic, Antonio; Dunlap, Walter C.; Cullum, John; Shick, J. Malcolm; Hranueli, Daslav; Long, Paul F.

    2010-01-01

    Background The success of tropical reef-building corals depends on the metabolic co-operation between the animal host and the photosynthetic performance of endosymbiotic algae residing within its cells. To examine the molecular response of the coral Acropora microphthalma to high levels of solar irradiance, a cDNA library was constructed by PCR-based suppression subtractive hybridisation (PCR-SSH) from mRNA obtained by transplantation of a colony from a depth of 12.7 m to near-surface solar irradiance, during which the coral became noticeably paler from loss of endosymbionts in sun-exposed tissues. Methodology/Principal Findings A novel approach to sequence annotation of the cDNA library gave genetic evidence for a hypothetical biosynthetic pathway branching from the shikimic acid pathway that leads to the formation of 4-deoxygadusol. This metabolite is a potent antioxidant and expected precursor of the UV-protective mycosporine-like amino acids (MAAs), which serve as sunscreens in coral phototrophic symbiosis. Empirical PCR based evidence further upholds the contention that the biosynthesis of these MAA sunscreens is a ‘shared metabolic adaptation’ between the symbiotic partners. Additionally, gene expression induced by enhanced solar irradiance reveals a cellular mechanism of light-induced coral bleaching that invokes a Ca2+-binding synaptotagmin-like regulator of SNARE protein assembly of phagosomal exocytosis, whereby algal partners are lost from the symbiosis. Conclusions/Significance Bioinformatics analyses of DNA sequences obtained by differential gene expression of a coral exposed to high solar irradiance has revealed the identification of putative genes encoding key steps of the MAA biosynthetic pathway. Revealed also by this treatment are genes that implicate exocytosis as a cellular process contributing to a breakdown in the metabolically essential partnership between the coral host and endosymbiotic algae, which manifests as coral bleaching. PMID

  16. Gene expression in the scleractinian Acropora microphthalma exposed to high solar irradiance reveals elements of photoprotection and coral bleaching.

    PubMed

    Starcevic, Antonio; Dunlap, Walter C; Cullum, John; Shick, J Malcolm; Hranueli, Daslav; Long, Paul F

    2010-11-12

    The success of tropical reef-building corals depends on the metabolic co-operation between the animal host and the photosynthetic performance of endosymbiotic algae residing within its cells. To examine the molecular response of the coral Acropora microphthalma to high levels of solar irradiance, a cDNA library was constructed by PCR-based suppression subtractive hybridisation (PCR-SSH) from mRNA obtained by transplantation of a colony from a depth of 12.7 m to near-surface solar irradiance, during which the coral became noticeably paler from loss of endosymbionts in sun-exposed tissues. A novel approach to sequence annotation of the cDNA library gave genetic evidence for a hypothetical biosynthetic pathway branching from the shikimic acid pathway that leads to the formation of 4-deoxygadusol. This metabolite is a potent antioxidant and expected precursor of the UV-protective mycosporine-like amino acids (MAAs), which serve as sunscreens in coral phototrophic symbiosis. Empirical PCR based evidence further upholds the contention that the biosynthesis of these MAA sunscreens is a 'shared metabolic adaptation' between the symbiotic partners. Additionally, gene expression induced by enhanced solar irradiance reveals a cellular mechanism of light-induced coral bleaching that invokes a Ca(2+)-binding synaptotagmin-like regulator of SNARE protein assembly of phagosomal exocytosis, whereby algal partners are lost from the symbiosis. Bioinformatics analyses of DNA sequences obtained by differential gene expression of a coral exposed to high solar irradiance has revealed the identification of putative genes encoding key steps of the MAA biosynthetic pathway. Revealed also by this treatment are genes that implicate exocytosis as a cellular process contributing to a breakdown in the metabolically essential partnership between the coral host and endosymbiotic algae, which manifests as coral bleaching.

  17. The delta-Sobolev approach for modeling solar spectral irradiance and radiance

    NASA Astrophysics Data System (ADS)

    Xiang, Xuwu

    The development and evaluation of a solar radiation model is reported, which gives irradiance and radiance results at the bottom and top of an atmosphere of specified optical depth for each of 145 spectral intervals from 0.29 to 4.05 microns. Absorption by water vapor, aerosols, ozone, and uniformly mixed gases; scattering by molecules and aerosols; and non-Lambertian surface reflectance are included in the model. For solving the radiative transfer equation, an innovative delta-Sobolev method is developed. It applies a delta-function modification to the conventional Sobolev solutions in a way analogous to the delta-Eddington method. The irradiance solution by the delta-Sobolev method turns out to be mathematically identical to the delta-Eddington approximation. The radiance solution by the delta-Sobolov method provides a convenient way to obtain the directional distribution pattern of the radiation transfer field, a feature unable to be obtained by most commonly used approximation methods. Such radiance solutions are also especially useful in models for satellite remote sensing. The model is tested against the rigorous Dave model, which solves the radiation transfer problem by the spherical harmonic method, an accurate but very time consuming process. Good agreement between the current model results and those of Dave's model are observed. The advantages of the delta-Sobolev model are simplicity, reasonable accuracy and capability for implementation on a minicomputer or microcomputer.

  18. The Delta-Sobolev Approach for Modeling Solar Spectral Irradiance and Radiance

    NASA Astrophysics Data System (ADS)

    Xiang, Xuwu

    This dissertation reports the development and evaluation of a solar radiation model, which gives irradiance and radiance results at the bottom and top of an atmosphere of specified optical depth for each of 145 spectral intervals from 0.29 to 4.05 mum. Absorption by water vapor, aerosols, ozone and uniformly mixed gases; scattering by molecules and aerosols; and non-Lambertian surface reflectance are included in the model. For solving the radiative transfer equation, an innovative delta-Sobolev method is developed. It applies a delta-function modification to the conventional Sobolev solutions in a way analogous to the delta-Eddington method. The irradiance solution by the delta-Sobolev method turns out to be mathematically identical to the delta-Eddington approximation. The radiance solution by the delta-Sobolev method provides a convenient way to obtain the directional distribution pattern of the radiation transfer field, a feature unable to be obtained by most commonly used approximate methods. Such radiance solutions are also especially useful in models for satellite remote sensing. The model is tested against the rigorous Dave model, which solves the radiative transfer problem by the Spherical Harmonic method, an accurate but very time consuming process. Good agreement between the current model results and those of Dave's model are observed. The advantages of the delta-Sobolev model are simplicity, reasonable accuracy and capability for implementation on a minicomputer or microcomputer.

  19. Monte Carlo radiative transfer simulation for the near-ocean-surface high-resolution downwelling irradiance statistics

    NASA Astrophysics Data System (ADS)

    Xu, Zao; Yue, Dick K. P.

    2014-05-01

    We present a numerical study of the near-surface underwater solar light statistics using the state-of-the-art Monte Carlo radiative transfer (RT) simulations in the coupled atmosphere-ocean system. Advanced variance-reduction techniques and full program parallelization are utilized so that the model is able to simulate the light field fluctuations with high spatial [O(10-3 mm)] and temporal [O(10-3 s)] resolutions. In particular, we utilize the high-order correction technique for the beam-surface intersection points in the model to account for the shadowing effect of steep ocean surfaces, and therefore, the model is able to well predict the refraction and reflection of light for large solar zenith incidences. The Monte Carlo RT model is carefully validated by data-to-model comparisons using the Radiance in a Dynamic Ocean (RaDyO) experimental data. Based on the model, we are particularly interested in the probability density function (PDF) and coefficient of variation (CV) of the highly fluctuating downwelling irradiance. The effects of physical factors, such as the water turbidity of the ocean, solar incidence, and the detector size, are investigated. The results show that increased turbidity and detector size reduce the variability of the downwelling irradiance; the shadowing effect for large solar zenith incidence strongly enhances the variability of the irradiance at shallow depths.

  20. The Nimbus 7 solar total irradiance - A new algorithm for its derivation

    NASA Technical Reports Server (NTRS)

    Hoyt, Douglas V.; Kyle, H. L.; Hickey, John R.; Maschhoff, Robert H.

    1992-01-01

    A new analysis is presented of the Nimbus-7 cavity radiometer measurements of the solar total irradiance from November 1978 to July 1991. Several problems concerning Nimbus 7 measurements are identified, and a new algorithm is developed for deriving the solar irradiance from Nimbus-7 raw data, which removes more of the instrumental and geometrical influences on the measurements than did previous algorithms. Compared to previous analyses of Nimbus-7 radiometer, the new values are higher and somewhat less variable than the older values. Compared to SMM measurements, the new values agree with SMM data quite well as long as any solar activity is present, but when the sun is quiet and its irradiance variability is less than the Nimbus radiometer resolution, the comparison breaks down.

  1. Schisandrin B protects against solar irradiation-induced oxidative injury in BJ human fibroblasts.

    PubMed

    Chiu, Po Yee; Lam, Philip Y; Yan, Chung Wai; Ko, Kam Ming

    2011-06-01

    The effects of schisandrin B (Sch B) and its analogs on solar irradiation-induced oxidative injury were examined in BJ human fibroblasts. Sch B and schisandrin C (Sch C) increased cellular reduced glutathione (GSH) level and protected against solar irradiation-induced oxidative injury. The photoprotection was paralleled by decreases in the elastases-type protease activity and matrix-metalloproteinases-1 expression in solar-irradiated fibroblasts. The cytochrome P-450-mediated metabolism of Sch B or Sch C caused ROS production. The results suggest that by virtue of its pro-oxidant action and the subsequent glutathione antioxidant response, Sch B or Sch C may offer the prospect of preventing skin photo-aging.

  2. Solar ultraviolet irradiances on December 7, 1983, and December 10, 1984

    NASA Technical Reports Server (NTRS)

    Mentall, James E.; Williams, Donald E.

    1988-01-01

    The full-disk absolute solar irradiance was measured on Dec. 7, 1983, and Dec. 10, 1984. The first flight obtained data over the wavelength interval 150-260 nm, while the second obtained data from 150 to 340 nm. Absolute accuracy of the measurements varied from + or - 3 to + or - 9 percent, depending on the flight and the particular wavelength. Between 200 and 240 nm the results reported here are higher than previously reported irradiances, but there is good agreement over the other wavelength intervals. Near 150 nm the change in the solar flux between these two flights did not exceed 7 percent. Aove 200 nm the change in the solar irradiance was not larger than the error bars of the measurement.

  3. Solar Extreme Ultraviolet and X-ray Irradiance Measurements for Thermosphere and Ionosphere Studies (Invited)

    NASA Astrophysics Data System (ADS)

    Woods, T. N.; Caspi, A.; Chamberlin, P. C.; Eparvier, F. G.; Jones, A. R.; Sojka, J. J.; Solomon, S. C.; Viereck, R. A.

    2013-12-01

    The solar extreme ultraviolet (EUV: 10-120 nm) and soft X-ray (SXR: 0.1-10 nm) radiation is critical energy input for Earth's upper atmosphere above 80 km as a driver for photochemistry, ionosphere creation, temperature structure, and dynamics. Understanding the solar EUV and X-ray variations and their influences on Earth's atmosphere are important for myriad of space weather applications. The solar EUV and SXR spectral irradiances are currently being measured by NASA's Thermosphere, Ionosphere, Mesosphere, Energetics, and Dynamics (TIMED) Solar EUV Experiment (SEE), NASA's Solar Dynamics Observatory (SDO) EUV Variability Experiment (EVE), and NOAA's GOES X-Ray Sensor (XRS) and EUV Sensor (EUVS). The solar irradiance varies on all time scales, ranging from seconds to hours from solar flare events, to days from 27-day solar rotation, and to years and longer from 11-year solar cycle. The amount of variation is strongly wavelength dependent with smaller ~50% solar cycle variations seen in the EUV for transition region emissions and larger factor of 10 and more variations seen in the SXR for coronal emissions. These solar irradiance observations are expected to be continued and to overlap with NASA's future Global-scale Observations of the Limb and Disk (GOLD) and Ionospheric Connection (ICON) missions that focus on the study of the thermosphere and ionosphere. These current measurements are only broad band in the SXR, but there are plans to have new spectral SXR measurements from CubeSat missions that may also overlap with the GOLD and ICON missions.

  4. Observations of Solar Spectral Irradiance Change During Cycle 22 from NOAA-9 SBUV/2

    NASA Technical Reports Server (NTRS)

    DeLand, Matthew T.; Cebula, Richard P.; Hilsenrath, Ernest

    2003-01-01

    The NOM-9 Solar Backscatter Ultraviolet, model 2 (SBUV/2) instrument is one of a series of instruments providing daily solar spectral irradiance measurements in the middle and near ultraviolet since 1978. The SBUV/2 instruments are primarily designed to measure stratospheric profile and total column ozone, using the directional albedo as the input to the ozone processing algorithm. As a result, the SBUV/2 instrument does not have onboard monitoring of all time-dependent response changes. We have applied internal comparisons and vicarious (external) comparisons to determine the long-term instrument characterization for NOAA-9 SBUV/2 to derive accurate solar spectral irradiances from March 1985 to May 1997 spanning two solar cycle minima with a single instrument. The NOAA-9 data show an amplitude of 9.3(+/- 2.3)% (81-day averaged) at 200-205 nm for solar cycle 22. This is consistent with the result of (Delta)F(sub 200-205) = 8.3(+/- 2.6)% for cycle 21 from Nimbus-7 SBUV and (Delta)F(sub 200-205) = 10(+/- 2)% (daily values) for cycle 23 from UARS SUSIM. NOAA-9 data at 245-250 nm show a solar cycle amplitude of (Delta)F(sub 245-250) = 5.7(+/- 1.8)%. NOAA-9 SBUV/2 data can be combined with other instruments to create a 25-year record of solar UV irradiance.

  5. Analysis of Solar Spectral Irradiance Measurements from the SBUV/2-Series