Sample records for surface temperature comparison

  1. Validation of the MODIS "Clear-Sky" Surface Temperature of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Koenig, L. S.; DiGirolamo, N. E.; Comiso, J.; Shuman, C. A.

    2011-01-01

    Surface temperatures on the Greenland Ice Sheet have been studied on the ground, using automatic weather station (AWS) data from the Greenland-Climate Network (GC-Net), and from analysis of satellite sensor data. Using Advanced Very High Frequency Radiometer (AVHRR) weekly surface temperature maps, warming of the surface of the Greenland Ice Sheet has been documented from 1981 to present. We extend and refine this record using higher-resolution Moderate-Resolution Imaging Spectroradiometer (MODIS) data from March 2000 to the present. To permit changes to be observed over time, we are developing a well-characterized monthly climate-data record (CDR) of the "clear-sky" surface temperature of the Greenland Ice Sheet using data from both the Terra and Aqua satellites. We use the MODIS ice-surface temperature (IST) algorithm. Validation of the CDR consists of several facets: 1) comparisons between the Terra and Aqua IST maps; 2) comparisons between ISTs and in-situ measurements; 3) comparisons between ISTs and AWS data; and 4) comparisons of ISTs with surface temperatures derived from other satellite instruments such as the Thermal Emission and Reflection Radiometer. In this work, we focus on 1) and 2) above. Surface temperatures on the Greenland Ice Sheet have been studied on the ground, using automatic weather station (AWS) data from the Greenland-Climate Network (GC-Net), and from analysis of satellite sensor data. Using Advanced Very High Frequency Radiometer (AVHRR) weekly surface temperature maps, warming of the surface of the Greenland Ice Sheet has been documented from 1981 to present. We extend and refine this record using higher-resolution Moderate-Resolution Imaging Spectroradiometer (MODIS) data from March 2000 to the present. To permit changes to be observed over time, we are developing a well-characterized monthly climate-data record (CDR) of the "clear-sky" surface temperature of the Greenland Ice Sheet using data from both the Terra and Aqua satellites. We use the MODIS ice-surface temperature (IST) algorithm. Validation of the CDR consists of several facets: 1) comparisons between the Terra and Aqua IST maps; 2) comparisons between ISTs and in-situ measurements; 3) comparisons between ISTs and AWS data; and 4) comparisons of ISTs with surface temperatures derived from other satellite instruments such as the Thermal Emission and Reflection Radiometer. In this work, we focus on 1) and 2) above. First we provide comparisons between Terra and Aqua swath-based ISTs at approximately 14:00 Local Solar Time, reprojected to 12.5 km polar stereographic cells. Results show good correspondence when Terra and Aqua data were acquired within 2 hrs of each other. For example, for a cell centered over Summit Camp (72.58 N, 38.5 W), the average agreement between Terra and Aqua ISTs is 0.74 K (February 2003), 0.47 K (April 2003), 0.7 K (August 2003) and 0.96 K (October 2003) with the Terra ISTs being generally lower than the Aqua ISTs. More precise comparisons will be calculated using pixel data at the swath level, and correspondence between Terra and Aqua IST is expected to be closer. (Because of cloud cover and other considerations, only a few common cloud-free swaths are typically available for each month for comparison.) Additionally, previous work comparing land-surface temperatures (LSTs) from the standard MODIS LST product and in-situ surface-temperature data at Summit Camp on the Greenland Ice Sheet show that Terra MODIS LSTs are about 3 K lower than in-situ temperatures at Summit Camp, during the winter of 2008-09. This work will be repeated using both Terra and Aqua IST pixel data (in place of LST data). In conclusion, we demonstrate that the uncertainties in the CDR will be well characterized as we work through the various facets of its validation.

  2. Sea surface temperature measurements with AIRS

    NASA Technical Reports Server (NTRS)

    Aumann, H.

    2003-01-01

    The comparison of global sea surface skin temperature derived from cloud-free AIRS super window channel at 2616 cm-1 (sst2616) with the Real-Time Global Sea Surface Temperature for September 2002 shows surprisingly small standard deviation of 0.44K.

  3. Comparison Spatial Pattern of Land Surface Temperature with Mono Window Algorithm and Split Window Algorithm: A Case Study in South Tangerang, Indonesia

    NASA Astrophysics Data System (ADS)

    Bunai, Tasya; Rokhmatuloh; Wibowo, Adi

    2018-05-01

    In this paper, two methods to retrieve the Land Surface Temperature (LST) from thermal infrared data supplied by band 10 and 11 of the Thermal Infrared Sensor (TIRS) onboard the Landsat 8 is compared. The first is mono window algorithm developed by Qin et al. and the second is split window algorithm by Rozenstein et al. The purpose of this study is to perform the spatial distribution of land surface temperature, as well as to determine more accurate algorithm for retrieving land surface temperature by calculated root mean square error (RMSE). Finally, we present comparison the spatial distribution of land surface temperature by both of algorithm, and more accurate algorithm is split window algorithm refers to the root mean square error (RMSE) is 7.69° C.

  4. Comparison of Orbiter STS-2 development flight instrumentation data with thermal math model predictions

    NASA Technical Reports Server (NTRS)

    Norman, I.; Rochelle, W. C.; Kimbrough, B. S.; Ritrivi, C. A.; Ting, P. C.; Dotts, R. L.

    1982-01-01

    Thermal performance verification of Reusable Surface Insulation (RSI) has been accomplished by comparisons of STS-2 Orbiter Flight Test (OFT) data with Thermal Math Model (TMM) predictions. The OFT data was obtained from Development Flight Instrumentation RSI plug and gap thermocouples. Quartertile RSI TMMs were developed using measured flight data for surface temperature and pressure environments. Reference surface heating rates, derived from surface temperature data, were multiplied by gap heating ratios to obtain tile sidewall heating rates. This TMM analysis resulted in good agreement of predicted temperatures with flight data for thermocouples located in the RSI, Strain Isolation Pad, filler bar and structure.

  5. Global comparisons between the modified Pathfinder derived sea surface temperature and skin temperatures from the along-track scanning radiometer on board ERS-2: how close are we getting?

    NASA Technical Reports Server (NTRS)

    Vazquez, J.

    2001-01-01

    Sea Surface Temperatures (SST) as derived from the Pathfinder Sea Surface Temperature Data Set and the Along-Track Scanning Radiometer on-board the European Remote Sensing Satellite provide a unique opportunity for comparing two independent SST data sets.

  6. Brillouin-scattering measurements of surface-acoustic-wave velocities in silicon at high temperatures

    NASA Astrophysics Data System (ADS)

    Stoddart, P. R.; Comins, J. D.; Every, A. G.

    1995-06-01

    Brillouin-scattering measurements of the angular dependence of surface-acoustic-wave velociites at high temperatures are reported. The measurements have been performed on the (001) surface of a silicon single crystal at temperatures up to 800 °C, allowing comparison of the results with calculated velocities based on existing data for the elastic constants and thermal expansion of silicon in this temperature range. The change in surface-acoustic-wave velocity with temperature is reproduced well, demonstrating the value of this technique for the characterization of the high-temperature elastic properties of opaque materials.

  7. Comparison of MODIS Land Surface Temperature and Air Temperature over the Continental USA Meteorological Stations

    NASA Technical Reports Server (NTRS)

    Zhang, Ping; Bounoua, Lahouari; Imhoff, Marc L.; Wolfe, Robert E.; Thome, Kurtis

    2014-01-01

    The National Land Cover Database (NLCD) Impervious Surface Area (ISA) and MODIS Land Surface Temperature (LST) are used in a spatial analysis to assess the surface-temperature-based urban heat island's (UHIS) signature on LST amplitude over the continental USA and to make comparisons to local air temperatures. Air-temperature-based UHIs (UHIA), calculated using the Global Historical Climatology Network (GHCN) daily air temperatures, are compared with UHIS for urban areas in different biomes during different seasons. NLCD ISA is used to define urban and rural temperatures and to stratify the sampling for LST and air temperatures. We find that the MODIS LST agrees well with observed air temperature during the nighttime, but tends to overestimate it during the daytime, especially during summer and in nonforested areas. The minimum air temperature analyses show that UHIs in forests have an average UHIA of 1 C during the summer. The UHIS, calculated from nighttime LST, has similar magnitude of 1-2 C. By contrast, the LSTs show a midday summer UHIS of 3-4 C for cities in forests, whereas the average summer UHIA calculated from maximum air temperature is close to 0 C. In addition, the LSTs and air temperatures difference between 2006 and 2011 are in agreement, albeit with different magnitude.

  8. A comparison of Argo nominal surface and near-surface temperature for validation of AMSR-E SST

    NASA Astrophysics Data System (ADS)

    Liu, Zenghong; Chen, Xingrong; Sun, Chaohui; Wu, Xiaofen; Lu, Shaolei

    2017-05-01

    Satellite SST (sea surface temperature) from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) is compared with in situ temperature observations from Argo profiling floats over the global oceans to evaluate the advantages of Argo NST (near-surface temperature: water temperature less than 1 m from the surface). By comparing Argo nominal surface temperature ( 5 m) with its NST, a diurnal cycle caused by daytime warming and nighttime cooling was found, along with a maximum warming of 0.08±0.36°C during 14:00-15:00 local time. Further comparisons between Argo 5-m temperature/Argo NST and AMSR-E SST retrievals related to wind speed, columnar water vapor, and columnar cloud water indicate warming biases at low wind speed (<5 m/s) and columnar water vapor >28 mm during daytime. The warming tendency is more remarkable for AMSR-E SST/Argo 5-m temperature compared with AMSR-E SST/Argo NST, owing to the effect of diurnal warming. This effect of diurnal warming events should be excluded before validation for microwave SST retrievals. Both AMSR-E nighttime SST/Argo 5-m temperature and nighttime SST/Argo NST show generally good agreement, independent of wind speed and columnar water vapor. From our analysis, Argo NST data demonstrated their advantages for validation of satellite-retrieved SST.

  9. Normalized Temperature Contrast Processing in Flash Infrared Thermography

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2016-01-01

    The paper presents further development in normalized contrast processing of flash infrared thermography method by the author given in US 8,577,120 B1. The method of computing normalized image or pixel intensity contrast, and normalized temperature contrast are provided, including converting one from the other. Methods of assessing emissivity of the object, afterglow heat flux, reflection temperature change and temperature video imaging during flash thermography are provided. Temperature imaging and normalized temperature contrast imaging provide certain advantages over pixel intensity normalized contrast processing by reducing effect of reflected energy in images and measurements, providing better quantitative data. The subject matter for this paper mostly comes from US 9,066,028 B1 by the author. Examples of normalized image processing video images and normalized temperature processing video images are provided. Examples of surface temperature video images, surface temperature rise video images and simple contrast video images area also provided. Temperature video imaging in flash infrared thermography allows better comparison with flash thermography simulation using commercial software which provides temperature video as the output. Temperature imaging also allows easy comparison of surface temperature change to camera temperature sensitivity or noise equivalent temperature difference (NETD) to assess probability of detecting (POD) anomalies.

  10. Comparison of MODIS-derived land surface temperature with air temperature measurements

    NASA Astrophysics Data System (ADS)

    Georgiou, Andreas; Akçit, Nuhcan

    2017-09-01

    Air surface temperature is an important parameter for a wide range of applications such as agriculture, hydrology and climate change studies. Air temperature data is usually obtained from measurements made in meteorological stations, providing only limited information about spatial patterns over wide areas. The use of remote sensing data can help overcome this problem, particularly in areas with low station density, having the potential to improve the estimation of air surface temperature at both regional and global scales. Land Surface (skin) Temperatures (LST) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Terra and Aqua satellite platforms provide spatial estimates of near-surface temperature values. In this study, LST values from MODIS are compared to groundbased near surface air (Tair) measurements obtained from 14 observational stations during 2011 to 2015, covering coastal, mountainous and urban areas over Cyprus. Combining Terra and Aqua LST-8 Day and Night acquisitions into a mean monthly value, provide a large number of LST observations and a better overall agreement with Tair. Comparison between mean monthly LSTs and mean monthly Tair for all sites and all seasons pooled together yields a very high correlation and biases. In addition, the presented high standard deviation can be explained by the influence of surface heterogeneity within MODIS 1km2 grid cells, the presence of undetected clouds and the inherent difference between LST and Tair. However, MODIS LST data proved to be a reliable proxy for surface temperature and mostly for studies requiring temperature reconstruction in areas with lack of observational stations.

  11. Magnetic Resonance of Polymers at Surfaces

    DTIC Science & Technology

    1989-08-28

    are similar in their response to solvent Znd temperature in bulk poly(vinyl acetate) ( PVAc ). 2 5 This technique has been used for comparison with bulk...polymer for the PVAc -silica and polystyrene (PS)-silica systems. 2 6 As a function of temperature, comparison of the surface labelled polymer with the...the coverage was increased, the ESR spectra of the polymer also became more bulk-like. The mobility of the PVAc on silica was also shown to depend on

  12. Simulating the role of surface forcing on observed multidecadal upper-ocean salinity changes

    DOE PAGES

    Lago, Veronique; Wijffels, Susan E.; Durack, Paul J.; ...

    2016-07-18

    The ocean’s surface salinity field has changed over the observed record, driven by an intensification of the water cycle in response to global warming. However, the origin and causes of the coincident subsurface salinity changes are not fully understood. The relationship between imposed surface salinity and temperature changes and their corresponding subsurface changes is investigated using idealized ocean model experiments. The ocean’s surface has warmed by about 0.5°C (50 yr) –1 while the surface salinity pattern has amplified by about 8% per 50 years. The idealized experiments are constructed for a 50-yr period, allowing a qualitative comparison to the observedmore » salinity and temperature changes previously reported. The comparison suggests that changes in both modeled surface salinity and temperature are required to replicate the three-dimensional pattern of observed salinity change. The results also show that the effects of surface changes in temperature and salinity act linearly on the changes in subsurface salinity. In addition, surface salinity pattern amplification appears to be the leading driver of subsurface salinity change on depth surfaces; however, surface warming is also required to replicate the observed patterns of change on density surfaces. This is the result of isopycnal migration modified by the ocean surface warming, which produces significant salinity changes on density surfaces.« less

  13. Simulating the role of surface forcing on observed multidecadal upper-ocean salinity changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lago, Veronique; Wijffels, Susan E.; Durack, Paul J.

    The ocean’s surface salinity field has changed over the observed record, driven by an intensification of the water cycle in response to global warming. However, the origin and causes of the coincident subsurface salinity changes are not fully understood. The relationship between imposed surface salinity and temperature changes and their corresponding subsurface changes is investigated using idealized ocean model experiments. The ocean’s surface has warmed by about 0.5°C (50 yr) –1 while the surface salinity pattern has amplified by about 8% per 50 years. The idealized experiments are constructed for a 50-yr period, allowing a qualitative comparison to the observedmore » salinity and temperature changes previously reported. The comparison suggests that changes in both modeled surface salinity and temperature are required to replicate the three-dimensional pattern of observed salinity change. The results also show that the effects of surface changes in temperature and salinity act linearly on the changes in subsurface salinity. In addition, surface salinity pattern amplification appears to be the leading driver of subsurface salinity change on depth surfaces; however, surface warming is also required to replicate the observed patterns of change on density surfaces. This is the result of isopycnal migration modified by the ocean surface warming, which produces significant salinity changes on density surfaces.« less

  14. Comparison of cropland and forest surface temperatures across the conterminous United States

    Treesearch

    James D. Wickham; Timothy G. Wade; Kurt H. Riitters

    2012-01-01

    Global climate models (GCM) investigating the effects of land cover on climate have found that replacing extra-tropical forest with cropland promotes cooling. We compared cropland and forest surface temperatures across the continental United States in 16 cells that were approximately 1◦ × 2◦ using 1 km2 MODIS land surface...

  15. Comparison of cropland and forest surface temperatures across the conterminous United States

    EPA Science Inventory

    Global climate models (GCM) investigating the effects of land cover on climate have found that replacing extra-tropical forest with cropland promotes cooling. We compared cropland and forest surface temperatures across the continental United States in 16 cells that were approxim...

  16. Validation of a Climate-Data Record of the "Clear-Sky" Surface Temperature of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Box, Jason E.; Koenig, Lora S.; DiGirolamo, Nicolo E.; Comiso, Josefino C.; Shuman, Christopher A.

    2011-01-01

    Surface temperatures on the Greenland Ice Sheet have been studied on the ground, using automatic weather station (AWS) data from the Greenland-Climate Network (GC-Net), and from analysis of satellite sensor data. Using Advanced Very High Frequency Radiometer (AVHRR) weekly surface temperature maps, warming of the surface of the Greenland Ice Sheet has been documented since 1981. We extended and refined this record using higher-resolution Moderate-Resolution Imaging Spectroradiometer (MODIS) data from March 2000 to the present. We developed a daily and monthly climate-data record (CDR) of the "clear-sky" surface temperature of the Greenland Ice Sheet using an ice-surface temperature (1ST) algorithm developed for use with MODIS data. Validation of this CDR is ongoing. MODIS Terra swath data are projected onto a polar stereographic grid at 6.25-km resolution to develop binary, gridded daily and mean-monthly 1ST maps. Each monthly map also has a color-coded image map that is available to download. Also included with the monthly maps is an accompanying map showing number of days in the month that were used to calculate the mean-monthly 1ST. This is important because no 1ST decision is made by the algorithm for cells that are considered cloudy by the internal cloud mask, so a sufficient number of days must be available to produce a mean 1ST for each grid cell. Validation of the CDR consists of several facets: 1) comparisons between ISTs and in-situ measurements; 2) comparisons between ISTs and AWS data; and 3) comparisons of ISTs with surface temperatures derived from other satellite instruments such as the Thermal Emission and Reflection Radiometer (ASTER) and Enhanced Thematic Mapper Plus (ETM+). Previous work shows that Terra MODIS ISTs are about 3 C lower than in-situ temperatures measured at Summit Camp, during the winter of 2008-09 under clear skies. In this work we begin to compare surface temperatures derived from AWS data with ISTs from the MODIS CDR.

  17. Validation of Atmospheric Forcing Data for PIPS 3

    DTIC Science & Technology

    2001-09-30

    members shortly. RESULTS Surface Temperature: Figure 1 shows a comparison of surface air temperatures from the NOGAPS model , the IABP and the NCEP...with some 8,000 daily velocity observations from the IABP buoys shows that the sea-ice model performs better when driven with NOGAPS surface stresses...forcing variables, surface radiative fluxes, surface winds, and precipitation estimates to be used in the development and operation of the PIPS 3.0 model

  18. Validation of a Climate-Data Record of the "Clear-Kky" Surface Temperature of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Box, Jason E.; Koenig, Lora S.; DiGirolamo, Nicolo E.; Comiso, Josefino C.; Shuman, Christopher A.

    2011-01-01

    Surface temperatures on the Greenland Ice Sheet have been studied on the ground, using automatic weather station (AWS) data from the Greenland-Climate Network (GC-Net), and from analysis of satellite sensor data. Using Advanced Very High Frequency Radiometer (AVHRR) weekly surface temperature maps, warming of the surface of the Greenland Ice Sheet has been documented since 1981. We extended and refined this record using higher-resolution Moderate-Resolution Imaging Spectroradiometer (MODIS) data from March 2000 to the present. We developed a daily and monthly climate-data record (CDR) of the "clear-sky" surface temperature of the Greenland Ice Sheet using an ice-surface temperature (1ST) algorithm developed for use with MODIS data. Validation of this CDR is ongoing. MODIS Terra swath data are projected onto a polar stereographic grid at 6.25-km resolution to develop binary, gridded daily and mean-monthly 1ST maps. Each monthly map also has a color-coded image map that is available to download. Also included with the monthly maps is an accompanying map showing number of days in the month that were used to calculate the mean-monthly 1ST. This is important because no 1ST decision is made by the algorithm for cells that are considered cloudy by the internal cloud mask, so a sufficient number of days must be available to produce a mean 1ST for each grid cell. Validation of the CDR consists of several facets: 1) comparisons between ISTs and in-situ measurements; 2) comparisons between ISTs and AWS data; and 3) comparisons of ISTs with surface temperatures derived from other satellite instruments such as the Thermal Emission and Reflection Radiometer (ASTER) and Enhanced Thematic Mapper Plus (ETM+). Previous work shows that Terra MODIS ISTs are about 3 C lower than in-situ temperatures measured at Summit Camp, during the winter of 2008-09 under clear skies. In this work we begin to compare surface temperatures derived from AWS data with ISTs from the MODIS CDR. The Greenland Ice Sheet 1ST CDR will be useful for monitoring surface-temperature trends and can be used as input or for validation of climate models. The CDR can be extended into the future using MODIS Terra, Aqua and NPOESS Preparatory Project Visible Infrared Imager Radiometer Suite (VII RS) data.

  19. A comparison of surface temperature derived from HCMM infrared measurements with field data

    NASA Technical Reports Server (NTRS)

    Vukovich, F. M.

    1984-01-01

    The satellite for the Heat Capacity Mapping Mission (HCMM) was launched on April 26, 1978. The HCMM had the objective to collect data in support of studies concerned with the feasibility of using infrared temperature data to compute the thermal inertia from the earth's surface. The HCMM radiometer had a channel for reflected radiation in the 0.5 to 1.1 micron waveband, and a channel for the infrared radiation in the 10.5 to 12.5 micron band. However, difficulties developed in connection with changes in the characteristics of the radiometer. The present investigation is concerned with a comparison of HCMM infrared temperatures with in situ data from the Mississippi River in the St. Louis, Missouri, area and with sea-surface temperatures collected in the Nantucket Shoals and Gulf of Mexico regions. It was found that, on the average, the difference between satellite in situ data was -4.6 C.

  20. Surface Temperature Assimilation in Land Surface Models

    NASA Technical Reports Server (NTRS)

    Lakshmi, Venkataraman

    1997-01-01

    This paper examines the utilization of surface temperature as a variable to be assimilated in offline land surface hydrological models. Comparisons between the model computed and satellite observed surface temperatures have been carried out. The assimilation of surface temperature is carried out twice a day (corresponding to the AM and PM overpass of the NOAA10) over the Red- Arkansas basin in the Southwestern United States (31 deg 50 min N - 36 deg N, 94 deg 30 min W - 104 deg 30 min W) for a period of one year (August 1987 to July 1988). The effect of assimilation is to reduce the difference between the surface soil moisture computed for the precipitation and/or shortwave radiation perturbed case and the unperturbed case compared to no assimilation.

  1. Surface Temperature Assimilation in Land Surface Models

    NASA Technical Reports Server (NTRS)

    Lakshmi, Venkataraman

    1999-01-01

    This paper examines the utilization of surface temperature as a variable to be assimilated in offline land surface hydrological models. Comparisons between the model computed and satellite observed surface temperatures have been carried out. The assimilation of surface temperature is carried out twice a day (corresponding to the AM and PM overpass of the NOAA10) over the Red-Arkansas basin in the Southwestern United States (31 degs 50 sec N - 36 degrees N, 94 degrees 30 seconds W - 104 degrees 3 seconds W) for a period of one year (August 1987 to July 1988). The effect of assimilation is to reduce the difference between the surface soil moisture computed for the precipitation and/or shortwave radiation perturbed case and the unperturbed case compared to no assimilation.

  2. Root surface temperature variation during mechanical removal of root canal filling material. An in vitro study.

    PubMed

    García-Cuerva, Martín; Horvath, Lucía; Pinasco, Laura; Ciparelli, Verónica; Gualtieri, Ariel; Casadoumecq, Ana C; Rodríguez, Pablo; Gonzalez-Zanotto, Carlos

    2017-04-01

    The aim of this study was to analyze in vitro temperature changes on the outer surface of the dental root during mechanical filling removal procedures. Thirty recently extracted single-rooted lower premolars were cut transversally at 16 mm from the apex in order to standardize sample length. Endodontic treatment was performed on them. The filling material was subsequently removed using Gates Glidden (G1, G2, G3); Peeso (P1, P2, P3) and PostecPlus FRC (FRC) reamers while temperatures were measured on the outer surface using a digital device with thermocouple at 0, 2, 4, 6, 8, 10 and 15 seconds. Temperatures were compared using repeated measures ANOVA followed by pairwise comparison with Tukey's test. All reamers caused significant temperature variation between different times (p<0.05). Pairwise comparisons indicated that temperature increased with time for all reamers (p<0.05). Significant differences in temperature were found between different reamers after 0, 2, 4, 6, 8,10 and 15 seconds (p<0.05). Temperature at the root surface increased considerably. Values higher than 50°C were recorded, the greatest increase from baseline being 16°C. Accordingly, if the procedure were begun at 37°C (physiological temperature), the temperature in the surrounding tissues - cementum, periodontium and bone - would rise to 53°C. An increase in 10°C above body temperature at the root surface may cause lesions in surrounding tissues. While removing filling material, it is essential to cool, control action time and use instruments in perfect condition, all of which may contribute to reducing the heat generated and transmitted to the outer root surface. Sociedad Argentina de Pediatría.

  3. Surface Emissivity Effects on Thermodynamic Retrieval of IR Spectral Radiance

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Smith, William L.; Liu, Xu

    2006-01-01

    The surface emissivity effect on the thermodynamic parameters (e.g., the surface skin temperature, atmospheric temperature, and moisture) retrieved from satellite infrared (IR) spectral radiance is studied. Simulation analysis demonstrates that surface emissivity plays an important role in retrieval of surface skin temperature and terrestrial boundary layer (TBL) moisture. NAST-I ultraspectral data collected during the CLAMS field campaign are used to retrieve thermodynamic properties of the atmosphere and surface. The retrievals are then validated by coincident in-situ measurements, such as sea surface temperature, radiosonde temperature and moisture profiles. Retrieved surface emissivity is also validated by that computed from the observed radiance and calculated emissions based on the retrievals of surface temperature and atmospheric profiles. In addition, retrieved surface skin temperature and emissivity are validated together by radiance comparison between the observation and retrieval-based calculation in the window region where atmospheric contribution is minimized. Both simulation and validation results have lead to the conclusion that variable surface emissivity in the inversion process is needed to obtain accurate retrievals from satellite IR spectral radiance measurements. Retrieval examples are presented to reveal that surface emissivity plays a significant role in retrieving accurate surface skin temperature and TBL thermodynamic parameters.

  4. A comparison of surfaces temperatures from HCMM infrared data with field measurements

    NASA Technical Reports Server (NTRS)

    Vukovich, F. M. (Principal Investigator)

    1982-01-01

    Heat Capacity Mapping Mission surface temperatures were compared to field data obtained in the Mississippi River, in the Atlantic Ocean in the vicinity of the Nantucket Shoals, and in the eastern Gulf of Mexico. The absolute and relative accuracies of the infrared data were determined.

  5. Comparison of wintertime asphalt and concrete pavement surface temperatures on U.S. Route 40 near Heber, Utah.

    DOT National Transportation Integrated Search

    2014-06-01

    Asphalt and concrete pavement surface temperatures were compared at a location on U.S. Route 40 in : northern Utah where asphalt and concrete meet end to end at the base of the mountain pass. An environmental : sensor station was installed to facilit...

  6. Uncertainty of a hybrid surface temperature sensor for silicon wafers and comparison with an embedded thermocouple.

    PubMed

    Iuchi, Tohru; Gogami, Atsushi

    2009-12-01

    We have developed a user-friendly hybrid surface temperature sensor. The uncertainties of temperature readings associated with this sensor and a thermocouple embedded in a silicon wafer are compared. The expanded uncertainties (k=2) of the hybrid temperature sensor and the embedded thermocouple are 2.11 and 2.37 K, respectively, in the temperature range between 600 and 1000 K. In the present paper, the uncertainty evaluation and the sources of uncertainty are described.

  7. Real-time aerodynamic heating and surface temperature calculations for hypersonic flight simulation

    NASA Technical Reports Server (NTRS)

    Quinn, Robert D.; Gong, Leslie

    1990-01-01

    A real-time heating algorithm was derived and installed on the Ames Research Center Dryden Flight Research Facility real-time flight simulator. This program can calculate two- and three-dimensional stagnation point surface heating rates and surface temperatures. The two-dimensional calculations can be made with or without leading-edge sweep. In addition, upper and lower surface heating rates and surface temperatures for flat plates, wedges, and cones can be calculated. Laminar or turbulent heating can be calculated, with boundary-layer transition made a function of free-stream Reynolds number and free-stream Mach number. Real-time heating rates and surface temperatures calculated for a generic hypersonic vehicle are presented and compared with more exact values computed by a batch aeroheating program. As these comparisons show, the heating algorithm used on the flight simulator calculates surface heating rates and temperatures well within the accuracy required to evaluate flight profiles for acceptable heating trajectories.

  8. Comparison between AVHRR surface temperature data and in-situ weather station temperatures over the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Rezvanbehbahani, S.; Csatho, B. M.; Comiso, J. C.; Babonis, G. S.

    2011-12-01

    Advanced Very-High Resolution Radiometer (AVHRR) images have been exhaustively used to measure surface temperature time series of the Greenland Ice sheet. The purpose of this study is to assess the accuracy of monthly average ice sheet surface temperatures, derived from thermal infrared AVHRR satellite imagery on a 6.25 km grid. In-situ temperature data sets are from the Greenland Collection Network (GC-Net). GC-Net stations comprise sensors monitoring air temperature at 1 and 2 meter above the snow surface, gathered at every 60 seconds and monthly averaged to match the AVHRR temporal resolution. Our preliminary results confirm the good agreement between satellite and in-situ temperature measurements reported by previous studies. However, some large discrepancies still exist. While AVHRR provides ice surface temperature, in-situ stations measure air temperatures at different elevations above the snow surface. Since most in-situ data on ice sheets are collected by Automatic Weather Station (AWS) instruments, it is important to characterize the difference between surface and air temperatures. Therefore, we compared and analyzed average monthly AVHRR ice surface temperatures using data collected in 2002. Differences between these temperatures correlate with in-situ temperatures and GC-Net station elevations, with increasing differences at lower elevations and higher temperatures. The Summit Station (3199 m above sea level) and the Swiss Camp (1176 m above sea level) results were compared as high altitude and low altitude stations for 2002, respectively. Our results show that AVHRR derived temperatures were 0.5°K warmer than AWS temperature at the Summit Station, while this difference was 2.8°K in the opposite direction for the Swiss Camp with surface temperatures being lower than air temperatures. The positive bias of 0.5°K at the high altitude Summit Station (surface warmer than air) is within the retrieval error of AVHRR temperatures and might be in part due to atmospheric inversion. The large negative bias of 2.8°K at the low altitude Swiss Camp (surface colder than the air) could be caused by a combination of different factors including local effects such as more windy circumstances above the snow surface and biases introduced by the cloud-masking applied on the AVHRR images. Usually only satellite images acquired in clear-sky conditions are used for deriving monthly AVHRR average temperatures. Since cloud-free days are usually warmer, satellite derived temperatures tend to underestimate the real average temperatures, especially regions with frequent cloud cover, such as Swiss Camp. Therefore, cautions must be exercised while using ice surface temperatures derived from satellite imagery for glaciological applications. Eliminating the cloudy day's' temperature from the in-situ data prior to the comparison with AVHRR derived temperatures will provide a better assessment of AVHRR surface temperature measurement accuracy.

  9. Comparison of winter temperature profiles in asphalt and concrete pavements.

    DOT National Transportation Integrated Search

    2014-06-01

    The objectives of this research were to 1) determine which pavement type, asphalt or concrete, has : higher surface temperatures in winter and 2) compare the subsurface temperatures under asphalt and : concrete pavements to determine the pavement typ...

  10. Comparison of dew point temperature estimation methods in Southwestern Georgia

    Treesearch

    Marcus D. Williams; Scott L. Goodrick; Andrew Grundstein; Marshall Shepherd

    2015-01-01

    Recent upward trends in acres irrigated have been linked to increasing near-surface moisture. Unfortunately, stations with dew point data for monitoring near-surface moisture are sparse. Thus, models that estimate dew points from more readily observed data sources are useful. Daily average dew temperatures were estimated and evaluated at 14 stations in...

  11. Comparison of temperature effects on E. coli, Salmonella, and Enterococcus survival in surface waters

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to compare the dependencies of survival rates on temperature for indicator organisms E. coli and Enterococcus and the pathogen Salmonella in surface waters. A database consisting of 86 survival datasets from peer-reviewed papers on inactivation of E. coli, Salmonella...

  12. Comparison of Near-Surface Air Temperatures and MODIS Ice-Surface Temperatures at Summit, Greenland (2008-2013)

    NASA Technical Reports Server (NTRS)

    Shuman, Christopher A.; Hall, Dorothy K.; DiGirolamo, Nicolo E.; Mefford, Thomas K.; Schnaubelt, Michael J.

    2014-01-01

    We have investigated the stability of the MODerate resolution Imaging Spectroradiometer (MODIS) infrared-derived ice surface temperature (IST) data from Terra for use as a climate quality data record. The availability of climate quality air temperature data (TA) from a NOAA Global Monitoring Division observatory at Greenlands Summit station has enabled this high temporal resolution study of MODIS ISTs. During a 5 year period (July 2008 to August 2013), more than 2500 IST values were compared with 3-minute average TA values derived from the 1-minute data from NOAAs primary 2 m air temperature sensor. These data enabled an expected small offset between air and surface temperatures at this the ice sheet location to be investigated over multiple annual cycles.

  13. Topoclimatological survey of Switzerland

    NASA Technical Reports Server (NTRS)

    Winiger, M. (Principal Investigator)

    1982-01-01

    The application of Heat Capacity Mapping Mission data to subsynoptic climate analysis of Switzerland was examined. The data included the surface temperature distributions of urban heat islands and the Swiss Alps. Analog and digital data evaluation procedures are described as well as the ground truth acquisition and comparison program. The dependence of the temperature distributions on topography and surface coverage types is assessed. The results indicate that air temperature inversion zones are detectable.

  14. Comparison of Observed Surface Temperatures of 4 Vesta to the KRC Thermal Model

    NASA Technical Reports Server (NTRS)

    Titus, T. N.; Becker, K. J.; Anderson, J. A.; Capria, M. T.; Tosi, F.; DeSanctis, M. C.; Palomba, E.; Grassi, D.; Capaccioni, F.; Ammannito, E.; hide

    2012-01-01

    In this work, we will compare ob-served temperatures of the surface of Vesta using data acquired by the Dawn [1] Visible and Infrared Map-ping Spectrometer (VIR-MS) [2] during the approach phase to model results from the KRC thermal model. High thermal inertia materials, such as bedrock, resist changes in temperature while temperatures of low thermal inertia material, such as dust, respond quickly to changes in solar insolation. The surface of Vesta is expected to have low to medium thermal inertia values, with the most commonly used value being extremely low at 15 TIU [4]. There are several parameters which affect observed temperatures in addition to thermal inertia: bond albedo, slope, and surface roughness. In addition to these parameters, real surfaces are rarely uniform monoliths that can be described by a single thermal inertia value. Real surfaces are often vertically layered or are mixtures of dust and rock. For Vesta's surface, with temperature extremes ranging from 50 K to 275 K and no atmosphere, even a uniform monolithic surface may have non-uniform thermal inertia due to temperature dependent thermal conductivity.

  15. Thermal sensing of cryogenic wind tunnel model surfaces Evaluation of silicon diodes

    NASA Technical Reports Server (NTRS)

    Daryabeigi, K.; Ash, R. L.; Dillon-Townes, L. A.

    1986-01-01

    Different sensors and installation techniques for surface temperature measurement of cryogenic wind tunnel models were investigated. Silicon diodes were selected for further consideration because of their good inherent accuracy. Their average absolute temperature deviation in comparison tests with standard platinum resistance thermometers was found to be 0.2 K in the range from 125 to 273 K. Subsurface temperature measurement was selected as the installation technique in order to minimize aerodynamic interference. Temperature distortion caused by an embedded silicon diode was studied numerically.

  16. Thermal sensing of cryogenic wind tunnel model surfaces - Evaluation of silicon diodes

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Ash, Robert L.; Dillon-Townes, Lawrence A.

    1986-01-01

    Different sensors and installation techniques for surface temperature measurement of cryogenic wind tunnel models were investigated. Silicon diodes were selected for further consideration because of their good inherent accuracy. Their average absolute temperature deviation in comparison tests with standard platinum resistance thermometers was found to be 0.2 K in the range from 125 to 273 K. Subsurface temperature measurement was selected as the installation technique in order to minimize aerodynamic interference. Temperature distortion caused by an embedded silicon diode was studied numerically.

  17. Do initial conditions matter? A comparison of model climatologies generated from different initial states

    NASA Technical Reports Server (NTRS)

    Spar, J.; Cohen, C.; Wu, P.

    1981-01-01

    A coarse mesh (8 by 10) 7 layer global climate model was used to compute 15 months of meteorological history in two perpetual January experiments on a water planet (without continents) with a zonally symmetric climatological January sea surface temperature field. In the first of the two water planet experiments the initial atmospheric state was a set of zonal mean values of specific humidity, temperature, and wind at each latitude. In the second experiment the model was initialized with globally uniform mean values of specific humidity and temperature on each sigma level surface, constant surface pressure (1010 mb), and zero wind everywhere. A comparison was made of the mean January climatic states generated by the two water planet experiments. The first two months of each 15 January run were discarded, and 13 month averages were computed from months 3 through 15.

  18. Analysis of oxidation of self-baking electrodes (Soederberg electrodes) by means of three-dimensional model

    NASA Astrophysics Data System (ADS)

    Pashnin, S. V.

    2017-10-01

    The paper presents the methodology and results of the development of the temperature dependence of the oxidation speed of the self-baking electrode (Soederberg Electrodes) in the ore-thermal furnaces. For the study of oxidation, the working ends of the self-baking electrodes, which were taken out from the ore-thermal furnaces after their scabbings, were used. The temperature of the electrode surface by its height was calculated with the help of the mathematical model of heat work of self-baking electrode. The comparison of electrode surface temperatures with the speed of oxidation of the electrode allowed one to obtain the temperature dependency of the oxidation of the lateral electrode surface. Comparison of the experimental data, obtained in the laboratory by various authors, showed their qualitative coincidence with results of calculations of the oxidation rate presented in this article. With the help of the mathematical model of temperatures fields of electrode, the calculations of the sizes of the cracks, appearing after burnout ribs, were performed. Calculations showed that the sizes of the cracks after the ribs burnout, calculated by means of the obtained temperature dependence, coincide with the experimental data with sufficient accuracy.

  19. Comparison of Blackbody Sources for Low-Temperature IR Calibration

    NASA Astrophysics Data System (ADS)

    Ljungblad, S.; Holmsten, M.; Josefson, L. E.; Klason, P.

    2015-12-01

    Radiation thermometers are traditionally mostly used in high-temperature applications. They are, however, becoming more common in different applications at room temperature or below, in applications such as monitoring frozen food and evaluating heat leakage in buildings. To measure temperature accurately with a pyrometer, calibration is essential. A problem with traditional, commercially available, blackbody sources is that ice is often formed on the surface when measuring temperatures below 0°C. This is due to the humidity of the surrounding air and, as ice does not have the same emissivity as the blackbody source, it biases the measurements. An alternative to a traditional blackbody source has been tested by SP Technical Research Institute of Sweden. The objective is to find a cost-efficient method of calibrating pyrometers by comparison at the level of accuracy required for the intended use. A disc-shaped blackbody with a surface pyramid pattern is placed in a climatic chamber with an opening for field of view of the pyrometer. The temperature of the climatic chamber is measured with two platinum resistance thermometers in the air in the vicinity of the disc. As a rule, frost will form only if the deposition surface is colder than the surrounding air, and, as this is not the case when the air of the climatic chamber is cooled, there should be no frost or ice formed on the blackbody surface. To test the disc-shaped blackbody source, a blackbody cavity immersed in a conventional stirred liquid bath was used as a reference blackbody source. Two different pyrometers were calibrated by comparison using the two different blackbody sources, and the results were compared. The results of the measurements show that the disc works as intended and is suitable as a blackbody radiation source.

  20. Reentry heating analysis of space shuttle with comparison of flight data

    NASA Technical Reports Server (NTRS)

    Gong, L.; Quinn, R. D.; Ko, W. L.

    1982-01-01

    Surface heating rates and surface temperatures for a space shuttle reentry profile were calculated for two wing cross sections and one fuselage cross section. Heating rates and temperatures at 12 locations on the wing and 6 locations on the fuselage are presented. The heating on the lower wing was most severe, with peak temperatures reaching values of 1240 C for turbulent flow and 900 C for laminar flow. For the fuselage, the most severe heating occured on the lower glove surface where peak temperatures of 910 C and 700 C were calculated for turbulent flow and laminar flow, respectively. Aluminum structural temperatures were calculated using a finite difference thermal analyzer computer program, and the predicted temperatures are compared to measured flight data. Skin temperatures measured on the lower surface of the wing and bay 1 of the upper surface of the wing agreed best with temperatures calculated assuming laminar flow. The measured temperatures at bays two and four on the upper surface of the wing were in quite good agreement with the temperatures calculated assuming separated flow. The measured temperatures on the lower forward spar cap of bay four were in good agreement with values predicted assuming laminar flow.

  1. Strong Influence of Temperature and Vacuum on the Photoluminescence of In0.3Ga0.7As Buried and Surface Quantum Dots

    NASA Astrophysics Data System (ADS)

    Wang, Guodong; Ji, Huiqiang; Shen, Junling; Xu, Yonghao; Liu, Xiaolian; Fu, Ziyi

    2018-04-01

    The strong influences of temperature and vacuum on the optical properties of In0.3Ga0.7As surface quantum dots (SQDs) are systematically investigated by photoluminescence (PL) measurements. For comparison, optical properties of buried quantum dots (BQDs) are also measured. The line-width, peak wavelength, and lifetime of SQDs are significantly different from the BQDs with the temperature and vacuum varied. The differences in PL response when temperature varies are attributed to carrier transfer from the SQDs to the surface trap states. The obvious distinctions in PL response when vacuum varies are attributed to the SQDs intrinsic surface trap states inhibited by the water molecules. This research provides necessary information for device application of SQDs as surface-sensitivity sensors.

  2. Assessment of surface turbulent fluxes using geostationary satellite surface skin temperatures and a mixed layer planetary boundary layer scheme

    NASA Technical Reports Server (NTRS)

    Diak, George R.; Stewart, Tod R.

    1989-01-01

    A method is presented for evaluating the fluxes of sensible and latent heating at the land surface, using satellite-measured surface temperature changes in a composite surface layer-mixed layer representation of the planetary boundary layer. The basic prognostic model is tested by comparison with synoptic station information at sites where surface evaporation climatology is well known. The remote sensing version of the model, using satellite-measured surface temperature changes, is then used to quantify the sharp spatial gradient in surface heating/evaporation across the central United States. An error analysis indicates that perhaps five levels of evaporation are recognizable by these methods and that the chief cause of error is the interaction of errors in the measurement of surface temperature change with errors in the assigment of surface roughness character. Finally, two new potential methods for remote sensing of the land-surface energy balance are suggested which will relay on space-borne instrumentation planned for the 1990s.

  3. A 30-day forecast experiment with the GISS model and updated sea surface temperatures

    NASA Technical Reports Server (NTRS)

    Spar, J.; Atlas, R.; Kuo, E.

    1975-01-01

    The GISS model was used to compute two parallel global 30-day forecasts for the month January 1974. In one forecast, climatological January sea surface temperatures were used, while in the other observed sea temperatures were inserted and updated daily. A comparison of the two forecasts indicated no clear-cut beneficial effect of daily updating of sea surface temperatures. Despite the rapid decay of daily predictability, the model produced a 30-day mean forecast for January 1974 that was generally superior to persistence and climatology when evaluated over either the globe or the Northern Hemisphere, but not over smaller regions.

  4. In-situ ellipsometric studies of optical and surface properties of GaAs(100) at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Yao, Huade; Snyder, Paul G.

    1991-01-01

    A rotating-polarizer ellipsometer was attached to an ultrahigh vacuum (UHV) chamber. A GaAs(100) sample was introduced into the UHV chamber and heated at anumber of fixed elevated temperatures, without arsenic overpressure. In-situ spectroscopic ellipsometric (SE) measurements were taken, through a pair of low-strain quartz windows, to monitor the surface changes and measure the pseudodielectric functions at elevated temperatures. Real-time data from GaAs surface covered with native oxide showed clearly the evolution of oxide desorption at approximately 580 C. In addition, surface degradation was found before and after the oxide desorption. An oxide free and smooth GaAs surface was obtained by depositing an arsenic protective coating onto a molecular beam epitaxy grown GaAs surface. The arsenic coating was evaporated immediately prior to SE measurements. A comparison showed that our room temperature data from this GaAs surface, measured in the UHV, are in good agreement with those in the literature obtained by wet-chemical etching. The surface also remained clean and smooth at higher temperatures, so that reliable temperature-dependent dielectric functions were obtained.

  5. Estimating the power of Mars’ greenhouse effect

    NASA Astrophysics Data System (ADS)

    Haberle, Robert M.

    2013-03-01

    Extensive modeling of Mars in conjunction with in situ observations suggests that the annual average global mean surface temperature is Tsbar∼202 K. Yet its effective temperature, i.e., the temperature at which a blackbody radiates away the energy it absorbs, is Te ∼ 208 K. How can a planet with a CO2 atmosphere have a mean annual surface temperature that is actually less than its effective temperature? We use the Ames General Circulation Model explain why this is the case and point out that the correct comparison of the effective temperature is with the effective surface temperature Tse, which is the fourth root of the annual and globally averaged value of Ts4. This may seem obvious, but the distinction is often not recognized in the literature.

  6. Modeling the Surface Energy Balance of the Core of an Old Mediterranean City: Marseille.

    NASA Astrophysics Data System (ADS)

    Lemonsu, A.; Grimmond, C. S. B.; Masson, V.

    2004-02-01

    The Town Energy Balance (TEB) model, which parameterizes the local-scale energy and water exchanges between urban surfaces and the atmosphere by treating the urban area as a series of urban canyons, coupled to the Interactions between Soil, Biosphere, and Atmosphere (ISBA) scheme, was run in offline mode for Marseille, France. TEB's performance is evaluated with observations of surface temperatures and surface energy balance fluxes collected during the field experiments to constrain models of atmospheric pollution and transport of emissions (ESCOMPTE) urban boundary layer (UBL) campaign. Particular attention was directed to the influence of different surface databases, used for input parameters, on model predictions. Comparison of simulated canyon temperatures with observations resulted in improvements to TEB parameterizations by increasing the ventilation. Evaluation of the model with wall, road, and roof surface temperatures gave good results. The model succeeds in simulating a sensible heat flux larger than heat storage, as observed. A sensitivity comparison using generic dense city parameters, derived from the Coordination of Information on the Environment (CORINE) land cover database, and those from a surface database developed specifically for the Marseille city center shows the importance of correctly documenting the urban surface. Overall, the TEB scheme is shown to be fairly robust, consistent with results from previous studies.

  7. Evaluation of urban surface parameterizations in the WRF model using measurements during the Texas Air Quality Study 2006 field campaign

    NASA Astrophysics Data System (ADS)

    Lee, S.-H.; Kim, S.-W.; Angevine, W. M.; Bianco, L.; McKeen, S. A.; Senff, C. J.; Trainer, M.; Tucker, S. C.; Zamora, R. J.

    2010-10-01

    The impact of urban surface parameterizations in the WRF (Weather Research and Forecasting) model on the simulation of local meteorological fields is investigated. The Noah land surface model (LSM), a modified LSM, and a single-layer urban canopy model (UCM) have been compared, focusing on urban patches. The model simulations were performed for 6 days from 12 August to 17 August during the Texas Air Quality Study 2006 field campaign. Analysis was focused on the Houston-Galveston metropolitan area. The model simulated temperature, wind, and atmospheric boundary layer (ABL) height were compared with observations from surface meteorological stations (Continuous Ambient Monitoring Stations, CAMS), wind profilers, the NOAA Twin Otter aircraft, and the NOAA Research Vessel Ronald H. Brown. The UCM simulation showed better results in the comparison of ABL height and surface temperature than the LSM simulations, whereas the original LSM overestimated both the surface temperature and ABL height significantly in urban areas. The modified LSM, which activates hydrological processes associated with urban vegetation mainly through transpiration, slightly reduced warm and high biases in surface temperature and ABL height. A comparison of surface energy balance fluxes in an urban area indicated the UCM reproduces a realistic partitioning of sensible heat and latent heat fluxes, consequently improving the simulation of urban boundary layer. However, the LSMs have a higher Bowen ratio than the observation due to significant suppression of latent heat flux. The comparison results suggest that the subgrid heterogeneity by urban vegetation and urban morphological characteristics should be taken into account along with the associated physical parameterizations for accurate simulation of urban boundary layer if the region of interest has a large fraction of vegetation within the urban patch. Model showed significant discrepancies in the specific meteorological conditions when nocturnal low-level jets exist and a thermal internal boundary layer over water forms.

  8. The effects of temperature on the surface resistivity of polyvinyl alcohol (PVA) thin films doped with silver nanoparticles and multi-walled carbon-nanotubes for optoelectronic and sensor applications

    NASA Astrophysics Data System (ADS)

    Polius, Jemilia R.

    This thesis reports measurements of the temperature-dependent surface resistivity of multi-wall carbon nanotube doped polyvinyl alcohol (PVA) thin films. In the temperature range from 22°C to 40°C in a humidity controlled environment, it was found that the surface resistivity decreased initially but raised as the temperature continued to increase. I report surface resistivity measurements as a function of temperature of both multiwall and single-wall carbon nanotube doped PVA thin films, with comparison of the similarities and differences between the two types of film types. This research was conducted using the combined instrumentation of the KEITHLEY Model 6517 Electrometer and the KEITHLEY Model 8009 resistivity test fixture using both commercial and in-house produced organic thin films.

  9. Thermal/Pyrolysis Gas Flow Analysis of Carbon Phenolic Material

    NASA Technical Reports Server (NTRS)

    Clayton, J. Louie

    2001-01-01

    Provided in this study are predicted in-depth temperature and pyrolysis gas pressure distributions for carbon phenolic materials that are externally heated with a laser source. Governing equations, numerical techniques and comparisons to measured temperature data are also presented. Surface thermochemical conditions were determined using the Aerotherm Chemical Equilibrium (ACE) program. Surface heating simulation used facility calibrated radiative and convective flux levels. Temperatures and pyrolysis gas pressures are predicted using an upgraded form of the SINDA/CMA program that was developed by NASA during the Solid Propulsion Integrity Program (SPIP). Multispecie mass balance, tracking of condensable vapors, high heat rate kinetics, real gas compressibility and reduced mixture viscosity's have been added to the algorithm. In general, surface and in-depth temperature comparisons are very good. Specie partial pressures calculations show that a saturated water-vapor mixture is the main contributor to peak in-depth total pressure. Further, for most of the cases studied, the water-vapor mixture is driven near the critical point and is believed to significantly increase the local heat capacity of the composite material. This phenomenon if not accounted for in analysis models may lead to an over prediction in temperature response in charring regions of the material.

  10. The Impact of Satellite-Derived Land Surface Temperatures on Numerical Weather Prediction Analyses and Forecasts

    NASA Astrophysics Data System (ADS)

    Candy, B.; Saunders, R. W.; Ghent, D.; Bulgin, C. E.

    2017-09-01

    Land surface temperature (LST) observations from a variety of satellite instruments operating in the infrared have been compared to estimates of surface temperature from the Met Office operational numerical weather prediction (NWP) model. The comparisons show that during the day the NWP model can underpredict the surface temperature by up to 10 K in certain regions such as the Sahel and southern Africa. By contrast at night the differences are generally smaller. Matchups have also been performed between satellite LSTs and observations from an in situ radiometer located in Southern England within a region of mixed land use. These matchups demonstrate good agreement at night and suggest that the satellite uncertainties in LST are less than 2 K. The Met Office surface analysis scheme has been adapted to utilize nighttime LST observations. Experiments using these analyses in an NWP model have shown a benefit to the resulting forecasts of near-surface air temperature, particularly over Africa.

  11. Surface temperature/heat transfer measurement using a quantitative phosphor thermography system

    NASA Technical Reports Server (NTRS)

    Buck, G. M.

    1991-01-01

    A relative-intensity phosphor thermography technique developed for surface heating studies in hypersonic wind tunnels is described. A direct relationship between relative emission intensity and phosphor temperature is used for quantitative surface temperature measurements in time. The technique provides global surface temperature-time histories using a 3-CCD (Charge Coupled Device) video camera and digital recording system. A current history of technique development at Langley is discussed. Latest developments include a phosphor mixture for a greater range of temperature sensitivity and use of castable ceramics for inexpensive test models. A method of calculating surface heat-transfer from thermal image data in blowdown wind tunnels is included in an appendix, with an analysis of material thermal heat-transfer properties. Results from tests in the Langley 31-Inch Mach 10 Tunnel are presented for a ceramic orbiter configuration and a four-inch diameter hemisphere model. Data include windward heating for bow-shock/wing-shock interactions on the orbiter wing surface, and a comparison with prediction for hemisphere heating distribution.

  12. Regolith Properties of Asteroid 21 Lutetia Constrained by Combined Data Sets of the MIRO and VIRTIS Instruments During the Rosetta Spacecraft Flyby

    NASA Technical Reports Server (NTRS)

    Keihm, S.; Tosi, F.; Kamp, L.; Capaccioni, F.; Grassi, D.; Gulkis, S.; Coradini, A.

    2011-01-01

    During the July 10, 2010 flyby of Asteroid 21 Lutetia by the Rosetta spacecraft, maps of surface and subsurface temperatures were derived from the VIRTIS and MIRO instruments respectively. Both data sets indicated a porous surface layer with an extremely low, lunar-like thermal inertia. However, comparisons of the VIRTIS-measured and MIRO-modelled surface temperatures revealed offsets of 10- 30 K, indicative of self-heating or "beaming" effects that were not taken into account in the MIRO thermal modeling. Inclusion of a model of hemispherical craters at all scales 1 cm and larger, covering 50% of the surface, removes most of the offsets in the VIRTIS, MIRO surface temperature determinations.

  13. Heat flux estimates over vegetation derived using radiometric surface temperatures and a boundary layer model in comparison with sodar-derived values. M.S. Thesis; [Rock Springs Agricultural Research Center, Pennsylvania

    NASA Technical Reports Server (NTRS)

    Cooper, J. N. (Principal Investigator)

    1981-01-01

    An attempt was made to validate a method that uses radiometric surface temperatures and a boundary layer model to estimate surface energy budgets and characteristics. Surface temperatures from a hand-held radiometer and sodar data were collected simultaneously on seven days between mid-July and mid-October 1980. The comparison of the RDMS and sodar heat fluxes proved disappointing. Free convection conditions, required to produce sodar-derived heat fluxes, were inhibited by a terrain-induced low level inversion. Only three out of seven cases produced meaningful sodar heat fluxes. Of those three cases, one had good agreement and the other two had sodar heat fluxes 15 to 45 w/sq m lower than the RDMS values. Since the RDMS method is relatively untested, it was impossible to conclusively determine its validity from the results. There was evidence that the true heat flux was not underestimated by the RDMS, so it could be concluded that the Bowen ratios over well-watered vegetation were likely to be quite small.

  14. Effect of surface condition to temperature distribution in living tissue during cryopreservation

    NASA Astrophysics Data System (ADS)

    Nozawa, M.; Hatakeyama, S.; Sugimoto, Y.; Sasaki, H.

    2017-12-01

    The temperature distribution of the simulated living tissue is measured for the improvement of the cooling rate during cryopreservation when the surface condition of the test sample is changed by covering the stainless steel mesh. Agar is used as a simulated living tissue and is filled inside the test sample. The variation of the transient temperature with mesh by the directly immersion in the liquid nitrogen is measured. The temperatures on the sample surface and the inside of the sample are measured by use of type T thermocouples. It is confirmed that on the sample surface there is the slightly temperature increase than that in the saturated liquid nitrogen at the atmospheric pressure. It is found by the comparison of the degree of superheat with or without the mesh that the surface temperature of the test sample with the mesh is lower than that without the mesh. On the other hand, the time series variations of the temperature located in the center of the sample does not change with or without the mesh. It is considered that the center of the sample used is too deep from the surface to respond to the boiling state on the sample surface.

  15. Mississippi Sound remote sensing study. [NASA Earth Resources Laboratory seasonal experiments

    NASA Technical Reports Server (NTRS)

    Atwell, B. H.; Thomann, G. C.

    1973-01-01

    A study of the Mississippi Sound was initiated in early 1971 by personnel of NASA Earth Resources Laboratory. Four separate seasonal experiments consisting of quasi-synoptic remote and surface measurements over the entire area were planned. Approximately 80 stations distributed throughout Mississippi Sound were occupied. Surface water temperature and secchi extinction depth were measured at each station and water samples were collected for water quality analyses. The surface distribution of three water parameters of interest from a remote sensing standpoint - temperature, salinity and chlorophyll content - are displayed in map form. Areal variations in these parameters are related to tides and winds. A brief discussion of the general problem of radiative measurements of water temperature is followed by a comparison of remotely measured temperatures (PRT-5) to surface vessel measurements.

  16. A comparison of root surface temperatures using different obturation heat sources.

    PubMed

    Lee, F S; Van Cura, J E; BeGole, E

    1998-09-01

    This study compared root surface temperatures produced during warm vertical obturation using the System B Heat Source (SB), the Touch 'n Heat device (TH), and a flame-heated carrier (FH). The root canals of 30 maxillary incisor, premolar, and mandibular incisor teeth were prepared; divided into three groups; and obturated using each heat source. A thermocouple placed 2 mm below the cementoenamel junction transferred the temperature rise on the external root surface to a digital thermometer. SB surface temperature rise was < 10 degrees C for all experimental teeth. TH temperature rise in maxillary incisors and premolars was < 10 degrees C; however, > 10 degrees C was observed for mandibular incisors. FH produced a > 10 degrees C surface temperature rise in all experimental teeth. The critical level of root surface heat required to produce irreversible bone damage is believed to be > 10 degrees C. The findings of this study suggest that warm vertical condensation with the SB should not damage supporting periradicular tissues. However, caution should be used with TH and FH on mandibular incisors.

  17. Theoretical study of cathode surfaces and high-temperature superconductors

    NASA Technical Reports Server (NTRS)

    Mueller, Wolfgang

    1995-01-01

    Calculations are presented for the work functions of BaO on W, Os, Pt, and alloys of Re-W, Os-W, and Ir-W that are in excellent agreement with experiment. The observed emission enhancement for alloy relative to tungsten dispenser cathodes is attributed to properties of the substrate crystal structure and explained by the smaller depolarization of the surface dipole on hexagonal as compared to cubic substrates. For Ba and BaO on W(100), the geometry of the adsorbates has been determined by a comparison of inverse photoemission spectra with calculated densities of unoccupied states based on the fully relativistic embedded cluster approach. Results are also discussed for models of scandate cathodes and the electronic structure of oxygen on W(100) at room and elevated temperatures. A detailed comparison is made for the surface electronic structure of the high-temperature superconductor YBa2Cu3O7 as obtained with non-, quasi-, and fully relativistic cluster calculations.

  18. Temperature dependence of surface tension of molten iron under reducing gas atmosphere

    NASA Astrophysics Data System (ADS)

    Ozawa, S.; Takahashi, S.; Fukuyama, H.; Watanabe, M.

    2011-12-01

    Surface tension of molten iron was measured under Ar-He-5vol.%H2 gas by oscillating droplet method using electromagnetic levitation furnace in consideration of the temperature dependence of oxygen partial pressure, Po2, of the gas. For comparison, the measurement was carried under Ar-He atmosphere to fix the Po2 of the inlet gas at 10-2Pa. The surface tension was successfully measured over a wide temperature range of about 780K including undercooling condition. When Po2 is fixed at 10-2 Pa, the surface tension increased and then decreased with increasing temperature like a boomerang shape. When the measurement was carried out under the H2-containing gas atmosphere, the temperature dependence of the surface tension shows unique kink at around 1810K instead of liner relationship due to competition between the temperature dependence of the Po2 and that of the equilibrium constant of oxygen adsorption reaction. The relationship between the calculated lnKad with respect to inverse temperature using Szyszkowski model was different between the atmospheric gases.

  19. Comparison of CFD Predictions with Shuttle Global Flight Thermal Imagery and Discrete Surface Measurements

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Kleb, William L.; Tang, chun Y.; Palmer, Grant E.; Hyatt, Andrew J.; Wise, Adam J.; McCloud, Peter L.

    2010-01-01

    Surface temperature measurements from the STS-119 boundary-layer transition experiment on the space shuttle orbiter Discovery provide a rare opportunity to assess turbulent CFD models at hypersonic flight conditions. This flight data was acquired by on-board thermocouples and by infrared images taken off-board by the Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) team, and is suitable for hypersonic CFD turbulence assessment between Mach 6 and 14. The primary assessment is for the Baldwin-Lomax and Cebeci-Smith algebraic turbulence models in the DPLR and LAURA CFD codes, respectively. A secondary assessment is made of the Shear-Stress Transport (SST) two-equation turbulence model in the DPLR code. Based upon surface temperature comparisons at eleven thermocouple locations, the algebraic-model turbulent CFD results average 4% lower than the measurements for Mach numbers less than 11. For Mach numbers greater than 11, the algebraic-model turbulent CFD results average 5% higher than the three available thermocouple measurements. Surface temperature predictions from the two SST cases were consistently 3 4% higher than the algebraic-model results. The thermocouple temperatures exhibit a change in trend with Mach number at about Mach 11; this trend is not reflected in the CFD results. Because the temperature trends from the turbulent CFD simulations and the flight data diverge above Mach 11, extrapolation of the turbulent CFD accuracy to higher Mach numbers is not recommended.

  20. New generalized corresponding states correlation for surface tension of normal saturated liquids

    NASA Astrophysics Data System (ADS)

    Yi, Huili; Tian, Jianxiang

    2015-08-01

    A new simple correlation based on the principle of corresponding state is proposed to estimate the temperature-dependent surface tension of normal saturated liquids. The new correlation contains three coefficients obtained by fitting 17,051 surface tension data of 38 saturated normal liquids. These 38 liquids contain refrigerants, hydrocarbons and some other inorganic liquids. The new correlation requires only the triple point temperature, triple point surface tension and critical point temperature as input and is able to well represent the experimental surface tension data for each of the 38 saturated normal liquids from the triple temperature up to the point near the critical point. The new correlation gives absolute average deviations (AAD) values below 3% for all of these 38 liquids with the only exception being octane with AAD=4.30%. Thus, the new correlation gives better overall results in comparison with other correlations for these 38 normal saturated liquids.

  1. Air-sea interactions during strong winter extratropical storms

    USGS Publications Warehouse

    Nelson, Jill; He, Ruoying; Warner, John C.; Bane, John

    2014-01-01

    A high-resolution, regional coupled atmosphere–ocean model is used to investigate strong air–sea interactions during a rapidly developing extratropical cyclone (ETC) off the east coast of the USA. In this two-way coupled system, surface momentum and heat fluxes derived from the Weather Research and Forecasting model and sea surface temperature (SST) from the Regional Ocean Modeling System are exchanged via the Model Coupling Toolkit. Comparisons are made between the modeled and observed wind velocity, sea level pressure, 10 m air temperature, and sea surface temperature time series, as well as a comparison between the model and one glider transect. Vertical profiles of modeled air temperature and winds in the marine atmospheric boundary layer and temperature variations in the upper ocean during a 3-day storm period are examined at various cross-shelf transects along the eastern seaboard. It is found that the air–sea interactions near the Gulf Stream are important for generating and sustaining the ETC. In particular, locally enhanced winds over a warm sea (relative to the land temperature) induce large surface heat fluxes which cool the upper ocean by up to 2 °C, mainly during the cold air outbreak period after the storm passage. Detailed heat budget analyses show the ocean-to-atmosphere heat flux dominates the upper ocean heat content variations. Results clearly show that dynamic air–sea interactions affecting momentum and buoyancy flux exchanges in ETCs need to be resolved accurately in a coupled atmosphere–ocean modeling framework.

  2. Validation of satellite-retrieved MBL cloud properties using DOE ARM AMF measurements at the Azores

    NASA Astrophysics Data System (ADS)

    Xi, B.; Dong, X.; Minnis, P.; Sun-Mack, S.

    2013-05-01

    Marine Boundary Layer (MBL) cloud properties derived for the Clouds and the Earth's Radiant Energy System (CERES) Project using Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) data are compared with observations taken at the Atmospheric Radiation Measurement (ARM) AMF AZORES site from June 2009 through December 2010. Retrievals from ARM surface-based data were averaged over a 1-hour interval centered at the time of each satellite overpass, and the CERES-MODIS Ed4 cloud properties were averaged within a 30-km x 30-km box centered on the ARM AZORES site. Two datasets were analyzed: all of the single-layered unbroken decks (SL) and those cases without temperature inversions. The CERES-MODIS cloud top/base heights were determined from cloud top/base temperature by using a lapse rate method normalized to the 24-h mean surface air temperature. The preliminary results show: for all SL MBL at daytime, they are, on average, 0.148 km (cloud top) and 0.087 km (cloud base) higher than the ARM radar-lidar observed cloud top and base, respectively. At nighttime, they are 0.446 km (cloud top) and 0.334 km (cloud base). For those cases without temperature inversions, the comparisons are close to their SL counterparts. For cloud temperatures, the MODIS-derived cloud-top and -base temperatures are 1.6 K lower and 0.4 K higher than the surface values with correlations of 0.92 during daytime. At nighttime, the differences are slightly larger and correlations are lower than daytime comparisons. Variations in the height difference are mainly caused by uncertainties in the surface air temperatures and lapse rates. Based on a total of 61 daytime and 87 nighttime samples (ALL SL cases), the temperature inversion layers occur about 72% during daytime and 83% during nighttime. The difference of surface-observed lapse rate and the satellite derived lapse rate can be 1.6 K/km for daytime and 3.3K/km for nighttime. From these lapse rates, we can further analyze the surface air temperature difference that used to calculate these lapse rate, which are ~3K difference between surface-observed and the satellite derived during the daytime and 5.1 K during nighttime. Further studies of the cause of the temperature inversions that may help the cloud heights retrievals by satellite. The preliminary comparisons in MBL microphysical properties have shown that the averaged CERES-MODIS derived MBL cloud-droplet effective radius is only 1.5 μm larger than ARM retrieval (13.2 μm), and LWP values are also very close to each other (112 vs. 124 gm-2) with a relative large difference in optical depth (10.6 vs. 14.4).

  3. Validation of AIRS V6 Surface Temperature over Greenland with GCN and NOAA Stations

    NASA Technical Reports Server (NTRS)

    Lee, Jae N.; Hearty, Thomas; Cullather, Richard; Nowicki, Sophie; Susskind, Joel

    2016-01-01

    This work compares the temporal and spatial characteristics of the AIRSAMSU (Atmospheric Infrared Sounder Advanced Microwave Sounding Unit A) Version 6 and MODIS (Moderate resolution Imaging Spectroradiometer) Collection 5 derived surface temperatures over Greenland. To estimate uncertainties in space-based surface temperature measurements, we re-projected the MODIS Ice Surface Temperature (IST) to 0.5 by 0.5 degree spatial resolution. We also re-gridded AIRS Skin Temperature (Ts) into the same grid but classified with different cloud conditions and surface types. These co-located data sets make intercomparison between the two instruments relatively straightforward. Using this approach, the spatial comparison between the monthly mean AIRS Ts and MODIS IST is in good agreement with RMS 2K for May 2012. This approach also allows the detection of any long-term calibration drift and the careful examination of calibration consistency in the MODIS and AIRS temperature data record. The temporal correlations between temperature data are also compared with those from in-situ measurements from GC-Net (GCN) and NOAA stations. The coherent time series of surface temperature evident in the correlation between AIRS Ts and GCN temperatures suggest that at monthly time scales both observations capture the same climate signal over Greenland. It is also suggested that AIRS surface air temperature (Ta) can be used to estimate the boundary layer inversion.

  4. Comparing AIRS/AMSU-A Satellite and MERRA/MERRA-2 Reanalysis products with In-situ Station Observations at Summit, Greenland

    NASA Astrophysics Data System (ADS)

    Hearty, T. J., III; Vollmer, B.; Wei, J. C.; Huwe, P. M.; Albayrak, A.; Wu, D. L.; Cullather, R. I.; Meyer, D. L.; Lee, J. N.; Blaisdell, J. M.; Susskind, J.; Nowicki, S.

    2017-12-01

    The surface air and skin temperatures reported by the Atmospheric Infrared Sounder (AIRS), the Modern-Era Retrospective analysis for Research and Applications (MERRA), and MERRA-2 at Summit, Greenland are compared with near surface air temperatures measured at National Oceanic and Atmospheric Administration (NOAA) and Greenland Climate Network (GC-Net) weather stations. Therefore this investigation requires familiarity with a heterogeneous set of swath, grid, and point data in several different formats, different granularity, and different sampling. We discuss the current subsetting capabilities available at the GES DISC (Goddard Earth Sciences Data Information Services Center) to perform the inter-comparisons necessary to evaluate the quality and trustworthiness of these datasets. We also explore potential future services which may assist users with this type of intercomparison. We find the AIRS Surface Skin Temperature (TS) is best correlated with the NOAA 2 m air temperature (T2M) but it tends to be colder than the station measurements. The difference may be the result of the frequent near surface temperature inversions in the region. The AIRS Surface Air Temperature (SAT) is also well correlated with the NOAA T2M but it has a warm bias with respect to the NOAA T2M during the cold season and a larger standard error than surface temperature. This suggests that the extrapolation of the temperature profile to the surface is not valid for the strongest inversions. Comparing the temperature lapse rate derived from the 2 stations shows that the lapse rate can increase closer to the surface. We also find that the difference between the AIRS SAT and TS is sensitive to near surface inversions. The MERRA-2 surface and near surface temperatures show improvements over MERRA but little sensitivity to near surface temperature inversions.

  5. A Method for Calculating Transient Surface Temperatures and Surface Heating Rates for High-Speed Aircraft

    NASA Technical Reports Server (NTRS)

    Quinn, Robert D.; Gong, Leslie

    2000-01-01

    This report describes a method that can calculate transient aerodynamic heating and transient surface temperatures at supersonic and hypersonic speeds. This method can rapidly calculate temperature and heating rate time-histories for complete flight trajectories. Semi-empirical theories are used to calculate laminar and turbulent heat transfer coefficients and a procedure for estimating boundary-layer transition is included. Results from this method are compared with flight data from the X-15 research vehicle, YF-12 airplane, and the Space Shuttle Orbiter. These comparisons show that the calculated values are in good agreement with the measured flight data.

  6. A modified integrated NDVI for improving estimates of terrestrial net primary production

    NASA Technical Reports Server (NTRS)

    Running, Steven W.

    1990-01-01

    Logic is presented for a time-integrated NDVI that is modified by an AVHRR derived surface evaporation resistance factor sigma, and truncated by temperatures that cause plant dormancy, to improve environmental sensitivity. With this approach, NDVI observed during subfreezing temperatures is not integrated. Water stress-related impairment in plant activity is incorporated by reducing the effective NDVI at each integration with sigma, which is derived from the slope of the surface temperature to NDVI ratio for climatically similar zones of the scene. A comparison of surface resistance before and after an extended drought period for a 1200 sq km region of coniferous forest in Montana is presented.

  7. Direct Comparison of Surface and Bulk Relaxation of PS - A Temperature Dependent Study

    NASA Astrophysics Data System (ADS)

    Wu, Wen-Li; Sambasivan, Sharadha; Wang, Chia-Ying; Genzer, Jan; Fischer, Daniel A.

    2005-03-01

    Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy was used to measure simultaneously the relaxation rates of polystyrene (PS) molecules at the free surface and in the bulk. The samples were uniaxially oriented at room temperature via a modified cold rolling process. The density of the oriented samples as determined by liquid immersion technique is identical to that of bulk PS. At temperatures below its bulk glass transition temperature the rate of surface and bulk chain relaxation was monitored by measuring the partial-electron yield (PEY) and the fluorescence NEXAFS yields (FS), respectively, both parallel and perpendicular to the stretching direction. The decay rate of the dichroic ratios from both PEY and FY at various temperatures was taken as a measure of the relaxation rate of surface and bulk molecules respectively. In addition, the decay rate of the optical birefringence was also measured to provide an independent measure of the bulk relaxation. Relaxation of PS chains was found to occur faster on the surface relative to the bulk. The magnitude of the surface glass transition temperature suppression over the bulk was estimated to be 18 C based on the measured temperature dependence of the relaxation rates.

  8. Evaluation of Skin Temperatures Retrieved from GOES-8

    NASA Technical Reports Server (NTRS)

    Suggs, Ronnie, J.; Jedlovec, G. J.; Lapenta, W. M.; Haines, S. L.

    2000-01-01

    Skin temperatures derived from geostationary satellites have the potential of providing the temporal and spatial resolution needed for model assimilation. To adequately assess the potential improvements in numerical model forecasts that can be made by assimilating satellite data, an estimate of the accuracy of the skin temperature product is necessary. A particular skin temperature algorithm, the Physical Split Window Technique, that uses the longwave infrared channels of the GOES Imager has shown promise in recent model assimilation studies to provide land surface temperatures with reasonable accuracy. A comparison of retrieved GOES-8 skin temperatures from this algorithm with in situ measurements is presented. Various retrieval algorithm issues are addressed including surface emissivity

  9. Utilization of Satellite Data in Land Surface Hydrology: Sensitivity and Assimilation

    NASA Technical Reports Server (NTRS)

    Lakshmi, Venkataraman; Susskind, Joel

    1999-01-01

    This paper investigates the sensitivity of potential evapotranspiration to input meteorological variables, viz- surface air temperature and surface vapor pressure. The sensitivity studies have been carried out for a wide range of land surface variables such as wind speed, leaf area index and surface temperatures. Errors in the surface air temperature and surface vapor pressure result in errors of different signs in the computed potential evapotranspiration. This result has implications for use of estimated values from satellite data or analysis of surface air temperature and surface vapor pressure in large scale hydrological modeling. The comparison of cumulative potential evapotranspiration estimates using ground observations and satellite observations over Manhattan, Kansas for a period of several months shows very little difference between the two. The cumulative differences between the ground based and satellite based estimates of potential evapotranspiration amounted to less that 20mm over a 18 month period and a percentage difference of 15%. The use of satellite estimates of surface skin temperature in hydrological modeling to update the soil moisture using a physical adjustment concept is studied in detail including the extent of changes in soil moisture resulting from the assimilation of surface skin temperature. The soil moisture of the surface layer is adjusted by 0.9mm over a 10 day period as a result of a 3K difference between the predicted and the observed surface temperature. This is a considerable amount given the fact that the top layer can hold only 5mm of water.

  10. HCMM satellite follow-on investigation no. 25. Soil moisture and heat budget evalution in selected European zones of agricultural and environmental interest (TELLUS project)

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A simple procedure to evaluate actual evaporation was derived by linearizing the surface energy balance equation, using Taylor's expansion. The original multidimensional hypersurface could be reduced to a linear relationship between evaporation and surface temperature or to a surface relationship involving evaporation, surface temperature and albedo. This procedure permits a rapid sensitivity analysis of the surface energy balance equation as well as a speedy mapping of evaporation from remotely sensed surface temperatures and albedo. Comparison with experimental data yielded promising results. The validity of evapotranspiration and soil moisture models in semiarid conditions was tested. Wheat was the crop chosen for a continuous measurement campaign made in the south of Italy. Radiometric, micrometeorologic, agronomic and soil data were collected for processing and interpretation.

  11. PERSPECTIVE Working towards a community-wide understanding of satellite skin temperature observations

    NASA Astrophysics Data System (ADS)

    Shreve, Cheney

    2010-12-01

    With more than sixty free and publicly available high-quality datasets, including ecosystem variables, radiation budget variables, and land cover products, the MODIS instrument and the MODIS scientific team have contributed significantly to scientific investigations of ecosystems across the globe. The MODIS instrument, launched in December 1999, has 36 spectral bands, a viewing swath of 2330 km, and acquires data at 250 m, 500 m, and 1000 m spatial resolution every one to two days. Radiation budget variables include surface reflectance, skin temperature, emissivity, and albedo, to list a few. Ecosystem variables include several vegetation indices and productivity measures. Land cover characteristics encompass land cover classifications as well as model parameters and vegetation classifications. Many of these products are instrumental in constraining global climate models and climate change studies, as well as monitoring events such as the recent flooding in Pakistan, the unprecedented oil spill in the Gulf of Mexico, or phytoplankton bloom in the Barents Sea. While product validation efforts by the MODIS scientific team are both vigorous and continually improving, validation is unquestionably one of the most difficult tasks when dealing with remotely derived datasets, especially at the global scale. The quality and availability of MODIS data have led to widespread usage in the scientific community that has further contributed to validation and development of the MODIS products. In their recent paper entitled 'Land surface skin temperature climatology: benefitting from the strengths of satellite observations', Jin and Dickinson review the scientific theory behind, and demonstrate application of, a MODIS temperature product: surface skin temperature. Utilizing datasets from the Global Historical Climatological Network (GHCN), daily skin and air temperature from the Atmospheric Radiation Measurement (ARM) program, and MODIS products (skin temperature, albedo, land cover, water vapor, cloud cover), they show that skin temperature is clearly a different physical parameter from air temperature and varies from air temperature in magnitude, response to atmospheric conditions, and diurnal phase. Although the accuracy of skin temperature (Tskin) algorithms has improved to within 0.5-1°C for field measurements and clear-sky satellite observations (Becker and Li 1995, Goetz et al 1995, Wan and Dozier 1996), general confusion regarding the physical definition of 'surface temperature' and how it can be used for climate studies has persisted throughout the scientific community and limited the applications of these data (Jin and Dickinson 2010). For example, satellite sea surface temperature was used as evidence of global climate change instead of skin temperature in the IPCC 2001 and 2007 reports (Jin and Dickinson 2010). This work provides clarity in the theoretical definition of temperature variables, demonstrates the difference between air and skin temperature, and aids the understanding of the MODIS Tskin product, which could be very beneficial for future climate studies. As outlined by Jin and Dickinson, 'surface temperature' is a vague term commonly used in reference to air temperature, aerodynamic temperature, and skin temperature. Air temperature (Tair), or thermodynamic temperature, is measured by an in situ instrument usually 1.5-2 m above the ground. Aerodynamic temperature (Taero) refers to the temperature at the height of the roughness length of heat. Satellite derived skin temperature (Tskin) is the radiometric temperature derived from the inverse of Planck's function. While these different temperature variables are typically correlated, they differ as a result of environmental conditions (e.g. land cover and sky conditions; Jin and Dickinson 2010). With an extensive network of Tair measurements, some have questioned the benefits of using Tskin at all (Peterson et al 1997, 1998). Tskin and Tair can vary depending on land cover or sky conditions and variations may be large, e.g., for sparsely vegetated areas where net radiation is largely balanced by sensible heat flux (Hall et al 1992, Sun and Mahrt 1995, Jin et al 1997). Tskin can be higher than Taero at midday and lower at night (Sun and Mahrt 1995) and some models use Taero to approximate surface radiative temperature (Hubband and Monteith 1986). One of the strengths of the MODIS instrument is the simultaneous collection of surface and atmospheric conditions. By incorporating a range of MODIS variables in their comparison to Tskin, the authors examine the relationship of Tskin to atmospheric and surface conditions. Results from their global evaluation of Tskin highlight its variability on an inter-annual basis, its variation with solar zenith angle, and diurnal variations, which are not achievable with Tair measurements. Comparison with land cover type illustrates the seasonality of Tskin for different land covers. Comparison with the enhanced vegetation index (EVI) suggests more vegetation reduces skin temperature. Using the MODIS albedo, they demonstrate a clear relationship between yearly averaged Tskin and land surface albedo. Lastly, their examination of water vapor and cloud cover in comparison to Tskin suggests similar seasonality between these two variables. The MODIS Tskin product is not without uncertainty; retrieving Tskin requires a calculation of radiative transfer to account for atmospheric emission and molecular absorption, which is time and resource intensive (Jin and Dickinson 2010). Additionally, surface emissivity, instrument noise, and view angle geometry contribute to error in Tskin estimations (Jin and Dickinson 2010). The transparency of the scientific theory underlying this work, and the clear demonstration of the distinction between temperature measures on varying scales, demonstrates the usefulness of Tskin despite the uncertainties. Perhaps equally as important is the tone; in a time when the controversy surrounding climate change is peaking and the very ethics of the scientific community are being questioned, it is more critical than ever to be transparent in one's work and to assist the scientific community in understanding the tools we have available to us for investigating climate change. References Becker F and Li Z-L 1995 Surface temperature and emissivity at different scales: definition, measurement and related problems Remote Sensing Rev. 12 225-53 Goetz S J, Halthore R, Hall F G and Markham B L 1995 Surface temperature retrieval in a temperate grassland with multi-resolution sensors J. Geophys. Res. Atmos. 100 25397-410 Hall F G, Huemmrich K F, Goetz P J, Sellers P J and Nickeson J E 1992 Satellite remote sensing of the surface energy balance: success, failures and unresolved issues in FIFE J. Geophys. Res. Atmos. 97 19061-90 Jin M and Dickinson R E 2010 Land surface skin temperature climatology: benefitting from the strengths of satellite observations Environ. Res. Lett. 5 044004 Jin M, Dickinson R E and Vogelmann A M 1997 A comparison of CCM2/BATS skin temperature and surface-air temperature with satellite and surface observations J. Climate 10 1505-24 Hubband N D S and Monteith J L 1986 Radiative surface temperature and energy balance of a wheat canopy Boundary Layer Meteorol. 36 107-16 Peterson T C and Vose R S 1997 An overview of the Global Historical Climatology Network temperature data base Bull. Am. Meteorol. Soc. 78 2837-49 Peterson T C, Karl T R, Jamason P F, Knight R and Easterling D R 1998 The first difference method: maximizing station density for the calculation of long-term global temperature change J. Geophys. Res. Atmos. 103 25967-74 Sun J and Mahrt L 1995 Determination of surface fluxes from the surface radiative temperature Atmos. Sci. 52 1096-106 Wan Z and Dozier J 1996 A generalized split-window algorithm for retrieving land-surface temperature from space IEEE Trans. Geosci. Remote Sensing 34 892-905

  12. ARIMA representation for daily solar irradiance and surface air temperature time series

    NASA Astrophysics Data System (ADS)

    Kärner, Olavi

    2009-06-01

    Autoregressive integrated moving average (ARIMA) models are used to compare long-range temporal variability of the total solar irradiance (TSI) at the top of the atmosphere (TOA) and surface air temperature series. The comparison shows that one and the same type of the model is applicable to represent the TSI and air temperature series. In terms of the model type surface air temperature imitates closely that for the TSI. This may mean that currently no other forcing to the climate system is capable to change the random walk type variability established by the varying activity of the rotating Sun. The result should inspire more detailed examination of the dependence of various climate series on short-range fluctuations of TSI.

  13. Wind Tunnel Measurements of Shuttle Orbiter Global Heating with Comparisons to Flight

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Merski, N. Ronald; Blanchard, Robert C.

    2002-01-01

    An aerothermodynamic database of global heating images was acquired of the Shuttle Orbiter in the NASA Langley Research Center 20-Inch Mach 6 Air Tunnel. These results were obtained for comparison to the global infrared images of the Orbiter in flight from the infrared sensing aeroheating flight experiment (ISAFE). The most recent ISAFE results from STS-103, consisted of port side images, at hypersonic conditions, of the surface features that result from the strake vortex scrubbing along the side of the vehicle. The wind tunnel results were obtained with the phosphor thermography system, which also provides global information and thus is ideally suited for comparison to the global flight results. The aerothermodynamic database includes both windward and port side heating images of the Orbiter for a range of angles of attack (20 to 40 deg), freestream unit Reynolds number (1 x 10(exp 6))/ft to 8 x 10(exp 6)/ft, body flap deflections (0, 5, and 10 deg), speed brake deflections (0 and 45 deg), as well as with boundary layer trips for forced transition to turbulence heating results. Sample global wind tunnel heat transfer images were extrapolated to flight conditions for comparison to Orbiter flight data. A windward laminar case for an angle of attack of 40 deg was extrapolated to Mach 11.6 flight conditions for comparison to STS-2 flight thermocouple results. A portside wind tunnel image for an angle of attack of 25 deg was extrapolated for Mach 5 flight conditions for comparison to STS-103 global surface temperatures. The comparisons showed excellent qualitative agreement, however the extrapolated wind tunnel results over-predicted the flight surface temperatures on the order of 5% on the windward surface and slightly higher on the portside.

  14. Simulating the moderating effect of a lake on downwind temperatures

    NASA Technical Reports Server (NTRS)

    Bill, R. G., Jr.; Chen, E.; Sutherland, R. A.; Bartholic, J. F.

    1979-01-01

    A steady-state, two-dimensional numerical model is used to simulate air temperatures and humidity downwind of a lake at night. Thermal effects of the lake were modelled for the case of moderate and low surface winds under the cold-air advective conditions that occur following the passage of a cold front. Surface temperatures were found to be in good agreement with observations. A comparison of model results with thermal imagery indicated the model successfully predicts the downwind distance for which thermal effects due to the lake are significant.

  15. Metal/silicon Interfaces and Their Oxidation Behavior - Photoemission Spectroscopy Analysis.

    NASA Astrophysics Data System (ADS)

    Yeh, Jyh-Jye

    Synchrotron radiation photoemission spectroscopy was used to study Ni/Si and Au/Si interface properties on the atomic scale at room temperature, after high temperature annealing and after oxygen exposures. Room temperature studies of metal/Si interfaces provide background for an understanding of the interface structure after elevated temperature annealing. Oxidation studies of Si surfaces covered with metal overlayers yield insight about the effect of metal atoms in the Si oxidation mechanisms and are useful in the identification of subtle differences in bonding relations between atoms at the metal/Si interfaces. Core level and valence band spectra with variable surface sensitivities were used to study the interactions between metal, Si, and oxygen for metal coverages and oxide thickness in the monolayer region. Interface morphology at the initial stage of metal/Si interface formation and after oxidation was modeled on the basis of the evolutions of metal and Si signals at different probing depths in the photoemission experiment. Both Ni/Si and Au/Si interfaces formed at room temperature have a diffusive region at the interface. This is composed of a layer of metal-Si alloy, formed by Si outdiffusion into the metal overlayer, above a layer of interstitial metal atoms in the Si substrate. Different atomic structures of these two regions at Ni/Si interface can account for the two different growth orientations of epitaxial Ni disilicides on the Si(111) surface after thermal annealing. Annealing the Au/Si interface at high temperature depletes all the Au atoms except for one monolayer of Au on the Si(111) surface. These phenomena are attributed to differences in the metal-Si chemical bonding relations associated with specific atomic structures. After oxygen exposures, both the Ni disilicide surface and Au covered Si surfaces (with different coverages and surface orderings) show silicon in higher oxidation states, in comparison to oxidized silicon on a clean surface. Preferential Si dioxide growth on the Au/Si surface is related to the strong distortion of the Si lattice when Au-Si bonds are formed. In comparison, a monolayer of Ni on a Si surface, with its weaker Ni-Si bond, does not enhance oxide formation.

  16. Mid-Piacensian mean annual sea surface temperature: an analysis for data-model comparisons

    USGS Publications Warehouse

    Dowsett, Harry J.; Robinson, Marci M.; Foley, Kevin M.; Stoll, Danielle K.

    2010-01-01

    Numerical models of the global climate system are the primary tools used to understand and project climate disruptions in the form of future global warming. The Pliocene has been identified as the closest, albeit imperfect, analog to climate conditions expected for the end of this century, making an independent data set of Pliocene conditions necessary for ground truthing model results. Because most climate model output is produced in the form ofmean annual conditions, we present a derivative of the USGS PRISM3 Global Climate Reconstruction which integrates multiple proxies of sea surface temperature (SST) into single surface temperature anomalies. We analyze temperature estimates from faunal and floral assemblage data,Mg/Ca values and alkenone unsaturation indices to arrive at a single mean annual SST anomaly (Pliocene minus modern) best describing each PRISM site, understanding that multiple proxies should not necessarily show concordance. The power of themultiple proxy approach lies within its diversity, as no two proxies measure the same environmental variable. This data set can be used to verify climate model output, to serve as a starting point for model inter-comparisons, and for quantifying uncertainty in Pliocene model prediction in perturbed physics ensembles.

  17. Transient technique for measuring heat transfer coefficients on stator airfoils in a jet engine environment

    NASA Astrophysics Data System (ADS)

    Gladden, H. J.; Proctor, M. P.

    A transient technique was used to measure heat transfer coefficients on stator airfoils in a high-temperature annular cascade at real engine conditions. The transient response of thin film thermocouples on the airfoil surface to step changes in the gas stream temperature was used to determine these coefficients. In addition, gardon gages and paired thermocouples were also utilized to measure heat flux on the airfoil pressure surface at steady state conditions. The tests were conducted at exit gas stream Reynolds numbers of one-half to 1.9 million based on true chord. The results from the transient technique show good comparison with the steady-state results in both trend and magnitude. In addition, comparison is made with the STAN5 boundary layer code and shows good comparison with the trends. However, the magnitude of the experimental data is consistently higher than the analysis.

  18. Unsteady loads due to propulsive lift configurations. Part A: Investigation of scaling laws

    NASA Technical Reports Server (NTRS)

    Morton, J. B.; Haviland, J. K.

    1978-01-01

    This study covered scaling laws, and pressure measurements made to determine details of the large scale jet structure and to verify scaling laws by direct comparison. The basis of comparison was a test facility at NASA Langley in which a JT-15D exhausted over a boilerplater airfoil surface to reproduce upper surface blowing conditions. A quarter scale model was built of this facility, using cold jets. A comparison between full scale and model pressure coefficient spectra, presented as functions of Strouhal numbers, showed fair agreement, however, a shift of spectral peaks was noted. This was not believed to be due to Mach number or Reynolds number effects, but did appear to be traceable to discrepancies in jet temperatures. A correction for jet temperature was then tried, similar to one used for far field noise prediction. This was found to correct the spectral peak discrepancy.

  19. Transient technique for measuring heat transfer coefficients on stator airfoils in a jet engine environment

    NASA Technical Reports Server (NTRS)

    Gladden, H. J.; Proctor, M. P.

    1985-01-01

    A transient technique was used to measure heat transfer coefficients on stator airfoils in a high-temperature annular cascade at real engine conditions. The transient response of thin film thermocouples on the airfoil surface to step changes in the gas stream temperature was used to determine these coefficients. In addition, gardon gages and paired thermocouples were also utilized to measure heat flux on the airfoil pressure surface at steady state conditions. The tests were conducted at exit gas stream Reynolds numbers of one-half to 1.9 million based on true chord. The results from the transient technique show good comparison with the steady-state results in both trend and magnitude. In addition, comparison is made with the STAN5 boundary layer code and shows good comparison with the trends. However, the magnitude of the experimental data is consistently higher than the analysis.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The following appendices to volume I are presented: biomass of dominant microzooplankton; biomass of zooplankton in surface waters of Jobos Bay; comparison of zooplankton caught during day and night; variations in surface temperature and salinity at collection sites; distance, depth, and temperature related to dominant vegetation and sea grass; total biomass of Thalassia testudium; photosynthetic pigment diversity; invertebrate species and frequency of occurrence; distribution of macrobenthic organisms; species found on mangrove roots; distribution of fish species; and seasonal occurrence of fish species. (HLW)

  1. Statistical analysis of stratospheric temperature and ozone profile data for trends and model comparison

    NASA Technical Reports Server (NTRS)

    Tiao, G. C.

    1992-01-01

    Work performed during the project period July 1, 1990 to June 30, 1992 on the statistical analysis of stratospheric temperature data, rawinsonde temperature data, and ozone profile data for the detection of trends is described. Our principal topics of research are trend analysis of NOAA stratospheric temperature data over the period 1978-1989; trend analysis of rawinsonde temperature data for the period 1964-1988; trend analysis of Umkehr ozone profile data for the period 1977-1991; and comparison of observed ozone and temperature trends in the lower stratosphere. Analysis of NOAA stratospheric temperature data indicates the existence of large negative trends at 0.4 mb level, with magnitudes increasing with latitudes away from the equator. Trend analysis of rawinsonde temperature data over 184 stations shows significant positive trends about 0.2 C per decade at surface to 500 mb range, decreasing to negative trends about -0.3 C at 100 to 50 mb range, and increasing slightly at 30 mb level. There is little evidence of seasonal variation in trends. Analysis of Umkehr ozone data for 12 northern hemispheric stations shows significant negative trends about -.5 percent per year in Umkehr layers 7-9 and layer 3, but somewhat less negative trends in layers 4-6. There is no pronounced seasonal variation in trends, especially in layers 4-9. A comparison was made of empirical temperature trends from rawinsonde data in the lower stratosphere with temperature changes determined from a one-dimensional radiative transfer calculation that prescribed a given ozone change over the altitude region, surface to 50 km, obtained from trend analysis of ozonsonde and Umkehr profile data. The empirical and calculated temperature trends are found in substantive agreement in profile shape and magnitude.

  2. A comparative analysis of rawinsonde and NIMBUS 6 and TIROS N satellite profile data

    NASA Technical Reports Server (NTRS)

    Scoggins, J. R.; Carle, W. E.; Knight, K.; Moyer, V.; Cheng, N. M.

    1981-01-01

    Comparisons are made between rawinsonde and satellite profiles in seven areas for a wide range of surface and weather conditions. Variables considered include temperature, dewpoint temperature, thickness, precipitable water, lapse rate of temperature, stability, geopotential height, mixing ratio, wind direction, wind speed, and kinematic parameters, including vorticity and the advection of vorticity and temperature. In addition, comparisons are made in the form of cross sections and synoptic fields for selected variables. Sounding data from the NIMBUS 6 and TIROS N satellites were used. Geostrophic wind computed from smoothed geopotential heights provided large scale flow patterns that agreed well with the rawinsonde wind fields. Surface wind patterns as well as magnitudes computed by use of the log law to extrapolate wind to a height of 10 m agreed with observations. Results of this study demonstrate rather conclusively that satellite profile data can be used to determine characteristics of large scale systems but that small scale features, such as frontal zones, cannot yet be resolved.

  3. Surface temperature distribution of GTA weld pools on thin-plate 304 stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zacharia, T.; David, S.A.; Vitek, J.M.

    1995-11-01

    A transient multidimensional computational model was utilized to study gas tungsten arc (GTA) welding of thin-plate 304 stainless steel (SS). The model eliminates several of the earlier restrictive assumptions including temperature-independent thermal-physical properties. Consequently, all important thermal-physical properties were considered as temperature dependent throughout the range of temperatures experienced by the weld metal. The computational model was used to predict surface temperature distribution of the GTA weld pools in 1.5-mm-thick AISI 304 SS. The welding parameters were chosen so as to correspond with an earlier experimental study that produced high-resolution surface temperature maps. One of the motivations of the presentmore » study was to verify the predictive capability of the computational model. Comparison of the numerical predictions and experimental observations indicate excellent agreement, thereby verifying the model.« less

  4. A Microwave Technique for Mapping Ice Temperature in the Arctic Seasonal Sea Ice Zone

    NASA Technical Reports Server (NTRS)

    St.Germain, Karen M.; Cavalieri, Donald J.

    1997-01-01

    A technique for deriving ice temperature in the Arctic seasonal sea ice zone from passive microwave radiances has been developed. The algorithm operates on brightness temperatures derived from the Special Sensor Microwave/Imager (SSM/I) and uses ice concentration and type from a previously developed thin ice algorithm to estimate the surface emissivity. Comparisons of the microwave derived temperatures with estimates derived from infrared imagery of the Bering Strait yield a correlation coefficient of 0.93 and an RMS difference of 2.1 K when coastal and cloud contaminated pixels are removed. SSM/I temperatures were also compared with a time series of air temperature observations from Gambell on St. Lawrence Island and from Point Barrow, AK weather stations. These comparisons indicate that the relationship between the air temperature and the ice temperature depends on ice type.

  5. Active and passive microwave measurements in Hurricane Allen

    NASA Technical Reports Server (NTRS)

    Delnore, V. E.; Bahn, G. S.; Grantham, W. L.; Harrington, R. F.; Jones, W. L.

    1985-01-01

    The NASA Langley Research Center analysis of the airborne microwave remote sensing measurements of Hurricane Allen obtained on August 5 and 8, 1980 is summarized. The instruments were the C-band stepped frequency microwave radiometer and the Ku-band airborne microwave scatterometer. They were carried aboard a NOAA aircraft making storm penetrations at an altitude of 3000 m and are sensitive to rain rate, surface wind speed, and surface wind vector. The wind speed is calculated from the increase in antenna brightness temperature above the estimated calm sea value. The rain rate is obtained from the difference between antenna temperature increases measured at two frequencies, and wind vector is determined from the sea surface normalized radar cross section measured at several azimuths. Comparison wind data were provided from the inertial navigation systems aboard both the C-130 aircraft at 3000 m and a second NOAA aircraft (a P-3) operating between 500 and 1500 m. Comparison rain rate data were obtained with a rain radar aboard the P-3. Evaluation of the surface winds obtained with the two microwave instruments was limited to comparisons with each other and with the flight level winds. Two important conclusions are drawn from these comparisons: (1) the radiometer is accurate when predicting flight level wind speeds and rain; and (2) the scatterometer produces well behaved and consistent wind vectors for the rain free periods.

  6. Commensurate comparisons of models with energy budget observations reveal consistent climate sensitivities

    NASA Astrophysics Data System (ADS)

    Armour, K.

    2017-12-01

    Global energy budget observations have been widely used to constrain the effective, or instantaneous climate sensitivity (ICS), producing median estimates around 2°C (Otto et al. 2013; Lewis & Curry 2015). A key question is whether the comprehensive climate models used to project future warming are consistent with these energy budget estimates of ICS. Yet, performing such comparisons has proven challenging. Within models, values of ICS robustly vary over time, as surface temperature patterns evolve with transient warming, and are generally smaller than the values of equilibrium climate sensitivity (ECS). Naively comparing values of ECS in CMIP5 models (median of about 3.4°C) to observation-based values of ICS has led to the suggestion that models are overly sensitive. This apparent discrepancy can partially be resolved by (i) comparing observation-based values of ICS to model values of ICS relevant for historical warming (Armour 2017; Proistosescu & Huybers 2017); (ii) taking into account the "efficacies" of non-CO2 radiative forcing agents (Marvel et al. 2015); and (iii) accounting for the sparseness of historical temperature observations and differences in sea-surface temperature and near-surface air temperature over the oceans (Richardson et al. 2016). Another potential source of discrepancy is a mismatch between observed and simulated surface temperature patterns over recent decades, due to either natural variability or model deficiencies in simulating historical warming patterns. The nature of the mismatch is such that simulated patterns can lead to more positive radiative feedbacks (higher ICS) relative to those engendered by observed patterns. The magnitude of this effect has not yet been addressed. Here we outline an approach to perform fully commensurate comparisons of climate models with global energy budget observations that take all of the above effects into account. We find that when apples-to-apples comparisons are made, values of ICS in models are consistently in good agreement with values of ICS inferred from global energy budget constraints. This suggests that the current generation of coupled climate models are not overly sensitive. However, since global energy budget observations do not constrain ECS, it is less certain whether model ECS values are realistic.

  7. Exact solutions of laminar-boundary-layer equations with constant property values for porous wall with variable temperature

    NASA Technical Reports Server (NTRS)

    Donoughe, Patrick L; Livingood, John N B

    1955-01-01

    Exact solution of the laminar-boundary-layer equations for wedge-type flow with constant property values are presented for transpiration-cooled surfaces with variable wall temperatures. The difference between wall and stream temperature is assumed proportional to a power of the distance from the leading edge. Solutions are given for a Prandtl number of 0.7 and ranges of pressure-gradient, cooling-air-flow, and wall-temperature-gradient parameters. Boundary-layer profiles, dimensionless boundary-layer thicknesses, and convective heat-transfer coefficients are given in both tabular and graphical form. Corresponding results for constant wall temperature and for impermeable surfaces are included for comparison purposes.

  8. Coordinated in situ and orbital observations of ground temperature by the Mars Science Laboratory Ground Temperature Sensor and Mars Odyssey Thermal Emission Imaging System: Implications for thermal modeling of the Martian surface

    NASA Astrophysics Data System (ADS)

    Hamilton, V. E.; Vasavada, A. R.; Christensen, P. R.; Mischna, M. A.; Team, M.

    2013-12-01

    Diurnal variations in Martian ground surface temperature probe the physical nature (mean particle size, lateral/vertical heterogeneity, cementation, etc.) of the upper few centimeters of the subsurface. Thermal modeling of measured temperatures enables us to make inferences about these physical properties, which in turn offer valuable insight into processes that have occurred over geologic timescales. Add the ability to monitor these temperature/physical variations over large distances and it becomes possible to infer a great deal about local- to regional scale geologic processes and characteristics that are valuable to scientific and engineering studies. The Thermal Emission Imaging System (THEMIS) instrument measures surface temperatures from orbit at a restricted range of local times (~3:00 - 6:00 am/pm). The Rover Environmental Monitoring Station Ground Temperature Sensor (REMS GTS) on the Mars Science Laboratory (MSL) acquires hourly temperature measurements in the vicinity of the rover. With the additional information that MSL's full diurnal coverage offers, we are interested in correlating the thermophysical properties inferred from these local-scale measurements with those obtained from MSL's visible images and orbital THEMIS measurements at only a few times of day. To optimize the comparisons, we have been acquiring additional REMS observations simultaneously with Mars Odyssey overflights during which THEMIS is able to observe MSL's location. We also characterize surface particle size distributions within the field of view of the GTS. We will present comparisons of the temperatures derived from GTS and THEMIS, focusing on eight simultaneous observations of ground temperature acquired between sols 100 and 360. These coordinated observations allow us to cross-check temperatures derived in situ and from orbit, and compare rover-scale observations of thermophysical and particle size properties to those made at remote sensing scales.

  9. Urban pavement surface temperature. Comparison of numerical and statistical approach

    NASA Astrophysics Data System (ADS)

    Marchetti, Mario; Khalifa, Abderrahmen; Bues, Michel; Bouilloud, Ludovic; Martin, Eric; Chancibaut, Katia

    2015-04-01

    The forecast of pavement surface temperature is very specific in the context of urban winter maintenance. to manage snow plowing and salting of roads. Such forecast mainly relies on numerical models based on a description of the energy balance between the atmosphere, the buildings and the pavement, with a canyon configuration. Nevertheless, there is a specific need in the physical description and the numerical implementation of the traffic in the energy flux balance. This traffic was originally considered as a constant. Many changes were performed in a numerical model to describe as accurately as possible the traffic effects on this urban energy balance, such as tires friction, pavement-air exchange coefficient, and infrared flux neat balance. Some experiments based on infrared thermography and radiometry were then conducted to quantify the effect fo traffic on urban pavement surface. Based on meteorological data, corresponding pavement temperature forecast were calculated and were compared with fiels measurements. Results indicated a good agreement between the forecast from the numerical model based on this energy balance approach. A complementary forecast approach based on principal component analysis (PCA) and partial least-square regression (PLS) was also developed, with data from thermal mapping usng infrared radiometry. The forecast of pavement surface temperature with air temperature was obtained in the specific case of urban configurtation, and considering traffic into measurements used for the statistical analysis. A comparison between results from the numerical model based on energy balance, and PCA/PLS was then conducted, indicating the advantages and limits of each approach.

  10. Effects of Two-stage Heat Treatment on Delayed Coke and Study of Their Surface Texture Characteristics

    NASA Astrophysics Data System (ADS)

    Im, Ui-Su; Kim, Jiyoung; Lee, Seon Ho; Lee, Byung-Rok; Peck, Dong-Hyun; Jung, Doo-Hwan

    2017-12-01

    In the present study, surface texture features and chemical properties of two types of cokes, made from coal tar by either 1-stage heat treatment or 2-stage heat treatment, were researched. The relationship between surface texture characteristics and the chemical properties was identified through molecular weight distribution, insolubility of coal tar, weight loss with temperature increase, coking yield, and polarized light microscope analysis. Rapidly cleared anisotropy texture in cokes was observed in accordance with the coking temperature rise. Quinoline insolubility and toluene insolubility of coal tar increased with a corresponding increases in coking temperature. In particular, the cokes produced by the 2-stage heat treatment (2S-C) showed surface structure of needle cokes at a temperature approximately 50°C lower than the 1-stage heat treatment (1S-C). Additionally, the coking yield of 2S-C increased by approximately 14% in comparison with 1S-C.

  11. Comparison of hydrogen and deuterium adsorption on Pd(100).

    PubMed

    Gladys, M J; Kambali, I; Karolewski, M A; Soon, A; Stampfl, C; O'Connor, D J

    2010-01-14

    Low energy ion recoil spectroscopy is a powerful technique for the determination of adsorbate position on metal surfaces. In this study, this technique is employed to compare the adsorption sites of hydrogen and deuterium on Pd(100) by detection of either H or D recoil ions produced by Ne(+) bombardment. Comparisons of experimental and Kalypso simulated azimuthal yield distributions show that, at room temperature, both hydrogen isotopes are adsorbed in the fourfold hollow site of Pd(100), however, at different heights above the surface (H-0.20 A and D-0.25 A). The adsorbates remain in the hollow site at all temperatures up to 383 K even though they move up to 0.40-0.45 A above the surface. Density functional theory calculations show a similar coverage dependent adsorption height for both H and D and confirm a real difference between the H and D adsorption heights based on zero point energies.

  12. Hypersonic Navier-Stokes Comparisons to Orbiter Flight Data

    NASA Technical Reports Server (NTRS)

    Candler, Graham V.; Campbell, Charles H.

    2010-01-01

    During the STS-119 flight of Space Shuttle Discovery, two sets of surface temperature measurements were made. Under the HYTHIRM program3 quantitative thermal images of the windward side of the Orbiter with a were taken. In addition, the Boundary Layer Transition Flight Experiment 4 made thermocouple measurements at discrete locations on the Orbiter wind side. Most of these measurements were made downstream of a surface protuberance designed to trip the boundary layer to turbulent flow. In this paper, we use the US3D computational fluid dynamics code to simulate the Orbiter flow field at conditions corresponding to the STS-119 re-entry. We employ a standard two-temperature, five-species finite-rate model for high-temperature air, and the surface catalysis model of Stewart.1 This work is similar to the analysis of Wood et al . 2 except that we use a different approach for modeling turbulent flow. We use the one-equation Spalart-Allmaras turbulence model8 with compressibility corrections 9 and an approach for tripping the boundary layer at discrete locations. In general, the comparison between the simulations and flight data is remarkably good

  13. Postflight aerothermodynamic analysis of Pegasus(tm) using computational fluid dynamic techniques

    NASA Technical Reports Server (NTRS)

    Kuhn, Gary D.

    1992-01-01

    The objective was to validate the computational capability of the NASA Ames Navier-Stokes code, F3D, for flows at high Mach numbers using comparison flight test data from the Pegasus (tm) air launched, winged space booster. Comparisons were made with temperature and heat fluxes estimated from measurements on the wing surfaces and wing-fuselage fairings. Tests were conducted for solution convergence, sensitivity to grid density, and effects of distributing grid points to provide high density near temperature and heat flux sensors. The measured temperatures were from sensors embedded in the ablating thermal protection system. Surface heat fluxes were from plugs fabricated of highly insulative, nonablating material, and mounted level with the surface of the surrounding ablative material. As a preflight design tool, the F3D code produces accurate predictions of heat transfer and other aerodynamic properties, and it can provide detailed data for assessment of boundary layer separation, shock waves, and vortex formation. As a postflight analysis tool, the code provides a way to clarify and interpret the measured results.

  14. Radiometric analysis of the longwave infrared channel of the Thematic Mapper on LANDSAT 4 and 5

    NASA Technical Reports Server (NTRS)

    Schott, John R.; Volchok, William J.; Biegel, Joseph D.

    1986-01-01

    The first objective was to evaluate the postlaunch radiometric calibration of the LANDSAT Thematic Mapper (TM) band 6 data. The second objective was to determine to what extent surface temperatures could be computed from the TM and 6 data using atmospheric propagation models. To accomplish this, ground truth data were compared to a single TM-4 band 6 data set. This comparison indicated satisfactory agreement over a narrow temperature range. The atmospheric propagation model (modified LOWTRAN 5A) was used to predict surface temperature values based on the radiance at the spacecraft. The aircraft data were calibrated using a multi-altitude profile calibration technique which had been extensively tested in previous studies. This aircraft calibration permitted measurement of surface temperatures based on the radiance reaching the aircraft. When these temperature values are evaluated, an error in the satellite's ability to predict surface temperatures can be estimated. This study indicated that by carefully accounting for various sensor calibration and atmospheric propagation effects, and expected error (1 standard deviation) in surface temperature would be 0.9 K. This assumes no error in surface emissivity and no sampling error due to target location. These results indicate that the satellite calibration is within nominal limits to within this study's ability to measure error.

  15. Rapid warming of the world's lakes: Interdecadal variability and long-term trends from 1910-2009 using in situ and remotely sensed data

    NASA Astrophysics Data System (ADS)

    Lenters, J. D.; Read, J. S.; Sharma, S.; O'Reilly, C.; Hampton, S. E.; Gray, D.; McIntyre, P. B.; Hook, S. J.; Schneider, P.; Soylu, M. E.; Barabás, N.; Lofton, D. D.

    2014-12-01

    Global and regional changes in climate have important implications for terrestrial and aquatic ecosystems. Recent studies, for example, have revealed significant warming of inland water bodies throughout the world. To better understand the global patterns, physical mechanisms, and ecological implications of lake warming, an initiative known as the "Global Lake Temperature Collaboration" (GLTC) was started in 2010, with the objective of compiling and analyzing lake temperature data from numerous satellite and in situ records dating back at least 20-30 years. The GLTC project has now assembled data from over 300 lakes, with some in situ records extending back more than 100 years. Here, we present an analysis of the long-term warming trends, interdecadal variability, and a direct comparison between in situ and remotely sensed lake surface temperature for the 3-month summer period July-September (January-March for some lakes). The overall results show consistent, long-term trends of increasing summer-mean lake surface temperature across most but not all sites. Lakes with especially long records show accelerated warming in the most recent two to three decades, with almost half of the lakes warming at rates in excess of 0.5 °C per decade during the period 1985-2009, and a few even exceeding 1.0 °C per decade. Both satellite and in situ data show a similar distribution of warming trends, and a direct comparison at lake sites that have both types of data reveals a close correspondence in mean summer water temperature, interannual variability, and long-term trends. Finally, we examine standardized lake surface temperature anomalies across the full 100-year period (1910-2009), and in conjunction with similar timeseries of air temperature. The results reveal a close correspondence between summer air temperature and lake surface temperature on interannual and interdecadal timescales, but with many lakes warming more rapidly than the ambient air temperature over 25- to 100-year periods.

  16. Anti-icing properties of superhydrophobic ZnO/PDMS composite coating

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Wang, Fajun; Li, Wen; Ou, Junfei; Li, Changquan; Amirfazli, Alidad

    2016-01-01

    We present the excellent anti-icing performance for a superhydrophobic coating surface based on ZnO/polydimethylsiloxane (ZnO/PDMS) composite. The superhydrophobic ZnO/PDMS coating surface was prepared by a facile solution mixing, drop coating, room-temperature curing and surface abrading procedure. The superhydrophobic ZnO/PDMS composite coating possesses a water contact angle of 159.5° and a water sliding angle of 8.3° at room temperature (5 °C). The anti-icing properties of the superhydrophobic coating were investigated by continuously dropping cold-water droplets (about 0 °C) onto the pre-cooled surface using a home-made apparatus. The sample was placed at different tilting angle (0° and 10°) and pre-cooled to various temperatures (-5, -10 and -15 °C) prior to measure. The pure Al surface was also studied for comparison. It was found that icing accretion on the surface could be reduced apparently because the water droplets merged together and slid away from the superhydrophobic surface at all of the measuring temperatures when the surface is horizontally placed. In addition, water droplet slid away completely from the superhydrophobic surface at -5 and -10 °C when the surface is tilted at 10°, which demonstrates its excellent anti-icing properties at these temperatures. When the temperature decreased to -15 °C, though ice accretion on the tilted superhydrophobic coating surface could not be avoided absolutely, the amount of ice formed on the surface is very small, which indicated that the coating surface with superhydrophobicity could significantly reduce ice accumulation on the surface at very low temperature (-15 °C). Importantly, the sample is also stable against repeated icing/deicing cycles. More meaningfully, once the superhydrophobic surface is damaged, it can be repaired easily and rapidly.

  17. Who’s on top? SST proxy comparison from the Peru Margin Upwelling System

    NASA Astrophysics Data System (ADS)

    Chazen, C.; Herbert, T.; Altabet, M. A.

    2009-12-01

    The Peru Margin upwelling region is situated at the interface between the poleward Peru Undercurrent and the equatorward Peru Coastal current. Strong coastal winds force cold, nutrient-rich thermocline waters to the surface. Sea surface temperatures in this region fluctuate sub-annually with changes in the position of the Intertropical convergence zone (ITCZ) and sub-decadally with modifications in the strength of Walker Circulation. In contrast, the temperature of the Peru Margin thermocline is stable, isolated from surface winds and slow to respond to major perturbations in surface temperature. Using high resolution sampling (6-7 year) across an annually laminated sediment core from the heart of the Peru Margin upwelling system (15°S) we explore how Uk’37 temperatures compare with TEX86 temperatures across a 200-year interval in the Mid-late Holocene. Mean late Holocene Uk’37 temperatures, extracted from a high sedimentation rate core from the Peru Margin are similar to modern mean annual sea surface temperatures at 15°S. Multi-decadal-scale (50-100 year) Uk’37 temperature fluctuations oscillate about the mean by 1.5°C. These rapid temperature changes are coherent with fluctuations in surface productivity (C37total and Biogenic Silica) in addition to sub-surface denitrification (δ15N). In contrast, TEX86 temperatures derived from identical samples exhibit colder temperatures than modern mean annual conditions and virtually no temperature fluctuation. We posit that TEX86 values are recording temperatures below the photic zone near the mix-layer-thermocline boundary and may, on longer timescales provide invaluable information about thermocline temperature. With this interpretation in mind, we present a TEX86-based long-term thermocline reconstruction over the Holocene.

  18. Long-term variation of Surface Ozone, NO2, temperature and relative humidity on crop yield over Andhra Pradesh (AP), India

    NASA Astrophysics Data System (ADS)

    Arunachalam, M. S.; Obili, Manjula; Srimurali, M.

    2016-07-01

    Long-term variation of Surface Ozone, NO2, Temperature, Relative humidity and crop yield datasets over thirteen districts of Andhra Pradesh(AP) has been studied with the help of OMI, MODIS, AIRS, ERA-Interim re-analysis and Directorate of Economics and Statistics (DES) of AP. Inter comparison of crop yield loss estimates according to exposure metrics such as AOT40 (accumulated ozone exposure over a threshold of 40) and non-linear variation of surface temperature for twenty and eighteen varieties of two major crop growing seasons namely, kharif (April-September) and rabi (October-March), respectively has been made. Study is carried to establish a new crop-yield-exposure relationship for different crop cultivars of AP. Both ozone and temperature are showing a correlation coefficient of 0.66 and 0.87 with relative humidity; and 0.72 and 0.80 with NO2. Alleviation of high surface ozone results in high food security and improves the economy thereby reduces the induced warming of the troposphere caused by ozone. Keywords: Surface Ozone, NO2, Temperature, Relative humidity, Crop yield, AOT 40.

  19. Detection of fever in children emergency care: comparisons of tactile and rectal temperatures in Nigerian children

    PubMed Central

    2010-01-01

    Background Clinical thermometry is the objective method for temperature measurements but tactile assessment of fever at home is usually the basis for seeking medical attention especially where the cost and level of literacy preclude the use of thermometers. This study was carried out to determine the reliability of tactile perception of fever by caregivers, nurses and house physicians in comparison to rectal thermometry and also the use of commonly practiced surface of the hand in the care of ill children. All caregivers of children aged 6 to 59 months who presented to the emergency department were approached consecutively at the triage stage but 182 children participated. Each child had tactile assessment of fever using palmar and dorsal surfaces of the hand by the caregivers, House Physicians and Nursing Officers. Rectal temperature was also measured and read independently by nurses and house physicians. Comparisons were made between tactile assessments and thermometer readings using a cut-off for fever, 38.0°C and above. Findings The caregivers' perception of fever had a sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of 95%, 23%, 66% and 73%, respectively compared with 93%, 26%, 67% and 69%, respectively for nursing officers. Irrespective of the groups studied, 77.1% of 336 assessors opined that the dorsal surface of the hand was more sensitive in tactile assessment of temperature and the frequently used site for assessment of fever were the head (35.6%) and neck (33.3%). Tactile assessment of temperature over-detected fever in ≥ 24% of cases among the three groups of assessors. Conclusions The present study suggests that tactile assessment of temperature may over estimate the prevalence of fever, it does not detect some cases and the need for objective measurement of temperature is emphasised in paediatric emergency care. PMID:20406473

  20. Synthetic temperature profiles derived from Geosat altimetry: Comparison with air-dropped expendable bathythermograph profiles

    NASA Astrophysics Data System (ADS)

    Carnes, Michael R.; Mitchell, Jim L.; de Witt, P. Webb

    1990-10-01

    Synthetic temperature profiles are computed from altimeter-derived sea surface heights in the Gulf Stream region. The required relationships between surface height (dynamic height at the surface relative to 1000 dbar) and subsurface temperature are provided from regression relationships between dynamic height and amplitudes of empirical orthogonal functions (EOFs) of the vertical structure of temperature derived by de Witt (1987). Relationships were derived for each month of the year from historical temperature and salinity profiles from the region surrounding the Gulf Stream northeast of Cape Hatteras. Sea surface heights are derived using two different geoid estimates, the feature-modeled geoid and the air-dropped expendable bathythermograph (AXBT) geoid, both described by Carnes et al. (1990). The accuracy of the synthetic profiles is assessed by comparison to 21 AXBT profile sections which were taken during three surveys along 12 Geosat ERM ground tracks nearly contemporaneously with Geosat overflights. The primary error statistic considered is the root-mean-square (rms) difference between AXBT and synthetic isotherm depths. The two sources of error are the EOF relationship and the altimeter-derived surface heights. EOF-related and surface height-related errors in synthetic temperature isotherm depth are of comparable magnitude; each translates into about a 60-m rms isotherm depth error, or a combined 80 m to 90 m error for isotherms in the permanent thermocline. EOF-related errors are responsible for the absence of the near-surface warm core of the Gulf Stream and for the reduced volume of Eighteen Degree Water in the upper few hundred meters of (apparently older) cold-core rings in the synthetic profiles. The overall rms difference between surface heights derived from the altimeter and those computed from AXBT profiles is 0.15 dyn m when the feature-modeled geoid is used and 0.19 dyn m when the AXBT geoid is used; the portion attributable to altimeter-derived surface height errors alone is 0.03 dyn m less for each. In most cases, the deeper structure of the Gulf Stream and eddies is reproduced well by vertical sections of synthetic temperature, with largest errors typically in regions of high horizontal gradient such as across rings and the Gulf Stream front.

  1. Surface and Tower Meteorological Instrumentation at NSA Handbook - January 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MT Ritsche

    2006-01-30

    The Surface and Tower Meteorological Instrumentation at Atqasuk (METTWR2H) uses mainly conventional in situ sensors to measure wind speed, wind direction, air temperature, dew point and humidity mounted on a 10-m tower. It also obtains barometric pressure, visibility, and precipitation data from sensors at or near the base of the tower. In addition, a Chilled Mirror Hygrometer is located at 1 m for comparison purposes. Temperature and relative humidity probes are mounted at 2 m and 5 m on the tower. For more information, see the Surface and Tower Meteorological Instrumentation at Atqasuk Handbook.

  2. Heat transfer, velocity-temperature correlation, and turbulent shear stress from Navier-Stokes computations of shock wave/turbulent boundary layer interaction flows

    NASA Technical Reports Server (NTRS)

    Wang, C. R.; Hingst, W. R.; Porro, A. R.

    1991-01-01

    The properties of 2-D shock wave/turbulent boundary layer interaction flows were calculated by using a compressible turbulent Navier-Stokes numerical computational code. Interaction flows caused by oblique shock wave impingement on the turbulent boundary layer flow were considered. The oblique shock waves were induced with shock generators at angles of attack less than 10 degs in supersonic flows. The surface temperatures were kept at near-adiabatic (ratio of wall static temperature to free stream total temperature) and cold wall (ratio of wall static temperature to free stream total temperature) conditions. The computational results were studied for the surface heat transfer, velocity temperature correlation, and turbulent shear stress in the interaction flow fields. Comparisons of the computational results with existing measurements indicated that (1) the surface heat transfer rates and surface pressures could be correlated with Holden's relationship, (2) the mean flow streamwise velocity components and static temperatures could be correlated with Crocco's relationship if flow separation did not occur, and (3) the Baldwin-Lomax turbulence model should be modified for turbulent shear stress computations in the interaction flows.

  3. Effects of Combined Surface and In-Depth Absorption on Ignition of PMMA

    PubMed Central

    Gong, Junhui; Chen, Yixuan; Li, Jing; Jiang, Juncheng; Wang, Zhirong; Wang, Jinghong

    2016-01-01

    A one-dimensional numerical model and theoretical analysis involving both surface and in-depth radiative heat flux absorption are utilized to investigate the influence of their combination on ignition of PMMA (Polymethyl Methacrylate). Ignition time, transient temperature in a solid and optimized combination of these two absorption modes of black and clear PMMA are examined to understand the ignition mechanism. Based on the comparison, it is found that the selection of constant or variable thermal parameters of PMMA barely affects the ignition time of simulation results. The linearity between tig−0.5 and heat flux does not exist anymore for high heat flux. Both analytical and numerical models underestimate the surface temperature and overestimate the temperature in a solid beneath the heat penetration layer for pure in-depth absorption. Unlike surface absorption circumstances, the peak value of temperature is in the vicinity of the surface but not on the surface for in-depth absorption. The numerical model predicts the ignition time better than the analytical model due to the more reasonable ignition criterion selected. The surface temperature increases with increasing incident heat flux. Furthermore, it also increases with the fraction of surface absorption and the radiative extinction coefficient for fixed heat flux. Finally, the combination is optimized by ignition time, temperature distribution in a solid and mass loss rate. PMID:28773940

  4. Effects of Combined Surface and In-Depth Absorption on Ignition of PMMA.

    PubMed

    Gong, Junhui; Chen, Yixuan; Li, Jing; Jiang, Juncheng; Wang, Zhirong; Wang, Jinghong

    2016-10-05

    A one-dimensional numerical model and theoretical analysis involving both surface and in-depth radiative heat flux absorption are utilized to investigate the influence of their combination on ignition of PMMA (Polymethyl Methacrylate). Ignition time, transient temperature in a solid and optimized combination of these two absorption modes of black and clear PMMA are examined to understand the ignition mechanism. Based on the comparison, it is found that the selection of constant or variable thermal parameters of PMMA barely affects the ignition time of simulation results. The linearity between t ig -0.5 and heat flux does not exist anymore for high heat flux. Both analytical and numerical models underestimate the surface temperature and overestimate the temperature in a solid beneath the heat penetration layer for pure in-depth absorption. Unlike surface absorption circumstances, the peak value of temperature is in the vicinity of the surface but not on the surface for in-depth absorption. The numerical model predicts the ignition time better than the analytical model due to the more reasonable ignition criterion selected. The surface temperature increases with increasing incident heat flux. Furthermore, it also increases with the fraction of surface absorption and the radiative extinction coefficient for fixed heat flux. Finally, the combination is optimized by ignition time, temperature distribution in a solid and mass loss rate.

  5. Comparison of two surface temperature measurement using thermocouples and infrared camera

    NASA Astrophysics Data System (ADS)

    Michalski, Dariusz; Strąk, Kinga; Piasecka, Magdalena

    This paper compares two methods applied to measure surface temperatures at an experimental setup designed to analyse flow boiling heat transfer. The temperature measurements were performed in two parallel rectangular minichannels, both 1.7 mm deep, 16 mm wide and 180 mm long. The heating element for the fluid flowing in each minichannel was a thin foil made of Haynes-230. The two measurement methods employed to determine the surface temperature of the foil were: the contact method, which involved mounting thermocouples at several points in one minichannel, and the contactless method to study the other minichannel, where the results were provided with an infrared camera. Calculations were necessary to compare the temperature results. Two sets of measurement data obtained for different values of the heat flux were analysed using the basic statistical methods, the method error and the method accuracy. The experimental error and the method accuracy were taken into account. The comparative analysis showed that although the values and distributions of the surface temperatures obtained with the two methods were similar but both methods had certain limitations.

  6. Enhanced surface transfer doping of diamond by V{sub 2}O{sub 5} with improved thermal stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, Kevin G., E-mail: k.crawford.2@research.gla.ac.uk; Moran, David A. J.; Cao, Liang

    2016-01-25

    Surface transfer doping of hydrogen-terminated diamond has been achieved utilising V{sub 2}O{sub 5} as a surface electron accepting material. Contact between the oxide and diamond surface promotes the transfer of electrons from the diamond into the V{sub 2}O{sub 5} as revealed by the synchrotron-based high resolution photoemission spectroscopy. Electrical characterization by Hall measurement performed before and after V{sub 2}O{sub 5} deposition shows an increase in hole carrier concentration in the diamond from 3.0 × 10{sup 12} to 1.8 × 10{sup 13 }cm{sup −2} at room temperature. High temperature Hall measurements performed up to 300 °C in atmosphere reveal greatly enhanced thermal stability of the hole channelmore » produced using V{sub 2}O{sub 5} in comparison with an air-induced surface conduction channel. Transfer doping of hydrogen-terminated diamond using high electron affinity oxides such as V{sub 2}O{sub 5} is a promising approach for achieving thermally stable, high performance diamond based devices in comparison with air-induced surface transfer doping.« less

  7. Evaluation of an atmospheric model with surface and ABL meteorological data for energy applications in structured areas

    NASA Astrophysics Data System (ADS)

    Triantafyllou, A. G.; Kalogiros, J.; Krestou, A.; Leivaditou, E.; Zoumakis, N.; Bouris, D.; Garas, S.; Konstantinidis, E.; Wang, Q.

    2018-03-01

    This paper provides the performance evaluation of the meteorological component of The Air Pollution Model (TAPM), a nestable prognostic model, in predicting meteorological variables in urban areas, for both its surface layer and atmospheric boundary layer (ABL) turbulence parameterizations. The model was modified by incorporating four urban land surface types, replacing the existing single urban surface. Control runs were carried out over the wider area of Kozani, an urban area in NW Greece. The model was evaluated for both surface and ABL meteorological variables by using measurements of near-surface and vertical profiles of wind and temperature. The data were collected by using monitoring surface stations in selected sites as well as an acoustic sounder (SOnic Detection And Ranging (SODAR), up to 300 m above ground) and a radiometer profiler (up to 600 m above ground). The results showed the model demonstrated good performance in predicting the near-surface meteorology in the Kozani region for both a winter and a summer month. In the ABL, the comparison showed that the model's forecasts generally performed well with respect to the thermal structure (temperature profiles and ABL height) but overestimated wind speed at the heights of comparison (mostly below 200 m) up to 3-4 ms-1.

  8. Surface tension estimation of high temperature melts of the binary alloys Ag-Au

    NASA Astrophysics Data System (ADS)

    Dogan, Ali; Arslan, Hüseyin

    2017-11-01

    Surface tension calculation of the binary alloys Ag-Au at the temperature of 1381 K, where Ag and Au have similar electronic structures and their atomic radii are comparable, are carried out in this study using several equations over entire composition range of Au. Apparently, the deviations from ideality of the bulk solutions, such as activities of Ag and Au are small and the maximum excess Gibbs free energy of mixing of the liquid phase is for instance -4500 J/mol at XAu = 0.5. Besides, the results obtained in Ag-Au alloys that at a constant temperature the surface tension increases with increasing composition while the surface tension decreases as the temperature increases for entire composition range of Au. Although data about surface tension of the Ag-Au alloy are limited, it was possible to make a comparison for the calculated results for the surface tension in this study with the available experimental data. Taken together, the average standard error analysis that especially the improved Guggenheim model in the other models gives the best agreement along with the experimental results at temperature 1383 K although almost all models are mutually in agreement with the other one.

  9. Near-surface temperature inversion during summer at Summit, Greenland, and its relation to MODIS-derived surface temperatures

    NASA Astrophysics Data System (ADS)

    Adolph, Alden C.; Albert, Mary R.; Hall, Dorothy K.

    2018-03-01

    As rapid warming of the Arctic occurs, it is imperative that climate indicators such as temperature be monitored over large areas to understand and predict the effects of climate changes. Temperatures are traditionally tracked using in situ 2 m air temperatures and can also be assessed using remote sensing techniques. Remote sensing is especially valuable over the Greenland Ice Sheet, where few ground-based air temperature measurements exist. Because of the presence of surface-based temperature inversions in ice-covered areas, differences between 2 m air temperature and the temperature of the actual snow surface (referred to as skin temperature) can be significant and are particularly relevant when considering validation and application of remote sensing temperature data. We present results from a field campaign extending from 8 June to 18 July 2015, near Summit Station in Greenland, to study surface temperature using the following measurements: skin temperature measured by an infrared (IR) sensor, 2 m air temperature measured by a National Oceanic and Atmospheric Administration (NOAA) meteorological station, and a Moderate Resolution Imaging Spectroradiometer (MODIS) surface temperature product. Our data indicate that 2 m air temperature is often significantly higher than snow skin temperature measured in situ, and this finding may account for apparent biases in previous studies of MODIS products that used 2 m air temperature for validation. This inversion is present during our study period when incoming solar radiation and wind speed are both low. As compared to our in situ IR skin temperature measurements, after additional cloud masking, the MOD/MYD11 Collection 6 surface temperature standard product has an RMSE of 1.0 °C and a mean bias of -0.4 °C, spanning a range of temperatures from -35 to -5 °C (RMSE = 1.6 °C and mean bias = -0.7 °C prior to cloud masking). For our study area and time series, MODIS surface temperature products agree with skin surface temperatures better than previous studies indicated, especially at temperatures below -20 °C, where other studies found a significant cold bias. We show that the apparent cold bias present in other comparisons of 2 m air temperature and MODIS surface temperature may be a result of the near-surface temperature inversion. Further investigation of how in situ IR skin temperatures compare to MODIS surface temperature at lower temperatures (below -35 °C) is warranted to determine whether a cold bias exists for those temperatures.

  10. Ice Surface Temperature Variability in the Polar Regions and the Relationships to 2 Meter Air Temperatures

    NASA Astrophysics Data System (ADS)

    Hoyer, J.; Madsen, K. S.; Englyst, P. N.

    2017-12-01

    Determining the surface and near surface air temperature from models or observations in the Polar Regions is challenging due to the extreme conditions and the lack of in situ observations. The errors in near surface temperature products are typically larger than for other regions of the world, and the potential for using Earth Observations is large. As part of the EU project, EUSTACE, we have developed empirical models for the relationship between the satellite observed skin ice temperatures and 2m air temperatures. We use the Arctic and Antarctic Sea and sea ice Surface Temperatures from thermal Infrared satellite sensors (AASTI) reanalysis to estimate daily surface air temperature over land ice and sea ice for the Arctic and the Antarctic. Large efforts have been put into collecting and quality controlling in situ observations from various data portals and research projects. The reconstruction is independent of numerical weather prediction models and thus provides an important alternative to modelled air temperature estimates. The new surface air temperature data record has been validated against more than 58.000 independent in situ measurements for the four surface types: Arctic sea ice, Greenland ice sheet, Antarctic sea ice and Antarctic ice sheet. The average correlations are 92-97% and average root mean square errors are 3.1-3.6°C for the four surface types. The root mean square error includes the uncertainty of the in-situ measurement, which ranges from 0.5 to 2°C. A comparison with ERA-Interim shows a consistently better performance of the satellite based air temperatures than the ERA-Interim for the Greenland ice sheet, when compared against observations not used in any of the two estimates. This is encouraging and demonstrates the values of these products. In addition, the procedure presented here works on satellite observations that are available in near real time and this opens up for a near real time estimation of the surface air temperature over ice from satellites.

  11. Consequences arising from elevated surface temperatures on human blood.

    PubMed

    Hamilton, Kathrin F; Schmidt, Verena I; Mager, Ilona; Schmitz-Rode, Thomas; Steinseifer, Ulrich

    2010-09-01

    Heat in blood pumps is generated by losses of the electrical motor and bearings. In the presented study the influence of tempered surfaces on bulk blood and adhesions on these surfaces was examined. Titanium alloy housing dummies were immersed in 25 mL heparinized human blood. The dummies were constantly tempered at specific temperatures (37-45 °C) over 15 min. Blood samples were withdrawn for blood parameter analysis and the determination of the plasmatic coagulation cascade. The quantities of adhesion on surfaces were determined by drained weight. Blood parameters do not alter significantly up to surface temperatures of 45 °C. In comparison to the control specimen, a drop in the platelet count can be observed, but is not significantly temperature dependent. The mean mass of adhesions at 41 °C increased up to 66% compared to 37 °C. Thus, heat generated in electrical motors and contact bearings may influence the amount of adhesions on surfaces. © 2010, Copyright the Authors. Artificial Organs © 2010, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  12. Group for High Resolution Sea Surface Temperature (GHRSST) Analysis Fields Inter-Comparisons. Part 1: A GHRSST Multi-Product Ensemble (GMPE)

    DTIC Science & Technology

    2012-05-02

    Le Borgne, P., Poulter, D., Vazquez-Cuervo, J., Armstrong, E., Beggs, H., Llewellyn - Jones , D., Minnett, P., Merchant, C., Evans, R., 2009. The GODAE...Donlon i, Chelle Gentemann j, Robert Grumbine k, Shiro Ishizaki l, Eileen Maturi b, Richard W. Reynoldsm, Jonah Roberts- Jones a a Met Office, Exeter...high-resolution sea surface temperature pilot project. Oceanography 22, 34–45. Donlon, C.J., Martin, M., Stark, J.D., Roberts- Jones , J., Fiedler, E

  13. Detection of surface temperature from LANDSAT-7/ETM+

    NASA Astrophysics Data System (ADS)

    Suga, Y.; Ogawa, H.; Ohno, K.; Yamada, K.

    2003-12-01

    Hiroshima Institute of Technology (HIT) in Japan has established a LANDSAT-7 Ground Station in cooperation with NASDA for receiving and processing the ETM+ data on March 15 th, 2000 in Japan. The authors performed a verification study on the surface temperature derived from thermal infrared band image data of LANDSAT 7/Enhanced Thematic Mapper Plus (ETM+) for the estimation of temperatures around Hiroshima city and bay area in the western part of Japan as a test site. As to the thermal infrared band, the approximate functions for converting the spectral radiance into the surface temperature are estimated by considering both typical surface temperatures measured by the simultaneous field survey with the satellite observation and the spectral radiance observed by ETM+ band 6 (10.40-12.50μm), and then the estimation of the surface temperature distribution around the test site was examined.In this study, the authors estimated the surface temperature distribution equivalent to the land cover categories around the test site for establishing a guideline of surface temperature detection by LANDSAT7/ETM+ data. As the result of comparison of the truth data and the estimated surface temperature, the correlation coefficients of the approximate function referred to the truth data are from 0.9821 to 0.9994, and the differences are observed from +0.7 to -1.5°C in summer, from +0.4 to -0.9 *C in autumn, from -1.6 to -3.4°C in winter and from +0.5 to -0.5C in spring season respectively. It is clearly found that the estimation of surface temperature based on the approximate functions for converting the spectral radiance into the surface temperature referred to the truth data is improved over the directly estimated surface temperature obtained from satellite data. Finally, the successive seasonal change of surface temperature distribution pattern of the test site is precisely detected with the temperature legend of 0 to 80'C derived from LANDSAT-7/ETM+ band 6 image data for the thermal environment monitoring. 2003 COSPAR. Published by Elsevier Ltd.

  14. Comparison of MTI Satellite-Derived Surface Water Temperatures and In-Situ Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurzeja, R.

    2001-07-26

    Temperatures of the water surface of a cold, mid-latitude lake and the tropical Pacific Ocean were determined from MTI images and from in situ concurrent measurements. In situ measurements were obtained at the time of the MTI image with a floating, anchored platform, which measured the surface and bulk water temperatures and relevant meteorological variables, and also from a boat moving across the target area. Atmospheric profiles were obtained from concurrent radiosonde soundings. Radiances at the satellite were calculated with the Modtran radiative transfer model. The MTI infrared radiances were within 1 percent of the calculated values at the Pacificmore » Ocean site but were 1-2 percent different over the mid-latitude lake.« less

  15. The role of land surface fluxes in Saudi-KAU AGCM: Temperature climatology over the Arabian Peninsula for the period 1981-2010

    NASA Astrophysics Data System (ADS)

    Ashfaqur Rahman, M.; Almazroui, Mansour; Nazrul Islam, M.; O'Brien, Enda; Yousef, Ahmed Elsayed

    2018-02-01

    A new version of the Community Land Model (CLM) was introduced to the Saudi King Abdulaziz University Atmospheric Global Climate Model (Saudi-KAU AGCM) for better land surface component representation, and so to enhance climate simulation. CLM replaced the original land surface model (LSM) in Saudi-KAU AGCM, with the aim of simulating more accurate land surface fluxes globally, but especially over the Arabian Peninsula. To evaluate the performance of Saudi-KAU AGCM, simulations were completed with CLM and LSM for the period 1981-2010. In comparison with LSM, CLM generates surface air temperature values that are closer to National Centre for Environmental Prediction (NCEP) observations. The global annual averages of land surface air temperature are 9.51, 9.52, and 9.57 °C for NCEP, CLM, and LSM respectively, although the same atmospheric radiative and surface forcing from Saudi-KAU AGCM are provided to both LSM and CLM at every time step. The better temperature simulations when using CLM can be attributed to the more comprehensive plant functional type and hierarchical tile approach to the land cover type in CLM, along with better parameterization of upward land surface fluxes compared to LSM. At global scale, CLM exhibits smaller annual and seasonal mean biases of temperature with respect to NCEP data. Moreover, at regional scale, CLM demonstrates reasonable seasonal and annual mean temperature over the Arabian Peninsula as compared to the Climatic Research Unit (CRU) data. Finally, CLM generated better matches to single point-wise observations of surface air temperature and surface fluxes for some case studies.

  16. Gradient Nanostructured Tantalum by Thermal-Mechanical Ultrasonic Impact Energy.

    PubMed

    Chae, Jong-Min; Lee, Keun-Oh; Amanov, Auezhan

    2018-03-20

    Microstructural evolution and wear performance of Tantalum (Ta) treated by ultrasonic nanocrystalline surface modification (UNSM) at 25 and 1000 °C were reported. The UNSM treatment modified a surface along with subsurface layer with a thickness in the range of 20 to 150 µm, which depends on the UNSM treatment temperature, via the surface severe plastic deformation (S²PD) method. The cross-sectional microstructure of the specimens was observed by electron backscattered diffraction (EBSD) in order to confirm the microstructural alteration in terms of effective depth and refined grain size. The surface hardness measurement results, including depth profile, revealed that the hardness of the UNSM-treated specimens at both temperatures was increased in comparison with those of the untreated ones. The increase in UNSM treatment temperature led to a further increase in hardness. Moreover, both the UNSM-treated specimens with an increased hardness resulted in a higher resistance to wear in comparison with those of the untreated ones under dry conditions. The increase in hardness and induced compressive residual stress that depend on the formation of severe plastically deformed layer with the refined nano-grains are responsible for the enhancement in wear resistance. The findings of this study may be implemented in response to various industries that are related to strength improvement and wear enhancement issues of Ta.

  17. Gradient Nanostructured Tantalum by Thermal-Mechanical Ultrasonic Impact Energy

    PubMed Central

    Chae, Jong-Min; Lee, Keun-Oh; Amanov, Auezhan

    2018-01-01

    Microstructural evolution and wear performance of Tantalum (Ta) treated by ultrasonic nanocrystalline surface modification (UNSM) at 25 and 1000 °C were reported. The UNSM treatment modified a surface along with subsurface layer with a thickness in the range of 20 to 150 µm, which depends on the UNSM treatment temperature, via the surface severe plastic deformation (S2PD) method. The cross-sectional microstructure of the specimens was observed by electron backscattered diffraction (EBSD) in order to confirm the microstructural alteration in terms of effective depth and refined grain size. The surface hardness measurement results, including depth profile, revealed that the hardness of the UNSM-treated specimens at both temperatures was increased in comparison with those of the untreated ones. The increase in UNSM treatment temperature led to a further increase in hardness. Moreover, both the UNSM-treated specimens with an increased hardness resulted in a higher resistance to wear in comparison with those of the untreated ones under dry conditions. The increase in hardness and induced compressive residual stress that depend on the formation of severe plastically deformed layer with the refined nano-grains are responsible for the enhancement in wear resistance. The findings of this study may be implemented in response to various industries that are related to strength improvement and wear enhancement issues of Ta. PMID:29558402

  18. The cold and atmospheric-pressure air surface barrier discharge plasma for large-area sterilization applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Dacheng; Department of Aeronautics, Fujian Key Laboratory for Plasma and Magnetic Resonance, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005; Zhao Di

    2011-04-18

    This letter reports a stable air surface barrier discharge device for large-area sterilization applications at room temperature. This design may result in visually uniform plasmas with the electrode area scaled up (or down) to the required size. A comparison for the survival rates of Escherichia coli from air, N{sub 2} and O{sub 2} surface barrier discharge plasmas is presented, and the air surface plasma consisting of strong filamentary discharges can efficiently kill Escherichia coli. Optical emission measurements indicate that reactive species such as O and OH generated in the room temperature air plasmas play a significant role in the sterilizationmore » process.« less

  19. Prediction of aerodynamic heating and pressures on Shuttle Entry Air Data System (SEADS) nose cap and comparison with STS-61C flight data

    NASA Technical Reports Server (NTRS)

    Ting, Paul C.; Rochelle, William C.; Curry, Donald M.

    1988-01-01

    Results are presented from predictions of aerothermodynamic heating rates, temperatures, and pressures on the surface of the Shuttle Entry Air Data System (SEADS) nosecap during Orbiter reentry. These results are compared with data obtained by the first actual flight of the SEADS system aboard STS-61C. The data also used to predict heating rates and surface temperatures for a hypothetical Transatlantic Abort Landing entry trajectory, whose analysis involved ascertaining the increases in heating rate as the airstream flowed across regions of the lower surface catalycity carbon/carbon composite to the higher surface catalycity columbium pressure ports.

  20. Surface wind mixing in the Regional Ocean Modeling System (ROMS)

    NASA Astrophysics Data System (ADS)

    Robertson, Robin; Hartlipp, Paul

    2017-12-01

    Mixing at the ocean surface is key for atmosphere-ocean interactions and the distribution of heat, energy, and gases in the upper ocean. Winds are the primary force for surface mixing. To properly simulate upper ocean dynamics and the flux of these quantities within the upper ocean, models must reproduce mixing in the upper ocean. To evaluate the performance of the Regional Ocean Modeling System (ROMS) in replicating the surface mixing, the results of four different vertical mixing parameterizations were compared against observations, using the surface mixed layer depth, the temperature fields, and observed diffusivities for comparisons. The vertical mixing parameterizations investigated were Mellor- Yamada 2.5 level turbulent closure (MY), Large- McWilliams- Doney Kpp (LMD), Nakanishi- Niino (NN), and the generic length scale (GLS) schemes. This was done for one temperate site in deep water in the Eastern Pacific and three shallow water sites in the Baltic Sea. The model reproduced the surface mixed layer depth reasonably well for all sites; however, the temperature fields were reproduced well for the deep site, but not for the shallow Baltic Sea sites. In the Baltic Sea, the models overmixed the water column after a few days. Vertical temperature diffusivities were higher than those observed and did not show the temporal fluctuations present in the observations. The best performance was by NN and MY; however, MY became unstable in two of the shallow simulations with high winds. The performance of GLS nearly as good as NN and MY. LMD had the poorest performance as it generated temperature diffusivities that were too high and induced too much mixing. Further observational comparisons are needed to evaluate the effects of different stratification and wind conditions and the limitations on the vertical mixing parameterizations.

  1. SURFACE PHONONS IN THE ORDERED c(2 × 2) PHASE OF Pd ON Au(100)

    NASA Astrophysics Data System (ADS)

    Chadli, R.; Khater, A.; Tigrine, R.

    2013-03-01

    The vibrational properties of the Au(100)-c(2 × 2)-Pd ordered phase, which is a stable system in the temperature range of 500 K to 600 K, are presented. This surface alloy is formed by depositing Pd atoms onto the Au(100) surface, and annealing at higher temperatures. The equilibrium structural characteristics, phonon dispersions as well as the local density of phonon states are calculated using the matching theory associated with Green's function formalism evaluated in the harmonic approximation. New surface modes have been found on the ordered metallic surface alloy along the three directions of high symmetry /line{Γ X}, /line{XM}, and /line{MΓ }, in comparison with the clean surface Au(100). Three of them are observed above the bulk bands spectrum.

  2. Laser surface melting of 10 wt% Mo alloyed hardfacing Stellite 12 plasma transferred arc deposits: Structural evolution and high temperature wear performance

    NASA Astrophysics Data System (ADS)

    Dilawary, Shaikh Asad Ali; Motallebzadeh, Amir; Afzal, Muhammad; Atar, Erdem; Cimenoglu, Huseyin

    2018-05-01

    Laser surface melting (LSM) process has been applied on the plasma transferred arc (PTA) deposited Stellite 12 and 10 wt% Mo alloyed Stellite 12 in this study. Following the LSM process, structural and mechanical property comparison of the LSM'ed surfaces has been made. Hardness of the LSM'ed surfaces was measured as 549 HV and 623 HV for the Stellite 12 and Stellite 12 + 10 wt% Mo deposits, respectively. Despite their different hardness and structural features, the LSM'ed surfaces exhibited similar tribological performance at room temperature (RT), where fatigue wear mechanism operates. However, the wear at 500 °C promotes tribo-oxide layer formation whose composition depended on the alloying with Mo. Thus, addition of 10 wt% Mo into Stellite 12 PTA deposit has remarkably enhanced the high temperature wear performance of the LSM'ed surface as a result of participation of complex oxide (CoMoO4) in tribo-oxide layer.

  3. The Processing of High Temperature Ceramic Superconducting Devices. Volume 1.

    DTIC Science & Technology

    1992-01-31

    assuming frequency squared dependence) for ease of comparison with other measurements. At the low power levels the surface resistance is I 200 micro ...transition temperature is 106K, where the measured resistivity becomes zero. The noimal state resistivity at the transition temperature, 100 micro -ohms...our films at temperatures down t o 4K. A four-point measurement is used, and the criterion of 1 micro -volt per millimeter is usedI to determine

  4. A numerical study of the temperature field in a cooled radial turbine rotor

    NASA Technical Reports Server (NTRS)

    Hamed, A.; Baskharone, E.; Tabakoff, W.

    1977-01-01

    The three dimensional temperature distribution in the cooled rotor of a radial inflow turbine is determined numerically using the finite element method. Through this approach, the complicated geometries of the hot rotor and coolant passage surfaces are handled easily, and the temperatures are determined without loss of accuracy at these convective boundaries. Different cooling techniques with given coolant to primary flow ratios are investigated, and the corresponding rotor temperature fields are presented for comparison.

  5. Polymer functionalized nanostructured porous silicon for selective water vapor sensing at room temperature

    NASA Astrophysics Data System (ADS)

    Dwivedi, Priyanka; Das, Samaresh; Dhanekar, Saakshi

    2017-04-01

    This paper highlights the surface treatment of porous silicon (PSi) for enhancing the sensitivity of water vapors at room temperature. A simple and low cost technique was used for fabrication and functionalization of PSi. Spin coated polyvinyl alcohol (PVA) was used for functionalizing PSi surface. Morphological and structural studies were conducted to analyze samples using SEM and XRD/Raman spectroscopy respectively. Contact angle measurements were performed for assessing the wettability of the surfaces. PSi and functionalized PSi samples were tested as sensors in presence of different analytes like ethanol, acetone, isopropyl alcohol (IPA) and water vapors in the range of 50-500 ppm. Electrical measurements were taken from parallel aluminium electrodes fabricated on the functionalized surface, using metal mask and thermal evaporation. Functionalized PSi sensors in comparison to non-functionalized sensors depicted selective and enhanced response to water vapor at room temperature. The results portray an efficient and selective water vapor detection at room temperature.

  6. An Evaluation of a Borided Layer Formed on Ti-6Al-4V Alloy by Means of SMAT and Low-Temperature Boriding

    PubMed Central

    Yao, Quantong; Sun, Jian; Fu, Yuzhu; Tong, Weiping; Zhang, Hui

    2016-01-01

    In this paper, a nanocrystalline surface layer without impurities was fabricated on Ti-6Al-4V alloy by means of surface mechanical attrition treatment (SMAT). The grain size in the nanocrystalline layer is about 10 nm and grain morphology displays a random crystallographic orientation distribution. Subsequently, the low-temperature boriding behaviors (at 600 °C) of the SMAT sample, including the phase composition, microstructure, micro-hardness, and brittleness, were investigated in comparison with those of coarse-grained sample borided at 1100 °C. The results showed that the boriding kinetics could be significantly enhanced by SMAT, resulting in the formation of a nano-structured boride layers on Ti-6Al-4V alloy at lower temperature. Compared to the coarse-grained boriding sample, the SMAT boriding sample exhibits a similar hardness value, but improved surface toughness. The satisfactory surface toughness may be attributed to the boriding treatment that was carried out at lower temperature. PMID:28774115

  7. Nimbus 4 IRIS spectra in the 750-1250 wavelengths/cm atmospheric window region

    NASA Technical Reports Server (NTRS)

    Kunde, V. G.; Conrath, B. J.; Hanel, R. A.; Prabhakara, C.

    1974-01-01

    Present operational schemes for infrared remote sounding measurements of surface temperature use the 899 wavelengths/cm atmospheric window region. Spectra from the Nimbus 4 IRIS in the 750 to 1250 wavelengths/cm region are analyzed. Comparison of the actual surface temperature and the observed brightness temperature at 10 wavelengths/cm resolution shows that the clearest windows were at 936 and 960 wavelengths/cm. Although there is a small amount of CO2 absorption in these regions, this is compensated for by a decrease in water vapor continuum absorption. Atmospheric absorption was 0.5 K less than experienced by the 899 wavelengths/cm window.

  8. Thermal Inactivation of Aerosolized Bacillus subtilis var. niger Spores

    PubMed Central

    Mullican, Charles L.; Buchanan, Lee M.; Hoffman, Robert K.

    1971-01-01

    A hot-air sterilizer capable of exposing airborne microorganisms to elevated temperatures with an almost instantaneous heating time was developed and evaluated. With this apparatus, aerosolized Bacillus subtilis var. niger spores were killed in about 0.02 sec when exposed to temperatures above 260 C. This is about 500 times faster than killing times reported by others. Extrapolation and comparison of data on the time and temperature required to klll B. subtilis var. niger spores on surfaces show that approximately the same killing time is required as is necessary for spores in air, if corrections are made for the heating time of the surface. PMID:5002138

  9. Cylindrospermopsin degradation in sediments--the role of temperature, redox conditions, and dissolved organic carbon.

    PubMed

    Klitzke, Sondra; Fastner, Jutta

    2012-04-01

    One possible consequence of increasing water temperatures due to global warming in middle Europe is the proliferation of cylindrospermopsin-producing species from warmer regions. This may lead to more frequent and increased cylindrospermopsin (CYN) concentrations in surface waters. Hence, efficient elimination of CYN is important where contaminated surface waters are used as a resource for drinking water production via sediment passage. Sediments are often characterized by a lack of oxygen and low temperature (i.e. approx. 10 °C). The presence of dissolved organic carbon (DOC) is not only known to enhance but also to retard contaminant degradation by influencing the extent of lag phases. So far CYN degradation has only been investigated under oxic conditions and at room temperature. Therefore, the aim of our experiments was to understand CYN degradation, focusing on the effects of i) anoxic conditions, ii) low temperature (i.e. 10 °C) in comparison to room temperature (23±4 °C) and iii) DOC on lag phases. We used two natural sandy sediments (virgin and preconditioned) and surface water to conduct closed-loop column experiments. Anoxic conditions either inhibited CYN degradation completely or retarded CYN breakdown in comparison to oxic conditions (T(1/2) (oxic)=2.4 days, T(1/2) (anoxic)=23.6 days). A decrease in temperature from 20 °C to 10 °C slowed down degradation rates by a factor of 10. The presence of DOC shortened lag phases in virgin sediments at room temperature but induced a lag phase in preconditioned sediments at 10 °C, indicating potential substrate competition. These results show that information on physico-chemical conditions in sediments is crucial to assess the risk of CYN breakthrough. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Comparison of mean climate trends in the Northern Hemisphere between National Centers for Environmental Prediction and two atmosphere-ocean model forced runs

    NASA Astrophysics Data System (ADS)

    Lucarini, Valerio; Russell, Gary L.

    2002-08-01

    Results are presented for two greenhouse gas experiments of the Goddard Institute for Space Studies atmosphere-ocean model (AOM). The computed trends of surface pressure; surface temperature; 850, 500, and 200 mbar geopotential heights; and related temperatures of the model for the time frame 1960-2000 are compared with those obtained from the National Centers for Enviromental Prediction (NCEP) observations. The domain of interest is the Northern Hemisphere because of the higher reliability of both the model results and the observations. A spatial correlation analysis and a mean value comparison are performed, showing good agreement in terms of statistical significance for most of the variables considered in the winter and annual means. However, the 850 mbar temperature trends do not show significant positive correlation, and the surface pressure and 850 mbar geopotential height mean trends confidence intervals do not overlap. A brief general discussion about the statistics of trend detection is presented. The accuracy that this AOM has in describing the regional and NH mean climate trends inferred from NCEP through the atmosphere suggests that it may be reliable in forecasting future climate changes.

  11. Decadal Trends and Common Dynamics of the Bio-Optical and Thermal Characteristics of the African Great Lakes

    PubMed Central

    Loiselle, Steven; Cózar, Andrés; Adgo, Enyew; Ballatore, Thomas; Chavula, Geoffrey; Descy, Jean Pierre; Harper, David M.; Kansiime, Frank; Kimirei, Ismael; Langenberg, Victor; Ma, Ronghua; Sarmento, Hugo; Odada, Eric

    2014-01-01

    The Great Lakes of East Africa are among the world’s most important freshwater ecosystems. Despite their importance in providing vital resources and ecosystem services, the impact of regional and global environmental drivers on this lacustrine system remains only partially understood. We make a systematic comparison of the dynamics of the bio-optical and thermal properties of thirteen of the largest African lakes between 2002 and 2011. Lake surface temperatures had a positive trend in all Great Lakes outside the latitude of 0° to 8° south, while the dynamics of those lakes within this latitude range were highly sensitive to global inter-annual climate drivers (i.e. El Niño Southern Oscillation). Lake surface temperature dynamics in nearly all lakes were found to be sensitive to the latitudinal position of the Inter Tropical Convergence Zone. Phytoplankton dynamics varied considerably between lakes, with increasing and decreasing trends. Intra-lake differences in both surface temperature and phytoplankton dynamics occurred for many of the larger lakes. This inter-comparison of bio-optical and thermal dynamics provides new insights into the response of these ecosystems to global and regional drivers. PMID:24699528

  12. Infrared surface temperature measurements for the surface tension driven convection experiment. M.S. Thesis - Case Western Reserve Univ., Aug. 1988

    NASA Technical Reports Server (NTRS)

    Pline, Alexander D.

    1989-01-01

    In support of the Surface Tension Driven Convection Experiment (STDCE), a planned space transportation system (STS) flight experiment, a commercially available infrared thermal imaging system is used to quantify the imposed thermal signature along the free surface. The system was tested and calibrated for the STDCE with ground-based equivalents of the STDCE hardware. Before using the system, consideration was given to the radiation characteristics of the target (silicone oil). Absorption coefficients were calculated to understand the surface depth as seen by the imager and the penetration depth of the surface heater (CO2 laser). The performance and operational specifications for the imager and image processing system are described in detail to provide an understanding of the equipment. Measurements made with the system were compared to thermocouple measurements and a calculated surface temperature distribution. This comparison showed that in certain regions the IR imager measurements were within 5 percent of the overall temperature difference across the free surface. In other regions the measurements were within + or - 10 percent of the overall temperature gradient across the free surface. The effective emissivity of silicone oil for these experimental conditions was also determined. Measurement errors and their possible solutions are discussed.

  13. Detection of surface mobility of poly (2, 3, 4, 5, 6-pentafluorostyrene) films by in situ variable-temperature ToF-SIMS and contact angle measurements.

    PubMed

    Fu, Yi; Lau, Yiu-Ting R; Weng, Lu-Tao; Ng, Kai-Mo; Chan, Chi-Ming

    2014-10-01

    Poly (2, 3, 4, 5, 6-pentafluorostyrene) (5FPS) was prepared by bulk radical polymerization. The spin-cast films of this polymer were analyzed using time-of-flight secondary ion mass spectrometry (ToF-SIMS) at various temperatures ranging from room temperature to 120°C. Principal component analysis (PCA) of the ToF-SIMS data revealed a transition temperature (T(T)) at which the surface structure of 5FPS was rearranged. A comparison between the results of the PCA of ToF-SIMS spectra obtained on 5FPS and polystyrene (PS) indicate that the pendant groups of 5FPS and PS moved in exactly opposite directions as the temperature increased. More pendant groups of 5FPS and PS migrated from the bulk to the surface and verse versa, respectively, as the temperature increased. These results clearly support the view that the abrupt changes in the normalized principal component 1 value was caused by the surface reorientation of the polymers and not by a change in the ion fragmentation mechanism at temperatures above the T(T). Contact angle measurement, which is another extremely surface sensitive technique, was used to monitor the change in the surface tension as a function of temperature. A clear T(T) was determined by the contact angle measurements. The T(T) values determined by contact angle measurements and ToF-SIMS were very similar. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Frost Growth and Densification in Laminar Flow Over Flat Surfaces

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2011-01-01

    One-dimensional frost growth and densification in laminar flow over flat surfaces has been theoretically investigated. Improved representations of frost density and effective thermal conductivity applicable to a wide range of frost circumstances have been incorporated. The validity of the proposed model considering heat and mass diffusion in the frost layer is tested by a comparison of the predictions with data from various investigators for frost parameters including frost thickness, frost surface temperature, frost density and heat flux. The test conditions cover a range of wall temperature, air humidity ratio, air velocity, and air temperature, and the effect of these variables on the frost parameters has been exemplified. Satisfactory agreement is achieved between the model predictions and the various test data considered. The prevailing uncertainties concerning the role air velocity and air temperature on frost development have been elucidated. It is concluded that that for flat surfaces increases in air velocity have no appreciable effect on frost thickness but contribute to significant frost densification, while increase in air temperatures results in a slight increase the frost thickness and appreciable frost densification.

  15. A comparison of thermocouple and infrared thermographic analysis of temperature rise on the root surface during the continuous wave of condensation technique.

    PubMed

    Mc Cullagh, J J; Setchell, D J; Gulabivala, K; Hussey, D L; Biagioni, P; Lamey, P J; Bailey, G

    2000-07-01

    This study was designed to use two methods of temperature measurement to analyse and quantify the in vitro root surface temperature changes during the initial stage of the continuous wave technique of obturation of 17 single-rooted premolar teeth with standard canal preparations. A model was designed to allow simultaneous temperature measurement with both thermocouples and an infrared thermal imaging system. Two thermocouples were placed on the root surface, one coronally and the other near the root apex. A series of thermal images were recorded by an infrared thermal imaging camera during the downpack procedure. The mean temperature rises on the root surface, as measured by the two thermocouples, averaged 13.9 degrees C over the period of study, whilst the infrared thermal imaging system measured an average rise of 28.4 degrees C at the same sites. Temperatures at the more apical point were higher than those measured coronally. After the first wave of condensation, the second activation of the plugger in the canal prior to its removal always resulted in a secondary rise in temperature. The thermal imaging system detected areas of greater temperature change distant from the two selected thermocouple sites. The continuous wave technique of obturation may result in high temperatures on the external root surface. Infrared thermography is a useful device for mapping patterns of temperature change over a large area.

  16. Multi-wavelength emissivity measurement of stainless steel substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Y. F. F.; Dai, J. M. M.; Zhang, L.; Pan, W. D. D.

    2013-01-01

    The emissivity is a key parameter to measure the surface temperature of materials in the radiation thermometry. In this paper, the surface emissivity of metallic substrates is measured by the multi-wavelength emissivity measurement apparatus developed by the Harbin Institute of Technology (HIT). The measuring principle of this apparatus is based on the energy comparison. Several radiation thermometers, whose emissivity coefficients corrected by the measured emissivity from this apparatus, are used to measure the surface temperature of stainless steel substrates. The temperature values measured by means of radiation thermometry are compared to those measured by means of contact thermometry. The relative error between the two means is less than 2% at temperatures from 700K to 1300K, it suggests that the emissivity of stainless steel substrate measured by the multi-wavelength emissivity measurement apparatus are accurate and reliable. Emissivity measurements performed with this apparatus present an uncertainty of 5.9% (cover factor=2).

  17. Satellite-Derived Sea Surface Temperature: Workshop-2

    NASA Technical Reports Server (NTRS)

    Njoku, E. G.

    1984-01-01

    Global accuracies and error characteristics of presently orbiting satellite sensors are examined. The workshops are intended to lead to a better understanding of present capabilities for sea surface temperature measurement and to improve measurement concepts for the future. Data from the Advanced Very High Resolution Radiometer AVHRR and Scanning Multichannel Microwave Radiometer is emphasized. Some data from the High Resolution Infrared Sounder HIRS and AVHRR are also examined. Comparisons of satellite data with ship and eXpendable BathyThermograph XBT measurement show standard deviations in the range 0.5 to 1.3 C with biases of less than 0.4 C, depending on the sensor, ocean region, and spatial/temporal averaging. The Sea Surface Temperature SST anomaly maps show good agreement in some cases, but a number of sensor related problems are identified.

  18. Modeling electrochemical resistance with coal surface properties in a direct carbon fuel cell based on molten carbonate

    NASA Astrophysics Data System (ADS)

    Eom, Seongyong; Ahn, Seongyool; Kang, Kijoong; Choi, Gyungmin

    2017-12-01

    In this study, a numerical model of activation and ohmic polarization is modified, taking into account the correlation function between surface properties and inner resistance. To investigate the correlation function, the surface properties of coal are changed by acid treatment, and the correlations between the inner resistance measured by half-cell tests and the surface characteristics are analyzed. A comparison between the model and experimental results demonstrates that the absolute average deviations for each fuel are less than 10%. The numerical results show that the sensitivities of the coal surface properties affecting polarization losses change depending on the operating temperature. The surface oxygen concentrations affect the activation polarization and the sensitivity decreased with increasing temperature. The surface ash of coal is an additional index to be considered along with ohmic polarization and it has the greatest effect on the surface properties at 973 K.

  19. Ultrahigh vacuum and low-temperature cleaning of oxide surfaces using a low-concentration ozone beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratt, A.; Department of Physics, University of York, Heslington, York YO10 5DD; Graziosi, P.

    We present a novel method of delivering a low-concentration (<15%) ozone beam to an ultra-high vacuum environment for the purpose of cleaning and dosing experimental samples through oxidation processing. The system described is safe, low-cost, and practical and overcomes the limitations of ozone transport in the molecular flow environment of high or ultrahigh vacuum whilst circumventing the use of pure ozone gas which is potentially highly explosive. The effectiveness of this method in removing surface contamination is demonstrated through comparison of high-temperature annealing of a simple oxide (MgO) in ozone and oxygen environments as monitored using quadrupole mass spectroscopy andmore » Auger electron spectroscopy. Additionally, we demonstrate the potential of ozone for obtaining clean complex oxide surfaces without the need for high-temperature annealing which may significantly alter surface structure.« less

  20. Comparison of Mean Climate Trends in the Northern Hemisphere Between N.C.E.P. and Two Atmosphere-Ocean Model Forced Runs

    NASA Technical Reports Server (NTRS)

    Lucarini, Valerio; Russell, Gary L.; Hansen, James E. (Technical Monitor)

    2002-01-01

    Results are presented for two greenhouse gas experiments of the Goddard Institute for Space Studies Atmosphere-Ocean Model (AOM). The computed trends of surface pressure, surface temperature, 850, 500 and 200 mb geopotential heights and related temperatures of the model for the time frame 1960-2000 are compared to those obtained from the National Centers for Environmental Prediction observations. A spatial correlation analysis and mean value comparison are performed, showing good agreement. A brief general discussion about the statistics of trend detection is presented. The domain of interest is the Northern Hemisphere (NH) because of the higher reliability of both the model results and the observations. The accuracy that this AOM has in describing the observed regional and NH climate trends makes it reliable in forecasting future climate changes.

  1. Surface tension and density of liquid In-Sn-Zn alloys

    NASA Astrophysics Data System (ADS)

    Pstruś, Janusz

    2013-01-01

    Using the dilatometric method, measurements of the density of liquid alloys of the ternary system In-Sn-Zn in four sections with a constant ratio Sn:In = 24:1, 3:1, 1:1, 1:3, for various Zn additions (5, 10, 14, 20, 3 5, 50 and 75 at.% Zn) were performed at the temperature ranges of 500-1150 K. Density decreases linearly for all compositions. The molar volume calculated from density data exhibits close to ideal dependence on composition. Measurements of the surface tension of liquid alloys have been conducted using the method of maximum pressure in the gas bubbles. There were observed linear dependences on temperature with a negative gradients dσ/dT. Generally, with two exceptions, there was observed the increase of surface tension with increasing content of zinc. Using the Butler's model, the surface tension isotherms were calculated for temperatures T = 673 and 1073 K. Calculations show that only for high temperatures and for low content of zinc (up to about 35 at.%), the modeling is in very good agreement with experiment. Using the mentioned model, the composition of the surface phase was defined at two temperatures T = 673 and 973 K. Regardless of the temperature and of the defined section, the composition of the bulk is very different in comparison with the composition of the surface.

  2. Estimation of Areal Distribution of Evapotranspiration Using Remotely Sensed Data During Vegetation Period in Hungary

    NASA Astrophysics Data System (ADS)

    Dunkel, Z.; Szenyán, I. G.

    The surface temperature measured by satellite can be the basis of evapotranspiration (ET) computation. The possibility of calculation of daily sum of the regional ET using surface temperature was examined under Hungarian weather conditions. A simplified relationship, namely ETd-Rnd = a + b (Tc-Ta), which relates the daily ET to daily net radiation with one measurements of surface and air temperature was used for the calculation. Using NOAA/AVHRR satellite data, no information about the surface inhomogeneity was obtained. The distribution of surface temperature was investigated by infrared thermometer scanning the surface from a board a hang-glider, ultra-light-aeroplane, and light aeroplane. Field observation trials were made during the vegetation period of 1992, 1993, 1994 and 1995. In eastern part of the country a homogeneous field (1 km × 1 km) was scanned before noon and afternoon. In the western part of the country, a much larger area (45 km × 45 km) was investigated. Cultivated area, forest and a large water surface were included in the investigated surface. The problems of calibration of hand-held infrared thermometer and the time shifting are discussed too. Comparison of model output with data from field experiment has played a crucial role in model development and suggested evaluation method

  3. Computational modeling of GTA (gas tungsten arc) welding with emphasis on surface tension effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zacharia, T.; David, S.A.

    1990-01-01

    A computational study of the convective heat transfer in the weld pool during gas tungsten arch (GTA) welding of Type 304 stainless steel is presented. The solution of the transport equations is based on a control volume approach which utilized directly, the integral form of the governing equations. The computational model considers buoyancy and electromagnetic and surface tension forces in the solution of convective heat transfer in the weld pool. In addition, the model treats the weld pool surface as a deformable free surface. The computational model includes weld metal vaporization and temperature dependent thermophysical properties. The results indicate thatmore » consideration of weld pool vaporization effects and temperature dependent thermophysical properties significantly influence the weld model predictions. Theoretical predictions of the weld pool surface temperature distributions and the cross-sectional weld pool size and shape wee compared with corresponding experimental measurements. Comparison of the theoretically predicted and the experimentally obtained surface temperature profiles indicated agreement with {plus minus} 8%. The predicted weld cross-section profiles were found to agree very well with actual weld cross-sections for the best theoretical models. 26 refs., 8 figs.« less

  4. LANDSAT 4 band 6 data evaluation

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Comparison of underflight data with satellite estimates of temperature revealed significant gain calibration errors. The source of the LANDSAT 5 band 6 error and its reproducibility is not yet adequately defined. The error can be accounted for using underflight or ground truth data. When underflight data are used to correct the satellite data, the residual error for the scene studied was 1.3K when the predicted temperatures were compared to measured surface temperature.

  5. Revisiting the Cause of the 1989-2009 Arctic Surface Warming Using the Surface Energy Budget: Downward Infrared Radiation Dominates the Surface Fluxes

    NASA Astrophysics Data System (ADS)

    Lee, Sukyoung; Gong, Tingting; Feldstein, Steven B.; Screen, James A.; Simmonds, Ian

    2017-10-01

    The Arctic has been warming faster than elsewhere, especially during the cold season. According to the leading theory, ice-albedo feedback warms the Arctic Ocean during the summer, and the heat gained by the ocean is released during the winter, causing the cold-season warming. Screen and Simmonds (2010; SS10) concluded that the theory is correct by comparing trend patterns in surface air temperature (SAT), surface turbulence heat flux (HF), and net surface infrared radiation (IR). However, in this comparison, downward IR is more appropriate to use. By analyzing the same data used in SS10 using the surface energy budget, it is shown here that over most of the Arctic the skin temperature trend, which closely resembles the SAT trend, is largely accounted for by the downward IR, not the HF, trend.

  6. Modelling study of sea breezes in a complex coastal environment

    NASA Astrophysics Data System (ADS)

    Cai, X.-M.; Steyn, D. G.

    This study investigates a mesoscale modelling of sea breezes blowing from a narrow strait into the lower Fraser valley (LFV), British Columbia, Canada, during the period of 17-20 July, 1985. Without a nudging scheme in the inner grid, the CSU-RAMS model produces satisfactory wind and temperature fields during the daytime. In comparison with observation, the agreement indices for surface wind and temperature during daytime reach about 0.6 and 0.95, respectively, while the agreement indices drop to 0.4 at night. In the vertical, profiles of modelled wind and temperature generally agree with tethersonde data collected on 17 and 19 July. The study demonstrates that in late afternoon, the model does not capture the advection of an elevated warm layer which originated from land surfaces outside of the inner grid. Mixed layer depth (MLD) is calculated from model output of turbulent kinetic energy field. Comparison of MLD results with observation shows that the method generates a reliable MLD during the daytime, and that accurate estimates of MLD near the coast require the correct simulation of wind conditions over the sea. The study has shown that for a complex coast environment like the LFV, a reliable modelling study depends not only on local surface fluxes but also on elevated layers transported from remote land surfaces. This dependence is especially important when local forcings are weak, for example, during late afternoon and at night.

  7. Preliminary results and assessment of the MAR outputs over High Mountain Asia

    NASA Astrophysics Data System (ADS)

    Linares, M.; Tedesco, M.; Margulis, S. A.; Cortés, G.; Fettweis, X.

    2017-12-01

    Lack of ground measurements has made the use of regional climate models (RCMs) over the High Mountain Asia (HMA) pivotal for understanding the impact of climate change on the hydrological cycle and on the cryosphere. Here, we show an analysis of the assessment of the outputs of Modèle Atmosphérique Régionale (MAR) model RCM over the HMA region as part of the NASA-funded project `Understanding and forecasting changes in High Mountain Asia snow hydrology via a novel Bayesian reanalysis and modeling approach'. The first step was to evaluate the impact of the different forcings on MAR outputs. To this aim, we performed simulations for the 2007 - 2008 and 2014 - 2015 years forcing MAR at its boundaries either with reanalysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF) or from the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). The comparison between the outputs obtained with the two forcings indicates that the impact on MAR simulations depends on specific parameters. For example, in case of surface pressure the maximum percentage error is 0.09 % while the 2-m air temperature has a maximum percentage error of 103.7%. Next, we compared the MAR outputs with reanalysis data fields over the region of interest. In particular, we evaluated the following parameters: surface pressure, snow depth, total cloud cover, two meter temperature, horizontal wind speed, vertical wind speed, wind speed, surface new solar radiation, skin temperature, surface sensible heat flux, and surface latent heat flux. Lastly, we report results concerning the assessment of MAR surface albedo and surface temperature over the region through MODIS remote sensing products. Next steps are to determine whether RCMs and reanalysis datasets are effective at capturing snow and snowmelt runoff processes in the HMA region through a comparison with in situ datasets. This will help determine what refinements are necessary to improve RCM outputs.

  8. A significant reduction of ice adhesion on nanostructured surfaces that consist of an array of single-walled carbon nanotubes: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Bao, Luyao; Huang, Zhaoyuan; Priezjev, Nikolai V.; Chen, Shaoqiang; Luo, Kai; Hu, Haibao

    2018-04-01

    It is well recognized that excessive ice accumulation at low-temperature conditions can cause significant damage to civil infrastructure. The passive anti-icing surfaces provide a promising solution to suppress ice nucleation and enhance ice removal. However, despite extensive efforts, it remains a challenge to design anti-icing surfaces with low ice adhesion. Using all-atom molecular dynamics (MD) simulations, we show that surfaces with single-walled carbon nanotube array (CNTA) significantly reduce ice adhesion due to the extremely low solid areal fraction. It was found that the CNTA surface exhibits up to a 45% decrease in the ice adhesion strength in comparison with the atomically smooth graphene surface. The details of the ice detachment from the CNTA surface were examined for different water-carbon interaction energies and temperatures of the ice cube. Remarkably, the results of MD simulations demonstrate that the ice detaching strength depends linearly on the ratio of the ice-surface interaction energy and the ice temperature. These results open the possibility for designing novel robust surfaces with low ice adhesion for passive anti-icing applications.

  9. Comparison of eastern tropical Pacific TEX86 and Globigerinoides ruber Mg/Ca derived sea surface temperatures: Insights from the Holocene and Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Hertzberg, Jennifer E.; Schmidt, Matthew W.; Bianchi, Thomas S.; Smith, Richard W.; Shields, Michael R.; Marcantonio, Franco

    2016-01-01

    The use of the TEX86 temperature proxy has thus far come to differing results as to whether TEX86 temperatures are representative of surface or subsurface conditions. In addition, although TEX86 temperatures might reflect sea surface temperatures based on core-top (Holocene) values, this relationship might not hold further back in time. Here, we investigate the TEX86 temperature proxy by comparing TEX86 temperatures to Mg/Ca temperatures of multiple species of planktonic foraminifera for two sites in the eastern tropical Pacific (on the Cocos and Carnegie Ridges) across the Holocene and Last Glacial Maximum. Core-top and Holocene TEX86H temperatures at both study regions agree well, within error, with the Mg/Ca temperatures of Globigerinoides ruber, a surface dwelling planktonic foraminifera. However, during the Last Glacial Maximum, TEX86H temperatures are more representative of upper thermocline temperatures, and are offset from G. ruber Mg/Ca temperatures by 5.8 °C and 2.9 °C on the Cocos Ridge and Carnegie Ridge, respectively. This offset between proxies cannot be reconciled by using different TEX86 temperature calibrations, and instead, we suggest that the offset is due to a deeper export depth of GDGTs at the LGM. We also compare the degree of glacial cooling at both sites based on both temperature proxies, and find that TEX86H temperatures greatly overestimate glacial cooling, especially on the Cocos Ridge. This study has important implications for applying the TEX86 paleothermometer in the eastern tropical Pacific.

  10. Spatial-temporal analysis of building surface temperatures in Hung Hom

    NASA Astrophysics Data System (ADS)

    Zeng, Ying; Shen, Yueqian

    2015-12-01

    This thesis presents a study on spatial-temporal analysis of building surface temperatures in Hung Hom. Observations were collected from Aug 2013 to Oct 2013 at a 30-min interval, using iButton sensors (N=20) covering twelve locations in Hung Hom. And thermal images were captured in PolyU from 05 Aug 2013 to 06 Aug 2013. A linear regression model of iButton and thermal records is established to calibrate temperature data. A 3D modeling system is developed based on Visual Studio 2010 development platform, using ArcEngine10.0 component, Microsoft Access 2010 database and C# programming language. The system realizes processing data, spatial analysis, compound query and 3D face temperature rendering and so on. After statistical analyses, building face azimuths are found to have a statistically significant relationship with sun azimuths at peak time. And seasonal building temperature changing also corresponds to the sun angle and sun azimuth variations. Building materials are found to have a significant effect on building surface temperatures. Buildings with lower albedo materials tend to have higher temperatures and larger thermal conductivity material have significant diurnal variations. For the geographical locations, the peripheral faces of campus have higher temperatures than the inner faces during day time and buildings located at the southeast are cooler than the western. Furthermore, human activity is found to have a strong relationship with building surface temperatures through weekday and weekend comparison.

  11. Order-picking in deep cold--physiological responses of younger and older females. Part 2: body core temperature and skin surface temperature.

    PubMed

    Baldus, Sandra; Kluth, Karsten; Strasser, Helmut

    2012-01-01

    So far, it was unclear to what extent working in deep cold-storage depots has an influence on female order-pickers body core temperature and skin surface temperature considering different age groups. Physiological effects of order-picking in a chill room (+3°C) and cold store (-24°C) were examined on 30 female subjects (Ss), classified in two age groups (20- to 35- year-olds and 40- to 65-year-olds). The body core temperature was taken every 15 min at the tympanum and the skin surface temperature was recorded continuously at seven different positions. Working in the chill room induced a decrease of the body core temperature up to 0.5K in comparison to the value at the outset for both age groups which could be compensated by all Ss during the breaks. Working in the cold store caused a decline up to 1.1K for the younger Ss and 1.3K for the older Ss. A complete warming-up during the breaks was often not possible. Regarding the skin surface temperature, working in the chill room can be considered as unproblematic, whereas significantly lower temperatures at nose, fingers and toes, associated with substantial negative subjective sensations, were recorded while working in the cold store.

  12. Determination of a temperature sensor location for monitoring weld pool size in GMAW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boo, K.S.; Cho, H.S.

    1994-11-01

    This paper describes a method of determining the optimal sensor location to measure weldment surface temperature, which has a close correlation with weld pool size in the gas metal arc (GMA) welding process. Due to the inherent complexity and nonlinearity in the GMA welding process, the relationship between the weldment surface temperature and the weld pool size varies with the point of measurement. This necessitates an optimal selection of the measurement point to minimize the process nonlinearity effect in estimating the weld pool size from the measured temperature. To determine the optimal sensor location on the top surface of themore » weldment, the correlation between the measured temperature and the weld pool size is analyzed. The analysis is done by calculating the correlation function, which is based upon an analytical temperature distribution model. To validate the optimal sensor location, a series of GMA bead-on-plate welds are performed on a medium-carbon steel under various welding conditions. A comparison study is given in detail based upon the simulation and experimental results.« less

  13. Comparison of photovoltaic cell temperatures in modules operating with exposed and enclosed back surfaces

    NASA Technical Reports Server (NTRS)

    Namkoong, D.; Simon, F. F.

    1981-01-01

    Four different photovoltaic module designs were tested to determine the cell temperature of each design. The cell temperatures were compared to those obtained on identical design, using the same nominal operating cell temperature (NOCT) concept. The results showed that the NOCT procedure does not apply to the enclosed configurations due to continuous transient conditions. The enclosed modules had higher cell temperatures than the open modules, and insulated modules higher than the uninsulated. The severest performance loss - when translated from cell temperatures - 17.5 % for one enclosed, insulated module as a compared to that module mounted openly.

  14. IR spectral properties of dust and ice at the Mars south polar cap

    NASA Astrophysics Data System (ADS)

    Titus, T. N.; Kieffer, H. H.

    2001-11-01

    Removal of atmospheric dust effects is required to derive surface IR spectral emissivity. Commonly, the atmospheric-surface separation is based on radiative transfer (RT) spectral inversion methods using nadir-pointing observations. This methodology depends on a priori knowledge of the spectral shape of each atmospheric aerosol (e.g. dust or water ice) and a large thermal contrast between the surface and atmosphere. RT methods fail over the polar caps due to low thermal contrast between the atmosphere and the surface. We have used multi-angle Emission Phase Function (EPF) observations to estimate the opacity spectrum of dust over the springtime south polar cap and the underlying surface radiance, and thus, the surface emissivity. We include a few EPFs from Hellas Basin as a basis for comparisons between the spectral shape of polar and non-polar dust. Surface spectral emissivities over the seasonal cap are compared to CO2 models. Our results show that the spectral shape of the polar dust opacity is not constant, but is a two-parameter family that can be characterized by the 9 um and 20 um opacities. The 9 um opacity varies from 0.15 to 0.45 and characterizes the overall atmospheric conditions. The 9 um to 20 um opacity ratio varies from 2.0 to 5.1, suggesting changes in dust size distribution over the polar caps. Derived surface temperatures from the EPFs confirm that the slightly elevated temperatures (relative to CO2 frost temperature) observed in ``cryptic'' regions are a surface effect, not atmospheric. Comparison of broad-band reflectivity and surface emissivities to model spectra suggest the bright regions (e.g. perennial cap, Mountains of Mitchell) have higher albedos due to a thin surface layer of fine-grain CO2 (perhaps either frost or fractured ice) with an underlying layer of either coarse grain or slab CO2 ice.

  15. Comparison of IR thermography and thermocouple measurement of heat loss from rabbit pinna.

    PubMed

    Mohler, F S; Heath, J E

    1988-02-01

    The temperature of the pinnae of male New Zealand White rabbits was measured by use of infrared thermography. At ambient temperatures of 15, 20, and 25 degrees C, the average pinna temperatures were 23.0, 28.7, and 36.2 degrees C, respectively. From these temperatures, average heat loss from the total pinna surface area was calculated to be 2.8, 3.3, and 4.4 W, respectively. Preoptic temperature changes also affect the vasomotor state of the rabbit. At an ambient temperature of 20 degrees C, cooling the preoptic area of the rabbit by approximately 1 degree C resulted in an average pinna temperature of 26.5 degrees C and a heat loss of 2.4 W. Heating the preoptic area by approximately 1 degree C resulted in an average pinna temperature of 33.5 degrees C and a heat loss of 5.4 W. Finally, pinna temperatures were measured by use of a thermocouple and infrared thermography simultaneously. When the pinnae were vasodilated, the thermocouple measurements were consistently higher than the pinna surface temperatures measured thermographically. When the pinnae were vasoconstricted, the thermocouple measurements were consistently lower than the pinna surface temperatures measured thermographically. The discrepancy between the two methods of measurement is discussed.

  16. Effects of silver and group 2 fluorides addition to plasma sprayed chromium carbide high temperature solid lubricant for foil gas bearing to 650 deg C

    NASA Technical Reports Server (NTRS)

    Wagner, R. C.; Sliney, H. E.

    1984-01-01

    A new self-lubricating coating composition of nickel aluminide-bonded chromium carbide formulated with silver and Group II fluorides was developed in a research program on high temperature solid lubricants. One of the proposed applications for this new coating composition is as a wide temperature spectrum solid lubricant for complaint foil gas bearings. Friction and wear properties were obtained using a foil gas bearing start/stop apparatus at temperatures from 25 to 650 C. The journals were Inconel 718. Some were coated with the plasma sprayed experimental coating, others with unmodified nickel aluminide/chromium carbide as a baseline for comparison. The addtitional components were provided to assist in achieving low friction over the temperature range of interest. Uncoated, preoxidized Inconel X-750 foil bearings were operated against these surfaces. The foils were subjected to repeated start/stop cycles under a 14-kPa (2-psi) bearing unit loading. Sliding contact occurred during lift-off and coastdown at surface velocities less than 6 m/s (3000 rpm). Testing continued until 9000 start/stop cycles were accumulated or until a rise in starting torque indicated the journal/bearing had failed. Comparison in coating performance as well as discussions of their properties and methods of application are given.

  17. Caesium isothermal migration behaviour in sintered titanium nitride: New data and comparison with previous results on iodine and xenon

    NASA Astrophysics Data System (ADS)

    Gavarini, S.; Bès, R.; Peaucelle, C.; Martin, P.; Esnouf, C.; Toulhoat, N.; Cardinal, S.; Moncoffre, N.; Malchère, A.; Garnier, V.; Millard-Pinard, N.; Guipponi, C.

    2009-06-01

    Titanium nitride has been proposed as a fission product barrier in fuel structures for gas cooled fast reactor (GFR) systems. The thermal migration of Cs was studied by implanting 800 keV 133Cs ++ ions into sintered samples of TiN at an ion fluence of 5 × 10 15 cm -2. Thermal treatments at temperatures ranging from 1500 to 1650 °C were performed under a secondary vacuum. Concentration profiles were determined by 2.5 MeV 4He + elastic backscattering. The results reveal that the global mobility of caesium in the host matrix is low compared to xenon and iodine implanted in the same conditions. Nevertheless, the evolution of caesium depth profile during thermal treatment presents similarities with that of xenon. Both species are homogeneously transported towards the surface and the transport rate increases with the temperature. In comparison, iodine exhibits singular migration behaviour. Several assumptions are proposed to explain the better retention of caesium in comparison with both other species. The potential role played by the oxidation is underlined since even a slight modification of the surface stoichiometry may modify species mobility. More generally, the apparition of square-like shapes on the surface of the samples after implantations and thermal treatments is discussed.

  18. CO2 sensing of La0.875Ca0.125FeO3 in wet vapor: a comparison of experimental results and first-principles calculations.

    PubMed

    Wang, Xiaofeng; Chen, Yanping; Qin, Hongwei; Li, Ling; Shi, Changmin; Liu, Liang; Hu, Jifan

    2015-05-28

    Experimental results show that with an increase of relative humidity, the resistance of La0.875Ca0.125FeO3 decreases at room temperature but increases at higher temperatures (140-360 °C). The humid effect at room temperature is due to the movement of H(+) or H3O(+) inside of the condensed water layer on the surface of La0.875Ca0.125FeO3. Regarding the humid effect at high temperatures, the density functional theory (DFT) calculations show that H2O can be adsorbed onto the La0.875Ca0.125FeO3 surface in the molecular and dissociative adsorption configurations, where the La0.875Ca0.125FeO3 surface gains some electrons from H2O or its dissociative products, consistent with our observation. Experimental results also show that CO2 sensing response at high temperatures decreases with an increase of room-temperature relative humidity. DFT calculations indicate that CO2 adsorbed onto the La0.875Ca0.125FeO3(010) surface, where high concentration oxygen adsorption occurs without water adsorption nearby, releases some electrons into the semiconductor surface, playing the role of a donor. The interaction between CO2 and the local La0.875Ca0.125FeO3(010) surface with pre-adsorption of H2O nearby results in some electron transfer from the La0.875Ca0.125FeO3 surface to CO2, which is responsible for the weakening of CO2 response at high temperatures for La0.875Ca0.125FeO3 with an increase of room-temperature relative humidity.

  19. In-depth Analysis of Land Surface Emissivity using Microwave Polarization Difference Index to Improve Satellite QPE

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Kirstetter, P. E.; Hong, Y.; Wen, Y.; Turk, J.; Gourley, J. J.

    2015-12-01

    One of primary uncertainties in satellite overland quantitative precipitation estimates (QPE) from passive sensors such as radiometers is the impact on the brightness temperatures by the surface land emissivity. The complexity of surface land emissivity is linked to its temporal variations (diurnal and seasonal) and spatial variations (subsurface vertical profiles of soil moisture, vegetation structure and surface temperature) translating into sub-pixel heterogeneity within the satellite field of view (FOV). To better extract the useful signal from hydrometeors, surface land emissivity needs to be determined and filtered from the satellite-measured brightness temperatures. Based on the dielectric properties of surface land cover constitutes, Microwave Polarization Differential index (MPDI) is expected to carry the composite effect of surface land properties on land surface emissivity, with a higher MPDI indicating a lower emissivity. This study analyses the dependence of MPDI to soil moisture, vegetation and surface skin temperature over 9 different land surface types. Such analysis is performed using the normalized difference vegetation index (NDVI) from MODIS, the near surface air temperature from the RAP model and ante-precedent precipitation accumulation from the Multi-Radar Multi-Sensor as surrogates for the vegetation, surface skin temperature and shallow layer soil moisture, respectively. This paper provides 1) evaluations of brightness temperature-based MPDI from the TRMM and GPM Microwave Imagers in both raining and non-raining conditions to test the dependence of MPDI to precipitation; 2) comparisons of MPDI categorized into instantly before, during and immediately after selected precipitation events to examine the impact of modest-to-heavy precipitation on the spatial pattern of MPDI; 3) inspections of relationship between MPDI versus rain fraction and rain rate within the satellite sensors FOV to investigate the behaviors of MPDI in varying precipitation conditions; 4) analysis of discrepancies of MPDI over 10.65, 19.35, 37 and 85.8 GHz to identify the sensitivity of MPDS to microwave wavelengths.

  20. Impacts of land cover changes on climate trends in Jiangxi province China.

    PubMed

    Wang, Qi; Riemann, Dirk; Vogt, Steffen; Glaser, Rüdiger

    2014-07-01

    Land-use/land-cover (LULC) change is an important climatic force, and is also affected by climate change. In the present study, we aimed to assess the regional scale impact of LULC on climate change using Jiangxi Province, China, as a case study. To obtain reliable climate trends, we applied the standard normal homogeneity test (SNHT) to surface air temperature and precipitation data for the period 1951-1999. We also compared the temperature trends computed from Global Historical Climatology Network (GHCN) datasets and from our analysis. To examine the regional impacts of land surface types on surface air temperature and precipitation change integrating regional topography, we used the observation minus reanalysis (OMR) method. Precipitation series were found to be homogeneous. Comparison of GHCN and our analysis on adjusted temperatures indicated that the resulting climate trends varied slightly from dataset to dataset. OMR trends associated with surface vegetation types revealed a strong surface warming response to land barrenness and weak warming response to land greenness. A total of 81.1% of the surface warming over vegetation index areas (0-0.2) was attributed to surface vegetation type change and regional topography. The contribution of surface vegetation type change decreases as land cover greenness increases. The OMR precipitation trend has a weak dependence on surface vegetation type change. We suggest that LULC integrating regional topography should be considered as a force in regional climate modeling.

  1. Surface reconstruction of InAs (001) depending on the pressure and temperature examined by density functional thermodynamics.

    PubMed

    Yeu, In Won; Park, Jaehong; Han, Gyuseung; Hwang, Cheol Seong; Choi, Jung-Hae

    2017-09-06

    A detailed understanding of the atomic configuration of the compound semiconductor surface, especially after reconstruction, is very important for the device fabrication and performance. While there have been numerous experimental studies using the scanning probe techniques, further theoretical studies on surface reconstruction are necessary to promote the clear understanding of the origins and development of such subtle surface structures. In this work, therefore, a pressure-temperature surface reconstruction diagram was constructed for the model case of the InAs (001) surface considering both the vibrational entropy and configurational entropy based on the density functional theory. Notably, the equilibrium fraction of various reconstructions was determined as a function of the pressure and temperature, not as a function of the chemical potential, which largely facilitated the direct comparison with the experiments. By taking into account the entropy effects, the coexistence of the multiple reconstructions and the fractional change of each reconstruction by the thermodynamic condition were predicted and were in agreement with the previous experimental observations. This work provides the community with a useful framework for such type of theoretical studies.

  2. Influence of the surface curvature of carbon nanotubes on their conductivity in the dirac approximation

    NASA Astrophysics Data System (ADS)

    Kolesnikov, D. V.; Ivanchenko, G. S.; Lebedev, N. G.

    2016-06-01

    A method of surface curvature of carbon nanotubes has been proposed for quantitative estimation of the longitudinal conductivity of nanotubes. A dispersion relation for the electron spectrum of single-walled carbon nanotubes has been obtained analytically. The change in the zone structure of nanotubes of various types and diameters caused by taking into account the surface curvature has been analyzed. The temperature dependence of the longitudinal component of conductivity with allowance for the surface curvature for a series of nanotubes has been calculated. The comparison with the conductivity of a plane graphene has been performed. It has been shown that, in zig-zag tubes, the correction of the conductivity for the surface curvature decreases with an increase in temperature as well as with an increase in the radius of curvature.

  3. Sea Surface Temperature of the mid-Piacenzian Ocean: A Data-Model Comparison

    PubMed Central

    Dowsett, Harry J.; Foley, Kevin M.; Stoll, Danielle K.; Chandler, Mark A.; Sohl, Linda E.; Bentsen, Mats; Otto-Bliesner, Bette L.; Bragg, Fran J.; Chan, Wing-Le; Contoux, Camille; Dolan, Aisling M.; Haywood, Alan M.; Jonas, Jeff A.; Jost, Anne; Kamae, Youichi; Lohmann, Gerrit; Lunt, Daniel J.; Nisancioglu, Kerim H.; Abe-Ouchi, Ayako; Ramstein, Gilles; Riesselman, Christina R.; Robinson, Marci M.; Rosenbloom, Nan A.; Salzmann, Ulrich; Stepanek, Christian; Strother, Stephanie L.; Ueda, Hiroaki; Yan, Qing; Zhang, Zhongshi

    2013-01-01

    The mid-Piacenzian climate represents the most geologically recent interval of long-term average warmth relative to the last million years, and shares similarities with the climate projected for the end of the 21st century. As such, it represents a natural experiment from which we can gain insight into potential climate change impacts, enabling more informed policy decisions for mitigation and adaptation. Here, we present the first systematic comparison of Pliocene sea surface temperature (SST) between an ensemble of eight climate model simulations produced as part of PlioMIP (Pliocene Model Intercomparison Project) with the PRISM (Pliocene Research, Interpretation and Synoptic Mapping) Project mean annual SST field. Our results highlight key regional and dynamic situations where there is discord between the palaeoenvironmental reconstruction and the climate model simulations. These differences have led to improved strategies for both experimental design and temporal refinement of the palaeoenvironmental reconstruction. PMID:23774736

  4. Oxygen isotope ranking of late Eocene and Oligocene planktonic foraminifers: Implications for Oligocene sea-surface temperatures and global ice-volume

    USGS Publications Warehouse

    Poore, R.Z.; Matthews, R.K.

    1984-01-01

    Oxygen isotope analyses of late Eocene and Oligocene planktonic foraminifers from low and middle latitude sites in the Atlantic Basin show that different species from the same samples can yield significantly different isotopic values. The range of isotopic values observed between species is greatest at low-latitudes and declines poleward. Many planktonic foraminifers exhibit a systematic isotopic ranking with respect to each other and can therefore be grouped on the basis of their isotopic ranking. The isotopic ranking of some taxa, however, appears to vary geographically and/or through time. Isotopic and paleontologic data from DSDP Site 522 indicate that commonly used isotopic temperature scales underestimate Oligocene sea surface temperatures. We suggest these temperature scales require revision to reflect the presence of Oligocene glaciation. Comparison of isotopic and paleontologic data from Sites 522, 511 and 277 suggests cold, low-salinity surface waters were present in high southern latitudes during the early Oligocene. Lowsalinity, high latitude surface waters could be caused by Eocene/Oligocene paleogeography or by the production of warm saline bottom water. ?? 1984.

  5. Iron phthalocyanine on Cu(111): Coverage-dependent assembly and symmetry breaking, temperature-induced homocoupling, and modification of the adsorbate-surface interaction by annealing.

    PubMed

    Snezhkova, Olesia; Bischoff, Felix; He, Yuanqin; Wiengarten, Alissa; Chaudhary, Shilpi; Johansson, Niclas; Schulte, Karina; Knudsen, Jan; Barth, Johannes V; Seufert, Knud; Auwärter, Willi; Schnadt, Joachim

    2016-03-07

    We have examined the geometric and electronic structures of iron phthalocyanine assemblies on a Cu(111) surface at different sub- to mono-layer coverages and the changes induced by thermal annealing at temperatures between 250 and 320 °C by scanning tunneling microscopy, x-ray photoelectron spectroscopy, and x-ray absorption spectroscopy. The symmetry breaking observed in scanning tunneling microscopy images is found to be coverage dependent and to persist upon annealing. Further, we find that annealing to temperatures between 300 and 320 °C leads to both desorption of iron phthalocyanine molecules from the surface and their agglomeration. We see clear evidence of temperature-induced homocoupling reactions of the iron phthalocyanine molecules following dehydrogenation of their isoindole rings, similar to what has been observed for related tetrapyrroles on transition metal surfaces. Finally, spectroscopy indicates a modified substrate-adsorbate interaction upon annealing with a shortened bond distance. This finding could potentially explain a changed reactivity of Cu-supported iron phthalocyanine in comparison to that of the pristine compound.

  6. The surface area of soil organic matter

    USGS Publications Warehouse

    Chiou, C.T.; Lee, J.-F.; Boyd, S.A.

    1990-01-01

    The previously reported surface area for soil organic matter (SOM) of 560-800 m2/g as determined by the ethylene glycol (EG) retention method was reexamined by the standard BET method based on nitrogen adsorption at liquid nitrogen temperature. Test samples consisted of two high organic content soils, a freeze-dried soil humic acid, and an oven-dried soil humic acid. The measured BET areas for these samples were less than 1 m2/g, except for the freeze-dried humic acid. The results suggest that surface adsorption of nonionic organic compounds by SOM is practically insignificant in comparison to uptake by partition. The discrepancy between the surface areas of SOM obtained by BET and EG methods was explained in terms of the 'free surface area' and the 'apparent surface area' associated with these measurements.The previously reported surface area for soil organic matter (SOM) of 560-800 m2/g as determined by the ethylene glycol (EG) retention method was reexamined by the standard BET method based on nitrogen adsorption at liquid nitrogen temperature. Test samples consisted of two high organic content soils, a freeze-dried soil humic acid, and an oven-dried soil humic acid. The measured BET areas for these samples were less than 1 m2/g, except for the freeze-dried humic acid. The results suggest that surface adsorption of nonionic organic compounds by SOM is practically insignificant in comparison to uptake by partition. The discrepancy between the surface areas of SOM obtained by BET and EG methods was explained in terms of the 'free surface area' and the 'apparent surface area' associated with these measurements.

  7. Inter-Comparison of SMOS and Aquarius Sea Surface Salinity: Effects of the Dielectric Constant and Vicarious Calibration

    NASA Technical Reports Server (NTRS)

    Dinnat, Emmanuel P.; Boutin, Jacqueline; Yin, Xiaobin; Le Vine, David M.

    2014-01-01

    Two spaceborne instruments share the scientific objective of mapping the global Sea Surface Salinity (SSS). ESA's Soil Moisture and Ocean Salinity (SMOS) and NASA's Aquarius use L-band (1.4 GHz) radiometry to retrieve SSS. We find that SSS retrieved by SMOS is generally lower than SSS retrieved by Aquarius, except for very cold waters where SMOS SSS is higher overall. The spatial distribution of the differences in SSS is similar to the distribution of sea surface temperature. There are several differences in the retrieval algorithm that could explain the observed SSS differences. We assess the impact of the dielectric constant model and the ancillary sea surface salinity used by both missions for calibrating the radiometers and retrieving SSS. The differences in dielectric constant model produce differences in SSS of the order of 0.3 psu and exhibit a dependence on latitude and temperature. We use comparisons with the Argo in situ data to assess the performances of the model in various regions of the globe. Finally, the differences in the ancillary sea surface salinity products used to perform the vicarious calibration of both instruments are relatively small (0.1 psu), but not negligible considering the requirements for spaceborne remote sensing of SSS.

  8. True temperature measurement on metallic surfaces using a two-color pyroreflectometer method.

    PubMed

    Hernandez, D; Netchaieff, A; Stein, A

    2009-09-01

    In the most common case of optical pyrometry, the major obstacle in determining the true temperature is the knowledge of the thermo-optical properties for in situ conditions. We present experimental results obtained with a method able to determine the true temperature of metallic surfaces above 500 degrees C when there is not parasitic effect by surrounding radiation. The method is called bicolor pyroreflectometry and it is based on Planck's law, Kirchhoff's law, and the assumption of identical reflectivity indicatrixes for the target surface at two different close wavelengths (here, 1.3 and 1.55 microm). The diffusion factor eta(d), the key parameter of the method, is introduced to determine the convergence temperature T(*), which is expected to be equal to the true temperature T. Our goal is to asses this method for different metallic surfaces. The validation of this method is made by comparison with thermocouples. Measurements were made for tungsten, copper, and aluminum samples of different roughnesses, determined by a rugosimeter. After introducing a theoretical model for two-color pyroreflectometry, we give a description of the experimental setup and present experimental applications of the subject method. The quality of the results demonstrates the usefulness of two-color pyroreflectometry to determine the temperatures of hot metals when the emissivity is not known and for the commercially important case of specular surfaces.

  9. High-Temperature, Dual-Atmosphere Corrosion of Solid-Oxide Fuel Cell Interconnects

    NASA Astrophysics Data System (ADS)

    Gannon, Paul; Amendola, Roberta

    2012-12-01

    High-temperature corrosion of ferritic stainless steel (FSS) surfaces can be accelerated and anomalous when it is simultaneously subjected to different gaseous environments, e.g., when separating fuel (hydrogen) and oxidant (air) streams, in comparison with single-atmosphere exposures, e.g., air only. This so-called "dual-atmosphere" exposure is realized in many energy-conversion systems including turbines, boilers, gasifiers, heat exchangers, and particularly in intermediate temperature (600-800°C) planar solid-oxide fuel cell (SOFC) stacks. It is generally accepted that hydrogen transport through the FSS (plate or tube) and its subsequent integration into the growing air-side surface oxide layer can promote accelerated and anomalous corrosion—relative to single-atmosphere exposure—via defect chemistry changes, such as increased cation vacancy concentrations, decreased oxygen activity, and steam formation within the growing surface oxide layers. Establishment of a continuous and dense surface oxide layer on the fuel side of the FSS can inhibit hydrogen transport and the associated effects on the air side. Minor differences in FSS composition, microstructure, and surface conditions can all have dramatic influences on dual-atmosphere corrosion behaviors. This article reviews high-temperature, dual-atmosphere corrosion phenomena and discusses implications for SOFC stacks, related applications, and future research.

  10. Infrared Thermography Flight Experimentation

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Carter, Matthew L.; Kirsch, Michael

    2003-01-01

    Analysis was done on IR data collected by DFRC on May 8, 2002. This includes the generation of a movie to initially examine the IR flight data. The production of the movie was challenged by the volume of data that needed to be processed, namely 40,500 images with each image (256 x 252) containing over 264 million points (pixel depth 4096). It was also observed during the initial analysis that the RTD surface coating has a different emissivity than the surroundings. This fact added unexpected complexity in obtaining a correlation between RTD data and IR data. A scheme was devised to generate IR data near the RTD location which is not affected by the surface coating This scheme is valid as long as the surface temperature as measured does not change too much over a few pixel distances from the RTD location. After obtaining IR data near the RTD location, it is possible to make a direct comparison with the temperature as measured during the flight after adjusting for the camera s auto scaling. The IR data seems to correlate well to the flight temperature data at three of the four RID locations. The maximum count intensity occurs closely to the maximum temperature as measured during flight. At one location (RTD #3), there is poor correlation and this must be investigated before any further progress is possible. However, with successful comparisons at three locations, it seems there is great potential to be able to find a calibration curve for the data. Moreover, as such it will be possible to measure temperature directly from the IR data in the near future.

  11. Reproducibility of Clathromorphum compactum coralline algal Mg/Ca ratios and comparison to high-resolution sea surface temperature data

    NASA Astrophysics Data System (ADS)

    Hetzinger, S.; Halfar, J.; Kronz, A.; Simon, K.; Adey, W. H.; Steneck, R. S.

    2018-01-01

    The potential of crustose coralline algae as high-resolution archives of past ocean variability in mid- to high-latitudes has only recently been recognized. Few comparisons of coralline algal proxies, such as temperature-dependent algal magnesium to calcium (Mg/Ca) ratios, with in situ-measured surface ocean data exist, even rarer are well replicated records from individual sites. We present Mg/Ca records from nine coralline algal specimens (Clathromorphum compactum) from a single site in the Gulf of Maine, North Atlantic. Sections from algal mounds were analyzed using Laser Ablation-Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) yielding individual Mg/Ca records of up to 30 years in length. We first test intra- and intersample signal replication and show that algal Mg/Ca ratios are reproducible along several transects within individual sample specimens and between different samples from the same study site. In addition, LA-ICP-MS-derived Mg/Ca ratios are compared to electron microprobe (EMP) analyzed data on the longest-lived specimens and were found to be statistically commensurable. Second, we evaluate whether relationships between algal-based SST reconstructions and in situ temperature data can be improved by averaging Mg/Ca records from multiple algal specimens (intersample averages). We found that intersample averages yield stronger relationships to sea surface temperature (SST) data than Mg/Ca records derived from individual samples alone. Thus, Mg/Ca-based paleotemperature reconstructions from coralline algae can benefit from using multiple samples per site, and can expand temperature proxy precision from seasonal to monthly.

  12. Comparison of kinetic and air temperatures in Budapest aiming applications in weather forecasting

    NASA Astrophysics Data System (ADS)

    Mika, Janos; Nemeth, Akos; Bela Olah, Andras; Dezso, Zsuzsanna

    2010-05-01

    Moderate Resolution Imaging Spectroradiometer (MODIS) based kinetic temperature data are compared with the surface air temperature data at the four weather stations in Budapest, Hun-gary. Dependence of these temperature characteristics on weather conditions, characterised by macrosynoptic types and by objective weather types, is in the focus of the study. Day- and night-time kinetic temperature series are used from the period 2001-2008. Four automatic stations are also used as the surface-based control variables. The four MODIS-pixels, covering one station, each, are the sites of our comparison. One of the four stations has strictly urban situation at the roof level in a strongly built-in region of Budapest. Another one, used as background rural station is at the east-west edge of the town with gar-dened environment. Two other stations are positioned near the river Danube at the northern and southern edges of Budapest, still under mezo-scale effect of the city. The number of elaborated hourly values is 4300-4400 above each pixel, depending on the cloudiness. At the four station automatic observations on air temperature, cloudiness (=0), relative humidity and wind-speed are observed in the hours of the MODIS observations. From these elements air temperature is used for comparison with the satellite-based kinetic temperature, and also as the main components of the Physiologically Equivalent Temperature (PET), de-rived to characterise usefulness of the kinetic temperature. Our first aim is to specify detailed relationship between the two temperatures consider-ing the seasonal and diurnal cycles and synoptic situation. This comparison is also performed by using the PET to establish which kind of temperature reminds this human bioclimatic in-dex better. If we could establish effective relationships with the synoptic situations (or weather types) we could use them in two further applications. The first one is the everyday forecasting of dangerous situations within the city on the days when the rural weather forecast claims about extreme temperature even at the rural sites. On summer hot days the weather-dependent UHI increases but on cold winter days decreases the risks on human health and technical equipments. The other scientific problem is whether the long-term season-dependent changes of the atmospheric circulation can modify the behaviour of the UHI even without fur-ther changes in the building in of the city. To answer this question the established relation-ships are combined with regional climate change projections of the circulation conditions.

  13. A global monthly sea surface temperature climatology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shea, D.J.; Trenberth, K.E.; Reynolds, R.W.

    1992-09-01

    The paper presents a new global 2 deg x 2 deg monthly sea surface temperature (SST) climatology, referred here to as the Shea-Trenberth-Reynolds (STR) climatology, which was derived by modifying a 1950-1979-based SST climatology from the Climate Analysis Center (CAC), by using data from the Comprehensive Ocean-Atmosphere Data Set to improve the SST estimates in the regions of the Kuroshio and the Gulf Stream. A comparison of the STR climatology with the Alexander and Mobley SST climatology showed that the STR climatology is warmer in the Northern Hemisphere, and colder poleward of 45 deg S. 22 refs.

  14. A high-resolution model of the planetary boundary layer - Sensitivity tests and comparisons with SESAME-79 data

    NASA Technical Reports Server (NTRS)

    Zhang, D.; Anthes, R. A.

    1982-01-01

    A one-dimensional, planetary boundary layer (PBL) model is presented and verified using April 10, 1979 SESAME data. The model contains two modules to account for two different regimes of turbulent mixing. Separate parameterizations are made for stable and unstable conditions, with a predictive slab model for surface temperature. Atmospheric variables in the surface layer are calculated with a prognostic model, with moisture included in the coupled surface/PBL modeling. Sensitivity tests are performed for factors such as moisture availability, albedo, surface roughness, and thermal capacity, and a 24 hr simulation is summarized for day and night conditions. The comparison with the SESAME data comprises three hour intervals, using a time-dependent geostrophic wind. Close correlations were found with daytime conditions, but not in nighttime thermal structure, while the turbulence was faithfully predicted. Both geostrophic flow and surface characteristics were shown to have significant effects on the model predictions

  15. A simple method for estimation of evapotranspiration using remotely sensed data during vegetation period in Hungary

    NASA Astrophysics Data System (ADS)

    Dunkel, Zoltan; Grob-Szenyán, Ildiko

    The surface temperature measured by satellite can be the basis of evapotranspiration (ET) computation. The possibility of the daily sum of the regional ET using surface temperature was examined under Hungarian weather conditions. A simplified relationship, namely ET d-R nd= a+ b( Tc- Ta), which relates the daily ET to daily net radiation with one measurements of surface and air temperature was used for the calculation. Using NOAA AVHRR satellite data, no information about the surface inhomogeneity was obtained. The distribution of surface temperature was investigated by infrared thermometer scanning the surface from a board a hang-glider, ultra-light-aeroplane, and light aeroplane. Field observations trials were made during the vegetation period of 1992, 1993, 1994 and 1995. In eastern part of the country a homogeneous field ( 1 km×1 km) and a larger, and relatively homogeneous area was scanned, before noon and afternoon. In the western part of the country, a much larger area ( 45 km×45 km) was investigated. Cultivated area, forest and a large water surface were included in the investigated surface. The problems of calibration of hand-held infrared thermometer and the time shifting are discussed. Comparison of model output with data from field experiment has played a crucial role in model development and suggested an evaluation method.

  16. Surface atoms in Sc-O/W(1 0 0) system as Schottky emitter at high temperature

    NASA Astrophysics Data System (ADS)

    Tsujita, T.; Iida, S.; Nagatomi, T.; Takai, Y.

    2003-12-01

    The chemical bonding state of surface atoms in the Sc-O/W(1 0 0) system as a Schottky emitter was investigated at high temperature using a profile of Auger electron peaks to elucidate the mechanism of the marked reduction of the work function of the Sc-O/W(1 0 0) Schottky emitter. For this, Sc-deposited W(1 0 0), oxygen-exposed W(1 0 0) and Sc surfaces were prepared as reference surfaces. A comparison of the profiles of the Auger electron peaks from the Sc-O/W(1 0 0) surface with those from the reference surfaces has revealed that oxygen and Sc atoms on the Sc-O/W(1 0 0) surface form the Sc-O complexes at the operating temperature of the Sc-O/W(1 0 0) emitter of 1400 K. In addition, the ratio of the number of Sc atoms to that of oxygen atoms is estimated as 1:1 by the quantitative analysis of the AES peaks. The present results strongly suggest that the work function of the Sc-O/W(1 0 0) emitter is caused by the formation of Sc-O electric dipoles aligning into the p(2 × 1)-p(1 × 2) double-domain structure [Surf. Sci. 523 (2003) L37] on the Sc-O/W(1 0 0) surface at the operating temperature.

  17. Evolution of the Cerro Prieto geothermal system as interpreted from vitrinite reflectance under isothermal conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barker, C.E.; Pawlewicz, M.J.; Bostick, N.H.

    1981-01-01

    Temperature estimates from reflectance data in the Cerro Prieto system correlate with modern temperature logs and temperature estimates from fluid inclusion and oxygen isotope geothermometry indicating that the temperature in the central portion of the Cerro Prieto System is now at its historical maximum. Isoreflectance lines formed by contouring vitrinite reflectance data for a given isothermal surface define an imaginary surface that indicates an apparent duration of heating in the system. The 250/sup 0/C isothermal surface has a complex dome-like form suggesting a localized heat source that has caused shallow heating in the central portion of this system. Isoreflectance linesmore » relative to this 250/sup 0/C isothermal surface define a zone of low reflectance roughly corresponding to the crest of the isothermal surface. Comparison of these two surfaces suggest that the shallow heating in the central portion of Cerro Prieto is young relative to the heating (to 250/sup 0/C) on the system margins. Laboratory and theoretical models of hydrothermal convection cells suggest that the form of the observed 250/sup 0/C isothermal surface and the reflectance surface derived relative to it results from the convective rise of thermal fluids under the influence of a regional hydrodynamic gradient that induces a shift of the hydrothermal heating effects to the southwest.« less

  18. Low-temperature conducting state in two candidate topological Kondo insulators: SmB 6 and Ce 3 Bi 4 Pt 3

    DOE PAGES

    Wakeham, N.; Rosa, P. F. S.; Wang, Y. Q.; ...

    2016-07-12

    We have investigated the low temperature conducting state of two Kondo insulators, SmB 6 and Ce 3Bi 4Pt 3, which have been theoretically predicted to host topological surface states. Through comparison of the speci c heat of as-grown and powdered single crystals of SmB 6, we show that the residual term that is linear in temperature is not dominated by any surface state contribution, but rather is a bulk property. In Ce 3Bi 4Pt 3, we find that the Hall coefficient is independent of sample thickness, which indicates that conduction at low temperatures is dominated by the bulk of themore » sample, and not by a surface state. The low temperature resistivity of Ce 3Bi 4Pt 3 is found to monotonically decrease with low concentrations of disorder introduced through ion-irradiation. This is in contrast to SmB 6, which is again indicative of the contrasting origins of the low temperature conduction. In SmB 6, we also show that the effect of low concentrations of irradiation damage of the surface with Fe + ions is qualitatively consistent with damage with non-magnetic ions.« less

  19. Impact of land cover data on the simulation of urban heat island for Berlin using WRF coupled with bulk approach of Noah-LSM

    NASA Astrophysics Data System (ADS)

    Li, Huidong; Wolter, Michael; Wang, Xun; Sodoudi, Sahar

    2017-09-01

    Urban-rural difference of land cover is the key determinant of urban heat island (UHI). In order to evaluate the impact of land cover data on the simulation of UHI, a comparative study between up-to-date CORINE land cover (CLC) and Urban Atlas (UA) with fine resolution (100 and 10 m) and old US Geological Survey (USGS) data with coarse resolution (30 s) was conducted using the Weather Research and Forecasting model (WRF) coupled with bulk approach of Noah-LSM for Berlin. The comparison between old data and new data partly reveals the effect of urbanization on UHI and the historical evolution of UHI, while the comparison between different resolution data reveals the impact of resolution of land cover on the simulation of UHI. Given the high heterogeneity of urban surface and the fine-resolution land cover data, the mosaic approach was implemented in this study to calculate the sub-grid variability in land cover compositions. Results showed that the simulations using UA and CLC data perform better than that using USGS data for both air and land surface temperatures. USGS-based simulation underestimates the temperature, especially in rural areas. The longitudinal variations of both temperature and land surface temperature show good agreement with urban fraction for all the three simulations. To better study the comprehensive characteristic of UHI over Berlin, the UHI curves (UHIC) are developed for all the three simulations based on the relationship between temperature and urban fraction. CLC- and UA-based simulations show smoother UHICs than USGS-based simulation. The simulation with old USGS data obviously underestimates the extent of UHI, while the up-to-date CLC and UA data better reflect the real urbanization and simulate the spatial distribution of UHI more accurately. However, the intensity of UHI simulated by CLC and UA data is not higher than that simulated by USGS data. The simulated air temperature is not dominated by the land cover as much as the land surface temperature, as air temperature is also affected by air advection.

  20. The effects of ultrasonic nanocrystal surface modification temperature on the mechanical properties and fretting wear resistance of Inconel 690 alloy

    NASA Astrophysics Data System (ADS)

    Amanov, A.; Umarov, R.

    2018-05-01

    In this study, a combination of local heat treatment (LHT) with (w/) and without (w/o) ultrasonic nanocrystal surface modification (UNSM) technique was applied to Inconel 690 alloy at room and high temperatures (RT and HT). The main purpose of this study is to investigate the influence of LHT w/ and w/o UNSM processing on the mechanical and fretting wear mitigation of Inconel 690 alloy. The surface roughness of the specimens was increased with increasing the LHT temperature w/ and w/o UNSM from RT to HT at 700 °C, while the surface hardness of the RT and HT at 300 °C specimens was increased and softening occurred at HT at 700 °C. The mechanical properties of the specimens were investigated using a tensile stress test. It was found that the stress-strain curve of the UNSM-treated at RT exhibited better mechanical characteristics in comparison with the as-received one. Moreover, the specimens treated at HT at 300 and 700 °C exhibited better results in terms of strain, but there was no significant difference in stress. The UNSM treated specimens at HT of 300 °C had better results in comparison with other specimens. In addition, the fretting wear resistance of those specimens was assessed using a ball-on-disk fretting wear tester at temperatures of 25 and 80 °C. The fretting wear resistance of Inconel 690 alloy was also increased by the combination of LHT + UNSM processing, which may be attributed to the increase in mechanical properties, increase in surface roughness, induced compressive residual stress and the presence of a nanostructured surface layer. Hence, Inconel 690 alloy with the increased mechanical properties and fretting wear resistance by the combination of LHT + UNSM processing could be beneficial for nuclear applications.

  1. Pre-Launch Performance Assessment of the VIIRS Land Surface Temperature Environmental Data Record

    NASA Astrophysics Data System (ADS)

    Hauss, B.; Ip, J.; Agravante, H.

    2009-12-01

    The Visible/Infrared Imager Radiometer Suite (VIIRS) Land Surface Temperature (LST) Environmental Data Record (EDR) provides the surface temperature of land surface including coastal and inland-water pixels at VIIRS moderate resolution (750m) during both day and night. To predict the LST under optimal conditions, the retrieval algorithm utilizes a dual split-window approach with both Short-wave Infrared (SWIR) channels at 3.70 µm (M12) and 4.05 µm (M13), and Long-wave Infrared (LWIR) channels at 10.76 µm (M15) and 12.01 µm (M16) to correct for atmospheric water vapor. Under less optimal conditions, the algorithm uses a fallback split-window approach with M15 and M16 channels. By comparison, the MODIS generalized split-window algorithm only uses the LWIR bands in the retrieval of surface temperature because of the concern for both solar contamination and large emissivity variations in the SWIR bands. In this paper, we assess whether these concerns are real and whether there is an impact on the precision and accuracy of the LST retrieval. The algorithm relies on the VIIRS Cloud Mask IP for identifying cloudy and ocean pixels, the VIIRS Surface Type EDR for identifying the IGBP land cover type for the pixels, and the VIIRS Aerosol Optical Thickness (AOT) IP for excluding pixels with AOT greater than 1.0. In this paper, we will report the pre-launch performance assessment of the LST EDR based on global synthetic data and proxy data from Terra MODIS. Results of both the split-window and dual split-window algorithms will be assessed by comparison either to synthetic "truth" or results of the MODIS retrieval. We will also show that the results of the assessment with proxy data are consistent with those obtained using the global synthetic data.

  2. GCM simulations of Titan's middle and lower atmosphere and comparison to observations

    NASA Astrophysics Data System (ADS)

    Lora, Juan M.; Lunine, Jonathan I.; Russell, Joellen L.

    2015-04-01

    Simulation results are presented from a new general circulation model (GCM) of Titan, the Titan Atmospheric Model (TAM), which couples the Flexible Modeling System (FMS) spectral dynamical core to a suite of external/sub-grid-scale physics. These include a new non-gray radiative transfer module that takes advantage of recent data from Cassini-Huygens, large-scale condensation and quasi-equilibrium moist convection schemes, a surface model with "bucket" hydrology, and boundary layer turbulent diffusion. The model produces a realistic temperature structure from the surface to the lower mesosphere, including a stratopause, as well as satisfactory superrotation. The latter is shown to depend on the dynamical core's ability to build up angular momentum from surface torques. Simulated latitudinal temperature contrasts are adequate, compared to observations, and polar temperature anomalies agree with observations. In the lower atmosphere, the insolation distribution is shown to strongly impact turbulent fluxes, and surface heating is maximum at mid-latitudes. Surface liquids are unstable at mid- and low-latitudes, and quickly migrate poleward. The simulated humidity profile and distribution of surface temperatures, compared to observations, corroborate the prevalence of dry conditions at low latitudes. Polar cloud activity is well represented, though the observed mid-latitude clouds remain somewhat puzzling, and some formation alternatives are suggested.

  3. Comparison of Surface Mountain Climate With Equivalent Free Air Parameters Extracted From NCEP/NCAR Reanalysis: Kilimanjaro, Tanzania.

    NASA Astrophysics Data System (ADS)

    Pepin, N. C.; Hardy, D.; Duane, W.; Losleben, M.

    2007-12-01

    It is difficult to predict future climate changes in areas of complex relief, since mountains generate their own climates distinct from the free atmosphere. Thus trends in climate at the mountain surface are different from those in the free air. We compare surface climate (temperature and vapour pressure) measured at seven elevations on the south-western slope of Kilimanjaro, the tallest free standing mountain in Africa, with equivalent observations in the free atmosphere from NCEP/NCAR reanalysis data for September 2004 to January 2006. Correlations between daily surface and free air temperature anomalies are greatest at low elevations below 2500 metres, meaning that synoptic (inter-diurnal) variability is the major control here. However, temperatures and moisture on the higher slopes above the treeline (3000 m) are decoupled from the free atmosphere, showing intense heating/cooling by day/night and import of moisture from lower elevations during the day. The lower forested slopes thus act as a moisture source, with large vapour pressure excesses reported in comparison with the free atmosphere (>5 hPa) which move upslope during daylight and subside downslope at night. Strong seasonal contrasts are shown in the vigour of the montane thermal circulation, but interactions with free air circulation (as represented by flow indices developed from reanalysis wind components) are complex. Upper air flow strength and direction (at 500 mb) have limited influence on surface heating and upslope moisture advection, which are dominated by the diurnal cycle rather than inter-diurnal synoptic controls. Thus local changes in surface characteristics (e.g. deforestation) could have a direct influence on the mountain climate of Kilimanjaro, making the upper slopes somewhat divorced from larger scale advective changes associated with global warming.

  4. Surface roughness analysis of SiO2 for PECVD, PVD and IBD on different substrates

    NASA Astrophysics Data System (ADS)

    Amirzada, Muhammad Rizwan; Tatzel, Andreas; Viereck, Volker; Hillmer, Hartmut

    2016-02-01

    This study compares surface roughness of SiO2 thin layers which are deposited by three different processes (plasma-enhanced chemical vapor deposition, physical vapor deposition and ion beam deposition) on three different substrates (glass, Si and polyethylene naphthalate). Plasma-enhanced chemical vapor deposition (PECVD) processes using a wide range of deposition temperatures from 80 to 300 °C have been applied and compared. It was observed that the nature of the substrate does not influence the surface roughness of the grown layers very much. It is also perceived that the value of the surface roughness keeps on increasing as the deposition temperature of the PECVD process increases. This is due to the increase in the surface diffusion length with the rise in substrate temperature. The layers which have been deposited on Si wafer by ion beam deposition (IBD) process are found to be smoother as compared to the other two techniques. The layers which have been deposited on the glass substrates using PECVD reveal the highest surface roughness values in comparison with the other substrate materials and techniques. Different existing models describing the dynamics of clusters on surfaces are compared and discussed.

  5. Effects of temperature-dependent molecular absorption coefficients on the thermal infrared remote sensing of the earth surface

    NASA Technical Reports Server (NTRS)

    Wan, Zhengming; Dozier, Jeff

    1992-01-01

    The effect of temperature-dependent molecular absorption coefficients on thermal infrared spectral signatures measured from satellite sensors is investigated by comparing results from the atmospheric transmission and radiance codes LOWTRAN and MODTRAN and the accurate multiple scattering radiative transfer model ATRAD for different atmospheric profiles. The sensors considered include the operational NOAA AVHRR and two research instruments planned for NASA's Earth Observing System (EOS): MODIS-N (Moderate Resolution Imaging Spectrometer-Nadir-Mode) and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer). The difference in band transmittance is as large as 6 percent for some thermal bands within atmospheric windows and more than 30 percent near the edges of these atmospheric windows. The effect of temperature-dependent molecular absorption coefficients on satellite measurements of sea-surface temperature can exceed 0.6 K. Quantitative comparison and factor analysis indicate that more accurate measurements of molecular absorption coefficients and better radiative transfer simulation methods are needed to achieve SST accuracy of 0.3 K, as required for global numerical models of climate, and to develop land-surface temperature algorithms at the 1-K accuracy level.

  6. High-Temperature Piezoelectric Sensing

    PubMed Central

    Jiang, Xiaoning; Kim, Kyungrim; Zhang, Shujun; Johnson, Joseph; Salazar, Giovanni

    2014-01-01

    Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented. PMID:24361928

  7. Effect of Electropolishing and Low-Temperature Baking on the Superconducting Properties of Large-Grain Niobium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. S. Dhavale, G. Ciovati, G. R. Myneni

    Measurements of superconducting properties such as bulk and surface critical fields and thermal conductivity have been carried out in the temperature range from 2 K to 8 K on large-grain samples of different purity and on a high-purity fine-grain sample, for comparison. The samples were treated by electropolishing and low temperature baking (120° C, 48 h). While the residual resistivity ratio changed by a factor of ~3 among the samples, no significant variation was found in their superconducting properties. The onset field for flux penetration at 2 K, Hffp, measured within a ~30 µm depth from the surface, was ~160more » mT, close to the bulk value. The baking effect was mainly to increase the field range up to which a coherent superconducting phase persists on the surface, above the upper critical field.« less

  8. Roughness induced transition and heat transfer augmentation in hypersonic environments

    NASA Astrophysics Data System (ADS)

    Wassel, A. T.; Shih, W. C. L.; Courtney, J. F.

    Boundary layer transition and surface heating distributions on graphite, fine weave carbon-carbon, and metallic nosetip materials were derived from surface temperature responses measured in nitrogen environments during both free-flight and track-guided testing in hypersonic environments. Innovative test procedures were developed, and heat transfer results were validated against established theory through experiments using a super-smooth tungsten model. Quantitative definitions of mean transition front locations were established by deriving heat flux distributions from measured temperatures, and comparisons made with existing nosetip transition correlations. Qualitative transition locations were inferred directly from temperature distributions to investigate preferred orientations on fine weave nosetips. Levels of roughness augmented heat transfer were generally shown to be below values predicted by state-of-the-art methods.

  9. Detection of free liquid in drums of radioactive waste. [Patent application

    DOEpatents

    Not Available

    1979-10-16

    A nondestructive thermal imaging method for detecting the presence of a liquid such as water within a sealed container is described. The process includes application of a low amplitude heat pulse to an exterior surface area of the container, terminating the heat input and quickly mapping the resulting surface temperatures. The various mapped temperature values can be compared with those known to be normal for the container material and substances in contact. The mapped temperature values show up in different shades of light or darkness that denote different physical substances. The different substances can be determined by direct observation or by comparison with known standards. The method is particularly applicable to the detection of liquids above solidified radioactive wastes stored in sealed containers.

  10. Comparison of a low-tech vs. a high-tech method to evaluate surface fire temperatures

    Treesearch

    Daniel Yaussy; Joanne Rebbeck; Louis Iverson; Todd Hutchinson; Robert Long

    2003-01-01

    Prescribed surface fires were conducted in late March-early April 2001, at the Raccoon Ecological Management Area (two ~20 ha areas), and the Tar Hollow (~40 ha) and Zaleski (~40 ha) State Forests in thinned and unthinned mixed-oak forests of southeastern Ohio. Fires are being investigated as a silvicultural tool to aid in regenerating oaks, by removing understory...

  11. Five centuries of climate change in Australia: the view from underground

    NASA Astrophysics Data System (ADS)

    Pollack, Henry N.; Huang, Shaopeng; Smerdon, Jason E.

    2006-10-01

    Fifty-seven borehole temperature profiles from across Australia are analysed to reconstruct a ground surface temperature history for the past five centuries. The five-hundred-year reconstruction is characterised by a temperature increase of approximately 0.5 K, with most of the warming occurring in the 19th and 20th centuries. The 17th century was the coolest interval of the five-century reconstruction. Comparison of the geothermal reconstruction to the Australian annual surface air temperature time series in their period of overlap shows excellent agreement. The full geothermal reconstruction also agrees well with the low-frequency component of dendroclimatic reconstructions from Tasmania and New Zealand. The warming of Australia over the past five centuries is only about half that experienced by the continents of the Northern Hemisphere in the same time interval. Copyright

  12. A first-principles model for orificed hollow cathode operation

    NASA Technical Reports Server (NTRS)

    Salhi, A.; Turchi, P. J.

    1992-01-01

    A theoretical model describing orificed hollow cathode discharge is presented. The approach adopted is based on a purely analytical formulation founded on first principles. The present model predicts the emission surface temperature and plasma properties such as electron temperature, number densities and plasma potential. In general, good agreements between theory and experiment are obtained. Comparison of the results with the available related experimental data shows a maximum difference of 10 percent in emission surface temperature, 20 percent in electron temperature and 35 percent in plasma potential. In case of the variation of the electron number density with the discharge current a maximum discrepancy of 36 percent is obtained. However, in the case of the variation with the cathode internal pressure, the predicted electron number density is higher than the experimental data by a maximum factor of 2.

  13. Multispectral pyrometry for surface temperature measurement of oxidized Zircaloy claddings

    NASA Astrophysics Data System (ADS)

    Bouvry, B.; Cheymol, G.; Ramiandrisoa, L.; Javaudin, B.; Gallou, C.; Maskrot, H.; Horny, N.; Duvaut, T.; Destouches, C.; Ferry, L.; Gonnier, C.

    2017-06-01

    Non-contact temperature measurement in a nuclear reactor is still a huge challenge because of the numerous constraints to consider, such as the high temperature, the steam atmosphere, and irradiation. A device is currently developed at CEA to study the nuclear fuel claddings behavior during a Loss-of-Coolant Accident. As a first step of development, we designed and tested an optical pyrometry procedure to measure the surface temperature of nuclear fuel claddings without any contact, under air, in the temperature range 700-850 °C. The temperature of Zircaloy-4 cladding samples was retrieved at various temperature levels. We used Multispectral Radiation Thermometry with the hypothesis of a constant emissivity profile in the spectral ranges 1-1.3 μm and 1.45-1.6 μm. To allow for comparisons, a reference temperature was provided by a thermocouple welded on the cladding surface. Because of thermal losses induced by the presence of the thermocouple, a heat transfer simulation was also performed to estimate the bias. We found a good agreement between the pyrometry measurement and the temperature reference, validating the constant emissivity profile hypothesis used in the MRT estimation. The expanded measurement uncertainty (k = 2) of the temperature obtained by the pyrometry method was ±4 °C, for temperatures between 700 and 850 °C. Emissivity values, between 0.86 and 0.91 were obtained.

  14. Communication: Vibrational relaxation of CO(1Σ) in collision with Ar(1S) at temperatures relevant to the hypersonic flight regime.

    PubMed

    Denis-Alpizar, Otoniel; Bemish, Raymond J; Meuwly, Markus

    2017-03-21

    Vibrational energy relaxation (VER) of diatomics following collisions with the surrounding medium is an important elementary process for modeling high-temperature gas flow. VER is characterized by two parameters: the vibrational relaxation time τ vib and the state relaxation rates. Here the vibrational relaxation of CO(ν=0←ν=1) in Ar is considered for validating a computational approach to determine the vibrational relaxation time parameter (pτ vib ) using an accurate, fully dimensional potential energy surface. For lower temperatures, comparison with experimental data shows very good agreement whereas at higher temperatures (up to 25 000 K), comparisons with an empirically modified model due to Park confirm its validity for CO in Ar. Additionally, the calculations provide insight into the importance of Δν>1 transitions that are ignored in typical applications of the Landau-Teller framework.

  15. Relationships between nocturnal winter road slipperiness, cloud cover and surface temperature

    NASA Astrophysics Data System (ADS)

    Grimbacher, T.; Schmid, W.

    2003-04-01

    Ice and Snow are important risks for road traffic. In this study we show several events of slipperiness in Switzerland, mainly caused by rain or snow falling on a frozen surface. Other reasons for slippery conditions are frost or freezing dew in clear nights and nocturnal clearing after precipitation, which goes along with radiative cooling. The main parameters of road weather forecasts are precipitation, cloudiness and surface temperature. Precipitation is well predictable with weather radars and radar nowcasting algorithms. Temperatures are often taken from numerical weather prediction models, but because of changes in cloud cover these model values are inaccurate in terms of predicting the onset of freezing. Cloudiness, especially the advection, formation and dissipation of clouds and their interaction with surface temperatures, is one of the major unsolved problems of road weather forecasts. Cloud cover and the temperature difference between air and surface temperature are important parameters of the radiation balance. In this contribution, we show the relationship between them, proved at several stations all over Switzerland. We found a quadratic correlation coefficient of typically 60% and improved it considering other meteorological parameters like wind speed and surface water. The acquired relationship may vary from one station to another, but we conclude that temperature difference is a signature for nocturnal cloudiness. We investigated nocturnal cloudiness for two cases from winters 2002 and 2003 in the canton of Lucerne in central Switzerland. There, an ultra-dense combination of two networks with together 55 stations within 50x50 km^2 is operated, measuring air and surface temperature, wind and other road weather parameters. With the aid of our equations, temperature differences detected from this network were converted into cloud maps. A comparison between precipitation seen by radar, cloud maps and surface temperatures shows that there are similar structures in all data. Depending on the situation, we also identified additional effects influencing the temperature differences, for instance the advection of could air or the influence of melting heat at or after a snow event. All these findings help to further understand the phenomena, and hence will contribute to a better predictability of winter road slipperiness.

  16. Vapor-delivered lubrication of steel-steel and steel-ceramic systems

    NASA Astrophysics Data System (ADS)

    Li, H.; Klaus, E. E.; Duda, J. L.

    1993-04-01

    Heavy-duty natural gas engines run hot and relatively dry. This provides lubricant and lubrication problems in the piston ring-cylinder and valve areas. A potential materials solution to this problem is the use of ceramic bearing surfaces. The objective of the project was the investigation of the wear characteristics and surface interactions of lubricants on ceramic bearing surfaces and to compare these results with the behavior of the same lubricants on steel surfaces. The temperature range of interest in these comparisons is 200 to 370 C using a four-ball wear tester.

  17. Estimating spatially distributed turbulent heat fluxes from high-resolution thermal imagery acquired with a UAV system

    PubMed Central

    Brenner, Claire; Thiem, Christina Elisabeth; Wizemann, Hans-Dieter; Bernhardt, Matthias; Schulz, Karsten

    2017-01-01

    ABSTRACT In this study, high-resolution thermal imagery acquired with a small unmanned aerial vehicle (UAV) is used to map evapotranspiration (ET) at a grassland site in Luxembourg. The land surface temperature (LST) information from the thermal imagery is the key input to a one-source and two-source energy balance model. While the one-source model treats the surface as a single uniform layer, the two-source model partitions the surface temperature and fluxes into soil and vegetation components. It thus explicitly accounts for the different contributions of both components to surface temperature as well as turbulent flux exchange with the atmosphere. Contrary to the two-source model, the one-source model requires an empirical adjustment parameter in order to account for the effect of the two components. Turbulent heat flux estimates of both modelling approaches are compared to eddy covariance (EC) measurements using the high-resolution input imagery UAVs provide. In this comparison, the effect of different methods for energy balance closure of the EC data on the agreement between modelled and measured fluxes is also analysed. Additionally, the sensitivity of the one-source model to the derivation of the empirical adjustment parameter is tested. Due to the very dry and hot conditions during the experiment, pronounced thermal patterns developed over the grassland site. These patterns result in spatially variable turbulent heat fluxes. The model comparison indicates that both models are able to derive ET estimates that compare well with EC measurements under these conditions. However, the two-source model, with a more complex treatment of the energy and surface temperature partitioning between the soil and vegetation, outperformed the simpler one-source model in estimating sensible and latent heat fluxes. This is consistent with findings from prior studies. For the one-source model, a time-variant expression of the adjustment parameter (to account for the difference between aerodynamic and radiometric temperature) that depends on the surface-to-air temperature gradient yielded the best agreement with EC measurements. This study showed that the applied UAV system equipped with a dual-camera set-up allows for the acquisition of thermal imagery with high spatial and temporal resolution that illustrates the small-scale heterogeneity of thermal surface properties. The UAV-based thermal imagery therefore provides the means for analysing patterns of LST and other surface properties with a high level of detail that cannot be obtained by traditional remote sensing methods. PMID:28515537

  18. Estimating spatially distributed turbulent heat fluxes from high-resolution thermal imagery acquired with a UAV system.

    PubMed

    Brenner, Claire; Thiem, Christina Elisabeth; Wizemann, Hans-Dieter; Bernhardt, Matthias; Schulz, Karsten

    2017-05-19

    In this study, high-resolution thermal imagery acquired with a small unmanned aerial vehicle (UAV) is used to map evapotranspiration (ET) at a grassland site in Luxembourg. The land surface temperature (LST) information from the thermal imagery is the key input to a one-source and two-source energy balance model. While the one-source model treats the surface as a single uniform layer, the two-source model partitions the surface temperature and fluxes into soil and vegetation components. It thus explicitly accounts for the different contributions of both components to surface temperature as well as turbulent flux exchange with the atmosphere. Contrary to the two-source model, the one-source model requires an empirical adjustment parameter in order to account for the effect of the two components. Turbulent heat flux estimates of both modelling approaches are compared to eddy covariance (EC) measurements using the high-resolution input imagery UAVs provide. In this comparison, the effect of different methods for energy balance closure of the EC data on the agreement between modelled and measured fluxes is also analysed. Additionally, the sensitivity of the one-source model to the derivation of the empirical adjustment parameter is tested. Due to the very dry and hot conditions during the experiment, pronounced thermal patterns developed over the grassland site. These patterns result in spatially variable turbulent heat fluxes. The model comparison indicates that both models are able to derive ET estimates that compare well with EC measurements under these conditions. However, the two-source model, with a more complex treatment of the energy and surface temperature partitioning between the soil and vegetation, outperformed the simpler one-source model in estimating sensible and latent heat fluxes. This is consistent with findings from prior studies. For the one-source model, a time-variant expression of the adjustment parameter (to account for the difference between aerodynamic and radiometric temperature) that depends on the surface-to-air temperature gradient yielded the best agreement with EC measurements. This study showed that the applied UAV system equipped with a dual-camera set-up allows for the acquisition of thermal imagery with high spatial and temporal resolution that illustrates the small-scale heterogeneity of thermal surface properties. The UAV-based thermal imagery therefore provides the means for analysing patterns of LST and other surface properties with a high level of detail that cannot be obtained by traditional remote sensing methods.

  19. Impact of the ocean diurnal cycle on the North Atlantic mean sea surface temperatures in a regionally coupled model

    NASA Astrophysics Data System (ADS)

    Guemas, Virginie; Salas-Mélia, David; Kageyama, Masa; Giordani, Hervé; Voldoire, Aurore

    2013-03-01

    This study investigates the mechanisms by which the ocean diurnal cycle can affect the ocean mean state in the North Atlantic region. We perform two ocean-atmosphere regionally coupled simulations (20°N-80°N, 80°W-40°E) using the CNRMOM1D ocean model coupled to the ARPEGE4 atmospheric model: one with a 1 h coupling frequency (C1h) and another with a 24 h coupling frequency (C24h). The comparison between both experiments shows that accounting for the ocean diurnal cycle tends to warm up the surface ocean at high latitudes and cool it down in the subtropics during the boreal summer season (June-August). In the subtropics, the leading cause for the formation of the negative surface temperature anomalies is the fact that the nocturnal entrainment heat flux overcompensates the diurnal absorption of solar heat flux. Both in the subtropics and in the high latitudes, the surface temperature anomalies are involved in a positive feedback loop: the cold (warm) surface anomalies favour a decrease (increase) in evaporation, a decrease (increase) in tropospheric humidity, a decrease (increase) in downwelling longwave radiative flux which in turn favours the surface cooling (warming). Furthermore, the decrease in meridional sea surface temperature gradient affects the large-scale atmospheric circulation by a decrease in the zonal mean flow.

  20. Application of spatially gridded temperature and land cover data sets for urban heat island analysis

    USGS Publications Warehouse

    Gallo, Kevin; Xian, George Z.

    2014-01-01

    Two gridded data sets that included (1) daily mean temperatures from 2006 through 2011 and (2) satellite-derived impervious surface area, were combined for a spatial analysis of the urban heat-island effect within the Dallas-Ft. Worth Texas region. The primary advantage of using these combined datasets included the capability to designate each 1 × 1 km grid cell of available temperature data as urban or rural based on the level of impervious surface area within the grid cell. Generally, the observed differences in urban and rural temperature increased as the impervious surface area thresholds used to define an urban grid cell were increased. This result, however, was also dependent on the size of the sample area included in the analysis. As the spatial extent of the sample area increased and included a greater number of rural defined grid cells, the observed urban and rural differences in temperature also increased. A cursory comparison of the spatially gridded temperature observations with observations from climate stations suggest that the number and location of stations included in an urban heat island analysis requires consideration to assure representative samples of each (urban and rural) environment are included in the analysis.

  1. Dust Erosion Performance of Candidate Motorcase Thermal Protection Materials.

    DTIC Science & Technology

    1980-03-10

    Effects 21 3.1.2 Debris Shielding 22 3.1.3 Heating 22 3.1.3,1 Kinetic Energy Deposition 22 3.1.3.2 Convective Heating 24 3.1.4 Particle Velocity 32 3.1.5...29 13 Kinetic energy method comparison: 14-deg angle 3014 Kinetic energy method comparison: 30-deg angle 31 15 Convective heating in DET 32 16...Convective heating model comparison (po = 300 psi) 33 17 AEDC run 3 data trace 33 J. 18 Influence of surface temperature on erosion 35 V 19 Influence of

  2. Effects of silver and group II fluoride solid lubricant additions to plasma-sprayed chromium carbide coatings for foil gas bearings to 650 C

    NASA Technical Reports Server (NTRS)

    Wagner, R. C.; Sliney, Harold E.

    1986-01-01

    A new self-lubricating coating composition of nickel aluminide-bonded chromium carbide formulated with silver and Group II fluorides was developed in a research program on high temperature solid lubricants. One of the proposed applications for this new coating composition is as a wide temperature spectrum solid lubricant for complaint foil gas bearings. Friction and wear properties were obtained using a foil gas bearing start-stop apparatus at temperatures from 25 to 650 C. The journals were Inconel 748. Some were coated with the plasma sprayed experimental coating, others with unmodified nickel aluminide/chromium carbide as a baseline for comparison. The additional components were provided to assist in achieving low friction over the temperature range of interest. Uncoated, preoxidized Inconel X-750 foil bearings were operated against these surfaces. The foils were subjected to repeated start/stop cycles under a 14-kPa (2-Psi) bearing unit loading. Sliding contact occurred during lift-off and coastdown at surface velocities less than 6 m/s (3000 rPm). Testing continued until 9000 start/stop cycles were accumulated or until a rise in starting torque indicated the journal/bearing had failed. Comparison in coating performance as well as discussions of their properties and methods of application are given.

  3. The response of the SSM/I to the marine environment. I - An analytic model for the atmospheric component of observed brightness temperatures

    NASA Technical Reports Server (NTRS)

    Petty, Grant W.; Katsaros, Kristina B.

    1992-01-01

    A detailed parameterization is developed for the contribution of the nonprecipitating atmosphere to the microwave brightness temperatures observed by the Special Sensor Microwave/Imager (SSM/I). The atmospheric variables considered include the viewing angle, the integrated water vapor amount and scale height, the effective tropospheric lapse rate and near-surface temperature, the total cloud liquid water, the effective cloud height, and the surface pressure. The dependence of the radiative variables on meteorological variables is determined for each of the SSM/I frequencies 19.35, 22.235, 37.0, and 85.5 GHz, based on the values computed from 16,893 maritime temperature and humidity profiles representing all latitude belts and all seasons. A comparison of the predicted brightness temperatures with brightness temperatures obtained by direct numerical integration of the radiative transfer equation for the radiosonde-profile dataset yielded rms differences well below 1 K for all four SSM/I frequencies.

  4. A comparison between internal and surface temperature measurement techniques during phacoemulsification cataract surgery: thermocamera versus thermocouple.

    PubMed

    Innocenti, B; Diciotti, S; Bocchi, L; Mencucci, R; Corvi, A

    2008-01-01

    Corneal and scleral burns, one of the main complications that can occur during a cataract operation, are produced by overheating due to the use of the phacoemulsifier. The temperature of the anterior chamber of the eye can be measured both invasively using thermocouples and non-invasively, but only superficially, using a thermocamera. To compare the measures obtained from both techniques an in vitro experimental analysis was conducted on pigs' eyes. During a simulated phacoemulsification cataract operation both the surface temperature with a thermocamera and the temperature inside the anterior chamber with a thermocouple were recorded. For each procedure, the maximum temperature values measured by each technique were compared. The results of this research show that the difference between the maximum values measured with the two techniques is on average 0.5 degrees C. It is possible to employ a thermocamera technique instead of a thermocouple technique to provide an indication of the temperature inside the anterior chamber.

  5. Web-based interactive access, analysis and comparison of remotely sensed and in situ measured temperature data

    NASA Astrophysics Data System (ADS)

    Eberle, Jonas; Urban, Marcel; Hüttich, Christian; Schmullius, Christiane

    2014-05-01

    Numerous datasets providing temperature information from meteorological stations or remote sensing satellites are available. However, the challenging issue is to search in the archives and process the time series information for further analysis. These steps can be automated for each individual product, if the pre-conditions are complied, e.g. data access through web services (HTTP, FTP) or legal rights to redistribute the datasets. Therefore a python-based package was developed to provide data access and data processing tools for MODIS Land Surface Temperature (LST) data, which is provided by NASA Land Processed Distributed Active Archive Center (LPDAAC), as well as the Global Surface Summary of the Day (GSOD) and the Global Historical Climatology Network (GHCN) daily datasets provided by NOAA National Climatic Data Center (NCDC). The package to access and process the information is available as web services used by an interactive web portal for simple data access and analysis. Tools for time series analysis were linked to the system, e.g. time series plotting, decomposition, aggregation (monthly, seasonal, etc.), trend analyses, and breakpoint detection. Especially for temperature data a plot was integrated for the comparison of two temperature datasets based on the work by Urban et al. (2013). As a first result, a kernel density plot compares daily MODIS LST from satellites Aqua and Terra with daily means from GSOD and GHCN datasets. Without any data download and data processing, the users can analyze different time series datasets in an easy-to-use web portal. As a first use case, we built up this complimentary system with remotely sensed MODIS data and in situ measurements from meteorological stations for Siberia within the Siberian Earth System Science Cluster (www.sibessc.uni-jena.de). References: Urban, Marcel; Eberle, Jonas; Hüttich, Christian; Schmullius, Christiane; Herold, Martin. 2013. "Comparison of Satellite-Derived Land Surface Temperature and Air Temperature from Meteorological Stations on the Pan-Arctic Scale." Remote Sens. 5, no. 5: 2348-2367. Further materials: Eberle, Jonas; Clausnitzer, Siegfried; Hüttich, Christian; Schmullius, Christiane. 2013. "Multi-Source Data Processing Middleware for Land Monitoring within a Web-Based Spatial Data Infrastructure for Siberia." ISPRS Int. J. Geo-Inf. 2, no. 3: 553-576.

  6. Effect of degassing temperature on specific surface area and pore volume measurements of biochar

    NASA Astrophysics Data System (ADS)

    Sigmund, Gabriel; Hüffer, Thorsten; Kah, Melanie; Hofmann, Thilo

    2017-04-01

    Specific surface area, pore volume, and pore size distribution are key biochar properties that have been related to water and nutrient cycling, microbial activity as well as sorption potential for organic compounds. Specific surface area and pore volume are commonly determined by measurement of physisorption of N2 and/or CO2. The measurement requires prior degassing of the samples, which may change the structure of the materials. Information on degassing temperature is rarely reported in literature, and recommendations differ considerably between existing guidelines for biochar characterization. Therefore, the influence of degassing temperature on N2 and CO2physisorption measurements was investigated by systematically degassing a range of materials, including four biochars, Al2O3 and carbon nanotubes at different temperatures (105 ˚ C, 150 ˚ C, 200 ˚ C, 250 ˚ C and 300 ˚ C for ≥ 14 h each). Measured specific surface area and pore volume increased with increasing degassing temperature for all biochars. Additional surface area and pore volume may have become available as components in biochars volatilized during the degassing phase. The results of our study showed that (i) degassing conditions change material properties, and influence physisorption measurements for biochar (ii) comparison between parameters derived from different degassing protocols may not be appropriate, and (iii) degassing protocols should be harmonized in the biochar community [1]. [1] Sigmund, et al. (2016), "Biochar total surface area and total pore volume determined by N2 and CO2 physisorption are strongly influenced by degassing temperature", STOTEN, doi: http://dx.doi.org/10.1016/j.scitotenv.2016.12.023.

  7. Advancing the retrievals of surface emissivity by modelling the spatial distribution of temperature in the thermal hyperspectral scene

    NASA Astrophysics Data System (ADS)

    Shimoni, M.; Haelterman, R.; Lodewyckx, P.

    2016-05-01

    Land Surface Temperature (LST) and Land Surface Emissivity (LSE) are commonly retrieved from thermal hyperspectral imaging. However, their retrieval is not a straightforward procedure because the mathematical problem is ill-posed. This procedure becomes more challenging in an urban area where the spatial distribution of temperature varies substantially in space and time. For assessing the influence of several spatial variances on the deviation of the temperature in the scene, a statistical model is created. The model was tested using several images from various times in the day and was validated using in-situ measurements. The results highlight the importance of the geometry of the scene and its setting relative to the position of the sun during day time. It also shows that when the position of the sun is in zenith, the main contribution to the thermal distribution in the scene is the thermal capacity of the landcover materials. In this paper we propose a new Temperature and Emissivity Separation (TES) method which integrates 3D surface and landcover information from LIDAR and VNIR hyperspectral imaging data in an attempt to improve the TES procedure for a thermal hyperspectral scene. The experimental results prove the high accuracy of the proposed method in comparison to another conventional TES model.

  8. Thermal repellent properties of surface coating using silica

    NASA Astrophysics Data System (ADS)

    Lee, Y. Y.; Halim, M. S.; Aminudin, E.; Guntor, N. A.

    2017-11-01

    Extensive land development in urban areas is completely altering the surface profile of human living environment. As cities growing rapidly, impervious building and paved surfaces are replacing the natural landscape. In the developing countries with tropical climate, large masses of building elements, such as brick wall and concrete members, absorb and store large amount of heat, which in turn radiate back to the surrounding air during the night time. This bubble of heat is known as urban heat island (UHI). The use of high albedo urban surfaces is an inexpensive measure that can reduce surrounded temperature. Thus, the main focus of this study is to investigate the ability of silica, SiO2, with high albedo value, to be used as a thermal-repelled surface coating for brick wall. Three different silica coatings were used, namely silicone resin, silicone wax and rain repellent and one exterior commercial paint (jota shield paint) that commercially available in the market were applied on small-scale brick wall models. An uncoated sample also had been fabricated as a control sample for comparison. These models were placed at the outdoor space for solar exposure. Outdoor environment measurement was carried out where the ambient temperature, surface temperature, relative humidity and UV reflectance were recorded. The effect of different type of surface coating on temperature variation of the surface brick wall and the thermal performance of coatings as potential of heat reduction for brick wall have been studied. Based on the results, model with silicone resin achieved the lowest surface temperature which indicated that SiO2 can be potentially used to reduce heat absorption on the brick wall and further retains indoor passive thermal comfortability.

  9. Climatology and interannual variability of dynamic variables in multiple reanalyses evaluated by the SPARC Reanalysis Intercomparison Project (S-RIP)

    NASA Astrophysics Data System (ADS)

    Long, Craig S.; Fujiwara, Masatomo; Davis, Sean; Mitchell, Daniel M.; Wright, Corwin J.

    2017-12-01

    Two of the most basic parameters generated from a reanalysis are temperature and winds. Temperatures in the reanalyses are derived from conventional (surface and balloon), aircraft, and satellite observations. Winds are observed by conventional systems, cloud tracked, and derived from height fields, which are in turn derived from the vertical temperature structure. In this paper we evaluate as part of the SPARC Reanalysis Intercomparison Project (S-RIP) the temperature and wind structure of all the recent and past reanalyses. This evaluation is mainly among the reanalyses themselves, but comparisons against independent observations, such as HIRDLS and COSMIC temperatures, are also presented. This evaluation uses monthly mean and 2.5° zonal mean data sets and spans the satellite era from 1979-2014. There is very good agreement in temperature seasonally and latitudinally among the more recent reanalyses (CFSR, MERRA, ERA-Interim, JRA-55, and MERRA-2) between the surface and 10 hPa. At lower pressures there is increased variance among these reanalyses that changes with season and latitude. This variance also changes during the time span of these reanalyses with greater variance during the TOVS period (1979-1998) and less variance afterward in the ATOVS period (1999-2014). There is a distinct change in the temperature structure in the middle and upper stratosphere during this transition from TOVS to ATOVS systems. Zonal winds are in greater agreement than temperatures and this agreement extends to lower pressures than the temperatures. Older reanalyses (NCEP/NCAR, NCEP/DOE, ERA-40, JRA-25) have larger temperature and zonal wind disagreement from the more recent reanalyses. All reanalyses to date have issues analysing the quasi-biennial oscillation (QBO) winds. Comparisons with Singapore QBO winds show disagreement in the amplitude of the westerly and easterly anomalies. The disagreement with Singapore winds improves with the transition from TOVS to ATOVS observations. Temperature bias characteristics determined via comparisons with a reanalysis ensemble mean (MERRA, ERA-Interim, JRA-55) are similarly observed when compared with Aura HIRDLS and Aura MLS observations. There is good agreement among the NOAA TLS, SSU1, and SSU2 Climate Data Records and layer mean temperatures from the more recent reanalyses. Caution is advised for using reanalysis temperatures for trend detection and anomalies from a long climatology period as the quality and character of reanalyses may have changed over time.

  10. Late Quaternary surface circulation in the east equatorial South Atlantic: Evidence from Alkenone sea surface temperatures

    NASA Astrophysics Data System (ADS)

    Schneider, Ralph R.; Müller, Peter J.; Ruhland, GöTz

    1995-04-01

    Angola Basin and Walvis Ridge records of past sea surface temperatures (SST) derived from the alkenone Uk37 index are used to reconstruct the surface circulation in the east equatorial South Atlantic for the last 200,000 years. Comparison of SST estimates from surface sediments between 5° and 20°S with modern SST data suggests that the alkenone temperatures represent annual mean values of the surface mixed layer. Alkenone-derived temperatures for the warm climatic maxima of the Holocene and the penultimate interglacial are 1 to 4°C higher than latest Holocene values. All records show glacial to interglacial differences of about 3.5°C in annual mean SST, which is about 1.5°C greater than the difference estimated by CLIMAP (1981) for the eastern Angola Basin. At the Walvis Ridge, significant SST variance is observed at all of the Earth's orbital periodicities. SST records from the Angola Basin vary predominantly at 23- and 100-kyr periodicities. For the precessional cycle, SST changes at the Walvis Ridge correspond to variations of boreal summer insolation over Africa and lead ice volume changes, suggesting that the east equatorial South Atlantic is sensitive to African monsoon intensity via trade-wind zonality. Angola Basin SST records lag those from the Walvis Ridge and the equatorial Atlantic by about 3 kyr. The comparison of Angola Basin and Walvis Ridge SST records implies that the Angola-Benguela Front (ABF) (currently at about 14-16°S) has remained fairly stationary between 12° and 20°S (the limits of our cores) during the last two glacial-interglacial cycles. The temperature contrast associated with the ABF exhibits a periodic 23-kyr variability which is coherent with changes in boreal summer insolation over Africa. These observations suggest that surface waters north of the present ABF have not directly responded to monsoon-modulated changes in the trade-wind vector, that the central field of zonally directed trades in the southern hemisphere was not shifted or extended northward by several degrees of latitude during glacials, and that a cyclonic gyre circulation has existed in the east equatorial South Atlantic over the last 200,000 years. This scenario contradicts former assumptions of glacial intensification of the Benguela Current into the eastern Angola Basin and increased coastal upwelling off Angola.

  11. Fracture Behavior of High-Nitrogen Austenitic Stainless Steel Under Continuous Cooling: Physical Simulation of Free-Surface Cracking of Heavy Forgings

    NASA Astrophysics Data System (ADS)

    Wang, Zhenhua; Xue, Hongpeng; Fu, Wantang

    2018-03-01

    18Mn18Cr0.6N steel was tension tested at 0.001 s-1 to fracture from 1473 K to 1363 K (1200 °C to 1090 °C, fracture temperature) at a cooling rate of 0.4 Ks-1. For comparison, specimens were tension tested at temperatures of 1473 K and 1363 K (1200 °C and 1090 °C). The microstructure near the fracture surface was examined using electron backscatter diffraction analysis. The lowest hot ductility was observed under continuous cooling and was attributed to the suppression of dynamic recrystallization nucleation.

  12. Seasonal surface circulation, temperature, and salinity in Prince William Sound, Alaska

    NASA Astrophysics Data System (ADS)

    Musgrave, David L.; Halverson, Mark J.; Scott Pegau, W.

    2013-02-01

    Salinity, temperature, and depth profiles from 1973 to 2010 were used to construct a seasonal climatology of surface temperature, surface salinity, mixed layer depth (MLD), potential energy of mixing, and surface geostrophic circulation in Prince William Sound (PWS) and the adjacent Gulf of Alaska. Surface salinity is greatest in winter and least in summer due to the influence of increased freshwater runoff in summer. It is generally lowest in the northwest and highest in the Gulf of Alaska. The surface temperature is lowest in the winter and highest in the summer when surface heating is greatest, with little spatial variability across the Sound. The MLD is deepest in winter (9-27 m) and shallowest in summer (4-5 m). The work by winds was estimated from meteorological buoy data in central PWS and compared to the potential energy of mixing of the upper water column. The potential depth to which winds mix the upper water column was generally consistent with the MLD. The surface geostrophic circulation in the central Sound has: a southerly flow in the western central Sound in the winter; a closed, weak anticyclonic cell in spring; a closed, cyclonic cell in the summer; an open, cyclonic circulation in the fall. In the western passages, a southerly flow occurs in spring, summer, and fall. These results have important implications for oil spill response in PWS, the use of oil dispersants, and for comparison to numerical studies.

  13. Comparison of WRF local and nonlocal boundary layer Physics in Greater Kuala Lumpur, Malaysia

    NASA Astrophysics Data System (ADS)

    Ooi, M. C. G.; Chan, A.; Kumarenthiran, S.; Morris, K. I.; Oozeer, M. Y.; Islam, M. A.; Salleh, S. A.

    2018-02-01

    The urban boundary layer (UBL) is the internal advection layer of atmosphere above urban region which determines the exchanges of momentum, water and other atmospheric constituents between the urban land surface and the free troposphere. This paper tested the performance of three planetary boundary layer (PBL) physics schemes of Weather Research and Forecast (WRF) software to ensure the appropriate representation of vertical structure of UBL in Greater Kuala Lumpur (GKL). Comparison was conducted on the performance of respective PBL schemes to generate vertical and near-surface weather profile and rainfall. Mellor-Yamada- Janjíc (MYJ) local PBL scheme coupled with Eta MM5 surface layer scheme was found to predict the near-surface temperature and wind profile and mixing height better than the nonlocal schemes during the intermonsoonal period with least influences of the synoptic background weather.

  14. Mesoscale model response to random, surface-based perturbations — A sea-breeze experiment

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.; Pielke, R. A.; Miller, W. F.; Lee, T. J.

    1990-09-01

    The introduction into a mesoscale model of random (in space) variations in roughness length, or random (in space and time) surface perturbations of temperature and friction velocity, produces a measurable, but barely significant, response in the simulated flow dynamics of the lower atmosphere. The perturbations are an attempt to include the effects of sub-grid variability into the ensemble-mean parameterization schemes used in many numerical models. Their magnitude is set in our experiments by appeal to real-world observations of the spatial variations in roughness length and daytime surface temperature over the land on horizontal scales of one to several tens of kilometers. With sea-breeze simulations, comparisons of a number of realizations forced by roughness-length and surface-temperature perturbations with the standard simulation reveal no significant change in ensemble mean statistics, and only small changes in the sea-breeze vertical velocity. Changes in the updraft velocity for individual runs, of up to several cms-1 (compared to a mean of 14 cms-1), are directly the result of prefrontal temperature changes of 0.1 to 0.2K, produced by the random surface forcing. The correlation and magnitude of the changes are entirely consistent with a gravity-current interpretation of the sea breeze.

  15. A Comparison of ARTEMIS Observations and Particle-in-cell Modeling of the Lunar Photoelectron Sheath in the Terrestrial Magnetotail

    NASA Technical Reports Server (NTRS)

    Poppe, A. R.; Halekas, J. S.; Delory, G. T.; Farrell, W. M.; Angelopoulos, V.; McFadden, J. P.; Bonnell, J. W.; Ergun, R. E.

    2012-01-01

    As an airless body in space with no global magnetic field, the Moon is exposed to both solar ultraviolet radiation and ambient plasmas. Photoemission from solar UV radiation and collection of ambient plasma are typically opposing charging currents and simple charging current balance predicts that the lunar dayside surface should charge positively; however, the two ARTEMIS probes have observed energydependent loss cones and high-energy, surface-originating electron beams above the dayside lunar surface for extended periods in the magnetosphere, which are indicative of negative surface potentials. In this paper, we compare observations by the ARTEMIS P1 spacecraft with a one dimensional particle-in-cell simulation and show that the energy-dependent loss cones and electron beams are due to the presence of stable, non-monotonic, negative potentials above the lunar surface. The simulations also show that while the magnitude of the non-monotonic potential is mainly driven by the incoming electron temperature, the incoming ion temperature can alter this magnitude, especially for periods in the plasma sheet when the ion temperature is more than twenty times the electron temperature. Finally, we note several other plasma phenomena associated with these non-monotonic potentials, such as broadband electrostatic noise and electron cyclotron harmonic emissions, and offer possible generation mechanisms for these phenomena.

  16. Observed Screen (Air) and GCM Surface/Screen Temperatures: Implications for Outgoing Longwave Fluxes at the Surface.

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.

    1995-05-01

    There is direct evidence that excess net radiation calculated in general circulation models at continental surfaces [of about 11-17 W m2 (20%-27%) on an annual ~1 is not only due to overestimates in annual incoming shortwave fluxes [of 9-18 W m2 (6%-9%)], but also to underestimates in outgoing longwave fluxes. The bias in the outgoing longwave flux is deduced from a comparison of screen-air temperature observations, available as a global climatology of mean monthly values, and model-calculated surface and screen-air temperatures. An underestimate in the screen temperature computed in general circulation models over continents, of about 3 K on an annual basis, implies an underestimate in the outgoing longwave flux, averaged in six models under study, of 11-15 W m2 (3%-4%). For a set of 22 inland stations studied previously, the residual bias on an annual basis (the residual is the net radiation minus incoming shortwave plus outgoing longwave) varies between 18 and 23 W m2 for the models considered. Additional biases in one or both of the reflected shortwave and incoming longwave components cannot be ruled out.

  17. Comparison of elevation and remote sensing derived products as auxiliary data for climate surface interpolation

    USGS Publications Warehouse

    Alvarez, Otto; Guo, Qinghua; Klinger, Robert C.; Li, Wenkai; Doherty, Paul

    2013-01-01

    Climate models may be limited in their inferential use if they cannot be locally validated or do not account for spatial uncertainty. Much of the focus has gone into determining which interpolation method is best suited for creating gridded climate surfaces, which often a covariate such as elevation (Digital Elevation Model, DEM) is used to improve the interpolation accuracy. One key area where little research has addressed is in determining which covariate best improves the accuracy in the interpolation. In this study, a comprehensive evaluation was carried out in determining which covariates were most suitable for interpolating climatic variables (e.g. precipitation, mean temperature, minimum temperature, and maximum temperature). We compiled data for each climate variable from 1950 to 1999 from approximately 500 weather stations across the Western United States (32° to 49° latitude and −124.7° to −112.9° longitude). In addition, we examined the uncertainty of the interpolated climate surface. Specifically, Thin Plate Spline (TPS) was used as the interpolation method since it is one of the most popular interpolation techniques to generate climate surfaces. We considered several covariates, including DEM, slope, distance to coast (Euclidean distance), aspect, solar potential, radar, and two Normalized Difference Vegetation Index (NDVI) products derived from Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS). A tenfold cross-validation was applied to determine the uncertainty of the interpolation based on each covariate. In general, the leading covariate for precipitation was radar, while DEM was the leading covariate for maximum, mean, and minimum temperatures. A comparison to other products such as PRISM and WorldClim showed strong agreement across large geographic areas but climate surfaces generated in this study (ClimSurf) had greater variability at high elevation regions, such as in the Sierra Nevada Mountains.

  18. A comparison of the physical and chemical processes governing the CO2 laser-induced pyrolysis and deflagration of XM39 and M43

    NASA Astrophysics Data System (ADS)

    Fetherolf, B. L.; Litzinger, T. A.; Lu, Y.-C.; Kuo, Kenneth K.

    1993-11-01

    The RDX-based composite propellants XM39 and M43 are similar in composition but exhibit significant differences in burning behavior. Experimental studies of the physical and chemical processes governing the CO2 laser-induced pyrolysis and deflagration of these two materials were conducted to characterize these differences in behavior and to gain some insight into the mechanisms responsible for the observed differences. Tests were conducted at one, three, and five atmospheres and laser heat fluxes of 100 - 1000 W/sq cm. Quantitative gaseous species profiles were measured with a microprobe/mass spectrometer system and both gas-phase temperature profiles and surface temperatures were measured with fine-wire thermocouples. Both materials exhibited similar gas-phase reaction chemistry to that of RDX with a primary nonluminous flame zone due to the reaction of CH2O and NO2 and a final luminous flame zone where HCN, NO, and a smaller amount of N2O were consumed to form the final products. However, the gas-phase zonal structure was significantly stretched out in comparison to the structure for pure RDX. The luminous flame was only observed above three atmospheres for M43 and above five atmospheres for XM39. Species and temperature measurements at the surfaces of the pyrolyzing propellants appeared to indicate more reaction in the condensed phase (i.e., melt layer) for M43 than for XM39. Subsurface gas species were measured by placing a probe within a hole drilled partway through a sample of XM39. The results indicated substantially less H2O, CH2O, HCN, and NO2 than were measured directly above the surface. This result and the observation of a temperature rise of about 100 degrees within the first 150 microns above the surface for both XM39 and M43 support the possible existence of a thin gas-phase reaction zone directly above the propellant surface.

  19. Reintroducing radiometric surface temperature into the Penman-Monteith formulation

    NASA Astrophysics Data System (ADS)

    Mallick, Kaniska; Boegh, Eva; Trebs, Ivonne; Alfieri, Joseph G.; Kustas, William P.; Prueger, John H.; Niyogi, Dev; Das, Narendra; Drewry, Darren T.; Hoffmann, Lucien; Jarvis, Andrew J.

    2015-08-01

    Here we demonstrate a novel method to physically integrate radiometric surface temperature (TR) into the Penman-Monteith (PM) formulation for estimating the terrestrial sensible and latent heat fluxes (H and λE) in the framework of a modified Surface Temperature Initiated Closure (STIC). It combines TR data with standard energy balance closure models for deriving a hybrid scheme that does not require parameterization of the surface (or stomatal) and aerodynamic conductances (gS and gB). STIC is formed by the simultaneous solution of four state equations and it uses TR as an additional data source for retrieving the "near surface" moisture availability (M) and the Priestley-Taylor coefficient (α). The performance of STIC is tested using high-temporal resolution TR observations collected from different international surface energy flux experiments in conjunction with corresponding net radiation (RN), ground heat flux (G), air temperature (TA), and relative humidity (RH) measurements. A comparison of the STIC outputs with the eddy covariance measurements of λE and H revealed RMSDs of 7-16% and 40-74% in half-hourly λE and H estimates. These statistics were 5-13% and 10-44% in daily λE and H. The errors and uncertainties in both surface fluxes are comparable to the models that typically use land surface parameterizations for determining the unobserved components (gS and gB) of the surface energy balance models. However, the scheme is simpler, has the capabilities for generating spatially explicit surface energy fluxes and independent of submodels for boundary layer developments. This article was corrected on 27 AUG 2015. See the end of the full text for details.

  20. ALMA observation of Ceres' Surface Temperature.

    NASA Astrophysics Data System (ADS)

    Titus, T. N.; Li, J. Y.; Sykes, M. V.; Ip, W. H.; Lai, I.; Moullet, A.

    2016-12-01

    Ceres, the largest object in the main asteroid belt, has been mapped by the Dawn spacecraft. The mapping includes measuring surface temperatures using the Visible and Infrared (VIR) spectrometer at high spatial resolution. However, the VIR instrument has a long wavelength cutoff at 5 μm, which prevents the accurate measurement of surface temperatures below 180 K. This restricts temperature determinations to low and mid-latitudes at mid-day. Observations from the Atacama Large Millimeter/submillimeter Array (ALMA) [1], while having lower spatial resolution, are sensitive to the full range of surface temperatures that are expected at Ceres. Forty reconstructed images at 75 km/beam resolution were acquired of Ceres that were consistent with a low thermal inertia surface. The diurnal temperature profiles were compared to the KRC thermal model [2, 3], which has been extensively used for Mars [e.g. 4, 5]. Variations in temperature as a function of local time are observed and are compared to predictions from the KRC model. The model temperatures are converted to radiance (Jy/Steradian) and are corrected for near-surface thermal gradients and limb effects for comparison to observations. Initial analysis is consistent with the presence of near-surface water ice in the north polar region. The edge of the ice table is between 50° and 70° North Latitude, consistent with the enhanced detection of hydrogen by the Dawn GRaND instrument [6]. Further analysis will be presented. This work is supported by the NASA Solar System Observations Program. References: [1] Wootten A. et al. (2015) IAU General Assembly, Meeting #29, #2237199 [2] Kieffer, H. H., et al. (1977) JGR, 82, 4249-4291. [3] Kieffer, Hugh H., (2013) Journal of Geophysical Research: Planets, 118(3), 451-470. [4] Titus, T. N., H. H. Kieffer, and P. N. Christensen (2003) Science, 299, 1048-1051. [5] Fergason, R. L. et al. (2012) Space Sci. Rev, 170, 739-773[6] Prettyman, T. et al. (2016) LPSC 47, #2228.

  1. Leveraging Oceanic and Surface Intensive Field Campaign Data Sets for Validation and Improvement of Recent Hyperspectral IR Satellite Data Products

    NASA Astrophysics Data System (ADS)

    Joseph, E.; Nalli, N. R.; Oyola, M. I.; Morris, V. R.; Sakai, R.

    2014-12-01

    An overview is given of research to validate or improve the retrieval of environmental data records (EDRs) from recently deployed hyperspectral IR satellite sensors such as Suomi NPP Cross-track Infrared Microwave Sounder Suite (CrIMSS). The effort centers around several surface field intensive campaigns that are designed or leveraged for EDR validation. These data include ship-based observations of upper air ozone, pressure, temperature and relative humidity soundings; aerosol and cloud properties; and sea surface temperature. Similar intensive data from two land-based sites are also utilized as well. One site, the Howard University Beltsville site, is at a single point location but has a comprehensive array of observations for an extended period of time. The other land site, presently being deployed by the University at Albany, is under development with limited upper air soundings but will have regionally distributed surface based microwave profiling of temperature and relative humidity on the scale of 10 - 50 km and other standard meteorological observations. Combined these observations provide data that are unique in their wide range including, a variety of meteorological conditions and atmospheric compositions over the ocean and urban-suburban environments. With the distributed surface sites the variability of atmospheric conditions are captured concurrently across a regional spatial scale. Some specific examples are given of comparisons of moisture and temperature correlative EDRs from the satellite sensors and surface based observations. An additional example is given of the use of this data to correct sea surface temperature (SST) retrieval biases from the hyperspectral IR satellite observations due to aerosol contamination.

  2. Sputtering of sulfur by kiloelectronvolt ions - Application to the magnetospheric plasma interaction with Io

    NASA Technical Reports Server (NTRS)

    Chrisey, D. B.; Johnson, R. E.; Phipps, J. A.; Mcgrath, M. A.; Boring, J. W.

    1987-01-01

    Accurate measurements of the yields, mass spectra, and energy spectra of ejected sulfur are presented based on vapor deposits of sulfur at temperatures and ion energies relevant to the plasma interaction with the surface of Io. The measured sputtering yields are much lower than previous estimates for room temperature sulfur films, but are comparable to previous measurements of low-temperature keV ion sputtering of SO2. Results suggest that if ions reach the surface of Io its atmosphere will have a nonnegligible sulfur component which is primarily S2. Comparison of injection rates determined for sulfur with those for SO2 indicates that injection from sulfur deposits contributes 13 percent to the total mass injection rate of about 2-3 x 10 to the 29th amu/sec.

  3. Lunar and Planetary Science XXXV: Outer Solar System

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session 'Outer Solar System" inlcuded:Monte Carlo Modeling of [O I] 630 nm Auroral Emission on Io; The Detection of Iron Sulfide on Io; Io and Loki in 2003 as Seen from the Infrared Telescope Facility Using Mutual Satellite and Jupiter Occultations; Mapping of the Zamama-Thor Region of Io; First Solar System Results of the Spitzer Space Telescope; Mapping the Surface of Pluto with the Hubble Space Telescope; Experimental Study on Fischer-Tropsch Catalysis in the Circum-Saturnian Subnebula; New High-Pressure Phases of Ammonia Dihydrate; Gas Hydrate Stability at Low Temperatures and High Pressures with Applications to Mars and Europa; Laboratory UV Photolysis of Planetary Ice Analogs Containing H2O + CO2 (1:1); The OH Stretch Infrared Band of Water Ice and Its Temperature and Radiation Dependence; Band Position Variations in Reflectance Spectra of the Jovian Satellite Ganymede; Comparison of Porosity and Radar Models for Europa s Near Surface; Combined Effects of Diurnal and Nonsynchronous Surface Stresses on Europa; Europa s Northern Trailing Hemisphere: Lineament Stratigraphic Framework; Europa at the Highest Resolution: Implications for Surface Processes and Landing Sites; Comparison of Methods to Determine Furrow System Centers on Ganymede and Callisto; Resurfacing of Ganymede by Liquid-Water Volcanism; Layered Ejecta Craters on Ganymede: Comparisons with Martian Analogs; Evaluation of the Possible Presence of CO2-Clathrates in Europa s Icy Shell or Seafloor; Geosciences at Jupiter s Icy Moons: The Midas Touch; Planetary Remote Sensing Science Enabled by MIDAS (Multiple Instrument Distributed Aperture Sensor); and In Situ Surveying of Saturn s Rings.

  4. Nonlinear AC susceptibility, surface and bulk shielding

    NASA Astrophysics Data System (ADS)

    van der Beek, C. J.; Indenbom, M. V.; D'Anna, G.; Benoit, W.

    1996-02-01

    We calculate the nonlinear AC response of a thin superconducting strip in perpendicular field, shielded by an edge current due to the geometrical barrier. A comparison with the results for infinite samples in parallel field, screened by a surface barrier, and with those for screening by a bulk current in the critical state, shows that the AC response due to a barrier has general features that are independent of geometry, and that are significantly different from those for screening by a bulk current in the critical state. By consequence, the nonlinear (global) AC susceptibility can be used to determine the origin of magnetic irreversibility. A comparison with experiments on a Bi 2Sr 2CaCu 2O 8+δ crystal shows that in this material, the low-frequency AC screening at high temperature is mainly due to the screening by an edge current, and that this is the unique source of the nonlinear magnetic response at temperatures above 40 K.

  5. Comparison of Summer and Winter California Central Valley Aerosol Distributions from Lidar and MODIS Measurements

    NASA Technical Reports Server (NTRS)

    Lewis, Jasper; DeYoung, Russell; Ferrare, Richard; Chu, D. Allen

    2010-01-01

    Aerosol distributions from two aircraft lidar campaigns conducted in the California Central Valley are compared in order to identify seasonal variations. Aircraft lidar flights were conducted in June 2003 and February 2007. While the ground PM(sub 2.5) concentration is highest in the winter, the aerosol optical depth measured from MODIS is highest in the summer. A seasonal comparison shows that PM(sub 2.5) in the winter can exceed summer PM(sub 2.5) by 55%, while summer AOD exceeds winter AOD by 43%. Higher temperatures and wildfires in the summer produce elevated aerosol layers that are detected by satellite measurements, but not surface particulate matter monitors. Temperature inversions, especially during the winter, contribute to higher PM(sub 2.5) measurements at the surface. Measurements of the boundary layer height from lidar instruments provide valuable information need to understand the relationship between satellite measurements of optical depth and in-situ measurements of PM(sub 2.5).

  6. Merging daily sea surface temperature data from multiple satellites using a Bayesian maximum entropy method

    NASA Astrophysics Data System (ADS)

    Tang, Shaolei; Yang, Xiaofeng; Dong, Di; Li, Ziwei

    2015-12-01

    Sea surface temperature (SST) is an important variable for understanding interactions between the ocean and the atmosphere. SST fusion is crucial for acquiring SST products of high spatial resolution and coverage. This study introduces a Bayesian maximum entropy (BME) method for blending daily SSTs from multiple satellite sensors. A new spatiotemporal covariance model of an SST field is built to integrate not only single-day SSTs but also time-adjacent SSTs. In addition, AVHRR 30-year SST climatology data are introduced as soft data at the estimation points to improve the accuracy of blended results within the BME framework. The merged SSTs, with a spatial resolution of 4 km and a temporal resolution of 24 hours, are produced in the Western Pacific Ocean region to demonstrate and evaluate the proposed methodology. Comparisons with in situ drifting buoy observations show that the merged SSTs are accurate and the bias and root-mean-square errors for the comparison are 0.15°C and 0.72°C, respectively.

  7. Regional differences in the surface temperature of Naked Neck laying hens in a semi-arid environment.

    PubMed

    de Souza, João Batista Freire; de Arruda, Alex Martins Varela; Domingos, Hérica Girlane Tertulino; de Macedo Costa, Leonardo Lelis

    2013-05-01

    The aim of this study was to evaluate the regional differences in the surface temperature of Naked Neck hens that were subjected to different temperatures in a semi-arid environment. The surface temperature was measured in four body regions (face, neck, legs and feathered area) of 60 Naked Neck hens. The following environmental variables were measured at the center of the shed: the black globe temperature (T G ), air temperature (T A ), wind speed (U) and relative humidity (R H ). The T A was divided into three classes: 1 (24.0-26.0 °C), 2 (26.1-28.9 °C) and 3 (29.0-31.0 °C). An analysis of variance was performed by the least squares method and a comparison of the means by the Tukey-Kramer test. The results showed a significant effect of T A class, the body region and the interaction between these two effects on the surface temperature. There was no significant difference between the T A classes for the face and neck. The legs and feathered area showed significant differences between the T A classes. Regarding the effect of body regions within each T A class, there was a significant difference among all regions in the three T A classes. In all T A classes the neck had the highest average followed by the face and legs. The feathered area showed the lowest average of the different T A classes. In conclusion, this study showed that there are regional differences in the surface temperature of Naked Neck hens, with the legs acting as thermal windows.

  8. Tissue responses to fractional transient heating with sinusoidal heat flux condition on skin surface.

    PubMed

    Ezzat, Magdy A; El-Bary, Alaa A; Al-Sowayan, Noorah S

    2016-10-01

    A fractional model of Bioheat equation for describing quantitatively the thermal responses of skin tissue under sinusoidal heat flux conditions on skin surface is given. Laplace transform technique is used to obtain the solution in a closed form. The resulting formulation is applied to one-dimensional application to investigate the temperature distribution in skin with instantaneous surface heating for different cases. According to the numerical results and its graphs, conclusion about the fractional bioheat transfer equation has been constructed. Sensitivity analysis is performed to explore the thermal effects of various control parameters on tissue temperature. The comparisons are made with the results obtained in the case of the absence of time-fractional order. © 2016 Japanese Society of Animal Science. © 2016 Japanese Society of Animal Science.

  9. Evaluation of thermal behavior during laser metal deposition using optical pyrometry and numerical simulation

    NASA Astrophysics Data System (ADS)

    Dubrov, Alexander V.; Zavalov, Yuri N.; Mirzade, Fikret K.; Dubrov, Vladimir D.

    2017-06-01

    3D mathematical model of non-stationary processes of heat and mass transfer was developed for additive manufacturing of materials by direct laser metal deposition. The model takes into account self-consistent dynamics of free surface, temperature fields, and melt flow speeds. Evolution of free surface is modelled using combined Volume of Fluid and Level-Set method. Article presents experimental results of the measurement of temperature distribution in the area of bead formation by direct laser metal deposition, using multi-channel pyrometer, that is based on two-color sensors line. A comparison of experimental data with the results of numerical modeling was carried out. Features of thermal dynamics on the surface of melt pool have been detected, which were caused by thermo-capillary convection.

  10. Polylayer Adsorption on Rough Surfaces of Nanoaerosols Obtained via the Rapid Cooling of Droplets

    NASA Astrophysics Data System (ADS)

    Zaitseva, E. S.; Tovbin, Yu. K.

    2018-05-01

    An approach is developed for studying polymolecular adsorption on the modeled rough surface of a small aerosol obtained from a liquid droplet on its rapid cooling. A way of estimating the specific surface of adsorbent droplets with rough surfaces is proposed, and the temperature and size dependences of the specific surface are established. Isotherms of N2 and Ar polymolecular adsorption on a heterogeneous surface of small spherical particles of SiO2 are derived. The possibility of using this approach to describe an experiment is demonstrated. Comparison to the experimental isotherms reveals agreement with isotherms of argon and nitrogen on silica surfaces, with an error of up to 4.5%.

  11. Solar Cycle and Anthropogenic Forcing of Surface-Air Temperature at Armagh Observatory, Northern Ireland

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2010-01-01

    A comparison of 10-yr moving average (yma) values of Armagh Observatory (Northern Ireland) surface-air temperatures with selected solar cycle indices (sunspot number (SSN) and the Aa geomagnetic index (Aa)), sea-surface temperatures in the Nino 3.4 region, and Mauna Loa carbon dioxide (CO2) (MLCO2) atmospheric concentration measurements reveals a strong correlation (r = 0.686) between the Armagh temperatures and Aa, especially, prior to about 1980 (r = 0.762 over the interval of 1873-1980). For the more recent interval 1963-2003, the strongest correlation (r = 0.877) is between Armagh temperatures and MLCO2 measurements. A bivariate fit using both Aa and Mauna Loa values results in a very strong fit (r = 0.948) for the interval 1963-2003, and a trivariate fit using Aa, SSN, and Mauna Loa values results in a slightly stronger fit (r = 0.952). Atmospheric CO2 concentration now appears to be the stronger driver of Armagh surface-air temperatures. An increase of 2 C above the long-term mean (9.2 C) at Armagh seems inevitable unless unabated increases in anthropogenic atmospheric gases can be curtailed. The present growth in 10-yma Armagh temperatures is about 0.05 C per yr since 1982. The present growth in MLCO2 is about 0.002 ppmv, based on an exponential fit using 10-yma values, although the growth appears to be steepening, thus, increasing the likelihood of deleterious effects attributed to global warming.

  12. Accuracy of sea ice temperature derived from the advanced very high resolution radiometer

    NASA Technical Reports Server (NTRS)

    Yu, Y.; Rothrock, D. A.; Lindsay, R. W.

    1995-01-01

    The accuracy of Arctic sea ice surface temperatures T(sub s) dericed from advanced very high resolution radiometer (AVHRR) thermal channels is evaluated in the cold seasons by comparing them with surface air temperatures T(sub air) from drifting buoys and ice stations. We use three different estimates of satellite surface temperatures, a direct estimate from AVHRR channel 4 with only correction for the snow surface emissivity but not for the atmosphere, a single-channel regression of T(sub s) with T(sub air), and Key and Haefliger's (1992) polar multichannel algorithm. We find no measurable bias in any of these estimates and few differences in their statistics. The similar performance of all three methods indicates that an atmospheric water vapor correction is not important for the dry winter atmosphere in the central Arctic, given the other sources of error that remain in both the satellite and the comparison data. A record of drifting station data shows winter air temperature to be 1.4 C warmer than the snow surface temperature. `Correcting' air temperatures to skin temperature by subtracting this amount implies that satellite T(sub s) estimates are biased warm with respect to skin temperature by about this amount. A case study with low-flying aircraft data suggests that ice crystal precipitation can cause satellite estimates of T(sub s) to be several degrees warmer than radiometric measurements taken close to the surface, presumably below the ice crystal precipitation layer. An analysis in which errors are assumed to exist in all measurements, not just the satellite measurements, gives a standard deviation in the satellite estimates of 0.9 C, about half the standard deviation of 1.7 C estimated by assigning all the variation between T(sub s) and T(sub air) to errors in T(sub s).

  13. Assimilation of GOES Land Surface Data into a Mesoscale Models

    NASA Technical Reports Server (NTRS)

    Lapenta, William M.; Suggs, Ron; McNider, Richard T.; Jedlovec, Gary; Dembek, Scott; Goodman, H. Michael (Technical Monitor)

    2001-01-01

    A technique has been developed for assimilating Geostationary Operational Environmental Satellite (GOES)-derived skin temperature tendencies and insolation into the surface energy budget equation of a mesoscale model so that the simulated rate of temperature change closely agrees with the satellite observations. A critical assumption of the technique is that the availability of moisture (either from the soil or vegetation) is the least known term in the model's surface energy budget. Therefore, the simulated latent heat flux, which is a function of surface moisture availability, is adjusted based upon differences between the modeled and satellite-observed skin temperature tendencies. An advantage of this technique is that satellite temperature tendencies are assimilated in an energetically consistent manner that avoids energy imbalances and surface stability problems that arise from direct assimilation of surface shelter temperatures. The fact that the rate of change of the satellite skin temperature is used rather than the absolute temperature means that sensor calibration is not as critical. The assimilation technique has been applied to the Oklahoma-Kansas region during the spring-summer 2000 time period when dynamic changes in vegetation cover occur. In April, central Oklahoma is characterized by large NDVI associated with winter wheat while surrounding areas are primarily rangeland with lower NDVI. In July the vegetation pattern reverses as the central wheat area changes to low NDVI due to harvesting and the surrounding rangeland is greener than it was in April. The goal of this study is to determine if assimilating satellite land surface data can improve simulation of the complex spatial distribution of surface energy and water fluxes across this region. The PSU/NCAR NM5 V3 system is used in this study. The grid configuration consists of a 36-km CONUS domain and a 12-km nest over the area of interest. Bulk verification statistics (BIAS and RMSE) of surface air temperature and dewpoint indicates that assimilation of the satellite data results reduces both the bias and RMSE for both state variables. In addition, comparison of model data with ARM/CART EBBR flux observations reveals that the assimilation technique adjusts the bowen ratio in a realistic fashion.

  14. The annual pressure cycle on Mars: Results from the LMD Martian atmospheric general circulation model

    NASA Technical Reports Server (NTRS)

    Hourdin, Frederic; Forget, Francois; Talagrand, O.

    1993-01-01

    We have been developing a General Circulation Model (GCM) of the martian atmosphere since 1989. The model has been described rather extensively elsewhere and only the main characteristics are given here. The dynamical part of the model, adapted from the LMD terrestrial climate model, is based on a finite-difference formulation of the classical 'primitive equations of meteorology.' The radiative transfer code includes absorption and emission by CO2 (carefully validated by comparison to line-by-line calculations) and dust in the thermal range and absorption and scattering by dust in the visible range. Other physical parameterizations are included: modeling of vertical turbulent mixing, dry convective adjustment (in order to prevent vertical unstable temperature profiles), and a multilayer model of the thermal conduction in the soil. Finally, the condensation-sublimation of CO2 is introduced through specification of a pressure-dependent condensation temperature. The atmospheric and surface temperatures are prevented from falling below this critical temperature by condensation and direct precipitation onto the surface of atmospheric CO2. The only prespecified spatial fields are the surface thermal inertia, albedo, and topography.

  15. Modeling the Surface Temperature of Earth-like Planets

    NASA Astrophysics Data System (ADS)

    Vladilo, Giovanni; Silva, Laura; Murante, Giuseppe; Filippi, Luca; Provenzale, Antonello

    2015-05-01

    We introduce a novel Earth-like planet surface temperature model (ESTM) for habitability studies based on the spatial-temporal distribution of planetary surface temperatures. The ESTM adopts a surface energy balance model (EBM) complemented by: radiative-convective atmospheric column calculations, a set of physically based parameterizations of meridional transport, and descriptions of surface and cloud properties more refined than in standard EBMs. The parameterization is valid for rotating terrestrial planets with shallow atmospheres and moderate values of axis obliquity (ɛ ≲ 45{}^\\circ ). Comparison with a 3D model of atmospheric dynamics from the literature shows that the equator-to-pole temperature differences predicted by the two models agree within ≈ 5 K when the rotation rate, insolation, surface pressure and planet radius are varied in the intervals 0.5≲ {Ω }/{{{Ω }}\\oplus }≲ 2, 0.75≲ S/{{S}\\circ }≲ 1.25, 0.3≲ p/(1 bar)≲ 10, and 0.5≲ R/{{R}\\oplus }≲ 2, respectively. The ESTM has an extremely low computational cost and can be used when the planetary parameters are scarcely known (as for most exoplanets) and/or whenever many runs for different parameter configurations are needed. Model simulations of a test-case exoplanet (Kepler-62e) indicate that an uncertainty in surface pressure within the range expected for terrestrial planets may impact the mean temperature by ˜ 60 K. Within the limits of validity of the ESTM, the impact of surface pressure is larger than that predicted by uncertainties in rotation rate, axis obliquity, and ocean fractions. We discuss the possibility of performing a statistical ranking of planetary habitability taking advantage of the flexibility of the ESTM.

  16. Long-term stability of Cu surface nanotips

    NASA Astrophysics Data System (ADS)

    Jansson, V.; Baibuz, E.; Djurabekova, F.

    2016-07-01

    Sharp nanoscale tips on the metal surfaces of electrodes enhance locally applied electric fields. Strongly enhanced electric fields trigger electron field emission and atom evaporation from the apexes of nanotips. Together, these processes may explain electric discharges in the form of small local arcs observed near metal surfaces in the presence of electric fields, even in ultra-high vacuum conditions. In the present work, we investigate the stability of nanoscale tips by means of computer simulations of surface diffusion processes on copper, the main material used in high-voltage electronics. We study the stability and lifetime of thin copper (Cu) surface nanotips at different temperatures in terms of diffusion processes. For this purpose we have developed a surface kinetic Monte Carlo (KMC) model where the jump processes are described by tabulated precalculated energy barriers. We show that tall surface features with high aspect ratios can be fairly stable at room temperature. However, the stability was found to depend strongly on the temperature: 13 nm nanotips with the major axes in the < 110> crystallographic directions were found to flatten down to half of the original height in less than 100 ns at temperatures close to the melting point, whereas no significant change in the height of these nanotips was observed after 10 {{μ }}{{s}} at room temperature. Moreover, the nanotips built up along the < 110> crystallographic directions were found to be significantly more stable than those oriented in the < 100> or < 111> crystallographic directions. The proposed KMC model has been found to be well-suited for simulating atomic surface processes and was validated against molecular dynamics simulation results via the comparison of the flattening times obtained by both methods. We also note that the KMC simulations were two orders of magnitude computationally faster than the corresponding molecular dynamics calculations.

  17. Morphology of Er:YAG-laser-treated root surfaces

    NASA Astrophysics Data System (ADS)

    Keller, Ulrich; Stock, Karl; Hibst, Raimund

    1997-12-01

    From previous studies it could be demonstrated that an efficient ablation of dental calculus is possible using an Er:YAG laser with a special contact fiber tip. After improving of the design and the efficiency of light transmission of the contact tip laser treated tooth root surfaces were investigated due to morphological changes in comparison to conventional root scaling and planing. Surface modifications were observed histologically under the light microscope and by means of a Scanning Electron Microscope. During laser treatment the intrapulpal temperature increase was measured. The results show that the improved contact tip a microstructured surface can be generated, which shows no signs of thermal effects even when a laser pulse repetition rate of 15 Hz was used. Temperature increase was limited to 4 K at a repetition rate of 10 Hz and to 5.5 K at a repetition rate of 15 Hz.

  18. Continued Development of a Global Heat Transfer Measurement System at AEDC Hypervelocity Wind Tunnel 9

    NASA Technical Reports Server (NTRS)

    Kurits, Inna; Lewis, M. J.; Hamner, M. P.; Norris, Joseph D.

    2007-01-01

    Heat transfer rates are an extremely important consideration in the design of hypersonic vehicles such as atmospheric reentry vehicles. This paper describes the development of a data reduction methodology to evaluate global heat transfer rates using surface temperature-time histories measured with the temperature sensitive paint (TSP) system at AEDC Hypervelocity Wind Tunnel 9. As a part of this development effort, a scale model of the NASA Crew Exploration Vehicle (CEV) was painted with TSP and multiple sequences of high resolution images were acquired during a five run test program. Heat transfer calculation from TSP data in Tunnel 9 is challenging due to relatively long run times, high Reynolds number environment and the desire to utilize typical stainless steel wind tunnel models used for force and moment testing. An approach to reduce TSP data into convective heat flux was developed, taking into consideration the conditions listed above. Surface temperatures from high quality quantitative global temperature maps acquired with the TSP system were then used as an input into the algorithm. Preliminary comparison of the heat flux calculated using the TSP surface temperature data with the value calculated using the standard thermocouple data is reported.

  19. Noninvasive monitoring local variations of fever and edema on human: potential for point-of-care inflammation assessment

    NASA Astrophysics Data System (ADS)

    Li, Zebin; Li, Xianglin; Li, Ting

    2018-02-01

    Tissue inflammation is often accompanied by fever and edema, which are common and troublesome problems that probably trigger disability, lymphangitis, cosmetic deformity and cellulitis. Here we developed a device, which can measure concentration and temperature variations of water in local human body by extended near infrared spectroscopy in 900 1000 nm wavelength range. An experiment of four steps incremental cycling exercise was designed to change tissue water concentration and temperature of subjects. Body temperature was also estimated by tympanic thermometer and surface thermometer as comparisons during the experiment. In the stage of recovery after exercise, the signal detected by custom device is similar to tympanic thermometer at the beginning, but it is closer to the temperature of surface later. In particular, this signal shows a better linearity, and a significant change when the exercise was suspended. This study demonstrated the potential of optical touch-sensing for inflammation severity monitoring by measuring water concentration and temperature variations in local lesions.

  20. Global temperature change

    PubMed Central

    Hansen, James; Sato, Makiko; Ruedy, Reto; Lo, Ken; Lea, David W.; Medina-Elizade, Martin

    2006-01-01

    Global surface temperature has increased ≈0.2°C per decade in the past 30 years, similar to the warming rate predicted in the 1980s in initial global climate model simulations with transient greenhouse gas changes. Warming is larger in the Western Equatorial Pacific than in the Eastern Equatorial Pacific over the past century, and we suggest that the increased West–East temperature gradient may have increased the likelihood of strong El Niños, such as those of 1983 and 1998. Comparison of measured sea surface temperatures in the Western Pacific with paleoclimate data suggests that this critical ocean region, and probably the planet as a whole, is approximately as warm now as at the Holocene maximum and within ≈1°C of the maximum temperature of the past million years. We conclude that global warming of more than ≈1°C, relative to 2000, will constitute “dangerous” climate change as judged from likely effects on sea level and extermination of species. PMID:17001018

  1. Comparison of kinetic models for atom recombination on high-temperature reusable surface insulation

    NASA Technical Reports Server (NTRS)

    Willey, Ronald J.

    1993-01-01

    Five kinetic models are compared for their ability to predict recombination coefficients for oxygen and nitrogen atoms over high-temperature reusable surface insulation (HRSI). Four of the models are derived using Rideal-Eley or Langmuir-Hinshelwood catalytic mechanisms to describe the reaction sequence. The fifth model is an empirical expression that offers certain features unattainable through mechanistic description. The results showed that a four-parameter model, with temperature as the only variable, works best with data currently available. The model describes recombination coefficients for oxygen and nitrogen atoms for temperatures from 300 to 1800 K. Kinetic models, with atom concentrations, demonstrate the influence of atom concentration on recombination coefficients. These models can be used for the prediction of heating rates due to catalytic recombination during re-entry or aerobraking maneuvers. The work further demonstrates a requirement for more recombination experiments in the temperature ranges of 300-1000 K, and 1500-1850 K, with deliberate concentration variation to verify model requirements.

  2. A Limited Comparison of the Thermal Durability of Polyimide Candidate Matrix Polymers with PMR-15

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.; Papadopoulos, Demetrios S.; Scheiman, Daniel A.; Inghram, Linda L.; McCorkle, Linda S.; Klans, Ojars V.

    2003-01-01

    Studies were conducted with six different candidate high-temperature neat matrix resin specimens of varied geometric shapes to investigate the mechanisms involved in the thermal degradation of polyimides like PMR-15. The metrics for assessing the quality of these candidates were chosen to be glass transition temperature (T(sub g)), thermo-oxidative stability, dynamic mechanical properties, microstructural changes, and dimensional stability. The processing and mechanical properties were not investigated in the study reported herein. The dimensional changes and surface layer growth were measured and recorded. The data were in agreement with earlier published data. An initial weight increase reaction was observed to be dominating at the lower temperatures. However, at the more elevated temperatures, the weight loss reactions were prevalent and probably masked the weight gain reaction. These data confirmed the findings of the existence of an initial weight gain reaction previously reported. Surface- and core-dependent weight losses were shown to control the polymer degradation at the higher temperatures.

  3. NWS Marine Forecast Areas

    Science.gov Websites

    Currents Global Ocean Model Sea Surface Temperatures Gulf Stream ASCII Data Gulf Stream Comparison Gridded ASCAT Scatterometer Winds Lightning Strike Density Satellite Imagery Ocean Global Ocean Model , 2017 19:10:57 UTC Disclaimer Information Quality Help Glossary Privacy Policy Freedom of Information

  4. Estimations of Atmospheric Conditions for Input to the Radar Performance Surface

    DTIC Science & Technology

    2007-12-01

    timely atmospheric and ocean surface descriptions on features that impact radar and electro-optical sensor systems . The first part of this study is an...Navy’s Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS®) are compared to in-situ data to assess the sensitivities of air-sea...temperature measurements to make direct comparisons to the Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS®) as a prime source of input to the

  5. Intrareef variations in Li/Mg and Sr/Ca sea surface temperature proxies in the Caribbean reef-building coral Siderastrea siderea

    NASA Astrophysics Data System (ADS)

    Fowell, Sara E.; Sandford, Kate; Stewart, Joseph A.; Castillo, Karl D.; Ries, Justin B.; Foster, Gavin L.

    2016-10-01

    Caribbean sea surface temperatures (SSTs) have increased at a rate of 0.2°C per decade since 1971, a rate double that of the mean global change. Recent investigations of the coral Siderastrea siderea on the Belize Mesoamerican Barrier Reef System (MBRS) have demonstrated that warming over the last 30 years has had a detrimental impact on calcification. Instrumental temperature records in this region are sparse, making it necessary to reconstruct longer SST records indirectly through geochemical temperature proxies. Here we investigate the skeletal Sr/Ca and Li/Mg ratios of S. siderea from two distinct reef zones (forereef and backreef) of the MBRS. Our field calibrations of S. siderea show that Li/Mg and Sr/Ca ratios are well correlated with temperature, although both ratios are 3 times more sensitive to temperature change in the forereef than in the backreef. These differences suggest that a secondary parameter also influences these SST proxies, highlighting the importance for site- and species-specific SST calibrations. Application of these paleothermometers to downcore samples reveals highly uncertain reconstructed temperatures in backreef coral, but well-matched reconstructed temperatures in forereef coral, both between Sr/Ca-SSTs and Li/Mg-SSTs, and in comparison to the Hadley Centre Sea Ice and Sea Surface Temperature record. Reconstructions generated from a combined Sr/Ca and Li/Mg multiproxy calibration improve the precision of these SST reconstructions. This result confirms that there are circumstances in which both Li/Mg and Sr/Ca are reliable as stand-alone and combined proxies of sea surface temperature. However, the results also highlight that high-precision, site-specific calibrations remain critical for reconstructing accurate SSTs from coral-based elemental proxies.

  6. Ferromagnetism in LaCo O3

    NASA Astrophysics Data System (ADS)

    Yan, J.-Q.; Zhou, J.-S.; Goodenough, J. B.

    2004-07-01

    A systematic investigation of the low-temperature magnetic properties of LaCoO3 has demonstrated a ferromagnetism with Tc≈85K from surface cobalt atoms. The experimental investigation involved comparison of the magnetic susceptibility of (1) a single crystal, (2) a powder ground from the same crystal, and (3) a cold-pressed pellet from the ground powder that was unannealed and annealed at 400°C followed by a later anneal at 1000°C . The low-temperature magnetic susceptibility was found to have three contributions: a Curie-Weiss paramagnetism, a thermally driven spin-state transition, and a surface-related ferromagnetism with Tc≈85K . The ferromagnetic component has a remanence and coercivity at 5K that increases dramatically with increasing surface/volume ratio of the different samples. The presence of the surface ferromagnetism explains the discrepancies of the low-temperature magnetic susceptibility reported by different groups. An anion coordination at surface Co(III) ions that differs from that of the bulk cobalt is shown to be capable of stabilizing higher spin states. A Tc≈85K is argued to be too low for ferromagnetic coupling by oxidized clusters, and possible mechanisms for a ferromagnetic coupling between higher-spin Co(III) ions are discussed.

  7. Deformation measurements by ESPI of the surface of a heated mirror and comparison with numerical model

    NASA Astrophysics Data System (ADS)

    Languy, Fabian; Vandenrijt, Jean-François; Saint-Georges, Philippe; Georges, Marc P.

    2017-06-01

    The manufacture of mirrors for space application is expensive and the requirements on the optical performance increase over years. To achieve higher performance, larger mirrors are manufactured but the larger the mirror the higher the sensitivity to temperature variation and therefore the higher the degradation of optical performances. To avoid the use of an expensive thermal regulation, we need to develop tools able to predict how optics behaves with thermal constraints. This paper presents the comparison between experimental surface mirror deformation and theoretical results from a multiphysics model. The local displacements of the mirror surface have been measured with the use of electronic speckle pattern interferometry (ESPI) and the deformation itself has been calculated by subtracting the rigid body motion. After validation of the mechanical model, experimental and numerical wave front errors are compared.

  8. Air - water temperature relationships in the trout streams of southeastern Minnesota’s carbonate - sandstone landscape

    USGS Publications Warehouse

    Krider, Lori A.; Magner, Joseph A.; Perry, Jim; Vondracek, Bruce C.; Ferrington, Leonard C.

    2013-01-01

    Carbonate-sandstone geology in southeastern Minnesota creates a heterogeneous landscape of springs, seeps, and sinkholes that supply groundwater into streams. Air temperatures are effective predictors of water temperature in surface-water dominated streams. However, no published work investigates the relationship between air and water temperatures in groundwater-fed streams (GWFS) across watersheds. We used simple linear regressions to examine weekly air-water temperature relationships for 40 GWFS in southeastern Minnesota. A 40-stream, composite linear regression model has a slope of 0.38, an intercept of 6.63, and R2 of 0.83. The regression models for GWFS have lower slopes and higher intercepts in comparison to surface-water dominated streams. Regression models for streams with high R2 values offer promise for use as predictive tools for future climate conditions. Climate change is expected to alter the thermal regime of groundwater-fed systems, but will do so at a slower rate than surface-water dominated systems. A regression model of intercept vs. slope can be used to identify streams for which water temperatures are more meteorologically than groundwater controlled, and thus more vulnerable to climate change. Such relationships can be used to guide restoration vs. management strategies to protect trout streams.

  9. On the sensitivity of mesoscale models to surface-layer parameterization constants

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.; Pielke, R. A.

    1989-09-01

    The Colorado State University standard mesoscale model is used to evaluate the sensitivity of one-dimensional (1D) and two-dimensional (2D) fields to differences in surface-layer parameterization “constants”. Such differences reflect the range in the published values of the von Karman constant, Monin-Obukhov stability functions and the temperature roughness length at the surface. The sensitivity of 1D boundary-layer structure, and 2D sea-breeze intensity, is generally less than that found in published comparisons related to turbulence closure schemes generally.

  10. Comparison of subsurface damages on mono-crystalline silicon between traditional nanoscale machining and laser-assisted nanoscale machining via molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Dai, Houfu; Li, Shaobo; Chen, Genyu

    2018-01-01

    Molecular dynamics is employed to compare nanoscale traditional machining (TM) with laser-assisted machining (LAM). LAM is that the workpiece is locally heated by an intense laser beam prior to material removal. We have a comprehensive comparison between LAM and TM in terms of atomic trajectories, phase transformation, radial distribution function, chips, temperature distribution, number of atoms in different temperature, grinding temperature, grinding force, friction coefficient and atomic potential energy. It can be found that there is a decrease of atoms with five and six nearest neighbors, and LAM generates more chips than that in the TM. It indicates that LAM reduces the subsurface damage of workpiece, gets a better-qualified ground surface and improves the material removal rate. Moreover, laser energy makes the materials fully softened before being removed, the number of atoms with temperature above 500 K is increased, and the average temperature of workpiece higher and faster to reach the equilibrium in LAM. It means that LAM has an absolute advantage in machining materials and greatly reduces the material resistance. Not only the tangential force (Fx) and the normal force (Fy) but also friction coefficients become smaller as laser heating reduces the strength and hardness of the material in LAM. These results show that LAM is a promising technique since it can get a better-qualified workpiece surface with larger material removal rates, less grinding force and lower friction coefficient.

  11. Infrared Observations of the Orion Capsule During EFT-1 Hypersonic Reentry

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.; Rufer, Shann J.; Schuster, David M.; Mendeck, Gavin F.; Oliver, A. Brandon; Schwartz, Richard J.; Verstynen, Harry A.; Mercer, C. David; Tack, Steven; Ingram, Ben; hide

    2016-01-01

    High-resolution infrared observations of the Orion capsule during its atmospheric reentry on December 5, 2015 were made from a US Navy NP-3D. This aircraft, equipped with a long-range optical sensor system, tracked the capsule from Mach 10 to 7 from a distance of approximately 60 nmi. Global surface temperatures of the capsule's thermal heatshield were derived from near infrared intensity measurements. The global surface temperature measurements complemented onboard instrumentation and were invaluable to the interpretation of the in-depth thermocouple measurements which rely on inverse heat transfer methods and material response codes to infer the desired surface temperature from the sub-surface measurements. The full paper will address the motivations behind the NASA Engineering Safety Center sponsored observation and highlight premission planning processes with an emphasis on aircraft placement, optimal instrument configuration and sensor calibrations. Critical aspects of mission operations coordinated from the NASA Johnson Spaceflight Center and integration with the JSC Flight Test Management Office will be discussed. A summary of the imagery that was obtained and processed to global surface temperature will be presented. At the capsule's point of closest approach relative to the imaging system, the spatial resolution was estimated to be approximately 15-inches per pixel and was sufficient to identify localized temperature increases associated with compression pad support hardware on the heatshield. The full paper will discuss the synergy of the quantitative imagery derived temperature maps with in-situ thermocouple measurements. Comparison of limited onboard surface thermocouple data to the image derived surface temperature will be presented. The two complimentary measurements serve as an example of the effective leveraging of resources to advance the understanding of high Mach number environments associated with an ablated heatshield and provide unique data for the validation of design tools and numerical flight simulation techniques. Collaborative opportunities and technology investments in support of planned observations of NASA's next Orion flight test in 2018 will be explored in the full manuscript.

  12. Comparison of experimental three-band IR detection of buried objects and multiphysics simulations

    NASA Astrophysics Data System (ADS)

    Rabelo, Renato C.; Tilley, Heather P.; Catterlin, Jeffrey K.; Karunasiri, Gamani; Alves, Fabio D. P.

    2018-04-01

    A buried-object detection system composed of a LWIR, a MWIR and a SWIR camera, along with a set of ground and ambient temperature sensors was constructed and tested. The objects were buried in a 1.2x1x0.3 m3 sandbox and surface temperature (using LWIR and MWIR cameras) and reflection (using SWIR camera) were recoded throughout the day. Two objects (aluminum and Teflon) with volume of about 2.5x10-4 m3 , were placed at varying depths during the measurements. Ground temperature sensors buried at three different depths measured the vertical temperature profile within the sandbox, while the weather station recorded the ambient temperature and solar radiation intensity. Images from the three cameras were simultaneously acquired in five-minute intervals throughout many days. An algorithm to postprocess and combine the images was developed in order to maximize the probability of detection by identifying thermal anomalies (temperature contrast) resulting from the presence of the buried object in an otherwise homogeneous medium. A simplified detection metric based on contrast differences was established to allow the evaluation of the image processing method. Finite element simulations were performed, reproducing the experiment conditions and, when possible, incorporated with data coming from actual measurements. Comparisons between experiment and simulation results were performed and the simulation parameters were adjusted until images generated from both methods are matched, aiming at obtaining insights of the buried material properties. Preliminary results show a great potential for detection of shallowburied objects such as land mines and IEDs and possible identification using finite element generated maps fitting measured surface maps.

  13. Low-temperature direct heterogeneous bonding of polyether ether ketone and platinum.

    PubMed

    Fu, Weixin; Shigetou, Akitsu; Shoji, Shuichi; Mizuno, Jun

    2017-10-01

    Direct heterogeneous bonding between polyether ether ketone (PEEK) and Pt was realized at the temperatures lower than 150°C. In order to create sufficient bondability to diverse materials, the surface was modified by vacuum ultraviolet (VUV) irradiation, which formed hydrate bridges. For comparison, direct bonding between surfaces atomically cleaned via Ar fast atom bombardment (FAB) was conducted in a vacuum. The VUV irradiation was found to be effective for creating an ultrathin hydrate bridge layer from the residual water molecules in the chamber. Tight bonds were formed through dehydration of the hydrate bridges by heating at 150°C, which also contributed to enhancing interdiffusion across the interface. The VUV-modified surfaces showed bondability as good as that of the FAB-treated surfaces, and the VUV-modified samples had shear strengths at the same level as those of FAB-treated surfaces. This technology will be of practical use in the packaging of lightweight, flexible biomedical devices. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. A Multi-Channel Method for Retrieving Surface Temperature for High-Emissivity Surfaces from Hyperspectral Thermal Infrared Images

    PubMed Central

    Zhong, Xinke; Labed, Jelila; Zhou, Guoqing; Shao, Kun; Li, Zhao-Liang

    2015-01-01

    The surface temperature (ST) of high-emissivity surfaces is an important parameter in climate systems. The empirical methods for retrieving ST for high-emissivity surfaces from hyperspectral thermal infrared (HypTIR) images require spectrally continuous channel data. This paper aims to develop a multi-channel method for retrieving ST for high-emissivity surfaces from space-borne HypTIR data. With an assumption of land surface emissivity (LSE) of 1, ST is proposed as a function of 10 brightness temperatures measured at the top of atmosphere by a radiometer having a spectral interval of 800–1200 cm−1 and a spectral sampling frequency of 0.25 cm−1. We have analyzed the sensitivity of the proposed method to spectral sampling frequency and instrumental noise, and evaluated the proposed method using satellite data. The results indicated that the parameters in the developed function are dependent on the spectral sampling frequency and that ST of high-emissivity surfaces can be accurately retrieved by the proposed method if appropriate values are used for each spectral sampling frequency. The results also showed that the accuracy of the retrieved ST is of the order of magnitude of the instrumental noise and that the root mean square error (RMSE) of the ST retrieved from satellite data is 0.43 K in comparison with the AVHRR SST product. PMID:26061199

  15. Surface-Wind Anomalies in North-Atlantic and North Pacific from SSM/I Observations: Influence on Temperature of Adjoining Land Regions

    NASA Technical Reports Server (NTRS)

    Otterman, Joseph; Atlas, R.; Ingraham, J.; Ardizzone, J.; Starr, D.; Terry, J.

    1998-01-01

    Surface winds over the oceans are derived from Special Sensor Microwave Imager (SSM/I) measurements, assigning direction by Variational Analysis Method (VAM). Validations by comparison with other measurements indicate highly-satisfactory data quality. Providing global coverage from 1988, the dataset is a convenient source for surface-wind climatology. In this study, the interannual variability of zonal winds is analyzed concentrating on the westerlies in North Atlantic and North Pacific, above 30 N. Interannual differences in the westerlies exceeding 10 m sec (exp -1) are observed over large regions, often accompanied by changes of the same magnitude in the easterlies below 30 N. We concentrate on February/March, since elevated temperatures, by advancing snow-melt, can produce early spring. The extremely strong westerlies in 1997 observed in these months over North Atlantic (and also North Pacific) apparently contributed to large surface-temperature anomalies in western Europe, on the order of +3 C above the climatic monthly average for England and France. At these latitudes strong positive anomalies extended in a ring around the globe. We formulated an Index of South westerlies for the North Atlantic, which can serve as an indicator for day-by-day advection effects into Europe. In comparing 1997 and 1998 with the previous years, we establish significant correlations with the temperature anomalies (one to five days later, depending on the region, and on the season). This variability of the ocean-surface winds and of the temperature anomalies on land may be related to the El Nino/La Nina oscillations. Such large temperature fluctuations over large areas, whatever the cause, can be regarded as noise in attempts to assess long-term trends in global temperature.

  16. Clear-Sky Longwave Irradiance at the Earth's Surface--Evaluation of Climate Models.

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.

    2001-04-01

    An evaluation of the clear-sky longwave irradiance at the earth's surface (LI) simulated in climate models and in satellite-based global datasets is presented. Algorithm-based estimates of LI, derived from global observations of column water vapor and surface (or screen air) temperature, serve as proxy `observations.' All datasets capture the broad zonal variation and seasonal behavior in LI, mainly because the behavior in column water vapor and temperature is reproduced well. Over oceans, the dependence of annual and monthly mean irradiance upon sea surface temperature (SST) closely resembles the observed behavior of column water with SST. In particular, the observed hemispheric difference in the summer minus winter column water dependence on SST is found in all models, though with varying seasonal amplitudes. The analogous behavior in the summer minus winter LI is seen in all datasets. Over land, all models have a more highly scattered dependence of LI upon surface temperature compared with the situation over the oceans. This is related to a much weaker dependence of model column water on the screen-air temperature at both monthly and annual timescales, as observed. The ability of climate models to simulate realistic LI fields depends as much on the quality of model water vapor and temperature fields as on the quality of the longwave radiation codes. In a comparison of models with observations, root-mean-square gridpoint differences in mean monthly column water and temperature are 4-6 mm (5-8 mm) and 0.5-2 K (3-4 K), respectively, over large regions of ocean (land), consistent with the intermodel differences in LI of 5-13 W m2 (15-28 W m2).

  17. Body mass modulates huddling dynamics and body temperature profiles in rabbit pups.

    PubMed

    Bautista, Amando; Zepeda, José Alfredo; Reyes-Meza, Verónica; Féron, Christophe; Rödel, Heiko G; Hudson, Robyn

    2017-10-01

    Altricial mammals typically lack the physiological capacity to thermoregulate independently during the early postnatal period, and in litter-bearing species the young benefit strongly from huddling together with their litter siblings. Such litter huddles are highly dynamic systems, often characterized by competition for energetically favorable, central positions. In the present study, carried out in domestic rabbits Oryctolagus cuniculus, we asked whether individual differences in body mass affect changes in body temperature during changes in the position within the huddle. We predicted that pups with relatively lower body mass should be more affected by such changes arising from huddle dynamics in comparison to heavier ones. Changes in pups' maximum body surface temperature (determined by infrared thermography) were significantly affected by changes in the number of their neighbors in the litter huddle, and indeed these temperature changes largely depended on the pups' body mass relative to their litter siblings. Lighter pups showed significant increases in their maximum body surface temperature when their number of huddling partners increased by one or two siblings whereas pups with intermediate or heavier body mass did not show such significant increases in maximum body temperature when experiencing such changes. A similar pattern was found with respect to average body surface temperature. This strong link between changes in the number of huddling partners and body surface temperature in lighter pups might, on the one hand, arise from a higher vulnerability of such pups due to their less favorable body surface area-to-volume ratio. On the other hand, as lighter pups generally had fewer neighbors than heavier ones and thus typically a comparatively smaller body surface in contact with siblings, they potentially had more to gain from increasing their number of neighbors. The present findings might help to understand how individual differences in body mass within a litter lead to the emergence of individual differences in sibling interactions during early postnatal life in different species of altricial and litter-bearing mammals. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Cooling of a dwelling by nocturnal radiation

    NASA Astrophysics Data System (ADS)

    Fahim, Othmane; Belouaggadia, Naoual; Taqi, Mohamed; Abid, Chérifa

    2018-05-01

    Atmospheric transparency in the infrared, responsible for night cooling, is exploited to obtain a cooling effect. Radiative cooling to the night sky is based on the principle of infrared radiation heat loss from a surface to a body at a lower temperature. The use of the emissivity equation allowed us to evaluate its variation as a function of wavelength and temperature. A comparison of the temperature variation was made between granite and the materials most often used in the manufacture of radiant panels of hybrid systems. The results show that the temperature of Tedlar-based plates or plastics considerably decreases, and, therefore are rather promising.

  19. Why is SMOS Drier than the South Fork In-situ Soil Moisture Network?

    NASA Astrophysics Data System (ADS)

    Walker, V. A.; Hornbuckle, B. K.; Cosh, M. H.

    2014-12-01

    Global maps of near-surface soil moisture are currently being produced by the European Space Agency's Soil Moisture and Ocean Salinity (SMOS) satellite mission at 40 km. Within the next few months NASA's Soil Moisture Active Passive (SMAP) satellite mission will begin producing observations of near-surface soil moisture at 10 km. Near-surface soil moisture is the water content of the first 3 to 5 cm of the soil. Observations of near-surface soil moisture are expected to improve weather and climate forecasts. These satellite observations must be validated. We define validation as determining the space/time statistical characteristics of the uncertainty. A standard that has been used for satellite validation is in-situ measurements of near-surface soil moisture made with a network of sensors spanning the extent of a satellite footprint. Such a network of sensors has been established in the South Fork of the Iowa River in Central Iowa by the USDA ARS. Our analysis of data in 2013 indicates that SMOS has a dry bias: SMOS near-surface soil moisture is between 0.05 to 0.10 m^3m^{-3} lower than what is observed by the South Fork network. A dry bias in SMOS observations has also been observed in other regions of North America. There are many possible explanations for this difference: underestimation of vegetation, or soil surface roughness; undetected radio frequency interference (RFI); a retrieval model that is not appropriate for agricultural areas; or the use of an incorrect surface temperature in the retrieval process. We will begin our investigation by testing this last possibility: that SMOS is using a surface temperature that is too low which results in a drier soil moisture that compensates for this error. We will present a comparison of surface temperatures from the European Center for Medium-range Weather Forecasting (ECMWF) used to retrieve near-surface soil moisture from SMOS measurements of brightness temperature, and surface temperatures in the South Fork obtained from both tower and in-situ sensors. We will also use a long-term data set of tower and in-situ sensors collected in agricultural fields to develop a relationship between air temperature and the surface temperature relevant to the terrestrial microwave emission that is detected by SMOS.

  20. Testing of a Shrouded, Short Mixing Stack Gas Eductor Model Using High Temperature Primary Flow.

    DTIC Science & Technology

    1982-10-01

    problem but of less significance than the heated surfaces of shipboard structure. Various types of electronic equipments and sensors carried by a combatant...here was to validate current procedures by comparison with previous data it was not considered essential to rein- stall these sensors or duplicate...sec) 205 tABLE XIX Mixing Stack Temperatura Data, Model B Thermocouple Axial Mixing Stack Temperature _ mbjr Posii--- .. (I IF) . Uptake 180 850 950

  1. Surface wave effect on the upper ocean in marine forecast

    NASA Astrophysics Data System (ADS)

    Wang, Guansuo; Qiao, Fangli; Xia, Changshui; Zhao, Chang

    2015-04-01

    An Operational Coupled Forecast System for the seas off China and adjacent (OCFS-C) is constructed based on the paralleled wave-circulation coupled model, which is tested with comprehensive experiments and operational since November 1st, 2007. The main feature of the system is that the wave-induced mixing is considered in circulation model. Daily analyses and three day forecasts of three-dimensional temperature, salinity, currents and wave height are produced. Coverage is global at 1/2 degreed resolution with nested models up to 1/24 degree resolution in China Sea. Daily remote sensing sea surface temperatures (SST) are taken to relax to an analytical product as hot restarting fields for OCFS-C by the Nudging techniques. Forecasting-data inter-comparisons are performed to measure the effectiveness of OCFS-C in predicting upper-ocean quantities including SST, mixed layer depth (MLD) and subsurface temperature. The variety of performance with lead time and real-time is discussed as well using the daily statistic results for SST between forecast and satellite data. Several buoy observations and many Argo profiles are used for this validation. Except the conventional statistical metrics, non-dimension skill scores (SS) is taken to estimate forecast skill. Model SST comparisons with more one year-long SST time series from 2 buoys given a large SS value (more than 0.90). And skill in predicting the seasonal variability of SST is confirmed. Model subsurface temperature comparisons with that from a lot of Argo profiles indicated that OCFS-C has low skill in predicting subsurface temperatures between 80m and 120m. Inter-comparisons of MLD reveal that MLD from model is shallower than that from Argo profiles by about 12m. QCFS-C is successful and steady in predicting MLD. The daily statistic results for SST between 1-d, 2-d and 3-d forecast and data is adopted to describe variability of Skill in predicting SST with lead time or real time. In a word QCFS-C shows reasonable accuracy over a series of studies designed to test ability to predict upper ocean conditions.

  2. Snow specific surface area simulation using the one-layer snow model in the Canadian LAnd Surface Scheme (CLASS)

    NASA Astrophysics Data System (ADS)

    Roy, A.; Royer, A.; Montpetit, B.; Bartlett, P. A.; Langlois, A.

    2012-12-01

    Snow grain size is a key parameter for modeling microwave snow emission properties and the surface energy balance because of its influence on the snow albedo, thermal conductivity and diffusivity. A model of the specific surface area (SSA) of snow was implemented in the one-layer snow model in the Canadian LAnd Surface Scheme (CLASS) version 3.4. This offline multilayer model (CLASS-SSA) simulates the decrease of SSA based on snow age, snow temperature and the temperature gradient under dry snow conditions, whereas it considers the liquid water content for wet snow metamorphism. We compare the model with ground-based measurements from several sites (alpine, Arctic and sub-Arctic) with different types of snow. The model provides simulated SSA in good agreement with measurements with an overall point-to-point comparison RMSE of 8.1 m2 kg-1, and a RMSE of 4.9 m2 kg-1 for the snowpack average SSA. The model, however, is limited under wet conditions due to the single-layer nature of the CLASS model, leading to a single liquid water content value for the whole snowpack. The SSA simulations are of great interest for satellite passive microwave brightness temperature assimilations, snow mass balance retrievals and surface energy balance calculations with associated climate feedbacks.

  3. Performance Technology Program (PTP-S 2). Volume 9: Evaluation of reentry vehicle nosetip transition and heat transfer in the AEDC hyperballistics track G

    NASA Astrophysics Data System (ADS)

    Wassel, A. T.; Shih, W. C. L.; Curtis, R. J.

    1981-01-01

    Boundary layer transition and surface heating distributions on graphite fine weave carbon-carbon, and metallic nosetip materials were derived from surface temperature responses measured in nitrogen environments during both free-flight and track-guided testing in the AEDC Hyperballistics Range/Track G. Innovative test procedures were developed, and heat transfer results were validated against established theory through experiments using a super-smooth tungsten model. Quantitative definitions of mean transition front locations were established by deriving heat flux distributions from measured temperatures, and comparisons made with existing nosetip transition correlations. Qualitative transition locations were inferred directly from temperature distributions to investigate preferred orientations on fine weave nosetips. Levels of roughness augmented heat transfer were generally shown to be below values predicted by state of the art methods.

  4. Full-coverage film cooling. I - Comparison of heat transfer data for three injection angles

    NASA Technical Reports Server (NTRS)

    Crawford, M. E.; Kays, W. M.; Moffat, R. J.

    1980-01-01

    Wind tunnel experiments were carried out at Stanford between 1971 and 1977 to study the heat transfer characteristics of full-coverage film cooled surfaces with three geometries; normal-, 30 deg slant-, and 30 deg x 45 deg compound-angled injection. A flat full-coverage section and downstream recovery section comprised the heat transfer system. The experimental objectives were to determine, for each geometry, the effects on surface heat flux of injection blowing ratio, injection temperature ratio, and upstream initial conditions. Spanwise-averaged Stanton numbers were measured for blowing ratios from 0 to 1.3, and for two values of injection temperature at each blowing ratio. The heat transfer coefficient was defined on the basis of a mainstream-to-wall temperature difference. Initial momentum and enthalpy thickness Reynolds numbers were varied from 500 to about 3000.

  5. a Study of the Tungsten (001) Surface Using Low Energy Electron Diffraction and Other Electron Spectroscopies.

    NASA Astrophysics Data System (ADS)

    Kalceff, Marion Anne Stevens

    The properties of the clean Tungsten (001) surfaces (both (1 x 1) and reconstructed (SQRT.(2 x SQRT.(2)R45(DEGREES) phases) and the effects of the common absorbates Hydrogen and Oxygen have been investigated using the techniques of Low Energy Electron Diffraction, Auger Electron Spectroscopy and Characteristic Electron Energy Loss Spectroscopy. The origins of features observed in Characteristic Energy Loss Spectra, very low energy (<10 eV) Secondary Electron Emission spectra and low energy (<40 eV) Auger spectra, are deduced and compared with recent relevant independently obtained theoretical data and with other, sometimes conflicting, analyses. The use of these spectroscopies as monitors of surface cleanliness is evaluated. In particular a previously unreported emission, observed during Oxygen adsorption, is attributed to an Auger transition involving the Oxygen 2s and 2p adsorbate levels. Experimental conventional LEED and improved resolution very low energy intensity versus energy spectra are compared with Dynamical spectra, calculated using the program package of M. A. Van Hove and S. Y. Tong or calculated by R. O. Jones using a previously determined saturated image barrier, within a spin dependent scattering model, respectively. Structural information about the clean (1 x 1), clean reconstructed (SQRT.(2 x SQRT.(2)R45(DEGREES) and Hydrogen saturated (1 x 1)-H surfaces have been obtained via visual comparison or R factor (E. Zanazzi and F. Jona) analysis of the conventional data. The conventional methods of LEED Intensity data collection are assessed and procedures to improve experimental reproducibility are proposed. From the analysis of the improved resolution data, and with reference to the corresponding set of very low energy electron reflection data also obtained for comparison, conclusions are made about the origins of fine structure observed in the experimental profiles and about the W(001) surface order before and after the temperature dependent reconstruction and during Hydrogen adsorption. Further information about the clean W(001)-(SQRT.(2 x SQRT.(2)R45(DEGREES) surface, including the clean surface transition temperature, the mode of reconstruction, and structural information is determined from the analyses of the LEED intensity pattern and temperature dependence. In particular it is found that the reconstruction involves both vertical and horizontal components of atomic displacement and is dependent upon the surface topography and defect structure. All results are evaluated in comparison with other relevant independent experimental or theoretical analyses, where possible.

  6. A Wetness Index Using Terrain-Corrected Surface Temperature and Normalized Difference Vegetation Index Derived from Standard MODIS Products: An Evaluation of Its Use in a Humid Forest-Dominated Region of Eastern Canada

    PubMed Central

    Hassan, Quazi K.; Bourque, Charles P.-A.; Meng, Fan-Rui; Cox, Roger M.

    2007-01-01

    In this paper we develop a method to estimate land-surface water content in a mostly forest-dominated (humid) and topographically-varied region of eastern Canada. The approach is centered on a temperature-vegetation wetness index (TVWI) that uses standard 8-day MODIS-based image composites of land surface temperature (TS) and surface reflectance as primary input. In an attempt to improve estimates of TVWI in high elevation areas, terrain-induced variations in TS are removed by applying grid, digital elevation model-based calculations of vertical atmospheric pressure to calculations of surface potential temperature (θS). Here, θS corrects TS to the temperature value to what it would be at mean sea level (i.e., ∼101.3 kPa) in a neutral atmosphere. The vegetation component of the TVWI uses 8-day composites of surface reflectance in the calculation of normalized difference vegetation index (NDVI) values. TVWI and corresponding wet and dry edges are based on an interpretation of scatterplots generated by plotting θS as a function of NDVI. A comparison of spatially-averaged field measurements of volumetric soil water content (VSWC) and TVWI for the 2003-2005 period revealed that variation with time to both was similar in magnitudes. Growing season, point mean measurements of VSWC and TVWI were 31.0% and 28.8% for 2003, 28.6% and 29.4% for 2004, and 40.0% and 38.4% for 2005, respectively. An evaluation of the long-term spatial distribution of land-surface wetness generated with the new θS-NDVI function and a process-based model of soil water content showed a strong relationship (i.e., r2 = 95.7%). PMID:28903212

  7. Comparison of different substrates for laser-induced electron transfer desorption/ionization of metal complexes

    NASA Astrophysics Data System (ADS)

    Grechnikov, A. A.; Georgieva, V. B.; Donkov, N.; Borodkov, A. S.; Pento, A. V.; Raicheva, Z. G.; Yordanov, Tc A.

    2016-03-01

    Four different substrates, namely, graphite, tungsten, amorphous silicon (α-Si) and titanium dioxide (TiO2) films, were compared in view of the laser-induced electron transfer desorption/ionization (LETDI) of metal coordination complexes. A rhenium complex with 8-mercaptoquinoline, a copper complex with diphenylthiocarbazone and chlorophyll A were studied as the test analytes. The dependencies of the ion yield and the surface temperature on the incident radiation fluence were investigated experimentally and theoretically. The temperature was estimated using the numerical solution of a one-dimensional heat conduction problem with a heat source distributed in time and space. It was found that at the same temperature, the ion yield from the different substrates varies in the range of three orders of magnitude. The direct comparison of all studied substrates revealed that LETDI from the TiO2 and α-Si films offer a better choice for producing molecular ions of metal coordination complexes.

  8. Frost Growth and Densification on a Flat Surface in Laminar Flow with Variable Humidity

    NASA Technical Reports Server (NTRS)

    Kandula, M.

    2012-01-01

    Experiments are performed concerning frost growth and densification in laminar flow over a flat surface under conditions of constant and variable humidity. The flat plate test specimen is made of aluminum-6031, and has dimensions of 0.3 mx0.3 mx6.35 mm. Results for the first variable humidity case are obtained for a plate temperature of 255.4 K, air velocity of 1.77 m/s, air temperature of 295.1 K, and a relative humidity continuously ranging from 81 to 54%. The second variable humidity test case corresponds to plate temperature of 255.4 K, air velocity of 2.44 m/s, air temperature of 291.8 K, and a relative humidity ranging from 66 to 59%. Results for the constant humidity case are obtained for a plate temperature of 263.7 K, air velocity of 1.7 m/s, air temperature of 295 K, and a relative humidity of 71.6 %. Comparisons of the data with the author's frost model extended to accommodate variable humidity suggest satisfactory agreement between the theory and the data for both constant and variable humidity.

  9. Temperature Rise on the Plugger Surface of 2 Commercially Available Gutta-percha Heating Devices.

    PubMed

    Dimopoulos, Fotis; Dervenis, Konstantinos; Gogos, Christos; Lambrianidis, Theodoros

    2017-11-01

    The objective of this study was to examine the temperature rise on the plugger surface of 2 commercially available gutta-percha heating devices: the System B (Kerr Dental, Amersfoort, The Netherlands) and the System B Cordless Pack Unit (Kerr Dental). Temperature changes were recorded by a Thermocouple Data Logger device (Pico Technology Ltd, St Neots, UK) and 2 thermocouples: the first to record the temperature on the plugger surface in an isolated polytetrafluoroethylene system and the second to record the base temperature of the environment. The gutta-percha heating devices studied were System B with F, FM, M, and ML pluggers set at the "use" position, "touch" mode, temperature of 200°C, and a power setting of 10 and the System B Cordless Pack Unit with the FM plugger set at low power. Two variables were extracted from the collected temperature data: the temperature on the plugger surface 10 seconds after activating each gutta-percha heating device (θ 10 ) and the time required to reach 60°C (t 60 ). The differences between the pluggers over those 2 variables were investigated using analysis of variance and the Tukey B test for post hoc comparisons (P < .05). The mean θ 10 for all pluggers ranged between 73°C and 87°C. The mean t 60 for all pluggers ranged between 1.3 and 3.3 seconds. No clinically significant differences between the pluggers were observed. The gutta-percha heating devices tested achieve maximum temperatures lower than 94°C and are capable of gutta-percha phase transformation within approximately 4 seconds of activation. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  10. Expansion of oil palm and other cash crops causes an increase of the land surface temperature in the Jambi province in Indonesia

    NASA Astrophysics Data System (ADS)

    Sabajo, Clifton R.; le Maire, Guerric; June, Tania; Meijide, Ana; Roupsard, Olivier; Knohl, Alexander

    2017-10-01

    Indonesia is currently one of the regions with the highest transformation rate of land surface worldwide related to the expansion of oil palm plantations and other cash crops replacing forests on large scales. Land cover changes, which modify land surface properties, have a direct effect on the land surface temperature (LST), a key driver for many ecological functions. Despite the large historic land transformation in Indonesia toward oil palm and other cash crops and governmental plans for future expansion, this is the first study so far to quantify the impacts of land transformation on the LST in Indonesia. We analyze LST from the thermal band of a Landsat image and produce a high-resolution surface temperature map (30 m) for the lowlands of the Jambi province in Sumatra (Indonesia), a region which suffered large land transformation towards oil palm and other cash crops over the past decades. The comparison of LST, albedo, normalized differenced vegetation index (NDVI) and evapotranspiration (ET) between seven different land cover types (forest, urban areas, clear-cut land, young and mature oil palm plantations, acacia and rubber plantations) shows that forests have lower surface temperatures than the other land cover types, indicating a local warming effect after forest conversion. LST differences were up to 10.1 ± 2.6 °C (mean ± SD) between forest and clear-cut land. The differences in surface temperatures are explained by an evaporative cooling effect, which offsets the albedo warming effect. Our analysis of the LST trend of the past 16 years based on MODIS data shows that the average daytime surface temperature in the Jambi province increased by 1.05 °C, which followed the trend of observed land cover changes and exceeded the effects of climate warming. This study provides evidence that the expansion of oil palm plantations and other cash crops leads to changes in biophysical variables, warming the land surface and thus enhancing the increase of the air temperature because of climate change.

  11. Non-synchronous climate change along the western margin of North America during glacial terminations

    NASA Astrophysics Data System (ADS)

    Herbert, T. D.; Liu, Z.; Barron, J.; Heusser, L.; Lyle, M.; Mix, A.; Ravelo, A. C.

    2003-04-01

    A regional set of cores now exists to study the evolution of ocean surface temperatures and other paleoclimatic signals along the west coast of North America. Core locations range from Vancouver Island to the north, to the tip of Baja California to the south. We report on the evolution of sea surface temperatures and marine productivity, as recorded by alkenones. Several sites also have pollen records, allowing us to compare marine and terrestrial responses. We find that surface climate signals covary tightly with global climate, as represented by benthic d18O, through 80% of a typical glacial-interglacial cycle. However, the associations during glacial maxima and terminations break into three regional patterns. North of Point Conception (heart of the California Current), SST patterns are very similar to benthic d18O and to Greenland ice core surface temperature data to at least 30 ka (ODP Site 1019). In the California borderland region, warmings begin during peak glacial conditions, and significantly precede the deglacial sea level rise. Off Baja California, SST follows benthic d18O, but without the high frequency oscillations of temperature observed in Greenland. These changes outline regional reorganizations of surface winds and currents during times of maximum ice volume. Our data suggests that the geographic extent and intensity of the California Current system was much reduced during glacial maxima in comparison to modern conditions.

  12. Thermal effectiveness of different IR radiators employed in rheumatoid hand therapy as assessed by thermovisual examination.

    PubMed

    Rutkowski, Radosław; Straburzyńska-Lupa, Anna; Korman, Paweł; Romanowski, Wojciech; Gizińska, Małgorzata

    2011-01-01

    We conducted a thermovisual comparison of mean hand surface temperature changes upon local heating with two different IR sources. Sixty-six patients with rheumatoid arthritis (47 women and 19 men; average age, 56.1 ± 8.6 years) were subjected to topical heat therapy for one hand with either the standard IR radiator (SIR) or the water filter IRA (wIRA). The surface temperature of the dorsal side of both hands was measured, and thermal images were taken before and up to 2 h after treatment. At 1 min after treatment, SIR application increased the surface skin temperature of the heated hand from 31.5 ± 1.9 to 35.0 ± 1.9 °C (P<0.05), while wIRA increased it from 32.1 ± 1.6 to 34.2 ± 1.1 °C (P<0.05). Constant decline in temperature was observed immediately after treatment, with the temperatures reaching baseline in about 30 and 120 min after wIRA and SIR treatment, respectively. Similar temperature changes were observed in the heated hands for wIRA and SIR, except at 1 min after treatment. Changes in the untreated hands indicated contralateral reaction. The temperature of the warmed hand showed a correlation to the body mass index. © 2011 The Authors. Photochemistry and Photobiology © 2011 The American Society of Photobiology.

  13. Comparison of tympanic and rectal temperature in febrile patients.

    PubMed

    Sehgal, Arvind; Dubey, N K; Jyothi, M C; Jain, Shilpa

    2002-04-01

    To compare tympanic membrane temperature and rectal temperature in febrile pediatric patients. Sixty febrile children were enrolled as continuous enrollment at initial triage. Two readings of ear temperature were taken in each child with Thermoscan infrared thermometer. Rectal temperature was recorded by a digital electronic thermometer. Comparison of both the techniques was done and co-relation co-efficients calculated. Parental preference for both techniques was assessed. It was observed that mean ear temperature was 38.9+/-0.90 C and that for rectal temperature was 38.8+/-0.80 degrees C. The correlation coefficient between the two was 0.994 (p < 0.01). Coefficients for both sites were comparable over a wide age range. The difference between readings taken from two ears was not significant. Temperature ranges over which readings were recorded were quite wide for both techniques. Parental preference for tympanic thermometry over rectal thermometry was noticed. Tympanic thermometry utilizes pyro-electric sensors, to detect infra-red rays emitted from the surface of tympanic membrane. Ear temperatures correlates well with rectal temperatures which have long been considered as "core" temperatures. Parents prefer the technique of ear thermometry which is quick (2 sec), safe and non-invasive and patient resistance for this is also less. A non-invasive, non-mucous device which is accurate over a wide range of temperature could be very useful.

  14. Thermometry with Subnanometer Resolution in the Electron Microscope Using the Principle of Detailed Balancing.

    PubMed

    Lagos, Maureen J; Batson, Philip E

    2018-06-13

    We measure phonon energy gain and loss down to 20 meV in a single nanostructure using an atom-wide monochromatic electron beam. We show that the bulk and surface, energy loss and energy gain processes obey the principle of detailed balancing in nanostructured systems at thermal equilibrium. By plotting the logarithm of the ratio of the loss and gain bulk/surface scattering as a function of the excitation energy, we find a linear behavior, expected from detailed balance arguments. Since that universal linearity scales with the inverse of the nanosystem temperature only, we can measure the temperature of the probed object with precision down to about 1 K without reference to the nanomaterial. We also show that subnanometer spatial resolution (down to ∼2 Å) can be obtained using highly localized acoustic phonon scattering. The surface phonon polariton signal can also be used to measure the temperature near the nanostructure surfaces, but with unavoidable averaging over several nanometers. Comparison between transmission and aloof probe configurations suggests that our method exhibits noninvasive characteristics. Our work demonstrates the validity of the principle of detailed balancing within nanoscale materials at thermal equilibrium, and it describes a transparent method to measure nanoscale temperature, thus representing an advance in the development of a noninvasive method for measurements with angstrom resolution.

  15. Development of a Process Signature for Manufacturing Processes with Thermal Loads

    NASA Astrophysics Data System (ADS)

    Frerichs, Friedhelm; Meyer, Heiner; Strunk, Rebecca; Kolkwitz, Benjamin; Epp, Jeremy

    2018-06-01

    The newly proposed concept of Process Signatures enables the comparison of seemingly different manufacturing processes via a process-independent approach based on the analysis of the loading condition and resulting material modification. This contribution compares the recently published results, based on numerically achieved data for the development of Process Signatures for sole surface and volume heatings without phase transformations, with the experimental data. The numerical approach applies the moving heat source theory in combination with energetic quantities. The external thermal loadings of both processes were characterized by the resulting temperature development, which correlates with a change in the residual stress state. The numerical investigations show that surface and volume heatings are interchangeable for certain parameter regimes regarding the changes in the residual stress state. Mainly, temperature gradients and thermal diffusion are responsible for the considered modifications. The applied surface- and volume-heating models are used in shallow cut grinding and induction heating, respectively. The comparison of numerical and experimental data reveals similarities, but also some systematic deviations of the residual stresses at the surface. The evaluation and final discussion support the assertion for very fast stress relaxation processes within the subsurface region. A consequence would be that the stress relaxation processes, which are not yet included in the numerical models, must be included in the Process Signatures for sole thermal impacts.

  16. Infrared thermal imaging as a method to evaluate heat loss in newborn lambs.

    PubMed

    Labeur, L; Villiers, G; Small, A H; Hinch, G N; Schmoelzl, S

    2017-12-01

    Thermal imaging technology has been identified as a potential method for non-invasive study of thermogenesis in the neonatal lamb. In comparison to measurement of the core body temperature, infrared thermography may observe thermal loss and thermogenesis linked to subcutaneous brown fat depots. This study aimed to identify a suitable method to measure heat loss in the neonatal lamb under a cold challenge. During late pregnancy (day 125), ewes were subjected to either shearing (n=15) or mock handling (sham-shorn for 2min mimicking the shearing movements) (n=15). Previous studies have shown an increase in brown adipose tissue deposition in lambs born to ewes shorn during pregnancy and we hypothesized that the shearing treatment would impact thermoregulatory capacities in newborn lambs. Lambs born to control ewes (n=14; CONTROL) and shorn ewes (n=13; SHORN) were subjected to a cold challenge of 1h duration at 4h after birth. During the cold challenge, thermography images were taken every 10min, from above, at a fixed distance from the dorsal midline. On each image, four fixed-size areas were identified (shoulder, mid loin, hips and rump) and the average and maximum temperatures of each recorded. In all lambs, body surface temperature decreased over time. Overall the SHORN lambs appeared to maintain body surface temperature better than CONTROL lambs, while CONTROL lambs appeared to have higher core temperature. At 30min post cold challenge SHORN lambs tended to have higher body surface temperatures than lambs (P=0.0474). Both average and maximum temperatures were highest at the hips. Average temperature was lowest at the shoulder (P<0.05), while maximum temperatures were lowest at both shoulder and rump (P<0.005). These results indicate that lambs born to shorn ewes maintained their radiated body surface temperature better than CONTROL lambs. In conjunction with core temperature changes under cold challenge, this insight will allow us to understand whether increased body surface temperature contributes to increased overall heat loss or whether increased body surface temperature is indeed a mechanism contributing to maintenance of core body temperature under cold challenge conditions. This study has confirmed the utility of infrared thermography images to capture and identify different levels of thermoregulatory capacity in newborn lambs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Thermodynamic and related properties of parahydrogen from the triple point to 300 K at pressures to 1000 bar

    NASA Technical Reports Server (NTRS)

    Weber, L. A.

    1975-01-01

    Compressibility measurements and thermodynamic properties data for parahydrogen were extended to higher temperatures and pressures. Results of an experimental program are presented in the form of new pressure, volume and temperature data in the temperature range 23 to 300 K at pressures up to 800 bar. Also given are tables of thermodynamic properties on isobars to 1000 bar including density, internal energy, enthalpy, entropy, specific heats at constant volume and constant pressure, velocity of sound, and surface derivatives. The accuracy of the data is discussed and comparisons are made with previous data.

  18. Transient modeling of the ground thermal conditions using satellite data in the Lena River delta, Siberia

    NASA Astrophysics Data System (ADS)

    Westermann, Sebastian; Peter, Maria; Langer, Moritz; Schwamborn, Georg; Schirrmeister, Lutz; Etzelmüller, Bernd; Boike, Julia

    2017-06-01

    Permafrost is a sensitive element of the cryosphere, but operational monitoring of the ground thermal conditions on large spatial scales is still lacking. Here, we demonstrate a remote-sensing-based scheme that is capable of estimating the transient evolution of ground temperatures and active layer thickness by means of the ground thermal model CryoGrid 2. The scheme is applied to an area of approximately 16 000 km2 in the Lena River delta (LRD) in NE Siberia for a period of 14 years. The forcing data sets at 1 km spatial and weekly temporal resolution are synthesized from satellite products and fields of meteorological variables from the ERA-Interim reanalysis. To assign spatially distributed ground thermal properties, a stratigraphic classification based on geomorphological observations and mapping is constructed, which accounts for the large-scale patterns of sediment types, ground ice and surface properties in the Lena River delta. A comparison of the model forcing to in situ measurements on Samoylov Island in the southern part of the study area yields an acceptable agreement for the purpose of ground thermal modeling, for surface temperature, snow depth, and timing of the onset and termination of the winter snow cover. The model results are compared to observations of ground temperatures and thaw depths at nine sites in the Lena River delta, suggesting that thaw depths are in most cases reproduced to within 0.1 m or less and multi-year averages of ground temperatures within 1-2 °C. Comparison of monthly average temperatures at depths of 2-3 m in five boreholes yielded an RMSE of 1.1 °C and a bias of -0.9 °C for the model results. The highest ground temperatures are calculated for grid cells close to the main river channels in the south as well as areas with sandy sediments and low organic and ice contents in the central delta, where also the largest thaw depths occur. On the other hand, the lowest temperatures are modeled for the eastern part, which is an area with low surface temperatures and snow depths. The lowest thaw depths are modeled for Yedoma permafrost featuring very high ground ice and soil organic contents in the southern parts of the delta. The comparison to in situ observations indicates that transient ground temperature modeling forced by remote-sensing data is generally capable of estimating the thermal state of permafrost (TSP) and its time evolution in the Lena River delta. The approach could hence be a first step towards remote detection of ground thermal conditions and active layer thickness in permafrost areas.

  19. Tribological properties of multifunctional coatings with Shape Memory Effect in abrasive wear

    NASA Astrophysics Data System (ADS)

    Blednova, Zh. M.; Dmitrenko, D. V.; Balaev, E. U. O.

    2018-01-01

    The article gives research results of the abrasive wear process on samples made of Steel 1045, U10 and with applied composite surface layer "Nickel-Multicomponent material with Shape Memory Effect (SME) based on TiNi". For the tests we have chosen TiNiZr, which is in the martensite state and TiNiHfCu, which is in the austenitic state at the test temperature. The formation of the surface layer was carried out by high-speed oxygen-fuel deposition in a protective atmosphere of argon. In the wear test, Al2O3 corundum powder was used as an abrasive. It is shown that the wear rate of samples with a composite surface layer of multicomponent materials with SME is significantly reduced in comparison with the base, which is explained by reversible phase transformations of the surface layer with SME. After carrying out the additional surface plastic deformation (SPD), the resistance of the laminated composition to abrasion wear has greatly enhanced, due to the reinforcing effect of the SPD. It is recommended for products working in conditions of abrasive wear and high temperatures to use the complex formation technology of the surface composition "steel-nickel-material with high-temperature SME", including preparation of the substrate surface and the deposited material, high-speed spraying in the protective atmosphere of argon, followed by SPD.

  20. Comparison of temperature change among different adhesive resin cement during polymerization process.

    PubMed

    Alkurt, Murat; Duymus, Zeynep Yesil; Gundogdu, Mustafa; Karadas, Muhammet

    2017-01-01

    The aim of this study was to assess the intra-pulpal temperature changes in adhesive resin cements during polymerization. Dentin surface was prepared with extracted human mandibular third molars. Adhesive resin cements (Panavia F 2.0, Panavia SA, and RelyX U200) were applied to the dentin surface and polymerized under IPS e.max Press restoration. K-type thermocouple wire was positioned in the pulpal chamber to measure temperature change ( n = 7). The temperature data were recorded (0.0001 sensible) and stored on a computer every 0.1 second for sixteen minutes. Differences between the baseline temperature and temperatures of various time points (2, 4, 6, 8, 10, 12, 14, and 16 minute) were determined and mean temperature changes were calculated. At various time intervals, the differences in temperature values among the adhesive resin cements were analyzed by two-way ANOVA and post-hoc Tukey honestly test (α = 0.05). Significant differences were found among the time points and resin cements ( P < 0.05). Temperature values of the Pan SA group were significantly higher than Pan F and RelyX ( P < 0.05). Result of the study on self-adhesive and self-etch adhesive resin cements exhibited a safety intra-pulpal temperature change.

  1. Direct measurements of sample heating by a laser-induced air plasma in pre-ablation spark dual-pulse laser-induced breakdown spectroscopy (LIBS).

    PubMed

    Register, Janna; Scaffidi, Jonathan; Angel, S Michael

    2012-08-01

    Direct measurements of temperature changes were made using small thermocouples (TC), placed near a laser-induced air plasma. Temperature changes up to ~500 °C were observed. From the measured temperature changes, estimates were made of the amount of heat absorbed per unit area. This allowed calculations to be made of the surface temperature, as a function of time, of a sample heated by the air plasma that is generated during orthogonal pre-ablation spark dual-pulse (DP) LIBS measurements. In separate experiments, single-pulse (SP) LIBS emission and sample ablation rate measurements were performed on nickel at sample temperatures ranging from room temperature to the maximum surface temperature that was calculated using the TC measurement results (500 °C). A small, but real sample temperature-dependent increase in both SP LIBS emission and the rate of sample ablation was found for nickel samples heated up to 500 °C. Comparison of DP LIBS emission enhancement values for bulk nickel samples at room temperature versus the enhanced SP LIBS emission and sample ablation rates observed as a function of increasing sample temperature suggests that sample heating by the laser-induced air plasma plays only a minor role in DP LIBS emission enhancement.

  2. A Comparison of Response Surface Methodology and a One-Factor-At-A-Time Approach as Calibration Techniques for the Bioplume-II Simulation Model of Contaminant Biodegradation

    DTIC Science & Technology

    1995-12-01

    Technology, 26:1404-1410 (July 1992). 4. Atlas , Ronald M. and Richard Bartha . Microbial Ecology , Fundamentals and Applica- tions (3rd Edition). Redwood... microbial metabolic activity. Leahy and Colwell (35:307) note the impact of physical factors on microbial activity. They cite research by Atlas and... Bartha observing that low temperatures inhibit microbial activity and research by Bossert and Bartha observing that higher temperatures increase activity

  3. An Automatic Cloud Mask Algorithm Based on Time Series of MODIS Measurements

    NASA Technical Reports Server (NTRS)

    Lyapustin, Alexei; Wang, Yujie; Frey, R.

    2008-01-01

    Quality of aerosol retrievals and atmospheric correction depends strongly on accuracy of the cloud mask (CM) algorithm. The heritage CM algorithms developed for AVHRR and MODIS use the latest sensor measurements of spectral reflectance and brightness temperature and perform processing at the pixel level. The algorithms are threshold-based and empirically tuned. They don't explicitly address the classical problem of cloud search, wherein the baseline clear-skies scene is defined for comparison. Here, we report on a new CM algorithm which explicitly builds and maintains a reference clear-skies image of the surface (refcm) using a time series of MODIS measurements. The new algorithm, developed as part of the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm for MODIS, relies on fact that clear-skies images of the same surface area have a common textural pattern, defined by the surface topography, boundaries of rivers and lakes, distribution of soils and vegetation etc. This pattern changes slowly given the daily rate of global Earth observations, whereas clouds introduce high-frequency random disturbances. Under clear skies, consecutive gridded images of the same surface area have a high covariance, whereas in presence of clouds covariance is usually low. This idea is central to initialization of refcm which is used to derive cloud mask in combination with spectral and brightness temperature tests. The refcm is continuously updated with the latest clear-skies MODIS measurements, thus adapting to seasonal and rapid surface changes. The algorithm is enhanced by an internal dynamic land-water-snow classification coupled with a surface change mask. An initial comparison shows that the new algorithm offers the potential to perform better than the MODIS MOD35 cloud mask in situations where the land surface is changing rapidly, and over Earth regions covered by snow and ice.

  4. A Comparison of Sea Ice Type, Sea Ice Temperature, and Snow Thickness Distributions in the Arctic Seasonal Ice Zones with the DMSP SSM/I

    NASA Technical Reports Server (NTRS)

    St.Germain, Karen; Cavalieri, Donald J.; Markus, Thorsten

    1997-01-01

    Global climate studies have shown that sea ice is a critical component in the global climate system through its effect on the ocean and atmosphere, and on the earth's radiation balance. Polar energy studies have further shown that the distribution of thin ice and open water largely controls the distribution of surface heat exchange between the ocean and atmosphere within the winter Arctic ice pack. The thickness of the ice, the depth of snow on the ice, and the temperature profile of the snow/ice composite are all important parameters in calculating surface heat fluxes. In recent years, researchers have used various combinations of DMSP SSMI channels to independently estimate the thin ice type (which is related to ice thickness), the thin ice temperature, and the depth of snow on the ice. In each case validation efforts provided encouraging results, but taken individually each algorithm gives only one piece of the information necessary to compute the energy fluxes through the ice and snow. In this paper we present a comparison of the results from each of these algorithms to provide a more comprehensive picture of the seasonal ice zone using passive microwave observations.

  5. Downscaling with a nested regional climate model in near-surface fields over the contiguous United States

    NASA Astrophysics Data System (ADS)

    Wang, Jiali; Kotamarthi, Veerabhadra R.

    2014-07-01

    The Weather Research and Forecasting (WRF) model is used for dynamic downscaling of 2.5-degree National Centers for Environmental Prediction-U.S. Department of Energy Reanalysis II (NCEP-R2) data for 1980-2010 at 12 km resolution over most of North America. The model's performance for surface air temperature and precipitation is evaluated by comparison with high-resolution observational data sets. The model's ability to add value is investigated by comparison with NCEP-R2 data and a 50 km regional climate simulation. The causes for major model bias are studied through additional sensitivity experiments with various model setup/integration approaches and physics representations. The WRF captures the main features of the spatial patterns and annual cycles of air temperature and precipitation over most of the contiguous United States. However, simulated air temperatures over the south central region and precipitation over the Great Plains and the Southwest have significant biases. Allowing longer spin-up time, reducing the nudging strength, or replacing the WRF Single-Moment six-class microphysics with Morrison microphysics reduces the bias over some subregions. However, replacing the Grell-Devenyi cumulus parameterization with Kain-Fritsch shows no improvement. The 12 km simulation does add value above the NCEP-R2 data and the 50 km simulation over mountainous and coastal zones.

  6. A Comparison of Fission Power System Options for Lunar and Mars Surface Applications

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2006-01-01

    This paper presents a comparison of reactor and power conversion design options for 50 kWe class lunar and Mars surface power applications with scaling from 25 to 200 kWe. Design concepts and integration approaches are provided for three reactor-converter combinations: gas-cooled Brayton, liquid-metal Stirling, and liquid-metal thermoelectric. The study examines the mass and performance of low temperature, stainless steel based reactors and higher temperature refractory reactors. The preferred system implementation approach uses crew-assisted assembly and in-situ radiation shielding via installation of the reactor in an excavated hole. As an alternative, self-deployable system concepts that use earth-delivered, on-board radiation shielding are evaluated. The analyses indicate that among the 50 kWe stainless steel reactor options, the liquid-metal Stirling system provides the lowest mass at about 5300 kg followed by the gas-cooled Brayton at 5700 kg and the liquid-metal thermoelectric at 8400 kg. The use of a higher temperature, refractory reactor favors the gas-cooled Brayton option with a system mass of about 4200 kg as compared to the Stirling and thermoelectric options at 4700 and 5600 kg, respectively. The self-deployed concepts with on-board shielding result in a factor of two system mass increase as compared to the in-situ shielded concepts.

  7. The use of NOAA AVHRR data for assessment of the urban heat sland effect

    USGS Publications Warehouse

    Gallo, K.P.; McNab, A. L.; Karl, Thomas R.; Brown, Jesslyn F.; Hood, J. J.; Tarpley, J.D.

    1993-01-01

    A vegetation index and a radiative surface temperature were derived from satellite data acquired at approximately 1330 LST for each of 37 cities and for their respective nearby rural regions from 28 June through 8 August 1991. Urban–rural differences for the vegetation index and the surface temperatures were computed and then compared to observed urban–rural differences in minimum air temperatures. The purpose of these comparisons was to evaluate the use of satellite data to assess the influence of the urban environment on observed minimum air temperatures (the urban heat island effect). The temporal consistency of the data, from daily data to weekly, biweekly, and monthly intervals, was also evaluated. The satellite-derived normalized difference (ND) vegetation-index data, sampled over urban and rural regions composed of a variety of land surface environments, were linearly related to the difference in observed urban and rural minimum temperatures. The relationship between the ND index and observed differences in minimum temperature was improved when analyses were restricted by elevation differences between the sample locations and when biweekly or monthly intervals were utilized. The difference in the ND index between urban and rural regions appears to be an indicator of the difference in surface properties (evaporation and heat storage capacity) between the two environments that are responsible for differences in urban and rural minimum temperatures. The urban and rural differences in the ND index explain a greater amount of the variation observed in minimum temperature differences than past analyses that utilized urban population data. The use of satellite data may contribute to a globally consistent method for analysis of urban heat island bias.

  8. A Useful Tool for Atmospheric Correction and Surface Temperature Estimation of Landsat Infrared Thermal Data

    NASA Astrophysics Data System (ADS)

    Rivalland, Vincent; Tardy, Benjamin; Huc, Mireille; Hagolle, Olivier; Marcq, Sébastien; Boulet, Gilles

    2016-04-01

    Land Surface temperature (LST) is a critical variable for studying the energy and water budgets at the Earth surface, and is a key component of many aspects of climate research and services. The Landsat program jointly carried out by NASA and USGS has been providing thermal infrared data for 40 years, but no associated LST product has been yet routinely proposed to community. To derive LST values, radiances measured at sensor-level need to be corrected for the atmospheric absorption, the atmospheric emission and the surface emissivity effect. Until now, existing LST products have been generated with multi channel methods such as the Temperature/Emissivity Separation (TES) adapted to ASTER data or the generalized split-window algorithm adapted to MODIS multispectral data. Those approaches are ill-adapted to the Landsat mono-window data specificity. The atmospheric correction methodology usually used for Landsat data requires detailed information about the state of the atmosphere. This information may be obtained from radio-sounding or model atmospheric reanalysis and is supplied to a radiative transfer model in order to estimate atmospheric parameters for a given coordinate. In this work, we present a new automatic tool dedicated to Landsat thermal data correction which improves the common atmospheric correction methodology by introducing the spatial dimension in the process. The python tool developed during this study, named LANDARTs for LANDsat Automatic Retrieval of surface Temperature, is fully automatic and provides atmospheric corrections for a whole Landsat tile. Vertical atmospheric conditions are downloaded from the ERA Interim dataset from ECMWF meteorological organization which provides them at 0.125 degrees resolution, at a global scale and with a 6-hour-time step. The atmospheric correction parameters are estimated on the atmospheric grid using the commercial software MODTRAN, then interpolated to 30m resolution. We detail the processing steps implemented in LANDARTs and propose a local and spatial validation of the LST products from Landsat dataset archive over two climatically contrasted zones: south-west France and centre of Tunisia. In both sites, long term datasets of in-situ surface temperature measurements have been compared to LST obtained for Landsat data processed by LANDARTs and filtered from clouds. This temporal comparison presents RMSE between 1.84K and 2.55K. Then, Landsat LST products are compared to ASTER kinetic surface temperature products on two synchronous dates from both zones. This comparison presents satisfactory RMSE about 2.55K with a good correlation coefficient of 0.9. Finally, a sensibility analysis to the spatial variation of parameters presents a variability reaching 2K at the Landsat image scale and confirms the improved accuracy in Landsat LST estimation linked to our spatial approach.

  9. Study on factors affecting the droplet temperature in plasma MIG welding process

    NASA Astrophysics Data System (ADS)

    Mamat, Sarizam Bin; Tashiro, Shinichi; Tanaka, Manabu; Yusoff, Mahani

    2018-04-01

    In the present study, the mechanism to control droplet temperature in the plasma MIG welding was discussed based on the measurements of the droplet temperature for a wide range of MIG currents with different plasma electrode diameters. The measurements of the droplet temperatures were conducted using a two color temperature measurement method. The droplet temperatures in the plasma MIG welding were then compared with those in the conventional MIG welding. As a result, the droplet temperature in the plasma MIG welding was found to be reduced in comparison with the conventional MIG welding under the same MIG current. Especially when the small plasma electrode diameter was used, the decrease in the droplet temperature reached maximally 500 K. Also, for a particular WFS, the droplet temperatures in the plasma MIG welding were lower than those in the conventional MIG welding. It is suggested that the use of plasma contributes to reducing the local heat input into the base metal by the droplet. The presence of the plasma surrounding the wire is considered to increase the electron density in its vicinity, resulting in the arc attachment expanding upwards along the wire surface to disperse the MIG current. This dispersion of MIG current causes a decrease in current density on the droplet surface, lowering the droplet temperature. Furthermore, dispersed MIG current also weakens the electromagnetic pinch force acting on the neck of the wire above the droplet. This leads to a larger droplet diameter with increased surface area through lower frequency of droplet detachment to decrease the MIG current density on the droplet surface, as compared to the conventional MIG welding at the same MIG current. Thus, the lower droplet temperature is caused by the reduction of heat flux into the droplet. Consequently, the mechanism to control droplet temperature in the plasma MIG welding was clarified.

  10. Good News for Borehole Climatology

    NASA Astrophysics Data System (ADS)

    Rath, Volker; Fidel Gonzalez-Rouco, J.; Goosse, Hugues

    2010-05-01

    Though the investigation of observed borehole temperatures has proved to be a valuable tool for the reconstruction of ground surface temperature histories, there are many open questions concerning the significance and accuracy of the reconstructions from these data. In particular, the temperature signal of the warming after the Last glacial Maximum (LGM) is still present in borehole temperature profiles. It influences the relatively shallow boreholes used in current paleoclimate inversions to estimate temperature changes in the last centuries. This is shown using Monte Carlo experiments on past surface temperature change, using plausible distributions for the most important parameters, i.e.,amplitude and timing of the glacial-interglacial transition, the prior average temperature, and petrophysical properties. It has been argued that the signature of the last glacial-interglacial transition could be responsible for the high amplitudes of millennial temperature reconstructions. However, in shallow boreholes the additional effect of past climate can reasonably approximated by a linear variation of temperature with depth, and thus be accommodated by a "biased" background heat flow. This is good news for borehole climate, but implies that the geological heat flow values have to be interpreted accordingly. Borehole climate reconstructions from these shallow are most probably underestimating past variability due to the diffusive character of the heat conduction process, and the smoothness constraints necessary for obtaining stable solutions of this ill-posed inverse problem. A simple correction based on subtracting an appropriate prior surface temperature history shows promising results reducing these errors considerably, also with deeper boreholes, where the heat flow signal can not be approximated linearly, and improves the comparisons with AOGCM modeling results.

  11. Infrared thermography quantitative image processing

    NASA Astrophysics Data System (ADS)

    Skouroliakou, A.; Kalatzis, I.; Kalyvas, N.; Grivas, TB

    2017-11-01

    Infrared thermography is an imaging technique that has the ability to provide a map of temperature distribution of an object’s surface. It is considered for a wide range of applications in medicine as well as in non-destructive testing procedures. One of its promising medical applications is in orthopaedics and diseases of the musculoskeletal system where temperature distribution of the body’s surface can contribute to the diagnosis and follow up of certain disorders. Although the thermographic image can give a fairly good visual estimation of distribution homogeneity and temperature pattern differences between two symmetric body parts, it is important to extract a quantitative measurement characterising temperature. Certain approaches use temperature of enantiomorphic anatomical points, or parameters extracted from a Region of Interest (ROI). A number of indices have been developed by researchers to that end. In this study a quantitative approach in thermographic image processing is attempted based on extracting different indices for symmetric ROIs on thermograms of the lower back area of scoliotic patients. The indices are based on first order statistical parameters describing temperature distribution. Analysis and comparison of these indices result in evaluating the temperature distribution pattern of the back trunk expected in healthy, regarding spinal problems, subjects.

  12. Mapping surface temperature variability on a debris-covered glacier with an unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Kraaijenbrink, P. D. A.; Litt, M.; Shea, J. M.; Treichler, D.; Koch, I.; Immerzeel, W.

    2016-12-01

    Debris-covered glacier tongues cover about 12% of the glacier surface in high mountain Asia and much of the melt water is generated from those glaciers. A thin layer of supraglacial debris enhances ice melt by lowering the albedo, while thicker debris insulates the ice and reduces melt. Data on debris thickness is therefore an important input for energy balance modelling of these glaciers. Thermal infrared remote sensing can be used to estimate the debris thickness by using an inverse relation between debris surface temperature and thickness. To date this has only been performed using coarse spaceborne thermal imagery, which cannot reveal small scale variation in debris thickness and its influence on the heterogeneous melt patterns on debris-covered glaciers. We deployed an unmanned aerial vehicle mounted with a thermal infrared sensor over the debris-covered Lirung Glacier in Nepal three times in May 2016 to reveal the spatial and temporal variability of surface temperature in high detail. The UAV survey matched a Landsat 8 overpass to be able to make a comparison with spaceborne thermal imagery. The UAV-acquired data is processed using Structure from Motion photogrammetry and georeferenced using DGPS-measured ground control points. Different surface types were distinguished by using data acquired by an additional optical UAV survey in order to correct for differences in surface emissivity. In situ temperature measurements and incoming solar radiation data are used to calibrate the temperature calculations. Debris thicknesses derived are validated by thickness measurements of a ground penetrating radar. Preliminary analysis reveals a spatially highly heterogeneous pattern of surface temperature over Lirung Glacier with a range in temperature of over 40 K. At dawn the debris is relatively cold and its temperature is influenced strongly by the ice underneath. Exposed to the high solar radiation at the high altitude the debris layer heats up very rapidly as sunrise progresses, and the influence of ice on debris surface temperature reduces considerably. Many patterns are revealed that cannot be detected from the Landsat data, both on small spatial and temporal scales. The high detail the UAV-borne thermal imagery provides in time and space has great potential in the research of debris cover and its characteristics.

  13. Morning Martian Atmospheric Temperature Gradients and Fluctuations Observed by Mars Pathfinder

    NASA Technical Reports Server (NTRS)

    Mihalov, John D.; Haberle, R. M.; Murphy, J. R.; Seiff, A.; Wilson, G. R.

    1999-01-01

    We have studied the most prominent atmospheric temperature fluctuations observed during Martian mornings by Mars Pathfinder and have concluded, based on comparisons with wind directions, that they appear to be a result of atmospheric heating associated with the Lander spacecraft. Also, we have examined the morning surface layer temperature lapse rates, which are found to decrease as autumn approaches at the Pathfinder location, and which have mean (and median) values as large as 7.3 K/m in the earlier portions of the Pathfinder landed mission. It is plausible that brief isolated periods with gradients twice as steep are associated with atmospheric heating adjacent to Lander air bag material. In addition, we have calculated the gradient with height of the structure function obtained with Mars Pathfinder, for Mars' atmospheric temperatures measured within about 1.3 m from the surface, assuming a power law dependence, and have found that these gradients superficially resemble those reported for the upper region of the terrestrial stable boundary layer.

  14. Stress studies in EFG

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Stress distributions were calculated for a creep law to predict a rate of plastic deformation. The expected reduction in stresses is obtained. Improved schemes for calculating growth system temperature distributions were evaluated. Temperature field modeling examined the possibility of using horizontal temperature gradients to influence stress distribution in ribbon. The defect structure of 10 cm wide ribbon grown in the cartridge system was examined. A new feature is identified from an examination of cross sectional micrographs. It consists of high density dislocation bands extending through the ribbon thickness. A four point bending apparatus was constructed for high temperature study of the creep response of silicon, to be used to generate defects for comparison with as grown defects in ribbon. The feasibility of laser interferometric techniques for sheet residual stress distribution measurement is examined. The mathematical formalism for calculating residual stress from changes in surface topology caused by an applied stress in a rectangular specimen was developed, and the system for laser interferometric measurement to obtain surface topology data was tested on CZ silicon.

  15. Cryogenic Temperature-Gradient Foam/Substrate Tensile Tester

    NASA Technical Reports Server (NTRS)

    Vailhe, Christophe

    2003-01-01

    The figure shows a fixture for measuring the tensile strength of the bond between an aluminum substrate and a thermally insulating polymeric foam. The specimen is meant to be representative of insulating foam on an aluminum tank that holds a cryogenic liquid. Prior to the development of this fixture, tensile tests of this type were performed on foam/substrate specimens immersed in cryogenic fluids. Because the specimens were cooled to cryogenic temperatures throughout their thicknesses, they tended to become brittle and to fracture at loads below true bond tensile strengths. The present fixture is equipped to provide a thermal gradient from cryogenic temperature at the foam/substrate interface to room temperature on the opposite foam surface. The fixture includes an upper aluminum block at room temperature and a lower aluminum block cooled to -423 F (approx. -253 C) by use of liquid helium. In preparation for a test, the metal outer surface (the lower surface) of a foam/substrate specimen is bonded to the lower block and the foam outer surface (the upper surface) of the specimen is bonded to the upper block. In comparison with the through-the-thickness cooling of immersion testing, the cryogenic-to-room-temperature thermal gradient that exists during testing on this fixture is a more realistic approximation of the operational thermal condition of sprayed insulating foam on a tank of cryogenic liquid. Hence, tensile tests performed on this fixture provide more accurate indications of operational bond tensile strengths. In addition, the introduction of the present fixture reduces the cost of testing by reducing the amount of cryogenic liquid consumed and the time needed to cool a specimen.

  16. Atlantic Meridional Overturning Circulation Influence on North Atlantic Sector Surface Air Temperature and its Predictability in the Kiel Climate Model

    NASA Astrophysics Data System (ADS)

    Latif, M.

    2017-12-01

    We investigate the influence of the Atlantic Meridional Overturning Circulation (AMOC) on the North Atlantic sector surface air temperature (SAT) in two multi-millennial control integrations of the Kiel Climate Model (KCM). One model version employs a freshwater flux correction over the North Atlantic, while the other does not. A clear influence of the AMOC on North Atlantic sector SAT only is simulated in the corrected model that depicts much reduced upper ocean salinity and temperature biases in comparison to the uncorrected model. Further, the model with much reduced biases depicts significantly enhanced multiyear SAT predictability in the North Atlantic sector relative to the uncorrected model. The enhanced SAT predictability in the corrected model is due to a stronger and more variable AMOC and its enhanced influence on North Atlantic sea surface temperature (SST). Results obtained from preindustrial control integrations of models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) support the findings obtained from the KCM: models with large North Atlantic biases tend to have a weak AMOC influence on SST and exhibit a smaller SAT predictability over the North Atlantic sector.

  17. Glass transition in thin supported polystyrene films probed by temperature-modulated ellipsometry in vacuum.

    PubMed

    Efremov, Mikhail Yu; Kiyanova, Anna V; Last, Julie; Soofi, Shauheen S; Thode, Christopher; Nealey, Paul F

    2012-08-01

    Glass transition in thin (1-200 nm thick) spin-cast polystyrene films on silicon surfaces is probed by ellipsometry in a controlled vacuum environment. A temperature-modulated modification of the method is used alongside a traditional linear temperature scan. A clear glass transition is detected in films with thicknesses as low as 1-2 nm. The glass transition temperature (T(g)) shows no substantial dependence on thickness for coatings greater than 20 nm. Thinner films demonstrate moderate T(g) depression achieving 18 K for thicknesses 4-7 nm. Less than 4 nm thick samples are excluded from the T(g) comparison due to significant thickness nonuniformity (surface roughness). The transition in 10-20 nm thick films demonstrates excessive broadening. For some samples, the broadened transition is clearly resolved into two separate transitions. The thickness dependence of the glass transition can be well described by a simple 2-layer model. It is also shown that T(g) depression in 5 nm thick films is not sensitive to a wide range of experimental factors including molecular weight characteristics of the polymer, specifications of solvent used for spin casting, substrate composition, and pretreatment of the substrate surface.

  18. The Transport Properties of Activated Carbon Fibers

    DOE R&D Accomplishments Database

    di Vittorio, S. L.; Dresselhaus, M. S.; Endo, M.; Issi, J-P.; Piraux, L.

    1990-07-01

    The transport properties of activated isotropic pitch-based carbon fibers with surface area 1000 m{sup 2}/g have been investigated. We report preliminary results on the electrical conductivity, the magnetoresistance, the thermal conductivity and the thermopower of these fibers as a function of temperature. Comparisons are made to transport properties of other disordered carbons.

  19. Comparing the model-simulated global warming signal to observations using empirical estimates of unforced noise

    USDA-ARS?s Scientific Manuscript database

    The comparison of observed global mean surface air temperature (GMT) change to the mean change simulated by climate models has received much attention. For a given global warming signal produced by a climate model ensemble, there exists an envelope of GMT values representing the range of possible un...

  20. Analysis of permafrost depths on Mars

    NASA Technical Reports Server (NTRS)

    Crescenti, G. H.

    1984-01-01

    The Martian surface thermal characteristics as they effect the thickness and distribution of the permafrost are discussed. Parameters such as temperature mean, maximum, and minimum, heat flow values, and damping depths are derived and applied to a model of the Martian cryosphere. A comparison is made between the permafrost layers of Earth and Mars.

  1. Study of variability of permittivity and its mapping over lunar surface and subsurface using multisensors datasets

    NASA Astrophysics Data System (ADS)

    Calla, O. P. N.; Mathur, Shubhra; Gadri, Kishan Lal; Jangid, Monika

    2016-12-01

    In the present paper, permittivity maps of equatorial lunar surface are generated using brightness temperature (TB) data obtained from Microwave Radiometer (MRM) of Chang'e-1 and physical temperature (TP) data obtained from Diviner of Lunar Reconnaissance Orbiter (LRO). Here, permittivity mapping is not carried out above 60° latitudes towards the lunar poles due to large anomaly in the physical temperature obtained from the Diviner. Microwave frequencies, which are used to generate these maps are 3 GHz, 7.8 GHz, 19.35 GHz and 37 GHz. Permittivity values are simulated using TB values at these four frequencies. Here, weighted average of physical temperature obtained from Diviner are used to compute permittivity at each microwave frequencies. Longer wavelengths of microwave signals give information of more deeper layers of the lunar surface as compared to smaller wavelength. Initially, microwave emissivity is estimated using TB values from MRM and physical temperature (TP) from Diviner. From estimated emissivity the real part of permittivity (ε), is calculated using Fresnel equations. The permittivity maps of equatorial lunar surface is generated. The simulated permittivity values are normalized with respect to density for easy comparison of simulated permittivity values with the permittivity values of Apollo samples as well as with the permittivity values of Terrestrial Analogue of Lunar Soil (TALS) JSC-1A. Lower value of dielectric constant (ε‧) indicates that the corresponding lunar surface is smooth and doesn't have rough rocky terrain. Thus a future lunar astronaut can use these data to decide proper landing site for future lunar missions. The results of this paper will serve as input to future exploration of lunar surface.

  2. Sulfuric acid on Europa and the radiolytic sulfur cycle.

    PubMed

    Carlson, R W; Johnson, R E; Anderson, M S

    1999-10-01

    A comparison of laboratory spectra with Galileo data indicates that hydrated sulfuric acid is present and is a major component of Europa's surface. In addition, this moon's visually dark surface material, which spatially correlates with the sulfuric acid concentration, is identified as radiolytically altered sulfur polymers. Radiolysis of the surface by magnetospheric plasma bombardment continuously cycles sulfur between three forms: sulfuric acid, sulfur dioxide, and sulfur polymers, with sulfuric acid being about 50 times as abundant as the other forms. Enhanced sulfuric acid concentrations are found in Europa's geologically young terrains, suggesting that low-temperature, liquid sulfuric acid may influence geological processes.

  3. Rotating Flow of Magnetite-Water Nanofluid over a Stretching Surface Inspired by Non-Linear Thermal Radiation.

    PubMed

    Mustafa, M; Mushtaq, A; Hayat, T; Alsaedi, A

    2016-01-01

    Present study explores the MHD three-dimensional rotating flow and heat transfer of ferrofluid induced by a radiative surface. The base fluid is considered as water with magnetite-Fe3O4 nanoparticles. Novel concept of non-linear radiative heat flux is considered which produces a non-linear energy equation in temperature field. Conventional transformations are employed to obtain the self-similar form of the governing differential system. The arising system involves an interesting temperature ratio parameter which is an indicator of small/large temperature differences in the flow. Numerical simulations with high precision are determined by well-known shooting approach. Both uniform stretching and rotation have significant impact on the solutions. The variation in velocity components with the nanoparticle volume fraction is non-monotonic. Local Nusselt number in Fe3O4-water ferrofluid is larger in comparison to the pure fluid even at low particle concentration.

  4. Studies of the micromorphology of sputtered TiN thin films by autocorrelation techniques

    NASA Astrophysics Data System (ADS)

    Smagoń, Kamil; Stach, Sebastian; Ţălu, Ştefan; Arman, Ali; Achour, Amine; Luna, Carlos; Ghobadi, Nader; Mardani, Mohsen; Hafezi, Fatemeh; Ahmadpourian, Azin; Ganji, Mohsen; Grayeli Korpi, Alireza

    2017-12-01

    Autocorrelation techniques are crucial tools for the study of the micromorphology of surfaces: They provide the description of anisotropic properties and the identification of repeated patterns on the surface, facilitating the comparison of samples. In the present investigation, some fundamental concepts of these techniques including the autocorrelation function and autocorrelation length have been reviewed and applied in the study of titanium nitride thin films by atomic force microscopy (AFM). The studied samples were grown on glass substrates by reactive magnetron sputtering at different substrate temperatures (from 25 {}°C to 400 {}°C , and their micromorphology was studied by AFM. The obtained AFM data were analyzed using MountainsMap Premium software obtaining the correlation function, the structure of isotropy and the spatial parameters according to ISO 25178 and EUR 15178N. These studies indicated that the substrate temperature during the deposition process is an important parameter to modify the micromorphology of sputtered TiN thin films and to find optimized surface properties. For instance, the autocorrelation length exhibited a maximum value for the sample prepared at a substrate temperature of 300 {}°C , and the sample obtained at 400 {}°C presented a maximum angle of the direction of the surface structure.

  5. Surface temperatures in New York City: Geospatial data enables the accurate prediction of radiative heat transfer.

    PubMed

    Ghandehari, Masoud; Emig, Thorsten; Aghamohamadnia, Milad

    2018-02-02

    Despite decades of research seeking to derive the urban energy budget, the dynamics of thermal exchange in the densely constructed environment is not yet well understood. Using New York City as a study site, we present a novel hybrid experimental-computational approach for a better understanding of the radiative heat transfer in complex urban environments. The aim of this work is to contribute to the calculation of the urban energy budget, particularly the stored energy. We will focus our attention on surface thermal radiation. Improved understanding of urban thermodynamics incorporating the interaction of various bodies, particularly in high rise cities, will have implications on energy conservation at the building scale, and for human health and comfort at the urban scale. The platform presented is based on longwave hyperspectral imaging of nearly 100 blocks of Manhattan, in addition to a geospatial radiosity model that describes the collective radiative heat exchange between multiple buildings. Despite assumptions in surface emissivity and thermal conductivity of buildings walls, the close comparison of temperatures derived from measurements and computations is promising. Results imply that the presented geospatial thermodynamic model of urban structures can enable accurate and high resolution analysis of instantaneous urban surface temperatures.

  6. Thermal Desorption Analysis of Effective Specific Soil Surface Area

    NASA Astrophysics Data System (ADS)

    Smagin, A. V.; Bashina, A. S.; Klyueva, V. V.; Kubareva, A. V.

    2017-12-01

    A new method of assessing the effective specific surface area based on the successive thermal desorption of water vapor at different temperature stages of sample drying is analyzed in comparison with the conventional static adsorption method using a representative set of soil samples of different genesis and degree of dispersion. The theory of the method uses the fundamental relationship between the thermodynamic water potential (Ψ) and the absolute temperature of drying ( T): Ψ = Q - aT, where Q is the specific heat of vaporization, and a is the physically based parameter related to the initial temperature and relative humidity of the air in the external thermodynamic reservoir (laboratory). From gravimetric data on the mass fraction of water ( W) and the Ψ value, Polyanyi potential curves ( W(Ψ)) for the studied samples are plotted. Water sorption isotherms are then calculated, from which the capacity of monolayer and the target effective specific surface area are determined using the BET theory. Comparative analysis shows that the new method well agrees with the conventional estimation of the degree of dispersion by the BET and Kutilek methods in a wide range of specific surface area values between 10 and 250 m2/g.

  7. Comparison of S-NPP VIIRS land surface temperature with SEVIRI

    NASA Astrophysics Data System (ADS)

    Ermida, Sofia L.; Trigo, Isabel F.; Liu, Yuling; Yu, Yunyue

    2017-04-01

    Land surface temperature (LST) is one of the key parameters in the physics of land surface processes. LST can be globally measured from space by infrared radiometers, with a wide range of spatial and temporal resolutions depending on the sensor design and orbit. The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument is the primary sensor onboard the Suomi National Polar-orbiting Partnership (S-NPP) satellite, which was launched in recent years. VIIRS was designed to improve upon the capabilities of the operational AVHRR and provide observation continuity with MODIS. A Split Window approach has been applied to the VIIRS moderate resolution channels M15 and M16 centered at 10.76 µm and 12.01 µm, respectively. VIIRS has a swath of 3000 km and a spatial resolution of 745m (nadir) up to about 1600 m (limb view), leading to relatively high re-visiting frequency. LST is retrieved for a wide range of viewing angles along the VIIRS path, allowing the study of the variability of LST with viewing geometry for various land cover types. Here we present a comparison of VIRS LST data with data provided by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on-board EUMETSAT's Meteosat Second Generation (MSG). SEVIRI-based LST is available every 15-minute, but at coarser spatial resolution (3-km at nadir) when compared to VIIRS LST. The analysis is performed over 6 areas over the SEVIRI disk characterized by different surface conditions. VIIRS has generally slightly warmer night-time LST compared with SEVIRI, with differences smaller than 2K. Larger differences are found during daytime, with VIIRS presenting overall lower LST values up to 5K. These differences are also analysed taking into account the surface type, view zenith angle (VZA) and topography. As seen in previous comparison studies, high VZA and elevation values are associated to higher discrepancies of the LST products.

  8. Comparison of surface temperature in 13-lined ground squirrel (Spermophilus tridecimlineatus) and yellow-bellied marmot (Marmota flaviventris) during arousal from hibernation.

    PubMed

    Phillips, P K; Heath, J E

    2004-08-01

    Surface temperatures (Ts) of eight 13-lined ground squirrels and seven yellow-bellied marmots were measured during arousal from hibernation using infrared thermography (IRT) and recorded on videotape. Animals aroused normally in 5 degrees C cold rooms. Body temperatures were recorded during arousal using both cheek pouch and interscapular temperature probes. Warming rate in arousal was exponential. Mean mass specific warming rates show the squirrels warm faster (69.76 degrees C/h/kg) than the marmots (4.49 degrees C/h/kg). Surface temperatures (Ts) for 11 regions were measured every few minutes during arousal. The smaller ground squirrel shows the ability to perfuse distal regions without compromising rise in deep body temperature (Tb). All squirrel Ts's remained low as Tb rose to 18 degrees C, at which point, eyes opened, squirrels became more active and all Ts's rose parallel to Tb. Marmot Ts remained low as Tb rose initially. Each marmot showed a plateau phase where Tb remained constant (mean Tb 20.3+/-1.0 degrees C, duration 9.4+/-4.1 min) during which time all Ts's rose, and then remained relatively constant as Tb again began to rise. An anterior to posterior Ts gradient was evident in the ground squirrel, both body and feet. This gradient was only evident in the feet of the marmots.

  9. Subsurface Thermal and Hydrological Changes Between a Forested and a Clear-Cut Site in the Oregon Cascades: Observations and Models

    NASA Astrophysics Data System (ADS)

    Davis, M. G.; Harris, R. N.; Chapman, D. S.

    2013-12-01

    We report a comparison of temperature and related observations between a set of paired meteorological stations at the Soapgrass Mountain site, Santiam Pass, Cascades Mountains, Oregon, USA. This site contains two separate meteorological towers; one under the old-growth coniferous forest canopy and the other in a nearby forest opening that was clear cut. The open area has warmer air and soil temperatures and receives greater amounts of incoming radiation. These conditions are contrasted with the muted conditions under the forest canopy. A comparison of the sites shows that between 2000 and 2004, differences in air temperature decrease from 1.7 °C to 1.1 °C. Ground temperature differences are nearly cut in half in the leaf litter from 2.8 °C to 1.5 °C over the same time period. We link this change directly to the change in incoming radiation, with an observed decrease from 295 μmol m-2 sec-1 to 233 μmol m-2 sec-1, that is a result of the forest regrowth at the open area site. Subsurface temperatures are reproducible at the open area site using the Noah land surface model, but larger discrepancies exist at the mature forest site. At the mature forest site, the incoming solar radiation is too low to reproduce the observations using the Noah land surface model. Using the incoming solar radiation from the open area allows for much better agreement between the Noah model results and the observations.

  10. Measurement of UO2 surface oxidation using grazing-incidence x-ray diffraction: Implications for nuclear forensics

    NASA Astrophysics Data System (ADS)

    Tracy, Cameron L.; Chen, Chien-Hung; Park, Sulgiye; Davisson, M. Lee; Ewing, Rodney C.

    2018-04-01

    Nuclear forensics involves determination of the origin and history of interdicted nuclear materials based on the detection of signatures associated with their production and trafficking. The surface oxidation undergone by UO2 when exposed to air is a potential signature of its atmospheric exposure during handling and transport. To assess the sensitivity of this oxidation to atmospheric parameters, surface sensitive grazing-incidence x-ray diffraction (GIXRD) measurements were performed on UO2 samples exposed to air of varying relative humidity (34%, 56%, and 95% RH) and temperature (room temperature, 50 °C, and 100 °C). Near-surface unit cell contraction was observed following exposure, indicating oxidation of the surface and accompanying reduction of the uranium cation ionic radii. The extent of unit cell contraction provides a measure of the extent of oxidation, allowing for comparison of the effects of various exposure conditions. No clear influence of relative humidity on the extent of oxidation was observed, with samples exhibiting similar degrees of unit cell contraction at all relative humidities investigated. In contrast, the thickness of the oxidized layers increased substantially with increasing temperature, such that differences on the order of 10 °C yielded readily observable crystallographic signatures of the exposure conditions.

  11. Linking the Local Climate Zones and Land Surface Temperature to Investigate the Surface Urban Heat Island, a Case Study of San Antonio, Texas, U.S.

    NASA Astrophysics Data System (ADS)

    Zhao, Chunhong

    2018-04-01

    The Local Climate Zones (LCZs) concept was initiated in 2012 to improve the documentation of Urban Heat Island (UHI) observations. Despite the indispensable role and initial aim of LCZs concept in metadata reporting for atmospheric UHI research, its role in surface UHI investigation also needs to be emphasized. This study incorporated LCZs concept to study surface UHI effect for San Antonio, Texas. LCZ map was developed by a GIS-based LCZs classification scheme with the aid of airborne Lidar dataset and other freely available GIS data. Then, the summer LST was calculated based Landsat imagery, which was used to analyse the relations between LST and LCZs and the statistical significance of the differences of LST among the typical LCZs, in order to test if LCZs are able to efficiently facilitate SUHI investigation. The linkage of LCZs and land surface temperature (LST) indicated that the LCZs mapping can be used to compare and investigate the SUHI. Most of the pairs of LCZs illustrated significant differences in average LSTs with considerable significance. The intra-urban temperature comparison among different urban classes contributes to investigate the influence of heterogeneous urban morphology on local climate formation.

  12. A comparison of urban heat islands mapped using skin temperature, air temperature, and apparent temperature (Humidex), for the greater Vancouver area.

    PubMed

    Ho, Hung Chak; Knudby, Anders; Xu, Yongming; Hodul, Matus; Aminipouri, Mehdi

    2016-02-15

    Apparent temperature is more closely related to mortality during extreme heat events than other temperature variables, yet spatial epidemiology studies typically use skin temperature (also known as land surface temperature) to quantify heat exposure because it is relatively easy to map from satellite data. An empirical approach to map apparent temperature at the neighborhood scale, which relies on publicly available weather station observations and spatial data layers combined in a random forest regression model, was demonstrated for greater Vancouver, Canada. Model errors were acceptable (cross-validated RMSE=2.04 °C) and the resulting map of apparent temperature, calibrated for a typical hot summer day, corresponded well with past temperature research in the area. A comparison with field measurements as well as similar maps of skin temperature and air temperature revealed that skin temperature was poorly correlated with both air temperature (R(2)=0.38) and apparent temperature (R(2)=0.39). While the latter two were more similar (R(2)=0.87), apparent temperature was predicted to exceed air temperature by more than 5 °C in several urban areas as well as around the confluence of the Pitt and Fraser rivers. We conclude that skin temperature is not a suitable proxy for human heat exposure, and that spatial epidemiology studies could benefit from mapping apparent temperature, using an approach similar to the one reported here, to better quantify differences in heat exposure that exist across an urban landscape. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Variability of surface temperature in agricultural fields of central California

    NASA Technical Reports Server (NTRS)

    Hatfield, J. L.; Millard, J. P.; Goettelman, R. C.

    1982-01-01

    In an attempt to evaluate the relationship between hand-held infrared thermometers and aircraft thermal scanners in near-level terrain and to quantify the variability of surface temperatures within individual fields, ground-based and aircraft thermal sensor measurements were made along a 50-km transect on 3 May 1979 and a 20-km transect on 7 August 1980. These comparisons were made on fields near Davis, California. Agreement was within 1 C for fields covered with vegetation and 3.6 C for bare, dry fields. The variability within fields was larger for bare, dry fields than for vegetatively covered fields. In 1980, with improvements in the collection of ground truth data, the agreement was within 1 C for a variety of fields.

  14. The along track scanning radiometer - an analysis of coincident ship and satellite measurements

    NASA Astrophysics Data System (ADS)

    Barton, I. J.; Prata, A. J.; Llewellyn-Jones, D. T.

    1993-05-01

    Following the successful launch of the ERS-1 satellite in July 1991 we have undertaken several geophysical validation cruises in the Coral Sea. The prime aim of these cruises was to compare the sea surface temperature (SST) derived from the Along Track Scanning Radiometer (ATSR) with that measured using precision radiometers mounted on the ships. On most occasions when simultaneous satellite and ship measurements were taken we also launched a radiosonde from one of the research vessels. The results suggest that the ATSR is able to measure the ``skin'' temperature of the sea surface with an accuracy suitable for climate research applications. A case study comparison between the AVHRR and ATSR SST products will also be presented.

  15. Recent Climate Variability in Antarctica from Satellite-derived Temperature Data

    NASA Technical Reports Server (NTRS)

    Schneider, David P.; Steig, Eric J.; Comiso, Josefino C.

    2004-01-01

    Recent Antarctic climate variability on month-to-month to interannual time scales is assessed through joint analysis of surface temperatures from satellite thermal infrared observations (T(sub IR)) and passive microwave brightness temperatures (T(sub B)). Although Tw data are limited to clear-sky conditions and T(sub B) data are a product of the temperature and emissivity of the upper approx. 1m of snow, the two data sets share significant covariance. This covariance is largely explained by three empirical modes, which illustrate the spatial and temporal variability of Antarctic surface temperatures. T(sub B) variations are damped compared to TIR variations, as determined by the period of the temperature forcing and the microwave emission depth; however, microwave emissivity does not vary significantly in time. Comparison of the temperature modes with Southern Hemisphere (SH) 500-hPa geopotential height anomalies demonstrates that Antarctic temperature anomalies are predominantly controlled by the principal patterns of SH atmospheric circulation. The leading surface temperature mode strongly correlates with the Southern Annular Mode (SAM) in geopotential height. The second temperature mode reflects the combined influences of the zonal wavenumber-3 and Pacific South American (PSA) patterns in 500-hPa height on month-to-month timescales. ENSO variability projects onto this mode on interannual timescales, but is not by itself a good predictor of Antarctic temperature anomalies. The third temperature mode explains winter warming trends, which may be caused by blocking events, over a large region of the East Antarctic plateau. These results help to place recent climate changes in the context of Antarctica's background climate variability and will aid in the interpretation of ice core paleoclimate records.

  16. Turbulent boundary layer on a full-coverage film-cooled surface: An experimental heat transfer study with normal injection

    NASA Technical Reports Server (NTRS)

    Choe, H.; Kays, W. M.; Moffat, R. J.

    1976-01-01

    Heat transfer behavior was studied in a turbulent boundary layer with full-coverage film cooling through an array of discrete holes and with injection normal to the wall surface. Stanton numbers were measured for a staggered hole pattern with pitch-to-diameter ratios of 5 and 10, an injection mass flux ratio range of 0.1 to 1.0, and a range of Reynolds number 170 thousand to 5 million. Air was used as the working fluid with the mainstream velocity varied from .14 to 33.5 m/sec (30 to 110 ft/sec). The data were taken for secondary injection temperatures equal to the wall temperature and also equal to the mainstream temperature. By use of linear superposition theory, the data may be used to obtain Stanton number as a continuous function of the injectant temperature. The heat transfer coefficient is defined on the basis of a mainstream-to-wall temperature difference. This difinition permits direct comparison of performance between film cooling and transpiration cooling.

  17. The role of silver in self-lubricating coatings for use at extreme temperatures

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.

    1985-01-01

    The advantages and disadvantages of elemental silver as a tribological material are discussed. It is demonstrated that the relatively high melting point of 961 deg C, softness, marked plasticity, and thermochemical stability of silver combine to make this metal useful in thin film solid lubricant coatings over a wide temperature range. Disadvantages of silver during sliding, except when used as a thin film, are shown to be gross ploughing due to plastic deformation under load with associated high friction and excessive transfer to counterface surfaces. This transfer generates an irregular surface topography with consequent undesirable changes in bearing clearance distribution. Research to overcome these disadvantages of element silver is described. A comparison is made of the tribological behavior of pure silver with that of silver formulated with other metals and high-temperature solid lubricants. The composite materials are prepared by co-depositing the powdered components with an airbrush followed by furnace heat treatment or by plasma-spraying. Composite coatings were formulated which are shown to be self-lubricating over repeated, temperature cycles from low temperature to about 900 deg C.

  18. The use of silver in self-lubricating coatings for extreme temperatures

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.

    1986-01-01

    The advantages and disadvantages of elemental silver as a tribological material are discussed. It is demonstrated that the relatively high melting point of 961 deg C, softness, marked plasticity, and thermochemical stability of silver combine to make this metal useful in thin film solid lubricant coatings over a wide temperature range. Disadvantages of silver during sliding, except when used as a thin film, are shown to be gross ploughing due to plastic deformation under load with associated high friction and excessive transfer to counterface surfaces. This transfer generates an irregular surface topography with consequent undesirable changes in bearing clearance distribution. Research to overcome these disadvantages of element silver is described. A comparison is made of the tribological behavior of pure silver with that of silver formulated with other metals and high-temperature solid lubricants. The composite materials are prepared by co-depositing the powdered components with an airbrush followed by furnace heat treatment or by plasma-spraying. Composite coatings were formulated which are shown to be self-lubricating over repeated, temperature cycles from low temperature to about 900 deg C.

  19. Development, Testing, and Application of a Coupled Hydrodynamic Surface-Water/Groundwater Model (FTLOADDS) with Heat and Salinity Transport in the Ten Thousand Islands/Picayune Strand Restoration Project Area, Florida

    USGS Publications Warehouse

    Swain, Eric D.; Decker, Jeremy D.

    2009-01-01

    A numerical model application was developed for the coastal area inland of the Ten Thousand Islands (TTI) in southwestern Florida using the Flow and Transport in a Linked Overland/Aquifer Density-Dependent System (FTLOADDS) model. This model couples a two-dimensional dynamic surface-water model with a three-dimensional groundwater model, and has been applied to several locations in southern Florida. The model application solves equations for salt transport in groundwater and surface water, and also simulates surface-water temperature using a newly enhanced heat transport algorithm. One of the purposes of the TTI application is to simulate hydrologic factors that relate to habitat suitability for the West Indian Manatee. Both salinity and temperature have been shown to be important factors for manatee survival. The inland area of the TTI domain is the location of the Picayune Strand Restoration Project, which is designed to restore predevelopment hydrology through the filling and plugging of canals, construction of spreader channels, and the construction of levees and pump stations. The effects of these changes are simulated to determine their effects on manatee habitat. The TTI application utilizes a large amount of input data for both surface-water and groundwater flow simulations. These data include topography, frictional resistance, atmospheric data including rainfall and air temperature, aquifer properties, and boundary conditions for tidal levels, inflows, groundwater heads, and salinities. Calibration was achieved by adjusting the parameters having the largest uncertainty: surface-water inflows, the surface-water transport dispersion coefficient, and evapotranspiration. A sensitivity analysis did not indicate that further parameter changes would yield an overall improvement in simulation results. The agreement between field data from GPS-tracked manatees and TTI application results demonstrates that the model can predict the salinity and temperature fluctuations which affect manatee behavior. Comparison of the existing conditions simulation with the simulation incorporating restoration changes indicated that the restoration would increase the period of inundation for most of the coastal wetlands. Generally, surface-water salinity was lowered by restoration changes in most of the wetlands areas, especially during the early dry season. However, the opposite pattern was observed in the primary canal habitat for manatees, namely, the Port of the Islands. Salinities at this location tended to be moderately elevated during the dry season, and unchanged during the wet season. Water temperatures were in close agreement between the existing conditions and restoration simulations, although minimum temperatures at the Port of the Islands were slightly higher in the restoration simulation as a result of the additional surface-water ponding and warming that occurs in adjacent wetlands. The TTI application output was used to generate salinity and temperature time series for comparison to manatee field tracking data and an individually-based manatee-behavior model. Overlaying field data with salinity and temperature results from the TTI application reflects the effect of warm water availability and the periodic need for low-salinity drinking water on manatee movements. The manatee-behavior model uses the TTI application data at specific model nodes along the main manatee travel corridors to determine manatee migration patterns. The differences between the existing conditions and restoration scenarios can then be compared for manatee refugia. The TTI application can be used to test a variety of hydrologic conditions and their effect on important criteria.

  20. Influence of ultraviolet irradiation treatment on porcelain bond strength of titanium surfaces.

    PubMed

    Kumasaka, Tomonari; Ohno, Akinori; Hori, Norio; Hoshi, Noriyuki; Maruo, Katsuichiro; Kuwabara, Atsushi; Seimiya, Kazuhide; Toyoda, Minoru; Kimoto, Katsuhiko

    2018-01-26

    To determine the effect of titanium (Ti) surface modification by ultraviolet irradiation (UVI) on the bond strength between Ti and porcelain. Grade 2 Ti plates were allotted to five groups: sandblasted (SA), 15 min UVI (UV), SA+5 min UVI (SA+UV5), SA+10 min UVI (SA+UV10), and SA+15 min UVI (SA+UV15). After surface treatment, porcelain was added. A precious metal (MC) was used for comparison with Ti. The effects of 24-h storage at room temperature versus thermal cycling only at 5 and 55°C in water were evaluated. Subsequently, the tensile strength of each sample was tested. Data were analyzed using one-way analysis of variance and the Tukey test. In both the room temperature and thermal cycling groups, the MC and SA+15 min UVI samples showed significantly greater bond strengths than the other samples (p<0.05). UVI processing efficiently increases the bond strength between porcelain and the Ti surface.

  1. Can we define an asymptotic value for the ice active surface site density for heterogeneous ice nucleation?

    NASA Astrophysics Data System (ADS)

    Niedermeier, Dennis; Augustin-Bauditz, Stefanie; Hartmann, Susan; Wex, Heike; Ignatius, Karoliina; Stratmann, Frank

    2015-05-01

    The immersion freezing behavior of droplets containing size-segregated, monodisperse feldspar particles was investigated. For all particle sizes investigated, a leveling off of the frozen droplet fraction was observed reaching a plateau within the heterogeneous freezing temperature regime (T >- 38°C). The frozen fraction in the plateau region was proportional to the particle surface area. Based on these findings, an asymptotic value for ice active surface site density ns, which we named ns⋆, could be determined for the investigated feldspar sample. The comparison of these results with those of other studies not only elucidates the general feasibility of determining such an asymptotic value but also shows that the value of ns⋆ strongly depends on the method of the particle surface area determination. However, such an asymptotic value might be an important input parameter for atmospheric modeling applications. At least it shows that care should be taken when ns is extrapolated to lower or higher temperature.

  2. A study of oceanic surface heat fluxes in the Greenland, Norwegian, and Barents Seas

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa; Cavalieri, Donald J.

    1989-01-01

    This study examines oceanic surface heat fluxes in the Norwegian, Greenland, and Barents seas using the gridded Navy Fleet Numerical Oceanography Central surface analysis and the First GARP Global Experiment (FGGE) IIc cloudiness data bases. Monthly and annual means of net and turbulent heat fluxes are computed for the FGGE year 1979. The FGGE IIb data base consisting of individual observations provides particularly good data coverage in this region for a comparison with the gridded Navy winds and air temperatures. The standard errors of estimate between the Navy and FGGE IIb winds and air temperatures are 3.6 m/s and 2.5 C, respectively. The computations for the latent and sensible heat fluxes are based on bulk formulas with the same constant heat exchange coefficient of 0.0015. The results show extremely strong wintertime heat fluxes in the northern Greenland Sea and especially in the Barents Sea in contrast to previous studies.

  3. North Atlantic climate model bias influence on multiyear predictability

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Park, T.; Park, W.; Latif, M.

    2018-01-01

    The influences of North Atlantic biases on multiyear predictability of unforced surface air temperature (SAT) variability are examined in the Kiel Climate Model (KCM). By employing a freshwater flux correction over the North Atlantic to the model, which strongly alleviates both North Atlantic sea surface salinity (SSS) and sea surface temperature (SST) biases, the freshwater flux-corrected integration depicts significantly enhanced multiyear SAT predictability in the North Atlantic sector in comparison to the uncorrected one. The enhanced SAT predictability in the corrected integration is due to a stronger and more variable Atlantic Meridional Overturning Circulation (AMOC) and its enhanced influence on North Atlantic SST. Results obtained from preindustrial control integrations of models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) support the findings obtained from the KCM: models with large North Atlantic biases tend to have a weak AMOC influence on SAT and exhibit a smaller SAT predictability over the North Atlantic sector.

  4. Homogenization Issues in the Combustion of Heterogeneous Solid Propellants

    NASA Technical Reports Server (NTRS)

    Chen, M.; Buckmaster, J.; Jackson, T. L.; Massa, L.

    2002-01-01

    We examine random packs of discs or spheres, models for ammonium-perchlorate-in-binder propellants, and discuss their average properties. An analytical strategy is described for calculating the mean or effective heat conduction coefficient in terms of the heat conduction coefficients of the individual components, and the results are verified by comparison with those of direct numerical simulations (dns) for both 2-D (disc) and 3-D (sphere) packs across which a temperature difference is applied. Similarly, when the surface regression speed of each component is related to the surface temperature via a simple Arrhenius law, an analytical strategy is developed for calculating an effective Arrhenius law for the combination, and these results are verified using dns in which a uniform heat flux is applied to the pack surface, causing it to regress. These results are needed for homogenization strategies necessary for fully integrated 2-D or 3-D simulations of heterogeneous propellant combustion.

  5. Aeroheating Analysis for the Mars Reconnaissance Orbiter with Comparison to Flight Data

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.

    2007-01-01

    The aeroheating environment of the Mars Reconnaissance Orbiter (MRO) has been analyzed using the direct simulation Monte Carlo and free-molecular techniques. The results of these analyses were used to develop an aeroheating database to be used for the preflight planning and the in-flight operations support for the aerobraking phase of the MRO mission. The aeroheating predictions calculated for the MRO include the heat transfer coefficient (CH) over a range of angles-of-attack, sideslip angles, and number densities. The effects of flow chemistry, surface temperature, and surface grid resolution were also investigated to determine the aeroheating database uncertainties. Flight heat flux data has been calculated from surface temperature sensor data returned to Earth from the MRO in orbit around Mars during the aerobraking phase of its mission. The heat flux data have been compared to the aeroheating database and agree favorably.

  6. Methylene migration and coupling on a non-reducible metal oxide: The reaction of dichloromethane on stoichiometric α-Cr 2O 3(0001)

    DOE PAGES

    Dong, Yujung; Brooks, John D.; Chen, Tsung-Liang; ...

    2014-09-17

    The reaction of CH 2Cl 2 over the nearly-stoichiometric α-Cr 2O 3(0001) surface produces gas phase ethylene, methane and surface chlorine adatoms. The reaction is initiated by the decomposition of CH 2Cl 2 into surface methylene and chlorine. Photoemission indicates that surface cations are the preferred binding sites for both methylene and chlorine adatoms. Two reaction channels are observed for methylene coupling to ethylene in temperature-programmed desorption (TPD). A desorption-limited, low-temperature route is attributed to two methylenes bound at a single site. The majority of ethylene is produced by a reaction-limited process involving surface migration (diffusion) of methylene as themore » rate-limiting step. DFT calculations indicate the surface diffusion mechanism is mediated by surface oxygen anions. The source of hydrogen for methane formation is adsorbed background water. Chlorine adatoms produced by the dissociation of CH 2Cl 2 deactivate the surface by simple site-blocking of surface Cr 3+ sites. Finally, a comparison of experiment and theory shows that DFT provides a better description of the surface chemistry of the carbene intermediate than DFT+U using reported parameters for a best representation of the bulk electronic properties of α-Cr 2O 3.« less

  7. Assessment of the upper trapezius muscle temperature in women with and without neck pain.

    PubMed

    Dibai Filho, Almir Vieira; Packer, Amanda Carine; Costa, Ana Cláudia de Souza; Berni-Schwarzenbeck, Kelly Cristina dos Santos; Rodrigues-Bigaton, Delaine

    2012-06-01

    The purpose of the study was to analyze the upper trapezius muscle temperature using thermography in women with and without neck pain. Thirty-six female university students were classified through the Neck Disability Index (NDI) into 2 groups: the neck pain group comprised 18 volunteers diagnosed with mild disability, and the control group, 18 healthy volunteers. All subjects were submitted to evaluation by thermography, which registered the skin surface temperature of the upper bilateral trapezius muscle. Student t test and Mann-Whitney U test were used for the comparison between the groups, and the Spearman correlation coefficient was used for the appropriate correlations between the NDI score and the temperature values. A significance level of 5% was set. No significant difference was found between the groups regarding the temperature values of the upper left (P = .565) and right (P = .917) trapezius muscles, as well as in comparisons of temperature asymmetry (P = .542). In addition, no significant association was found between the study variables (P > .05). Women with neck pain, diagnosed with mild disability by NDI, did not present with reduction or asymmetry of upper trapezius muscle temperature when compared with a group without neck pain. Copyright © 2012 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.

  8. Delocalized metallic state on insulating, disordered BiSbTeSe2 thin films - a test of Z2 protection.

    NASA Astrophysics Data System (ADS)

    Gopal, Rk; Singh, Sourabh; Sarkar, Jit; Patro, Reshma; Roy, Subhadip; Mitra, Chiranjib; Quantum computation; Topological matter Group Team

    We present thickness and temperature dependent magneto transport properties of bulk insulating and granular BiSbTeSe2 thin films, grown by pulsed laser deposition technique. The temperature dependent resistivity (R-T) of these films is found to be insulating (d ρ/dT <0) and resistivity changes thrice the magnitude measured at room temperature as temperature is varied from 300K to 1.8K. On application of small perpendicular magnetic field in the low temperature regime, the R-T takes an upward shift from the zero field R-T - a trademark signature of a metallic state on an insulating bulk film. The grain boundaries in these films, as seen by scanning electron microscopy, present an additional disorder and hence confinement/trapping centers to the surface Dirac states in comparison to the films grown by molecular beam epitaxy and single crystals, which have atomically flat surface. Therefore these films present real test for the topological protection of surface Dirac states and their immunity against localization which is known as Z2 protection. From the magnetoresistance (MR) measurements at low temperatures a sharp and relatively large rise in MR is found a signature of weak - antilocalization (WAL) -a signature of topologically protected surface states. The WAL analysis of the MR data reveals a phase breaking length of the order of grain size suggesting that grain Author is grateful to the Government of India and IISER-Kolkata for providing funding and experimental facilities for the following research work.

  9. Optical Fier Based System for Multiple Thermophysical Properties for Glove Box, Hot Cell and In-Pile Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ban, Heng

    Thermal diffusivity of materials is of interest in nuclear applications at temperatures in excess of 2000°C. Commercial laser flash apparatus (LFA) that heats samples with a furnace typically do not reach these elevated temperatures nor are they easily adapted to a glove-box or hot cell environment. In this research, we performed work on an experimental technique using single laser surface heating, i.e. heating the disk sample only at its front surface with the continuous wave (CW) laser, to allow measurement of thermal diffusivity at very high temperatures within a small chamber. Thermal diffusivity is measured using a separate pulsed lasermore » on the front side and IR detector on the rear side. The new way of heating provides easy operation in comparison to other heating methods. The measurement of sample reference temperature is needed for the measured thermal diffusivity. A theoretical model was developed to describe transient heat transfer across the sample due to the laser pulse, starting from the steady state temperature of the sample heated by the CW laser. The experimental setup was established with a 500W CW laser and maximum 50 Joule pulse laser irradiated at the front surface of the sample. The induced temperature rise at the rear surface, along with the steady-state temperature at the front surface, was recorded for the determination of thermal diffusivity and the sample temperature. Three samples were tested in vacuum over a wide temperature range of 500°C to 2100°C, including graphite, Inconel 600 and tungsten. The latter two samples were coated with sprayed graphite on their front surfaces in order to achieve surface absorption/emission needs, i.e. high absorptivity of the front surface against relatively low emissivity of the rear surface. Thermal diffusivity of graphite determined by our system are within a 5% difference of the commercial LFA data at temperatures below 1300°C and agree well with its trend at higher temperatures. Good agreement would also exist for Inconel 600 and tungsten. Despite large uncertainty of measuringthe sample temperature, the uncertainties of thermal diffusivity are less than 6% for all samples at elevated temperatures. The results indicate that single laser surface heating could be convenient and practical for the application of the LFA measurements without extra uncertainty, as temperature dependence of thermal diffusivity is usually negligible in the sample. Moreover, it is concluded that unequal surface treatment, i.e., high absorption on the front side and low emission on the rear side, greatly improves the measurement in serval aspects: less power requirement of the CW laser, less uncertainty of measured thermal diffusivity, and more uniform temperature distribution in the sample. The result of this research can be used as a general guideline for the design of this type of measurement system for nuclear applications. It can also be used directly to design and build a system similar to the one implemented in this project.« less

  10. U-Zr alloy: XPS and TEM study of surface passivation

    NASA Astrophysics Data System (ADS)

    Paukov, M.; Tkach, I.; Huber, F.; Gouder, T.; Cieslar, M.; Drozdenko, D.; Minarik, P.; Havela, L.

    2018-05-01

    Surface reactivity of Uranium metal is an important factor limiting its practical applications. Bcc alloys of U with various transition metals are much less reactive than pure Uranium. So as to specify the mechanism of surface protection, we have been studying the U-20 at.% Zr alloy by photoelectron spectroscopy and transmission electron microscopy. The surface was studied in as-obtained state, in various stages of surface cleaning, and during an isochronal annealing cycle. The analysis based on U-4f, Zr-3p, and O-1 s spectra shows that a Zr-rich phase segregates at the surface at temperatures exceeding 550 K, which provides a self-assembled coating. The comparison of oxygen exposure of the stoichiometric and coated surfaces shows that the coating is efficiently preventing the oxidation of uranium even at elevated temperatures. The coating can be associated with the UZr2+x phase. TEM study indicated that the coating is about 20 nm thick. For the clean state, the U-4f core-level lines of the bcc alloy are practically identical to those of α-U, revealing similar delocalization of the 5f electronic states.

  11. Research Vessel Meteorological and Oceanographic Systems Support Satellite and Model Validation Studies

    NASA Astrophysics Data System (ADS)

    Smith, S. R.; Lopez, N.; Bourassa, M. A.; Rolph, J.; Briggs, K.

    2012-12-01

    The research vessel data center at the Florida State University routinely acquires, quality controls, and distributes underway surface meteorological and oceanographic observations from vessels. The activities of the center are coordinated by the Shipboard Automated Meteorological and Oceanographic System (SAMOS) initiative in partnership with the Rolling Deck to Repository (R2R) project. The data center evaluates the quality of the observations, collects essential metadata, provides data quality feedback to vessel operators, and ensures the long-term data preservation at the National Oceanographic Data Center. A description of the SAMOS data stewardship protocols will be provided, including dynamic web tools that ensure users can select the highest quality observations from over 30 vessels presently recruited to the SAMOS initiative. Research vessels provide underway observations at high-temporal frequency (1 min. sampling interval) that include navigational (position, course, heading, and speed), meteorological (air temperature, humidity, wind, surface pressure, radiation, rainfall), and oceanographic (surface sea temperature and salinity) samples. Recruited vessels collect a high concentration of data within the U.S. continental shelf and also frequently operate well outside routine shipping lanes, capturing observations in extreme ocean environments (Southern Ocean, Arctic, South Atlantic and Pacific). The unique quality and sampling locations of research vessel observations and there independence from many models and products (RV data are rarely distributed via normal marine weather reports) makes them ideal for validation studies. We will present comparisons between research vessel observations and model estimates of the sea surface temperature and salinity in the Gulf of Mexico. The analysis reveals an underestimation of the freshwater input to the Gulf from rivers, resulting in an overestimation of near coastal salinity in the model. Additional comparisons between surface atmospheric products derived from satellite observations and the underway research vessel observations will be shown. The strengths and limitations of research observations for validation studies will be highlighted through these case studies.

  12. GPM Pre-Launch Algorithm Development for Physically-Based Falling Snow Retrievals

    NASA Technical Reports Server (NTRS)

    Jackson, Gail Skofronick; Tokay, Ali; Kramer, Anne W.; Hudak, David

    2008-01-01

    In this work we compare and correlate the long time series (Nov.-March) neasurements of precipitation rate from the Parsivels and 2DVD to the passive (89, 150, 183+/-1, +/-3, +/-7 GHz) observations of NOAA's AMSU-B radiometer. There are approximately 5-8 AMSU-B overpass views of the CARE site a day. We separate the comparisons into categories of no precipitation, liquid rain and falling snow precipitation. Scatterplots between the Parsivel snowfall rates and AMSU-B brightness temperatures (TBs) did not show an exploitable relationship for retrievals. We further compared and contrasted brightness temperatures to other surface measurements such as temperature and relative humidity with equally unsatisfying results. We found that there are similar TBs (especially at 89 and 150 GHz) for cases with falling snow and for non-precipitating cases. The comparisons indicate that surface emissivity contributions to the satellite observed TB over land can add uncertainty in detecting and estimating falling snow. The newest results show that the cloud icc scattering signal in the AMSU-B data call be detected by computing clear air TBs based on CARE radiosonde data and a rough estimate of surface emissivity. That is the differences in computed TI3 and AMSU-B TB for precipitating and nonprecipitating cases are unique such that the precipitating versus lon-precipitating cases can be identified. These results require that the radiosonde releases are within an hour of the AMSU-B data and allow for three surface types: no snow on the ground, less than 5 cm snow on the ground, and greater than 5 cm on the ground (as given by ground station data). Forest fraction and measured emissivities were combined to calculate the surface emissivities. The above work and future work to incorporate knowledge about falling snow retrievals into the framework of the expected GPM Bayesian retrievals will be described during this presentation.

  13. Albedo and land surface temperature shift in hydrocarbon seepage potential area, case study in Miri Sarawak Malaysia

    NASA Astrophysics Data System (ADS)

    Suherman, A.; Rahman, M. Z. A.; Busu, I.

    2014-02-01

    The presence of hydrocarbon seepage is generally associated with rock or mineral alteration product exposures, and changes of soil properties which manifest with bare development and stress vegetation. This alters the surface thermodynamic properties, changes the energy balance related to the surface reflection, absorption and emission, and leads to shift in albedo and LST. Those phenomena may provide a guide for seepage detection which can be recognized inexpensively by remote sensing method. District of Miri is used for study area. Available topographic maps of Miri and LANDSAT ETM+ were used for boundary construction and determination albedo and LST. Three land use classification methods, namely fixed, supervised and NDVI base classifications were employed for this study. By the intensive land use classification and corresponding statistical comparison was found a clearly shift on albedo and land surface temperature between internal and external seepage potential area. The shift shows a regular pattern related to vegetation density or NDVI value. In the low vegetation density or low NDVI value, albedo of internal area turned to lower value than external area. Conversely in the high vegetation density or high NDVI value, albedo of internal area turned to higher value than external area. Land surface temperature of internal seepage potential was generally shifted to higher value than external area in all of land use classes. In dense vegetation area tend to shift the temperature more than poor vegetation area.

  14. [A comparison of the effects of intravenous fluid warming and skin surface warming on peri-operative body temperature and acid base balance of elderly patients with abdominal surgery].

    PubMed

    Park, Hyosun; Yoon, Haesang

    2007-12-01

    The purpose of this study was to compare the effects of intravenous fluid warming and skin surface warming on peri-operative body temperature and acid base balance of abdominal surgical patients under general anesthesia. Data collection was performed from January 4th, to May 31, 2004. The intravenous fluid warming(IFW) group (30 elderly patients) was warmed through an IV line by an Animec set to 37 degrees C. The skin surface warming (SSW) group (30 elderly patients) was warmed by a circulating-water blanket set to 38 degrees C under the back and a 60W heating lamp 40 cm above the chest. The warming continued from induction of general anesthesia to two hours after completion of surgery. Collected data was analyzed using Repeated Measures ANOVA, and Bonferroni methods. SSW was more effective than IFW in preventing hypothermia(p= .043), preventing a decrease of HCO(3)(-)(p= .000) and preventing base excess (p= .000) respectively. However, there was no difference in pH between the SSW and IFW (p= .401) groups. We conclude that skin surface warming is more effective in preventing hypothermia, and HCO(3)(-) and base excess during general anesthesia, and returning to normal body temperature after surgery than intravenous fluid warming; however, skin surface warming wasn't able to sustain a normal body temperature in elderly patients undergoing abdominal surgery under general anesthesia.

  15. Isotopic equilibria in aqueous clusters at low temperatures: Insights from the MB-pol many-body potential

    NASA Astrophysics Data System (ADS)

    Videla, Pablo E.; Rossky, Peter J.; Laria, Daniel

    2018-02-01

    By combining path-integrals molecular dynamics simulations with the accurate MB-pol potential energy surface, we investigate the role of alternative potential models on isotopic fractionation ratios between H and D atoms at dangling positions in water clusters at low temperatures. Our results show clear stabilizations of the lighter isotope at dangling sites, characterized by free energy differences ΔG that become comparable to or larger than kBT for temperatures below ˜75 K. The comparison between these results to those previously reported using the empirical q-TIP4P/F water model [P. E. Videla et al., J. Phys. Chem. Lett. 5, 2375 (2014)] reveals that the latter Hamiltonian overestimates the H stabilization by ˜25%. Moreover, predictions from the MB-pol model are in much better agreement with measured results reported for similar isotope equilibria at ice surfaces. The dissection of the quantum kinetic energies into orthogonal directions shows that the dominant differences between the two models are to be found in the anharmonic characteristics of the potential energy surfaces along OH bond directions involved in hydrogen bonds.

  16. Single-backscattering and quasi-single-backscattering of low energy ions from a cold nickel surface: contribution to the ICISS method

    NASA Astrophysics Data System (ADS)

    Soszka, W.

    1992-09-01

    Energy spectra of 5 keV Ne+ and He+ ions backscattered from the cold (100) nickel surface for chosen values of the incidence angles were measured. It was found that the occurrence of the isotope structure of the so-called "single-scattering" peak as well as its position on the energy scale depend on the incidence angle and the target temperature. In comparison to the case of room temperature the "ICISS curve" (the intensity of the single-scattering peak versus the incidence angle) at low temperatures increases up to relatively large angles. The curve in its part shows some structure which is not observed at room temperatures. It has been shown [E.S. Parilis et al., Atomic Collisions in Gases and on Solid Surfaces (FAN, Tashkent, 1988) in Russian] that the doubly scattered ions can have the same energy and exit angle as the singly scattered ions and both components create the quasi-single-scattering peak. The double-scattering component depends in a complex manner on the incidence angle and the target temperature. It is shown that at low temperatures (below 80 K) the intensity of the single-scattering component decreases (a decrease of thermal cross section), and the intensity of the double-scattering component relatively increases. This determines the behaviour of the ICISS curve, which, for low temperatures and light projectiles cannot be treated as a real ICISS curve.

  17. Comparisons of Cubed Ice, Crushed Ice, and Wetted Ice on Intramuscular and Surface Temperature Changes

    PubMed Central

    Dykstra, Joseph H; Hill, Holly M; Miller, Michael G; Cheatham, Christopher C; Michael, Timothy J; Baker, Robert J

    2009-01-01

    Context: Many researchers have investigated the effectiveness of different types of cold application, including cold whirlpools, ice packs, and chemical packs. However, few have investigated the effectiveness of different types of ice used in ice packs, even though ice is one of the most common forms of cold application. Objective: To evaluate and compare the cooling effectiveness of ice packs made with cubed, crushed, and wetted ice on intramuscular and skin surface temperatures. Design: Repeated-measures counterbalanced design. Setting: Human performance research laboratory. Patients or Other Participants: Twelve healthy participants (6 men, 6 women) with no history of musculoskeletal disease and no known preexisting inflammatory conditions or recent orthopaedic injuries to the lower extremities. Intervention(s): Ice packs made with cubed, crushed, or wetted ice were applied to a standardized area on the posterior aspect of the right gastrocnemius for 20 minutes. Each participant was given separate ice pack treatments, with at least 4 days between treatment sessions. Main Outcome Measure(s): Cutaneous and intramuscular (2 cm plus one-half skinfold measurement) temperatures of the right gastrocnemius were measured every 30 seconds during a 20-minute baseline period, a 20-minute treatment period, and a 120-minute recovery period. Results: Differences were observed among all treatments. Compared with the crushed-ice treatment, the cubed-ice and wetted-ice treatments produced lower surface and intramuscular temperatures. Wetted ice produced the greatest overall temperature change during treatment and recovery, and crushed ice produced the smallest change. Conclusions: As administered in our protocol, wetted ice was superior to cubed or crushed ice at reducing surface temperatures, whereas both cubed ice and wetted ice were superior to crushed ice at reducing intramuscular temperatures. PMID:19295957

  18. An evaluation of the use of remotely sensed parameters for prediction of incidence and risk associated with Vibrio parahaemolyticus in Gulf Coast oysters (Crassostrea virginica).

    PubMed

    Phillips, A M B; Depaola, A; Bowers, J; Ladner, S; Grimes, D J

    2007-04-01

    The U.S. Food and Drug Administration recently published a Vibrio parahaemolyticus risk assessment for consumption of raw oysters that predicts V. parahaemolyticus densities at harvest based on water temperature. We retrospectively compared archived remotely sensed measurements (sea surface temperature, chlorophyll, and turbidity) with previously published data from an environmental study of V. parahaemolyticus in Alabama oysters to assess the utility of the former data for predicting V. parahaemolyticus densities in oysters. Remotely sensed sea surface temperature correlated well with previous in situ measurements (R(2) = 0.86) of bottom water temperature, supporting the notion that remotely sensed sea surface temperature data are a sufficiently accurate substitute for direct measurement. Turbidity and chlorophyll levels were not determined in the previous study, but in comparison with the V. parahaemolyticus data, remotely sensed values for these parameters may explain some of the variation in V. parahaemolyticus levels. More accurate determination of these effects and the temporal and spatial variability of these parameters may further improve the accuracy of prediction models. To illustrate the utility of remotely sensed data as a basis for risk management, predictions based on the U.S. Food and Drug Administration V. parahaemolyticus risk assessment model were integrated with remotely sensed sea surface temperature data to display graphically variations in V. parahaemolyticus density in oysters associated with spatial variations in water temperature. We believe images such as these could be posted in near real time, and that the availability of such information in a user-friendly format could be the basis for timely and informed risk management decisions.

  19. Reconstructing palaeo-environmental conditions in the Baltic: A multi-proxy comparison from IODP Site M0059 (Little Belt)

    NASA Astrophysics Data System (ADS)

    Kotthoff, Ulrich; Andrén, Thomas; Bauersachs, Thorsten; Fanget, Anne-Sophie; Granoszewski, Wojciech; Groeneveld, Jeroen; Krupinski, Nadine; Peyron, Odile; Stepanova, Anna; Cotterill, Carol

    2015-04-01

    Some of the largest marine environmental impacts from ongoing global climate change are occurring in continental shelf seas and enclosed basins, including severe oxygen depletion, intensifying stratification, and increasing temperatures. In order to predict future changes in water mass conditions, it is essential to reconstruct how these conditions have changed in the past. The brackish Baltic Sea is one of the largest semi-enclosed basins worldwide, and hence provides a unique opportunity to analyse past changes. IODP Expedition 347 recovered a unique set of long sediment cores from the Baltic Sea Basin which allow new high-resolution reconstructions. The application of existing and development of new proxies in such a setting is complicated, as environmental changes often occur on much faster time scales with much larger variations. Therefore, we present a comparison of commonly used proxies to reconstruct palaeoecosystems, -temperatures, and -salinity from IODP Site M0059 in the Little Belt. The age model for Site M0059 is based on 14C dating and biostratigraphic correlation with neighbouring terrestrial pollen records. The aim of our study is to reconstruct the development of the terrestrial and marine ecosystems in the research area and the related environmental conditions, and to identify potential limitations for specific proxies. Pollen is used as proxy for vegetation development in the hinterland of the southern Baltic Sea and as land/air-temperature proxies. By comparison with dinoflagellate cysts and green algae remains from the same samples, a direct land-sea comparison is provided. The application of the modern analogues technique to pollen assemblages has previously yielded precise results for late Pleistocene and Holocene datasets including specific information on seasonality, but pollen-based reconstructions for Northern Europe may be hampered by plant migration effects. Chironomid remains are used where possible as indicators for surface water conditions during the warm season. Analyses of palynomorphs and chironomids are complemented with the analysis of lipid palaeothermometers, such as TEX86 and the long chain diol index (LDI), which both allow reconstructing variation in sea surface temperatures (SST) of the Baltic Sea. In addition, the MBT/CBT proxy is used to infer past changes in mean annual air temperatures (MAAT) and the diol index (DI) to determine variation in salinity of the Baltic Sea's surface waters over the investigated time period. The low salinity (25 psu) of the Little Belt is a potential limitation for several of the used proxies, which could lead to under-estimation of paleo-temperatures. To quantitatively and qualitatively estimate the impact of salinity, δ18O measurements (monospecific) and faunal assemblage analyses are performed on benthic foraminifera as well as ostracod faunal assemblages, which are especially sensitive to bottom water salinity changes. The results of this inter-comparison study will be useful for the reconstruction of gradients between different settings, e.g. how water column stratification developed, possibly if and how changes in seasonality occurred, and to identify the circumstances under which specific proxies may be affected by secondary impacts.

  20. Evaluation of parameterization for turbulent fluxes of momentum and heat in stably stratified surface layers

    NASA Astrophysics Data System (ADS)

    Sodemann, H.; Foken, Th.

    2003-04-01

    General Circulation Models calculate the energy exchange between surface and atmosphere by means of parameterisations for turbulent fluxes of momentum and heat in the surface layer. However, currently implemented parameterisations after Louis (1979) create large discrepancies between predictions and observational data, especially in stably stratified surface layers. This work evaluates a new surface layer parameterisation proposed by Zilitinkevich et al. (2002), which was specifically developed to improve energy flux predictions in stable stratification. The evaluation comprises a detailed study of important surface layer characteristics, a sensitivity study of the parameterisation, and a direct comparison to observational data from Antarctica and predictions by the Louis (1979) parameterisation. The stability structure of the stable surface layer was found to be very complex, and strongly influenced fluxes in the surface layer. The sensitivity study revealed that the new parameterisation depends strongly on the ratio between roughness length and roughness temperature, which were both observed to be very variable parameters. The comparison between predictions and measurements showed good agreement for momentum fluxes, but large discrepancies for heat fluxes. A stability dependent evaluation of selected data showed better agreement for the new parameterisation of Zilitinkevich et al. (2002) than for the Louis (1979) scheme. Nevertheless, this comparison underlines the need for more detailed and physically sound concepts for parameterisations of heat fluxes in stably stratified surface layers. Zilitinkevich, S. S., V. Perov and J. C. King (2002). "Near-surface turbulent fluxes in stable stratification: Calculation techniques for use in General Circulation Models." Q. J. R. Meteorol. Soc. 128(583): 1571--1587. Louis, J. F. (1979). "A Parametric Model of Vertical Eddy Fluxes in the Atmosphere." Bound.-Layer Meteor. 17(2): 187--202.

  1. Mapping near-surface air temperature, pressure, relative humidity and wind speed over Mainland China with high spatiotemporal resolution

    NASA Astrophysics Data System (ADS)

    Li, Tao; Zheng, Xiaogu; Dai, Yongjiu; Yang, Chi; Chen, Zhuoqi; Zhang, Shupeng; Wu, Guocan; Wang, Zhonglei; Huang, Chengcheng; Shen, Yan; Liao, Rongwei

    2014-09-01

    As part of a joint effort to construct an atmospheric forcing dataset for mainland China with high spatiotemporal resolution, a new approach is proposed to construct gridded near-surface temperature, relative humidity, wind speed and surface pressure with a resolution of 1 km×1 km. The approach comprises two steps: (1) fit a partial thin-plate smoothing spline with orography and reanalysis data as explanatory variables to ground-based observations for estimating a trend surface; (2) apply a simple kriging procedure to the residual for trend surface correction. The proposed approach is applied to observations collected at approximately 700 stations over mainland China. The generated forcing fields are compared with the corresponding components of the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis dataset and the Princeton meteorological forcing dataset. The comparison shows that, both within the station network and within the resolutions of the two gridded datasets, the interpolation errors of the proposed approach are markedly smaller than the two gridded datasets.

  2. Processing Near-Infrared Imagery of the Orion Heatshield During EFT-1 Hypersonic Reentry

    NASA Technical Reports Server (NTRS)

    Spisz, Thomas S.; Taylor, Jeff C.; Gibson, David M.; Kennerly, Steve; Osei-Wusu, Kwame; Horvath, Thomas J.; Schwartz, Richard J.; Tack, Steven; Bush, Brett C.; Oliver, A. Brandon

    2016-01-01

    The Scientifically Calibrated In-Flight Imagery (SCIFLI) team captured high-resolution, calibrated, near-infrared imagery of the Orion capsule during atmospheric reentry of the EFT-1 mission. A US Navy NP-3D aircraft equipped with a multi-band optical sensor package, referred to as Cast Glance, acquired imagery of the Orion capsule's heatshield during a period when Orion was slowing from approximately Mach 10 to Mach 7. The line-of-sight distance ranged from approximately 65 to 40 nmi. Global surface temperatures of the capsule's thermal heatshield derived from the near-infrared intensity measurements complemented the in-depth (embedded) thermocouple measurements. Moreover, these derived surface temperatures are essential to the assessment of the thermocouples' reliance on inverse heat transfer methods and material response codes to infer the surface temperature from the in-depth measurements. The paper describes the image processing challenges associated with a manually-tracked, high-angular rate air-to-air observation. Issues included management of significant frame-to-frame motions due to both tracking jerk and jitter as well as distortions due to atmospheric effects. Corrections for changing sky backgrounds (including some cirrus clouds), atmospheric attenuation, and target orientations and ranges also had to be made. The image processing goal is to reduce the detrimental effects due to motion (both sensor and capsule), vibration (jitter), and atmospherics for image quality improvement, without compromising the quantitative integrity of the data, especially local intensity (temperature) variations. The paper will detail the approach of selecting and utilizing only the highest quality images, registering several co-temporal image frames to a single image frame to the extent frame-to-frame distortions would allow, and then co-adding the registered frames to improve image quality and reduce noise. Using preflight calibration data, the registered and averaged infrared intensity images were converted to surface temperatures on the Orion capsule's heatshield. Temperature uncertainties will be discussed relative to uncertainties of surface emissivity and atmospheric transmission loss. Comparison of limited onboard surface thermocouple data to the image derived surface temperature will be presented.

  3. Validation of the thermal code of RadTherm-IR, IR-Workbench, and F-TOM

    NASA Astrophysics Data System (ADS)

    Schwenger, Frédéric; Grossmann, Peter; Malaplate, Alain

    2009-05-01

    System assessment by image simulation requires synthetic scenarios that can be viewed by the device to be simulated. In addition to physical modeling of the camera, a reliable modeling of scene elements is necessary. Software products for modeling of target data in the IR should be capable of (i) predicting surface temperatures of scene elements over a long period of time and (ii) computing sensor views of the scenario. For such applications, FGAN-FOM acquired the software products RadTherm-IR (ThermoAnalytics Inc., Calumet, USA; IR-Workbench (OKTAL-SE, Toulouse, France). Inspection of the accuracy of simulation results by validation is necessary before using these products for applications. In the first step of validation, the performance of both "thermal solvers" was determined through comparison of the computed diurnal surface temperatures of a simple object with the corresponding values from measurements. CUBI is a rather simple geometric object with well known material parameters which makes it suitable for testing and validating object models in IR. It was used in this study as a test body. Comparison of calculated and measured surface temperature values will be presented, together with the results from the FGAN-FOM thermal object code F-TOM. In the second validation step, radiances of the simulated sensor views computed by RadTherm-IR and IR-Workbench will be compared with radiances retrieved from the recorded sensor images taken by the sensor that was simulated. Strengths and weaknesses of the models RadTherm-IR, IR-Workbench and F-TOM will be discussed.

  4. Development of Al2O3 electrospun fibers prepared by conventional sintering method or plasma assisted surface calcination

    NASA Astrophysics Data System (ADS)

    Mudra, E.; Streckova, M.; Pavlinak, D.; Medvecka, V.; Kovacik, D.; Kovalcikova, A.; Zubko, P.; Girman, V.; Dankova, Z.; Koval, V.; Duzsa, J.

    2017-09-01

    In this paper, the electrospinning method was used for preparation of α-Al2O3 microfibers from PAN/Al(NO3)3 precursor solution. The precursor fibers were thermally treated by conventional method in furnace or low-temperature plasma induced surface sintering method in ambient air. The four different temperatures of PAN/Al(NO3)3 precursors were chosen for formation of α-Al2O3 phase by conventional sintering way according to the transition features observed in the TG/DSC analysis. In comparison, the low-temperature plasma treatment at atmospheric pressure was used as an alternative sintering method at the exposure times of 5, 10 and 30 min. FTIR analysis was used for evaluation of residual polymer after plasma induced calcination and for studying the mechanism of polymer degradation. The polycrystalline alumina fibers arranged with the nanoparticles was created continuously throughout the whole volume of the sample. On the other side the low temperature approach, high density of reactive species and high power density of plasma generated at atmospheric pressure by used plasma source allowed rapid removal of polymer in preference from the surface of fibers leading to the formation of composite ceramic/polymer fibers. This plasma induced sintering of PAN/Al(NO3)3 can have obvious importance in industrial applications where the ceramic character of surface with higher toughness of the fibers are required.

  5. Carbon-Water-Energy Relations for Selected River Basins

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.

    1998-01-01

    A biophysical process-based model was run using satellite, assimilated and ancillary data for four years (1987-1990) to calculate components of total evaporation (transpiration, interception, soil and snow evaporation), net radiation, absorbed photosynthetically active radiation and net primary productivity over the global land surface. Satellite observations provided fractional vegetation cover, solar and photosynthetically active radiation incident of the surface, surface albedo, fractional cloud cover, air temperature and vapor pressure. The friction velocity and surface air pressure are obtained from a four dimensional data assimilation results, while precipitation is either only surface observations or a blended product of surface and satellite observations. All surface and satellite data are monthly mean values; precipitation has been disaggregated into daily values. All biophysical parameters of the model are prescribed according to published records. From these global land surface calculations results for river basins are derived using digital templates of basin boundaries. Comparisons with field observations (micrometeorologic, catchment water balance, biomass production) and atmospheric water budget analysis for monthly evaporation from six river basins have been done to assess errors in the calculations. Comparisons are also made with previous estimates of zonal variations of evaporation and net primary productivity. Efficiencies of transpiration, total evaporation and radiation use, and evaporative fraction for selected river basins will be presented.

  6. Stratospheric Impact of Varying Sea Surface Temperatures

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.; Nash, Eric R.; Nielsen, Jon E.; Waugh, Darryn; Pawson, Steven

    2004-01-01

    The Finite-Volume General Circulation Model (FVGCM) has been run in 50 year simulations with the: 1) 1949-1999 Hadley Centre sea surface temperatures (SST), and 2) a fixed annual cycle of SSTs. In this presentation we first show that the 1949-1999 FVGCM simulation produces a very credible stratosphere in comparison to an NCEP/NCAR reanalysis climatology. In particular, the northern hemisphere has numerous major and minor stratospheric warming, while the southern hemisphere has only a few over the 50-year simulation. During the northern hemisphere winter, temperatures are both warmer in the lower stratosphere and the polar vortex is weaker than is found in the mid-winter southern hemisphere. Mean temperature differences in the lower stratosphere are shown to be small (less than 2 K), and planetary wave forcing is found to be very consistent with the climatology. We then will show the differences between our varying SST simulation and the fixed SST simulation in both the dynamics and in two parameterized trace gases (ozone and methane). In general, differences are found to be small, with subtle changes in planetary wave forcing that lead to reduced temperatures in the SH and increased temperatures in the NH.

  7. A soil-canopy scheme for use in a numerical model of the atmosphere: 1D stand-alone model

    NASA Astrophysics Data System (ADS)

    Kowalczyk, E. A.; Garratt, J. R.; Krummel, P. B.

    We provide a detailed description of a soil-canopy scheme for use in the CSIRO general circulation models (GCMs) (CSIRO-4 and CSIRO-9), in the form of a one-dimensional stand-alone model. In addition, the paper documents the model's ability to simulate realistic surface fluxes by comparison with mesoscale model simulations (involving more sophisticated soil and boundary-layer treatments) and observations, and the diurnal range in surface quantities, including extreme maximum surface temperatures. The sensitivity of the model to values of the surface resistance is also quantified. The model represents phase 1 of a longer-term plan to improve the atmospheric boundary layer (ABL) and surface schemes in the CSIRO GCMs.

  8. Thermal loading of natural streams

    USGS Publications Warehouse

    Jackman, Alan P.; Yotsukura, Nobuhiro

    1977-01-01

    The impact of thermal loading on the temperature regime of natural streams is investigated by mathematical models, which describe both transport (convection-diffusion) and decay (surface dissipation) of waste heat over 1-hour or shorter time intervals. The models are derived from the principle of conservation of thermal energy for application to one- and two-dimensional spaces. The basic concept in these models is to separate water temperature into two parts, (1) excess temperature due to thermal loading and (2) natural (ambient) temperature. This separation allows excess temperature to be calculated from the models without incoming radiation data. Natural temperature may either be measured in prototypes or calculated from the model. If use is made of the model, however, incoming radiation is required as input data. Comparison of observed and calculated temperatures in seven natural streams shows that the models are capable of predicting transient temperature regimes satisfactorily in most cases. (Woodard-USGS)

  9. Effect of temperature on optical properties of PMMA/SiO2 composite thin film

    NASA Astrophysics Data System (ADS)

    Soni, Gyanesh; Srivastava, Subodh; Soni, Purushottam; Kalotra, Pankaj; Vijay, Y. K.

    2018-05-01

    Effect of temperature on PMMA/SiO2 composites thin films were investigated. Nanocomposite flexible thin films of 60 µm thicknesses with different loading of SiO2 nanoparticles were prepared using solution casting method. SEM images show that SiO2 nanoparticles are distributed uniformly in PMMA matrix without any lumps on the surface, and PMMA/SiO2 nano composite thin films had a smoother and regular morphology. UV-Vis and optical band gap measurements revealed that both the concentration of SiO2 nanoparticles and temperature affect the optical properties of the composite thin film in comparison to the pure PMMA film.

  10. Characterization of freezing precipitation events through other meteorological variables and their recent changes over Northern Extratropics

    NASA Astrophysics Data System (ADS)

    Groisman, P. Y.; Yin, X.; Bulygina, O.

    2017-12-01

    Freezing precipitation events intertwine with agriculture, recreation, energy consumption, and seasonal transportation cycles of human activities. Using supplementary synoptic reports at 1,500 long-term stations of North America and Northern Eurasia, we created climatology of freezing precipitation near the surface and found significant changes (increases) in these occurrences in the past decade at high latitudes/elevations (Groisman et al. 2016; updated). Firstly, we document narrow boundaries of near surface temperature and humidity fields when freezing precipitation events occur; these are necessary but insufficient conditions of their occurrence. Secondly, using the upper air data at the sites collocated with in situ observations of freezing events, we quantify the typical pattern of lower troposphere temperature anomalies during freezing events: At the same locations and Julian days, the presence of freezing event at the surface is associated with significantly warmer temperatures in the lower troposphere; comparison of temperatures at nearest days before and after the freezing events with days during these events also shows statistically significant positive temperature anomalies in the lower troposphere to 500 hPa (on average, +3 to 4 °C) In the days with freezing events, vertical air temperature gradients between surface and 850 hPa become less than usual with frequent inversions, when the tropospheric air is warmer than at the surface. The above features of the lower tropospheric temperature, near-surface temperature and humidity represent a combination of weather conditions conducive for precipitation, if it happens, falling in the freezing rain form. The in situ reports of freezing events at synoptic stations allow us to estimate temporary and spatial distributions of such "special weather conditions". Thus, a posteriori high probability of freezing events under these weather conditions invokes similar probabilities of freezing rain over the ungauged terrain, where we do not have special synoptic reports but can reproduce these "special weather conditions" from less sophisticated observational networks and/or reanalyses. Reference: Groisman et al. 2016: Recent changes in the frequency of freezing precipitation in North America and Northern Eurasia. Environ Res Lett 11 045007.

  11. Anisotropy of thermal infrared remote sensing over urban areas : assessment from airborne data and modeling approach

    NASA Astrophysics Data System (ADS)

    Hénon, A.; Mestayer, P.; Lagouarde, J.-P.; Lee, J. H.

    2009-09-01

    Due to the morphological complexity of the urban canopy and to the variability in thermal properties of the building materials, the heterogeneity of the surface temperatures generates a strong directional anisotropy of thermal infrared remote sensing signal. Thermal infrared (TIR) data obtained with an airborne FLIR camera over Toulouse (France) city centre during the CAPITOUL experiment (feb. 2004 - feb. 2005) show brightness temperature anisotropies ranging from 3 °C by night to more than 10 °C by sunny days. These data have been analyzed in view of developing a simple approach to correct TIR satellite remote sensing from the canopy-generated anisotropy, and to further evaluate the sensible heat fluxes. The methodology is based on the identification of 6 different classes of surfaces: roofs, walls and grounds, sunlit or shaded, respectively. The thermo-radiative model SOLENE is used to simulate, with a 1 m resolution computational grid, the surface temperatures of an 18000 m² urban district, in the same meteorological conditions as during the observation. A pixel-by-pixel comparison with both hand-held temperature measurements and airborne camera images allows to assess the actual values of the radiative and thermal parameters of the scene elements. SOLENE is then used to simulate a generic street-canyon geometry, whose sizes average the morphological parameters of the actual streets in the district, for 18 different geographical orientations. The simulated temperatures are then integrated for different viewing positions, taking into account shadowing and masking, and directional temperatures are determined for the 6 surface classes. The class ratios in each viewing direction are derived from images of the district generated by using the POVRAY software, and used to weigh the temperatures of each class and to compute the resulting directional brightness temperature at the district scale for a given sun direction (time in the day). Simulated and measured anisotropies are finally compared for several flights over Toulouse in summer and winter. An inverse method is further proposed to obtain the surface temperatures from the directional brightness temperatures, which may be extended to deduce the sensible heat fluxes separately from the buildings and from the ground.

  12. Comparison of Model and Observed Regional Temperature Changes During the Past 40 Years

    NASA Technical Reports Server (NTRS)

    Russell, Gary L.; Miller, James R.; Rind, David; Ruedy, Reto A.; Schmidt, Gavin A.; Sheth, Sukeshi

    1999-01-01

    Results are presented for six simulations of the Goddard Institute for Space Studies (GISS) global atmosphere-ocean model for the years 1950 to 2099. There are two control simulations with constant 1950 atmospheric composition from different initial states, two GHG experiments with observed greenhouse gases up to 1990 and compounded .5% CO2 annual increases thereafter, and two GHG+SO4 experiments with the same varying greenhouse gases plus varying tropospheric sulfate aerosols. Surface air temperature trends in the two GHG experiments are compared between themselves and with the observed temperature record from 1960 and 1998. All comparisons show high positive spatial correlation in the northern hemisphere except in summer when the greenhouse signal is weakest. The GHG+SO4 experiments show weaker correlations. In the southern hemisphere, correlations are either weak or negative which in part are due to the model's unrealistic interannual variability of southern sea ice cover. The model results imply that temperature changes due to forcing by increased greenhouse gases have risen above the level of regional interannual temperature variability in the northern hemisphere over the past 40 years. This period is thus an important test of reliability of coupled climate models.

  13. Photothermal waves for two temperature with a semiconducting medium under using a dual-phase-lag model and hydrostatic initial stress

    NASA Astrophysics Data System (ADS)

    Lotfy, Kh.

    2017-07-01

    The dual-phase-lag (DPL) model with two different time translations and Lord-Shulman (LS) theory with one relaxation time are applied to study the effect of hydrostatic initial stress on medium under the influence of two temperature parameter(a new model will be introduced using two temperature theory) and photothermal theory. We solved the thermal loading at the free surface in the semi-infinite semiconducting medium-coupled plasma waves with the effect of mechanical force during a photothermal process. The exact expressions of the considered variables are obtained using normal mode analysis also the two temperature coefficient ratios were obtained analytically. Numerical results for the field quantities are given in the physical domain and illustrated graphically under the effects of several parameters. Comparisons are made between the results of the two different models with and without two temperature parameter, and for two different values of the hydrostatic initial stress. A comparison is carried out between the considered variables as calculated from the generalized thermoelasticity based on the DPL model and the LS theory in the absence and presence of the thermoelastic and thermoelectric coupling parameters.

  14. Late Cretaceous climate simulations with different CO2 levels and subarctic gateway configurations: A model-data comparison

    NASA Astrophysics Data System (ADS)

    Niezgodzki, Igor; Knorr, Gregor; Lohmann, Gerrit; Tyszka, Jarosław; Markwick, Paul J.

    2017-09-01

    We investigate the impact of different CO2 levels and different subarctic gateway configurations on the surface temperatures during the latest Cretaceous using the Earth System Model COSMOS. The simulated temperatures are compared with the surface temperature reconstructions based on a recent compilation of the latest Cretaceous proxies. In our numerical experiments, the CO2 level ranges from 1 to 6 times the preindustrial (PI) CO2 level of 280 ppm. On a global scale, the most reasonable match between modeling and proxy data is obtained for the experiments with 3 to 5 × PI CO2 concentrations. However, the simulated low- (high-) latitude temperatures are too high (low) as compared to the proxy data. The moderate CO2 levels scenarios might be more realistic, if we take into account proxy data and the dead zone effect criterion. Furthermore, we test if the model-data discrepancies can be caused by too simplistic proxy-data interpretations. This is distinctly seen at high latitudes, where most proxies are biased toward summer temperatures. Additional sensitivity experiments with different ocean gateway configurations and constant CO2 level indicate only minor surface temperatures changes (< 1°C) on a global scale, with higher values (up to 8°C) on a regional scale. These findings imply that modeled and reconstructed temperature gradients are to a large degree only qualitatively comparable, providing challenges for the interpretation of proxy data and/or model sensitivity. With respect to the latter, our results suggest that an assessment of greenhouse worlds is best constrained by temperatures in the midlatitudes.

  15. Analysis of the 1877-78 ENSO episode and comparison with 1982-83

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiladis, G.N.; Diaz, H.F.

    A comparison of the 1877-78 and 1982-83 El Nino/Southern Oscillation (ENSO) events was made using monthly and seasonal values of sea surface temperature (SST) and station pressure in the tropics, sea level pressure (SLP) in North America and the North Atlantic, temperature in North America and precipitation in several key areas around the globe. SST anomalies in the eastern tropical Pacific, heavy rains in coastal Peru and extreme pressure anomalies across the Pacific and Indian Oceans during 1877-78 indicate an ENSO event of comparable magnitude to that during 1982-83. Both events were also associated with drought conditions in the Indonesianmore » region, India, South Africa, northeastern Brazil and Hawaii. Wintertime teleconnections in the midlatitudes of the Northern Hemisphere were similar in terms of SLP from the North Pacific to Europe, resulting in significantly higher than normal temperatures over most of the US and extreme rains in California.« less

  16. Oxidation of Ultra-High Temperature Ceramics in Water Vapor

    NASA Technical Reports Server (NTRS)

    Nguyen, QuynhGiao N.; Opila, Elizabeth J.; Robinson, Raymond C.

    2003-01-01

    Ultra high temperature ceramics (UHTCs) including HfB2 + SiC (20% by volume), ZrB2 + SiC (20% by volume) and ZrB2 + SiC (14% by volume) + C (30% by volume) have historically been evaluated as reusable thermal protection systems for hypersonic vehicles. This study investigates UHTCs for use as potential combustion and aeropropulsion engine materials. These materials were oxidized in water vapor (90%) using a cyclic vertical furnace at 1 atm. The total exposure time was 10 hours at temperatures of 1200, 1300, and 1400 C. CVD SiC was also evaluated as a baseline comparison. Weight change measurements, X-ray diffraction analyses, surface and cross-sectional SEM and EDS were performed. These results will be compared with tests ran in static air at temperatures of 1327, 1627, and 1927 C. Oxidation comparisons will also be made to the study by Tripp. A small number of high pressure burner rig (HPBR) results at 1100 and 1300 C will also be discussed. Specific weight changes at all three temperatures along with the SIC results are shown. SiC weight change is negligible at such short duration times. HB2 + SiC (HS) performed the best out of all the tested UHTCS for all exposure temperatures. ZrB2 + Sic (ZS) results indicate a slightly lower oxidation rate than that of ZrBl + SiC + C (ZCS) at 1200 and 1400 C, but a clear distinction can not be made based on the limited number of tested samples. Scanning electron micrographs of the cross-sections of all the UHTCs were evaluated. A representative area for HS is presented at 1400 C for 26 hours which was the composition with the least amount of oxidation. A continuous SiO2 scale is present in the outer most edge of the surface. An image of ZCS is presented at 1400 C for 10 hours, which shows the most degradation of all the compositions studied. Here, the oxide surface is a mixture of ZrSiO4, ZrO2 and SO2.

  17. Comparison of Friction Characteristics on TN and VA Mode Alignment Films with Friction Force Microscopy

    NASA Astrophysics Data System (ADS)

    Kwak, Musun; Chung, Hanrok; Kwon, Hyukmin; Kim, Jehyun; Han, Daekyung; Yi, Yoonseon; Lee, Sangmun; Lee, Chulgu; Cha, Sooyoul

    Using frictional force microscopy (FFM), the friction surface characteristics were compared between twisted nematic (TN) mode and vertical alignment (VA) mode alignment films (AFs). The friction asymmetry was detected depending on temperature conditions on TN mode AF, but not on VA mode AF. The difference between two modes was explained by leaning intermolecular repulsion caused by the pre-tilt angle uniformity and the density of side chain. No level difference according to temperature conditions appeared when the pre-tilt angle were measured after liquid crystal (LC) injection.

  18. The motion of bubbles inside drops in containerless processing

    NASA Technical Reports Server (NTRS)

    Shankar, N.; Annamalai, P.; Cole, R.; Subramanian, R. S.

    1982-01-01

    A theoretical model of thermocapillary bubble motion inside a drop, located in a space laboratory, due to an arbitrary axisymmetric temperature distribution on the drop surface was constructed. Typical results for the stream function and temperature fields as well as the migration velocity of the bubble were obtained in the quasistatic limit. The motion of bubbles in a rotating body of liquid was studied experimentally, and an approximate theoretical model was developed. Comparison of the experimental observations of the bubble trajectories and centering times with theoretical predictions lends qualified support to the theory.

  19. An isoline separating relatively warm from relatively cool wintertime forest surface temperatures for the southeastern United States

    NASA Astrophysics Data System (ADS)

    Wickham, J.; Wade, T. G.; Riitters, K. H.

    2014-09-01

    Forest-oriented climate mitigation policies promote forestation as a means to increase uptake of atmospheric carbon to counteract global warming. Some have pointed out that a carbon-centric forest policy may be overstated because it discounts biophysical aspects of the influence of forests on climate. In extra-tropical regions, many climate models have shown that forests tend to be warmer than grasslands and croplands because forest albedos tend to be lower than non-forest albedos. A lower forest albedo results in higher absorption of solar radiation and increased sensible warming that is not offset by the cooling effects of carbon uptake in extra-tropical regions. However, comparison of forest warming potential in the context of climate models is based on a coarse classification system of tropical, temperate, and boreal. There is considerable variation in climate within the broad latitudinal zonation of tropical, temperate, and boreal, and the relationship between biophysical (albedo) and biogeochemical (carbon uptake) mechanisms may not be constant within these broad zones. We compared wintertime forest and non-forest surface temperatures for the southeastern United States and found that forest surface temperatures shifted from being warmer than non-forest surface temperatures north of approximately 36°N to cooler south of 36°N. Our results suggest that the biophysical aspects of forests' influence on climate reinforce the biogeochemical aspects of forests' influence on climate south of 36°N. South of 36°N, both biophysical and biogeochemical properties of forests appear to support forestation as a climate mitigation policy. We also provide some quantitative evidence that evergreen forests tend to have cooler wintertime surface temperatures than deciduous forests that may be attributable to greater evapotranspiration rates.

  20. Fabrication and surface-modification of implantable microprobes for neuroscience studies

    NASA Astrophysics Data System (ADS)

    Cao, H.; Nguyen, C. M.; Chiao, J. C.

    2012-06-01

    In this work implantable micro-probes for central nervous system (CNS) studies were developed on silicon and polyimide substrates. The probes which contained micro-electrode arrays with different surface modifications were designed for implantation in the CNS. The electrode surfaces were modified with nano-scale structures that could greatly increase the active surface area in order to enhance the electrochemical current outputs while maintaining micro-scale dimensions of the electrodes and probes. The electrodes were made of gold or platinum, and designed with different sizes. The silicon probes were modified by silicon nanowires fabricated with the vapor-liquid-solid mechanism at high temperatures. With polyimide substrates, the nanostructure modification was carried out by applying concentrated gold or silver colloid solutions onto the micro-electrodes at room temperature. The surfaces of electrodes before and after modification were observed by scanning electron microscopy. The silicon nanowire-modified surface was characterized by cyclic voltammetry. Experiments were carried out to investigate the improvement in sensing performance. The modified electrodes were tested with H2O2, electrochemical L-glutamate and dopamine. Comparisons between electrodes with and without nanostructure modification were conducted showing that the modifications have enhanced the signal outputs of the electrochemical neurotransmitter sensors.

  1. Epithermal Neutron Evidence for a Diurnal Surface Hydration Process in the Moon's High Latitudes

    NASA Technical Reports Server (NTRS)

    McClanahan, T. P.; Mitrofanov, I. G.; Boynton, W. V.; Chin, G.; Parsons, A.; Starr, R. D.; Evans, L. G.; Sanin, A.; Litvak, M.; Livengood, T.

    2015-01-01

    We report evidence from epithermal neutron flux observations that show that the Moon's high latitude surfaces are being actively hydrated, dehydrated and rehydrated in a diurnal cycle. The near-surface hydration is indicated by an enhanced suppression of the lunar epithermal neutron leakage flux on the dayside of the dawn terminator on poleward-facing slopes (PFS). At 0600 to 0800 local-time, hydrogen concentrations within the upper 1 meter of PFS are observed to be maximized relative to equivalent equator-facing slopes (EFS). During the lunar day surface hydrogen concentrations diminish towards dusk and then rebuild overnight. Surface hydration is determined by differential comparison of the averaged EFS to PFS epithermal neutron count rates above +/- 75 deg latitude. At dawn the contrast bias towards PFS is consistent with at least 15 to 25 parts-per-million (ppm) hydrogen that dissipates by dusk. We review several lines of evidence derived from temperature and epithermal neutron data by a correlated analysis of observations from the Lunar Reconnaissance Orbiter's (LRO) Lunar Exploration Neutron Detector (LEND) that were mapped as a function of lunar local-time, Lunar Observing Laser Altimeter (LOLA) topography and Diviner (DLRE) surface temperature.

  2. Canopy storage capacity and wettability of leaves and needles: The effect of water temperature changes

    NASA Astrophysics Data System (ADS)

    Klamerus-Iwan, Anna; Błońska, Ewa

    2018-04-01

    The canopy storage capacity (S) is a major component of the surface water balance. We analysed the relationship between the tree canopy water storage capacity and leaf wettability under changing simulated rainfall temperature. We estimated the effect of the rain temperature change on the canopy storage capacity and contact angle of leave and needle surfaces based on two scenarios. Six dominant forest trees were analysed: English oak (Quercus roburL.), common beech (Fagus sylvatica L.), small-leaved lime (Tilia cordata Mill), silver fir (Abies alba), Scots pine (Pinus sylvestris L.),and Norway spruce (Picea abies L.). Twigs of these species were collected from Krynica Zdrój, that is, the Experimental Forestry unit of the University of Agriculture in Cracow (southern Poland). Experimental analyses (simulations of precipitation) were performed in a laboratory under controlled conditions. The canopy storage capacity and leaf wettability classification were determined at 12 water temperatures and a practical calculator to compute changes of S and contact angles of droplets was developed. Among all species, an increase of the rainfall temperature by 0.7 °C decreases the contact angle between leave and needle surfaces by 2.41° and increases the canopy storage capacity by 0.74 g g-1; an increase of the rain temperature by 2.7 °C decreases the contact angle by 9.29° and increases the canopy storage capacity by 2.85 g g-1. A decreased contact angle between a water droplet and leaf surface indicates increased wettability. Thus, our results show that an increased temperature increases the leaf wettability in all examined species. The comparison of different species implies that the water temperature has the strongest effect on spruce and the weakest effect on oak. These data indicate that the rainfall temperature influences the canopy storage capacity.

  3. Remote Raman Spectroscopy of Minerals at Elevated Temperature Relevant to Venus Exploration

    NASA Technical Reports Server (NTRS)

    Sharma, Shiv K.; Misra, Anupam K.; Singh, Upendra N.

    2008-01-01

    We have used a remote time-resolved telescopic Raman system equipped with 532 nm pulsed laser excitation and a gated intensified CCD (ICCD) detector for measuring Raman spectra of a number of minerals at high temperature to 970 K. Remote Raman measurements were made with samples at 9-meter in side a high-temperature furnace by gating the ICCD detector with 2 micro-sec gate to minimize interference from blackbody emission from mineral surfaces at high temperature as well as interference from ambient light. A comparison of Raman spectra of gypsum (CaSO4.2H2O), dolomite (CaMg(CO3)2), and olivine (Mg2Fe2-xSiO4), as a function of temperature shows that the Raman lines remains sharp and well defined even in the high-temperature spectra. In the case of gypsum, Raman spectral fingerprints of CaSO4.H2O at 518 K were observed due to dehydration of gypsum. In the case of dolomite, partial mineral dissociation was observed at 973 K at ambient pressure indicating that some of the dolomite might survive on Venus surface that is at approximately 750 K and 92 atmospheric pressure. Time-resolved Raman spectra of low clino-enstatite (MgSiO3) measured at 75 mm from the sample in side the high-temperature furnace also show that the Raman lines remains sharp and well defined in the high temperature spectra. These high-temperature remote Raman spectra of minerals show that time-resolved Raman spectroscopy can be used as a potential tool for exploring Venus surface mineralogy at shorter (75 mm) and long (9 m) distances from the samples both during daytime and nighttime. The remote Raman system could also be used for measuring profiles of molecular species in the dense Venus atmosphere during descent as well as on the surface.

  4. Refining surface net radiation estimates in arid and semi-arid climates of Iran

    NASA Astrophysics Data System (ADS)

    Golkar, Foroogh; Rossow, William B.; Sabziparvar, Ali Akbar

    2018-06-01

    Although the downwelling fluxes exhibit space-time scales of dependency on characteristic of atmospheric variations, especially clouds, the upward fluxes and, hence the net radiation, depends on the variation of surface properties, particularly surface skin temperature and albedo. Evapotranspiration at the land surface depends on the properties of that surface and is determined primarily by the net surface radiation, mostly absorbed solar radiation. Thus, relatively high spatial resolution net radiation data are needed for evapotranspiration studies. Moreover, in more arid environments, the diurnal variations of surface (air and skin) temperature can be large so relatively high (sub-daily) time resolution net radiation is also needed. There are a variety of radiation and surface property products available but they differ in accuracy, space-time resolution and information content. This situation motivated the current study to evaluate multiple sources of information to obtain the best net radiation estimate with the highest space-time resolution from ISCCP FD dataset. This study investigates the accuracy of the ISCCP FD and AIRS surface air and skin temperatures, as well as the ISCCP FD and MODIS surface albedos and aerosol optical depths as the leading source of uncertainty in ISCCP FD dataset. The surface air temperatures, 10-cm soil temperatures and surface solar insolation from a number of surface sites are used to judge the best combinations of data products, especially on clear days. The corresponding surface skin temperatures in ISCCP FD, although they are known to be biased somewhat high, disagreed more with AIRS measurements because of the mismatch of spatial resolutions. The effect of spatial resolution on the comparisons was confirmed using the even higher resolution MODIS surface skin temperature values. The agreement of ISCCP FD surface solar insolation with surface measurements is good (within 2.4-9.1%), but the use of MODIS aerosol optical depths as an alternative was checked and found to not improve the agreement. The MODIS surface albedos differed from the ISCCP FD values by no more than 0.02-0.07, but because these differences are mostly at longer wavelengths, they did not change the net solar radiation very much. Therefore to obtain the best estimate of surface net radiation with the best combination of spatial and temporal resolution, we developed a method to adjust the ISCCP FD surface longwave fluxes using the AIRS surface air and skin temperatures to obtain the higher spatial resolution of the latter (45 km), while retaining the 3-h time intervals of the former. Overall, the refinements reduced the ISCCP FD longwave flux magnitudes by about 25.5-42.1 W/m2 RMS (maximum difference -27.5 W/m2 for incoming longwave radiation and -59 W/m2 for outgoing longwave radiation) with the largest differences occurring at 9:00 and 12:00 UTC near local noon. Combining the ISCCP FD net shortwave radiation data and the AIRS-modified net longwave radiation data changed the total net radiation for summertime by 4.64 to 61.5 W/m2 and for wintertime by 1.06 to 41.88 W/m2 (about 11.1-39.2% of the daily mean).

  5. Tuning the characteristics of surface plasmon polariton nanolasers by tailoring the dispersion relation

    NASA Astrophysics Data System (ADS)

    Lu, Tien-Chang; Chou, Yu-Hsun; Hong, Kuo-Bin; Chung, Yi-Cheng; Lin, Tzy-Rong; Arakelian, S. M.; Alodjants, A. P.

    2017-08-01

    Nanolasers with ultra-compact footprint are able to provide high intensity coherent light, which have various potential applications in high capacity signal processing, biosensing, and sub-wavelength imaging. Among various nanolasers, those lasers with cavities surrounded with metals have shown to have superior light emission properties due to the surface plasmon effect providing better field confinement capability and allowing exotic light-matter interaction. In this talk, we report robust ultraviolet ZnO nanolaser by using silver (Ag) [1] and aluminum (Al) [2] to strongly shrink the mode volume. The nanolasers operated at room temperature and even high temperature (353K) shows several distinct features including an extremely small mode volume, large Purcell factor and group index. Comparison of characteristics between Ag- and Al-based will also be made.

  6. Influence of surface microroughness by plasma deposition and chemical erosion followed by TiO2 coating upon anticoagulation, hydrophilicity, and corrosion resistance of NiTi alloy stent.

    PubMed

    Wang, Gui-Xue; Shen, Yang; Zhang, He; Quan, Xue-Jun; Yu, Qing-Song

    2008-06-15

    Two different surface modification techniques were used to change the surface morphology and roughness of stents at the micrometer level, and eventually improve their surface adhesion properties with respect to endothelial cells. One was chemical erosion followed by sol-gel TiO(2) coating, and the other was low temperature gas plasma deposition. After surface modification, the biocompatibility including the anticoagulation properties, hydrophilicity, and corrosion resistance of these stents was evaluated. It was found that both techniques could change the surface morphology of the stents with microroughness. In comparison with the control, the treated NiTi alloy intravascular stents showed increased surface hydrophilicity and enhanced anticoagulation properties. However, the corrosion properties of the stents were not improved significantly.

  7. Evaluation of the thermal structure in an urban street canyon: field measurements and model simulation

    NASA Astrophysics Data System (ADS)

    Giovannini, L.; de Franceschi, M.; Zardi, D.

    2009-04-01

    The results of a research project, aiming at providing tools and criteria to evaluate the temperature field inside an urban street canyon, are presented. Temperature measurements have been carried out, both in summertime and in wintertime, inside a North-South oriented urban canyon in the city of Trento (Italy) in the Alps, with sensors placed at various heights on the front of buildings flanking the street and on top of traffic lights in the middle of the canyon. The results have been analyzed in comparison with data from an automated weather station placed close to the street canyon, at 33 m above ground level and taken as a reference for the above roof-top level. During sunny days a well defined cycle was identified in the daily evolution of air temperature measured by the sensors inside the urban canyon, which was primarily influenced by direct solar radiation. As expected, during the morning the East-facing sensors warmed up faster than the other ones, while in the afternoon the West-facing instruments were the warmest. In most cases the air temperature inside the canyon was higher than above roof level, with differences depending on weather conditions and hour of the day. The dataset allowed to characterize the microclimate of the urban canopy layer and provided a basis for testing the ability of a simple numerical model to simulate the thermal structure inside the urban canyon. The model displays the following characteristics: assignment of distinct surface types (road, walls and roofs), in order to better simulate their physical properties; computation of radiative exchanges inside the canyon based on view factors between the different surfaces and explicitly treating both the solar reflections and the shadows; storage heat flux simulated by means of the heat conduction equation. The model requires as input the geometry parameters of the street and the values of meteorological variables measured above roof level. The main outputs are the heat fluxes determined by the surface energy balance (road, building fronts), the surface temperatures and the average air temperature inside the urban canyon. The comparison between the results of the model and the measurements made during the field experiments displays a good agreement, with an average error of 0.3-0.4 °C on the evaluation of the mean air temperature inside the street canyon. This result is remarkable, especially considering the low level of complexity of the numerical code and the simplifying assumptions made.

  8. Downscaling with a nested regional climate model in near-surface fields over the contiguous United States: WRF dynamical downscaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jiali; Kotamarthi, Veerabhadra R.

    The Weather Research and Forecasting (WRF) model is used for dynamic downscaling of 2.5 degree National Centers for Environmental Prediction-U.S. Department of Energy Reanalysis II (NCEP-R2) data for 1980-2010 at 12 km resolution over most of North America. The model's performance for surface air temperature and precipitation is evaluated by comparison with high-resolution observational data sets. The model's ability to add value is investigated by comparison with NCEP-R2 data and a 50 km regional climate simulation. The causes for major model bias are studied through additional sensitivity experiments with various model setup/integration approaches and physics representations. The WRF captures themore » main features of the spatial patterns and annual cycles of air temperature and precipitation over most of the contiguous United States. However, simulated air temperatures over the south central region and precipitation over the Great Plains and the Southwest have significant biases. Allowing longer spin-up time, reducing the nudging strength, or replacing the WRF Single-Moment 6-class microphysics with Morrison microphysics reduces the bias over some subregions. However, replacing the Grell-Devenyi cumulus parameterization with Kain-Fritsch shows no improvement. The 12 km simulation does add value above the NCEP-R2 data and the 50 km simulation over mountainous and coastal zones.« less

  9. Radiation Dry Bias of the Vaisala RS92 Humidity Sensor

    NASA Technical Reports Server (NTRS)

    Vomel, H.; Selkirk, H.; Miloshevich, L.; Valverde-Canossa, J.; Valdes, J.; Kyro, E.; Kivi, R.; Stolz, W.; Peng, G.; Diaz, J. A.

    2007-01-01

    The comparison of simultaneous humidity measurements by the Vaisala RS92 radiosonde and by the Cryogenic Frostpoint Hygrometer (CFH) launched at Alajuela, Cosla Rica, during July 2005 reveals a large solar radiation dry bias of the Vaisala RS92 humidity sensor and a minor temperature-dependent calibration error. For soundings launched at solar zenith angles between 10" and 30 , the average dry bias is on the order of 9% at the surface and increases to 50% at 15 km. A simple pressure- and temperature-dependent correction based on the comparison with the CFH can reduce this error to less than 7% at all altitudes up to 15.2 km, which is 700 m below the tropical tropopause. The correction does not depend on relative humidity, but is able to reproduce the relative humidity distribution observed by the CFH.

  10. Simulation of ion-temperature-gradient turbulence in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, B I; Dimits, A M; Kim, C

    Results are presented from nonlinear gyrokinetic simulations of toroidal ion temperature gradient (ITG) turbulence and transport. The gyrokinetic simulations are found to yield values of the thermal diffusivity significantly lower than gyrofluid or IFS-PPPL-model predictions. A new phenomenon of nonlinear effective critical gradients larger than the linear instability threshold gradients is observed, and is associated with undamped flux-surface-averaged shear flows. The nonlinear gyrokineic codes have passed extensive validity tests which include comparison against independent linear calculations, a series of nonlinear convergence tests, and a comparison between two independent nonlinear gyrokinetic codes. Our most realistic simulations to date have actual reconstructedmore » equilibria from experiments and a model for dilution by impurity and beam ions. These simulations highlight the need for still more physics to be included in the simulations« less

  11. Suitability of temperature, hydraulic heads, and acesulfame to quantify wastewater-related fluxes in the hyporheic and riparian zone

    NASA Astrophysics Data System (ADS)

    Engelhardt, Irina; Prommer, Henning; Moore, Catherine; Schulz, Manoj; Schüth, Christoph; Ternes, Thomas A.

    2013-01-01

    Groundwater and surface water are in many cases closely linked components of the water cycle with respect to both quantity and quality. Bank filtrates may eventually be impacted by the infiltration of wastewater-derived micropollutants from surface waters. Artificial sweeteners such as acesulfame have recently been reported as a novel class of potentially valuable tracers to study the fate of wastewater-derived substances in groundwater and, in particular, to determine the (bio)degradability of micropollutants. In this paper, a model-based analysis of a field experiment within the hyporheic and riparian zone of a highly polluted German stream was performed to assess the physical and chemical behavior of the artificial sweetener acesulfame. In the first part of this study, a reliable flow and transport model was established by jointly using hydraulic heads, temperatures, and acesulfame concentrations as inverse model calibration constraints. The analysis confirmed the conservative behavior of acesulfame and, therefore, its usability as an indicator of sewage flux provenance. However, a comparison of the appropriateness of hydraulic head, temperature, and acesulfame concentrations revealed that the characterization of the surface water-groundwater flux data indicated diurnal temperature fluctuations are the best indicator in terms of characterizing the flow and transport behavior in the groundwater system.

  12. Annual minimum temperature variations in early 21st century in Punjab, Pakistan

    NASA Astrophysics Data System (ADS)

    Jahangir, Misbah; Maria Ali, Syeda; Khalid, Bushra

    2016-01-01

    Climate change is a key emerging threat to the global environment. It imposes long lasting impacts both at regional and national level. In the recent era, global warming and extreme temperatures have drawn great interest to the scientific community. As in a past century considerable increase in global surface temperatures have been observed and predictions revealed that it will continue in the future. In this regard, current study mainly focused on analysis of regional climatic change (annual minimum temperature trends and its correlation with land surface temperatures in the early 21st century in Punjab) for a period of 1979-2013. The projected model data European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim) has been used for eight Tehsils of Punjab i.e., annual minimum temperatures and annual seasonal temperatures. Trend analysis of annual minimum and annual seasonal temperature in (Khushab, Noorpur, Sargodha, Bhalwal, Sahiwal, Shahpur, Sillanwali and Chinoit) tehsils of Punjab was carried out by Regression analysis and Mann-Kendall test. Landsat 5 Thematic Mapper (TM) data was used in comparison with Model data for the month of May from the years 2000, 2009 and 2010. Results showed that no significant trends were observed in annual minimum temperature. A significant change was observed in Noorpur, Bhalwal, Shahpur, Sillanwali, Sahiwal, Chinoit and Sargodha tehsils during spring season, which indicated that this particular season was a transient period of time.

  13. Infrared Algorithm Development for Ocean Observations with EOS/MODIS

    NASA Technical Reports Server (NTRS)

    Brown, Otis B.

    1997-01-01

    Efforts continue under this contract to develop algorithms for the computation of sea surface temperature (SST) from MODIS infrared measurements. This effort includes radiative transfer modeling, comparison of in situ and satellite observations, development and evaluation of processing and networking methodologies for algorithm computation and data accession, evaluation of surface validation approaches for IR radiances, development of experimental instrumentation, and participation in MODIS (project) related activities. Activities in this contract period have focused on radiative transfer modeling, evaluation of atmospheric correction methodologies, undertake field campaigns, analysis of field data, and participation in MODIS meetings.

  14. Detailed modeling of electron emission for transpiration cooling of hypersonic vehicles

    NASA Astrophysics Data System (ADS)

    Hanquist, Kyle M.; Hara, Kentaro; Boyd, Iain D.

    2017-02-01

    Electron transpiration cooling (ETC) is a recently proposed approach to manage the high heating loads experienced at the sharp leading edges of hypersonic vehicles. Computational fluid dynamics (CFD) can be used to investigate the feasibility of ETC in a hypersonic environment. A modeling approach is presented for ETC, which includes developing the boundary conditions for electron emission from the surface, accounting for the space-charge limit effects of the near-wall plasma sheath. The space-charge limit models are assessed using 1D direct-kinetic plasma sheath simulations, taking into account the thermionically emitted electrons from the surface. The simulations agree well with the space-charge limit theory proposed by Takamura et al. for emitted electrons with a finite temperature, especially at low values of wall bias, which validates the use of the theoretical model for the hypersonic CFD code. The CFD code with the analytical sheath models is then used for a test case typical of a leading edge radius in a hypersonic flight environment. The CFD results show that ETC can lower the surface temperature of sharp leading edges of hypersonic vehicles, especially at higher velocities, due to the increase in ionized species enabling higher electron heat extraction from the surface. The CFD results also show that space-charge limit effects can limit the ETC reduction of surface temperatures, in comparison to thermionic emission assuming no effects of the electric field within the sheath.

  15. Studies on Various Functional Properties of Titania Thin Film Developed on Glazed Ceramic Wall Tiles

    NASA Astrophysics Data System (ADS)

    Anil, Asha; Darshana R, Bangoria; Misra, S. N.

    A sol-gel based TiO2 thin film was applied on glazed wall tiles for studying its various functional properties. Thin film was deposited by spin coating on the substrate and subjected to curing at different temperatures such as 600°C, 650, 700°C, 750°C and 800°C with 10 minutes soaking. The gel powder was characterized by FTIR, DTA/TG and XRD. Microstructure of thin film was analyzed by FESEM and EDX. Surface properties of the coatings such as gloss, colour difference, stain resistance, mineral hardness and wettability were extensively studied. The antibacterial activity of the surface of coated substrate against E. coli was also examined. The durability of the coated substrate in comparison to the uncoated was tested against alkali in accordance with ISO: 10545 (Part 13):1995 standard. FESEM images showed that thin films are dense and homogeneous. Coated substrates after firing results in lustre with high gloss, which increased from 330 to 420 GU as the curing temperature increases compared to that of uncoated one (72 GU). Coated substrate cured at 800°C shows higher mineral hardness (5 Mohs’) compared to uncoated one (4 Mohs’) and films cured at all temperatures showed stain resistance. The experimental results showed that the resistance towards alkali attack increase with increase in curing temperature and alkali resistance of sample cured at 800 °C was found to be superior compared to uncoated substrate. Contact angle of water on coated surface of substrates decreased with increase in temperature. Bacterial reduction percentages of the coated surface was 97% for sample cured at 700°C and it decreased from 97% to 87% as the curing temperature increased to 800 °C when treated with E. coli bacteria.

  16. Influence of atmospheric pressure low-temperature plasma treatment on the shear bond strength between zirconia and resin cement.

    PubMed

    Ito, Yuki; Okawa, Takahisa; Fukumoto, Takahiro; Tsurumi, Akiko; Tatsuta, Mitsuhiro; Fujii, Takamasa; Tanaka, Junko; Tanaka, Masahiro

    2016-10-01

    Zirconia exhibits excellent strength and high biocompatibility in technological applications and it is has therefore been investigated for clinical applications and research. Before setting prostheses, a crown prosthesis inner surface is sandblasted with alumina to remove contaminants and form small cavities. This alumina sandblasting causes stress-induced phase transition of zirconia. Atmospheric-pressure low-temperature plasma has been applied in the dental industry, particularly for adhesives, as a surface treatment to activate the surface energy and remove contaminants. The purpose of this study was to examine the influence of atmospheric-pressure low-temperature plasma treatment on the shear bond strength between zirconia and adhesive resin cement. The surface treatment method was classified into three groups: untreated (Cont group), alumina sandblast treatment (Sb group), and atmospheric-pressure low-temperature plasma treatment (Ps group). Adhesive resin cement was applied to stainless steel and bonded to zirconia. Shear adhesion tests were performed after complete hardening of the cement. Multiple comparisons were performed using a one-way analysis of variance and the Bonferroni method. X-ray diffractometry was used to examine the change in zirconia crystal structure. Statistically significant differences were noted between the control and Sb groups and between the control and Ps groups. In contrast, no statistically significant differences were noted for the Ps and Sb bond strength. Atmospheric-pressure low-temperature plasma treatment did not affect the zirconia crystal structure. Atmospheric-pressure low-temperature plasma treatment improves the bonding strength of adhesive resin cement as effectively as alumina sandblasting, and does not alter the zirconia crystal structure. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  17. Combined effects of wind and solar irradiance on the spatial variation of midday air temperature over a mountainous terrain

    NASA Astrophysics Data System (ADS)

    Kim, Soo-Ock; Kim, Jin-Hee; Kim, Dae-Jun; Shim, Kyo Moon; Yun, Jin I.

    2015-08-01

    When the midday temperature distribution in a mountainous region was estimated using data from a nearby weather station, the correction of elevation difference based on temperature lapse caused a large error. An empirical approach reflecting the effects of solar irradiance and advection was suggested in order to increase the reliability of the results. The normalized slope irradiance, which was determined by normalizing the solar irradiance difference between a horizontal surface and a sloping surface from 1100 to 1500 LST on a clear day, and the deviation relationship between the horizontal surface and the sloping surface at the 1500 LST temperature on each day were presented as simple empirical formulas. In order to simulate the phenomenon that causes immigrant air parcels to push out or mix with the existing air parcels in order to decrease the solar radiation effects, an advection correction factor was added to exponentially reduce the solar radiation effect with an increase in wind speed. In order to validate this technique, we estimated the 1500 LST air temperatures on 177 clear days in 2012 and 2013 at 10 sites with different slope aspects in a mountainous catchment and compared these values to the actual measured data. The results showed that this technique greatly improved the error bias and the overestimation of the solar radiation effect in comparison with the existing methods. By applying this technique to the Korea Meteorological Administration's 5-km grid data, it was possible to determine the temperature distribution at a 30-m resolution over a mountainous rural area south of Jiri Mountain National Park, Korea.

  18. A Comparison of Five Numerical Weather Prediction Analysis Climatologies in Southern High Latitudes.

    NASA Astrophysics Data System (ADS)

    Connolley, William M.; Harangozo, Stephen A.

    2001-01-01

    In this paper, numerical weather prediction analyses from four major centers are compared-the Australian Bureau of Meteorology (ABM), the European Centre for Medium-Range Weather Forecasts (ECMWF), the U.S. National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR), and The Met. Office (UKMO). Two of the series-ECMWF reanalysis (ERA) and NCEP-NCAR reanalysis (NNR)-are `reanalyses'; that is, the data have recently been processed through a consistent, modern analysis system. The other three-ABM, ECMWF operational (EOP), and UKMO-are archived from operational analyses.The primary focus in this paper is on the period of 1979-93, the period used for the reanalyses, and on climatology. However, ABM and NNR are also compared for the period before 1979, for which the evidence tends to favor NNR. The authors are concerned with basic variables-mean sea level pressure, height of the 500-hPa surface, and near-surface temperature-that are available from the basic analysis step, rather than more derived quantities (such as precipitation), which are available only from the forecast step.Direct comparisons against station observations, intercomparisons of the spatial pattern of the analyses, and intercomparisons of the temporal variation indicate that ERA, EOP, and UKMO are best for sea level pressure;that UKMO and EOP are best for 500-hPa height; and that none of the analyses perform well for near-surface temperature.

  19. Investigation of multi-scale flash-weakening of rock surfaces during high speed slip

    NASA Astrophysics Data System (ADS)

    Barbery, M. R.; Saber, O.; Chester, F. M.; Chester, J. S.

    2017-12-01

    A significant reduction in the coefficient of friction of rock can occur if sliding velocity approaches seismic rates as a consequence of weakening of microscopic sliding contacts by flash heating. Using a high-acceleration and -speed biaxial apparatus equipped with a high-speed Infra-Red (IR) camera to capture thermographs of the sliding surface, we have documented the heterogeneous distribution of temperature on flash-heated decimetric surfaces characterized by linear arrays of high-temperature, mm-size spots, and streaks. Numerical models that are informed by the character of flash heated surfaces and that consider the coupling of changes in temperature and changes in the friction of contacts, supports the hypothesis that independent mechanisms of flash weakening operate at different contact scales. Here, we report on new experiments that provide additional constraints on the life-times and rest-times of populations of millimeter-scale contacts. Rock friction experiments conducted on Westerly granite samples in a double-direct shear configuration achieve velocity steps from 1 mm/s to 900 mm/s at 100g accelerations over 2 mm of displacement with normal stresses of 22-36 MPa and 30 mm of displacement during sustained high-speed sliding. Sliding surfaces are machined to roughness similar to natural fault surfaces and that allow us to control the characteristics of millimeter-scale contact populations. Thermographs of the sliding surface show temperatures up to 200 C on millimeter-scale contacts, in agreement with 1-D heat conduction model estimates of 180 C. Preliminary comparison of thermal modeling results and experiment observations demonstrate that we can distinguish the different life-times and rest-times of contacts in thermographs and the corresponding frictional weakening behaviors. Continued work on machined surfaces that lead to different contact population characteristics will be used to test the multi-scale and multi-mechanism hypothesis for flash weakening during seismic slip on rough fault surfaces.

  20. On the urban land-surface impact on climate over Central Europe

    NASA Astrophysics Data System (ADS)

    Huszar, Peter; Halenka, Tomas; Belda, Michal; Zemankova, Katerina; Zak, Michal

    2014-05-01

    For the purpose of qualifying and quantifying the impact of cities and in general the urban surfaces on climate over central Europe, the surface parameterization in regional climate model RegCM4 has been extended with the Single Layer Urban Canopy Model (SLUCM) for urban and suburban land surface. This can be used both in dynamic scale within BATS scheme and in a more detailed SUBBATS scale to treat the surface processes on a higher resolution subgrid. A set of experiments was performed over the period of 2005-2009 over central Europe, either without considering urban surfaces and with the SLUCM treatment. Results show a statistically significant impact of urbanized surfaces on temperature (up to 1.5 K increase in summer), on the boundary layer height (ZPBL, increases up to 50 m). Urbanization further influences surface wind with a winter decrease up to -0,6 m s-1 and both increases and decreases in summer depending the location with respect to cities and daytime (changes up to 0.3 ms-1). Urban surfaces significantly reduce evaporation and thus the humidity over the surface. This impacts in our simulations the summer precipitation rate showing decrease over cities up to - 2 mm day-1. We further showed, that significant temperature increases are not limited to the urban canopy layer but spawn the whole boundary layer. Above that, a small but statistically significant temperature decrease is modeled. The comparison with observational data showed significant improvement in modeling the monthly surface temperatures in summer and the models better describe the diurnal temperature variation reducing the afternoon and evening bias due to the UHI development, which was not captured by the model if one does not apply the urban parameterization. Sensitivity experiments were carried out as well to quantify the response of the meteorological conditions to changes in the parameters specific to the urban environment such as street width, building height, albedo of the roofs, anthropogenic heat release etc. and showed that the results are rather robust and the choice of the key SLUCM parameters impacts the results only slightly (mainly temperature, ZPBL and wind velocity). Further, the important conclusion is that statistically significant impacts are modeled not only over large urbanized areas (cities), but the influence of cities is evident over remote rural areas as well with minor or without any urban surfaces. We show that this is the result of the combined effect of the distant influence of surrounding cities and the influence of the minor local urban surface coverage.

  1. Determination of ocean surface heat fluxes by a variational method

    NASA Astrophysics Data System (ADS)

    Roquet, H.; Planton, S.; Gaspar, P.

    1993-06-01

    A new technique of determination of the "nonsolar" heat flux (sum of the latent, sensible, and net infrared fluxes) at the ocean surface is proposed. It applies when oceanic advection remains weak and thus relies on a one-dimensional modeling approach. It is based on a variational data assimilation scheme using the adjoint equation formalism. This allows to take advantage of all observed data with their error estimates. Results from experiments performed with station Papa (Gulf of Alaska) and Long-Term Upper Ocean Study (LOTUS, Sargasso Sea) data sets are discussed. The temperature profiles assimilation allows the one-dimensional model to reproduce correctly the temperature evolution at the surface and under the oceanic mixed layer at the two sites. The retrieved fluxes are compared to the fluxes calculated through classical empirical formulae. The diurnal dependence of the fluxes at the LOTUS site is particularly investigated. The results are also compared with those obtained using a simpler technique based on an iterative shooting method and allowing the assimilation of the only sea surface temperature. This second comparison reveals that the variability of the retrieved fluxes is damped when temperature in the inner ocean are assimilated. This is the case for the diurnal cycle at the LOTUS mooring. When the available current data at this site are assimilated, the diurnal variability of the retrieved fluxes is further decreased. This points out a model discrepancy in the representation of mixing processes associated to internal wave activity. The remaining part of the diurnal cycle is significant and could be due to a direct effect of air-sea temperature difference.

  2. Influence of liquid temperature and flow rate on enamel erosion and surface softening.

    PubMed

    Eisenburger, M; Addy, M

    2003-11-01

    Enamel erosion and softening are based on chemical processes which could be influenced by many factors including temperature and acid flow rate. Knowledge of the influence of these variables could have relevance to research experiments and clinical outcomes. Both parameters were investigated using an ultrasonication and profilometry method to assess erosion depth and surface softening of enamel. The influence of temperature was studied by eroding polished human enamel samples at 4, 20, 35 or 50 degrees C for 2 h. Secondly, different liquid flow conditions were established by varying acid agitation. Additionally, a slow laminar flow and a jet of citric acid, to simulate drinking through a straw, were applied to specimens. Erosion depth increased significantly with acid temperature from 11.0 microm at 4 degrees C to 35.8 microm at 50 degrees C. Surface softening increased much more slowly and plateaued at 2.9 microm to 3.5 microm after 35 degrees C. A strong dependence of erosion on liquid flow was revealed. In unstirred conditions only 8.6 microm erosion occurred, which increased to 22.2 microm with slow stirring and 40.9 microm with fast stirring. Surface softening did not increase correspondingly with its largest extent at slow stirring at 3.4 microm.The implication of these data are: first, the conditions for erosion experiments in vitro or in situ need to be specified for reliable comparisons between studies. Secondly, erosion of teeth by soft drinks are likely to be influenced both by the temperature of the drink and individual drinking habits.

  3. A solid-state [sup 13]C NMR study of the molecular motion of ethylene adsorbed on a silver surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jianxin Wang; Ellis, P.D.

    1993-01-13

    The reorientation of ethylene on a silver catalyst surface has been studied by solid-state [sup 13]C NMR. The static cross-polarization spectra at different temperatures have been measured. Different jump site models are proposed to simulate the experimental results. It was found that the models involving a low number of jump sites are more sensitive to the experimental details. By comparison of the simulated and experimental results, the 6- and 4-site jump models are chosen as the most satisfactory model to fit the experimental spectra. On the basis of this representation, the activation energy derived for the jump process is 4.3more » kJ/mol. From the simulated results, it was concluded that the symmetry axis for the motion of the ethylene at low temperatures ([minus]173 to ca. [minus]45[degrees]C) is perpendicular to the plane of the ethylene molecule. At higher temperatures motion about other axes is initiated such that at room temperature a nearly isotropically averaged [sup 13]C shielding tensor is observed. 20 refs., 9 figs.« less

  4. Evaluation of CMIP5 Ability to Reproduce 20th Century Regional Trends in Surface Air Temperature and Precipitation over CONUS

    NASA Astrophysics Data System (ADS)

    Lee, J.; Waliser, D. E.; Lee, H.; Loikith, P. C.; Kunkel, K.

    2017-12-01

    Monitoring temporal changes in key climate variables, such as surface air temperature and precipitation, is an integral part of the ongoing efforts of the United States National Climate Assessment (NCA). Climate models participating in CMIP5 provide future trends for four different emissions scenarios. In order to have confidence in the future projections of surface air temperature and precipitation, it is crucial to evaluate the ability of CMIP5 models to reproduce observed trends for three different time periods (1895-1939, 1940-1979, and 1980-2005). Towards this goal, trends in surface air temperature and precipitation obtained from the NOAA nClimGrid 5 km gridded station observation-based product are compared during all three time periods to the 206 CMIP5 historical simulations from 48 unique GCMs and their multi-model ensemble (MME) for NCA-defined climate regions during summer (JJA) and winter (DJF). This evaluation quantitatively examines the biases of simulated trends of the spatially averaged temperature and precipitation in the NCA climate regions. The CMIP5 MME reproduces historical surface air temperature trends for JJA for all time period and all regions, except the Northern Great Plains from 1895-1939 and Southeast during 1980-2005. Likewise, for DJF, the MME reproduces historical surface air temperature trends across all time periods over all regions except the Southeast from 1895-1939 and the Midwest during 1940-1979. The Regional Climate Model Evaluation System (RCMES), an analysis tool which supports the NCA by providing access to data and tools for regional climate model validation, facilitates the comparisons between the models and observation. The RCMES Toolkit is designed to assist in the analysis of climate variables and the procedure of the evaluation of climate projection models to support the decision-making processes. This tool is used in conjunction with the above analysis and results will be presented to demonstrate its capability to access observation and model datasets, calculate evaluation metrics, and visualize the results. Several other examples of the RCMES capabilities can be found at https://rcmes.jpl.nasa.gov.

  5. Comparison of evaporative fluxes from porous surfaces resolved by remotely sensed and in-situ temperature and soil moisture data

    NASA Astrophysics Data System (ADS)

    Wallen, B.; Trautz, A.; Smits, K. M.

    2014-12-01

    The estimation of evaporation has important implications in modeling climate at the regional and global scale, the hydrological cycle and estimating environmental stress on agricultural systems. In field and laboratory studies, remote sensing and in-situ techniques are used to collect thermal and soil moisture data of the soil surface and subsurface which is then used to estimate evaporative fluxes, oftentimes using the sensible heat balance method. Nonetheless, few studies exist that compare the methods due to limited data availability and the complexity of many of the techniques, making it difficult to understand flux estimates. This work compares different methods used to quantify evaporative flux based on remotely sensed and in-situ temperature and soil moisture data. A series of four laboratory experiments were performed under ambient and elevated air temperature conditions with homogeneous and heterogeneous soil configurations in a small two-dimensional soil tank interfaced with a small wind tunnel apparatus. The soil tank and wind tunnel were outfitted with a suite of sensors that measured soil temperature (surface and subsurface), air temperature, soil moisture, and tank weight. Air and soil temperature measurements were obtained using infrared thermography, heat pulse sensors and thermistors. Spatial and temporal thermal data were numerically inverted to obtain the evaporative flux. These values were then compared with rates of mass loss from direct weighing of the samples. Results demonstrate the applicability of different methods under different surface boundary conditions; no one method was deemed most applicable under every condition. Infrared thermography combined with the sensible heat balance method was best able to determine evaporative fluxes under stage 1 conditions while distributed temperature sensing combined with the sensible heat balance method best determined stage 2 evaporation. The approaches that appear most promising for determining the surface energy balance incorporates soil moisture rate of change over time and atmospheric conditions immediately above the soil surface. An understanding of the fidelity regarding predicted evaporation rates based upon stages of evaporation enables a more deliberate selection of the suite of sensors required for data collection.

  6. Validation and Inter-comparison Against Observations of GODAE Ocean View Ocean Prediction Systems

    NASA Astrophysics Data System (ADS)

    Xu, J.; Davidson, F. J. M.; Smith, G. C.; Lu, Y.; Hernandez, F.; Regnier, C.; Drevillon, M.; Ryan, A.; Martin, M.; Spindler, T. D.; Brassington, G. B.; Oke, P. R.

    2016-02-01

    For weather forecasts, validation of forecast performance is done at the end user level as well as by the meteorological forecast centers. In the development of Ocean Prediction Capacity, the same level of care for ocean forecast performance and validation is needed. Herein we present results from a validation against observations of 6 Global Ocean Forecast Systems under the GODAE OceanView International Collaboration Network. These systems include the Global Ocean Ice Forecast System (GIOPS) developed by the Government of Canada, two systems PSY3 and PSY4 from the French Mercator-Ocean Ocean Forecasting Group, the FOAM system from UK met office, HYCOM-RTOFS from NOAA/NCEP/NWA of USA, and the Australian Bluelink-OceanMAPS system from the CSIRO, the Australian Meteorological Bureau and the Australian Navy.The observation data used in the comparison are sea surface temperature, sub-surface temperature, sub-surface salinity, sea level anomaly, and sea ice total concentration data. Results of the inter-comparison demonstrate forecast performance limits, strengths and weaknesses of each of the six systems. This work establishes validation protocols and routines by which all new prediction systems developed under the CONCEPTS Collaborative Network will be benchmarked prior to approval for operations. This includes anticipated delivery of CONCEPTS regional prediction systems over the next two years including a pan Canadian 1/12th degree resolution ice ocean prediction system and limited area 1/36th degree resolution prediction systems. The validation approach of comparing forecasts to observations at the time and location of the observation is called Class 4 metrics. It has been adopted by major international ocean prediction centers, and will be recommended to JCOMM-WMO as routine validation approach for operational oceanography worldwide.

  7. Fundamental studies of catalytic processing of synthetic liquids. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, P.R.

    1994-06-15

    Liquids derived from coal contain relatively high amounts of oxygenated organic compounds, mainly in the form of phenols and furans that are deleterious to the stability and quality of these liquids as fuels. Hydrodeoxygenation (HDO) using Mo/W sulfide catalysts is a promising method to accomplish this removal, but our understanding of the reactions occurring on the catalyst surface during HDO is very limited. Rather than attempting to examine the complexities of real liquids and catalysts we have adopted an approach here using model systems amenable to surface-sensitive techniques that enable us to probe in detail the fundamental processes occurring duringmore » HDO at the surfaces of well-defined model catalysts. The results of this work may lead to the development of more efficient, selective and stable catalysts. Above a S/Mo ratio of about 0.5 ML, furan does not adsorb on sulfided Mo surfaces; as the sulfur coverage is lowered increasing amounts of furan can be adsorbed. Temperature-programmed reaction spectroscopy (TPRS) reveals that C-H, C-C and C-O bond scission occurs on these surfaces. Auger spectra show characteristic changes in the nature and amount of surface carbon. Comparisons with experiments carried out with CO, H{sub 2} and alkenes show that reaction pathways include -- direct abstraction of CO at low temperatures; cracking and release of hydrogen below its normal desorption temperature; dehydrogenatin of adsorbed hydrocarbon fragments; recombination of C and O atoms and dissolution of carbon into the bulk at high temperatures. Performing the adsorption or thermal reaction in 10{sup {minus}5} torr of hydrogen does not change the mode of reaction significantly.« less

  8. Observed increase in local cooling effect of deforestation at higher latitudes.

    PubMed

    Lee, Xuhui; Goulden, Michael L; Hollinger, David Y; Barr, Alan; Black, T Andrew; Bohrer, Gil; Bracho, Rosvel; Drake, Bert; Goldstein, Allen; Gu, Lianhong; Katul, Gabriel; Kolb, Thomas; Law, Beverly E; Margolis, Hank; Meyers, Tilden; Monson, Russell; Munger, William; Oren, Ram; Paw U, Kyaw Tha; Richardson, Andrew D; Schmid, Hans Peter; Staebler, Ralf; Wofsy, Steven; Zhao, Lei

    2011-11-16

    Deforestation in mid- to high latitudes is hypothesized to have the potential to cool the Earth's surface by altering biophysical processes. In climate models of continental-scale land clearing, the cooling is triggered by increases in surface albedo and is reinforced by a land albedo-sea ice feedback. This feedback is crucial in the model predictions; without it other biophysical processes may overwhelm the albedo effect to generate warming instead. Ongoing land-use activities, such as land management for climate mitigation, are occurring at local scales (hectares) presumably too small to generate the feedback, and it is not known whether the intrinsic biophysical mechanism on its own can change the surface temperature in a consistent manner. Nor has the effect of deforestation on climate been demonstrated over large areas from direct observations. Here we show that surface air temperature is lower in open land than in nearby forested land. The effect is 0.85 ± 0.44 K (mean ± one standard deviation) northwards of 45° N and 0.21 ± 0.53 K southwards. Below 35° N there is weak evidence that deforestation leads to warming. Results are based on comparisons of temperature at forested eddy covariance towers in the USA and Canada and, as a proxy for small areas of cleared land, nearby surface weather stations. Night-time temperature changes unrelated to changes in surface albedo are an important contributor to the overall cooling effect. The observed latitudinal dependence is consistent with theoretical expectation of changes in energy loss from convection and radiation across latitudes in both the daytime and night-time phase of the diurnal cycle, the latter of which remains uncertain in climate models. © 2011 Macmillan Publishers Limited. All rights reserved

  9. Locust displacing winds in eastern Australia reassessed with observations from an insect monitoring radar

    NASA Astrophysics Data System (ADS)

    Hao, Zhenhua; Drake, V. Alistair; Sidhu, Leesa; Taylor, John R.

    2017-12-01

    Based on previous investigations, adult Australian plague locusts are believed to migrate on warm nights (with evening temperatures >25 °C), provided daytime flight is suppressed by surface winds greater than the locusts' flight speed, which has been shown to be 3.1 m s-1. Moreover, adult locusts are believed to undertake briefer `dispersal' flights on nights with evening temperature >20 °C. To reassess the utility of these conditions for forecasting locust flight, contingency tests were conducted comparing the nights selected on these bases (predicted nights) for the months of November, January, and March and the nights when locust migration were detected with an insect monitoring radar (actual nights) over a 7-year period. In addition, the wind direction distributions and mean wind directions on all predicted nights and actual nights were compared. Observations at around 395 m above ground level (AGL), the height at which radar observations have shown that the greatest number of locusts fly, were used to determine the actual nights. Tests and comparisons were also made for a second height, 990 m AGL, as this was used in the previous investigation. Our analysis shows that the proposed criteria are successful from predicting migratory flight only in March, when the surface temperature is effective as a predicting factor. Surface wind speed has no predicting power. It is suggested that a strong daytime surface wind speed requirement should not be considered and other meteorological variables need to be added to the requirement of a warm surface temperature around dusk for the predictions to have much utility.

  10. Identification and future description of warming signatures over Pakistan with special emphasis on evolution of CO2 levels and temperature during the first decade of the twenty-first century.

    PubMed

    Haider, Khadija; Khokhar, Muhammad Fahim; Chishtie, Farrukh; RazzaqKhan, Waseem; Hakeem, Khalid Rehman

    2017-03-01

    Like other developing countries, Pakistan is also facing changes in temperature per decade and other climatic abnormalities like droughts and torrential rains. In order to assess and identify the extent of temperature change over Pakistan, the whole Pakistan was divided into five climatic zones ranging from very cold to hot and dry climates. Similarly, seasons in Pakistan are defined on the basis of monsoon variability as winter, pre-monsoon, monsoon, and post-monsoon. This study primarily focuses on the comparison of surface temperature observations from Pakistan Meteorological Department (PMD) network with PRECIS (Providing Regional Climates for Impacts Studies) model simulations. Results indicate that PRECIS underestimates the temperature in Northern Pakistan and during the winter season. However, there exists a fair agreement between PRECIS output and observed datasets in the lower plain and hot areas of the country. An absolute increase of 0.07 °C is observed in the mean temperature over Pakistan during the time period of 1951-2010. Especially, the increase is more significant (0.7 °C) during the last 14 years (1997-2010). Moreover, SCIAMACHY observations were used to explore the evolution of atmospheric CO 2 levels in comparison to temperature over Pakistan. CO 2 levels have shown an increasing trend during the first decade of the twenty-first century.

  11. A model for the pyrolysis of unfilled and filled polymers and comparisons with NBS smoke-density chamber data

    NASA Technical Reports Server (NTRS)

    Kumar, R. N.

    1976-01-01

    This paper considers a model for the pyrolysis of polymers for use in mass loss and smoke density predictions in a fire situation. It is based on the fundamental postulate that the overall rate-limiting reactions are in the relatively low temperature condensed phase; the rate limiting step is the polymer degradation to a vaporizable state. The state of the polymer (chain length) at the surface is specified by the vapor pressure equilibrium criterion. For the case of polymers with inert fillers, like alumina trihydrate, the further assumption is made that the linear regression rate of the material is identical to the unfilled material's at the same surface temperature. The fraction of polymer mass loss converted to smoke is inferred from the literature. The smoke density in the NBS-smoke density chamber is predicted for a polyester and the same polyester with two different loads of alumina trihydrate filler. Diffusional effects in the smoke spreading are considered in an elementary manner. The comparisons with experimental data are encouraging. The overall fire characteristics are predicted using only the fundamental physicochemical property values of ingredients.

  12. Particle-size dependence of immersion freezing: Investigation of INUIT test aerosol particles with freely suspended water drops.

    NASA Astrophysics Data System (ADS)

    Diehl, Karoline; Debertshäuser, Michael; Eppers, Oliver; Jantsch, Evelyn; Mitra, Subir K.

    2014-05-01

    One goal of the research group INUIT (Ice Nuclei research UnIT) is to investigate the efficiencies of several test ice nuclei under comparable conditions but with different experimental techniques. In the present studies, two methods are used: the Mainz vertical wind tunnel and an acoustic levitator placed inside a cold chamber. In both cases drops are freely levitated, either at their terminal velocity in the wind tunnel updraft or around the nodes of a standing ultrasonic wave in the acoustic levitator. Thus, heat transfer conditions are well approximated, and wall contact effects on freezing as well as electrical charges of the drops are avoided. Drop radii are 370 μm and 1 mm, respectively. In the wind tunnel, drops are investigated at constant temperatures within a certain time period and the onset of freezing is observed directly. In the acoustic levitator, the drop temperature decreases during the experiments and is measured by an in-situ calibrated Infrared thermometer. The onset of freezing is indicated by a rapid rise of the drop surface temperature because of the release of latent heat. Investigated test ice nuclei are Snomax® as a proxy of biological particles and illite NX as well as K-feldspar as represents of mineral dust. The particle concentrations are 1 × 10-12 to 3 × 10-6 g Snomax® per drop and 5 × 10-9 to 5 × 10-5 g mineral dust per drop. Freezing temperatures are between -2 and -18° C in case of Snomax® and between -14 and -26° C in case of mineral dust. The lower the particle masses per drop the lower are the freezing temperatures. For similar particle concentrations in the drops, the median freezing temperatures determined by the two techniques agree well within the measurement errors. With the knowledge of the specific particle surface area of the mineral dusts, the results are interpreted also in terms of particle surface area per drop. Results from the wind tunnel experiments which are performed at constant temperatures indicate that the freezing times are shorter the lower the temperatures are. For evaluation and comparisons of the data, two models of heterogeneous freezing are applied, the stochastic and the time-independent singular description. The nucleation rate coefficients J(T) as well as the surface densities of active sites ns(T) or the numbers of active sites nm(T) are determined from the experimental data. It is shown that both models are suited to describe the present heterogeneous freezing results for the range of investigated particle masses or surface areas per drop. The comparison of the results from the two experimental techniques evaluated with the time-independent singular model indicates an excellent agreement within the measurement errors.

  13. Comparison of Model Prediction with Measurements of Galactic Background Noise at L-Band

    NASA Technical Reports Server (NTRS)

    LeVine, David M.; Abraham, Saji; Kerr, Yann H.; Wilson, Willam J.; Skou, Niels; Sobjaerg, S.

    2004-01-01

    The spectral window at L-band (1.413 GHz) is important for passive remote sensing of surface parameters such as soil moisture and sea surface salinity that are needed to understand the hydrological cycle and ocean circulation. Radiation from celestial (mostly galactic) sources is strong in this window and an accurate accounting for this background radiation is often needed for calibration. Modem radio astronomy measurements in this spectral window have been converted into a brightness temperature map of the celestial sky at L-band suitable for use in correcting passive measurements. This paper presents a comparison of the background radiation predicted by this map with measurements made with several modem L-band remote sensing radiometers. The agreement validates the map and the procedure for locating the source of down-welling radiation.

  14. Numerical study of a thermally stratified flow of a tangent hyperbolic fluid induced by a stretching cylindrical surface

    NASA Astrophysics Data System (ADS)

    Ur Rehman, Khali; Ali Khan, Abid; Malik, M. Y.; Hussain, Arif

    2017-09-01

    The effects of temperature stratification on a tangent hyperbolic fluid flow over a stretching cylindrical surface are studied. The fluid flow is achieved by taking the no-slip condition into account. The mathematical modelling of the physical problem yields a nonlinear set of partial differential equations. These obtained partial differential equations are converted in terms of ordinary differential equations. Numerical investigation is done to identify the effects of the involved physical parameters on the dimensionless velocity and temperature profiles. In the presence of temperature stratification it is noticed that the curvature parameter makes both the fluid velocity and fluid temperature increase. In addition, positive variations in the thermal stratification parameter produce retardation with respect to the fluid flow, as a result the fluid temperature drops. The skin friction coefficient shows a decreasing nature for increasing value of both power law index and Weissenberg number, whereas the local Nusselt number is an increasing function of the Prandtl number, but opposite trends are found with respect to the thermal stratification parameter. The obtained results are validated by making a comparison with the existing literature which brings support to the presently developed model.

  15. Comparison of regional and seasonal changes and trends in daily surface temperature extremes over India and its subregions

    NASA Astrophysics Data System (ADS)

    Dimri, A. P.

    2018-04-01

    Regional changes in surface meteorological variables are one of the key issues affecting the Indian subcontinent especially in recent decades. These changes impact agriculture, health, water, etc., hence important to assess and investigate these changes. The Indian subcontinent is characterized by heterogeneous temperature regimes at regional and seasonal scales. The India Meteorological Department (IMD) observations are limited to recent decades as far as its spatial distribution is concerned. In particular, over Hilly region, these observations are sporadic. Due to variable topography and heterogeneous land use/land cover, it is complex to substantiate impacts. The European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim (ERA-I) reanalysis not only covers a larger spatial domain but also provides a greater number of inputs than IMD. This study used ERA-I in conjunction with IMD gridded data to provide a comparative assessment of changing temperature patterns over India and its subregions at both regional and seasonal scales. Warming patterns are observed in both ERA-I and IMD data sets. Cold nights decrease during winter; warm days increase and warm spell duration increased during winter could become a cause of concern for society, agriculture, socio-economic reasons, and health. Increasing warm days over the hilly regions may affect the corresponding snow cover and thus river hydrology and glaciological dynamics. Such changes during monsoon are slower, which could be attributed to moisture availability to dampen the temperature changes. On investigation and comparison thereon, the present study provisions usages of ERA-I-based indices for various impact and adaptation studies.

  16. USB environment measurements based on full-scale static engine ground tests. [Upper Surface Blowing for YC-14

    NASA Technical Reports Server (NTRS)

    Sussman, M. B.; Harkonen, D. L.; Reed, J. B.

    1976-01-01

    Flow turning parameters, static pressures, surface temperatures, surface fluctuating pressures and acceleration levels were measured in the environment of a full-scale upper surface blowing (USB) propulsive-lift test configuration. The test components included a flightworthy CF6-50D engine, nacelle and USB flap assembly utilized in conjunction with ground verification testing of the USAF YC-14 Advanced Medium STOL Transport propulsion system. Results, based on a preliminary analysis of the data, generally show reasonable agreement with predicted levels based on model data. However, additional detailed analysis is required to confirm the preliminary evaluation, to help delineate certain discrepancies with model data and to establish a basis for future flight test comparisons.

  17. Utilization of satellite remote sensing data on land surface characteristics in water and heat balance component modeling for vegetation covered territories

    NASA Astrophysics Data System (ADS)

    Muzylev, Eugene; Uspensky, Alexander; Startseva, Zoya; Volkova, Elena; Kukharsky, Alexander; Uspensky, Sergey

    2010-05-01

    The model of vertical water and heat transfer in the "soil-vegetation-atmosphere" system (SVAT) for vegetation covered territory has been developed, allowing assimilating satellite remote sensing data on land surface condition as well as accounting for heterogeneities of vegetation and meteorological characteristics. The model provides the calculation of water and heat balance components (such as evapotranspiration Ev, soil water content W, sensible and latent heat fluxes and others ) as well as vertical soil moisture and temperature distributions, temperatures of soil surface and foliage, land surface brightness temperature for any time interval within vegetation season. To describe the landscape diversity soil constants and leaf area index LAI, vegetation cover fraction B, and other vegetation characteristics are used. All these values are considered to be the model parameters. Territory of Kursk region with square about 15 thousands km2 situated in the Black Earth zone of Central Russia was chosen for investigation. Satellite-derived estimates of land surface characteristics have been constructed under cloud-free condition basing AVHRR/NOAA, MODIS/EOS Terra and EOS Aqua, SEVIRI/Meteosat-8, -9 data. The developed technologies of AVHRR data thematic processing have been refined providing the retrieval of surface skin brightness temperature Tsg, air foliage temperature Ta, efficient surface temperature Ts.eff and emissivity E, as well as derivation of vegetation index NDVI, B, and LAI. The linear regression estimators for Tsg, Ta and LAI have been built using representative training samples for 2003-2009 vegetation seasons. The updated software package has been applied for AVHRR data thematic processing to generate named remote sensing products for various dates of the above vegetation seasons. The error statistics of Ta, Ts.eff and Тsg derivation has been investigated for various samples using comparison with in-situ measurements that has given RMS errors in the range 2.0-2.6, 2.5-3.7, and 3.5-4.9°C respectively. The dataset of remote sensing products has been compiled on the base of special technology using Internet resources, that includes MODIS-based estimates of land surface temperature (LST) Tsg, E, NDVI, LAI for the region of interest and the same vegetation seasons. Two types of MODIS-based Тsg and E estimates have been extracted from LP DAAC web-site (for separate dates of 2003-2009 time period): LST/E Daily L3 product (MOD11В1) with spatial resolution ~ 4.8 km and LST/E 5-Min L2 product (MOD11_L2) with spatial resolution ~ 1 km. The verification of Tsg estimates has been performed via comparison with analogous and collocated AVHRR-based ones. Along with this the sample of SEVIRI-based Tsg and E estimates has been accumulated for the Kursk area and surrounding territories for the time interval of several days during 2009 vegetation season. To retrieve Тsg and Е from SEVIRI/Meteosat-8, -9 data the new method has been developed. Being designed as the combination of well-known Split Window Technique and Two Temperature Method algorithms it provides the derivation of Тsg from SEVIRI/Meteosat-9 measurements carried out at three successive times (classified as 100% cloud-free) and covering the region under consideration without accurate a priory knowledge of E. Comparison of the SEVIRI-based Tsg retrievals with the independent collocated Tsg estimates gives the values of RMS deviation in the range of 0.9-1.4°C and it proves (indirectly) the efficiency of proposed approach. To assimilate satellite-derived estimates of vegetation characteristics and LST in the SVAT model some procedures have been developed. These procedures have included: 1) the replacement of LAI and B ground and point-wise estimates by their AVHRR- or MODIS-based analogues. The efficiency of such approach has been proved through comparison between satellite-derived and ground-based seasonal time behaviors of LAI and B, between satellite-derived, modeled, and in-situ measured temperatures as well as through comparison the modeled and actual values of evapotranspiration Ev and soil water content W for one meter soil layer. The discrepancies between mentioned temperatures do not exceed the RMS errors of satellite-derived estimates Ta, Ts.eff and Tsg while the modeled and measured values of Ev and W have been found close to each other within their standard estimation error; 2) the treating AVHRR- or MODIS-based LST as the input model variable within the SVAT model instead their standard ground-based estimates if the satisfactory time-matching of satellite and ground-based observations takes place. The SEVIRI-derived Tsg can be also used for these aims. Permissibility of such replacement has been verified while comparing remote sensed, modeled and ground-based temperatures as well as calculated and measured values of W and Ev. The SEVIRI-based Tsg estimates were found to be very informative and useful due to their high temporal resolution. Moreover the approach has been developed to account for space variability of vegetation cover parameters and meteorological characteristics. This approach includes the development of algorithms and programs for entering AVHRR- and MODIS-derived LAI and B, all named satellite-based LSTs as well as ground-based precipitation, air temperature and humidity data prepared by Inverse Distance Weighted Average Method into the model in each calculation grid unit. The calculations of vertical water and heat fluxes, soil water and heat contents and other water and heat balance components for Kursk region have been carried out with the help of the SVAT model using fields of AVHRR/3- and MODIS-derived LAI and B and AVHRR/3-, MODIS, and SEVIRI-derived LST for various vegetation seasons of 2003-2009. The acceptable accuracy levels of above values assessment have been achieved under all scenarios of parameter and input model variable specification. Thus, the results of this study confirm the opportunity of using area distributed satellite-derived estimates of land surface characteristics for the model calculations of water and heat balance components for large territories especially under the lack of ground observation data. The present study was carried out with support of the Russian Foundation of Basic Researches - grant N 10-05-00807.

  18. Radiant coolers - Theory, flight histories, design comparisons and future applications

    NASA Technical Reports Server (NTRS)

    Donohoe, M. J.; Sherman, A.; Hickman, D. E.

    1975-01-01

    Radiant coolers have been developed for application to the cooling of infrared detectors aboard NASA earth observation systems and as part of the Defense Meteorological Satellite Program. The prime design constraints for these coolers are the location of the cooler aboard the satellite and the satellite orbit. Flight data from several coolers indicates that, in general, design temperatures are achieved. However, potential problems relative to the contamination of cold surfaces are also revealed by the data. A comparison among the various cooler designs and flight performances indicates design improvements that can minimize the contamination problem in the future.

  19. Using Clumped Isotopes to Investigate the Causes of Pluvial Conditions in the Southeastern Basin and Range during the Last Deglaciation

    NASA Astrophysics Data System (ADS)

    Kowler, A.; Lora, J. M.; Mitchell, J.; Risi, C.; Lee, H. I.; Tripati, A.

    2015-12-01

    The last deglacial interval (~19-11 ka) was marked by major perturbations to Earth's climate coupled with rising atmospheric temperatures and CO2 concentrations, reaching near-modern levels by the early Holocene. Several discharges of freshwater into the North Atlantic caused by melting and collapse of continental ice sheets affected ocean circulation and sea-surface temperatures, triggering abrupt changes in terrestrial climate worldwide. While the timing and amount of associated temperature changes have been quantified from ice core records at high latitudes, corresponding information from lower latitudes is comparatively low and concentrated along coastlines, at high elevations, and in tropical and mesic regions. This is problematic for efforts to improve the reliability of long-term climate forecasts, reliant on models lacking sufficient validation from paleoclimate reconstructions for interior drylands that comprise nearly half of Earth's land surface. Evidence for past hydrologic changes in arid regions comes from ancient lake-shoreline deposits in internally drained basins, allowing quantitative comparison of the recorded effective moisture increases. However, the utility of these records depends on our relatively limited ability to deconvolve the contributions of temperature and precipitation to these changes. Here we explore the possible role of the summer monsoon in causing deglacial-age highstands in the southern Basin and Range. We employ clumped isotope analysis to generate paleotemperature and surface-water d18O estimates from carbonates in fossil shoreline and wetland deposits for comparison to output from PMIP3 coupled climate models and the model ensemble. Additionally, we present higher resolution output from LMDZ, the atmosphere-only component of the IPSL coupled model, employing LGM boundary conditions along with a hosing experiment designed to simulate Heinrich 1. For all simulations, we present analysis of changes in moisture transport, precipitation, evaporation, and resulting water isotopes.

  20. Silicon Field Effect Transistors as Dual-Use Sensor-Heater Hybrids

    PubMed Central

    Reddy, Bobby; Elibol, Oguz H.; Nair, Pradeep R.; Dorvel, Brian R.; Butler, Felice; Ahsan, Zahab; Bergstrom, Donald E.; Alam, Muhammad A.; Bashir, Rashid

    2011-01-01

    We demonstrate the temperature mediated applications of a previously proposed novel localized dielectric heating method on the surface of dual purpose silicon field effect transistor (FET) sensor-heaters and perform modeling and characterization of the underlying mechanisms. The FETs are first shown to operate as electrical sensors via sensitivity to changes in pH in ionic fluids. The same devices are then demonstrated as highly localized heaters via investigation of experimental heating profiles and comparison to simulation results. These results offer further insight into the heating mechanism and help determine the spatial resolution of the technique. Two important biosensor platform applications spanning different temperature ranges are then demonstrated: a localized heat-mediated DNA exchange reaction and a method for dense selective functionalization of probe molecules via the heat catalyzed complete desorption and reattachment of chemical functionalization to the transistor surfaces. Our results show that the use of silicon transistors can be extended beyond electrical switching and field-effect sensing to performing localized temperature controlled chemical reactions on the transistor itself. PMID:21214189

  1. High heat flux performance of W-Eurofer brazed joints

    NASA Astrophysics Data System (ADS)

    de Prado, J.; Sánchez, M.; Wirtz, M.; Pintsuk, G.; Du, J.; Linke, J.; Ureña, A.

    2018-02-01

    The qualification process of the materials and components for the next generation of fusion reactors makes it necessary to expose them to similar service conditions as expected during the service life of the reactor. In the present work, W-Eurofer brazed joints (tungsten block: 8 × 8 × 4 mm; steel block: 8 × 8 × 4 mm; joined to an actively cooled copper heat sink) were exposed to steady state heat loads to study the effect of the thermal fatigue on their microstructure and mechanical integrity. Three different W surface temperatures were tested (400, 500 and 600 °C) varying the number of applied cycles (100 and 1000). The results allowed identifying a braze temperature of 359 °C as threshold condition under which the brazed joints could be used without deterioration. The increase of the surface temperature deteriorated the mechanical integrity of the joints in comparison to those analyzed after the brazing process and accordingly reduced the refrigeration capabilities.

  2. Numerical simulations of inductive-heated float-zone growth

    NASA Technical Reports Server (NTRS)

    Chan, Y. T.; Choi, S. K.

    1992-01-01

    The present work provides an improved fluid flow and heat-transfer modeling of float-zone growth by introducing a RF heating model so that an ad hoc heating temperature profile is not necessary. Numerical simulations were carried out to study the high-temperature float-zone growth of titanium carbide single crystal. The numerical results showed that the thermocapillary convection occurring inside the molten zone tends to increase the convexity of the melt-crystal interface and decrease the maximum temperature of the molten zone, while the natural convection tends to reduce the stability of the molten zone by increasing its height. It was found that the increase of induced heating due to the increase of applied RF voltage is reduced by the decrease of zone diameter. Surface tension plays an important role in controlling the amount of induced heating. Finally, a comparison of the computed shape of the free surface with a digital image obtained during a growth run showed adequate agreement.

  3. Numerical investigation of velocity slip and temperature jump effects on unsteady flow over a stretching permeable surface

    NASA Astrophysics Data System (ADS)

    Hosseini, E.; Loghmani, G. B.; Heydari, M.; Rashidi, M. M.

    2017-02-01

    In this paper, the boundary layer flow and heat transfer of unsteady flow over a porous accelerating stretching surface in the presence of the velocity slip and temperature jump effects are investigated numerically. A new effective collocation method based on rational Bernstein functions is applied to solve the governing system of nonlinear ordinary differential equations. This method solves the problem on the semi-infinite domain without truncating or transforming it to a finite domain. In addition, the presented method reduces the solution of the problem to the solution of a system of algebraic equations. Graphical and tabular results are presented to investigate the influence of the unsteadiness parameter A , Prandtl number Pr, suction parameter fw, velocity slip parameter γ and thermal slip parameter φ on the velocity and temperature profiles of the fluid. The numerical experiments are reported to show the accuracy and efficiency of the novel proposed computational procedure. Comparisons of present results are made with those obtained by previous works and show excellent agreement.

  4. Sea Surface Temperature Products and Research Associated with GHRSST

    NASA Astrophysics Data System (ADS)

    Kaiser-Weiss, Andrea K.; Minnett, Peter J.; Kaplan, Alexey; Wick, Gary A.; Castro, Sandra; Llewellyn-Jones, David; Merchant, Chris; LeBorgne, Pierre; Beggs, Helen; Donlon, Craig J.

    2012-03-01

    GHRSST serves its user community through the specification of operational Sea Surface Temperature (SST) products (Level 2, Level 3 and Level 4) based on international consensus. Providers of SST data from individual satellites create and deliver GHRSST-compliant near-real time products to a global GHRSST data assembly centre and a long-term stewardship facility. The GHRSST-compliant data include error estimates and supporting data for interpretation. Groups organised within GHRSST perform research on issues relevant to applying SST for air-sea exchange, for instance the Diurnal Variability Working Group (DVWG) analyses the evolution of the skin temperature. Other GHRSST groups concentrate on improving the SST estimate (Estimation and Retrievals Working Group EARWiG) and on improving the error characterization, (Satellite SST Validation Group, ST-VAL) and on improving the methods for SST analysis (Inter-Comparison Technical Advisory Group, IC-TAG). In this presentation we cover the data products and the scientific activities associated with GHRSST which might be relevant for investigating ocean-atmosphere interactions.

  5. Normalized Temperature Contrast Processing in Infrared Flash Thermography

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2016-01-01

    The paper presents further development in normalized contrast processing used in flash infrared thermography method. Method of computing normalized image or pixel intensity contrast, and normalized temperature contrast are provided. Methods of converting image contrast to temperature contrast and vice versa are provided. Normalized contrast processing in flash thermography is useful in quantitative analysis of flash thermography data including flaw characterization and comparison of experimental results with simulation. Computation of normalized temperature contrast involves use of flash thermography data acquisition set-up with high reflectivity foil and high emissivity tape such that the foil, tape and test object are imaged simultaneously. Methods of assessing other quantitative parameters such as emissivity of object, afterglow heat flux, reflection temperature change and surface temperature during flash thermography are also provided. Temperature imaging and normalized temperature contrast processing provide certain advantages over normalized image contrast processing by reducing effect of reflected energy in images and measurements, therefore providing better quantitative data. Examples of incorporating afterglow heat-flux and reflection temperature evolution in flash thermography simulation are also discussed.

  6. Effects of Medium Temperature and Industrial By-Products on the Key Hardened Properties of High Performance Concrete.

    PubMed

    Safiuddin, Md; Raman, Sudharshan N; Zain, Muhammad Fauzi Mohd

    2015-12-10

    The aim of the work reported in this article was to investigate the effects of medium temperature and industrial by-products on the key hardened properties of high performance concrete. Four concrete mixes were prepared based on a water-to-binder ratio of 0.35. Two industrial by-products, silica fume and Class F fly ash, were used separately and together with normal portland cement to produce three concrete mixes in addition to the control mix. The properties of both fresh and hardened concretes were examined in the laboratory. The freshly mixed concrete mixes were tested for slump, slump flow, and V-funnel flow. The hardened concretes were tested for compressive strength and dynamic modulus of elasticity after exposing to 20, 35 and 50 °C. In addition, the initial surface absorption and the rate of moisture movement into the concretes were determined at 20 °C. The performance of the concretes in the fresh state was excellent due to their superior deformability and good segregation resistance. In their hardened state, the highest levels of compressive strength and dynamic modulus of elasticity were produced by silica fume concrete. In addition, silica fume concrete showed the lowest level of initial surface absorption and the lowest rate of moisture movement into the interior of concrete. In comparison, the compressive strength, dynamic modulus of elasticity, initial surface absorption, and moisture movement rate of silica fume-fly ash concrete were close to those of silica fume concrete. Moreover, all concretes provided relatively low compressive strength and dynamic modulus of elasticity when they were exposed to 50 °C. However, the effect of increased temperature was less detrimental for silica fume and silica fume-fly ash concretes in comparison with the control concrete.

  7. Midwest agriculture and ENSO: A comparison of AVHRR NDVI3g data and crop yields in the United States Corn Belt from 1982 to 2014

    NASA Astrophysics Data System (ADS)

    Glennie, Erin; Anyamba, Assaf

    2018-06-01

    A time series of Advanced Very High Resolution Radiometer (AVHRR) derived normalized difference vegetation index (NDVI) data were compared to National Agricultural Statistics Service (NASS) corn yield data in the United States Corn Belt from 1982 to 2014. The main objectives of the comparison were to assess 1) the consistency of regional Corn Belt responses to El Niño/Southern Oscillation (ENSO) teleconnection signals, and 2) the reliability of using NDVI as an indicator of crop yield. Regional NDVI values were used to model a seasonal curve and to define the growing season - May to October. Seasonal conditions in each county were represented by NDVI and land surface temperature (LST) composites, and corn yield was represented by average annual bushels produced per acre. Correlation analysis between the NDVI, LST, corn yield, and equatorial Pacific sea surface temperature anomalies revealed patterns in land surface dynamics and corn yield, as well as typical impacts of ENSO episodes. It was observed from the study that growing seasons coincident with La Niña events were consistently warmer, but El Niño events did not consistently impact NDVI, temperature, or corn yield data. Moreover, the El Niño and La Niña composite images suggest that impacts vary spatially across the Corn Belt. While corn is the dominant crop in the region, some inconsistencies between corn yield and NDVI may be attributed to soy crops and other background interference. The overall correlation between the total growing season NDVI anomaly and detrended corn yield was 0.61(p = 0.00013), though the strength of the relationship varies across the Corn Belt.

  8. Effects of Medium Temperature and Industrial By-Products on the Key Hardened Properties of High Performance Concrete

    PubMed Central

    Safiuddin, Md.; Raman, Sudharshan N.; Zain, Muhammad Fauzi Mohd.

    2015-01-01

    The aim of the work reported in this article was to investigate the effects of medium temperature and industrial by-products on the key hardened properties of high performance concrete. Four concrete mixes were prepared based on a water-to-binder ratio of 0.35. Two industrial by-products, silica fume and Class F fly ash, were used separately and together with normal portland cement to produce three concrete mixes in addition to the control mix. The properties of both fresh and hardened concretes were examined in the laboratory. The freshly mixed concrete mixes were tested for slump, slump flow, and V-funnel flow. The hardened concretes were tested for compressive strength and dynamic modulus of elasticity after exposing to 20, 35 and 50 °C. In addition, the initial surface absorption and the rate of moisture movement into the concretes were determined at 20 °C. The performance of the concretes in the fresh state was excellent due to their superior deformability and good segregation resistance. In their hardened state, the highest levels of compressive strength and dynamic modulus of elasticity were produced by silica fume concrete. In addition, silica fume concrete showed the lowest level of initial surface absorption and the lowest rate of moisture movement into the interior of concrete. In comparison, the compressive strength, dynamic modulus of elasticity, initial surface absorption, and moisture movement rate of silica fume-fly ash concrete were close to those of silica fume concrete. Moreover, all concretes provided relatively low compressive strength and dynamic modulus of elasticity when they were exposed to 50 °C. However, the effect of increased temperature was less detrimental for silica fume and silica fume-fly ash concretes in comparison with the control concrete. PMID:28793732

  9. Thermospheric gravity waves near the source - Comparison of variations in neutral temperature and vertical velocity at Sondre Stromfjord

    NASA Technical Reports Server (NTRS)

    Herrero, F. A.; Mayr, H. G.; Harris, I.; Varosi, F.; Meriwether, J. W., Jr.

    1984-01-01

    Theoretical predictions of thermospheric gravity wave oscillations are compared with observed neutral temperatures and velocities. The data were taken in February 1983 using a Fabry-Perot interferometer located on Greenland, close to impulse heat sources in the auroral oval. The phenomenon was modeled in terms of linearized equations of motion of the atmosphere on a slowly rotating sphere. Legendre polynomials were used as eigenfunctions and the transfer function amplitude surface was characterized by maxima in the wavenumber frequency plane. Good agreement for predicted and observed velocities and temperatures was attained in the 250-300 km altitude. The amplitude of the vertical velocity, however, was not accurately predicted, nor was the temperature variability. The vertical velocity did exhibit maxima and minima in response to corresponding temperature changes.

  10. Thermospheric gravity waves near the source - Comparison of variations in neutral temperature and vertical velocity at Sondre Stromfjord

    NASA Astrophysics Data System (ADS)

    Herrero, F. A.; Mayr, H. G.; Harris, I.; Varosi, F.; Meriwether, J. W., Jr.

    1984-09-01

    Theoretical predictions of thermospheric gravity wave oscillations are compared with observed neutral temperatures and velocities. The data were taken in February 1983 using a Fabry-Perot interferometer located on Greenland, close to impulse heat sources in the auroral oval. The phenomenon was modeled in terms of linearized equations of motion of the atmosphere on a slowly rotating sphere. Legendre polynomials were used as eigenfunctions and the transfer function amplitude surface was characterized by maxima in the wavenumber frequency plane. Good agreement for predicted and observed velocities and temperatures was attained in the 250-300 km altitude. The amplitude of the vertical velocity, however, was not accurately predicted, nor was the temperature variability. The vertical velocity did exhibit maxima and minima in response to corresponding temperature changes.

  11. Design and Testing of an Automated System using Thermochromatic Liquid Crystals to Determine Local Heat Transfer Coefficients for an Impinging Jet

    NASA Technical Reports Server (NTRS)

    Tan, Benjamin

    1995-01-01

    Using thermochromatic liquid crystal to measure surface temperature, an automated transient method with time-varying free-stream temperature is developed to determine local heat transfer coefficients. By allowing the free-stream temperature to vary with time, the need for complicated mechanical components to achieve a step temperature change is eliminated, and by using the thermochromatic liquid crystals as temperature indicators, the labor intensive task of installing many thermocouples is omitted. Bias associated with human perception of the transition of the thermochromatic liquid crystal is eliminated by using a high speed digital camera and a computer. The method is validated by comparisons with results obtained by the steady-state method for a circular Jet impinging on a flat plate. Several factors affecting the accuracy of the method are evaluated.

  12. Evaluation of MODIS Land Surface Temperature with In Situ Snow Surface Temperature from CREST-SAFE

    NASA Astrophysics Data System (ADS)

    Perez Diaz, C. L.; Lakhankar, T.; Romanov, P.; Munoz, J.; Khanbilvardi, R.; Yu, Y.

    2016-12-01

    This paper presents the procedure and results of a temperature-based validation approach for the Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST) product provided by the National Aeronautics and Space Administration (NASA) Terra and Aqua Earth Observing System satellites using in situ LST observations recorded at the Cooperative Remote Sensing Science and Technology Center - Snow Analysis and Field Experiment (CREST-SAFE) during the years of 2013 (January-April) and 2014 (February-April). A total of 314 day and night clear-sky thermal images, acquired by the Terra and Aqua satellites, were processed and compared to ground-truth data from CREST-SAFE with a frequency of one measurement every 3 min. Additionally, this investigation incorporated supplementary analyses using meteorological CREST-SAFE in situ variables (i.e. wind speed, cloud cover, incoming solar radiation) to study their effects on in situ snow surface temperature (T-skin) and T-air. Furthermore, a single pixel (1km2) and several spatially averaged pixels were used for satellite LST validation by increasing the MODIS window size to 5x5, 9x9, and 25x25 windows for comparison. Several trends in the MODIS LST data were observed, including the underestimation of daytime values and nighttime values. Results indicate that, although all the data sets (Terra and Aqua, diurnal and nocturnal) showed high correlation with ground measurements, day values yielded slightly higher accuracy ( 1°C), both suggesting that MODIS LST retrievals are reliable for similar land cover classes and atmospheric conditions. Results from the CREST-SAFE in situ variables' analyses indicate that T-air is commonly higher than T-skin, and that a lack of cloud cover results in: lower T-skin and higher T-air minus T-skin difference (T-diff). Additionally, the study revealed that T-diff is inversely proportional to cloud cover, wind speed, and incoming solar radiation. Increasing the MODIS window size showed an overestimation of in situ LST and some improvement in the daytime Terra and nighttime Aqua biases, with the highest accuracy achieved with the 5x5 window. A comparison between MODIS emmisivity from bands 31, 32, and in situ emissivity showed that emissivity errors (Relative error = -.003) were insignificant.

  13. The magnitude of the magnetic field near the surface of a high-T(sub c) superconductor with a trapped flux

    NASA Technical Reports Server (NTRS)

    Overcash, Dan R.

    1991-01-01

    In 1986, much excitement was caused by the discovery of a class of materials that conducted electricity with zero resistance at temperatures above the boiling temperature of liquid nitrogen. This excitement was checked by the difficulties of manufacturing ceramics and the usefulness of high temperature superconductors that were restricted by their becoming high resistive conductors at small current densities. A lack of pinning of the magnetic field flux caused the return of high resistance as the current was increased in these materials. A study of the magnetic field near the surface of a high temperature superconductor is the first step in the search for a means of pinning the flux lines and increasing their critical current densities. The author found that a comparison between the defects in the surface of the superconductor and the magnetic field showed only a change in the field near the notch and the edge. No correlation was found between the surface grain or structure and the oscillations in the magnetic field. The observed changes in the magnetic field show resonances which may give an indication of the non-flux pinning in these superconductors. A flux pinning mechanism will increase the critical current densities; therefore, other methods of determining this field should be tried. The author proposes using a flux gate magnetometer with a detector wound on a ferrite core to measure the magnitude and direction of the magnetic field.

  14. Greenland surface albedo changes in July 1981-2012 from satellite observations

    NASA Astrophysics Data System (ADS)

    He, Tao; Liang, Shunlin; Yu, Yunyue; Wang, Dongdong; Gao, Feng; Liu, Qiang

    2013-12-01

    Significant melting events over Greenland have been observed over the past few decades. This study presents an analysis of surface albedo change over Greenland using a 32-year consistent satellite albedo product from the global land surface satellite (GLASS) project together with ground measurements. Results show a general decreasing trend of surface albedo from 1981 to 2012 (-0.009 ± 0.002 decade-1, p < 0.01). However, a large decrease has occurred since 2000 (-0.028 ± 0.008 decade-1, p < 0.01) with most significant decreases at elevations between 1000 and 1500 m (-0.055 decade-1, p < 0.01) which may be associated with surface temperature increases. The surface radiative forcing from albedo changes is 2.73 W m-2 decade-1 and 3.06 W m-2 decade-1 under full-sky and clear-sky conditions, respectively, which indicates that surface albedo changes are likely to have a larger impact on the surface shortwave radiation budget than that caused by changes in the atmosphere over Greenland. A comparison made between satellite albedo products and data output from the Coupled Model Inter-comparison Project 5 (CMIP5) general circulation models (GCMs) shows that most of the CMIP5 models do not detect the significantly decreasing trends of albedo in recent decades. This suggests that more efforts are needed to improve our understanding and simulation of climate change at high latitudes.

  15. Snow depth retrieval from L-band satellite measurements on Arctic and Antarctic sea ice

    NASA Astrophysics Data System (ADS)

    Maaß, N.; Kaleschke, L.; Wever, N.; Lehning, M.; Nicolaus, M.; Rossmann, H. L.

    2017-12-01

    The passive microwave mission SMOS provides daily coverage of the polar regions and measures at a low frequency of 1.4 GHz (L-band). SMOS observations have been used to operationally retrieve sea ice thickness up to 1 m and to estimate snow depth in the Arctic for thicker ice. Here, we present how SMOS-retrieved snow depths compare with airborne measurements from NASA's Operation IceBridge mission (OIB) and with AMSR-2 satellite retrievals at higher frequencies, and we show first applications to Antarctic sea ice. In previous studies, SMOS and OIB snow depths showed good agreement on spatial scales from 50 to 1000 km for some days and disagreement for other days. Here, we present a more comprehensive comparison of OIB and SMOS snow depths in the Arctic for 2011 to 2015. We find that the SMOS retrieval works best for cold conditions and depends on auxiliary information on ice surface temperature, here provided by MODIS thermal imagery satellite data. However, comparing SMOS and OIB snow depths is difficult because of the different spatial resolutions (SMOS: 40 km, OIB: 40 m). Spatial variability within the SMOS footprint can lead to different snow conditions as seen from SMOS and OIB. Ideally the comparison is made for uniform conditions: Low lead and open water fraction, low spatial and temporal variability of ice surface temperature, no mixture of multi- and first-year ice. Under these conditions and cold temperatures (surface temperatures below -25°C), correlation coefficients between SMOS and OIB snow depths increase from 0.3 to 0.6. A finding from the comparison with AMSR-2 snow depths is that the SMOS-based maps depend less on the age of the sea ice than the maps derived from higher frequencies. Additionally, we show first results of SMOS snow depths for Antarctic sea ice. SMOS observations are compared to measurements of autonomous snow buoys drifting in the Weddell Sea since 2014. For a better comparability of these point measurements with SMOS data, we use model simulations along these trajectories made with a sea ice version of SNOWPACK, a 1D multi-layer thermodynamic snow model driven by reanalysis data. These simulations are especially helpful for indicating the occurrence of snow-ice-transformation, which cannot be identified in the buoy data and contributes to the measured snow height.

  16. Cyclic phase change in a cylindrical thermal energy storage capsule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasan, M.; Mujumdar, A.S.; Weber, M.E.

    1983-12-01

    This paper is concerned with a practical melting/freezing problem in conjunction with the more realistic case of a cyclic phase change thermal energy storage device. In this model the phase change medium is encapsulated in long cylindrical tubes, the surface temperature of which is allowed to vary sinusoidally with time about the discrete freezing temperature. Initial temperature of the medium is assumed to be constant at a temperature above or below the freezing/melting temperature. Natural convection in the melt is assumed to be negligible and the variations in the depth of freezing and/or melting in each half cycle is ignored.more » Depending on the half-cycle parameters the problem is simplified to either freezing or melting. The governing one-dimensional heat diffusion equations for both phases are solved by the Finite Integral Transform techniques. The kernels for the transformation are the time-dependent eigen functions separately defined for each phases. This extended transform method can accomodate any time-dependent surface temperature variation. The application of the transform generated a series of coupled, nonlinear first order differential equations, which are solved by Runge Kutta-Verner fifth and sixth order method. Dimensionless solutions of temperature variations in both phases, fusion front position and the fraction solidified (or melted) are displayed graphically to aid in practical calculations. For the special case of a constant surface temperature, comparisons are made between the present results and the existing integral and purely numerical results. The results are found to compare favourably. Results for fractional solidification (or melting and interface position are also compared with the simple Conduction Shape Factor method, after allowing for the time-dependent boundary conditions. Once again the results agree reasonably well.« less

  17. Nanoscale Metal Oxide Semiconductors for Gas Sensing

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Evans, Laura; Xu, Jennifer C.; VanderWal, Randy L.; Berger, Gordon M.; Kulis, Michael J.

    2011-01-01

    A report describes the fabrication and testing of nanoscale metal oxide semiconductors (MOSs) for gas and chemical sensing. This document examines the relationship between processing approaches and resulting sensor behavior. This is a core question related to a range of applications of nanotechnology and a number of different synthesis methods are discussed: thermal evaporation- condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed, providing a processing overview to developers of nanotechnology- based systems. The results of a significant amount of testing and comparison are also described. A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. The TECsynthesized single-crystal nanowires offer uniform crystal surfaces, resistance to sintering, and their synthesis may be done apart from the substrate. The TECproduced nanowire response is very low, even at the operating temperature of 200 C. In contrast, the electrospun polycrystalline nanofiber response is high, suggesting that junction potentials are superior to a continuous surface depletion layer as a transduction mechanism for chemisorption. Using a catalyst deposited upon the surface in the form of nanoparticles yields dramatic gains in sensitivity for both nanostructured, one-dimensional forms. For the nanowire materials, the response magnitude and response rate uniformly increase with increasing operating temperature. Such changes are interpreted in terms of accelerated surface diffusional processes, yielding greater access to chemisorbed oxygen species and faster dissociative chemisorption, respectively. Regardless of operating temperature, sensitivity of the nanofibers is a factor of 10 to 100 greater than that of nanowires with the same catalyst for the same test condition. In summary, nanostructure appears critical to governing the reactivity, as measured by electrical resistance of these SnO2 nanomaterials towards reducing gases. With regard to the sensitivity of the different nascent nanostructures, the electrospun nanofibers appear preferable

  18. The WATERMED field experiment: validation of the AATSR LST product with in situ measurements

    NASA Astrophysics Data System (ADS)

    Noyes, E.; Soria, G.; Sobrino, J.; Remedios, J.; Llewellyn-Jones, D.; Corlett, G.

    The Advanced Along-Track Scanning Radiometer (AATSR) onboard ESA's Envisat Satellite, is the third in a series of a precision radiometers designed to measure Sea Surface Temperature (SST) with accuracies of better than ± 0.3 K (within 1-sigma limit). Since its launch in March 2001, a prototype AATSR Land Surface Temperature (LST) product has been produced for validation purposes only, with the product becoming operational from mid-2004. The (A)ATSR instrument design is unique in that it has both a nadir- and a forward-view, allowing the Earth's surface to be viewed along two different atmospheric path lengths, thus enabling an improved atmospheric correction to be made when retrieving surface temperature. It also uses an innovative and exceptionally stable on-board calibration system for its infrared channels, which, together with actively cooled detectors, gives extremely high radiometric sensitivity and precision. In this presentation, results from a comparison of the prototype LST product with ground-based measurements obtained at the WATERMED (WATer use Efficiency in natural vegetation and agricultural areas by Remote sensing in the MEDiterranean basin) field site near Marrakech, Morocco, are presented. The comparison shows that the AATSR has a positive bias of + 1.5 K, with a standard deviation of 0.7 K, indicating that the product is operating within the target specification (± 2.5 K) over the WATERMED field site. However, several anomalous validation points were observed during the analysis and we will discuss possible reasons for the occurrence of these data, including their coincidence with the presence of an Envisat blanking pulse (indicating the presence of a radar pulse at the time of AATSR pixel integration). Further investigation into this matter is required as previous investigations have always indicated that the presence of a payload radar pulse does not have any effect on (A)ATSR data quality.

  19. A comparison of near-surface potential temperature variance budgets for unstable atmospheric flows over vegetated and non-vegetated flat surfaces and a gentle slope

    NASA Astrophysics Data System (ADS)

    Hang, C.; Nadeau, D.; Pardyjak, E.; Parlange, M. B.

    2017-12-01

    Over the past decades, researchers have made much progress toward a fundamental understanding of the budgets of turbulence variables over flat and homogeneous terrain, and only more recently over complex terrain. However, temperature variance budgets, which are parameterized in most meteorological models, are still poorly understood even under relatively idealized conditions. In this work, we rely on near-surface turbulence observations collected as part of the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) program. Data collected in May 2013 in western Utah at three field sites subjected to similar large-scale forcing are analyzed: a desert playa (dry lakebed), characterized by a at surface devoid of vegetation; a vegetated site, characterized by at valley oor covered with greasewood vegetation, and a mountain terrain site with a slope angle of 2 -4° and covered by high-elevation vegetation. The analysis reveals the presence of a 5-m layer where the production and dissipation terms of potential temperature variance (θ2) drop rapidly below this level. During convective periods, vertical advection and turbulent transport of θ2 can often be non-negligible, in particular at Playa and Slope sites. In addition, within the 5-m layer, turbulent transport of θ2 acts as a sink term at all sites of interest. Neither the ratio of turbulent transport to production nor the ratio of production to dissipation show a stability dependence during the unstable periods studied. A short-period comparison of dissipation rates calculated using dissipation-scale resolving hot-wire/cold-wire anemometry and several common indirect methods using sonic anemometry is presented for data acquired at Playa site. The results indicates that the dissipation rates from all methods follow similar trends, however the magnitudes can differ by a factor of 2 - 3.

  20. Comparison of Performance and Oxidation of Nitronic-50 and Stainless Steel 316 in Subcritical and Supercritical Water Environments

    NASA Astrophysics Data System (ADS)

    Karmiol, Zachary; Chidambaram, Dev

    2016-05-01

    This work investigates two austenitic stainless steels, Nitronic-50 and stainless steel 316, for use in both subcritical and supercritical water (SCW) conditions. The mechanical characteristics of the materials were investigated using slow strain rate testing in a SCW test loop under the following conditions: nitrogen at ambient temperature and pressure, liquid water at 473 K (200 °C) and 8 MPa, liquid water at 573 K (300 °C) and 15 MPa, and SCW at 698 K (425 °C) and 27 MPa. The surfaces of the failed samples were characterized using Raman spectroscopy, and X-ray photoelectron spectroscopy. Nitronic-50 was found to have superior mechanical strength characteristics at all conditions compared to stainless steel 316. At all elevated temperature conditions, stainless steel 316 was found to have a surface film consisting of iron oxides, while the surface film of Nitronic-50 predominantly consisted of nickel-iron spinel.

  1. Sea surface temperature and salinity from French research vessels, 2001–2013

    PubMed Central

    Gaillard, Fabienne; Diverres, Denis; Jacquin, Stéphane; Gouriou, Yves; Grelet, Jacques; Le Menn, Marc; Tassel, Joelle; Reverdin, Gilles

    2015-01-01

    French Research vessels have been collecting thermo-salinometer (TSG) data since 1999 to contribute to the Global Ocean Surface Underway Data (GOSUD) programme. The instruments are regularly calibrated and continuously monitored. Water samples are taken on a daily basis by the crew and later analysed in the laboratory. We present here the delayed mode processing of the 2001–2013 dataset and an overview of the resulting quality. Salinity measurement error was a few hundredths of a unit or less on the practical salinity scale (PSS), due to careful calibration and instrument maintenance, complemented with a rigorous adjustment on water samples. In a global comparison, these data show excellent agreement with an ARGO-based salinity gridded product. The Sea Surface Salinity and Temperature from French REsearch SHips (SSST-FRESH) dataset is very valuable for the ‘calibration and validation’ of the new satellite observations delivered by the Soil Moisture and Ocean Salinity (SMOS) and Aquarius missions. PMID:26504523

  2. Airborne Measurement of Insolation Impact on the Atmospheric Surface Boundary Layer

    NASA Astrophysics Data System (ADS)

    Jacob, Jamey; Chilson, Phil; Houston, Adam; Detweiler, Carrick; Bailey, Sean; Cloud-Map Team

    2017-11-01

    Atmospheric surface boundary layer measurements of wind and thermodynamic parameters are conducted during variable insolation conditions, including the 2017 eclipse, using an unmanned aircraft system. It is well known that the air temperatures can drop significantly during a total solar eclipse as has been previously observed. In past eclipses, these observations have primarily been made on the ground. We present results from airborne measurements of the near surface boundary layer using a small unmanned aircraft with high temporal resolution wind and thermodynamic observations. Questions that motivate the study include: How does the temperature within the lower atmospheric boundary vary during an eclipse? What impact does the immediate removal of radiative heating on the ground have on the lower ABL? Do local wind patterns change during an eclipse event and if so why? Will there be a manifestation of the nocturnal boundary layer wind maximum? Comparisons are made with the DOE ARM SGP site that experiences a lower but still significant insolation. Supported by the National Science Foundation under Award Number 1539070.

  3. Phytofilter - environmental friendly solution for purification of surface plate from urbanized territories

    NASA Astrophysics Data System (ADS)

    Ruchkinova, O.; Shchuckin, I.

    2017-06-01

    Its proved, that phytofilters are environmental friendly solution of problem of purification of surface plate from urbanized territories. Phytofilters answer the nowadays purposes to systems of purification of land drainage. The main problem of it is restrictions, connecter with its use in the conditions of cold temperature. Manufactured a technology and mechanism, which provide a whole-year purification of surface plate and its storage. Experimentally stated optimal makeup of filtering load: peat, zeolite and sand in per cent of volume, which provides defined hydraulic characteristics. Stated sorbate and ion-selective volume of complex filtering load of ordered composition in dynamic conditions. Estimated dependences of exit concentrations of oil products and heavy metals on temperature by filtering through complex filtering load of ordered composition. Defined effectiveness of purification at phytofiltering installation. Fixed an influence of embryophytes on process of phytogeneration and capacity of filtering load. Recommended swamp iris, mace reed and reed grass. Manufactured phytofilter calculation methodology. Calculated economic effect from use of phytofiltration technology in comparison with traditional block-modular installations.

  4. Study of the model of calibrating differences of brightness temperature from geostationary satellite generated by time zone differences

    NASA Astrophysics Data System (ADS)

    Li, Weidong; Shan, Xinjian; Qu, Chunyan

    2010-11-01

    In comparison with polar-orbiting satellites, geostationary satellites have a higher time resolution and wider field of visions, which can cover eleven time zones (an image covers about one third of the Earth's surface). For a geostationary satellite panorama graph at a point of time, the brightness temperature of different zones is unable to represent the thermal radiation information of the surface at the same point of time because of the effect of different sun solar radiation. So it is necessary to calibrate brightness temperature of different zones with respect to the same point of time. A model of calibrating the differences of the brightness temperature of geostationary satellite generated by time zone differences is suggested in this study. A total of 16 curves of four positions in four different stages are given through sample statistics of brightness temperature of every 5 days synthetic data which are from four different time zones (time zones 4, 6, 8, and 9). The above four stages span January -March (winter), April-June (spring), July-September (summer), and October-December (autumn). Three kinds of correct situations and correct formulas based on curves changes are able to better eliminate brightness temperature rising or dropping caused by time zone differences.

  5. New culturing studies of various haptophyte algae: The role of phylogeny on the alkenone paleothermometer

    NASA Astrophysics Data System (ADS)

    Walker Karega, I. I.; Juhl, A. R.; D'Andrea, W. J.

    2016-02-01

    Alkenone paleothermometry (via the UK37 and UK'37 indices) is widely used to reconstruct sea surface temperature and, more recently, lake water temperature. Genetic analyses indicate that there is a diversity of different alkenone-producing lacustrine haptophytes, and differences among UK37-temperature calibrations suggest that unique calibrations might be required to quantify past temperature variation from individual lakes. The only term needed to quantify UK37-inferred temperature relative to a reference period (e.g., modern temperature, or 20th Century mean temperature) is the slope of the calibration regression: UK37-temperature sensitivity (i.e., the change in UK37 per °C temperature change). Here, we present new data developed by culturing four different species of alkenone-producing haptophyte algae across a range of temperatures (6-30 °C) and light levels (20-200 µE). The simultaneous culture of four distinct species allows direct comparison of the absolute quantities of alkenones and alkenoates, as well as other lipids, produced by different species of haptophytes under identical environmental conditions. Our results indicate that algal growth rate, when controlled by light intensity, has no impact on UK37 values. As expected, we find that growth temperature controls both the degree of alkenone unsaturation and the relative production of alkenones vs. alkenoates in all four species. Importantly, comparison of the four UK37-temperature calibrations resulting from our experiments with preexisting calibrations supports the hypothesis that UK37-temperature sensitivity is controlled by phylogeny. Therefore, even in the absence of a site-specific calibration, this term can be used to quantify past temperature variation from lake sediments if the genetic identity of the lake's alkenone-producer is known.

  6. Thermodynamic properties of oxygen and nitrogen III

    NASA Technical Reports Server (NTRS)

    Stewart, R. B.; Jacobsen, R. T.; Myers, A. F.

    1972-01-01

    The final equation for nitrogen was determined. In the work on the equation of state for nitrogen, coefficients were determined by constraining the critical point to selected critical point parameters. Comparisons of this equation with all the P-density-T data were made, as well as comparisons to all other thermodynamic data reported in the literature. The extrapolation of the equation of state was studied for vapor to higher temperatures and lower temperatures, and for the liquid surface to the saturated liquid and the fusion lines. A new vapor pressure equation was also determined which was constrained to the same critical temperature, pressure, and slope (dP/dT) as the equation of state. Work on the equation of state for oxygen included studies for improving the equation at the critical point. Comparisons of velocity of sound data for oxygen were also made between values calculated with a preliminary equation of state and experimental data. Functions for the calculation of the derived thermodynamic properties using the equation of state are given, together with the derivative and integral functions for the calculation of the thermodynamic properties using the equations of state. Summary tables of the thermodynamic properties of nitrogen and oxygen are also included to serve as a check for those preparing computer programs using the equations of state.

  7. Two Dimensional Heat Transfer in Non-Thermally Thin Poly(Methyl Methacrylate) During Combustion in a Narrow Channel Apparatus

    NASA Astrophysics Data System (ADS)

    Lage, Nicholas Alexander

    Experimentation and Computational modeling of non-thermally thin samples of poly(methyl methacrylate) (PMMA) burning in a Narrow Channel Apparatus (NCA) was conducted. The Narrow Channel Apparatus is used to replicate a microgravity environment by flowing of mixtures of nitrogen and oxygen through a narrow gap to suppress buoyancy above the burning sample. A new NCA was built, and experiments were conducted using it to provide the empirical data presented in this thesis. Samples of PMMA were burned, with thicknesses of 3, 5, and 10 mm, with an opposed-flow mean velocity of 15 cm/s and a 21% oxygen concentration. Flame spread rates were obtained from tracked flame positions. Thermocouples were embedded in the top and bottom surfaces of some of the samples to measure surface temperatures. Using Fire Dynamics Simulator (FDS), version 6.2.0, coupled with Gpyro, a two-dimensional model was developed for non-thermally thin samples of PMMA that are burned in the NCA. A 5 mm gap height was used as well as a laminar, parabolic flow at the inlet. Direct numerical simulation (DNS) was set. Finite rate kinetics were used to model the pyrolysis and combustion reactions. Complete combustion was assumed. Simulations with fuel thicknesses of 1, 3, 5, and 10 mm were run, under the same conditions as the experiment. A comparison between one-dimensional and two-dimensional heat conduction within the sample was made to show the effect the heat transfer parallel to flame propagation has on flame spread rates and solid-phase temperature profiles. A comparison between mica and an adiabatic plane set beneath the PMMA was also made as well as the length of time the sample is exposed to the ignition source. Through comparison of the model with the experiment, it was found that the flame spread rates of the model showed unrealistic trends with thickness. An investigation was completed with the aid of an energy balance as well as graphs, such as equivalence ratios, surface temperatures, surface heat fluxes, fuel vapor mass fluxes, etc., that were plotted with respect to the flame position to find the source of the unrealistic trends, but conclusive evidence was never obtained.

  8. Revised Parameters for the AMOEBA Polarizable Atomic Multipole Water Model.

    PubMed

    Laury, Marie L; Wang, Lee-Ping; Pande, Vijay S; Head-Gordon, Teresa; Ponder, Jay W

    2015-07-23

    A set of improved parameters for the AMOEBA polarizable atomic multipole water model is developed. An automated procedure, ForceBalance, is used to adjust model parameters to enforce agreement with ab initio-derived results for water clusters and experimental data for a variety of liquid phase properties across a broad temperature range. The values reported here for the new AMOEBA14 water model represent a substantial improvement over the previous AMOEBA03 model. The AMOEBA14 model accurately predicts the temperature of maximum density and qualitatively matches the experimental density curve across temperatures from 249 to 373 K. Excellent agreement is observed for the AMOEBA14 model in comparison to experimental properties as a function of temperature, including the second virial coefficient, enthalpy of vaporization, isothermal compressibility, thermal expansion coefficient, and dielectric constant. The viscosity, self-diffusion constant, and surface tension are also well reproduced. In comparison to high-level ab initio results for clusters of 2-20 water molecules, the AMOEBA14 model yields results similar to AMOEBA03 and the direct polarization iAMOEBA models. With advances in computing power, calibration data, and optimization techniques, we recommend the use of the AMOEBA14 water model for future studies employing a polarizable water model.

  9. Spallation modeling in the Charring Material Thermal Response and Ablation (CMA) computer program

    NASA Astrophysics Data System (ADS)

    Sullivan, J. M.; Kobayashi, W. S.

    1987-06-01

    It has been observed during tests of certain laminated composite materials exposed to relatively high continuous wave laser irradiation, that the heated surface will spall. To model this phenomenon, the Charring Material Thermal Response and Ablation code has been updated. In addition to temperature response, in-depth decomposition, and surface recession, thermal and mechanical stresses are calculated. Spall is modeled as a discrete mass removal event occurring when the stresses exceed the ultimate strength of the char through a critical depth. Comparisons are made with test data for a carbon phenolic cylinder exposed to a shock tube environment and for a flat plate Kevlar epoxy test specimen exposed to high intensity laser irradiation. Good agreement is shown; however, the results indicate a requirement for more comprehensive elevated-temperature material properties for further validation.

  10. A boundary-layer model for Mars - Comparison with Viking lander and entry data

    NASA Technical Reports Server (NTRS)

    Haberle, Robert M.; Houben, Howard C.; Hertenstein, Rolf; Herdtle, Tomas

    1993-01-01

    A 1D boundary-layer model of Mars based on a momentum equation that describes friction, pressure gradient, and Coriolis forces is presented. Frictional forces and convective heating are computed using the level-2 turbulence closure theory of Mellor and Yamada (1974). The model takes into account the radiative effects of CO2 gas and suspended dust particles. Both radiation and convection depend on surface temperatures which are computed from a surface heat budget. Model predictions are compared with available observations from Viking landers. It is concluded that, in general, the model reproduces the basic features of the temperature data. The agreement is particularly good at entry time for the V L-2 site, where the model and observations are within several degrees at all levels for which data are available.

  11. Thermal conductivity study of warm dense matter by differential heating on LCLS and Titan

    NASA Astrophysics Data System (ADS)

    Hill, M.; McKelvey, A.; Jiang, S.; Shepherd, R.; Hau-Riege, S.; Whitley, H.; Sterne, P.; Hamel, S.; Collins, G.; Ping, Y.; Brown, C.; Floyd, E.; Fyrth, J.; Hoarty, D.; Hua, R.; Bailly-Grandvaux, M.; Beg, F.; Cho, B.; Kim, M.; Lee, J.; Lee, H.; Galtier, E.

    2017-10-01

    A differential heating platform has been developed for thermal conduction study, where a temperature gradient is induced and subsequent heat flow is probed by time-resolved diagnostics. Multiple experiment using this platform have been carried out at LCLS-MEC and Titan laser facilities for warm dense Al, Fe, amorphous carbon and diamond. Two single-shot time-resolved diagnostics are employed, SOP (streaked optical pyrometry) for surface temperature and FDI (Fourier Domain Interferometry) for surface expansion. Both diagnostics provided excellent data to constrain release equation-of-state (EOS) and thermal conductivity. Data sets with varying target thickness and comparison between simulations with different thermal conductivity models are presented. This work was performed under DOE contract DE-AC52-07NA27344 with support from DOE OFES Early Career program and LLNL LDRD program.

  12. The effect of H2O and CO2 on planetary mantles

    NASA Technical Reports Server (NTRS)

    Wyllie, P. J.

    1978-01-01

    The peridotite-H2O-CO2 system is discussed, and it is shown that even traces of H2O and CO2, in minerals or vapor, lower mantle solidus temperatures through hundreds of degrees in comparison with the volatile-free solidus. The solidus for peridotite-H2O-CO2 is a divariant surface traversed by univariant lines that locate the intersections of subsolidus divariant surfaces for carbonation or hydration reactions occurring in the presence of H2O-CO2 mixtures. Vapor phase compositions are normally buffered to these lines, and near the buffered curve for the solidus of partly carbonated peridotite there is a temperature maximum on the peridotite-vapor solidus. Characteristics on the CO2 side of the maximum and on the H2O side of the maximum are described.

  13. Thermal conduction study of warm dense aluminum by proton differential heating

    NASA Astrophysics Data System (ADS)

    Ping, Y.; Kemp, G.; McKelvey, A.; Fernandez-Panella, A.; Shepherd, R.; Collins, G.; Sio, H.; King, J.; Freeman, R.; Hua, R.; McGuffey, C.; Kim, J.; Beg, F.

    2016-10-01

    A differential heating platform has been developed for thermal conduction study (Ping et al. PoP 2015), where a temperature gradient is induced and subsequent heat flow is probed by time-resolved diagnostics. An experiment using proton differential heating has been carried out at Titan laser for Au/Al targets. Two single-shot time-resolved diagnostics are employed, SOP (streaked optical pyrometry) for surface temperature and FDI (Fourier Domain Interferometry) for surface expansion. Hydrodynamic simulations show that after 15ps, absorption in underdense plasma needs to be taken into account to correctly interpret SOP data. Comparison between simulations with different thermal conductivity models and a set of data with varying target thickness will be presented. This work was performed under DOE contract DE-AC52-07NA27344 with support from OFES Early Career program and LLNL LDRD program.

  14. Single-footprint retrievals of temperature, water vapor and cloud properties from AIRS

    NASA Astrophysics Data System (ADS)

    Irion, Fredrick W.; Kahn, Brian H.; Schreier, Mathias M.; Fetzer, Eric J.; Fishbein, Evan; Fu, Dejian; Kalmus, Peter; Wilson, R. Chris; Wong, Sun; Yue, Qing

    2018-02-01

    Single-footprint Atmospheric Infrared Sounder spectra are used in an optimal estimation-based algorithm (AIRS-OE) for simultaneous retrieval of atmospheric temperature, water vapor, surface temperature, cloud-top temperature, effective cloud optical depth and effective cloud particle radius. In a departure from currently operational AIRS retrievals (AIRS V6), cloud scattering and absorption are in the radiative transfer forward model and AIRS single-footprint thermal infrared data are used directly rather than cloud-cleared spectra (which are calculated using nine adjacent AIRS infrared footprints). Coincident MODIS cloud data are used for cloud a priori data. Using single-footprint spectra improves the horizontal resolution of the AIRS retrieval from ˜ 45 to ˜ 13.5 km at nadir, but as microwave data are not used, the retrieval is not made at altitudes below thick clouds. An outline of the AIRS-OE retrieval procedure and information content analysis is presented. Initial comparisons of AIRS-OE to AIRS V6 results show increased horizontal detail in the water vapor and relative humidity fields in the free troposphere above the clouds. Initial comparisons of temperature, water vapor and relative humidity profiles with coincident radiosondes show good agreement. Future improvements to the retrieval algorithm, and to the forward model in particular, are discussed.

  15. Poly(acrylic acid) nanogel as a substrate for cellulase immobilization for hydrolysis of cellulose.

    PubMed

    Ahmed, Ibrahim Nasser; Chang, Ray; Tsai, Wei-Bor

    2017-04-01

    Cellulase was adsorbed onto poly(acrylic acid), PAA, nanogel, that was fabricated via inverse-phase microemulsion polymerization. The PAA nanogel was around 150nm in diameter and enriched with carboxyl groups. The surface charge of PAA nanogel depended on the pHs of the environment and affected the adsorption of cellulase. The temperature stability of the immobilized cellulase was greatly enhanced in comparison to the free enzyme, especially at high temperature. At 80°C, the immobilized cellulase remained ∼75% of hydrolytic activity, in comparison to ∼55% for the free cellulase. Furthermore, the immobilized cellulase was more active than the free enzyme in acidic buffers. The immobilized cellulase could be recovered via centrifugation and can be used repeatedly, although the recovery ratio needs further improvement. In conclusion, PAA nanogel has the potential in the application of enzyme immobilization for biochemical processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Synthesis Methods, Microscopy Characterization and Device Integration of Nanoscale Metal Oxide Semiconductors for Gas Sensing

    PubMed Central

    Vander Wal, Randy L.; Berger, Gordon M.; Kulis, Michael J.; Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura

    2009-01-01

    A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. Both nanostructures possess a one-dimensional morphology. Different synthesis methods are used to produce these materials: thermal evaporation-condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed. Practical issues associated with harvesting, purification, and integration of these materials into sensing devices are detailed. For comparison to the nascent form, these sensing materials are surface coated with Pd and Pt nanoparticles. Gas sensing tests, with respect to H2, are conducted at ambient and elevated temperatures. Comparative normalized responses and time constants for the catalyst and noncatalyst systems provide a basis for identification of the superior metal-oxide nanostructure and catalyst combination. With temperature-dependent data, Arrhenius analyses are made to determine activation energies for the catalyst-assisted systems. PMID:22408484

  17. Long-term, high frequency in situ measurements of intertidal mussel bed temperatures using biomimetic sensors

    PubMed Central

    Helmuth, Brian; Choi, Francis; Matzelle, Allison; Torossian, Jessica L.; Morello, Scott L.; Mislan, K.A.S.; Yamane, Lauren; Strickland, Denise; Szathmary, P. Lauren; Gilman, Sarah E.; Tockstein, Alyson; Hilbish, Thomas J.; Burrows, Michael T.; Power, Anne Marie; Gosling, Elizabeth; Mieszkowska, Nova; Harley, Christopher D.G.; Nishizaki, Michael; Carrington, Emily; Menge, Bruce; Petes, Laura; Foley, Melissa M.; Johnson, Angela; Poole, Megan; Noble, Mae M.; Richmond, Erin L.; Robart, Matt; Robinson, Jonathan; Sapp, Jerod; Sones, Jackie; Broitman, Bernardo R.; Denny, Mark W.; Mach, Katharine J.; Miller, Luke P.; O’Donnell, Michael; Ross, Philip; Hofmann, Gretchen E.; Zippay, Mackenzie; Blanchette, Carol; Macfarlan, J.A.; Carpizo-Ituarte, Eugenio; Ruttenberg, Benjamin; Peña Mejía, Carlos E.; McQuaid, Christopher D.; Lathlean, Justin; Monaco, Cristián J.; Nicastro, Katy R.; Zardi, Gerardo

    2016-01-01

    At a proximal level, the physiological impacts of global climate change on ectothermic organisms are manifest as changes in body temperatures. Especially for plants and animals exposed to direct solar radiation, body temperatures can be substantially different from air temperatures. We deployed biomimetic sensors that approximate the thermal characteristics of intertidal mussels at 71 sites worldwide, from 1998-present. Loggers recorded temperatures at 10–30 min intervals nearly continuously at multiple intertidal elevations. Comparisons against direct measurements of mussel tissue temperature indicated errors of ~2.0–2.5 °C, during daily fluctuations that often exceeded 15°–20 °C. Geographic patterns in thermal stress based on biomimetic logger measurements were generally far more complex than anticipated based only on ‘habitat-level’ measurements of air or sea surface temperature. This unique data set provides an opportunity to link physiological measurements with spatially- and temporally-explicit field observations of body temperature. PMID:27727238

  18. Long-term, high frequency in situ measurements of intertidal mussel bed temperatures using biomimetic sensors

    NASA Astrophysics Data System (ADS)

    Helmuth, Brian; Choi, Francis; Matzelle, Allison; Torossian, Jessica L.; Morello, Scott L.; Mislan, K. A. S.; Yamane, Lauren; Strickland, Denise; Szathmary, P. Lauren; Gilman, Sarah E.; Tockstein, Alyson; Hilbish, Thomas J.; Burrows, Michael T.; Power, Anne Marie; Gosling, Elizabeth; Mieszkowska, Nova; Harley, Christopher D. G.; Nishizaki, Michael; Carrington, Emily; Menge, Bruce; Petes, Laura; Foley, Melissa M.; Johnson, Angela; Poole, Megan; Noble, Mae M.; Richmond, Erin L.; Robart, Matt; Robinson, Jonathan; Sapp, Jerod; Sones, Jackie; Broitman, Bernardo R.; Denny, Mark W.; Mach, Katharine J.; Miller, Luke P.; O'Donnell, Michael; Ross, Philip; Hofmann, Gretchen E.; Zippay, Mackenzie; Blanchette, Carol; Macfarlan, J. A.; Carpizo-Ituarte, Eugenio; Ruttenberg, Benjamin; Peña Mejía, Carlos E.; McQuaid, Christopher D.; Lathlean, Justin; Monaco, Cristián J.; Nicastro, Katy R.; Zardi, Gerardo

    2016-10-01

    At a proximal level, the physiological impacts of global climate change on ectothermic organisms are manifest as changes in body temperatures. Especially for plants and animals exposed to direct solar radiation, body temperatures can be substantially different from air temperatures. We deployed biomimetic sensors that approximate the thermal characteristics of intertidal mussels at 71 sites worldwide, from 1998-present. Loggers recorded temperatures at 10-30 min intervals nearly continuously at multiple intertidal elevations. Comparisons against direct measurements of mussel tissue temperature indicated errors of ~2.0-2.5 °C, during daily fluctuations that often exceeded 15°-20 °C. Geographic patterns in thermal stress based on biomimetic logger measurements were generally far more complex than anticipated based only on ‘habitat-level’ measurements of air or sea surface temperature. This unique data set provides an opportunity to link physiological measurements with spatially- and temporally-explicit field observations of body temperature.

  19. Two-Dimensional Thermal Boundary Layer Corrections for Convective Heat Flux Gauges

    NASA Technical Reports Server (NTRS)

    Kandula, Max; Haddad, George

    2007-01-01

    This work presents a CFD (Computational Fluid Dynamics) study of two-dimensional thermal boundary layer correction factors for convective heat flux gauges mounted in flat plate subjected to a surface temperature discontinuity with variable properties taken into account. A two-equation k - omega turbulence model is considered. Results are obtained for a wide range of Mach numbers (1 to 5), gauge radius ratio, and wall temperature discontinuity. Comparisons are made for correction factors with constant properties and variable properties. It is shown that the variable-property effects on the heat flux correction factors become significant

  20. Computer modeling of a hot filament diamond deposition reactor

    NASA Technical Reports Server (NTRS)

    Kuczmarski, Maria A.; Washlock, Paul A.; Angus, John C.

    1991-01-01

    A commercial fluid mechanics program, FLUENT, has been applied to the modeling of a hot-filament diamond deposition reactor. Streamlines and contours of constant temperature and species concentrations are obtained for practical reactor geometries and conditions. The modeling is presently restricted to two-dimensional simulations and to a chemical mechanism of ten independent homogeneous and surface reactions. Comparisons are made between predicted power consumption, substrate temperature, and concentrations of atomic hydrogen and methyl-radical with values taken from the literature. The results to date indicate that the modeling can aid in the rational design and analysis of practical reactor configurations.

  1. Evaluation of JPL Version-5.9.12 Temperature Profiles, Ocean Skin Temperature, Surface Emissivity, and Cloud Cleared Radiances

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2011-01-01

    Slide presentation discusses: (1) Modifications to JPL 5.9.12 compared to V5.9.1, (2) Some results showing that V5.9.12 O, with original water vapor sounding channels, is preferable to V5.9.12 N with Antonia Gambacorta s new water vapor channels. (3) Comparison of V5.9.12, V5.9.12 AO, V5.9.1, and V5.0, (4) Accuracy and yield of channel by channel Quality Controlled clear-column radiances R(sub i) and (5) Plans for Version-7.

  2. Projections of Rainfall and Surface Temperature from CMIP5 Models under RCP4.5 and 8.5 over BIMSTEC Countries

    NASA Astrophysics Data System (ADS)

    Charan Pattnayak, Kanhu; Kar, Sarat Chandra; Kumari Pattnayak, Rashmita

    2015-04-01

    Rainfall and surface temperature are the most important climatic variables in the context of climate change. Thus, these variables simulated from fifth phase of the Climate Model Inter-comparison Project (CMIP5) models have been compared against Climatic Research Unit (CRU) observed data and projected for the twenty first century under the Representative Concentration Pathways (RCPs) 4.5 and 8.5 emission scenarios. Results for the seven countries under Bay of Bengal Initiative for Multi-Sectoral Technical and Economic Cooperation (BIMSTEC) such as Bangladesh, Bhutan, India, Myanmar, Nepal, Sri Lanka and Thailand have been examined. Six CMIP5 models namely GFDL-CM3, GFDL-ESM2M, GFDL-ESM2G, HadGEM2-AO, HadGEM2-CC and HadGEM2-ES have been chosen for this study. The study period has been considered is from 1861 to 2100. From this period, initial 145 years i.e. 1861 to 2005 is reference or historical period and the later 95 years i.e. 2005 to 2100 is projected period. The climate change in the projected period has been examined with respect to the reference period. In order to validate the models, the mean annual rainfall and temperature has been compared with CRU over the reference period 1901 to 2005. Comparison reveals that most of the models are able to capture the spatial distribution of rainfall and temperature over most of the regions of BIMSTEC countries. Therefore these model data can be used to study the future changes in the 21st Century. Four out six models shows that the rainfall over Central and North India, Thailand and eastern part of Myanmar shows decreasing trend and Bangladesh, Bhutan, Nepal and Sri Lanka shows an increasing trend in both RCP 4.5 and 8.5 scenarios. In case of temperature, all of the models show an increasing trend over all the BIMSTEC countries in both scenarios, however, the rate of increase is relatively less over Sri Lanka than the other countries. Annual cycles of rainfall and temperature over Bangladesh, Myanmar and Thailand reveals that the magnitudes are more in 2070 to 2100 of RCP8.5. Inter-model comparison show that there are large more uncertainties within the CMIP5 model projections.

  3. USB environment measurements based on full-scale static engine ground tests

    NASA Technical Reports Server (NTRS)

    Sussman, M. B.; Harkonen, D. L.; Reed, J. B.

    1976-01-01

    Flow turning parameters, static pressures, surface temperatures, surface fluctuating pressures and acceleration levels were measured in the environment of a full-scale upper surface blowing (USB) propulsive lift test configuration. The test components included a flightworthy CF6-50D engine, nacelle, and USB flap assembly utilized in conjunction with ground verification testing of the USAF YC-14 Advanced Medium STOL Transport propulsion system. Results, based on a preliminary analysis of the data, generally show reasonable agreement with predicted levels based on model data. However, additional detailed analysis is required to confirm the preliminary evaluation, to help delineate certain discrepancies with model data, and to establish a basis for future flight test comparisons.

  4. A second-order Budkyo-type parameterization of landsurface hydrology

    NASA Technical Reports Server (NTRS)

    Andreou, S. A.; Eagleson, P. S.

    1982-01-01

    A simple, second order parameterization of the water fluxes at a land surface for use as the appropriate boundary condition in general circulation models of the global atmosphere was developed. The derived parameterization incorporates the high nonlinearities in the relationship between the near surface soil moisture and the evaporation, runoff and percolation fluxes. Based on the one dimensional statistical dynamic derivation of the annual water balance, it makes the transition to short term prediction of the moisture fluxes, through a Taylor expansion around the average annual soil moisture. A comparison of the suggested parameterization is made with other existing techniques and available measurements. A thermodynamic coupling is applied in order to obtain estimations of the surface ground temperature.

  5. Global Surface Thermal Inertia Derived from Dawn VIR Observations

    NASA Astrophysics Data System (ADS)

    Titus, T. N.; Becker, K. J.; Anderson, J.; Capria, M.; Tosi, F.; Prettyman, T. H.; De Sanctis, M. C.; Palomba, E.; Grassi, D.; Capaccioni, F.; Ammannito, E.; Combe, J.; McCord, T. B.; Li, J. Y.; Russell, C. T.; Raymond, C. A.

    2012-12-01

    Comparisons of surface temperatures, derived from Dawn [1] Visible and Infrared Mapping Spectrometer (VIR-MS) [2] observations , to thermal models suggest that Vesta generally has a low-thermal-inertia surface, between 25 and 35 J m^-2 K^-1 s^-½, consistent with a thick layer of fine-grain material [3]. Temperatures were calculated using a Bayesian approach to nonlinear inversion as described by Tosi et al. [4]. In order to compare observed temperatures of Vesta to model calculations, several geometric and photometric parameters must be known or estimated. These include local mean solar time, latitude, local slope, bond bolometric albedo, and the effective emissivity at 5μm. Local time, latitude, and local slope are calculated using the USGS ISIS software system [5]. We employ a multi-layered thermal-diffusion model called 'KRC' [6], which has been used extensively in the study of Martian thermophysical properties. This thermal model is easily modified for use with Vesta by replacing the Martian ephemeris input with the Vesta ephemeris and disabling the atmosphere. This model calculates surface temperatures throughout an entire Vesta year for specific sets of slope, azimuth, latitude and elevation, and a range of albedo and thermal-inertia values. The ranges of albedo and thermal inertia values create temperature indices that are closely matched to the dates and times observed by VIR. Based on observed temperatures and best-fit KRC thermal models, estimates of the annual mean surface temperatures were found to range from 176 K - 188 K for flat zenith-facing equatorial surfaces, but these temperatures can drop as low as 112 K for polar-facing slopes at mid-latitudes. [7] In this work, we will compare observed temperatures of the surface of Vesta (using data acquired by Dawn VIR-MS [2] during the approach, survey, high-altitude mapping and departure phases) to model temperature results using the KRC thermal model [5]. Where possible, temperature observations from multiple times of day or seasons will be used to better constrain the thermal inertia. The authors gratefully acknowledge the support of the Dawn Instrument, Operations, and Science Teams. This work was funded by the Dawn at Vesta Participating Science Program. [1] C.T. Russell et al. (2004) P&SS, 52, 465-489. [2] M.C. De Sanctis et al. (2011) SSRv 163, 329. [3] M.T. Capria et al. (2012) LPSC XLIII #1863 [4] F. Tosi et al. (2012) LPSC XLIII #1886. [5] J. Anderson et al. (2011) AGU Fall Meeting, #U31A-0009. [6] H.H. Kieffer H., et al. (1977) JGR, 82, 4249-4291. [7] Titus et al. (2012) EPSC, #800.

  6. Thermometric determination of cartilage matrix temperatures during thermal chondroplasty: comparison of bipolar and monopolar radiofrequency devices.

    PubMed

    Edwards, Ryland B; Lu, Yan; Rodriguez, Edwin; Markel, Mark D

    2002-04-01

    To compare cartilage matrix temperatures between monopolar radiofrequency energy (mRFE) and bipolar RFE (bRFE) at 3 depths under the articular surface during thermal chondroplasty. We hypothesized that cartilage temperatures would be higher at all cartilage depths for the bRFE device than for the mRFE device. Randomized trial using bovine cartilage. Sixty osteochondral sections from the femoropatellar joint of 15 adult cattle were used for this study. Using a custom jig, fluoroptic thermometry probes were placed at one of the following depths under the articular surface: 200 microm, 500 microm, or 2,000 microm. RF treatment was performed either with fluid flow (F) (120 mL/min) or without fluid flow (NF) (n = 5/depth/RFE device/flow; total specimens, 60). Irrigation fluid temperature was room temperature (22 degrees C). Thermometry data were acquired at 4 Hz for 5 seconds with the RF probe off, for 20 seconds with the RF probe on, and then for 15 seconds with the RF probe off. During RF treatment, a 0.79-cm2 area (1.0-cm diameter) of the articular surface centered over the thermometry probe was treated in a paintbrush manner in noncontact (bRFE) or light contact (mRFE). Thermal chondroplasty with bRFE resulted in higher cartilage matrix temperatures compared with mRFE for all depths and regardless of fluid flow. Bipolar RFE resulted in temperatures of 95 degrees C to 100 degrees C at 200 microm and 500 microm under the surface, with temperatures of 75 degrees C to 78 degrees C at 2,000 microm. Fluid flow during bRFE application had no effect at 200 microm. Monopolar RFE resulted in temperatures of 61 degrees C to 68 degrees C at 200 microm, 54 degrees C to 70 degrees C at 500 microm under the surface, and 28 degrees C to 30 degrees C at 2,000 microm below the surface. A significant effect of fluid flow during mRFE application occurred at 200 microm (NF, 61 degrees C; F, 63 degrees C) and 500 microm (NF, 53 degrees C; F, 68 degrees C). In this study, we found significant differences between bRFE and a temperature-controlled mRFE device with regard to depth of thermal heating of cartilage in vitro. Bipolar RFE resulted in matrix temperatures high enough (>70 degrees C) to kill cells as deep as 2,000 microm under the articular surface. Fluid flow during thermal chondroplasty had the effect of significantly increasing cartilage matrix temperatures at 200 and 500 microm with the mRFE device. During thermal chondroplasty, bRFE creates greater matrix temperature elevations at equivalent depths and treatment duration than does mRFE. Excessive temperatures generated deep within the cartilage matrix could cause full-thickness chondrocyte death, in vivo.

  7. Theory of the reaction dynamics of small molecules on metal surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Bret

    The objective of this project has been to develop realistic theoretical models for gas-surface interactions, with a focus on processes important in heterogeneous catalysis. The dissociative chemisorption of a molecule on a metal is a key step in many catalyzed reactions, and is often the rate-limiting step. We have explored the dissociative chemisorption of H 2, H 2O and CH 4 on a variety of metal surfaces. Most recently, our extensive studies of methane dissociation on Ni and Pt surfaces have fully elucidated its dependence on translational energy, vibrational state and surface temperature, providing the first accurate comparisons with experimentalmore » data. We have explored Eley-Rideal and hot atom reactions of H atoms with H- and C-covered metal surfaces. H atom interactions with graphite have also been explored, including both sticking and Eley-Rideal recombination processes. Again, our methods made it possible to explain several experiments studying these reactions. The sticking of atoms on metal surfaces has also been studied. To help elucidate the experiments that study these processes, we examine how the reaction dynamics depend upon the nature of the molecule-metal interaction, as well as experimental variables such as substrate temperature, beam energy, angle of impact, and the internal states of the molecules. Electronic structure methods based on Density Functional Theory are used to compute each molecule-metal potential energy surface. Both time-dependent quantum scattering techniques and quasi-classical methods are used to examine the reaction or scattering dynamics. Much of our effort has been directed towards developing improved quantum methods that can accurately describe reactions, as well as include the effects of substrate temperature (lattice vibration).« less

  8. Real-time observation of the dehydrogenation processes of methanol on clean Ru(001) and Ru(001)-p(2×2) O surfaces by a temperature-programmed electron-stimulated desorption ion angular distribution/time-of-flight system

    NASA Astrophysics Data System (ADS)

    Sasaki, Takehiko; Itai, Yuichiro; Iwasawa, Yasuhiro

    1999-12-01

    Decomposition processes of methanol on clean and oxygen-precovered Ru(001) surfaces have been visualized in real time with a temperature-programmed (TP) electron-stimulated desorption ion angular distribution (ESDIAD)/time-of-flight (TOF) system. The mass of desorbed ions during temperature-programmed surface processes was identified by TOF measurements. In the case of methanol (CH 3OD) adsorption on Ru(001)-p(2×2)-O, a halo pattern of H + from the methyl group of methoxy species was observed at 100-200 K, followed by a broad pattern from the methyl group at 230-250 K and by a near-center pattern from O + ions originating from adsorbed CO above 300 K. The halo pattern is attributed to a perpendicular conformation of the CO bond axis of the methoxy species, leading to off-normal CH bond scission. On the other hand, methanol adsorbed on clean Ru(001) did not give any halo pattern but a broad pattern was observed along the surface normal, indicating that the conformation of the methoxy species is not ordered on the clean surface. Comparison between the ESDIAD images of the oxygen-precovered surface and the clean surface suggests that the precovered oxygen adatoms induce ordering of the methoxy species. Real-time ESDIAD measurements revealed that the oxygen atoms at the Ru(001)-p(2×2)-O surface have a positive effect on selective dehydrogenation of the methoxy species to CO+H 2 and a blocking effect on CO bond breaking of the methoxy species.

  9. Enhanced Fe2O3 Reducibility via Surface Modification with Pd: Characterizing the Synergy within Pd/Fe Catalysts for Hydrodeoxygenation Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hensley, Alyssa; Hong, Yongchun; Zhang, Renqin

    2014-10-03

    The synergistic catalysis in the hydrodeoxygenation of phenolic compounds over a Pd/Fe bimetallic surface has been well established. However, the nature of this synergy is still in part a mystery. In this work, we used a combined experimental and theoretical approach to understand a potential function of the surface Pd in the reduction of Pd/Fe2O3. This function of Pd was investigated via the comparison of the reduction properties as well as other physicochemical properties of samples synthesized by the reduction of Fe2O3 nanoparticles with and without surface Pd. Temperature-programmed reduction studies demonstrated the remarkable facilitation of reduction by addition ofmore » Pd, evidenced by a 150 degrees C shift toward lower temperature of the reduction peak of Fe3+. From X-ray photoelectron spectroscopy and theoretical calculation results, the interaction between Pd and the Fe2O3 surface occurs through the exchange of electrons with both the surface Fe and O atoms. This bonding between the Pd and surface oxide elements causes the Pd to partially donate electrons to the oxide surface, making the surface electrons more delocalized. This electron delocalization stabilizes the reduced oxide surfaces, as suggested by the TPR results and theoretical prediction. Therefore, the stabilization of the reduced Fe surface as well as the facilitated water formation by introduction of Pd is expected to significantly contribute to the Pd-Fe synergy in hydrodeoxygenation catalysis.« less

  10. Ensemble assimilation of ARGO temperature profile, sea surface temperature, and altimetric satellite data into an eddy permitting primitive equation model of the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Yan, Y.; Barth, A.; Beckers, J. M.; Candille, G.; Brankart, J. M.; Brasseur, P.

    2015-07-01

    Sea surface height, sea surface temperature, and temperature profiles at depth collected between January and December 2005 are assimilated into a realistic eddy permitting primitive equation model of the North Atlantic Ocean using the Ensemble Kalman Filter. Sixty ensemble members are generated by adding realistic noise to the forcing parameters related to the temperature. The ensemble is diagnosed and validated by comparison between the ensemble spread and the model/observation difference, as well as by rank histogram before the assimilation experiments. An incremental analysis update scheme is applied in order to reduce spurious oscillations due to the model state correction. The results of the assimilation are assessed according to both deterministic and probabilistic metrics with independent/semiindependent observations. For deterministic validation, the ensemble means, together with the ensemble spreads are compared to the observations, in order to diagnose the ensemble distribution properties in a deterministic way. For probabilistic validation, the continuous ranked probability score (CRPS) is used to evaluate the ensemble forecast system according to reliability and resolution. The reliability is further decomposed into bias and dispersion by the reduced centered random variable (RCRV) score in order to investigate the reliability properties of the ensemble forecast system. The improvement of the assimilation is demonstrated using these validation metrics. Finally, the deterministic validation and the probabilistic validation are analyzed jointly. The consistency and complementarity between both validations are highlighted.

  11. Molecular-dynamics study of propane-hydrate dissociation: Fluctuation-dissipation and non-equilibrium analysis.

    PubMed

    Ghaani, Mohammad Reza; English, Niall J

    2018-03-21

    Equilibrium and non-equilibrium molecular-dynamics (MD) simulations have been performed to investigate thermal-driven break-up of planar propane-hydrate interfaces in contact with liquid water over the 260-320 K range. Two types of hydrate-surface water-lattice molecular termination were adopted, at the hydrate edge with water, for comparison: a 001-direct surface cleavage and one with completed cages. Statistically significant differences in melting temperatures and initial break-up rates were observed between both interface types. Dissociation rates were observed to be strongly dependent on temperature, with higher rates at larger over-temperatures vis-à-vis melting. A simple coupled mass and heat transfer model, developed previously, was applied to fit the observed dissociation profiles, and this helps us to identify clearly two distinct hydrate-decomposition régimes; following a highly temperature-dependent break-up phase, a second well-defined stage is essentially independent of temperature, in which the remaining nanoscale, de facto two-dimensional system's lattice framework is intrinsically unstable. Further equilibrium MD-analysis of the two-phase systems at their melting point, with consideration of the relaxation times gleaned from the auto-correlation functions of fluctuations in a number of enclathrated guest molecules, led to statistically significant differences between the two surface-termination cases; a consistent correlation emerged in both cases between the underlying, non-equilibrium, thermal-driven dissociation rates sampled directly from melting with that from an equilibrium-MD fluctuation-dissipation approach.

  12. Molecular-dynamics study of propane-hydrate dissociation: Fluctuation-dissipation and non-equilibrium analysis

    NASA Astrophysics Data System (ADS)

    Ghaani, Mohammad Reza; English, Niall J.

    2018-03-01

    Equilibrium and non-equilibrium molecular-dynamics (MD) simulations have been performed to investigate thermal-driven break-up of planar propane-hydrate interfaces in contact with liquid water over the 260-320 K range. Two types of hydrate-surface water-lattice molecular termination were adopted, at the hydrate edge with water, for comparison: a 001-direct surface cleavage and one with completed cages. Statistically significant differences in melting temperatures and initial break-up rates were observed between both interface types. Dissociation rates were observed to be strongly dependent on temperature, with higher rates at larger over-temperatures vis-à-vis melting. A simple coupled mass and heat transfer model, developed previously, was applied to fit the observed dissociation profiles, and this helps us to identify clearly two distinct hydrate-decomposition régimes; following a highly temperature-dependent break-up phase, a second well-defined stage is essentially independent of temperature, in which the remaining nanoscale, de facto two-dimensional system's lattice framework is intrinsically unstable. Further equilibrium MD-analysis of the two-phase systems at their melting point, with consideration of the relaxation times gleaned from the auto-correlation functions of fluctuations in a number of enclathrated guest molecules, led to statistically significant differences between the two surface-termination cases; a consistent correlation emerged in both cases between the underlying, non-equilibrium, thermal-driven dissociation rates sampled directly from melting with that from an equilibrium-MD fluctuation-dissipation approach.

  13. Real-time observation of coadsorption layers on Ru(001) using a temperature-programmed ESDIAD/TOF system

    NASA Astrophysics Data System (ADS)

    Sasaki, T.; Itai, Y.; Iwasawa, Y.

    1997-11-01

    For the purpose of utilizing ESDIAD as a real-time probe for surface processes, we have developed an instrument which can measure ESDIAD images and time of flight (TOF) spectra of desorbing ions in temperature-programmed surface processes. TOF measurements are carried out to identify the mass and to determine the kinetic energy distribution of the desorbed ions. This temperature-programmed (TP-) ESDIAD/TOF system was used to observe coadsorption layers of methylamine and CO on Ru(001) which have been previously studied by our group using LEED, TPD and HREELS, also drawing upon a comparison of findings with the coadsorption system of CO and ammonia. ESDIAD images acquired for temperature-programmed surface processes in real time were found to provide new insight into the dynamic behaviour of the coadsorption layers. As to the pure adsorption of ammonia and methylamine, the second and the first (chemisorbed) layers can be easily discriminated in their different ESD detection efficiency due to the difference in neutralization rate. The intensity change of H + ions with temperature shows the process of the decomposition of methylamine to be dependent on CO coverage. The intensity of O + originating from CO changes due to the change of CO adsorption site in the reaction process. The angular distribution of H + ions which correspond to CH2NH…Ru species appears at 250-300 K in the presence of high CO pre-coverage.

  14. Yield surface evolution for columnar ice

    NASA Astrophysics Data System (ADS)

    Zhou, Zhiwei; Ma, Wei; Zhang, Shujuan; Mu, Yanhu; Zhao, Shunpin; Li, Guoyu

    A series of triaxial compression tests, which has capable of measuring the volumetric strain of the sample, were conducted on columnar ice. A new testing approach of probing the experimental yield surface was performed from a single sample in order to investigate yield and hardening behaviors of the columnar ice under complex stress states. Based on the characteristic of the volumetric strain, a new method of defined the multiaxial yield strengths of the columnar ice is proposed. The experimental yield surface remains elliptical shape in the stress space of effective stress versus mean stress. The effect of temperature, loading rate and loading path in the initial yield surface and deformation properties of the columnar ice were also studied. Subsequent yield surfaces of the columnar ice have been explored by using uniaxial and hydrostatic paths. The evolution of the subsequent yield surface exhibits significant path-dependent characteristics. The multiaxial hardening law of the columnar ice was established experimentally. A phenomenological yield criterion was presented for multiaxial yield and hardening behaviors of the columnar ice. The comparisons between the theoretical and measured results indicate that this current model is capable of giving a reasonable prediction for the multiaxial yield and post-yield properties of the columnar ice subjected to different temperature, loading rate and path conditions.

  15. Heat Transfer Computations of Internal Duct Flows With Combined Hydraulic and Thermal Developing Length

    NASA Technical Reports Server (NTRS)

    Wang, C. R.; Towne, C. E.; Hippensteele, S. A.; Poinsatte, P. E.

    1997-01-01

    This study investigated the Navier-Stokes computations of the surface heat transfer coefficients of a transition duct flow. A transition duct from an axisymmetric cross section to a non-axisymmetric cross section, is usually used to connect the turbine exit to the nozzle. As the gas turbine inlet temperature increases, the transition duct is subjected to the high temperature at the gas turbine exit. The transition duct flow has combined development of hydraulic and thermal entry length. The design of the transition duct required accurate surface heat transfer coefficients. The Navier-Stokes computational method could be used to predict the surface heat transfer coefficients of a transition duct flow. The Proteus three-dimensional Navier-Stokes numerical computational code was used in this study. The code was first studied for the computations of the turbulent developing flow properties within a circular duct and a square duct. The code was then used to compute the turbulent flow properties of a transition duct flow. The computational results of the surface pressure, the skin friction factor, and the surface heat transfer coefficient were described and compared with their values obtained from theoretical analyses or experiments. The comparison showed that the Navier-Stokes computation could predict approximately the surface heat transfer coefficients of a transition duct flow.

  16. Monte Carlo Models to Constrain Temperature Variation in the Lowermost Mantle

    NASA Astrophysics Data System (ADS)

    Nowacki, A.; Walker, A.; Davies, C. J.

    2017-12-01

    The three dimensional temperature variation in the lowermost mantle is diagnostic of the pattern of mantle convection and controls the extraction of heat from the outer core. Direct measurement of mantle temperature is impossible and the temperature in the lowermost mantle is poorly constrained. However, since temperature variations indirectly impact many geophysical observables, it is possible to isolate the thermal signal if mantle composition and the physical properties of mantle minerals are known. Here we describe a scheme that allows seismic, geodynamic, and thermal properties of the core and mantle to be calculated given an assumed temperature (T) and mineralogical (X) distribution in the mantle while making use of a self consistent parameterisation of the thermoelastic properties of mantle minerals. For a given T and X, this scheme allows us to determine the misfit between our model and observations for the long-wavelength surface geoid, core-mantle boundary topography, inner-core radius, total surface heat-flux and p- and s-wave tomography. The comparison is quick, taking much less than a second, and can accommodate uncertainty in the mineralogical parameterisation. This makes the scheme well-suited to use in a Monte Carlo approach to the determination of the long-wavelength temperature and composition of the lowermost mantle. We present some initial results from our model, which include the robust generation of a thermal boundary layer in the one-dimensional thermal structure.

  17. Lower-Conductivity Ceramic Materials for Thermal-Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Zhu, Dongming

    2006-01-01

    Doped pyrochlore oxides of a type described below are under consideration as alternative materials for high-temperature thermal-barrier coatings (TBCs). In comparison with partially-yttria-stabilized zirconia (YSZ), which is the state-of-the-art TBC material now in commercial use, these doped pyrochlore oxides exhibit lower thermal conductivities, which could be exploited to obtain the following advantages: For a given difference in temperature between an outer coating surface and the coating/substrate interface, the coating could be thinner. Reductions in coating thicknesses could translate to reductions in weight of hot-section components of turbine engines (e.g., combustor liners, blades, and vanes) to which TBCs are typically applied. For a given coating thickness, the difference in temperature between the outer coating surface and the coating/substrate interface could be greater. For turbine engines, this could translate to higher operating temperatures, with consequent increases in efficiency and reductions in polluting emissions. TBCs are needed because the temperatures in some turbine-engine hot sections exceed the maximum temperatures that the substrate materials (superalloys, Si-based ceramics, and others) can withstand. YSZ TBCs are applied to engine components as thin layers by plasma spraying or electron-beam physical vapor deposition. During operation at higher temperatures, YSZ layers undergo sintering, which increases their thermal conductivities and thereby renders them less effective as TBCs. Moreover, the sintered YSZ TBCs are less tolerant of stress and strain and, hence, are less durable.

  18. Analysis of streambed temperatures in ephemeral channels to determine streamflow frequency and duration

    USGS Publications Warehouse

    Constantz, James E.; Stonestrom, David A.; Stewart, Amy E.; Niswonger, Richard G.; Smith, Tyson R.

    2001-01-01

    Spatial and temporal patterns in streamflow are rarely monitored for ephemeral streams. Flashy, erosive streamflows common in ephemeral channels create a series of operational and maintenance problems, which makes it impractical to deploy a series of gaging stations along ephemeral channels. Streambed temperature is a robust and inexpensive parameter to monitor remotely, leading to the possibility of analyzing temperature patterns to estimate streamflow frequency and duration along ephemeral channels. A simulation model was utilized to examine various atmospheric and hydrological upper boundary conditions compared with a series of hypothetical temperature‐monitoring depths within the streambed. Simulation results indicate that streamflow events were distinguished from changing atmospheric conditions with greater certainty using temperatures at shallow depths (e.g., 10–20 cm) as opposed to the streambed surface. Three ephemeral streams in the American Southwest were instrumented to monitor streambed temperature for determining the accuracy of using this approach to ascertain the long‐term temporal and spatial extent of streamflow along each stream channel. Streambed temperature data were collected at the surface or at shallow depth along each stream channel, using thermistors encased in waterproof, single‐channel data loggers tethered to anchors in the channel. On the basis of comparisons with site information, such as direct field observations and upstream flow records, diurnal temperature variations successfully detected the presence and duration of streamflow for all sites.

  19. Understanding the Role of M/Pt(111) (M = Fe, Co, Ni, Cu) Bimetallic Surfaces for Selective Hydrodeoxygenation of Furfural

    DOE PAGES

    Jiang, Zhifeng; Wan, Weiming; Lin, Zhexi; ...

    2017-07-24

    Selectively cleaving the C=O bond of the aldehyde group in furfural is critical for converting this biomass-derived platform chemical to an important biofuel molecule, 2-methylfuran. This work combined density functional theory (DFT) calculations and temperature-programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS) measurements to investigate the hydrodeoxygenation (HDO) activity of furfural on bimetallic surfaces prepared by modifying Pt(111) with 3d transition metals (Cu, Ni, Fe, and Co). The stronger binding energy of furfural and higher tilted degree of the furan ring on the Co-terminated bimetallic surface resulted in a higher activity for furfural HDO to produce 2-methylfuran inmore » comparison to that on either Pt(111) or Pt-terminated PtCoPt(111). The 3d-terminated bimetallic surfaces with strongly oxophilic 3d metals (Co and Fe) showed higher 2-methylfuran yield in comparison to those surfaces modified with weakly oxophilic 3d metals (Cu and Ni). The effect of oxygen on the HDO selectivity was also investigated on oxygen-modified bimetallic surfaces, revealing that the presence of surface oxygen resulted in a decrease in 2-methylfuran yield. Furthermore, the combined theoretical and experimental results presented here should provide useful guidance for designing Pt-based bimetallic HDO catalysts.« less

  20. Understanding the Role of M/Pt(111) (M = Fe, Co, Ni, Cu) Bimetallic Surfaces for Selective Hydrodeoxygenation of Furfural

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Zhifeng; Wan, Weiming; Lin, Zhexi

    Selectively cleaving the C=O bond of the aldehyde group in furfural is critical for converting this biomass-derived platform chemical to an important biofuel molecule, 2-methylfuran. This work combined density functional theory (DFT) calculations and temperature-programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS) measurements to investigate the hydrodeoxygenation (HDO) activity of furfural on bimetallic surfaces prepared by modifying Pt(111) with 3d transition metals (Cu, Ni, Fe, and Co). The stronger binding energy of furfural and higher tilted degree of the furan ring on the Co-terminated bimetallic surface resulted in a higher activity for furfural HDO to produce 2-methylfuran inmore » comparison to that on either Pt(111) or Pt-terminated PtCoPt(111). The 3d-terminated bimetallic surfaces with strongly oxophilic 3d metals (Co and Fe) showed higher 2-methylfuran yield in comparison to those surfaces modified with weakly oxophilic 3d metals (Cu and Ni). The effect of oxygen on the HDO selectivity was also investigated on oxygen-modified bimetallic surfaces, revealing that the presence of surface oxygen resulted in a decrease in 2-methylfuran yield. Furthermore, the combined theoretical and experimental results presented here should provide useful guidance for designing Pt-based bimetallic HDO catalysts.« less

  1. A comparison of all-weather land surface temperature products

    NASA Astrophysics Data System (ADS)

    Martins, Joao; Trigo, Isabel F.; Ghilain, Nicolas; Goettche, Frank-M.; Ermida, Sofia; Olesen, Folke-S.; Gellens-Meulenberghs, Françoise; Arboleda, Alirio

    2017-04-01

    The Satellite Application Facility on Land Surface Analysis (LSA-SAF, http://landsaf.ipma.pt) has been providing land surface temperature (LST) estimates using SEVIRI/MSG on an operational basis since 2006. The LSA-SAF service has since been extended to provide a wide range of satellite-based quantities over land surfaces, such as emissivity, albedo, radiative fluxes, vegetation state, evapotranspiration, and fire-related variables. Being based on infra-red measurements, the SEVIRI/MSG LST product is limited to clear-sky pixels only. Several all-weather LST products have been proposed by the scientific community either based on microwave observations or using Soil-Vegetation-Atmosphere Transfer models to fill the gaps caused by clouds. The goal of this work is to provide a nearly gap-free operational all-weather LST product and compare these approaches. In order to estimate evapotranspiration and turbulent energy fluxes, the LSA-SAF solves the surface energy budget for each SEVIRI pixel, taking into account the physical and physiological processes occurring in vegetation canopies. This task is accomplished with an adapted SVAT model, which adopts some formulations and parameters of the Tiled ECMWF Scheme for Surface Exchanges over Land (TESSEL) model operated at the European Center for Medium-range Weather Forecasts (ECMWF), and using: 1) radiative inputs also derived by LSA-SAF, which includes surface albedo, down-welling fluxes and fire radiative power; 2) a land-surface characterization obtained by combining the ECOCLIMAP database with both LSA-SAF vegetation products and the H(ydrology)-SAF snow mask; 3) meteorological fields from ECMWF forecasts interpolated to SEVIRI pixels, and 4) soil moisture derived by the H-SAF and LST from LSA-SAF. A byproduct of the SVAT model is surface skin temperature, which is needed to close the surface energy balance. The model skin temperature corresponds to the radiative temperature of the interface between soil and atmosphere, which is assumed to have no heat storage. The modelled skin temperatures are in fair agreement with LST directly estimated from SEVIRI observations. However, in contrast to LST retrievals from SEVIRI/MSG (or other infrared sensors) the SVAT model solves the energy budget equation under all-sky conditions. The SVAT surface skin temperature is then used to fill gaps in LST fields caused by clouds. Since under cloudy conditions the direct incoming solar radiation is greatly reduced, thermal balance at the surface is more easily achieved and directional effects are also less important. Therefore, a better performance of the model skin temperature may be expected. In contrast, under clear skies the satellite LST showed to be more reliable, since the SVAT model shows biases in the daily amplitude of the skin temperature. In the context of the GlobTemperature project (http://www.globtemperature.info/), all-weather LST datasets using AMSR-E microwave radiances were produced, which are compared here to the SVAT-based LST. Both products were validated against in situ data - particularly from Gobabeb & Farm Heimat (Namibia), and Évora (Portugal) - to show that under cloudy conditions the agreement between in-situ LST and modelled skin temperature is acceptable. Compared to the SVAT-based LST, AMSR-E LST is closer to satellite observations (level 2 product); the complementarity of the two approaches is assessed.

  2. The reactions of thiophene on Mo(110) and Mo(110)-p(2×2)-S

    NASA Astrophysics Data System (ADS)

    Roberts, Jeffrey T.; Friend, C. M.

    1987-07-01

    The reactions of thiophene and 2,5-dideuterothiophene on Mo(110) and Mo(110)-p(2×2)-S have been investigated under ultrahigh vacuum conditions using temperature programmed reaction spectroscopy and Auger electron spectroscopy. Thiophene chemisorbed on Mo(110) decomposes during temperature programmed reaction to yield only gaseous dihydrogen, surface carbon, and surface sulfur. At low thiophene exposures, dihydrogen evolves from Mo(110) in a symmetric peak at 440 K. At saturation exposures, three dihydrogen peaks are detected at 360 K, at 420 K and at 565 K. Multilayers of thiophene desorb at 180 K. Temperature programmed reaction of 2,5-dideuterothiophene demonstrates that at high thiophene coverages, one of the α-C-H bonds (those nearest sulfur) breaks first. No bond breaking selectivity is observed at low thiophene exposures. The Mo(110)-p(2×2)-S surface is less active for thiophene decomposition. Thiophene adsorbed on Mo(110)-p(2×2)-S to low coverages decomposes to surface carbon surface sulfur, and hydrogen at 430 K. At reaction saturation, dihydrogen production is observed at 375 and 570 K. In addition, at moderate and high exposures, chemisorbed thiophene desorbs from Mo(110)-p(2×2)-S. At saturation the desorption temperature of the reversibly chemisorbed state is 215 K. Experiments with 2,5-dideuterothiophene demonstrate no surface selectivity for α-C-H bond breaking reactions on Mo(110)-p(2×2)-S. The decomposition mechanism and energetics of thiophene decomposition are proposed to be dependent on the coverage of thiophene. At low thiophene exposures, the ring is proposed to bond parallel to the surface. All C-H bonds in the parallel geometry are sterically available for activation by the surface, accounting for the lack of selectivity in C-H bond breaking. High thiophene coverages are suggested to result in perpendicularly bound thiophene which undergoes selective α-dehydrogenation to an α)-thiophenyl intermediate. The presence of sulfur leads to a high energy pathway for cleavage of C-H bonds in a thiophene derived intermediate. Carbon-hydrogen bonds survive on the surface up to temperatures of 650 K. Comparison of this study with work on Mo(100) demonstrates that the reaction of thiophene on molybdenum is relatively insensitive to the surface geometric structure.

  3. Roller compaction: Effect of morphology and amorphous content of lactose powder on product quality.

    PubMed

    Omar, Chalak S; Dhenge, Ranjit M; Osborne, James D; Althaus, Tim O; Palzer, Stefan; Hounslow, Michael J; Salman, Agba D

    2015-12-30

    The effect of morphology and amorphous content, of three types of lactose, on the properties of ribbon produced using roller compaction was investigated. The three types of lactose powders were; anhydrous SuperTab21AN, α-lactose monohydrate 200 M, and spray dried lactose SuperTab11SD. The morphology of the primary particles was identified using scanning electron microscopy (SEM) and the powder amorphous content was quantified using NIR technique. SEM images showed that 21AN and SD are agglomerated type of lactose whereas the 200 M is a non-agglomerated type. During ribbon production, an online thermal imaging technique was used to monitor the surface temperature of the ribbon. It was found that the morphology and the amorphous content of lactose powders have significant effects on the roller compaction behaviour and on ribbon properties. The agglomerated types of lactose produced ribbon with higher surface temperature and tensile strength, larger fragment size, lower porosity and lesser fines percentages than the non-agglomerated type of lactose. The lactose powder with the highest amorphous content showed to result in a better binding ability between the primary particles. This type of lactose produced ribbons with the highest temperature and tensile strength, and the lowest porosity and amount of fines in the product. It also produced ribbon with more smooth surfaces in comparison to the other two types of lactose. It was noticed that there is a relationship between the surface temperature of the ribbon during production and the tensile strength of the ribbon; the higher the temperature of the ribbon during production the higher the tensile strength of the ribbon. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Implications of atmospheric conditions for analysis of surface temperature variability derived from landscape-scale thermography.

    PubMed

    Hammerle, Albin; Meier, Fred; Heinl, Michael; Egger, Angelika; Leitinger, Georg

    2017-04-01

    Thermal infrared (TIR) cameras perfectly bridge the gap between (i) on-site measurements of land surface temperature (LST) providing high temporal resolution at the cost of low spatial coverage and (ii) remotely sensed data from satellites that provide high spatial coverage at relatively low spatio-temporal resolution. While LST data from satellite (LST sat ) and airborne platforms are routinely corrected for atmospheric effects, such corrections are barely applied for LST from ground-based TIR imagery (using TIR cameras; LST cam ). We show the consequences of neglecting atmospheric effects on LST cam of different vegetated surfaces at landscape scale. We compare LST measured from different platforms, focusing on the comparison of LST data from on-site radiometry (LST osr ) and LST cam using a commercially available TIR camera in the region of Bozen/Bolzano (Italy). Given a digital elevation model and measured vertical air temperature profiles, we developed a multiple linear regression model to correct LST cam data for atmospheric influences. We could show the distinct effect of atmospheric conditions and related radiative processes along the measurement path on LST cam , proving the necessity to correct LST cam data on landscape scale, despite their relatively low measurement distances compared to remotely sensed data. Corrected LST cam data revealed the dampening effect of the atmosphere, especially at high temperature differences between the atmosphere and the vegetated surface. Not correcting for these effects leads to erroneous LST estimates, in particular to an underestimation of the heterogeneity in LST, both in time and space. In the most pronounced case, we found a temperature range extension of almost 10 K.

  5. High Temperature Si-doped BN Interphases for Woven SiC/SiC Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Hurwitz, Frances; Yun, Hee Mann; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    The hydrolytic stability of high-temperature deposited Si-doped BN has been shown in the past to be superior in comparison to "pure" BN processed at similar or even higher temperatures. This type of material would be very desirable as a SiC/SiC composite interphase that is formed by chemical infiltration into multi-ply woven preform. However, due to rapid deposition on the preform outer surface at the high processing temperature, this has proven very difficult. To overcome this issue, single plies of woven fabric were infiltrated with Si-doped BN. Three composite panels of different SiC fiber types were fabricated with Si-doped BN interphases including Sylramic, Hi-Nicalon Type S and Sylramic-iBN fiber-types. The latter fiber-type possesses a thin in-situ grown BN layer on the fiber surface. High Si contents (approx. 7 to 10 a/o) and low oxygen contents (less than 1 a/o) were achieved. All three composite systems demonstrated reasonable debonding and sliding properties. The coated Sylramic fabric and composites were weak due to fiber degradation apparently caused during interphase processing by the formation of TiN crystals on the fiber surface. The Hi-Nicalon Type S composites with Si-doped BN interphase were only slightly weaker than Hi-Nicalon Type S composites with conventional BN when the strength on the load-bearing fibers at failure was compared. On the other hand, the Sylramic-iBN fabric and composites with Si-doped BN showed excellent composite and intermediate temperature stress-rupture properties. Most impressive was the lack of any significant interphase oxidation on the fracture surface of stress-ruptured specimens tested well above matrix cracking at 815C.

  6. Performance of Radiant Heating Systems of Low-Energy Buildings

    NASA Astrophysics Data System (ADS)

    Sarbu, Ioan; Mirza, Matei; Crasmareanu, Emanuel

    2017-10-01

    After the introduction of plastic piping, the application of water-based radiant heating with pipes embedded in room surfaces (i.e., floors, walls, and ceilings), has significantly increased worldwide. Additionally, interest and growth in radiant heating and cooling systems have increased in recent years because they have been demonstrated to be energy efficient in comparison to all-air distribution systems. This paper briefly describes the heat distribution systems in buildings, focusing on the radiant panels (floor, wall, ceiling, and floor-ceiling). Main objective of this study is the performance investigation of different types of low-temperature heating systems with different methods. Additionally, a comparative analysis of the energy, environmental, and economic performances of floor, wall, ceiling, and floor-ceiling heating using numerical simulation with Transient Systems Simulation (TRNSYS) software is performed. This study showed that the floor-ceiling heating system has the best performance in terms of the lowest energy consumption, operation cost, CO2 emission, and the nominal boiler power. The comparison of the room operative air temperatures and the set-point operative air temperature indicates also that all radiant panel systems provide satisfactory results without significant deviations.

  7. A Modeling Approach for Plastic-Metal Laser Direct Joining

    NASA Astrophysics Data System (ADS)

    Lutey, Adrian H. A.; Fortunato, Alessandro; Ascari, Alessandro; Romoli, Luca

    2017-09-01

    Laser processing has been identified as a feasible approach to direct joining of metal and plastic components without the need for adhesives or mechanical fasteners. The present work sees development of a modeling approach for conduction and transmission laser direct joining of these materials based on multi-layer optical propagation theory and numerical heat flow simulation. The scope of this methodology is to predict process outcomes based on the calculated joint interface and upper surface temperatures. Three representative cases are considered for model verification, including conduction joining of PBT and aluminum alloy, transmission joining of optically transparent PET and stainless steel, and transmission joining of semi-transparent PA 66 and stainless steel. Conduction direct laser joining experiments are performed on black PBT and 6082 anticorodal aluminum alloy, achieving shear loads of over 2000 N with specimens of 2 mm thickness and 25 mm width. Comparison with simulation results shows that consistently high strength is achieved where the peak interface temperature is above the plastic degradation temperature. Comparison of transmission joining simulations and published experimental results confirms these findings and highlights the influence of plastic layer optical absorption on process feasibility.

  8. A comparative study of different methods for calculating electronic transition rates

    NASA Astrophysics Data System (ADS)

    Kananenka, Alexei A.; Sun, Xiang; Schubert, Alexander; Dunietz, Barry D.; Geva, Eitan

    2018-03-01

    We present a comprehensive comparison of the following mixed quantum-classical methods for calculating electronic transition rates: (1) nonequilibrium Fermi's golden rule, (2) mixed quantum-classical Liouville method, (3) mean-field (Ehrenfest) mixed quantum-classical method, and (4) fewest switches surface-hopping method (in diabatic and adiabatic representations). The comparison is performed on the Garg-Onuchic-Ambegaokar benchmark charge-transfer model, over a broad range of temperatures and electronic coupling strengths, with different nonequilibrium initial states, in the normal and inverted regimes. Under weak to moderate electronic coupling, the nonequilibrium Fermi's golden rule rates are found to be in good agreement with the rates obtained via the mixed quantum-classical Liouville method that coincides with the fully quantum-mechanically exact results for the model system under study. Our results suggest that the nonequilibrium Fermi's golden rule can serve as an inexpensive yet accurate alternative to Ehrenfest and the fewest switches surface-hopping methods.

  9. DFT-derived reactive potentials for the simulation of activated processes: the case of CdTe and CdTe:S.

    PubMed

    Hu, Xiao Liang; Ciaglia, Riccardo; Pietrucci, Fabio; Gallet, Grégoire A; Andreoni, Wanda

    2014-06-19

    We introduce a new ab initio derived reactive potential for the simulation of CdTe within density functional theory (DFT) and apply it to calculate both static and dynamical properties of a number of systems (bulk solid, defective structures, liquid, surfaces) at finite temperature. In particular, we also consider cases with low sulfur concentration (CdTe:S). The analysis of DFT and classical molecular dynamics (MD) simulations performed with the same protocol leads to stringent performance tests and to a detailed comparison of the two schemes. Metadynamics techniques are used to empower both Car-Parrinello and classical molecular dynamics for the simulation of activated processes. For the latter, we consider surface reconstruction and sulfur diffusion in the bulk. The same procedures are applied using previously proposed force fields for CdTe and CdTeS materials, thus allowing for a detailed comparison of the various schemes.

  10. Ensemble formulation of surface fluxes and improvement in evapotranspiration and cloud parameterizations in a GCM. [General Circulation Model

    NASA Technical Reports Server (NTRS)

    Sud, Y. C.; Smith, W. E.

    1984-01-01

    The influence of some modifications to the parameters of the current general circulation model (GCM) is investigated. The aim of the modifications was to eliminate strong occasional bursts of oscillations in planetary boundary layer (PBL) fluxes. Smoothly varying bulk aerodynamic friction and heat transport coefficients were found by ensemble averaging of the PBL fluxes in the current GCM. A comparison was performed of the simulations of the modified model and the unmodified model. The comparison showed that the surface fluxes and cloudiness in the modified model simulations were much more accurate. The planetary albedo in the model was also realistic. Weaknesses persisted in the models positioning of the Inter-tropical convergence zone (ICTZ) and in the temperature estimates for polar regions. A second simulation of the model following reparametrization of the cloud data showed improved results and these are described in detail.

  11. Evaluation and analysis of Seasat-A Scanning multichannel Microwave radiometer (SMMR) Antenna Pattern Correction (APC) algorithm. Sub-task 2: T sub B measured vs. T sub B calculated comparison results

    NASA Technical Reports Server (NTRS)

    Kitzis, J. L.; Kitzis, S. N.

    1979-01-01

    Interim Antenna Pattern Correction (APC) brightness temperature measurements for all ten SMMR channels are compared with calculated values generated from surface truth data. Plots and associated statistics are presented for the available points of coincidence between SMMR and surface truth measurements acquired for the Gulf of Alaska SEASAT Experiment. The most important conclusions of the study deal with the apparent existence of different instrument biases for each SMMR channel, and their variation across the scan.

  12. Development of a Hydrodynamic and Transport model of Bellingham Bay in Support of Nearshore Habitat Restoration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Taiping; Yang, Zhaoqing; Khangaonkar, Tarang

    2010-04-22

    In this study, a hydrodynamic model based on the unstructured-grid finite volume coastal ocean model (FVCOM) was developed for Bellingham Bay, Washington. The model simulates water surface elevation, velocity, temperature, and salinity in a three-dimensional domain that covers the entire Bellingham Bay and adjacent water bodies, including Lummi Bay, Samish Bay, Padilla Bay, and Rosario Strait. The model was developed using Pacific Northwest National Laboratory’s high-resolution Puget Sound and Northwest Straits circulation and transport model. A sub-model grid for Bellingham Bay and adjacent coastal waters was extracted from the Puget Sound model and refined in Bellingham Bay using bathymetric lightmore » detection and ranging (LIDAR) and river channel cross-section data. The model uses tides, river inflows, and meteorological inputs to predict water surface elevations, currents, salinity, and temperature. A tidal open boundary condition was specified using standard National Oceanic and Atmospheric Administration (NOAA) predictions. Temperature and salinity open boundary conditions were specified based on observed data. Meteorological forcing (wind, solar radiation, and net surface heat flux) was obtained from NOAA real observations and National Center for Environmental Prediction North American Regional Analysis outputs. The model was run in parallel with 48 cores using a time step of 2.5 seconds. It took 18 hours of cpu time to complete 26 days of simulation. The model was calibrated with oceanographic field data for the period of 6/1/2009 to 6/26/2009. These data were collected specifically for the purpose of model development and calibration. They include time series of water-surface elevation, currents, temperature, and salinity as well as temperature and salinity profiles during instrument deployment and retrieval. Comparisons between model predictions and field observations show an overall reasonable agreement in both temporal and spatial scales. Comparisons of root mean square error values for surface elevation, velocity, temperature, and salinity time series are 0.11 m, 0.10 m/s, 1.28oC, and 1.91 ppt, respectively. The model was able to reproduce the salinity and temperature stratifications inside Bellingham Bay. Wetting and drying processes in tidal flats in Bellingham Bay, Samish Bay, and Padilla Bay were also successfully simulated. Both model results and observed data indicated that water surface elevations inside Bellingham Bay are highly correlated to tides. Circulation inside the bay is weak and complex and is affected by various forcing mechanisms, including tides, winds, freshwater inflows, and other local forcing factors. The Bellingham Bay model solution was successfully linked to the NOAA oil spill trajectory simulation model “General NOAA Operational Modeling Environment (GNOME).” Overall, the Bellingham Bay model has been calibrated reasonably well and can be used to provide detailed hydrodynamic information in the bay and adjacent water bodies. While there is room for further improvement with more available data, the calibrated hydrodynamic model provides useful hydrodynamic information in Bellingham Bay and can be used to support sediment transport and water quality modeling as well as assist in the design of nearshore restoration scenarios.« less

  13. Immersion Freezing of Aluminas: The Effect of Crystallographic Properties on Ice Nucleation

    NASA Astrophysics Data System (ADS)

    King, M.; Chong, E.; Freedman, M. A.

    2017-12-01

    Atmospheric aerosol particles serve as the nuclei for heterogeneous ice nucleation, a process that allows for ice to form at higher temperatures and lower supersaturations with respect to ice. This process is essential to the formation of ice in cirrus clouds. Heterogeneous ice nucleation is affected by many factors including the composition, crystal structure, porosity, and surface area of the particles. However, these factors are not well understood and, as such, are difficult to account for in climate models. To test the effects of crystal structure on ice nucleation, a system of transition aluminas (Al2O3) that differ only in their crystal structure, despite being compositionally similar, were tested using immersion freezing. Particles were immersed in water and placed into a temperature controlled chamber. Freezing events were then recorded as the chamber was cooled to negative 30 °. Alpha-alumina, which is a member of the hexagonal crystal system, showed a significantly higher temperature at which all particles froze in comparison to other samples. This supports the hypothesis that, since a hexagonal crystal structure is the lowest energy state for ice, hexagonal surface structures would best facilitate ice nucleation. However, a similar sample of hexagonal chi-alumina did not show the same results. Further analysis of the samples will be done to characterize surface structures and composition. These conflicting data sets raise interesting questions about the effect of other surface features, such as surface area and porosity, on ice nucleation.

  14. Fermi-surface topologies and low-temperature phases of the filled skutterudite compounds CeOs 4 Sb 12 and NdOs 4 Sb 12

    DOE PAGES

    Ho, Pei Chun; Singleton, John; Goddard, Paul A.; ...

    2016-11-28

    We use MHz conductivity, torque magnetometer, and magnetization measurements to report on single crystals of CeOs 4 Sb 12 and NdOs 4 Sb 12 using temperatures down to 0.5 K and magnetic fields of up to 60 tesla. The field-orientation dependence of the de Haas-van Alphen and Shubnikov-de Haas oscillations is deduced by rotating the samples about the [ 010 ] and [ 0more » $$\\bar{1}$$ 1 1 ] directions. Our results indicate that NdOs 4 Sb 12 has a similar Fermi surface topology to that of the unusual superconductor PrOs 4 Sb 12 , but with significantly smaller effective masses, supporting the importance of local phonon modes in contributing to the low-temperature heat capacity of NdOs 4 Sb 12 . By contrast, CeOs 4 Sb 12 undergoes a field-induced transition from an unusual semimetal into a high-field, high-temperature state characterized by a single, almost spherical Fermi-surface section. Furthermore, the behavior of the phase boundary and comparisons with models of the band structure lead us to propose that the field-induced phase transition in CeOs 4 Sb 12 is similar in origin to the well-known α - γ transition in Ce and its alloys.« less

  15. Modeling Silicate Weathering for Elevated CO2 and Temperature

    NASA Astrophysics Data System (ADS)

    Bolton, E. W.

    2016-12-01

    A reactive transport model (RTM) is used to assess CO2 drawdown by silicate weathering over a wide range of temperature, pCO2, and infiltration rates for basalts and granites. Although RTM's have been used extensively to model weathering of basalts and granites for present-day conditions, we extend such modeling to higher CO2 that could have existed during the Archean and Proterozoic. We also consider a wide range of surface temperatures and infiltration rates. We consider several model basalt and granite compositions. We normally impose CO2 in equilibrium with the various atmospheric ranges modeled and CO2 is delivered to the weathering zone by aqueous transport. We also consider models with fixed CO2 (aq) throughout the weathering zone as could occur in soils with partial water saturation or with plant respiration, which can strongly influence pH and mineral dissolution rates. For the modeling, we use Kinflow: a model developed at Yale that includes mineral dissolution and precipitation under kinetic control, aqueous speciation, surface erosion, dynamic porosity, permeability, and mineral surface areas via sub-grid-scale grain models, and exchange of volatiles at the surface. Most of the modeling is done in 1D, but some comparisons to 2D domains with heterogeneous permeability are made. We find that when CO2 is fixed only at the surface, the pH tends toward higher values for basalts than granites, in large part due to the presence of more divalent than monovalent cations in the primary minerals, tending to decrease rates of mineral dissolution. Weathering rates increase (as expected) with increasing CO2 and temperature. This modeling is done with the support of the Virtual Planetary Laboratory.

  16. Direct leaf wetness measurements and its numerical analysis using a multi-layer atmosphere-soil-vegetation model at a grassland site in pre-alpine region in Germany

    NASA Astrophysics Data System (ADS)

    Katata, Genki; Held, Andreas; Mauder, Matthias

    2014-05-01

    The wetness of plant leaf surfaces (leaf wetness) is important in meteorological, agricultural, and environmental studies including plant disease management and the deposition process of atmospheric trace gases and particles. Although many models have been developed to predict leaf wetness, wetness data directly measured at the leaf surface for model validations are still limited. In the present study, the leaf wetness was monitored using seven electrical sensors directly clipped to living leaf surfaces of thin and broad-leaved grasses. The measurements were carried out at the pre-alpine grassland site in TERestrial ENvironmental Observatories (TERENO) networks in Germany from September 20 to November 8, 2013. Numerical simulations of a multi-layer atmosphere-SOiL-VEGetation model (SOLVEG) developed by the authors were carried out for analyzing the data. For numerical simulations, the additional routine meteorological data of wind speed, air temperature and humidity, radiation, rainfall, long-wave radiative surface temperature, surface fluxes, ceilometer backscatter, and canopy or snow depth were used. The model reproduced well the observed leaf wetness, net radiation, momentum and heat, water vapor, and CO2 fluxes, surface temperature, and soil temperature and moisture. In rain-free days, a typical diurnal cycle as a decrease and increase during the day- and night-time, respectively, was observed in leaf wetness data. The high wetness level was always monitored under rain, fog, and snowcover conditions. Leaf wetness was also often high in the early morning due to thawing of leaf surface water frozen during a cold night. In general, leaf wetness was well correlated with relative humidity (RH) in condensation process, while it rather depended on wind speed in evaporation process. The comparisons in RH-wetness relations between leaf characteristics showed that broad-leaved grasses tended to be wetter than thin grasses.

  17. Surface order in cold liquids: X-ray reflectivity studies of dielectric liquids and comparison to liquid metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chattopadhyay, S.; Ehrlich, S.; Uysal, A.

    2010-05-17

    Oscillatory surface-density profiles layers have previously been reported in several metallic liquids, one dielectric liquid, and in computer simulations of dielectric liquids. We have now seen surface layers in two other dielectric liquids, pentaphenyl trimethyl trisiloxane, and pentavinyl pentamethyl cyclopentasiloxane. These layers appear below T?285 K and T?130 K, respectively; both thresholds correspond to T/Tc?0.2 where Tc is the liquid-gas critical temperature. All metallic and dielectric liquid surfaces previously studied are also consistent with the existence of this T/Tc threshold, first indicated by the simulations of Chacon et al. The layer width parameters, determined using a distorted-crystal fitting model, followmore » common trends as functions of Tc for both metallic and dielectric liquids.« less

  18. Implement a Sub-grid Turbulent Orographic Form Drag in WRF and its application to Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Yang, K.; Wang, Y.; Huang, B.

    2017-12-01

    Sub-grid-scale orographic variation exerts turbulent form drag on atmospheric flows. The Weather Research and Forecasting model (WRF) includes a turbulent orographic form drag (TOFD) scheme that adds the stress to the surface layer. In this study, another TOFD scheme has been incorporated in WRF3.7, which exerts an exponentially decaying drag on each model layer. To investigate the effect of the new scheme, WRF with the old and new one was used to simulate the climate over the complex terrain of the Tibetan Plateau. The two schemes were evaluated in terms of the direct impact (on wind) and the indirect impact (on air temperature, surface pressure and precipitation). Both in winter and summer, the new TOFD scheme reduces the mean bias in the surface wind, and clearly reduces the root mean square error (RMSEs) in comparisons with the station measurements (Figure 1). Meanwhile, the 2-m air temperature and surface pressure is also improved (Figure 2) due to the more warm air northward transport across south boundary of TP in winter. The 2-m air temperature is hardly improved in summer but the precipitation improvement is more obvious, with reduced mean bias and RMSEs. This is due to the weakening of water vapor flux (at low-level flow with the new scheme) crossing the Himalayan Mountains from South Asia.

  19. Comparison of land-surface humidity between observations and CMIP5 models

    NASA Astrophysics Data System (ADS)

    Dunn, Robert; Willett, Kate; Ciavarella, Andrew; Stott, Peter; Jones, Gareth

    2017-04-01

    We compare the latest observational land-surface humidity dataset, HadISDH, with the CMIP5 model archive spatially and temporally over the period 1973-2015. None of the CMIP5 models or experiments capture the observed temporal behaviour of the globally averaged relative or specific humidity over the entire study period. When using an atmosphere-only model, driven by observed sea-surface temperatures and radiative forcing changes, the behaviour of regional average temperature and specific humidity are better captured, but there is little improvement in the relative humidity. Comparing the observed and historical model climatologies show that the models are generally cooler everywhere, are drier and less saturated in the tropics and extra tropics, and have comparable moisture levels but are more saturated in the high latitudes. The spatial pattern of linear trends are relatively similar between the models and HadISDH for temperature and specific humidity, but there are large differences for relative humidity, with less moistening shown in the models over the Tropics, and very little at high atitudes. The observed temporal behaviour appears to be a robust climate feature rather than observational error. It has been previously documented and is theoretically consistent with faster warming rates over land compared to oceans. Thus, the poor replication in the models, especially in the atmosphere only model, leads to questions over future projections of impacts related to changes in surface relative humidity.

  20. Measurement of SAR-induced temperature increase in a phantom and in vivo with comparison to numerical simulation

    PubMed Central

    Oh, Sukhoon; Ryu, Yeun-Chul; Carluccio, Giuseppe; Sica, Christopher T.; Collins, Christopher M.

    2013-01-01

    Purpose Compare numerically-simulated and experimentally-measured temperature increase due to Specific energy Absorption Rate (SAR) from radiofrequency fields. Methods Temperature increase induced in both a phantom and in the human forearm when driving an adjacent circular surface coil was mapped using the proton resonance frequency shift technique of Magnetic Resonance (MR) thermography. The phantom and forearm were also modeled from MR image data, and both SAR and temperature change as induced by the same coil were simulated numerically. Results The simulated and measured temperature increase distributions were generally in good agreement for the phantom. The relative distributions for the human forearm were very similar, with the simulations giving maximum temperature increase about 25% higher than measured. Conclusion Although a number of parameters and uncertainties are involved, it should be possible to use numerical simulations to produce reasonably accurate and conservative estimates of temperature distribution to ensure safety in MR imaging. PMID:23804188

  1. Comparison of infrared thermometer with thermocouple for monitoring skin temperature.

    PubMed

    Matsukawa, T; Ozaki, M; Nishiyama, T; Imamura, M; Kumazawa, T

    2000-02-01

    To test the hypothesis that the infrared thermometer (Genius) is comparably useful with thermocouples that are routinely used for skin temperature monitoring. Prospective, controlled, not blinded study. Operating room of a university hospital. Ten healthy male volunteers. Volunteers were minimally clothed and were initially warmed by a forced air warmer until they became vasodilated at the finger and the foot for approximately 30 mins. Subsequently, they were kept in the room with no blanket. Skin temperatures were measured continuously with the Mon-a-Therm thermocouple and were also measured with the Genius thermometer just before and after the warming and subsequently every 10 mins for 70 mins. Forearm and finger-tip skin temperatures and skin-surface temperature gradients (from arm to finger and from calf to toe) measured by the Genius thermometer were compared with those measured by the Mon-a-Therm thermocouple using linear regression and Bland and Altman statistics. Forearm temperature and finger-tip temperature ranged from approximately 31 degrees to approximately 36.5 degrees C (87.8-97.7 degrees F) and approximately 22.5 degrees to approximately 36 degrees C (72.5-96.8 degrees F), respectively. Gradients (from arm to finger and from calf to toe) ranged from approximately -3 degrees to approximately 10 degrees C (26.6-50.0 degrees F) and approximately -3 degrees to approximately 11 degrees C (26.6-51.8 degrees F), respectively. Correlations between the temperatures measured by the Genius thermometer and those by the Mon-a-Therm thermocouple were similar and reliable. The correlation coefficients were as follows: 0.78 at forearm, 0.97 at finger-tip, and 0.97 at skin-surface temperature gradients. The infrared thermometer with a special probe is useful to measure the change of skin-surface temperatures and to evaluate the severity of shock in patients.

  2. A Multidisciplinary Approach to Assessing the Causal Components of Climate Change

    NASA Astrophysics Data System (ADS)

    Gosnold, W. D.; Todhunter, P. E.; Dong, X.; Rundquist, B.; Majorowicz, J.; Blackwell, D. D.

    2004-05-01

    Separation of climate forcing by anthropogenic greenhouse gases from natural radiative climate forcing is difficult because the composite temperature signal in the meteorological and multi-proxy temperature records cannot be resolved directly into radiative forcing components. To address this problem, we have initiated a large-scale, multidisciplinary project to test coherence between ground surface temperatures (GST) reconstructed from borehole T-z profiles, surface air temperatures (SAT), soil temperatures, and solar radiation. Our hypothesis is that radiative heating and heat exchange between the ground and the air directly control the ground surface temperature. Consequently, borehole T-z measurements at multi-year intervals spanning time periods when solar radiation, soil and air temperatures have been recorded should enable comparison of the thermal energy stored in the ground to these quantities. If coherence between energy storage, solar radiation, GST, SAT and multi-proxy temperature data can be discerned for a one or two decade scale, synthesis of GST and multi-proxy data over the past several centuries may enable us to separately determine the anthropogenic and natural forcings of climate change. The data we are acquiring include: (1) New T-z measurements in boreholes previously used in paleoclimate and heat flow research in Canada and the United States from the 1970's to the present. (2) Meteorological data from the US Historical Climatology Network and the Automated Weather Data Network of the High Plains Regional Climate Center, and Environment Canada. (3) Direct and remotely sensed data on land use, environment, and soil properties at selected borehole and meteorological sites for the periods between borehole observations. The project addresses three related questions: What is the coherence between the GST, SAT, soil temperatures and solar radiation? Have microclimate changes at borehole sites and climate stations affected temperature trends? If good coherence is obtained, can the coherence between thermal energy stored in the ground and radiative forcing during the time between T-z measurements be extended several centuries into the past?

  3. Improving the Representation of Snow Crystal Properties within a Single-Moment Microphysics Scheme

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Petersen, Walter A.; Case, Jonathan L.; Dembek, Scott R.

    2010-01-01

    The assumptions of a single-moment microphysics scheme (NASA Goddard) were evaluated using a variety of surface, aircraft and radar data sets. Fixed distribution intercepts and snow bulk densities fail to represent the vertical variability and diversity of crystal populations for this event. Temperature-based equations have merit, but they can be adversely affected by complex temperature profiles that are inverted or isothermal. Column-based approaches can mitigate complex profiles of temperature but are restricted by the ability of the model to represent cloud depth. Spheres are insufficient for use in CloudSat reflectivity comparisons due to Mie resonance, but reasonable for Rayleigh scattering applications. Microphysics schemes will benefit from a greater range of snow crystal characteristics to accommodate naturally occurring diversity.

  4. Chemical evolution on Titan: comparisons to the prebiotic earth.

    PubMed

    Clarke, D W; Ferris, J P

    1997-06-01

    Models for the origin of Titan's atmosphere, the processing of the atmosphere and surface and its exobiological role are reviewed. Titan has gained widespread acceptance in the origin of life field as a model for the types of evolutionary processes that could have occurred on prebiotic Earth. Both Titan and Earth possess significant atmospheres (> or = 1 atm) composed mainly of molecular nitrogen with smaller amounts of more reactive species. Both of these atmospheres are processed primarily by solar ultraviolet light with high energy particles interactions contributing to a lesser extent. The products of these reactions condense or are dissolved in other atmospheric species (aerosols/clouds) and fall to the surface. There these products may have been further processed on Titan and the primitive Earth by impacting comets and meteorites. While the low temperatures on Titan (approximately 72-180 K) preclude the presence of permanent liquid water on the surface, it has been suggested that tectonic activity or impacts by meteors and comets could produce liquid water pools on the surface for thousands of years. Hydrolysis and oligomerization reactions in these pools might form chemicals of prebiological significance. Other direct comparisons between the conditions on present day Titan and those proposed for prebiotic Earth are also presented.

  5. Development and evaluation of an empirical diurnal sea surface temperature model

    NASA Astrophysics Data System (ADS)

    Weihs, R. R.; Bourassa, M. A.

    2013-12-01

    An innovative method is developed to determine the diurnal heating amplitude of sea surface temperatures (SSTs) using observations of high-quality satellite SST measurements and NWP atmospheric meteorological data. The diurnal cycle results from heating that develops at the surface of the ocean from low mechanical or shear produced turbulence and large solar radiation absorption. During these typically calm weather conditions, the absorption of solar radiation causes heating of the upper few meters of the ocean, which become buoyantly stable; this heating causes a temperature differential between the surface and the mixed [or bulk] layer on the order of a few degrees. It has been shown that capturing the diurnal cycle is important for a variety of applications, including surface heat flux estimates, which have been shown to be underestimated when neglecting diurnal warming, and satellite and buoy calibrations, which can be complicated because of the heating differential. An empirical algorithm using a pre-dawn sea surface temperature, peak solar radiation, and accumulated wind stress is used to estimate the cycle. The empirical algorithm is derived from a multistep process in which SSTs from MTG's SEVIRI SST experimental hourly data set are combined with hourly wind stress fields derived from a bulk flux algorithm. Inputs for the flux model are taken from NASA's MERRA reanalysis product. NWP inputs are necessary because the inputs need to incorporate diurnal and air-sea interactive processes, which are vital to the ocean surface dynamics, with a high enough temporal resolution. The MERRA winds are adjusted with CCMP winds to obtain more realistic spatial and variance characteristics and the other atmospheric inputs (air temperature, specific humidity) are further corrected on the basis of in situ comparisons. The SSTs are fitted to a Gaussian curve (using one or two peaks), forming a set of coefficients used to fit the data. The coefficient data are combined with accumulated wind stress and peak solar radiation to create an empirical relationship that approximates physical processes such as turbulence and heating memory (capacity) of the ocean. Weaknesses and strengths of the model, including potential spatial biases, will be discussed.

  6. Toward a Last Interglacial Compilation Using a Tephra-based Chronology: a Future Reference For Model-data Comparison

    NASA Astrophysics Data System (ADS)

    Bazin, L.; Govin, A.; Capron, E.; Nomade, S.; Lemieux-Dudon, B.; Landais, A.

    2017-12-01

    The Last Interglacial (LIG, 129-116 ka) is a key period to decipher the interactions between the different components of the climate system under warmer-than-preindustrial conditions. Modelling the LIG climate is now part of the CMIP6/PMIP4 targeted simulations. As a result, recent efforts have been made to propose surface temperature compilations focusing on the spatio-temporal evolution of the LIG climate, and not only on its peak warmth as previously proposed. However, the major limitation of these compilations remains in the climatic alignment of records (e.g. temperature, foraminiferal δ18O) that is performed to define the sites' chronologies. Such methods prevent the proper discussion of phase relationship between the different sites. Thanks to recent developments of the Bayesian Datice dating tool, we are now able to build coherent multi-archive chronologies with a proper propagation of the associated uncertainties. We make the best use of common tephra layers identified in well-dated continental archives and marine sediment cores of the Mediterranean region to propose a coherent chronological framework for the LIG independent of any climatic assumption. We then extend this precise chronological context to the North Atlantic as a first step toward a global coherent compilation of surface temperature and stable isotope records. Based on this synthesis, we propose guidelines for the interpretation of different proxies measured from different archives that will be compared with climate model parameters. Finally, we present time-slices (e.g. 127 ka) of the preliminary regional synthesis of temperature reconstructions and stable isotopes to serve as reference for future model-data comparison of the up-coming CMIP6/PMIP4 LIG simulations.

  7. Comparison of temporal artery, mid-forehead skin and axillary temperature recordings in preterm infants <1500 g of birthweight.

    PubMed

    Duran, Ridvan; Vatansever, Ulfet; Acunaş, Betül; Süt, Necdet

    2009-01-01

    Preterm infants are prone to temperature maintenance problems due to immature thermoregulatory mechanism and relatively large body surface area. The objective of the present study was to evaluate the performance of a new non-invasive infrared thermometer applied to the mid-forehead and temporal artery in comparison with axillary temperature recordings by mercury-in-glass thermometer, and to determine the discomfort caused by these procedures in preterm infants on incubator care. The present comparative prospective study was composed of 34 preterm infants <1500 g of birthweight nursed in an incubator. Temperature recording from mid-forehead, temporal artery and axilla were recorded six times a day for 7 days since the end of the first week of life. For pain assessment, the premature infant pain profile (PIPP) was used. The mean mid-forehead, temporal artery and axillary temperatures were 36.72 +/- 0.08, 36.81 +/- 0.09 and 36.71 +/- 0.07 degrees C, respectively. No statistically significant difference was noted between the means of mid-forehead and axillary temperatures. The mean temporal artery temperature was statistically higher than the means of the mid-forehead and axillary temperatures. The PIPP scores of the mid-forehead, temporal artery and axillary temperature measurements were 5.07 +/- 0.36 degrees C, 5.18 +/- 0.43 degrees C and 7.59 +/- 0.84 degrees C, respectively. The mean PIPP score of axillary temperature measurements was statistically higher than the means of mid-forehead and temporal artery measurements. The infrared skin thermometer applied to the mid-forehead is a useful and valid device for easy and less painful measurement of skin temperature in preterm infants <1500 g of birthweight.

  8. Lake surface water temperatures of European Alpine lakes (1989-2013) based on the Advanced Very High Resolution Radiometer (AVHRR) 1 km data set

    NASA Astrophysics Data System (ADS)

    Riffler, M.; Lieberherr, G.; Wunderle, S.

    2015-02-01

    Lake water temperature (LWT) is an important driver of lake ecosystems and it has been identified as an indicator of climate change. Consequently, the Global Climate Observing System (GCOS) lists LWT as an essential climate variable. Although for some European lakes long in situ time series of LWT do exist, many lakes are not observed or only on a non-regular basis making these observations insufficient for climate monitoring. Satellite data can provide the information needed. However, only few satellite sensors offer the possibility to analyse time series which cover 25 years or more. The Advanced Very High Resolution Radiometer (AVHRR) is among these and has been flown as a heritage instrument for almost 35 years. It will be carried on for at least ten more years, offering a unique opportunity for satellite-based climate studies. Herein we present a satellite-based lake surface water temperature (LSWT) data set for European water bodies in or near the Alps based on the extensive AVHRR 1 km data record (1989-2013) of the Remote Sensing Research Group at the University of Bern. It has been compiled out of AVHRR/2 (NOAA-07, -09, -11, -14) and AVHRR/3 (NOAA-16, -17, -18, -19 and MetOp-A) data. The high accuracy needed for climate related studies requires careful pre-processing and consideration of the atmospheric state. The LSWT retrieval is based on a simulation-based scheme making use of the Radiative Transfer for TOVS (RTTOV) Version 10 together with ERA-interim reanalysis data from the European Centre for Medium-range Weather Forecasts. The resulting LSWTs were extensively compared with in situ measurements from lakes with various sizes between 14 and 580 km2 and the resulting biases and RMSEs were found to be within the range of -0.5 to 0.6 K and 1.0 to 1.6 K, respectively. The upper limits of the reported errors could be rather attributed to uncertainties in the data comparison between in situ and satellite observations than inaccuracies of the satellite retrieval. An inter-comparison with the standard Moderate-resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature product exhibits RMSEs and biases in the range of 0.6 to 0.9 and -0.5 to 0.2 K, respectively. The cross-platform consistency of the retrieval was found to be within ~ 0.3 K. For one lake, the satellite-derived trend was compared with the trend of in situ measurements and both were found to be similar. Thus, orbital drift is not causing artificial temperature trends in the data set. A comparison with LSWT derived through global sea surface temperature (SST) algorithms shows lower RMSEs and biases for the simulation-based approach. A running project will apply the developed method to retrieve LSWT for all of Europe to derive the climate signal of the last 30 years. The data are available at doi:10.1594/PANGAEA.831007.

  9. Molecular dynamics simulation of unsaturated lipid bilayers at low hydration: parameterization and comparison with diffraction studies.

    PubMed Central

    Feller, S E; Yin, D; Pastor, R W; MacKerell, A D

    1997-01-01

    A potential energy function for unsaturated hydrocarbons is proposed and is shown to agree well with experiment, using molecular dynamics simulations of a water/octene interface and a dioleoyl phosphatidylcholine (DOPC) bilayer. The simulation results verify most of the assumptions used in interpreting the DOPC experiments, but suggest a few that should be reconsidered. Comparisons with recent results of a simulation of a dipalmitoyl phosphatidylcholine (DPPC) lipid bilayer show that disorder is comparable, even though the temperature, hydration level, and surface area/lipid for DOPC are lower. These observations highlight the dramatic effects of unsaturation on bilayer structure. Images FIGURE 3 PMID:9370424

  10. Modeling quantum yield, emittance, and surface roughness effects from metallic photocathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimitrov, D. A.; Bell, G. I.; Smedley, J.

    Here, detailed measurements of momentum distributions of emitted electrons have allowed the investigation of the thermal limit of the transverse emittance from metal photocathodes. Furthermore, recent developments in material design and growth have resulted in photocathodes that can deliver high quantum efficiency and are sufficiently robust to use in high electric field gradient photoinjectors and free electron lasers. The growth process usually produces photoemissive material layers with rough surface profiles that lead to transverse accelerating fields and possible work function variations, resulting in emittance growth. To better understand the effects of temperature, density of states, and surface roughness on themore » properties of emitted electrons, we have developed realistic three-dimensional models for photocathode materials with grated surface structures. They include general modeling of electron excitation due to photon absorption, charge transport, and emission from flat and rough metallic surfaces. The models also include image charge and field enhancement effects. We report results from simulations with flat and rough surfaces to investigate how electron scattering, controlled roughness, work function variation, and field enhancement affect emission properties. Comparison of simulation results with measurements of the quantum yield and transverse emittance from flat Sb emission surfaces shows the importance of including efficient modeling of photon absorption, temperature effects, and the material density of states to achieve agreement with the experimental data.« less

  11. Modeling quantum yield, emittance, and surface roughness effects from metallic photocathodes

    DOE PAGES

    Dimitrov, D. A.; Bell, G. I.; Smedley, J.; ...

    2017-10-26

    Here, detailed measurements of momentum distributions of emitted electrons have allowed the investigation of the thermal limit of the transverse emittance from metal photocathodes. Furthermore, recent developments in material design and growth have resulted in photocathodes that can deliver high quantum efficiency and are sufficiently robust to use in high electric field gradient photoinjectors and free electron lasers. The growth process usually produces photoemissive material layers with rough surface profiles that lead to transverse accelerating fields and possible work function variations, resulting in emittance growth. To better understand the effects of temperature, density of states, and surface roughness on themore » properties of emitted electrons, we have developed realistic three-dimensional models for photocathode materials with grated surface structures. They include general modeling of electron excitation due to photon absorption, charge transport, and emission from flat and rough metallic surfaces. The models also include image charge and field enhancement effects. We report results from simulations with flat and rough surfaces to investigate how electron scattering, controlled roughness, work function variation, and field enhancement affect emission properties. Comparison of simulation results with measurements of the quantum yield and transverse emittance from flat Sb emission surfaces shows the importance of including efficient modeling of photon absorption, temperature effects, and the material density of states to achieve agreement with the experimental data.« less

  12. Comparative thermal analysis of the Space Station Freedom photovoltaic deployable boom structure using TRASYS, NEVADA, and SINDA programs

    NASA Technical Reports Server (NTRS)

    Baumeister, Joseph F.; Beach, Duane E.; Armand, Sasan C.

    1989-01-01

    The proposed Space Station Photovoltaic Deployable Boom was analyzed for operating temperatures. The boom glass/epoxy structure design needs protective shielding from environmental degradation. The protective shielding optical properties (solar absorptivity and emissivity) dictate the operating temperatures of the boom components. The Space Station Boom protective shielding must also withstand the effects of the extendible/retractable coiling acting within the mast canister. A thermal analysis method was developed for the Space Station Deployable Boom to predict transient temperatures for a variety of surface properties. The modeling procedures used to evaluate temperatures within the boom structure incorporated the TRASYS, NEVADA, and SINDA thermal analysis programs. Use of these programs led to a comparison between TRASYS and NEVADA analysis methods. Comparing TRASYS and NEVADA results exposed differences in the environmental solar flux predictions.

  13. Comparative thermal analysis of the space station Freedom photovoltaic deployable boom structure using TRASYS, NEVADA, and SINDA programs

    NASA Technical Reports Server (NTRS)

    Baumeister, Joseph F.; Beach, Duane E.; Armand, Sasan C.

    1989-01-01

    The proposed Space Station Photovoltaic Deployable Boom was analyzed for operating temperatures. The boom glass/epoxy structure design needs protective shielding from environmental degradation. The protective shielding optical properties (solar absorptivity and emissivity) dictate the operating temperatures of the boom components. The Space Station Boom protective shielding must also withstand the effects of the extendible/retractable coiling action within the mast canister. A thermal analysis method was developed for the Space Station Deployable Boom to predict transient temperatures for a variety of surface properties. The modeling procedures used to evaluate temperatures within the boom structure incorporated the TRASYS, NEVADA, and SINDA thermal analysis programs. Use of these programs led to a comparison between TRASYS and NEVADA analysis methods. Comparing TRASYS and NEVADA results exposed differences in the environmental solar flux predictions.

  14. Selective vibrational pumping of molecular hydrogen via gas phase atomic recombination.

    PubMed

    Esposito, Fabrizio; Capitelli, Mario

    2009-12-31

    Formation of rovibrational excited molecular hydrogen from atomic recombination has been computationally studied using three body dynamics and orbiting resonance theory. Each of the two methods in the frame of classical mechanics, that has been used for all of the calculations, appear complementary rather than complete, with similar values in the low temperature region, and predominance of three body dynamics for temperatures higher than about 1000 K. The sum of the two contributions appears in fairly good agreement with available data from the literature. Dependence of total recombination on the temperature over pressure ratio is stressed. Detailed recombination toward rovibrational states is presented, with large evidence of importance of rotation in final products. Comparison with gas-surface recombination implying only physiadsorbed molecules shows approximate similarities at T = 5000 K, being on the contrary different at lower temperature.

  15. A New Method of Comparing Forcing Agents in Climate Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kravitz, Benjamin S.; MacMartin, Douglas; Rasch, Philip J.

    We describe a new method of comparing different climate forcing agents (e.g., CO2, CH4, and solar irradiance) that avoids many of the ambiguities introduced by temperature-related climate feedbacks. This is achieved by introducing an explicit feedback loop external to the climate model that adjusts one forcing agent to balance another while keeping global mean surface temperature constant. Compared to current approaches, this method has two main advantages: (i) the need to define radiative forcing is bypassed and (ii) by maintaining roughly constant global mean temperature, the effects of state dependence on internal feedback strengths are minimized. We demonstrate this approachmore » for several different forcing agents and derive the relationships between these forcing agents in two climate models; comparisons between forcing agents are highly linear in concordance with predicted functional forms. Transitivity of the relationships between the forcing agents appears to hold within a wide range of forcing. The relationships between the forcing agents obtained from this method are consistent across both models but differ from relationships that would be obtained from calculations of radiative forcing, highlighting the importance of controlling for surface temperature feedback effects when separating radiative forcing and climate response.« less

  16. Marangoni-Benard Convection in a Evaporating Liquid Thin Layer

    NASA Technical Reports Server (NTRS)

    Chai, An-Ti; Zhang, Nengli

    1996-01-01

    Marangoni-Benard convection in evaporating liquid thin layers has been investigated through flow visualization and temperature profile measurement. Twelve liquids, namely ethyl alcohol, methanol, chloroform, acetone, cyclohexane, benzine, methylene chloride, carbon tetrachloride, ethyl acetate, n-pentane, silicone oil (0.65 cSt.), and freon-113, were tested and convection patterns in thin layers of these samples were observed. Comparison among these tested samples shows that some liquids are sensitive to surface contamination from aluminum powder but some are not. The latter is excellent to be used for the investigation of surface-tension driven convection through visualization using the tracer. Two sample liquids, alcohol and freon-113 were particularly selected for systematic study. It was found that the wavelength of Benard cells would not change with thickness of the layer when it evaporates at room temperature. Special attention was focused on cases in which a liquid layer was cooled from below, and some interesting results were obtained. Convection patterns were recorded during the evaporation process and the patterns at certain time frame were compared. Benard cells were observed in thin layers with a nonlinear temperature profile and even with a zero or positive temperature gradient. Wavelength of the cells was found to increase as the evaporation progressed.

  17. Comparison of Euphausia superba, Euphausia crystallorophias, Pleuragramma antarcticum and Environmental Distributions in the Western Ross Sea

    NASA Astrophysics Data System (ADS)

    Davis, L.; Hofmann, E. E.; Klinck, J. M., II; Dinniman, M.; Pinones, M. A.

    2016-02-01

    Distributions of Antarctic krill (Euphausia superba), crystal krill (Euphausia crystallorophias), and Antarctic silverfish (Pleuragramma antarcticum) were constructed using observations collected in the western Ross Sea from 1988-2004. Distributions of mixed layer depth (MLD), water temperature below 200 m (an indicator for Circumpolar Deep Water, CDW), and surface speed were obtained from a Ross Sea circulation model; surface chlorophyll and percent sea ice coverage were obtained from satellite observations. The species and environmental distributions were analyzed to determine patterns and correlations. Statistical analyses of the distributions show that the three species are concentrated in specific regions and that their habitats have limited overlap. Antarctic krill are concentrated along the shelf break near Cape Adare and are associated with temperatures >0.5°C and -2°C to -0.75°C, 19-32% sea ice coverage, and high surface flow speeds. Crystal krill are concentrated in Terra Nova Bay in areas with depths of 400-600 m, temperatures < -1.3°, 50% or more sea ice coverage, shallow MLDs (2-36 m), moderate concentrations of chlorophyll (0.44 μg m-3) and low surface speeds (0.08 m s-1). Similarly, Antarctic silverfish are concentrated in Terra Nova Bay and are also found over the continental shelf in areas with depths of 500 m and temperatures of -2°C to -1°C. Additional statistical analyses provide insights into the relative contribution of the different environmental features to producing the distributions of the three species.

  18. Bathymetric controls on Pliocene North Atlantic and Arctic sea surface temperature and deepwater production

    USGS Publications Warehouse

    Robinson, M.M.; Valdes, P.J.; Haywood, A.M.; Dowsett, H.J.; Hill, D.J.; Jones, S.M.

    2011-01-01

    The mid-Pliocene warm period (MPWP; ~. 3.3 to 3.0. Ma) is the most recent interval in Earth's history in which global temperatures reached and remained at levels similar to those projected for the near future. The distribution of global warmth, however, was different than today in that the high latitudes warmed more than the tropics. Multiple temperature proxies indicate significant sea surface warming in the North Atlantic and Arctic Oceans during the MPWP, but predictions from a fully coupled ocean-atmosphere model (HadCM3) have so far been unable to fully predict the large scale of sea surface warming in the high latitudes. If climate proxies accurately represent Pliocene conditions, and if no weakness exists in the physics of the model, then model boundary conditions may be in error. Here we alter a single boundary condition (bathymetry) to examine if Pliocene high latitude warming was aided by an increase in poleward heat transport due to changes in the subsidence of North Atlantic Ocean ridges. We find an increase in both Arctic sea surface temperature and deepwater production in model experiments that incorporate a deepened Greenland-Scotland Ridge. These results offer both a mechanism for the warming in the North Atlantic and Arctic Oceans indicated by numerous proxies and an explanation for the apparent disparity between proxy data and model simulations of Pliocene northern North Atlantic and Arctic Ocean conditions. Determining the causes of Pliocene warmth remains critical to fully understanding comparisons of the Pliocene warm period to possible future climate change scenarios. ?? 2011.

  19. Growth kinetics and island evolution during double-pulsed molecular beam epitaxy of InN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, A.; Hein, C.; Bremers, H.

    The kinetic processes of InN growth using alternating source fluxes with sub-monolayer In pulses in plasma-assisted molecular beam epitaxy have been investigated. Growth at various temperatures reveals the existence of two growth regimes. While growth at low temperatures is solely governed by surface diffusion, a combination of decomposition, desorption, and diffusion becomes decisive at growth temperatures of 470 °C and above. At this critical temperature, the surface morphology changes from a grainy structure to a structure made of huge islands. The formation of those islands is attributed to the development of an indium adlayer, which can be observed via reflection highmore » energy electron diffraction monitoring. Based on the growth experiments conducted at temperatures below T{sub Growth} = 470 °C, an activation energy for diffusion of 0.54 ± 0.02 eV has been determined from the decreasing InN island density. A comparison between growth on metalorganic vapor phase epitaxy GaN templates and pseudo bulk GaN indicates that step edges and dislocations are favorable nucleation sites. Based on the results, we developed a growth model, which describes the main mechanisms of the growth.« less

  20. First laboratory high-temperature emissivity measurements of Venus analog measurements in the near-infrared atmospheric windows

    NASA Astrophysics Data System (ADS)

    Helbert, J.; Maturilli, A.; Ferrari, S.; Dyar, M. D.; Smrekar, S. E.

    2014-12-01

    The permanent cloud cover of Venus prohibits observation of the surface with traditional imaging techniques over most of the visible spectral range. Venus' CO2 atmosphere is transparent exclusively in small spectral windows near 1 μm. The Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) team on the European Space Agency Venus-Express mission have recently used these windows successfully to map the southern hemisphere from orbit. VIRTIS is showing variations in surface brightness, which can be interpreted as variations in surface emissivity. Deriving surface composition from these variations is a challenging task. Comparison with laboratory analogue spectra are complicated by the fact that Venus has an average surface temperature of 730K. Mineral crystal structures and their resultant spectral signatures are notably affected by temperature, therefore any interpretations based on room temperature laboratory spectra database can be misleading. In order to support the interpretation of near-infrared data from Venus we have started an extensive measurement campaign at the Planetary Emissivity Laboratory (PEL, Institute of Planetary Research of the German Aerospace Center, Berlin). The PEL facility, which is unique in the world, allows emission measurements covering the 1 to 2 μm wavelength range at sample temperatures of up to 770K. Conciliating the expected emissivity variation between felsic and mafic minerals with Venera and VEGA geochemical data we have started with a set of five analog samples. This set includes basalt, gneiss, granodiorite, anorthosite and hematite, thus covering the range of mineralogies. Preliminary results show significant spectral contrast, thus allowing different samples to be distinguished with only 5 spectral points and validating the use of thermal emissivity for investigating composition. This unique new dataset from PEL not only allows interpretation of the Venus Express VIRTIS data but also provide a baseline for considering new instrument designs for future Venus missions.

Top