Estimation of subsurface thermal structure using sea surface height and sea surface temperature
NASA Technical Reports Server (NTRS)
Kang, Yong Q. (Inventor); Jo, Young-Heon (Inventor); Yan, Xiao-Hai (Inventor)
2012-01-01
A method of determining a subsurface temperature in a body of water is disclosed. The method includes obtaining surface temperature anomaly data and surface height anomaly data of the body of water for a region of interest, and also obtaining subsurface temperature anomaly data for the region of interest at a plurality of depths. The method further includes regressing the obtained surface temperature anomaly data and surface height anomaly data for the region of interest with the obtained subsurface temperature anomaly data for the plurality of depths to generate regression coefficients, estimating a subsurface temperature at one or more other depths for the region of interest based on the generated regression coefficients and outputting the estimated subsurface temperature at the one or more other depths. Using the estimated subsurface temperature, signal propagation times and trajectories of marine life in the body of water are determined.
NASA Technical Reports Server (NTRS)
Shukla, J.; Moura, A. D.
1980-01-01
The monthly mean sea surface temperature anomalies over tropical Altantic and rainfall anomalies over two selected stations for 25 years (1948-1972) were examined. It is found that the most severe drought events are associated with the simultaneous occurrence of warm sea surface temperature anomalies over north and cold sea surface temperature anomalies over south tropical Atlantic. Simultaneous occurrences of warm sea surface temperature anomaly at 15 deg N, 45 deg W and cold sea surface temperature anomaly at 15 deg S, 5 deg W were always associated with negative anomalies of rainfall, and vice versa. A simple primitive equation model is used to calculate the frictionally controlled and thermally driven circulation due to a prescribed heating function in a resting atmosphere.
Black sea surface temperature anomaly on 5th August 1998 and the ozone layer thickness
NASA Astrophysics Data System (ADS)
Manev, A.; Palazov, K.; Raykov, St.; Ivanov, V.
2003-04-01
BLACK SEA SURFACE TEMPERATURE ANOMALY ON 5th AUGUST 1998 AND THE OZONE LAYER THICKNESS A. Manev , K. Palazov , St. Raykov, V. Ivanov Solar Terrestrial Influences Laboratory, Bulgarian Academy of Sciences amanev@abv.bg This paper focuses on the peculiarities of the Black Sea surface temperature anomaly on 05.08.1998. Researching the daily temperature changes in a number of control fields in the course of 8-10 years, we have found hidden correlations and anomalous deviations in the sea surface temperatures on a global scale. Research proves the statistical reliability of the temperature anomaly on the entire Black Sea surface registered on 04.-05.08.1998. In the course of six days around these dates the temperatures are up to 2°C higher than the maximum temperatures in this period in the other seven years. A more detailed analysis of the dynamics of the anomaly required the investigation of five Black Sea surface characteristic zones of 75x75 km. The analysis covers the period 20 days - 10 days before and 10 days after the anomaly. Investigations aimed at interpreting the reasons for the anomalous heating of the surface waters. We have tried to analyze the correlation between sea surface temperature and the global ozone above the Black Sea by using simultaneously data from the two satellite systems NOAA and TOMS. Methods of processing and comparing the data from the two satellite systems are described. The correlation coefficients values for the five characteristic zones are very high and close, which proves that the character of the correlation ozone - sea surface temperature is the same for the entire Black Sea surface. Despite the high correlation coefficient, we have proved that causality between the two phenomena at the time of the anomaly does not exit.
Coherent changes of wintertime surface air temperatures over North Asia and North America.
Yu, Bin; Lin, Hai
2018-03-29
The surface temperature variance and its potential change with global warming are most prominent in winter over Northern Hemisphere mid-high latitudes. Consistent wintertime surface temperature variability has been observed over large areas in Eurasia and North America on a broad range of time scales. However, it remains a challenge to quantify where and how the coherent change of temperature anomalies occur over the two continents. Here we demonstrate the coherent change of wintertime surface temperature anomalies over North Asia and the central-eastern parts of North America for the period from 1951 to 2015. This is supported by the results from the empirical orthogonal function analysis of surface temperature and temperature trend anomalies over the Northern Hemisphere extratropical lands and the timeseries analysis of the regional averaged temperature anomalies over North Asia and the Great Plains and Great Lakes. The Asian-Bering-North American (ABNA) teleconnection provides a pathway to connect the regional temperature anomalies over the two continents. The ABNA is also responsible for the decadal variation of the temperature relationship between North Asia and North America.
Recent Global Warming As Depicted by AIRS, GISSTEMP, and MERRA-2
NASA Astrophysics Data System (ADS)
Susskind, J.; Iredell, L. F.; Lee, J. N.
2017-12-01
We observed anomalously warm global mean surface temperatures since 2015. The year 2016 represents the warmest annual mean surface skin and surface air temperatures in the AIRS observational period, September 2002 through August 2017. Additionally, AIRS monthly mean surface skin temperature, from January 2016 through September 2016, and November 2016, were the warmest observed for each month of the year. Continuing this trend, the AIRS global surface temperatures of 2017 February and April show the second greatest positive anomalies from average. This recent warming is particularly significant over the Arctic where the snow and sea ice melt is closely tied to the spring and summer surface temperatures. In this paper, we show the global distribution of surface temperature anomalies as observed by AIRS over the period September 2002 through August 2017 and compare them with those from the GISSTEMP and MERRA-2 surface temperatures. The spatial patterns of warm and cold anomalies for a given month show reasonably good agreement in all three data set. AIRS anomalies, which do not have the benefit of in-situ measurements, are in almost perfect agreement with those of MERRA-2, which does use in-situ surface measurements. GISSTEMP anomaly patterns for the most part look similar to those of AIRS and MERRA-2, but are more spread out spatially, and consequently are also weaker.
Data-driven modeling of surface temperature anomaly and solar activity trends
Friedel, Michael J.
2012-01-01
A novel two-step modeling scheme is used to reconstruct and analyze surface temperature and solar activity data at global, hemispheric, and regional scales. First, the self-organizing map (SOM) technique is used to extend annual modern climate data from the century to millennial scale. The SOM component planes are used to identify and quantify strength of nonlinear relations among modern surface temperature anomalies (<150 years), tropical and extratropical teleconnections, and Palmer Drought Severity Indices (0–2000 years). Cross-validation of global sea and land surface temperature anomalies verifies that the SOM is an unbiased estimator with less uncertainty than the magnitude of anomalies. Second, the quantile modeling of SOM reconstructions reveal trends and periods in surface temperature anomaly and solar activity whose timing agrees with published studies. Temporal features in surface temperature anomalies, such as the Medieval Warm Period, Little Ice Age, and Modern Warming Period, appear at all spatial scales but whose magnitudes increase when moving from ocean to land, from global to regional scales, and from southern to northern regions. Some caveats that apply when interpreting these data are the high-frequency filtering of climate signals based on quantile model selection and increased uncertainty when paleoclimatic data are limited. Even so, all models find the rate and magnitude of Modern Warming Period anomalies to be greater than those during the Medieval Warm Period. Lastly, quantile trends among reconstructed equatorial Pacific temperature profiles support the recent assertion of two primary El Niño Southern Oscillation types. These results demonstrate the efficacy of this alternative modeling approach for reconstructing and interpreting scale-dependent climate variables.
NASA Technical Reports Server (NTRS)
Susskind, Joel; Lee, Jae N.; Iredell, Lena
2013-01-01
The AIRS Science Team Version-6 data set is a valuable resource for meteorological studies. Quality Controlled earth's surface skin temperatures are produced on a 45 km x 45 km spatial scale under most cloud cover conditions. The same retrieval algorithm is used for all surface types under all conditions. This study used eleven years of AIRS monthly mean surface skin temperature and cloud cover products to show that land surface skin temperatures have decreased significantly in some areas and increased significantly in other areas over the period September 2002 through August 2013. These changes occurred primarily at 1:30 PM but not at 1:30 AM. Cooling land areas contained corresponding increases in cloud cover over this time period, with the reverse being true for warming land areas. The cloud cover anomaly patterns for a given month are affected significantly by El Nino/La Nina activity, and anomalies in cloud cover are a driving force behind anomalies in land surface skin temperature.
Suppression of ENSO in a coupled model without water vapor feedback
NASA Astrophysics Data System (ADS)
Hall, A.; Manabe, S.
We examine 800-year time series of internally generated variability in both a coupled ocean-atmosphere model where water vapor anomalies are not allowed to interact with longwave radiation and one where they are. The ENSO-like phenomenon in the experiment without water vapor feedback is drastically suppressed both in amplitude and geographic extent relative to the experiment with water vapor feedback. Surprisingly, the reduced amplitude of ENSO-related sea surface temperature anomalies in the model without water vapor feedback cannot be attributed to greater longwave damping of sea surface temperature. (Differences between the two experiments in radiative feedback due to clouds counterbalance almost perfectly the differences in radiative feedback due to water vapor.) Rather, the interaction between water vapor anomalies and longwave radiation affects the ENSO-like phenomenon through its influence on the vertical structure of radiative heating: Because of the changes in water vapor associated with it, a given warm equatorial Pacific sea surface temperature anomaly is associated with a radiative heating profile that is much more gravitationally unstable when water vapor feedback is present. The warm sea surface temperature anomaly therefore results in more convection in the experiment with water vapor feedback. The increased convection, in turn, is related to a larger westerly wind-stress anomaly, which creates a larger decrease in upwelling of cold water, thereby enhancing the magnitude of the original warm sea surface temperature anomaly. In this manner, the interaction between water vapor anomalies and longwave radiation magnifies the air-sea interactions at the heart of the ENSO phenomenon; without this interaction, the coupling between sea surface temperature and wind stress is effectively reduced, resulting in smaller amplitude ENSO episodes with a more limited geographical extent.
NASA Technical Reports Server (NTRS)
Liu, W. Timothy
1989-01-01
The Nimbus-7 Scanning Multichannel Microwave Radiometer (SSMR) provided simultaneous measurements of three geophysical parameters, each of which describing a certain aspect of the evolution of the 1982-1983 ENSO: the sea-surface temperature (T), precipitable water (W), and surface-wind speed (U). In this paper, values derived from the SSMR were compared with in situ measurements from ships, research buoys, and operational island stations in the tropical Pacific between January 1980 and October 1983, demonstrating the temporal and spatial coherence of the SSMR measurements. The results show that the variabilities of the surface convergence, sea surface temperature, and precipitable water are related. It was found that W anomalies were not always colocated with T anomalies, and that W anomalies were often associated with negative U anomalies, interpreted as surface convergence.
NASA Astrophysics Data System (ADS)
Yamaguchi, R.; Suga, T.
2016-12-01
Recent observational studies show that, during the warming season, a large amount of heat flux is penetrated through the base of thin mixed layer by vertical eddy diffusion, in addition to penetration of solar radiation [1]. In order to understand this heat penetration process due to vertical eddy diffusivity and its contribution to seasonal variation of sea surface temperature, we investigated the evolution of thermal stratification below the summertime thin mixed layer (i.e. evolution of seasonal thermocline) and its vertical structure in the North Pacific using high vertical resolution temperature profile observed by Argo floats. We quantified the vertical structure of seasonal thermocline as deviations from the linear structure where the vertical gradient of temperature is constant, that is, "shape anomaly". The shape anomaly is variable representing the extent of the bend of temperature profiles. We found that there are larger values of shape anomaly in the region where the seasonal sea surface temperature warming is relatively faster. To understand the regional difference of shape anomalies, we investigated the relationship between time changes in shape anomalies and net surface heat flux and surface kinetic energy flux. From May to July, the analysis indicated that, in a large part of North Pacific, there's a tendency for shape anomalies to develop strongly (weakly) under the conditions of large (small) downward net surface heat flux and small (large) downward surface kinetic energy flux. Since weak (strong) development of shape anomalies means efficient (inefficient) downward heat transport from the surface, these results suggest that the regional difference of the downward heat penetration below mixed layer is explained reasonably well by differences in surface heat forcing and surface wind forcing in a vertical one dimensional framework. [1] Hosoda et al. (2015), J. Oceanogr., 71, 541-556.
NASA Astrophysics Data System (ADS)
Huang, Wenyu; Chen, Ruyan; Yang, Zifan; Wang, Bin; Ma, Wenqian
2017-09-01
To examine the combined effects of the different spatial patterns of the Arctic Oscillation (AO)-related sea level pressure (SLP) anomalies and the El Niño-Southern Oscillation (ENSO)-related sea surface temperature (SST) anomalies on the wintertime surface temperature anomalies over East Asia, a nonlinear method based on self-organizing maps is employed. Investigation of identified regimes reveals that the AO can affect East Asian temperature anomalies when there are significant SLP anomalies over the Arctic Ocean and northern parts of Eurasian continent. Analogously, ENSO is found to affect East Asian temperature anomalies when significant SST anomalies are present over the tropical central Pacific. The regimes with the warmest and coldest temperature anomalies over East Asia are both associated with the negative phase of the AO. The ENSO-activated, Pacific-East Asian teleconnection pattern could affect the higher latitude continental regions when the impact of the AO is switched off. When the spatial patterns of the AO and ENSO have significant, but opposite, impacts on the coastal winds, no obvious temperature anomalies can be observed over south China. Further, the circulation state with nearly the same AO and Niño3 indices may drive rather different responses in surface temperature over East Asia. The well-known continuous weakening (recovery) of the East Asian winter monsoon that occurred around 1988 (2009) can be attributed to the transitions of the spatial patterns of the SLP anomalies over the Arctic Ocean and Eurasian continent, through their modulation on the occurrences of the Ural and central Siberian blocking events.
Re-emerging ocean temperature anomalies in late-2010 associated with a repeat negative NAO
NASA Astrophysics Data System (ADS)
Taws, Sarah L.; Marsh, Robert; Wells, Neil C.; Hirschi, Joël
2011-10-01
Northern Europe was influenced by consecutive episodes of extreme winter weather at the start and end of the 2010 calendar year. A tripole pattern in North Atlantic sea surface temperature anomalies (SSTAs), associated with an exceptionally negative phase of the North Atlantic Oscillation (NAO), characterized both winter periods. This pattern was largely absent at the surface during the 2010 summer season; however equivalent sub-surface temperature anomalies were preserved within the seasonal thermocline throughout the year. Here, we present evidence for the re-emergence of late-winter 2009/10 SSTAs during the following early winter season of 2010/11. The observed re-emergence contributes toward the winter-to-winter persistence of the anomalous tripole pattern. Considering the active influence of the oceans upon leading modes of atmospheric circulation over seasonal timescales, associated with the memory of large-scale sea surface temperature anomaly patterns, the re-emergence of remnant temperature anomalies may have also contributed toward the persistence of a negative winter NAO, and the recurrence of extreme wintry conditions over the initial 2010/11 winter season.
NASA Astrophysics Data System (ADS)
Fathrio, Ibnu; Manda, Atsuyoshi; Iizuka, Satoshi; Kodama, Yasu-Masa; Ishida, Sachinobu
2018-05-01
This study presents ocean heat budget analysis on seas surface temperature (SST) anomalies during strong-weak Asian summer monsoon (southwest monsoon). As discussed by previous studies, there was close relationship between variations of Asian summer monsoon and SST anomaly in western Indian Ocean. In this study we utilized ocean heat budget analysis to elucidate the dominant mechanism that is responsible for generating SST anomaly during weak-strong boreal summer monsoon. Our results showed ocean advection plays more important role to initate SST anomaly than the atmospheric prcess (surface heat flux). Scatterplot analysis showed that vertical advection initiated SST anomaly in western Arabian Sea and southwestern Indian Ocean, while zonal advection initiated SST anomaly in western equatorial Indian Ocean.
Retrieving Temperature Anomaly in the Global Subsurface and Deeper Ocean From Satellite Observations
NASA Astrophysics Data System (ADS)
Su, Hua; Li, Wene; Yan, Xiao-Hai
2018-01-01
Retrieving the subsurface and deeper ocean (SDO) dynamic parameters from satellite observations is crucial for effectively understanding ocean interior anomalies and dynamic processes, but it is challenging to accurately estimate the subsurface thermal structure over the global scale from sea surface parameters. This study proposes a new approach based on Random Forest (RF) machine learning to retrieve subsurface temperature anomaly (STA) in the global ocean from multisource satellite observations including sea surface height anomaly (SSHA), sea surface temperature anomaly (SSTA), sea surface salinity anomaly (SSSA), and sea surface wind anomaly (SSWA) via in situ Argo data for RF training and testing. RF machine-learning approach can accurately retrieve the STA in the global ocean from satellite observations of sea surface parameters (SSHA, SSTA, SSSA, SSWA). The Argo STA data were used to validate the accuracy and reliability of the results from the RF model. The results indicated that SSHA, SSTA, SSSA, and SSWA together are useful parameters for detecting SDO thermal information and obtaining accurate STA estimations. The proposed method also outperformed support vector regression (SVR) in global STA estimation. It will be a useful technique for studying SDO thermal variability and its role in global climate system from global-scale satellite observations.
No inter-gyre pathway for sea-surface temperature anomalies in the North Atlantic.
Foukal, Nicholas P; Lozier, M Susan
2016-04-22
Recent Lagrangian analyses of surface drifters have questioned the existence of a surface current connecting the Gulf Stream (GS) to the subpolar gyre (SPG) and have cast doubt on the mechanism underlying an apparent pathway for sea-surface temperature (SST) anomalies between the two regions. Here we use modelled Lagrangian trajectories to determine the fate of surface GS water and satellite SST data to analyse pathways of GS SST anomalies. Our results show that only a small fraction of the surface GS water reaches the SPG, the water that does so mainly travels below the surface mixed layer, and GS SST anomalies do not propagate into the SPG on interannual timescales. Instead, the inter-gyre heat transport as part of the Atlantic Meridional Overturning Circulation must be accomplished via subsurface pathways. We conclude that the SST in the SPG cannot be predicted by tracking SST anomalies along the GS.
No inter-gyre pathway for sea-surface temperature anomalies in the North Atlantic
Foukal, Nicholas P.; Lozier, M. Susan
2016-01-01
Recent Lagrangian analyses of surface drifters have questioned the existence of a surface current connecting the Gulf Stream (GS) to the subpolar gyre (SPG) and have cast doubt on the mechanism underlying an apparent pathway for sea-surface temperature (SST) anomalies between the two regions. Here we use modelled Lagrangian trajectories to determine the fate of surface GS water and satellite SST data to analyse pathways of GS SST anomalies. Our results show that only a small fraction of the surface GS water reaches the SPG, the water that does so mainly travels below the surface mixed layer, and GS SST anomalies do not propagate into the SPG on interannual timescales. Instead, the inter-gyre heat transport as part of the Atlantic Meridional Overturning Circulation must be accomplished via subsurface pathways. We conclude that the SST in the SPG cannot be predicted by tracking SST anomalies along the GS. PMID:27103496
Causes of Upper-Ocean Temperature Anomalies in the Tropical North Atlantic
NASA Astrophysics Data System (ADS)
Rugg, A.; Foltz, G. R.; Perez, R. C.
2016-02-01
Hurricane activity and regional rainfall are strongly impacted by upper ocean conditions in the tropical North Atlantic, defined as the region between the equator and 20°N. A previous study analyzed a strong cold sea surface temperature (SST) anomaly that developed in this region during early 2009 and was recorded by the Pilot Research Array in the Tropical Atlantic (PIRATA) moored buoy at 4°N, 23°W (Foltz et al. 2012). The same mooring shows a similar cold anomaly in the spring of 2015 as well as a strong warm anomaly in 2010, offering the opportunity for a more comprehensive analysis of the causes of these events. In this study we examine the main causes of the observed temperature anomalies between 1998 and 2015. Basin-scale conditions during these events are analyzed using satellite SST, wind, and rain data, as well as temperature and salinity profiles from the NCEP Global Ocean Data Assimilation System. A more detailed analysis is conducted using ten years of direct measurements from the PIRATA mooring at 4°N, 23°W. Results show that the cooling and warming anomalies were caused primarily by wind-driven changes in surface evaporative cooling, mixed layer depth, and upper-ocean vertical velocity. Anomalies in surface solar radiation acted to damp the wind-driven SST anomalies in the latitude bands of the ITCZ (3°-8°N). Basin-scale analyses also suggest a strong connection between the observed SST anomalies and the Atlantic Meridional Mode, a well-known pattern of SST and surface wind anomalies spanning the tropical Atlantic.
Atmospheric response to anomalous autumn surface forcing in the Arctic Basin
NASA Astrophysics Data System (ADS)
Cassano, Elizabeth N.; Cassano, John J.
2017-09-01
Data from four reanalyses are analyzed to evaluate the downstream atmospheric response both spatially and temporally to anomalous autumn surface forcing in the Arctic Basin. Running weekly mean skin temperature anomalies were classified using the self-organizing map algorithm. The resulting classes were used to both composite the initial atmospheric state and determine how the atmosphere evolves from this state. The strongest response was to anomalous forcing—positive skin temperature and total surface energy flux anomalies and reduced sea ice concentration—in the Barents and Kara Seas. Analysis of the evolution of the atmospheric state for 12 weeks after the initial forcing showed a persistence in the anomalies in this area which led to a buildup of heat in the atmosphere. This resulted in positive 1000-500 hPa thickness and high-pressure circulation anomalies in this area which were associated with cold air advection and temperatures over much of central and northern Asia. Evaluation of days with the opposite forcing (i.e., negative skin temperature anomalies and increased sea ice concentration in the Barents and Kara Seas) showed a mirrored, opposite downstream atmospheric response. Other patterns with positive skin temperature anomalies in the Arctic Basin did not show the same response most likely because the anomalies were not as strong nor did they persist for as many weeks following the initial forcing.
ASTER Thermal Anomalies in Western Colorado
Richard E. Zehner
2013-01-01
This layer contains the areas identified as areas of anomalous surface temperature from ASTER satellite imagery. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. Areas that had temperature greater than 2o, and areas with temperature equal to 1o to 2o, were considered ASTER modeled very warm and warm surface exposures (thermal anomalies), respectively Note: 'o' is used in place of lowercase sigma in this description.
2017-01-01
The persistence of atmospheric circulation anomalies over East Asia shows a winter to winter recurrence (WTWR) phenomenon. Seasonal variations in sea level pressure anomalies and surface wind anomalies display significantly different characteristics between WTWR and non-WTWR years. The WTWR years are characterized by the recurrence of both a strong (weak) anomalous Siberian High and an East Asian winter monsoon over two successive winters without persistence through the intervening summer. However, anomalies during the non-WTWR years have the opposite sign between the current and ensuing winters. The WTWR of circulation anomalies contributes to that of surface air temperature anomalies (SATAs), which is useful information for improving seasonal and interannual climate predictions over East Asia and China. In the positive (negative) WTWR years, SATAs are cooler (warmer) over East Asia in two successive winters, but the signs of the SATAs are opposite in the preceding and subsequent winters during the non-WTWR years. PMID:28178351
Zhao, Xia; Yang, Guang
2017-01-01
The persistence of atmospheric circulation anomalies over East Asia shows a winter to winter recurrence (WTWR) phenomenon. Seasonal variations in sea level pressure anomalies and surface wind anomalies display significantly different characteristics between WTWR and non-WTWR years. The WTWR years are characterized by the recurrence of both a strong (weak) anomalous Siberian High and an East Asian winter monsoon over two successive winters without persistence through the intervening summer. However, anomalies during the non-WTWR years have the opposite sign between the current and ensuing winters. The WTWR of circulation anomalies contributes to that of surface air temperature anomalies (SATAs), which is useful information for improving seasonal and interannual climate predictions over East Asia and China. In the positive (negative) WTWR years, SATAs are cooler (warmer) over East Asia in two successive winters, but the signs of the SATAs are opposite in the preceding and subsequent winters during the non-WTWR years.
NASA Technical Reports Server (NTRS)
Susskind, Joel
2008-01-01
AIRS/AMSU is the advanced IR/MW atmospheric sounding system launched on EOS Aqua in May 2002. Products derived from AIRS/AMSU by the AIRS Science Team include surface skin temperature and atmospheric temperature profiles; atmospheric humidity profiles, fractional cloud cover and cloud top pressure, and OLR. Products covering the period September 2002 through the present have been derived from AIRS/AMSU using the AIRS Science Team Version 5 retrieval algorithm. In this paper, we will show results covering the time period September 2006 - November 2008. This time period is marked by a substantial warming trend of Northern Hemisphere Extratropical land surface skin temperatures, as well as pronounced El Nino - La Nina episodes. These both influence the spatial and temporal anomaly patterns of atmospheric temperature and moisture profiles, as well as of cloud cover and Clear sky and All Sky OLR. The relationships between temporal and spatial anomalies of these parameters over this time period, as determined from AIRS/AMSU observations, will be shown, with particular emphasis on which contribute significantly to OLR anomalies in each of the tropics and extra-tropics. Results will also be shown to validate the anomalies and trends of temperature profiles and OLR as determined from analysis of AIRS/AMSU data. Global and regional trends during the 6 1/3 year period are not necessarily indicative of what has happened in the past, or what may happen in the future. Nevertheless, the inter-relationships of spatial and temporal anomalies of atmospheric geophysical parameters with those of surface skin temperature are indicative of climate processes, and can be used to test the performance of climate models when driven by changes in surface temperatures.
NASA Technical Reports Server (NTRS)
Susskind, Joel; Molnar, Gyula
2009-01-01
AIRS/AMSU is the advanced IR/MW atmospheric sounding system launched on EOS Aqua in May 2002. Products derived from AIRS/AMSU by the AIRS Science Team include surface skin temperature and atmospheric temperature profiled; atmospheric humidity profiles, fractional cloud clover and cloud top pressure, and OLR. Products covering the period September 2002 through the present have been derived from AIRS/AMSU using the AIRS Science Team Version 5 retrieval algorithm. In this paper, we will show results covering the time period September 2006 - November 2008. This time period is marked by a substantial warming trend of Northern Hemisphere Extra-tropical land surface skin temperatures, as well as pronounced El Nino - La Nina episodes. These both influence the spatial and temporal anomaly patterns of atmospheric temperature and moisture profiles, as well as of cloud cover and Clear Sky and All Sky OLR. The relationships between temporal and spatial anomalies of these parameters over this time period, as determined from AIRS/AMSU observations, will be shown with particular emphasis on which contribute significantly to OLR anomalies in each of the tropics and extra-tropics. Results will also be shown to evaluate the anomalies and trends of temperature profiles and OLR as determined from analysis of AIRS/AMSU data. Global and regional trends during the 6 1/3 year time period are not necessarily indicative of what has happened in the past, or what may happen in the future. Nevertheless, the inter-relationships of spatial and temporal anomalies of atmospheric geophysical parameters with those of surface skin temperature are indicative of climate processes, and can be used to test the performance of climate models when driven by changes in surface temperatures.
Investigation of models for large-scale meteorological prediction experiments
NASA Technical Reports Server (NTRS)
Spar, J.
1973-01-01
Studies are reported of the long term responses of the model atmosphere to anomalies in snow cover and sea surface temperature. An abstract of a previously issued report on the computed response to surface anomalies in a global atmospheric model is presented, and the experiments on the effects of transient sea surface temperature on the Mintz-Arakawa atmospheric model are reported.
An updated global grid point surface air temperature anomaly data set: 1851--1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sepanski, R.J.; Boden, T.A.; Daniels, R.C.
1991-10-01
This document presents land-based monthly surface air temperature anomalies (departures from a 1951--1970 reference period mean) on a 5{degree} latitude by 10{degree} longitude global grid. Monthly surface air temperature anomalies (departures from a 1957--1975 reference period mean) for the Antarctic (grid points from 65{degree}S to 85{degree}S) are presented in a similar way as a separate data set. The data were derived primarily from the World Weather Records and the archives of the United Kingdom Meteorological Office. This long-term record of temperature anomalies may be used in studies addressing possible greenhouse-gas-induced climate changes. To date, the data have been employed inmore » generating regional, hemispheric, and global time series for determining whether recent (i.e., post-1900) warming trends have taken place. This document also presents the monthly mean temperature records for the individual stations that were used to generate the set of gridded anomalies. The periods of record vary by station. Northern Hemisphere station data have been corrected for inhomogeneities, while Southern Hemisphere data are presented in uncorrected form. 14 refs., 11 figs., 10 tabs.« less
Quantifying the impact of human activity on temperatures in Germany
NASA Astrophysics Data System (ADS)
Benz, Susanne A.; Bayer, Peter; Blum, Philipp
2017-04-01
Human activity directly influences ambient air, surface and groundwater temperatures. Alterations of surface cover and land use influence the ambient thermal regime causing spatial temperature anomalies, most commonly heat islands. These local temperature anomalies are primarily described within the bounds of large and densely populated urban settlements, where they form so-called urban heat islands (UHI). This study explores the anthropogenic impact not only for selected cities, but for the thermal regime on a countrywide scale, by analyzing mean annual temperature datasets in Germany in three different compartments: measured surface air temperature (SAT), measured groundwater temperature (GWT), and satellite-derived land surface temperature (LST). As a universal parameter to quantify anthropogenic heat anomalies, the anthropogenic heat intensity (AHI) is introduced. It is closely related to the urban heat island intensity, but determined for each pixel (for satellite-derived LST) or measurement point (for SAT and GWT) of a large, even global, dataset individually, regardless of land use and location. Hence, it provides the unique opportunity to a) compare the anthropogenic impact on temperatures in air, surface and subsurface, b) to find main instances of anthropogenic temperature anomalies within the study area, in this case Germany, and c) to study the impact of smaller settlements or industrial sites on temperatures. For all three analyzed temperature datasets, anthropogenic heat intensity grows with increasing nighttime lights and declines with increasing vegetation, whereas population density has only minor effects. While surface anthropogenic heat intensity cannot be linked to specific land cover types in the studied resolution (1 km × 1 km) and classification system, both air and groundwater show increased heat intensities for artificial surfaces. Overall, groundwater temperature appears most vulnerable to human activity; unlike land surface temperature and surface air temperature, groundwater temperatures are elevated in cultivated areas as well. At the surface of Germany, the highest anthropogenic heat intensity with 4.5 K is found at an open-pit lignite mine near Jülich, followed by three large cities (Munich, Düsseldorf and Nuremberg) with annual mean anthropogenic heat intensities > 4 K. Overall, surface anthropogenic heat intensities > 0 K and therefore urban heat islands are observed in communities down to a population of 5,000.
NASA Astrophysics Data System (ADS)
Newell, Reginald E.; Wu, Zhong-Xiang
1992-03-01
Fields of sea surface temperature anomalies from the Global Ocean Surface Temperature Atlas (GOSTA) and microwave sounding measurements (MSU) of temperature in the troposphere are examined separately and together for the 1979-1988 period. Global correlation patterns of both sets of fields are investigated at a range of leads and lags up to 6 months and exhibit a wide range of correlation structure. There are regions, such as the tropical eastern Pacific, where sea surface temperature anomalies persist for several months and are associated with local air temperature anomalies; in this particular example, about 0.7°C air temperature change is associated with a 1.0°C sea temperature change. By contrast, some ocean regions and many atmospheric regions, mostly in middle and high latitude, show only local spatial correlations that disappear completely in a month or two. The most persistent and extensive spatial correlation patterns are quite different for the sea and the air. In the sea the "butterfly" pattern of the Pacific is the most important and reverses sign between the eastern equatorial Pacific and the western Pacific and subtropics. In the warm phase the temperature anomalies associated with this pattern are similar to the correlation pattern. For the atmosphere the main correlation pattern is an equatorial belt with no sign changes in the tropics; this pattern is linked to the oceanic El Niño mode. In the warm phase the temperature anomalies show peak values on both sides of the equator in the eastern and central Pacific. Based mainly on the results from the spatial patterns, certain regions are selected for intercomparison of time series. In the tropical eastern Pacific the sea leads the air by about a month while in the Gulf Stream and Kuroshio regions the sequence is reversed.
Jones, P. D. [University of East Anglia, Norwich, United Kingdom; Raper, S. C.B. [University of East Anglia, Norwich, United Kingdom; Cherry, B. S.G. [University of East Anglia, Norwich, United Kingdom; Goodess, C. M. [University of East Anglia, Norwich, United Kingdom; Wigley, T. M. L. [University of East Anglia, Norwich, United Kingdom; Santer, B. [University of East Anglia, Norwich, United Kingdom; Kelly, P. M. [University of East Anglia, Norwich, United Kingdom; Bradley, R. S. [University of Massachusetts, Amherst, Massachusetts (USA); Diaz, H. F. [National Oceanic and Atmospheric Administration (NOAA), Environmental Research Laboratories, Boulder, CO (United States).
1991-01-01
This NDP presents land-based monthly surface-air-temperature anomalies (departures from a 1951-1970 reference period mean) on a 5° latitude by 10° longitude global grid. Monthly surface-air-temperature anomalies (departures from a 1957-1975 reference period mean) for the Antarctic (grid points from 65°S to 85°S) are presented in a similar way as a separate data set. The data were derived primarily from the World Weather Records and from the archives of the United Kingdom Meteorological Office. This long-term record of temperature anomalies may be used in studies addressing possible greenhouse-gas-induced climate changes. To date, the data have been employed in producing regional, hemispheric, and global time series for determining whether recent (i.e., post-1900) warming trends have taken place. The present updated version of this data set is identical to the earlier version for all records from 1851-1978 except for the addition of the Antarctic surface-air-temperature anomalies beginning in 1957. Beginning with the 1979 data, this package differs from the earlier version in several ways. Erroneous data for some sites have been corrected after a review of the actual station temperature data, and inconsistencies in the representation of missing values have been removed. For some grid locations, data have been added from stations that had not contributed to the original set. Data from satellites have also been used to correct station records where large discrepancies were evident. The present package also extends the record by adding monthly surface-air-temperature anomalies for the Northern (grid points from 85°N to 0°) and Southern (grid points from 5°S to 60°S) Hemispheres for 1985-1990. In addition, this updated package presents the monthly-mean-temperature records for the individual stations that were used to produce the set of gridded anomalies. The periods of record vary by station. Northern Hemisphere data have been corrected for inhomogeneities, while Southern Hemisphere data are presented in uncorrected form.
NASA Technical Reports Server (NTRS)
Parsons, B.; Daly, S.
1983-01-01
Consideration is given to the relationship between the temperature structure of mantle convection and the resulting surface topography and gravity anomalies, which are used in its investigation. Integral expressions relating the three variables as a function of wavelength are obtained with the use of Green's function solutions to the equations of motion for the case of constant-viscosity convection in a plane layer subject to a uniform gravitational field. The influence of the boundary conditions, particularly at large wavelengths, is pointed out, and surface topographies and gravity produced by convection are illustrated for a number of simple temperature distributions. It is shown that the upper thermal boundary layer plays an important role in determining the surface observables, while temperatures near the bottom of the layer affect mainly that boundary. This result is consistent with an explanation of geoid anomalies over mid-ocean swells in terms of convection beneath the lithosphere.
NASA Astrophysics Data System (ADS)
Bellaoui, Mebrouk; Hassini, Abdelatif; Bouchouicha, Kada
2017-05-01
Detection of thermal anomaly prior to earthquake events has been widely confirmed by researchers over the past decade. One of the popular approaches for anomaly detection is the Robust Satellite Approach (RST). In this paper, we use this method on a collection of six years of MODIS satellite data, representing land surface temperature (LST) images to predict 21st May 2003 Boumerdes Algeria earthquake. The thermal anomalies results were compared with the ambient temperature variation measured in three meteorological stations of Algerian National Office of Meteorology (ONM) (DELLYS-AFIR, TIZI-OUZOU, and DAR-EL-BEIDA). The results confirm the importance of RST as an approach highly effective for monitoring the earthquakes.
The Recent Atlantic Cold Anomaly: Causes, Consequences, and Related Phenomena
NASA Astrophysics Data System (ADS)
Josey, Simon A.; Hirschi, Joel J.-M.; Sinha, Bablu; Duchez, Aurélie; Grist, Jeremy P.; Marsh, Robert
2018-01-01
Cold ocean temperature anomalies have been observed in the mid- to high-latitude North Atlantic on interannual to centennial timescales. Most notably, a large region of persistently low surface temperatures accompanied by a sharp reduction in ocean heat content was evident in the subpolar gyre from the winter of 2013-2014 to 2016, and the presence of this feature at a time of pervasive warming elsewhere has stimulated considerable debate. Here, we review the role of air-sea interaction and ocean processes in generating this cold anomaly and place it in a longer-term context. We also discuss the potential impacts of surface temperature anomalies for the atmosphere, including the North Atlantic Oscillation and European heat waves; contrast the behavior of the Atlantic with the extreme warm surface event that occurred in the North Pacific over a similar timescale; and consider the possibility that these events represent a response to a change in atmospheric planetary wave forcing.
NASA Technical Reports Server (NTRS)
Lau, K. M.; Weng, Heng-Yi
1999-01-01
A growing number of evidence indicates that there are coherent patterns of variability in sea surface temperature (SST) anomaly not only at interannual timescales, but also at decadal-to-inter-decadal timescale and beyond. The multi-scale variabilities of SST anomaly have shown great impacts on climate. In this work, we analyze multiple timescales contained in the globally averaged SST anomaly with and their possible relationship with the summer and winter rainfall in the United States over the past four decades.
CPC - Climate Weather Linkage: El Niño Southern Oscillation
Equatorial Pacific Temperature Depth Anomalies Animation Time longitude section of Anomalous OLR 850 hecto Temperatures anomalies Time series of weekly sea surface temperatures anomalies for the 4 Niño regions Time (OLR) Pentad mean and anomalous OLR Time-longitude section of anomalous OLR 850-hPa Zonal Wind Time
NASA Technical Reports Server (NTRS)
Otterman, Joseph; Atlas, R.; Ingraham, J.; Ardizzone, J.; Starr, D.; Terry, J.
1998-01-01
Surface winds over the oceans are derived from Special Sensor Microwave Imager (SSM/I) measurements, assigning direction by Variational Analysis Method (VAM). Validations by comparison with other measurements indicate highly-satisfactory data quality. Providing global coverage from 1988, the dataset is a convenient source for surface-wind climatology. In this study, the interannual variability of zonal winds is analyzed concentrating on the westerlies in North Atlantic and North Pacific, above 30 N. Interannual differences in the westerlies exceeding 10 m sec (exp -1) are observed over large regions, often accompanied by changes of the same magnitude in the easterlies below 30 N. We concentrate on February/March, since elevated temperatures, by advancing snow-melt, can produce early spring. The extremely strong westerlies in 1997 observed in these months over North Atlantic (and also North Pacific) apparently contributed to large surface-temperature anomalies in western Europe, on the order of +3 C above the climatic monthly average for England and France. At these latitudes strong positive anomalies extended in a ring around the globe. We formulated an Index of South westerlies for the North Atlantic, which can serve as an indicator for day-by-day advection effects into Europe. In comparing 1997 and 1998 with the previous years, we establish significant correlations with the temperature anomalies (one to five days later, depending on the region, and on the season). This variability of the ocean-surface winds and of the temperature anomalies on land may be related to the El Nino/La Nina oscillations. Such large temperature fluctuations over large areas, whatever the cause, can be regarded as noise in attempts to assess long-term trends in global temperature.
NASA Astrophysics Data System (ADS)
Gutiérrez, Francisco J.; Lemus, Martín; Parada, Miguel A.; Benavente, Oscar M.; Aguilera, Felipe A.
2012-09-01
Detection of thermal anomalies in volcanic-geothermal areas using remote sensing methodologies requires the subtraction of temperatures, not provided by geothermal manifestations (e.g. hot springs, fumaroles, active craters), from satellite image kinetic temperature, which is assumed to correspond to the ground surface temperature. Temperatures that have been subtracted in current models include those derived from the atmospheric transmittance, reflectance of the Earth's surface (albedo), topography effect, thermal inertia and geographic position effect. We propose a model that includes a new parameter (K) that accounts for the variation of temperature with ground surface altitude difference in areas where steep relief exists. The proposed model was developed and applied, using ASTER satellite images, in two Andean volcanic/geothermal complexes (Descabezado Grande-Cerro Azul Volcanic Complex and Planchón-Peteroa-Azufre Volcanic Complex) where field data of atmosphere and ground surface temperature as well as radiation for albedo calibration were obtained in 10 selected sites. The study area was divided into three zones (Northern, Central and Southern zones) where the thermal anomalies were obtained independently. K value calculated for night images of the three zones are better constrained and resulted to be very similar to the Environmental Lapse Rate (ELR) determined for a stable atmosphere (ELR > 7 °C/km). Using the proposed model, numerous thermal anomalies in areas of ≥ 90 m × 90 m were identified that were successfully cross-checked in the field. Night images provide more reliable information for thermal anomaly detection than day images because they record higher temperature contrast between geothermal areas and its surroundings and correspond to more stable atmospheric condition at the time of image acquisition.
NASA Astrophysics Data System (ADS)
Wild, Simon; Befort, Daniel J.; Leckebusch, Gregor C.
2016-04-01
The British Isles experienced exceptional stormy and rainy weather conditions in winter 2013-2014 while large parts of central North America recorded near record minimum surface temperatures values. Potential drivers for these cold conditions include increasingly warm surface waters of the tropical west Pacific. It has been suggested these increasing sea surface temperatures could also be the cause for extreme weather over the Europe, particularly the UK. Testing this hypothesis, we investigate mechanisms linking the tropical west Pacific and European wind storm activity. We will firstly analyse anomaly patterns along such a potential link in winter 2013-14. Secondly, we will investigate whether these identified anomaly patterns show a strong interannual relationship in the recent past. Our results, using primarily ERA-Interim Reanalysis from 1979 to 2014, show an absolute maximum of wind storm frequency over the northeast Atlantic and the British Isles in winter 2013-14. We also find absolute minimum surface temperatures in central North America and increased convective activity over the tropical west Pacific in the same season. The winter 2013-14 was additionally characterized by anomalous warm sea surface temperatures over the subtropical northwest Atlantic. Although the interannual variability of wind storms in the northeast Atlantic and surface temperatures in North America are significantly anti-correlated, we cannot directly relate wind storm frequency with tropical west Pacific anomalies. We thus conclude that the conditions over the Pacific in winter 2013-14 were favourable but not sufficient to explain the record number of wind storms in this season. Instead, we suggest that warm north Atlantic sea surface temperature anomalies in combination with cold surface temperatures over North America played a more important role for generating higher wind storm counts over the northeast Atlantic and the UK.
NASA Astrophysics Data System (ADS)
Zaba, Katherine D.; Rudnick, Daniel L.
2016-02-01
Large-scale patterns of positive temperature anomalies persisted throughout the surface waters of the North Pacific Ocean during 2014-2015. In the Southern California Current System, measurements by our sustained network of underwater gliders reveal the coastal effects of the recent warming. Regional upper ocean temperature anomalies were greatest since the initiation of the glider network in 2006. Additional observed physical anomalies included a depressed thermocline, high stratification, and freshening; induced biological consequences included changes in the vertical distribution of chlorophyll fluorescence. Contemporaneous surface heat flux and wind strength perturbations suggest that local anomalous atmospheric forcing caused the unusual oceanic conditions.
NASA Astrophysics Data System (ADS)
Ferreira, B. P.; Costa, M. B. S. F.; Coxey, M. S.; Gaspar, A. L. B.; Veleda, D.; Araujo, M.
2013-06-01
In 2010, high sea surface temperatures that were recorded in several parts of the world and caused coral bleaching and coral mortality were also recorded in the southwest Atlantic Ocean, between latitudes 0°S and 8°S. This paper reports on coral bleaching and diseases in Rocas Atoll and Fernando de Noronha archipelago and examines their relationship with sea surface temperature (SST) anomalies recorded by PIRATA buoys located at 8°S30°W, 0°S35°W, and 0°S23°W. Adjusted satellite data were used to derive SST climatological means at buoy sites and to derive anomalies at reef sites. The whole region was affected by the elevated temperature anomaly that persisted through 2010, reaching 1.67 °C above average at reef sites and 1.83 °C above average at buoys sites. A significant positive relationship was found between the percentage of coral bleaching that was observed on reef formations and the corresponding HotSpot SST anomaly recorded by both satellite and buoys. These results indicate that the warming observed in the ocean waters was followed by a warming at the reefs. The percentage of bleached corals persisting after the subsidence of the thermal stress, and disease prevalence increased through 2010, after two periods of thermal stress. The in situ temperature anomaly observed during the 2009-2010 El Niño event was equivalent to the anomaly observed during the 1997-1998 El Niño event, explaining similar bleaching intensity. Continued monitoring efforts are necessary to further assess the relationship between bleaching severity and PIRATA SST anomalies and improve the use of this new dataset in future regional bleaching predictions.
NASA Astrophysics Data System (ADS)
Yu, Bin; Lin, H.; Wu, Z. W.; Merryfield, W. J.
2018-03-01
The Asian-Bering-North American (ABNA) teleconnection index is constructed from the normalized 500-hPa geopotential field by excluding the Pacific-North American pattern contribution. The ABNA pattern features a zonally elongated wavetrain originating from North Asia and flowing downstream across Bering Sea and Strait towards North America. The large-scale teleconnection is a year-round phenomenon that displays strong seasonality with the peak variability in winter. North American surface temperature and temperature extremes, including warm days and nights as well as cold days and nights, are significantly controlled by this teleconnection. The ABNA pattern has an equivalent barotropic structure in the troposphere and is supported by synoptic-scale eddy forcing in the upper troposphere. Its associated sea surface temperature anomalies exhibit a horseshoe-shaped structure in the North Pacific, most prominent in winter, which is driven by atmospheric circulation anomalies. The snow cover anomalies over the West Siberian plain and Central Siberian Plateau in autumn and spring and over southern Siberia in winter may act as a forcing influence on the ABNA pattern. The snow forcing influence in winter and spring can be traced back to the preceding season, which provides a predictability source for this teleconnection and for North American temperature variability. The ABNA associated energy budget is dominated by surface longwave radiation anomalies year-round, with the temperature anomalies supported by anomalous downward longwave radiation and damped by upward longwave radiation at the surface.
Interpretation of Ground Temperature Anomalies in Hydrothermal Discharge Areas
NASA Astrophysics Data System (ADS)
Price, Adam N.; Lindsey, Cary R.; Fairley, Jerry P.
2017-12-01
Researchers have long noted the potential for shallow hydrothermal fluids to perturb near-surface temperatures. Several investigators have made qualitative or semiquantitative use of elevated surface temperatures; for example, in snowfall calorimetry, or for tracing subsurface flow paths. However, a quantitative framework connecting surface temperature observations with conditions in the subsurface is currently lacking. Here, we model an area of shallow subsurface flow at Burgdorf Hot Springs, a rustic commercial resort in the Payette National Forest, north of McCall, ID, USA. We calibrate the model using shallow (0.2 m depth) ground temperature measurements and overburden thickness estimates from seismic refraction studies. The calibrated model predicts negligible loss of heat energy from the laterally migrating fluids at the Burgdorf site, in spite of the fact that thermal anomalies are observed in the unconsolidated near-surface alluvium. Although elevated near-surface ground temperatures are commonly assumed to result from locally high heat flux, this conflicts with the small apparent heat loss during lateral flow inferred at the Burgdorf site. We hypothesize an alternative explanation for near-surface temperature anomalies that is only weakly dependent on heat flux, and more strongly controlled by the Biot number, a dimensionless parameter that compares the rate at which convection carries heat away from the land surface to the rate at which it is supplied by conduction to the interface.
Southern Ocean Climate and Sea Ice Anomalies Associated with the Southern Oscillation
NASA Technical Reports Server (NTRS)
Kwok, R.; Comiso, J. C.
2001-01-01
The anomalies in the climate and sea ice cover of the Southern Ocean and their relationships with the Southern Oscillation (SO) are investigated using a 17-year of data set from 1982 through 1998. We correlate the polar climate anomalies with the Southern Oscillation index (SOI) and examine the composites of these anomalies under the positive (SOI > 0), neutral (0 > SOI > -1), and negative (SOI < -1) phases of SOL The climate data set consists of sea-level pressure, wind, surface air temperature, and sea surface temperature fields, while the sea ice data set describes its extent, concentration, motion, and surface temperature. The analysis depicts, for the first time, the spatial variability in the relationship of the above variables and the SOL The strongest correlation between the SOI and the polar climate anomalies are found in the Bellingshausen, Amundsen and Ross sea sectors. The composite fields reveal anomalies that are organized in distinct large-scale spatial patterns with opposing polarities at the two extremes of SOI, and suggest oscillating climate anomalies that are closely linked to the SO. Within these sectors, positive (negative) phases of the SOI are generally associated with lower (higher) sea-level pressure, cooler (warmer) surface air temperature, and cooler (warmer) sea surface temperature in these sectors. Associations between these climate anomalies and the behavior of the Antarctic sea ice cover are clearly evident. Recent anomalies in the sea ice cover that are apparently associated with the SOI include: the record decrease in the sea ice extent in the Bellingshausen Sea from mid- 1988 through early 199 1; the relationship between Ross Sea SST and ENSO signal, and reduced sea ice concentration in the Ross Sea; and, the shortening of the ice season in the eastern Ross Sea, Amundsen Sea, far western Weddell Sea, and the lengthening of the ice season in the western Ross Sea, Bellingshausen Sea and central Weddell Sea gyre over the period 1988-1994. Four ENSO episodes over the last 17 years contributed to a negative mean in the SOI (-0.5). In each of these episodes, significant retreats in the Bellingshausen/Amundsen Sea were observed providing direct confirmation of the impact of SO on the Antarctic sea ice cover.
The interannual variation in monthly temperature over Northeast China during summer
NASA Astrophysics Data System (ADS)
Chen, Wei; Lu, Riyu
2014-05-01
The interannual variations of summer surface air temperature over Northeast China (NEC) were investigated through a month-to-month analysis from May to August. The results suggested that the warmer temperature over NEC is related to a local positive 500-hPa geopotential height anomaly for all four months. However, the teleconnection patterns of atmospheric circulation anomalies associated with the monthly surface air temperature over NEC behave as a distinguished subseasonal variation, although the local positive height anomaly is common from month to month. In May and June, the teleconnection pattern is characterized by a wave train in the upper and middle troposphere from the Indian Peninsula to NEC. This wave train is stronger in June than in May, possibly due to the positive feedback between the wave train and the South Asian rainfall anomaly in June, when the South Asian summer monsoon has been established. In July and August, however, the teleconnection pattern associated with the NEC temperature anomalies is characterized by an East Asia/Pacific (EAP) or Pacific/Japan (PJ) pattern, with the existence of precipitation anomalies over the Philippine Sea and the South China Sea. This pattern is much clearer in July corresponding to the stronger convection over the Philippine Sea compared to that in August.
Extreme Winter/Early-Spring Temperature Anomalies in Central Europe
NASA Technical Reports Server (NTRS)
Otterman, Joseph; Atlas, Robert; Ardizzone, Joseph; Brakke, Thomas; Chou, Shu-Hsien; Jusem, Juan Carlos; Glantz, Michael; Rogers, Jeff; Sud, Yogesh; Susskind, Joel
2000-01-01
Extreme seasonal fluctuations of the surface-air temperature characterize the climate of central Europe, 45-60 deg North Temperature difference between warm 1990 and cold 1996 in the January-March period, persisting for more than two weeks at a time, amounted to 18 C for extensive areas. These anomalies in the surface-air temperature stem in the first place from differences in the low level flow from the eastern North-Atlantic: the value of the Index 1na of southwesterlies over the eastern North-Atlantic was 8.0 m/s in February 1990, but only 2.6 m/ s in February 1996. The primary forcing by warm advection to positive anomalies in monthly mean surface temperature produced strong synoptic-scale uplift at the 700 mb level over some regions in Europe. The strong uplift contributed in 1990 to a much larger cloud-cover over central Europe, which reduced heat-loss to space (greenhouse effect). Thus, spring arrived earlier than usual in 1990, but later than usual in 1996.
Occurrence and Detectability of Thermal Anomalies on Europa
NASA Astrophysics Data System (ADS)
Hayne, Paul O.; Christensen, Philip R.; Spencer, John R.; Abramov, Oleg; Howett, Carly; Mellon, Michael; Nimmo, Francis; Piqueux, Sylvain; Rathbun, Julie A.
2017-10-01
Endogenic activity is likely on Europa, given its young surface age of and ongoing tidal heating by Jupiter. Temperature is a fundamental signature of activity, as witnessed on Enceladus, where plumes emanate from vents with strongly elevated temperatures. Recent observations suggest the presence of similar water plumes at Europa. Even if plumes are uncommon, resurfacing may produce elevated surface temperatures, perhaps due to near-surface liquid water. Detecting endogenic activity on Europa is one of the primary mission objectives of NASA’s planned Europa Clipper flyby mission.Here, we use a probabilistic model to assess the likelihood of detectable thermal anomalies on the surface of Europa. The Europa Thermal Emission Imaging System (E-THEMIS) investigation is designed to characterize Europa’s thermal behavior and identify any thermal anomalies due to recent or ongoing activity. We define “detectability” on the basis of expected E-THEMIS measurements, which include multi-spectral infrared emission, both day and night.Thermal anomalies on Europa may take a variety of forms, depending on the resurfacing style, frequency, and duration of events: 1) subsurface melting due to hot spots, 2) shear heating on faults, and 3) eruptions of liquid water or warm ice on the surface. We use numerical and analytical models to estimate temperatures for these features. Once activity ceases, lifetimes of thermal anomalies are estimated to be 100 - 1000 yr. On average, Europa’s 10 - 100 Myr surface age implies a resurfacing rate of ~3 - 30 km2/yr. The typical size of resurfacing features determines their frequency of occurrence. For example, if ~100 km2 chaos features dominate recent resurfacing, we expect one event every few years to decades. Smaller features, such as double-ridges, may be active much more frequently. We model each feature type as a statistically independent event, with probabilities weighted by their observed coverage of Europa’s surface. Our results show that if Europa is resurfaced continuously by the processes considered, there is a >99% chance that E-THEMIS will detect a thermal anomaly due to endogenic activity. Therefore, if no anomalies are detected, these models can be ruled out, or revised.
Method for identifying anomalous terrestrial heat flows
Del Grande, Nancy Kerr
1977-01-25
A method for locating and mapping the magnitude and extent of terrestrial heat-flow anomalies from 5 to 50 times average with a tenfold improved sensitivity over orthodox applications of aerial temperature-sensing surveys as used for geothermal reconnaissance. The method remotely senses surface temperature anomalies such as occur from geothermal resources or oxidizing ore bodies by: measuring the spectral, spatial, statistical, thermal, and temporal features characterizing infrared radiation emitted by natural terrestrial surfaces; deriving from these measurements the true surface temperature with uncertainties as small as 0.05 to 0.5 K; removing effects related to natural temperature variations of topographic, hydrologic, or meteoric origin, the surface composition, detector noise, and atmospheric conditions; factoring out the ambient normal-surface temperature for non-thermally enhanced areas surveyed under otherwise identical environmental conditions; distinguishing significant residual temperature enhancements characteristic of anomalous heat flows and mapping the extent and magnitude of anomalous heat flows where they occur.
NASA Technical Reports Server (NTRS)
Jones, Jason; Burbank, Renane; Billiot, Amanda; Schultz, Logan
2011-01-01
This presentation discusses use of 4 kilometer satellite-based sea surface temperature (SST) data to monitor and assess coral reef areas of the Florida Keys. There are growing concerns about the impacts of climate change on coral reef systems throughout the world. Satellite remote sensing technology is being used for monitoring coral reef areas with the goal of understanding the climatic and oceanic changes that can lead to coral bleaching events. Elevated SST is a well-documented cause of coral bleaching events. Some coral monitoring studies have used 50 km data from the Advanced Very High Resolution Radiometer (AVHRR) to study the relationships of sea surface temperature anomalies to bleaching events. In partnership with NOAA's Office of National Marine Sanctuaries and the University of South Florida's Institute for Marine Remote Sensing, this project utilized higher resolution SST data from the Terra's Moderate Resolution Imaging Spectroradiometer (MODIS) and AVHRR. SST data for 2000-2010 was employed to compute sea surface temperature anomalies within the study area. The 4 km SST anomaly products enabled visualization of SST levels for known coral bleaching events from 2000-2010.
NASA Astrophysics Data System (ADS)
Shukurov, K. A.; Semenov, V. A.
2018-01-01
On the basis of observational data on daily mean surface air temperature (SAT) and sea ice concentration (SIC) in the Barents Sea (BS), the characteristics of strong positive and negative winter SAT anomalies in Moscow have been studied in comparison with BS SIC data obtained in 1949-2016. An analysis of surface backward trajectories of air-particle motions has revealed the most probable paths of both cold and warm air invasions into Moscow and located regions that mostly affect strong winter SAT anomalies in Moscow. Atmospheric circulation anomalies that cause strong winter SAT anomalies in Moscow have been revealed. Changes in the ways of both cold and warm air invasions have been found, as well as an increase in the frequency of blocking anticyclones in 2005-2016 when compared to 1970-1999. The results suggest that a winter SIC decrease in the BS in 2005-2016 affects strong winter SAT anomalies in Moscow due to an increase in the frequency of occurrence of blocking anticyclones to the south of and over the BS.
NASA Astrophysics Data System (ADS)
Sinha, Bablu; Blaker, Adam; Duchez, Aurelie; Grist, Jeremy; Hewitt, Helene; Hirschi, Joel; Hyder, Patrick; Josey, Simon; Maclachlan, Craig; New, Adrian
2017-04-01
A high-resolution coupled ocean atmosphere model is used to study the effects of seasonal re-emergence of North Atlantic subsurface ocean temperature anomalies on northern hemisphere winter climate. A 50-member control simulation is integrated from September 1 to 28 February and compared with a similar ensemble with perturbed ocean initial conditions. The perturbation consists of a density-compensated subsurface (deeper than 180m) temperature anomaly corresponding to the observed subsurface temperature anomaly for September 2010, which is known to have re-emerged at the ocean surface in subsequent months. The perturbation is confined to the North Atlantic Ocean between the Equator and 65 degrees North. The model has 1/4 degree horizontal resolution in the ocean and the experiment is repeated for two atmosphere horizontal resolutions ( 60km and 25km) in order to determine whether the sensitivity of the atmosphere to re-emerging temperature anomalies is dependent on resolution. The ensembles display a wide range of reemergence behaviour, in some cases re-emergence occurs by November, in others it is delayed or does not occur at all. A wide range of amplitudes of the re-emergent temperature anomalies is observed. In cases where re-emergence occurs, there is a marked effect on both the regional (North Atlantic and Europe) and hemispheric surface pressure and temperature patterns. The results highlight a potentially important process whereby ocean memory of conditions up to a year earlier can significantly enhance seasonal forecast skill.
NASA Astrophysics Data System (ADS)
Zhang, Rong
2017-08-01
This study identifies key features associated with the Atlantic multidecadal variability (AMV) in both observations and a fully coupled climate model, e.g., decadal persistence of monthly mean subpolar North Atlantic (NA) sea surface temperature (SST) and salinity (SSS) anomalies, and high coherence at low frequency among subpolar NA SST/SSS, upper ocean heat/salt content, and the Atlantic Meridional Overturning Circulation (AMOC) fingerprint. These key AMV features, which can be used to distinguish the AMV mechanism, cannot be explained by the slab ocean model results or the red noise process but are consistent with the ocean dynamics mechanism. This study also shows that at low frequency, the correlation and regression between net surface heat flux and SST anomalies are key indicators of the relative roles of oceanic versus atmospheric forcing in SST anomalies. The oceanic forcing plays a dominant role in the subpolar NA SST anomalies associated with the AMV.
Unexpected and Unexplained Surface Temperature Variations on Mimas
NASA Astrophysics Data System (ADS)
Howett, C.; Spencer, J. R.; Pearl, J. C.; Hurford, T. A.; Segura, M.; Cassini Cirs Team
2010-12-01
Until recently it was thought one of the most interesting things about Mimas, Saturn’s innermost classical icy moon, was its resemblance to Star Wars’ Death Star. However, a bizarre pattern of daytime surface temperatures was observed on Mimas using data obtained by Cassini’s Composite Infrared Spectrometer (CIRS) in February 2010. The observations were taken during Cassini’s closest ever encounter with Mimas (<10,000 km) and cover the daytime anti-Saturn hemisphere centered on longitude ~145° W. Instead of surface temperatures smoothly increasing throughout the morning and early afternoon, then cooling in the evening, as expected, a sharp V-shaped boundary is observed separating cooler midday and afternoon temperatures (~77 K) on the leading side from warmer morning temperatures (~92 K) on the trailing side. The boundary’s apex is centered at equatorial latitudes near the anti-Saturn point and extends to low north and south latitudes on the trailing side. Subtle differences in the surface colors have been observed that are roughly spatially correlated with the observed extent of the temperature anomaly, with the cooler regions tending to be bluer (Schenk et al., Submitted). However, visible-wavelength albedo is similar in the two regions, so albedo variations are probably not directly responsible for the thermal anomaly. It is more likely that thermal inertia variations produce the anomaly, with thermal inertia being unusually high in the region with anomalously low daytime temperatures. Comparison of the February 2010 CIRS data to previous lower spatial resolution data taken at different local times tentatively confirm that the cooler regions do indeed display higher thermal inertias. Bombardment of the surface by high energy electrons from Saturn’s radiation belts has been proposed to explain the observed color variations (Schenk et al., Submitted). Electrons above ~1 MeV preferentially impact Mimas’ leading hemisphere at low latitudes where they could cause surface defects. For this process to also explain the observed temperature differences it would have to affect the surface’s thermal inertia to a depth comparable to the diurnal thermal skin-depth (~0.5 cm). However, whether the formation of the giant Herschel crater (which lies in the middle of the observed portion of the cold region) contributed to the observed temperature anomaly or if electron bombardment alone is able to explain the thermal anomaly is currently unknown. Future CIRS observations should be able to map the full spatial extent of the thermal anomaly and clarify whether it is centered on (and thus likely related to) Herschel, or is centered on the trailing hemisphere and thus likely to be related to the observed color anomaly.
Marginal sea surface temperature variation as a pre-cursor of heat waves over the Korean Peninsula
NASA Astrophysics Data System (ADS)
Ham, Yoo-Geun; Na, Hye-Yun
2017-11-01
This study examines the role of the marginal sea surface temperature (SST) on heat waves over Korea. It is found that sea surface warming in the south sea of Korea/Japan (122-138°E, 24- 33°N) causes heat waves after about a week. Due to the frictional force, the positive geopotential height anomalies associated with the south sea warming induce divergent flows over the boundary layer. This divergent flow induces the southerly in Korea, which leads to a positive temperature advection. On the other hand, over the freeatmosphere, the geostrophic wind around high-pressure anomalies flows in a westerly direction over Korea during the south sea warming, which is not effective in temperature advection. Therefore, the positive temperature advection in Korea due to the south sea warming decreases with height. This reduces the vertical potential temperature gradient, which indicates a negative potential vorticity (PV) tendency over Korea. Therefore, the high-pressure anomaly over the south sea of Korea is propagated northward, which results in heat waves due to more incoming solar radiation.
Southern Ocean Climate and Sea Ice Anomalies Associated with the Southern Oscillation.
NASA Astrophysics Data System (ADS)
Kwok, R.; Comiso, J. C.
2002-03-01
The anomalies in the climate and sea ice cover of the Southern Ocean and their relationships with the Southern Oscillation (SO) are investigated using a 17-yr dataset from 1982 to 1998. The polar climate anomalies are correlated with the Southern Oscillation index (SOI) and the composites of these anomalies are examined under the positive (SOI > 0), neutral (0 > SOI > 1), and negative (SOI < 1) phases of SOI. The climate dataset consists of sea level pressure, wind, surface air temperature, and sea surface temperature fields, while the sea ice dataset describes its extent, concentration, motion, and surface temperature. The analysis depicts, for the first time, the spatial variability in the relationship of the above variables with the SOI. The strongest correlation between the SOI and the polar climate anomalies are found in the Bellingshausen, Amundsen, and Ross Seas. The composite fields reveal anomalies that are organized in distinct large-scale spatial patterns with opposing polarities at the two extremes of SOI, and suggest oscillations that are closely linked to the SO. Within these sectors, positive (negative) phases of the SOI are generally associated with lower (higher) sea level pressure, cooler (warmer) surface air temperature, and cooler (warmer) sea surface temperature in these sectors. Associations between these climate anomalies and the behavior of the Antarctic sea ice cover are evident. Recent anomalies in the sea ice cover that are clearly associated with the SOI include the following: the record decrease in the sea ice extent in the Bellingshausen Sea from mid-1988 to early 1991; the relationship between Ross Sea SST and the ENSO signal, and reduced sea ice concentration in the Ross Sea; and the shortening of the ice season in the eastern Ross Sea, Amundsen Sea, far western Weddell Sea and lengthening of the ice season in the western Ross Sea, Bellinghausen Sea, and central Weddell Sea gyre during the period 1988-94. Four ENSO episodes over the last 17 years contributed to a negative mean in the SOI (0.5). In each of these episodes, significant retreats in ice cover of the Bellingshausen and Amundsen Seas were observed showing a unique association of this region of the Antarctic with the Southern Oscillation.
Tularosa Basin Play Fairway Analysis: Weights of Evidence; Mineralogy, and Temperature Anomaly Maps
Adam Brandt
2015-11-15
This submission has two shapefiles and a tiff image. The weights of evidence analysis was applied to data representing heat of the earth and fracture permeability using training sites around the Southwest; this is shown in the tiff image. A shapefile of surface temperature anomalies was derived from the statistical analysis of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) thermal infrared data which had been converted to surface temperatures; these anomalies have not been field checked. The second shapefile shows outcrop mineralogy which originally mapped by the New Mexico Bureau of Geology and Mineral Resources, and supplemented with mineralogic information related to rock fracability risk for EGS. Further metadata can be found within each file.
Greenland ice sheet melt from MODIS and associated atmospheric variability.
Häkkinen, Sirpa; Hall, Dorothy K; Shuman, Christopher A; Worthen, Denise L; DiGirolamo, Nicolo E
2014-03-16
Daily June-July melt fraction variations over the Greenland ice sheet (GIS) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) (2000-2013) are associated with atmospheric blocking forming an omega-shape ridge over the GIS at 500 hPa height. Blocking activity with a range of time scales, from synoptic waves breaking poleward (<5 days) to full-fledged blocks (≥5 days), brings warm subtropical air masses over the GIS controlling daily surface temperatures and melt. The temperature anomaly of these subtropical air mass intrusions is also important for melting. Based on the years with the greatest melt (2002 and 2012) during the MODIS era, the area-average temperature anomaly of 2 standard deviations above the 14 year June-July mean results in a melt fraction of 40% or more. Though the summer of 2007 had the most blocking days, atmospheric temperature anomalies were too small to instigate extreme melting. Short-term atmospheric blocking over Greenland contributes to melt episodesAssociated temperature anomalies are equally important for the meltDuration and strength of blocking events contribute to surface melt intensity.
NASA Technical Reports Server (NTRS)
Phillips, T. J.; Semtner, A. J., Jr.
1984-01-01
Anomalies in ocean surface temperature have been identified as possible causes of variations in the climate of particular seasons or as a source of interannual climatic variability, and attempts have been made to forecast seasonal climate by using ocean temperatures as predictor variables. However, the seasonal atmospheric response to ocean temperature anomalies has not yet been systematically investigated with nonlinear models. The present investigation is concerned with ten-year integrations involving a model of intermediate complexity, the Held-Suarez climate model. The calculations have been performed to investigate the changes in seasonal climate which result from a fixed anomaly imposed on a seasonally varying, global ocean temperature field. Part I of the paper provides a report on the results of these decadal integrations. Attention is given to model properties, the experimental design, and the anomaly experiments.
Sea surface temperature anomalies driven by oceanic local forcing in the Brazil-Malvinas Confluence
NASA Astrophysics Data System (ADS)
da Silveira, Isabel Porto; Pezzi, Luciano Ponzi
2014-03-01
Sea surface temperature (SST) anomaly events in the Brazil-Malvinas Confluence (BMC) were investigated through wavelet analysis and numerical modeling. Wavelet analysis was applied to recognize the main spectral signals of SST anomaly events in the BMC and in the Drake Passage as a first attempt to link middle and high latitudes. The numerical modeling approach was used to clarify the local oceanic dynamics that drive these anomalies. Wavelet analysis pointed to the 8-12-year band as the most energetic band representing remote forcing between high to middle latitudes. Other frequencies observed in the BMC wavelet analysis indicate that part of its variability could also be forced by low-latitude events, such as El Niño. Numerical experiments carried out for the years of 1964 and 1992 (cold and warm El Niño-Southern Oscillation (ENSO) phases) revealed two distinct behaviors that produced negative and positive sea surface temperature anomalies on the BMC region. The first behavior is caused by northward cold flow, Río de la Plata runoff, and upwelling processes. The second behavior is driven by a southward excursion of the Brazil Current (BC) front, alterations in Río de la Plata discharge rates, and most likely by air-sea interactions. Both episodes are characterized by uncoupled behavior between the surface and deeper layers.
NASA Astrophysics Data System (ADS)
Levine, P. A.; Xu, M.; Chen, Y.; Randerson, J. T.; Hoffman, F. M.
2017-12-01
Interannual variability of climatic conditions in the Amazon rainforest is associated with El Niño-Southern Oscillation (ENSO) and ocean-atmosphere interactions in the North Atlantic. Sea surface temperature (SST) anomalies in these remote ocean regions drive teleconnections with Amazonian surface air temperature (T), precipitation (P), and net ecosystem production (NEP). While SST-driven NEP anomalies have been primarily linked to T anomalies, it is unclear how much the T anomalies result directly from SST forcing of atmospheric circulation, and how much result indirectly from decreases in precipitation that, in turn, influence surface energy fluxes. Interannual variability of P associated with SST anomalies lead to variability in soil moisture (SM), which would indirectly affect T via partitioning of turbulent heat fluxes between the land surface and the atmosphere. To separate the direct and indirect influence of the SST signal on T and NEP, we performed a mechanism-denial experiment to decouple SST and SM anomalies. We used the Accelerated Climate Modeling for Energy (ACMEv0.3), with version 5 of the Community Atmosphere Model and version 4.5 of the Community Land Model. We forced the model with observed SSTs from 1982-2016. We found that SST and SM variability both contribute to T and NEP anomalies in the Amazon, with relative contributions depending on lag time and location within the Amazon basin. SST anomalies associated with ENSO drive most of the T variability at shorter lag times, while the ENSO-driven SM anomalies contribute more to T variability at longer lag times. SM variability and the resulting influence on T anomalies are much stronger in the eastern Amazon than in the west. Comparing modeled T with observations demonstrate that SST alone is sufficient for simulating the correct timing of T variability, but SM anomalies are necessary for simulating the correct magnitude of the T variability. Modeled NEP indicated that variability in carbon fluxes results from both SST and SM anomalies. As with T, SM anomalies affect NEP at a much longer lag time than SST anomalies. These results highlight the role of land-atmosphere coupling in driving climate variability within the Amazon, and suggest that land atmospheric coupling may amplify and delay carbon cycle responses to ocean-atmosphere teleconnections.
A review on remotely sensed land surface temperature anomaly as an earthquake precursor
NASA Astrophysics Data System (ADS)
Bhardwaj, Anshuman; Singh, Shaktiman; Sam, Lydia; Joshi, P. K.; Bhardwaj, Akanksha; Martín-Torres, F. Javier; Kumar, Rajesh
2017-12-01
The low predictability of earthquakes and the high uncertainty associated with their forecasts make earthquakes one of the worst natural calamities, capable of causing instant loss of life and property. Here, we discuss the studies reporting the observed anomalies in the satellite-derived Land Surface Temperature (LST) before an earthquake. We compile the conclusions of these studies and evaluate the use of remotely sensed LST anomalies as precursors of earthquakes. The arrival times and the amplitudes of the anomalies vary widely, thus making it difficult to consider them as universal markers to issue earthquake warnings. Based on the randomness in the observations of these precursors, we support employing a global-scale monitoring system to detect statistically robust anomalous geophysical signals prior to earthquakes before considering them as definite precursors.
Stable near-surface ocean salinity stratifications due to evaporation observed during STRASSE
NASA Astrophysics Data System (ADS)
Asher, William E.; Jessup, Andrew T.; Clark, Dan
2014-05-01
Under conditions with a large solar flux and low wind speed, a stably stratified warm layer forms at the ocean surface. Evaporation can then lead to an increase in salinity in the warm layer. A large temperature gradient will decrease density enough to counter the density increase caused by the salinity increase, forming a stable positive salinity anomaly at the surface. If these positive salinity anomalies are large in terms of the change in salinity from surface to the base of the gradient, if their areal coverage is a significant fraction of the satellite footprint, and if they persist long enough to be in the satellite field of view, they could be relevant for calibration and validation of L-band microwave salinity measurements. A towed, surface-following profiler was deployed from the N/O Thalassa during the Subtropical Atlantic Surface Salinity Experiment (STRASSE). The profiler measured temperature and conductivity in the surface ocean at depths of 10, 50, and 100 cm. The measurements show that positive salinity anomalies are common at the ocean surface for wind speeds less than 4 m s-1 when the average daily insolation is >300 W m-2 and the sea-to-air latent heat flux is greater than zero. A semiempirical model predicts the observed dependence of measured anomalies on environmental conditions. However, the model results and the field data suggest that these ocean surface salinity anomalies are not large enough in terms of the salinity difference to significantly affect microwave radiometric measurements of salinity.
Subseasonal Reversal of East Asian Surface Temperature Variability in Winter 2014/15
NASA Astrophysics Data System (ADS)
Xu, Xinping; Li, Fei; He, Shengping; Wang, Huijun
2018-06-01
Although there has been a considerable amount of research conducted on the East Asian winter-mean climate, subseasonal surface air temperature (SAT) variability reversals in the early and late winter remain poorly understood. In this study, we focused on the recent winter of 2014/15, in which warmer anomalies dominated in January and February but colder conditions prevailed in December. Moreover, Arctic sea-ice cover (ASIC) in September-October 2014 was lower than normal, and warmer sea surface temperature (SST) anomalies occurred in the Niño4 region in winter, together with a positive Pacific Decadal Oscillation (PDO|+) phase. Using observational data and CMIP5 historical simulations, we investigated the PDO|+ phase modulation upon the winter warm Niño4 phase (autumn ASIC reduction) influence on the subseasonal SAT variability of East Asian winter. The results show that, under a PDO|+ phase modulation, warm Niño4 SST anomalies are associated with a subseasonal delay of tropical surface heating and subsequent Hadley cell and Ferrel cell intensification in January-February, linking the tropical and midlatitude regions. Consistently, the East Asian jet stream (EAJS) is significantly decelerated in January-February and hence promotes the warm anomalies over East Asia. Under the PDO|+ phase, the decrease in ASIC is related to cold SST anomalies in the western North Pacific, which increase the meridional temperature gradient and generate an accelerated and westward-shifted EAJS in December. The westward extension of the EAJS is responsible for the eastward-propagating Rossby waves triggered by declining ASIC and thereby favors the connection between ASIC and cold conditions over East Asia.
NASA Astrophysics Data System (ADS)
Armal, S.; Devineni, N.; Khanbilvardi, R.
2017-12-01
This study presents a systematic analysis for identifying and attributing trends in the annual frequency of extreme rainfall events across the contiguous United States to climate change and climate variability modes. A Bayesian multilevel model is developed for 1,244 stations simultaneously to test the null hypothesis of no trend and verify two alternate hypotheses: Trend can be attributed to changes in global surface temperature anomalies, or to a combination of cyclical climate modes with varying quasi-periodicities and global surface temperature anomalies. The Bayesian multilevel model provides the opportunity to pool information across stations and reduce the parameter estimation uncertainty, hence identifying the trends better. The choice of the best alternate hypotheses is made based on Watanabe-Akaike Information Criterion, a Bayesian pointwise predictive accuracy measure. Statistically significant time trends are observed in 742 of the 1,244 stations. Trends in 409 of these stations can be attributed to changes in global surface temperature anomalies. These stations are predominantly found in the Southeast and Northeast climate regions. The trends in 274 of these stations can be attributed to the El Nino Southern Oscillations, North Atlantic Oscillation, Pacific Decadal Oscillation and Atlantic Multi-Decadal Oscillation along with changes in global surface temperature anomalies. These stations are mainly found in the Northwest, West and Southwest climate regions.
Surface tension anomalies in room temperature ionic liquids-acetone solutions
NASA Astrophysics Data System (ADS)
Abe, Hiroshi; Murata, Keisuke; Kiyokawa, Shota; Yoshimura, Yukihiro
2018-05-01
Surface tension anomalies were observed in room temperature ionic liquid (RTIL)-acetone solutions. The RTILs are 1-alkyl-3-methylimidazorium iodide with [Cnmim][I] in a [Cnmim][I]-x mol% acetone. The maximum value of the surface tension appeared at 40 mol% acetone, although density decreased monotonically with an increase in acetone concentration. A small alkyl chain length effect of the Cnmim+ cations was observed in the surface tension. By the Gibbs adsorption isotherm, it was found that I- anion-mediated surface structure became dominant above 40 mol%. In the different [Cnmim][TFSI]-acetone mixtures, normal decay of the surface tension was observed on the acetone concentration scale, where TFSI- is bis(trifluoromethanesulfonyl)imide.
NASA Astrophysics Data System (ADS)
Gabbert, T.; Matsui, T.; Capehart, W. J.; Ichoku, C. M.; Gatebe, C. K.
2015-12-01
The northern Sub-Saharan African region (NSSA) is an area of intense focus due to periodic severe droughts that have dire consequences on the growing population, which relies mostly on rain fed agriculture for its food supply. This region's weather and hydrologic cycle are very complex and are dependent on the West African Monsoon. Different regional processes affect the West African Monsoon cycle and variability. One of the areas of current investigation is the water cycle response to the variability of land surface characteristics. Land surface characteristics are often altered in NSSA due to agricultural practices, grazing, and the fires that occur during the dry season. To better understand the effects of biomass burning on the hydrologic cycle of the sub-Saharan environment, an interdisciplinary team sponsored by NASA is analyzing potential feedback mechanisms due to the fires. As part of this research, this study focuses on the effects of land surface changes, particularly albedo and skin temperature, that are influenced by biomass burning. Surface temperature anomalies can influence the initiation of convective rainfall and surface albedo is linked to the absorption of solar radiation. To capture the effects of fire perturbations on the land surface, NASA's Unified Weather and Research Forecasting (NU-WRF) model coupled with NASA's Land Information System (LIS) is being used to simulate burned area surface albedo inducing surface temperature anomalies and other potential effects to environmental processes. Preliminary sensitivity results suggest an altered surface radiation budget, regional warming of the surface temperature, slight increase in average rainfall, and a change in precipitation locations.
NASA Astrophysics Data System (ADS)
Kaneko, D.; Sakuma, H.
2014-12-01
The first author has been developing RSEM crop-monitoring system using satellite-based assessment of photosynthesis, incorporating meteorological conditions. Crop production comprises of several stages and plural mechanisms based on leaf photosynthesis, surface energy balance, and the maturing of grains after fixation of CO2, along with water exchange through soil vegetation-atmosphere transfer. Grain production in prime countries appears to be randomly perturbed regionally and globally. Weather for crop plants reflects turbulent phenomena of convective and advection flows in atmosphere and surface boundary layer. It has been difficult for scientists to simulate and forecast weather correctly for sufficiently long terms to crop harvesting. However, severely poor harvests related to continental events must originate from a consistent mechanism of abnormal energetic flow in the atmosphere through both land and oceans. It should be remembered that oceans have more than 100 times of energy storage compared to atmosphere and ocean currents represent gigantic energy flows, strongly affecting climate. Anomalies of Sea Surface Temperature (SST), globally known as El Niño, Indian Ocean dipole, and Atlantic Niño etc., affect the seasonal climate on a continental scale. The authors aim to combine monitoring and seasonal forecasting, considering such mechanisms through land-ocean biosphere transfer. The present system produces assessments for all continents, specifically monitoring agricultural fields of main crops. Historical regions of poor and good harvests are compared with distributions of SST anomalies, which are provided by NASA GSFC. Those comparisons fairly suggest that the Worst harvest in 1993 and the Best in 1994 relate to the offshore distribution of low temperature anomalies and high gaps in ocean surface temperatures. However, high-temperature anomalies supported good harvests because of sufficient solar radiation for photosynthesis, and poor harvests because of insufficient precipitation. Integrated rates of photosynthesis on prime grains with planted areas were compared with the SST anomalies in poor and good harvests years. Other factors for poor harvest such as rainfall, solar radiation in addition to the intensity of winds as a measure of pressure perturbations need to be studied.
NASA Astrophysics Data System (ADS)
He, Shengping; Liu, Yang; Wang, Huijun
2017-04-01
This study investigates a cross-seasonal influence of the Silk Road Pattern (SRP) in July and discusses the related mechanism. Both the reanalysis and observational datasets indicate that the July SRP is closely related to the following January temperature over East Asia during 1958/59-2001/02. Linear regression results reveal that, following a higher-than-normal SRP index in July, the Siberian high, Aleutian low, Urals high, East Asian trough, and meridional shear of the East Asian jet intensify significantly in January. Such atmospheric circulation anomalies are favorable for northerly wind anomalies over East Asia, leading to more southward advection of cold air and causing a decrease in temperature. Further analysis indicates that the North Pacific sea surface temperature anomalies (SSTAs) might play a critical role in storing the anomalous signal of the July SRP. The significant SSTAs related to the July SRP weaken in October and November, re-emerge in December, and strengthen in the following January. Such an SSTA pattern in January can induce a surface anomalous cyclone over North Pacific and lead to dominant convergence anomalies over northwestern Pacific. Correspondingly, significant divergence anomalies appear, collocated in the upper-level troposphere in situ. Due to the advection of vorticity by divergent wind, which can be regarded as a wave source, a stationary Rossby wave originates from North Pacific and propagates eastward to East Asia, leading to temperature anomalies through its influence on the large-scale atmospheric circulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sepanski, R.J.; Boden, T.A.; Daniels, R.C.
This document presents land-based monthly surface air temperature anomalies (departures from a 1951--1970 reference period mean) on a 5{degree} latitude by 10{degree} longitude global grid. Monthly surface air temperature anomalies (departures from a 1957--1975 reference period mean) for the Antarctic (grid points from 65{degree}S to 85{degree}S) are presented in a similar way as a separate data set. The data were derived primarily from the World Weather Records and the archives of the United Kingdom Meteorological Office. This long-term record of temperature anomalies may be used in studies addressing possible greenhouse-gas-induced climate changes. To date, the data have been employed inmore » generating regional, hemispheric, and global time series for determining whether recent (i.e., post-1900) warming trends have taken place. This document also presents the monthly mean temperature records for the individual stations that were used to generate the set of gridded anomalies. The periods of record vary by station. Northern Hemisphere station data have been corrected for inhomogeneities, while Southern Hemisphere data are presented in uncorrected form. 14 refs., 11 figs., 10 tabs.« less
The South Asian Monsoon and the Tropospheric Biennial Oscillation.
NASA Astrophysics Data System (ADS)
Meehl, Gerald A.
1997-08-01
A mechanism is described that involves the south Asian monsoon as an active part of the tropospheric biennial oscillation (TBO) described in previous studies. This mechanism depends on coupled land-atmosphere-ocean interactions in the Indian sector, large-scale atmospheric east-west circulations in the Tropics, convective heating anomalies over Africa and the Pacific, and tropical-midlatitude interactions in the Northern Hemisphere. A key element for the monsoon role in the TBO is land-sea or meridional tropospheric temperature contrast, with area-averaged surface temperature anomalies over south Asia that are able to persist on a 1-yr timescale without the heat storage characteristics that contribute to this memory mechanism in the ocean. Results from a global coupled general circulation model show that soil moisture anomalies contribute to land-surface temperature anomalies (through latent heat flux anomalies) for only one season after the summer monsoon. A global atmospheric GCM in perpetual January mode is run with observed SSTs with specified convective heating anomalies to demonstrate that convective heating anomalies elsewhere in the Tropics associated with the coupled ocean-atmosphere biennial mechanism can contribute to altering seasonal midlatitude circulation. These changes in the midlatitude longwave pattern, forced by a combination of tropical convective heating anomalies over East Africa, Southeast Asia, and the western Pacific (in association with SST anomalies), are then able to maintain temperature anomalies over south Asia via advection through winter and spring to set up the land-sea meridional tropospheric temperature contrast for the subsequent monsoon. The role of the Indian Ocean, then, is to provide a moisture source and a low-amplitude coupled response component for meridional temperature contrast to help drive the south Asian monsoon. The role of the Pacific is to produce shifts in regionally coupled convection-SST anomalies. These regions are tied together and mutually interact via the large-scale east-west circulation in the atmosphere and contribute to altering midlatitude circulations as well. The coupled model results, and experiments with an atmospheric GCM that includes specified convective heating anomalies, suggest that the influence of south Asian snow cover in the monsoon is not a driving force by itself, but is symptomatic of the larger-scale shift in the midlatitude longwave pattern associated with tropical SST and convective heating anomalies.
NASA Technical Reports Server (NTRS)
Susskind, Joel
2008-01-01
AIRS/AMSU is the advanced IR/MW atmospheric sounding system launched on EOS Aqua in May 2002. Products derived from AIRS/AMSU include surface skin temperature and atmospheric temperature profiles; atmospheric humidity profiles, percent cloud cover and cloud top pressure, and OLR. Near real time products, stating with September 2002, have been derived from AIRS/AMSU using the AIRS Science Team Version 5 retrieval algorithm. Results in this paper included products through April 2008. The time period studied is marked by a substantial warming trend of Northern Hemisphere Extropical land surface skin temperatures, as well as pronounced El Nino - La Nina episodes. These both influence the spatial and temporal anomaly patterns of atmospheric temperature and moisture profiles, as well as of cloud cover and Clear Sky and All Sky OLR The relationships between temporal and spatial anomalies of these parameters over this time period, as determined from AIRS/AMSU observations, are shown below, with particular emphasis on which contribute significantly to OLR anomalies in each of the tropics and extra-tropics. The ability to match this data represents a good test of a model's response to El Nino.
NASA Astrophysics Data System (ADS)
Guemas, Virginie; Salas-Mélia, David; Kageyama, Masa; Giordani, Hervé; Voldoire, Aurore
2013-03-01
This study investigates the mechanisms by which the ocean diurnal cycle can affect the ocean mean state in the North Atlantic region. We perform two ocean-atmosphere regionally coupled simulations (20°N-80°N, 80°W-40°E) using the CNRMOM1D ocean model coupled to the ARPEGE4 atmospheric model: one with a 1 h coupling frequency (C1h) and another with a 24 h coupling frequency (C24h). The comparison between both experiments shows that accounting for the ocean diurnal cycle tends to warm up the surface ocean at high latitudes and cool it down in the subtropics during the boreal summer season (June-August). In the subtropics, the leading cause for the formation of the negative surface temperature anomalies is the fact that the nocturnal entrainment heat flux overcompensates the diurnal absorption of solar heat flux. Both in the subtropics and in the high latitudes, the surface temperature anomalies are involved in a positive feedback loop: the cold (warm) surface anomalies favour a decrease (increase) in evaporation, a decrease (increase) in tropospheric humidity, a decrease (increase) in downwelling longwave radiative flux which in turn favours the surface cooling (warming). Furthermore, the decrease in meridional sea surface temperature gradient affects the large-scale atmospheric circulation by a decrease in the zonal mean flow.
Recent Global Warming as Observed by AIRS and Depicted in GISSTEMP and MERRA-2
NASA Technical Reports Server (NTRS)
Susskind, Joel; Lee, Jae; Iredell, Lena
2017-01-01
AIRS Version-6 monthly mean level-3 surface temperature products confirm the result, depicted in the GISSTEMP dataset, that the earth's surface temperature has been warming since early 2015, though not before that. AIRS is at a higher spatial resolution than GISSTEMP, and produces sharper spatial features which are otherwise in excellent agreement with those of GISSTEMP. Version-6 AO Ts anomalies are consistent with those of Version-6 AIRS/AMSU. Version-7 AO anomalies should be even more accurate, especially at high latitudes. ARCs of MERRA-2 Ts anomalies are spurious as a result of a discontinuity which occurred somewhere between 2007 and 2008. This decreases global mean trends.
NASA Astrophysics Data System (ADS)
Polonsky, Alexander B.; Basharin, Dmitry V.
2017-04-01
The aim of this paper is to study the interannual climate variability over the Mediterranean region related to the Indo-ocean dipole (IOD) using the data of re-analyses, archival data and specialized numerical experiments. It is shown that the IOD does not impact essentially the anomalies of surface air temperature (SAT) and sea level pressure (SLP) in the Mediterranean region. On average, the IOD-induced share of the SAT/SLP variance in the total variance of these fields in the Mediterranean region is smaller than 10% even in summer when it is at a maximum. However, the statistically significant IOD-induced SAT/SLP anomalies in the Mediterranean region are detectable. For definite IOD events the associated Mediterranean SAT anomalies can reach about 1 °C.
Nonlinearities in the Evolutional Distinctions Between El Niño and La Niña Types
NASA Astrophysics Data System (ADS)
Ashok, K.; Shamal, M.; Sahai, A. K.; Swapna, P.
2017-12-01
Using the HadISST, SODA reanalysis, and various other observed and reanalyzed data sets for the period 1950-2010, we explore nonlinearities in the subsurface evolutional distinctions between El Niño types and La Niña types from a few seasons before the onset. Cluster analysis carried out over both summer and winter suggests that while the warm-phased events of both types are distinguishable, several cold phased events are clustered together. Further, we apply a joint Self-Organizing Map (SOM) analysis using the monthly sea surface temperature anomaly (SSTA) and thermocline-depth anomalies in tropical Pacific (TP). Results reveal that the evolutionary paths of El Niño Modoki (EM) and El Niño (EL) are, broadly, different. Subsurface temperature composites of EL and EM show different onset characteristics. During an EL, warm anomaly in the west spreads eastward along the thermocline and reaches the surface in the east in March-May of year(0). During an EM, warm anomaly already exists in the central tropical Pacific and then reaches the surface in the east in September-November of year(0). Composited SSTAs during La Niña (LN) and La Niña Modoki (LM) are distinguishable only at 80% confidence level, but the composited subsurface temperature anomalies show differences in the location of the coldest anomaly as well as evolution at 90% confidence level. Thus, the El Niño flavor distinction is potentially predictable at longer leads.
Observed modes of sea surface temperature variability in the South Pacific region
NASA Astrophysics Data System (ADS)
Saurral, Ramiro I.; Doblas-Reyes, Francisco J.; García-Serrano, Javier
2018-02-01
The South Pacific (SP) region exerts large control on the climate of the Southern Hemisphere at many times scales. This paper identifies the main modes of interannual sea surface temperature (SST) variability in the SP which consist of a tropical-driven mode related to a horseshoe structure of positive/negative SST anomalies within midlatitudes and highly correlated to ENSO and Interdecadal Pacific Oscillation (IPO) variability, and another mode mostly confined to extratropical latitudes which is characterized by zonal propagation of SST anomalies within the South Pacific Gyre. Both modes are associated with temperature and rainfall anomalies over the continental regions of the Southern Hemisphere. Besides the leading mode which is related to well known warmer/cooler and drier/moister conditions due to its relationship with ENSO and the IPO, an inspection of the extratropical mode indicates that it is associated with distinct patterns of sea level pressure and surface temperature advection. These relationships are used here as plausible and partial explanations to the observed warming trend observed within the Southern Hemisphere during the last decades.
NASA Astrophysics Data System (ADS)
Li, Junde; Liang, Chujin; Tang, Youmin; Liu, Xiaohui; Lian, Tao; Shen, Zheqi; Li, Xiaojing
2017-11-01
The study of Equatorial Undercurrent (EUC) has attracted a broad attention in recent years due to its strong response and feedback to the Indian Ocean Dipole. In this paper, we first produce a high-quality simulation of three-dimensional temperature, salinity and zonal current simulation from 1982 to 2014, using a high-resolution ocean general circulation model. On this basis, with two sensitivity experiments, we investigate the role of temperature and salinity anomalies in driving and enhancing the EUC during the positive IOD events by examining the variation of the EUC seasonal cycle and diagnosing the zonal momentum budget along the equatorial Indian Ocean. Our results show that during January-March, the EUC can appear along the entire equatorial Indian Ocean in all years, but during August-November, the EUC can appear and reach the eastern Indian Ocean only during the positive IOD events. The zonal momentum budget analysis indicates that the pressure gradient force contributes most to the variation of the eastward acceleration of zonal currents in the subsurface. During the positive IOD events, strong negative subsurface temperature anomalies exist in the eastern Indian Ocean, with negative surface salinity anomalies in the central and eastern Indian Ocean, resulting in a large pressure gradient force to drive EUC during the August-November. Further, the results of two sensitivity experiments indicate that the temperature anomalies significantly impact the pressure gradient force, playing a leading role in driving the EUC, while the surface salinity anomalies can secondarily help to intensify the eastward EUC through increasing the zonal density gradient in the eastern Indian Ocean and impacting the vertical momentum advection in the subsurface.
NASA Astrophysics Data System (ADS)
Zarhloule, Y.; Lahrache, A.; Ben Abidate, L.; Khattach, D.; Bouri, S.; Boukdir, A.; Ben Dhia, H.
2001-05-01
Shallow geothermal prospecting ( < 700 m) has been performed in four zones in Morocco for which few deep data are available: northwestern basin, northeastern basin, Tadla Basin and Agadir Basin. These areas are different geologically and hydrogeologically. The temperature data from 250 wells at depths between 15 and 500 m have been analysed in order to estimate the natural geothermal gradient in these areas, to determine the principal thermal anomalies, to identify the main thermal indices and to characterise the recharge, discharge and potential mixing limits of the aquifers. The hydrostratigraphical study of each basin revealed several potential reservoir layers in which the Turonian carbonate aquifer (Tadal and Agadir Basins) and Liassic acquifer (Moroccan northwestern and northeastern basins) are the most important hot water reservoirs in Morocco. The recharge zones of each aquifer are characterised by high topography, high water potential, shallow cold water, low geothermal gradient and negative anomalies. The discharge zones are characterized by low topography, low piezometric level, high geothermal gradient, high temperature with hot springs and positive anomalies. The main thermal indices and the principal thermal anomalies that coincide with the artesian zones of the Turonian and Liassic aquifers have been identified.
Time series modelling of increased soil temperature anomalies during long period
NASA Astrophysics Data System (ADS)
Shirvani, Amin; Moradi, Farzad; Moosavi, Ali Akbar
2015-10-01
Soil temperature just beneath the soil surface is highly dynamic and has a direct impact on plant seed germination and is probably the most distinct and recognisable factor governing emergence. Autoregressive integrated moving average as a stochastic model was developed to predict the weekly soil temperature anomalies at 10 cm depth, one of the most important soil parameters. The weekly soil temperature anomalies for the periods of January1986-December 2011 and January 2012-December 2013 were taken into consideration to construct and test autoregressive integrated moving average models. The proposed model autoregressive integrated moving average (2,1,1) had a minimum value of Akaike information criterion and its estimated coefficients were different from zero at 5% significance level. The prediction of the weekly soil temperature anomalies during the test period using this proposed model indicated a high correlation coefficient between the observed and predicted data - that was 0.99 for lead time 1 week. Linear trend analysis indicated that the soil temperature anomalies warmed up significantly by 1.8°C during the period of 1986-2011.
NASA Astrophysics Data System (ADS)
Xue, Y.; Diallo, I.; Li, W.; Neelin, J. D.; Chu, P. C.; Vasic, R.; Zhu, Y.; LI, Q.; Robinson, D. A.
2017-12-01
Recurrent droughts/floods are high-impact meteorological events. Many studies have attributed these episodes to variability and anomaly of global sea surface temperatures (SST). However, studies have consistently shown that SST along is unable to fully explain the extreme climate events. Remote effects of large-scale spring land surface temperature (LST) and subsurface temperature (SUBT) variability in Northwest U.S. over the Rocky Mountain area on later spring-summer droughts/floods over the Southern Plains and adjacent areas, however, have been largely ignored. In this study, evidence from climate observations and model simulations addresses these effects. The Maximum Covariance Analysis of observational data identifies that a pronounce spring LST anomaly pattern over Northwest U.S. is closely associated with summer precipitation anomalies in Southern Plains: negative/positive spring LST anomaly is associated with the summer drought/flood over the Southern Plains. The global and regional weather forecast models were used to demonstrate a causal relationship. The modeling study suggests that the observed LST and SUBT anomalies produced about 29% and 31% of observed May 2015 heavy precipitation and June 2011 precipitation deficit, respectively. The analyses discovered that the LST/SUBT's downstream effects are associated with a large-scale atmospheric stationary wave extending eastward from the LST/SUBT anomaly region. For comparison, the SST effect was also tested and produced about 31% and 45% of the May 2015 heavy precipitation and June 2011 drought conditions, respectively. This study suggests that consideration of both SST and LST/SUBT anomalies are able to explain a substantial amount of variance in precipitation at sub-seasonal scale and inclusion of the LST/SUBT effect is essential to make reliable sub-seasonal and seasonal North American drought/flood predictions.
NASA Astrophysics Data System (ADS)
Daud, Yunus; Rosid, Syamsu; Fahmi, Fikri; Yunus, Faris Maulana; Muflihendri, Reza
2018-02-01
Ijen geothermal area is high-temperature geothermal system located in Bondowoso regency, East Java. It is categorized as caldera-hosted geothermal system which is covered by quaternary andesitic volcanic rocks with steep topography at the surrounding. Several surface thermal manifestations are found, such as altered rocks near Mt. Kukusan and a group of Blawan hotsprings in the northern part of the caldera. Geomagnetic survey was conducted at 72 stations which is distributed inside the caldera to delineate the existence of hydrothermal activity. Magnetic anomaly was obtained by reducing total magnetic measured on the field by IGRF and diurnal variation. Reduction to pole (RTP) method was applied with geomagnetic inclination of about -32°. In general, the result shows that high magnetic anomaly is distributed at the boundary of study area, while low magnetic anomaly is observed in the centre. The low anomaly indicates demagnetized rock that probably caused by hydrothermal activity. It has a good correlation with surface alteration observed close to Mt. Kukusan as well as high temperature reservoir drilled in the centre of caldera. Accordingly, the low magnetic anomaly also presents the possibility of geothermal reservoir in Ijen geothermal area.
Intraseasonal sea surface warming in the western Indian Ocean by oceanic equatorial Rossby waves
NASA Astrophysics Data System (ADS)
Rydbeck, Adam V.; Jensen, Tommy G.; Nyadjro, Ebenezer S.
2017-05-01
A novel process is identified whereby equatorial Rossby (ER) waves maintain warm sea surface temperature (SST) anomalies against cooling by processes related to atmospheric convection in the western Indian Ocean. As downwelling ER waves enter the western Indian Ocean, SST anomalies of +0.15°C develop near 60°E. These SST anomalies are hypothesized to stimulate convective onset of the Madden-Julian Oscillation. The upper ocean warming that manifests in response to downwelling ER waves is examined in a mixed layer heat budget using observational and reanalysis products, respectively. In the heat budget, horizontal advection is the leading contributor to warming, in part due to an equatorial westward jet of 80 cm s-1 associated with downwelling ER waves. When anomalous currents associated with ER waves are removed in the budget, the warm intraseasonal temperature anomaly in the western Indian Ocean is eliminated in observations and reduced by 55% in reanalysis.
Sea surface temperature anomalies, planetary waves, and air-sea feedback in the middle latitudes
NASA Technical Reports Server (NTRS)
Frankignoul, C.
1985-01-01
Current analytical models for large-scale air-sea interactions in the middle latitudes are reviewed in terms of known sea-surface temperature (SST) anomalies. The scales and strength of different atmospheric forcing mechanisms are discussed, along with the damping and feedback processes controlling the evolution of the SST. Difficulties with effective SST modeling are described in terms of the techniques and results of case studies, numerical simulations of mixed-layer variability and statistical modeling. The relationship between SST and diabatic heating anomalies is considered and a linear model is developed for the response of the stationary atmosphere to the air-sea feedback. The results obtained with linear wave models are compared with the linear model results. Finally, sample data are presented from experiments with general circulation models into which specific SST anomaly data for the middle latitudes were introduced.
Midlatitude atmosphere-ocean interaction during El Nino. Part II. The northern hemisphere atmosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, M.A.
The influence of midlatitude air-sea interaction on the atmospheric anomalies associated with El Nino is investigated by coupling the Community Climate Model to a mixed-layer ocean model in the North Pacific. Prescribed El Nino conditions, warm sea surface temperatures (SST) in the tropical Pacific, cause a southward displacement and strengthening of the Aleutian Low. This results in enhanced (reduced) advection of cold Asian air over the west-central (northwest) Pacific and northward advection of warm air over the eastern Pacific. Allowing air-sea feedback in the North Pacific slightly modified the El Nino-induced near-surface wind, air temperature, and precipitation anomalies. The anomalousmore » cyclonic circulation over the North Pacific is more concentric and shifted slightly to the east in the coupled simulations. Air-sea feedback also damped the air temperature anomalies over most of the North Pacific and reduced the precipitation rate above the cold SST anomaly that develops in the central Pacific. The simulated North Pacific SST anomalies and the resulting Northern Hemisphere atmospheric anomalies are roughly one-third as large as those related to the prescribed El Nino conditions in a composite of five cases. The composite geopotential height anomalies associated with changes in the North Pacific SSTs have an equivalent barotropic structure and range from -65 m to 50 m at the 200-mb level. Including air-sea feedback in the North Pacific tended to damp the atmospheric anomalies caused by the prescribed El Nino conditions in the tropical Pacific. As a result, the zonally elongated geopotential height anomalies over the West Pacific are reduced and shifted to the east. However, the atmospheric changes associated with the North Pacific SST anomalies vary widely among the five cases.« less
Equilibrium Atmospheric Response to North Atlantic SST Anomalies.
NASA Astrophysics Data System (ADS)
Kushnir, Yochanan; Held, Isaac M.
1996-06-01
The equilibrium general circulation model (GCM) response to sea surface temperature (SST) anomalies in the western North Atlantic region is studied. A coarse resolution GCM, with realistic lower boundary conditions including topography and climatological SST distribution, is integrated in perpetual January and perpetual October modes, distinguished from one another by the strength of the midlatitude westerlies. An SST anomaly with a maximum of 4°C is added to the climatological SST distribution of the model with both positive and negative polarity. These anomaly runs are compared to one another, and to a control integration, to determine the atmospheric response. In all cases warming (cooling) of the midlatitude ocean surface yields a warming (cooling) of the atmosphere over and to the east of the SST anomaly center. The atmospheric temperature change is largest near the surface and decreases upward. Consistent with this simple thermal response, the geopotential height field displays a baroclinic response with a shallow anomalous low somewhat downstream from the warm SST anomaly. The equivalent barotropic, downstream response is weak and not robust. To help interpret the results, the realistic GCM integrations are compared with parallel idealized model runs. The idealized model has full physics and a similar horizontal and vertical resolution, but an all-ocean surface with a single, permanent zonal asymmetry. The idealized and realistic versions of the GCM display compatible response patterns that are qualitatively consistent with stationary, linear, quasigeostrophic theory. However, the idealized model response is stronger and more coherent. The differences between the two model response patterns can be reconciled based on the size of the anomaly, the model treatment of cloud-radiation interaction, and the static stability of the model atmosphere in the vicinity of the SST anomaly. Model results are contrasted with other GCM studies and observations.
Geothermal Anomaly Mapping Using Landsat ETM+ Data in Ilan Plain, Northeastern Taiwan
NASA Astrophysics Data System (ADS)
Chan, Hai-Po; Chang, Chung-Pai; Dao, Phuong D.
2018-01-01
Geothermal energy is an increasingly important component of green energy in the globe. A prerequisite for geothermal energy development is to acquire the local and regional geothermal prospects. Existing geophysical methods of estimating the geothermal potential are usually limited to the scope of prospecting because of the operation cost and site reachability in the field. Thus, explorations in a large-scale area such as the surface temperature and the thermal anomaly primarily rely on satellite thermal infrared imagery. This study aims to apply and integrate thermal infrared (TIR) remote sensing technology with existing geophysical methods for the geothermal exploration in Taiwan. Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) imagery is used to retrieve the land surface temperature (LST) in Ilan plain. Accuracy assessment of satellite-derived LST is conducted by comparing with the air temperature data from 11 permanent meteorological stations. The correlation coefficient of linear regression between air temperature and LST retrieval is 0.76. The MODIS LST product is used for the cross validation of Landsat derived LSTs. Furthermore, Landsat ETM+ multi-temporal brightness temperature imagery for the verification of the LST anomaly results were performed. LST Results indicate that thermal anomaly areas appear correlating with the development of faulted structure. Selected geothermal anomaly areas are validated in detail by field investigation of hot springs and geothermal drillings. It implies that occurrences of hot springs and geothermal drillings are in good spatial agreement with anomaly areas. In addition, the significant low-resistivity zones observed in the resistivity sections are echoed with the LST profiles when compared with in the Chingshui geothermal field. Despite limited to detecting the surficial and the shallow buried geothermal resources, this work suggests that TIR remote sensing is a valuable tool by providing an effective way of mapping and quantifying surface features to facilitate the exploration and assessment of geothermal resources in Taiwan.
Potential vorticity regimes over East Asia during winter
NASA Astrophysics Data System (ADS)
Huang, Wenyu; Chen, Ruyan; Wang, Bin; Wright, Jonathon S.; Yang, Zifan; Ma, Wenqian
2017-02-01
Nine potential vorticity (PV) regimes over East Asia are identified by applying a Self-Organizing Map and Hierarchical Ascendant Classification regime analysis to the daily PV reanalysis fields on the 300 K isentropic surface for December-March 1948-2014. According to the surface temperature anomalies over East Asia, these nine regimes are further classified into three classes, i.e., cold class (three regimes), warm class (four regimes), and neutral class (two regimes). The PV-based East Asian winter monsoon index (EAWMI) is used to study the relationship between PV distributions and the temperature anomalies. The magnitude of cold (warm) anomalies over the land areas of East Asia increases (decreases) quasi-linearly with the EAWMI. Regression analysis reveals that cold temperature anomalies preferentially occur when the EAWMI exceeds a threshold at ˜0.2 PVU (where 1 PVU ≡ 10-6 m2 K kg-1 s-1). PV inversion uncovers the mechanisms behind the relationships between the PV regimes and surface temperature anomalies and reveals that cold (warm) PV regimes are associated with significant warming (cooling) in the upper troposphere and lower stratosphere. On average, cold regimes have longer durations than warm regimes. Interclass transition probabilities are much higher for paths from warm/neutral regimes to cold regimes than for paths from cold regimes to warm/neutral regimes. Besides, intraclass transitions are rare within the warm or neutral regimes. The PV regime analysis provides insight into the causes of severe cold spells over East Asia, with blocking circulation patterns identified as the primary factor in initiating and maintaining these cold spells.
NASA Astrophysics Data System (ADS)
Roberts, C. D.; Palmer, M. D.; Allan, R. P.; Desbruyeres, D. G.; Hyder, P.; Liu, C.; Smith, D.
2017-01-01
We present an observation-based heat budget analysis for seasonal and interannual variations of ocean heat content (H) in the mixed layer (Hmld) and full-depth ocean (Htot). Surface heat flux and ocean heat content estimates are combined using a novel Kalman smoother-based method. Regional contributions from ocean heat transport convergences are inferred as a residual and the dominant drivers of Hmld and Htot are quantified for seasonal and interannual time scales. We find that non-Ekman ocean heat transport processes dominate Hmld variations in the equatorial oceans and regions of strong ocean currents and substantial eddy activity. In these locations, surface temperature anomalies generated by ocean dynamics result in turbulent flux anomalies that drive the overlying atmosphere. In addition, we find large regions of the Atlantic and Pacific oceans where heat transports combine with local air-sea fluxes to generate mixed layer temperature anomalies. In all locations, except regions of deep convection and water mass transformation, interannual variations in Htot are dominated by the internal rearrangement of heat by ocean dynamics rather than the loss or addition of heat at the surface. Our analysis suggests that, even in extratropical latitudes, initialization of ocean dynamical processes could be an important source of skill for interannual predictability of Hmld and Htot. Furthermore, we expect variations in Htot (and thus thermosteric sea level) to be more predictable than near surface temperature anomalies due to the increased importance of ocean heat transport processes for full-depth heat budgets.
Ground temperature enhancements in seismic regions
NASA Astrophysics Data System (ADS)
Parrot, M.; Pokhotelov, O.; Surkov, V.; Hayakawa, M.
In the past decade, numerous observations of surface and near surface temperature anomalies before earthquakes have been published. Monitoring of the seismo -active regions from space have been made in visible and infrared ranges by various satellites: NOOA satellites, UARS, TERRA and etc. This paper presents some examples of these observations. A review of different mechanisms to explain the phenomenon is given and a more detailed explanation of the mechanism proposed by the authors is presented. It is shown that long term temperature anomalies can arise due to the rock warming resulting from the underground water upward filtrating. However, the short term temperature anomalies observed several days before an earthquake, are due to the change in the specific heat capacity and in the heat conductivity of the soil induced by the variations of the moisture. This research is partially supported by the Commission of the EU (Grant No. INTAS-2001-0456), by ISTC through Research Grant No. 1121 and by Russian Fund for Basic Research through Grant No. 02-05-64612.
The surface latent heat flux anomalies related to major earthquake
NASA Astrophysics Data System (ADS)
Jing, Feng; Shen, Xuhui; Kang, Chunli; Xiong, Pan; Hong, Shunying
2011-12-01
SLHF (Surface Latent Heat Flux) is an atmospheric parameter, which can describe the heat released by phase changes and dependent on meteorological parameters such as surface temperature, relative humidity, wind speed etc. There is a sharp difference between the ocean surface and the land surface. Recently, many studies related to the SLHF anomalies prior to earthquakes have been developed. It has been shown that the energy exchange enhanced between coastal surface and atmosphere prior to earthquakes can increase the rate of the water-heat exchange, which will lead to an obviously increases in SLHF. In this paper, two earthquakes in 2010 (Haiti earthquake and southwest of Sumatra in Indonesia earthquake) have been analyzed using SLHF data by STD (standard deviation) threshold method. It is shows that the SLHF anomaly may occur in interpolate earthquakes or intraplate earthquakes and coastal earthquakes or island earthquakes. And the SLHF anomalies usually appear 5-6 days prior to an earthquake, then disappear quickly after the event. The process of anomaly evolution to a certain extent reflects a dynamic energy change process about earthquake preparation, that is, weak-strong-weak-disappeared.
NASA Astrophysics Data System (ADS)
Kim, Taekyun; Choo, Sung-Ho; Moon, Jae-Hong; Chang, Pil-Hun
2017-12-01
Unusual sea surface temperature (SST) warming occurred over the Yellow Sea (YS) in December 2004. To identify the causes of the abnormal SST warming, we conducted an analysis on atmospheric circulation anomalies induced by tropical cyclones (TCs) and their impacts on upper ocean characteristics using multiple datasets. With the analysis of various datasets, we explored a new aspect of the relationship between TC activity and SST. The results show that there is a significant link between TC activity over the Northwest Pacific (NWP) and SST in the YS. The integrated effect of consecutive TCs activity induces a large-scale atmospheric cyclonic circulation anomaly over the NWP and consequently anomalous easterly winds over the YS and East China Sea. The mechanism of the unusually warm SST in the YS can be explained by considering TCs acting as an important source of Ekman heat transport that results in substantial intrusion of relatively warm surface water into the YS interior. Furthermore, TC-related circulation anomalies contribute to the retention of the resulting warm SST anomalies in the entire YS.
NASA Technical Reports Server (NTRS)
Kwok, Ron; Comiso, Josefino C.; Koblinsky, Chester J. (Technical Monitor)
2002-01-01
The 17-year (1982-1998) trend in surface temperature shows a general cooling over the Antarctic continent, warming of the sea ice zone, with moderate changes over the oceans. Warming of the peripheral seas is associated with negative trends in the regional sea ice extent. Effects of the Southern Hemisphere Annular Mode (SAM) and the extrapolar Southern Oscillation (SO) on surface temperature are quantified through regression analysis. Positive polarities of the SAM are associated with cold anomalies over most of Antarctica, with the most notable exception of the Antarctic Peninsula. Positive temperature anomalies and ice edge retreat in the Pacific sector are associated with El Nino episodes. Over the past two decades, the drift towards high polarity in the SAM and negative polarity in the SO indices couple to produce a spatial pattern with warmer temperatures in the Antarctic Peninsula and peripheral seas, and cooler temperatures over much of East Antarctica.
What caused the Extreme Storm Season over the North Atlantic and the UK in Winter 2013-14?
NASA Astrophysics Data System (ADS)
Leckebusch, G. C.; Wild, S.; Befort, D. J.
2015-12-01
In winter 2013-2014, the UK experienced exceptional stormy and rainy weather conditions. Concurrently, surface temperatures over large parts of central North America fell to near record minimum values. One potential driver for these cold conditions is discussed to be the increasingly warm surface waters of the tropical west Pacific. It has been suggested these increasing sea surface temperatures could also be the cause for extreme weather over the British Isles. Testing this hypothesis, we investigate mechanisms linking the tropical west Pacific and European wind storm activity. We focus on two research questions. Firstly: Was a chain of anomaly patterns with origin in the west Pacific present in the winter 2013-14? And secondly: Can centres of action along such a chain be identified with a strong interannual relationship in the recent past? Our results, using primarily ERA-Interim Reanalysis from 1979 to 2014, show an absolute maximum of wind storm frequency over the northeast Atlantic and the British Isles in winter 2013-14. We also find absolute minimum surface temperatures in central North America and increased convective activity over the tropical west Pacific in the same season. The winter 2013-14 was additionally characterized by anomalous warm sea surface temperatures over the subtropical northwest Atlantic. Although the interannual variability of wind storms in the northeast Atlantic and surface temperatures in North America are significantly anti-correlated, we cannot directly relate wind storm frequency with tropical west Pacific anomalies. We thus conclude that the conditions over the Pacific in winter 2013-14 were favourable but not sufficient to explain the record number of wind storms in this season. Instead, we suggest that warm north Atlantic sea surface temperature anomalies in combination with cold surface temperatures over North America played a more important role for generating higher wind storm counts over the northeast Atlantic and the UK.
Detecting Global Hydrological Cycle Intensification in Sea Surface Salinity
NASA Astrophysics Data System (ADS)
Poague, J.; Stine, A.
2016-12-01
Global warming is expected to intensify the global hydrological cycle, but significant regional differences exist in the predicted response. The proposed zonal mean thermodynamic response is enhanced horizontal moisture transport associated with increased saturation vapor pressure, which in turn drives additional net precipitation in the tropics and at high latitudes and additional net evaporation in the subtropics. Sea surface salinity (SSS) anomalies are forced from above by changes in evaporation minus precipitation (E-P) and thus will respond to changes in the global hydrological cycle, opening the possibility of using historical SSS anomalies to diagnose the response of the hydrological cycle to warming. We estimate zonal mean SSS trends in the Atlantic and Pacific ocean basins from 1955-2015 to test whether historical changes in the global hydrological cycle are consistent with a primarily thermodynamic response. Motivated by this observation, we calculate the sensitivity of basin zonal-mean SSS anomalies to sea surface temperature (SST) forcing as a function of timescale to diagnose and estimate the signal-to-noise ratio of the purely thermodynamic signal as a function of timescale. High-frequency variability in SSS anomalies is likely to be influenced by variability in atmospheric circulation, complicating the attribution of the link between basin zonal-mean SSS anomalies and global SST anomalies. We therefore estimate the basin zonal mean SSS anomaly response to the major modes of large-scale dynamic variability. We find a strong correlation between detrended zonal-mean SSS anomalies and the Pacific-North American index (R=0.71,P<0.01) in the Pacific Ocean. We interpret the relationship between zonal mean SSS anomalies and temperature in terms of the relative contribution of thermodynamic and dynamic processes.
Severe haze in Hangzhou in winter 2013/14 and associated meteorological anomalies
NASA Astrophysics Data System (ADS)
Chen, Yini; Zhu, Zhiwei; Luo, Ling; Zhang, Jiwei
2018-03-01
Aerosol pollution over eastern China has worsened considerably in recent years, resulting in heavy haze weather with low visibility and poor air quality. The present study investigates the characteristics of haze weather in Hangzhou city, and aims to unravel the meteorological anomalies associated with the heavy haze that occurred over Hangzhou in winter 2013/14. On the interannual timescale, because of the neutral condition of tropical sea surface temperature anomalies during winter 2013/14, no significant circulation and convection anomalies were induced over East Asia, leading to a stable atmospheric condition favorable for haze weather in Hangzhou. Besides, the shift of the polar vortex, caused by changes in surface temperature and ice cover at high latitudes, induced a barotropic anomalous circulation dipole pattern. The southerly anomaly associated with this anomalous dipole pattern hindered the transportation of cold/clear air mass from Siberia to central-eastern China, leading to abnormal haze during winter 2013/14 in Hangzhou. On the intraseasonal timescale, an eastward-propagating mid-latitude Rossby wave train altered the meridional wind anomaly over East Asia, causing the intraseasonal variability of haze weather during 2013/14 in Hangzhou.
Interannual variation of the surface temperature of tropical forests from satellite observations
Gao, Huilin; Zhang, Shuai; Fu, Rong; ...
2016-01-01
Land surface temperatures (LSTs) within tropical forests contribute to climate variations. However, observational data are very limited in such regions. This study used passive microwave remote sensing data from the Special Sensor Microwave/Imager (SSM/I) and the Special Sensor Microwave Imager Sounder (SSMIS), providing observations under all weather conditions, to investigate the LST over the Amazon and Congo rainforests. The SSM/I and SSMIS data were collected from 1996 to 2012. The morning and afternoon observations from passive microwave remote sensing facilitate the investigation of the interannual changes of LST anomalies on a diurnal basis. As a result of the variability ofmore » cloud cover and the corresponding reduction of solar radiation, the afternoon LST anomalies tend to vary more than the morning LST anomalies. The dominant spatial and temporal patterns for interseasonal variations of the LST anomalies over the tropical rainforest were analyzed. The impacts of droughts and El Niños on this LST were also investigated. Lastly, the differences between early morning and late afternoon LST anomalies were identified by the remote sensing product, with the morning LST anomalies controlled by humidity (according to comparisons with the National Centers for Environmental Prediction (NCEP) reanalysis data).« less
Coral-Derived Western Pacific Tropical Sea Surface Temperatures During the Last Millennium
NASA Astrophysics Data System (ADS)
Chen, Tianran; Cobb, Kim M.; Roff, George; Zhao, Jianxin; Yang, Hongqiang; Hu, Minhang; Zhao, Kuan
2018-04-01
Reconstructions of ocean temperatures prior to the industrial era serve to constrain natural climate variability on decadal to centennial timescales, yet relatively few such observations are available from the west Pacific Warm Pool. Here we present multiple coral-based sea surface temperature reconstructions from Yongle Atoll, in the South China Sea over the last 1,250 years (762-2013 Common Era [CE]). Reconstructed coral Sr/Ca-sea surface temperatures indicate that the "Little Ice Age (1711-1817 CE)" period was 0.7°C cooler than the "Medieval Climate Anomaly (913-1132 CE)" and that late 20th century warming of the western Pacific is likely unprecedented over the past millennium. Our findings suggest that the Western Pacific Warm Pool may have expanded (contracted) during the Medieval Climate Anomaly (Little Ice Age), leading to a strengthening (weakening) of the Asian summer monsoon, as recorded in Chinese stalagmites.
NASA Astrophysics Data System (ADS)
Rascle, Nicolas; Molemaker, Jeroen; Marié, Louis; Nouguier, Frédéric; Chapron, Bertrand; Lund, Björn; Mouche, Alexis
2017-06-01
Fine-scale current gradients at the ocean surface can be observed by sea surface roughness. More specifically, directional surface roughness anomalies are related to the different horizontal current gradient components. This paper reports results from a dedicated experiment during the Lagrangian Submesoscale Experiment (LASER) drifter deployment. A very sharp front, 50 m wide, is detected simultaneously in drifter trajectories, sea surface temperature, and sea surface roughness. A new observational method is applied, using Sun glitter reflections during multiple airplane passes to reconstruct the multiangle roughness anomaly. This multiangle anomaly is consistent with wave-current interactions over a front, including both cross-front convergence and along-front shear with cyclonic vorticity. Qualitatively, results agree with drifters and X-band radar observations. Quantitatively, the sharpness of roughness anomaly suggests intense current gradients, 0.3 m s-1 over the 50 m wide front. This work opens new perspectives for monitoring intense oceanic fronts using drones or satellite constellations.
Interannual Rainfall Variability in North-East Brazil: Observation and Model Simulation
NASA Astrophysics Data System (ADS)
Harzallah, A.; Rocha de Aragão, J. O.; Sadourny, R.
1996-08-01
The relationship between interannual variability of rainfall in north-east Brazil and tropical sea-surface temperature is studied using observations and model simulations. The simulated precipitation is the average of seven independent realizations performed using the Laboratoire de Météorologie Dynamique atmospheric general model forced by the 1970-1988 observed sea-surface temperature. The model reproduces very well the rainfall anomalies (correlation of 091 between observed and modelled anomalies). The study confirms that precipitation in north-east Brazil is highly correlated to the sea-surface temperature in the tropical Atlantic and Pacific oceans. Using the singular value decomposition method, we find that Nordeste rainfall is modulated by two independent oscillations, both governed by the Atlantic dipole, but one involving only the Pacific, the other one having a period of about 10 years. Correlations between precipitation in north-east Brazil during February-May and the sea-surface temperature 6 months earlier indicate that both modes are essential to estimate the quality of the rainy season.
Macias, Diego; Stips, Adolf; Garcia-Gorriz, Elisa; Dosio, Alessandro
2018-01-01
We evaluate the changes on the hydrological (temperature and salinity) and biogeochemical (phytoplankton biomass) characteristics of the Mediterranean Sea induced by freshwater flow modifications under two different scenarios for the end of the 21st century. An ensemble of four regional climate model realizations using different global circulation models at the boundary and different emission scenarios are used to force a single ocean model for the Mediterranean Sea. Freshwater flow is modified according to the simulated changes in the precipitation rates for the different rivers' catchment regions. To isolate the effect resulting from a change in freshwater flow, model results are evaluated against a 'baseline' simulation realized assuming a constant inflow equivalent to climatologic values. Our model results indicate that sea surface salinity could be significantly altered by freshwater flow modification in specific regions and that the affected area and the sign of the anomaly are highly dependent on the used climate model and emission scenario. Sea surface temperature and phytoplankton biomass, on the contrary, show no coherent spatial pattern but a rather widespread scattered response. We found in open-water regions a significant negative relationship between sea surface temperature anomalies and phytoplankton biomass anomalies. This indicates that freshwater flow modification could alter the vertical stability of the water column throughout the Mediterranean Sea, by changing the strength of vertical mixing and consequently upper water fertilization. In coastal regions, however, the correlation between sea temperature anomalies and phytoplankton biomass is positive, indicating a larger importance of the physiological control of growth rates by temperature.
Atmospheric circulation patterns and spatial climatic variations in Beringia
NASA Astrophysics Data System (ADS)
Mock, Cary J.; Bartlein, Patrick J.; Anderson, Patricia M.
1998-08-01
Analyses of more than 40 years of climatic data reveal intriguing spatial variations in climatic patterns for Beringia (North-eastern Siberia and Alaska), aiding the understanding of the hierarchy of climatic controls that operate at different spatial scales within the Arctic. A synoptic climatology, using a subjective classification methodology on January and July sea level pressure, and July 500 hPa height anomaly patterns, identified 13 major atmospheric circulation patterns (26 pairs consisting of 13 synoptic/temperature and 13 synoptic/precipitation comparisons) that occur over Beringia. Composite anomaly maps of circulation, temperature, and precipitation described the spatial variability of surface climatic responses to circulation. Results indicate that nine synoptic pairs yield homogeneous surface climatic anomaly patterns throughout most of Beringia. However, many of the surface climatic responses illustrate heterogeneous anomaly patterns as a result of variations in circulation controls, such as troughing over East Asia and the Pacific subtropical high superimposed over topography, with small shifts in atmospheric circulation dramatically altering spatial variations of anomaly patterns. Distinctive contrasts in climatic responses, as suggested from ten synoptic pairs, are clearly evident for Western Beringia versus Eastern Beringia. These results offer important implications for scholars interested in assessing late Quaternary climatic change in the region from interannual to millennial timescales.
NASA Technical Reports Server (NTRS)
Liu, W.; Hu, H.; Xie, X.
1999-01-01
Liu et al.[1998] (hereafter referred as LTH), superimposed wind velocity anomalies observed by the NASA Scatterometer (NSCAT) on the map of sea surface temperature (SST) anomalies observed by the Advanced Very High Resolution Radiometer (AVHRR) in the Pacific at the end of May 1997, and illustrated that the three regions of anomalous warming in the North Pacific Ocean are related to wind anomalies through different mechanisms.
Temperature Anomalies from the AIRS Product in Giovanni for the Climate Community
NASA Technical Reports Server (NTRS)
Ding, Feng; Hearty, Thomas J.; Wei, Jennifer; Theobald, Michael; Vollmer, Bruce; Seiler, Edward; Meyer, David
2018-01-01
The Atmospheric Infrared Sounder (AIRS) mission began with the launch of Aqua in 2002. Over 15 years of AIRS products have been used by the climate research and application communities. The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC), in collaboration with NASA Sounder Team at JPL, provides processing, archiving, and distribution services for NASA sounders: the present Aqua AIRS mission and the succeeding Suomi National Polar-Orbiting Partnership (SNPP) Cross-track Infrared Sounder (CrIS) mission. We generated a Multi-year Monthly Mean and Anomaly product using 14 years of AIRS standard monthly product. The product includes Air Temperature at the Surface and Surface Skin Temperature, both in Ascending/Daytime and Descending/Nighttime mode. The temperature variables and their anomalies are deployed to Giovanni, a Web-based application developed by the GES DISC. Giovanni provides a simple and intuitive way to visualize, analyze, and access vast amounts of Earth science remote sensing data without having to download the data. It is also a powerful tool that stakeholders can use for decision support in planning and preparing for increased climate variability. In this presentation, we demonstrate the functions in Giovanni with use cases employing AIRS Multi-year Monthly Mean and Anomaly variables.
NASA Technical Reports Server (NTRS)
Peterson, Thomas C.; Barnett, Tim P.; Roeckner, Erich; Vonder Haar, Thomas H.
1992-01-01
The relationship between the sea surface temperature anomalies (SSTAs) and the anomalies of the monthly mean cloud cover (including the high-level, low-level, and total cloud cover), the outgoing longwave radiation, and the reflected solar radiation was analyzed using a least absolute deviations regression at each grid point over the open ocean for a 6-yr period. The results indicate that cloud change in association with a local 1-C increase in SSTAs cannot be used to predict clouds in a potential future world where all the oceans are 1-C warmer than at present, because much of the observed cloud changes are due to circulation changes, which in turn are related not only to changes in SSTAs but to changes in SSTA gradients. However, because SSTAs are associated with changes in the local ocean-atmosphere moisture and heat fluxes as well as significant changes in circulation (such as ENSO), SSTAs can serve as a surrogate for many aspects of global climate change.
Scientific support of the Apollo infrared scanning radiometer experiment
NASA Technical Reports Server (NTRS)
Mendell, W. W.
1976-01-01
The Infrared Scanning Radiometer (ISR) was designed to map the thermal emission of the lunar surface from the service module of the orbiting Apollo 17 spacecraft. Lunar surface nighttime temperatures, which are extremely difficult to map from earth based telescopes were measured. The ISR transmitted approximately 90 hours of lunar data spread over 5 days in lunar orbit. Approximately 10 to the 8th power independent lunar temperature measurements were made with an absolute accuracy of 2K. Spatial resolution at nadir was approximately 2.2 km (depending on orbital altitude), exceeding that of earth based measurements by at least an order of magnitude. Preliminary studies of the data reveal the highest population of thermal anomalies (or hot spots) in Oceanus Procellarum. Very few anomalies exist on the far side of the moon as was predicted from the association of anomalies with mare on the near side. A number of negative anomalies (or cold spots) have also been found.
Determination of tropical cyclone surface pressure and winds from satellite microwave data
NASA Technical Reports Server (NTRS)
Kidder, S. Q.
1979-01-01
An approach to the problem of deducing wind speed and pressure around tropical cyclones is presented. The technique, called the Surface Wind Inference from Microwave data (SWIM technique, uses satellites microwave sounder data to measure upper tropospheric temperature anomalies which may then be related to surface pressure anomalies through the hydrostatic and radiative transfer equations. Surface pressure gradients outside of the radius of maximum wind are estimated for the first time. Future instruments may be able to estimate central pressure with + or - 0/1 kPa accuracy.
ENSO related SST anomalies and relation with surface heat fluxes over south Pacific and Atlantic
NASA Astrophysics Data System (ADS)
Chatterjee, S.; Nuncio, M.; Satheesan, K.
2017-07-01
The role of surface heat fluxes in Southern Pacific and Atlantic Ocean SST anomalies associated with El Nino Southern Oscillation (ENSO) is studied using observation and ocean reanalysis products. A prominent dipole structure in SST anomaly is found with a positive (negative) anomaly center over south Pacific (65S-45S, 120W-70W) and negative (positive) one over south Atlantic (50S-30S, 30W-0E) during austral summer (DJF) of El Nino (LaNina). During late austral spring-early summer (OND) of El Nino (LaNina), anomalous northerly (southerly) meridional moisture transport and a positive (negative) sea level pressure anomaly induces a suppressed (enhanced) latent heat flux from the ocean surface over south Pacific. This in turn results in a shallower than normal mixed layer depth which further helps in development of the SST anomaly. Mixed layer thins further due to anomalous shortwave radiation during summer and a well developed SST anomaly evolves. The south Atlantic pole exhibits exactly opposite characteristics at the same time. The contribution from the surface heat fluxes to mixed layer temperature change is found to be dominant over the advective processes over both the basins. Net surface heat fluxes anomaly is also found to be maximum during late austral spring-early summer period, with latent heat flux having a major contribution to it. The anomalous latent heat fluxes between atmosphere and ocean surface play important role in the growth of observed summertime SST anomaly. Sea-surface height also shows similar out-of-phase signatures over the two basins and are well correlated with the ENSO related SST anomalies. It is also observed that the magnitude of ENSO related anomalies over the southern ocean are weaker in LaNina years than in El Nino years, suggesting an intensified tropics-high latitude tele-connection during warm phases of ENSO.
Near bottom temperature anomalies in the Dead Sea
NASA Astrophysics Data System (ADS)
Ben-Avraham, Zvi; Ballard, Robert D.
1984-12-01
A bottom photographic and temperature study was carried out in the Dead Sea using a miniature version of the unmanned camera system ANGUS (mini-ANGUS). Due to the low transparency of the Dead Sea water, the bottom photographs provide very poor results. Only in a very few locations was the floor visible and in those cases it was found to be a white undulating sedimentary surface. The bottom temperature measurements, which were made continuously along the ship track, indicate the presence of a large zone of temperature anomalies. This zone is located in the deep part of the north basin at a water depth of over 330 m. The anomalies occur above a portion of an east-west fault which cuts through the Dead Sea suggesting the presence of hydrothermal activity.
Temperature anomalies in the Lower Suwannee River and tidal creeks, Florida, 2005
Raabe, Ellen A.; Bialkowska-Jelinska, Elzbieta
2007-01-01
Temperature anomalies in coastal waters were detected with Thermal Infrared imagery of the Lower Suwannee River (LSR) and nearshore tidal marshes on Florida’s Gulf Coast. Imagery included 1.5-m-resolution day and night Thermal Infrared (TIR) and 0.75-m-resolution Color Infrared (CIR) imagery acquired on 2-3 March 2005. Coincident temperature readings were collected on the ground and used to calibrate the imagery. The Floridan aquifer is at or near the land surface in this area and bears a constant temperature signature of ~ 22 degrees Celsius. This consistent temperature contrasts sharply with ambient temperatures during winter and summer months. Temperature anomalies identified in the imagery during a late-winter cold spell may be correlated with aquifer seeps. Hot spots were identified as those areas exceeding ambient water temperature by 4 degrees Celsius or more. Warm-water plumes were also mapped for both day and night imagery. The plume from Manatee Spring, a first-order magnitude spring, influenced water temperature in the lower river. Numerous temperature anomalies were identified in small tributaries and tidal creeks from Shired Island to Cedar Key and were confirmed with field reconnaissance. Abundant warm-water features were identified along tidal creeks south of the Suwannee River and near Waccasassa Bay. Features were mapped in the tidal creeks north of the river but appear to be less common or have lower associated discharge. The imagery shows considerable promise in mapping coastal-aquifer seeps and understanding the underlying geology of the region. Detection of seep locations may aid research in groundwater/surface-water interactions and water quality, and in the management of coastal habitats.
Observational Evidence for Desert Amplification Using Multiple Satellite Datasets.
Wei, Nan; Zhou, Liming; Dai, Yongjiu; Xia, Geng; Hua, Wenjian
2017-05-17
Desert amplification identified in recent studies has large uncertainties due to data paucity over remote deserts. Here we present observational evidence using multiple satellite-derived datasets that desert amplification is a real large-scale pattern of warming mode in near surface and low-tropospheric temperatures. Trend analyses of three long-term temperature products consistently confirm that near-surface warming is generally strongest over the driest climate regions and this spatial pattern of warming maximizes near the surface, gradually decays with height, and disappears in the upper troposphere. Short-term anomaly analyses show a strong spatial and temporal coupling of changes in temperatures, water vapor and downward longwave radiation (DLR), indicating that the large increase in DLR drives primarily near surface warming and is tightly associated with increasing water vapor over deserts. Atmospheric soundings of temperature and water vapor anomalies support the results of the long-term temperature trend analysis and suggest that desert amplification is due to comparable warming and moistening effects of the troposphere. Likely, desert amplification results from the strongest water vapor feedbacks near the surface over the driest deserts, where the air is very sensitive to changes in water vapor and thus efficient in enhancing the longwave greenhouse effect in a warming climate.
Impact of Subsurface Temperature Variability on Meteorological Variability: An AGCM Study
NASA Astrophysics Data System (ADS)
Mahanama, S. P.; Koster, R. D.; Liu, P.
2006-05-01
Anomalous atmospheric conditions can lead to surface temperature anomalies, which in turn can lead to temperature anomalies deep in the soil. The deep soil temperature (and the associated ground heat content) has significant memory -- the dissipation of a temperature anomaly may take weeks to months -- and thus deep soil temperature may contribute to the low frequency variability of energy and water variables elsewhere in the system. The memory may even provide some skill to subseasonal and seasonal forecasts. This study uses two long-term AGCM experiments to isolate the contribution of deep soil temperature variability to variability elsewhere in the climate system. The first experiment consists of a standard ensemble of AMIP-type simulations, simulations in which the deep soil temperature variable is allowed to interact with the rest of the system. In the second experiment, the coupling of the deep soil temperature to the rest of the climate system is disabled -- at each grid cell, the local climatological seasonal cycle of deep soil temperature (as determined from the first experiment) is prescribed. By comparing the variability of various atmospheric quantities as generated in the two experiments, we isolate the contribution of interactive deep soil temperature to that variability. The results show that interactive deep soil temperature contributes significantly to surface temperature variability. Interactive deep soil temperature, however, reduces the variability of the hydrological cycle (evaporation and precipitation), largely because it allows for a negative feedback between evaporation and temperature.
Detecting primary precursors of January surface air temperature anomalies in China
NASA Astrophysics Data System (ADS)
Tan, Guirong; Ren, Hong-Li; Chen, Haishan; You, Qinglong
2017-12-01
This study aims to detect the primary precursors and impact mechanisms for January surface temperature anomaly (JSTA) events in China against the background of global warming, by comparing the causes of two extreme JSTA events occurring in 2008 and 2011 with the common mechanisms inferred from all typical episodes during 1979-2008. The results show that these two extreme events exhibit atmospheric circulation patterns in the mid-high latitudes of Eurasia, with a positive anomaly center over the Ural Mountains and a negative one to the south of Lake Baikal (UMLB), which is a pattern quite similar to that for all the typical events. However, the Eurasian teleconnection patterns in the 2011 event, which are accompanied by a negative phase of the North Atlantic Oscillation, are different to those of the typical events and the 2008 event. We further find that a common anomalous signal appearing in early summer over the tropical Indian Ocean may be responsible for the following late-winter Eurasian teleconnections and the associated JSTA events in China. We show that sea surface temperature anomalies (SSTAs) in the preceding summer over the western Indian Ocean (WIO) are intimately related to the UMLB-like circulation pattern in the following January. Positive WIOSSTAs in early summer tend to induce strong UMLB-like circulation anomalies in January, which may result in anomalously or extremely cold events in China, which can also be successfully reproduced in model experiments. Our results suggest that the WIOSSTAs may be a useful precursor for predicting JSTA events in China.
Recent Climate Variability in Antarctica from Satellite-derived Temperature Data
NASA Technical Reports Server (NTRS)
Schneider, David P.; Steig, Eric J.; Comiso, Josefino C.
2004-01-01
Recent Antarctic climate variability on month-to-month to interannual time scales is assessed through joint analysis of surface temperatures from satellite thermal infrared observations (T(sub IR)) and passive microwave brightness temperatures (T(sub B)). Although Tw data are limited to clear-sky conditions and T(sub B) data are a product of the temperature and emissivity of the upper approx. 1m of snow, the two data sets share significant covariance. This covariance is largely explained by three empirical modes, which illustrate the spatial and temporal variability of Antarctic surface temperatures. T(sub B) variations are damped compared to TIR variations, as determined by the period of the temperature forcing and the microwave emission depth; however, microwave emissivity does not vary significantly in time. Comparison of the temperature modes with Southern Hemisphere (SH) 500-hPa geopotential height anomalies demonstrates that Antarctic temperature anomalies are predominantly controlled by the principal patterns of SH atmospheric circulation. The leading surface temperature mode strongly correlates with the Southern Annular Mode (SAM) in geopotential height. The second temperature mode reflects the combined influences of the zonal wavenumber-3 and Pacific South American (PSA) patterns in 500-hPa height on month-to-month timescales. ENSO variability projects onto this mode on interannual timescales, but is not by itself a good predictor of Antarctic temperature anomalies. The third temperature mode explains winter warming trends, which may be caused by blocking events, over a large region of the East Antarctic plateau. These results help to place recent climate changes in the context of Antarctica's background climate variability and will aid in the interpretation of ice core paleoclimate records.
The role of local heating in the 2015 Indian Heat Wave.
Ghatak, Debjani; Zaitchik, Benjamin; Hain, Christopher; Anderson, Martha
2017-08-09
India faced a major heat wave during the summer of 2015. Temperature anomalies peaked in the dry period before the onset of the summer monsoon, suggesting that local land-atmosphere feedbacks involving desiccated soils and vegetation might have played a role in driving the heat extreme. Upon examination of in situ data, reanalysis, satellite observations, and land surface models, we find that the heat wave included two distinct peaks: one in late May, and a second in early June. During the first peak we find that clear skies led to a positive net radiation anomaly at the surface, but there is no significant sensible heat flux anomaly within the core of the heat wave affected region. By the time of the second peak, however, soil moisture had dropped to anomalously low levels in the core heat wave region, net surface radiation was anomalously high, and a significant positive sensible heat flux anomaly developed. This led to a substantial local forcing on air temperature that contributed to the intensity of the event. The analysis indicates that the highly agricultural landscape of North and Central India can reinforce heat extremes under dry conditions.
Oceanic Precondition and Evolution of the Indian Ocean Dipole Events
NASA Astrophysics Data System (ADS)
Horii, T.; Masumoto, Y.; Ueki, I.; Hase, H.; Mizuno, K.
2008-12-01
Indian Ocean Dipole (IOD) is one of the interannual climate variability in the Indian Ocean, associated with the negative (positive) SST anomaly in the eastern (western) equatorial region developing during boreal summer/autumn seasons. Japan Agency for Marine-Earth Science and Technology (JAMSTEC) has been deploying TRITON buoys in the eastern equatorial Indian Ocean since October 2001. Details of subsurface ocean conditions associated with IOD events were observed by the mooring buoys in the eastern equatorial Indian Ocean in 2006, 2007, and 2008. In the 2006 IOD event, large-scale sea surface signals in the tropical Indian Ocean associated with the positive IOD started in August 2006, and the anomalous conditions continued until December 2006. Data from the mooring buoys, however, captured the first appearance of the negative temperature anomaly at the thermocline depth with strong westward current anomalies in May 2006, about three months earlier than the development of the surface signatures. Similar appearance of negative temperature anomalies in the subsurface were also observed in 2007 and 2008, while the amplitude, the timing, and the relation to the surface layer were different among the events. The implications of the subsurface conditions for the occurrences of these IOD events are discussed.
Time Scales and Sources of European Temperature Variability
NASA Astrophysics Data System (ADS)
Årthun, Marius; Kolstad, Erik W.; Eldevik, Tor; Keenlyside, Noel S.
2018-04-01
Skillful predictions of continental climate would be of great practical benefit for society and stakeholders. It nevertheless remains fundamentally unresolved to what extent climate is predictable, for what features, at what time scales, and by which mechanisms. Here we identify the dominant time scales and sources of European surface air temperature (SAT) variability during the cold season using a coupled climate reanalysis, and a statistical method that estimates SAT variability due to atmospheric circulation anomalies. We find that eastern Europe is dominated by subdecadal SAT variability associated with the North Atlantic Oscillation, whereas interdecadal and multidecadal SAT variability over northern and southern Europe are thermodynamically driven by ocean temperature anomalies. Our results provide evidence that temperature anomalies in the North Atlantic Ocean are advected over land by the mean westerly winds and, hence, provide a mechanism through which ocean temperature controls the variability and provides predictability of European SAT.
Spring Soil Temperature Anomalies over Tibetan Plateau and Summer Droughts/Floods in East Asia
NASA Astrophysics Data System (ADS)
Xue, Y.; Li, W.; LI, Q.; Diallo, I.; Chu, P. C.; Guo, W.; Fu, C.
2017-12-01
Recurrent extreme climate events, such as droughts and floods, are important features of the climate of East Asia, especially over the Yangtze River basin. Many studies have attributed these episodes to variability and anomaly of global sea surface temperatures (SST) anomaly. In addition, snow in the Tibetan Plateau has also been considered as one of the factors affecting the Asian monsoon variability. However, studies have consistently shown that SST along is unable to explain the extreme climate events fully and snow has difficulty to use as a predictor. Remote effects of observed large-scale land surface temperature (LST) and subsurface temperature variability in Tibetan Plateau (TP) on East Asian regional droughts/floods, however, have been largely ignored. We conjecture that a temporally filtered response to snow anomalies may be preserved in the LST anomaly. In this study, evidence from climate observations and model simulations addresses the LST/SUBT effects. The Maximum Covariance Analysis (MCA) of observational data identifies that a pronounce spring LST anomaly pattern over TP is closely associated with precipitation anomalies in East Asia with a dipole pattern, i.e., negative/positive TP spring LST anomaly is associated with the summer drought/flood over the region south of the Yangtze River and wet/dry conditions to the north of the Yangtze River. Climate models were used to demonstrate a causal relationship between spring cold LST anomaly in the TP and the severe 2003 drought over the southern part of the Yangtze River in eastern Asia. This severe drought resulted in 100 x 106 kg crop yield losses and an economic loss of 5.8 billion Chinese Yuan. The modeling study suggests that the LST effect produced about 58% of observed precipitation deficit; while the SST effect produced about 32% of the drought conditions. Meanwhile, the LST and SST effects also simulated the observed flood over to the north of the Yangtze River. This suggests that inclusion of this LST effect is essential to make reliable East Asian drought/flood predictions.
Cloud Feedback Key to Marine Heatwave off Baja California
NASA Astrophysics Data System (ADS)
Myers, Timothy A.; Mechoso, Carlos R.; Cesana, Gregory V.; DeFlorio, Michael J.; Waliser, Duane E.
2018-05-01
Between 2013 and 2015, the northeast Pacific Ocean experienced the warmest surface temperature anomalies in the modern observational record. This "marine heatwave" marked a shift of Pacific decadal variability to its warm phase and was linked to significant impacts on marine species as well as exceptionally arid conditions in western North America. Here we show that the subtropical signature of this warming, off Baja California, was associated with a record deficit in the spatial coverage of co-located marine boundary layer clouds. This deficit coincided with a large increase in downwelling solar radiation that dominated the anomalous energy budget of the upper ocean, resulting in record-breaking warm sea surface temperature anomalies. Our observation-based analysis suggests that a positive cloud-surface temperature feedback was key to the extreme intensity of the heatwave. The results demonstrate the extent to which boundary layer clouds can contribute to regional variations in climate.
Status of the geopotential. [earth gravity measurement
NASA Technical Reports Server (NTRS)
Lerch, F. J.
1983-01-01
Satellite laser ranging, satellite altimetry, and improved measurements of surface gravitational anomalies have broadened the data base on intermediate and short wavelength regions of the earth gravity field. The global data set served to develop new geopotential models with a resolution in spherical harmonics out to degree 180. The resolution was made possible using Seasat altimetry data containing 56,761 values of 1 x 1 deg gravity anomalies. Satellite-to-satellite tracking techniques involving the Geos-3 and Apollo spacecraft data for the sea surface temperature have yielded accurate intermediate wavelength gravity variations which correlate well with residual depth anomalies. Oceanic gravity anomalies have been computed directly from satellite altimetry or through statistical estimation using oceanic geoid heights. The data sets for gravimetric geoids have been compared with altimetric surfaces to identify areas which were of interest for geophysical investigation. Future data sets could become available from a proposed satellite-to-satellite Doppler tracking system (Gravsat) launched by NASA.
Contrasting Effects of Central Pacific and Eastern Pacific El Nino on Stratospheric Water Vapor
NASA Technical Reports Server (NTRS)
Garfinkel, Chaim I.; Hurwitz, Margaret M.; Oman, Luke D.; Waugh, Darryn W.
2013-01-01
Targeted experiments with a comprehensive chemistry-climate model are used to demonstrate that seasonality and the location of the peak warming of sea surface temperatures dictate the response of stratospheric water vapor to El Nino. In spring, El Nino events in which sea surface temperature anomalies peak in the eastern Pacific lead to a warming at the tropopause above the warm pool region, and subsequently to more stratospheric water vapor (consistent with previous work). However, in fall and in early winter, and also during El Nino events in which the sea surface temperature anomaly is found mainly in the central Pacific, the response is qualitatively different: temperature changes in the warm pool region are nonuniform and less water vapor enters the stratosphere. The difference in water vapor in the lower stratosphere between the two variants of El Nino approaches 0.3 ppmv, while the difference between the winter and spring responses exceeds 0.5 ppmv.
NASA Technical Reports Server (NTRS)
Susskind, Joel; Lee, Jae N.; Iredell, Lena
2014-01-01
In this presentation, we will briefly describe the significant improvements made in the AIRS Version-6 retrieval algorithm, especially as to how they affect retrieved surface skin and surface air temperatures. The global distribution of seasonal 1:30 AM and 1:30 PM local time 12 year climatologies of Ts,a will be presented for the first time. We will also present the spatial distribution of short term 12 year anomaly trends of Ts,a at 1:30 AM and 1:30 PM, as well as the spatial distribution of temporal correlations of Ts,a with the El Nino Index. It will be shown that there are significant differences between the behavior of 1:30 AM and 1:30 PM Ts,a anomalies in some arid land areas.
NASA Technical Reports Server (NTRS)
Lin, J.; Parmentier, E. M.
1985-01-01
Finite difference calculations of thermal convection in a fluid layer with a viscosity exponentially decreasing with temperature are performed in the context of examining the topography and gravity anomalies due to mantle convection. The surface topography and gravity anomalies are shown to be positive over regions of ascending flow and negative over regions of descending flow; at large Rayleigh numbers the amplitude of surface topography is inferred to depend on Rayleigh number to the power of 7/9. Compositional stratifications of the mantle is proposed as a mechanism for confining small-scale convection to a thin layer. A comparative analysis of the results with other available models is included.
NASA Astrophysics Data System (ADS)
Angel, E.; Ortega, S.; Gonzalez-Duque, D.; Ruiz-Carrascal, D.
2016-12-01
Geothermal energy production depends on the difference between air temperature and the geothermal fluid temperature. The latter remains approximately constant over time, so the power generation varies according to local atmospheric conditions. Projected changes in near-surface air temperatures in the upper levels of the tropical belt are likely to exceed the projected temperature anomalies across many other latitudes, which implies that geothermal plants located in these regions may be affected, reducing their energy output. This study focuses on a hypothetical geothermal power plant, located in the headwaters of the Claro River watershed, a key high-altitude basin in Los Nevados Natural Park, on the El Ruiz-Tolima volcanic massif, in the Colombian Central Andes, a region with a known geothermal potential. Four different Atmospheric General Circulation Models where used to project temperature anomalies for the 2040-2069 prospective period. Their simulation outputs were merged in a differentially-weighted multi-model ensemble, whose weighting factors were defined according to the capability of individual models to reproduce ground truth data from a set of digital data-loggers installed in the basin since 2008 and from weather stations gathering climatic variables since the early 50s. Projected anomalies were computed for each of the Representative Concentration Pathways defined by the IPCC Fifth Assessment Report in the studied region. These climate change projections indicate that air temperatures will likely reach positive anomalies in the range +1.27 ºC to +3.47 ºC, with a mean value of +2.18 ºC. Under these conditions, the annual energy output declines roughly 1% per each degree of increase in near-surface temperature. These results must be taken into account in geothermal project evaluations in the region.
NASA Astrophysics Data System (ADS)
Fang, J.
2017-12-01
The structure and dynamics of decadal anomalies in the wintertime midlatitude North Pacific ocean- atmosphere system are examined in this study, using the NCEP/NCAR atmospheric reanalysis, HadISST SST and Simple Ocean Data Assimilation data for 1960-2010. The midlatitude decadal anomalies associated with the Pacific Decadal Oscillation are identified, being characterized by an equivalent barotropic atmospheric low (high) pressure over a cold (warm) oceanic surface. Such a unique configuration of decadal anomalies can be maintained by an unstable ocean-atmosphere interaction mechanism in the midlatitudes, which is hypothesized as follows. Associated with a warm PDO phase, an initial midlatitude surface westerly anomaly accompanied with intensified Aleutian low tends to force a negative SST anomaly by increasing upward surface heat fluxes and driving southward Ekman current anomaly. The SST cooling tends to increase the meridional SST gradient, thus enhancing the subtropical oceanic front. As an adjustment of the atmospheric boundary layer to the enhanced oceanic front, the low-level atmospheric meridional temperature gradient and thus the low-level atmospheric baroclinicity tend to be strengthened, inducing more active transient eddy activities that increase transient eddy vorticity forcing. The vorticity forcing that dominates the total atmospheric forcing tends to produce an equivalent barotropic atmospheric low pressure north of the initial westerly anomaly, intensifying the initial anomalies of the midlatitude surface westerly and Aleutian low. Therefore, it is suggested that the midlatitude ocean-atmosphere interaction can provide a positive feedback mechanism for the development of initial anomaly, in which the oceanic front and the atmospheric transient eddy are the indispensable ingredients. Such a positive ocean-atmosphere feedback mechanism is fundamentally responsible for the observed decadal anomalies in the midlatitude North Pacific ocean-atmosphere system.
NASA Astrophysics Data System (ADS)
Deng, Qimin; Nian, Da; Fu, Zuntao
2018-02-01
Previous studies in the literature show that the annual cycle of surface air temperature (SAT) is changing in both amplitude and phase, and the SAT departures from the annual cycle are long-term correlated. However, the classical definition of temperature anomalies is based on the assumption that the annual cycle is constant, which contradicts the fact of changing annual cycle. How to quantify the impact of the changing annual cycle on the long-term correlation of temperature anomaly variability still remains open. In this paper, a recently developed data adaptive analysis tool, the nonlinear mode decomposition (NMD), is used to extract and remove time-varying annual cycle to reach the new defined temperature anomalies in which time-dependent amplitude of annual cycle has been considered. By means of detrended fluctuation analysis, the impact induced by inter-annual variability from the time-dependent amplitude of annual cycle has been quantified on the estimation of long-term correlation of long historical temperature anomalies in Europe. The results show that the classical climatology annual cycle is supposed to lack inter-annual fluctuation which will lead to a maximum artificial deviation centering around 600 days. This maximum artificial deviation is crucial to defining the scaling range and estimating the long-term persistence exponent accurately. Selecting different scaling range could lead to an overestimation or underestimation of the long-term persistence exponent. By using NMD method to extract the inter-annual fluctuations of annual cycle, this artificial crossover can be weakened to extend a wider scaling range with fewer uncertainties.
Neupane, M; Alidoust, N; Xu, S-Y; Kondo, T; Ishida, Y; Kim, D J; Liu, Chang; Belopolski, I; Jo, Y J; Chang, T-R; Jeng, H-T; Durakiewicz, T; Balicas, L; Lin, H; Bansil, A; Shin, S; Fisk, Z; Hasan, M Z
2013-01-01
The Kondo insulator SmB6 has long been known to exhibit low-temperature transport anomalies whose origin is of great interest. Here we uniquely access the surface electronic structure of the anomalous transport regime by combining state-of-the-art laser and synchrotron-based angle-resolved photoemission techniques. We observe clear in-gap states (up to ~4 meV), whose temperature dependence is contingent on the Kondo gap formation. In addition, our observed in-gap Fermi surface oddness tied with the Kramers' point topology, their coexistence with the two-dimensional transport anomaly in the Kondo hybridization regime, as well as their robustness against thermal recycling, taken together, collectively provide strong evidence for protected surface metallicity with a Fermi surface whose topology is consistent with the theoretically predicted topological Fermi surface. Our observations of systematic surface electronic structure provide the fundamental electronic parameters for the anomalous Kondo ground state of correlated electron material SmB6.
NASA Astrophysics Data System (ADS)
Chen, Shangfeng; Song, Linye
2018-06-01
This study analyzes the impact of the winter North Pacific Oscillation (NPO) on the surface air temperature (SAT) variations over Eurasia and North America based on six different NPO indices. Results show that the influences of the winter NPO on the SAT over Eurasia and North America are sensitive to the definition of the NPO index. The impact of the winter NPO on the SAT variations over Eurasia (North America) is significant (insignificant) when the anticyclonic anomaly associated with the NPO index over the North Pacific midlatitudes shifts westward and pronounced northerly wind anomalies appear around Lake Baikal. By contrast, the impact of the winter NPO on the SAT variations over Eurasia (North America) is insignificant (significant) when the anticyclonic anomaly over the North Pacific related to the NPO index shifts eastward and the associated northerly wind anomalies to its eastern flank extend to North America. The present study suggests that the NPO definition should be taken into account when analyzing the impact of the winter NPO on Eurasian and North American SAT variations.
Daily temperature variations on Mars
NASA Technical Reports Server (NTRS)
Ditteon, R.
1982-01-01
It is noted that for approximately 32% of the Martian surface area no values of thermal inertia or albedo can fit the thermal observations. These temperature anomalies do not correlate with elevation, geologic units, morphology, or atmospheric dust content. All regions having a Lambert albedo less than 0.18 can be well fit with the standard thermal model, but all areas with albedo greater than 0.28 are anomalous. A strong inverse correlation is seen between the magnitude of the anomaly and the thermal inertia. This correlation is seen as indicating that some surface property is responsible for the anomaly. In the anomalous region the temperatures are observed to be warmer in the morning and cooler late in the afternoon and to decrease more slowly during the night than the Viking model temperatures. It is believed that of all the physical processes likely to occur on Mars but not included in the Viking thermal model, only a layered soil can explain the observations. A possible explanation of the layering deduced from the infrared thermal mapper observations is a layer of aeolian deposited dust about one thermal skin depth thick (1 to 4 cm), covering a duricrust.
NASA Astrophysics Data System (ADS)
Ballabrera, Joaquim; Hoareau, Nina; Umbert, Marta; Martínez, Justino; Turiel, Antonio
2013-04-01
Prediction of El Niño/Southern Oscillation (ENSO), and its relation with global climate anomalies, continues to be an important research effort in short-term climate forecasting. This task has become even more challenging as researchers are becoming more and more convinced that there is not a single archetypical El Niño (or La Niña) pattern, but several. During some events (called now Standard or East Pacific), the largest temperature anomalies are located at the eastern part of the Pacific. However, during some of the most recent events, the largest anomalies are restricted to the central part of the Pacific Ocean, and are now called Central Pacific or Modoki (a Japanese word for "almost") events. Although the role of salinity in operational ENSO forecasting was initially neglected (in contrast with temperature, sea level, or surface winds), recent studies have shown that salinity does play a role in the preconditioning of ENSO. Moreover, some researchers suggest that sea surface salinity might play a role (through the modulation of the western Pacific barrier layer) to favor the Standard or the Modoki nature of each event. Sea Surface Salinity maps are being operationally generated from microwave (L-band, 1.4 Ghz) brightness temperature maps. The L-band frequency was chosen because is the optimal one for ocean salinity measurements. However, after three years of satellite data, it has been found that noise in brightness temperatures (due to natural and artificial sources) is larger than expected. Moreover, the retrieval of SSS information requires special care because of the low sensitivity of the brightness temperature to SSS: from 0.2-0.8 K per salinity unit. Despite of all these facts, current accuracy of SS maps ranges from 0.2-0.4, depending on the processing level and the region being considered. We present here our study about the salinity variability in the tropical Pacific Ocean from the 9-day, 0.25 bins salinity maps derived from the SMOS reprocessing campaign released to the SMOS user community on March 2011. During the period under study, the equatorial Pacific has been in a quasi-continuous La Niña state. During the cold phases of ENSO, positive anomalies of SSS are expected with the largest anomalous values in the western warm-fresh pool. The anomalies derived from the SMOS data do indeed display a positive anomaly. The persistence of the feature, its geographical pattern, the time modulation of the anomaly amplitude indicate, and its resemblance with in situ observations indicate this novel observation technology is currently able to capture seasonal and interannual signatures of climate interest.
Integrated exploration for low-temperature geothermal resources in the Honey Lake basin, California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schimschal, U.
An integrated exploration study is presented to locate low-temperature geothermal reservoirs in the Honey Lake area of northern California. Regional studies to locate the geothermal resources included gravity, infrared, water-temperature, and water-quality analyses. Five anomalies were mapped from resistivity surveys. Additional study of three anomalies by temperature-gradient and seismic methods was undertaken to define structure and potential of the geothermal resource. The gravity data show a graben structure in the area. Seismic reflection data, indicate faults associated with surface-resistivity and temperature-gradient data. The data support the interpretation that the shallow reservoirs are replenished along the fault zones by deeply circulatingmore » heated meteoric waters.« less
Integrated exploration for low-temperature geothermal resources in the Honey Lake Basin, California
Schimschal, U.
1991-01-01
An integrated exploration study is presented to locate low-temperature geothermal reservoirs in the Honey Lake area of northern California. Regional studies to locate the geothermal resources included gravity, infra-red, water-temperature, and water-quality analyses. Five anomalies were mapped from resistivity surveys. Additional study of three anomalies by temperature-gradient and seismic methods was undertaken to define structure and potential of the geothermal resource. The gravity data show a graben structure in the area. Seismic reflection data indicate faults associated with surface-resistivity and temperature-gradient data. The data support the interpretation that the shallow reservoirs are replenished along the fault zones by deeply circulating heated meteoric waters. -Author
Abrupt Decline in the Arctic Winter Sea Ice Cover
NASA Technical Reports Server (NTRS)
Comiso, Josefino C.
2007-01-01
Maximum ice extents in the Arctic in 2005 and 2006 have been observed to be significantly lower (by about 6%) than the average of those of previous years starting in 1979. Since the winter maxima had been relatively stable with the trend being only about -1.5% per decade (compared to about -10% per decade for the perennial ice area), this is a significant development since signals from greenhouse warming are expected to be most prominent in winter. Negative ice anomalies are shown to be dominant in 2005 and 2006 especially in the Arctic basin and correlated with winds and surface temperature anomalies during the same period. Progressively increasing winter temperatures in the central Arctic starting in 1997 is observed with significantly higher rates of increase in 2005 and 2006. The Atlantic Oscillation (AO) indices correlate weakly with the sea ice and surface temperature anomaly data but may explain the recent shift in the perennial ice cover towards the western region. Results suggest that the trend in winter ice is finally in the process of catching up with that of the summer ice cover.
NASA Technical Reports Server (NTRS)
Chow, S. H.
1974-01-01
The possible response of the atmosphere, as simulated by the two level Mintz-Arakawa global general circulation model, to a transient North Pacific sea surface temperature anomaly is investigated in terms of the energetics both in the spatial and wave number domains. Results indicate that the transient SST variations of reasonable magnitude in the North Pacific Ocean can induce a disturbing effect on the global energetics both in the spatial and wave number domains. The ability of the two level Mintz-Arakawa model to simulate the atmospheric energetics is also examined. Except in the tropics, the model exhibits a reasonable and realistic energy budget.
Greenland Ice Sheet Melt from MODIS and Associated Atmospheric Variability
NASA Technical Reports Server (NTRS)
Hakkinen, Sirpa; Hall, Dorothy K.; Shuman, Christopher A.; Worthen, Denise L.; DiGirolamo, Nicolo E.
2014-01-01
Daily June-July melt fraction variations over the Greenland Ice Sheet (GIS) derived from the MODerate-resolution Imaging Spectroradiometer (MODIS) (2000-2013) are associated with atmospheric blocking forming an omega-shape ridge over the GIS at 500hPa height (from NCEPNCAR). Blocking activity with a range of time scales, from synoptic waves breaking poleward ( 5 days) to full-fledged blocks (5 days), brings warm subtropical air masses over the GIS controlling daily surface temperatures and melt. The temperature anomaly of these subtropical air mass intrusions is also important for melting. Based on the largest MODIS melt years (2002 and 2012), the area-average temperature anomaly of 2 standard deviations above the 14-year June-July mean, results in a melt fraction of 40 or more. Summer 2007 had the most blocking days, however atmospheric temperature anomalies were too small to instigate extreme melting.
NASA Technical Reports Server (NTRS)
Hegyi, Bradley M.; Taylor, Patrick C.
2017-01-01
An analysis of 2000-2015 monthly Clouds and the Earth's Radiant Energy System-Energy Balanced and Filled (CERES-EBAF) and Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA2) data reveals statistically significant fall and wintertime relationships between Arctic surface longwave (LW) radiative flux anomalies and the Arctic Oscillation (AO) and Arctic Dipole (AD). Signifying a substantial regional imprint, a negative AD index corresponds with positive downwelling clear-sky LW flux anomalies (greater than10W m(exp -2)) north of western Eurasia (0 deg E-120 deg E) and reduced sea ice growth in the Barents and Kara Seas in November-February. Conversely, a positive AO index coincides with negative clear-sky LW flux anomalies and minimal sea ice growth change in October-November across the Arctic. Increased (decreased) atmospheric temperature and water vapor coincide with the largest positive (negative) clear-sky flux anomalies. Positive surface LW cloud radiative effect anomalies also accompany the negative AD index in December-February. The results highlight a potential pathway by which Arctic atmospheric variability influences the regional surface radiation budget over areas of Arctic sea ice growth.
The Effect of Ocean Currents on Sea Surface Temperature Anomalies
NASA Technical Reports Server (NTRS)
Stammer, Detlef; Leeuwenburgh, Olwijn
2000-01-01
We investigate regional and global-scale correlations between observed anomalies in sea surface temperature and height. A strong agreement between the two fields is found over a broad range of latitudes for different ocean basins. Both time-longitude plots and wavenumber-frequency spectra suggest an advective forcing of SST anomalies by a first-mode baroclinic wave field on spatial scales down to 400 km and time scales as short as 1 month. Even though the magnitude of the mean background temperature gradient is determining for the effectiveness of the forcing, there is no obvious seasonality that can be detected in the amplitudes of SST anomalies. Instead, individual wave signatures in the SST can in some cases be followed over periods of two years. The phase relationship between SST and SSH anomalies is dependent upon frequency and wavenumber and displays a clear decrease of the phase lag toward higher latitudes where the two fields come into phase at low frequencies. Estimates of the damping coefficient are larger than generally obtained for a purely atmospheric feedback. From a global frequency spectrum a damping time scale of 2-3 month was found. Regionally results are very variable and range from 1 month near strong currents to 10 month at low latitudes and in the sub-polar North Atlantic. Strong agreement is found between the first global EOF modes of 10 day averaged and spatially smoothed SST and SSH grids. The accompanying time series display low frequency oscillations in both fields.
Analysis and interpretation of MAGSAT anomalies over north Africa
NASA Technical Reports Server (NTRS)
Phillips, R. J.
1985-01-01
Crustal anomaly detection with MAGSAT data is frustrated by inherent resolving power of the data and by contamination from external and core fields. Quality of the data might be tested by modeling specific tectonic features which produce anomalies that fall within proposed resolution and crustal amplitude capabilities of MAGSAT fields. To test this hypothesis, north African hotspots associated with Ahaggar, Tibesti and Darfur were modeled as magnetic induction anomalies. MAGSAT data were reduced by subtracting external and core fields to isolate scalar and vertical component crustal signals. Of the three volcanic areas, only the Ahaggar region had an associated anomaly of magnitude above error limits of the data. Hotspot hypothesis was tested for Ahaggar by seeing if predicted magnetic signal matched MAGSAT anomaly. Predicted model magnetic signal arising from surface topography of the uplift and the Curie isothermal surface was calculated at MAGSAT altitudes by Fourier transform technique modified to allow for variable magnetization. Curie isotherm surface was calculated using a method for temperature distribution in a moving plate above a fixed hotspot. Magnetic signal was calculated for a fixed plate as well as a number of plate velocities and directions.
Is climate change intensifying the drying-trend in the Caribbean?
NASA Astrophysics Data System (ADS)
Herrera, D. A.; Ault, T.; Fasullo, J.; Carrillo, C. M.
2017-12-01
Since 1950, the Caribbean (11ºN-25ºN; 85ºW-60ºW) has seen a significant drying trend characterized by several recent droughts, some of them contemporaneous with El Niño events. Moreover, the most recent drought from 2013 to 2016 was both the most severe and widespread event since at least 1950, and was associated with high temperatures, likely driven in part by climate change. This work examines the role of increased evaporative demand resulting from warmer temperatures on the drying trend observed in the Caribbean since 1950, using observations and model simulations. Large-scale dynamics associated with drought are also analyzed using sea surface temperature, geopotential height, wind, and precipitation anomalies, as well as radiative fluxes anomalies. Furthermore, land surface model soil moisture and high-resolution self-calibrated Palmer Drought Severity Index (scPDSI) datasets are used to quantify drought severity at local scales. The anthropogenic contribution to drought severity is estimated as the difference between the scPDSI calculated using linearly-detrended temperatures, and the scPDSI computed with the observed trend, with unadjusted precipitation, net radiation, and wind speed. Soil moisture anomalies driven by climate change are derived by comparing a large ensemble of forced simulations against a pre-industrial control. The resulting analysis indicates that anthropogenic forcing has intensified the drying trend in the Caribbean by -0.4 scPDSI-units over 60 years, and has increased the dry-land area by 10%. These findings are consistent with observed potential evapotranspiration (PET) anomalies, which are 30% higher than PET-anomalies estimated using detrended temperatures. These results suggest that climate change is already increasing the risk of drought in the Caribbean by enhancing the atmospheric demand of moisture through temperature, and provide insights into the role of climate change in future drought risk in the region.
The 2014-2015 Warming Anomaly in the Southern California Current System: Glider Observations
NASA Astrophysics Data System (ADS)
Zaba, K. D.; Rudnick, D. L.
2016-02-01
During 2014-2015, basin-wide patterns of oceanic and atmospheric anomalies affected surface waters throughout the North Pacific Ocean. We present regional physical and biological effects of the warming, as observed by our autonomous underwater gliders in the southern California Current System (SCCS). Established in 2006, the California Glider Network provides sustained subsurface observations for monitoring the coastal effects of large-scale climate variability. Along repeat sections that extend to 350-500 km in offshore distance and 500 m in depth, Spray gliders have continuously occupied CalCOFI lines 66.7, 80, and 90 for nearly nine years. Following a sawtooth trajectory, the gliders complete each dive in approximately 3 hours and over 3 km. Measured variables include pressure, temperature, salinity, chlorophyll fluorescence, and velocity. For each of the three lines, a comprehensive climatology has been constructed from the multiyear timeseries. The ongoing surface-intensified warming anomaly, which began locally in early 2014 and persists through present, is unprecedented in the glider climatology. Reaching up to 5°C, positive temperature anomalies have been generally confined to the upper 50 m and persistent for over 20 months. The timing of the warming was in phase along each glider line but out of phase with equatorial SST anomalies, suggesting a decoupling of tropical and mid-latitude dynamics. Concurrent physical oceanographic anomalies included a depressed thermocline and high stratification. An induced biological response was apparent in the deepening of the subsurface chlorophyll fluorescence maximum. Ancillary atmospheric data from the NCEP North American Mesoscale (NAM) model indicate that a combination of surface forcing anomalies, namely high downward heat flux and weak wind stress magnitude, caused the unusual warm, downwelling conditions. With a strong El Niño event in the forecast for winter 2015-2016, our sustained glider network will continue to measure the evolution of the shallow warm pool in the SCCS and its potential interaction with ENSO-related anomalies.
Characterizing preferential groundwater discharge through boils using temperature
NASA Astrophysics Data System (ADS)
Vandenbohede, A.; de Louw, P. G. B.; Doornenbal, P. J.
2014-03-01
In The Netherlands, preferential groundwater discharge trough boils is a key process in the salinization of deep polders. Previous work showed that boils also influence the temperature in the subsurface and of surface water. This paper elaborates on this process combining field observations with numerical modeling. As is the case for salinity, a distinct anomaly in the subsurface and surface water temperature can be attributed to boils. Lines of equal temperature are distorted towards the boil, which can be considered as an upconing of the temperature profile by analogy of the upconing of a fresh-saltwater interface. The zone of this distortion is limited to the immediate vicinity of the boil, being about 5 m in the aquitard which holds the boil's conduit, or maximum a few dozens of meters in the underlying aquifer. In the aquitard, heat transport is conduction dominated whereas this is convection dominated in the aquifer. The temperature anomaly differs from the salinity anomaly by the smaller radius of influence and faster time to reach a new steady-state of the former. Boils discharge water with a temperature equal to the mean groundwater temperature. This influences the yearly and diurnal variation of ditch water temperature in the immediate vicinity of the boil importantly but also the temperature in the downstream direction. Temporary nature of the boil (e.g. stability of the conduit, discharge rate), uncertainty on the 3D construction of the conduit and heterogeneity of the subsoil make it unlikely that temperature measurements can be interpreted further than a qualitative level.
Western US high June 2015 temperatures and their relation to global warming and soil moisture
NASA Astrophysics Data System (ADS)
Philip, Sjoukje Y.; Kew, Sarah F.; Hauser, Mathias; Guillod, Benoit P.; Teuling, Adriaan J.; Whan, Kirien; Uhe, Peter; Oldenborgh, Geert Jan van
2018-04-01
The Western US states Washington (WA), Oregon (OR) and California (CA) experienced extremely high temperatures in June 2015. The temperature anomalies were so extreme that they cannot be explained with global warming alone. We investigate the hypothesis that soil moisture played an important role as well. We use a land surface model and a large ensemble from the weather@home modelling effort to investigate the coupling between soil moisture and temperature in a warming world. Both models show that May was anomalously dry, satisfying a prerequisite for the extreme heat wave, and they indicate that WA and OR are in a wet-to-dry transitional soil moisture regime. We use two different land surface-atmosphere coupling metrics to show that there was strong coupling between temperature, latent heat flux and the effect of soil moisture deficits on the energy balance in June 2015 in WA and OR. June temperature anomalies conditioned on wet/dry conditions show that both the mean and extreme temperatures become hotter for dry soils, especially in WA and OR. Fitting a Gaussian model to temperatures using soil moisture as a covariate shows that the June 2015 temperature values fit well in the extrapolated empirical temperature/drought lines. The high temperature anomalies in WA and OR are thus to be expected, given the dry soil moisture conditions and that those regions are in the transition from a wet to a dry regime. CA is already in the dry regime and therefore the necessity of taking soil moisture into account is of lower importance.
Atmospheric Teleconnection over Eurasia Induced by Aerosol Radiative Forcing during Boreal Spring
NASA Technical Reports Server (NTRS)
Kim, Maeng-Ki; Lau, William K. M.; Chin, Mian; Kim, Kyu-Myong; Sud, Y. C.; Walker, Greg K.
2006-01-01
The direct effects of aerosols on global and regional climate during boreal spring are investigated based on numerical simulations with the NASA Global Modeling and Assimilation Office finite-volume general circulation model (fvGCM) with Microphyics of Clouds with the Relaxed Arakawa Schubert Scheme (McRAS), using aerosol forcing functions derived from the Goddard Ozone Chemistry Aerosol Radiation and Transport model (GOCART). The authors find that anomalous atmospheric heat sources induced by absorbing aerosols (dust and black carbon) excite a planetary-scale teleconnection pattern in sea level pressure, temperature, and geopotential height spanning North Africa through Eurasia to the North Pacific. Surface cooling due to direct effects of aerosols is found in the vicinity and downstream of the aerosol source regions, that is, South Asia, East Asia, and northern and western Africa. Significant atmospheric heating is found in regions with large loading of dust (over northern Africa and the Middle East) and black carbon (over Southeast Asia). Paradoxically, the most pronounced feature in aerosol-induced surface temperature is an east west dipole anomaly with strong cooling over the Caspian Sea and warming over central and northeastern Asia, where aerosol concentrations are low. Analyses of circulation anomalies show that the dipole anomaly is a part of an atmospheric teleconnection pattern driven by atmospheric heating anomalies induced by absorbing aerosols in the source regions, but the influence was conveyed globally through barotropic energy dispersion and sustained by feedback processes associated with the regional circulations. The surface temperature signature associated with the aerosol-induced teleconnection bears striking resemblance to the spatial pattern of observed long-term trend in surface temperature over Eurasia. Additionally, the boreal spring wave train pattern is similar to that reported by Fukutomi et al. associated with the boreal summer precipitation seesaw between eastern and western Siberia. The results of this study raise the possibility that global aerosol forcing during boreal spring may play an important role in spawning atmospheric teleconnections that affect regional and global climates.
NASA Astrophysics Data System (ADS)
Kaneko, D.
2016-12-01
Climate change appears to have manifested itself along with abnormal meteorological disasters. Instability caused by drought and flood disasters is producing poor harvests because of poor photosynthesis and pollination. Fluctuations of extreme phenomena are increasing rapidly because amplitudes of change are much greater than average trends. A fundamental cause of these phenomena derives from increased stored energy inside ocean waters. Geophysical and biochemical modeling of crop production can elucidate complex mechanisms under seasonal climate anomalies. The models have progressed through their combination with global climate reanalysis, environmental satellite data, and harvest data on the ground. This study examined adaptation of crop production to advancing abnormal phenomena related to global climate change. Global environmental surface conditions, i.e., vegetation, surface air temperature, and sea surface temperature observed by satellites, enable global modeling of crop production and monitoring. Basic streams of the concepts of modeling rely upon continental energy flow and carbon circulation among crop vegetation, land surface atmosphere combining energy advection from ocean surface anomalies. Global environmental surface conditions, e.g., vegetation, surface air temperature, and sea surface temperature observed by satellites, enable global modeling of crop production and monitoring. The method of validating the modeling relies upon carbon partitioning in biomass and grains through carbon flow by photosynthesis using carbon dioxide unit in photosynthesis. Results of computations done for this study show global distributions of actual evaporation, stomata opening, and photosynthesis, presenting mechanisms related to advection effects from SST anomalies in the Pacific, Atlantic, and Indian oceans on global and continental croplands. For North America, climate effects appear clearly in severe atmospheric phenomena, which have caused drought and forest fires through seasonal advection thermal effects on potential evaporation by winds blowing eastward over California, the Grand Canyon, Monument Valley, and into the Great Plains. These coupled SST photosynthesis models constitute an advanced approach for crop modeling in the era of recent new climate.
Albedo as a modulator of climate response to tropical deforestation
NASA Technical Reports Server (NTRS)
Dirmeyer, Paul A.; Shukla, J.
1994-01-01
An atmospheric general circulation model with land surface properties represented by the simplified Simple Biosphere model is used to investigate the effects on local climate due to tropical deforestation for the Amazon basin. One control and three anomaly integrations of 4 years' duration are performed. In the anomaly integrations, rain forest in South America is replaced by degraded grassland. The anomaly integrations differ only in the optical properties of the grassland vegetation, with net surface albedos ranging from the same as to 0.09 lighter than that of rain forest. It is found that the change in climate, particularly rainfall, is strongly dependent on the change in surface albedo that accompanies deforestation. Replacement of forest by grass causes a reduction in transpiration and reduces frictional convergence by decreasing surface roughness. However, precipitation averaged over the deforested area is not necessarily reduced. Average precipitation decreases when the increase in albedo is greater than 0.03. If surface albedo is not increased appreciably as a result of deforestation, moisture flux convergence driven by the increase in surface temperature can offset the other effects, and average precipitation increases. As albedo is increased, surface temperature does not change, but surface latent and sensible heat flux decreases due to reduced radiational energy absorbed at the surface, resulting in a reduction in convection and precipitation. A change in the distribution of precipitation due to deforestation that appears to be independent of the albedo is observed.
Albedo as a modulator of climate response to tropical deforestation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dirmeyer, P.A.; Shukla, J.
1994-10-01
An atmospheric general circulation model with land surface properties represented by the simplified Simple Biosphere model is used to investigate the effects on local climate due to tropical deforestation for the Amazon basin. One control and three anomaly integrations of 4 years` duration are performed. In the anomaly integrations, rain forest in South America is replaced by degraded grassland. The anomaly integrations differ only in the optical properties of the grassland vegetation, with net surface albedos ranging from the same as to 0.09 lighter than that of rain forest. It is found that the change in climate, particularly rainfall, ismore » strongly dependent on the change in surface albedo that accompanies deforestation. Replacement of forest by grass causes a reduction in transpiration and reduces frictional convergence by decreasing surface roughness. However, precipitation averaged over the deforested area is not necessarily reduced. Average precipitation decreases when the increase in albedo is greater than 0.03. If surface albedo is not increased appreciably as a result of deforestation, moisture flux convergence driven by the increase in surface temperature can offset the other effects, and average precipitation increases. As albedo is increased, surface temperature does not change, but surface latent and sensible heat flux decreases due to reduced radiational energy absorbed at the surface, resulting in a reduction in convection and precipitation. A change in the distribution of precipitation due to deforestation that appears to be independent of the albedo is observed.« less
NASA Technical Reports Server (NTRS)
Cook, B. I.; Seager, R.; Miller, R. L.
2011-01-01
During the Medieval Climate Anomaly, North America experienced severe droughts and widespread mobilization of dune fields that persisted for decades. We use an atmosphere general circulation model, forced by a tropical Pacific sea surface temperature reconstruction and changes in the land surface consistent with estimates of dune mobilization (conceptualized as partial devegetation), to investigate whether the devegetation could have exacerbated the medieval droughts. Presence of devegetated dunes in the model significantly increases surface temperatures, but has little impact on precipitation or drought severity, as defined by either the Palmer Drought Severity Index or the ratio of precipitation to potential evapotranspiration. Results are similar to recent studies of the 1930s Dust Bowl drought, suggesting bare soil associated with the dunes, in and of itself, is not sufficient to amplify droughts over North America.
Interbasin effects of the Indian Ocean on Pacific decadal climate change
NASA Astrophysics Data System (ADS)
Mochizuki, Takashi; Kimoto, Masahide; Watanabe, Masahiro; Chikamoto, Yoshimitsu; Ishii, Masayoshi
2016-07-01
We demonstrate the significant impact of the Indian Ocean on the Pacific climate on decadal timescales by comparing two sets of data assimilation experiments (pacemaker experiments) conducted over recent decades. For the Indian Ocean of an atmosphere-ocean coupled global climate model, we assimilate ocean temperature and salinity anomalies defined as deviations from climatology or as anomalies with the area-averaged changes for the Indian Ocean subtracted. When decadal sea surface temperature (SST) trends are observed to be strong over the Indian Ocean, the equatorial thermocline uniformly deepens, and the model simulates the eastward tendencies of surface wind aloft. Surface winds strongly converge around the maritime continent, and the associated strengthening of the Walker circulation suppresses an increasing trend in the equatorial Pacific SST through ocean thermocline shoaling, similar to common changes associated with seasonal Indian Ocean warming.
NASA Technical Reports Server (NTRS)
1984-01-01
The Global Modeling and Simulation Branch (GMSB) of the Laboratory for Atmospheric Sciences (GLAS) is engaged in general circulation modeling studies related to global atmospheric and oceanographic research. The research activities discussed are organized into two disciplines: Global Weather/Observing Systems and Climate/Ocean-Air Interactions. The Global Weather activities are grouped in four areas: (1) Analysis and Forecast Studies, (2) Satellite Observing Systems, (3) Analysis and Model Development, (4) Atmospheric Dynamics and Diagnostic Studies. The GLAS Analysis/Forecast/Retrieval System was applied to both FGGE and post FGGE periods. The resulting analyses have already been used in a large number of theoretical studies of atmospheric dynamics, forecast impact studies and development of new or improved algorithms for the utilization of satellite data. Ocean studies have focused on the analysis of long-term global sea surface temperature data, for use in the study of the response of the atmosphere to sea surface temperature anomalies. Climate research has concentrated on the simulation of global cloudiness, and on the sensitivities of the climate to sea surface temperature and ground wetness anomalies.
Causes and Consequences of Exceptional North Atlantic Heat Loss in Recent Winters
NASA Astrophysics Data System (ADS)
Josey, Simon; Grist, Jeremy; Duchez, Aurelie; Frajka-Williams, Eleanor; Hirschi, Joel; Marsh, Robert; Sinha, Bablu
2016-04-01
The mid-high latitude North Atlantic loses large amounts of heat to the atmosphere in winter leading to dense water formation. An examination of reanalysis datasets (ERA-Interim, NCEP/NCAR) reveals that heat loss in the recent winters 2013-14 and 2014-15 was exceptionally strong. The causes and consequences of this extraordinary ocean heat loss will be discussed. In 2013-2014, the net air-sea heat flux anomaly averaged over the whole winter exceeded 100 Wm-2 in the eastern subpolar gyre (the most extreme in the period since 1979 spanned by ERA-Interim). The causes of this extreme heat loss will be shown to be severe latent and sensible heat fluxes driven primarily by anomalously strong westerly airflows from North America and northerly airflows originating in the Nordic Seas. The associated sea level pressure anomaly field reflects the dominance of the second mode of atmospheric variability, the East Atlantic Pattern (EAP) over the North Atlantic Oscillation (NAO) in this winter. The extreme winter heat loss had a significant impact on the ocean extending from the sea surface into the deeper layers and a re-emergent cold Sea Surface Temperature (SST) anomaly is evident in November 2014. The following winter 2014-15 experienced further extreme heat loss that served to amplify the strength of the re-emergent SST anomaly. By summer 2015, an unprecedented cold mid-latitude North Atlantic Ocean surface temperature anomaly is evident in observations and has been widely referred to as the 'big blue blob'. The role played by the extreme surface heat loss in the preceding winters in generating this feature and it subsequent evolution through winter 2015-16 will be explored.
Measuring the Spectral Properties of Candidate Mineral Sources of the Venus Radar Anomalies
NASA Astrophysics Data System (ADS)
Kohler, E.; Maturilli, A.; Koulen, J.; Helbert, J.
2016-12-01
Radar mapping of the surface of Venus shows areas of high reflectivity (low emissivity) in the Venusian highlands at altitudes between 2.5-4.75 kilometers. The origin of the radar anomalies found in the highlands remains unclear. Previous experimental research investigated possible materials under simulated Venusian atmospheric and surface conditions, with special emphasis on the combined effect of pressure and temperature, and chemical composition. The results of these studies identified candidate source materials for the radar anomalies. In order to fully be considered a true source candidate the material must have spectroscopic measurements comparable to those measured on the surface of Venus where the high temperature affects spectral characteristics of minerals. The spectroscopic measurements of the previously identified candidate minerals were made at the Planetary Spectroscopy Laboratory (PSL) of DLR in Berlin in an effort to identify the anomaly source. The spectroscopic measurements were made with a FTIR Bruker Vertex 80V evacuated to .1 mbar and using several pairings of detector+beamsplitter to cover the spectral range from 0.2 to 20 µm. Each sample was poured in a stainless steel reflectance cup and measured fresh. Successively each cup was heated (via an induction system) in vacuum (0.07 mbar) at 400°C for 8 hours and measured again in the UV+VIS+MIR spectral range. Three consecutive cycles of heating and measuring reflectance were performed to account for spectral variations arising from the thermal processing of the samples. Heating the samples directly inside the reflectance cups allows to measure every time exactly the same surface, exposed to increasing levels of thermal processing. Results from this study are expected to further constrain the source of the Venus radar anomalies.
NASA Astrophysics Data System (ADS)
Vaid, B. H.
2017-02-01
The association of the biweekly intraseasonal (BWI) oscillation in the Sea Surface Temperature (SST) over the South China Sea (SCS) and the Western North Pacific Summer Monsoon is authenticated using version 4 the Tropical Rainfall Measuring Mission Microwave Imager data (SST and rain) and heat fluxes from Ocean Atmosphere Flux project data during 1998-2012. The results suggest that the SCS involves ocean-atmosphere coupling on biweekly timescales. The positive biweekly SST anomalies lead the rain anomalies over the SCS by 3 days, with a significant correlation coefficient ( r = 0.6, at 99 % significance levels) between the SST-rain anomalies. It is evident from lead/lag correlation between biweekly SST and zonal wind shear that warm ocean surface induced by wind shear may contribute to a favorable condition of the convective activity over the SCS. The present study suggests that ocean-to-atmospheric processes induced by the BWI oscillation in the SCS SST results in enhanced sea level pressure and surface shortwave radiation flux during the summer monsoon. Besides, it is observed that the SCS BWI oscillation in the changes of SST causes a feedback in the atmosphere by modifying the atmospheric instability. This suggests that the active/break biweekly cycle of the SST over the SCS is related by sea level pressure, surface heat fluxes and atmospheric instability. The potential findings here indicate that the biweekly SST over the SCS play an important role in the eastward and the southward propagation of the biweekly anomalies in the Western North Pacific.
Thermal surface characteristics of coal fires 1 results of in-situ measurements
NASA Astrophysics Data System (ADS)
Zhang, Jianzhong; Kuenzer, Claudia
2007-12-01
Natural underground coal fires are fires in coal seams occurring subsurface. The fires are ignited through a process named spontaneous combustion, which occurs based on a natural reaction but is usually triggered through human interaction. Coal mining activities expose coal to the air. This leads to the exothermal oxidation of the carbon in the coal with the air's oxygen to CO 2 and - under certain circumstances - to spontaneous combustion. Coal fires occur in many countries world wide - however, currently the Chinese coal mining industry faces the biggest problems with coal fires. Coal fires destroy the valuable resource coal and furthermore lead to many environmental degradation phenomena such as the deterioration of surrounding vegetation, land subsidence and the emission of toxic gasses (CO, N 2O). They additionally contribute to the emission of green house relevant gasses such as CO 2 and CH 4 to the atmosphere. In this paper we present thermal characteristics of coal fires as measured in-situ during a field campaign to the Wuda coal fire area in south-central Inner Mongolia, China. Thermal characteristics include temperature anomaly measurements at the surface, spatial surface temperature profiles of fire areas and unaffected background areas, diurnal temperature profiles, and temperature measurements inside of coal fire induced cracks in the overlying bedrock. For all the measurements the effects of uneven solar heating through influences of slope and aspect are considered. Our findings show that coal fires result in strong or subtle thermal surface anomalies. Especially the latter can easily be influenced by heating of the surrounding background material through solar influences. Temperature variation of background rocks with different albedo, slope, aspect or vegetation cover can substantially influence the detectability of thermal anomalies. In the worst case coal fire related thermal anomalies can be completely masked by solar patterns during the daytime. Thus, night-time analysis is the most suitable for thermal anomaly mapping of underground coal fires, although this is not always feasible. The heat of underground coal fires only progresses very slowly through conduction in the rock material. Anomalies of coal fires completely covered by solid unfractured bedrock are very weak and were only measured during the night. The thermal pattern of underground coal fires manifested on the surface during the daytime is thus the pattern of cracks and vents, which occur due to the volume loss underground and which support radiation and convective energy transport of hot gasses. Inside coal fire temperatures can hardly be measured and can only be recorded if the glowing coal is exposed through a wider crack in the overlaying bedrock. Direct coal fire temperatures measured ranged between 233 °C and 854 °C. The results presented can substantially support the planning of thermal mapping campaigns, analyses of coal fire thermal anomalies in remotely sensed data, and can provide initial and boundary conditions for coal fire related numerical modeling. In a second paper named "Thermal Characteristics of Coal Fires 2: results of measurements on simulated coal fires" [ Zhang J., Kuenzer C., Tetzlaff A., Oettl D., Zhukov B., Wagner W., 2007. Thermal Characteristics of Coal Fires 2: Result of measurements on simulated coal fires. Accepted for publication at Journal of Applied Geophysics. doi:10.1016/j.jappgeo.2007.08.003] we report about thermal characteristics of simulated coal fires simulated under simplified conditions. The simulated set up allowed us to measure even more parameters under undisturbed conditions — especially inside fire temperatures. Furthermore we could demonstrate the differences between open surface coal fires and covered underground coal fires. Thermal signals of coal fires in near range thermal remotely sensed imagery from an observing tower and from an airplane are presented and discussed.
Density Of The Continental Roots: Compositional And Thermal Effects
NASA Astrophysics Data System (ADS)
Kaban, M. K.; Schwintzer, P.; Artemieva, I.; Mooney, W. D.
We use gravity, thermal, and seismic data to examine how the density and composi- tion of lithospheric roots vary beneath the cratons. Our interpretation is based on the gravity anomalies calculated by subtracting the gravitational effects of bathymetry, to- pography, and the crust from the observed gravity field, and the residual topography that characterizes the isostatic state of the lithosphere. We distinguish the effects of temperature and compositional variations in producing lithospheric density anomalies using two independent temperature constrains: based on interpretation of the surface heat flow data and estimated from global seismic tomography data. We find that in situ lithospheric density differs significantly between individual cratons, with the most dense values found beneath Eurasia and the least dense values beneath South Africa. This demonstrates that there is not a simple compensation of thermal and composition effects. We present a new gravity anomaly map that was corrected for crustal density structure and lithospheric temperatures. This map reveals differences in lithospheric composition, that are the result of the petrologic processes that have formed and mod- ified the lithosphere. All significant negative gravity anomalies are found in cratonic regions. In contrast, positive gravity anomalies are found in two distinct regions: near ocean-continent and continent-continent subduction zones, and within some continen- tal interiors. The origin of the latter positive anomalies is uncertain.
Airborne Sea-Surface Topography in an Absolute Reference Frame
NASA Astrophysics Data System (ADS)
Brozena, J. M.; Childers, V. A.; Jacobs, G.; Blaha, J.
2003-12-01
Highly dynamic coastal ocean processes occur at temporal and spatial scales that cannot be captured by the present generation of satellite altimeters. Space-borne gravity missions such as GRACE also provide time-varying gravity and a geoidal msl reference surface at resolution that is too coarse for many coastal applications. The Naval Research Laboratory and the Naval Oceanographic Office have been testing the application of airborne measurement techniques, gravity and altimetry, to determine sea-surface height and height anomaly at the short scales required for littoral regions. We have developed a precise local gravimetric geoid over a test region in the northern Gulf of Mexico from historical gravity data and recent airborne gravity surveys. The local geoid provides a msl reference surface with a resolution of about 10-15 km and provides a means to connect airborne, satellite and tide-gage observations in an absolute (WGS-84) framework. A series of altimetry reflights over the region with time scales of 1 day to 1 year reveal a highly dynamic environment with coherent and rapidly varying sea-surface height anomalies. AXBT data collected at the same time show apparent correlation with wave-like temperature anomalies propagating up the continental slope of the Desoto Canyon. We present animations of the temporal evolution of the surface topography and water column temperature structure down to the 800 m depth of the AXBT sensors.
NASA Astrophysics Data System (ADS)
Forsyth, Jacob Samuel Tse; Andres, Magdalena; Gawarkiewicz, Glen G.
2015-03-01
Expendable bathythermographs (XBTs) have been launched along a repeat track from New Jersey to Bermuda from the CMV Oleander through the NOAA/NEFSC Ship of Opportunity Program about 14 times per year since 1977. The XBT temperatures on the Middle Atlantic Bight shelf are binned with 10 km horizontal and 5 m vertical resolution to produce monthly, seasonally, and annually averaged cross-shelf temperature sections. The depth-averaged shelf temperature, Ts, calculated from annually averaged sections that are spatially averaged across the shelf, increases at 0.026 ± 0.001°C yr-1 from 1977 to 2013, with the recent trend substantially larger than the overall 37 year trend (0.11 ± 0.02°C yr-1 since 2002). The Oleander temperature sections suggest that the recent acceleration in warming on the shelf is not confined to the surface, but occurs throughout the water column with some contribution from interactions between the shelf and the adjacent Slope Sea reflected in cross-shelf motions of the shelfbreak front. The local warming on the shelf cannot explain the region's amplified rate of sea level rise relative to the global mean. Additionally, Ts exhibits significant interannual variability with the warmest anomalies increasing in intensity over the 37 year record even as the cold anomalies remain relatively uniform throughout the record. Ts anomalies are not correlated with annually averaged coastal sea level anomalies at zero lag. However, positive correlation is found between 2 year lagged Ts anomalies and coastal sea level anomalies, suggesting that the region's sea level anomalies may serve as a predictor of shelf temperature.
Properties (CTD/profile data) Trawl Survey Data (including oceanographic profiles) Shiptrack Surface Properties (hull-mounted sensor data) Temperature & Salinity Anomalies (by region) Drifter Tracks eMOLT
NASA Astrophysics Data System (ADS)
Lickley, M.; Solomon, S.
2017-12-01
Southern Africa rainfall (SAR) is generally projected to decrease during the 21st century as a result of climate change, though there is some disagreement regarding the location and magnitude of this reduction in General Circulation Models (GCMs). Here we examine the robustness of the rainfall response to sea surface temperature (SST) anomalies. Previous work argues that warmer SSTs in the Indian Ocean suppress SAR. Other studies argue that El Niños lead to suppressed SAR. We examine the SAR response to SST anomalies in the Indian Ocean, Atlantic Ocean and ENSO 3.4 region both in observations and in two large ensembles of GCMs run over the 20th and 21st century. We find that ENSO SSTs are most correlated with SAR, while correlations between SAR and the Indian Ocean are dominated by their respective responses to ENSO. This relationship appears to persist under a warming background state.
NASA Astrophysics Data System (ADS)
Ando, Y.; Ogi, M.; Tachibana, Y.
2013-12-01
On Japan, wintertime cold wave has social, economic, psychological and political impacts because of the lack of atomic power stations in the era of post Fukushima world. The colder winter is the more electricity is needed. Wintertime weather of Japan and its prediction has come under the world spotlight. The winter of 2012/13 in Japan was abnormally cold, and such a cold winter has persisted for 3 years. Wintertime climate of Japan is governed by some dominant modes of the large-scale atmospheric circulations. Yasunaka and Hanawa (2008) demonstrated that the two dominant modes - Arctic Oscillation (AO) and Western Pacific (WP) pattern - account for about 65% of the interannual variation of the wintertime mean surface air temperature of Japan. A negative AO brings about cold winter in Japan. In addition, a negative WP also brings about cold winter in Japan. Looking back to the winter of 2012/13, both the negative AO and negative WP continued from October through December. If the previous studies were correct, it would have been extremely very cold from October through December. In fact, in December, in accordance with previous studies, it was colder than normal. Contrary to the expectation, in October and November, it was, however, warmer than normal. This discrepancy signifies that an additional hidden circumstance that heats Japan overwhelms these large-scale atmospheric circulations that cool Japan. In this study, we therefore seek an additional cause of wintertime climate of Japan particularly focusing 2012 as well as the AO and WP. We found that anomalously warm oceanic temperature surrounding Japan overwhelmed influences of the AO or WP. Unlike the inland climate, the island climate can be strongly influenced by surrounding ocean temperature, suggesting that large-scale atmospheric patterns alone do not determine the climate of islands. (a) Time series of a 5-day running mean AO index (blue) as defined by Ogi et al., (2004), who called it the SVNAM index. For reference, the conventional AO index is shown by the gray line. (b) a 5-day running mean WP index, (c) area-averaged Surface Air Temperature anomalies in Japan, (d) Air Temperature anomalies, (e) heat flux anomalies, and (f) Sea Surface Temperature anomalies. The boxed area on the Sea of Japan indicates the area in which the (d)-(f) indexes were calculated.
Atmospheric dynamics over Europe during the Younger Dryas revealed by palaeoglaciers.
NASA Astrophysics Data System (ADS)
Rea, Brice; Pellitero, Ramon; Spagnolo, Matteo; Hughes, Philip; Braithwaite, Roger; Renssen, Hans; Ivy-Ochs, Susan; Ribolini, Adriano; Bakke, Jostein; Lukas, Sven
2017-04-01
A dataset of 120 palaeoglaciers ranging from Morocco in the south to Svalbard in the north and from Ireland in the west to Turkey in the east, has been assembled from the literature. A robust quality control on the chronology was undertaken and, when derived from cosmogenic nuclides, ages were recalculated using the most up-to-date production rates. All the reconstructed glaciers date to the Younger Dryas. Frontal moraines/limits were used to initiate the palaeoglacier reconstructions using GlaRe, a GIS tool which generates an equilibrium profile ice surface along a single flowline and extrapolates this to out to a 3D ice surface. From the resulting glacier surfaces palaeo-ELAs were calculated within the GIS. Where multiple glaciers were reconstructed within in a region, a single ELA value was generated. Results show that ELAs decrease with latitude but have a more complex pattern with longitude. A database of 121 sites, spanning the same geographical range as the palaeoglaciers, was compiled for Younger Dryas temperature, determined from palaeoproxies, for example pollen, diatoms, coleoptera, chironimids etc. These proxy data were merged and interpolated to generate maps of average temperature for the warmest and coldest months and annual average temperature. Results show that, in general, temperature decreases with latitude. Temperature at the palaeo-ELAs were determined from the temperature maps using a lapse rate of 0.65°C/100m and the precipitation required for equilibrium was calculated. Positive precipitation anomalies are found along much of the western seaboard of Europe, with the most striking positive anomalies present in the eastern Mediterranean. Negative precipitation anomalies appear on the northern side of the Alps. This pattern is interpreted to represent a southward displaced polar frontal jet stream with a concomitant track of Atlantic mid-latitude depressions, leading to more frequent incursions of low pressure systems especially over the relatively warm eastern Mediterranean, enhancing cyclogenesis. This is similar to the modern Scandinavia (SCAND) pattern which, in its positive phase, is characterised by a high pressure anomaly over Fennoscandia and western Russia, negative pressure anomalies around the Iberian Peninsula and enhanced cyclogenesis in the central and eastern Mediterranean. During the YD the Fennoscandian Ice Sheet and permafrost across much of northern continental Europe and Russia would have generated a high pressure region leading to a persistent, enhanced SCAND circulation.
NASA Technical Reports Server (NTRS)
Lim, Young-Kwon; Cullather, Richard I.; Nowicki, Sophie M.; Kim, Kyu-Myong
2017-01-01
The inter-relationship between subtropical western-central Pacific sea surface temperatures (STWCPSST), sea ice concentration in the Beaufort Sea (SICBS), and the North Atlantic Oscillation (NAO) are investigated for the last 37 summers and winters (1980-2016). Lag-correlation of the STWCPSST×(-1) in spring with the NAO phase and SICBS in summer increases over the last two decades, reaching r = 0.4-0.5 with significance at 5 percent, while winter has strong correlations in approximately 1985-2005. Observational analysis and the atmospheric general circulation model experiments both suggest that STWCPSST warming acts to increase the Arctic geopotential height and temperature in the following season. This atmospheric response extends to Greenland, providing favorable conditions for developing the negative phase of the NAO. SIC and surface albedo tend to decrease over the Beaufort Sea in summer, linked to the positive surface net shortwave flux. Energy balance considering radiative and turbulent fluxes reveal that available energy that can heat surface is larger over the Arctic and Greenland and smaller over the south of Greenland, in response to the STWCPSST warming in spring. XXXX Arctic & Atlantic: Positive upper-level height/T anomaly over the Arctic and Greenland, and a negative anomaly over the central-eastern Atlantic, resembling the (-) phase of the NAO. Pacific: The negative height/T anomaly over the mid-latitudes, along with the positive anomaly over the STWCP, where 1degC warming above climatology is prescribed. Discussion: It is likely that the Arctic gets warm and the NAO is in the negative phase in response to the STWCP warming. But, there are other factors (e.g., internal variability) that contribute to determination of the NAO phase: not always the negative phase of the NAO in the event of STWCP warming (e.g.: recent winters and near neutral NAO in 2017 summer).
Khalid Hussein
2012-02-01
This layer contains areas of anomalous surface temperature in Archuleta County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma
Khalid Hussein
2012-02-01
This layer contains areas of anomalous surface temperature in Dolores County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma
Khalid Hussein
2012-02-01
This layer contains areas of anomalous surface temperature in Chaffee County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma
Khalid Hussein
2012-02-01
This layer contains areas of anomalous surface temperature in Garfield County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
This layer contains areas of anomalous surface temperature in Routt County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma.
Decadal climate prediction with a refined anomaly initialisation approach
NASA Astrophysics Data System (ADS)
Volpi, Danila; Guemas, Virginie; Doblas-Reyes, Francisco J.; Hawkins, Ed; Nichols, Nancy K.
2017-03-01
In decadal prediction, the objective is to exploit both the sources of predictability from the external radiative forcings and from the internal variability to provide the best possible climate information for the next decade. Predicting the climate system internal variability relies on initialising the climate model from observational estimates. We present a refined method of anomaly initialisation (AI) applied to the ocean and sea ice components of the global climate forecast model EC-Earth, with the following key innovations: (1) the use of a weight applied to the observed anomalies, in order to avoid the risk of introducing anomalies recorded in the observed climate, whose amplitude does not fit in the range of the internal variability generated by the model; (2) the AI of the ocean density, instead of calculating it from the anomaly initialised state of temperature and salinity. An experiment initialised with this refined AI method has been compared with a full field and standard AI experiment. Results show that the use of such refinements enhances the surface temperature skill over part of the North and South Atlantic, part of the South Pacific and the Mediterranean Sea for the first forecast year. However, part of such improvement is lost in the following forecast years. For the tropical Pacific surface temperature, the full field initialised experiment performs the best. The prediction of the Arctic sea-ice volume is improved by the refined AI method for the first three forecast years and the skill of the Atlantic multidecadal oscillation is significantly increased compared to a non-initialised forecast, along the whole forecast time.
Intraseasonal Characteristics Of North Atlantic Oscillation
NASA Astrophysics Data System (ADS)
Bojariu, R.; Gimeno, L..; de La Torre, L.; Nieto, R.
There is evidence of a temporal structure of regional response to the NAO variability in the cold season (e.g. NAO-related climate fluctuations reveal their strongest signal in January). To document the details of NAO intraseasonal characteristics we anal- ysed surface and upper air variables (air surface temperature, sea-ice concentration, sea surface temperature, and sea level pressure and geopotential heights at 700 hPa level) in individual months, from November to April. The data consist of 40 years of monthly reanalyses (1961-2000) extracted from the NCAR-NCEP data set. In ad- dition, snow cover data are used (monthly snow cover frequencies from the Climate Prediction Centre and number of days with snow cover from the Former Soviet Union Hydrological Snow Surveys available at the National Snow and Ice Data Centre). A NAO-related signal with predictive potential has been identified in November air surface temperature over Europe and SLP and geopotential heights over Eurasia. Neg- ative thermal anomalies over the Central Europe and positive geopotential anomalies at 700 hPa over a latitudinal belt from Arabic Peninsula to Pacific Ocean are associated with a high NAO index in the following winter. The November thermal anomalies that seem to be related to the NAO interannual persistence are also linked with the fluctu- ations of snow cover over Europe. Both tropical and high latitude influences may play a role in the onset of the November signal and in further NAO development.
Interannual variability in stratiform cloudiness and sea surface temperature
NASA Technical Reports Server (NTRS)
Norris, Joel R.; Leovy, Conway B.
1994-01-01
Marine stratiform cloudiness (MSC)(stratus, stratocumulus, and fog) is widespread over subtropical oceans west of the continents and over midlatitude oceans during summer, the season when MSC has maximum influence on surface downward radiation and is most influenced by boundary-layer processes. Long-term datasets of cloudiness and sea surface teperature (SST) from surface observations from 1952 to 1981 are used to examine interannual variations in MSC and SST. Linear correlations of anomalies in seasonal MSC amount with seasonal SST anomalies are negative and significant in midlatitude and eastern subtropical oceans, especially during summer. Significant negative correlations between SST and nimbostratus and nonprecipitating midlevel cloudiness are also observed at midlatitudes during summer, suggesting that summer storm tracks shift from year to year following year-to-year meridional shifts in the SST gradient. Over the 30-yr period, there are significant upward trends in MSC amount over the northern midlatitude oceans and a significant downward trend off the coast of California. The highest correlations and trends occur where gradients in MSC and SST are strongest. During summer, correlations between SST and MSC anomalies peak at zero lag in midlatitudes where warm advection prevails, but SST lags MSC in subtropical regions where cold advection predominates. This difference is attributed to a tendency for anomalies in latent heat flux to compensate anomalies in surface downward radiation in warm advection regions but not in cold advection regions.
NASA Technical Reports Server (NTRS)
Elders, W. A.; Combs, J.; Coplen, T. B.; Kolesar, P.; Bird, D. K.
1974-01-01
The Dunes anomaly is a water-dominated geothermal system in the alluvium of the Salton Trough, lacking any surface expression. It was discovered by shallow-temperature gradient measurements. A 612-meter-deep test well encountered several temperature-gradient reversals, with a maximum of 105 C at 114 meters. The program involves surface geophysics, including electrical, gravity, and seismic methods, down-hole geophysics and petrophysics of core samples, isotopic and chemical studies of water samples, and petrological and geochemical studies of the cores and cuttings. The aim is (1) to determine the source and temperature history of the brines, (2) to understand the interaction between the brines and rocks, and (3) to determine the areal extent, nature, origin, and history of the geothermal system. These studies are designed to provide better definition of exploration targets for hidden geothermal anomalies and to contribute to improved techniques of exploration and resource assessment.
NASA Astrophysics Data System (ADS)
Jha, Pardeep K.; Jha, Priyanka A.; Singh, Vikash; Kumar, Pawan; Asokan, K.; Dwivedi, R. K.
2015-01-01
Investigations on the solid solutions (1-x) BiFeO3 - (x) Ba Zr0.025Ti0.975O3 (0.1 ≤ x ≤ 0.3) in the temperature range 300-750 K show colossal permittivity behavior and the occurrence of diffuse phase ferroelectric transition along with frequency dependent anomaly which disappears at temperature ˜450 K. For x = 0.3, these anomalies have been verified through differential scanning calorimetry and dielectric/impedance/conductivity measurements. The occurrence of peak in pyrocurrent (dPs/dT) vs. T plots also supports phase transition. With the increasing x, transition temperature decreases and diffusivity increases. This anomaly is absent at high frequencies (>100 kHz) in conductivity plots, indicating Polomska like surface phase transition, which is supported by modulus study.
Enabling NLDAS-2 Anomaly Analysis Using Giovanni
NASA Astrophysics Data System (ADS)
Loeser, C.; Rui, H.; Teng, W. L.; Vollmer, B.; Mocko, D. M.
2017-12-01
A newly implemented feature in Giovanni (GES DISC Interactive Online Visualization and Analysis Interface) allows users to explore and visualize anomaly data from the NLDAS-2 Primary Forcing and Noah model data sets. For a given measurement and location, an anomaly describes how conditions for a particular time period compare to normal conditions, based on long-term averages. Analyzing anomalies is important for monitoring droughts, determining weather trends, and studying land surface processes relevant for meteorology, hydrology, and climate. Using Giovanni to analyze anomalies for NLDAS-2 data allows for these studies to be efficiently conducted for the central North American region. Phase 2 of NLDAS (NLDAS-2) currently runs at an 1/8th degree resolution, in near-real time, with data sets extending back to January 1979. NLDAS-2 provides data for soil moisture, precipitation, temperature, and other hydrology measurements. Hourly, monthly, and 30-year (1980-2009) monthly climatology data are available for several land surface models and forcing data sets. The Giovanni anomaly tool calculates monthly anomalies, for a given user-defined variable, as the difference between the NLDAS-2 monthly climatology data and the monthly data. The resulting anomaly describes how a chosen month compares to the 30-year monthly average. The presentation will demonstrate the capabilities and usefulness of Giovanni's anomaly tool, detail the recently added NLDAS-2 variables for which anomalies are available, and show how users can access the data.
Enabling NLDAS-2 Anomaly Analysis Using Giovanni
NASA Technical Reports Server (NTRS)
Loeser, Carlee; Rui, Hualan; Teng, William; Vollmer, Bruce; Mocko, David
2017-01-01
A newly implemented feature in Giovanni (GES DISC Interactive Online Visualization and Analysis Interface) allows users to explore and visualize anomaly data from the NLDAS-2 Primary Forcing and Noah model data sets. For a given measurement and location, an anomaly describes how conditions for a particular time period compare to normal conditions, based on long-term averages. Analyzing anomalies is important for monitoring droughts, determining weather trends, and studying land surface processes relevant for meteorology, hydrology, and climate. Using Giovanni to analyze anomalies for NLDAS-2 data allows for these studies to be efficiently conducted for the central North American region. Phase 2 of NLDAS (NLDAS-2) currently runs at an 1/8th degree resolution, in near-real time, with data sets extending back to January 1979. NLDAS-2 provides data for soil moisture, precipitation, temperature, and other hydrology measurements. Hourly, monthly, and 30-year (1980-2009) monthly climatology data are available for several land surface models and forcing data sets. The Giovanni anomaly tool calculates monthly anomalies, for a given user-defined variable, as the difference between the NLDAS-2 monthly climatology data and the monthly data. The resulting anomaly describes how a chosen month compares to the 30-year monthly average. The presentation will demonstrate the capabilities and usefulness of Giovanni's anomaly tool, detail the recently added NLDAS-2 variables for which anomalies are available, and show how users can access the data.
The influence of land surface properties on Sahel climate. Part 1: Desertification
NASA Technical Reports Server (NTRS)
Xue, Yongkang; Shukla, Jagadish
1993-01-01
This is a general circulation model sensitivity study of the physical mechanisms of the effects of desertification on the Sahel drought. The model vegetation types were changed in the prescribed desertification area, which led to changes in the surface characteristics. The model was integrated for three months (June, July, August) with climatological surface conditions (control) and desertification conditions (anomaly) to examine the summer season response to the changed surface conditions. The control and anomaly experiments consisted of five pairs of integrations with different initial conditions and/or sea surface temperature boundary conditions. In the desertification experiment, the moisture flux convergence and rainfall were reduced in the test area and increased to the immediate south of this area. The simulated anomaly dipole pattern was similar to the observed African drought patterns in which the axis of the maximum rainfall shifts to the south. The circulation changes in the desertification experiment were consistent with those observed during sub-Saharan dry years. The tropical easterly jet was weaker and the African easterly jet was stronger than normal. Further, in agreement with the observations, the easterly wave disturbances were reduced in intensity but not in number. Descending motion dominated the desertification area. The surface energy budget and hydrological cycle were also changed substantially in the anomaly experiment.
NASA Astrophysics Data System (ADS)
Carella, G.; Kennedy, J. J.; Berry, D. I.; Hirahara, S.; Merchant, C. J.; Morak-Bozzo, S.; Kent, E. C.
2018-01-01
Lack of reliable observational metadata represents a key barrier to understanding sea surface temperature (SST) measurement biases, a large contributor to uncertainty in the global surface record. We present a method to identify SST measurement practice by comparing the observed SST diurnal cycle from individual ships with a reference from drifting buoys under similar conditions of wind and solar radiation. Compared to existing estimates, we found a larger number of engine room-intake (ERI) reports post-World War II and in the period 1960-1980. Differences in the inferred mixture of observations lead to a systematic warmer shift of the bias adjusted SST anomalies from 1980 compared to previous estimates, while reducing the ensemble spread. Changes in mean field differences between bucket and ERI SST anomalies in the Northern Hemisphere over the period 1955-1995 could be as large as 0.5°C and are not well reproduced by current bias adjustment models.
Are we near the predictability limit of tropical Indo-Pacific sea surface temperatures?
NASA Astrophysics Data System (ADS)
Newman, Matthew; Sardeshmukh, Prashant D.
2017-08-01
The predictability of seasonal anomalies worldwide rests largely on the predictability of tropical sea surface temperature (SST) anomalies. Tropical forecast skill is also a key metric of climate models. We find, however, that despite extensive model development, the tropical SST forecast skill of the operational North American Multi-Model Ensemble (NMME) of eight coupled atmosphere-ocean models remains close both regionally and temporally to that of a vastly simpler linear inverse model (LIM) derived from observed covariances of SST, sea surface height, and wind fields. The LIM clearly captures the essence of the predictable SST dynamics. The NMME and LIM skills also closely track and are only slightly lower than the potential skill estimated using the LIM's forecast signal-to-noise ratios. This suggests that the scope for further skill improvement is small in most regions, except in the western equatorial Pacific where the NMME skill is currently much lower than the LIM skill.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zoran, Maria; Savastru, Roxana; Savastru, Dan
This paper presents a complex multidisciplinary approach concept to explain the nature of short-term earthquake precursors observed in land surface, atmosphere, ionosphere and magnetosphere for strong intermediate depth earthquakes recorded in Vrancea region in Romania. A developed Lithosphere-Surfacesphere-Atmosphere-Ionosphere (LSAI) coupling model can explain most of these presignals as a synergy between different anomalies of geophysical/geochemical parameters. These anomalies prior to medium to strong earthquakes are attributed to the thermodynamic, degassing and ionization processes in the Earth-Atmosphere system and micro-fracturing in the rocks especially along area’s active faults. The main outcome of this paper is an unified concept for systematic validationmore » of different types of earthquake precursors of which Land Surface Temperature (LST), outgoing Long wave Radiation (OLR), Surface Latent Heat Flux (SLHF), Air Temperature (AT), radon gas concentration, ionospheric Total Electron Content (TEC) are the most reliable parameters within the chain of the processes described by LSAI model.« less
The Low-Frequency Variability of the Tropical Atlantic Ocean
NASA Technical Reports Server (NTRS)
Haekkinen, Sirpa; Mo, Kingtse C.; Koblinsky, Chester J. (Technical Monitor)
2001-01-01
Upper ocean temperature variability in the tropical Atlantic is examined from the Comprehensive Ocean Atmosphere Data Set (COADS) as well as from an ocean model simulation forced by COADS anomalies appended to a monthly climatology. Our findings are as follows: Only the sea surface temperatures (SST) in the northern tropics are driven by heat fluxes, while the southern tropical variability arises from wind driven ocean circulation changes. The subsurface temperatures in the northern and southern tropics are found to have a strong linkage to buoyancy forcing changes in the northern North Atlantic. Evidence for Kelvin-like boundary wave propagation from the high latitudes is presented from the model simulation. This extratropical influence is associated with wintertime North Atlantic Oscillation (NAO) forcing and manifests itself in the northern and southern tropical temperature anomalies of the same sign at depth of 100-200 meters as result of a Rossby wave propagation away from the eastern boundary in the wake of the boundary wave passage. The most apparent association of the southern tropical sea surface temperature anomalies (STA) arises with the anomalous cross-equatorial winds which can be related to both NAO and the remote influence from the Pacific equatorial region. These teleconnections are seasonal so that the NAO impact on the tropical SST is the largest it mid-winter but in spring and early summer the Pacific remote influence competes with NAO. However, NAO appears to have a more substantial role than the Pacific influence at low frequencies during the last 50 years. The dynamic origin of STA is indirectly confirmed from the SST-heat flux relationship using ocean model experiments which remove either anomalous wind stress forcing or atmospheric forcing anomalies contributing to heat exchange.
NASA Astrophysics Data System (ADS)
Su, H.; Yan, X. H.
2017-12-01
Subsurface thermal structure of the global ocean is a key factor that reflects the impact of the global climate variability and change. Accurately determining and describing the global subsurface and deeper ocean thermal structure from satellite measurements is becoming even more important for understanding the ocean interior anomaly and dynamic processes during recent global warming and hiatus. It is essential but challenging to determine the extent to which such surface remote sensing observations can be used to develop information about the global ocean interior. This study proposed a Support Vector Regression (SVR) method to estimate Subsurface Temperature Anomaly (STA) in the global ocean. The SVR model can well estimate the global STA upper 1000 m through a suite of satellite remote sensing observations of sea surface parameters (including Sea Surface Height Anomaly (SSHA), Sea Surface Temperature Anomaly (SSTA), Sea Surface Salinity Anomaly (SSSA) and Sea Surface Wind Anomaly (SSWA)) with in situ Argo data for training and testing at different depth levels. Here, we employed the MSE and R2 to assess SVR performance on the STA estimation. The results from the SVR model were validated for the accuracy and reliability using the worldwide Argo STA data. The average MSE and R2 of the 15 levels are 0.0090 / 0.0086 / 0.0087 and 0.443 / 0.457 / 0.485 for 2-attributes (SSHA, SSTA) / 3-attributes (SSHA, SSTA, SSSA) / 4-attributes (SSHA, SSTA, SSSA, SSWA) SVR, respectively. The estimation accuracy was improved by including SSSA and SSWA for SVR input (MSE decreased by 0.4% / 0.3% and R2 increased by 1.4% / 4.2% on average). While, the estimation accuracy gradually decreased with the increase of the depth from 500 m. The results showed that SSSA and SSWA, in addition to SSTA and SSHA, are useful parameters that can help estimate the subsurface thermal structure, as well as improve the STA estimation accuracy. In future, we can figure out more potential and useful sea surface parameters from satellite remote sensing as input attributes so as to further improve the STA sensing accuracy from machine learning. This study can provide a helpful technique for studying thermal variability in the ocean interior which has played an important role in recent global warming and hiatus from satellite observations over global scale.
Impact of a permanent El Niño (El Padre) and Indian Ocean Dipole in warm Pliocene climates
Shukla, Sonali P.; Chandler, Mark A.; Jonas, Jeff; Sohl, Linda E.; Mankoff, Ken; Dowsett, Harry J.
2009-01-01
Pliocene sea surface temperature data, as well as terrestrial precipitation and temperature proxies, indicate warmer than modern conditions in the eastern equatorial Pacific and imply permanent El Niño–like conditions with impacts similar to those of the 1997/1998 El Niño event. Here we use a general circulation model to examine the global-scale effects that result from imposing warm tropical sea surface temperature (SST) anomalies in both modern and Pliocene simulations. Observed SSTs from the 1997/1998 El Niño event were used for the anomalies and incorporate Pacific warming as well as a prominent Indian Ocean Dipole event. Both the permanent El Niño (also called El Padre) and Indian Ocean Dipole (IOD) conditions are necessary to reproduce temperature and precipitation patterns consistent with the global distribution of Pliocene proxy data. These patterns may result from the poleward propagation of planetary waves from the strong convection centers associated with the El Niño and IOD.
Orographic Flow over an Active Volcano
NASA Astrophysics Data System (ADS)
Poulidis, Alexandros-Panagiotis; Renfrew, Ian; Matthews, Adrian
2014-05-01
Orographic flows over and around an isolated volcano are studied through a series of numerical model experiments. The volcano top has a heated surface, so can be thought of as "active" but not erupting. A series of simulations with different atmospheric conditions and using both idealised and realistic configurations of the Weather Research and Forecast (WRF) model have been carried out. The study is based on the Soufriere Hills volcano, located on the island of Montserrat in the Caribbean. This is a dome-building volcano, leading to a sharp increase in the surface skin temperature at the top of the volcano - up to tens of degrees higher than ambient values. The majority of the simulations use an idealised topography, in order for the results to have general applicability to similar-sized volcanoes located in the tropics. The model is initialised with idealised atmospheric soundings, representative of qualitatively different atmospheric conditions from the rainy season in the tropics. The simulations reveal significant changes to the orographic flow response, depending upon the size of the temperature anomaly and the atmospheric conditions. The flow regime and characteristic features such as gravity waves, orographic clouds and orographic rainfall patterns can all be qualitatively changed by the surface heating anomaly. Orographic rainfall over the volcano can be significantly enhanced with increased temperature anomaly. The implications for the eruptive behaviour of the volcano and resulting secondary volcanic hazards will also be discussed.
NASA Astrophysics Data System (ADS)
Vanyushin, George; Bulatova, Tatiana; Klochkov, Dmitriy; Troshkov, Anatoliy; Kruzhalov, Michail
2013-04-01
In this study, the attempt to consider the relationship between sea surface anomalies of temperature (SST anomalies °C) in spawning area of the Norwegian Arctic cod off the Lofoten islands in coastal zone of the Norwegian Sea and modern cod total stock biomass including forecasting assessment of future cod generation success. Continuous long-term database of the sea surface temperature (SST) was created on the NOAA satellites data. Mean monthly SST and SST anomalies are computed for the selected area on the basis of the weekly SST maps for the period of 1998-2012. These maps were plotted with the satellite SST data, as well as information of vessels, byoies and coastal stations. All data were classified by spawning seasons (March-April) and years. The results indicate that poor and low middle generations of cod (2001, 2006, 2007) occurred in years with negative or extremely high positive anomalies in the spawning area. The SST anomalies in years which were close to normal or some more normal significances provide conditions for appearance strong or very strong generations of cod (1998, 2000, 2002, 2004, 2005, 2006, 2008, 2009). Temperature conditions in concrete years influence on different indexes of cod directly. So, the mean temperature in spawning seasons in years 1999-2005 was ≈5,0°C and SST anomaly - +0,35°C, by the way average year significances indexes of cod were: total stock biomass - 1425,0 th.t., total spawning biomass - 460,0 th.t., recruitment (age 3+) - 535,0 mln. units and landings - 530,0 th.t. In spawning seasons 2006-2012 years the average data were following: mean SST ≈6,0°C, SST anomaly - +1,29°C, total stock biomass - 2185,0 th.t., total spawning biomass - 1211,0 th.t., recruitment (age 3+) - 821,0 mln. units and landings - 600,0 th.t. The SST and SST anomalies (the NOAA satellite data) characterize increase of decrease in input of warm Atlantic waters which form numerous eddies along the flows of the main warm currents thus creating favorable conditions for development of the cod larvae and fry and provide them with food stock, finally, direct influence on forming total stock biomass of cod and helping its population forecast. Key words: satellite monitoring of SST, Northeast Arctic cod, spawning area, maps of SST, prognosis.
Forecast of Antarctic Sea Ice and Meteorological Fields
NASA Astrophysics Data System (ADS)
Barreira, S.; Orquera, F.
2017-12-01
Since 2001, we have been forecasting the climatic fields of the Antarctic sea ice (SI) and surface air temperature, surface pressure and precipitation anomalies for the Southern Hemisphere at the Meteorological Department of the Argentine Naval Hydrographic Service with different techniques that have evolved with the years. Forecast is based on the results of Principal Components Analysis applied to SI series (S-Mode) that gives patterns of temporal series with validity areas (these series are important to determine which areas in Antarctica will have positive or negative SI anomalies based on what happen in the atmosphere) and, on the other hand, to SI fields (T-Mode) that give us the form of the SI fields anomalies based on a classification of 16 patterns. Each T-Mode pattern has unique atmospheric fields associated to them. Therefore, it is possible to forecast whichever atmosphere variable we decide for the Southern Hemisphere. When the forecast is obtained, each pattern has a probability of occurrence and sometimes it is necessary to compose more than one of them to obtain the final result. S-Mode and T-Mode are monthly updated with new data, for that reason the forecasts improved with the increase of cases since 2001. We used the Monthly Polar Gridded Sea Ice Concentrations database derived from satellite information generated by NASA Team algorithm provided monthly by the National Snow and Ice Data Center of USA that begins in November 1978. Recently, we have been experimenting with multilayer Perceptron (neuronal network) with supervised learning and a back-propagation algorithm to improve the forecast. The Perceptron is the most common Artificial Neural Network topology dedicated to image pattern recognition. It was implemented through the use of temperature and pressure anomalies field images that were associated with a the different sea ice anomaly patterns. The variables analyzed included only composites of surface air temperature and pressure anomalies to simplify the density of input data and avoid a non-converging solution. Sea ice and atmospheric variables forecast can be checked every month at our web page http://www.hidro.gob.ar/smara/sb/sb.asp and at World Meteorological web page (Global Cryosphere Watch) http://globalcryospherewatch.org/state_of_cryo/seaice/.
A Physically-Based Drought Product Using Thermal Remote Sensing of Evapotranspiration
USDA-ARS?s Scientific Manuscript database
Thermal infrared (TIR) remote sensing of land-surface temperature (LST) provides valuable information about the sub-surface moisture status. While empirical indices measuring anomalies in LST and vegetation amount (e.g., as quantified by the Normalized Difference Vegetation Index; NDVI) have demonst...
NASA Technical Reports Server (NTRS)
Shepherd, J. Marshall; Starr, David O'C (Technical Monitor)
2001-01-01
A recent paper by Shepherd and Pierce (conditionally accepted to Journal of Applied Meteorology) used rainfall data from the Precipitation Radar on NASA's Tropical Rainfall Measuring Mission's (TRMM) satellite to identify warm season rainfall anomalies downwind of major urban areas. A convective-mesoscale model with extensive land-surface processes is employed to (a) determine if an urban heat island (UHI) thermal perturbation can induce a dynamic response to affect rainfall processes and (b) quantify the impact of the following three factors on the evolution of rainfall: (1) urban surface roughness, (2) magnitude of the UHI temperature anomaly, and (3) physical size of the UHI temperature anomaly. The sensitivity experiments are achieved by inserting a slab of land with urban properties (e.g. roughness length, albedo, thermal character) within a rural surface environment and varying the appropriate lower boundary condition parameters. Early analysis suggests that urban surface roughness (through turbulence and low-level convergence) may control timing and initial location of UHI-induced convection. The magnitude of the heat island appears to be closely linked to the total rainfall amount with minor impact on timing and location. The physical size of the city may predominantly impact on the location of UHI-induced rainfall anomaly. The UHI factor parameter space will be thoroughly investigated with respect to their effects on rainfall amount, location, and timing. This study extends prior numerical investigations of the impact of urban surfaces on meteorological processes, particularly rainfall development. The work also contains several novel aspects, including the application of a high-resolution (less than I km) cloud-mesoscale model to investigate urban-induce rainfall process; investigation of thermal magnitude of the UHI on rainfall process; and investigation of UHI physical size on rainfall processes.
Melt onset over Arctic sea ice controlled by atmospheric moisture transport
NASA Astrophysics Data System (ADS)
Mortin, Jonas; Svensson, Gunilla; Graversen, Rune G.; Kapsch, Marie-Luise; Stroeve, Julienne C.; Boisvert, Linette N.
2016-06-01
The timing of melt onset affects the surface energy uptake throughout the melt season. Yet the processes triggering melt and causing its large interannual variability are not well understood. Here we show that melt onset over Arctic sea ice is initiated by positive anomalies of water vapor, clouds, and air temperatures that increase the downwelling longwave radiation (LWD) to the surface. The earlier melt onset occurs; the stronger are these anomalies. Downwelling shortwave radiation (SWD) is smaller than usual at melt onset, indicating that melt is not triggered by SWD. When melt occurs early, an anomalously opaque atmosphere with positive LWD anomalies preconditions the surface for weeks preceding melt. In contrast, when melt begins late, clearer than usual conditions are evident prior to melt. Hence, atmospheric processes are imperative for melt onset. It is also found that spring LWD increased during recent decades, consistent with trends toward an earlier melt onset.
Midlatitude atmosphere-ocean interaction during El Nino. Part I. The north Pacific ocean
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, M.A.
Atmosphere-ocean modeling experiments are used to investigate the formation of sea surface temperature (SST) anomalies in the North Pacific Ocean during fall and winter of the El Nino year. Experiments in which the NCAR Community Climate Model (CCM) surface fields are used to force a mixed-layer ocean model in the North Pacific (no air-sea feedback) are compared to simulations in which the CCM and North Pacific Ocean model are coupled. Anomalies in the atmosphere and the North Pacific Ocean during El Nino are obtained from the difference between simulations with and without prescribed warm SST anomalies in the tropical Pacific.more » In both the forced and coupled experiments, the anomaly pattern resembles a composite of the actual SST anomaly field during El Nino: warm SSTs develop along the coast of North America and cold SSTs form in the central Pacific. In the coupled simulations, air-sea interaction results in a 25% to 50% reduction in the magnitude of the SST and mixed-layer depth anomalies, resulting in more realistic SST fields. Coupling also decreases the SST anomaly variance; as a result, the anomaly centers remain statistically significant even though the magnitude of the anomalies is reduced. Three additional sensitivity studies indicate that air-sea feedback and entrainment act to damp SST anomalies while Ekman pumping has a negligible effect on mixed-layer depth and SST anomalies in midatitudes.« less
NASA Astrophysics Data System (ADS)
Holbrook, Neil J.; Chan, Peter S.-L.; Venegas, Silvia A.
2005-03-01
This paper investigates oscillatory and propagating patterns of normalized surface and subsurface temperature anomalies (from the seasonal cycle) in the southwest Pacific Ocean using an extended empirical orthogonal function (EEOF) analysis. The temperature data (and errors) are from the Digital Atlas of Southwest Pacific upper Ocean Temperatures (DASPOT). These data are 3 monthly in time (January, April, July, and October), 2° × 2° in space, and 5 m in the vertical to 450-m depths. The temperature anomalies in the EEOF analysis are normalized by the objective mapping temperature errors at each grid point. They are also Butterworth filtered in the 3-7-yr band to examine interannual variations in the temperature field. The oscillating and propagating patterns of the modes are examined across four vertical levels: the surface, and 100-, 250-, and 450-m depths.The dominant mode EEOF (70% of the total variance of the filtered data) oscillates in a 4-4.5-yr quasi-periodic manner that is consistent with El Niño-Southern Oscillation (ENSO). Anomalies peak first at the surface in the subtropics between New Caledonia and Fiji (centered around 17°S, 177°E), then 6 months later in the tropical far west centered around the Solomon Islands (5°S, 153°-157°E), with a maximum at the base of the mixed layer (100 m) and upper thermocline (250 m), and then eastward in the northeast of the southwest Pacific region (0°-10°S, 160°E-180°). Mode 2 (25% variance of the filtered data) has a periodicity of 3-3.5 yr, with centers of action in all four vertical levels. The mode-2 patterns are consistent with variations in the subtropical gyre circulation, including the East Australian Current and its separation, and are continuous with the Tasman Front. Two spatial dipoles are apparent: (i) one in sea surface temperature (SST) at about 5°S, straddling west-east either side of the Solomon Islands, consistent with the classic Pacific-wide ENSO SST anomaly mode, and (ii) a subsurface dipole pattern, with centers in the Solomon Islands region at 100- and 250-m depths, and the western Tasman Sea (27°-33°S, 157°-161°E) at 250- and 450-m depths, consistent with dynamic changes in the gyre intensity.
NASA Astrophysics Data System (ADS)
He, Shengping; Wang, Huijun; Gao, Yongqi; Li, Fei
2018-03-01
This study reveals an intensified influence of December Arctic Oscillation (AO) on the subsequent January surface air temperature (SAT) over Eurasia and North Africa in recent decades. The connection is statistically insignificant during 1957/58-1979/80 (P1), which becomes statistically significant during 1989/90-2011/12 (P2). The possible causes are further investigated. Associated with positive December AO during P2, significant anomalous anticyclone emerges over the central North Atlantic, which is accompanied with significant westerly and easterly anomalies along 45°-65°N and 20°-40°N, respectively. This favors the significant influence of December AO on the subsequent January SAT and atmospheric circulation over Eurasia and North Africa via triggering the North Atlantic tripole sea surface temperature (SST) anomaly that persists into the subsequent January. By contrast, the December AO-related anomalous anticyclone during P1 is weak and is characterized by two separate centers located in the eastern and western North Atlantic. Correspondingly, the westerly and easterly anomalies over the North Atlantic Ocean are weak and the-related tripole SST anomaly is not well formed, unfavorable for the persistent impact of the December AO into the subsequent January. Further analyses indicate that the different anomalous anticyclone associated with the December AO over the North Atlantic may be induced by the strengthened synoptic-scale eddy feedbacks over the North Atlantic, which may be related to the interdecadal intensification of the storm track activity. Additionally, the planetary stationary wave related to the December AO propagates from surface into upper stratosphere at mid-latitudes during P2, which further propagates downward to the troposphere and causes anomalous atmospheric circulation in the subsequent January.
NASA Technical Reports Server (NTRS)
Zeng, Fanwei; Collatz, George James; Pinzon, Jorge E.; Ivanoff, Alvaro
2013-01-01
Satellite observations of surface reflected solar radiation contain informationabout variability in the absorption of solar radiation by vegetation. Understanding thecauses of variability is important for models that use these data to drive land surface fluxesor for benchmarking prognostic vegetation models. Here we evaluated the interannualvariability in the new 30.5-year long global satellite-derived surface reflectance index data,Global Inventory Modeling and Mapping Studies normalized difference vegetation index(GIMMS NDVI3g). Pearsons correlation and multiple linear stepwise regression analyseswere applied to quantify the NDVI interannual variability driven by climate anomalies, andto evaluate the effects of potential interference (snow, aerosols and clouds) on the NDVIsignal. We found ecologically plausible strong controls on NDVI variability by antecedent precipitation and current monthly temperature with distinct spatial patterns. Precipitation correlations were strongest for temperate to tropical water limited herbaceous systemswhere in some regions and seasons 40 of the NDVI variance could be explained byprecipitation anomalies. Temperature correlations were strongest in northern mid- to-high-latitudes in the spring and early summer where up to 70 of the NDVI variance was explained by temperature anomalies. We find that, in western and central North America,winter-spring precipitation determines early summer growth while more recent precipitation controls NDVI variability in late summer. In contrast, current or prior wetseason precipitation anomalies were correlated with all months of NDVI in sub-tropical herbaceous vegetation. Snow, aerosols and clouds as well as unexplained phenomena still account for part of the NDVI variance despite corrections. Nevertheless, this study demonstrates that GIMMS NDVI3g represents real responses of vegetation to climate variability that are useful for global models.
Khalid Hussein
2012-02-01
This layer contains areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies) Note: 'o' is used in this description to represent lowercase sigma.
Tropical cloud feedbacks and natural variability of climate
NASA Technical Reports Server (NTRS)
Miller, R. L.; Del Genio, A. D.
1994-01-01
Simulations of natural variability by two general circulation models (GCMs) are examined. One GCM is a sector model, allowing relatively rapid integration without simplification of the model physics, which would potentially exclude mechanisms of variability. Two mechanisms are found in which tropical surface temperature and sea surface temperature (SST) vary on interannual and longer timescales. Both are related to changes in cloud cover that modulate SST through the surface radiative flux. Over the equatorial ocean, SST and surface temperature vary on an interannual timescale, which is determined by the magnitude of the associated cloud cover anomalies. Over the subtropical ocean, variations in low cloud cover drive SST variations. In the sector model, the variability has no preferred timescale, but instead is characterized by a 'red' spectrum with increasing power at longer periods. In the terrestrial GCM, SST variability associated with low cloud anomalies has a decadal timescale and is the dominant form of global temperature variability. Both GCMs are coupled to a mixed layer ocean model, where dynamical heat transports are prescribed, thus filtering out El Nino-Southern Oscillation (ENSO) and thermohaline circulation variability. The occurrence of variability in the absence of dynamical ocean feedbacks suggests that climatic variability on long timescales can arise from atmospheric processes alone.
Impact of decadal cloud variations on the Earth’s energy budget
Zhou, Chen; Zelinka, Mark D.; Klein, Stephen A.
2016-10-31
Feedbacks of clouds on climate change strongly influence the magnitude of global warming. Cloud feedbacks, in turn, depend on the spatial patterns of surface warming, which vary on decadal timescales. Therefore, the magnitude of the decadal cloud feedback could deviate from the long-term cloud feedback. We present climate model simulations to show that the global mean cloud feedback in response to decadal temperature fluctuations varies dramatically due to time variations in the spatial pattern of sea surface temperature. Here, we find that cloud anomalies associated with these patterns significantly modify the Earth’s energy budget. Specifically, the decadal cloud feedback betweenmore » the 1980s and 2000s is substantially more negative than the long-term cloud feedback. This is a result of cooling in tropical regions where air descends, relative to warming in tropical ascent regions, which strengthens low-level atmospheric stability. Under these conditions, low-level cloud cover and its reflection of solar radiation increase, despite an increase in global mean surface temperature. Our results suggest that sea surface temperature pattern-induced low cloud anomalies could have contributed to the period of reduced warming between 1998 and 2013, and o er a physical explanation of why climate sensitivities estimated from recently observed trends are probably biased low.« less
Realmuto, V.J.; Hon, K.; Kahle, A.B.; Abbott, E.A.; Pieri, D.C.
1992-01-01
Multispectral thermal infrared radiance measurements of the Kupaianaha flow field were acquired with the NASA airborne Thermal Infrared Multispectral Scanner (TIMS) on the morning of 1 October 1988. The TIMS data were used to map both the temperature and emissivity of the surface of the flow field. The temperature map depicted the underground storage and transport of lava. The presence of molten lava in a tube or tumulus resulted in surface temperatures that were at least 10?? C above ambient. The temperature map also clearly defined the boundaries of hydrothermal plumes which resulted from the entry of lava into the ocean. The emissivity map revealed the boundaries between individual flow units within the Kupaianaha field. In general, the emissivity of the flows varied systematically with age but the relationship between age and emissivity was not unique. Distinct spectral anomalies, indicative of silica-rich surface materials, were mapped near fumaroles and ocean entry sites. This apparent enrichment in silica may have resulted from an acid-induced leaching of cations from the surfaces of glassy flows. Such incipient alteration may have been the cause for virtually all of the emissivity variations observed on the flow field, the spectral anomalies representing areas where the acid attack was most intense. ?? 1992 Springer-Verlag.
Impact of decadal cloud variations on the Earth’s energy budget
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Chen; Zelinka, Mark D.; Klein, Stephen A.
Feedbacks of clouds on climate change strongly influence the magnitude of global warming. Cloud feedbacks, in turn, depend on the spatial patterns of surface warming, which vary on decadal timescales. Therefore, the magnitude of the decadal cloud feedback could deviate from the long-term cloud feedback. We present climate model simulations to show that the global mean cloud feedback in response to decadal temperature fluctuations varies dramatically due to time variations in the spatial pattern of sea surface temperature. Here, we find that cloud anomalies associated with these patterns significantly modify the Earth’s energy budget. Specifically, the decadal cloud feedback betweenmore » the 1980s and 2000s is substantially more negative than the long-term cloud feedback. This is a result of cooling in tropical regions where air descends, relative to warming in tropical ascent regions, which strengthens low-level atmospheric stability. Under these conditions, low-level cloud cover and its reflection of solar radiation increase, despite an increase in global mean surface temperature. Our results suggest that sea surface temperature pattern-induced low cloud anomalies could have contributed to the period of reduced warming between 1998 and 2013, and o er a physical explanation of why climate sensitivities estimated from recently observed trends are probably biased low.« less
Impact of decadal cloud variations on the Earth's energy budget
NASA Astrophysics Data System (ADS)
Zhou, Chen; Zelinka, Mark D.; Klein, Stephen A.
2016-12-01
Feedbacks of clouds on climate change strongly influence the magnitude of global warming. Cloud feedbacks, in turn, depend on the spatial patterns of surface warming, which vary on decadal timescales. Therefore, the magnitude of the decadal cloud feedback could deviate from the long-term cloud feedback. Here we present climate model simulations to show that the global mean cloud feedback in response to decadal temperature fluctuations varies dramatically due to time variations in the spatial pattern of sea surface temperature. We find that cloud anomalies associated with these patterns significantly modify the Earth's energy budget. Specifically, the decadal cloud feedback between the 1980s and 2000s is substantially more negative than the long-term cloud feedback. This is a result of cooling in tropical regions where air descends, relative to warming in tropical ascent regions, which strengthens low-level atmospheric stability. Under these conditions, low-level cloud cover and its reflection of solar radiation increase, despite an increase in global mean surface temperature. These results suggest that sea surface temperature pattern-induced low cloud anomalies could have contributed to the period of reduced warming between 1998 and 2013, and offer a physical explanation of why climate sensitivities estimated from recently observed trends are probably biased low.
NASA Astrophysics Data System (ADS)
Nobre, Paulo; Srukla, J.
1996-10-01
Empirical orthogonal functions (E0Fs) and composite analyses are used to investigate the development of sea surface temperature (SST) anomaly patterns over the tropical Atlantic. The evolution of large-scale rainfall anomaly patterns over the equatorial Atlantic and South America are also investigated. 71e EOF analyses revealed that a pattern of anomalous SST and wind stress asymmetric relative to the equator is the dominant mode of interannual and longer variability over the tropical Atlantic. The most important findings of this study are as follows.Atmospheric circulation anomalies precede the development of basinwide anomalous SST patterns over the tropical Atlantic. Anomalous SST originate off the African coast simultaneously with atmospheric circulation anomalies and expand westward afterward. The time lag between wind stress relaxation (strengthening) and maximum SST warming (cooling) is about two months.Anomalous atmospheric circulation patterns over northern tropical Atlantic are phase locked to the seasonal cycle. Composite fields of SLP and wind stress over northern tropical Atlantic can be distinguished from random only within a few months preceding the March-May (MAM) season. Observational evidence is presented to show that the El Niño-Southern Oscillation phenomenon in the Pacific influences atmospheric circulation and SST anomalies over northern tropical Atlantic through atmospheric teleconnection patterns into higher latitudes of the Northern Hemisphere.The well-known droughts over northeastern Brazil (Nordeste) are a local manifestation of a much larger-scale rainfall anomaly pattern encompassing the whole equatorial Atlantic and Amazon region. Negative rainfall anomalies to the south of the equator during MAM, which is the rainy season for the Nordeste region, are related to an early withdrawal of the intertropical convergence zone toward the warm SST anomalies over the northern tropical Atlantic. Also, it is shown that precipitation anomalies over southern and northern parts of the Nordeste are out of phase: drought years over the northern Nordeste are commonly preceded by wetter years over the southern Nordeste, and vice versa.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, S.; Mysak, L.A.
The spatial distributions of northern North Atlantic sea surface temperature and the high-latitude Northern Hemisphere sea level pressure anomalies averaged over six consecutive warm SST winters (1951-1956) and six consecutive cold SST winters (1971-1976) are examined. Three SLP anomaly difference (i.e., warm - cold winters) centers, significant at the 5% level, are observed over the northern North Atlantic, Europe, and western Siberia. This anomaly pattern is consistent in principle with what was identified in a related analyses by Palmer and Sun, who used composite data from selected winter months. The SLP difference centers over the northern North Atlantic and westernmore » Siberia are in phase. The impact of the latter center upon the runoff from the underlying Ob and Yenisey rivers and especially the teleconnection between SST anomalies in the northern North Atlantic and runoff of those two rivers via the atmosphere are investigated. The temporal cross-correlation analyses of 50 years (1930-1979) of records of SST, precipitation, and runoff anomalies indicate that the winter SST anomalies in the northern North Atlantic are significantly correlated with the winter and following summer runoff fluctuations of the Ob and Yenisey rivers. Positive (negative) northern North Atlantic SST anomalies are related to less (more) precipitation, and hence, less (more) runoff, over western Siberia. Discussions of possible physical mechanisms and processes that lead to the above relationships are attempted. The analyses of spatial distributions of precipitation in the warm and cold SST winters suggest that precipitation fluctuations over Europe and western Siberia may be affected by shifts of cyclone tracks associated with the SST variations in the northern North Atlantic. 27 refs., 9 figs.« less
Sensitivity of Asian Summer Monsoon precipitation to tropical sea surface temperature anomalies
NASA Astrophysics Data System (ADS)
Fan, Lei; Shin, Sang-Ik; Liu, Zhengyu; Liu, Qinyu
2016-10-01
Sensitivity of Asian Summer Monsoon (ASM) precipitation to tropical sea surface temperature (SST) anomalies was estimated from ensemble simulations of two atmospheric general circulation models (GCMs) with an array of idealized SST anomaly patch prescriptions. Consistent sensitivity patterns were obtained in both models. Sensitivity of Indian Summer Monsoon (ISM) precipitation to cooling in the East Pacific was much weaker than to that of the same magnitude in the local Indian-western Pacific, over which a meridional pattern of warm north and cold south was most instrumental in increasing ISM precipitation. This indicates that the strength of the ENSO-ISM relationship is due to the large-amplitude East Pacific SST anomaly rather than its sensitivity value. Sensitivity of the East Asian Summer Monsoon (EASM), represented by the Yangtze-Huai River Valley (YHRV, also known as the meiyu-baiu front) precipitation, is non-uniform across the Indian Ocean basin. YHRV precipitation was most sensitive to warm SST anomalies over the northern Indian Ocean and the South China Sea, whereas the southern Indian Ocean had the opposite effect. This implies that the strengthened EASM in the post-Niño year is attributable mainly to warming of the northern Indian Ocean. The corresponding physical links between these SST anomaly patterns and ASM precipitation were also discussed. The relevance of sensitivity maps was justified by the high correlation between sensitivity-map-based reconstructed time series using observed SST anomaly patterns and actual precipitation series derived from ensemble-mean atmospheric GCM runs with time-varying global SST prescriptions during the same period. The correlation results indicated that sensitivity maps derived from patch experiments were far superior to those based on regression methods.
Mid-Piacensian mean annual sea surface temperature: an analysis for data-model comparisons
Dowsett, Harry J.; Robinson, Marci M.; Foley, Kevin M.; Stoll, Danielle K.
2010-01-01
Numerical models of the global climate system are the primary tools used to understand and project climate disruptions in the form of future global warming. The Pliocene has been identified as the closest, albeit imperfect, analog to climate conditions expected for the end of this century, making an independent data set of Pliocene conditions necessary for ground truthing model results. Because most climate model output is produced in the form ofmean annual conditions, we present a derivative of the USGS PRISM3 Global Climate Reconstruction which integrates multiple proxies of sea surface temperature (SST) into single surface temperature anomalies. We analyze temperature estimates from faunal and floral assemblage data,Mg/Ca values and alkenone unsaturation indices to arrive at a single mean annual SST anomaly (Pliocene minus modern) best describing each PRISM site, understanding that multiple proxies should not necessarily show concordance. The power of themultiple proxy approach lies within its diversity, as no two proxies measure the same environmental variable. This data set can be used to verify climate model output, to serve as a starting point for model inter-comparisons, and for quantifying uncertainty in Pliocene model prediction in perturbed physics ensembles.
NASA Astrophysics Data System (ADS)
Zhou, Yang; Lu, Youyu; Yang, Ben; Jiang, Jing; Huang, Anning; Zhao, Yong; La, Mengke; Yang, Qing
2016-11-01
Linear regression is used to explore the relationship between the Madden-Julian oscillation (MJO) and 2 m air temperature (T2M) over central Asia in boreal winter during 1979-2012. During MJO phases 3 and 4 (7 and 8), T2M anomalies exhibit a significantly strong, negative (positive) response to the MJO from the Arabian Sea to northwestern China. The anomalies of T2M are essentially influenced by surface net downward long (Ldown) and shortwave radiations, which are caused by the changes in total cloud cover (TCC) and low-level tropospheric air temperature. The anomalies of Ldown that are caused by TCC account for 20-65% of total Ldown. The remaining anomalies of total Ldown are explained by low-level air temperature changes. The 850 hPa air temperature (T850) tendency is mainly affected by the vertical motion over central Asia during MJO phases 1, 2, 4-6, and 8, as well as over northern India during phases 3 and 7. Over Saudi Arabia, Afghanistan, Pakistan, Kazakhstan, and northwestern China, the anomalies of T850 tendency are mainly explained by the temperature advection during phases 3 and 7. TCC and vertical motion are affected by the evolution of the MJO event. The cyclonic (anticyclonic) circulation related to the MJO over central Asia during phases 3 and 4 (7 and 8) causes the transport of cold (warm) air over central Asia. The MJO can be a useful intraseasonal signal to predict winter T2M over central Asia, where temperatures would be colder (warmer) than normal during MJO phases 3 and 4 (7 and 8).
NASA Astrophysics Data System (ADS)
Baehr, J.; Fröhlich, K.; Botzet, M.; Domeisen, D. I. V.; Kornblueh, L.; Notz, D.; Piontek, R.; Pohlmann, H.; Tietsche, S.; Müller, W. A.
2015-05-01
A seasonal forecast system is presented, based on the global coupled climate model MPI-ESM as used for CMIP5 simulations. We describe the initialisation of the system and analyse its predictive skill for surface temperature. The presented system is initialised in the atmospheric, oceanic, and sea ice component of the model from reanalysis/observations with full field nudging in all three components. For the initialisation of the ensemble, bred vectors with a vertically varying norm are implemented in the ocean component to generate initial perturbations. In a set of ensemble hindcast simulations, starting each May and November between 1982 and 2010, we analyse the predictive skill. Bias-corrected ensemble forecasts for each start date reproduce the observed surface temperature anomalies at 2-4 months lead time, particularly in the tropics. Niño3.4 sea surface temperature anomalies show a small root-mean-square error and predictive skill up to 6 months. Away from the tropics, predictive skill is mostly limited to the ocean, and to regions which are strongly influenced by ENSO teleconnections. In summary, the presented seasonal prediction system based on a coupled climate model shows predictive skill for surface temperature at seasonal time scales comparable to other seasonal prediction systems using different underlying models and initialisation strategies. As the same model underlying our seasonal prediction system—with a different initialisation—is presently also used for decadal predictions, this is an important step towards seamless seasonal-to-decadal climate predictions.
NASA Astrophysics Data System (ADS)
Freeman, Mervyn; Lam, Mai Mai; Chisham, Gareth
2017-04-01
We use National Centers for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) reanalysis data to show that Antarctic surface air temperature anomalies result from differences in the daily-mean duskward component,By, of the interplanetary magnetic field (IMF). We find the anomalies have strong geographical and seasonal variations. Regional anomalies are evident poleward of 60˚ S and are of diminishing representative peak amplitude from autumn (3.2˚ C) to winter (2.4˚ C) to spring (1.6˚ C) to summer (0.9˚ C). We demonstrate that anomalies of statistically-significant amplitude are due to geostrophic wind anomalies, resulting from the same By changes, moving air across large meridional gradients in zonal mean air temperature between 60 and 80˚ S. Additionally, we find that the mean tropospheric temperature anomaly for geographical latitudes ≤ -70˚ peaks at about 0.7 K and is statistically significant at the 1 - 5% level between air pressures of 1000 and 500 hPa (i.e., ˜0.1 to 5.6 km altitude above sea level) and for time lags with respect to the IMF of up to 7 days. The signature propagates vertically between air pressure p ≥ 850 hPa (≤ 1.5 km) and p = 500 hPa (˜5.6 km). The characteristics of prompt response and vertical propagation within the troposphere have previously been seen in the correlation between the IMF and high-latitude air pressure anomalies, known as the Mansurov effect, at higher statistical significances (1%). We conclude that we have identified the temperature signature of the Mansurov effect in the Antarctic troposphere. Since these tropospheric anomalies have been associated with By-driven anomalies in the electric potential of the ionosphere, we further conclude that they are caused by IMF-induced changes to the global atmospheric electric circuit (GEC). Our results support the view that variations in the ionospheric potential act on the troposphere via the action of resulting variations in the downwards current of the GEC on tropospheric clouds.
The impact of ENSO on regional chlorophyll-a anomaly in the Arafura Sea
NASA Astrophysics Data System (ADS)
Dewi, D. M. P. R.; Fatmasari, D.; Kurniawan, A.; Munandar, M. A.
2018-03-01
The El Niño-Southern Oscillation (ENSO) is a naturally occurring phenomenon that involves fluctuating ocean temperature in the equatorial Pacific. ENSO influences ocean climate variability in Indonesia including the Arafura Sea. The relationship between oceanic chlorophyll-a and ENSO has been the focus of study over the past decade. Here we examine the impact of ENSO on regional chlorophyll-a anomaly in the Papua waters using 14 years of chlorophyll-a and sea surface temperature (SST) data from AQUA MODIS and sea level anomaly data from AVISO. It is found that when El Niño events occur the negative SST anomaly in the Papua waters as well as the enhanced upwelling cause the increase of chlorophyll-a concentration. The highest chlorophyll-a concentration (> 1 mg–cm-3) occured during El Niño and observed around the Aru archipelago. In contrast during La Niña event, the positive SST anomaly in Papua waters and the suppressed upwelling cause the decrease of chlorophyll-a concentration. Our results suggest that during El Niño (La Niña), the enhanced (suppressed) upwelling related to the significant decreasing (increasing) of sea level anomaly.
Characteristic variations of sea surface temperature with multiple time scales in the North Pacific
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanimoto, Youichi; Hanawa, Kimio; Toba, Yoshiaki
1993-06-01
It is unclear whether the recent increases in global temperatures are really due to the increase of greenhouse gases or are a manifestation of natural variability. Temporal evolution and spectral structure of sea surface temperature (SST) anomalies in the North Pacific over the last 37 years are investigated on the three characteristic time scales: shorter than 24 months (HF), 24-60 months (ES), and longer than 60 months (DC). The leading empirical-orthogonal function (EOF) for the DC time scale is characterized by a zonally elongated monopole centered at around 40[degrees]N, 180[degrees]. The leading EOF for the HF time scale is somewhatmore » similar to that for the DC time scale, although there are two centers of action with the same polarity at the mid and western Pacific. The leading EOF for the ES time scale, however, exhibits a different pattern whose center of action at the mid Pacific is located farther southeastward. In the time evolution of the SST anomalies associated with the leading EOF of the DC time scale, several anomaly periods can be identified that last five years or longer. The transition from a persistent period to another with the opposite polarity is generally very brief, except for the one that lasts throughout the late 1960s. The EOF analysis was repeated separately on these persistent anomaly periods and the long transition period. The spatial structure of the leading EOF of the SST variability with the ES time scale is found to be sensitive to the polarity of the decadal anomaly. These results are suggestive of the possible influence of the decadal SST variability upon the spatial structure of the variability with shorter time scales. 31 refs., 8 figs.« less
Khalid Hussein
2012-02-01
Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Chaffee County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Garfield County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1o and 2o were considered ASTER modeled warm surface exposures (thermal anomalies) Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Routt County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1o and 2o were considered ASTER modeled warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Dolores County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies) Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Archuleta County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1o and 2o were considered ASTER modeled warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma.
Interannual-to-decadal air-sea interactions in the tropical Atlantic region
NASA Astrophysics Data System (ADS)
Ruiz-Barradas, Alfredo
2001-09-01
The present research identifies modes of atmosphere-ocean interaction in the tropical Atlantic region and the mechanisms by which air-sea interactions influence the regional climate. Novelties of the present work are (1)the use of relevant ocean and atmosphere variables important to identity coupled variability in the system. (2)The use of new data sets, including realistic diabatic heating. (3)The study of interactions between ocean and atmosphere relevant at interannual-to-decadal time scales. Two tropical modes of variability are identified during the period 1958-1993, the Atlantic Niño mode and the Interhemispheric mode. Those modes have defined structures in both ocean and atmosphere. Anomalous sea surface temperatures and winds are associated to anomalous placement of the Intertropical Convergence Zone (ITCZ). They develop maximum amplitude during boreal summer and spring, respectively. The anomalous positioning of the ITCZ produces anomalous precipitation in some places like Nordeste, Brazil and the Caribbean region. Through the use of a diagnostic primitive equation model, it is found that the most important terms controlling local anomalous surface winds over the ocean are boundary layer temperature gradients and diabatic heating anomalies at low levels (below 780 mb). The latter is of particular importance in the deep tropics in producing the anomalous meridional response to the surface circulation. Simulated latent heat anomalies indicate that a thermodynamic feedback establishes positive feedbacks at both sides of the equator and west of 20°W in the deep tropics and a negative feedback in front of the north west coast of Africa for the Interhemispheric mode. This thermodynamic feedback only establishes negative feedbacks for the Atlantic Niño mode. Transients establish some connection between the tropical Atlantic and other basins. Interhemispheric gradients of surface temperature in the tropical Atlantic influence winds in the midlatitude North Atlantic but winds and heating of the midlatitude North Atlantic have little impact on the deep tropics. The remote influence of El Niño-Southern Oscillation in the tropical Atlantic, similar to the Interhemispheric mode, is the result of two mechanisms triggered by anomalous warming in the central and eastern tropical Pacific: enhancement of the Atlantic Walker circulation, and coupled intrusion of negative 200 mb geopotential height anomalies and negative sea level pressure anomalies that induce southwesterly surface wind anomalies in the northern tropical Atlantic.
NASA Astrophysics Data System (ADS)
Snow, T.; Shepherd, B.; Abdalati, W.; Scambos, T. A.
2016-12-01
Dynamic processes at marine-terminating outlet glaciers are responsible for over one-third of Greenland Ice Sheet (GIS) mass loss. Enhanced intrusion of warm ocean waters at the termini of these glaciers has contributed to elevated rates of ice thinning and terminus retreat over the last two decades. In situ oceanographic measurements and modeling studies show that basal melting of glaciers and subglacial discharge can cause buoyant plumes of water to rise to the fjord surface and influence fjord circulation characteristics. The temperature of these surface waters holds clues about ice-ocean interactions and small-scale circulation features along the glacier terminus that could contribute to outlet glacier mass loss, but the magnitude and duration of temperature variability remains uncertain. Satellite remote sensing has proven very effectiver for acquiring sea surface temperatuer (SST) data from these remote regions on a long-term, consistent basis and shows promise for identifying temperature anomalies at the ice front. However, these data sets have not been widely utilized to date. Here, we use satellite-derived sea surface temperatures to identify fjord surface outflow characteristics from 2000 to present at the Petermann Glacier, which drains 4% of the GIS and is experiencing 80% of its mass loss from basal melt. We find a general SST warming trend that coincides with early sea ice breakup and precedes two major calving events and ice speedup that began in 2010. Persistent SST anomalies along the terminus provide evidence of warm outflow that is consistent with buoyant plume model predictions. However, the anomalies are not evident early in the time series, suggesting that ocean inflow and ice-ocean interactions have experienced a regime shift since 2000. Our results provide valuable insight into fjord circulation patterns and the forcing mechanisms that contribute to terminus retreat. Comparing our results to ongoing modeling experiments, time series from other outlet glaciers, and coincident in situ measurements, will help to further explain the physical processes occurring at the ice-ocean boundary and provide useful insights into the changes taking place at other GIS marine-terminating outlet glaciers.
USDA-ARS?s Scientific Manuscript database
Passive microwave observations from various space borne sensors have been linked to soil moisture of the Earth’s surface layer. The new generation passive microwave sensors are dedicated to retrieving this variable and make observations in the single, theoretically optimal L-band frequency (1-2 GHz)...
NASA Astrophysics Data System (ADS)
Chamorro, Adolfo; Echevin, Vincent; Colas, François; Oerder, Vera; Tam, Jorge; Quispe-Ccalluari, Carlos
2018-01-01
The physical processes driving the wind intensification in a coastal band of 100 km off Peru during the intense 1997-1998 El Niño (EN) event were studied using a regional atmospheric model. A simulation performed for the period 1994-2000 reproduced the coastal wind response to local sea surface temperature (SST) forcing and large scale atmospheric conditions. The model, evaluated with satellite data, represented well the intensity, seasonal and interannual variability of alongshore (i.e. NW-SE) winds. An alongshore momentum budget showed that the pressure gradient was the dominant force driving the surface wind acceleration. The pressure gradient tended to accelerate the coastal wind, while turbulent vertical mixing decelerated it. A quasi-linear relation between surface wind and pressure gradient anomalies was found. Alongshore pressure gradient anomalies were caused by a greater increase in near-surface air temperature off the northern coast than off the southern coast, associated with the inhomogeneous SST warming. Vertical profiles of wind, mixing coefficient, and momentum trends showed that the surface wind intensification was not caused by the increase of turbulence in the planetary boundary layer. Moreover, the temperature inversion in the vertical mitigated the development of pressure gradient due to air convection during part of the event. Sensitivity experiments allowed to isolate the respective impacts of the local SST forcing and large scale condition on the coastal wind intensification. It was primarily driven by the local SST forcing whereas large scale variability associated with the South Pacific Anticyclone modulated its effects. Examination of other EN events using reanalysis data confirmed that intensifications of alongshore wind off Peru were associated with SST alongshore gradient anomalies, as during the 1997-1998 event.
NASA Astrophysics Data System (ADS)
Krishnamurti, T. N.; Bedi, H. S.; Subramaniam, M.
1989-04-01
In this paper we have examined the evolution of a number of parameters we believe were important for our understanding of the drought over India during the summer of 1987. The list of parameters includes monthly means or anomalies of the following fields: sea surface temperatures, divergent circulations, outgoing longwave radiation, streamfunction of the lower and upper troposphere, and monthly precipitation (expressed as a percentage departure from a long-term mean). The El Niño related warm sea surface temperature anomaly and a weaker warm sea surface temperature anomaly over the equatorial Indian Ocean provide sustained convection, as reflected by the negative values of the outgoing longwave radiation. With the seasonal heating, a pronounced planetary-scale divergent circulation evolved with a center along the western Pacific Ocean. The monsoonal divergent circulation merged with that related to the El Niño, maintaining most of the heavy rainfall activity between the equatorial Pacific Ocean and east Asia. Persistent convective activity continued south of India during the entire monsoon season. Strong Hadley type overturnings with rising motions over these warm SST anomaly regions and descent roughly near 20° to 25°S was evident as early as April 1987. The subtropical high pressure areas near 20° to 25°S showed stronger than normal circulations. This was revealed by the presence of a counterclockwise streamfunction anomaly at 850 mb during April 1987. With the seasonal heating, this anomaly moved northwards and was located over the Arabian Sea and India. This countermonsoon circulation anomaly at the low levels was associated with a weaker than normal Somali jet and Arabian Sea circulation throughout this summer. The monsoon remained active along northeast India, Bangladesh, northern lndochina, and central China during the summer monsoon season. This was related to the eastward shift of the divergent circulation. An eastward shift of the upper tropospheric anticyclone bell near 25° to 30°N resulted in the continued presence of a westerly wind anomaly north of India. The westerly winds brought in very dry air over the tropical upper troposphere. The dry air penetrated eastwards to central Uttar Pradesh and this seemed to have a major role in inhibiting organized deep convection over most of central, northern and western parts of the Indian subcontinent. The westward extension of the planetary-scale divergent circulation over North and South Africa and the continued drought over the regions are also briefly addressed.
NASA Technical Reports Server (NTRS)
Susskind, Joel; Molnar, Gyula; Iredell, Lena
2011-01-01
Outline: (1) Comparison of AIRS and CERES anomaly time series of outgoing longwave radiation (OLR) and OLR(sub CLR), i.e. Clear Sky OLR (2) Explanation of recent decreases in global and tropical mean values of OLR (3) AIRS "Short-term" Longwave Cloud Radiative Feedback -- A new product
Ozone Variability and Anomalies Observed During SENEX and SEAC4RS Campaigns in 2013
NASA Astrophysics Data System (ADS)
Kuang, Shi; Newchurch, Michael J.; Thompson, Anne M.; Stauffer, Ryan M.; Johnson, Bryan J.; Wang, Lihua
2017-10-01
Tropospheric ozone variability occurs because of multiple forcing factors including surface emission of ozone precursors, stratosphere-to-troposphere transport (STT), and meteorological conditions. Analyses of ozonesonde observations made in Huntsville, AL, during the peak ozone season (May to September) in 2013 indicate that ozone in the planetary boundary layer was significantly lower than the climatological average, especially in July and August when the Southeastern United States (SEUS) experienced unusually cool and wet weather. Because of a large influence of the lower stratosphere, however, upper tropospheric ozone was mostly higher than climatology, especially from May to July. Tropospheric ozone anomalies were strongly anticorrelated (or correlated) with water vapor (or temperature) anomalies with a correlation coefficient mostly about 0.6 throughout the entire troposphere. The regression slopes between ozone and temperature anomalies for surface up to midtroposphere are within 3.0-4.1 ppbv K-1. The occurrence rates of tropospheric ozone laminae due to STT are ≥50% in May and June and about 30% in July, August, and September suggesting that the stratospheric influence on free-tropospheric ozone could be significant during early summer. These STT laminae have a mean maximum ozone enhancement over the climatology of 52 ± 33% (35 ± 24 ppbv) with a mean minimum relative humidity of 2.3 ± 1.7%.
NASA Technical Reports Server (NTRS)
Lewis, Sophie C.; LeGrande, Allegra N.; Schmidt, Gavin A.; Kelley, Maxwell
2014-01-01
Using the water isotope- and vapor source distribution (VSD) tracer-enabled Goddard Institute for Space Studies ModelE-R, we examine changing El Nino-Southern Oscillation (ENSO)-like expressions in the hydrological cycle in a suite of model experiments. We apply strong surface temperature anomalies associated with composite observed El Nino and La Nina events as surface boundary conditions to preindustrial and mid-Holocene model experiments in order to investigate ENSO-like expressions in the hydrological cycle under varying boundary conditions. We find distinct simulated hydrological anomalies associated with El Nino-like ("ENSOWARM") and La Nina-like ("ENSOCOOL") conditions, and the region-specific VSD tracers show hydrological differences across the Pacific basin between El Nino-like and La Nina-like events. The application of ENSOCOOL forcings does not produce climatological anomalies that represent the equal but opposite impacts of the ENSOWARM experiment, as the isotopic anomalies associated with ENSOWARM conditions are generally stronger than with ENSOCOOL and the spatial patterns of change distinct. Also, when the same ENSO-like surface temperature anomalies are imposed on the mid-Holocene, the hydrological response is muted, relative to the preindustrial. Mid-Holocene changes in moisture sources to the analyzed regions across the Pacific reveal potentially complex relationships between ENSO-like conditions and boundary conditions. Given the complex impacts of ENSO-like conditions on various aspects of the hydrological cycle, we suggest that proxy record insights into paleo-ENSO variability are most likely to be robust when synthesized from a network of many spatially diverse archives, which can account for the potential nonstationarity of ENSO teleconnections under different boundary conditions.
The Gabbs Valley, Nevada, geothermal prospect: Exploring for a potential blind geothermal resource
NASA Astrophysics Data System (ADS)
Payne, J.; Bell, J. W.; Calvin, W. M.
2012-12-01
The Gabbs Valley prospect in west-central Nevada is a potential blind geothermal resource system. Possible structural controls on this system were investigated using high-resolution LiDAR, low sun-angle aerial (LSA) photography, exploratory fault trenching and a shallow temperature survey. Active Holocene faults have previously been identified at 37 geothermal systems with indication of temperatures greater than 100° C in the western Nevada region. Active fault controls in Gabbs Valley include both Holocene and historical structures. Two historical earthquakes occurring in 1932 and 1954 have overlapping surface rupture patterns in Gabbs Valley. Three active fault systems identified through LSA and LiDAR mapping have characteristics of Basin and Range normal faulting and Walker Lane oblique dextral faulting. The East Monte Cristo Mountains fault zone is an 8.5 km long continuous NNE striking, discrete fault with roughly 0.5 m right-normal historic motion and 3 m vertical Quaternary separation. The Phillips Wash fault zone is an 8.2 km long distributed fault system striking NE to N, with Quaternary fault scarps of 1-3 m vertical separation and a 500 m wide graben adjacent to the Cobble Cuesta anticline. This fault displays ponded drainages, an offset terrace riser and right stepping en echelon fault patterns suggestive of left lateral offset, and fault trenching exposed non-matching stratigraphy typical of a significant component of lateral offset. The unnamed faults of Gabbs Valley are a 10.6 km long system of normal faults striking NNE and Quaternary scarps are up to 4 m high. These normal faults largely do not have historic surface rupture, but a small segment of 1932 rupture has been identified. A shallow (2 m deep) temperature survey of 80 points covering roughly 65 square kilometers was completed. Data were collected over approximately 2 months, and continual base station temperature measurements were used to seasonally correct temperature measurements. A 2.5 km long temperature anomaly greater than 3° C above background temperatures forms west-northwest trending zone between terminations of the Phillips Wash fault zone and unnamed faults of Gabbs Valley to the south. Rupture segments of two young active faults bracket the temperature anomaly. The temperature anomaly may be due to several possible causes. 1. Increases in stress near the rupture segments or tip-lines of these faults, or where multiple fault splays exist, can increase fault permeability. The un-ruptured segments of these faults may be controlling the location of the Gabbs Valley thermal anomaly between ruptured segments of the 1932 Cedar Mountain and 1954 Fairview Peak earthquakes. 2. Numerous unnamed normal faults may interact and the hanging wall of these faults is hosting the thermal anomaly. The size and extent of the anomaly may be due to its proximity to a flat playa and not the direct location of the shallow heat anomaly. 3. The linear northwest nature of the thermal anomaly may reflect a hydrologic barrier in the subsurface controlling where heated fluids rise. A concealed NW- striking fault is possible, but has not been identified in previous studies or in the LiDAR or LSA fault mapping.
Soil Moisture and Snow Cover: Active or Passive Elements of Climate?
NASA Technical Reports Server (NTRS)
Oglesby, Robert J.; Marshall, Susan; Erickson, David J., III; Robertson, Franklin R.; Roads, John O.; Arnold, James E. (Technical Monitor)
2002-01-01
A key question in the study of the hydrologic cycle is the extent to which surface effects such as soil moisture and snow cover are simply passive elements or whether they can affect the evolution of climate on seasonal and longer time scales. We have constructed ensembles of predictability studies using the NCAR CCM3 in which we compared the relative roles of initial surface and atmospheric conditions over the central and western U.S. in determining the subsequent evolution of soil moisture and of snow cover. We have also made sensitivity studies with exaggerated soil moisture and snow cover anomalies in order to determine the physical processes that may be important. Results from simulations with realistic soil moisture anomalies indicate that internal climate variability may be the strongest factor, with some indication that the initial atmospheric state is also important. The initial state of soil moisture does not appear important, a result that held whether simulations were started in late winter or late spring. Model runs with exaggerated soil moisture reductions (near-desert conditions) showed a much larger effect, with warmer surface temperatures, reduced precipitation, and lower surface pressures; the latter indicating a response of the atmospheric circulation. These results suggest the possibility of a threshold effect in soil moisture, whereby an anomaly must be of a sufficient size before it can have a significant impact on the atmospheric circulation and hence climate. Results from simulations with realistic snow cover anomalies indicate that the time of year can be crucial. When introduced in late winter, these anomalies strongly affected the subsequent evolution of snow cover. When introduced in early winter, however, little or no effect is seen on the subsequent snow cover. Runs with greatly exaggerated initial snow cover indicate that the high reflectively of snow is the most important process by which snow cover cart impact climate, through lower surface temperatures and increased surface pressures. In early winter, the amount of solar radiation is very small and so this albedo effect is inconsequential while in late winter, with the sun higher in the sky and period of daylight longer, the effect is much stronger.
NASA Astrophysics Data System (ADS)
Ronchail, Josyane; Cochonneau, Gérard; Molinier, Michel; Guyot, Jean-Loup; Chaves, Adriana Goretti De Miranda; Guimarães, Valdemar; de Oliveira, Eurides
2002-11-01
Rainfall variability in the Amazon basin is studied in relation to sea-surface temperatures (SSTs) in the equatorial Pacific and the northern and southern tropical Atlantic during the 1977-99 period, using the HiBAm original rainfall data set and complementary cluster and composite analyses.The northeastern part of the basin, north of 5 °S and east of 60 °W, is significantly related with tropical SSTs: a rainier wet season is observed when the equatorial Pacific and the northern (southern) tropical Atlantic are anomalously cold (warm). A shorter and drier wet season is observed during El Niño events and negative rainfall anomalies are also significantly associated with a warm northern Atlantic in the austral autumn and a cold southern Atlantic in the spring. The northeastern Amazon rainfall anomalies are closely related with El Niño-southern oscillation during the whole year, whereas the relationships with the tropical Atlantic SST anomalies are mainly observed during the autumn. A time-space continuity is observed between El Niño-related rainfall anomalies in the northeastern Amazon, those in the northern Amazon and south-eastern Amazon, and those in northern South America and in the Nordeste of Brazil.A reinforcement of certain rainfall anomalies is observed when specific oceanic events combine. For instance, when El Niño and cold SSTs in the southern Atlantic are associated, very strong negative anomalies are observed in the whole northern Amazon basin. Nonetheless, the comparison of the cluster and the composite analyses results shows that the rainfall anomalies in the northeastern Amazon are not always associated with tropical SST anomalies.In the southern and western Amazon, significant tropical SST-related rainfall anomalies are very few and spatially variable. The precipitation origins differ from those of the northeastern Amazon: land temperature variability, extratropical perturbations and moisture advection are important rainfall factors, as well as SSTs. This could partially explain why: (a) the above-mentioned signals weaken or disappear, with the exception of the relative dryness that is observed at the peak of an El Niño event and during the dry season when northern Atlantic SSTs are warmer than usual; (b) rainfall anomalies tend to resemble those of southeastern South America, noticeably at the beginning and the end of El Niño and La Niña events; (c) some strong excesses of rain are not associated with any SST anomalies and merit further investigation.
NASA Technical Reports Server (NTRS)
Anyamba, Assaf; Small, Jennifer L.; Britch, Seth C.; Tucker, Compton J.; Pak, Edwin W.; Reynolds, Curt A.; Crutchfield, James; Linthicum, Kenneth J.
2014-01-01
We document significant worldwide weather anomalies that affected agriculture and vector-borne disease outbreaks during the 2010-2012 period. We utilized 2000-2012 vegetation index and land surface temperature data from NASA's satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) to map the magnitude and extent of these anomalies for diverse regions including the continental United States, Russia, East Africa, Southern Africa, and Australia. We demonstrate that shifts in temperature and/or precipitation have significant impacts on vegetation patterns with attendant consequences for agriculture and public health. Weather extremes resulted in excessive rainfall and flooding as well as severe drought, which caused,10 to 80% variation in major agricultural commodity production (including wheat, corn, cotton, sorghum) and created exceptional conditions for extensive mosquito-borne disease outbreaks of dengue, Rift Valley fever, Murray Valley encephalitis, and West Nile virus disease. Analysis of MODIS data provided a standardized method for quantifying the extreme weather anomalies observed during this period. Assessments of land surface conditions from satellite-based systems such as MODIS can be a valuable tool in national, regional, and global weather impact determinations.
Anyamba, Assaf; Small, Jennifer L; Britch, Seth C; Tucker, Compton J; Pak, Edwin W; Reynolds, Curt A; Crutchfield, James; Linthicum, Kenneth J
2014-01-01
We document significant worldwide weather anomalies that affected agriculture and vector-borne disease outbreaks during the 2010-2012 period. We utilized 2000-2012 vegetation index and land surface temperature data from NASA's satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) to map the magnitude and extent of these anomalies for diverse regions including the continental United States, Russia, East Africa, Southern Africa, and Australia. We demonstrate that shifts in temperature and/or precipitation have significant impacts on vegetation patterns with attendant consequences for agriculture and public health. Weather extremes resulted in excessive rainfall and flooding as well as severe drought, which caused ∼10 to 80% variation in major agricultural commodity production (including wheat, corn, cotton, sorghum) and created exceptional conditions for extensive mosquito-borne disease outbreaks of dengue, Rift Valley fever, Murray Valley encephalitis, and West Nile virus disease. Analysis of MODIS data provided a standardized method for quantifying the extreme weather anomalies observed during this period. Assessments of land surface conditions from satellite-based systems such as MODIS can be a valuable tool in national, regional, and global weather impact determinations.
Nonlinear Meridional Moisture Advection and the ENSO-Southern China Rainfall Teleconnection
NASA Astrophysics Data System (ADS)
Wang, Qiang; Cai, Wenju; Zeng, Lili; Wang, Dongxiao
2018-05-01
In the boreal cooler months of 2015, southern China (SC) experienced the largest rainfall since 1950, exceeding 4 times the standard deviation of SC rainfall. Although an El Niño typically induces a positive SC rainfall anomaly during these months, the unprecedented rainfall increase cannot be explained by the strong El Niño of 2015/2016, and the dynamics is unclear. Here we show that a nonlinear meridional moisture advection contributes substantially to the unprecedented rainfall increase. During cooler months of 2015, the meridional flow anomaly over the South China Sea region, which acts on an El Niño-induced anomalous meridional moisture gradient, is particularly large and is supported by an anomalous zonal sea surface temperature gradient over the northwestern Pacific, which recorded its largest value in 2015 since 1950. Our study highlights, for the first time, the importance of the nonlinear process associated with the combined impact of a regional sea surface temperature gradient and large-scale El Niño anomalies in forcing El Niño rainfall teleconnection.
USDA-ARS?s Scientific Manuscript database
Thermal infrared (TIR) remote sensing of land-surface temperature (LST) provides valuable information about the sub-surface moisture status required for estimating evapotranspiration (ET) and detecting the onset and severity of drought. While empirical indices measuring anomalies in LST and vegetati...
The Tropical Western Hemisphere Warm Pool
NASA Astrophysics Data System (ADS)
Wang, Chunzai; Enfield, David B.
The Western Hemisphere warm pool (WHWP) of water warmer than 28.5°C extends from the eastern North Pacific to the Gulf of Mexico and the Caribbean, and at its peak, overlaps with the tropical North Atlantic. It has a large seasonal cycle and its interannual fluctuations of area and intensity are significant. Surface heat fluxes warm the WHWP through the boreal spring to an annual maximum of SST and areal extent in the late summer/early fall, associated with eastern North Pacific and Atlantic hurricane activities and rainfall from northern South America to the southern tier of the United States. SST and area anomalies occur at high temperatures where small changes can have a large impact on tropical convection. Observations suggest that a positive ocean-atmosphere feedback operating through longwave radiation and associated cloudiness is responsible for the WHWP SST anomalies. Associated with an increase in SST anomalies is a decrease in atmospheric sea level pressure anomalies and an anomalous increase in atmospheric convection and cloudiness. The increase in convective activity and cloudiness results in less longwave radiation loss from the surface, which then reinforces SST anomalies.
Remotely Sensed Thermal Anomalies in Western Colorado
Khalid Hussein
2012-02-01
This layer contains the areas identified as areas of anomalous surface temperature from Landsat satellite imagery in Western Colorado. Data was obtained for two different dates. The digital numbers of each Landsat scene were converted to radiance and the temperature was calculated in degrees Kelvin and then converted to degrees Celsius for each land cover type using the emissivity of that cover type. And this process was repeated for each of the land cover types (open water, barren, deciduous forest and evergreen forest, mixed forest, shrub/scrub, grassland/herbaceous, pasture hay, and cultivated crops). The temperature of each pixel within each scene was calculated using the thermal band. In order to calculate the temperature an average emissivity value was used for each land cover type within each scene. The NLCD 2001 land cover classification raster data of the zones that cover Colorado were downloaded from USGS site and used to identify the land cover types within each scene. Areas that had temperature residual greater than 2o, and areas with temperature equal to 1o to 2o, were considered Landsat modeled very warm and warm surface exposures (thermal anomalies), respectively. Note: 'o' is used in this description to represent lowercase sigma.
Variability of Winter Air Temperature in Mid-Latitude Europe
NASA Technical Reports Server (NTRS)
Otterman, J.; Ardizzone, J.; Atlas, R.; Bungato, D.; Cierniewski, J.; Jusem, J. C.; Przybylak, R.; Schubert, S.; Starr, D.; Walczewski, J.
2002-01-01
The aim of this paper is to report extreme winter/early-spring air temperature (hereinafter temperature) anomalies in mid-latitude Europe, and to discuss the underlying forcing to these interannual fluctuations. Warm advection from the North Atlantic in late winter controls the surface-air temperature, as indicated by the substantial correlation between the speed of the surface southwesterlies over the eastern North Atlantic (quantified by a specific Index Ina) and the 2-meter level air temperatures (hereinafter Ts) over Europe, 45-60 deg N, in winter. In mid-March and subsequently, the correlation drops drastically (quite often it is negative). This change in the relationship between Ts and Ina marks a transition in the control of the surface-air temperature: absorption of insolation replaces the warm advection as the dominant control. This forcing by maritime-air advection in winter was demonstrated in a previous publication, and is re-examined here in conjunction with extreme fluctuations of temperatures in Europe. We analyze here the interannual variability at its extreme by comparing warm-winter/early-spring of 1989/90 with the opposite scenario in 1995/96. For these two December-to-March periods the differences in the monthly mean temperature in Warsaw and Torun, Poland, range above 10 C. Short-term (shorter than a month) fluctuations of the temperature are likewise very strong. We conduct pentad-by-pentad analysis of the surface-maximum air temperature (hereinafter Tmax), in a selected location, examining the dependence on Ina. The increased cloudiness and higher amounts of total precipitable water, corollary effects to the warm low-level advection. in the 1989/90 winter, enhance the positive temperature anomalies. The analysis of the ocean surface winds is based on the Special Sensor Microwave/Imager (SSM/I) dataset; ascent rates, and over land wind data are from the European Centre for Medium-Range Weather Forecasts (ECMWF); maps of 2-m temperature, cloud cover and precipitable water are from the National Centers for Environmental Prediction (NCEP) Reanalysis.
Lowry, Christopher S.; Walker, John F.; Hunt, Randall J.; Anderson, Mary P.
2007-01-01
Discrete zones of groundwater discharge in a stream within a peat‐dominated wetland were identified on the basis of variations in streambed temperature using a distributed temperature sensor (DTS). The DTS gives measurements of the spatial (±1 m) and temporal (15 min) variation of streambed temperature over a much larger reach of stream (>800 m) than previous methods. Isolated temperature anomalies observed along the stream correspond to focused groundwater discharge zones likely caused by soil pipes within the peat. The DTS also recorded variations in the number of temperature anomalies, where higher numbers correlated well with a gaining reach identified by stream gauging. Focused zones of groundwater discharge showed essentially no change in position over successive measurement periods. Results suggest DTS measurements will complement other techniques (e.g., seepage meters and stream gauging) and help further improve our understanding of groundwater–surface water dynamics in wetland streams.
Exploring Antarctic Land Surface Temperature Extremes Using Condensed Anomaly Databases
NASA Astrophysics Data System (ADS)
Grant, Glenn Edwin
Satellite observations have revolutionized the Earth Sciences and climate studies. However, data and imagery continue to accumulate at an accelerating rate, and efficient tools for data discovery, analysis, and quality checking lag behind. In particular, studies of long-term, continental-scale processes at high spatiotemporal resolutions are especially problematic. The traditional technique of downloading an entire dataset and using customized analysis code is often impractical or consumes too many resources. The Condensate Database Project was envisioned as an alternative method for data exploration and quality checking. The project's premise was that much of the data in any satellite dataset is unneeded and can be eliminated, compacting massive datasets into more manageable sizes. Dataset sizes are further reduced by retaining only anomalous data of high interest. Hosting the resulting "condensed" datasets in high-speed databases enables immediate availability for queries and exploration. Proof of the project's success relied on demonstrating that the anomaly database methods can enhance and accelerate scientific investigations. The hypothesis of this dissertation is that the condensed datasets are effective tools for exploring many scientific questions, spurring further investigations and revealing important information that might otherwise remain undetected. This dissertation uses condensed databases containing 17 years of Antarctic land surface temperature anomalies as its primary data. The study demonstrates the utility of the condensate database methods by discovering new information. In particular, the process revealed critical quality problems in the source satellite data. The results are used as the starting point for four case studies, investigating Antarctic temperature extremes, cloud detection errors, and the teleconnections between Antarctic temperature anomalies and climate indices. The results confirm the hypothesis that the condensate databases are a highly useful tool for Earth Science analyses. Moreover, the quality checking capabilities provide an important method for independent evaluation of dataset veracity.
Effect of AMOC collapse on ENSO in a high resolution general circulation model
NASA Astrophysics Data System (ADS)
Williamson, Mark S.; Collins, Mat; Drijfhout, Sybren S.; Kahana, Ron; Mecking, Jennifer V.; Lenton, Timothy M.
2018-04-01
We look at changes in the El Niño Southern Oscillation (ENSO) in a high-resolution eddy-permitting climate model experiment in which the Atlantic Meridional Circulation (AMOC) is switched off using freshwater hosing. The ENSO mode is shifted eastward and its period becomes longer and more regular when the AMOC is off. The eastward shift can be attributed to an anomalous eastern Ekman transport in the mean equatorial Pacific ocean state. Convergence of this transport deepens the thermocline in the eastern tropical Pacific and increases the temperature anomaly relaxation time, causing increased ENSO period. The anomalous Ekman transport is caused by a surface northerly wind anomaly in response to the meridional sea surface temperature dipole that results from switching the AMOC off. In contrast to a previous study with an earlier version of the model, which showed an increase in ENSO amplitude in an AMOC off experiment, here the amplitude remains the same as in the AMOC on control state. We attribute this difference to variations in the response of decreased stochastic forcing in the different models, which competes with the reduced damping of temperature anomalies. In the new high-resolution model, these effects approximately cancel resulting in no change in amplitude.
NASA Astrophysics Data System (ADS)
Zhuang, Yuanhuang; Zhang, Jingyong; Wang, Lin
2018-05-01
Cold temperature anomalies and extremes have profound effects on the society, the economy, and the environment of northeastern China (NEC). In this study, we define the cold season as the months from October to April, and investigate the variability of cold season surface air temperature (CSAT) over NEC and its relationships with large-scale atmospheric circulation patterns for the period 1981-2014. The empirical orthogonal function (EOF) analysis shows that the first EOF mode of the CSAT over NEC is characterized by a homogeneous structure that describes 92.2% of the total variance. The regionally averaged CSAT over NEC is closely linked with the Arctic Oscillation ( r = 0.62, 99% confidence level) and also has a statistically significant relation with the Polar/Eurasian pattern in the cold season. The positive phases of the Arctic Oscillation and the Polar/Eurasian pattern tend to result in a positive geopotential height anomaly over NEC and a weakened East Asian winter monsoon, which subsequently increase the CSAT over NEC by enhancing the downward solar radiation, strengthening the subsidence warming and warm air advection. Conversely, the negative phases of these two climate indices result in opposite regional atmospheric circulation anomalies and decrease the CSAT over NEC.
NASA Astrophysics Data System (ADS)
Osman, Marisol; Alvarez, Mariano S.
2018-01-01
The prediction skill of subseasonal forecast models is evaluated for a strong and long-lasting heat wave occurred in December 2013 over Southern South America. Reforecasts from two models participating in the WCRP/WWRP Subseasonal to Seasonal project, the Bureau of Meteorology POAMA and Beijing Climate Center model BCC-CPS were considered to evaluate their skill in forecasting temperature and circulation anomalies during that event. The POAMA reforecast of 32-member ensemble size, initialized every five days, and BCC-CPS reforecast of 4-member ensemble size for the same date of POAMA plus the previous 4 days were considered. Weekly ensemble-mean forecasts were computed with leadtimes from 2 days up to 24 days every 5 days. Weekly anomalies were calculated for observations from 13th of December to 31st of December 2013. Anomalies for both observations and reforecast were calculated with respect to their own climatology. Results show that the ensemble mean warm anomalies forecasted for week 1 and 2 of the heat wave resulted more similar to the observations for the POAMA model, especially for longer leads. The BCC-CPS performed better for leads shorter than 7 (14) for week 1 (2). For week 3 the BCC-CPS outperformed the POAMA model, particularly at shorter leads, locating more accurately the maxima of the anomalies. In a probabilistic approach, POAMA predicted with a higher chance than BCC-CPS the excess of the upper tercile of temperature anomalies for almost every week and lead time. The forecast of the circulation anomalies over South America could be used to explain the location of the highest temperature anomalies. In summary, for this case, models skill in forecasting surface temperature in a context of a heat wave resulted moderate at lead times longer than the fortnight. However, this study is limited to model-to-model analysis and a multi-model ensemble strategy might increase the skill.
NASA Astrophysics Data System (ADS)
Kilic, Cevahir; Raible, Christoph C.
2015-04-01
It is well known that the sea surface temperature (SST) has an influence on the development and intensification of tropical cyclones (TCs). This influence has become even more important during the past decades, as TCs show an intensification, which goes along with an increase in SSTs. The influence of sea surface temperature (SST) anomalies on the hurricane characteristics are investigated in a set of sensitivity experiments employing the Weather Research and Forecasting (WRF) model. The idealised experiments are performed for the case of Hurricane Katrina in 2005. (Kilic and Raible, 2013) The first set of sensitivity experiments with basin-wide changes of the SST magnitude shows that the intensity goes along with changes in the SST, i.e., an increase in SST leads to an intensification of Katrina. Additionally, the trajectory is shifted to the west (east), with increasing (decreasing) SSTs. The main reason is a strengthening of the background flow. To gain further insights in the dynamics, the potential vorticity (PV) and its tendency (PVT) are analysed. A positive PVT is located to the moving direction relative to the TC centre. Splitting the PVT in the horizontal advection, vertical advection, and diabatic heating terms, we find that mainly the horizontal advection term contributes to this PVT maximum, due to a steering by strong environmental flow. The impact of the diabatic heating is of minor importance and, hence, the TC motion is dominated by horizontal advection. The amount of the horizontal advection as well as the amount of the diabatic heating rise with increasing SST due to the enhanced Carnot cycle. The second set of experiments investigates the influence of Loop Current eddies idealised by localised SST anomalies. The intensity of Hurricane Katrina is enhanced with increasing SSTs close to the core of a TC. Negative nearby SST anomalies reduce the intensity. The trajectory only changes if positive SST anomalies are located west or north of the hurricane centre. In this case the hurricane is attracted by the SST anomaly which causes an additional moisture source and increased vertical winds. This study confirm the linear relation between SST and TC intensity. However, in case of localised SST anomalies, the relative location to the TC core determes the gradient of the linear relation. The gradient decreases with increasing distance between SST anomaly and initialisation point. The anomalies located west and north of the initialisation point have a stronger impact than the ones located south and east, as they lie in the moving direction of the TC. Further, in terms of magnitude and pattern, the horizontal advection term of PVT does not strongly differ from the reference simulation. However, the pattern of diabatic heating term differs: A maximum of diabatic heating is still located in moving direction, but additionally the diabatic heating is found in the spiral rain bands. Thus, the vortex is drifted to the SST anomaly due to the asymmetry in the TC circulation induced by the diabatic heating term of the PVT. References Kilic, C., and C. C. Raible, Investigating the sensitivity of hurricane intensity and trajectory to sea surface temperatures using the regional model WRF, METEOROLOGISCHE ZEITSCHRIFT, 22(6), 685-698, 2013.
Soil Moisture and Snow Cover: Active or Passive Elements of Climate
NASA Technical Reports Server (NTRS)
Oglesby, Robert J.; Marshall, Susan; Erickson, David J., III; Robertson, Franklin R.; Roads, John O.; Arnold, James E. (Technical Monitor)
2002-01-01
A key question is the extent to which surface effects such as soil moisture and snow cover are simply passive elements or whether they can affect the evolution of climate on seasonal and longer time scales. We have constructed ensembles of predictability studies using the NCAR CCM3 in which we compared the relative roles of initial surface and atmospheric conditions over the central and western U.S. in determining the subsequent evolution of soil moisture and of snow cover. Results from simulations with realistic soil moisture anomalies indicate that internal climate variability may be the strongest factor, with some indication that the initial atmospheric state is also important. Model runs with exaggerated soil moisture reductions (near-desert conditions) showed a much larger effect, with warmer surface temperatures, reduced precipitation, and lower surface pressures; the latter indicating a response of the atmospheric circulation. These results suggest the possibility of a threshold effect in soil moisture, whereby an anomaly must be of a sufficient size before it can have a significant impact on the atmospheric circulation and climate. Results from simulations with realistic snow cover anomalies indicate that the time of year can be crucial. When introduced in late winter, these anomalies strongly affected the subsequent evolution of snow cover. When introduced in early winter, however, little or no effect is seen on the subsequent snow cover. Runs with greatly exaggerated initial snow cover indicate that the high reflectivity of snow is the most important process by which snow cover can impact climate, through lower surface temperatures and increased surface pressures. The results to date were obtained for model runs with present-day conditions. We are currently analyzing runs made with projected forcings for the 21st century to see if these results are modified in any way under likely scenarios of future climate change. An intriguing new statistical technique involving 'clustering' is developed to assist in this analysis.
NASA Astrophysics Data System (ADS)
DelGrande, Nancy; Dolan, Kenneth W.; Durbin, Philip F.; Gorvad, Michael R.; Kornblum, B. T.; Perkins, Dwight E.; Schneberk, Daniel J.; Shapiro, Arthur B.
1993-11-01
We discuss three-dimensional dynamic thermal imaging of structural flaws using dual-band infrared (DBIR) computed tomography. Conventional (single-band) thermal imaging is difficult to interpret. It yields imprecise or qualitative information (e.g., when subsurface flaws produce weak heat flow anomalies masked by surface clutter). We use the DBIR imaging technique to clarify interpretation. We capture the time history of surface temperature difference patterns at the epoxy-glue disbond site of a flash-heated lap joint. This type of flawed structure played a significant role in causing damage to the Aloha Aircraft fuselage on the aged Boeing 737 jetliner. The magnitude of surface-temperature differences versus time for 0.1 mm air layer compared to 0.1 mm glue layer, varies from 0.2 to 1.6 degree(s)C, for simultaneously scanned front and back surfaces. The scans are taken every 42 ms from 0 to 8 s after the heat flash. By ratioing 3 - 5 micrometers and 8 - 12 micrometers DBIR images, we located surface temperature patterns from weak heat flow anomalies at the disbond site and remove the emissivity mask from surface paint of roughness variations. Measurements compare well with calculations based on TOPAX3D, a three-dimensional, finite element computer model. We combine infrared, ultrasound and x-ray imaging methods to study heat transfer, bond quality and material differences associated with the lap joint disbond site.
On the Origin of Multidecadal to Centennial Greenland Temperature Anomalies Over the Past 800 yr
NASA Technical Reports Server (NTRS)
Kobashi, T.; Shindell, D. T.; Kodera, K.; Box, J. E.; Nakaegawa, T.; Kawamura, K.
2013-01-01
The surface temperature of the Greenland ice sheet is among the most important climate variables for assessing how climate change may impact human societies due to its association with sea level rise. However, the causes of multidecadal-to-centennial temperature changes in Greenland temperatures are not well understood, largely owing to short observational records. To examine these, we calculated the Greenland temperature anomalies (GTA[G-NH]) over the past 800 yr by subtracting the standardized northern hemispheric (NH) temperature from the standardized Greenland temperature. This decomposes the Greenland temperature variation into background climate (NH); polar amplification; and regional variability (GTA[G-NH]). The central Greenland polar amplification factor as expressed by the variance ratio Greenland/NH is 2.6 over the past 161 yr, and 3.3-4.2 over the past 800 yr. The GTA[G-NH] explains 31-35%of the variation of Greenland temperature in the multidecadal-to-centennial time scale over the past 800 yr. We found that the GTA[G-NH] has been influenced by solar-induced changes in atmospheric circulation patterns such as those produced by the North Atlantic Oscillation/Arctic Oscillation (NAO/AO). Climate modeling and proxy temperature records indicate that the anomaly is also likely linked to solar-paced changes in the Atlantic meridional overturning circulation (AMOC) and associated changes in northward oceanic heat transport.
On the origin of multidecadal to centennial Greenland temperature anomalies over the past 800 yr
NASA Astrophysics Data System (ADS)
Kobashi, T.; Shindell, D. T.; Kodera, K.; Box, J. E.; Nakaegawa, T.; Kawamura, K.
2013-03-01
The surface temperature of the Greenland ice sheet is among the most important climate variables for assessing how climate change may impact human societies due to its association with sea level rise. However, the causes of multidecadal-to-centennial temperature changes in Greenland temperatures are not well understood, largely owing to short observational records. To examine these, we calculated the Greenland temperature anomalies (GTA[G-NH]) over the past 800 yr by subtracting the standardized northern hemispheric (NH) temperature from the standardized Greenland temperature. This decomposes the Greenland temperature variation into background climate (NH); polar amplification; and regional variability (GTA[G-NH]). The central Greenland polar amplification factor as expressed by the variance ratio Greenland/NH is 2.6 over the past 161 yr, and 3.3-4.2 over the past 800 yr. The GTA[G-NH] explains 31-35% of the variation of Greenland temperature in the multidecadal-to-centennial time scale over the past 800 yr. We found that the GTA[G-NH] has been influenced by solar-induced changes in atmospheric circulation patterns such as those produced by the North Atlantic Oscillation/Arctic Oscillation (NAO/AO). Climate modeling and proxy temperature records indicate that the anomaly is also likely linked to solar-paced changes in the Atlantic meridional overturning circulation (AMOC) and associated changes in northward oceanic heat transport.
NASA Technical Reports Server (NTRS)
Roberts, J. Brent; Robertson, F. R.; Clayson, C. A.
2010-01-01
Recent investigations have examined observations in an attempt to determine when and how the ocean forces the atmosphere, and vice versa. These studies focus primarily on relationships between sea surface temperature anomalies and the turbulent and radiative surface heat fluxes. It has been found that both positive and negative feedbacks, which enhance or reduce sea surface temperature anomaly amplitudes, can be generated through changes in the surface boundary layer. Consequent changes in sea surface temperature act to change boundary layer characteristics through changes in static stability or turbulent fluxes. Previous studies over the global oceans have used coarse-resolution observational and model products such as ICOADS and the NCEP Reanalysis. This study focuses on documenting the atmosphere ocean feedbacks that exist in recently produced higher resolution products, namely the SeaFlux v1.0 product and the NASA Modern Era Retrospective-Analysis for Research and Applications (MERRA). It has been noted in recent studies that evidence of oceanic forcing of the atmosphere exists on smaller scales than the usually more dominant atmospheric forcing of the ocean, particularly in higher latitudes. It is expected that use of these higher resolution products will allow for a more comprehensive description of these small-scale ocean-atmosphere feedbacks. The SeaFlux intercomparisons have revealed large scatter between various surface flux climatologies. This study also investigates the uncertainty in surface flux feedbacks based on several of these recent satellite based climatologies
Constraining storm-scale forecasts of deep convective initiation with surface weather observations
NASA Astrophysics Data System (ADS)
Madaus, Luke
Successfully forecasting when and where individual convective storms will form remains an elusive goal for short-term numerical weather prediction. In this dissertation, the convective initiation (CI) challenge is considered as a problem of insufficiently resolved initial conditions and dense surface weather observations are explored as a possible solution. To better quantify convective-scale surface variability in numerical simulations of discrete convective initiation, idealized ensemble simulations of a variety of environments where CI occurs in response to boundary-layer processes are examined. Coherent features 1-2 hours prior to CI are found in all surface fields examined. While some features were broadly expected, such as positive temperature anomalies and convergent winds, negative temperature anomalies due to cloud shadowing are the largest surface anomaly seen prior to CI. Based on these simulations, several hypotheses about the required characteristics of a surface observing network to constrain CI forecasts are developed. Principally, these suggest that observation spacings of less than 4---5 km would be required, based on correlation length scales. Furthermore, it is anticipated that 2-m temperature and 10-m wind observations would likely be more relevant for effectively constraining variability than surface pressure or 2-m moisture observations based on the magnitudes of observed anomalies relative to observation error. These hypotheses are tested with a series of observing system simulation experiments (OSSEs) using a single CI-capable environment. The OSSE results largely confirm the hypotheses, and with 4-km and particularly 1-km surface observation spacing, skillful forecasts of CI are possible, but only within two hours of CI time. Several facets of convective-scale assimilation, including the need for properly-calibrated localization and problems from non-Gaussian ensemble estimates of the cloud field are discussed. Finally, the characteristics of one candidate dense surface observing network are examined: smartphone pressure observations. Available smartphone pressure observations (and 1-hr pressure tendency observations) are tested by assimilating them into convective-allowing ensemble forecasts for a three-day active convective period in the eastern United States. Although smartphone observations contain noise and internal disagreement, they are effective at reducing short-term forecast errors in surface pressure, wind and precipitation. The results suggest that smartphone pressure observations could become a viable mesoscale observation platform, but more work is needed to enhance their density and reduce error. This work concludes by reviewing and suggesting other novel candidate observation platforms with a potential to improve convective-scale forecasts of CI.
Sea Surface Salinity signatures of tropical instability waves: New evidences from SMOS
NASA Astrophysics Data System (ADS)
Yin, Xiaobin; Boutin, Jacqueline; Reverdin, Gilles; Lee, Tong; Martin, Nicolas
2014-05-01
The European Space Agency's (ESA) Soil Moisture and Ocean Salinity (SMOS) mission, launched in November 2009, has been providing global maps of sea surface salinity (SSS) since 2010. SSS measurements from the SMOS satellite during June 2010 and December 2012 provide an unprecedented space-borne observation of the salinity structure of tropical instability waves (TIWs) including strong La Niña conditions during recent years. We use SMOS level 3 SSS maps averaged over 100 x 100 km2 with a 10-day running window and sampled daily over a 0.25 x 0.25° grid generated at Laboratoire d'Océanographie et du Climat: Expérimentation et Approches Numériques (http://catds.ifremer.fr/Products/Available-products-from-CEC-OS/Locean-v2013) [Boutin et al., 2013; Yin et al., 2012]. We also analyze daily SST from the Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) produced on an operational basis at the UK Met Office using optimal interpolation [Donlon et al., 2011]. From a time-longitude section in the eastern Pacific ocean, westward propagations of SSS and SST anomalies along 2° N became apparent west of 90° W during June 2010 - March 2011 and June 2011 - March 2012, coincident with negative indexes in the NINO3 and NINO3.4 regions. The 33-day SSS anomaly and SST anomaly appeared together approximately in the same time and regions. The 17-day SSS anomaly is less clear than the 17-day SST anomaly. The SSS anomaly has approximate amplitude of 0.5 practical salinity scale (pss) and the SST anomaly has approximate amplitude of 2 ° C. Then, we focus on analysis of SSS and SST anomalies during June to December 2010. During this period the tropical Pacific was characterized by a strong La Niña, providing favorable conditions for the occurrence of TIWs. The high anomalies and meridional gradients of both SSS and SST appear north of the equator west of 100° W. Near 100W, they straddle the equator where South Pacific water and eastern edge upwelling water with high salinity meets the fresher Inter-tropical Convergence Zone water. SSS anomaly and SST anomaly vary in opposite phase and the amplitude of SSS anomaly is approximately 1/5 of SST anomaly. The westward propagation speed of SSS is approximately between 0.6 m/s and 1.5 m/s depending on latitude and dominant period of TIWs. Poleward propagations of waves are also observed at around 100° W. The results demonstrate the important value of SMOS SSS in studying TIWs. Reference Boutin, J., N. Martin, G. Reverdin, X. Yin and F. Gaillard (2013), Sea surface freshening inferred from SMOS and ARGO salinity: Impact of rain, Ocean Sci., 9, 183-192, doi:10.5194/os-9-183-2013. Donlon, C. J., M. Martin, J. D. Stark, J. Roberts-Jones, E. Fiedler and W. Wimmer (2012), The Operational Sea Surface Temperature and Sea Ice analysis (OSTIA), Remote Sensing of the Environment, 116, 140-158, doi: 10.1016/j.rse.2010.10.017. Yin, X., J. Boutin, and P. Spurgeon (2012), First assessment of SMOS data over open ocean: part I Pacific Ocean, IEEE Trans. Geosci. Remote Sens. 50(5), 1648-1661.
Satellite observations of the 1982-1983 El Nino along the U.S. Pacific coast
NASA Technical Reports Server (NTRS)
Fiedler, P. C.
1984-01-01
Satellite infrared temperature images illustrate several effects of the 1982-1983 El Nino: warm sea-surface temperatures with the greatest anomalies near the coast, weakened coastal upwelling, and changes in surface circulation patterns. Phytoplankton pigment images from the Coastal Zone Color Scanner indicate reduced productivity during El Nino, apparently related to the weakened coastal upwelling. The satellite images provide direct evidence of mesosale changes associated with the oceanwide El Nino event.
NASA Astrophysics Data System (ADS)
Ilyas, Maryam; Brierley, Christopher M.; Guillas, Serge
2017-09-01
Instrumental records showing increases in surface temperature are some of the robust and iconic evidence of climate change. But how much should we trust regional temperature estimates interpolated from sparse observations? Here we quantify the uncertainty in the instrumental record by applying multiresolution lattice kriging, a recently developed interpolation technique that leverages the multiple spatial scales of temperature anomalies. The probability of monthly anomalies across the globe is represented by an ensemble, based on HadCRUT4 and accounting for observational and coverage uncertainties. To demonstrate the potential of these new data, we investigate the area-averaged temperature anomalies over the Niño 3.4 region in the equatorial Pacific. Having developed a definition of the El Niño-Southern Oscillation (ENSO) able to cope with probability distribution functions, we classify the ENSO state for each year since 1851. We find that for many years it is ambiguous as to whether there was an El Niño or not from the Niño 3.4 region alone. These years are mainly before 1920, but also just after World War II.
NASA Technical Reports Server (NTRS)
Miller, Ron; Jiang, Xing-Jian; Travis, Larry (Technical Monitor)
2001-01-01
Tropical Atlantic SST shows a (statistically well-defined) decadal time scale in a 104-year simulation of unforced variability by a coupled general circulation model (CGCM). The SST anomalies superficially resemble observed Tropical Atlantic variability (TAV), and are associated with changes in the atmospheric circulation. Brazilian rainfall is modulated with a decadal time scale, along with the strength of the Atlantic trade winds, which are associated with variations in evaporation and the net surface heat flux. However, in contrast to observed tropical Atlantic variability, the trade winds damp the associated anomalies in ocean temperature, indicating a negative feedback. Tropical SST anomalies in the CGCM, though opposed by the surface heat flux, are advected in from the Southern Hemisphere mid-latitudes. These variations modulate the strength of the thermohaline circulation (THC): warm, salty anomalies at the equator sink drawing cold, fresh mid-latitude water. Upon reaching the equator, the latter inhibit vertical overturning and advection from higher latitudes, which allows warm, salty anomalies to reform, returning the cycle to its original state. Thus, the cycle results from advection of density anomalies and the effect of these anomalies upon the rate of vertical overturning and surface advection. This decadal modulation of Tropical Atlantic SST and the thermohaline circulation is correlated with ocean heat transport to the Northern Hemisphere high latitudes and Norwegian Sea SST. Because of the central role of equatorial convection, we question whether this mechanism is present in the current climate, although we speculate that it may have operated in palaeo times, depending upon the stability of the tropical water column.
NASA Astrophysics Data System (ADS)
Cao, Dandan; Wu, Qigang; Hu, Aixue; Yao, Yonghong; Liu, Shizuo; Schroeder, Steven R.; Yang, Fucheng
2018-02-01
This study examines Northern Hemisphere winter (DJFM) atmospheric responses to opposite strong phases of interdecadal (low frequency, LF) Pacific sea surface temperature (SST) forcing, which resembles El Niño-Southern Oscillation (ENSO) on a longer time scale, in observations and GFDL and CAM4 model simulations. Over the Pacific-North America (PNA) sector, linear observed responses of 500-hPa height (Z500) anomalies resemble the PNA teleconnection pattern, but show a PNA-like nonlinear response because of a westward Z500 shift in the negative (LF-) relative to the positive LF (LF+) phase. Significant extratropical linear responses include a North Atlantic Oscillation (NAO)-like Z500 anomaly, a dipole-like Z500 anomaly over northern Eurasia associated with warming over mid-high latitude Eurasia, and a Southern Annular anomaly pattern associated with warming in southern land areas. Significant nonlinear Z500 responses also include a NAO-like anomaly pattern. Models forced by LF+ and LF- SST anomalies reproduce many aspects of observed linear and nonlinear responses over the Pacific-North America sector, and linear responses over southern land, but not in the North Atlantic-European sector and Eurasia. Both models simulate PNA-like linear responses in the North Pacific-North America region similar to observed, but show larger PNA-like LF+ responses, resulting in a PNA nonlinear response. The nonlinear PNA responses result from both nonlinear western tropical Pacific rainfall changes and extratropical transient eddy feedbacks. With LF tropical Pacific forcing only (LFTP+ and LFTP-, climatological SST elsewhere), CAM4 simulates a significant NAO response to LFTP-, including a linear negative and nonlinear positive NAO response.
Data-Model Comparison of Pliocene Sea Surface Temperature
NASA Astrophysics Data System (ADS)
Dowsett, H. J.; Foley, K.; Robinson, M. M.; Bloemers, J. T.
2013-12-01
The mid-Piacenzian (late Pliocene) climate represents the most geologically recent interval of long-term average warmth and shares similarities with the climate projected for the end of the 21st century. As such, its fossil and sedimentary record represents a natural experiment from which we can gain insight into potential climate change impacts, enabling more informed policy decisions for mitigation and adaptation. We present the first systematic comparison of Pliocene sea surface temperatures (SST) between an ensemble of eight climate model simulations produced as part of PlioMIP (Pliocene Model Intercomparison Project) and the PRISM (Pliocene Research, Interpretation and Synoptic Mapping) Project mean annual SST field. Our results highlight key regional (mid- to high latitude North Atlantic and tropics) and dynamic (upwelling) situations where there is discord between reconstructed SST and the PlioMIP simulations. These differences can lead to improved strategies for both experimental design and temporal refinement of the palaeoenvironmental reconstruction. Scatter plot of multi-model-mean anomalies (squares) and PRISM3 data anomalies (large blue circles) by latitude. Vertical bars on data anomalies represent the variability of warm climate phase within the time-slab at each locality. Small colored circles represent individual model anomalies and show the spread of model estimates about the multi-model-mean. While not directly comparable in terms of the development of the means nor the meaning of variability, this plot provides a first order comparison of the anomalies. Encircled areas are a, PRISM low latitude sites outside of upwelling areas; b, North Atlantic coastal sequences and Mediterranean sites; c, large anomaly PRISM sites from the northern hemisphere. Numbers identify Ocean Drilling Program sites.
The rise and fall of the "marine heat wave" off Western Australia during the summer of 2010/2011
NASA Astrophysics Data System (ADS)
Pearce, Alan F.; Feng, Ming
2013-02-01
Record high ocean temperatures were experienced along the Western Australian coast during the austral summer of 2010/2011. Satellite-derived sea surface temperature (SST) anomalies in February 2011 peaked at 3 °C above the long-term monthly means over a wide area from Ningaloo (22°S) to Cape Leeuwin (34°S) along the coast and out to > 200 km offshore. Hourly temperature measurements at a number of mooring sites along the coast revealed that the temperature anomalies were mostly trapped in the surface mixed layer, with peak nearshore temperatures rising to ~ 5 °C above average in the central west coastal region over a week encompassing the end of February and early March, resulting in some devastating fish kills as well as temporary southward range extensions of tropical fish species and megafauna such as whale sharks and manta rays. The elevated temperatures were a result of a combination of a record strength Leeuwin Current, a near-record La Niña event, and anomalously high air-sea heat flux into the ocean even though the SST was high. This heat wave was an unprecedented thermal event in Western Australian waters, superimposed on an underlying long-term temperature rise.
NASA Astrophysics Data System (ADS)
Otomi, Yuriko; Tachibana, Yoshihiro; Nakamura, Tetsu
2013-04-01
In 2010, the Northern Hemisphere, in particular Russia and Japan, experienced an abnormally hot summer characterized by record-breaking warm temperatures and associated with a strongly positive Arctic Oscillation (AO), that is, low pressure in the Arctic and high pressure in the midlatitudes. In contrast, the AO index the previous winter and spring (2009/2010) was record-breaking negative. The AO polarity reversal that began in summer 2010 can explain the abnormally hot summer. The winter sea surface temperatures (SST) in the North Atlantic Ocean showed a tripolar anomaly pattern—warm SST anomalies over the tropics and high latitudes and cold SST anomalies over the midlatitudes—under the influence of the negative AO. The warm SST anomalies continued into summer 2010 because of the large oceanic heat capacity. A model simulation strongly suggested that the AO-related summertime North Atlantic oceanic warm temperature anomalies remotely caused blocking highs to form over Europe, which amplified the positive summertime AO. Thus, a possible cause of the AO polarity reversal might be the "memory" of the negative winter AO in the North Atlantic Ocean, suggesting an interseasonal linkage of the AO in which the oceanic memory of a wintertime negative AO induces a positive AO in the following summer. Understanding of this interseasonal linkage may aid in the long-term prediction of such abnormal summer events.
NASA Astrophysics Data System (ADS)
Tachibana, Yoshihiro; Otomi, Yuriko; Nakamura, Tetsu
2013-04-01
In 2010, the Northern Hemisphere, in particular Russia and Japan, experienced an abnormally hot summer characterized by record-breaking warm temperatures and associated with a strongly positive Arctic Oscillation (AO), that is, low pressure in the Arctic and high pressure in the midlatitudes. In contrast, the AO index the previous winter and spring (2009/2010) was record-breaking negative. The AO polarity reversal that began in summer 2010 can explain the abnormally hot summer. The winter sea surface temperatures (SST) in the North Atlantic Ocean showed a tripolar anomaly pattern—warm SST anomalies over the tropics and high latitudes and cold SST anomalies over the midlatitudes—under the influence of the negative AO. The warm SST anomalies continued into summer 2010 because of the large oceanic heat capacity. A model simulation strongly suggested that the AO-related summertime North Atlantic oceanic warm temperature anomalies remotely caused blocking highs to form over Europe, which amplified the positive summertime AO. Thus, a possible cause of the AO polarity reversal might be the "memory" of the negative winter AO in the North Atlantic Ocean, suggesting an interseasonal linkage of the AO in which the oceanic memory of a wintertime negative AO induces a positive AO in the following summer. Understanding of this interseasonal linkage may aid in the long-term prediction of such abnormal summer events.
NASA Astrophysics Data System (ADS)
Kim, J.; Guan, B.; Waliser, D. E.; Ferraro, R.
2016-12-01
Landfalling atmospheric rivers (ARs) affect the wintertime surface air temperatures as shown in earlier studies. The AR-related surface air temperatures can exert significant influence on the hydrology in the US Pacific coast region especially through rainfall-snowfall partitioning and the snowpack in high elevation watersheds as they are directly related with the freezing-level altitudes. These effects of temperature perturbations can in turn affect hydrologic events of various time scales such as flash flooding by the combined effects of rainfall and snowmelt, and the warm season runoff from melting snowpack, especially in conjunction with the AR effects on winter precipitation and rain-on-snow events in WUS. Thus, understanding the effects of AR landfalls on the surface temperatures and examining the capability of climate models in simulating these effects are an important practical concern for WUS. This study aims to understand the effects of AR landfalls on the characteristics of surface air temperatures in WUS, especially seasonal means and PDFs and to evaluate the fidelity of model data produced in the NASA downscaling experiment for the 10 winters from Nov. 1999 to Mar. 2010 using an AR-landfall chronology based on the vertically-integrated water vapor flux calculated from the MERRA2 reanalysis. Model skill is measured using metrics including regional means, a skill score based on correlations and mean-square errors, the similarity between two PDF shapes, and Taylor diagrams. Results show that the AR landfalls are related with higher surface air temperatures in WUS, especially in inland regions. The AR landfalls also reduce the range of surface air temperature PDF, largely by reducing the events in the lower temperature range. The shift in the surface air temperature PDF is consistent with the positive anomalies in the winter-mean temperature. Model data from the NASA downscaling experiment reproduce the AR effects on the temperature PDF, at least qualitatively; however, the skill in representing the spatial variations in the temperature anomalies is low. The skill of these model data also varies according to regions and the configuration of simulations. It was also found that the variations in model skill in simulating the spatial variability according to the model resolution is not systematic.
NASA Astrophysics Data System (ADS)
Tyrrell, Nicholas L.; Dommenget, Dietmar; Frauen, Claudia; Wales, Scott; Rezny, Mike
2015-04-01
In global warming scenarios, global land surface temperatures () warm with greater amplitude than sea surface temperatures (SSTs), leading to a land/sea warming contrast even in equilibrium. Similarly, the interannual variability of is larger than the covariant interannual SST variability, leading to a land/sea contrast in natural variability. This work investigates the land/sea contrast in natural variability based on global observations, coupled general circulation model simulations and idealised atmospheric general circulation model simulations with different SST forcings. The land/sea temperature contrast in interannual variability is found to exist in observations and models to a varying extent in global, tropical and extra-tropical bands. There is agreement between models and observations in the tropics but not the extra-tropics. Causality in the land-sea relationship is explored with modelling experiments forced with prescribed SSTs, where an amplification of the imposed SST variability is seen over land. The amplification of to tropical SST anomalies is due to the enhanced upper level atmospheric warming that corresponds with tropical moist convection over oceans leading to upper level temperature variations that are larger in amplitude than the source SST anomalies. This mechanism is similar to that proposed for explaining the equilibrium global warming land/sea warming contrast. The link of the to the dominant mode of tropical and global interannual climate variability, the El Niño Southern Oscillation (ENSO), is found to be an indirect and delayed connection. ENSO SST variability affects the oceans outside the tropical Pacific, which in turn leads to a further, amplified and delayed response of.
NASA Astrophysics Data System (ADS)
Bladé, Ileana
1997-08-01
This study examines the extent to which the thermodynamic interactions between the midlatitude atmosphere and the underlying oceanic mixed layer contribute to the low-frequency atmospheric variability. A general circulation model, run under perpetual northern winter conditions, is coupled to a motionless constant-depth mixed layer in midlatitudes, while elsewhere the sea surface temperature (SST) is kept fixed; interannual tropical SST forcing is not included. It is found that coupling does not modify the spatial organization of the variability. The influence of coupling is manifested as a slight reddening of the spectrum of 500-mb geopotential height and a significant enhancement of the lower-tropospheric thermal variance over the oceans at very low frequencies by virtue of the mixed-layer adjustment to surface air temperature variations that occurs on those timescales. This adjustment effectively reduces the thermal damping of the atmosphere associated with surface heat fluxes (or negative oceanic feedback), thus increasing the thermal variance and the persistence of circulation anomalies.In studying the covariability between ocean and atmosphere it is found that the dominant mode of natural atmospheric variability is coupled to the leading mode of SST in each ocean, with the atmosphere leading the ocean by about one month. The cross-correlation function between oceanic and atmospheric anomalies is strongly asymmetric about zero lag. The SST structures are consistent with direct forcing by the anomalous heat fluxes implied by the concurrent surface air temperature and wind fluctuations. Additionally, composites based on large amplitude SST anomaly events contain no evidence of direct driving of atmospheric perturbations by these SST anomalies. Thus, in terms of the spatial organization of the covariability and the evolution of the coupled system from one regime to another, large-scale air-sea interaction in the model is characterized by one-way atmospheric forcing of the mixed layer.These results are qualitatively consistent with those from an earlier idealized study. They imply a subtle but fundamental role for the midlatitude oceans as stabilizing rather than directly generating atmospheric anomalies. It is argued that this scenario is relevant to the dynamics of extratropical atmosphere-ocean coupling on intraseasonal timescales at least: the model is able to qualitatively reproduce the temporal and spatial characteristics of the observed dominant patterns of interaction on these timescales, particularly over the Atlantic.
Biological effects of the 1997/98 ENSO in Cook Inlet, Alaska
Piatt, John F.; Drew, Gary S.; van Pelt, Thomas I.; Abookire, Alisa A.; Nielsen, April; Shultz, Michael T.; Kitaysky, Alexander S.
1999-01-01
We have been conducting detailed studies of the biology of seabirds in relation to oceanography and forage fish ecology in lower Cook Inlet, Alaska, since 1995. This fortuitously allowed us to document biological effects of the 1997/98 ENSO in this region. Anomalously warm sea surface temperatures (SSTs) were observed in the Gulf of Alaska (GOA) beginning in June of 1997, but not in Cook Inlet until September, 1997. Warm temperature anomalies at the surface and at depth persisted until May of 1998, when temperatures returned to average in the GOA and Cook Inlet. Thus, temperature anomalies occurred outside the core window of productivity (June–August) for forage fish and seabirds in both 1997 and 1998. Abundance or production of phytoplankton, zooplankton, fish, and seabirds in lower Cook Inlet varied among years, and overall appeared to be depressed in 1998. We observed a few biological anomalies that might be attributed to ENSO effects: (1) a significant die-off of Common Murres occurred in March–May of 1998, (2) murres and Black-legged Kittiwakes were physiologically stressed during the 1998 breeding season, (3) murres failed to reproduce at one colony in 1998, (4) kittiwake breeding success was lower than usual at colonies in 1998, and (5) phenology of breeding was later in 1998 for both murres and kittiwakes. We presume that seabird die-offs, reduced productivity and delayed phenology were linked to a reduction or delay in food availability, but the mechanism by which anomalously warm water temperatures in winter reduce forage fish availability during the summer breeding season for seabirds is not known.
Analysis of the structure of climate networks under El Niño and La Niña conditions
NASA Astrophysics Data System (ADS)
Graciosa, Juan Carlos; Pastor, Marissa
The El Niño-Southern Oscillation (ENSO) is the most important driver of natural climate variability and is characterized by anomalies in the sea surface temperatures (SST) over the tropical Pacific ocean. It has three phases: neutral, a warming phase or El Niño, and a cooling phase called La Niña. In this research, we modeled the climate under the three phases as a network and characterized its properties. We utilized the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) daily surface temperature reanalysis data from January 1950 to December 2016. A network associated to a month was created using the temperature spanning from the previous month to the succeeding month, for a total of three months worth of data for each network. Each site of the included data was a potential node in the network and the existence of links were determined by the strength of their relationship, which was based on mutual information. Interestingly, we found that climate networks exhibit small-world properties and these are found to be more prominent from October to April, coinciding with observations that El Niño occurrences peak from December to March. During these months, the temperature of a relatively large part of the Pacific ocean and its surrounding areas increase and the anomaly values become synchronized. This synchronization in the temperature anomalies forms links around the Pacific, increasing the clustering in the region and in effect, that of the entire network.
Skilful multi-year predictions of tropical trans-basin climate variability
Chikamoto, Yoshimitsu; Timmermann, Axel; Luo, Jing-Jia; Mochizuki, Takashi; Kimoto, Masahide; Watanabe, Masahiro; Ishii, Masayoshi; Xie, Shang-Ping; Jin, Fei-Fei
2015-01-01
Tropical Pacific sea surface temperature anomalies influence the atmospheric circulation, impacting climate far beyond the tropics. The predictability of the corresponding atmospheric signals is typically limited to less than 1 year lead time. Here we present observational and modelling evidence for multi-year predictability of coherent trans-basin climate variations that are characterized by a zonal seesaw in tropical sea surface temperature and sea-level pressure between the Pacific and the other two ocean basins. State-of-the-art climate model forecasts initialized from a realistic ocean state show that the low-frequency trans-basin climate variability, which explains part of the El Niño Southern Oscillation flavours, can be predicted up to 3 years ahead, thus exceeding the predictive skill of current tropical climate forecasts for natural variability. This low-frequency variability emerges from the synchronization of ocean anomalies in all basins via global reorganizations of the atmospheric Walker Circulation. PMID:25897996
Predicting Fire Season Severity in South America Using Sea Surface Temperature Anomalies
NASA Technical Reports Server (NTRS)
Chen, Yang; Randerson, James T.; Morton, Douglas C.; Jin, Yufang; DeFries, Ruth S.; Collatz, George J.; Kasibhatla, Prasad S.; Giglio, Louis; Jin, Yufang; Marlier, Miriam
2011-01-01
Fires in South America cause forest degradation and contribute to carbon emissions associated with land use change. Here we investigated the relationship between year-to-year changes in satellite-derived estimates of fire activity in South America and sea surface temperature (SST) anomalies. We found that the Oceanic Ni o Index (ONI) was correlated with interannual fire activity in the eastern Amazon whereas the Atlantic Multidecadal Oscillation (AMO) index was more closely linked with fires in the southern and southwestern Amazon. Combining these two climate indices, we developed an empirical model that predicted regional annual fire season severity (FSS) with 3-5 month lead times. Our approach provides the foundation for an early warning system for forecasting the vulnerability of Amazon forests to fires, thus enabling more effective management with benefits for mitigation of greenhouse gas and air pollutant emissions.
Skilful multi-year predictions of tropical trans-basin climate variability.
Chikamoto, Yoshimitsu; Timmermann, Axel; Luo, Jing-Jia; Mochizuki, Takashi; Kimoto, Masahide; Watanabe, Masahiro; Ishii, Masayoshi; Xie, Shang-Ping; Jin, Fei-Fei
2015-04-21
Tropical Pacific sea surface temperature anomalies influence the atmospheric circulation, impacting climate far beyond the tropics. The predictability of the corresponding atmospheric signals is typically limited to less than 1 year lead time. Here we present observational and modelling evidence for multi-year predictability of coherent trans-basin climate variations that are characterized by a zonal seesaw in tropical sea surface temperature and sea-level pressure between the Pacific and the other two ocean basins. State-of-the-art climate model forecasts initialized from a realistic ocean state show that the low-frequency trans-basin climate variability, which explains part of the El Niño Southern Oscillation flavours, can be predicted up to 3 years ahead, thus exceeding the predictive skill of current tropical climate forecasts for natural variability. This low-frequency variability emerges from the synchronization of ocean anomalies in all basins via global reorganizations of the atmospheric Walker Circulation.
A surface vitrinite reflectance anomaly related to Bell Creek oil field, Montana, U.S.A.
Barker, C.E.; Dalziel, M.C.; Pawlewicz, M.J.
1983-01-01
Vitrinite reflectance measurements from surface samples of mudrock and coal show anomalously high values over the Bell Creek oil field. The average vitrinite reflectance (Rm) increases to a maximum of 0.9 percent over the field against background values of about 0.3 percent. The Rm anomaly coincides with a geochemical anomaly indicated by diagenetic magnetite in surface rocks and a geobiologic anomaly indicated by ethane-consuming bacteria. These samples were taken from the Upper Cretaceous Hell Creek and Paleocene Fort Union Formations which form an essentially conformable sequence. The depositional environment is similar in both formations, and we expect little variation in the source and composition of the organic matter. The surface R m should be approximately constant because of a uniform thermal history across the field. Temperature studies over local oil fields with similar geology suggest the expected thermal anomaly would be less than 10?C (50?F), which is too small to account for the significantly higher rank over the field. Coal clinkers are rare in the vicinity of Bell Creek and an Rm anomaly caused by burning of the thin, discontinuous coal seams is unlikely. The limited topographic relief, less than 305 m (1,000 ft), over the shallow-dipping homoclinal structure and the poor correlation between Rm and sample locality elevation (r = -0.2) indicate that the Rm anomaly is not due to burial, deformation and subsequent erosion. We conjecture that activity by petroleum-metabolizing bacteria is a possible explanation of the Rm anomaly. Microseepage from oil reservoirs supports large colonies of these organisms, some of which can produce enzymes that can cleave hydrocarbon side-chains on the kerogen molecule. The loss of these side chains causes condensation of the ring structures (Stach and others, 1982) and consequently increases its reflectance. These data indicate that vitrinite reflectance may be a useful tool to explore for stratigraphic traps in the Powder River Basin. Further, the large variation of R across the Bell Creek area suggests that vitrinite reflectance data from surface samples should be interpreted with caution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porfyriadis, Achilleas P.
2009-04-15
The anomaly cancellation method proposed by Wilczek et al. is applied to the general charged rotating black holes in five-dimensional minimal gauged supergravity. Thus Hawking temperature and fluxes are found. The Hawking temperature obtained agrees with the surface gravity formula. The black holes have charge and two unequal angular momenta, and these give rise to appropriate terms in the effective U(1) gauge field of the reduced (1+1)-dimensional theory. In particular, it is found that the terms in this U(1) gauge field correspond exactly to the correct electrostatic potential and the two angular velocities on the horizon of the black holes,more » and so the results for the Hawking fluxes derived here from the anomaly cancellation method are in complete agreement with the ones obtained from integrating the Planck distribution.« less
Anomalies and Hawking fluxes from the black holes of topologically massive gravity
NASA Astrophysics Data System (ADS)
Porfyriadis, Achilleas P.
2009-05-01
The anomaly cancelation method proposed by Wilczek et al. is applied to the black holes of topologically massive gravity (TMG) and topologically massive gravito-electrodynamics (TMGE). Thus the Hawking temperature and fluxes of the ACL and ACGL black holes are found. The Hawking temperatures obtained agree with the surface gravity formula. Both black holes are rotating and this gives rise to appropriate terms in the effective U (1) gauge field of the reduced (1 + 1)-dimensional theory. It is found that the terms in this U (1) gauge field correspond exactly to the correct angular velocities on the horizon of both black holes as well as the correct electrostatic potential of the ACGL black hole. So the results for the Hawking fluxes derived here from the anomaly cancelation method, are in complete agreement with the ones obtained from integrating the Planck distribution.
Tropical Forcing of the Summer East Atlantic Pattern
NASA Astrophysics Data System (ADS)
Wulff, C. Ole; Greatbatch, Richard J.; Domeisen, Daniela I. V.; Gollan, Gereon; Hansen, Felicitas
2017-11-01
The Summer East Atlantic (SEA) mode is the second dominant mode of summer low-frequency variability in the Euro-Atlantic region. Using reanalysis data, we show that SEA-related circulation anomalies significantly influence temperatures and precipitation over Europe. We present evidence that part of the interannual SEA variability is forced by diabatic heating anomalies of opposing signs in the tropical Pacific and Caribbean that induce an extratropical Rossby wave train. This precipitation dipole is related to SST anomalies characteristic of the developing El Niño-Southern Oscillation phases. Seasonal hindcast experiments forced with observed sea surface temperatures (SSTs) exhibit skill at capturing the interannual SEA variability corroborating the proposed mechanism and highlighting the possibility for improved prediction of boreal summer variability. Our results indicate that tropical forcing of the SEA likely played a role in the dynamics of the 2015 European heat wave.
Advances in Using Fiber-Optic Distributed Temperature Sensing to Identify the Mixing of Waters
NASA Astrophysics Data System (ADS)
Briggs, M. A.; Day-Lewis, F. D.; Rosenberry, D. O.; Harvey, J. W.; Lane, J. W., Jr.; Hare, D. K.; Boutt, D. F.; Voytek, E. B.; Buckley, S.
2014-12-01
Fiber-optic distributed temperature sensing (FO-DTS) provides thermal data through space and time along linear cables. When installed along a streambed, FO-DTS can capture the influence of upwelling groundwater (GW) as thermal anomalies. The planning of labor-intensive physical measurements can make use of FO-DTS data to target areas of focused GW discharge that can disproportionately affect surface-water (SW) quality and temperature. Typical longitudinal FO-DTS spatial resolution ranges 0.25 to1.0 m, and cannot resolve small-scale water-column mixing or sub-surface diurnal fluctuations. However, configurations where the cable is wrapped around rods can improve the effective vertical resolution to sub-centimeter scales, and the pipes can be actively heated to induce a thermal tracer. Longitudinal streambed and high-resolution vertical arrays were deployed at the upper Delaware River (PA, USA) and the Quashnet River (MA, USA) for aquatic habitat studies. The resultant datasets exemplify the varied uses of FO-DTS. Cold anomalies found along the Delaware River steambed coincide with zones of known mussel populations, and high-resolution vertical array data showed relatively stable in-channel thermal refugia. Cold anomalies at the Quashnet River identified in 2013 were found to persist in 2014, and seepage measurements and water samples at these locations showed high GW flux with distinctive chemistry. Cable location is paramount to seepage identification, particularly in faster flowing deep streams such as the Quashnet and Delaware Rivers where steambed FO-DTS identified many seepage zones with no surface expression. The temporal characterization of seepage dynamics are unique to FO-DTS. However, data from Tidmarsh Farms, a cranberry bog restoration site in MA, USA indicate that in slower flowing shallow steams GW inflow affects surface temperature; therefore infrared imaging can provide seepage location information similar to FO-DTS with substantially less effort.
Assimilating soil moisture into an Earth System Model
NASA Astrophysics Data System (ADS)
Stacke, Tobias; Hagemann, Stefan
2017-04-01
Several modelling studies reported potential impacts of soil moisture anomalies on regional climate. In particular for short prediction periods, perturbations of the soil moisture state may result in significant alteration of surface temperature in the following season. However, it is not clear yet whether or not soil moisture anomalies affect climate also on larger temporal and spatial scales. In an earlier study, we showed that soil moisture anomalies can persist for several seasons in the deeper soil layers of a land surface model. Additionally, those anomalies can influence root zone moisture, in particular during explicitly dry or wet periods. Thus, one prerequisite for predictability, namely the existence of long term memory, is evident for simulated soil moisture and might be exploited to improve climate predictions. The second prerequisite is the sensitivity of the climate system to soil moisture. In order to investigate this sensitivity for decadal simulations, we implemented a soil moisture assimilation scheme into the Max-Planck Institute for Meteorology's Earth System Model (MPI-ESM). The assimilation scheme is based on a simple nudging algorithm and updates the surface soil moisture state once per day. In our experiments, the MPI-ESM is used which includes model components for the interactive simulation of atmosphere, land and ocean. Artificial assimilation data is created from a control simulation to nudge the MPI-ESM towards predominantly dry and wet states. First analyses are focused on the impact of the assimilation on land surface variables and reveal distinct differences in the long-term mean values between wet and dry state simulations. Precipitation, evapotranspiration and runoff are larger in the wet state compared to the dry state, resulting in an increased moisture transport from the land to atmosphere and ocean. Consequently, surface temperatures are lower in the wet state simulations by more than one Kelvin. In terms of spatial pattern, the largest differences between both simulations are seen for continental areas, while regions with a maritime climate are least sensitive to soil moisture assimilation.
Sensitivity of the Antarctic surface mass balance to oceanic perturbations
NASA Astrophysics Data System (ADS)
Kittel, C.; Amory, C.; Agosta, C.; Fettweis, X.
2017-12-01
Regional climate models (RCMs) are suitable numerical tools to study the surface mass balance (SMB) of the wide polar ice sheets due to their high spatial resolution and polar-adapted physics. Nonetheless, RCMs are driven at their boundaries and over the ocean by reanalysis or global climate model (GCM) products and are thus influenced by potential biases in these large-scale fields. These biases can be significant for both the atmosphere and the sea surface conditions (i.e. sea ice concentration and sea surface temperature). With the RCM MAR, a set of sensitivity experiments has been realized to assess the direct response of the SMB of the Antarctic ice sheet to oceanic perturbations. MAR is forced by ERA-Interim and anomalies based on mean GCM biases are introduced in sea surface conditions. Results show significant increases (decreases) of liquid and solid precipitation due to biases related to warm (cold) oceans. As precipitation is mainly caused by low-pressure systems that intrude into the continent and do not penetrate far inland, coastal areas are more sensitive than inland regions. Furthermore, warm ocean representative biases lead to anomalies as large as anomalies simulated by other RCMs or GCMs for the end of the 21st century.
Regional seasonal warming anomalies and land-surface feedbacks
NASA Astrophysics Data System (ADS)
Coffel, E.; Horton, R. M.
2017-12-01
Significant seasonal variations in warming are projected in some regions, especially central Europe, the southeastern U.S., and central South America. Europe in particular may experience up to 2°C more warming during June, July, and August than in the annual mean, enhancing the risk of extreme summertime heat. Previous research has shown that heat waves in Europe and other regions are tied to seasonal soil moisture variations, and that in general land-surface feedbacks have a strong effect on seasonal temperature anomalies. In this study, we show that the seasonal anomalies in warming are also due in part to land-surface feedbacks. We find that in regions with amplified warming during the hot season, surface soil moisture levels generally decline and Bowen ratios increase as a result of a preferential partitioning of incoming energy into sensible vs. latent. The CMIP5 model suite shows significant variability in the strength of land-atmosphere coupling and in projections of future precipitation and soil moisture. Due to the dependence of seasonal warming on land-surface processes, these inter-model variations influence the projected summertime warming amplification and contribute to the uncertainty in projections of future extreme heat.
Surface signature of Mediterranean water eddies in a long-term high-resolution simulation
NASA Astrophysics Data System (ADS)
Ciani, D.; Carton, X.; Barbosa Aguiar, A. C.; Peliz, A.; Bashmachnikov, I.; Ienna, F.; Chapron, B.; Santoleri, R.
2017-12-01
We study the surface signatures of Mediterranean water eddies (Meddies) in the context of a regional, primitive equations model simulation (using the Regional Oceanic Modeling System, ROMS). This model simulation was previously performed to study the mean characteristics and pathways of Meddies during their evolution in the Atlantic Ocean. The advantage of our approach is to take into account different physical mechanisms acting on the evolution of Meddies and their surface signature, having full information on the 3D distribution of all physical variables of interest. The evolution of around 90 long-lived Meddies (whose lifetimes exceeded one year) was investigated. In particular, their surface signature was determined in sea-surface height, temperature and salinity. The Meddy-induced anomalies were studied as a function of the Meddy structure and of the oceanic background. We show that the Meddies can generate positive anomalies in the elevation of the oceanic free-surface and that these anomalies are principally related to the Meddies potential vorticity structure at depth (around 1000 m below the sea-surface). On the contrary, the Meddies thermohaline surface signatures proved to be mostly dominated by local surface conditions and little correlated to the Meddy structure at depth. This work essentially points out that satellite altimetry is the most suitable approach to track subsurface vortices from observations of the sea-surface.
NASA Astrophysics Data System (ADS)
Tao, Chunhui; Chen, Sheng; Baker, Edward T.; Li, Huaiming; Liang, Jin; Liao, Shili; Chen, Yongshun John; Deng, Xianming; Zhang, Guoyin; Gu, Chunhua; Wu, Jialin
2017-06-01
Seafloor hydrothermal polymetallic sulfide deposits are a new type of resource, with great potential economic value and good prospect development. This paper discusses turbidity, oxidation-reduction potential, and temperature anomalies of hydrothermal plumes from the Zouyu-1 and Zouyu-2 hydrothermal fields on the southern Mid-Atlantic Ridge. We use the known location of these vent fields and plume data collected in multiple years (2009, 2011, 2013) to demonstrate how real-time plume exploration can be used to locate active vent fields, and thus associated sulfide deposits. Turbidity anomalies can be detected 10 s of km from an active source, but the location precision is no better than a few kilometers because fine-grained particles are quasi-conservative over periods of many days. Temperature and oxidation-reduction potential anomalies provide location precision of a few hundred meters. Temperature anomalies are generally weak and difficult to reliably detect, except by chance encounters of a buoyant plume. Oxidation-reduction potential is highly sensitive (nmol concentrations of reduced hydrothermal chemicals) to discharges of all temperatures and responds immediately to a plume encounter. Real-time surveys using continuous tows of turbidity and oxidation-reduction potential sensors offer the most efficient and precise surface ship exploration presently possible.
NASA Astrophysics Data System (ADS)
Martynova, Yuliya
2015-04-01
There are different studies of the influence of autumn snow cover anomalies on atmospheric dynamics in the following winter (e.g. Allen R.J. and Zender C.S., 2011; Martynova Yu.V. and Krupchatnikov V.N., 2010). The mechanism of this effect is complex and largely affects stratospheric processes (Cohen J. et al., 2007). The snow cover rapidly increases exceeding normal values. Emerged diabatic cooling results in pressure increase over and temperature decrease under the normal value. Thus, in troposphere upward energy flux increases, and then it is absorbed in stratosphere. Strong convergence of wave activity flux causes geopotential heights increase, polar vortex slowdown and stratospheric temperature increase. Emerged geopotential and wind anomalies extend from stratosphere to troposphere up to surface. As a result, strong negative AO mode appears near the surface as surface air temperature increase. Siberia plays important role in this mechanism. Firstly, the most extensive snow cover is formed there. Secondly, according to NOAA satellite observations this cover is generally formed in October (Gong G. Et al., 2003). As a result, Siberia is very interesting for investigations of the autumn snow cover anomalies influence on the atmospheric dynamics in the following winter. This study is devoted to detection and estimation of described mechanism in INMCM4.0 and INMCM5.0 data. INMCM5.0 model represents further development of INMCM4.0 model (Volodin E.M. et al., 2010; Volodin E.M., 2014). They are different both from physical (various physical processes) and numerical (spatial resolution) points of view, thus giving different results representing various physical processes. An analysis of some parameters of atmospheric dynamics shows that top of atmosphere and vertical resolution set in INMCM models play important role in reproduction of influence of the Siberian autumn snow cover anomalies on the Northern Hemisphere atmospheric dynamics in the following winter. Acknowledgements Author acknowledges Dr. Volodin E.M. for providing INMCM data and valued advices. This work is partially supported by SB RAS project VIII.80.2.1, RFBR grant 13-05-12034, 13-05-00480, 14-05-00502 and grant of the President of the Russian Federation. References Allen R.J. and Zender C.S. Forcing of the Arctic Oscillation by Eurasian snow cover. // J. Climate. 2011. Volume 24. P. 6528-6539. Cohen J., Barlow M., Kushner P.J., Saito K. Stratosphere-troposphere coupling and links with Eurasian land-surface variability. // J. Climate. 2007. Volume 20. P. 5335-5343. Gong G., Entekhabi D., Cohen J. Modeled Northern Hemisphere winter climate response to realistic Siberian snow anomalies. // J. Climate, 2003. -- V. 16. -- P. 3917-3931. Martynova Yu.V. and Krupchatnikov V.N. A study of the sensitivity of the surface temperature in Eurasia in winter to snow-cover anomalies: The role of the stratosphere // Izvestiya, Atmospheric and Oceanic Physics. 2010. V 46, Issue 6, pp 757-769. Volodin E.M., Dianskii N.A., Gusev A.V. Simulating Present-Day Climate with the INMCM4.0 Coupled Model of the Atmospheric and Oceanic General Circulations // Izvestiya, Atmospheric and Oceanic Physics. 2010. V 46, No. 4, pp 414-431. Volodin E.M. Possible reasons for low climate-model sensitivity to increased carbon dioxide concentrations // Izvestiya, Atmospheric and Oceanic Physics. 2014. V 50, Issue 4 , pp 350-355.
Anyamba, Assaf; Small, Jennifer L.; Britch, Seth C.; Tucker, Compton J.; Pak, Edwin W.; Reynolds, Curt A.; Crutchfield, James; Linthicum, Kenneth J.
2014-01-01
We document significant worldwide weather anomalies that affected agriculture and vector-borne disease outbreaks during the 2010–2012 period. We utilized 2000–2012 vegetation index and land surface temperature data from NASA's satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) to map the magnitude and extent of these anomalies for diverse regions including the continental United States, Russia, East Africa, Southern Africa, and Australia. We demonstrate that shifts in temperature and/or precipitation have significant impacts on vegetation patterns with attendant consequences for agriculture and public health. Weather extremes resulted in excessive rainfall and flooding as well as severe drought, which caused ∼10 to 80% variation in major agricultural commodity production (including wheat, corn, cotton, sorghum) and created exceptional conditions for extensive mosquito-borne disease outbreaks of dengue, Rift Valley fever, Murray Valley encephalitis, and West Nile virus disease. Analysis of MODIS data provided a standardized method for quantifying the extreme weather anomalies observed during this period. Assessments of land surface conditions from satellite-based systems such as MODIS can be a valuable tool in national, regional, and global weather impact determinations. PMID:24658301
Interpretation of Ground Temperature Anomalies in Hydrothermal Discharge Areas
NASA Astrophysics Data System (ADS)
Price, A. N.; Lindsey, C.; Fairley, J. P., Jr.
2017-12-01
Researchers have long noted the potential for shallow hydrothermal fluids to perturb near-surface temperatures. Several investigators have made qualitative or semi-quantitative use of elevated surface temperatures; for example, in snowfall calorimetry, or for tracing subsurface flow paths. However, little effort has been expended to develop a quantitative framework connecting surface temperature observations with conditions in the subsurface. Here, we examine an area of shallow subsurface flow at Burgdorf Hot Springs, in the Payette National Forest, north of McCall, Idaho USA. We present a simple analytical model that uses easily-measured surface data to infer the temperatures of laterally-migrating shallow hydrothermal fluids. The model is calibrated using shallow ground temperature measurements and overburden thickness estimates from seismic refraction studies. The model predicts conditions in the shallow subsurface, and suggests that the Biot number may place a more important control on the expression of near-surface thermal perturbations than previously thought. In addition, our model may have application in inferring difficult-to-measure parameters, such as shallow subsurface discharge from hydrothermal springs.
Holocene Deep Ocean Variability Detected with Individual Benthic Foraminifera
NASA Astrophysics Data System (ADS)
Bova, S. C.; Herbert, T.; Fox-Kemper, B.
2015-12-01
Historical observations of deep ocean temperatures (>700 m water depth) show apparently unprecedented rates of warming over the past half century that parallel observed surface warming, on the order of 0.1°C/decade (Purkey and Johnson 2010). Most water masses below 700 m depth, however, have not been at the sea surface where they exchange heat and carbon with the atmosphere since well before industrialization (Gebbie and Huybers 2012). How then has the heat content of isolated deep water masses responded to climate change over the last century? In models, wave mechanisms propagate thermocline anomalies quickly (Masuda et al. 2010), but these dynamics are not fully understood. We therefore turn to the sedimentary record to constrain the bounds of earlier variability from Holocene anomalies. The oxygen isotopic composition (δ18O) of individual benthic foraminifera provide approximately month-long snapshots of the temperature and salinity of ambient deep water during calcification. We exploit the short lifespan of these organisms to reconstruct variability in δ18Oshell, and thus the variability in deep water temperature and salinity, during five 200-yr Holocene intervals at 1000 m water depth in the Eastern Equatorial Pacific (EEP). Modern variability in benthic foraminifer δ18O was too weak to detect but variability at 1000 m water depth in the EEP exceeded our detection limit during two Holocene intervals at high confidence (p<0.01), with δ18O anomalies up to ~0.6 ± 0.15‰ that persist for a month or longer. Although the source of these anomalies remains speculative, rapid communication between the surface and deep ocean that operates on human timescales, faster than previously recognized, or intrinsic variability that has not been active during the history of ocean observations are potential explanations. Further work combining models and high-resolution proxy data is needed to identify the mechanism and global extent of this type of subsurface variability in the global oceans.
NASA Astrophysics Data System (ADS)
Amores, Angel; Melnichenko, Oleg; Maximenko, Nikolai
2017-01-01
The mean vertical structure and transport properties of mesoscale eddies are investigated in the North Atlantic subtropical gyre by combining historical records of Argo temperature/salinity profiles and satellite sea level anomaly data in the framework of the eddy tracking technique. The study area is characterized by a low eddy kinetic energy and sea surface salinity maximum. Although eddies have a relatively weak signal at surface (amplitudes around 3-7 cm), the eddy composites reveal a clear deep signal that penetrates down to at least 1200 m depth. The analysis also reveals that the vertical structure of the eddy composites is strongly affected by the background stratification. The horizontal patterns of temperature/salinity anomalies can be reconstructed by a linear combination of a monopole, related to the elevation/depression of the isopycnals in the eddy core, and a dipole, associated with the horizontal advection of the background gradient by the eddy rotation. A common feature of all the eddy composites reconstructed is the phase coherence between the eddy temperature/salinity and velocity anomalies in the upper ˜300 m layer, resulting in the transient eddy transports of heat and salt. As an application, a box model of the near-surface layer is used to estimate the role of mesoscale eddies in maintaining a quasi-steady state distribution of salinity in the North Atlantic subtropical salinity maximum. The results show that mesoscale eddies are able to provide between 4 and 21% of the salt flux out of the area required to compensate for the local excess of evaporation over precipitation.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled "very warm modeled surface temperature" are shown in red on the map. Areas that had temperatures between 1o and 2o were considered ASTER modeled "warm modeled surface temperature" are shown in yellow on the map. This map also includes the locations of shallow temperature survey points, locations of springs or wells with favorable geochemistry, faults, transmission lines, and areas of modeled basement weakness "fairways." Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled "very warm modeled surface temperature" are shown in red on the map. Areas that had temperatures between 1o and 2o were considered ASTER modeled "warm modeled surface temperature" are shown in yellow on the map. This map also includes the locations of shallow temperature survey points, locations of springs or wells with favorable geochemistry, faults, transmission lines, and areas of modeled basement weakness "fairways." Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled "very warm modeled surface temperature" are shown in red on the map. Areas that had temperatures between 1o and 2o were considered ASTER modeled "warm modeled surface temperature" are shown in yellow on the map. This map also includes the locations of shallow temperature survey points, locations of springs or wells with favorable geochemistry, faults, transmission lines, and areas of modeled basement weakness "fairways." Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled "very warm modeled surface temperature" are shown in red on the map. Areas that had temperatures between 1o and 2o were considered ASTER modeled"warm modeled surface temperature" are shown in yellow on the map. This map also includes the locations of shallow temperature survey points, locations of springs or wells with favorable geochemistry, faults, transmission lines, and areas of modeled basement weakness "fairways." Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled "very warm modeled surface temperature" are shown in red on the map. Areas that had temperatures between 1o and 2o were considered ASTER modeled "warm modeled surface temperature" are shown in yellow on the map. This map also includes the locations of shallow temperature survey points, locations of springs or wells with favorable geochemistry, faults, transmission lines, and areas of modeled basement weakness "fairways." Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled "very warm modeled surface temperature" are shown in red on the map. Areas that had temperatures between 1o and 2o were considered ASTER modeled "warm modeled surface temperature" are shown in yellow on the map. This map also includes the locations of shallow temperature survey points, locations of springs or wells with favorable geochemistry, faults, transmission lines, and areas of modeled basement weakness "fairways." Note: 'o' is used in this description to represent lowercase sigma.
Structural Controls of the Emerson Pass Geothermal System, Washoe County, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Ryan B; Faulds, James E
We have conducted a detailed geologic study to better characterize a blind geothermal system in Emerson Pass on the Pyramid Lake Paiute Tribe Reservation, western Nevada. A thermal anomaly was discovered in Emerson Pass by use of 2 m temperature surveys deployed within a structurally favorable setting and proximal to surface features indicative of geothermal activity. The anomaly lies at the western edge of a broad left step at the northeast end of Pyramid Lake between the north- to north-northeast-striking, west-dipping, Fox and Lake Range normal faults. The 2-m temperature surveys have defined a N-S elongate thermal anomaly that hasmore » a maximum recorded temperature of ~60°C and resides on a north- to north-northeaststriking fault. Travertine mounds, chalcedonic silica veins, and silica cemented Pleistocene lacustrine gravels in Emerson Pass indicate a robust geothermal system active at the surface in the recent past. Structural complexity and spatial heterogeneities of the strain and stress field have developed in the step-over region, but kinematic data suggest a WNW-trending (~280° azimuth) extension direction. The geothermal system is likely hosted in Emerson Pass as a result of enhanced permeability generated by the intersection of two oppositely dipping, southward terminating north- to north-northwest-striking (Fox Range fault) and northnortheast- striking faults.« less
The impact of sea surface temperature on winter wheat in Iberian Peninsula
NASA Astrophysics Data System (ADS)
Capa-Morocho, Mirian; Rodríguez-Fonseca, Belen; Ruiz-Ramos, Margarita
2016-04-01
Climate variability is the main driver of changes in crops yield, especially for rainfed production systems. This is also the case of Iberian Peninsula (IP) (Capa-Morocho et al., 2014), where wheat yields are strongly dependent on seasonal rainfall amount and temporal distribution of rainfall during the growing season. Previous works have shown that large-scale oceanic patterns have a significant impact on precipitation over IP (Rodriguez-Fonseca and de Castro, 2002; Rodríguez-Fonseca et al., 2006). The existence of some predictability of precipitation has encouraged us to analyze the possible predictability of the wheat yield in the IP using sea surface temperature (SST) anomalies as predictor. For this purpose, a crop model site specific calibrated for the Northeast of IP and several reanalysis climate datasets have been used to obtain long time series of attainable wheat yield and relate their variability with SST anomalies. The results show that wheat yield anomalies are associated with changes in the Tropical Pacific (El Niño) and Atlantic (TNA) SST. For these events, the regional associated atmospheric pattern resembles the NAO, which also influences directly on the maximum temperatures and precipitation experienced by the crop during flowering and grain filling. Results from this study could have important implications for predictability issues in agricultural planning and management, such as insurance coverage, changes in sowing dates and choice of species and varieties.
Seasonal influence of ENSO on the Atlantic ITCZ and equatorial South America
NASA Astrophysics Data System (ADS)
Münnich, M.; Neelin, J. D.
2005-11-01
In late boreal spring, especially May, a strong relationship exists in observations among precipitation anomalies over equatorial South America and the Atlantic intertropical convergence zone (ITCZ), and eastern equatorial Pacific and central equatorial Atlantic sea surface temperature anomalies (SSTA). A chain of correlations of equatorial Pacific SSTA, western equatorial Atlantic wind stress (WEA), equatorial Atlantic SSTA, sea surface height, and precipitation supports a causal chain in which El Niño/Southern Oscillation (ENSO) induces WEA stress anomalies, which in turn affect Atlantic equatorial ocean dynamics. These correlations show strong seasonality, apparently arising within the atmospheric links of the chain. This pathway and the influence of equatorial Atlantic SSTA on South American rainfall in May appear independent of that of the northern tropical Atlantic. Brazil's Nordeste is affected by the northern tropical Atlantic. The equatorial influence lies further to the north over the eastern Amazon and the Guiana Highlands.
NASA Astrophysics Data System (ADS)
Zorita, Eduardo; Frankignoul, Claude
1997-02-01
The climate variability in the North Atlantic sector is investigated in a 325-yr integration of the ECHAM1/ LSG coupled ocean-atmosphere general circulation model. At the interannual timescale, the coupled model behaves realistically and sea surface temperature (SST) anomalies arise as a response of the oceanic surface layer to the stochastic forcing by the atmosphere, with the heat exchanges both generating and damping the SST anomalies. In the ocean interior, the temperature spectra are red up to a period of about 20 years, and substantial decadal fluctuations are found in the upper kilometer or so of the water column. Using extended empirical orthogonal function analysis, two distinct quasi-oscillatory modes of ocean-atmosphere variability are identified, with dominant periods of about 20 and 10 years, respectively. The oceanic changes in both modes reflect the direct forcing by the atmosphere through anomalous air-sea fluxes and Ekman pumping, which after some delay affects the intensity of the subtropical and subpolar gyres. The SST is also strongly modulated by the gyre currents. In the thermocline, the temperature and salinity fluctuations are in phase, as if caused by thermocline displacements, and they have no apparent connection with the thermohaline circulation. The 20-yr mode is the most energetic one; it is easily seen in the thermocline and can be found in SST data, but it is not detected in the atmosphere alone. As there is no evidence of positive ocean-atmosphere feedback, the 20-yr mode primarily reflects the passive response of the ocean to atmospheric fluctuations, which may be in part associated with climate anomalies appearing a few years earlier in the North Pacific. The 10-yr mode is more surface trapped in the ocean. Although the mode is most easily seen in the temperature variations of the upper few hundred meters of the ocean, it is also detected in the atmosphere alone and thus appears to be a coupled ocean-atmosphere mode. In both modes, the surface heat flux acts neutrally on the associated SST anomalies once they have been generated, so that their persistence appears to be due in part to an overall adjustment of the air-sea heat exchanges to the SST patterns.
Confinement of anomalous liquids in nanoporous matrices.
Strekalova, Elena G; Luo, Jiayuan; Stanley, H Eugene; Franzese, Giancarlo; Buldyrev, Sergey V
2012-09-07
Using molecular dynamics simulations, we investigate the effects of different nanoconfinements on complex liquids-e.g., colloids or protein solutions-with density anomalies and a liquid-liquid phase transition (LLPT). In all the confinements, we find a strong depletion effect with a large increase in liquid density near the confining surface. If the nanoconfinement is modeled by an ordered matrix of nanoparticles, we find that the anomalies are preserved. On the contrary, if the confinement is modeled by a disordered matrix of nanoparticles, we find a drastically different phase diagram: the LLPT shifts to lower pressures and temperatures, and the anomalies become weaker, as the disorder increases. We find that the density heterogeneities induced by the disordered matrix are responsible for the weakening of the LLPT and the disappearance of the anomalies.
NASA Astrophysics Data System (ADS)
Shepherd, J.
2002-05-01
A recent paper by Shepherd et al. (in press at Journal of Applied Meteorology) used rainfall data from the Precipitation Radar on NASA's Tropical Rainfall Measuring Mission's (TRMM) satellite to identify warm season rainfall anomalies downwind of major urban areas. Data (PR) were employed to identify warm season rainfall (1998-2000) patterns around Atlanta, Montgomery, Nashville, San Antonio, Waco, and Dallas. Results are consistent with METROMEX studies of St. Louis almost two decades ago and with more recent studies near Atlanta. A convective-mesoscale model with extensive land-surface processes is currently being employed to (a) determine if an urban heat island (UHI) thermal perturbation can induce a dynamic response to affect rainfall processes and (b) quantify the impact of the following three factors on the evolution of rainfall: (1) urban surface roughness, (2) magnitude of the UHI temperature anomaly, and (3) physical size of the UHI temperature anomaly. The sensitivity experiments are achieved by inserting a slab of land with urban properties (e.g. roughness length, albedo, thermal character) within a rural surface environment and varying the appropriate lower boundary condition parameters. The study will discuss the feasibility of utilizing satellite-based rainfall estimates for examining rainfall modification by urban areas on global scales and over longer time periods. The talk also introduces very preliminary results from the modeling component of the study.
NASA Astrophysics Data System (ADS)
KanthaRao, B.; Rakesh, V.
2018-05-01
Understanding the relationship between gradually varying soil moisture (SM) conditions and monsoon rainfall anomalies is crucial for seasonal prediction. Though it is an important issue, very few studies in the past attempted to diagnose the linkages between the antecedent SM and Indian summer monsoon rainfall. This study examined the relationship between spring (April-May) SM and June rainfall using observed data during the period 1979-2010. The Empirical Orthogonal Function (EOF) analyses showed that the spring SM plays a significant role in June rainfall over the Central India (CI), South India (SI), and North East India (NEI) regions. The composite anomaly of the spring SM and June rainfall showed that excess (deficit) June rainfall over the CI was preceded by wet (dry) spring SM. The anomalies in surface-specific humidity, air temperature, and surface radiation fluxes also supported the existence of a positive SM-precipitation feedback over the CI. On the contrary, excess (deficit) June rainfall over the SI and NEI region were preceded by dry (wet) spring SM. The abnormal wet (dry) SM over the SI and NEI decreased (increased) the 2-m air temperature and increased (decreased) the surface pressure compared to the surrounding oceans which resulted in less (more) moisture transport from oceans to land (negative SM-precipitation feedback over the Indian monsoon region).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Chunmei; Leung, Lai R.; Gochis, David
2009-11-29
The influence of antecedent soil moisture on North American monsoon system (NAMS) precipitation variability was explored using the MM5 mesoscale model coupled with the Variable Infiltration Capacity (VIC) land surface model. Sensitivity experiments were performed with extreme wet and dry initial soil moisture conditions for both the 1984 wet monsoon year and the 1989 dry year. The MM5-VIC model reproduced the key features of NAMS in 1984 and 1989 especially over northwestern Mexico. Our modeling results indicate that the land surface has memory of the initial soil wetness prescribed at the onset of the monsoon that persists over most ofmore » the region well into the monsoon season (e.g. until August). However, in contrast to the classical thermal contrast concept, where wetter soils lead to cooler surface temperatures, less land-sea thermal contrast, weaker monsoon circulations and less precipitation, the coupled model consistently demonstrated a positive soil moisture – precipitation feedback. Specifically, anomalously wet premonsoon soil moisture always lead to enhanced monsoon precipitation, and the reverse was also true. The surface temperature changes induced by differences in surface energy flux partitioning associated with pre-monsoon soil moisture anomalies changed the surface pressure and consequently the flow field in the coupled model, which in turn changed moisture convergence and, accordingly, precipitation patterns. Both the largescale circulation change and local land-atmospheric interactions in response to premonsoon soil moisture anomalies play important roles in the coupled model’s positive soil moisture monsoon precipitation feedback. However, the former may be sensitive to the strength and location of the thermal anomalies, thus leaving open the possibility of both positive and negative soil moisture precipitation feedbacks.« less
Analysis of the 2015-16 El Niño Event Using NASA's GEOS Data Assimilation System
NASA Astrophysics Data System (ADS)
Pawson, S.; Lim, Y. K.; Kovach, R. M.; Vernieres, G.
2016-12-01
The strong El Niño event that occurred in 2015/2016 is analyzed using atmospheric and oceanic analyses produced using the Goddard Earth Observing System (GEOS) systems. A theme of the work is to compare and contrast this event with two other strong El Niños, in 1982/1983 and 1997/1998, that are included in the satellite-data era of the MERRA and MERRA-2 reanalyses produced using the GEOS system. Distribution of the maximum anomalies of tropical sea-surface temperature (SST), precipitation, Walker circulation, and cloud fraction indicate that 2015/2016 is a Central Pacific (CP) El Niño. The event had an early onset compared to the 1997/1998 El Niño, with extremely strong warming and precipitation over the Central Pacific, and was the strongest in terms of central Pacific SST anomalies. The large region of warm temperature anomalies over most of the Pacific and Indian Ocean in the 2015-2016 event were due to the accumulative impacts of the El Niño event along with a positive phase of the Pacific Decadal Oscillation and a decadal warming trend over the western Pacific, Maritime Continent, and Indian Ocean. The relatively weak development of the 2015/2016 El Niño event over the Eastern Pacific was likely due to weaker westerly wind bursts and Madden-Julian Oscillation during spring, which in 1997/1998 served to drive the warm anomalies further East towards South America, making that event the strongest Eastern Pacific El Niño (in the recent data record). This is reflected in the 2015/2016 event having a shallower thermocline over the Eastern Pacific, with a weaker zonal gradient of sub-surface water temperatures along the equatorial Pacific. The major extra-tropical teleconnections associated with the El Niño in 2015/2016 are at least comparable to those in the 1982/1983 and 1997/1998 El Niño events. Specifically, the Pacific North American (PNA) teleconnection in 2015/2016 is the strongest of these three El Niño events, leading to larger extra-tropical anomalies of geopotential height, temperature, and precipitation over North America.
Yamamoto, Ayako; Palter, Jaime B
2016-03-15
Northern Hemisphere climate responds sensitively to multidecadal variability in North Atlantic sea surface temperature (SST). It is therefore surprising that an imprint of such variability is conspicuously absent in wintertime western European temperature, despite that Europe's climate is strongly influenced by its neighbouring ocean, where multidecadal variability in basin-average SST persists in all seasons. Here we trace the cause of this missing imprint to a dynamic anomaly of the atmospheric circulation that masks its thermodynamic response to SST anomalies. Specifically, differences in the pathways Lagrangian particles take to Europe during anomalous SST winters suppress the expected fluctuations in air-sea heat exchange accumulated along those trajectories. Because decadal variability in North Atlantic-average SST may be driven partly by the Atlantic Meridional Overturning Circulation (AMOC), the atmosphere's dynamical adjustment to this mode of variability may have important implications for the European wintertime temperature response to a projected twenty-first century AMOC decline.
ENSO's far reaching connection to Indian cold waves.
Ratnam, J V; Behera, Swadhin K; Annamalai, H; Ratna, Satyaban B; Rajeevan, M; Yamagata, Toshio
2016-11-23
During boreal winters, cold waves over India are primarily due to transport of cold air from higher latitudes. However, the processes associated with these cold waves are not yet clearly understood. Here by diagnosing a suite of datasets, we explore the mechanisms leading to the development and maintenance of these cold waves. Two types of cold waves are identified based on observed minimum surface temperature and statistical analysis. The first type (TYPE1), also the dominant one, depicts colder than normal temperatures covering most parts of the country while the second type (TYPE2) is more regional, with significant cold temperatures only noticeable over northwest India. Quite interestingly the first (second) type is associated with La Niña (El Niño) like conditions, suggesting that both phases of ENSO provide a favorable background for the occurrence of cold waves over India. During TYPE1 cold wave events, a low-level cyclonic anomaly generated over the Indian region as an atmospheric response to the equatorial convective anomalies is seen advecting cold temperatures into India and maintaining the cold waves. In TYPE2 cold waves, a cyclonic anomaly generated over west India anomalously brings cold winds to northwest India causing cold waves only in those parts.
Towards a new paleotemperature proxy from reef coral occurrences.
Lauchstedt, Andreas; Pandolfi, John M; Kiessling, Wolfgang
2017-09-05
Global mean temperature is thought to have exceeded that of today during the last interglacial episode (LIG, ~ 125,000 yrs b.p.) but robust paleoclimate data are still rare in low latitudes. Occurrence data of tropical reef corals may provide new proxies of low latitude sea-surface temperatures. Using modern reef coral distributions we developed a geographically explicit model of sea surface temperatures. Applying this model to coral occurrence data of the LIG provides a latitudinal U-shaped pattern of temperature anomalies with cooler than modern temperatures around the equator and warmer subtropical climes. Our results agree with previously published estimates of LIG temperatures and suggest a poleward broadening of the habitable zone for reef corals during the LIG.
Regional and Coastal Prediction with the Relocatable Ocean Nowcast/Forecast System
2014-09-01
and those that may be resolved with a suite of satellite altimeters when several are present and operational (~ 100 km). The altimeter data provide...September 2014 47 The observational data used for assimilation include satellite sea surface temperature (SST), satellite altimeter sea surface height...anomaly (SSHA), satellite microwave-derived sea ice concentration, and in situ surface and profile data from sensors on ships; drifters; fixed buoys
On the origin of multi-decadal to centennial Greenland temperature anomalies over the past 800 yr
NASA Astrophysics Data System (ADS)
Kobashi, T.; Shindell, D. T.; Kodera, K.; Box, J. E.; Nakaegawa, T.; Kawamura, K.
2012-11-01
The surface temperature of the Greenland ice sheet is among the most important climate variables for assessing how climate change may impact human societies associated with accelerating sea level rise. However, the causes of multi-decadal-to-centennial temperature changes in Greenland are not well understood, largely owing to short observational records. To examine the causes of the Greenland temperature variability, we calculated the Greenland temperature anomalies (GTA(G-NH)) over the past 800 yr by subtracting the standardised NH temperature from the standardised Greenland temperature. It decomposes the Greenland temperature variation into background climate (NH); Polar amplification; and Regional variability (GTA(G-NH)). The Central Greenland polar amplification factor as expressed by the variance ratio = Greenland/NH is 2.6 over the past 161 yr, and 3.3-4.2 over the past 800 yr. The GTA explains 31-35% of the variation of Greenland temperature in the multi-decadal-to-centennial time scale over the past 800 yr. Another orthogonal component of the Greenland and NH temperatures, GTP(G+NH) (Greenland temperature plus = standardized Greenland temperature + standardized NH temperature) exhibited the multi-decadal variations that were likely induced by large volcanic eruptions, increasing greenhouse gasses, and internal variation of climate. We found that the GTA(G-NH) has been influenced by solar-induced changes in atmospheric circulation patterns such as those produced by North Atlantic Oscillation/Arctic Oscillation (NAO/AO). Climate modelling indicates that the anomaly is also likely linked to solar-paced changes in the Atlantic meridional overturning circulation (AMOC) and to associated changes in northward oceanic heat transport.
Dynamic compensation in the central Pacific Ocean
NASA Technical Reports Server (NTRS)
Hinojosa, Juan Homero; Marsh, Bruce D.
1988-01-01
The intermediate-wavelength geoid (lambda similar to 2000 km) and sea-floor topography fields in the central Pacific Ocean were studied in terms of static and dynamic compensation models. Topographic features on the sea-floor with lambda less than 1000 km were found to be compensated both regionally, by the elastic strength of the lithosphere, and locally, by displacing mantle material to reach isostatic adjustment. The larger-scale sea-floor topography and the corresponding geoid anomalies with lambda similar to 2000 km cannot be explained by either local or regional compensation. The topography and the resulting geoid anomaly at this wavelength were modeled by considering the dynamic effects arising from viscous stresses in a layer of fluid with a highly temperature-dependent viscosity for the cases of: (1) surface cooling, and (2) basal heating. In this model, the mechanical properties of the elastic part of the lithosphere were taken into account by considering an activation energy of about 520 kJ/mol in the Arrhenius law for the viscosity. Numerical predictions of the topography, total geoid anomaly, and admittance were obtained, and the results show that the thermal perturbation in the layer, which accounts for the mass deficit, must be located close to the surface to compensate the gravitational effect of the surface deformation. For the case of basal heating, the temperature dependence of viscosity results in a separation of the upper, quasi-rigid lid from the lower mobile fluid, hence inhibiting the development of a compensating thermal perturbation at shallow depths. The results clearly rule out small-scale, upper-mantle convection as the source of these anomalies. Instead, the geophysical observables can be well explained by a shallow, transient thermal perturbation.
Warm Anomaly Effects on California Current Phytoplankton
NASA Astrophysics Data System (ADS)
Gomez Ocampo, E.; Gaxiola-Castro, G.; Beier, E.; Durazo, R.
2016-02-01
Positive temperature anomalies were reported in the NE Pacific Ocean since the boreal winter of 2013-2014. Previous studies showed that these anomalies were caused by lower than normal rates of heat loss from the ocean to the atmosphere and by relatively weak cold water advection to the upper ocean. Anomalous Sea Surface Temperature (SST), Absolute Dynamic Topography (ADT), and Chlorophyll (CHL) obtained from monthly remote sensing data were registered in the California Current region during August 2014. Anomalies appeared around the coastal and oceanic zones, particularly in the onshore zone between Monterey Bay, California and Magdalena Bay, Baja California. High positive SST anomalous values up to 4ºC above the long-term mean, 20 cm in ADT, and less of 4.5 mg m-3 of CHL were registered. Changes of 20 cm in ADT above the average are equivalent to 50 m thermocline deepening considering typical values of stratification for the area, which in turn influenced the availability of nutrients and light for phytoplankton growth in the euphotic zone. To examine the influence of the warm anomaly on phytoplankton production, we fitted with Generalized Additive Models the relationship between monthly primary production satellite data and ADT. Primary production inferred from the model, showed during August 2014 high negative anomalies (up to 0.5 gC m-2 d1) in the coastal zone. The first empirical orthogonal function of ADT and PP revealed that the highest ADT anomalies and the lowest primary production occurred off the Baja California Peninsula, between Punta Eugenia and Cabo San Lucas. Preliminary conclusions showed that warm anomaly affected negatively to phytoplankton organisms during August 2014, being this evident by low biomass and negative primary production anomalies as result of pycnocline deepens.
The Detection of Change in the Arctic Using Satellite and Buoy Data
NASA Technical Reports Server (NTRS)
Comiso, Josefino C.; Yang, J.; Honjo, S.; Krishfield, R.; Koblinsky, Chester J. (Technical Monitor)
2001-01-01
The decade of the 1990s is the warmest decade of the last century while the year 1998 is the warmest year ever observed by modern techniques with 9 out of 12 months of the year being the warmest month. Since the Arctic is expected to provide early signals of a possible warming scenario, detailed examination of changes in the Arctic environment is important. In this study, we examined available satellite ice cover and surface temperature data, wind and pressure data, and ocean hydrographic data to gain insights into the warming phenomenon. The areas of open water in both western and eastern regions of the Arctic were found to follow a cyclical pattern with approximately decadal period but with a lag of about three years between the two regions. The pattern was interrupted by unusually large anomalies in open water area in the western region in 1993 and 1998 and in the eastern region in 1995. The big 1998 open water anomaly occurred at the same time when a large surface temperature anomaly was also occurring in the area and adjacent regions. The infrared temperature data show for the first time the complete spatial scope of the warming anomalies and it is apparent that despite the magnitude of the 1998 anomaly, it is basically confined to North America and the Western Arctic. The large increases in open water areas in the Western Sector form 1996 to 1998 were observed to be coherent with changing wind directions which was predominantly cyclonic in 1996 and anti-cyclonic in 1997 and 1998. Detailed hydrography measurements up to 500 m depth over the same general area in April 1996 and April 1997 also indicate significant freshening and warming in the upper part of the mixed layer suggesting increases in ice melt. Continuous ocean temperature and salinity data from ocean buoys confirm this result and show significant seasonal changes from 1996 to 1998, at depths of 8 m, 45 m, and 75 m. Long data records of temperature and hydrography were also examined and the potential impact of a warming, freshening, and the presence of abnormally large open areas on the state of the Arctic climate system are discussed.
NASA Astrophysics Data System (ADS)
Pal, J.; Chaudhuri, S.; Mukherjee, S.; Chowdhury, A. Roy
2017-10-01
Inter-annual variability in the onset of monsoon over Kerala (MOK), India, is investigated using daily temperature; mean sea level pressure; winds at 850, 500 and 200 hPa pressure levels; outgoing longwave radiation (OLR); sea surface temperature (SST) and vertically integrated moisture content anomaly with 32 years (1981-2013) observation. The MOK is classified as early, delayed, or normal by considering the mean monsoon onset date over Kerala to be the 1st of June with a standard deviation of 8 days. The objective of the study is to identify the synoptic setup during MOK and comparison with climatology to estimate the predictability of the onset type (early, normal, or delayed) with 5, 10, and 15 days lead time. The study reveals that an enhanced convection observed over the Bay of Bengal during early MOK is found to shift over the Arabian Sea during delayed MOK. An intense high-pressure zone observed over the western south Indian Ocean during early MOK shifts to the east during delayed MOK. Higher tropospheric temperature (TT) over the western Equatorial Ocean during early MOK and lower TT over the Indian subcontinent intensify the land-ocean thermal contrast that leads to early MOK. The sea surface temperature (SST) over the Arabian Sea is observed to be warmer during delayed than early MOK. During early MOK, the source of 850 hPa southwesterly wind shifts to the west equatorial zone while a COL region has been found during delayed MOK at that level. The study further reveals that the wind speed anomaly at the 200-hPa pressure level coincides inversely with the anomaly of tropospheric temperature.
Origin and evolution of the Perm Anomaly
NASA Astrophysics Data System (ADS)
Flament, N. E.; Williams, S.; Müller, D.; Gurnis, M.; Bower, D. J.
2016-12-01
Earth's lower mantle is characterized by two large-low-shear velocity provinces (LLSVPs, 15000 km in diameter, 500-1000 km high) located under Africa and the Pacific Ocean. In addition, a single, much smaller ( 1000 km in diameter, 500 km high) deep mantle structure named the "Perm Anomaly" was recently identified through the analysis of seismic tomography models. This discovery challenges current reconstructions of the evolution of the plate-mantle system that invoke plumes rising from the edges of the two LLSVPs, assumed spatially fixed and non-deforming in time. Here, we present mantle flow models constrained by tectonic reconstructions that reproduce the present-day structure of the lower mantle, and show a Perm-like anomaly. In the dynamic models, spanning 230 Myr, subducting slabs deform an initially uniform basal layer containing 2% of the volume of the mantle. Basal density, convective vigour, mantle viscosity, absolute plate motions, and relative plate motions are varied in a series of model cases. We use cluster analysis to classify equally-spaced points on Earth's surface into two groups with similar variations in present-day temperature between 1000-2800 km depth, for each model case. The procedure reveals a high-temperature cluster and a low-temperature cluster with respect to ambient mantle temperature below 2400 km depth. The spatial extent of the high-temperature cluster is in first-order agreement with the outlines of the LLSVPs and of the Perm Anomaly revealed by a similar cluster analysis of seven tomography models. Model success is quantified by computing the accuracy (between 0.56 and 0.76) of the temperature clusters in predicting the low-velocity cluster obtained from tomography, and qualified by the occurrence of a separate Perm-like anomaly. The anomaly formed in isolation prior to 150 Ma within a long-lived subduction network 22000 km in circumference composed of the Mongol-Okhotsk subduction along Eurasia to the west, northern Tethys subduction to the south, and east Asia subduction to the east, then migrated 2500 km westward at an average rate of 1.7 cm/yr, indicating a greater mobility of deep mantle structures than previously recognized. We infer that the mobile Perm Anomaly could be linked to the Emeishan volcanics, in contrast to the previously proposed Siberian Traps.
Lin, Yong; Franzke, Christian L E
2015-08-11
Studies of the global mean surface temperature trend are typically conducted at a single (usually annual or decadal) time scale. The used scale does not necessarily correspond to the intrinsic scales of the natural temperature variability. This scale mismatch complicates the separation of externally forced temperature trends from natural temperature fluctuations. The hiatus of global warming since 1999 has been claimed to show that human activities play only a minor role in global warming. Most likely this claim is wrong due to the inadequate consideration of the scale-dependency in the global surface temperature (GST) evolution. Here we show that the variability and trend of the global mean surface temperature anomalies (GSTA) from January 1850 to December 2013, which incorporate both land and sea surface data, is scale-dependent and that the recent hiatus of global warming is mainly related to natural long-term oscillations. These results provide a possible explanation of the recent hiatus of global warming and suggest that the hiatus is only temporary.
NASA Astrophysics Data System (ADS)
Ghent, D.; Good, E.; Bulgin, C.; Remedios, J. J.
2017-12-01
Surface temperatures (ST) over land have traditionally been measured at weather stations. There are many parts of the globe with very few stations, e.g. across much of Africa, leading to gaps in ST datasets, affecting our understanding of how ST is changing, and the impacts of extreme events. Satellites can provide global ST data but these observations represent how hot the land ST (LST; including the uppermost parts of e.g. trees, buildings) is to touch, whereas stations measure the air temperature just above the surface (T2m). Satellite LST data may only be available in cloud-free conditions and data records are frequently <10-15 years in length. Consequently, satellite LST data have not yet featured widely in climate studies. In this study, the relationship between clear-sky satellite LST and all-sky T2m is characterised in space and time using >17 years of data. The analysis uses a new monthly LST climate data record (CDR) based on the Along-Track Scanning Radiometer (ATSR) series, which has been produced within the European Space Agency GlobTemperature project. The results demonstrate the dependency of the global LST-T2m differences on location, land cover, vegetation and elevation. LSTnight ( 10 pm local solar time) is found to be closely coupled with minimum T2m (Tmin) and the two temperatures generally consistent to within ±5 °C (global median LSTnight- Tmin= 1.8 °C, interquartile range = 3.8 °C). The LSTday ( 10 am local time)-maximum T2m (Tmax) variability is higher because LST is strongly influenced by insolation and surface regime (global median LSTday-Tmax= -0.1 °C, interquartile range = 8.1 °C). Correlations for both temperature pairs are typically >0.9 outside of the tropics. A crucial aspect of this study is a comparison between the monthly global anomaly time series of LST and CRUTEM4 T2m. The time series agree remarkably well, with a correlation of 0.9 and 90% of the CDR anomalies falling within the T2m 95% confidence limits (see figure). This analysis provides independent verification of the 1995-2012 T2m anomaly time series, suggesting that LST can provide a complementary perspective on global ST change. The results presented give justification for increasing use of satellite LST data in climate and weather science, both as an independent variable, and to augment T2m data acquired at weather stations.
White, Warren B.; Tourre, Y.M.; Barlow, M.; Dettinger, M.
2003-01-01
Biennial, interannual, and decadal signals in the Pacific basin are observed to share patterns and evolution in covarying sea surface temperature (SST), 18??C isotherm depth (Z18), zonal surface wind (ZSW), and wind stress curl (WSC) anomalies from 1955 to 1999. Each signal has warm SST anomalies propagating slowly eastward along the equator, generating westerly ZSW anomalies in their wake. These westerly ZSW anomalies produce cyclonic WSC anomalies off the equator which pump baroclinic Rossby waves in the western/central tropical North Pacific Ocean. These Rossby waves propagate westward, taking ???6, ???12, and ???36 months to reach the western boundary near ???7??N, ???12??N, and ???18??N on biennial, interannual, and decadal period scales, respectively. There, they reflect as equatorial coupled waves, propagating slowly eastward in covarying SST, Z18, and ZSW anomalies, taking ???6, ???12, and ???24 months to reach the central/eastern equatorial ocean. These equatorial coupled waves produce a delayed-negative feedback to the warm SST anomalies there. The decrease in Rossby wave phase speed with latitude, the increase in meridional scale of equatorial SST anomalies with period scale, and the associated increase in latitude of Rossby wave forcing are consistent with the delayed action oscillator (DAO) model used to explain El Nin??o. However, this is not true of the western-boundary reflection of Rossby waves into slow equatorial coupled waves. This requires modification of the extant DAO model. We construct a modified DAO model, demonstrating how the various mechanisms and the size and sources of their delays yield the resulting frequency of each signal.
Surface-plasmon-assisted electron pair formation in strong electromagnetic field
NASA Astrophysics Data System (ADS)
Kroó, N.; Rácz, P.; Varró, S.
2014-03-01
In this work the strong electromagnetic field of femtosecond Ti:Sa lasers was used to excite surface plasmon oscillations (SPOs) in gold films at room temperature in the Kretschmann geometry. Experimental investigations were carried out using a surface plasmon near field scanning tunneling microscope, measuring its response to excitation at SPO hot spots on the gold surface. Furthermore, the spectra of photoelectrons, liberated by multiplasmon absorption, have also been measured by a time-of-flight spectrometer. In both cases new type of anomalies in both the STM and electron TOF signals have been measured in the same laser intensity range. The existence of these anomalies may be qualitatively understood, by using the intensity-dependent expression for the effective electron-electron scattering potential, derived earlier in a different context. In this theoretical work an effective attraction potential has been predicted in the presence of strong inhomogeneous radiation fields.
Thirumalai, Kaustubh; Quinn, Terrence M; Okumura, Yuko; Richey, Julie N; Partin, Judson W; Poore, Richard Z; Moreno-Chamarro, Eduardo
2018-01-26
Surface-ocean circulation in the northern Atlantic Ocean influences Northern Hemisphere climate. Century-scale circulation variability in the Atlantic Ocean, however, is poorly constrained due to insufficiently-resolved paleoceanographic records. Here we present a replicated reconstruction of sea-surface temperature and salinity from a site sensitive to North Atlantic circulation in the Gulf of Mexico which reveals pronounced centennial-scale variability over the late Holocene. We find significant correlations on these timescales between salinity changes in the Atlantic, a diagnostic parameter of circulation, and widespread precipitation anomalies using three approaches: multiproxy synthesis, observational datasets, and a transient simulation. Our results demonstrate links between centennial changes in northern Atlantic surface-circulation and hydroclimate changes in the adjacent continents over the late Holocene. Notably, our findings reveal that weakened surface-circulation in the Atlantic Ocean was concomitant with well-documented rainfall anomalies in the Western Hemisphere during the Little Ice Age.
Thirumalai, Kaustubh; Quinn, Terrence M.; Okumura, Yuko; Richey, Julie; Partin, Judson W.; Poore, Richard Z.; Moreno-Chamarro, Eduardo
2018-01-01
Surface-ocean circulation in the northern Atlantic Ocean influences Northern Hemisphere climate. Century-scale circulation variability in the Atlantic Ocean, however, is poorly constrained due to insufficiently-resolved paleoceanographic records. Here we present a replicated reconstruction of sea-surface temperature and salinity from a site sensitive to North Atlantic circulation in the Gulf of Mexico which reveals pronounced centennial-scale variability over the late Holocene. We find significant correlations on these timescales between salinity changes in the Atlantic, a diagnostic parameter of circulation, and widespread precipitation anomalies using three approaches: multiproxy synthesis, observational datasets, and a transient simulation. Our results demonstrate links between centennial changes in northern Atlantic surface-circulation and hydroclimate changes in the adjacent continents over the late Holocene. Notably, our findings reveal that weakened surface-circulation in the Atlantic Ocean was concomitant with well-documented rainfall anomalies in the Western Hemisphere during the Little Ice Age.
NASA Astrophysics Data System (ADS)
King, Martin P.; Herceg-Bulić, Ivana; Kucharski, Fred; Keenlyside, Noel
2018-03-01
We investigate the Northern Hemisphere atmospheric circulation anomalies associated to the sea surface temperature (SST) anomalies that are related to the eastern-Pacific and central-Pacific El Nino-Southern Oscillations in the late autumn (November). This research is motivated by the need for improving understanding of the autumn climate conditions which can impact on winter climate, as well as the relative lack of study on the boreal autumn climate processes compared to winter. Using reanalysis and SST datasets available from the late nineteenth century through the recent years, we found that there are two major atmospheric responses; one is a hemispheric-wide wave number-4 pattern, another has a more annular pattern. Both of these project on the East Atlantic pattern (southward-shifted North Atlantic Oscillation) in the Atlantic sector. Which of the patterns is active is suggested to depend on the background mean flow, with the annular anomaly active in the most recent decades, while the wave-4 pattern in the decades before. This switch is associated with a change of correlation sign in the North Pacific. We discuss the robustness of this finding. The ability of two atmospheric general circulation models (ICTP-AGCM and ECHAM-AGCM) to reproduce the teleconnections is also examined. Evidence provided shows that the wave-4 pattern and the East Atlantic pattern signals can be reproduced by the models, while the shift from this to an annular response for the recent years is not found conclusively.
Time-Variable Gravity Signal due to Extratropic Pacific Water Mass Redistribution
NASA Technical Reports Server (NTRS)
Chao, B. F.; Boy, J. -P.; Cox, C. M.; Au, A. Y.
2003-01-01
Using the satellite-laser-ranging (SLR) data, Cox and Chao [2002] reported the detection of a large post-1998 anomaly (in the form of a positive jump) in the time series of Earth s lowest-degree gravity harmonic 52, or the dynamic oblateness. Among several groups now examining the mass redistribution in the global geophysical fluids in search of the cause(s), we report here a temporally coinciding anomalies found in the extratropic north + south Pacific basins. Clearly seen in the leading EOFPC mode for extratropic Pacific, these anomalies occurred in sea-surface height, sea-surface temperature, and temperature- and salinity-depth profiles. We based our analysis on two different data sources: TOPEX/Poseidon altimetry, and the ECCO ocean general circulation model output assimilating T/P data. The magnitude of these changes, when converted to equivalent J2 change, appears to be a few times too small to explain the observed J2 directly. These findings, and the fact that the anomalies occurred following the strong 1997-98 El Nino, suggest strong geophysical connection of the interannual-to-decadal variation of 52 with the Pacific Decadal Oscillation (PDO) and the ultimate global-change processes that cause PDO. More work is underway, and additional independent data sources are examined, paying close attention to the fact that the J2 anomaly has been reversing back to normal since 2001. These include: (1) cryospheric contributions (melting of glaciers and ice sheets); (2) land hydrological contributions; (3) polar sea influences ( e g , via deep flow); (4) fluid flow in Earth's core; (5) time-variable gravity signals from SLR in higher harmonic degree/order, including J3,J4, (2,1), and (2,2) coefficients, considering their lower signal-to-noise ratios; (6) Earth rotation data in terms of length-of-day and polar motion.
Upper mixed layer temperature anomalies at the North Atlantic storm-track zone
NASA Astrophysics Data System (ADS)
Moshonkin, S. N.; Diansky, N. A.
1995-10-01
Synoptic sea surface temperature anomalies (SSTAs) were determined as a result of separation of time scales smaller than 183 days. The SSTAs were investigated using daily data of ocean weather station C (52.75°N; 35.5°W) from 1 January 1976 to 31 December 1980 (1827 days). There were 47 positive and 50 negative significant SSTAs (lifetime longer than 3 days, absolute value greater than 0.10 °C) with four main intervals of the lifetime repetitions: 1. 4-7 days (45% of all cases), 2. 9-13 days (20-25%), 3. 14-18 days (10-15%), and 4. 21-30 days (10-15%) and with a magnitude 1.5-2.0 °C. An upper layer balance model based on equations for temperature, salinity, mechanical energy (with advanced parametrization), state (density), and drift currents was used to simulate SSTA. The original method of modelling taking into account the mean observed temperature profiles proved to be very stable. The model SSTAs are in a good agreement with the observed amplitudes and phases of synoptic SSTAs during all 5 years. Surface heat flux anomalies are the main source of SSTAs. The influence of anomalous drift heat advection is about 30-50% of the SSTA, and the influence of salinity anomalies is about 10-25% and less. The influence of a large-scale ocean front was isolated only once in February-April 1978 during all 5 years. Synoptic SSTAs develop just in the upper half of the homogeneous layer at each winter. We suggest that there are two main causes of such active sublayer formation: 1. surface heat flux in the warm sectors of cyclones and 2. predominant heat transport by ocean currents from the south. All frequency functions of the ocean temperature synoptic response to heat and momentum surface fluxes are of integral character (red noise), though there is strong resonance with 20-days period of wind-driven horizontal heat advection with mixed layer temperature; there are some other peculiarities on the time scales from 5.5 to 13 days. Observed and modelled frequency functions seem to be in good agreement. Acknowledgements. The authors are grateful to Prof. A. K. Sen of the Institute of Radio Physics and Electronics, University of Calcutta for valuable discussions. One of the authors (R. B.) expresses thanks to the C.S.I.R., New Delhi for financial assistance. Our special thanks are due to the two referees of this paper for their valuable critical comments. The Eastern Centre for Research in Astrophysics (ECRA) is also acknowledged for financial support. The Editor-in-Chief thanks M. Cliverd and A. E. Reznikov for their help in evaluating this paper.--> Correspondence to: A. B. Bhattacharya-->
Global sea surface temperature (SST) anomalies have a demonstrable effect on vegetation dynamics and precipitation patterns throughout the continental U.S. SST variations have been correlated with greenness (vegetation densities) and precipitation via ocean-atmospheric interactio...
Global radiative adjustment after a collapse of the Atlantic meridional overturning circulation
NASA Astrophysics Data System (ADS)
Drijfhout, Sybren S.
2015-10-01
The transient climate response to a collapse of the Atlantic meridional overturning circulation (AMOC) is analysed from the difference between two ensembles of climate model simulations with ECHAM5/MPI-OM, one with hosing and the other without hosing. The primary effect of the collapse is to redistribute heat over the two hemispheres. However, Northern Hemisphere sea ice increase in response to the AMOC collapse induces a hemisphere-wide cooling, amplified by atmospheric feedbacks, in particular water vapour. The Southern Hemisphere warming is governed by slower processes. After 25 years the global cooling peaks. Thereafter, the response is characterised by a gradual readjustment of global mean temperature. During the AMOC collapse a downward radiation anomaly arises at the top of the atmosphere (TOA), heating the earth's surface. The net downward radiation anomaly at TOA arises from reduced longwave emission by the atmosphere, overcompensating the increased net upward anomalies in shortwave and longwave radiation at the surface. This radiation anomaly is associated with net ocean heat uptake: cooling of the overlying atmosphere results from reduced ocean heat release through the increase of sea-ice cover in the North Atlantic. The change in energy flow arises from the reduction in latent and sensible heat flux, which dominate the surface radiation budget. Similar experiments with a climate model of intermediate complexity reveal a stronger shortwave response that acts to reduce the net downward radiation anomaly at TOA. The net shortwave and longwave radiation anomalies at TOA always decrease during the first 100 years after the AMOC collapse, but in the intermediate complexity model this is associated with a sign change after 90 years when the net radiation anomaly at TOA becomes upward, accompanied by net ocean heat loss. After several hundred years the longwave and shortwave anomalies increase again, while the net residual at TOA remains small. This radiative adjustment is associated with the transition to a colder climate.
The Arctic Vortex in March 2011: A Dynamical Perspective
NASA Technical Reports Server (NTRS)
Hurwitz, Margaret M.; Newman, Paul A.; Garfinkel,Chaim I.
2011-01-01
Despite the record ozone loss observed in March 2011, dynamical conditions in the Arctic stratosphere were unusual but not unprecedented. Weak planetary wave driving in February preceded cold anomalies in t he polar lower stratosphere in March and a relatively late breakup of the Arctic vortex in April. La Nina conditions and the westerly phas e of the quasi-biennial oscillation (QBO) were observed in March 201 1. Though these conditions are generally associated with a stronger vortex in mid-winter, the respective cold anomalies do not persist t hrough March. Therefore, the La Nina and QBO-westerly conditions cannot explain the observed cold anomalies in March 2011. In contrast, po sitive sea surface temperature anomalies in the North Pacific may ha ve contributed to the unusually weak tropospheric wave driving and s trong Arctic vortex in late winter 2011.
NASA Astrophysics Data System (ADS)
Zhang, Lei; Li, Tim
2017-02-01
Most of CMIP5 models projected a weakened Walker circulation in tropical Pacific, but what causes such change is still an open question. By conducting idealized numerical simulations separating the effects of the spatially uniform sea surface temperature (SST) warming, extra land surface warming and differential SST warming, we demonstrate that the weakening of the Walker circulation is attributed to the western North Pacific (WNP) monsoon and South America land effects. The effect of the uniform SST warming is through so-called "richest-get-richer" mechanism. In response to a uniform surface warming, the WNP monsoon is enhanced by competing moisture with other large-scale convective branches. The strengthened WNP monsoon further induces surface westerlies in the equatorial western-central Pacific, weakening the Walker circulation. The increase of the greenhouse gases leads to a larger land surface warming than ocean surface. As a result, a greater thermal contrast occurs between American Continent and equatorial Pacific. The so-induced zonal pressure gradient anomaly forces low-level westerly anomalies over the equatorial eastern Pacific and weakens the Walker circulation. The differential SST warming also plays a role in driving low-level westerly anomalies over tropical Pacific. But such an effect involves a positive air-sea feedback that amplifies the weakening of both east-west SST gradient and Pacific trade winds.
NASA Astrophysics Data System (ADS)
Groisman, P. Y.; Yin, X.; Bulygina, O.
2017-12-01
Freezing precipitation events intertwine with agriculture, recreation, energy consumption, and seasonal transportation cycles of human activities. Using supplementary synoptic reports at 1,500 long-term stations of North America and Northern Eurasia, we created climatology of freezing precipitation near the surface and found significant changes (increases) in these occurrences in the past decade at high latitudes/elevations (Groisman et al. 2016; updated). Firstly, we document narrow boundaries of near surface temperature and humidity fields when freezing precipitation events occur; these are necessary but insufficient conditions of their occurrence. Secondly, using the upper air data at the sites collocated with in situ observations of freezing events, we quantify the typical pattern of lower troposphere temperature anomalies during freezing events: At the same locations and Julian days, the presence of freezing event at the surface is associated with significantly warmer temperatures in the lower troposphere; comparison of temperatures at nearest days before and after the freezing events with days during these events also shows statistically significant positive temperature anomalies in the lower troposphere to 500 hPa (on average, +3 to 4 °C) In the days with freezing events, vertical air temperature gradients between surface and 850 hPa become less than usual with frequent inversions, when the tropospheric air is warmer than at the surface. The above features of the lower tropospheric temperature, near-surface temperature and humidity represent a combination of weather conditions conducive for precipitation, if it happens, falling in the freezing rain form. The in situ reports of freezing events at synoptic stations allow us to estimate temporary and spatial distributions of such "special weather conditions". Thus, a posteriori high probability of freezing events under these weather conditions invokes similar probabilities of freezing rain over the ungauged terrain, where we do not have special synoptic reports but can reproduce these "special weather conditions" from less sophisticated observational networks and/or reanalyses. Reference: Groisman et al. 2016: Recent changes in the frequency of freezing precipitation in North America and Northern Eurasia. Environ Res Lett 11 045007.
NASA Astrophysics Data System (ADS)
Saatchi, S.; Asefi, S.
2012-04-01
During the last decade, strong precipitation anomalies resulted from increased sea surface temperature in the tropical Atlantic, have caused extensive drying trends in rainforests of western Amazonia, exerting water stress, tree mortality, biomass loss, and large-scale fire disturbance. In contrast, there have been no reports on large-scale disturbance in rainforests of west and central Africa, though being exposed to similar intensity of climate variability. Using data from Tropical Rainfall Mapping Mission (TRMM) (1999-2010), and time series of rainfall observations from meteorological stations (1971-2000), we show that both Amazonian and African rainforest experienced strong precipitation anomalies from 2005-2010. We monitored the response of forest to the climate variability by analyzing the canopy water content observed by SeaWinds Ku-band Scatterometer (QSCAT) (1999-2009) and found that more than 70 million ha of forests in western Amazonia experienced a strong water deficit during the dry season of 2005 and a closely corresponding decline in canopy backscatter that persisted until the next major drought in 2010. This decline in backscatter has been attributed to loss of canopy water content and large-scale tree mortality corroborated by ground and airborne observations. However, no strong impacts was observed on tropical forests of Africa, suggesting that the African rainforest may have more resilience to droughts. We tested this hypothesis by examining the seasonal rainfall patterns, maximum water deficit, and the surface temperature variations. Results show that there is a complex pattern of low annual rainfall, moderate seasonality, and lower surface temperature in Central Africa compared to Amazonia, indicating potentially a lower evapotranspiration circumventing strong water deficits
Response of Tropical Forests to Intense Climate Variability and Rainfall Anomaly of Last Decade
NASA Astrophysics Data System (ADS)
Saatchi, S. S.; Asefi Najafabady, S.
2011-12-01
During the last decade, strong precipitation anomalies resulted from increased sea surface temperature in the tropical Atlantic, have caused extensive drying trends in rainforests of western Amazonia, exerting water stress, tree mortality, biomass loss, and large-scale fire disturbance. In contrast, there have been no reports on large-scale disturbance in rainforests of west and central Africa, though being exposed to similar intensity of climate variability. Using data from Tropical Rainfall Mapping Mission (TRMM) (1999-2010), and time series of rainfall observations from meteorological stations (1971-2000), we show that both Amazonian and African rainforest experienced strong precipitation anomalies from 2005-2010. We monitored the response of forest to the climate variability by analyzing the canopy water content observed by SeaWinds Ku-band Scatterometer (QSCAT) (1999-2009) and found that more than 70 million ha of forests in western Amazonia experienced a strong water deficit during the dry season of 2005 and a closely corresponding decline in canopy backscatter that persisted until the next major drought in 2010. This decline in backscatter has been attributed to loss of canopy water content and large-scale tree mortality corroborated by ground and airborne observations. However, no strong impacts was observed on tropical forests of Africa, suggesting that the African rainforest may have more resilience to droughts. We tested this hypothesis by examining the seasonal rainfall patterns, maximum water deficit, and the surface temperature variations. Results show that there is a complex pattern of low annual rainfall, moderate seasonality, and lower surface temperature in Central Africa compared to Amazonia, indicating potentially a lower evapotranspiration circumventing strong water deficits.
Air-sea interaction in the tropical Pacific Ocean
NASA Technical Reports Server (NTRS)
Allison, L. J.; Steranka, J.; Holub, R. J.; Hansen, J.; Godshall, F. A.; Prabhakara, C.
1972-01-01
Charts of 3-month sea surface temperature (SST) anomalies in the eastern tropical Pacific Ocean were produced for the period 1949 to 1970. The anomalies along the United States and South American west coasts and in the eastern tropical Pacific appeared to be oscillating in phase during this period. Similarly, the satellite-derived cloudiness for each of four quadrants of the Pacific Ocean (130 deg E to 100 deg W, 30 deg N to 25 deg S) appeared to be oscillating in phase. In addition, a global tropical cloudiness oscillation from 30 deg N to 30 deg S was noted from 1965 to 1970, by using monthly satellite television nephanalyses. The SST anomalies were found to have a good degree of correlation both positive and negative with the following monthly geophysical parameters: (1) satellite-derived cloudiness, (2) strength of the North and South Pacific semipermanent anticyclones, (3) tropical Pacific island rainfall, and (4) Darwin surface pressure. Several strong direct local and crossequatorial relationships were noted. In particular, the high degree of correlation between the tropical island rainfall and the SST anomalies (r = +0.93) permitted the derivation of SST's for the tropical Pacific back to 1905. The close occurrence of cold tropical SST and North Pacific 700-mb positive height anomalies with central United States drought conditions was noted.
NOAA National Ocean Service Remote Sensing Applications and Concept of Operations
2007-01-01
remote sensing technologies to monitor harmful algal blooms, hypoxia, coral bleaching , contamination, land use changes and bathymetry, and making the...NOAA’s Polar Environmental Satellites are used to help predict the likelihood of mass coral bleaching events. Both intensity and duration of...abnormally warm surface temperatures are used to help predict coral bleaching events. When a temperature anomaly reaches a critically high value or
NASA Astrophysics Data System (ADS)
Kröger, Jürgen; Pohlmann, Holger; Sienz, Frank; Marotzke, Jochem; Baehr, Johanna; Köhl, Armin; Modali, Kameswarrao; Polkova, Iuliia; Stammer, Detlef; Vamborg, Freja S. E.; Müller, Wolfgang A.
2017-12-01
Our decadal climate prediction system, which is based on the Max-Planck-Institute Earth System Model, is initialized from a coupled assimilation run that utilizes nudging to selected state parameters from reanalyses. We apply full-field nudging in the atmosphere and either full-field or anomaly nudging in the ocean. Full fields from two different ocean reanalyses are considered. This comparison of initialization strategies focuses on the North Atlantic Subpolar Gyre (SPG) region, where the transition from anomaly to full-field nudging reveals large differences in prediction skill for sea surface temperature and ocean heat content (OHC). We show that nudging of temperature and salinity in the ocean modifies OHC and also induces changes in mass and heat transports associated with the ocean flow. In the SPG region, the assimilated OHC signal resembles well OHC from observations, regardless of using full fields or anomalies. The resulting ocean transport, on the other hand, reveals considerable differences between full-field and anomaly nudging. In all assimilation runs, ocean heat transport together with net heat exchange at the surface does not correspond to OHC tendencies, the SPG heat budget is not closed. Discrepancies in the budget in the cases of full-field nudging exceed those in the case of anomaly nudging by a factor of 2-3. The nudging-induced changes in ocean transport continue to be present in the free running hindcasts for up to 5 years, a clear expression of memory in our coupled system. In hindcast mode, on annual to inter-annual scales, ocean heat transport is the dominant driver of SPG OHC. Thus, we ascribe a significant reduction in OHC prediction skill when using full-field instead of anomaly initialization to an initialization shock resulting from the poor initialization of the ocean flow.
NASA Technical Reports Server (NTRS)
Susskind, Joel; Iredell, Lena; Lee, Jae N.
2014-01-01
In this presentation, we will show AIRS Version-6 area weighted anomaly time series over the time period September 2002 through August 2014 of atmospheric temperature and water vapor profiles as a function of height. These anomaly time series show very different behaviors in the stratosphere and in the troposphere. Tropical mean stratospheric temperature anomaly time series are very strongly influenced by the Quasi-Biennial Oscillation (QBO) with large anomalies that propagate downward from 1 mb to 100 mb with a period of about two years. AIRS stratospheric temperature anomalies are in good agreement with those obtained by MLS over a common period. Tropical mean tropospheric temperature profile anomalies appear to be totally disconnected from those of the stratosphere and closely follow El Nino La Nina activity.
Satellite Infrared Radiation Measurements Prior to the Major Earthquakes
NASA Technical Reports Server (NTRS)
Ouzounov, Dimitar; Pulintes, S.; Bryant, N.; Taylor, Patrick; Freund, F.
2005-01-01
This work describes our search for a relationship between tectonic stresses and increases in mid-infrared (IR) flux as part of a possible ensemble of electromagnetic (EM) phenomena that may be related to earthquake activity. We present and &scuss observed variations in thermal transients and radiation fields prior to the earthquakes of Jan 22, 2003 Colima (M6.7) Mexico, Sept. 28 .2004 near Parkfield (M6.0) in California and Northern Sumatra (M8.5) Dec. 26,2004. Previous analysis of earthquake events has indicated the presence of an IR anomaly, where temperatures increased or did not return to its usual nighttime value. Our procedures analyze nighttime satellite data that records the general condtion of the ground after sunset. We have found from the MODIS instrument data that five days before the Colima earthquake the IR land surface nighttime temperature rose up to +4 degrees C in a 100 km radius around the epicenter. The IR transient field recorded by MODIS in the vicinity of Parkfield, also with a cloud free environment, was around +1 degree C and is significantly smaller than the IR anomaly around the Colima epicenter. Ground surface temperatures near the Parkfield epicenter four days prior to the earthquake show steady increase. However, on the night preceding the quake, a significant drop in relative humidity was indicated, process similar to those register prior to the Colima event. Recent analyses of continuous ongoing long- wavelength Earth radiation (OLR) indicate significant and anomalous variability prior to some earthquakes. The cause of these anomalies is not well understood but could be the result of a triggering by an interaction between the lithosphere-hydrosphere and atmospheric related to changes in the near surface electrical field and/or gas composition prior to the earthquake. The OLR anomaly usually covers large areas surrounding the main epicenter. We have found strong anomalies signal (two sigma) along the epicentral area signals on Dec 21, five days prior to the Northern Sumatra quake compared to the reference field for December 2001-2004 periods. Our recent results support the hypothesis of a possible relationship between a thermodynamic processes produced by increasing tectonic stress in the Earth's crust and a subsequent electro-chemical interaction between this crust and the atmosphere/ionosphere.
NASA Astrophysics Data System (ADS)
Sippel, Sebastian; Zscheischler, Jakob; Mahecha, Miguel D.; Orth, Rene; Reichstein, Markus; Vogel, Martha; Seneviratne, Sonia I.
2017-05-01
The Earth's land surface and the atmosphere are strongly interlinked through the exchange of energy and matter. This coupled behaviour causes various land-atmosphere feedbacks, and an insufficient understanding of these feedbacks contributes to uncertain global climate model projections. For example, a crucial role of the land surface in exacerbating summer heat waves in midlatitude regions has been identified empirically for high-impact heat waves, but individual climate models differ widely in their respective representation of land-atmosphere coupling. Here, we compile an ensemble of 54 combinations of observations-based temperature (T) and evapotranspiration (ET) benchmarking datasets and investigate coincidences of T anomalies with ET anomalies as a proxy for land-atmosphere interactions during periods of anomalously warm temperatures. First, we demonstrate that a large fraction of state-of-the-art climate models from the Coupled Model Intercomparison Project (CMIP5) archive produces systematically too frequent coincidences of high T anomalies with negative ET anomalies in midlatitude regions during the warm season and in several tropical regions year-round. These coincidences (high T, low ET) are closely related to the representation of temperature variability and extremes across the multi-model ensemble. Second, we derive a land-coupling constraint based on the spread of the T-ET datasets and consequently retain only a subset of CMIP5 models that produce a land-coupling behaviour that is compatible with these benchmark estimates. The constrained multi-model simulations exhibit more realistic temperature extremes of reduced magnitude in present climate in regions where models show substantial spread in T-ET coupling, i.e. biases in the model ensemble are consistently reduced. Also the multi-model simulations for the coming decades display decreased absolute temperature extremes in the constrained ensemble. On the other hand, the differences between projected and present-day climate extremes are affected to a lesser extent by the applied constraint, i.e. projected changes are reduced locally by around 0.5 to 1 °C - but this remains a local effect in regions that are highly sensitive to land-atmosphere coupling. In summary, our approach offers a physically consistent, diagnostic-based avenue to evaluate multi-model ensembles and subsequently reduce model biases in simulated and projected extreme temperatures.
Global sea surface temperature (SST) anomalies can affect terrestrial precipitation via ocean-atmosphere interaction known as climate teleconnection. Non-stationary and non-linear characteristics of the ocean-atmosphere system make the identification of the teleconnection signals...
Recent weather extremes and impact agricultural production and vector-borne disease patterns
USDA-ARS?s Scientific Manuscript database
We document significant worldwide weather anomalies that affected agriculture and vector-borne disease outbreaks during the 2010-2012 period. We utilized 2000-2012 vegetation index and land surface temperature data from NASA’s satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) to ...
Public Perception of Climate Change and the New Climate Dice
NASA Technical Reports Server (NTRS)
Hansen, James; Sato, Makiko; Ruedy, Reto
2012-01-01
"Climate dice", describing the chance of unusually warm or cool seasons, have become more and more "loaded" in the past 30 years, coincident with rapid global warming. The distribution of seasonal mean temperature anomalies has shifted toward higher temperatures and the range of anomalies has increased. An important change is the emergence of a category of summertime extremely hot outliers, more than three standard deviations (3 sigma) warmer than the climatology of the 1951-1980 base period. This hot extreme, which covered much less than 1% of Earth's surface during the base period, now typically covers about 10% of the land area. It follows that we can state, with a high degree of confidence, that extreme anomalies such as those in Texas and Oklahoma in 2011 and Moscow in 2010 were a consequence of global warming, because their likelihood in the absence of global warming was exceedingly small. We discuss practical implications of this substantial, growing, climate change.
Fiber Optic Bragg Grating Sensors for Thermographic Detection of Subsurface Anomalies
NASA Technical Reports Server (NTRS)
Allison, Sidney G.; Winfree, William P.; Wu, Meng-Chou
2009-01-01
Conventional thermography with an infrared imager has been shown to be an extremely viable technique for nondestructively detecting subsurface anomalies such as thickness variations due to corrosion. A recently developed technique using fiber optic sensors to measure temperature holds potential for performing similar inspections without requiring an infrared imager. The structure is heated using a heat source such as a quartz lamp with fiber Bragg grating (FBG) sensors at the surface of the structure to detect temperature. Investigated structures include a stainless steel plate with thickness variations simulated by small platelets attached to the back side using thermal grease. A relationship is shown between the FBG sensor thermal response and variations in material thickness. For comparison, finite element modeling was performed and found to agree closely with the fiber optic thermography results. This technique shows potential for applications where FBG sensors are already bonded to structures for Integrated Vehicle Health Monitoring (IVHM) strain measurements and can serve dual-use by also performing thermographic detection of subsurface anomalies.
NASA Astrophysics Data System (ADS)
qin, kai; Wu, Lixin; De Santis, Angelo; Zhang, Bin
2016-04-01
Pre-seismic thermal IR anomalies and ionosphere disturbances have been widely reported by using the Earth observation system (EOS). To investigate the possible physical mechanisms, a series of detecting experiments on rock loaded to fracturing were conducted. Some experiments studies have demonstrated that microwave radiation energy will increase under the loaded rock in specific frequency and the feature of radiation property can reflect the deformation process of rock fracture. This experimental result indicates the possibility that microwaves are emitted before earthquakes. Such microwaves signals are recently found to be detectable before some earthquake cases from the brightness temperature data obtained by the microwave-radiometer Advanced Microwave-Scanning Radiometer for the EOS (AMSR-E) aboard the satellite Aqua. This suggested that AMSR-E with vertical- and horizontal-polarization capability for six frequency bands (6.925, 10.65, 18.7, 23.8, 36.5, and 89.0 GHz) would be feasible to detect an earthquake which is associated with rock crash or plate slip. However, the statistical analysis of the correlation between satellite-observed microwave emission anomalies and seismic activity are firstly required. Here, we focus on the Kamchatka peninsula to carry out a statistical study, considering its high seismicity activity and the dense orbits covering of AMSR-E in high latitudes. 8-years (2003-2010) AMSR-E microwave brightness temperature data were used to reveal the spatio-temporal association between microwave emission anomalies and 17 earthquake events (M>5). Firstly, obvious spatial difference of microwave brightness temperatures between the seismic zone at the eastern side and the non-seismic zone the western side within the Kamchatka peninsula are found. Secondly, using both vertical- and horizontal-polarization to extract the temporal association, it is found that abnormal changes of microwave brightness temperatures appear generally 2 months before the M>6 earthquakes. Since the microwave emissions observed by AMSR-E are affected by various factors (e.g., emission of the earth's surface and emission, absorption and scattering of the atmosphere), further study together with the surface temperature, soil moisture and atmospheric water vapor will remove the weather and climate influences.
NASA Astrophysics Data System (ADS)
Mao, Jiangyu; Wang, Ming
2018-05-01
This study investigates the structure and propagation of intraseasonal sea surface temperature (SST) variability in the South China Sea (SCS) on the 30-60-day timescale during boreal summer (May-September). TRMM-based SST, GODAS oceanic reanalysis and ERA-Interim atmospheric reanalysis datasets from 1998 to 2013 are used to examine quantitatively the atmospheric thermodynamic and oceanic dynamic mechanisms responsible for its formation. Power spectra show that the 30-60-day SST variability is predominant, accounting for 60% of the variance of the 10-90-day variability over most of the SCS. Composite analyses demonstrate that the 30-60-day SST variability is characterized by the alternate occurrence of basin-wide positive and negative SST anomalies in the SCS, with positive (negative) SST anomalies accompanied by anomalous northeasterlies (southwesterlies). The transition and expansion of SST anomalies are driven by the monsoonal trough-ridge seesaw pattern that migrates northward from the equator to the northern SCS. Quantitative diagnosis of the composite mixed-layer heat budgets shows that, within a strong 30-60-day cycle, the atmospheric thermal forcing is indeed a dominant factor, with the mixed-layer net heat flux (MNHF) contributing around 60% of the total SST tendency, while vertical entrainment contributes more than 30%. However, the entrainment-induced SST tendency is sometimes as large as the MNHF-induced component, implying that ocean processes are sometimes as important as surface fluxes in generating the 30-60-day SST variability in the SCS.
Simulation of seasonal US precipitation and temperature by the nested CWRF-ECHAM system
NASA Astrophysics Data System (ADS)
Chen, Ligang; Liang, Xin-Zhong; DeWitt, David; Samel, Arthur N.; Wang, Julian X. L.
2016-02-01
This study investigates the refined simulation skill that results when the regional Climate extension of the Weather Research and Forecasting (CWRF) model is nested in the ECMWF Hamburg version 4.5 (ECHAM) atmospheric general circulation model over the United States during 1980-2009, where observed sea surface temperatures are used in both models. Over the contiguous US, for each of the four seasons from winter to fall, CWRF reduces the root mean square error of the ECHAM seasonal mean surface air temperature simulation by 0.19, 0.82, 2.02 and 1.85 °C, and increases the equitable threat score of seasonal mean precipitation by 0.18, 0.11, 0.09 and 0.12. CWRF also simulates much more realistically daily precipitation frequency and heavy precipitation events, typically over the Central Great Plains, Cascade Mountains and Gulf Coast States. These CWRF skill enhancements are attributed to the increased spatial resolution and physics refinements in representing orographic, terrestrial hydrology, convection, and cloud-aerosol-radiation effects and their interactions. Empirical orthogonal function analysis of seasonal mean precipitation and surface air temperature interannual variability shows that, in general, CWRF substantially improves the spatial distribution of both quantities, while temporal evolution (i.e. interannual variability) of the first 3 primary patterns is highly correlated with that of the driving ECHAM (except for summer precipitation), and they both have low temporal correlations against observations. During winter, when large-scale forcing dominates, both models also have similar responses to strong ENSO signals where they successfully capture observed precipitation composite anomalies but substantially fail to reproduce surface air temperature anomalies. When driven by the ECMWF Reanalysis Interim, CWRF produces a very realistic interannual evolution of large-scale precipitation and surface air temperature patterns where the temporal correlations with observations are significant. These results indicate that CWRF can greatly improve mesoscale regional climate structures but it cannot change interannual variations of the large-scale patterns, which are determined by the driving lateral boundary conditions.
Detection of surface temperature from LANDSAT-7/ETM+
NASA Astrophysics Data System (ADS)
Suga, Y.; Ogawa, H.; Ohno, K.; Yamada, K.
Hiroshima Institute of Technology (HIT) in Japan has established LANDSAT-7 Ground Station in cooperated with NASDA for receiving and processing the ETM+ data on March 15t h , 2000 in Japan. The authors performed a verification study on the surface temperature derived from thermal infrared band image data of LANDSAT- 7/Enhanced Thematic Mapper Plus (ETM+) for the estimation of the thermal condition around Hiroshima City and Bay area in the western part of Japan as a test site. As to the thermal infrared band, the approximate functions for converting the spectral radiance into the surface temperature are estimated by considering both typical surface temperatures measured by the simultaneous field survey with the satellite observation and the spectral radiance observed by ETM+ band 6, and then the estimation of the surface temperature distribution around the test site was examined. In this paper, the authors estimated the surface temperature distribution equivalent to the land cover types around Hiroshima City and Bay area. For the further study, the authors performed the modification of approximate functions for converting the spectral radiance into the surface temperature by the field and satellite observation throughout a year and the development of various monitoring systems for the environmental issues such as the sea surface anomalies and heat island phenomena.
NASA Astrophysics Data System (ADS)
Tamsitt, V. M.; Talley, L. D.; Mazloff, M. R.
2014-12-01
The Southern Ocean displays a zonal dipole (wavenumber one) pattern in sea surface temperature (SST), with a cool zonal anomaly in the Atlantic and Indian sectors and a warm zonal anomaly in the Pacific sector, associated with the large northward excursion of the Malvinas and southeastward flow of the Antarctic Circumpolar Current (ACC). To the north of the cool Indian sector is the warm, narrow Agulhas Return Current (ARC). Air-sea heat flux is largely the inverse of this SST pattern, with ocean heat gain in the Atlantic/Indian, cooling in the southeastward-flowing ARC, and cooling in the Pacific, based on adjusted fluxes from the Southern Ocean State Estimate (SOSE), a ⅙° eddy permitting model constrained to all available in situ data. This heat flux pattern is dominated by turbulent heat loss from the ocean (latent and sensible), proportional to perturbations in the difference between SST and surface air temperature, which are maintained by ocean advection. Locally in the Indian sector, intense heat loss along the ARC is contrasted by ocean heat gain of 0.11 PW south of the ARC. The IPCC AR5 50 year depth-averaged 0-700 m temperature trend shows surprising similarities in its spatial pattern, with upper ocean warming in the ARC contrasted by cooling to the south. Using diagnosed heat budget terms from the most recent (June 2014) 6-year run of the SOSE we find that surface cooling in the ARC is balanced by heating from south-eastward advection by the current whereas heat gain in the ACC is balanced by cooling due to northward Ekman transport driven by strong westerly winds. These results suggest that spatial patterns in multi-decadal upper ocean temperature trends depend on regional variations in upper ocean dynamics.
NASA Astrophysics Data System (ADS)
Wen, Zhiping; Guo, Yuanyuan; Wu, Renguang
2017-04-01
The leading mode of boreal spring precipitation variability over the tropical Pacific experienced a pronounced interdecadal change around the late 1990s. The pattern before 1998 features positive precipitation anomalies over the equatorial eastern Pacific (EP) with positive principle component years. The counterpart after 1998 exhibits a westward shift of the positive center to the equatorial central Pacific (CP). Observational evidence shows that this interdecadal change in the leading mode of precipitation variability is closely associated with a distinctive sea surface temperature (SST) anomaly pattern. The westward shift of the anomalous precipitation center after 1998 is in tandem with a similar shift of maximum warming from the EP to CP. Diagnostic analyses based on a linear equation of the mixed layer temperature anomaly exhibit that an interdecadal enhancement of zonal advection (ZA) feedback process plays a vital role in the shift in the leading mode of both the tropical Pacific SST and the precipitation anomaly during spring. Moreover, the variability of the anomalous zonal current at the upper ocean dominates the ZA feedback change, while the mean zonal SST gradient associated with a La Niña-like pattern of the mean state only accounts for a relatively trivial proportion of the ZA feedback change. It was found that both the relatively rapid decaying of the SST anomalies in the EP and the La Niña-like mean state make it conceivable that the shift of the leading mode of the tropical precipitation anomaly only occurs in spring. In addition, the largest variance of the anomalous zonal current in spring might contribute to the unique interdecadal change in the tropical spring precipitation anomaly pattern.
Importance of ocean mesoscale variability for air-sea interactions in the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Putrasahan, D. A.; Kamenkovich, I.; Le Hénaff, M.; Kirtman, B. P.
2017-06-01
Mesoscale variability of currents in the Gulf of Mexico (GoM) can affect oceanic heat advection and air-sea heat exchanges, which can influence climate extremes over North America. This study is aimed at understanding the influence of the oceanic mesoscale variability on the lower atmosphere and air-sea heat exchanges. The study contrasts global climate model (GCM) with 0.1° ocean resolution (high resolution; HR) with its low-resolution counterpart (1° ocean resolution with the same 0.5° atmosphere resolution; LR). The LR simulation is relevant to current generation of GCMs that are still unable to resolve the oceanic mesoscale. Similar to observations, HR exhibits positive correlation between sea surface temperature (SST) and surface turbulent heat flux anomalies, while LR has negative correlation. For HR, we decompose lateral advective heat fluxes in the upper ocean into mean (slowly varying) and mesoscale-eddy (fast fluctuations) components. We find that the eddy flux divergence/convergence dominates the lateral advection and correlates well with the SST anomalies and air-sea latent heat exchanges. This result suggests that oceanic mesoscale advection supports warm SST anomalies that in turn feed surface heat flux. We identify anticyclonic warm-core circulation patterns (associated Loop Current and rings) which have an average diameter of 350 km. These warm anomalies are sustained by eddy heat flux convergence at submonthly time scales and have an identifiable imprint on surface turbulent heat flux, atmospheric circulation, and convective precipitation in the northwest portion of an averaged anticyclone.
Atmospheric forcing of sea ice anomalies in the Ross Sea Polynya region
NASA Astrophysics Data System (ADS)
Dale, Ethan; McDonald, Adrian; Rack, Wolfgang
2016-04-01
Despite warming trends in global temperatures, sea ice extent in the southern hemisphere has shown an increasing trend over recent decades. Wind-driven sea ice export from coastal polynyas is an important source of sea ice production. Areas of major polynyas in the Ross Sea, the region with largest increase in sea ice extent, have been suggested to produce the vast amount of the sea ice in the region. We investigate the impacts of strong wind events on polynyas and the subsequent sea ice production. We utilize Bootstrap sea ice concentration (SIC) measurements derived from satellite based, Special Sensor Microwave Imager (SSM/I) brightness temperature images. These are compared with surface wind measurements made by automatic weather stations of the University of Wisconsin-Madison Antarctic Meteorology Program. Our analysis focusses on the winter period defined as 1st April to 1st November in this study. Wind data was used to classify each day into characteristic regimes based on the change of wind speed. For each regime, a composite of SIC anomaly was formed for the Ross Sea region. We found that persistent weak winds near the edge of the Ross Ice Shelf are generally associated with positive SIC anomalies in the Ross Sea polynya area (RSP). Conversely we found negative SIC anomalies in this area during persistent strong winds. By analyzing sea ice motion vectors derived from SSM/I brightness temperatures, we find significant sea ice motion anomalies throughout the Ross Sea during strong wind events. These anomalies persist for several days after the strong wing event. Strong, negative correlations are found between SIC within the RSP and wind speed indicating that strong winds cause significant advection of sea ice in the RSP. This rapid decrease in SIC is followed by a more gradual recovery in SIC. This increase occurs on a time scale greater than the average persistence of strong wind events and the resulting Sea ice motion anomalies, highlighting the production of new sea ice through thermodynamic processes.
Rapid fluid disruption: A source for self-potential anomalies on volcanoes
Johnston, M.J.S.; Byerlee, J.D.; Lockner, D.
2001-01-01
Self-potential (SP) anomalies observed above suspected magma reservoirs, dikes, etc., on various volcanoes (Kilauea, Hawaii; Mount Unzen, Japan; Piton de la Fournaise, Reunion Island, Miyake Jima, Japan) result from transient surface electric fields of tens of millivolts per kilometer and generally have a positive polarity. These SP anomalies are usually attributed to electrokinetic effects where properties controlling this process are poorly constrained. We propose an alternate explanation that contributions to electric fields of correct polarity should be expected from charge generation by fluid vaporization/disruption. As liquids are vaporized or removed as droplets by gas transport away from hot dike intrusions, both charge generation and local increase in electrical resistivity by removal of fluids should occur. We report laboratory observations of electric fields in hot rock samples generated by pulses of fluid (water) through the rock at atmospheric pressure. These indicate the relative amplitudes of rapid fluid disruption (RFD) potentials and electrokinetic potentials to be dramatically different and the signals are opposite in sign. Above vaporization temperatures, RFD effects of positive sign in the direction of gas flow dominate, whereas below these temperatures, effects of negative sign dominate. This suggests that the primary contribution to observed self-potential anomalies arises from gas-related charge transport processes at temperatures high enough to produce vigorous boiling and vapor transport. At lower temperatures, the primary contribution is from electrokinetic effects modulated perhaps by changing electrical resistivity and RFD effects from high-pressure but low-temperature CO2 and SO2 gas flow ripping water molecules from saturated crustal rocks. If charge generation is continuous, as could well occur above a newly emplaced dike, positive static potentials will be set up that could be sustained for many years, and the simplest method for identifying these hot, active regions would be to identify the SP anomalies they generate.
North-western Mediterranean sea-breeze circulation in a regional climate system model
NASA Astrophysics Data System (ADS)
Drobinski, Philippe; Bastin, Sophie; Arsouze, Thomas; Béranger, Karine; Flaounas, Emmanouil; Stéfanon, Marc
2017-04-01
In the Mediterranean basin, moisture transport can occur over large distance from remote regions by the synoptic circulation or more locally by sea breezes, driven by land-sea thermal contrast. Sea breezes play an important role in inland transport of moisture especially between late spring and early fall. In order to explicitly represent the two-way interactions at the atmosphere-ocean interface in the Mediterranean region and quantify the role of air-sea feedbacks on regional meteorology and climate, simulations at 20 km resolution performed with WRF regional climate model (RCM) and MORCE atmosphere-ocean regional climate model (AORCM) coupling WRF and NEMO-MED12 in the frame of HyMeX/MED-CORDEX are compared. One result of this study is that these simulations reproduce remarkably well the intensity, direction and inland penetration of the sea breeze and even the existence of the shallow sea breeze despite the overestimate of temperature over land in both simulations. The coupled simulation provides a more realistic representation of the evolution of the SST field at fine scale than the atmosphere-only one. Temperature and moisture anomalies are created in direct response to the SST anomaly and are advected by the sea breeze over land. However, the SST anomalies are not of sufficient magnitude to affect the large-scale sea-breeze circulation. The temperature anomalies are quickly damped by strong surface heating over land, whereas the water vapor mixing ratio anomalies are transported further inland. The inland limit of significance is imposed by the vertical dilution in a deeper continental boundary-layer.
The Plunger Hypothesis: an overview of a new theory of stratosphere-troposphere dynamic coupling
NASA Astrophysics Data System (ADS)
Clark, S.; Baldwin, M. P.; Stephenson, D.
2015-12-01
I will demonstrate the advantages of a new method of quantifying polar stratosphere-troposphere coupling by considering large-scale movements of mass into and out of the polar stratosphere. This project aims to use these mass movements to explain pressure and temperature anomalies throughout the polar troposphere and lower stratosphere in the aftermath of extreme stratospheric events. We hypothesise that these mass movements are induced by deposition of momentum by breaking waves in the stratosphere, slowing the wintertime polar vortex, and so are associated with sudden stratospheric warmings (SSWs). Such a mass movement in the upper stratosphere acts to compress the polar atmosphere below it in the manner of a plunger. In this way the pressure anomaly in the upper polar stratosphere 'controls' the pressure and temperature anomalies below by adiabatic compression of the polar atmospheric column. Better understanding this method of control will allow us to use stratospheric data to improve medium-range forecasting ability in the troposphere. One of the key innovations featured in this project is considering pressure and temperature fields at fixed geopotential surfaces, allowing for the easy observation of mass movement into and out of a polar cap region (which we have defined as north of 65N) as a function of altitude. Reanalysis data considered in this manner demonstrates a relationship between tropospheric pressure anomalies and stratospheric anomalies in the polar cap, and so a way to predict tropospheric variability given stratospheric information. This work forms part of a three and a half year PhD project.
A paleo-perspective on ocean heat content: Lessons from the Holocene and Common Era
NASA Astrophysics Data System (ADS)
Rosenthal, Yair; Kalansky, Julie; Morley, Audrey; Linsley, Braddock
2017-01-01
The ocean constitutes the largest heat reservoir in the Earth's energy budget and thus exerts a major influence on its climate. Instrumental observations show an increase in ocean heat content (OHC) associated with the increase in greenhouse emissions. Here we review proxy records of intermediate water temperatures from sediment cores and corals in the equatorial Pacific and northeastern Atlantic Oceans, spanning 10,000 years beyond the instrumental record. These records suggests that intermediate waters were 1.5-2 °C warmer during the Holocene Thermal Maximum than in the last century. Intermediate water masses cooled by 0.9 °C from the Medieval Climate Anomaly to the Little Ice Age. These changes are significantly larger than the temperature anomalies documented in the instrumental record. The implied large perturbations in OHC and Earth's energy budget are at odds with very small radiative forcing anomalies throughout the Holocene and Common Era. We suggest that even very small radiative perturbations can change the latitudinal temperature gradient and strongly affect prevailing atmospheric wind systems and hence air-sea heat exchange. These dynamic processes provide an efficient mechanism to amplify small changes in insolation into relatively large changes in OHC. Over long time periods the ocean's interior acts like a capacitor and builds up large (positive and negative) heat anomalies that can mitigate or amplify small radiative perturbations as seen in the Holocene trend and Common Era anomalies, respectively. Evidently the ocean's interior is more sensitive to small external forcings than the global surface ocean because of the high sensitivity of heat exchange in the high-latitudes to climate variations.
NASA Astrophysics Data System (ADS)
Hood, L. L.; Spudis, P. D.
2016-11-01
Approximate maps of the lunar crustal magnetic field at low altitudes in the vicinities of the three Imbrian-aged impact basins, Orientale, Schrödinger, and Imbrium, have been constructed using Lunar Prospector and Kaguya orbital magnetometer data. Detectable anomalies are confirmed to be present well within the rims of Imbrium and Schrödinger. Anomalies in Schrödinger are asymmetrically distributed about the basin center, while a single isolated anomaly is most clearly detected within Imbrium northwest of Timocharis crater. The subsurface within these basins was heated to high temperatures at the time of impact and required long time periods (up to 1 Myr) to cool below the Curie temperature for metallic iron remanence carriers (1043 K). Therefore, consistent with laboratory analyses of returned samples, a steady, long-lived magnetizing field, i.e., a former core dynamo, is inferred to have existed when these basins formed. The asymmetrical distribution within Schrödinger suggests partial demagnetization by later volcanic activity when the dynamo field was much weaker or nonexistent. However, it remains true that anomalies within Imbrian-aged basins are much weaker than those within most Nectarian-aged basins. The virtual absence of anomalies within Orientale where impact melt rocks (the Maunder Formation) are exposed at the surface is difficult to explain unless the dynamo field was much weaker during the Imbrian period.
Potential sources of the air masses leading to warm and cold anomalies in Moscow in summer
NASA Astrophysics Data System (ADS)
Shukurov, K. A.; Semenov, V. A.
2017-11-01
For summer (June-July-August) days in 1949-2016, using the NOAA trajectory model HYSPLIT_4, the 5-day backward trajectories of the air parcels (elementary air particles) were calculated. Using the daily surface air temperatures (SAT) in summer in Moscow in 1949-2016 and the results of the backward trajectories modeling by PSCF (potential source contribution function) and CWT (concentration weighted trajectories) methods the regions where the air masses most probably hit to before its arrive into the Moscow region at the days of 20%, 10%, 5% and 2% of the strongest positive and negative anomalies of SAT in summer in Moscow. For composites of days with SAT in summer in Moscow above 90th and below the 10th percentile of the distribution function of the SAT, the field of the anomaly of atmospheric pressure at sea level relative to 1981-2010 climatology and the field of average SAT in Eurasia north of 30° N are calculated. The peculiarities of the fields associated with the strong positive and negative anomalies of SAT in summer seasons in Moscow are identified. The fields of potential sources of air parcels, mean air temperature on the path of the movement of air parcels and the average height of the backward trajectory for days with strong anomalies of SAT in summer in Moscow are compared. Possible atmospheric circulation drivers of the highest and lowest anomalies of SAT in winter in Moscow are found out.
Ocean Chlorophyll as a Precursor of ENSO: An Earth System Modeling Study
NASA Astrophysics Data System (ADS)
Park, Jong-Yeon; Dunne, John P.; Stock, Charles A.
2018-02-01
Ocean chlorophyll concentration, a proxy for phytoplankton, is strongly influenced by internal ocean dynamics such as those associated with El Niño-Southern Oscillation (ENSO). Observations show that ocean chlorophyll responses to ENSO generally lead sea surface temperature (SST) responses in the equatorial Pacific. A long-term global Earth system model simulation incorporating marine biogeochemical processes also exhibits a preceding chlorophyll response. In contrast to simulated SST anomalies, which significantly lag the wind-driven subsurface heat response to ENSO, chlorophyll anomalies respond rapidly. Iron was found to be the key factor connecting the simulated surface chlorophyll anomalies to the subsurface ocean response. Westerly wind bursts decrease central Pacific chlorophyll by reducing iron supply through wind-driven thermocline deepening but increase western Pacific chlorophyll by enhancing the influx of coastal iron from the maritime continent. Our results mechanistically support the potential for chlorophyll-based indices to inform seasonal ENSO forecasts beyond previously identified SST-based indices.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in northern Saguache Counties identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in northern Saguache Counties identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots.
Areas with Surface Thermal Anomalies as Detected by ASTER and LANDSAT Data in Ouray, Colorado
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in Ouray identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature around south Steamboat Springs as identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in northern Saguache Counties identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots.
NASA Astrophysics Data System (ADS)
Balling, Robert C.; Roy, Shouraseni Sen
2005-06-01
Many scientists have noted that global temperature anomalies were highly correlated with solar irradiance values until sometime in the 1970s, but since that time, the pronounced warming in the near-surface temperature record is not explained by variations or trends in solar receipt. In this investigation, spatial dimensions are explored in the relationship between irradiance and near-surface air temperatures. At the scale of individual 5° by 5° grid cells, the solar control on annual temperature variations is not statistically significant. When the temperature data are aggregated by 5° latitudinal bands, the solar - temperature connect is generally significant, and in every band, there is substantial evidence that a non-solar control has become dominant in recent decades. The buildup of greenhouse gases and/or some other global-scale feedback, such as widespread changes in atmospheric water vapor, emerge as potential explanations for the recent residual warming found in all latitudinal bands.
Soil Moisture and Snow Cover: Active or Passive Elements of Climate?
NASA Technical Reports Server (NTRS)
Oglesby, Robert J.; Marshall, Susan; Robertson, Franklin R.; Roads, John O.; Arnold, James E. (Technical Monitor)
2001-01-01
A key question in the study of the hydrologic cycle is the extent to which surface effects such as soil moisture and snow cover are simply passive elements or whether they can affect the evolution of climate on seasonal and longer time scales. We have constructed ensembles of predictability studies using the NCAR CCM3 in which we compared the relative roles of initial surface and atmospheric conditions over the central and western U.S. GAPP region in determining the subsequent evolution of soil moisture and of snow cover. We have also made sensitivity studies with exaggerated soil moisture and snow cover anomalies in order to determine the physical processes that may be important. Results from simulations with realistic soil moisture anomalies indicate that internal climate variability may be the strongest factor, with some indication that the initial atmospheric state is also important. The initial state of soil moisture does not appear important, a result that held whether simulations were started in late winter or late spring. Model runs with exaggerated soil moisture reductions (near-desert conditions) showed a much larger effect, with warmer surface temperatures, reduced precipitation, and lower surface pressures; the latter indicating a response of the atmospheric circulation. These results suggest the possibility of a threshold effect in soil moisture, whereby an anomaly must be of a sufficient size before it can have a significant impact on the atmospheric circulation and hence climate. Results from simulations with realistic snow cover anomalies indicate that the time of year can be crucial. When introduced in late winter, these anomalies strongly affected the subsequent evolution of snow cover. When introduced in early winter, however, little or no effect is seen on the subsequent snow cover. Runs with greatly exaggerated initial snow cover indicate that the high reflectivity of snow is the most important process by which snow cover can impact climate, through lower surface temperatures and increased surface pressures. In early winter, the amount of solar radiation is very small and so this albedo, effect is inconsequential while in late winter, with the sun higher in the sky and period of daylight longer, the effect is much stronger. The results to date were obtained for model runs with present-day conditions. We are currently analyzing runs made with projected forcings for the 21st century to see if these results are modified in any way under likely scenarios of future climate change.
Lunar magnetic anomalies and the Cayley formation
NASA Technical Reports Server (NTRS)
Strangway, D. W.; Gose, W. A.; Pearce, G. W.; Mcconnell, R. K.
1973-01-01
It is proposed that magnetic anomalies such as found at the Apollo 16 site are associated with breccia flows which cooled in place from above 770 C. The required field at the time that this process took place is a few thousand gamma. It is suggested that the surface and orbital magnetic anomalies are caused by basins filled with Cayley-like breccia flows to a thickness of the order of a kilometer. These breccia blankets settled in place from temperatures above 770 C and a thickness on the order of 1 km was welded to a level of 2 to 4 on Warner's scale. A base surge caused by impact or by a volcanic event could be the mechanism by which these breccia blankets were deposited.
Preliminary aeromagnetic anomaly map of California
Roberts, Carter W.; Jachens, Rober C.
1999-01-01
The magnetization in crustal rocks is the vector sum of induced in minerals by the Earth’s present main field and the remanent magnetization of minerals susceptible to magnetization (chiefly magnetite) (Blakely, 1995). The direction of remanent magnetization acquired during the rock’s history can be highly variable. Crystalline rocks generally contain sufficient magnetic minerals to cause variations in the Earth’s magnetic field that can be mapped by aeromagnetic surveys. Sedimentary rocks are generally weakly magnetized and consequently have a small effect on the magnetic field: thus a magnetic anomaly map can be used to “see through” the sedimentary rock cover and can convey information on lithologic contrasts and structural trends related to the underlying crystalline basement (see Nettleton,1971; Blakely, 1995). The magnetic anomaly map (fig. 2) provides a synoptic view of major anomalies and contributes to our understanding of the tectonic development of California. Reference fields, that approximate the Earth’s main (core) field, have been subtracted from the recorded magnetic data. The resulting map of the total magnetic anomalies exhibits anomaly patterns related to the distribution of magnetized crustal rocks at depths shallower than the Curie point isotherm (the surface within the Earth beneath which temperatures are so high that rocks lose their magnetic properties). The magnetic anomaly map has been compiled from existing digital data. Data obtained from aeromagnetic surveys that were made at different times, spacings and elevations, were merged by analytical continuation of each set onto a common surface 305 m (1000 ft) above terrain. Digital data in this compatible form allows application of analytical techniques (Blakley, 1995) that can be used to enhance anomaly characteristics (e.g., wavelength and trends) and provide new interpretive information.
Forward Modelling of Long-wavelength Magnetic Anomaly Contributions from the Upper Mantle
NASA Astrophysics Data System (ADS)
Idoko, C. M.; Conder, J. A.; Ferre, E. C.; Friedman, S. A.
2016-12-01
Towards the interpretation of the upcoming results from SWARM satellite survey, we develop a MATLAB-based geophysical forward-modeling of magnetic anomalies from tectonic regions with different upper mantle geotherms including subduction zones (Kamchaka island arcs), cratons (Siberian craton), and hotspots (Hawaii hotspots and Massif-central plumes). We constrain the modeling - using magnetic data measured from xenoliths collected across these regions. Over the years, the potency of the upper mantle in contributing to long-wavelength magnetic anomalies has been a topic of debate among geoscientists. However, recent works show that some low geotherm tectonic environments such as forearcs and cratons contain mantle xenoliths which are below the Curie-Temperature of magnetite and could potentially contribute to long-wavelength magnetic anomalies. The modeling pursued here holds the prospect of better understanding the magnetism of the upper mantle, and the resolution of the mismatch between observed long-wavelength anomalies and surface field anomaly upward continued to satellite altitude. The SWARM satellite survey provides a unique opportunity due to its capacity to detect more accurately the depth of magnetic sources. A preliminary model of a hypothetical craton of size 2000km by 1000km by 500km discretized into 32 equal and uniformly distributed prism blocks, using magnetic data from Siberian craton with average natural remanent magnetization value of 0.0829 A/m (randomnly oriented) for a magnetized mantle thickness of 75km, and induced magnetization, varying according to the Curie-Weiss law from surface to 500km depth with an average magnetization of 0.02 A/m, shows that the contributions of the induced and remanent phases of magnetizations- with a total-field anomaly amplitude of 3 nT may impart a measurable signal to the observed long-wavelength magnetic anomalies in low geotherm tectonic environments.
Low-altitude aeromagnetic survey of a portion of the Coso Hot Springs KGRA, Inyo County, California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, R.C.
A detailed low-altitude aeromagnetic survey of 576 line-mi (927 line-km) was completed over a portion of the Coso Hot Springs KGRA in September 1977. The survey has defined a pronounced magnetic low that could help delineate the geothermal system. The magnetic low has an areal extent of approximately 10 sq mi (26 sq km). Direct and indirect evidence indicates that this anomaly is due, in part, to magnetite destruction by hydrothermal solutions associated with the geothermal system. The anomaly generally coincides with two other geophysical anomalies which are directly associated with the system: 1) a bedrock electrical resistivity low andmore » 2) an area of relatively high near-surface temperatures. The highest measured heat flow, 18 HFU, also occurs within its boundary. The magnetic low occurs at the intersection of two major structural zones which coincide with a complementary set of strike-slip fault zones determined from seismic activity. The intersection of these two zones of active tectonism probably served as the locus for emplacement of a pluton at depth, above which are observed the coincidental geophysical anomalies and surface manifestations related to the geothermal system.« less
Dynamics of Monsoon-Induced Biennial Variability in ENSO
NASA Technical Reports Server (NTRS)
Kim, Kyu-Myong; Lau, K.-M.; Einaudi, Franco (Technical Monitor)
2000-01-01
The mechanism of the quasi-biennial tendency in El Nino Southern Oscillation (ENSO)-monsoon coupled system is investigated using an intermediate coupled model. The monsoon wind forcing is prescribed as a function of Sea Surface Temperature (SST) anomalies based on the relationship between zonal wind anomalies over the western Pacific to sea level change in the equatorial eastern Pacific. The key mechanism of quasi-biennial tendency in El Nino evolution is found to be in the strong coupling of ENSO to monsoon wind forcing over the western Pacific. Strong boreal summer monsoon wind forcing, which lags the maximum SST anomaly in the equatorial eastern Pacific approximately 6 months, tends to generate Kelvin waves of the opposite sign to anomalies in the eastern Pacific and initiates the turnabout in the eastern Pacific. Boreal winter monsoon forcing, which has zero lag with maximum SST in the equatorial eastern Pacific, tends to damp the ENSO oscillations.
NASA Technical Reports Server (NTRS)
Thomas, H. H.
1984-01-01
A petrologic model of the northern Mississippi Embayment, derived from gravity, seismic and rift data, is evaluated by converting the model to a magnetization model which is compared with satellite magnetic anomaly models. A magnetization contrast of approximately -0.54 A/m, determined from the petrologic model of the embayment compares favorably to values of -0.62 A/m and -0.45 A/m from a Magsat United States Apparent Magnetization Contrast Map and a published POGO magnetization contrast model, respectively. The petrologic model suggests that the magnetic anomaly low associated with the Mississippi Embayment may be largely due to the intrusion under non-oxidizing conditions of low Curie temperature gabbroic material at the base of the crust of the embayment. Near-surface mafic plutons, bordering the Mississippi Valley Graben, appear from aeromagnetic data to have higher magnetizations than the deeper gabbroic material; however, it is impossible to ascertain if this is due to compositional differences or similar material at shallower (lower temperature) depths. These results indicate that variations in the Curie temperatures of intrusions accompanying rifting may account for a large part of the wide range of magnetic anomalies associated with presently inactive rifts with normal heat flow.
NASA Astrophysics Data System (ADS)
Good, Elizabeth J.; Ghent, Darren J.; Bulgin, Claire E.; Remedios, John J.
2017-09-01
The relationship between satellite land surface temperature (LST) and ground-based observations of 2 m air temperature (
NASA Technical Reports Server (NTRS)
Mehta, Vikram M.; Delworth, Thomas
1995-01-01
Sea surface temperature (SST) variability was investigated in a 200-yr integration of a global model of the coupled oceanic and atmospheric general circulations developed at the Geophysical Fluid Dynamics Laboratory (GFDL). The second 100 yr of SST in the coupled model's tropical Atlantic region were analyzed with a variety of techniques. Analyses of SST time series, averaged over approximately the same subregions as the Global Ocean Surface Temperature Atlas (GOSTA) time series, showed that the GFDL SST anomalies also undergo pronounced quasi-oscillatory decadal and multidecadal variability but at somewhat shorter timescales than the GOSTA SST anomalies. Further analyses of the horizontal structures of the decadal timescale variability in the GFDL coupled model showed the existence of two types of variability in general agreement with results of the GOSTA SST time series analyses. One type, characterized by timescales between 8 and 11 yr, has high spatial coherence within each hemisphere but not between the two hemispheres of the tropical Atlantic. A second type, characterized by timescales between 12 and 20 yr, has high spatial coherence between the two hemispheres. The second type of variability is considerably weaker than the first. As in the GOSTA time series, the multidecadal variability in the GFDL SST time series has approximately opposite phases between the tropical North and South Atlantic Oceans. Empirical orthogonal function analyses of the tropical Atlantic SST anomalies revealed a north-south bipolar pattern as the dominant pattern of decadal variability. It is suggested that the bipolar pattern can be interpreted as decadal variability of the interhemispheric gradient of SST anomalies. The decadal and multidecadal timescale variability of the tropical Atlantic SST, both in the actual and in the GFDL model, stands out significantly above the background 'red noise' and is coherent within each of the time series, suggesting that specific sets of processes may be responsible for the choice of the decadal and multidecadal timescales. Finally, it must be emphasized that the GFDL coupled ocean-atmosphere model generates the decadal and multidecadal timescale variability without any externally applied force, solar or lunar, at those timescales.
NASA Technical Reports Server (NTRS)
Sheehan, Anne F.; Solomon, Sean C.
1991-01-01
Measurements were carried out for SS-S differential travel time residuals for nearly 500 paths crossing the northern Mid-Atlantic Ridge, assuming that the residuals are dominated by contributions from the upper mantle near the surface bounce point of the reflected phase SS. Results indicate that the SS-S travel time residuals decrease linearly with square root of age, to an age of 80-100 Ma, in general agreement with the plate cooling model. A joint inversion was formulated of travel time residuals and geoid and bathymetric anomalies for lateral variation in the upper mantle temperature and composition. The preferred inversion solutions were found to have variations in upper mantle temperature along the Mid-Atlantic Ridge of about 100 K. It was calculated that, for a constant bulk composition, such a temperature variation would produce about a 7-km variation in crustal thickness, larger than is generally observed.
Yamamoto, Ayako; Palter, Jaime B.
2016-01-01
Northern Hemisphere climate responds sensitively to multidecadal variability in North Atlantic sea surface temperature (SST). It is therefore surprising that an imprint of such variability is conspicuously absent in wintertime western European temperature, despite that Europe's climate is strongly influenced by its neighbouring ocean, where multidecadal variability in basin-average SST persists in all seasons. Here we trace the cause of this missing imprint to a dynamic anomaly of the atmospheric circulation that masks its thermodynamic response to SST anomalies. Specifically, differences in the pathways Lagrangian particles take to Europe during anomalous SST winters suppress the expected fluctuations in air–sea heat exchange accumulated along those trajectories. Because decadal variability in North Atlantic-average SST may be driven partly by the Atlantic Meridional Overturning Circulation (AMOC), the atmosphere's dynamical adjustment to this mode of variability may have important implications for the European wintertime temperature response to a projected twenty-first century AMOC decline. PMID:26975331
Thermal emission before earthquakes by analyzing satellite infra-red data
NASA Astrophysics Data System (ADS)
Ouzounov, D.; Taylor, P.; Bryant, N.; Pulinets, S.; Freund, F.
2004-05-01
Satellite thermal imaging data indicate long-lived thermal anomaly fields associated with large linear structures and fault systems in the Earth's crust but also with short-lived anomalies prior to major earthquakes. Positive anomalous land surface temperature excursions of the order of 3-4oC have been observed from NOAA/AVHRR, GOES/METEOSAT and EOS Terra/Aqua satellites prior to some major earthquake around the world. The rapid time-dependent evolution of the "thermal anomaly" suggests that is changing mid-IR emissivity from the earth. These short-lived "thermal anomalies", however, are very transient therefore there origin has yet to be determined. Their areal extent and temporal evolution may be dependent on geology, tectonic, focal mechanism, meteorological conditions and other factors.This work addresses the relationship between tectonic stress, electro-chemical and thermodynamic processes in the atmosphere and increasing mid-IR flux as part of a larger family of electromagnetic (EM) phenomena related to seismic activity.We still need to understand better the link between seismo-mechanical processes in the crust, on the surface, and at the earth-atmospheric interface that trigger thermal anomalies. This work serves as an introduction to our effort to find an answer to this question. We will present examples from the strong earthquakes that have occurred in the Americas during 2003/2004 and the techniques used to record the thermal emission mid-IR anomalies, geomagnetic and ionospheric variations that appear to associated with impending earthquake activity.
Influence of Western Tibetan Plateau Summer Snow Cover on East Asian Summer Rainfall
NASA Astrophysics Data System (ADS)
Wang, Zhibiao; Wu, Renguang; Chen, Shangfeng; Huang, Gang; Liu, Ge; Zhu, Lihua
2018-03-01
The influence of boreal winter-spring eastern Tibetan Plateau snow anomalies on the East Asian summer rainfall variability has been the focus of previous studies. The present study documents the impacts of boreal summer western and southern Tibetan Plateau snow cover anomalies on summer rainfall over East Asia. Analysis shows that more snow cover in the western and southern Tibetan Plateau induces anomalous cooling in the overlying atmospheric column. The induced atmospheric circulation changes are different corresponding to more snow cover in the western and southern Tibetan Plateau. The atmospheric circulation changes accompanying the western Plateau snow cover anomalies are more obvious over the midlatitude Asia, whereas those corresponding to the southern Plateau snow cover anomalies are more prominent over the tropics. As such, the western and southern Tibetan Plateau snow cover anomalies influence the East Asian summer circulation and precipitation through different pathways. Nevertheless, the East Asian summer circulation and precipitation anomalies induced by the western and southern Plateau snow cover anomalies tend to display similar distribution so that they are more pronounced when the western and southern Plateau snow cover anomalies work in coherence. Analysis indicates that the summer snow cover anomalies over the Tibetan Plateau may be related to late spring snow anomalies due to the persistence. The late spring snow anomalies are related to an obvious wave train originating from the western North Atlantic that may be partly associated with sea surface temperature anomalies in the North Atlantic Ocean.
Satellite-Derived Sea Surface Temperature: Workshop-2
NASA Technical Reports Server (NTRS)
Njoku, E. G.
1984-01-01
Global accuracies and error characteristics of presently orbiting satellite sensors are examined. The workshops are intended to lead to a better understanding of present capabilities for sea surface temperature measurement and to improve measurement concepts for the future. Data from the Advanced Very High Resolution Radiometer AVHRR and Scanning Multichannel Microwave Radiometer is emphasized. Some data from the High Resolution Infrared Sounder HIRS and AVHRR are also examined. Comparisons of satellite data with ship and eXpendable BathyThermograph XBT measurement show standard deviations in the range 0.5 to 1.3 C with biases of less than 0.4 C, depending on the sensor, ocean region, and spatial/temporal averaging. The Sea Surface Temperature SST anomaly maps show good agreement in some cases, but a number of sensor related problems are identified.
Satellite-Derived Sea Surface Temperature: Workshop 1
NASA Technical Reports Server (NTRS)
Njoku, E. G.
1983-01-01
Satellite measurements of sea surface temperature are now possible using a variety of sensors. The present accuracies of these methods are in the range of 0.5 to 2.0 C. This makes them potentially useful for synoptic studies of ocean currents and for global monitoring of climatological anomalies. To improve confidence in the satellite data, objective evaluations of sensor accuracies are necessary, and the conditions under which these accuracies degrade need to be understood. The Scanning Multichannel Microwave Radiometer (SMMR) on the Nimbus-7 satellite was studied. Sea surface temperatures, derived from November 1979 SMMR data, were compared globally against ship measurements and climatology, using facilities of the JPL Pilot Ocean Data System. Methods for improved data analysis and plans for additional workshops to incorporate data from other sensors were discussed.
Drijfhout, Sybren; Gleeson, Emily; Dijkstra, Henk A; Livina, Valerie
2013-12-03
Abrupt climate change is abundant in geological records, but climate models rarely have been able to simulate such events in response to realistic forcing. Here we report on a spontaneous abrupt cooling event, lasting for more than a century, with a temperature anomaly similar to that of the Little Ice Age. The event was simulated in the preindustrial control run of a high-resolution climate model, without imposing external perturbations. Initial cooling started with a period of enhanced atmospheric blocking over the eastern subpolar gyre. In response, a southward progression of the sea-ice margin occurred, and the sea-level pressure anomaly was locked to the sea-ice margin through thermal forcing. The cold-core high steered more cold air to the area, reinforcing the sea-ice concentration anomaly east of Greenland. The sea-ice surplus was carried southward by ocean currents around the tip of Greenland. South of 70 °N, sea ice already started melting and the associated freshwater anomaly was carried to the Labrador Sea, shutting off deep convection. There, surface waters were exposed longer to atmospheric cooling and sea surface temperature dropped, causing an even larger thermally forced high above the Labrador Sea. In consequence, east of Greenland, anomalous winds changed from north to south, terminating the event with similar abruptness to its onset. Our results imply that only climate models that possess sufficient resolution to correctly represent atmospheric blocking, in combination with a sensitive sea-ice model, are able to simulate this kind of abrupt climate change.
Drijfhout, Sybren; Gleeson, Emily; Dijkstra, Henk A.; Livina, Valerie
2013-01-01
Abrupt climate change is abundant in geological records, but climate models rarely have been able to simulate such events in response to realistic forcing. Here we report on a spontaneous abrupt cooling event, lasting for more than a century, with a temperature anomaly similar to that of the Little Ice Age. The event was simulated in the preindustrial control run of a high-resolution climate model, without imposing external perturbations. Initial cooling started with a period of enhanced atmospheric blocking over the eastern subpolar gyre. In response, a southward progression of the sea-ice margin occurred, and the sea-level pressure anomaly was locked to the sea-ice margin through thermal forcing. The cold-core high steered more cold air to the area, reinforcing the sea-ice concentration anomaly east of Greenland. The sea-ice surplus was carried southward by ocean currents around the tip of Greenland. South of 70°N, sea ice already started melting and the associated freshwater anomaly was carried to the Labrador Sea, shutting off deep convection. There, surface waters were exposed longer to atmospheric cooling and sea surface temperature dropped, causing an even larger thermally forced high above the Labrador Sea. In consequence, east of Greenland, anomalous winds changed from north to south, terminating the event with similar abruptness to its onset. Our results imply that only climate models that possess sufficient resolution to correctly represent atmospheric blocking, in combination with a sensitive sea-ice model, are able to simulate this kind of abrupt climate change. PMID:24248352
NASA Astrophysics Data System (ADS)
Xu, Zhiqing; Fan, Ke; Wang, HuiJun
2017-09-01
The severe drought over northeast Asia in summer 2014 and the contribution to it by sea surface temperature (SST) anomalies in the tropical Indo-Pacific region were investigated from the month-to-month perspective. The severe drought was accompanied by weak lower-level summer monsoon flow and featured an obvious northward movement during summer. The mid-latitude Asian summer (MAS) pattern and East Asia/Pacific teleconnection (EAP) pattern, induced by the Indian summer monsoon (ISM) and western North Pacific summer monsoon (WNPSM) rainfall anomalies respectively, were two main bridges between the SST anomalies in the tropical Indo-Pacific region and the severe drought. Warming in the Arabian Sea induced reduced rainfall over northeast India and then triggered a negative MAS pattern favoring the severe drought in June 2014. In July 2014, warming in the tropical western North Pacific led to a strong WNPSM and increased rainfall over the Philippine Sea, triggering a positive EAP pattern. The equatorial eastern Pacific and local warming resulted in increased rainfall over the off-equatorial western Pacific and triggered an EAP-like pattern. The EAP pattern and EAP-like pattern contributed to the severe drought in July 2014. A negative Indian Ocean dipole induced an anomalous meridional circulation, and warming in the equatorial eastern Pacific induced an anomalous zonal circulation, in August 2014. The two anomalous cells led to a weak ISM and WNPSM, triggering the negative MAS and EAP patterns responsible for the severe drought. Two possible reasons for the northward movement of the drought were also proposed.
Estimating the Ocean Flow Field from Combined Sea Surface Temperature and Sea Surface Height Data
NASA Technical Reports Server (NTRS)
Stammer, Detlef; Lindstrom, Eric (Technical Monitor)
2002-01-01
This project was part of a previous grant at MIT that was moved over to the Scripps Institution of Oceanography (SIO) together with the principal investigator. The final report provided here is concerned only with the work performed at SIO since January 2000. The primary focus of this project was the study of the three-dimensional, absolute and time-evolving general circulation of the global ocean from a combined analysis of remotely sensed fields of sea surface temperature (SST) and sea surface height (SSH). The synthesis of those two fields was performed with other relevant physical data, and appropriate dynamical ocean models with emphasis on constraining ocean general circulation models by a combination of both SST and SSH data. The central goal of the project was to improve our understanding and modeling of the relationship between the SST and its variability to internal ocean dynamics, and the overlying atmosphere, and to explore the relative roles of air-sea fluxes and internal ocean dynamics in establishing anomalies in SST on annual and longer time scales. An understanding of those problems will feed into the general discussion on how SST anomalies vary with time and the extend to which they interact with the atmosphere.
NASA Astrophysics Data System (ADS)
Djomou, Zéphirin Yepdo; Monkam, David; Woafo, Paul
2014-08-01
Four regions are detected in northern Africa (20° W-40° E, 0-30° N) by applying the cluster analysis method on the annual rainfall anomalies of the period 1901-2000. The first region (R1), an arid land, covers essentially the north of 17.75° N from west to east of the study zone. The second region (R2), a semiarid land with a Sahelian climate, less warm than the dry climate of R1, is centred on Chad, with almost regular extension to the west towards Mauritania, and to the east, including the north of the Central African Republic and the Sudan. The region 3 (R3), a wet land, is centred on the Ivory Coast and covers totally Liberia, the south part of Ghana, Togo, Benin and the southwest of Nigeria. The fourth region (R4), corresponding to the wet equatorial forest, covers a part of Senegal, the Central Africa, the south of Sudan and a part of Ethiopia. An analysis of observed temperature and precipitation variability and trends throughout the twentieth century over these regions is presented. Summer, winter and annual data are examined using a range of variability measures. Statistically, significant warming trends are found over the majority of regions. The trends have a magnitude of up to 1.5 K per century. Only a few precipitation trends are statistically significant. Regional temperature and precipitation show pronounced variability at scales from interannual to multi-decadal. The interannual variability shows significant variations and trends throughout the century, the latter being mostly negative for precipitation and both positive and negative for temperature. Temperature and precipitation anomalies show a chaotic-type behaviour in which the regional conditions oscillate around the long-term mean trend and occasionally fall into long-lasting (up to 10 years or more) anomaly regimes. A generally modest temporal correlation is found between anomalies of different regions and between temperature and precipitation anomalies for the same region. This correlation is mostly positive for temperature in cases of adjacent regions. Several cases of negative interregional precipitation anomaly correlation are found. The El Niño Southern Oscillation significantly affects the anomaly variability patterns over a number of regions, mainly regions 3 (R3) and 4 (R4), while the North Atlantic Oscillation significantly affects the variability over arid and semiarid regions, R1 and R2.
NASA Astrophysics Data System (ADS)
Hegyi, B. M.; Taylor, P. C.
2017-12-01
The fall and winter seasons mark an important period in the evolution of Arctic sea ice, where energy is transferred away from the surface to facilitate the cooling of the surface and the growth of Arctic sea ice extent and thickness. Climatologically, these seasons are characterized by distinct periods of increased and reduced surface cooling and sea ice growth. Periods of reduced sea ice growth and surface cooling are associated with cloudy conditions and the transport of warm and moist air from lower latitudes, termed moisture intrusions. In the research presented, we explore the regional and Arctic-wide impact of moisture intrusions on the surface net radiative fluxes and sea ice growth for each fall and winter season from 2000/01-2015/16, utilizing MERRA2 reanalysis data, PIOMAS sea ice thickness data, and daily CERES radiative flux data. Consistent with previous studies, we find that positive anomalies in downwelling longwave surface flux are associated with increased temperature and water vapor content in the atmospheric column contained within the moisture intrusions. Interestingly, there are periods of increased downwelling LW flux anomalies that persist for one week or longer (i.e. longer than synoptic timescales) that are associated with persistent poleward flux of warm, moist air from lower latitudes. These persistent anomalies significantly reduce the regional growth of Arctic sea ice, and may in part explain the interannual variability of fall and winter Arctic sea ice growth.
NASA Astrophysics Data System (ADS)
Pampuch, L.; Ambrizzi, T.
2012-12-01
The Southeast region of Brazil comprises the states of Sao Paulo, Minas Gerais, Rio de Janeiro and Espirito Santo. It occupies 10.85% of Brazilian territory and is highly urbanized. The Southeast Brazil is the biggest geoeconomic region of the country having a strong and diverse economy. Agriculture dominates in all states of the region. The main agricultural products are sugar cane, coffee, cotton, maize, cassava, rice, beans and fruits. Livestock farming is also practiced in the region. The largest herd of cattle is found in the state of Minas Gerais. These activities are highly dependent on the amount and distribution of rainfall. Studies of extreme precipitation events over Brazil have been well emphasized in the literature over the years and their relationship with anomalies of sea surface temperature (SST) in both the Pacific and the Atlantic Ocean have been analyzed. This paper investigates the extreme events occurring in southeastern Brazil from 1982 to 2004 using the technique of quantiles. The composite technique was applied to precipitation, sea level pressure anomaly (SLP) and sea surface temperature anomaly (SST) data in order to investigate the characteristics of rainfall patterns, the position and intensity of South Atlantic subtropical high (SASH) and SST anomalies in the Southern Atlantic Ocean (SAO) in the occurrence of these events and to make a distinction between dry and wet extremes. Analyzing the precipitation patterns, it was noticed that the composition of dry events throughout the Southeast Brazil has negative precipitation anomalies. Particularly, in the southern part of the region there is a large precipitation deficit, having an average of 50mm in the winter months. The composition for the wet events shows that, on average, positive precipitation anomalies with the southern region containing the highest cumulative average, reaching a positive anomaly of 100mm. The composition of SLP in the case of dry events indicates a positive anomaly of pressure on SAO close to the South America continent and a negative anomaly far from the continent. This configuration might represent a southwest movement of the SASH. For the wet events composition is possible to note an opposite configuration: an negative anomaly is seen near the South American continent and a positive one is away of it. Such a configuration may represent a weakening of SASH and a shift to northeast part of the SAO. In the composition of the SST anomalies is possible to note a different pattern for both cases with regard to the tropical Pacific, indicating that in dry years an El Niño pattern is evident and during the wet years a La Niña pattern prevails. On the other hand, for the SAO, colder SST anomalies in the dry years was observed next to the coast of South America, and during the rainy years a positive anomaly was observed away from the continent.
Branches Global Climate & Weather Modeling Mesoscale Modeling Marine Modeling and Analysis Contact EMC , state and local government Web resources and services. Real-time, global, sea surface temperature (RTG_SST_HR) analysis For a regional map, click the desired area in the global SST analysis and anomaly maps
NASA Astrophysics Data System (ADS)
Simmons, Gary G.; Howett, Carly J. A.; Young, Leslie A.; Spencer, John R.
2015-11-01
In the last few decades, thermal data from the Galileo and Cassini spacecraft have detected various anomalies on Jovian and Saturnian satellites, including the thermally anomalous “PacMan” regions on Mimas and Tethys and the Pwyll anomaly on Europa (Howett et al. 2011, Howett et al. 2012, Spencer et al. 1999). Yet, the peculiarities of some of these anomalies, like the weak detection of the “PacMan” anomalies on Rhea and Dione and the low thermal inertia values of the widespread anomalies on equatorial Europa, are subjects for on-going research (Howett et al. 2014, Rathbun et al. 2010). Further, analysis and review of all the data both Galileo and Cassini took of these worlds will provide information of the thermal inertia and albedos of their surfaces, perhaps highlighting potential targets of interest for future Jovian and Saturnian system missions. Many previous works have used a thermophysical model for airless planets developed by Spencer (1990). However, the Three Dimensional Volatile-Transport (VT3D) model proposed by Young (2012) is able to predict surface temperatures in significantly faster computation time, incorporating seasonal and diurnal insolation variations. This work is the first step in an ongoing investigation, which will use VT3D’s capabilities to reanalyze Galileo and Cassini data. VT3D, which has already been used to analyze volatile transport on Pluto, is validated by comparing its results to that of the Spencer thermal model. We will also present our initial results using VT3D to reanalyze the thermophysical properties of the PacMan anomaly previous discovered on Mimas by Howett et al. (2011), using temperature constraints of diurnal data from Cassini/CIRS. VT3D is expected to be an efficient tool in identifying new thermal anomalies in future Saturnian and Jovian missions.Bibliography:C.J.A. Howett et al. (2011), Icarus 216, 221.C.J.A. Howett et al. (2012), Icarus 221, 1084.C.J.A. Howett et al. (2014), Icarus 241, 239.J.A. Rathbun et al. (2010), Icarus 210, 763J. R. Spencer (1990), Icarus 83, 27.J. R. Spencer et al. (1999), Science 284, 1514.L. A. Young (2012), Icarus 221, 80.
The Madden-Julian oscillation in ECHAM4 coupled and uncoupled general circulation models
Sperber, Kenneth R.; Gualdi, Silvio; Legutke, Stephanie; ...
2005-06-29
The Madden-Julian oscillation (MJO) dominates tropical variability on timescales of 30–70 days. During the boreal winter/spring, it is manifested as an eastward propagating disturbance, with a strong convective signature over the eastern hemisphere. The space–time structure of the MJO is analyzed using simulations with the ECHAM4 atmospheric general circulation model run with observed monthly mean sea-surface temperatures (SSTs), and coupled to three different ocean models. The coherence of the eastward propagation of MJO convection is sensitive to the ocean model to which ECHAM4 is coupled. For ECHAM4/OPYC and ECHO-G, models for which ~100 years of daily data is available, Montemore » Carlo sampling indicates that their metrics of eastward propagation are different at the 1% significance level. The flux-adjusted coupled simulations, ECHAM4/OPYC and ECHO-G, maintain a more realistic mean-state, and have a more realistic MJO simulation than the nonadjusted scale interaction experiment (SINTEX) coupled runs. The SINTEX model exhibits a cold bias in Indian Ocean and tropical West Pacific Ocean sea-surface temperature of ~0.5°C. This cold bias affects the distribution of time-mean convection over the tropical eastern hemisphere. Furthermore, the eastward propagation of MJO convection in this model is not as coherent as in the two models that used flux adjustment or when compared to an integration of ECHAM4 with prescribed observed SST. This result suggests that simulating a realistic basic state is at least as important as air–sea interaction for organizing the MJO. While all of the coupled models simulate the warm (cold) SST anomalies that precede (succeed) the MJO convection, the interaction of the components of the net surface heat flux that lead to these anomalies are different over the Indian Ocean. The ECHAM4/OPYC model in which the atmospheric model is run at a horizontal resolution of T42, has eastward propagating zonal wind anomalies and latent heat flux anomalies. However, the integrations with ECHO-G and SINTEX, which used T30 atmospheres, produce westward propagation of the latent heat flux anomalies, contrary to reanalysis. Furthermore, it is suggested that the differing ability of the models to represent the near-surface westerlies over the Indian Ocean is related to the different horizontal resolutions of the atmospheric model employed.« less
The variability of California summertime marine stratus: impacts on surface air temperatures
Iacobellis, Sam F.; Cayan, Daniel R.
2013-01-01
This study investigates the variability of clouds, primarily marine stratus clouds, and how they are associated with surface temperature anomalies over California, especially along the coastal margin. We focus on the summer months of June to September when marine stratus are the dominant cloud type. Data used include satellite cloud reflectivity (cloud albedo) measurements, hourly surface observations of cloud cover and air temperature at coastal airports, and observed values of daily surface temperature at stations throughout California and Nevada. Much of the anomalous variability of summer clouds is organized over regional patterns that affect considerable portions of the coast, often extend hundreds of kilometers to the west and southwest over the North Pacific, and are bounded to the east by coastal mountains. The occurrence of marine stratus is positively correlated with both the strength and height of the thermal inversion that caps the marine boundary layer, with inversion base height being a key factor in determining their inland penetration. Cloud cover is strongly associated with surface temperature variations. In general, increased presence of cloud (higher cloud albedo) produces cooler daytime temperatures and warmer nighttime temperatures. Summer daytime temperature fluctuations associated with cloud cover variations typically exceed 1°C. The inversion-cloud albedo-temperature associations that occur at daily timescales are also found at seasonal timescales.
Fast and slow responses of Southern Ocean sea surface temperature to SAM in coupled climate models
NASA Astrophysics Data System (ADS)
Kostov, Yavor; Marshall, John; Hausmann, Ute; Armour, Kyle C.; Ferreira, David; Holland, Marika M.
2017-03-01
We investigate how sea surface temperatures (SSTs) around Antarctica respond to the Southern Annular Mode (SAM) on multiple timescales. To that end we examine the relationship between SAM and SST within unperturbed preindustrial control simulations of coupled general circulation models (GCMs) included in the Climate Modeling Intercomparison Project phase 5 (CMIP5). We develop a technique to extract the response of the Southern Ocean SST (55°S-70°S) to a hypothetical step increase in the SAM index. We demonstrate that in many GCMs, the expected SST step response function is nonmonotonic in time. Following a shift to a positive SAM anomaly, an initial cooling regime can transition into surface warming around Antarctica. However, there are large differences across the CMIP5 ensemble. In some models the step response function never changes sign and cooling persists, while in other GCMs the SST anomaly crosses over from negative to positive values only 3 years after a step increase in the SAM. This intermodel diversity can be related to differences in the models' climatological thermal ocean stratification in the region of seasonal sea ice around Antarctica. Exploiting this relationship, we use observational data for the time-mean meridional and vertical temperature gradients to constrain the real Southern Ocean response to SAM on fast and slow timescales.
Normalized Temperature Contrast Processing in Flash Infrared Thermography
NASA Technical Reports Server (NTRS)
Koshti, Ajay M.
2016-01-01
The paper presents further development in normalized contrast processing of flash infrared thermography method by the author given in US 8,577,120 B1. The method of computing normalized image or pixel intensity contrast, and normalized temperature contrast are provided, including converting one from the other. Methods of assessing emissivity of the object, afterglow heat flux, reflection temperature change and temperature video imaging during flash thermography are provided. Temperature imaging and normalized temperature contrast imaging provide certain advantages over pixel intensity normalized contrast processing by reducing effect of reflected energy in images and measurements, providing better quantitative data. The subject matter for this paper mostly comes from US 9,066,028 B1 by the author. Examples of normalized image processing video images and normalized temperature processing video images are provided. Examples of surface temperature video images, surface temperature rise video images and simple contrast video images area also provided. Temperature video imaging in flash infrared thermography allows better comparison with flash thermography simulation using commercial software which provides temperature video as the output. Temperature imaging also allows easy comparison of surface temperature change to camera temperature sensitivity or noise equivalent temperature difference (NETD) to assess probability of detecting (POD) anomalies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Yi
2014-11-24
DOE-GTRC-05596 11/24/2104 Collaborative Research: Process-Resolving Decomposition of the Global Temperature Response to Modes of Low Frequency Variability in a Changing Climate PI: Dr. Yi Deng (PI) School of Earth and Atmospheric Sciences Georgia Institute of Technology 404-385-1821, yi.deng@eas.gatech.edu El Niño-Southern Oscillation (ENSO) and Annular Modes (AMs) represent respectively the most important modes of low frequency variability in the tropical and extratropical circulations. The projection of future changes in the ENSO and AM variability, however, remains highly uncertain with the state-of-the-science climate models. This project conducted a process-resolving, quantitative evaluations of the ENSO and AM variability in the modern reanalysis observationsmore » and in climate model simulations. The goal is to identify and understand the sources of uncertainty and biases in models’ representation of ENSO and AM variability. Using a feedback analysis method originally formulated by one of the collaborative PIs, we partitioned the 3D atmospheric temperature anomalies and surface temperature anomalies associated with ENSO and AM variability into components linked to 1) radiation-related thermodynamic processes such as cloud and water vapor feedbacks, 2) local dynamical processes including convection and turbulent/diffusive energy transfer and 3) non-local dynamical processes such as the horizontal energy transport in the oceans and atmosphere. In the past 4 years, the research conducted at Georgia Tech under the support of this project has led to 15 peer-reviewed publications and 9 conference/workshop presentations. Two graduate students and one postdoctoral fellow also received research training through participating the project activities. This final technical report summarizes key scientific discoveries we made and provides also a list of all publications and conference presentations resulted from research activities at Georgia Tech. The main findings include: 1) the distinctly different roles played by atmospheric dynamical processes in establishing surface temperature response to ENSO at tropics and extratropics (i.e., atmospheric dynamics disperses energy out of tropics during ENSO warm events and modulate surface temperature at mid-, high-latitudes through controlling downward longwave radiation); 2) the representations of ENSO-related temperature response in climate models fail to converge at the process-level particularly over extratropics (i.e., models produce the right temperature responses to ENSO but with wrong reasons); 3) water vapor feedback contributes substantially to the temperature anomalies found over U.S. during different phases of the Northern Annular Mode (NAM), which adds new insight to the traditional picture that cold/warm advective processes are the main drivers of local temperature responses to the NAM; 4) the overall land surface temperature biases in the latest NCAR model (CESM1) are caused by biases in surface albedo while the surface temperature biases over ocean are related to multiple factors including biases in model albedo, cloud and oceanic dynamics, and the temperature biases over different ocean basins are also induced by different process biases. These results provide a detailed guidance for process-level model turning and improvement, and thus contribute directly to the overall goal of reducing model uncertainty in projecting future changes in the Earth’s climate system, especially in the ENSO and AM variability.« less
Impacts of temperature and its variability on mortality in New England
NASA Astrophysics Data System (ADS)
Shi, Liuhua; Kloog, Itai; Zanobetti, Antonella; Liu, Pengfei; Schwartz, Joel D.
2015-11-01
Rapid build-up of greenhouse gases is expected to increase Earth’s mean surface temperature, with unclear effects on temperature variability. This makes understanding the direct effects of a changing climate on human health more urgent. However, the effects of prolonged exposures to variable temperatures, which are important for understanding the public health burden, are unclear. Here we demonstrate that long-term survival was significantly associated with both seasonal mean values and standard deviations of temperature among the Medicare population (aged 65+) in New England, and break that down into long-term contrasts between ZIP codes and annual anomalies. A rise in summer mean temperature of 1 °C was associated with a 1.0% higher death rate, whereas an increase in winter mean temperature corresponded to a 0.6% decrease in mortality. Increases in standard deviations of temperature for both summer and winter were harmful. The increased mortality in warmer summers was entirely due to anomalies, whereas it was long-term average differences in the standard deviation of summer temperatures across ZIP codes that drove the increased risk. For future climate scenarios, seasonal mean temperatures may in part account for the public health burden, but the excess public health risk of climate change may also stem from changes of within-season temperature variability.
Are ``Hot Spots'' Hot? - An Overview
NASA Astrophysics Data System (ADS)
Foulger, G. R.
2010-12-01
The term “hot spot” is taken variously to imply a) the presence of excessive volcanism, or b) that the melt formed in an unusually hot source. Case b) is intrinsic to the plume hypothesis. Temperature anomalies of 200-300 degrees Celsius are expected, though there is widespread downward-revision of this where observations do not support it. It is not self-evident that “hot spots” are hot in the sense of case b), despite the fact that this is widely assumed. Furthermore, a hot source is not strongly supported by observations, and is at odds with many data. The temperature of the mantle has been studied using many different methods. Global oceanic heat flow values were recently assessed, but reveal no evidence for elevated temperatures around proposed plume localities. Mapping surface heat flow is only sensitive to anomalies at the level of 100 degrees Celsius, however. Seismological methods include correlating velocity with crustal thickness at LIPs, measuring transition zone thickness, and mapping velocity, e.g., using tomography. The first of these does not find evidence for elevated temperatures. The latter two are both sensitive to the presence of partial melt and variations in rock composition, in addition to temperature, which is the weakest potential effect. They thus cannot be used as thermometers. In particular, it cannot be assumed that red = hot and blue = cold in tomographic cross sections. Petrological and geochemical approaches include the “global systematics”. This has now been shown to not work for estimating temperature and its application should be discontinued. Mineralogical phase relationships are applied by comparing data from laboratory melting experiments to observations. Olivine control-line analysis has been extensively used in attempts to measure the differences in melt-formation temperature between mid-ocean ridges and melting anomalies. Difficulties arise in choosing the correct olivine geothermometer and because picrite glass is lacking from any melting anomaly except Hawaii. The results must be compared with a measure of the temperature of “normal mantle”. This is usually taken to be the temperature of melt formation beneath mid-ocean ridges, but the correct choice is controversial. Furthermore, this cannot be assumed to represent the potential temperature of the mantle in general. The surface conduction layer may extend much deeper than the depth of extraction of MORB, so melt extracted from greater depths, e.g., from beneath the base of the lithosphere in old parts of the ocean basins, may form at higher temperatures. It is easier to assume that the mantle beneath “hot spots” is hot than it is to show unequivocally that it is true. This endeavor is perhaps the most direct way of testing the plume hypothesis, but it is also one of the most challenging.
NASA Astrophysics Data System (ADS)
Oueslati, Boutheina; Camberlin, Pierre; Zoungrana, Joël; Roucou, Pascal; Diallo, Saliou
2018-02-01
The relationships between precipitation and temperature in the central Sudano-Sahelian belt are investigated by analyzing 50 years (1959-2008) of observed temperature (Tx and Tn) and rainfall variations. At daily time-scale, both Tx and Tn show a marked decrease as a response to rainfall occurrence, with a strongest departure from normal 1 day after the rainfall event (-0.5 to -2.5 °C depending on the month). The cooling is slightly larger when heavy rainfall events (>5 mm) are considered. The temperature anomalies weaken after the rainfall event, but are still significant several days later. The physical mechanisms accounting for the temperature response to precipitation are analysed. The Tx drop is accounted for by reduced incoming solar radiation associated with increased cloud cover and increased surface evaporation following surface moistening. The effect of evaporation becomes dominant a few days after the rainfall event. The reduced daytime heat storage and the subsequent sensible heat flux result in a later negative Tn anomaly. The effect of rainfall variations on temperature is significant for long-term warming trends. The rainfall decrease experienced between 1959 and 2008 accounts for a rainy season Tx increase of 0.15 to 0.3 °C, out of a total Tx increase of 1.3 to 1.5 °C. These results have strong implications on the assessment of future temperature changes. The dampening or amplifying effects of precipitation are determined by the sign of future precipitation trends. Confidence on temperature changes under global warming partly depend on the robustness of precipitation projections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Jin-Ho; Leung, Lai-Yung R.
This study assesses the relative influence of soil moisture memory and tropical sea surface temperature (SST) in seasonal rainfall over the contiguous United States. Using observed precipitation, the NINO3.4 index and soil moisture and evapotranspiration simulated by a land surface model for 61 years, analysis was performed using partial correlations to evaluate to what extent land surface and SST anomaly of El Niño and Southern Oscillation (ENSO) can affect seasonal precipitation over different regions and seasons. Results show that antecedent soil moisture is as important as concurrent ENSO condition in controlling rainfall anomalies over the U.S., but they generally dominatemore » in different seasons with SST providing more predictability during winter while soil moisture, through its linkages to evapotranspiration and snow water, has larger influence in spring and early summer. The proposed methodology is applicable to climate model outputs to evaluate the intensity of land-atmosphere coupling and its relative importance.« less
Mechanisms of Ocean Heat Uptake
NASA Astrophysics Data System (ADS)
Garuba, Oluwayemi
An important parameter for the climate response to increased greenhouse gases or other radiative forcing is the speed at which heat anomalies propagate downward in the ocean. Ocean heat uptake occurs through passive advection/diffusion of surface heat anomalies and through the redistribution of existing temperature gradients due to circulation changes. Atlantic meridional overturning circulation (AMOC) weakens in a warming climate and this should slow the downward heat advection (compared to a case in which the circulation is unchanged). However, weakening AMOC also causes a deep warming through the redistributive effect, thus increasing the downward rate of heat propagation compared to unchanging circulation. Total heat uptake depends on the combined effect of these two mechanisms. Passive tracers in a perturbed CO2 quadrupling experiments are used to investigate the effect of passive advection and redistribution of temperature anomalies. A new passive tracer formulation is used to separate ocean heat uptake into contributions due to redistribution and passive advection-diffusion of surface heating during an ocean model experiment with abrupt increase in surface temperature. The spatial pattern and mechanisms of each component are examined. With further experiments, the effects of surface wind, salinity and temperature changes in changing circulation and the resulting effect on redistribution in the individual basins are isolated. Analysis of the passive advection and propagation path of the tracer show that the Southern ocean dominates heat uptake, largely through vertical and horizontal diffusion. Vertical diffusion transports the tracer across isopycnals down to about 1000m in 100 years in the Southern ocean. Advection is more important in the subtropical cells and in the Atlantic high latitudes, both with a short time scale of about 20 years. The shallow subtropical cells transport the tracer down to about 500m along isopycnal surfaces, below this vertical diffusion takes over transport in the tropics; in the Atlantic, the MOC transports heat as deep 2000m in about 30 years. Redistributive surface heat uptake alters the total amount surface heat uptake among the basins. Compared to the passive-only heat uptake, which is about the same among the basins, redistribution nearly doubles the surface heat input into the Atlantic but makes smaller increases in the Indian and Pacific oceans for a net global increase of about 25%, in the perturbation experiment with winds unchanged. The passive and redistributive heat uptake components are further distributed among the basins through the global conveyor belt. The Pacific gains twice the surface heat input into it through lateral transport from the other two basins, as a result, the Atlantic and Pacific gain similar amounts of heat even though surface heat input is in the Atlantic is much bigger. Of this heat transport, most of the passive component comes from the Indian and the redistributive component comes from the Atlantic. Different surface forcing perturbation gives different circulation change pattern and as a result yield different redistributive uptake. Ocean heat uptake is more sensitive to wind forcing perturbation than to thermohaline forcing perturbation. About 2% reduction in subtropical cells transport and southern ocean transport, in the wind-change perturbation experiment, resulted in about 10% reduction in the global ocean heat uptake of wind-unchanged experiment. The AMOC weakened by about 35% and resulted in a 25% increase in passive heat uptake in the wind-unchanged experiment. Surface winds weakening reduces heat uptake by warming the reservoir surface temperatures, while MOC weakening increases heat input by a cooling reservoir surface temperatures. Thermohaline forcing perturbation is combination of salinity and temperature perturbations, both weaken the AMOC, however, they have opposite redistributive effects. Ocean surface freshening gives positive redistributive effect, while surface temperature increase gives negative redistributive effect on heat uptake. The salinity effect dominates the redistributive effect for thermohaline perturbation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goreau, T.J.; Hayes, R.L.; Strong, A.
Global spatio-temporal patterns of mass coral reef bleaching during the first half of the 1990s continued to show the strong temperature correlations which first became established in the 1980s. Satellite sea surface temperature data and field observations were used to track thermal bleaching events in real time. Most bleaching events followed warm season sea surface temperature anomalies of around +1 degree celsius above historical means. Global bleaching patterns appear to have been strongly affected by worldwide cooling which followed eruption of Mount Pinatubo in June 1991. High water temperatures and mass coral reef bleaching took place in the Caribbean, Indianmore » Ocean, and South Pacific in 1991, but there were few thermal anomalies or bleaching events in 1992 and 1993, years which were markedly cooler worldwide. Following the settling of Mount Pinatubo aerosols and resumption of global warming trends, extensive ocean thermal hot spots and bleaching events resumed in the South Pacific, South Atlantic, and Indian Oceans in 1994. Bleaching again took place in hot spots in the Indian Ocean and Caribbean in 1995, and in the South Atlantic, Caribbean, South Pacific, North Pacific, and Persian Gulf in 1996. Coral reefs worldwide are now very close to their upper temperature tolerance limits. This sensitivity, and the fact that the warmest ecosystems have no source of immigrant species pre-adapted to warmer conditions, may make coral reef ecosystems the first to be severely impacted if global temperatures and sea levels remain at current values or increase further.« less
Mechanisms of northeastern Brazil rainfall anomalies due to Southern Tropical Atlantic variability
NASA Astrophysics Data System (ADS)
Neelin, J.; Su, H.
2004-05-01
Observational studies have shown that the rainfall anomalies in eastern equatorial South America, including Nordeste Brazil, have a positive correlation with tropical southern Atlantic sea surface temperature (SST) anomalies. Such relationships are reproduced in model simulations with the quasi-equilibrium tropical circulation model (QTCM), which includes a simple land model. A suite of model ensemble experiments is analysed using observed SST over the tropical oceans, the tropical Atlantic and the tropical southern Atlantic (30S-0), respectively (with climatological SST in the remainder of the oceans). Warm tropical south Atlantic SST anomalies yield positive precipitation anomalies over the Nordeste and the southern edge of the Atlantic marine intertropical convergence zone (ITCZ). Mechanisms associated with moisture variations are responsible for the land precipitation changes. Increases in moisture over the Atlantic cause positive anomalies in moisture advection, spreading increased moisture downwind. Where the basic state is far from the convective stability threshold, moisture changes have little effect, but the margins of the climatological convection zone are affected. The increased moisture supply due to advection is enhanced by increases in low-level convergence required by moist static energy balances. The moisture convergence term is several times larger, but experiments altering the moisture advection confirm that the feedback is initiated by wind acting on moisture gradient. This mechanism has several features in common with the recently published "upped-ante" mechanism for El Nino impacts on this region. In that case, the moisture gradient is initiated by warm free tropospheric temperature anomalies increasing the typical value of low-level moisture required to sustain convection in the convection zones. Both mechanisms suggest the usefulness of coordinating ocean and land in situ observations of boundary layer moisture.
Infrared photography and imagery in water resources research
Robinove, Charles J.
1965-01-01
Infrared photography has restricted usefulness in general water resources studies but is particularly useful in special problems such as shoreline mapping. Infrared imagery is beginning to be used in water resources studies for the identification of surface and sub surface thermal anomalies as expressed at the surface and the measurement of apparent water surface temperatures. It will attain its maximum usefulness only when interpretation criteria for infrared imagery are fully developed. Several important hydrologic problems to which infrared imagery may be applied are: (1) determination of circulation and cooling of water in power plant cooling ponds, (2) measurement of river temperature and temperature decline downstream from power plants discharging heated water, (3) identification of submarine springs along coasts, and (4) measurement of temperature differences along streams as indicators of effluent seepage of ground water. Although it is possible at this time to identify many features of importance to hydrology by the use of infrared imagery, the task remaining is to develop criteria to show the hydrologic significance of the features.
NASA Astrophysics Data System (ADS)
Deser, Clara; Guo, Ruixia; Lehner, Flavio
2017-08-01
The recent slowdown in global mean surface temperature (GMST) warming during boreal winter is examined from a regional perspective using 10-member initial-condition ensembles with two global coupled climate models in which observed tropical Pacific sea surface temperature anomalies (TPAC SSTAs) and radiative forcings are specified. Both models show considerable diversity in their surface air temperature (SAT) trend patterns across the members, attesting to the importance of internal variability beyond the tropical Pacific that is superimposed upon the response to TPAC SSTA and radiative forcing. Only one model shows a close relationship between the realism of its simulated GMST trends and SAT trend patterns. In this model, Eurasian cooling plays a dominant role in determining the GMST trend amplitude, just as in nature. In the most realistic member, intrinsic atmospheric dynamics and teleconnections forced by TPAC SSTA cause cooling over Eurasia (and North America), and contribute equally to its GMST trend.
NASA Technical Reports Server (NTRS)
Realmuto, Vincent J.; Hon, Ken; Kahle, Anne B.; Abbott, Elsa A.; Pieri, David C.
1992-01-01
Multispectral thermal infrared radiance measurements of the Kupaianaha flow field were acquired with the NASA airborne Thermal Infrared Multispectral Scanner (TIMS) on the morning of 1 October 1988. The TIMS data were used to map both the temperature and emissivity of the surface of the flow field. The temperature map depicted the underground storage and transport of lava. The presence of molten lava in a tube or tumulus resulted in surface temperatures that were at least 10 C above ambient. The temperature map also clearly defined the boundaries of hydrothermal plumes which resulted from the entry of lava into the ocean. The emissivity map revealed the boundaries between individual flow units within the Kupaianaha field. Distinct spectral anomalies, indicative of silica-rich surface materials, were mapped near fumaroles and ocean entry sites. This apparent enrichment in silica may have resulted from an acid-induced leaching of cations from the surfaces of glassy flows.
NASA Astrophysics Data System (ADS)
Parton, W. J.; Del Grosso, S. J.; Smith, W. K.; Chen, M.
2017-12-01
The El Nino Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) are multi-annual to multi-decadal climate patterns defined by ocean temperature anomalies that can strongly modulate climate variability. Here we evaluated the impacts of PDO and ENSO sea surface temperature (SST) anomalies on observed grassland above ground plant production (ANPP; 1940 to 2015), spring (April to July) cumulative actual evapotranspiration (iAET; 1900 to 2015) , and satellite-derived growing season (April to October) cumulative normalized difference vegetation index (iNDVI 1982 to 2015) across the United States Great Plains. The results showed that grassland ANPP is well correlated to iAET (r2=0.69) and iNDVI (r2=0.50 to 0.70) for the Cheyenne Wyoming and Northeastern Colorado long-term ANPP sites. At the site scale, during the negative phase of the PDO, we find ANPP is much lower (25%) and that variability of iAET, iNDVI, and ANPP are much higher (2 to 3 times) compared to the warm phase PDO. Further, we find there is a high frequency of below normal iAET when PDO and ENSO SST's are both negative, while there is a high frequency of above normal iAET when PDO and ENSO values are positive. At the regional scale, iAET, iNDVI, and modeled ANPP data sets show that plant production and iAET values are high in the southern Great Plains and low in the northern Great Plains when spring PDO and ENSO are both in the positive phase, while the opposite pattern is observed when both PDO and ENSO are both in the negative phase. Variability of iAET, iNDVI, and modeled ANPP are much higher in the central Great Plains during the negative phase PDO. We demonstrate clearly that the PDO and ENSO SST anomalies have large impacts on mean and variability of grassland plant production across the Great Plains.
ENSO Prediction in the NASA GMAO GEOS-5 Seasonal Forecasting System
NASA Astrophysics Data System (ADS)
Kovach, R. M.; Borovikov, A.; Marshak, J.; Pawson, S.; Vernieres, G.
2016-12-01
Seasonal-to-Interannual coupled forecasts are conducted in near-real time with the Goddard Earth Observing System (GEOS) Atmosphere-Ocean General Circulation Model (AOGCM). A 30-year suite of 9-month hindcasts is available, initialized with the MERRA-Ocean, MERRA-Land, and MERRA atmospheric fields. These forecasts are used to predict the timing and magnitude of ENSO and other short-term climate variability. The 2015 El Niño peaked in November 2015 and was considered a "very strong" event with the Equatorial Pacific Ocean sea-surface-temperature (SST) anomalies higher than 2.0 °C. These very strong temperature anomalies began in Sep/Oct/Nov (SON) of 2015 and persisted through Dec/Jan/Feb (DJF) of 2016. The other two very strong El Niño events recently recorded occurred in 1981/82 and 1997/98. The GEOS-5 system began predicting a very strong El Niño for SON starting with the March 2015 forecast. At this time, the GMAO forecast was an outlier in both the NMME and IRI multi-model ensemble prediction plumes. The GMAO May 2015 forecast for the November 2015 peak in temperature anomaly in the Niño3.4 region was in excellent agreement with the real event, but in May this forecast was still one of the outliers in the multi-model forecasts. The GEOS-5 May 2015 forecast also correctly predicted the weakening of the Eastern Pacific (Niño1+2) anomalies for SON. We will present a summary of the NASA GMAO GEOS-5 Seasonal Forecast System skills based on historic hindcasts. Initial conditions, prediction of ocean surface and subsurface evolution for the 2015/16 El Niño will be compared to the 1998/97 event. GEOS-5 capability to predict the precipitation, i.e. to model the teleconnection patterns associated with El Niño will also be shown. To conclude, we will highlight some new developments in the GEOS forecasting system.
Mechanism for Surface Warming in the Equatorial Pacific during 1994-95
NASA Technical Reports Server (NTRS)
Rienecker, Michele M.; Borovikov, Anna; Schopf, Paul S.
1999-01-01
Mechanisms controlling the variation in sea surface temperature warm event in the equatorial Pacific were investigated through ocean model simulations. In addition, the mechanisms of the climatological SST cycle were investigated. The dominant mechanisms governing the seasonal cycle of SST vary significantly across the basin. In the western Pacific the annual cycle of SST is primarily in response to external heat flux. In the central basin the magnitude of zonal advection is comparable to that of the external heat flux. In the eastern basin the role of zonal advection is reduced and the vertical mixing is more important. In the easternmost equatorial Pacific the vertical entrainment contribution is as large as that of vertical diffusion. The model estimate of the vertical mixing contribution to the mixed layer heat budget compared well with estimates obtained by analysis of observations using the same diagnostic vertical mixing scheme. During 1994- 1995 the largest positive SST anomaly was observed in the mid-basin and was related to reduced latent heat flux due to weak surface winds. In the western basin the initial warming was related to enhanced external heating and reduced cooling effects of both vertical mixing and horizontal advection associated with weaker than usual wind stress. In the eastern Pacific where winds were not significantly anomalous throughout 1994-1995, only a moderate warm surface anomaly was detected. This is in contrast to strong El Nino events where the SST anomaly is largest in the eastern basin and, as shown by previous studies, the anomaly is due to zonal advection rather than anomalous surface heat flux. The end of the warm event was marked by cooling in July 1995 everywhere across the equatorial Pacific.
NASA Astrophysics Data System (ADS)
Li, Zhenning; Yang, Song
2017-11-01
The influences of spring-to-summer sea surface temperature (SST) anomalies in different domains of the Indian Ocean (IO) on the Asian summer monsoon are investigated by conducting a series of numerical experiments using the NCAR CAM4 model. It is found that, to a certain extent, the springtime IO SST anomalies can persist to the summer season. The spring-to-summer IO SST anomalies associated with the IO basin warming mode are strongly linked to the summer climate over Asia, especially the South Asian monsoon (SAM) and the East Asian monsoon. Among this connection, the warming of tropical IO plays the most critical role, and the warming of southern IO is important for monsoon variation and prediction prior to the full development of the monsoon. The atmospheric response to IO basin wide warming is similar with that to tropical IO warming. The influence of northern IO warming on the SAM, however, is opposite to the effect of southern IO warming. Meanwhile, the discrepancies between the results from idealized SST forcing simulations and observations, especially for the southern IO, reveal that the dominant role of air-sea interaction in the monsoon-IO coupled system cannot be ignored. Moreover, the springtime northern IO warming seems to favor an early onset or a stronger persistence of the SAM.
The Response of a Branch of Puget Sound, Washington to the 2014 North Pacific Warm Anomaly
NASA Astrophysics Data System (ADS)
Mickett, J.; Newton, J.; Devol, A.; Krembs, C.; Ruef, W.
2016-02-01
The flow of the unprecedentedly-warm upper-ocean North Pacific "Blob" water into Puget Sound, Washington, caused local extreme water property anomalies that extended from the arrival of the water inshore in the fall of 2014 through 2015. Here we report on moored and seaplane observations from Hood Canal, a branch of Puget Sound, where temperature was more than 2σ above climatology for much of the year with maximum temperature anomalies at depth and at the surface +2.5 °C and +7 °C respectively. The low density of the oceanic warm "Blob" water resulted in weak deep water flushing in Hood Canal in the fall of 2014, which combined with a lack of wintertime flushing to result in anomalously-low dissolved oxygen (DO) concentrations at depth. Late-summer 2015 DO values were the lowest in a decade of mooring observations and more than 2σ below climatology. The anomalously low density of the deep basin water allowed a very early onset of the annually-occurring, late-summer intrusion, which first entered Hood Canal at the end of July compared to the usual arrival in early to mid-September. In late August this intrusion conspired with an early fall storm to lift the very low DO deep water to surface at the south end of Hood Canal, causing a significant fish kill event.
NASA Astrophysics Data System (ADS)
Li, H.; Kusky, T. M.; Peng, S.; Zhu, M.
2012-12-01
Thermal infrared (TIR) remote sensing is an important technique in the exploration of geothermal resources. In this study, a geothermal survey is conducted in Tengchong area of Yunnan province in China using multi-temporal MODIS LST (Land Surface Temperature). The monthly night MODIS LST data from Mar. 2000 to Mar. 2011 of the study area were collected and analyzed. The 132 month average LST map was derived and three geothermal anomalies were identified. The findings of this study agree well with the results from relative geothermal gradient measurements. Finally, we conclude that TIR remote sensing is a cost-effective technique to detect geothermal anomalies. Combining TIR remote sensing with geological analysis and the understanding of geothermal mechanism is an accurate and efficient approach to geothermal area detection.
NASA Technical Reports Server (NTRS)
Farrell, W. M.; Hurley, D. M.; Esposito, V. J.; Mclain, J. L.; Zimmerman, M. I.
2017-01-01
We present a new formalism to describe the outgassing of hydrogen initially implanted by the solar wind protons into exposed soils on airless bodies. The formalism applies a statistical mechanics approach similar to that applied recently to molecular adsorption onto activated surfaces. The key element enabling this formalism is the recognition that the interatomic potential between the implanted H and regolith-residing oxides is not of singular value but possess a distribution of trapped energy values at a given temperature, F(U,T). All subsequent derivations of the outward diffusion and H retention rely on the specific properties of this distribution. We find that solar wind hydrogen can be retained if there are sites in the implantation layer with activation energy values exceeding 0.5eV. We especially examine the dependence of H retention applying characteristic energy values found previously for irradiated silica and mature lunar samples. We also apply the formalism to two cases that differ from the typical solar wind implantation at the Moon. First, we test for a case of implantation in magnetic anomaly regions where significantly lower-energy ions of solar wind origin are expected to be incident with the surface. In magnetic anomalies, H retention is found to be reduced due to the reduced ion flux and shallower depth of implantation. Second, we also apply the model to Phobos where the surface temperature range is not as extreme as the Moon. We find the H atom retention in this second case is higher than the lunar case due to the reduced thermal extremes (that reduces outgassing).
NASA Technical Reports Server (NTRS)
Rodriguez-Fonseca, Belen; Mohino, Elsa; Mechoso, Carlos R.; Caminade, Cyril; Biasutti, Michela; Gaetani, Marco; Garcia-Serrano, J.; Vizy, Edward K.; Cook, Kerry; Xue, Yongkang;
2015-01-01
The Sahel experienced a severe drought during the 1970s and 1980s after wet periods in the 1950s and 1960s. Although rainfall partially recovered since the 1990s, the drought had devastating impacts on society. Most studies agree that this dry period resulted primarily from remote effects of sea surface temperature (SST) anomalies amplified by local land surface-atmosphere interactions. This paper reviews advances made during the last decade to better understand the impact of global SST variability on West African rainfall at interannual to decadal time scales. At interannual time scales, a warming of the equatorial Atlantic and Pacific/Indian Oceans results in rainfall reduction over the Sahel, and positive SST anomalies over the Mediterranean Sea tend to be associated with increased rainfall. At decadal time scales, warming over the tropics leads to drought over the Sahel, whereas warming over the North Atlantic promotes increased rainfall. Prediction systems have evolved from seasonal to decadal forecasting. The agreement among future projections has improved from CMIP3 to CMIP5, with a general tendency for slightly wetter conditions over the central part of the Sahel, drier conditions over the western part, and a delay in the monsoon onset. The role of the Indian Ocean, the stationarity of teleconnections, the determination of the leader ocean basin in driving decadal variability, the anthropogenic role, the reduction of the model rainfall spread, and the improvement of some model components are among the most important remaining questions that continue to be the focus of current international projects.
NASA Astrophysics Data System (ADS)
Persechino, A.; Marsh, R.; Sinha, B.; Megann, A. P.; Blaker, A. T.; New, A. L.
2012-08-01
A wide range of statistical tools is used to investigate the decadal variability of the Atlantic Meridional Overturning Circulation (AMOC) and associated key variables in a climate model (CHIME, Coupled Hadley-Isopycnic Model Experiment), which features a novel ocean component. CHIME is as similar as possible to the 3rd Hadley Centre Coupled Model (HadCM3) with the important exception that its ocean component is based on a hybrid vertical coordinate. Power spectral analysis reveals enhanced AMOC variability for periods in the range 15-30 years. Strong AMOC conditions are associated with: (1) a Sea Surface Temperature (SST) anomaly pattern reminiscent of the Atlantic Multi-decadal Oscillation (AMO) response, but associated with variations in a northern tropical-subtropical gradient; (2) a Surface Air Temperature anomaly pattern closely linked to SST; (3) a positive North Atlantic Oscillation (NAO)-like pattern; (4) a northward shift of the Intertropical Convergence Zone. The primary mode of AMOC variability is associated with decadal changes in the Labrador Sea and the Greenland Iceland Norwegian (GIN) Seas, in both cases linked to the tropical activity about 15 years earlier. These decadal changes are controlled by the low-frequency NAO that may be associated with a rapid atmospheric teleconnection from the tropics to the extratropics. Poleward advection of salinity anomalies in the mixed layer also leads to AMOC changes that are linked to processes in the Labrador Sea. A secondary mode of AMOC variability is associated with interannual changes in the Labrador and GIN Seas, through the impact of the NAO on local surface density.
NASA Astrophysics Data System (ADS)
Mehta, Vikram M.
1998-09-01
Gridded time series from the Global Ocean Surface Temperature Atlas were analyzed with a variety of techniques to identify spatial structures and oscillation periods of the tropical Atlantic sea surface temperature (SST) variations at decadal timescales, and to develop physical interpretations of statistical patterns of decadal SST variations. Each time series was 110 yr (1882-1991) long. The tropical Atlantic SST variations were compared with decadal variations in a 74-yr-long (1912-85) north Nordeste Brazil rainfall time series and a 106-yr-long (1886-1991) tropical Atlantic cyclone activity index time series. The tropical Atlantic SST variations were also compared with decadal variations in the extratropical Atlantic SST.Multiyear to multidecadal variations in the cross-equatorial dipole pattern identified as a dominant empirical pattern of the tropical Atlantic SST variations in earlier and present studies are shown to be variations in the approximately north-south gradient of SST anomalies. It is also shown that there was no dynamical-thermodynamical, dipole mode of SST variations during the analysis period. There was a distinct decadal timescale (12-13 yr) of SST variations in the tropical South Atlantic, whereas no distinct decadal timescale was found in the tropical North Atlantic SST variations. Approximately 80% of the coherent decadal variance in the cross-equatorial SST gradient was `explained' by coherent decadal oscillations in the tropical South Atlantic SSTs. There were three, possibly physical, modes of decadal variations in the tropical Atlantic SSTs during the analysis period. In the more energetic mode of the North Atlantic decadal SST variations, anomalies traveled into the tropical North Atlantic from the extratropical North Atlantic along the eastern boundary of the basin. The anomalies strengthened and resided in the tropical North Atlantic for several years, then frequently traveled northward into the mid-high-latitude North Atlantic along the western boundary of the basin, and completed a clockwise rotation around the North Atlantic basin. In the less energetic North Atlantic decadal mode, SST anomalies originated in the tropical-subtropical North Atlantic near the African coast, and traveled northwestward and southward. In the South Atlantic decadal SST mode, anomalies either developed in situ or traveled into the tropical South Atlantic from the subtropical South Atlantic along the eastern boundary of the basin. The anomalies strengthened and resided in the tropical South Atlantic for several years, then frequently traveled southward into the subtropical South Atlantic along the western boundary of the basin, and completed a counterclockwise rotation around the South Atlantic basin. These decadal modes were not a permanent feature of the tropical Atlantic SST variations. The tropical North and South Atlantic SST anomalies frequently extended across the equator. Uncorrelated alignments of decadal SST anomalies having opposite signs on two sides of the equator occasionally created the apperance of a dipole.Independent analyses of the north Nordeste Brazil rainfall showed physical consistency and high coherence with the cross-equatorial SST gradient oscillations at 12-13-yr period. The tropical Atlantic cyclone index showed physical consistency but moderate coherence with the tropical North Atlantic decadal SST variations. The quasi-regularity of the 12-13-yr oscillations in the cross-equatorial SST gradient may provide an opportunity for long lead-time, skillful predictions of climate anomalies in the tropical Atlantic sector.
NASA Astrophysics Data System (ADS)
Huang, Bohua; Hu, Zeng-Zhen; Kinter, James L.; Wu, Zhaohua; Kumar, Arun
2012-01-01
The stratospheric quasi-biennial oscillation (QBO) and its association with the interannual variability in the stratosphere and troposphere, as well as in tropical sea surface temperature anomalies (SSTA), are examined in the context of a QBO life cycle. The analysis is based on the ERA40 and NCEP/NCAR reanalyses, radiosonde observations at Singapore, and other observation-based datasets. Both reanalyses reproduce the QBO life cycle and its associated variability in the stratosphere reasonably well, except that some long-term changes are detected only in the NCEP/NCAR reanalysis. In order to separate QBO from variability on other time scales and to eliminate the long-term changes, a scale separation technique [Ensemble Empirical Mode Decomposition (EEMD)] is applied to the raw data. The QBO component of zonal wind anomalies at 30 hPa, extracted using the EEMD method, is defined as a QBO index. Using this index, the QBO life cycle composites of stratosphere and troposphere variables, as well as SSTA, are constructed and examined. The composite features in the stratosphere are generally consistent with previous investigations. The correlations between the QBO and tropical Pacific SSTA depend on the phase in a QBO life cycle. On average, cold (warm) SSTA peaks about half a year after the maximum westerlies (easterlies) at 30 hPa. The connection of the QBO with the troposphere seems to be associated with the differences of temperature anomalies between the stratosphere and troposphere. While the anomalies in the stratosphere propagate downward systematically, some anomalies in the troposphere develop and expand vertically. Therefore, it is possible that the temperature difference between the troposphere and stratosphere may alter the atmospheric stability and tropical deep convection, which modulates the Walker circulation and SSTA in the equatorial Pacific Ocean.
NASA Technical Reports Server (NTRS)
Vaughan, R. Greg; Hook, Simon J.
2006-01-01
ASTER thermal infrared data over Mt. St Helens were used to characterize its thermal behavior from Jun 2000 to Feb 2006. Prior to the Oct 2004 eruption, the average crater temperature varied seasonally between -12 and 6 C. After the eruption, maximum single-pixel temperature increased from 10 C (Oct 2004) to 96 C (Aug 2005), then showed a decrease to Feb 2006. The initial increase in temperature was correlated with dome morphology and growth rate and the subsequent decrease was interpreted to relate to both seasonal trends and a decreased growth rate/increased cooling rate, possibly suggesting a significant change in the volcanic system. A single-pixel ASTER thermal anomaly first appeared on Oct 1, 2004, eleven hours after the first eruption - 10 days before new lava was exposed at the surface. By contrast, an automated algorithm for detecting thermal anomalies in MODIS data did not trigger an alert until Dec 18. However, a single-pixel thermal anomaly first appeared in MODIS channel 23 (4 um) on Oct 13, 12 days after the first eruption - 2 days after lava was exposed. The earlier thermal anomaly detected with ASTER data is attributed to the higher spatial resolution (90 m) compared with MODIS (1 m) and the earlier visual observation of anomalous pixels compared to the automated detection method suggests that local spatial statistics and background radiance data could improve automated detection methods.
Surface Temperature Data Analysis
NASA Technical Reports Server (NTRS)
Hansen, James; Ruedy, Reto
2012-01-01
Small global mean temperature changes may have significant to disastrous consequences for the Earth's climate if they persist for an extended period. Obtaining global means from local weather reports is hampered by the uneven spatial distribution of the reliably reporting weather stations. Methods had to be developed that minimize as far as possible the impact of that situation. This software is a method of combining temperature data of individual stations to obtain a global mean trend, overcoming/estimating the uncertainty introduced by the spatial and temporal gaps in the available data. Useful estimates were obtained by the introduction of a special grid, subdividing the Earth's surface into 8,000 equal-area boxes, using the existing data to create virtual stations at the center of each of these boxes, and combining temperature anomalies (after assessing the radius of high correlation) rather than temperatures.
NASA Astrophysics Data System (ADS)
Guo, W. D.; Sun, S. F.; Qian, Y. F.
2002-05-01
The statistical relationship between soil thermal anomaly and short-term climate change is presented based on a typical case study. Furthermore, possible physical mechanisms behind the relationship are revealed through using an off-line land surface model with a reasonable soil thermal forcing at the bottom of the soil layer. In the first experiment, the given heat flux is 5 W m(-2) at the bottom of the soil layer (in depth of 6.3 m) for 3 months, while only a positive ground temperature anomaly of 0.06degreesC can be found compared to the control run. The anomaly, however, could reach 0.65degreesC if the soil thermal conductivity was one order of magnitude larger. It could be even as large as 0.81degreesC assuming the heat flux at bottom is 10 W m(-2). Meanwhile, an increase of about 10 W m(-2) was detected both for heat flux in soil and sensible heat on land surface, which is not neglectable to the short-term climate change. The results show that considerable response in land surface energy budget could be expected when the soil thermal forcing reaches a certain spatial-temporal scale. Therefore, land surface models should not ignore the upward heat flux from the bottom of the soil layer, Moreover, integration for a longer period of time and coupled land-atmosphere model are also necessary for the better understanding of this issues.
NASA Astrophysics Data System (ADS)
Han, Tingting; He, Shengping; Wang, Huijun; Hao, Xin
2017-04-01
The relationship between the tropical Indian Ocean (TIO) and East Asian summer monsoon/precipitation has been documented in many studies. However, the precursor signals of summer precipitation in the TIO sea surface temperature (SST), which is important for climate prediction, have drawn little attention. This study identified a strong relationship between early-spring TIO SST and subsequent early-summer precipitation in Northeast China (NEC) since the late 1980s. For 1961-1986, the correlations between early-spring TIO SST and early-summer NEC precipitation were statistically insignificant; for 1989-2014, they were positively significant. Since the late 1980s, the early-spring positive TIO SST anomaly was generally followed by a significant anomalous anticyclone over Japan; that facilitated anomalous southerly winds over NEC, conveying more moisture from the North Pacific. Further analysis indicated that an early TIO SST anomaly showed robust persistence into early summer. However, the early-summer TIO SST anomaly displayed a more significant influence on simultaneous atmospheric circulation and further affected NEC precipitation since the late 1980s. In 1989-2014, the early-summer Hadley and Ferrell cell anomalies associated with simultaneous TIO SST anomaly were much more significant and extended further north to mid-latitudes, which provided a dynamic foundation for the TIO-mid-latitude connection. Correspondingly, the TIO SST anomaly could lead to significant divergence anomalies over the Mediterranean. The advections of vorticity by the divergent component of the flow effectively acted as a Rossby wave source. Thus, an apparent Rossby wave originated from the Mediterranean and propagated east to East Asia; that further influenced the NEC precipitation through modulation to the atmospheric circulation (e.g., surface wind, moisture, vertical motion).
Oceanic Residual Depth Anomalies Maintained by a Shallow Asthenospheric Channel
NASA Astrophysics Data System (ADS)
Richards, F. D.; Hoggard, M.; White, N.
2016-12-01
Oceanic residual depth anomalies vary on wavelengths of 800-2,000 km and have amplitudesof ±1 km. There is also evidence from glacio-isostatic adjustment, plate motions and seismicanisotropy studies for the existence of a low-viscosity asthenospheric channel immediately beneaththe lithospheric plates. Here, we investigate whether global residual depth anomalies are consistentwith temperature variations within a sub-plate channel. For a given channel thickness, we convertresidual depth anomalies into temperature anomalies, assuming thermal isostasy alone (i.e. no mantle flow). Using aparameterisation that is calibrated against stacked oceanic shear wave velocity profiles, we convertthese temperature anomalies into velocity variations. We then compare the inferred velocity vari-ations with published seismic tomographic models. We find that thermal anomalies of ±100 °Cwithin a 150 ± 50 km thick channel yield a good match to > 95% of global residual depth anoma-lies. These temperature variations are consistent with geochemical evidence from mid-oceanic ridgebasalts and oceanic crustal thicknesses. The apparent success of this simple isostatic approach sup-ports the existence of a low-viscosity asthenospheric channel that plays a key role in controllingresidual depth anomalies. Far from subduction zones and from plume conduits, dynamic topog-raphy in the oceanic realm appears to be primarily controlled by temperature-induced buoyancyvariations within this channel.
Short-term climatic fluctuations forced by thermal anomalies
NASA Technical Reports Server (NTRS)
Hanna, A. F.
1982-01-01
A two level, global, spectral model using pressure as a vertical coordinate was developed. The system of equations describing the model is nonlinear and quasi-geostrophic (linear balance). Static stability is variable in the model. A moisture budget is calculated in the lower layer only. Convective adjustment is used to avoid supercritical temperature lapse rates. The mechanical forcing of topography is introduced as a vertical velocity at the lower boundary. Solar forcing is specified assuming a daily mean zenith angle. The differential diabatic heating between land and sea is paramterized. On land and sea ice surfaces, a steady state thermal energy equation is solved to calculate the surface temperature. On the oceans, the sea surface temperature is specified as the climatological average for January. The model is used to simulate the January, February and March circulations.
Magnetization of the oceanic crust: TRM or CRM?
NASA Technical Reports Server (NTRS)
Raymond, C. A.; Labrecque, J. L.
1987-01-01
A model was proposed in which chemical remanent magnetization (CRM) acquired within the first 20 Ma of crustal evolution may account for 80% of the bulk natural remanent magnetization (NRM) of older basalts. The CRM of the crust is acquired as the original thermoremanent magnetization (TRM) is lost through low temperature alteration. The CRM intensity and direction are controlled by the post-emplacement polarity history. This model explains several independent observations concerning the magnetization of the oceanic crust. The model accounts for amplitude and skewness discrepancies observed in both the intermediate wavelength satellite field and the short wavelength sea surface magnetic anomaly pattern. It also explains the decay of magnetization away from the spreading axis, and the enhanced magnetization of the Cretaceous Quiet Zones while predicting other systematic variations with age in the bulk magnetization of the oceanic crust. The model also explains discrepancies in the anomaly skewness parameter observed for anomalies of Cretaceous age. Further studies indicate varying rates of TRM decay in very young crust which depicts the advance of low temperature alteration through the magnetized layer.
NASA Technical Reports Server (NTRS)
Raymond, C. A.; Labrecque, J. L.
1987-01-01
A model was proposed in which chemical remanent magnetization (CRM) acquired within the first 20 Ma of crustal evolution may account for 80 percent of the bulk natural remanent magnetization (NRM) of older basalts. The CRM of the crust is acquired as the original thermoremanent magnetization (TRM) is lost through low temperature alteration. The CRM intensity and direction are controlled by the post-emplacement polarity history. This model explains several independent observations concerning the magnetization of the oceanic crust. The model accounts for amplitude and skewness dicrepancies observed in both the intermediate wavelength satellite field and the short wavelength sea surface magnetic anomaly pattern. It also explains the decay of magnetization away from the spreading axis, and the enhanced magnetization of the Cretaceous Quiet Zones while predicting other systematic variations with age in the bulk magnetization of the oceanic crust. The model also explains discrepancies in the anomaly skewness parameter observed for anomalies of Cretaceous age. Further studies indicate varying rates of TRM decay in very young crust which depicts the advance of low temperature alteration through the magnetized layer.
Anatomy of North Pacific Decadal Variability.
NASA Astrophysics Data System (ADS)
Schneider, Niklas; Miller, Arthur J.; Pierce, David W.
2002-03-01
A systematic analysis of North Pacific decadal variability in a full-physics coupled ocean-atmosphere model is executed. The model is an updated and improved version of the coupled model studied by Latif and Barnett. Evidence is sought for determining the details of the mechanism responsible for the enhanced variance of some variables at 20-30-yr timescales. The possible mechanisms include a midlatitude gyre ocean-atmosphere feedback loop, stochastic forcing, remote forcing, or sampling error.Decadal variability in the model is expressed most prominently in anomalies of upper-ocean streamfunction, sea surface temperature (SST), and latent surface heat flux in the Kuroshio-Oyashio extension (KOE) region off Japan. The decadal signal off Japan is initiated by changes in strength and position of the Aleutian low. The atmospheric perturbations excite SST anomalies in the central and eastern North Pacific (with opposing signs and canonical structure). The atmospheric perturbations also change the Ekman pumping over the North Pacific, which excites equivalent barotropic Rossby waves that carry thermocline depth perturbations toward the west. This gyre adjustment results in a shift in the border between subtropical and subpolar gyres after about five years. This process consequently excites SST anomalies (bearing the same sign as the central North Pacific) in the KOE region. The SST anomalies are generated by subsurface temperature anomalies that are brought to the surface during winter by deep mixing and are damped by air-sea winter heat exchange (primarily latent heat flux). This forcing of the atmosphere by the ocean in the KOE region is associated with changes of winter precipitation over the northwestern Pacific Ocean. The polarity of SST and Ekman pumping is such that warm central and cool eastern Pacific anomalies are associated with a deep thermocline, a poleward shift of the border between subtropical and subpolar gyres, and warm SST anomalies and an increase of rain in the KOE region.The preponderance of variance at decadal timescales in the KOE results from the integration of stochastic Ekman pumping along Rossby wave trajectories. The Ekman pumping is primarily due to atmospheric variability that expresses itself worldwide including in the tropical Pacific. A positive feedback between the coupled model KOE SST (driven by the ocean streamfunction) and North Pacific Ekman pumping is consistent with the enhanced variance of the coupled model at 20-30-yr periods. However, the time series are too short to unambiguously distinguish this positive feedback hypothesis from sampling variability. No evidence is found for a midlatitude gyre ocean-atmosphere delayed negative feedback loop.Comparisons with available observations confirm the seasonality of the forcing, the up to 5-yr time lag between like-signed central North Pacific and KOE SST anomalies, and the associated damping of SST in the KOE region by the latent heat flux. The coupled model results also suggest that observed SST anomalies in the KOE region may be predictable from the history of the wind-stress curl over the North Pacific.
Kohn Anomaly and Phase Stability in Group VB Transition Metals
Landa, Alexander; Soderlind, Per; Naumov, Ivan; ...
2018-03-26
In the periodic table, only a few pure metals exhibit lattice or magnetic instabilities associated with Fermi surface nesting, the classical examples being α-U and Cr. Whereas α-U displays a strong Kohn anomaly in the phonon spectrum that ultimately leads to the formation of charge density waves (CDWs), Cr is known for its nesting-induced spin density waves (SDWs). Recently, it has become clear that a pronounced Kohn anomaly and the corresponding softening in the elastic constants is also the key factor that controls structural transformations and mechanical properties in compressed group VB metals—materials with relatively high superconducting critical temperatures. Thismore » article reviews the current understanding of the structural and mechanical behavior of these metals under pressure with an introduction to the concept of the Kohn anomaly and how it is related to the important concept of Peierls instability. We review both experimental and theoretical results showing different manifestations of the Kohn anomaly in the transverse acoustic phonon mode TA (ξ00) in V, Nb, and Ta. Specifically, in V the anomaly triggers a structural transition to a rhombohedral phase, whereas in Nb and Ta it leads to an anomalous reduction in yield strength.« less
Kohn Anomaly and Phase Stability in Group VB Transition Metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landa, Alexander; Soderlind, Per; Naumov, Ivan
In the periodic table, only a few pure metals exhibit lattice or magnetic instabilities associated with Fermi surface nesting, the classical examples being α-U and Cr. Whereas α-U displays a strong Kohn anomaly in the phonon spectrum that ultimately leads to the formation of charge density waves (CDWs), Cr is known for its nesting-induced spin density waves (SDWs). Recently, it has become clear that a pronounced Kohn anomaly and the corresponding softening in the elastic constants is also the key factor that controls structural transformations and mechanical properties in compressed group VB metals—materials with relatively high superconducting critical temperatures. Thismore » article reviews the current understanding of the structural and mechanical behavior of these metals under pressure with an introduction to the concept of the Kohn anomaly and how it is related to the important concept of Peierls instability. We review both experimental and theoretical results showing different manifestations of the Kohn anomaly in the transverse acoustic phonon mode TA (ξ00) in V, Nb, and Ta. Specifically, in V the anomaly triggers a structural transition to a rhombohedral phase, whereas in Nb and Ta it leads to an anomalous reduction in yield strength.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Huilin; Zhang, Shuai; Fu, Rong
Land surface temperatures (LSTs) within tropical forests contribute to climate variations. However, observational data are very limited in such regions. This study used passive microwave remote sensing data from the Special Sensor Microwave/Imager (SSM/I) and the Special Sensor Microwave Imager Sounder (SSMIS), providing observations under all weather conditions, to investigate the LST over the Amazon and Congo rainforests. The SSM/I and SSMIS data were collected from 1996 to 2012. The morning and afternoon observations from passive microwave remote sensing facilitate the investigation of the interannual changes of LST anomalies on a diurnal basis. As a result of the variability ofmore » cloud cover and the corresponding reduction of solar radiation, the afternoon LST anomalies tend to vary more than the morning LST anomalies. The dominant spatial and temporal patterns for interseasonal variations of the LST anomalies over the tropical rainforest were analyzed. The impacts of droughts and El Niños on this LST were also investigated. Lastly, the differences between early morning and late afternoon LST anomalies were identified by the remote sensing product, with the morning LST anomalies controlled by humidity (according to comparisons with the National Centers for Environmental Prediction (NCEP) reanalysis data).« less
Climatic anomaly affects the immune competence of California sea lions
Banuet-Martínez, Marina; Espinosa-de Aquino, Wendy; Elorriaga-Verplancken, Fernando R.; Flores-Morán, Adriana; García, Olga P.; Camacho, Mariela
2017-01-01
The past decades have been characterized by a growing number of climatic anomalies. As these anomalies tend to occur suddenly and unexpectedly, it is often difficult to procure empirical evidence of their effects on natural populations. We analysed how the recent sea surface temperature (SST) anomaly in the northeastern Pacific Ocean affects body condition, nutritional status, and immune competence of California sea lion pups. We found that pup body condition and blood glucose levels of the pups were lower during high SST events, although other biomarkers of malnutrition remained unchanged, suggesting that pups were experiencing early stages of starvation. Glucose-dependent immune responses were affected by the SST anomaly; specifically, pups born during high SST events had lower serum concentrations of IgG and IgA, and were unable to respond to an immune challenge. This means that not only were pups that were born during the SST anomaly less able to synthesize protective antibodies; they were also limited in their ability to respond rapidly to nonspecific immune challenges. Our study provides empirical evidence that atypical climatic conditions can limit energetic reserves and compromise physiological responses that are essential for the survival of a marine top predator. PMID:28658317
NASA Astrophysics Data System (ADS)
Vasterling, Margarete; Schloemer, Stefan; Fischer, Christian; Ehrler, Christoph
2010-05-01
Spontaneous combustion of coal and resulting coal fires lead to very high temperatures in the subsurface. To a large amount the heat is transferred to the surface by convective and conductive transport inducing a more or less pronounced thermal anomaly. During the past decade satellite-based infrared-imaging (ASTER, MODIS) was the method of choice for coal fire detection on a local and regional scale. However, the resolution is by far too low for a detailed analysis of single coal fires which is essential prerequisite for corrective measures (i.e. fire fighting) and calculation of carbon dioxide emission based on a complex correlation between energy release and CO2 generation. Consequently, within the framework of the Sino-German research project "Innovative Technologies for Exploration, Extinction and Monitoring of Coal Fires in Northern China", a new concept was developed and successfully tested. An unmanned aerial vehicle (UAV) was equipped with a lightweight camera for thermografic (resolution 160 by 120 pixel, dynamic range -20 to 250°C) and for visual imaging. The UAV designed as an octocopter is able to hover at GPS controlled waypoints during predefined flight missions. The application of a UAV has several advantages. Compared to point measurements on the ground the thermal imagery quickly provides the spatial distribution of the temperature anomaly with a much better resolution. Areas otherwise not accessible (due to topography, fire induced cracks, etc.) can easily be investigated. The results of areal surveys on two coal fires in Xinjiang are presented. Georeferenced thermal and visual images were mosaicked together and analyzed. UAV-born data do well compared to temperatures measured directly on the ground and cover large areas in detail. However, measuring surface temperature alone is not sufficient. Simultaneous measurements made at the surface and in roughly 15cm depth proved substantial temperature gradients in the upper soil. Thus the temperature measured at the surface underestimates the energy emitted by the subsurface coal fire. In addition, surface temperature is strongly influenced by solar radiation and the prevailing ambient conditions (wind, temperature, humidity). As a consequence there is no simple correlation between surface and subsurface soil temperature. Efforts have been made to set up a coupled energy transport and energy balance model for the near surface considering thermal conduction, solar irradiation, thermal radiative energy and ambient temperature so far. The model can help to validate space-born and UAV-born thermal imagery and link surface to subsurface temperature but depends on in-situ measurements for input parameter determination and calibration. Results obtained so far strongly necessitate the integration of different data sources (in-situ / remote; point / area; local / medium scale) to obtain a reliable energy release estimation which is then used for coal fire characterization.
Tropopause Pressure May Explain California Droughts and Wet Period
NASA Astrophysics Data System (ADS)
Mazdiyasni, O.; AghaKouchak, A.
2017-12-01
Sea surface temperatures and teleconnection patterns such as El Nino/La Nina are considered the main culprits behind major California droughts. However, the underlying relationship between sea surface temperatures (SSTs) and precipitation anomalies is relatively weak. In 2015-2016 the most extreme El Nino did not lead to a wet season as expected, which triggered a series of studies on this topic. Here we show that tropopause level pressure in a region in the northeastern Pacific Ocean (dubbed the PARS-NEP region) plays a major role in whether California will experience a wet or dry year and often dominates the role of SST-based teleconnections. Our results indicate that pressure in the PARS-NEP region Granger-Causes precipitation in California during the wet season. We show that when pressure in the PARS-NEP region is in the lower (upper) tertile, 85% of wet seasons across California have a positive (negative) precipitation anomaly. The observed relationship between PARS-NEP and California precipitation is stronger than all the commonly used SST-based climatic indictors frequently used for understanding causes of droughts.
Self-potential monitoring of a thermal pulse advecting through a preferential flow path
NASA Astrophysics Data System (ADS)
Ikard, S. J.; Revil, A.
2014-11-01
There is a need to develop new non-intrusive geophysical methods to detect preferential flow paths in heterogeneous porous media. A laboratory experiment is performed to non-invasively localize a preferential flow pathway in a sandbox using a heat pulse monitored by time-lapse self-potential measurements. Our goal is to investigate the amplitude of the intrinsic thermoelectric self-potential anomalies and the ability of this method to track preferential flow paths. A negative self-potential anomaly (-10 to -15 mV with respect to the background signals) is observed at the surface of the tank after hot water is injected in the upstream reservoir during steady state flow between the upstream and downstream reservoirs of the sandbox. Repeating the same experiment with the same volume of water injected upstream, but at the same temperature as the background pore water, produces a negligible self-potential anomaly. The negative self-potential anomaly is possibly associated with an intrinsic thermoelectric effect, with the temperature dependence of the streaming potential coupling coefficient, or with an apparent thermoelectric effect associated with the temperature dependence of the electrodes themselves. We model the experiment in 3D using a finite element code. Our results show that time-lapse self-potential signals can be used to track the position of traveling heat flow pulses in saturated porous materials, and therefore to find preferential flow pathways, especially in a very permeable environment and in real time. The numerical model and the data allows quantifying the intrinsic thermoelectric coupling coefficient, which is on the order of -0.3 to -1.8 mV per degree Celsius. The temperature dependence of the streaming potential during the experiment is negligible with respect to the intrinsic thermoelectric coupling. However, the temperature dependence of the potential of the electrodes needs to be accounted for and is far from being negligible if the electrodes experience temperature changes.
NASA Astrophysics Data System (ADS)
Akhoondzadeh, Mehdi; De Santis, Angelo; Marchetti, Dedalo; Piscini, Alessandro; Cianchini, Gianfranco
2018-01-01
After DEMETER satellite mission (2004-2010), the launch of the Swarm satellites (Alpha (A), Bravo (B) and Charlie (C)) has created a new opportunity in the study of earthquake ionospheric precursors. Nowadays, there is no doubt that multi precursors analysis is a necessary phase to better understand the LAIC (Lithosphere Atmosphere Ionosphere Coupling) mechanism before large earthquakes. In this study, using absolute scalar magnetometer, vector field magnetometer and electric field instrument on board Swarm satellites, GPS (Global Positioning System) measurements, MODIS-Aqua satellite and ECMWF (European Centre for Medium-Range Weather Forecasts) data, the variations of the electron density and temperature, magnetic field, TEC (Total Electron Content), LST (Land Surface Temperature), AOD (Aerosol Optical Depth) and SKT (SKin Temperature) have been surveyed to find the potential seismic anomalies around the strong Ecuador (Mw = 7.8) earthquake of 16 April 2016. The four solar and geomagnetic indices: F10.7, Dst, Kp and ap were investigated to distinguish whether the preliminary detected anomalies might be associated with the solar-geomagnetic activities instead of the seismo-ionospheric anomalies. The Swarm satellites (A, B and C) data analysis indicate the anomalies in time series of electron density variations on 7, 11 and 12 days before the event; the unusual variations in time series of electron temperature on 8 days preceding the earthquake; the analysis of the magnetic field scalar and vectors data show the considerable anomalies 52, 48, 23, 16, 11, 9 and 7 days before the main shock. A striking anomaly is detected in TEC variations on 1 day before earthquake at 9:00 UTC. The analysis of MODIS-Aqua night-time images shows that LST increase unusually on 11 days prior to main shock. In addition, the AOD variations obtained from MODIS measurements reach the maximum value on 10 days before the earthquake. The SKT around epicentral region presents anomalous higher value about 40 days before the earthquake. It should be noted that the different lead times of the observed anomalies could be acknowledged based on a reasonable LAIC earthquake mechanism. Our results emphasize that the Swarm satellites measurements play an undeniable role in progress the studies of the ionospheric precursors.
NASA Astrophysics Data System (ADS)
Spencer, Roy W.; Christy, John R.
1992-08-01
TIROS-N satellite Microwave Sounding Unit (MSU) channel 2 data from different view angles across the MSU man swath are combined to remove the influence of the lower stratosphere and much of the upper troposphere on the measured brightness temperatures. The retrieval provides a sharper averaging kernel than the raw channel 2 weighting function, with a peak lowered from 50 kPa to 70 kPa and with only slightly more surface influence than raw channel 2. Monthly 2.5° gridpoint anomalies of this tropospheric retrieval compared between simultaneously operating satellites indicate close agreement, 0.15°C in the tropics to around 0.30°C over much of the higher latitudes. The agreement is not as close as with raw channel 2 anomalies because synoptic-scale temperature gradient information across the 2000-km swath of the MSU is lost in the retrieval procedure and because the retrieval involves the magnification of a small difference between two large numbers. Single gridpoint monthly anomaly correlations between the satellite measurements and the radiosonde calculations range from around 0.95 at high latitudes to below 0.8 in the tropical west Pacific, with standard errors of estimate of 0.16°C at Guam to around 0.50°C at high-latitude continental stations. Calculation of radiosonde temperature with a static weighting function instead of the radiative transfer equation degrades the standard errors by an average of less than 0.04°C. Of various standard tropospheric layers, the channel 2 retrieval anomalies correlate best with radiosonde 100-50- or 100-40-kPa-thickness anomalies. A comparison between global and hemispheric anomalies computed for raw channel 2 data versus the tropospheric retrieval show a correction in the 1979-90 time series for the volcano-induced stratospheric warming of 1982-83, which was independently observed by MSU channel 4. This correction leads to a slightly greater tropospheric warming trend in the 12-year time series (1979-90) for the tropospheric retrieval [0.039°C (±0.03°C) per decade] than for channel 2 alone [0.022°C (±0.02°C) per decade].
NASA Astrophysics Data System (ADS)
Bayer, P.; Menberg, K.; Zhu, K.; Blum, P.
2012-12-01
In the subsurface of many cities there are widespread and persistent thermal anomalies. These so-called subsurface urban heat islands (UHIs), which also stimulate warming of urban aquifers, are triggered by various processes. Possible heat sources are basements of buildings, leakage of sewage systems, buried district heating networks, re-injection of cooling water and solar irradiation on paved surfaces. In the current study, the reported groundwater temperatures in several Central European cities, such as Berlin, Cologne (Germany) and Zurich (Switzerland) are compared. Available data sets are supplemented by temperature measurements and depth profiles in observation wells. Trend analyses are conducted with time series of groundwater temperatures, and three-dimensional groundwater temperature maps are provided. In all investigated cities, pronounced positive temperature anomalies are present. The distribution of groundwater temperatures appears to be spatially and temporally highly variable. Apparently, the increased heat input into the urban subsurface is controlled by very local and site-specific parameters. In the long-run, the combination of various heat sources results in an extensive temperature increase. In many cases, the maximum temperature elevation is found close to the city center. Regional groundwater temperature differences between the city center and the rural background are up to 5 °C, with local hot spots of even more pronounced anomalies. Particular heat sources, like cooling water injections or case-specific underground constructions, can cause local temperatures > 20 °C in the subsurface. Examination of the long-term variations in isotherm maps shows that temperatures have increased by about 1 °C in the city, as well as in the rural background areas over the last decades. This increase could be reproduced with trend analysis of temperature data gathered from several groundwater wells. Comparison between groundwater and air temperatures in the city of Karlsruhe (Germany), for example, also indicates a spatial correlation between the urban heat island effect in the subsurface and in the atmosphere.
System for closure of a physical anomaly
Bearinger, Jane P; Maitland, Duncan J; Schumann, Daniel L; Wilson, Thomas S
2014-11-11
Systems for closure of a physical anomaly. Closure is accomplished by a closure body with an exterior surface. The exterior surface contacts the opening of the anomaly and closes the anomaly. The closure body has a primary shape for closing the anomaly and a secondary shape for being positioned in the physical anomaly. The closure body preferably comprises a shape memory polymer.
Large-scale sea surface temperature variability from satellite and shipboard measurements
NASA Technical Reports Server (NTRS)
Bernstein, R. L.; Chelton, D. B.
1985-01-01
A series of satellite sea surface temperature intercomparison workshops were conducted under NASA sponsorship at the Jet Propulsion Laboratory. Three different satellite data sets were compared with each other, with routinely collected ship data, and with climatology, for the months of November 1979, December 1981, March 1982, and July 1982. The satellite and ship data were differenced against an accepted climatology to produce anomalies, which in turn were spatially and temporally averaged into two-degree latitude-longitude, one-month bins. Monthly statistics on the satellite and ship bin average temperatures yielded rms differences ranging from 0.58 to 1.37 C, and mean differences ranging from -0.48 to 0.72 C, varying substantially from month to month, and sensor to sensor.
Savelyev, Alexander; Sugumaran, Ramanathan
2008-01-01
The goal of this project was to map the surface temperature of the University of Northern Iowa campus using high-resolution thermal infrared aerial imageries. A thermal camera with a spectral bandwidth of 3.0-5.0 μm was flown at the average altitude of 600 m, achieving ground resolution of 29 cm. Ground control data was used to construct the pixel- to-temperature conversion model, which was later used to produce temperature maps of the entire campus and also for validation of the model. The temperature map then was used to assess the building rooftop conditions and steam line faults in the study area. Assessment of the temperature map revealed a number of building structures that may be subject to insulation improvement due to their high surface temperatures leaks. Several hot spots were also identified on the campus for steam pipelines faults. High-resolution thermal infrared imagery proved highly effective tool for precise heat anomaly detection on the campus, and it can be used by university facility services for effective future maintenance of buildings and grounds. PMID:27873800
Interannual coherent variability of SSTA and SSHA in the Tropical Indian Ocean
NASA Astrophysics Data System (ADS)
Feng, J. Q.
2012-01-01
Sea surface height derived from the multiple ocean satellite altimeter missions (TOPEX/Poseidon, Jason-1, ERS, Envisat et al.) and sea surface temperature from National Centers for Environmental Prediction (NCEP) over 1993-2008 are analyzed to investigate the coherent patterns between the interannual variability of the sea surface and subsurface in the Tropical Indian Ocean, by jointly adopting Singular Value Decomposition (SVD) and Extended Associate Pattern Analysis (EAPA) methods. Results show that there are two dominant coherent modes with the nearly same main period of about 3-5 yr, accounting for 86 % of the total covariance in all, but 90° phase difference between them. The primary pattern is characterized by a east-west dipole mode associated with the mature phase of ENSO, and the second presents a sandwich mode having one sign anomalies along Sumatra-Java coast and northeast of Madagascar, whilst an opposite sign between the two regions. The robust correlations of the sea surface height anomaly (SSHA) with sea surface temperature anomaly (SSTA) in the leading modes indicate a strong interaction between them, though the highest correlation coefficient appears with a time lag. And there may be some physical significance with respect to ocean dynamics implied in SSHA variability. Analyzing results show that the features of oceanic waves with basin scale, of which the Rossby wave is prominent, are apparent in the dominant modes. It is further demonstrated from the EAPA that the equatorial eastward Kelvin wave and off-equatorial westward Rossby wave as well as their reflection in the east and west boundary, respectively, are important dynamic mechanisms in the evolution of the two leading coherent patterns. Results of the present study suggest that the upper ocean thermal variations on the timescale of interannual coherent with the ocean dynamics in spatial structure and temporal evolution are mainly attributed to the ocean waves.
Impacts of winter NPO on subsequent winter ENSO: sensitivity to the definition of NPO index
NASA Astrophysics Data System (ADS)
Chen, Shangfeng; Wu, Renguang
2018-01-01
This study investigates the linkage between boreal winter North Pacific Oscillation (NPO) and subsequent winter El Niño-Southern Oscillation (ENSO) based on seven different NPO indices. Results show that the influence of winter NPO on the subsequent winter El Niño is sensitive to how the NPO is defined. A significant NPO-El Niño connection is obtained when the NPO-related anomalous cyclone over the subtropical North Pacific extends to near-equatorial regions. The anomalous cyclone induces warm sea surface temperature (SST) anomalies through modulating surface heat fluxes. These warm SST anomalies are able to maintain into the following spring and summer through an air-sea coupled process and in turn induce significant westerly wind anomalies over the tropical western Pacific. In contrast, the NPO-El Niño relationship is unclear when the NPO-related anomalous cyclone over the subtropical North Pacific is confined to off-equatorial regions and cannot induce significant warm SST anomalies over the subtropical North Pacific. The present study suggests that definitions of NPO should be taken into account when using NPO to predict ENSO. In particular, we recommend defining the NPO index based on the empirical orthogonal function technique over appropriate region that does not extend too far north.
NASA Technical Reports Server (NTRS)
Lau, K. M.; Kim, K. M.; Li, J. Y.
2001-01-01
In this Chapter, aspects of global teleconnections associated with the interannual variability of the Asian summer monsoon (ASM) are discussed. The basic differences in the basic dynamics of the South Asian Monsoon and the East Asian monsoon, and their implications on global linkages are discussed. Two teleconnection modes linking ASM variability to summertime precipitation over the continental North America were identified. These modes link regional circulation and precipitation anomalies over East Asia and continental North America, via coupled atmosphere-ocean variations over the North Pacific. The first mode has a large zonally symmetrical component and appears to be associated with subtropical jetstream variability and the second mode with Rossby wave dispersion. Both modes possess strong sea surface temperature (SST) expressions in the North Pacific. Results show that the two teleconnection modes may have its origin in intrinsic modes of sea surface temperature variability in the extratropical oceans, which are forced in part by atmospheric variability and in part by air-sea interaction. The potential predictability of the ASM associated with SST variability in different ocean basins is explored using a new canonical ensemble correlation prediction scheme. It is found that SST anomalies in tropical Pacific, i.e., El Nino, is the most dominant forcing for the ASM, especially over the maritime continent and eastern Australia. SST anomalies in the India Ocean may trump the influence from El Nino in western Australia and western maritime continent. Both El Nino, and North Pacific SSTs contribute to monsoon precipitation anomalies over Japan, southern Korea, northern and central China. By optimizing SST variability signals from the world ocean basins using CEC, the overall predictability of ASM can be substantially improved.
Atmospheric Teleconnection over Eurasia Induced by Aerosol Radiative Forcing During Boreal Spring
NASA Technical Reports Server (NTRS)
Kim, Maeng-Ki; Lau, K. M.; Chin, Mian; Kim, Kyu-Myong; Sud, Y. C.; Walker, Greg K.
2005-01-01
The direct effects of aerosols on global and regional climate during boreal spring are investigated based on simulations using the NASA Global Modeling and Assimilation Office (GMAO) finite-volume general circulation model (fvGCM) with Microphyics of clouds in Relaxed Arakawa Schubert Scheme (McRAS). The aerosol loading are prescribed from three-dimensional monthly distribution of tropospheric aerosols viz., sulfate, black carbon, organic carbon, soil dust, and sea salt from output of the Goddard Ozone Chemistry Aerosol Radiation and Transport model (GOCART). The aerosol extinction coefficient, single scattering albedo, and asymmetric factor are computed as wavelength-dependent radiative forcing in the radiative transfer scheme of the fvGCM, and as a function of the aerosol loading and ambient relative humidity. We find that anomalous atmospheric heat sources induced by absorbing aerosols (dust and black carbon) excites a planetary scale teleconnection pattern in sea level pressure, temperature and geopotential height spanning North Africa through Eurasia to the North Pacific. Surface cooling due to direct effects of aerosols is found in the vicinity and downstream of the aerosol source regions, i.e., South Asia, East Asia, and northern and western Africa. Additionally, atmospheric heating is found in regions with large loading of dust (over Northern Africa, and Middle East), and black carbon (over South-East Asia). Paradoxically, the most pronounced feature in aerosol-induced surface temperature is an east-west dipole anomaly with strong cooling over the Caspian Sea, and warming over central and northeastern Asia, where aerosol concentration are low. Analyses of circulation anomalies show that the dipole anomaly is a part of an atmospheric teleconnection driven by atmospheric heating anomalies induced by absorbing aerosols in the source regions, but the influence was conveyed globally through barotropic energy dispersion and sustained by feedback processes associated with the regional circulations.
NASA Astrophysics Data System (ADS)
Ciani, Daniele; Carton, Xavier; Barbosa Aguiar, Ana Claudia; Peliz, Alvaro; Bashmachnikov, Igor; Ienna, Federico; Chapron, Bertrand
2017-04-01
Subsurface-intensified eddies are ubiquitous in the world ocean. They can be generated by exchanges of water masses between semi-enclosed evaporation basins and the open ocean or by deep convection. Past and recent studies have shown that these eddies are carriers of large amounts of heat and salt, that they are coherent over inter-annual timescales and that they can migrate for several thousands of miles from their origination areas towards the open ocean. Hence, subsurface-intensified eddies can influence the three-dimensional distribution of oceanic tracers at global scale. The synoptic knowledge of the eddies positions and mean pathways is then crucial for evaluating temperature and salinity budgets in the world ocean. At present day, satellite sensors constitute the ideal tool for the synoptic and global scale observations of the ocean. Since they only provide informations on the oceanic surface, we characterized the signatures that subsurface eddies generate at the sea-surface, to determine the extent to which they can be isolated from the surrounding surface turbulence and be considered as a trace of an underlying eddy. We studied the surface signature of subsurface-intensified anticyclones (Mediterranean Water Eddies - Meddies) in a realistic, long-term (20 years) and high resolution simulation (dx = 3 km) based on the ROMS model. The novelty and advantage of this approach is given by the simultaneous availability of the full 3D eddies characteristics, the ones of the background ocean and of the sea-surface (in terms of sea-surface height, temperature and salinity). This also allowed us to speculate on a synergy between different satellite observations for the automatic detection of subsurface eddies from space. The along trajectory properties and surface signatures of more than 90 long-lived Meddies were analyzed. We showed that the Meddies constantly generate positive anomalies in sea-surface height and that these anomalies are principally related to the Meddy potential vorticity structure at depth (around 1000 m below the sea-surface). Such anomalies were long-lived, mostly migrated exhibiting southwestward trajectories, their intensities were O(10 cm) and extended horizontally up to more than 300 km (around 1.5 times the Meddy diameter). On the other hand, the Meddies thermohaline surface signatures proved to be mostly dominated by the local surface conditions and their structure poorly correlated to the Meddy structure at depth (e.g. the Meddy volume-integrated salt and temperature content). These results point out that satellite altimetry is the most suitable approach to track subsurface-intensified eddies from observations of the sea-surface, also encouraging the use of future high-resolution altimetric observations (e.g. SWOT) to detect subsurface oceanic motions from satellite sensors.
Statistical downscaling forecast of Chinese winter temperature based on the autumn SST anomalies
NASA Astrophysics Data System (ADS)
Lu, J.
2017-12-01
This study investigates the impacts of the autumn sea surface temperature anomalies (SSTA) on interannual variations of Chinese winter temperature, and discusses the potential predictability of December-January-February (DJF) 2-m air temperature anomalies (TSA) over China based on the intimate linkage between the DJF TSA and autumn SSTA. According to the Empirical Orthogonal Function (EOF) analysis, three leading EOF modes jointly account for 80% of the total TSA variances and are characterized by a homogeneous spatial pattern, a north-south seesaw and a cross structure. The first three EOFs exhibit a stable feature revealed by cross-validation, suggesting the potential predictability of the DJF TSA. The EOF1 mode is influenced by changes in the intensities of the Siberian High (SH), East Asian winter monsoon (EAWM) and East Asian Trough related to an Eurasian pattern teleconnection, which can be tracked back to September-October-November (SON) SSTA associated with two SSTA tripole patterns in the North Pacific and North Atlantic, a dipole mode in the Indian Ocean and an ENSO-like mode in the equatorial and subtropical Pacific. However, the Arctic Oscillation plays an important role in the second mode. The teleconnection connecting the atmospheric circulation anomalies in two hemispheres indicates that the configuration of global SON SSTA induces the two annular modes and causes a TSA oscillation between the northern and southern parts of China. The third mode is related to the westward shift of the SH and western pathway EAWM, which are attributed to two dipole modes in the North Pacific and South Pacific, Atlantic Multidecadal Oscillation and Indian Ocean Basin Mode. Therefore a physically-based statistical model is established based on autumn SSTA indices. Cross-validation suggests that this statistical downscaling forecast model shows a good performance in predicting the DJF TSA.
The 2014/15 Warm Anomaly in the Southern California Current - Physical and Biological Responses
NASA Astrophysics Data System (ADS)
Ralf, G.
2016-02-01
The 2014/15 Warm Anomaly (WarmA) off Southern California manifested itself in the summer of 2014 as an anomalously warm surface layer in the Southern Calif. Bight with low concentrations of Chl a. This layer intensified in spatial extent, covering the entire CalCOFI surface area by the winter of 2015 with temperature anomalies 3 StDev larger than long-term averages. Concentrations of nutrients, phytoplankton biomass and rates of primary production were extremely low during the WarmA. The evolution of the WarmA as well as the 2015/16 El Niño with time will be compared to the evolution of the weak and strong El Niño's observed over the last 60 years. These events provide unique insights in the controls of phytoplankton biomass and production in the southern California Current System. Preliminary analyses suggest that the response of the phytoplankton community to the WarmA was consistent with responses to similar forcing during the prior decade. This presentation is based on data collected during the quarterly CalCOFI cruises by the CalCOFI and the CCE-LTER groups.
Taniguchi, Makoto; Shimada, Jun; Fukuda, Yoichi; Yamano, Makoto; Onodera, Shin-ichi; Kaneko, Shinji; Yoshikoshi, Akihisa
2009-04-15
Anthropogenic effects in both Osaka and Bangkok were evaluated to compare the relationships between subsurface environment and the development stage of both cities. Subsurface thermal anomalies due to heat island effects were found in both cities. The Surface Warming Index (SWI), the departure depth from the steady geothermal gradient, was used as an indicator of the heat island effect. SWI increases (deeper) with the magnitude of heat island effect and the elapsed time starting from the surface warming. Distributions of subsurface thermal anomalies due to the heat island effect agreed well with the distribution of changes in air temperature due to the same process, which is described by the distribution of population density in both Osaka and Bangkok. Different time lags between groundwater depression and subsidence in the two cities was found. This is attributed to differences in hydrogeologic characters, such as porosity and hydraulic conductivity. We find that differences in subsurface degradations in Osaka and Bangkok, including subsurface thermal anomalies, groundwater depression, and land subsidence, depends on the difference of the development stage of urbanization and hydrogeological characters.
Superconducting symmetries and magnetic responses of uranium heavy-fermion systems UBe13 and UPd2Al3
NASA Astrophysics Data System (ADS)
Shimizu, Yusei; Kittaka, Shunichiro; Sakakibara, Toshiro; Aoki, Dai
2018-05-01
Low-temperature thermodynamic investigation for UBe13 and UPd2Al3 were performed in order to gain insight into their unusual ground states of 5 f electrons. Our heat-capacity data for the cubic UBe13 strongly suggest that nodal quasiparticles are absent and its superconducting (SC) gap is fully open over the Fermi surface. Moreover, two unusual thermodynamic anomalies are also observed in UBe13 at ∼ 3 T and ∼ 9 T; the lower-field anomaly is seen only in the SC mixed state by dc magnetization M (H) as well as heat-capacity C (H) , while the higher-field anomaly appears for C (H) in the normal phase above the upper critical field. On the other hand, field-orientation dependence of the heat capacity in the hexagonal UPd2Al3 shows a significantly anisotropic behavior of C (H) ∝H 1 / 2 , reflecting the nodal gap structure of this system. Our result strongly suggests the presence of a horizontal line node on the Fermi surface with heavy effective mass in UPd2Al3.
Investigation of atmospheric anomalies associated with Kashmir and Awaran Earthquakes
NASA Astrophysics Data System (ADS)
Mahmood, Irfan; Iqbal, Muhammad Farooq; Shahzad, Muhammad Imran; Qaiser, Saddam
2017-02-01
The earthquake precursors' anomalies at diverse elevation ranges over the seismogenic region and prior to the seismic events are perceived using Satellite Remote Sensing (SRS) techniques and reanalysis datasets. In the current research, seismic precursors are obtained by analyzing anomalies in Outgoing Longwave Radiation (OLR), Air Temperature (AT), and Relative Humidity (RH) before the two strong Mw>7 earthquakes in Pakistan occurred on 8th October 2005 in Azad Jammu Kashmir with Mw 7.6, and 24th September 2013 in Awaran, Balochistan with Mw 7.7. Multi-parameter data were computed based on multi-year background data for anomalies computation. Results indicate significant transient variations in observed parameters before the main event. Detailed analysis suggests presence of pre-seismic activities one to three weeks prior to the main earthquake event that vanishes after the event. These anomalies are due to increase in temperature after release of gases and physical and chemical interactions on earth surface before the earthquake. The parameter variations behavior for both Kashmir and Awaran earthquake events are similar to other earthquakes in different regions of the world. This study suggests that energy release is not concentrated to a single fault but instead is released along the fault zone. The influence of earthquake events on lightning were also investigated and it was concluded that there is a significant atmospheric lightning activity after the earthquake suggesting a strong possibility for an earthquake induced thunderstorm. This study is valuable for identifying earthquake precursors especially in earthquake prone areas.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature around South Canyon Hot Springs as identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots.
NASA Astrophysics Data System (ADS)
Gay, S. M., III
2016-02-01
Using spatial principal component (PC) analysis, the variation in freshwater contents and temperatures in the upper 100m are quantified for small fjords and primary basins within Prince William Sound, Alaska. Two EOF modes explain over 90% of the variance in the freshwater content anomalies (FWCA) giving the total magnitude and vertical structure of the FWCAs respectively. Large, positive PC amplitudes (PCAs) of modes 1 and 2 indicate stratification from surface freshening, shown also by negative surface salinity anomalies, whereas positive FWCA PCAs in conjunction with negative mode 2 amplitudes infer higher subsurface freshening due to either vertical mixing or advection. In contrast, basins with negative mode 1 amplitudes are typically salty to slightly brackish, but the mode 2 PCAs determine if the FWC is concentrated near the surface or mixed deeper in the water column. The vertical structure of the temperature anomalies (TA) is more complicated, and at least three EOF modes are required to explain over 90% of the variance. The reasons for this include differences in solar heating (i.e. local climates) modulated by cold alpine runoff and advection of cold, brackish surface and subsurface glacial water. Fjords and major basins influenced by the latter exhibit large, positive mode 1 amplitudes of FWCA and negative mode 1 and 2 PCAs of TA and FWCA respectively. In certain fjords, however, advection of glacial water into the outer basins enhances the total FWC, whereas other fjords exhibit atypically low FWC due to unusual topographic features of the watersheds and inner basins. This combination of factors leads to generally poor correlations between average FWC and watershed to fjord surface area ratios or hydrology. With exception of a few sites, gradients in FWC between the small fjords and major basins are relatively weak. Thus the main driver of baroclinic flow in northern and western PWS is cold, brackish surface and subsurface water propagating from large tidewater glacial fjords. The glacial water has a marked affect on the dynamic topography, which shows southerly baroclinic-geostrophic flows within the western sound. At Montague Strait and Hinchinbrook Entrance inflows may occur from either fresh or salty conditions; low water density of the latter being shown by negative (positive) FWCA (TA) PCAs respectively.
CWRF performance at downscaling China climate characteristics
NASA Astrophysics Data System (ADS)
Liang, Xin-Zhong; Sun, Chao; Zheng, Xiaohui; Dai, Yongjiu; Xu, Min; Choi, Hyun I.; Ling, Tiejun; Qiao, Fengxue; Kong, Xianghui; Bi, Xunqiang; Song, Lianchun; Wang, Fang
2018-05-01
The performance of the regional Climate-Weather Research and Forecasting model (CWRF) for downscaling China climate characteristics is evaluated using a 1980-2015 simulation at 30 km grid spacing driven by the ECMWF Interim reanalysis (ERI). It is shown that CWRF outperforms the popular Regional Climate Modeling system (RegCM4.6) in key features including monsoon rain bands, diurnal temperature ranges, surface winds, interannual precipitation and temperature anomalies, humidity couplings, and 95th percentile daily precipitation. Even compared with ERI, which assimilates surface observations, CWRF better represents the geographic distributions of seasonal mean climate and extreme precipitation. These results indicate that CWRF may significantly enhance China climate modeling capabilities.
How predictable are equatorial Atlantic surface winds?
NASA Astrophysics Data System (ADS)
Richter, Ingo; Doi, Takeshi; Behera, Swadhin
2017-04-01
Sensitivity tests with the SINTEX-F general circulation model (GCM) as well as experiments from the Coupled Model Intercomparison Project phase 5 (CMIP5) are used to examine the extent to which sea-surface temperature (SST) anomalies contribute to the variability and predictability of monthly mean surface winds in the equatorial Atlantic. In the SINTEX-F experiments, a control experiment with prescribed observed SST for the period 1982-2014 is modified by inserting climatological values in certain regions, thereby eliminating SST anomalies. When SSTs are set to climatology in the tropical Atlantic only (30S to 30N), surface wind variability over the equatorial Atlantic (5S-5N) decreases by about 40% in April-May-June (AMJ). This suggests that about 60% of surface wind variability is due to either internal atmospheric variability or SSTs anomalies outside the tropical Atlantic. A further experiment with climatological SSTs in the equatorial Pacific indicates that another 10% of variability in AMJ may be due to remote influences from that basin. Experiments from the CMIP5 archive, in which climatological SSTs are prescribed globally, tend to confirm the results from SINTEX-F but show a wide spread. In some models, the equatorial Atlantic surface wind variability decreases by more than 90%, while in others it even increases. Overall, the results suggest that about 50-60% of surface wind variance in AMJ is predictable, while the rest is due to internal atmospheric variability. Other months show significantly lower predictability. The relatively strong internal variability as well as the influence of remote SSTs suggest a limited role for coupled ocean-atmosphere feedbacks in equatorial Atlantic variability.
PDO modulation of the ENSO impact on the summer South Asian high
NASA Astrophysics Data System (ADS)
Xue, Xu; Chen, Wen; Chen, Shangfeng; Feng, Juan
2018-02-01
This study investigates modulation effects of the Pacific decadal oscillation (PDO) on the impact of boreal winter El Niño-Southern Oscillation (ENSO) on the South Asian high (SAH) variability in the following summer. In the El Niño together with positive PDO (EL/+PDO) or the La Niña together with negative PDO (LA/-PDO) years, boreal winter ENSO can influence the following summer SAH activity significantly. The SAH tends to be obviously strengthened (weakened) and located further south (north) during EL/+PDO (LA/-PDO). However, in the El Niño together with negative PDO (EL/-PDO) or the La Niña together with positive PDO (LA/+PDO) years, the influence of ENSO on the SAH tends to be weak. The strength and location of SAH are close to those in the climatology of 1950-2011 during the EL/-PDO or the LA/+PDO. Further analysis indicates that the PDO could exert pronounced influence on the ENSO-SAH connection via modulating the anomalous Walker circulation and charge effect over the tropical Indian Ocean (TIO). During the EL/+PDO or LA/-PDO, the anomalous Walker circulation associated with El Niño or La Niña is stronger and lasts for a longer time than those during the EL/-PDO or LA/+PDO. This leads to stronger descending (ascending) motion over the Maritime Continent and easterly (westerly) wind anomalies over the eastern Indian Ocean in the EL/+PDO (LA/-PDO), which further exert larger effects on the surface heat fluxes and subsurface ocean dynamical heating process over the Indian Ocean. As such, the induced warm (cold) sea surface temperature anomalies over the Indian Ocean are more significant and larger in the EL/+PDO (LA/-PDO). These larger sea surface temperature anomalies over the TIO could exert a more significant influence on the tropospheric temperature via moisture adjustment, which subsequently results in stronger SAH variability in the EL/+PDO or the LA/-PDO.
Urban heat islands in the subsurface of German cities
NASA Astrophysics Data System (ADS)
Menberg, K.; Blum, P.; Zhu, K.; Bayer, P.
2012-04-01
In the subsurface of many cities there are widespread and persistent thermal anomalies (subsurface urban heat islands) that result in a warming of urban aquifers. The reasons for this heating are manifold. Possible heat sources are basements of buildings, leakage of sewage systems, buried district heating networks, re-injection of cooling water and solar irradiation on paved surfaces. In the current study, the reported groundwater temperatures in several German cities, such as Berlin, Munich, Cologne and Karlsruhe, are compared. Available data sets are supplemented by temperature measurements and depth profiles in observation wells. Trend analyses are conducted with time series of groundwater temperatures, and three-dimensional groundwater temperature maps are provided. In all investigated cities, pronounced positive temperature anomalies are present. The distribution of groundwater temperatures appears to be spatially and temporally highly variable. Apparently, the increased heat input into the urban subsurface is controlled by very local and site-specific parameters. In the long-run, the superposition of various heat sources results in an extensive temperature increase. In many cases, the maximum temperature elevation is found close to the city centre. Regional groundwater temperature differences between the city centre and the rural background are up to 5 °C, with local hot spots of even more pronounced anomalies. Particular heat sources, like cooling water injections or case-specific underground constructions, can cause local temperatures > 20°C in the subsurface. Examination of the long-term variations in isotherm maps shows that temperatures have increased by about 1°C in the city, as well as in the rural background areas over the last decades. This increase could be reproduced with trend analysis of temperature data gathered from several groundwater wells. Comparison between groundwater and air temperatures in Karlsruhe, for example, also indicates a spatial correlation between the urban heat island effect in the subsurface and in the atmosphere.
Effects of Northern Hemisphere Sea Surface Temperature Changes on the Global Air Quality
NASA Astrophysics Data System (ADS)
Yi, K.; Liu, J.
2017-12-01
The roles of regional sea surface temperature (SST) variability on modulating the climate system and consequently the air quality are investigated using the Community Earth System Model (CESM). Idealized, spatially uniform SST anomalies of +/- 1 °C are superimposed onto the North Pacific, North Atlantic, and North Indian Oceans individually. Ignoring the response of natural emissions, our simulations suggest large seasonal and regional variability of surface O3 and PM2.5 concentrations in response to SST anomalies, especially during boreal summers. Increasing the SST by 1 °C in one of the oceans generally decreases the surface O3 concentrations from 1 to 5 ppbv while increases the anthropogenic PM2.5 concentrations from 0.5 to 3 µg m-3. We implement the integrated process rate (IPR) analysis in CESM and find that meteorological transport in response to SST changes is the key process causing air pollutant perturbations in most cases. During boreal summers, the increase in tropical SST over different ocean basins enhances deep convection, which significantly increases the air temperature over the upper troposphere and trigger large-scale subsidence over nearby and remote regions. These processes tend to increase tropospheric stability and suppress rainfall at lower mid-latitudes. Consequently, it reduces the vertical transport of O3 to the surface while facilitating the accumulation of PM2.5 concentrations over most regions. In addition, this regional SST warming may also considerably suppress intercontinental transport of air pollution as confirmed with idealized CO-like tracers. Our findings indicate a robust linkage between basin-scale SST variability and regional air quality, which can help local air quality management.
Contribution of Temperature and Precipitation Anomalies to the Ongoing California Drought
NASA Astrophysics Data System (ADS)
Luo, L.; Apps, D.; Arcand, S. E.
2015-12-01
The ongoing multiyear drought over California is a major concern for the residents of the golden state as it brings water restrictions in preparing for water shortages and wild fires due to dry and hot conditions. Both positive temperature and negative precipitation anomalies can contribute to drought developments, but how important are these anomalies for the ongoing California drought? Using the VIC hydrological model, this study investigated the relative contribution of temperature and precipitation anomalies to the ongoing 2011-2015 drought in comparison with another multiyear drought between 1987 and 1992 over the same region. By swapping the observed temperature and precipitation anomalies between two drought events, the study was able to show how temperature and precipitation anomalies and their spatial variability affect other elements of the hydrological cycle including evapotranspiration, soil moisture and streamflow, thus the severity of the drought. The comparison between these two events helps to reveal the unique characteristics of the current drought and provides useful insights for drought prediction and mitigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walsh, Patrick; Fercho, Steven; Perkin, Doug
2015-06-01
The engineering and studies phase of the Glass Buttes project was aimed at reducing risk during the early stages of geothermal project development. The project’s inclusion of high resolution geophysical and geochemical surveys allowed Ormat to evaluate the value of these surveys both independently and in combination to quantify the most valuable course of action for exploration in an area where structure, permeability, and temperature are the most pressing questions. The sizes of the thermal anomalies at Glass Buttes are unusually large. Over the course of Phase I Ormat acquired high resolution LIDAR data to accurately map fault manifestations atmore » the surface and collected detailed gravity and aeromagnetic surveys to map subsurface structural features. In addition, Ormat collected airborne hyperspectral data to assist with mapping the rock petrology and mineral alteration assemblages along Glass Buttes faults and magnetotelluric (MT) survey to try to better constrain the structures at depth. Direct and indirect identification of alteration assemblages reveal not only the geochemical character and temperature of the causative hydrothermal fluids but can also constrain areas of upflow along specific fault segments. All five datasets were merged along with subsurface lithologies and temperatures to predict the most likely locations for high permeability and hot fluids. The Glass Buttes temperature anomalies include 2 areas, totaling 60 km2 (23 mi2) of measured temperature gradients over 165° C/km (10° F/100ft). The Midnight Point temperature anomaly includes the Strat-1 well with 90°C (194 °F) at 603 m (1981 ft) with a 164 °C/km (10°F/100ft) temperature gradient at bottom hole and the GB-18 well with 71°C (160 °F) at 396 m (1300 ft) with a 182°C/km (11°F/100ft) gradient. The primary area of alteration and elevated temperature occurs near major fault intersections associated with Brothers Fault Zone and Basin and Range systems. Evidence for faulting is observed in each data set as follows. Field observations include fault plane orientations, complicated fault intersections, and hydrothermal alteration apparently pre-dating basalt flows. Geophysical anomalies include large, linear gradients in gravity and aeromagnetic data with magnetic lows possibly associated with alteration. Resistivity low anomalies also appear to have offsets associated with faulting. Hyperspectral and XRF identified alteration and individual volcanic flow units, respectively. When incorporated into a 3D geologic model, the fault intersections near the highest proven temperature and geophysical anomalies provide the first priority targets at Midnight Point. Ormat geologists selected the Midnight Point 52-33 drilling target based on a combination of pre-existing drilling data, geologic field work, geophysical interpretation, and geochemical analysis. Deep temperatures of well 52-33 was lower than anticipated. Temperature gradients in the well mirrored those found in historical drilling, but they decreased below 1500 ft and were isothermal below 2000 ft.« less
Hydro-meteorological processes on the Qinghai - Tibet Plateau observed from space
NASA Astrophysics Data System (ADS)
Menenti, Massimo; Colin, Jerome; Jia, Li; D'Urso, Guido; Foken, Thomas; Immerzeel, Walter; Jha, Ramakar; Liu, Qinhuo; Liu, Changming; Ma, Yaoming; Sobrino, Jose Antonio; Yan, Guangjian; Pelgrum, Henk; Porcu, Federico; Wang, Jian; Wang, Jiemin; Shen, Xueshun; Su, Zhongbo; Ueno, Kenichi
2014-05-01
The Qinghai - Tibet Plateau is characterized by a significant intra-annual variability and spatial heterogeneity of surface conditions. Snow and vegetation cover, albedo, surface temperature and wetness change very significantly during the year and from place to place. The influence of temporal changes on convective events and the onset of the monsoon has been documented by ground based measurements of land - atmosphere exchanges of heat and water. The state of the land surface over the entire Plateau can be determined by space observation of surface albedo, temperature, snow and vegetation cover and soil moisture. Fully integrated use of satellite and ground observations is necessary to support water resources management in SE Asia and to clarify the roles of the interactions between the land surface and the atmosphere over the Tibetan Plateau in the Asian monsoon system. New or significantly improved algorithms have been developed and evaluated against ground measurements. Variables retrieved include land surface properties, rain rate, aerosol optical depth, water vapour, snow cover and water equivalent, soil moisture and lake level. The three years time series of gap-free daily and hourly evaporation derived from geostationary data collected by the FY-2D satellite was a major achievement. The hydrologic modeling system has been implemented and applied to the Qinghai Tibet Plateau and the headwaters of the major rivers in South and East Asia. Case studies on response of atmospheric circulation and specifically of convective activity to land surface conditions have been completed and the controlling land surface conditions and processes have been documented. Two new drought indicators have been developed: Normalized Temperature Anomaly Index (NTAI) and Normalized Vegetation Anomaly Index (NVAI). Case study in China and India showed that these indicators capture effectively drought severity and evolution. A new method has been developed for monitoring and early warning of flooded areas at the regional scale.
Surface layer and bloom dynamics observed with the Prince William Sound Autonomous Profiler
NASA Astrophysics Data System (ADS)
Campbell, R. W.
2016-02-01
As part of a recent long term monitoring effort, deployments of a WETLabs Autonomous Moored Profiler (AMP) began Prince William Sound (PWS) in 2013. The PWS AMP consists of a positively buoyant instrument frame, with a winch and associated electronics that profiles the frame from a park depth (usually 55 m) to the surface by releasing and retrieving a thin UHMWPE tether; it generally conducts a daily cast and measures temperature, salinity, chlorophyll-a fluorescence, turbidity, and oxygen and nitrate concentrations. Upward and downward looking ADCPs are mounted on a float below the profiler, and an in situ plankton imager is in development and will be installed in 2016. Autonomous profilers are a relatively new technology, and early deployments experienced a number of failures from which valuable lessons may be learned. Nevertheless, an unprecedented time series of the seasonal biogeochemical procession in the surface waters coastal Gulf of Alaska was collected in 2014 and 2015. The northern Gulf of Alaska has experienced a widespread warm anomaly since early 2014, and surface layer temperature anomalies in PWS were strongly positive during winter 2014. The spring bloom observed by the profiler began 2-3 weeks earlier than average, with surface nitrate depleted by late April. Although surface temperatures were still above average in 2015, bloom timing was much later, with a short vigorous bloom in late April and a subsurface bloom in late May that coincided with significant nitrate drawdown. As well as the vernal blooms, wind-driven upwelling events lead to several small productivity pulses that were evident in changes in nitrate and oxygen concentrations, and chlorophyll-a fluorescence. As well as providing a mechanistic understanding of surface layer biogeochemistry, high frequency observations such as these put historical observations in context, and provide new insights into the scales of variability in the annual cycles of the surface ocean in the North Pacific.
Atmospheric Drivers of Greenland Surface Melt Revealed by Self-Organizing Maps
NASA Technical Reports Server (NTRS)
Mioduszewski, J. R.; Rennermalm, A. K.; Hammann, A.; Tedesco, M.; Noble, E. U.; Stroeve, J. C.; Mote, T. L.
2016-01-01
Recent acceleration in surface melt on the Greenland ice sheet (GrIS) has occurred concurrently with a rapidly warming Arctic and has been connected to persistent, anomalous atmospheric circulation patterns over Greenland. To identify synoptic setups favoring enhanced GrIS surface melt and their decadal changes, we develop a summer Arctic synoptic climatology by employing self-organizing maps. These are applied to daily 500 hPa geopotential height fields obtained from the Modern Era Retrospective Analysis for Research and Applications reanalysis, 1979-2014. Particular circulation regimes are related to meteorological conditions and GrIS surface melt estimated with outputs from the Modèle Atmosphérique Régional. Our results demonstrate that the largest positive melt anomalies occur in concert with positive height anomalies near Greenland associated with wind, temperature, and humidity patterns indicative of strong meridional transport of heat and moisture. We find an increased frequency in a 500 hPa ridge over Greenland coinciding with a 63% increase in GrIS melt between the 1979-1988 and 2005-2014 periods, with 75.0% of surface melt changes attributed to thermodynamics, 17% to dynamics, and 8.0% to a combination. We also confirm that the 2007-2012 time period has the largest dynamic forcing relative of any period but also demonstrate that increased surface energy fluxes, temperature, and moisture separate from dynamic changes contributed more to melt even during this period. This implies that GrIS surface melt is likely to continue to increase in response to an ever warmer future Arctic, regardless of future atmospheric circulation patterns.
Analysis of the 1877-78 ENSO episode and comparison with 1982-83
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiladis, G.N.; Diaz, H.F.
A comparison of the 1877-78 and 1982-83 El Nino/Southern Oscillation (ENSO) events was made using monthly and seasonal values of sea surface temperature (SST) and station pressure in the tropics, sea level pressure (SLP) in North America and the North Atlantic, temperature in North America and precipitation in several key areas around the globe. SST anomalies in the eastern tropical Pacific, heavy rains in coastal Peru and extreme pressure anomalies across the Pacific and Indian Oceans during 1877-78 indicate an ENSO event of comparable magnitude to that during 1982-83. Both events were also associated with drought conditions in the Indonesianmore » region, India, South Africa, northeastern Brazil and Hawaii. Wintertime teleconnections in the midlatitudes of the Northern Hemisphere were similar in terms of SLP from the North Pacific to Europe, resulting in significantly higher than normal temperatures over most of the US and extreme rains in California.« less
Modulation of the Seasonal Cycle of Antarctic Sea Ice Extent Related to the Southern Annular Mode
NASA Astrophysics Data System (ADS)
Doddridge, Edward W.; Marshall, John
2017-10-01
Through analysis of remotely sensed sea surface temperature (SST) and sea ice concentration data, we investigate the impact of winds related to the Southern Annular Mode (SAM) on sea ice extent around Antarctica. We show that positive SAM anomalies in the austral summer are associated with anomalously cold SSTs that persist and lead to anomalous ice growth in the following autumn, while negative SAM anomalies precede warm SSTs and a reduction in sea ice extent during autumn. The largest effect occurs in April, when a unit change in the detrended summertime SAM is followed by a 1.8±0.6 ×105 km2 change in detrended sea ice extent. We find no evidence that sea ice extent anomalies related to the summertime SAM affect the wintertime sea ice extent maximum. Our analysis shows that the wind anomalies related to the negative SAM during the 2016/2017 austral summer contributed to the record minimum Antarctic sea ice extent observed in March 2017.
A comparison of infrared, radar, and geologic mapping of lunar craters
Thompson, T.W.; Masursky, H.; Shorthill, R.W.; Tyler, G.L.; Zisk, S.H.
1974-01-01
Between 1000 and 2000 infrared (eclipse) and radar anomalies have been mapped on the nearside hemisphere of the Moon. A study of 52 of these anomalies indicates that most are related to impact craters and that the nature of the infrared and radar responses is compatible with a previously developed geologic model of crater aging processes. The youngest craters are pronounced thermal and radar anomalies; that is, they have enhanced eclipse temperatures and are strong radar scatterers. With increasing crater age, the associated thermal and radar responses become progressively less noticeable until they assume values for the average lunar surface. The last type of anomaly to disappear is radar enhancement at longer wavelengths. A few craters, however, have infrared and radar behaviors not predicted by the aging model. One previously unknown feature - a field strewn with centimeter-sized rock fragments - has been identified by this technique of comparing maps at the infrared, radar, and visual wavelengths. ?? 1974 D. Reidel Publishing Company, Dordrecht-Holland.
Long wavelength gravity and topography anomalies
NASA Technical Reports Server (NTRS)
Watts, A. B.; Daly, S. F.
1981-01-01
It is shown that gravity and topography anomalies on the earth's surface may provide new information about deep processes occurring in the earth, such as those associated with mantle convection. Two main reasons are cited for this. The first is the steady improvement that has occurred in the resolution of the long wavelength gravity field, particularly in the wavelength range of a few hundred to a few thousand km, mainly due to increased coverage of terrestrial gravity measurements and the development of radar altimeters in orbiting satellites. The second reason is the large number of numerical and laboratory experiments of convection in the earth, including some with deformable upper and lower boundaries and temperature-dependent viscosity. The oceans are thought to hold the most promise for determining long wavelength gravity and topography anomalies, since their evolution has been relatively simple in comparison with that of the continents. It is also shown that good correlation between long wavelength gravity and topography anomalies exists over some portions of the ocean floor
Chen, Xiaona; Liang, Shunlin; Cao, Yunfeng; He, Tao; Wang, Dongdong
2015-01-01
Quantifying and attributing the phenological changes in snow cover are essential for meteorological, hydrological, ecological, and societal implications. However, snow cover phenology changes have not been well documented. Evidence from multiple satellite and reanalysis data from 2001 to 2014 points out that the snow end date (De) advanced by 5.11 (±2.20) days in northern high latitudes (52–75°N) and was delayed by 3.28 (±2.59) days in northern mid-latitudes (32–52°N) at the 90% confidence level. Dominated by changes in De, snow duration days (Dd) was shorter in duration by 5.57 (±2.55) days in high latitudes and longer by 9.74 (±2.58) days in mid-latitudes. Changes in De during the spring season were consistent with the spatiotemporal pattern of land surface albedo change. Decreased land surface temperature combined with increased precipitation in mid-latitudes and significantly increased land surface temperature in high latitudes, impacted by recent Pacific surface cooling, Arctic amplification and strengthening westerlies, result in contrasting changes in the Northern Hemisphere snow cover phenology. Changes in the snow cover phenology led to contrasting anomalies of snow radiative forcing, which is dominated by De and accounts for 51% of the total shortwave flux anomalies at the top of the atmosphere. PMID:26581632
Progress in Understanding the Pre-Earthquake Associated Events by Analyzing IR Satellite Data
NASA Technical Reports Server (NTRS)
Ouzounov, Dimitar; Taylor, Patrick; Bryant, Nevin
2004-01-01
We present latest result in understanding the potential relationship between tectonic stress, electro-chemical and thermodynamic processes in the Earths crust and atmosphere with an increase in IR flux as a potential signature of electromagnetic (EM) phenomena that are related to earthquake activity, either pre-, co- or post seismic. Thermal infra-red (TIR) surveys performed by the polar orbiting (NOAA/AVHRR MODIS) and geosynchronous weather satellites (GOES, METEOSAT) gave an indication of the appearance (from days to weeks before the event) of "anomalous" space-time TIR transients that are associated with the location (epicenter and local tectonic structures) and time of a number of major earthquakes with M>5 and focal depths less than 50km. We analyzed broad category of associated pre-earthquake events, which provided evidence for changes in surface temperature, surface latent heat flux, chlorophyll concentrations, soil moisture, brightness temperature, emissivity of surface, water vapour in the atmosphere prior to the earthquakes occurred in Algeria, India, Iran, Italy, Mexico and Japan. The cause of such anomalies has been mainly related to the change of near-surface thermal properties due to complex lithosphere-hydrosphere-atmospheric interactions. As final results we present examples from the most recent (2000-2004) worldwide strong earthquakes and the techniques used to capture the tracks of EM emission mid-IR anomalies and a methodology for practical future use of such phenomena in the early warning systems.
Tropical cyclone warm core analyses with FY-3 microwave temperature sounder data
NASA Astrophysics Data System (ADS)
Liu, Zhe; Bai, Jie; Zhang, Wenjun; Yan, Jun; Zhou, Zhuhua
2014-05-01
Space-borne microwave instruments are well suited to analyze Tropical Cyclone (TC) warm core structure, because certain wavelengths of microwave energy are able to penetrate the cirrus above TC. With the vector discrete-ordinate microwave radiative transfer model, the basic atmospheric parameters of Hurricane BOB are used to simulate the upwelling brightness temperatures on each channel of the Microwave Temperature Sounder (MWTS) onboard FY-3A/3B observation. Based on the simulation, the characteristic of 1109 super typhoon "Muifa" warm core structure is analyzed with the MWTS channel 3. Through the radiative and hydrostatic equation, TC warm core brightness temperature anomalies are related to surface pressure anomalies. In order to correct the radiation attenuation caused by MWTS scan geometric features, and improve the capability in capturing the relatively complete warm core radiation, a proposed algorithm is devised to correct the bias from receiving warm core microwave radiation, shows similar time-variant tendency with "Muifa" minimal sea level pressure as described by TC best track data. As the next generation of FY-3 satellite will be launched in 2012, this method will be further verified
NASA Technical Reports Server (NTRS)
Johnson, G. M.
1976-01-01
The application of high temperature accelerated test techniques was shown to be an effective method of microcircuit defect screening. Comprehensive microcircuit evaluations and a series of high temperature (473 K to 573 K) life tests demonstrated that a freak or early failure population of surface contaminated devices could be completely screened in thirty two hours of test at an ambient temperature of 523 K. Equivalent screening at 398 K, as prescribed by current Military and NASA specifications, would have required in excess of 1,500 hours of test. All testing was accomplished with a Texas Instruments' 54L10, low power triple-3 input NAND gate manufactured with a titanium- tungsten (Ti-W), Gold (Au) metallization system. A number of design and/or manufacturing anomalies were also noted with the Ti-W, Au metallization system. Further study of the exact nature and cause(s) of these anomalies is recommended prior to the use of microcircuits with Ti-W, Au metallization in long life/high reliability applications. Photomicrographs of tested circuits are included.
Sensitivity of the Tropical Pacific Ocean to Precipitation Induced Freshwater Flux
NASA Technical Reports Server (NTRS)
Yang, Song; Lau, K.-M.; Schopf, Paul S.
1999-01-01
We have performed a series of experiments using an ocean model to study the sensitivity of tropical Pacific Ocean to variations in precipitation induced freshwater fluxes. Variations in these fluxes arise from natural causes on all time scales. In addition, estimates of these fluxes are uncertain because of differences among measurement techniques. The model used is a quasi-isopycnal model, covering the Pacific from 40 S to 40 N. The surface forcing is constructed from observed wind stress, evaporation, precipitation, and surface temperature (SST) fields. The heat flux is produced with an iterative technique so as to maintain the model close to the observed climatology, but with only a weak damping to that climatology. Climatological estimates of evaporation are combined with various estimates of precipitation to determine the net surface freshwater flux. Results indicate that increased freshwater input decreases salinity as expected, but increases temperatures in the upper ocean. Using the freshwater flux estimated from the Microwave Sounding Unit leads to a warming of up to 0.6 C in the western Pacific over a case with zero net freshwater flux. SST is sensitive to the discrepancies among different precipitation observations, with root-mean-square differences in SST on the order of 0.2-0.3 C. The change in SST is more pronounced in the eastern Pacific, with differences of over 1 C found among the various precipitation products. Interannual variation in precipitation during El Nino events leads to increased warming. During the winter of 1982-83, freshwater flux accounts for about 0.4 C (approximately 10-15% of the maximum warming) of the surface warming in the central-eastern Pacific. Thus, the error of SST caused by the discrepancies in precipitation products is more than half of the SST anomaly produced by the interannual variability of observed precipitation. Further experiments, in which freshwater flux anomalies are imposed in the western, central, and eastern Pacific, show that the influence of net freshwater flux is also spatially dependent. The imposition of freshwater flux in the far western Pacific leads to a trapping of salinity anomaly to the surface layers near the equator. An identical flux imposed in the central Pacific produces deeper and off-equatorial salinity anomalies. The contrast between these two simulations is consistent with other simulations of the western Pacific barrier layer information.
NASA Astrophysics Data System (ADS)
Yi, Kan; Liu, Junfeng; Ban-Weiss, George; Zhang, Jiachen; Tao, Wei; Cheng, Yanli; Tao, Shu
2017-07-01
The response of surface ozone (O3) concentrations to basin-scale warming and cooling of Northern Hemisphere oceans is investigated using the Community Earth System Model (CESM). Idealized, spatially uniform sea surface temperature (SST) anomalies of ±1 °C are individually superimposed onto the North Pacific, North Atlantic, and North Indian oceans. Our simulations suggest large seasonal and regional variability in surface O3 in response to SST anomalies, especially in the boreal summer. The responses of surface O3 associated with basin-scale SST warming and cooling have similar magnitude but are opposite in sign. Increasing the SST by 1 °C in one of the oceans generally decreases the surface O3 concentrations from 1 to 5 ppbv. With fixed emissions, SST increases in a specific ocean basin in the Northern Hemisphere tend to increase the summertime surface O3 concentrations over upwind regions, accompanied by a widespread reduction over downwind continents. We implement the integrated process rate (IPR) analysis in CESM and find that meteorological O3 transport in response to SST changes is the key process causing surface O3 perturbations in most cases. During the boreal summer, basin-scale SST warming facilitates the vertical transport of O3 to the surface over upwind regions while significantly reducing the vertical transport over downwind continents. This process, as confirmed by tagged CO-like tracers, indicates a considerable suppression of intercontinental O3 transport due to increased tropospheric stability at lower midlatitudes induced by SST changes. Conversely, the responses of chemical O3 production to regional SST warming can exert positive effects on surface O3 levels over highly polluted continents, except South Asia, where intensified cloud loading in response to North Indian SST warming depresses both the surface air temperature and solar radiation, and thus photochemical O3 production. Our findings indicate a robust linkage between basin-scale SST variability and continental surface O3 pollution, which should be considered in regional air quality management.
Evidence of Lunar Phase Influence on Global Surface Air Temperatures
NASA Technical Reports Server (NTRS)
Anyamba, Ebby; Susskind, Joel
2000-01-01
Intraseasonal oscillations appearing in a newly available 20-year record of satellite-derived surface air temperature are composited with respect to the lunar phase. Polar regions exhibit strong lunar phase modulation with higher temperatures occurs near full moon and lower temperatures at new moon, in agreement with previous studies. The polar response to the apparent lunar forcing is shown to be most robust in the winter months when solar influence is minimum. In addition, the response appears to be influenced by ENSO events. The highest mean temperature range between full moon and new moon in the polar region between 60 deg and 90 deg latitude was recorded in 1983, 1986/87, and 1990/91. Although the largest lunar phase signal is in the polar regions, there is a tendency for meridional equatorward progression of anomalies in both hemispheres so that the warning in the tropics occurs at the time of the new moon.
NASA Astrophysics Data System (ADS)
Lin, Hai
2018-05-01
Skillfully predicting persistent extreme temperature anomalies more than 10 days in advance remains a challenge although it is of great value to the society. Here the two leading modes of subseasonal variability of surface air temperature over the extratropical Northern Hemisphere in boreal winter are identified with pentad (5 days) averaged data. They are well separated geographically, dominating temperature variability in North America and Eurasia, respectively. There exists a two-pentad lagged correlation between these two modes, implying an intercontinental link of temperature variability. Forecast skill of these two modes is evaluated based on three operational subseasonal prediction models. The results show that useful forecasts of the Eurasian mode (EOF2) can be achieved four pentads in advance, which is more skillful than the North American mode (EOF1). EOF2 is found to benefit from the Madden-Julian Oscillation signal in the initial condition.
Analyses of global sea surface temperature 1856-1991
NASA Astrophysics Data System (ADS)
Kaplan, Alexey; Cane, Mark A.; Kushnir, Yochanan; Clement, Amy C.; Blumenthal, M. Benno; Rajagopalan, Balaji
1998-08-01
Global analyses of monthly sea surface temperature (SST) anomalies from 1856 to 1991 are produced using three statistically based methods: optimal smoothing (OS), the Kaiman filter (KF) and optimal interpolation (OI). Each of these is accompanied by estimates of the error covariance of the analyzed fields. The spatial covariance function these methods require is estimated from the available data; the timemarching model is a first-order autoregressive model again estimated from data. The data input for the analyses are monthly anomalies from the United Kingdom Meteorological Office historical sea surface temperature data set (MOHSST5) [Parker et al., 1994] of the Global Ocean Surface Temperature Atlas (GOSTA) [Bottomley et al., 1990]. These analyses are compared with each other, with GOSTA, and with an analysis generated by projection (P) onto a set of empirical orthogonal functions (as in Smith et al. [1996]). In theory, the quality of the analyses should rank in the order OS, KF, OI, P, and GOSTA. It is found that the first four give comparable results in the data-rich periods (1951-1991), but at times when data is sparse the first three differ significantly from P and GOSTA. At these times the latter two often have extreme and fluctuating values, prima facie evidence of error. The statistical schemes are also verified against data not used in any of the analyses (proxy records derived from corals and air temperature records from coastal and island stations). We also present evidence that the analysis error estimates are indeed indicative of the quality of the products. At most times the OS and KF products are close to the OI product, but at times of especially poor coverage their use of information from other times is advantageous. The methods appear to reconstruct the major features of the global SST field from very sparse data. Comparison with other indications of the El Niño-Southern Oscillation cycle show that the analyses provide usable information on interannual variability as far back as the 1860s.
NASA Astrophysics Data System (ADS)
Thompson, C. K.; Bingham, A. W.; Hall, J. R.; Alarcon, C.; Plesea, L.; Henderson, M. L.; Levoe, S.
2011-12-01
The State of the Oceans (SOTO) web tool was developed at NASA's Physical Oceanography Distributed Active Archive Center (PO.DAAC) at the Jet Propulsion Laboratory (JPL) as an interactive means for users to visually explore and assess ocean-based geophysical parameters extracted from the latest archived data products. The SOTO system consists of four extensible modules, a data polling tool, a preparation and imaging package, image server software, and the graphical user interface. Together, these components support multi-resolution visualization of swath (Level 2) and gridded Level 3/4) data products as either raster- or vector- based KML layers on Google Earth. These layers are automatically updated periodically throughout the day. Current parameters available include sea surface temperature, chlorophyll concentration, ocean winds, sea surface height anomaly, and sea surface temperature anomaly. SOTO also supports mash-ups, allowing KML feeds from other sources to be overlaid directly onto Google Earth such as hurricane tracks and buoy data. A version of the SOTO software has also been installed at Goddard Space Flight Center (GSFC) to support the Land Atmosphere Near real-time Capability for EOS (LANCE). The State of the Earth (SOTE) has similar functionality to SOTO but supports different data sets, among them the MODIS 250m data product.
ENSO Simulation in Coupled Ocean-Atmosphere Models: Are the Current Models Better?
DOE Office of Scientific and Technical Information (OSTI.GOV)
AchutaRao, K; Sperber, K R
Maintaining a multi-model database over a generation or more of model development provides an important framework for assessing model improvement. Using control integrations, we compare the simulation of the El Nino/Southern Oscillation (ENSO), and its extratropical impact, in models developed for the 2007 Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report with models developed in the late 1990's (the so-called Coupled Model Intercomparison Project-2 [CMIP2] models). The IPCC models tend to be more realistic in representing the frequency with which ENSO occurs, and they are better at locating enhanced temperature variability over the eastern Pacific Ocean. When compared withmore » reanalyses, the IPCC models have larger pattern correlations of tropical surface air temperature than do the CMIP2 models during the boreal winter peak phase of El Nino. However, for sea-level pressure and precipitation rate anomalies, a clear separation in performance between the two vintages of models is not as apparent. The strongest improvement occurs for the modeling groups whose CMIP2 model tended to have the lowest pattern correlations with observations. This has been checked by subsampling the multi-century IPCC simulations in a manner to be consistent with the single 80-year time segment available from CMIP2. Our results suggest that multi-century integrations may be required to statistically assess model improvement of ENSO. The quality of the El Nino precipitation composite is directly related to the fidelity of the boreal winter precipitation climatology, highlighting the importance of reducing systematic model error. Over North America distinct improvement of El Nino forced boreal winter surface air temperature, sea-level pressure, and precipitation rate anomalies in the IPCC models occurs. This improvement, is directly proportional to the skill of the tropical El Nino forced precipitation anomalies.« less
A new dipole index of the salinity anomalies of the tropical Indian Ocean.
Li, Junde; Liang, Chujin; Tang, Youmin; Dong, Changming; Chen, Dake; Liu, Xiaohui; Jin, Weifang
2016-04-07
With the increased interest in studying the sea surface salinity anomaly (SSSA) of the tropical Indian Ocean during the Indian Ocean Dipole (IOD), an index describing the dipole variability of the SSSA has been pursued recently. In this study, we first use a regional ocean model with a high spatial resolution to produce a high-quality salinity simulation during the period from 1982 to 2014, from which the SSSA dipole structure is identified for boreal autumn. On this basis, by further analysing the observed data, we define a dipole index of the SSSA between the central equatorial Indian Ocean (CEIO: 70°E-90°E, 5°S-5°N) and the region off the Sumatra-Java coast (SJC: 100°E-110°E, 13°S-3°S). Compared with previous SSSA dipole indices, this index has advantages in detecting the dipole signals and in characterizing their relationship to the sea surface temperature anomaly (SSTA) dipole variability. Finally, the mechanism of the SSSA dipole is investigated by dynamical diagnosis. It is found that anomalous zonal advection dominates the SSSA in the CEIO region, whereas the SSSA in the SJC region are mainly influenced by the anomalous surface freshwater flux. This SSSA dipole provides a positive feedback to the formation of the IOD events.
NASA Technical Reports Server (NTRS)
Revenaugh, Justin; Parsons, Barry
1987-01-01
Adopting the formalism of Parsons and Daly (1983), analytical integral equations (Green's function integrals) are derived which relate gravity anomalies and dynamic boundary topography with temperature as a function of wavenumber for a fluid layer whose viscosity varies exponentially with depth. In the earth, such a viscosity profile may be found in the asthenosphere, where the large thermal gradient leads to exponential decrease of viscosity with depth, the effects of a pressure increase being small in comparison. It is shown that, when viscosity varies rapidly, topography kernels for both the surface and bottom boundaries (and hence the gravity kernel) are strongly affected at all wavelengths.
NASA Astrophysics Data System (ADS)
Dahal, Dipendra; Balassis, Antonios; Gumbs, Godfrey; Glasser, M. L.; graphene projects Collaboration
We compute and compare the effects due to a uniform perpendicular magnetic field and the temperature on the static polarization functions for monolayer graphene (MLG) associated with the Dirac point with that for the two-dimensional electron liquid (2DEL). Previous results for the 2DEL are discussed and we point out a flaw in reported analytic derivation to exhibit the smearing of the Fermi surface for 2DEL. The relevance of our study to the Kohn anomaly in low-dimensional structures and the Friedel oscillations for the screening of the potential for a dilute distribution of impurities is reported.
North Pacific warming and intense northwestern U.S. wildfires
Yongqiang Liu
2006-01-01
The tropical Pacific sea surface temperature (SST) anomalies such as La Nina have been an important predictor for wildfires in the southeastern and southwestern U.S. This study seeks seasonal predictors for wildfires in the northwestern U.S., a region with the most intense wildfires among various continental U.S. regions. Singular value decomposition and regression...
NASA Astrophysics Data System (ADS)
Dong, Shenfu; Volkov, Denis; Goni, Gustavo; Lumpkin, Rick; Foltz, Gregory R.
2017-07-01
Three surface drifters equipped with temperature and salinity sensors at 0.2 and 5 m depths were deployed in April/May 2015 in the subtropical South Pacific with the objective of measuring near-surface salinity differences seen by satellite and in situ sensors and examining the causes of these differences. Measurements from these drifters indicate that water at a depth of 0.2 m is about 0.013 psu fresher than at 5 m and about 0.024°C warmer. Events with large temperature and salinity differences between the two depths are caused by anomalies in surface freshwater and heat fluxes, modulated by wind. While surface freshening and cooling occurs during rainfall events, surface salinification is generally observed under weak wind conditions (≤4 m/s). Further examination of the drifter measurements demonstrates that (i) the amount of surface freshening and strength of the vertical salinity gradient heavily depend on wind speed during rain events, (ii) salinity differences between 0.2 and 5 m are positively correlated with the corresponding temperature differences for cases with surface salinification, and (iii) temperature exhibits a diurnal cycle at both depths, whereas the diurnal cycle of salinity is observed only at 0.2 m when the wind speed is less than 6 m/s. The amplitudes of the diurnal cycles of temperature at both depths decrease with increasing wind speed. The mean diurnal cycle of surface salinity is dominated by events with winds less than 2 m/s.
NASA Astrophysics Data System (ADS)
Dong, S.; Volkov, D.; Goni, G. J.; Lumpkin, R.; Foltz, G. R.
2017-12-01
Three surface drifters equipped with temperature and salinity sensors at 0.2 m and 5 m depths were deployed in April/May 2015 in the subtropical South Pacific with the objective of measuring near-surface salinity differences seen by satellite and in situ sensors and examining the causes of these differences. Measurements from these drifters indicate that water at a depth of 0.2 m is about 0.013 psu fresher than at 5 m and about 0.024°C warmer. Events with large temperature and salinity differences between the two depths are caused by anomalies in surface freshwater and heat fluxes, modulated by wind. While surface freshening and cooling occurs during rainfall events, surface salinification is generally observed under weak wind conditions (≤4 m/s). Further examination of the drifter measurements demonstrates that (i) the amount of surface freshening and strength of the vertical salinity gradient heavily depend on wind speed during rain events, (ii) salinity differences between 0.2 m and 5 m are positively correlated with the corresponding temperature differences for cases with surface salinification, and (iii) temperature exhibits a diurnal cycle at both depths, whereas the diurnal cycle of salinity is observed only at 0.2 m when the wind speed is less than 6 m/s. The amplitudes of the diurnal cycles of temperature at both depths decrease with increasing wind speed. The mean diurnal cycle of surface salinity is dominated by events with winds less than 2 m/s.
A process-based investigation into the impact of the Congo basin deforestation on surface climate
NASA Astrophysics Data System (ADS)
Bell, Jean P.; Tompkins, Adrian M.; Bouka-Biona, Clobite; Sanda, I. Seidou
2015-06-01
The sensitivity of climate to the loss of the Congo basin rainforest through changes in land cover properties is examined using a regional climate model. The complete removal of the Congo basin rainforest results in a dipole rainfall anomaly pattern, characterized by a decrease (˜-42%) in rainfall over the western Congo and an increase (˜10%) in the basin's eastern part. Three further experiments systematically examine the individual response to the changes in albedo, surface roughness, and evapotranspiration efficiency that accompany deforestation. The increased albedo (˜) caused by the Congo basin rainforest clearance results in cooler and drier climate conditions over the entire basin. The drying is accompanied with a reduction in available surface energy. Reducing evapotranspiration efficiency or roughness length produces similar positive air temperature anomaly patterns. The decreased evapotranspiration efficiency leads to a dipole response in rainfall, similar to that resulting from a reduced surface roughness following Congo basin rainforest clearance. This precipitation anomaly pattern is strongly linked to the change in low-level water vapor transport, the influence of the Rift valley highlands, and the spatial pattern of water recycling activity. The climate responds linearly to the separate albedo, surface roughness, and evapotranspiration efficiency changes, which can be summed to produce a close approximation to the impact of the full deforestation experiment. It is suggested that the widely contrasting climate responses to deforestation in the literature could be partly due to the relative magnitude of change of the radiative and nonradiative parameterizations in their respective land surface schemes.
Pacific Decadal Oscillation Influences Drought (June 27, 2004)
NASA Technical Reports Server (NTRS)
2004-01-01
Recent sea level height data from the U.S./France Jason altimetric satellite during a 10-day cycle ending June 27, 2004, shows that Pacific equatorial surface ocean heights and temperatures are near neutral, but perhaps tending towards a mild La Nina for this summer and into the fall. 'In the U.S. we are still under the influence of the larger than El Nino and La Nina Pacific Decadal Oscillation shift in Pacific Ocean heat content and temperature patterns.' Much of the nation's western farmland and forests are really dry as we continue to struggle with a severe 6-year drought. The reality is that the atmosphere is acting as though La Nina is present. This continuing oceanic pattern in the Pacific and atmospheric pattern over the western U.S. is also a precursor for an active hurricane season for the East and Gulf coasts for our coming summer and fall,' said JPL oceanographer Dr. Bill Patzert. These images show sea surface height anomalies with the seasonal cycle (the effects of summer, fall, winter, and spring) removed. The differences between what we see and what is normal for different times and regions are called anomalies, or residuals. When oceanographers and climatologists view these 'anomalies' they can identify unusual patterns and can tell us how heat is being stored in the ocean to influence future planetary climate events. Each image is a 10-day average of data, ending on the date indicated.Pacific Decadal Oscillation Influences Drought (June 15, 2004)
NASA Technical Reports Server (NTRS)
2004-01-01
Recent sea level height data from the U.S./France Jason altimetric satellite during a 10-day cycle ending June 15, 2004, shows that Pacific equatorial surface ocean heights and temperatures are near neutral, but perhaps tending towards a mild La Nina for this summer and into the fall. 'In the U.S. we are still under the influence of the larger than El Nino and La Nina Pacific Decadal Oscillation shift in Pacific Ocean heat content and temperature patterns.' Much of the nation's western farmland and forests are really dry as we continue to struggle with a severe 6-year drought. The reality is that the atmosphere is acting as though La Nina is present. This continuing oceanic pattern in the Pacific and atmospheric pattern over the western U.S. is also a precursor for an active hurricane season for the East and Gulf coasts for our coming summer and fall,' said JPL oceanographer Dr. Bill Patzert. These images show sea surface height anomalies with the seasonal cycle (the effects of summer, fall, winter, and spring) removed. The differences between what we see and what is normal for different times and regions are called anomalies, or residuals. When oceanographers and climatologists view these 'anomalies' they can identify unusual patterns and can tell us how heat is being stored in the ocean to influence future planetary climate events. Each image is a 10-day average of data, ending on the date indicated.Dielectric and thermal modeling of Vesta's surface
NASA Astrophysics Data System (ADS)
Palmer, E. M.; Heggy, E.; Capria, M. T.; Tosi, F.; Russell, C. T.
2013-09-01
We generate a dielectric model for the surface of Vesta from thermal observations by Dawn's Visible and Infrared (VIR) mapping spectrometer. After retrieving surface temperatures from VIR data, we model thermal inertia, and derive a theoretical temperature map of Vesta's surface at a given UTC. To calculate the real part of the dielectric constant (ɛ') and the loss tangent (tg δ) we use the dielectric properties of basaltic lunar regolith as a first-order analog, assuming surface density and composition consistent with fine basaltic lunar dust. First results indicate that for the majority of the surface, ɛ' ranges from 2.0 to 2.1 from the night to day side respectively, and tg δ ranges from 1.05E-2 to 1.40E-2. While these regions are consistent with a basaltic, desiccated ~55% porous surface, we also find anomalies in the thermal inertia that may correspond to a variation in local surface density relative to the global average, and a consequent variation in the local dielectric properties.
Geoscience Laser Altimetry System (GLAS) Loop Heat Pipe Anomaly and On Orbit Testing
NASA Technical Reports Server (NTRS)
Baker, Charles; Butler, Dan; Grob, Eric; Jester, Peggy
2011-01-01
The Geoscience Laser Altimetry System (GLAS) is the sole instrument on the ICESat Satellite. On day 230 of 2003, the GLAS Component Loop Heat Pipe (CLHP) entered a slow circulation mode that resulted in the main electronics box reaching its hot safing temperature, after which the entire instrument was turned off. The CLHP had a propylene working fluid and was actively temperature controlled via a heater on the compensation chamber. The slow circulation mode happened right after a planned propulsive yaw maneuver with the spacecraft. It took several days to recover the CLHP and ensure that it was still operational. The recovery occurred after the entire instrument was cooled to survival temperatures and the CLHP compensation chamber cycled on a survival heater. There are several theories as to why this slow circulation mode exhibited itself, including: accumulation of Non-Condensible Gas (NCG), the secondary wick being under designed or improperly implemented, or an expanded (post-launch) leak across the primary wick. Each of these is discussed in turn, and the secondary wick performance is identified as the most likely source of the anomalous behavior. After the anomaly, the CLHP was controlled to colder temperatures to improve its performance (as the surface tension increases with lower temperature, as does the volume of liquid in the compensation chamber) and only precursor pulses occurred later in the mission. After GLAS s last laser failed, in late 2009, a decision was made to conduct engineering tests of both LHPs to try and duplicate this flight anomaly. The engineering tests consisted of control setpoint changes, sink changes, and one similar propulsive Yaw maneuver. The only test that showed any similar anomaly precursors on the CLHP was the propulsive maneuver followed by a setpoint increase. The ICESat Satellite was placed in a decaying orbit and ended its mission on August 30, 2010 in Barents Sea.
NASA Technical Reports Server (NTRS)
Cook, Benjamin; Seager, Richard; Miller, R. L.
2010-01-01
We use an early twentieth century (1908-1958) atmospheric reanalysis, based on assimilation of surface and sea level pressure observations, to contrast atmospheric circulation during two periods of persistent drought in North America: 1932-1939 (the Dust Bowl) and 1948-1957. Primary forcing for both droughts is believed to come from anomalous sea surface temperatures (SSTs): a warm Atlantic and a cool eastern tropical Pacific. For boreal winter (October-March) in the 1950s, a stationary wave pattern originating from the tropical Pacific is present, with positive centers over the north Pacific and north Atlantic ocean basins and a negative center positioned over northwest North America and the tropical/subtropical Pacific. This wave train is largely absent for the 1930s drought; boreal winter height anomalies are organized much more zonally, with positive heights extending across northern North America. For boreal summer (April-September) during the 1930s, a strong upper level ridge is centered over the Great Plains; this feature is absent during the 1950s and appears to be linked to a weakening of the Great Plains low-level jet (GPLLJ). Subsidence anomalies are co-located over the centers of each drought: in the central Great Plains for the 1930s and in a band extending from the southwest to the southeastern United States for the 1950s. The location and intensity of this subsidence during the 1948-1957 drought is a typical response to a cold eastern tropical Pacific, but for 1932-1939 deviates in terms of the expected intensity, location, and spatial extent. Overall, circulation anomalies during the 1950s drought appear consistent with the expected response to the observed SST forcing. This is not the case for the 1930s, implying some other causal factor may be needed to explain the Dust Bowl drought anomalies. In addition to SST forcing, the 1930s were also characterized by massive alterations to the land surface, including regional-scale devegetation from crop failures and intensive wind erosion and dust storms. Incorporation of these land surface factors into a general circulation model greatly improves the simulation of precipitation and subsidence anomalies during this drought, relative to simulations with SST forcing alone. Even with additional forcing from the land surface, however, the model still has difficulty reproducing some of the other circulation anomalies, including weakening of the GPLLJ and strengthening of the upper level ridge during AMJJAS. This may be due to either weaknesses in the model or uncertainties in the boundary condition estimates. Still, analysis of the circulation anomalies supports the conclusion of an earlier paper (Cook et al. in Proc Natl Acad Sci 106:4997, 2009), demonstrating that land degradation factors are consistent with the anomalous nature of the Dust Bowl drought.
Satellite IR thermal measurements prior to the September 2004 earthquakes in central California
NASA Astrophysics Data System (ADS)
Ouzounov, D.; Logan, T.; Braynt, N.; Taylor, P.
2004-12-01
We present and discuss observed variations in thermal transients and radiation fields prior to the earthquakes of September 18 near Bodie (M5.5) and September 28, 2004 near Parkfield(M6.0) in California. Previous analysis of earthquake events have indicated the presence of a thermal anomaly, where temperatures increased or did not return to its usual nighttime value. The procedures used in our work is to analyze weather satellite data taken at night and to record the general condition where the ground cools after sunset. Two days before the Bodie earthquake lower temperature radiation was observed by the NOAA/AVHRR satellite. This occurred when the entire region was relatively cloud-free. IR land surface nighttime temperature from the MODIS instrument rose to +4 degrees C in a 100 km radius around the Bodie epicenter. The thermal transient field recorded by MODIS in the vicinity of Parkfield, also with a cloud free environment,was around +1degree C and it is significantly smaller than the thermal anomaly around the Bodie epicenter. Ground surface temperature near the Parkfield epicenter, however, for that period showed a steady increase 4 days prior to the earthquake and a significant drop of the night before the quake. Geosynchronous weather satellite thermal IR measurements taken every half hour from sunset to dawn, were also recorded for 10 days prior to the Parkfield event and 5 days after as well as the day of the quake. To establish a baseline we also obtained GOES data for the same Julian days for the three years prior to the Parkfield earthquake. These September 2004 IR data sets were then used to systematically observe and record any thermal anomaly prior to the events that deviated from the baseline. Our recent results support the hypothesis of a possible relationship between an thermodynamic processes produced by increasing tectonic stress in the Earth's crust and a subsequent electro-chemical interaction between this crust and the atmosphere/ionosphere.
Radar and infrared remote sensing of geothermal features at Pilgrim Springs, Alaska
NASA Technical Reports Server (NTRS)
Dean, K. G.; Forbes, R. B.; Turner, D. L.; Eaton, F. D.; Sullivan, K. D.
1982-01-01
High-altitude radar and thermal imagery collected by the NASA research aircraft WB57F were used to examine the structural setting and distribution of radiant temperatures of geothermal anomalies in the Pilgrim Springs, Alaska area. Like-polarized radar imagery with perpendicular look directions provides the best structural data for lineament analysis, although more than half the mapped lineaments are easily detectable on conventional aerial photography. Radiometer data and imagery from a thermal scanner were used to evaluate radiant surface temperatures, which ranged from 3 to 17 C. The evening imagery, which utilized density-slicing techniques, detected thermal anomalies associated with geothermal heat sources. The study indicates that high-altitude predawn thermal imagery may be able to locate relatively large areas of hot ground in site-specific studies in the vegetated Alaskan terrain. This imagery will probably not detect gentle lateral gradients.
Main processes of the Atlantic cold tongue interannual variability
NASA Astrophysics Data System (ADS)
Planton, Yann; Voldoire, Aurore; Giordani, Hervé; Caniaux, Guy
2018-03-01
The interannual variability of the Atlantic cold tongue (ACT) is studied by means of a mixed-layer heat budget analysis. A method to classify extreme cold and warm ACT events is proposed and applied to ten various analysis and reanalysis products. This classification allows 5 cold and 5 warm ACT events to be selected over the period 1982-2007. Cold (warm) ACT events are defined by the presence of negative (positive) sea surface temperature (SST) anomalies at the center of the equatorial Atlantic in late boreal spring, preceded by negative (positive) zonal wind stress anomalies in the western equatorial Atlantic. An ocean general circulation model capable of reconstructing the interannual variability of the ACT correctly is used to demonstrate that cold ACT events develop rapidly from May to June mainly due to intense cooling by vertical mixing and horizontal advection. The simulated cooling at the center of the basin is the result of the combined effects of non-local and local processes. The non-local process is an upwelling associated with an eastward-propagating Kelvin wave, which makes the mixed-layer more shallow and preconditions the upper layers to be cooled by an intense heat loss at the base of the mixed-layer, which is amplified by a stronger local injection of energy from the atmosphere. The early cooling by vertical mixing in March is also shown to be a good predictor of June cooling. In July, horizontal advection starts to warm the mixed-layer abnormally and damps SST anomalies. The advection anomalies, which result from changes in the horizontal temperature gradient, are associated in some cases with the propagation of Rossby waves along the equator. During warm ACT events, processes are reversed, generating positive SST anomalies: a downwelling Kelvin wave triggers stratification anomalies and mixed-layer depth anomalies, amplified by a weaker injection of energy from the atmosphere in May-June. In July, warm ACT events are abnormally cooled due to negative horizontal advection anomalies resulting from processes similar to those that occur during cold ACT events. This additional cooling process extends the period of cooling of the ACT, reducing SST anomalies.
NASA Astrophysics Data System (ADS)
Dave, P.; Bhushan, M.; Venkataraman, C.
2016-12-01
Indian subcontinent, in particular, the Indo-gangetic plain (IGP) has witnessed large temperature anomalies (Ratnam et al., 2016) along with high emission of absorbing aerosols (AA) (Gazala, et al., 2005). The anomalous high temperature observed over this region may bear a relationship with high AA emissions. Different studies have been conducted to understand AA and temperature relationships (Turco et al., 1983; Hansen et al., 1997, 2005; Seinfeld 2008; Ramanathan et al. 2010b; Ban-Weiss et al., 2012). It was found that when the AA was injected in the lower- mid troposphere the surface air temperature increases while injection of AA at higher troposphere-lower stratosphere surface temperature decreases. These studies used simulation based results to establish link between AA and temperature (Hansen et al., 1997, 2005; Ban-Weiss et al., 2012). The current work focuses on identifying the causal influence of AA on temperature using observational and re-analysis data over Indian subcontinent using cross correlation (CCs) and Granger causality (GC) (Granger, 1969). Aerosol index (AI) from TOMS-OMI was used as index for AA while ERA-interim reanalysis data was used for temperature at varying altitude. Period of study was March-April-May-June (MAMJ) for years 1979-2015. CCs were calculated for all the atmospheric layers. In each layer nearby and distant pixels (>500 kms) with high CCs were identified using clustering technique. It was found that that AI and Temperature shows statistically significant cross-correlations for co-located and distant pixels and more prominently over IGP. The CCs fades away with higher altitudes. CCs analysis was followed by GC analysis to identify the lag over which AI can influence the Temperature. GC also supported the findings of CCs analysis. It is an early attempt to link persisting large temperature anomalies with absorbing aerosols and may help in identifying the role of absorbing aerosol in causing heat waves.
Laureano-Rosario, Abdiel E; Symonds, Erin M; Rueda-Roa, Digna; Otis, Daniel; Muller-Karger, Frank E
2017-12-19
Enterococci concentration variability at Escambron Beach, San Juan, Puerto Rico, was examined in the context of environmental conditions observed during 2005-2015. Satellite-derived sea surface temperature (SST), turbidity, direct normal irradiance, and dew point were combined with local precipitation, winds, and mean sea level (MSL) observations in a stepwise multiple regression analyses (Akaike Information Criteria model selection). Precipitation, MSL, irradiance, SST, and turbidity explained 20% of the variation in observed enterococci concentrations based upon these analyses. Changes in these parameters preceded increases in enterococci concentrations by 24 h up to 11 days, particularly during positive anomalies of turbidity, SST, and 480-960 mm of accumulated (4 days) precipitation, which relates to bacterial ecology. Weaker, yet still significant, increases in enterococci concentrations were also observed during positive dew point anomalies. Enterococci concentrations decreased with elevated irradiance and MSL anomalies. Unsafe enterococci concentrations per US EPA recreational water quality guidelines occurred when 4-day cumulative precipitation ranged 481-960 mm; irradiance < 667 W·m -2 ; daily average turbidity anomaly >0.005 sr -1 ; SST anomaly >0.8 °C; and 3-day average MSL anomaly <-18.8 cm. This case study shows that satellite-derived environmental data can be used to inform future water quality studies and protect human health.
People as sensors: mass media and local temperature influence climate change discussion on Twitter
NASA Astrophysics Data System (ADS)
Kirilenko, A.; Molodtsova, T.; Stepchenkova, S.
2014-12-01
We examined whether people living under significant temperature anomalies connect their sensory experiences to climate change and the role that media plays in this process. We used Twitter messages containing words "climate change" and "global warming" as the indicator of attention that public pays to the issue. Specifically, the goals were: (1) to investigate whether people immediately notice significant local weather anomalies and connect them to climate change and (2) to examine the role of mass media in this process. Over 2 million tweets were collected for a two-year period (2012 - 2013) and were assigned to 157 urban areas in the continental USA (Figure 1). Geographical locations of the tweets were identified with a geolocation resolving algorithm based the profile of the users. Daily number of tweets (tweeting rate) was computed for 157 conterminous USA urban areas and adjusted for data acquisition errors. The USHCN daily minimum and maximum temperatures were obtained for the station locations closest to the centers of the urban areas and the 1981-2010 30-year temperature mean and standard deviation were used as the climate normals. For the analysis, we computed the following indices for each day of 2012 - 2013 period: standardized temperature anomaly, absolute standardized temperature anomaly, and extreme cold and hot temperature anomalies for each urban zone. The extreme cold and hot temperature anomalies were then transformed into country-level values that represent the number of people living in extreme temperature conditions. The rate of tweeting on climate change was regressed on the time variables, number of climate change publications in the mass media, and temperature. In the majority of regression models, the mass media and temperature variables were significant at the p<0.001 level. Additionally, we did not find convincing evidence that the media acts as a mediator in the relationship between local weather and climate change discourse intensity. Our analysis of Twitter data confirmed that the public is able to recognize extreme temperature anomalies and connects these anomalies to climate change. Finally, we demonstrated the utility of social network data for research on public climate change perception.
Identifying anthropogenic anomalies in air, surface and groundwater temperatures in Germany.
Benz, Susanne A; Bayer, Peter; Blum, Philipp
2017-04-15
Human activity directly influences ambient air, surface and groundwater temperatures. The most prominent phenomenon is the urban heat island effect, which has been investigated particularly in large and densely populated cities. This study explores the anthropogenic impact on the thermal regime not only in selected urban areas, but on a countrywide scale for mean annual temperature datasets in Germany in three different compartments: measured surface air temperature, measured groundwater temperature, and satellite-derived land surface temperature. Taking nighttime lights as an indicator of rural areas, the anthropogenic heat intensity is introduced. It is applicable to each data set and provides the difference between measured local temperature and median rural background temperature. This concept is analogous to the well-established urban heat island intensity, but applicable to each measurement point or pixel of a large, even global, study area. For all three analyzed temperature datasets, anthropogenic heat intensity grows with increasing nighttime lights and declines with increasing vegetation, whereas population density has only minor effects. While surface anthropogenic heat intensity cannot be linked to specific land cover types in the studied resolution (1km×1km) and classification system, both air and groundwater show increased heat intensities for artificial surfaces. Overall, groundwater temperature appears most vulnerable to human activity, albeit the different compartments are partially influenced through unrelated processes; unlike land surface temperature and surface air temperature, groundwater temperatures are elevated in cultivated areas as well. At the surface of Germany, the highest anthropogenic heat intensity with 4.5K is found at an open-pit lignite mine near Jülich, followed by three large cities (Munich, Düsseldorf and Nuremberg) with annual mean anthropogenic heat intensities >4K. Overall, surface anthropogenic heat intensities >0K and therefore urban heat islands are observed in communities down to a population of 5000. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Ge; Wu, Renguang; Sun, Shuqing; Wang, Huimei
2015-09-01
This study explores the characteristics of high temperature anomalies over eastern China and associated influencing factors using observations and model outputs. Results show that more long-duration (over 8 days) high temperature events occur over the middle and lower reaches of the Yangtze River Valley (YRV) than over the surrounding regions, and control most of the interannual variation of summer mean temperature in situ. The synergistic effect of summer precipitation over the South China Sea (SCS) region (18°-27°N, 115°-124°E) and the northwestern India and Arabian Sea (IAS) region (18°-27°N, 60°-80°E) contributes more significantly to the variation of summer YRV temperature, relative to the respective SCS or IAS precipitation anomaly. More precipitation (enhanced condensational heating) over the SCS region strengthens the western Pacific subtropical high (WPSH) and simultaneously weakens the westerly trough over the east coast of Asia, and accordingly results in associated high temperature anomalies over the YRV region through stimulating an East Asia-Pacific (EAP) pattern. More precipitation over the IAS region further adjusts the variations of the WPSH and westerly trough, and eventually reinforces high temperature anomalies over the YRV region. Furthermore, the condensational heating related to more IAS precipitation can adjust upper-tropospheric easterly anomalies over the YRV region by exciting a circumglobal teleconnection, inducing cold horizontal temperature advection and related anomalous descent, which is also conducive to the YRV high temperature anomalies. The reproduction of the above association in the model results indicates that the above results can be explained both statistically and dynamically.
Sea Ice and Ice Temperature Variability as Observed by Microwave and Infrared Satellite Data
NASA Technical Reports Server (NTRS)
Comiso, Josefino C.; Koblinsky, Chester J. (Technical Monitor)
2001-01-01
Recent reports of a retreating and thinning sea ice cover in the Arctic have pointed to a strong suggestion of significant warming in the polar regions. It is especially important to understand what these reports mean in light of the observed global warning and because the polar regions are expected to be most sensitive to changes in climate. To gain insight into this phenomenon, co-registered ice concentrations and surface temperatures derived from two decades of satellite microwave and infrared data have been processed and analyzed. While observations from meteorological stations indicate consistent surface warming in both regions during the last fifty years, the last 20 years of the same data set show warming in the Arctic but a slight cooling in the Antarctic. These results are consistent with the retreat in the Arctic ice cover and the advance in the Antarctic ice cover as revealed by historical satellite passive microwave data. Surface temperatures derived from satellite infrared data are shown to be consistent within 3 K with surface temperature data from the limited number of stations. While not as accurate, the former provides spatially detailed changes over the twenty year period. In the Arctic, for example, much of the warming occurred in the Beaufort Sea and the North American region in 1998 while slight cooling actually happened in parts of the Laptev Sea and Northern Siberia during the same time period. Big warming anomalies are also observed during the last five years but a periodic cycle of about ten years is apparent suggesting a possible influence of the North Atlantic Oscillation. In the Antarctic, large interannual and seasonal changes are also observed in the circumpolar ice cover with regional changes showing good coherence with surface temperature anomalies. However, a mode 3 is observed to be more dominant than the mode 2 wave reported in the literature. Some of these spatial and temporal changes appear to be influenced by the Antarctic Circumpolar Wave (ACW) and changes in coastal polynya activities.
Interdecadal Change in SST Anomalies Associated with Winter Rainfall over South China
NASA Astrophysics Data System (ADS)
Liantong, Z.
2012-04-01
The present study investigates the interdecadal change in winter (January-February-March, or "JFM") rainfall over South China and in South China JFM rainfall-sea surface temperature (SST) relationship by using station observations for the period of 1958-2002, the Met Office Hadley Center's SST data for the period of 1900-2008, and the ERA-40 re-analysis for the period of 1958-2002. It is found that the relationship between South China JFM rainfall and SST experienced an obvious interdecadal change around the year 1978. The analyses show that the JFM rainfall anomalies during 1960-1977 and 1978-2002 were closely associated with the South China Sea (SCS) SST and El Niño-Southern Oscillation (ENSO), respectively. Moreover, southwesterly anomalies at 700 hPa dominate over the South China Sea for positive SCS SST anomaly years during 1960-1977, and for El Niño years during 1978-2002, respectively. These wind anomalies, which are associated with the enhancement of the western Pacific subtropical high, transport more moisture into South China, favoring increases in rainfall. KEY WORDS: ENSO; SCS SST; South China winter rainfall, western Pacific subtropical high.
Global Surface Temperature Anomalies and Attribution
NASA Astrophysics Data System (ADS)
Pietrafesa, L. J.
2017-12-01
We study Non-Stationary, Non-Linear time series of global surface temperatures from 1850 to 2016, and via an empirical, mathematical methodology, we reveal the buried, internal modes of variability of planetary temperatures over the past 167 years, and find periods of cooling and warming, both in the ocean and the atmosphere over land, with multiple modes of variability; seasonal, annual, inter-annual, multi-year, decadal, multi-decadal, centennial and overall warming trends in the ocean, atmosphere and the combination therein. The oceanic rate of warming is less than two thirds of that of the atmosphere. While our findings on overall trends of fossil fuel burning and planetary temperatures are only visually correlative, by employing a mathematical methodology well known in ergonomics, this study causally links the upward rise in planetary surface temperature from the latter part of the 19th Century and into the 21st Century, to the contemporaneous upward rise in fossil fuel burning and suggests that if present fossil fuel burning is not curtailed there will be continued warming of the planet in the future.
Link between the Barents Oscillation and recent boreal winter cooling over the Asian midlatitudes
NASA Astrophysics Data System (ADS)
Shu, Qi; Qiao, Fangli; Song, Zhenya; Song, Yajuan
2018-01-01
The link between boreal winter cooling over the midlatitudes of Asia and the Barents Oscillation (BO) since the late 1980s is discussed in this study, based on five datasets. Results indicate that there is a large-scale boreal winter cooling during 1990-2015 over the Asian midlatitudes, and that it is a part of the decadal oscillations of long-term surface air temperature (SAT) anomalies. The SAT anomalies over the Asian midlatitudes are significantly correlated with the BO in boreal winter. When the BO is in its positive phase, anomalously high sea level pressure over the Barents region, with a clockwise wind anomaly, causes cold air from the high latitudes to move over the midlatitudes of Asia, resulting in anomalous cold conditions in that region. Therefore, the recent increasing trend of the BO has contributed to recent winter cooling over the Asian midlatitudes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bharathi, K. Kamala, E-mail: kkamalabharathi@gmail.com; Ramesh, G.; Patro, L.N.
2015-02-15
Graphical abstract: Temperature variation of dielectric constant of Bi{sub 0.9}Ca{sub 0.05}Sm{sub 0.05}FeO{sub 3} at various frequencies as a function of temperature indicating anomalies at 420 and 540 K. - Highlights: • Substitution of Sm ions for Bi enhances the saturation magnetization of BiFeO{sub 3}. • XPS studies indicate the creation of oxygen vacancies upon Ca substitution. • Dielectric measurements show dielectric anomalies at high temperatures. • Raman spectra at high temperatures confirm the dielectric anomaly temperatures. - Abstract: Enhanced ferromagnetic properties and high temperature dielectric anomalies in the temperature range of 300–873 K in Bi{sub 0.9}Ca{sub 0.05}Sm{sub 0.05}FeO{sub 3} (BCSFO)more » prepared by hydrothermal method are reported. BiFeO{sub 3} is seen to crystallize in rhombohedrally distorted perovskite structure without any impurity phase. Substitution of small amount of Ca and Sm (Bi{sub 0.9}Ca{sub 0.05}Sm{sub 0.05}FeO{sub 3}) leads to increase in the lattice constant values and formation of small amount of secondary phase. Magnetization curve of pure BFO indicates very weak ferromagnetism combined with antiferromagnetic nature of the samples. Whereas, BCSFO sample shows very clear and enhanced ferromagnetic nature. Saturation magnetization and Neel’s temperature values are found to be 4.36 emu/g and 664 K, respectively. X-ray photoelectron spectroscopy indicates the creation of oxygen vacancies upon Ca substitution in Bi site. Dielectric anomalies at 420 and 540 K were observed for Bi{sub 0.9}Ca{sub 0.05}Sm{sub 0.05}FeO{sub 3} from the temperature variation of dielectric constant and specific heat capacity measurements. Observation of dielectric anomalies in pure BiFeO{sub 3} sample reveals that the origin of dielectric peaks is purely from the primary phase. Raman spectroscopy study indicates a clear shift and broadening of A modes (between 100 and 200 cm{sup −1}) at the dielectric anomaly temperatures supporting the observed dielectric anomalies.« less
NASA Astrophysics Data System (ADS)
Wei, Wei; Li, Wenhong; Deng, Yi; Yang, Song; Jiang, Jonathan H.; Huang, Lei; Liu, W. Timothy
2018-04-01
This study investigates dynamical and thermodynamical coupling between the North Atlantic subtropical high (NASH), marine boundary layer (MBL) clouds, and the local sea surface temperatures (SSTs) over the North Atlantic in boreal summer for 1984-2009 using NCEP/DOE Reanalysis 2 dataset, various cloud data, and the Hadley Centre sea surface temperature. On interannual timescales, the summer mean subtropical MBL clouds to the southeast of the NASH is actively coupled with the NASH and local SSTs: a stronger (weaker) NASH is often accompanied with an increase (a decrease) of MBL clouds and abnormally cooler (warmer) SSTs along the southeast flank of the NASH. To understand the physical processes between the NASH and the MBL clouds, the authors conduct a data diagnostic analysis and implement a numerical modeling investigation using an idealized anomalous atmospheric general circulation model (AGCM). Results suggest that significant northeasterly anomalies in the southeast flank of the NASH associated with an intensified NASH tend to induce stronger cold advection and coastal upwelling in the MBL cloud region, reducing the boundary surface temperature. Meanwhile, warm advection associated with the easterly anomalies from the African continent leads to warming over the MBL cloud region at 700 hPa. Such warming and the surface cooling increase the atmospheric static stability, favoring growth of the MBL clouds. The anomalous diabatic cooling associated with the growth of the MBL clouds dynamically excites an anomalous anticyclone to its north and contributes to strengthening of the NASH circulation in its southeast flank. The dynamical and thermodynamical couplings and their associated variations in the NASH, MBL clouds, and SSTs constitute an important aspect of the summer climate variability over the North Atlantic.
Thermoelasticity and anomalies in the pressure dependence of phonon velocities in niobium
NASA Astrophysics Data System (ADS)
Zou, Yongtao; Li, Ying; Chen, Haiyan; Welch, David; Zhao, Yusheng; Li, Baosheng
2018-01-01
Compressional and shear wave velocities of polycrystalline niobium have been measured at simultaneously high pressures and temperatures up to 5.8 GPa and 1073 K, respectively, using ultrasonic interferometry in conjunction with synchrotron x-ray techniques. An anomalous pressure-induced softening behavior in the phonon velocities, probably owing to the topological change in the Fermi surface, has been observed at ˜4.8 GPa during cold compression, which is supported by the elasticity data from our first-principles calculations. In contrast, both the bulk (BS) and shear (G) moduli increase with pressures but decrease with temperatures upon compression at extreme P-T up to 5.8 GPa and 1073 K. Using finite strain equation-of-state approaches, the elasticity of bulk and shear moduli and their pressure and temperature dependences are derived from the directly measured velocities and densities, yielding BS0 = 174.9(3.2) GPa, G0 = 37.1(3) GPa, ∂BS/∂P = 3.97(9), ∂G/∂P = 0.83(5), ∂BS/∂T = -0.064(7) GPa/K, and ∂G/∂T = -0.012(3) GPa/K. On the basis of the current thermoelasticity data, Debye temperature and the high-pressure melting curve of Nb are derived. The origin of the anomalies in shear behavior at high pressure might be attributed to the progressive s-d electron-transfer-induced topological changes of the Fermi surface upon compression.
NASA Astrophysics Data System (ADS)
Zhu, X.
2017-12-01
Based on methods of statistical analysis, the time series of global surface air temperature(SAT) anomalies from 1860-2014 has been defined by three types of phase changes that occur through the division of temperature changes into different stages. The characteristics of the three types of phase changes simulated by CMIP5 models were evaluated. The conclusion is as follows: the SAT from 1860-2014 can be divided into six stages according to trend differences, and this subdivision is proved to be statistically significant. Based on trend analysis and the distribution of slopes between any two points (two points' slope) in every stage, the six stages can be summarized as three phase changes of warming, cooling, and hiatus. Between 1860 and 2014, the world experienced three heating phases (1860-1878, 1909-1942,1975-2004), one cooling phase (1878-1909), and two hiatus phases (1942-1975, 2004-2014).Using the definition method, whether the next year belongs to the previous phase can be estimated. Furthermore, the temperature in 2015 was used as an example to validate the feasibility of this method. The simulations of the heating period by CMIP5 models are well; however the characteristics shown by SAT during the cooling and hiatus period cannot be represented by CMIP5 models. As such, the projections of future heating phases using the CMIP5 models are credible, but for cooling and hiatus events they are unreliable.
NASA Technical Reports Server (NTRS)
Stein, Uri; Fox-Rabinovitz, Michael
1999-01-01
The factor separation (FS) technique has been utilized to evaluate quantitatively the impact of surface boundary forcings on simulation of the 1988 summer drought over the Midwestern part of the U.S. The four surface boundary forcings used are: (1)Sea Surface Temperature (SST), (2) soil moisture, (3) snow cover, and (4) sea ice. The Goddard Earth Observing System(GEOS) General Circulation Model (GCM) is used to simulate the 1988 U.S. drought. A series of sixteen simulations are performed with climatological and real 1988 surface boundary conditions. The major single and mutual synergistic factors/impacts are analyzed. The results show that SST and soil moisture are the major single pro-drought factors. The couple synergistic effect of SST and soil moisture is the major anti-drought factor. The triple synergistic impact of SST, soil moisture, and snow cover is the strongest pro-drought impact and is, therefore, the main contributor to the generation of the drought. The impact of the snow cover and sea ice anomalies for June 1988 on the drought is significant only when combined with the SST and soil moisture anomalies.
Extreme Temperature Regimes during the Cool Season and their Associated Large-Scale Circulations
NASA Astrophysics Data System (ADS)
Xie, Z.
2015-12-01
In the cool season (November-March), extreme temperature events (ETEs) always hit the continental United States (US) and provide significant societal impacts. According to the anomalous amplitudes of the surface air temperature (SAT), there are two typical types of ETEs, e.g. cold waves (CWs) and warm waves (WWs). This study used cluster analysis to categorize both CWs and WWs into four distinct regimes respectively and investigated their associated large-scale circulations on intra-seasonal time scale. Most of the CW regimes have large areal impact over the continental US. However, the distribution of cold SAT anomalies varies apparently in four regimes. In the sea level, the four CW regimes are characterized by anomalous high pressure over North America (near and to west of cold anomaly) with different extension and orientation. As a result, anomalous northerlies along east flank of anomalous high pressure convey cold air into the continental US. To the middle troposphere, the leading two groups feature large-scale and zonally-elongated circulation anomaly pattern, while the other two regimes exhibit synoptic wavetrain pattern with meridionally elongated features. As for the WW regimes, there are some patterns symmetry and anti-symmetry with respect to CW regimes. The WW regimes are characterized by anomalous low pressure and southerlies wind over North America. The first and fourth groups are affected by remote forcing emanating from North Pacific, while the others appear mainly locally forced.
Evidence for trivial Berry phase and absence of chiral anomaly in semimetal NbP
NASA Astrophysics Data System (ADS)
Sudesh; Kumar, Pawan; Neha, Prakriti; Das, Tanmoy; Patnaik, Satyabrata
2017-04-01
The discovery of Weyl semimetals (WSM) has brought forth the condensed matter realization of Weyl fermions, which were previously theorized as low energy excitations in high energy particle physics. Recently, transition metal mono-pnictides are under intense investigation for understanding properties of inversion-symmetry broken Weyl semimetals. Non-trivial Berry phase and chirality are important markers for characterizing topological aspects of Weyl semimetals. Most recently, theoretical calculations predict strong influence of the position of Weyl nodes with respect to Fermi surface and weak disorder that can drive WSMs into chirally symmetric Dirac semimetals. Using magneto-transport measurements in single crystals of WSM NbP, we observe an exceptionally large magnetoresistance at low temperature, which is non-saturating and linear at high fields. The origin of linear transverse magnetoresistance is assigned to charge carrier mobility fluctuations. Negative longitudinal magnetoresistance is not seen, suggesting lack of well-defined chiral anomaly in NbP. Unambiguous Shubnikov-de Haas oscillations are observed at low temperatures that are correlated to a trivial Berry phase corresponding to Fermi surface extrema at 30.5 Tesla. Our results are important towards identifying topological characteristics of Weyl semimetals and their experimental manifestations in the presence of weak disorder.
NASA Astrophysics Data System (ADS)
Qin, Qiming; Zhang, Ning; Nan, Peng; Chai, Leilei
2011-08-01
Thermal infrared (TIR) remote sensing is an important technique in the exploration of geothermal resources. In this study, a geothermal survey is conducted in Tengchong area of Yunnan province in China using TIR data from Landsat-7 Enhanced Thematic Mapper Plus (ETM+) sensor. Based on radiometric calibration, atmospheric correction and emissivity calculation, a simple but efficient single channel algorithm with acceptable precision is applied to retrieve the land surface temperature (LST) of study area. The LST anomalous areas with temperature about 4-10 K higher than background area are discovered. Four geothermal areas are identified with the discussion of geothermal mechanism and the further analysis of regional geologic structure. The research reveals that the distribution of geothermal areas is consistent with the fault development in study area. Magmatism contributes abundant thermal source to study area and the faults provide thermal channels for heat transfer from interior earth to land surface and facilitate the present of geothermal anomalies. Finally, we conclude that TIR remote sensing is a cost-effective technique to detect LST anomalies. Combining TIR remote sensing with geological analysis and the understanding of geothermal mechanism is an accurate and efficient approach to geothermal area detection.
Role of North Indian Ocean Air-Sea Interaction in Summer Monsoon Intraseasonal Oscillation
NASA Astrophysics Data System (ADS)
Zhang, L.; Han, W.; Li, Y.
2017-12-01
Air-sea coupling processes over the North Indian Ocean associated with Indian summer monsoon intraseasonal oscillation (MISO) are analyzed. Observations show that MISO convection anomalies affect underlying sea surface temperature (SST) through changes in surface shortwave radiation (via cloud cover change) and surface latent heat flux (associated with surface wind speed change). In turn, SST anomalies determine the changing rate of MISO precipitation (dP/dt): warm (cold) SST anomalies cause increasing (decreasing) precipitation rate through increasing (decreasing) surface convergence. Air-sea interaction gives rise to a quadrature relationship between MISO precipitation and SST anomalies. A local air-sea coupling model (LACM) is established based on these observed physical processes, which is a damped oscillatory system with no external forcing. The period of LACM is proportional to the square root of mean state mixed layer depth , assuming other physical parameters remain unchanged. Hence, LACM predicts a relatively short (long) MISO period over the North Indian Ocean during the May-June monsoon developing (July-August mature) phase when is shallow (deep). This result is consistent with observed MISO statistics. An oscillatory external forcing of a typical 30-day period is added to LACM, representing intraseasonal oscillations originated from the equatorial Indian Ocean and propagate into the North Indian Ocean. The period of LACM is then determined by both the inherent period associated with local air-sea coupling and the period of external forcing. It is found that resonance occurs when , amplifying the MISO in situ. This result explains the larger MISO amplitude during the monsoon developing phase compared to the mature phase, which is associated with seasonal cycle of . LACM, however, fails to predict the observed small MISO amplitude during the September-October monsoon decaying phase, when is also shallow. This deficiency might be associated with the neglect of oceanic processes in LACM.
Constraining the Sensitivity of Amazonian Rainfall with Observations of Surface Temperature
NASA Astrophysics Data System (ADS)
Dolman, A. J.; von Randow, C.; de Oliveira, G. S.; Martins, G.; Nobre, C. A.
2016-12-01
Earth System models generally do a poor job in predicting Amazonian rainfall, necessitating the need to look for observational constraints on their predictability. We use observed surface temperature and precipitation of the Amazon and a set of 21 CMIP5 models to derive an observational constraint of the sensitivity of rainfall to surface temperature (dP/dT). From first principles such a relation between the surface temperature of the earth and the amount of precipitation through the surface energy balance should exist, particularly in the tropics. When de-trended anomalies in surface temperature and precipitation from a set of datasets are plotted, a clear linear relation between surface temperature and precipitation appears. CMIP5 models show a similar relation with relatively cool models having a larger sensitivity, producing more rainfall. Using the ensemble of models and the observed surface temperature we were able to derive an emerging constraint, reducing the dPdt sensitivity of the CMIP5 model from -0.75 mm day-1 0C-1 (+/- 0.54 SD) to -0.77 mm day-1 0C-1 with a reduced uncertainty of about a factor 5. dPdT from the observation is -0.89 mm day-1 0C-1 . We applied the method to wet and dry season separately noticing that in the wet season we shifted the mean and reduced uncertainty, while in the dry season we very much reduced uncertainty only. The method can be applied to other model simulations such as specific deforestation scenarios to constrain the sensitivity of rainfall to surface temperature. We discuss the implications of the constrained sensitivity for future Amazonian predictions.
Soil Moisture and the Persistence of North American Drought.
NASA Astrophysics Data System (ADS)
Oglesby, Robert J.; Erickson, David J., III
1989-11-01
We describe numerical sensitivity experiments exploring the effects of soil moisture on North American summertime climate using the NCAR CCMI, a 12-layer global atmospheric general circulation model. In particular. the hypothesis that reduced soil moisture may help induce and amplify warm, dry summers over midlatitude continental interiors is examined. Equilibrium climate statistics are computed for the perpetual July model response to imposed soil moisture anomalies over North America between 36° and 49°N. In addition, the persistence of imposed soil moisture anomalies is examined through use of the seasonal cycle mode of operation with use of various initial atmospheric states both equilibrated and nonequilibrated to the initial soil moisture anomaly.The climate statistics generated by thew model simulations resemble in a general way those of the summer of 1988, when extensive heat and drought occurred over much of North America. A reduction in soil moisture in the model leads to an increase in surface temperature, lower surface pressure, increased ridging aloft, and a northward shift of the jet stream. Low-level moisture advection from the Gulf of Mexico is important in determining where persistent soil moisture deficits can be maintained. In seasonal cycle simulations, it lock longer for an initially unequilibrated atmosphere to respond to the imposed soil moisture anomaly, via moisture transport from the Gulf of Mexico, than when initially the atmosphere was in equilibrium with the imposed anomaly., i.e., the initial state was obtained from the appropriate perpetual July simulation. The results demonstrate the important role of soil moisture in prolonging and/or amplifying North American summertime drought.
NASA Astrophysics Data System (ADS)
Anderson, M. C.; Hain, C.; Mecikalski, J. R.; Kustas, W. P.
2009-12-01
Thermal infrared (TIR) remote sensing of land-surface temperature (LST) provides valuable information about the sub-surface moisture status: soil surface temperature increases with decreasing water content, while moisture depletion in the plant root zone leads to stomatal closure, reduced transpiration, and elevated canopy temperatures that can be effectively detected from space. Empirical indices measuring anomalies in LST and vegetation amount (e.g., as quantified by the Normalized Difference Vegetation Index; NDVI) have demonstrated utility in monitoring drought conditions over large areas, but may provide ambiguous results when vegetation growth is limited by energy (radiation, air temperature) rather than moisture. A more physically based interpretation of LST and NDVI and their relationship to sub-surface moisture conditions can be obtained with a surface energy balance model driven by TIR remote sensing. In this approach, moisture stress can be quantified in terms of the reduction of evapotranspiration (ET) from the potential rate (PET) expected under non-moisture limiting conditions. The Atmosphere-Land Exchange Inverse (ALEXI) model couples a two-source (soil+canopy) land-surface model with an atmospheric boundary layer model in time-differencing mode to routinely and robustly map fluxes across the U.S. continent at 5-10km resolution using thermal band imagery from the Geostationary Operational Environmental Satellites (GOES). Finer resolution flux maps can be generated through spatial disaggregation using TIR data from polar orbiting instruments such as Landsat (60-120m) and MODIS (1km). A derived Evaporative Stress Index (ESI), given by 1-ET/PET, shows good correspondence with standard drought metrics and with patterns of antecedent precipitation, but can be produced at significantly higher spatial resolution due to limited reliance on ground observations. Because the ESI does not use precipitation data as input, it provides an independent means for assessing standard meteorologically-based drought indicators, and may be more robust in regions with limited monitoring networks. In this study, monthly maps of ESI anomalies for 2000-2008 are compared to standard drought indices and to drought classifications in the U.S. Drought Monitor. The ESI shows better skill in ranking drought severity than do precipitation-based indices composited over comparable time intervals. The thermal remote sensing inputs to ALEXI detect drought conditions even under the dense forest cover along the East Coast of the United States, where microwave soil moisture retrievals typically lose sensitivity. On the other hand, microwave observations are not constrained by cloud cover and provide better temporal continuity, but typically at significantly lower spatial resolution. A merged TIR-microwave moisture anomaly product may have potential for optimizing both spatial and temporal coverage in continental-scale drought monitoring.
Atmospheric forcing of sea ice anomalies in the Ross Sea polynya region
NASA Astrophysics Data System (ADS)
Dale, Ethan R.; McDonald, Adrian J.; Coggins, Jack H. J.; Rack, Wolfgang
2017-01-01
We investigate the impacts of strong wind events on the sea ice concentration within the Ross Sea polynya (RSP), which may have consequences on sea ice formation. Bootstrap sea ice concentration (SIC) measurements derived from satellite SSM/I brightness temperatures are correlated with surface winds and temperatures from Ross Ice Shelf automatic weather stations (AWSs) and weather models (ERA-Interim). Daily data in the austral winter period were used to classify characteristic weather regimes based on the percentiles of wind speed. For each regime a composite of a SIC anomaly was formed for the entire Ross Sea region and we found that persistent weak winds near the edge of the Ross Ice Shelf are generally associated with positive SIC anomalies in the Ross Sea polynya and vice versa. By analyzing sea ice motion vectors derived from the SSM/I brightness temperatures we find significant sea ice motion anomalies throughout the Ross Sea during strong wind events, which persist for several days after a strong wind event has ended. Strong, negative correlations are found between SIC and AWS wind speed within the RSP indicating that strong winds cause significant advection of sea ice in the region. We were able to partially recreate these correlations using colocated, modeled ERA-Interim wind speeds. However, large AWS and model differences are observed in the vicinity of Ross Island, where ERA-Interim underestimates wind speeds by a factor of 1.7 resulting in a significant misrepresentation of RSP processes in this area based on model data. Thus, the cross-correlation functions produced by compositing based on ERA-Interim wind speeds differed significantly from those produced with AWS wind speeds. In general the rapid decrease in SIC during a strong wind event is followed by a more gradual recovery in SIC. The SIC recovery continues over a time period greater than the average persistence of strong wind events and sea ice motion anomalies. This suggests that sea ice recovery occurs through thermodynamic rather than dynamic processes.
NASA Astrophysics Data System (ADS)
Zhang, Yanmei; Huang, Haiying; Jiang, Zaisen; Fang, Ying; Cheng, Xiao
2014-12-01
Thermal anomaly appears to be a significant precursor of some strong earthquakes. In this study, time series of MODIS Land Surface Temperature (LST) products from 2001 to 2014 are processed and analyzed to locate possible anomalies prior to the Yutian earthquake (12 February 2014, Xinjiang, CHINA). In order to reduce the seasonal or annual effects from the LST variations, also to avoid the rainy and cloudy weather in this area, a background mean of ten-day nighttime LST are derived using averaged MOD11A2 products from 2001 to 2012. Then the ten-day LST data from Jan 2014 to FebJanuary 2014 were differenced using the above background. Abnormal LST increase before the earthquake is quite obvious from the differential images, indicating that this method is useful in such area with high mountains and wide-area deserts. Also, in order to assess the damage to infrastructure, China's latest civilian high-resolution remote sensing satellite - GF-1 remote sensed data are applied to the affected counties in this area. The damaged infrastructures and ground surface could be easily interpreted in the fused pan-chromatic and multi-spectral images integrating both texture and spectral information.
Sea surface temperatures of the mid-Piacenzian Warm Period: A comparison of PRISM3 and HadCM3
Dowsett, H.J.; Haywood, A.M.; Valdes, P.J.; Robinson, M.M.; Lunt, D.J.; Hill, D.J.; Stoll, D.K.; Foley, K.M.
2011-01-01
It is essential to document how well the current generation of climate models performs in simulating past climates to have confidence in their ability to project future conditions. We present the first global, in-depth comparison of Pliocene sea surface temperature (SST) estimates from a coupled ocean–atmosphere climate model experiment and a SST reconstruction based on proxy data. This enables the identification of areas in which both the climate model and the proxy dataset require improvement.In general, the fit between model-produced SST anomalies and those formed from the available data is very good. We focus our discussion on three regions where the data–model anomaly exceeds 2 °C. 1) In the high latitude North Pacific, a systematic model error may result in anomalies that are too cold. Also, the deeper Pliocene thermocline may cause disagreement along the California margin; either the upwelling in the model is too strong or the modeled thermocline is not deep enough. 2) In the North Atlantic, the model predicts cooling in the center of a data-based warming trend that steadily increases with latitude from + 1.5 °C to >+ 6 °C. The discrepancy may arise because the modeled North Atlantic Current is too zonal compared to reality, which is reinforced by the lowering of the altitude of the Pliocene Western Cordillera Mountains. In addition, the model's use of modern bathymetry in the higher latitudes may have led the model to underestimate the northward penetration of warmer surface water into the Arctic. 3) Finally, though the data and model show good general agreement across most of the Southern Ocean, a few locations show offsets due to the modern land–sea mask used in the model.Additional considerations could account for many of the modest data–model anomalies, such as differences between calibration climatologies, the oversimplification of the seasonal cycle, and differences between SST proxies (i.e. seasonality and water depth). New SST estimates from data-sparse and regionally important areas will greatly enhance our ability to judge model performance.
Utility of Satellite Magnetic Observations for Estimating Near-Surface Magnetic Anomalies
NASA Technical Reports Server (NTRS)
Kim, Hyung Rae; vonFrese, Ralph R. B.; Taylor, Patrick T.; Kim, Jeong Woo; Park, Chan Hong
2003-01-01
Regional to continental scale magnetic anomaly maps are becoming increasingly available from airborne, shipborne, and terrestrial surveys. Satellite data are commonly considered to fill the coverage gaps in regional compilations of these near-surface surveys. For the near-surface Antarctic magnetic anomaly map being produced by the Antarctic Digital Magnetic Anomaly Project (ADMAP), we show that near-surface magnetic anomaly estimation is greatly enhanced by the joint inversion of the near-surface data with the satellite observations relative to the conventional technique such as minimum curvature. Orsted observations are especially advantageous relative to the Magsat data that have order-of-magnitude greater measurement errors, albeit at much lower orbital altitudes. CHAMP is observing the geomagnetic field with the same measurement accuracy as the Orsted mission, but at the lower orbital altitudes covered by Magsat. Hence, additional significant improvement in predicting near-surface magnetic anomalies can result as these CHAMP data are available. Our analysis also suggests that considerable new insights on the magnetic properties of the lithosphere may be revealed by a further order-of-magnitude improvement in the accuracy of the magnetometer measurements at minimum orbital altitude.
Impact of Dust Radiative Forcing upon Climate. Chapter 13
NASA Technical Reports Server (NTRS)
Miller, Ronald L.; Knippertz, Peter; Perez Garcia-Pando, Carlos; Perlwitz, Jan P.; Tegan, Ina
2014-01-01
Dust aerosols perturb the atmospheric radiative flux at both solar and thermal wavelengths, altering the energy and water cycles. The climate adjusts by redistributing energy and moisture, so that local temperature perturbations, for example, depend upon the forcing over the entire extent of the perturbed circulation. Within regions frequently mixed by deep convection, including the deep tropics, dust particles perturb the surface air temperature primarily through radiative forcing at the top of the atmosphere (TOA). Many models predict that dust reduces global precipitation. This reduction is typically attributed to the decrease of surface evaporation in response to dimming of the surface. A counterexample is presented, where greater shortwave absorption by dust increases evaporation and precipitation despite greater dimming of the surface. This is attributed to the dependence of surface evaporation upon TOA forcing through its influence upon surface temperature and humidity. Perturbations by dust to the surface wind speed and vegetation (through precipitation anomalies) feed back upon the dust aerosol concentration. The current uncertainty of radiative forcing attributed to dust and the resulting range of climate perturbations calculated by models remain a useful test of our understanding of the mechanisms relating dust radiative forcing to the climate response.
A Combined Surface Temperature Dataset for the Arctic from MODIS and AVHRR
NASA Astrophysics Data System (ADS)
Dodd, E.; Veal, K. L.; Ghent, D.; Corlett, G. K.; Remedios, J. J.
2017-12-01
Surface Temperature (ST) changes in the Polar Regions are predicted to be more rapid than either global averages or responses in lower latitudes. Observations of STs and other changes associated with climate change increasingly confirm these predictions in the Arctic. Furthermore, recent high profile events of anomalously warm temperatures have increased interest in Arctic surface temperatures. It is, therefore, particularly important to monitor Arctic climate change. Satellites are particularly relevant to observations of Polar Regions as they are well-served by low-Earth orbiting satellites. Whilst clouds often cause problems for satellite observations of the surface, in situ observations of STs are much sparser. Previous work at the University of Leicester has produced a combined land, ocean and ice ST dataset for the Arctic using ATSR data (AAST) which covers the period 1995 to 2012. In order to facilitate investigation of more recent changes in the Arctic (2010 to 2016) we have produced another combined surface temperature dataset using MODIS and AVHRR; the Metop-A AVHRR and MODIS Arctic Surface Temperature dataset (AMAST). The method of cloud-clearing, use of auxiliary data for ice classification and the ST retrievals used for each surface-type in AMAST will be described. AAST and AMAST were compared in the time period common to both datasets. We will provide results from this intercomparison, as well as an assessment of the impact of utilising data from wide and narrow swath sensors. Time series of ST anomalies over the Arctic region produced from AMAST will be presented.
NASA Technical Reports Server (NTRS)
Phillips, T. J.
1984-01-01
The heating associated with equatorial, subtropical, and midlatitude ocean temperature anamolies in the Held-Suarez climate model is analyzed. The local and downstream response to the anomalies is analyzed, first by examining the seasonal variation in heating associated with each ocean temperature anomaly, and then by combining knowledge of the heating with linear dynamical theory in order to develop a more comprehensive explanation of the seasonal variation in local and downstream atmospheric response to each anomaly. The extent to which the linear theory of propagating waves can assist the interpretation of the remote cross-latitudinal response of the model to the ocean temperature anomalies is considered. Alternative hypotheses that attempt to avoid the contradictions inherent in a strict application of linear theory are investigated, and the impact of sampling errors on the assessment of statistical significance is also examined.
Ground heat flux and power sources of low-enthalpy geothermal systems
NASA Astrophysics Data System (ADS)
Bayer, Peter; Blum, Philipp; Rivera, Jaime A.
2015-04-01
Geothermal heat pumps commonly extract energy from the shallow ground at depths as low as approximately 400 m. Vertical borehole heat exchangers are often applied, which are seasonally operated for decades. During this lifetime, thermal anomalies are induced in the ground and surface-near aquifers, which often grow over the years and which alleviate the overall performance of the geothermal system. As basis for prediction and control of the evolving energy imbalance in the ground, focus is typically set on the ground temperatures. This is reflected in regulative temperature thresholds, and in temperature trends, which serve as indicators for renewability and sustainability. In our work, we examine the fundamental heat flux and power sources, as well as their temporal and spatial variability during geothermal heat pump operation. The underlying rationale is that for control of ground temperature evolution, knowledge of the primary heat sources is fundamental. This insight is also important to judge the validity of simplified modelling frameworks. For instance, we reveal that vertical heat flux from the surface dominates the basal heat flux towards a borehole. Both fluxes need to be accounted for as proper vertical boundary conditions in the model. Additionally, the role of horizontal groundwater advection is inspected. Moreover, by adopting the ground energy deficit and long-term replenishment as criteria for system sustainability, an uncommon perspective is adopted that is based on the primary parameter rather than induced local temperatures. In our synthetic study and dimensionless analysis, we demonstrate that time of ground energy recovery after system shutdown may be longer than what is expected from local temperature trends. In contrast, unrealistically long recovery periods and extreme thermal anomalies are predicted without account for vertical ground heat fluxes and only when the energy content of the geothermal reservoir is considered.
Amstislavski, Philippe; Zubov, Leonid; Chen, Herman; Ceccato, Pietro; Pekel, Jean-Francois; Weedon, Jeremy
2013-01-01
Background The indigenous Nenets reindeer herders in northern Russia annually migrate several hundred kilometers between summer and winter pastures. In the warming climate, ice-rich permafrost and glaciers are being significantly reduced and will eventually disappear from parts of the Arctic. The emergent changes in hydrological cycles have already led to substantial increases in open water that stays unfrozen for longer periods of time. This environmental change has been reported to compromise the nomadic Nenets’ traditional way of life because the presence of new water in the tundra reduces the Nenets’ ability to travel by foot, sled, or motor vehicle from the summer transitory tundra campsites in order to access healthcare centers in villages. New water can also impede their access to family and community at other herder camps and in the villages. Although regional and global models predicting hydrologic changes due to climate changes exist, the spatial resolution of these models is too coarse for studying how increases in open water affect health and livelihoods. To anticipate the full health impact of hydrologic changes, the current gap between globally forecasted scenarios and locally forecasted hydrologic scenarios needs to be bridged. Objectives We studied the effects of the autumn temperature anomalies and increases in open water on health care access and transmigration of reindeer herders on the Kanin Peninsula. Design Correlational and time series analyses were completed. Methods The study population consisted of 370 full-time, nomadic reindeer herders. We utilized clinical visit records, studied surface temperature anomalies during autumn migrations, and used remotely sensed imagery to detect water bodies. Spearman correlation was used to measure the relationship between temperature anomalies and the annual arrival of the herders at the Nes clinic for preventive and primary care. Piecewise regression was used to model change in mean autumnal temperature anomalies over time. We also created a water body product to detect inter-annual changes in water area. Results Correlation between arrivals to the Nes clinic and temperature anomalies during the fall transmigration (1979–2011) was r = 0.64, p = 0.0004; 95% CI (0.31; 0.82). Regression analysis estimated that mean temperature anomalies during the fall migration in September–December were stochastically stationary pre-1991 and have been rising significantly (p < 0.001) since then. The rate of change was estimated at +0.1351°C/year, SE = 0.0328, 95% CI (+0.0694, +0.2007). The amount of detected water fluctuated significantly interannually (620–800 km2). Conclusions Later arrival of freezing temperatures in the autumn followed by the earlier spring thaws and more open water delay transmigration and reduce herders’ access to health care. The recently observed delays in arrival to the clinic are likely related to the warming trend and to concomitant hydrologic changes. PMID:23971018
Amstislavski, Philippe; Zubov, Leonid; Chen, Herman; Ceccato, Pietro; Pekel, Jean-Francois; Weedon, Jeremy
2013-01-01
The indigenous Nenets reindeer herders in northern Russia annually migrate several hundred kilometers between summer and winter pastures. In the warming climate, ice-rich permafrost and glaciers are being significantly reduced and will eventually disappear from parts of the Arctic. The emergent changes in hydrological cycles have already led to substantial increases in open water that stays unfrozen for longer periods of time. This environmental change has been reported to compromise the nomadic Nenets' traditional way of life because the presence of new water in the tundra reduces the Nenets' ability to travel by foot, sled, or motor vehicle from the summer transitory tundra campsites in order to access healthcare centers in villages. New water can also impede their access to family and community at other herder camps and in the villages. Although regional and global models predicting hydrologic changes due to climate changes exist, the spatial resolution of these models is too coarse for studying how increases in open water affect health and livelihoods. To anticipate the full health impact of hydrologic changes, the current gap between globally forecasted scenarios and locally forecasted hydrologic scenarios needs to be bridged. We studied the effects of the autumn temperature anomalies and increases in open water on health care access and transmigration of reindeer herders on the Kanin Peninsula. Correlational and time series analyses were completed. The study population consisted of 370 full-time, nomadic reindeer herders. We utilized clinical visit records, studied surface temperature anomalies during autumn migrations, and used remotely sensed imagery to detect water bodies. Spearman correlation was used to measure the relationship between temperature anomalies and the annual arrival of the herders at the Nes clinic for preventive and primary care. Piecewise regression was used to model change in mean autumnal temperature anomalies over time. We also created a water body product to detect inter-annual changes in water area. Correlation between arrivals to the Nes clinic and temperature anomalies during the fall transmigration (1979-2011) was r = 0.64, p = 0.0004; 95% CI (0.31; 0.82). Regression analysis estimated that mean temperature anomalies during the fall migration in September-December were stochastically stationary pre-1991 and have been rising significantly (p < 0.001) since then. The rate of change was estimated at +0.1351°C/year, SE = 0.0328, 95% CI (+0.0694, +0.2007). The amount of detected water fluctuated significantly interannually (620-800 km(2)). Later arrival of freezing temperatures in the autumn followed by the earlier spring thaws and more open water delay transmigration and reduce herders' access to health care. The recently observed delays in arrival to the clinic are likely related to the warming trend and to concomitant hydrologic changes.
Warming and Inhibition of Salinization at the Ocean's Surface by Cyanobacteria
NASA Astrophysics Data System (ADS)
Wurl, O.; Bird, K.; Cunliffe, M.; Landing, W. M.; Miller, U.; Mustaffa, N. I. H.; Ribas-Ribas, M.; Witte, C.; Zappa, C. J.
2018-05-01
This paper describes high-resolution in situ observations of temperature and, for the first time, of salinity in the uppermost skin layer of the ocean, including the influence of large surface blooms of cyanobacteria on those skin properties. In the presence of the blooms, large anomalies of skin temperature and salinity of 0.95°C and -0.49 practical salinity unit were found, but a substantially cooler (-0.22°C) and saltier skin layer (0.19 practical salinity unit) was found in the absence of surface blooms. The results suggest that biologically controlled warming and inhibition of salinization of the ocean's surface occur. Less saline skin layers form during precipitation, but our observations also show that surface blooms of Trichodesmium sp. inhibit evaporation decreasing the salinity at the ocean's surface. This study has important implications in the assessment of precipitation over the ocean using remotely sensed salinity, but also for a better understanding of heat exchange and the hydrologic cycle on a regional scale.
On nonstationarity and antipersistency in global temperature series
NASA Astrophysics Data System (ADS)
KäRner, O.
2002-10-01
Statistical analysis is carried out for satellite-based global daily tropospheric and stratospheric temperature anomaly and solar irradiance data sets. Behavior of the series appears to be nonstationary with stationary daily increments. Estimating long-range dependence between the increments reveals a remarkable difference between the two temperature series. Global average tropospheric temperature anomaly behaves similarly to the solar irradiance anomaly. Their daily increments show antipersistency for scales longer than 2 months. The property points at a cumulative negative feedback in the Earth climate system governing the tropospheric variability during the last 22 years. The result emphasizes a dominating role of the solar irradiance variability in variations of the tropospheric temperature and gives no support to the theory of anthropogenic climate change. The global average stratospheric temperature anomaly proceeds like a 1-dim random walk at least up to 11 years, allowing good presentation by means of the autoregressive integrated moving average (ARIMA) models for monthly series.
Assimilation of Satellite-Derived Skin Temperature Observations into Land Surface Models
NASA Technical Reports Server (NTRS)
Reichle, Rolf H.; Kumar, Sujay V.; Mahanama, P. P.; Koster, Randal D.; Liu, Q.
2010-01-01
Land surface (or "skin") temperature (LST) lies at the heart of the surface energy balance and is a key variable in weather and climate models. Here we assimilate LST retrievals from the International Satellite Cloud Climatology Project (ISCCP) into the Noah and Catchment (CLSM) land surface models using an ensemble-based, off-line land data assimilation system. LST is described very differently in the two models. A priori scaling and dynamic bias estimation approaches are applied because satellite and model LST typically exhibit different mean values and variability. Performance is measured against 27 months of in situ measurements from the Coordinated Energy and Water Cycle Observations Project at 48 stations. LST estimates from Noah and CLSM without data assimilation ("open loop") are comparable to each other and superior to that of ISCCP retrievals. For LST, RMSE values are 4.9 K (CLSM), 5.6 K (Noah), and 7.6 K (ISCCP), and anomaly correlation coefficients (R) are 0.62 (CLSM), 0.61 (Noah), and 0.52 (ISCCP). Assimilation of ISCCP retrievals provides modest yet statistically significant improvements (over open loop) of up to 0.7 K in RMSE and 0.05 in anomaly R. The skill of surface turbulent flux estimates from the assimilation integrations is essentially identical to the corresponding open loop skill. Noah assimilation estimates of ground heat flux, however, can be significantly worse than open loop estimates. Provided the assimilation system is properly adapted to each land model, the benefits from the assimilation of LST retrievals are comparable for both models.
NASA Astrophysics Data System (ADS)
Popov, A.; Rubchenia, A.
2009-04-01
Numerous of model simulations of ice extent in Arctic Ocean predict almost full disappearance of sea ice in Arctic regions by 2050. However, the nature, as against models, does not suffer the unidirectional processes. By means of various feedback responses system aspires to come in an equilibrium condition. In Arctic regions one of the most powerful generators of a negative feedback is the fresh-water stream to Greenland Sea and Northern Atlantic. Increasing or decreasing of a fresh-water volume from the Arctic basin to Greenland Sea and Northern Atlantic results in significant changes in climatic system. At the Oceanology department of Arctic and Antarctic Research Institute (AARI) (St-Petersburg, Russia) in 2007, on the basis of the incorporated Russian-American database of the oceanographic data, reconstruction of long-term time series of average salinity of ocean surface was executed. The received time series describes the period from 1950 to 1993. For allocation of the processes determining formation of changes of average salinity of surface waters in Arctic basin the correlation analysis of interrelation of the received time series and several physical parameters which could affect formation of changes of salinity was executed. We found counter-intuitive result: formation of long-term changes of average salinity of surface waters of Arctic basin in the winter period does not depend on changes of a Siberian rivers runoff. Factors of correlation do not exceed -0,31. At the same time, clear inverse relationship of salinity of surface waters from volumes of the ice formed in flaw lead polynyas of the Siberian shelf seas is revealed. In this case factors of correlation change from -0,56 to -0,7. The maximum factor of correlation is -0,7. It characterizes interrelation of total volume of the ice formed in flaw lead polynyas of all seas of the Siberian shelf and average salinity of surface waters of Arctic basin. Thus, at increase of volumes of the ice formed in flaw lead polynyas there is a reduction of average salinity of surface waters of Arctic basin. In the winter period obvious influence of waters of a river runoff on a hydrological situation of this or that sea is limited to a zone of distribution of fast ice and a narrow zone of flaw lead polynyas between fast ice and drift ice. That fresh water from the Arctic seas is transferred in the Arctic basin. There should be a certain effective mechanism to carry it. Presence of clear interrelation of salinity of surface waters and volumes of ice formed in polynyas, allows us to offer the following circuit of formation of average salinity of surface waters in the Arctic basin. The ice formed in polynya, is constantly taken out for limits of an area of flaw lead polynyas. This ice accumulates the fresh water acting with a river runoff. New ice hummocking and accumulate snow - the next source of fresh water. In the summer period ice is melting and forms surface fresh layer. In the cold period of year, presence of thick ice not allows accumulating all fresh water, and the zone of fresh water is forming. These fresh water areas could exist for months. In the reports [1] was offered a hypothesis describing formation of distant connections in climatic system. In the hypothesis offered by us about a role of polynyas in formation of distant feedback in climatic system the most important and, unfortunately, the least certain parameter is «reaching time» of climatic signal from a place of origin (in flaw lead polynya area) up to the Greenland sea and Northern Atlantic. For an estimation of reaching time» we tried to trace drift of this anomaly from polynyas to Greenland Sea. For the initial moment of anomaly genesis month of the maximal development of polynya (when ice production of it was maximal) was chosen. Core of freshwater anomaly was determined for several polynyas. Using results of our simulations, data from database with areas of polynyas, wind stress data and current speed data from several sources, we got vector diagrams of drift of anomalies. Within the limits of the seas were taken into account a vector of constant currents. The vector of displacement within the limits of each of the seas represented the sum of constant current and average for one month of a vector of isobaric drift. In the Arctic basin we used only a vector of isobaric drift. Vectors of isobaric drift are constructed by I. Karelin (AARI, St-Petersburg, Russia) on the basis of average for one month of fields of ground pressure. As shown in numerous researches, monthly averaging most adequately allow us to display a field of wind drift of ice. For construction of vector diagrams on sphere we used «MapInfo Professional 7.5». For conviction of a reality of our hypothetical assumptions of carry of anomalies of salinity we have executed comparison of a spatial-temporal arrangement of areas vector diagrams we got with an arrangement of real anomalies of the salinity revealed as a result of instrumental observations. Such results of comparison have surpassed all expectations. We got confirmation of position of fresh water areas from instrumental observations executed in 2005-2007 by several cruises of AARI institute. Thus good concurrence of time and the location of areas of abnormal fleshing, received by theoretical and instrumentally observed conditions is marked. The map of a field of anomalies of the salinity, constructed for 2007 is most indicative. On this map a number of isolated fresh water areas in surface waters clearly allocated. To each of these areas of observed freshening there corresponds predicted passage of core of predicted anomaly. We could conclude that there is concurrence of predicted fresh water anomalies and observed fresh water areas. It allows us to say hypothesis is working. Flaw lead polynyas really forming significant anomalies of salinity which being distributed in Arctic basin. These anomalies keep the properties within several years. Hydrodynamic aspects of distribution of anomalies are not clear yet. But the fact of formation and distribution of anomalies of salinity of surface waters in Arctic basin could be taken for granted. In a case when the climatic signal from the several seas simultaneously reach Greenland Sea climatically significant anomaly of fresh water of ice could appear. It capable to result in sharp change of a climatic situation. Probably, the similar situation was in 1963-1964 years when «Great Salinity Anomaly» was observed in North Atlantic. Changes of atmospheric circulation was so significant, that in Arctic regions has rather sharply increased ice cover areas and the temperature of air has gone down. In our opinion similar conditions could arise in the present period when after several years of extreme development of flaw lead polynyas extreme freshwater anomaly which reaching of Greenland Sea is possible to expect 2008-2009 should be generated. In 2008 several freshwater anomalies generated in various flaw lead polynyas in 2003-2004 years already has left to Greenland sea and in April, July and November has reached Northern Atlantic. Synoptic situations which, in our opinion, can be connected to the given phenomenon, and also reaction of the Arctic seas to the given atmospheric processes are shown. The analysis of a map of drift of anomalies allows us to conclude, that in 2009 it is necessary to expect an exit of the strong salinity anomaly generated from several large polynyas. To the given event there will correspond reduction of repeatability and reduction of areas of polynyas in the seas of the Siberian shelf, easing of carrying out concerning warm air masses to the Central Arctic regions and increase here ground atmospheric pressure in the cold period of year. In the summer period will take place strengthening of ice cover and, hence - downturn of temperature of air in Arctic regions. We could assume we are at the break point of temperature change and next year there will be cooling in Arctic. [1] Popov A., Rubchenia A. Flaw polynyas as a source of long-distance connections in climate system // Geophysical Research Abstracts, Vol. 10, EGU2008-A-02009, 2008 SRef-ID: 1607-7962/gra/EGU2008-A-02009 EGU General Assembly 2008
Shen, Lu; Mickley, Loretta J
2017-03-07
We develop a statistical model to predict June-July-August (JJA) daily maximum 8-h average (MDA8) ozone concentrations in the eastern United States based on large-scale climate patterns during the previous spring. We find that anomalously high JJA ozone in the East is correlated with these springtime patterns: warm tropical Atlantic and cold northeast Pacific sea surface temperatures (SSTs), as well as positive sea level pressure (SLP) anomalies over Hawaii and negative SLP anomalies over the Atlantic and North America. We then develop a linear regression model to predict JJA MDA8 ozone from 1980 to 2013, using the identified SST and SLP patterns from the previous spring. The model explains ∼45% of the variability in JJA MDA8 ozone concentrations and ∼30% variability in the number of JJA ozone episodes (>70 ppbv) when averaged over the eastern United States. This seasonal predictability results from large-scale ocean-atmosphere interactions. Warm tropical Atlantic SSTs can trigger diabatic heating in the atmosphere and influence the extratropical climate through stationary wave propagation, leading to greater subsidence, less precipitation, and higher temperatures in the East, which increases surface ozone concentrations there. Cooler SSTs in the northeast Pacific are also associated with more summertime heatwaves and high ozone in the East. On average, models participating in the Atmospheric Model Intercomparison Project fail to capture the influence of this ocean-atmosphere interaction on temperatures in the eastern United States, implying that such models would have difficulty simulating the interannual variability of surface ozone in this region.