Infrared photography and imagery in water resources research
Robinove, Charles J.
1965-01-01
Infrared photography has restricted usefulness in general water resources studies but is particularly useful in special problems such as shoreline mapping. Infrared imagery is beginning to be used in water resources studies for the identification of surface and sub surface thermal anomalies as expressed at the surface and the measurement of apparent water surface temperatures. It will attain its maximum usefulness only when interpretation criteria for infrared imagery are fully developed. Several important hydrologic problems to which infrared imagery may be applied are: (1) determination of circulation and cooling of water in power plant cooling ponds, (2) measurement of river temperature and temperature decline downstream from power plants discharging heated water, (3) identification of submarine springs along coasts, and (4) measurement of temperature differences along streams as indicators of effluent seepage of ground water. Although it is possible at this time to identify many features of importance to hydrology by the use of infrared imagery, the task remaining is to develop criteria to show the hydrologic significance of the features.
Surface and vertical temperature data will be obtained from several large lakes With surface areas large enough to be effectively sampled with AVHRR imagery. Yearly and seasonal patterns of surface and whole water column thermal values will be compared to estimates of surface tem...
Temperature anomalies in the Lower Suwannee River and tidal creeks, Florida, 2005
Raabe, Ellen A.; Bialkowska-Jelinska, Elzbieta
2007-01-01
Temperature anomalies in coastal waters were detected with Thermal Infrared imagery of the Lower Suwannee River (LSR) and nearshore tidal marshes on Florida’s Gulf Coast. Imagery included 1.5-m-resolution day and night Thermal Infrared (TIR) and 0.75-m-resolution Color Infrared (CIR) imagery acquired on 2-3 March 2005. Coincident temperature readings were collected on the ground and used to calibrate the imagery. The Floridan aquifer is at or near the land surface in this area and bears a constant temperature signature of ~ 22 degrees Celsius. This consistent temperature contrasts sharply with ambient temperatures during winter and summer months. Temperature anomalies identified in the imagery during a late-winter cold spell may be correlated with aquifer seeps. Hot spots were identified as those areas exceeding ambient water temperature by 4 degrees Celsius or more. Warm-water plumes were also mapped for both day and night imagery. The plume from Manatee Spring, a first-order magnitude spring, influenced water temperature in the lower river. Numerous temperature anomalies were identified in small tributaries and tidal creeks from Shired Island to Cedar Key and were confirmed with field reconnaissance. Abundant warm-water features were identified along tidal creeks south of the Suwannee River and near Waccasassa Bay. Features were mapped in the tidal creeks north of the river but appear to be less common or have lower associated discharge. The imagery shows considerable promise in mapping coastal-aquifer seeps and understanding the underlying geology of the region. Detection of seep locations may aid research in groundwater/surface-water interactions and water quality, and in the management of coastal habitats.
Mapping Surface Temperatures on a Debris-Covered Glacier with an Unmanned Aerial Vehicle
NASA Astrophysics Data System (ADS)
Kraaijenbrink, Philip D. A.; Shea, Joseph M.; Litt, Maxime; Steiner, Jakob F.; Treichler, Désirée; Koch, Inka; Immerzeel, Walter W.
2018-05-01
A mantel of debris cover often accumulates across the surface of glaciers in active mountain ranges with exceptionally steep terrain, such as the Andes, Himalaya and New Zealand Alps. Such a supraglacial debris layer has a major influence on a glacier's surface energy budget, enhancing radiation absorption and melt when the layer is thin, but insulating the ice when thicker than a few cm. Information on spatially distributed debris surface temperature has the potential to provide insight into the properties of the debris, its effects on the ice below and its influence on the near-surface boundary layer. Here, we deploy an unmanned aerial vehicle (UAV) equipped with a thermal infrared sensor on three separate missions over one day to map changing surface temperatures across the debris-covered Lirung Glacier in the Central Himalaya. We present a methodology to georeference and process the acquired thermal imagery, and correct for emissivity and sensor bias. Derived UAV surface temperatures are compared with distributed simultaneous in situ temperature measurements as well as with Landsat 8 thermal satellite imagery. Results show that the UAV-derived surface temperatures vary greatly both spatially and temporally, with -1.4±1.8, 11.0 ±5.2 and 15.3±4.7 °C for the three flights (mean±sd), respectively. The range in surface temperatures over the glacier during the morning is very large with almost 50 °C. Ground-based measurements are generally in agreement with the UAV imagery, but considerable deviations are present that are likely due to differences in measurement technique and approach, and validation is difficult as a result. The difference in spatial and temporal variability captured by the UAV as compared with much coarser satellite imagery is striking and it shows that satellite derived temperature maps should be interpreted with care. We conclude that UAVs provide a suitable means to acquire surface temperature maps of debris-covered glacier surfaces at high spatial and temporal resolution, but that there are caveats with regard to absolute temperature measurement.
Savelyev, Alexander; Sugumaran, Ramanathan
2008-01-01
The goal of this project was to map the surface temperature of the University of Northern Iowa campus using high-resolution thermal infrared aerial imageries. A thermal camera with a spectral bandwidth of 3.0-5.0 μm was flown at the average altitude of 600 m, achieving ground resolution of 29 cm. Ground control data was used to construct the pixel- to-temperature conversion model, which was later used to produce temperature maps of the entire campus and also for validation of the model. The temperature map then was used to assess the building rooftop conditions and steam line faults in the study area. Assessment of the temperature map revealed a number of building structures that may be subject to insulation improvement due to their high surface temperatures leaks. Several hot spots were also identified on the campus for steam pipelines faults. High-resolution thermal infrared imagery proved highly effective tool for precise heat anomaly detection on the campus, and it can be used by university facility services for effective future maintenance of buildings and grounds. PMID:27873800
Brenner, Claire; Thiem, Christina Elisabeth; Wizemann, Hans-Dieter; Bernhardt, Matthias; Schulz, Karsten
2017-01-01
ABSTRACT In this study, high-resolution thermal imagery acquired with a small unmanned aerial vehicle (UAV) is used to map evapotranspiration (ET) at a grassland site in Luxembourg. The land surface temperature (LST) information from the thermal imagery is the key input to a one-source and two-source energy balance model. While the one-source model treats the surface as a single uniform layer, the two-source model partitions the surface temperature and fluxes into soil and vegetation components. It thus explicitly accounts for the different contributions of both components to surface temperature as well as turbulent flux exchange with the atmosphere. Contrary to the two-source model, the one-source model requires an empirical adjustment parameter in order to account for the effect of the two components. Turbulent heat flux estimates of both modelling approaches are compared to eddy covariance (EC) measurements using the high-resolution input imagery UAVs provide. In this comparison, the effect of different methods for energy balance closure of the EC data on the agreement between modelled and measured fluxes is also analysed. Additionally, the sensitivity of the one-source model to the derivation of the empirical adjustment parameter is tested. Due to the very dry and hot conditions during the experiment, pronounced thermal patterns developed over the grassland site. These patterns result in spatially variable turbulent heat fluxes. The model comparison indicates that both models are able to derive ET estimates that compare well with EC measurements under these conditions. However, the two-source model, with a more complex treatment of the energy and surface temperature partitioning between the soil and vegetation, outperformed the simpler one-source model in estimating sensible and latent heat fluxes. This is consistent with findings from prior studies. For the one-source model, a time-variant expression of the adjustment parameter (to account for the difference between aerodynamic and radiometric temperature) that depends on the surface-to-air temperature gradient yielded the best agreement with EC measurements. This study showed that the applied UAV system equipped with a dual-camera set-up allows for the acquisition of thermal imagery with high spatial and temporal resolution that illustrates the small-scale heterogeneity of thermal surface properties. The UAV-based thermal imagery therefore provides the means for analysing patterns of LST and other surface properties with a high level of detail that cannot be obtained by traditional remote sensing methods. PMID:28515537
Brenner, Claire; Thiem, Christina Elisabeth; Wizemann, Hans-Dieter; Bernhardt, Matthias; Schulz, Karsten
2017-05-19
In this study, high-resolution thermal imagery acquired with a small unmanned aerial vehicle (UAV) is used to map evapotranspiration (ET) at a grassland site in Luxembourg. The land surface temperature (LST) information from the thermal imagery is the key input to a one-source and two-source energy balance model. While the one-source model treats the surface as a single uniform layer, the two-source model partitions the surface temperature and fluxes into soil and vegetation components. It thus explicitly accounts for the different contributions of both components to surface temperature as well as turbulent flux exchange with the atmosphere. Contrary to the two-source model, the one-source model requires an empirical adjustment parameter in order to account for the effect of the two components. Turbulent heat flux estimates of both modelling approaches are compared to eddy covariance (EC) measurements using the high-resolution input imagery UAVs provide. In this comparison, the effect of different methods for energy balance closure of the EC data on the agreement between modelled and measured fluxes is also analysed. Additionally, the sensitivity of the one-source model to the derivation of the empirical adjustment parameter is tested. Due to the very dry and hot conditions during the experiment, pronounced thermal patterns developed over the grassland site. These patterns result in spatially variable turbulent heat fluxes. The model comparison indicates that both models are able to derive ET estimates that compare well with EC measurements under these conditions. However, the two-source model, with a more complex treatment of the energy and surface temperature partitioning between the soil and vegetation, outperformed the simpler one-source model in estimating sensible and latent heat fluxes. This is consistent with findings from prior studies. For the one-source model, a time-variant expression of the adjustment parameter (to account for the difference between aerodynamic and radiometric temperature) that depends on the surface-to-air temperature gradient yielded the best agreement with EC measurements. This study showed that the applied UAV system equipped with a dual-camera set-up allows for the acquisition of thermal imagery with high spatial and temporal resolution that illustrates the small-scale heterogeneity of thermal surface properties. The UAV-based thermal imagery therefore provides the means for analysing patterns of LST and other surface properties with a high level of detail that cannot be obtained by traditional remote sensing methods.
Processing ground-based near-infrared imagery of space shuttle re-entries
NASA Astrophysics Data System (ADS)
Spisz, Thomas S.; Taylor, Jeff C.; Kennerly, Stephen W.; Osei-Wusu, Kwame; Gibson, David M.; Horvath, Thomas J.; Zalameda, Joseph N.; Kerns, Robert V.; Shea, Edward J.; Mercer, C. David; Schwartz, Richard J.; Dantowitz, Ronald F.; Kozubal, Marek J.
2012-06-01
Ground-based high-resolution, calibrated, near-infrared (NIR) imagery of the Space Shuttle STS-134 Endeavour during reentry has been obtained as part of NASA's HYTHIRM (Hypersonic Thermodynamic InfraRed Measurements) project. The long-range optical sensor package called MARS (Mobile Aerospace Reconnaissance System) was positioned in advance to acquire and track part of the shuttle re-entry. Imagery was acquired during a few minutes, with the best imagery being processed when the shuttle was at 133 kft at Mach 5.8. This paper describes the processing of the NIR imagery, building upon earlier work from the airborne imagery collections of several prior shuttle missions. Our goal is to calculate the temperature distribution of the shuttle's bottom surface as accurately as possible, considering both random and systematic errors, while maintaining all physical features in the imagery, especially local intensity variations. The processing areas described are: 1) radiometric calibration, 2) improvement of image quality, 3) atmospheric compensation, and 4) conversion to temperature. The computed temperature image will be shown, as well as comparisons with thermocouples at different positions on the shuttle. A discussion of the uncertainties of the temperature estimates using the NIR imagery is also given.
MEASUREMENT OF WIND SPEED FROM COOLING LAKE THERMAL IMAGERY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrett, A; Robert Kurzeja, R; Eliel Villa-Aleman, E
2009-01-20
The Savannah River National Laboratory (SRNL) collected thermal imagery and ground truth data at two commercial power plant cooling lakes to investigate the applicability of laboratory empirical correlations between surface heat flux and wind speed, and statistics derived from thermal imagery. SRNL demonstrated in a previous paper [1] that a linear relationship exists between the standard deviation of image temperature and surface heat flux. In this paper, SRNL will show that the skewness of the temperature distribution derived from cooling lake thermal images correlates with instantaneous wind speed measured at the same location. SRNL collected thermal imagery, surface meteorology andmore » water temperatures from helicopters and boats at the Comanche Peak and H. B. Robinson nuclear power plant cooling lakes. SRNL found that decreasing skewness correlated with increasing wind speed, as was the case for the laboratory experiments. Simple linear and orthogonal regression models both explained about 50% of the variance in the skewness - wind speed plots. A nonlinear (logistic) regression model produced a better fit to the data, apparently because the thermal convection and resulting skewness are related to wind speed in a highly nonlinear way in nearly calm and in windy conditions.« less
Processing Near-Infrared Imagery of the Orion Heatshield During EFT-1 Hypersonic Reentry
NASA Technical Reports Server (NTRS)
Spisz, Thomas S.; Taylor, Jeff C.; Gibson, David M.; Kennerly, Steve; Osei-Wusu, Kwame; Horvath, Thomas J.; Schwartz, Richard J.; Tack, Steven; Bush, Brett C.; Oliver, A. Brandon
2016-01-01
The Scientifically Calibrated In-Flight Imagery (SCIFLI) team captured high-resolution, calibrated, near-infrared imagery of the Orion capsule during atmospheric reentry of the EFT-1 mission. A US Navy NP-3D aircraft equipped with a multi-band optical sensor package, referred to as Cast Glance, acquired imagery of the Orion capsule's heatshield during a period when Orion was slowing from approximately Mach 10 to Mach 7. The line-of-sight distance ranged from approximately 65 to 40 nmi. Global surface temperatures of the capsule's thermal heatshield derived from the near-infrared intensity measurements complemented the in-depth (embedded) thermocouple measurements. Moreover, these derived surface temperatures are essential to the assessment of the thermocouples' reliance on inverse heat transfer methods and material response codes to infer the surface temperature from the in-depth measurements. The paper describes the image processing challenges associated with a manually-tracked, high-angular rate air-to-air observation. Issues included management of significant frame-to-frame motions due to both tracking jerk and jitter as well as distortions due to atmospheric effects. Corrections for changing sky backgrounds (including some cirrus clouds), atmospheric attenuation, and target orientations and ranges also had to be made. The image processing goal is to reduce the detrimental effects due to motion (both sensor and capsule), vibration (jitter), and atmospherics for image quality improvement, without compromising the quantitative integrity of the data, especially local intensity (temperature) variations. The paper will detail the approach of selecting and utilizing only the highest quality images, registering several co-temporal image frames to a single image frame to the extent frame-to-frame distortions would allow, and then co-adding the registered frames to improve image quality and reduce noise. Using preflight calibration data, the registered and averaged infrared intensity images were converted to surface temperatures on the Orion capsule's heatshield. Temperature uncertainties will be discussed relative to uncertainties of surface emissivity and atmospheric transmission loss. Comparison of limited onboard surface thermocouple data to the image derived surface temperature will be presented.
Lewis, Aaron; George Hilley,; Lewicki, Jennifer L.
2015-01-01
This work presents a method to create high-resolution (cm-scale) orthorectified and georeferenced maps of apparent surface temperature and radiant hydrothermal heat flux and estimate the radiant hydrothermal heat emission rate from a study area. A ground-based thermal infrared (TIR) camera was used to collect (1) a set of overlapping and offset visible imagery around the study area during the daytime and (2) time series of co-located visible and TIR imagery at one or more sites within the study area from pre-dawn to daytime. Daytime visible imagery was processed using the Structure-from-Motion photogrammetric method to create a digital elevation model onto which pre-dawn TIR imagery was orthorectified and georeferenced. Three-dimensional maps of apparent surface temperature and radiant hydrothermal heat flux were then visualized and analyzed from various computer platforms (e.g., Google Earth, ArcGIS). We demonstrate this method at the Mammoth Mountain fumarole area on Mammoth Mountain, CA. Time-averaged apparent surface temperatures and radiant hydrothermal heat fluxes were observed up to 73.7 oC and 450 W m-2, respectively, while the estimated radiant hydrothermal heat emission rate from the area was 1.54 kW. Results should provide a basis for monitoring potential volcanic unrest and mitigating hydrothermal heat-related hazards on the volcano.
Aerial thermography studies of power plant heated lakes
NASA Astrophysics Data System (ADS)
Villa-Aleman, Eliel; Garrett, Alfred J.; Kurzeja, Robert J.; Pendergast, Malcolm M.
2000-03-01
Remote sensing temperature measurements of water bodies is complicated by the temperature differences between the true surface or `skin' water and the bulk water below. Weather conditions control the reduction of the skin temperature relative to the bulk water temperature. Typical skin temperature depressions range from a few tenths of a degree Celsius to more than one degree. In this research project, the Savannah River Technology Center used aerial thermography and surface-based meteorological and water temperature measurements to study a power plant cooling lake in South Carolina. Skin and bulk water temperatures were measured simultaneously for imagery calibration and to product a database for modeling of skin temperature depressions as a function of weather and bulk water temperatures. This paper will present imagery that illustrates how the skin temperature depression was affected by different conditions in several locations on the lake and will present skin temperature modeling results.
Radar and infrared remote sensing of geothermal features at Pilgrim Springs, Alaska
NASA Technical Reports Server (NTRS)
Dean, K. G.; Forbes, R. B.; Turner, D. L.; Eaton, F. D.; Sullivan, K. D.
1982-01-01
High-altitude radar and thermal imagery collected by the NASA research aircraft WB57F were used to examine the structural setting and distribution of radiant temperatures of geothermal anomalies in the Pilgrim Springs, Alaska area. Like-polarized radar imagery with perpendicular look directions provides the best structural data for lineament analysis, although more than half the mapped lineaments are easily detectable on conventional aerial photography. Radiometer data and imagery from a thermal scanner were used to evaluate radiant surface temperatures, which ranged from 3 to 17 C. The evening imagery, which utilized density-slicing techniques, detected thermal anomalies associated with geothermal heat sources. The study indicates that high-altitude predawn thermal imagery may be able to locate relatively large areas of hot ground in site-specific studies in the vegetated Alaskan terrain. This imagery will probably not detect gentle lateral gradients.
Aerial Observations of Symmetric Instability at the North Wall of the Gulf Stream
NASA Astrophysics Data System (ADS)
Savelyev, I.; Thomas, L. N.; Smith, G. B.; Wang, Q.; Shearman, R. K.; Haack, T.; Christman, A. J.; Blomquist, B.; Sletten, M.; Miller, W. D.; Fernando, H. J. S.
2018-01-01
An unusual spatial pattern on the ocean surface was captured by thermal airborne swaths taken across a strong sea surface temperature front at the North Wall of the Gulf Stream. The thermal pattern on the cold side of the front resembles a staircase consisting of tens of steps, each up to ˜200 m wide and up to ˜0.3°C warm. The steps are well organized, clearly separated by sharp temperature gradients, mostly parallel and aligned with the primary front. The interpretation of the airborne imagery is aided by oceanographic measurements from two research vessels. Analysis of the in situ observations indicates that the front was unstable to symmetric instability, a type of overturning instability that can generate coherent structures with similar dimensions to the temperature steps seen in the airborne imagery. It is concluded that the images capture, for the first time, the surface temperature field of symmetric instability turbulence.
Lewicki, Jennifer L.; Corentin Caudron,; Vincent van Hinsberg,; George Hilley,
2016-01-01
The crater lake of Kawah Ijen volcano, East Java, Indonesia, has displayed large and rapid changes in temperature at point locations during periods of unrest, but measurement techniques employed to-date have not resolved how the lake’s thermal regime has evolved over both space and time. We applied a novel approach for mapping and monitoring variations in crater-lake apparent surface (“skin”) temperatures at high spatial (~32 cm) and temporal (every two minutes) resolution at Kawah Ijen on 18 September 2014. We used a ground-based FLIR T650sc camera with digital and thermal infrared (TIR) sensors from the crater rim to collect (1) a set of visible imagery around the crater during the daytime and (2) a time series of co-located visible and TIR imagery at one location from pre-dawn to daytime. We processed daytime visible imagery with the Structure-from-Motion photogrammetric method to create a digital elevation model onto which the time series of TIR imagery was orthorectified and georeferenced. Lake apparent skin temperatures typically ranged from ~21 to 33oC. At two locations, apparent skin temperatures were ~ 4 and 7 oC less than in-situ lake temperature measurements at 1.5 and 5 m depth, respectively. These differences, as well as the large spatio-temporal variations observed in skin temperatures, were likely largely associated with atmospheric effects such as evaporative cooling of the lake surface and infrared absorption by water vapor and SO2. Calculations based on orthorectified TIR imagery thus yielded underestimates of volcanic heat fluxes into the lake, whereas volcanic heat fluxes estimated based on in-situ temperature measurements (68 to 111 MW) were likely more representative of Kawah Ijen in a quiescent state. The ground-based imaging technique should provide a valuable tool to continuously monitor crater-lake temperatures and contribute insight into the spatio-temporal evolution of these temperatures associated with volcanic activity.
Thermal study of the Missouri River in North Dakota using infrared imagery
NASA Technical Reports Server (NTRS)
Crosby, O. A.
1971-01-01
Studies of infrared imagery obtained from aircraft at 305- to 1,524-meter altitudes indicate the feasibility of monitoring thermal changes attributable to the operation of thermal electric plants and storage reservoirs, as well as natural phenomena such as tributary inflow and ground water seeps in large rivers. No identifiable sources of ground water inflow below the surface of the river could be found in the imagery. The thermal patterns from the generating plants and the major tributary inflow are readily apparent in imagery obtained from an altitude of 305 meters. Portions of the tape-recorded imagery were processed in a color-coded quantization to enhance the displays and to attach quantitative significance to the data. The study indicates a marked decrease in water temperature in the Missouri River prior to early fall and a moderate increase in temperature in late fall because of the Lake Sakakawea impoundment.
NASA Astrophysics Data System (ADS)
Zhao, Q.; Zhan, S.; Kuai, X.; Zhan, Q.
2015-12-01
The goal of this research is to combine DMSP-OLS nighttime light data with Landsat imagery and use spatio-temporal analysis methods to evaluate the relationships between urbanization processes and temperature variation in Phoenix metropolitan area. The urbanization process is a combination of both land use change within the existing urban environment as well as urban sprawl that enlarges the urban area through the transformation of rural areas to urban structures. These transformations modify the overall urban climate environment, resulting in higher nighttime temperatures in urban areas compared to the surrounding rural environment. This is a well-known and well-studied phenomenon referred to as the urban heat island effect (UHI). What is unknown is the direct relationship between the urbanization process and the mechanisms of the UHI. To better understand this interaction, this research focuses on using nighttime light satellite imagery to delineate and detect urban extent changes and utilizing existing land use/land cover map or newly classified imagery from Landsat to analyze the internal urban land use variations. These data are combined with summer and winter land surface temperature data extracted from Landsat. We developed a time series of these combined data for Phoenix, AZ from 1992 to 2013 to analyze the relationships among land use change, land surface temperature and urban growth.
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Tanaka, K.; Almeida, E. G.
1978-01-01
The author has identified the following significant results. Data obtained during the cruise of the Cabo Frio and from LANDSAT imagery are used to discuss the characteristics of a linear model which simulates wind induced currents calculated from meteorological conditions at the time of the mission. There is a significant correspondance between the model of simulated horizontal water circulation, sea surface temperature, and surface currents observed on LANDSAT imagery. Close approximations were also observed between the simulation of vertical water movement (upwelling) and the oceanographic measurements taken along a series of points of the prevailing currents.
ASTER Thermal Anomalies in Western Colorado
Richard E. Zehner
2013-01-01
This layer contains the areas identified as areas of anomalous surface temperature from ASTER satellite imagery. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. Areas that had temperature greater than 2o, and areas with temperature equal to 1o to 2o, were considered ASTER modeled very warm and warm surface exposures (thermal anomalies), respectively Note: 'o' is used in place of lowercase sigma in this description.
NASA Astrophysics Data System (ADS)
Haselwimmer, C. E.; Wilson, R.; Upton, C.; Prakash, A.; Holdmann, G.; Walker, G.
2013-12-01
Thermal remote sensing provides a valuable tool for mapping and monitoring surface hydrothermal features associated with geothermal activity. The increasing availability of low-cost, small Unmanned Aerial Systems (sUAS) with integrated thermal imaging sensors offers a means to undertake very high spatial resolution (hyperspatial), quantitative thermal remote sensing of surface geothermal features in support of exploration and long-term monitoring efforts. Results from the deployment of a quadcopter sUAS equipped with a thermal camera over Pilgrim Hot Springs, Alaska for detailed mapping and heat flux estimation for hot springs, seeps, and thermal pools are presented. Hyperspatial thermal infrared imagery (4 cm pixels) was acquired over Pilgrim Hot Springs in July 2013 using a FLIR TAU 640 camera operating from an Aeryon Scout sUAS flying at an altitude of 40m. The registered and mosaicked thermal imagery is calibrated to surface temperature values using in-situ measurements of uniform blackbody tarps and the temperatures of geothermal and other surface pools acquired with a series of water temperature loggers. Interpretation of the pre-processed thermal imagery enables the delineation of hot springs, the extents of thermal pools, and the flow and mixing of individual geothermal outflow plumes with an unprecedented level of detail. Using the surface temperatures of thermal waters derived from the FLIR data and measured in-situ meteorological parameters the hot spring heat flux and outflow rate is calculated using a heat budget model for a subset of the thermal drainage. The heat flux/outflow rate estimates derived from the FLIR data are compared against in-situ measurements of the hot spring outflow rate recorded at the time of the thermal survey.
Surface Characteristics of Green Island Wakes from Satellite Imagery
NASA Astrophysics Data System (ADS)
Cheng, Kai-Ho; Hsu, Po-Chun; Ho, Chung-Ru
2017-04-01
Characteristics of an island wake induced by the Kuroshio Current flows pass by Green Island, a small island 40 km off southeast of Taiwan is investigated by the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery. The MODIS sea surface temperature (SST) and chlorophyll-a (chl-a) imagery is produced at 250-meter resolution from 2014 to 2015 using the SeaDAS software package which is developed by the National Aeronautics and Space Administration. The wake occurrence is 59% observed from SST images during the data span. The average cooling area is 190 km2, but the area is significantly changed with wind directions. The wake area is increased during southerly winds and is reduced during northerly winds. Besides, the average cooling SST was about 2.1 oC between the front and rear island. Comparing the temperature difference between the wake and its left side, the difference is 1.96 oC. In addition, the wakes have 1 3 times higher than normal in chlorophyll concentration. The results indicate the island mass effect makes the surface water of Green island wake colder and chl-a higher.
Mapping surface temperature variability on a debris-covered glacier with an unmanned aerial vehicle
NASA Astrophysics Data System (ADS)
Kraaijenbrink, P. D. A.; Litt, M.; Shea, J. M.; Treichler, D.; Koch, I.; Immerzeel, W.
2016-12-01
Debris-covered glacier tongues cover about 12% of the glacier surface in high mountain Asia and much of the melt water is generated from those glaciers. A thin layer of supraglacial debris enhances ice melt by lowering the albedo, while thicker debris insulates the ice and reduces melt. Data on debris thickness is therefore an important input for energy balance modelling of these glaciers. Thermal infrared remote sensing can be used to estimate the debris thickness by using an inverse relation between debris surface temperature and thickness. To date this has only been performed using coarse spaceborne thermal imagery, which cannot reveal small scale variation in debris thickness and its influence on the heterogeneous melt patterns on debris-covered glaciers. We deployed an unmanned aerial vehicle mounted with a thermal infrared sensor over the debris-covered Lirung Glacier in Nepal three times in May 2016 to reveal the spatial and temporal variability of surface temperature in high detail. The UAV survey matched a Landsat 8 overpass to be able to make a comparison with spaceborne thermal imagery. The UAV-acquired data is processed using Structure from Motion photogrammetry and georeferenced using DGPS-measured ground control points. Different surface types were distinguished by using data acquired by an additional optical UAV survey in order to correct for differences in surface emissivity. In situ temperature measurements and incoming solar radiation data are used to calibrate the temperature calculations. Debris thicknesses derived are validated by thickness measurements of a ground penetrating radar. Preliminary analysis reveals a spatially highly heterogeneous pattern of surface temperature over Lirung Glacier with a range in temperature of over 40 K. At dawn the debris is relatively cold and its temperature is influenced strongly by the ice underneath. Exposed to the high solar radiation at the high altitude the debris layer heats up very rapidly as sunrise progresses, and the influence of ice on debris surface temperature reduces considerably. Many patterns are revealed that cannot be detected from the Landsat data, both on small spatial and temporal scales. The high detail the UAV-borne thermal imagery provides in time and space has great potential in the research of debris cover and its characteristics.
Seasonal Ice Zone Reconnaissance Surveys Coordination
2016-03-30
sea surface temperature (SST), sea level atmospheric pressure ( SLP ), and velocity (Steele), and dropsonde measurements of atmospheric properties...aircraft), cloud top/base heights UpTempO buoys for understanding and prediction…. Steele UpTempO buoy drops for SLP , SST, SSS, & surface velocity...reflectance, skin temperature, visible imagery AXCTD= Air Expendable CTD, AXCP= Air Expendable Current Profiler, SLP = Sea Level atmospheric
Using thermal-infrared imagery to delineate ground-water discharge
Banks, W.S.L.; Paylor, R.L.; Hughes, W.B.
1996-01-01
On March 8 and 9, 1992, a thermal-infrared-multispectral scanner (TIMS) was flown over two military ordnance disposal facilities at the Edgewood Area of Aberdeen Proving Ground, Maryland. The data, collected bythe National Aeronautics and Space Administration, in cooperation with the U.S. Army and the U.S. Geological Survey, were used to locate ground-water discharge zones in surface water. The images from the flight show areas where ground-water discharge is concentrated, as well as areas of diffuse discharge. Concentrated discharge is predominant in isolated or nearly isolated ponds and creeks in the study area. Diffuse dicharge is found near parts of the shoreline where the study area meets the surrounding estuaries of the Chesapeake Bay and the Gunpowder River. The average temperature for surface water, measured directly in the field, and the average temperature, calculated from atmospherically corrected TIMS images, was 10.6??C (Celsius) at the first of two sites. Potentiometric surface maps of both field sites show discharge toward the nontidal marshes, the estuaries which surround the field sites, and creeks which drain into the estuaries. The average measured temperature of ground water at both sites was 10.7??C. The calculated temperature from the TIMS imagery at both sites where ground-water discharge is concentrated within a surface-water body is 10.4??C. In the estuaries which surround the field sites, field measurements of temperature were made resulting in an average temperature of 9.0??C. The average calculated TIMS temperature from the estuaries was 9.3??C. Along the shoreline at the first site and within 40 to 80 meters of the western and southern shores of the second site, water was 1?? to 2??C warmer than water more than 80 meters away. The pattern of warmer water grading to cooler water in an offshore direction could result from diffuse ground-water discharge. Tonal differences in the TIMS imagery could indicate changes in surface-water temperatures. These tonal differences can be interpreted to delineate the location and extent of ground-water discharge to bodies of surface water.
Stream Temperature Estimation From Thermal Infrared Images
NASA Astrophysics Data System (ADS)
Handcock, R. N.; Kay, J. E.; Gillespie, A.; Naveh, N.; Cherkauer, K. A.; Burges, S. J.; Booth, D. B.
2001-12-01
Stream temperature is an important water quality indicator in the Pacific Northwest where endangered fish populations are sensitive to elevated water temperature. Cold water refugia are essential for the survival of threatened salmon when events such as the removal of riparian vegetation result in elevated stream temperatures. Regional assessment of stream temperatures is limited by sparse sampling of temperatures in both space and time. If critical watersheds are to be properly managed it is necessary to have spatially extensive temperature measurements of known accuracy. Remotely sensed thermal infrared (TIR) imagery can be used to derive spatially distributed estimates of the skin temperature (top 100 nm) of streams. TIR imagery has long been used to estimate skin temperatures of the ocean, where split-window techniques have been used to compensate for atmospheric affects. Streams are a more complex environment because 1) most are unresolved in typical TIR images, and 2) the near-bank environment of stream corridors may consist of tall trees or hot rocks and soils that irradiate the stream surface. As well as compensating for atmospheric effects, key problems to solve in estimating stream temperatures include both subpixel unmixing and multiple scattering. Additionally, fine resolution characteristics of the stream surface such as evaporative cooling due to wind, and water surface roughness, will effect measurements of radiant skin temperatures with TIR devices. We apply these corrections across the Green River and Yakima River watersheds in Washington State to assess the accuracy of remotely sensed stream surface temperature estimates made using fine resolution TIR imagery from a ground-based sensor (FLIR), medium resolution data from the airborne MASTER sensor, and coarse-resolution data from the Terra-ASTER satellite. We use linear spectral mixture analysis to isolate the fraction of land-leaving radiance originating from unresolved streams. To compensate the data for atmospheric effects we combine radiosonde profiles with a physically based radiative transfer model (MODTRAN) and an in-scene relative correction adapted from the ISAC algorithm. Laboratory values for water emissivities are used as a baseline estimate of stream emissivities. Emitted radiance reflected by trees in the stream near-bank environment is estimated from the height and canopy temperature, using a radiosity model.
NASA Technical Reports Server (NTRS)
Polansky, A. C.
1982-01-01
A method for diagnosing surface parameters on a regional scale via geosynchronous satellite imagery is presented. Moisture availability, thermal inertia, atmospheric heat flux, and total evaporation are determined from three infrared images obtained from the Geostationary Operational Environmental Satellite (GOES). Three GOES images (early morning, midafternoon, and night) are obtained from computer tape. Two temperature-difference images are then created. The boundary-layer model is run, and its output is inverted via cubic regression equations. The satellite imagery is efficiently converted into output-variable fields. All computations are executed on a PDP 11/34 minicomputer. Output fields can be produced within one hour of the availability of aligned satellite subimages of a target area.
Classification of sea ice types with single-band (33.6 GHz) airborne passive microwave imagery
NASA Astrophysics Data System (ADS)
Eppler, Duane T.; Farmer, L. Dennis; Lohanick, Alan W.; Hoover, Mervyn
1986-09-01
During March 1983 extensive high-quality airborne passive Ka band (33.6 GHz) microwave imagery and coincident high-resolution aerial photography were obtained of ice along a 378-km flight line in the Beaufort Sea. Analysis of these data suggests that four classes of winter surfaces can be distinguished solely on the basis of 33.6-GHz brightness temperature: open water, frazil, old ice, and young/first-year ice. New ice (excluding frazil) and nilas display brightness temperatures that overlap the range of temperatures characteristic of old ice and, to a lesser extent, young/first-year ice. Scenes in which a new ice or nilas are present in appreciable amounts are subject to substantial errors in classification if static measures of Ka band radiometric brightness temperature alone are considered. Textural characteristics of nilas and new ice, however, differ significantly from textural features characteristic of other ice types and probably can be used with brightness temperature data to classify ice type in high-resolution single-band microwave images. In any case, open water is radiometrically the coldest surface observed in any scene. Lack of overlap between brightness temperatures characteristic of other surfaces indicates that estimates of the areal extent of open water based on only 33.6-GHz brightness temperatures are accurate.
Impervious surfaces mapping using high resolution satellite imagery
NASA Astrophysics Data System (ADS)
Shirmeen, Tahmina
In recent years, impervious surfaces have emerged not only as an indicator of the degree of urbanization, but also as an indicator of environmental quality. As impervious surface area increases, storm water runoff increases in velocity, quantity, temperature and pollution load. Any of these attributes can contribute to the degradation of natural hydrology and water quality. Various image processing techniques have been used to identify the impervious surfaces, however, most of the existing impervious surface mapping tools used moderate resolution imagery. In this project, the potential of standard image processing techniques to generate impervious surface data for change detection analysis using high-resolution satellite imagery was evaluated. The city of Oxford, MS was selected as the study site for this project. Standard image processing techniques, including Normalized Difference Vegetation Index (NDVI), Principal Component Analysis (PCA), a combination of NDVI and PCA, and image classification algorithms, were used to generate impervious surfaces from multispectral IKONOS and QuickBird imagery acquired in both leaf-on and leaf-off conditions. Accuracy assessments were performed, using truth data generated by manual classification, with Kappa statistics and Zonal statistics to select the most appropriate image processing techniques for impervious surface mapping. The performance of selected image processing techniques was enhanced by incorporating Soil Brightness Index (SBI) and Greenness Index (GI) derived from Tasseled Cap Transformed (TCT) IKONOS and QuickBird imagery. A time series of impervious surfaces for the time frame between 2001 and 2007 was made using the refined image processing techniques to analyze the changes in IS in Oxford. It was found that NDVI and the combined NDVI--PCA methods are the most suitable image processing techniques for mapping impervious surfaces in leaf-off and leaf-on conditions respectively, using high resolution multispectral imagery. It was also found that IS data generated by these techniques can be refined by removing the conflicting dry soil patches using SBI and GI obtained from TCT of the same imagery used for IS data generation. The change detection analysis of the IS time series shows that Oxford experienced the major changes in IS from the year 2001 to 2004 and 2006 to 2007.
NASA Astrophysics Data System (ADS)
Sulistiyono, N.; Basyuni, M.; Slamet, B.
2018-03-01
Green open space (GOS) is one of the requirements where a city is comfortable to stay. GOS might reduce land surface temperature (LST) and air pollution. Medan is one of the biggest towns in Indonesia that experienced rapid development. However, the early development tends to neglect the GOS existence for the city. The objective of the study is to determine the distribution of land surface temperature and the relationship between the normalized difference vegetation index (NDVI) and the priority of GOS development in Medan City using imagery-based satellite Landsat 8. The method approached to correlate the distribution of land surface temperature derived from the value of digital number band 10 with the NDVI which was from the ratio of groups five and four on satellite images of Landsat 8. The results showed that the distribution of land surface temperature in the Medan City in 2016 ranged 20.57 - 33.83 °C. The relationship between the distribution of LST distribution with NDVI was reversed with a negative correlation of -0.543 (sig 0,000). The direction of GOS in Medan City is therefore developed on the allocation of LST and divided into three priority classes namely first priority class had 5,119.71 ha, the second priority consisted of 16,935.76 ha, and third priority of 6,118.50 ha.
Diurnal ocean surface layer model validation
NASA Technical Reports Server (NTRS)
Hawkins, Jeffrey D.; May, Douglas A.; Abell, Fred, Jr.
1990-01-01
The diurnal ocean surface layer (DOSL) model at the Fleet Numerical Oceanography Center forecasts the 24-hour change in a global sea surface temperatures (SST). Validating the DOSL model is a difficult task due to the huge areas involved and the lack of in situ measurements. Therefore, this report details the use of satellite infrared multichannel SST imagery to provide day and night SSTs that can be directly compared to DOSL products. This water-vapor-corrected imagery has the advantages of high thermal sensitivity (0.12 C), large synoptic coverage (nearly 3000 km across), and high spatial resolution that enables diurnal heating events to be readily located and mapped. Several case studies in the subtropical North Atlantic readily show that DOSL results during extreme heating periods agree very well with satellite-imagery-derived values in terms of the pattern of diurnal warming. The low wind and cloud-free conditions necessary for these events to occur lend themselves well to observation via infrared imagery. Thus, the normally cloud-limited aspects of satellite imagery do not come into play for these particular environmental conditions. The fact that the DOSL model does well in extreme events is beneficial from the standpoint that these cases can be associated with the destruction of the surface acoustic duct. This so-called afternoon effect happens as the afternoon warming of the mixed layer disrupts the sound channel and the propagation of acoustic energy.
Infrared Imagery of Shuttle (IRIS). Task 1, summary report
NASA Technical Reports Server (NTRS)
Chocol, C. J.
1977-01-01
The feasibility of remote, high-resolution infrared imagery of the Shuttle Orbiter lower surface during entry to obtain accurate measurements of aerodynamic heat transfer was demonstrated. Using available technology, such images can be taken from an existing aircraft/telescope system (the C141 AIRO) with minimum modification or addition of systems. Images with a spatial resolution of 1 m or better and a temperature resolution of 2.5% between temperatures of 800 and 1900 K can be obtained. Data reconstruction techniques can provide a geometrically and radiometrically corrected array on addressable magnetic tape ready for display by NASA.
Quantifying riverine surface currents from time sequences of thermal infrared imagery
Puleo, J.A.; McKenna, T.E.; Holland, K.T.; Calantoni, J.
2012-01-01
River surface currents are quantified from thermal and visible band imagery using two methods. One method utilizes time stacks of pixel intensity to estimate the streamwise velocity at multiple locations. The other method uses particle image velocimetry to solve for optimal two-dimensional pixel displacements between successive frames. Field validation was carried out on the Wolf River, a small coastal plain river near Landon, Mississippi, United States, on 26-27 May 2010 by collecting imagery in association with in situ velocities sampled using electromagnetic current meters deployed 0.1 m below the river surface. Comparisons are made between mean in situ velocities and image-derived velocities from 23 thermal and 6 visible-band image sequences (5 min length) during daylight and darkness conditions. The thermal signal was a small apparent temperature contrast induced by turbulent mixing of a thin layer of cooler water near the river surface with underlying warmer water. The visible-band signal was foam on the water surface. For thermal imagery, streamwise velocities derived from the pixel time stack and particle image velocimetry technique were generally highly correlated to mean streamwise current meter velocities during darkness (r 2 typically greater than 0.9) and early morning daylight (r 2 typically greater than 0.83). Streamwise velocities from the pixel time stack technique had high correlation for visible-band imagery during early morning daylight hours with respect to mean current meter velocities (r 2 > 0.86). Streamwise velocities for the particle image velocimetry technique for visible-band imagery had weaker correlations with only three out of six correlations performed having an r 2 exceeding 0.6. Copyright 2012 by the American Geophysical Union.
Sea surface temperature of the coastal zones of France
NASA Technical Reports Server (NTRS)
Deschamps, P. Y.; Crepon, M.; Monget, J. M.; Verger, F. (Principal Investigator); Frouin, R.; Cassanet, J.; Wald, L.
1982-01-01
Thermal gradients in French coastal zones for the period of one year were mapped in order to enable a coherent study of certain oceanic features detectable by the variations in the sea surface temperature field and their evolution in time. The phenomena examined were mesoscale thermal features in the English Channel, the Bay of Biscay, and the northwestern Mediterranean; thermal gradients generated by French estuary systems; and diurnal heating in the sea surface layer. The investigation was based on Heat Capacity Mapping Mission imagery.
USDA-ARS?s Scientific Manuscript database
Two Source Model (TSM) calculates the heat and water exchange and interaction between soil-atmosphere and vegetation-atmosphere separately. This is achieved through decomposition of radiometric surface temperature to soil and vegetation component temperatures either from multi-angular remotely sense...
USDA-ARS?s Scientific Manuscript database
Thermal infrared (TIR) remote sensing of land-surface temperature (LST) provides valuable information about the sub-surface moisture status required for estimating evapotranspiration (ET) and detecting the onset and severity of drought. While empirical indices measuring anomalies in LST and vegetati...
Fall Freeze-up of Sea Ice in the Beaufort-Chukchi Seas Using ERS-1 SAR and Buoy Data
NASA Technical Reports Server (NTRS)
Holt, B.; Winebrenner, B.; D., Nelson E.
1993-01-01
The lowering of air temperatures below freezing in the fall indicates the end of summer melt and the onset of steady sea ice growth. The thickness and condition of ice that remains at the end of summer has ramifications for the thickness that that ice will attain at the end of the following winter. This period also designates a shifting of key fluxes from upper ocean freshening from ice melt to increased salinity from brine extraction during ice growth. This transitional period has been examined in the Beaufort and Chukchi Seas using ERS-1 SAR imagery and air temperatures from drifting buoys during 1991 and 1992. The SAR imagery is used to examine the condition and types of ice present in this period. Much of the surface melt water has drained off at this time. Air temperatures from drifting buoys coincident in time and within 100 km radius of the SAR imagery have been obtained...
USDA-ARS?s Scientific Manuscript database
We investigated the use of multispectral thermal imagery to retrieve land surface emissivity and temperature. Conversely to concurrent methods, the temperature emissivity separation (TES) method simply requires single overpass without any ancillary information. This is possible since TES makes use o...
NASA Astrophysics Data System (ADS)
Le Bel, D. A.; Brown, S.; Zappa, C. J.; Bell, R. E.; Frearson, N.; Tinto, K. J.
2014-12-01
Photogrammetric digital elevation models (DEMs) are a powerful approach for understanding elevation change and dynamics along the margins of the large ice sheets. The IcePod system, mounted on a New York Air National Guard LC-130, can measure high-resolution surface elevations with a Riegl VQ580 scanning laser altimeter and Imperx Bobcat IGV-B6620 color visible-wavelength camera (6600x4400 resolution); the surface temperature with a Sofradir IRE-640L infrared camera (spectral response 7.7-9.5 μm, 640x512 resolution); and the structure of snow and ice with two radar systems. We show the use of IcePod imagery to develop DEMs across calving fronts and meltwater channels in Greenland. Multiple over-flights of the Kangerlussaq Airport ramp have provided a test of the technique at a location with accurate, independently-determined elevation. Here the photogrammetric DEM of the airport, constrained by ground control measurements, is compared with the Lidar results. In July 2014 the IcePod ice-ocean imaging system surveyed the calving fronts of five outlet glaciers north of Jakobshavn Isbrae. We used Agisoft PhotoScan to develop a DEM of each calving front using imagery captured by the IcePod systems. Adjacent to the ice sheet, meltwater plumes foster mixing in the fjord, moving warm ocean water into contact with the front of the ice sheet where it can undercut the ice front and trigger calving. The five glaciers provide an opportunity to examine the calving front structure in relation to ocean temperature, fjord circulation, and spatial scale of the meltwater plumes. The combination of the accurate DEM of the calving front and the thermal imagery used to constrain the temperature and dynamics of the adjacent plume provides new insights into the ice-ocean interactions. Ice sheet margins provide insights into the connections between the surface meltwater and the fate of the water at the ice sheet base. Surface meltwater channels are visualized here for the first time using the combination of Lidar, photogrammetry DEMs and infrared imagery. These techniques leverage electromagnetic surface properties that allow us to identify the presence of water, measure the slope and elevation of the channel, as well as the two-dimensional temperature variability of the water/ice/snow in multiple melt channels within a drainage system.
Simulating the moderating effect of a lake on downwind temperatures
NASA Technical Reports Server (NTRS)
Bill, R. G., Jr.; Chen, E.; Sutherland, R. A.; Bartholic, J. F.
1979-01-01
A steady-state, two-dimensional numerical model is used to simulate air temperatures and humidity downwind of a lake at night. Thermal effects of the lake were modelled for the case of moderate and low surface winds under the cold-air advective conditions that occur following the passage of a cold front. Surface temperatures were found to be in good agreement with observations. A comparison of model results with thermal imagery indicated the model successfully predicts the downwind distance for which thermal effects due to the lake are significant.
Gulf of Mexico Imagery - Satellite Products and Services Division/Office of
Satellite and Product Operations Skip Navigation Link NESDIS banner image and link to NESDIS Home Page Default Office of Satellite and Product Operations banner image and link to OSPO DOC / NOAA Bleaching -- Ocean Color -- Sea/Lake Ice -- Sea Surface Height -- Sea Surface Temperatures -- Tropical
Southwest U.S. Imagery (GOES-WEST) - Satellite Services Division / Office
of Satellite Data Processing and Distribution Skip Navigation Link NESDIS banner image and link Information Service Home Page Default Office of Satellite and Product Operations banner image and link to OSPO Color -- Sea/Lake Ice -- Sea Surface Height -- Sea Surface Temperatures -- Tropical Systems Product List
Tropical Pacific Imagery - Satellite Products and Services Division/Office
of Satellite and Product Operations Skip Navigation Link NESDIS banner image and link to NESDIS Home Page Default Office of Satellite and Product Operations banner image and link to OSPO DOC / NOAA Bleaching -- Ocean Color -- Sea/Lake Ice -- Sea Surface Height -- Sea Surface Temperatures -- Tropical
Tropical Atlantic Imagery - Satellite Products and Services Division/Office
of Satellite and Product Operations Skip Navigation Link NESDIS banner image and link to NESDIS Home Page Default Office of Satellite and Product Operations banner image and link to OSPO DOC / NOAA Bleaching -- Ocean Color -- Sea/Lake Ice -- Sea Surface Height -- Sea Surface Temperatures -- Tropical
Evaluation of terrestrial photogrammetric point clouds derived from thermal imagery
NASA Astrophysics Data System (ADS)
Metcalf, Jeremy P.; Olsen, Richard C.
2016-05-01
Computer vision and photogrammetric techniques have been widely applied to digital imagery producing high density 3D point clouds. Using thermal imagery as input, the same techniques can be applied to infrared data to produce point clouds in 3D space, providing surface temperature information. The work presented here is an evaluation of the accuracy of 3D reconstruction of point clouds produced using thermal imagery. An urban scene was imaged over an area at the Naval Postgraduate School, Monterey, CA, viewing from above as with an airborne system. Terrestrial thermal and RGB imagery were collected from a rooftop overlooking the site using a FLIR SC8200 MWIR camera and a Canon T1i DSLR. In order to spatially align each dataset, ground control points were placed throughout the study area using Trimble R10 GNSS receivers operating in RTK mode. Each image dataset is processed to produce a dense point cloud for 3D evaluation.
Karst Groundwater Hydrologic Analyses Based on Aerial Thermography
NASA Technical Reports Server (NTRS)
Campbell, C. Warren; Keith, A. G.
2000-01-01
On February 23, 1999, thermal imagery of Marshall Space Flight Center, Alabama was collected using an airborne thermal camera. Ground resolution was I in. Approximately 40 km 2 of thermal imagery in and around Marshall Space Flight Center (MSFC) was analyzed to determine the location of springs for groundwater monitoring. Subsequently, forty-five springs were located ranging in flow from a few ml/sec to approximately 280 liter/sec. Groundwater temperatures are usually near the mean annual surface air temperature. On thermography collected during the winter, springs show up as very warm spots. Many of the new springs were submerged in lakes, streams, or swamps; consequently, flow measurements were difficult. Without estimates of discharge, the impacts of contaminated discharge on surface streams would be difficult to evaluate. An approach to obtaining an estimate was developed using the Environmental Protection Agency (EPA) Cornell Mixing Zone Expert System (CORMIX). The thermography was queried to obtain a temperature profile down the center of the surface plume. The spring discharge was modeled with CORMIX, and the flow adjusted until the surface temperature profile was matched. The presence of volatile compounds in some of the new springs also allowed MSFC to unravel the natural system of solution cavities of the karst aquifer. Sampling results also showed that two springs on either side of a large creek had the same water source so that groundwater was able to pass beneath the creek.
Water color and circulation southern Chesapeake Bay, part 1
NASA Technical Reports Server (NTRS)
Nichols, M. M.; Gordon, H. H.
1975-01-01
Satellite imagery from two EREP passes over the Rappahannock Estuary of the Chesapeake region is analyzed to chart colored water types, to delineate color boundaries and define circulatory patterns. Surface observations from boats and helicopters concurrent with Skylab overpass define the distributions of suspended sediment, transparency, temperature, salinity, phytoplankton, color of suspended material and optical ratio. Important features recorded by the imagery are a large-scale turbidity maximum and massive red tide blooms. Water movement is revealed by small-scale mixing patterns and tidal plumes of apparent sediment-laden water. The color patterns broadly reflect the bottom topography and the seaward gradient of suspended material between the river and the bay. Analyses of red, green and natural color photos by microdensitometry demonstrate the utility of charting water color types of potential use for managing estuarine water quality. The Skylab imagery is superior to aerial photography and surface observations for charting water color.
Infrared Observations of the Orion Capsule During EFT-1 Hypersonic Reentry
NASA Technical Reports Server (NTRS)
Horvath, Thomas J.; Rufer, Shann J.; Schuster, David M.; Mendeck, Gavin F.; Oliver, A. Brandon; Schwartz, Richard J.; Verstynen, Harry A.; Mercer, C. David; Tack, Steven; Ingram, Ben;
2016-01-01
High-resolution infrared observations of the Orion capsule during its atmospheric reentry on December 5, 2015 were made from a US Navy NP-3D. This aircraft, equipped with a long-range optical sensor system, tracked the capsule from Mach 10 to 7 from a distance of approximately 60 nmi. Global surface temperatures of the capsule's thermal heatshield were derived from near infrared intensity measurements. The global surface temperature measurements complemented onboard instrumentation and were invaluable to the interpretation of the in-depth thermocouple measurements which rely on inverse heat transfer methods and material response codes to infer the desired surface temperature from the sub-surface measurements. The full paper will address the motivations behind the NASA Engineering Safety Center sponsored observation and highlight premission planning processes with an emphasis on aircraft placement, optimal instrument configuration and sensor calibrations. Critical aspects of mission operations coordinated from the NASA Johnson Spaceflight Center and integration with the JSC Flight Test Management Office will be discussed. A summary of the imagery that was obtained and processed to global surface temperature will be presented. At the capsule's point of closest approach relative to the imaging system, the spatial resolution was estimated to be approximately 15-inches per pixel and was sufficient to identify localized temperature increases associated with compression pad support hardware on the heatshield. The full paper will discuss the synergy of the quantitative imagery derived temperature maps with in-situ thermocouple measurements. Comparison of limited onboard surface thermocouple data to the image derived surface temperature will be presented. The two complimentary measurements serve as an example of the effective leveraging of resources to advance the understanding of high Mach number environments associated with an ablated heatshield and provide unique data for the validation of design tools and numerical flight simulation techniques. Collaborative opportunities and technology investments in support of planned observations of NASA's next Orion flight test in 2018 will be explored in the full manuscript.
NASA Astrophysics Data System (ADS)
Shea, J. M.; Harder, P.; Pomeroy, J. W.; Kraaijenbrink, P. D. A.
2017-12-01
Mountain snowpacks represent a critical seasonal reservoir of water for downstream needs, and snowmelt is a significant component of mountain hydrological budgets. Ground-based point measurements are unable to describe the full spatial variability of snow accumulation and melt rates, and repeat Unmanned Air Vehicle (UAV) surveys provide an unparalleled opportunity to measure snow accumulation, redistribution and melt in alpine environments. This study presents results from a UAV-based observation campaign conducted at the Fortress Mountain Snow Laboratory in the Canadian Rockies in 2017. Seven survey flights were conducted between April (maximum snow accumulation) and mid-July (bare ground) to collect imagery with both an RGB camera and thermal infrared imager with the sensefly eBee RTK platform. UAV imagery are processed with structure from motion techniques, and orthoimages, digital elevation models, and surface temperature maps are validated against concurrent ground observations of snow depth, snow water equivalent, and snow surface temperature. We examine the seasonal evolution of snow depth and snow surface temperature, and explore the spatial covariances of these variables with respect to topographic factors and snow ablation rates. Our results have direct implications for scaling snow ablation calculations and model resolution and discretization.
Influence of Agricultural Practice on Surface Temperature
NASA Astrophysics Data System (ADS)
Czajkowski, K.; Ault, T.; Hayase, R.; Benko, T.
2006-12-01
Changes in land uses/covers can have a significant effect on the temperature of the Earth's surface. Agricultural fields exhibit a significant change in land cover within a single year and from year to year as different crops are planted. These changes in agricultural practices including tillage practice and crop type influence the energy budget as reflected in differences in surface temperature. In this project, Landsat 5 and 7 imagery were used to investigate the influence of crop type and tillage practice on surface temperature in Iowa and NW Ohio. In particular, the three crop rotation of corn, soybeans and wheat, as well as no-till, conservation tillage and tradition tillage methods, were investigated. Crop type and conservation tillage practices were identified using supervised classification. Student surface temperature observations from the GLOBE program were used to correct for the effects of the atmosphere for some of the satellite thermal observations. Students took surface temperature observations in field sites near there schools using hand- held infrared thermometers.
NASA Astrophysics Data System (ADS)
Rezvanbehbahani, S.; Csatho, B. M.; Comiso, J. C.; Babonis, G. S.
2011-12-01
Advanced Very-High Resolution Radiometer (AVHRR) images have been exhaustively used to measure surface temperature time series of the Greenland Ice sheet. The purpose of this study is to assess the accuracy of monthly average ice sheet surface temperatures, derived from thermal infrared AVHRR satellite imagery on a 6.25 km grid. In-situ temperature data sets are from the Greenland Collection Network (GC-Net). GC-Net stations comprise sensors monitoring air temperature at 1 and 2 meter above the snow surface, gathered at every 60 seconds and monthly averaged to match the AVHRR temporal resolution. Our preliminary results confirm the good agreement between satellite and in-situ temperature measurements reported by previous studies. However, some large discrepancies still exist. While AVHRR provides ice surface temperature, in-situ stations measure air temperatures at different elevations above the snow surface. Since most in-situ data on ice sheets are collected by Automatic Weather Station (AWS) instruments, it is important to characterize the difference between surface and air temperatures. Therefore, we compared and analyzed average monthly AVHRR ice surface temperatures using data collected in 2002. Differences between these temperatures correlate with in-situ temperatures and GC-Net station elevations, with increasing differences at lower elevations and higher temperatures. The Summit Station (3199 m above sea level) and the Swiss Camp (1176 m above sea level) results were compared as high altitude and low altitude stations for 2002, respectively. Our results show that AVHRR derived temperatures were 0.5°K warmer than AWS temperature at the Summit Station, while this difference was 2.8°K in the opposite direction for the Swiss Camp with surface temperatures being lower than air temperatures. The positive bias of 0.5°K at the high altitude Summit Station (surface warmer than air) is within the retrieval error of AVHRR temperatures and might be in part due to atmospheric inversion. The large negative bias of 2.8°K at the low altitude Swiss Camp (surface colder than the air) could be caused by a combination of different factors including local effects such as more windy circumstances above the snow surface and biases introduced by the cloud-masking applied on the AVHRR images. Usually only satellite images acquired in clear-sky conditions are used for deriving monthly AVHRR average temperatures. Since cloud-free days are usually warmer, satellite derived temperatures tend to underestimate the real average temperatures, especially regions with frequent cloud cover, such as Swiss Camp. Therefore, cautions must be exercised while using ice surface temperatures derived from satellite imagery for glaciological applications. Eliminating the cloudy day's' temperature from the in-situ data prior to the comparison with AVHRR derived temperatures will provide a better assessment of AVHRR surface temperature measurement accuracy.
HyspIRI Measurements of Agricultural Systems in California: 2013-2015
NASA Astrophysics Data System (ADS)
Townsend, P. A.; Kruger, E. L.; Singh, A.; Jablonski, A. D.; Kochaver, S.; Serbin, S.
2015-12-01
During 2013-2015, NASA collected high-altitude AVIRIS hyperspectral and MASTER thermal infrared imagery across large swaths of California in support of the HyspIRI planning and prototyping activities. During these campaigns, we made extensive measurements of photosynthetic capacity—Vcmax and Jmax—and their temperature sensitivities across a range of sites, crop types and environmental conditions. Our objectives were to characterize the physiological diversity of agricultural vegetation in California and develop generalizable algorithms to map these physiological parameters across several image acquisitions, regardless of crop type and canopy temperatures. We employed AVIRIS imagery to scale and estimate the vegetation parameters and MASTER surface temperature to provide context, since physiology responds exponentially to leaf temperature. We demonstrate a segmentation approach to disentangling leaf and background soil temperature, and then illustrate our retrievals of Vcmax and Jmax during overflight conditions across a large number of the 2013-2015 HyspIRI acquisitions. Our results show >80% repeatability (R2) across split sample jack-knifing, with RMSEs within 15% of the range of our data. The approach was robust across crop types (e.g., grape, almond, pistachio, avocado, pomegranate, oats, peppers, citrus, date palm, alfalfa, melons, beets) and leaf temperatures. A global imaging spectroscopy system such as HyspIRI will offer unprecedented ability to monitor agricultural crop performance under widely varying surface conditions.
NASA Astrophysics Data System (ADS)
Edwards, C. S.; Bandfield, J. L.; Christensen, P. R.
2006-12-01
It is possible to obtain surface roughness characteristics, by measuring a single surface from multiple emission angles and azimuths in the thermal infrared. Surfaces will have different temperatures depending on their orientation relative to the sun. A different proportion of sunlit versus shaded surfaces will be in the field of view based on the viewing orientation, resulting in apparent temperature differences. This difference in temperature can be utilized to calculate the slope characteristics for the observed area. This technique can be useful for determining surface slope characteristics not resolvable by orbital imagery. There are two main components to this model, a surface DEM, in this case a synthetic, two dimensional sine wave surface, and a thermal model (provided by H. Kieffer). Using albedo, solar longitude, slope, azimuth, along with several other parameters, the temperature for each cell of the DEM is calculated using the thermal model. A temperature is then predicted using the same observation geometries as the Thermal Emission Spectrometer (TES) observations. A temperature difference is calculated for the two complementary viewing azimuths and emission angles from the DEM. These values are then compared to the observed temperature difference to determine the surface slope. This method has been applied to TES Emission Phase Function (EPF) observations for both the spectrometer and bolometer data, with a footprint size of 10s of kilometers. These specialized types of TES observations measure nearly the same surface from several angles. Accurate surface kinetic temperatures are obtained after the application of an atmospheric correction for the TES bolometer and/or spectrometer. Initial results include an application to the northern circumpolar dunes. An average maximum slope of ~33 degrees has been obtained, which makes physical sense since this is near the angle of repose for sand sized particles. There is some scatter in the data from separate observations, which may be due to the large footprint size. This technique can be better understood and characterized by correlation with high resolution imagery. Several different surface maps will also be tested in addition to the two dimensional sine wave surface. Finally, by modeling the thermal effects on different particle sizes and land forms, we can further interpret the scale of these slopes.
Geothermal Anomaly Mapping Using Landsat ETM+ Data in Ilan Plain, Northeastern Taiwan
NASA Astrophysics Data System (ADS)
Chan, Hai-Po; Chang, Chung-Pai; Dao, Phuong D.
2018-01-01
Geothermal energy is an increasingly important component of green energy in the globe. A prerequisite for geothermal energy development is to acquire the local and regional geothermal prospects. Existing geophysical methods of estimating the geothermal potential are usually limited to the scope of prospecting because of the operation cost and site reachability in the field. Thus, explorations in a large-scale area such as the surface temperature and the thermal anomaly primarily rely on satellite thermal infrared imagery. This study aims to apply and integrate thermal infrared (TIR) remote sensing technology with existing geophysical methods for the geothermal exploration in Taiwan. Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) imagery is used to retrieve the land surface temperature (LST) in Ilan plain. Accuracy assessment of satellite-derived LST is conducted by comparing with the air temperature data from 11 permanent meteorological stations. The correlation coefficient of linear regression between air temperature and LST retrieval is 0.76. The MODIS LST product is used for the cross validation of Landsat derived LSTs. Furthermore, Landsat ETM+ multi-temporal brightness temperature imagery for the verification of the LST anomaly results were performed. LST Results indicate that thermal anomaly areas appear correlating with the development of faulted structure. Selected geothermal anomaly areas are validated in detail by field investigation of hot springs and geothermal drillings. It implies that occurrences of hot springs and geothermal drillings are in good spatial agreement with anomaly areas. In addition, the significant low-resistivity zones observed in the resistivity sections are echoed with the LST profiles when compared with in the Chingshui geothermal field. Despite limited to detecting the surficial and the shallow buried geothermal resources, this work suggests that TIR remote sensing is a valuable tool by providing an effective way of mapping and quantifying surface features to facilitate the exploration and assessment of geothermal resources in Taiwan.
Local Effects of Ice Floes on Skin Sea Surface Temperature in the Marginal Ice Zone from UAVs
NASA Astrophysics Data System (ADS)
Zappa, C. J.; Brown, S.; Emery, W. J.; Adler, J.; Wick, G. A.; Steele, M.; Palo, S. E.; Walker, G.; Maslanik, J. A.
2013-12-01
Recent years have seen extreme changes in the Arctic. Particularly striking are changes within the Pacific sector of the Arctic Ocean, and especially in the seas north of the Alaskan coast. These areas have experienced record warming, reduced sea ice extent, and loss of ice in areas that had been ice-covered throughout human memory. Even the oldest and thickest ice types have failed to survive through the summer melt period in areas such as the Beaufort Sea and Canada Basin, and fundamental changes in ocean conditions such as earlier phytoplankton blooms may be underway. Marginal ice zones (MIZ), or areas where the "ice-albedo feedback" driven by solar warming is highest and ice melt is extensive, may provide insights into the extent of these changes. Airborne remote sensing, in particular InfraRed (IR), offers a unique opportunity to observe physical processes at sea-ice margins. It permits monitoring the ice extent and coverage, as well as the ice and ocean temperature variability. It can also be used for derivation of surface flow field allowing investigation of turbulence and mixing at the ice-ocean interface. Here, we present measurements of visible and IR imagery of melting ice floes in the marginal ice zone north of Oliktok Point AK in the Beaufort Sea made during the Marginal Ice Zone Ocean and Ice Observations and Processes EXperiment (MIZOPEX) in July-August 2013. The visible and IR imagery were taken from the unmanned airborne vehicle (UAV) ScanEagle. The visible imagery clearly defines the scale of the ice floes. The IR imagery show distinct cooling of the skin sea surface temperature (SST) as well as a intricate circulation and mixing pattern that depends on the surface current, wind speed, and near-surface vertical temperature/salinity structure. Individual ice floes develop turbulent wakes as they drift and cause transient mixing of an influx of colder surface (fresh) melt water. The upstream side of the ice floe shows the coldest skin SST, and downstream the skin SST is mixed within the turbulent wake over 10s of meters. We compare the structure of circulation and mixing of the influx of cold skin SST driven by surface currents and wind. In-situ temperature measurements provide the context for the vertical structure of the mixing and its impact on the skin SST. Furthermore, comparisons to satellite-derived sea surface temperature of the region are presented. The accuracy of satellite derived SST products and how well the observed skin SSTs represent ocean bulk temperatures in polar regions is not well understood, due in part to lack of observations. Estimated error in the polar seas is relatively high at up to 0.4 deg. C compared to less than 0.2 deg. C for other areas. The goal of these and future analyses of the MIZOPEX data set is to elucidate a basic question that is significant for the entire Earth system. Have these regions passed a tipping point, such that they are now essentially acting as sub-Arctic seas where ice disappears in summer, or instead whether the changes are transient, with the potential for the ice pack to recover?
NASA Astrophysics Data System (ADS)
Carlson, D. F.; Novelli, G.; Guigand, C.; Özgökmen, T.; Fox-Kemper, B.; Molemaker, M. J.
2016-02-01
The Consortium for Advanced Research on the Transport of Hydrocarbon in the Environment (CARTHE) will carry out the LAgrangian Submesoscale ExpeRiment (LASER) to study the role of small-scale processes in the transport and dispersion of oil and passive tracers. The Ship-Tethered Aerostat Remote Sensing System (STARRS) will observe small-scale surface dispersion in the open ocean. STARRS is built around a high-lift-capacity (30 kg) helium-filled aerostat. STARRS is equipped with a high resolution digital camera. An integrated GNSS receiver and inertial navigation system permit direct geo-rectification of the imagery. Consortium for Advanced Research on the Transport of Hydrocarbon in the Environment (CARTHE) will carry out the LAgrangian Submesoscale ExpeRiment (LASER) to study the role of small-scale processes in the transport and dispersion of oil and passive tracers. The Ship-Tethered Aerostat Remote Sensing System (STARRS) was developed to produce observational estimates of small-scale surface dispersion in the open ocean. STARRS is built around a high-lift-capacity (30 kg) helium-filled aerostat. STARRS is equipped with a high resolution digital camera. An integrated GNSS receiver and inertial navigation system permit direct geo-rectification of the imagery. Thousands of drift cards deployed in the field of view of STARRS and tracked over time provide the first observational estimates of small-scale (1-500 m) surface dispersion in the open ocean. The STARRS imagery will be combined with GPS-tracked surface drifter trajectories, shipboard observations, and aerial surveys of sea surface temperature in the DeSoto Canyon. In addition to obvious applications to oil spill modelling, the STARRS observations will provide essential benchmarks for high resolution numerical modelsDrift cards deployed in the field of view of STARRS and tracked over time provide the first observational estimates of small-scale (1-100 m) surface dispersion in the open ocean. The STARRS imagery will be combined with GPS-tracked surface drifter trajectories, shipboard observations, and aerial surveys of sea surface temperature in the DeSoto Canyon. In addition to obvious applications to oil spill modelling, the STARRS observations will provide essential benchmarks for high resolution numerical models
NASA Technical Reports Server (NTRS)
Doyle, F. L.
1974-01-01
Lineations were identified involving the application of ERTS imagery to geologic and hydrologic problems. Interpretation of the southwest Madison County area is discussed. The tracing of the Beech Grove lineament to the northern boundary of Madison County, Alabama raises the question of its relationship to the trend of lineations in southwestern Madison County. The use of thermography as an indication of soil moisture is reviewed. The effect of soil moisture on surface temperature and the relationship between soil moisture and ground water are examined.
The HYTHIRM Project: Flight Thermography of the Space Shuttle During the Hypersonic Re-entry
NASA Technical Reports Server (NTRS)
Horvath, Thomas J.; Tomek, Deborah M.; Berger, Karen T.; Zalameda, Joseph N.; Splinter, Scott C.; Krasa, Paul W.; Schwartz, Richard J.; Gibson, David M.; Tietjen, Alan B.; Tack, Steve
2010-01-01
This report describes a NASA Langley led endeavor sponsored by the NASA Engineering Safety Center, the Space Shuttle Program Office and the NASA Aeronautics Research Mission Directorate to demonstrate a quantitative thermal imaging capability. A background and an overview of several multidisciplinary efforts that culminated in the acquisition of high resolution calibrated infrared imagery of the Space Shuttle during hypervelocity atmospheric entry is presented. The successful collection of thermal data has demonstrated the feasibility of obtaining remote high-resolution infrared imagery during hypersonic flight for the accurate measurement of surface temperature. To maximize science and engineering return, the acquisition of quantitative thermal imagery and capability demonstration was targeted towards three recent Shuttle flights - two of which involved flight experiments flown on Discovery. In coordination with these two Shuttle flight experiments, a US Navy NP-3D aircraft was flown between 26-41 nautical miles below Discovery and remotely monitored surface temperature of the Orbiter at Mach 8.4 (STS-119) and Mach 14.7 (STS-128) using a long-range infrared optical package referred to as Cast Glance. This same Navy aircraft successfully monitored the Orbiter Atlantis traveling at approximately Mach 14.3 during its return from the successful Hubble repair mission (STS-125). The purpose of this paper is to describe the systematic approach used by the Hypersonic Thermodynamic Infrared Measurements team to develop and implement a set of mission planning tools designed to establish confidence in the ability of an imaging platform to reliably acquire, track and return global quantitative surface temperatures of the Shuttle during entry. The mission planning tools included a pre-flight capability to predict the infrared signature of the Shuttle. Such tools permitted optimization of the hardware configuration to increase signal-to-noise and to maximize the available dynamic range while mitigating the potential for saturation. Post flight, analysis tools were used to assess atmospheric effects and to convert the 2-D intensity images to 3-D temperature maps of the windward surface. Comparison of the spatially resolved global thermal measurements to surface thermocouples and CFD prediction is made. Successful demonstration of a quantitative, spatially resolved, global temperature measurement on the Shuttle suggests future applications towards hypersonic flight test programs within NASA, DoD and DARPA along with flight test opportunities supporting NASA's project Constellation.
Evaluating Vegetation Type Effects on Land Surface Temperature at the City Scale
NASA Astrophysics Data System (ADS)
Wetherley, E. B.; McFadden, J. P.; Roberts, D. A.
2017-12-01
Understanding the effects of different plant functional types and urban materials on surface temperatures has significant consequences for climate modeling, water management, and human health in cities. To date, doing so at the urban scale has been complicated by small-scale surface heterogeneity and limited data. In this study we examined gradients of land surface temperature (LST) across sub-pixel mixtures of different vegetation types and urban materials across the entire Los Angeles, CA, metropolitan area (4,283 km2). We used AVIRIS airborne hyperspectral imagery (36 m resolution, 224 bands, 0.35 - 2.5 μm) to estimate sub-pixel fractions of impervious, pervious, tree, and turfgrass surfaces, validating them with simulated mixtures constructed from image spectra. We then used simultaneously imaged LST retrievals collected at multiple times of day to examine how temperature changed along gradients of the sub-pixel mixtures. Diurnal in situ LST measurements were used to confirm image values. Sub-pixel fractions were well correlated with simulated validation data for turfgrass (r2 = 0.71), tree (r2 = 0.77), impervious (r2 = 0.77), and pervious (r2 = 0.83) surfaces. The LST of pure pixels showed the effects of both the diurnal cycle and the surface type, with vegetated classes having a smaller diurnal temperature range of 11.6°C whereas non-vegetated classes had a diurnal range of 16.2°C (similar to in situ measurements collected simultaneously with the imagery). Observed LST across fractional gradients of turf/impervious and tree/impervious sub-pixel mixtures decreased linearly with increasing vegetation fraction. The slopes of decreasing LST were significantly different between tree and turf mixtures, with steeper slopes observed for turf (p < 0.05). These results suggest that different physiological characteristics and different access to irrigation water of urban trees and turfgrass results in significantly different LST effects, which can be detected at large scales in fractional mixture analysis.
USDA-ARS?s Scientific Manuscript database
Thermal-infrared remote sensing of land surface temperature (LST) provides valuable information for quantifying rootzone water availability, evapotranspiration (ET) and crop condition. This paper describes the most recent modifications applied to the robust but relatively simple LST-based energy bal...
NASA Astrophysics Data System (ADS)
Ning, Jicai; Gao, Zhiqiang; Meng, Ran; Xu, Fuxiang; Gao, Meng
2018-06-01
This study analyzed land use and land cover changes and their impact on land surface temperature using Landsat 5 Thematic Mapper and Landsat 8 Operational Land Imager and Thermal Infrared Sensor imagery of the Yellow River Delta. Six Landsat images comprising two time series were used to calculate the land surface temperature and correlated vegetation indices. The Yellow River Delta area has expanded substantially because of the deposited sediment carried from upstream reaches of the river. Between 1986 and 2015, approximately 35% of the land use area of the Yellow River Delta has been transformed into salterns and aquaculture ponds. Overall, land use conversion has occurred primarily from poorly utilized land into highly utilized land. To analyze the variation of land surface temperature, a mono-window algorithm was applied to retrieve the regional land surface temperature. The results showed bilinear correlation between land surface temperature and the vegetation indices (i.e., Normalized Difference Vegetation Index, Adjusted-Normalized Vegetation Index, Soil-Adjusted Vegetation Index, and Modified Soil-Adjusted Vegetation Index). Generally, values of the vegetation indices greater than the inflection point mean the land surface temperature and the vegetation indices are correlated negatively, and vice versa. Land surface temperature in coastal areas is affected considerably by local seawater temperature and weather conditions.
Black, Robert W.; Haggland, Alan; Crosby, Greg
2003-01-01
Instream hydraulic and riparian habitat conditions and stream temperatures were characterized for selected stream segments in the Upper White River Basin, Washington. An aerial multispectral imaging system used digital cameras to photograph the stream segments across multiple wavelengths to characterize fish habitat and temperature conditions. All imageries were georeferenced. Fish habitat features were photographed at a resolution of 0.5 meter and temperature imageries were photographed at a 1.0-meter resolution. The digital multispectral imageries were classified using commercially available software. Aerial photographs were taken on September 21, 1999. Field habitat data were collected from August 23 to October 12, 1999, to evaluate the measurement accuracy and effectiveness of the multispectral imaging in determining the extent of the instream habitat variables. Fish habitat types assessed by this method were the abundance of instream hydraulic features such as pool and riffle habitats, turbulent and non-turbulent habitats, riparian composition, the abundance of large woody debris in the stream and riparian zone, and stream temperatures. Factors such as the abundance of instream woody debris, the location and frequency of pools, and stream temperatures generally are known to have a significant impact on salmon. Instream woody debris creates the habitat complexity necessary to maintain a diverse and healthy salmon population. The abundance of pools is indicative of a stream's ability to support fish and other aquatic organisms. Changes in water temperature can affect aquatic organisms by altering metabolic rates and oxygen requirements, altering their sensitivity to toxic materials and affecting their ability to avoid predators. The specific objectives of this project were to evaluate the use of an aerial multispectral imaging system to accurately identify instream hydraulic features and surface-water temperatures in the Upper White River Basin, to use the multispectral system to help establish baseline instream/riparian habitat conditions in the study area, and to qualitatively assess the imaging system for possible use in other Puget Sound rivers. For the most part, all multispectral imagery-based estimates of total instream riffle and pool area were less than field measurements. The imagery-based estimates for riffle habitat area ranged from 35.5 to 83.3 percent less than field measurements. Pool habitat estimates ranged from 139.3 percent greater than field measurements to 94.0 percent less than field measurements. Multispectral imagery-based estimates of turbulent habitat conditions ranged from 9.3 percent greater than field measurements to 81.6 percent less than field measurements. Multispectral imagery-based estimates of non-turbulent habitat conditions ranged from 27.7 to 74.1 percent less than field measurements. The absolute average percentage of difference between field and imagery-based habitat type areas was less for the turbulent and non-turbulent habitat type categories than for pools and riffles. The estimate of woody debris by multispectral imaging was substantially different than field measurements; percentage of differences ranged from +373.1 to -100 percent. Although the total area of riffles, pools, and turbulent and non-turbulent habitat types measured in the field were all substantially higher than those estimated from the multispectral imagery, the percentage of composition of each habitat type was not substantially different between the imagery-based estimates and field measurements.
Brabyn, Lars; Zawar-Reza, Peyman; Stichbury, Glen; Cary, Craig; Storey, Bryan; Laughlin, Daniel C; Katurji, Marwan
2014-04-01
The McMurdo Dry Valleys of Antarctica are the largest snow/ice-free regions on this vast continent, comprising 1% of the land mass. Due to harsh environmental conditions, the valleys are bereft of any vegetation. Land surface temperature is a key determinate of microclimate and a driver for sensible and latent heat fluxes of the surface. The Dry Valleys have been the focus of ecological studies as they arguably provide the simplest trophic structure suitable for modelling. In this paper, we employ a validation method for land surface temperatures obtained from Landsat 7 ETM + imagery and compared with in situ land surface temperature data collected from four transects totalling 45 iButtons. A single meteorological station was used to obtain a better understanding of daily and seasonal cycles in land surface temperatures. Results show a good agreement between the iButton and the Landsat 7 ETM + product for clear sky cases. We conclude that Landsat 7 ETM + derived land surface temperatures can be used at broad spatial scales for ecological and meteorological research.
NASA Technical Reports Server (NTRS)
Schieldge, John
2000-01-01
Wavelet and fractal analyses have been used successfully to analyze one-dimensional data sets such as time series of financial, physical, and biological parameters. These techniques have been applied to two-dimensional problems in some instances, including the analysis of remote sensing imagery. In this respect, these techniques have not been widely used by the remote sensing community, and their overall capabilities as analytical tools for use on satellite and aircraft data sets is not well known. Wavelet and fractal analyses have the potential to provide fresh insight into the characterization of surface properties such as temperature and emissivity distributions, and surface processes such as the heat and water vapor exchange between the surface and the lower atmosphere. In particular, the variation of sensible heat flux density as a function of the change In scale of surface properties Is difficult to estimate, but - in general - wavelets and fractals have proved useful in determining the way a parameter varies with changes in scale. We present the results of a limited study on the relationship between spatial variations in surface temperature distribution and sensible heat flux distribution as determined by separate wavelet and fractal analyses. We analyzed aircraft imagery obtained in the thermal infrared (IR) bands from the multispectral TIMS and hyperspectral MASTER airborne sensors. The thermal IR data allows us to estimate the surface kinetic temperature distribution for a number of sites in the Midwestern and Southwestern United States (viz., San Pedro River Basin, Arizona; El Reno, Oklahoma; Jornada, New Mexico). The ground spatial resolution of the aircraft data varied from 5 to 15 meters. All sites were instrumented with meteorological and hydrological equipment including surface layer flux measuring stations such as Bowen Ratio systems and sonic anemometers. The ground and aircraft data sets provided the inputs for the wavelet and fractal analyses, and the validation of the results.
NASA Technical Reports Server (NTRS)
Horvath, Thomas; Splinter, Scott; Daryabeigi, Kamran; Wood, William; Schwartz, Richard; Ross, Martin
2008-01-01
High resolution calibrated infrared imagery of vehicles during hypervelocity atmospheric entry or sustained hypersonic cruise has the potential to provide flight data on the distribution of surface temperature and the state of the airflow over the vehicle. In the early 1980 s NASA sought to obtain high spatial resolution infrared imagery of the Shuttle during entry. Despite mission execution with a technically rigorous pre-planning capability, the single airborne optical system for this attempt was considered developmental and the scientific return was marginal. In 2005 the Space Shuttle Program again sponsored an effort to obtain imagery of the Orbiter. Imaging requirements were targeted towards Shuttle ascent; companion requirements for entry did not exist. The engineering community was allowed to define observation goals and incrementally demonstrate key elements of a quantitative spatially resolved measurement capability over a series of flights. These imaging opportunities were extremely beneficial and clearly demonstrated capability to capture infrared imagery with mature and operational assets of the US Navy and the Missile Defense Agency. While successful, the usefulness of the imagery was, from an engineering perspective, limited. These limitations were mainly associated with uncertainties regarding operational aspects of data acquisition. These uncertainties, in turn, came about because of limited pre-flight mission planning capability, a poor understanding of several factors including the infrared signature of the Shuttle, optical hardware limitations, atmospheric effects and detector response characteristics. Operational details of sensor configuration such as detector integration time and tracking system algorithms were carried out ad hoc (best practices) which led to low probability of target acquisition and detector saturation. Leveraging from the qualified success during Return-to-Flight, the NASA Engineering and Safety Center sponsored an assessment study focused on increasing the probability of returning spatially resolved scientific/engineering thermal imagery. This paper provides an overview of the assessment task and the systematic approach designed to establish confidence in the ability of existing assets to reliably acquire, track and return global quantitative surface temperatures of the Shuttle during entry. A discussion of capability demonstration in support of a potential Shuttle boundary layer transition flight test is presented. Successful demonstration of a quantitative, spatially resolved, global temperature measurement on the proposed Shuttle boundary layer transition flight test could lead to potential future applications with hypersonic flight test programs within the USAF and DARPA along with flight test opportunities supporting NASA s project Constellation.
NASA Astrophysics Data System (ADS)
Kiefer, D. A.; Hinton, M. G.; Armstrong, E. M.; Harrison, D. P.; Menemenlis, D.; Hu, C.
2016-02-01
With support from NASA's Ecological Forecasting program, we have developed a Tuna Stock Assessment Support System, which merges time series of satellite imagery, a global ocean circulation model, climatology from field surveys, and fisheries data on catch and effort. The purpose of this software is to extract information on the habitat of skipjack, bigeye, and yellowfin tuna in the Eastern Tropical Pacific. The support system is based upon a 50-year record of catch and effort from long-line and purse seine vessels provide by the Inter-American Tropical Tuna Commission. This database, which covers thousands of kilometers of ocean surface, provides monthly information at a 1 degree spatial resolution for the purse seine fleet and 5 degree resolution for the long line fishery. This data is then merged in time and space with satellite imagery of sea surface temperature, chlorophyll, and height, as well as NODC climatologies of oxygen concentration and temperature, and output from NASA's ECCO-2 global circulation model, which provides 3-dimensional simulations of water density, current velocity, mixed layer depth, and sea surface height. Our analyses have yielded a broad range of understanding of the habitat and dynamics both the fish and the fisherman. The purse seine ground, which targets younger tuna, is constrained to waters where the hypoxic layer is shallow. The longline fishery, which targets older tuna, is not constrained by the hypoxic layer and has a much larger distribution. We have characterized the preferences of each species to environmental variables including the depth of the hypoxic layer, the depth of the water column, as well as sea surface height, temperature, and chlorophyll concentration. Finally, the analyses have revealed information on local depletion by fishing, the size distribution of the schools of younger fish, and the impact of ENSO on fishing activities.
Derivation of martian surface slope characteristics from directional thermal infrared radiometry
NASA Astrophysics Data System (ADS)
Bandfield, Joshua L.; Edwards, Christopher S.
2008-01-01
Directional thermal infrared measurements of the martian surface is one of a variety of methods that may be used to characterize surface roughness and slopes at scales smaller than can be obtained by orbital imagery. Thermal Emission Spectrometer (TES) emission phase function (EPF) observations show distinct apparent temperature variations with azimuth and emission angle that are consistent with the presence of warm, sunlit and cool, shaded slopes at typically ˜0.1 m scales. A surface model of a Gaussian distribution of azimuth independent slopes (described by θ-bar) is combined with a thermal model to predict surface temperature from each viewing angle and azimuth of the TES EPF observation. The models can be used to predict surface slopes using the difference in measured apparent temperature from 2 separate 60-70° emission angle observations taken ˜180° in azimuth relative to each other. Most martian surfaces are consistent with low to moderate slope distributions. The slope distributions display distinct correlations with latitude, longitude, and albedo. Exceptionally smooth surfaces are located at lower latitudes in both the southern highlands as well as in high albedo dusty terrains. High slopes are associated with southern high-latitude patterned ground and north polar sand dunes. There is little apparent correlation between high resolution imagery and the derived θ-bar, with exceptions such as duneforms. This method can be used to characterize potential landing sites by assuming fractal scaling behavior to meter scales. More precisely targeted thermal infrared observations from other spacecraft instruments are capable of significantly reducing uncertainty as well as reducing measurement spot size from 10s of kilometers to sub-kilometer scales.
Currents Global Ocean Model Sea Surface Temperatures Gulf Stream ASCII Data Gulf Stream Comparison Gridded ASCAT Scatterometer Winds Lightning Strike Density Satellite Imagery Ocean Global Ocean Model , 2017 19:10:57 UTC Disclaimer Information Quality Help Glossary Privacy Policy Freedom of Information
Sea surface velocities from visible and infrared multispectral atmospheric mapping sensor imagery
NASA Technical Reports Server (NTRS)
Pope, P. A.; Emery, W. J.; Radebaugh, M.
1992-01-01
High resolution (100 m), sequential Multispectral Atmospheric Mapping Sensor (MAMS) images were used in a study to calculate advective surface velocities using the Maximum Cross Correlation (MCC) technique. Radiance and brightness temperature gradient magnitude images were formed from visible (0.48 microns) and infrared (11.12 microns) image pairs, respectively, of Chandeleur Sound, which is a shallow body of water northeast of the Mississippi delta, at 145546 GMT and 170701 GMT on 30 Mar. 1989. The gradient magnitude images enhanced the surface water feature boundaries, and a lower cutoff on the gradient magnitudes calculated allowed the undesirable sunglare and backscatter gradients in the visible images, and the water vapor absorption gradients in the infrared images, to be reduced in strength. Requiring high (greater than 0.4) maximum cross correlation coefficients and spatial coherence of the vector field aided in the selection of an optimal template size of 10 x 10 pixels (first image) and search limit of 20 pixels (second image) to use in the MCC technique. Use of these optimum input parameters to the MCC algorithm, and high correlation and spatial coherence filtering of the resulting velocity field from the MCC calculation yielded a clustered velocity distribution over the visible and infrared gradient images. The velocity field calculated from the visible gradient image pair agreed well with a subjective analysis of the motion, but the velocity field from the infrared gradient image pair did not. This was attributed to the changing shapes of the gradient features, their nonuniqueness, and large displacements relative to the mean distance between them. These problems implied a lower repeat time for the imagery was needed in order to improve the velocity field derived from gradient imagery. Suggestions are given for optimizing the repeat time of sequential imagery when using the MCC method for motion studies. Applying the MCC method to the infrared brightness temperature imagery yielded a velocity field which did agree with the subjective analysis of the motion and that derived from the visible gradient imagery. Differences between the visible and infrared derived velocities were 14.9 cm/s in speed and 56.7 degrees in direction. Both of these velocity fields also agreed well with the motion expected from considerations of the ocean bottom topography and wind and tidal forcing in the study area during the 2.175 hour time interval.
Heat Capacity Mapping Mission (HCMM): Interpretation of imagery over Canada
NASA Technical Reports Server (NTRS)
Cihlar, J. (Principal Investigator); Dixon, R. G.
1981-01-01
Visual analysis of HCMM images acquired over two sites in Canada and supporting aircraft and ground data obtained at a smaller subsite in Alberta show that nightime surface temperature distribution is primarily related to the near-surface air temperature; the effects of topography, wind, and land cover were low or indirect through air temperature. Surface cover and large altitudinal differences were important parameters influencing daytime apparent temperature values. A quantitative analysis of the relationship between the antecedent precipitation index and the satellite thermal IR measurements did not yield statistically significant correlation coefficients, but the correlations had a definite temporal trend which could be related to the increasing uniformity of vegetation cover. The large pixel size (resulting in a mixture of cover types and soil/canopy temperatures measured by the satellite) and high cloud cover frequency found in images covering both Canadian sites and northern U.S. were considered the main deficiencies of the thermal satellite data.
NASA Technical Reports Server (NTRS)
Barnes, J. C. (Principal Investigator); Bowley, C. J.; Smallwood, M. D.; Willand, J. H.
1981-01-01
The application of HCMM thermal infrared data to snow hydrology and the prediction of snowmelt runoff was evaluated. Data for the Salt Verde watershed in central Arizona and the southern Sierra Nevada in California were analyzed and compared to LANDSAT and NOAA satellite data, U-2 thermal data, and other correlative data. It was determined that HCMM thermal imagery provides data as accurate for snow mapping as does visible imagery, and that in comparison with the reslution of other satellite imagery, it may be the most useful. Data from the HCMM thermal channel, with careful calibration, provides useful snow surface temperature data for hydrological purposes. An approach to an automated method of analysis is presented.
Multispectral remote observations of hydrologic features on the North Slope of Alaska
NASA Technical Reports Server (NTRS)
Hall, D. K.; Bryan, M. L.
1977-01-01
Visible and near-infrared satellite data and active and passive microwave aircraft data are used to analyze some hydrologic features in Arctic Alaska. The following features have been studied: the small thaw lakes on the Arctic Coastal Plain (oriented lakes), Chandalar Lake in the Brooks Range, several North Slope rivers, surface water on the tundra, and snowcover on the North Slope and in the Brooks Range. Passive microwave brightness temperatures (T sub b) as seen on Electrically Scanned Microwave Radiometer (ESMR) imagery are shown to increase with increasing ice thickness on all of the lakes studied. Aufeis, an important hydrologic parameter in the Arctic, is observable in the Sagavanirktok River channel on April ESMR imagery. LANDSAT imagery with better (80 m) resolution is useful for measuring aufeis extent using band 5 imagery obtained just after snowmelt in June. It is shown that the extent of aufeis (as measured on LANDSAT imagery) varies with meteorological conditions and, therefore, may be a useful indicator of annual climate fluctuations on the North Slope. Snow and ice breakup has been traced from the Brooks Range Mountains to the Arctic Ocean Coast using LANDSAT band 7 imagery in May when melting begins in the mountains.
Impacts of land use and land cover on surface and air temperature in urban landscapes
NASA Astrophysics Data System (ADS)
Crum, S.; Jenerette, D.
2015-12-01
Accelerating urbanization affects regional climate as the result of changing land cover and land use (LCLU). Urban land cover composition may provide valuable insight into relationships among urbanization, air, and land-surface temperature (Ta and LST, respectively). Climate may alter these relationships, where hotter climates experience larger LULC effects. To address these hypotheses we examined links between Ta, LST, LCLU, and vegetation across an urban coastal to desert climate gradient in southern California, USA. Using surface temperature radiometers, continuously measuring LST on standardized asphalt, concrete, and turf grass surfaces across the climate gradient, we found a 7.2°C and 4.6°C temperature decrease from asphalt to vegetated cover in the coast and desert, respectively. There is 131% more temporal variation in asphalt than turf grass surfaces, but 37% less temporal variation in concrete than turf grass. For concrete and turf grass surfaces, temporal variation in temperature increased from coast to desert. Using ground-based thermal imagery, measuring LST for 24 h sequences over citrus orchard and industrial use locations, we found a 14.5°C temperature decrease from industrial to orchard land use types (38.4°C and 23.9°C, respectively). Additionally, industrial land use types have 209% more spatial variation than orchard (CV=0.20 and 0.09, respectively). Using a network of 300 Ta (iButton) sensors mounted in city street trees throughout the region and hyperspectral imagery data we found urban vegetation greenness, measured using the normalized difference vegetation index (NDVI), was negatively correlated to Ta at night across the climate gradient. Contrasting previous findings, the closest coupling between NDVI and Ta is at the coast from 0000 h to 0800 h (highest r2 = 0.6, P < 0.05) while relationships at the desert are weaker (highest r2 = 0.38, P < 0.05). These findings indicate that vegetation cover in urbanized regions of southern California, USA decrease Ta and LST and spatial variation in LST, while built surfaces and land uses have the opposite effect. Furthermore these relationships are regulated by regional climate patterns, with decreases in Ta and LST being strongest in the coastal sub-region.
NASA Astrophysics Data System (ADS)
Weiss, M.; Kruse, S.; Burnett, W. C.; Chanton, J.; Greenwood, W.; Murray, M.; Peterson, R.; Swarzenski, P.
2005-12-01
In an effort to evaluate geophysical and thermal methods for detecting submarine groundwater discharge (SGD) on the Florida Gulf coast, a suite of water-borne surveys were run in conjunction with aerial thermal imagery over the lower Suwannee estuary in March 2005. Marine resistivity streaming data were collected alongside continuous radon and methane sampling from surface waters. Resistivity measurements were collected with dipole-dipole geometries. Readings were inverted for terrain resistivity assuming two-dimensional structure and constraining uppermost layers to conform to measured water depths and surface water conductivities. Thermal images were collected at the end of winter and at night to maximize temperatures between warmer discharging groundwater and colder surface waters. For the preliminary data analysis presented here, we assume high radon and methane concentrations coincide with zones of high SGD, and look at relationships between radon and methane concentrations and terrain resistivity and thermal imagery intensity values. For a limited set of coincident thermal intensity and radon readings, thermal intensities are higher at sites with the highest radon readings. These preliminary results suggest that in this environment, thermal imagery may be effective for identifying the "hottest" spots for SGD, but not for zones of diffuse discharge. The thermal imagery shows high intensity features at the heads of tidal streams, but shallow water depths precluded boat-based resistivity and sampling at these sites. Shallow terrain resistivities generally show a positive correlation with methane concentrations, as would be expected over zones of discharging groundwater that is fresher than Gulf surface water.
Pai, H.; Malenda, H.; Briggs, Martin A.; Singha, K.; González-Pinzón, R.; Gooseff, M.; Tyler, S.W.; ,
2017-01-01
The exchange of groundwater and surface water (GW-SW), including dissolved constituents and energy, represents a critical yet challenging characterization problem for hydrogeologists and stream ecologists. Here, we describe the use of a suite of high spatial-resolution remote-sensing techniques, collected using a small unmanned aircraft system (sUAS), to provide novel and complementary data to analyze GW-SW exchange. sUAS provided centimeter-scale resolution topography and water surface elevations, which are often drivers of exchange along the river corridor. Additionally, sUAS-based vegetation imagery, vegetation-top elevation, and normalized difference vegetation index (NDVI) mapping indicated GW-SW exchange patterns that are difficult to characterize from the land surface and may not be resolved from coarser satellite-based imagery. We combined these data with estimates of sediment hydraulic conductivity to provide a direct estimate of GW “shortcutting” through meander necks, which was corroborated by temperature data at the riverbed interface.
NASA Astrophysics Data System (ADS)
Pai, H.; Malenda, H. F.; Briggs, M. A.; Singha, K.; González-Pinzón, R.; Gooseff, M. N.; Tyler, S. W.
2017-12-01
The exchange of groundwater and surface water (GW-SW), including dissolved constituents and energy, represents a critical yet challenging characterization problem for hydrogeologists and stream ecologists. Here we describe the use of a suite of high spatial resolution remote sensing techniques, collected using a small unmanned aircraft system (sUAS), to provide novel and complementary data to analyze GW-SW exchange. sUAS provided centimeter-scale resolution topography and water surface elevations, which are often drivers of exchange along the river corridor. Additionally, sUAS-based vegetation imagery, vegetation-top elevation, and normalized difference vegetation index mapping indicated GW-SW exchange patterns that are difficult to characterize from the land surface and may not be resolved from coarser satellite-based imagery. We combined these data with estimates of sediment hydraulic conductivity to provide a direct estimate of GW "shortcutting" through meander necks, which was corroborated by temperature data at the riverbed interface.
A normalisation framework for (hyper-)spectral imagery
NASA Astrophysics Data System (ADS)
Grumpe, Arne; Zirin, Vladimir; Wöhler, Christian
2015-06-01
It is well known that the topography has an influence on the observed reflectance spectra. This influence is not compensated by spectral ratios, i.e. the effect is wavelength dependent. In this work, we present a complete normalisation framework. The surface temperature is estimated based on the measured surface reflectance. To normalise the spectral reflectance with respect to a standard illumination geometry, spatially varying reflectance parameters are estimated based on a non-linear reflectance model. The reflectance parameter estimation has one free parameter, i.e. a low-pass function, which sets the scale of the spatial-variance, i.e. the lateral resolution of the reflectance parameter maps. Since the local surface topography has a major influence on the measured reflectance, often neglected shading information is extracted from the spectral imagery and an existing topography model is refined to image resolution. All methods are demonstrated on the Moon Mineralogy Mapper dataset. Additionally, two empirical methods are introduced that deal with observed systematic reflectance changes in co-registered images acquired at different phase angles. These effects, however, may also be caused by the sensor temperature, due to its correlation with the phase angle. Surface temperatures above 300 K are detected and are very similar to a reference method. The proposed method, however, seems more robust in case of absorptions visible in the reflectance spectrum near 2000 nm. By introducing a low-pass into the computation of the reflectance parameters, the reflectance behaviour of the surfaces may be derived at different scales. This allows for an iterative refinement of the local surface topography using shape from shading and the computation reflectance parameters. The inferred parameters are derived from all available co-registered images and do not show significant influence of the local surface topography. The results of the empirical correction show that both proposed methods greatly reduce the influence of different phase angles or sensor temperatures.
Open-source algorithm for detecting sea ice surface features in high-resolution optical imagery
NASA Astrophysics Data System (ADS)
Wright, Nicholas C.; Polashenski, Chris M.
2018-04-01
Snow, ice, and melt ponds cover the surface of the Arctic Ocean in fractions that change throughout the seasons. These surfaces control albedo and exert tremendous influence over the energy balance in the Arctic. Increasingly available meter- to decimeter-scale resolution optical imagery captures the evolution of the ice and ocean surface state visually, but methods for quantifying coverage of key surface types from raw imagery are not yet well established. Here we present an open-source system designed to provide a standardized, automated, and reproducible technique for processing optical imagery of sea ice. The method classifies surface coverage into three main categories: snow and bare ice, melt ponds and submerged ice, and open water. The method is demonstrated on imagery from four sensor platforms and on imagery spanning from spring thaw to fall freeze-up. Tests show the classification accuracy of this method typically exceeds 96 %. To facilitate scientific use, we evaluate the minimum observation area required for reporting a representative sample of surface coverage. We provide an open-source distribution of this algorithm and associated training datasets and suggest the community consider this a step towards standardizing optical sea ice imagery processing. We hope to encourage future collaborative efforts to improve the code base and to analyze large datasets of optical sea ice imagery.
NASA Astrophysics Data System (ADS)
Vesecky, John F.; Stewart, Robert H.
1982-04-01
Over the period July 4 to October 10, 1978, the SEASAT synthetic aperture radar (SAR) gathered 23 cm wavelength radar images of some 108 km2 of the earth's surface, mainly of ocean areas, at 25-40 m resolution. Our assessment is in terms of oceanographic and ocean monitoring objectives and is directed toward discovering the proper role of SAR imagery in these areas of interest. In general, SAR appears to have two major and somewhat overlapping roles: first, quantitative measurement of ocean phenomena, like long gravity waves and wind fields, as well as measurement of ships; second, exploratory observations of large-scale ocean phenomena, such as the Gulf Stream and its eddies, internal waves, and ocean fronts. These roles are greatly enhanced by the ability of 23 cm SAR to operate day or night and through clouds. To begin we review some basics of synthetic aperture radar and its implementation on the SEASAT spacecraft. SEASAT SAR imagery of the ocean is fundamentally a map of the radar scattering characteristics of ˜30 cm wavelength ocean waves, distorted in some cases by ocean surface motion. We discuss how wind stress, surface currents, long gravity waves, and surface films modulate the scattering properties of these resonant waves with particular emphasis on the mechanisms that could produce images of long gravity waves. Doppler effects by ocean motion are also briefly described. Measurements of long (wavelength ≳100 m) gravity waves, using SEASAT SAR imagery, are compared with surface measurements during several experiments. Combining these results we find that dominant wavelength and direction are measured by SEASAT SAR within ±12% and ±15°, respectively. However, we note that ocean waves are not always visible in SAR images and discuss detection criteria in terms of wave height, length, and direction. SAR estimates of omnidirectional wave height spectra made by assuming that SAR image intensity is proportional to surface height fluctuations are more similar to corresponding surface measurements of wave height spectra than to wave slope spectra. Because SEASAT SAR images show the radar cross section σ° of ˜30 cm waves (neglecting doppler effects), and because these waves are raised by wind stress on the ocean surface, wind measurements are possible. Comparison between wind speeds estimated from SEASAT SAR imagery and from the SEASAT satellite scatterometer (SASS) agreed to within ±0.7 m s- over a 350-km comparison track and for wind speeds from 2 to 15 m s-. The great potential of SAR wind measurements lies in studying the spatial structure of the wind field over a range of spatial scales of from ≲1 km to ≳100 km. At present, the spatial and temporal structure of ocean wind fields is largely unknown. Because SAR responds to short waves whose energy density is a function of wind stress at the surface rather than wind speed at some distance above the surface, variations in image intensity may also reflect changes in air-sea temperature difference (thus complicating wind measurements by SAR). Because SAR images show the effects of surface current shear, air-sea temperature difference, and surface films through their modulation of the ˜30 cm waves, SEASAT images can be used to locate and study the Gulf Stream and related warm water rings, tidal flows at inlets, internal waves, and slicks resulting from surface films. In many of these applications, SAR provides a remote sensing capability that is complementary to infrared imagery because the two techniques sense largely different properties, namely, surface roughness and temperature. Both stationary ships and moving ships with their attendant wakes are often seen in SAR images. Ship images can be used to estimate ship size, heading, and speed. However, ships known to be in areas imaged by SAR are not always detectable. Clearly, a variety of factors, such as image resolution, ship size, sea state, and winds could affect ship detection. Overall, the role of SAR imagery in oceanography is definitely evolving at this time, but its ultimate role is unclear. We have assessed the ability of SEASAT SAR to measure a variety of ocean phenomena and have commented briefly on applications. In the end, oceanographers and others will have to judge from these capabilities the proper place for SAR in oceanography and remote sensing of the ocean.
Cast Glance Near Infrared Imaging Observations of the Space Shuttle During Hypersonic Re-Entry
NASA Technical Reports Server (NTRS)
Tack, Steve; Tomek, Deborah M.; Horvath, Thomas J.; Verstynen, Harry A.; Shea, Edward J.
2010-01-01
High resolution calibrated infrared imagery of the Space Shuttle was obtained during hypervelocity atmospheric entries of the STS-119, STS-125 and STS128 missions and has provided information on the distribution of surface temperature and the state of the airflow over the windward surface of the Orbiter during descent. This data collect was initiated by NASA s Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) team and incorporated the use of air- and land-based optical assets to image the Shuttle during atmospheric re-entry. The HYTHIRM objective is to develop and implement a set of mission planning tools designed to establish confidence in the ability of an existing optical asset to reliably acquire, track and return global quantitative surface temperatures of the Shuttle during entry. On Space Shuttle Discovery s STS-119 mission, NASA flew a specially modified thermal protection system tile and instrumentation package to monitor heating effects from boundary layer transition during re-entry. On STS-119, the windward airflow on the port wing was deliberately disrupted by a four-inch wide and quarter-inch tall protuberance built into the modified tile. In coordination with this flight experiment, a US Navy NP-3D Orion aircraft was flown 28 nautical miles below Discovery and remotely monitored surface temperature of the Orbiter at Mach 8.4 using a long-range infrared optical package referred to as Cast Glance. Approximately two months later, the same Navy Cast Glance aircraft successfully monitored the surface temperatures of the Orbiter Atlantis traveling at approximately Mach 14.3 during its return from the successful Hubble repair mission. In contrast to Discovery, Atlantis was not part of the Boundary Layer Transition (BLT) flight experiment, thus the vehicle was not configured with a protuberance on the port wing. In September 2009, Cast Glance was again successful in capturing infrared imagery and monitoring the surface temperatures on Discovery s next flight, STS-128. Again, NASA flew a specially modified thermal protection system tile and instrumentation package to monitor heating effects from boundary layer transition during re-entry. During this mission, Cast Glance was able to image laminar and turbulent flow phenomenology optimizing data collection for Mach 14.7. The purpose of this paper is to describe key elements associated with STS-119/125/128 mission planning and execution from the perspective of the Cast Glance flight crew that obtained the imagery. The paper will emphasize a human element of experience, expertise and adaptability seamlessly coupled with Cast Glance system and sensor technology required to manually collect the required imagery. Specific topics will include a near infrared (NIR) camera upgrade that was implemented just prior to the missions, how pre-flight radiance modeling was utilized to optimize the IR sensor configuration, communications, the development of aircraft test support positions based upon Shuttle trajectory information, support to contingencies such as Shuttle one orbit wave-offs/west coast diversions and then the Cast Glance perspective during an actual Shuttle imaging mission.
Xian, George
2008-01-01
By using both high-resolution orthoimagery and medium-resolution Landsat satellite imagery with other geospatial information, several land surface parameters including impervious surfaces and land surface temperatures for three geographically distinct urban areas in the United States – Seattle, Washington, Tampa Bay, Florida, and Las Vegas, Nevada, are obtained. Percent impervious surface is used to quantitatively define the spatial extent and development density of urban land use. Land surface temperatures were retrieved by using a single band algorithm that processes both thermal infrared satellite data and total atmospheric water vapor content. Land surface temperatures were analyzed for different land use and land cover categories in the three regions. The heterogeneity of urban land surface and associated spatial extents were shown to influence surface thermal conditions because of the removal of vegetative cover, the introduction of non-transpiring surfaces, and the reduction in evaporation over urban impervious surfaces. Fifty years of in situ climate data were integrated to assess regional climatic conditions. The spatial structure of surface heating influenced by landscape characteristics has a profound influence on regional climate conditions, especially through urban heat island effects.
AATSR: global-change and surface-temperature measurements from Envisat
NASA Astrophysics Data System (ADS)
Llewellyn-Jones, D.; Edwards, M. C.; Mutlow, C. T.; Birks, A. R.; Barton, I. J.; Tait, H.
2001-02-01
The Advanced Along-Track Scanning Radiometer (AATSR) onboard ESA's Envisat spacecraft is designed to meet the challenging task of monitoring and detecting climate change. It builds on the success of its predecessor instruments on the ERS-1 and ERS-2 satellites, and will lead to a 15+ year record of precise and accurate global Sea-Surface Temperature (SST) measurements, thereby making a valuable contribution to the long-term climate record. With its high-accuracy, high-quality imagery and channels in the visible, near-infrared and thermal wavelengths, AATSR data will support many applications in addition to oceanographic and climate research, including a wide range of land-surface, cryosphere and atmospheric studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Love, E.; Hammack, R.W.; Harbert, W.P.
2005-11-01
The Kettle Creek watershed contains 50–100-year-old surface and underground coal mines that are a continuing source of acid mine drainage (AMD). To characterize the mining-altered hydrology of this watershed, an airborne reconnaissance was conducted in 2002 using airborne thermal infrared imagery (TIR) and helicopter-mounted electromagnetic (HEM) surveys. TIR uses the temperature differential between surface water and groundwater to locate areas where groundwater emerges at the surface. TIR anomalies located in the survey included seeps and springs, as well as mine discharges. In a follow-up ground investigation, hand-held GPS units were used to locate 103 of the TIR anomalies. Of themore » sites investigated, 26 correlated with known mine discharges, whereas 27 were previously unknown. Seven known mine discharges previously obscured from TIR imagery were documented. HEM surveys were used to delineate the groundwater table and also to locate mine pools, mine discharges, and groundwater recharge zones. These surveys located 12 source regions and flow paths for acidic, metal-containing (conductive) mine drainage; areas containing acid-generating mine spoil; and areas of groundwater recharge and discharge, as well as identifying potential mine discharges previously obscured from TIR imagery by nondeciduous vegetation. Follow-up ground-based electromagnetic surveys verified the results of the HEM survey. Our study suggests that airborne reconnaissance can make the remediation of large watersheds more efficient by focusing expensive ground surveys on small target areas.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Love, E.; Hammack, R.; Harbert, W.
2005-12-01
The Kettle Creek watershed contains 50-100-year-old surface and underground coal mines that are a continuing source of acid mine drainage (AMD). To characterize the mining-altered hydrology of this watershed, an airborne reconnaissance was conducted in 2002 using airborne thermal infrared imagery (TIR) and helicopter-mounted electromagnetic (HEM) surveys. TIR uses the temperature differential between surface water and groundwater to locate areas where groundwater emerges at the surface. TIR anomalies located in the survey included seeps and springs, as well as mine discharges. In a follow-up ground investigation, hand-held GPS units were used to locate 103 of the TIR anomalies. Of themore » sites investigated, 26 correlated with known mine discharges, whereas 27 were previously unknown. Seven known mine discharges previously obscured from TIR imagery were documented. HEM surveys were used to delineate the groundwater table and also to locate mine pools, mine discharges, and groundwater recharge zones. These surveys located 12 source regions and flow paths for acidic, metal-containing (conductive) mine drainage; areas containing acid-generating mine spoil; and areas of groundwater recharge and discharge, as well as identifying potential mine discharges previously obscured from TIR imagery by nondeciduous vegetation. Follow-up ground-based electromagnetic surveys verified the results of the HEM survey. Our study suggests that airborne reconnaissance can make the remediation of large watersheds more efficient by focusing expensive ground surveys on small target areas.« less
Bergfeld, D.; Vaughan, R. Greg; Evans, William C.; Olsen, Eric
2015-01-01
The Long Valley hydrothermal system supports geothermal power production from 3 binary plants (Casa Diablo) near the town of Mammoth Lakes, California. Development and growth of thermal ground at sites west of Casa Diablo have created concerns over planned expansion of a new well field and the associated increases in geothermal fluid production. To ensure that all areas of ground heating are identified prior to new geothermal development, we obtained high-resolution aerial thermal infrared imagery across the region. The imagery covers the existing and proposed well fields and part of the town of Mammoth Lakes. Imagery results from a predawn flight on Oct. 9, 2014 readily identified the Shady Rest thermal area (SRST), one of two large areas of ground heating west of Casa Diablo, as well as other known thermal areas smaller in size. Maximum surface temperatures at 3 thermal areas were 26–28 °C. Numerous small areas with ground temperatures >16 °C were also identified and slated for field investigations in summer 2015. Some thermal anomalies in the town of Mammoth Lakes clearly reflect human activity.Previously established projects to monitor impacts from geothermal power production include yearly surveys of soil temperatures and diffuse CO2 emissions at SRST, and less regular surveys to collect samples from fumaroles and gas vents across the region. Soil temperatures at 20 cm depth at SRST are well correlated with diffuse CO2 flux, and both parameters show little variation during the 2011–14 field surveys. Maximum temperatures were between 55–67 °C and associated CO2 discharge was around 12–18 tonnes per day. The carbon isotope composition of CO2 is fairly uniform across the area ranging between –3.7 to –4.4 ‰. The gas composition of the Shady Rest fumarole however has varied with time, and H2S concentrations in the gas have been increasing since 2009.
NASA Astrophysics Data System (ADS)
Ward, K.; Boller, R. A.
2016-12-01
The quantity of remotely-sensed Earth science data is vast and encompasses such breadth of topic that it is impossible for any one person, or even a team, to grasp the meaning of those data as a whole. In order to derive meaning from data, it is important that we explore context-specific approaches to its investigation. Collating and curating data for specific, interdisciplinary audiences is one such approach. Scientific disciplines have their own ways of grouping data sets for interdisciplinary analysis, bringing a specific context to the examination of data. The studies of sea level rise (involving sea surface temperature + sea ice and glaciers + wind, for example) and vegetation productivity (precipitation + land cover + surface temperature + groundwater) are just a couple of ways that data are grouped in an effort to bring focus and understanding to a specific topic. Natural events (hurricanes, fires, dust and haze, etc.) is another context where data from disparate disciplines and sensors can be brought together to tell a single story from multiple perspectives. In this presentation we will show how we have taken a broad selection of science data made available as imagery through NASA's Global Imagery Browse Services (GIBS) and then mapped those data sets to types of natural events in order to create virtual collections of imagery. We will then demonstrate how we combine those virtual collections with curated natural event metadata from the Earth Observatory Natural Event Tracker (EONET) using the browser-based Worldview map client to provide a dashboard that can be used by many different audiences as a portal to monitor and understand these natural events.
Satellite monitoring of sea surface pollution
NASA Technical Reports Server (NTRS)
Fielder, G.; Telfer, D. J. (Principal Investigator)
1979-01-01
The author has identified the following significant results. Image processing techniques developed are well adapted to the exploration and isolation of local areas which exhibit small temperature differences between themselves and their surroundings. In the worst case of imagery of small areal extent of sea surface having no coastal boundary in the area, there is yet no method of distinguishing unambiguously an oil spill from fog, cloud, the effect produced by shallow sediments, or the effects of naturally occuring thermal fronts. In the case of uniform slicks of liquid North Sea oil in still air, laboratory simulation experiments show that, for oil thicknesses in excess of 1 or 2 mm, there is, under equilibrium conditions, little dependence of oil surface temperature on the thickness of the oil layer. The surface temperature of oil is consistently higher than that of water, the difference being about 1 K at low values of relative humidity, but tending to increase as the relative humidity increases.
SAR observations in the Gulf of Mexico
NASA Technical Reports Server (NTRS)
Sheres, David
1992-01-01
The Gulf of Mexico (GOM) exhibits a wealth of energetic ocean features; they include the Loop Current with velocities of about 2 m/s and strong shear fronts, mesoscale eddies, double vortices, internal waves, and the outflow of the 'Mighty Mississippi' river. These energetic features can have a strong impact on the economies of the states surrounding the Gulf. Large fisheries, oil and gas production as well as pollution transport are relevant issues. These circulation features in the Gulf are invisible to conventional IR and visible satellite imagery during the Summer months due to cloud cover and uniform surface temperatures. Synthetic Aperture Radar (SAR) imagery of the Gulf does penetrate the cloud cover and shows a rich assembly of features there year-round. Below are preliminary results from GOM SAR imagery taken by SEASAT in 1978 and by the AIRSAR program in 1991.
NASA Technical Reports Server (NTRS)
Montes, Carlo; Jacob, Frederic
2017-01-01
We compared the capabilities of Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imageries for mapping daily evapotranspiration (ET) within a Mediterranean vineyard watershed. We used Landsat and ASTER data simultaneously collected on four dates in 2007 and 2008, along with the simplified surface energy balance index (S-SEBI) model. We used previously ground-validated good quality ASTER estimates as reference, and we analyzed the differences with Landsat retrievals in light of the instrumental factors and methodology. Although Landsat and ASTER retrievals of S-SEBI inputs were different, estimates of daily ET from the two imageries were similar. This is ascribed to the S-SEBI spatial differencing in temperature, and opens the path for using historical Landsat time series over vineyards.
Greenland outlet glacier dynamics from Extreme Ice Survey (EIS) photogrammetry
NASA Astrophysics Data System (ADS)
Hawbecker, P.; Box, J. E.; Balog, J. D.; Ahn, Y.; Benson, R. J.
2010-12-01
Time Lapse cameras fill gaps in our observational capabilities: 1. By providing much higher temporal resolution than offered by conventional airborne or satellite remote sensing. 2. While GPS or auto-theodolite observations can provide higher time resolution data than from photogrammetry, survival of these instruments on the hazardous glacier surface is limited, plus, the maintenance of such systems can be more expensive than the maintenance of a terrestrial photogrammetry installation. 3. Imagery provide a high spatial density of observations across the glacier surface, higher than is realistically available from GPS or other in-situ observations. 4. time lapse cameras provide observational capabilities in Eulerian and Lagrangian frames while GPS or theodolite targets, going along for a ride on the glacier, provide only Lagrangian data. Photogrammetry techniques are applied to a year-plus of images from multiple west Greenland glaciers to determine the glacier front horizontal velocity variations at hourly to seasonal time scales. The presentation includes comparisons between glacier front velocities and: 1. surface melt rates inferred from surface air temperature and solar radiation observations; 2. major calving events identified from camera images; 3. surface and near-surface ocean temperature; 4. land-fast sea ice breakup; 5. tidal variations; 6. supra-glacial melt lake drainage events observed in daily optical satellite imagery; and 7.) GPS data. Extreme Ice Survey (EIS) time lapse camera overlooking the Petermann glacier, installed to image glacier dynamics and to capture the predicted ice "island" detachment.
Use of remote sensing for land use policy formulation
NASA Technical Reports Server (NTRS)
1982-01-01
Research projects described include: (1) identifying coniferous forest types in Michigan using LANDSAT imagery; (2) investigating synoptic temperature patterns in Michigan as determined via GOES and HCMM thermal imagery; (3) land surface change detection using satellite data and a geographic data base; (4) determining soil map unit composition by electronic scanning densitometry; and (5) delimiting areas of virus infection in vineyards and blueberry fields in southwestern and western Michigan. Contractual activities involve important farmlands inventory, changes in aquatic vegetation in Saginaw Bay, digitized soil association map of Michigan, and aerial photography for hybrid-poplar research. On-going projects are also being conducted in Jamaica, Honduras, the Dominican Republic and Kenya.
The spatial variability of coastal surface water temperature during upwelling. [in Lake Superior
NASA Technical Reports Server (NTRS)
Scarpace, F. L.; Green, T., III
1979-01-01
Thermal scanner imagery acquired during a field experiment designed to study an upwelling event in Lake Superior is investigated. Temperature data were measured by the thermal scanner, with a spatial resolution of 7 m. These data were correlated with temperatures measured from boats. One- and two-dimensional Fourier transforms of the data were calculated and temperature variances as a function of wavenumber were plotted. A k-to-the-minus-three dependence of the temperature variance on wavenumber was found in the wavenumber range of 1-25/km. At wavenumbers greater than 25/km, a k-to-the-minus-five-thirds dependence was found.
NASA Astrophysics Data System (ADS)
Vasterling, Margarete; Schloemer, Stefan; Fischer, Christian; Ehrler, Christoph
2010-05-01
Spontaneous combustion of coal and resulting coal fires lead to very high temperatures in the subsurface. To a large amount the heat is transferred to the surface by convective and conductive transport inducing a more or less pronounced thermal anomaly. During the past decade satellite-based infrared-imaging (ASTER, MODIS) was the method of choice for coal fire detection on a local and regional scale. However, the resolution is by far too low for a detailed analysis of single coal fires which is essential prerequisite for corrective measures (i.e. fire fighting) and calculation of carbon dioxide emission based on a complex correlation between energy release and CO2 generation. Consequently, within the framework of the Sino-German research project "Innovative Technologies for Exploration, Extinction and Monitoring of Coal Fires in Northern China", a new concept was developed and successfully tested. An unmanned aerial vehicle (UAV) was equipped with a lightweight camera for thermografic (resolution 160 by 120 pixel, dynamic range -20 to 250°C) and for visual imaging. The UAV designed as an octocopter is able to hover at GPS controlled waypoints during predefined flight missions. The application of a UAV has several advantages. Compared to point measurements on the ground the thermal imagery quickly provides the spatial distribution of the temperature anomaly with a much better resolution. Areas otherwise not accessible (due to topography, fire induced cracks, etc.) can easily be investigated. The results of areal surveys on two coal fires in Xinjiang are presented. Georeferenced thermal and visual images were mosaicked together and analyzed. UAV-born data do well compared to temperatures measured directly on the ground and cover large areas in detail. However, measuring surface temperature alone is not sufficient. Simultaneous measurements made at the surface and in roughly 15cm depth proved substantial temperature gradients in the upper soil. Thus the temperature measured at the surface underestimates the energy emitted by the subsurface coal fire. In addition, surface temperature is strongly influenced by solar radiation and the prevailing ambient conditions (wind, temperature, humidity). As a consequence there is no simple correlation between surface and subsurface soil temperature. Efforts have been made to set up a coupled energy transport and energy balance model for the near surface considering thermal conduction, solar irradiation, thermal radiative energy and ambient temperature so far. The model can help to validate space-born and UAV-born thermal imagery and link surface to subsurface temperature but depends on in-situ measurements for input parameter determination and calibration. Results obtained so far strongly necessitate the integration of different data sources (in-situ / remote; point / area; local / medium scale) to obtain a reliable energy release estimation which is then used for coal fire characterization.
Pattern recognition analysis of polar clouds during summer and winter
NASA Technical Reports Server (NTRS)
Ebert, Elizabeth E.
1992-01-01
A pattern recognition algorithm is demonstrated which classifies eighteen surface and cloud types in high-latitude AVHRR imagery based on several spectral and textural features, then estimates the cloud properties (fractional coverage, albedo, and brightness temperature) using a hybrid histogram and spatial coherence technique. The summertime version of the algorithm uses both visible and infrared data (AVHRR channels 1-4), while the wintertime version uses only infrared data (AVHRR channels 3-5). Three days of low-resolution AVHRR imagery from the Arctic and Antarctic during January and July 1984 were analyzed for cloud type and fractional coverage. The analysis showed significant amounts of high cloudiness in the Arctic during one day in winter. The Antarctic summer scene was characterized by heavy cloud cover in the southern ocean and relatively clear conditions in the continental interior. A large region of extremely low brightness temperatures in East Antarctica during winter suggests the presence of polar stratospheric cloud.
NASA Technical Reports Server (NTRS)
Swenson, B. L.; Edsinger, L. E.
1977-01-01
The preliminary feasibility of remote high-resolution infrared imagery of the space shuttle orbiter lower surface during entry to obtain accurate measurements of aerodynamic heat transfer to that vehicle was examined. In general, it was determined that such such images can be taken from an existing aircraft/telescope system (the C-141 AIRO) with a minimum modification or addition of systems using available technology. These images will have a spatial resolution of about 0.3 m and a temperature resolution much better than 2.5 percent. The data from these images will be at conditions and at a scale not reproducible in ground based facilities and should aid in the reduction of the prudent factors of safety required to account for phenomenological uncertainties on the thermal protection system design. Principal phenomena to be observed include laminar heating, boundary-layer transition, turbulent heating, surface catalysis, and flow separation and reattachment.
Feasibility study for automatic reduction of phase change imagery
NASA Technical Reports Server (NTRS)
Nossaman, G. O.
1971-01-01
The feasibility of automatically reducing a form of pictorial aerodynamic heating data is discussed. The imagery, depicting the melting history of a thin coat of fusible temperature indicator painted on an aerodynamically heated model, was previously reduced by manual methods. Careful examination of various lighting theories and approaches led to an experimentally verified illumination concept capable of yielding high-quality imagery. Both digital and video image processing techniques were applied to reduction of the data, and it was demonstrated that either method can be used to develop superimposed contours. Mathematical techniques were developed to find the model-to-image and the inverse image-to-model transformation using six conjugate points, and methods were developed using these transformations to determine heating rates on the model surface. A video system was designed which is able to reduce the imagery rapidly, economically and accurately. Costs for this system were estimated. A study plan was outlined whereby the mathematical transformation techniques developed to produce model coordinate heating data could be applied to operational software, and methods were discussed and costs estimated for obtaining the digital information necessary for this software.
Thermal anomaly mapping from night MODIS imagery of USA, a tool for environmental assessment.
Miliaresis, George Ch
2013-02-01
A method is presented for elevation, latitude and longitude decorrelation stretch of multi-temporal MODIS MYD11C3 imagery (monthly average night land surface temperature (LST) across USA and Mexico). Multiple linear regression analysis of principal components images (PCAs) quantifies the variance explained by elevation (H), latitude (LAT), and longitude (LON). The multi-temporal LST imagery is reconstructed from the residual images and selected PCAs by taking into account the portion of variance that is not related to H, LAT, LON. The reconstructed imagery presents the magnitude the standardized LST value per pixel deviates from the H, LAT, LON predicted. LST anomaly is defined as a region that presents either positive or negative reconstructed LST value. The environmental assessment of USA indicated that only for the 25 % of the study area (Mississippi drainage basin), the LST is predicted by the H, LAT, LON. Regions with milled climatic pattern were identified in the West Coast while the coldest climatic pattern is observed for Mid USA. Positive season invariant LST anomalies are identified in SW (Arizona, Sierra Nevada, etc.) and NE USA.
Improvements in AVHRR Daytime Cloud Detection Over the ARM NSA Site
NASA Technical Reports Server (NTRS)
Chakrapani, V.; Spangenberg, D. A.; Doelling, D. R.; Minnis, P.; Trepte, Q. Z.; Arduini, R. F.
2001-01-01
Clouds play an important role in the radiation budget over Arctic and Antarctic. Because of limited surface observing capabilities, it is necessary to detect clouds over large areas using satellite imagery. At low and mid-latitudes, satellite-observed visible (VIS; 0.65 micrometers) and infrared (IR; 11 micrometers) radiance data are used to derive cloud fraction, temperature, and optical depth. However, the extreme variability in the VIS surface albedo makes the detection of clouds from satellite a difficult process in polar regions. The IR data often show that the surface is nearly the same temperature or even colder than clouds, further complicating cloud detection. Also, the boundary layer can have large areas of haze, thin fog, or diamond dust that are not seen in standard satellite imagery. Other spectral radiances measured by satellite imagers provide additional information that can be used to more accurately discriminate clouds from snow and ice. Most techniques currently use a fixed reflectance or temperature threshold to decide between clouds and clear snow. Using a subjective approach, Minnis et al. (2001) found that the clear snow radiance signatures vary as a function of viewing and illumination conditions as well as snow condition. To routinely process satellite imagery over polar regions with an automated algorithm, it is necessary to account for this angular variability and the change in the background reflectance as snow melts, vegetation grows over land, and melt ponds form on pack ice. This paper documents the initial satellite-based cloud product over the Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) site at Barrow for use by the modeling community. Cloud amount and height are determined subjectively using an adaptation of the methodology of Minnis et al. (2001) and the radiation fields arc determined following the methods of Doelling et al. (2001) as applied to data taken during the Surface Heat and Energy Budget of the Arctic (SHEBA). The procedures and data produced in this empirically based analysis will also facilitate the development of the automated algorithm for future processing of satellite data over the ARM NSA domain. Results are presented for May, June, and July 1998. ARM surface data are use to partially validate the results taken directly over the ARM site.
NASA Technical Reports Server (NTRS)
Pagnutti, Mary; Holekamp, Kara; Stewart, Randy; Vaughan, Ronald D.
2006-01-01
This Rapid Prototyping Capability study explores the potential to use atmospheric profiles derived from GPS (Global Positioning System) radio occultation measurements and by AIRS (Atmospheric Infrared Sounder) onboard the Aqua satellite to improve surface temperature retrieval from remotely sensed thermal imagery. This study demonstrates an example of a cross-cutting decision support technology whereby NASA data or models are shown to improve a wide number of observation systems or models. The ability to use one data source to improve others will be critical to the GEOSS (Global Earth Observation System of Systems) where a large number of potentially useful systems will require auxiliary datasets as input for decision support. Atmospheric correction of thermal imagery decouples TOA radiance and separates surface emission from atmospheric emission and absorption. Surface temperature can then be estimated from the surface emission with knowledge of its emissivity. Traditionally, radiosonde sounders or atmospheric models based on radiosonde sounders, such as the NOAA (National Oceanic & Atmospheric Administration) ARL (Air Resources Laboratory) READY (Real-time Environmental Application and Display sYstem), provide the atmospheric profiles required to perform atmospheric correction. Unfortunately, these types of data are too spatially sparse and too infrequently taken. The advent of high accuracy, global coverage, atmospheric data using GPS radio occultation and AIRS may provide a new avenue for filling data input gaps. In this study, AIRS and GPS radio occultation derived atmospheric profiles from the German Aerospace Center CHAMP (CHAllenging Minisatellite Payload), the Argentinean Commission on Space Activities SAC-C (Satellite de Aplicaciones Cientificas-C), and the pair of NASA GRACE (Gravity Recovery and Climate Experiment) satellites are used as input data in atmospheric radiative transport modeling based on the MODTRAN (MODerate resolution atmospheric TRANsmittance) radiative transport software to separate out the atmospheric component of measured top of atmosphere radiance. Simulated water bodies across a variety of MODTRAN model atmospheres including desert, mid-latitude, tropical and sub-artic conditions provide test bed conditions. Atmospherically corrected radiance and surface temperature results were compared to those obtained using traditional radiosonde balloon data and models. In general, differences between the different techniques were less than 2 percent indicating the potential value satellite derived atmospheric profiles have to atmospherically correct thermal imagery.
NASA Technical Reports Server (NTRS)
Friedman, J. D.; Frank, D. G.; Preble, D.; Painter, J. E.
1973-01-01
A combination of infrared images depicting areas of thermal emission and ground calibration points have proved to be particularly useful in plotting time-dependent changes in surface temperatures and radiance and in delimiting areas of predominantly convective heat flow to the earth's surface in the Cascade Range and on Surtsey Volcano, Iceland. In an integrated experiment group using ERTS-1 multispectral scanner (MSS) and aircraft infrared imaging systems in conjunction with multiple thermistor arrays, volcano surface temperatures are relayed daily to Washington via data communication platform (DCP) transmitters and ERTS-1. ERTS-1 MSS imagery has revealed curvilinear structures at Lassen, the full extent of which have not been previously mapped. Interestingly, the major surface thermal manifestations at Lassen are aligned along these structures, particularly in the Warner Valley.
NASA Technical Reports Server (NTRS)
Strub, P. Ted
1991-01-01
The overall goal of this project was to increase our understanding of processes which determine the temporally varying distributions of surface chlorophyll pigment concentration and surface temperature in the California Current System (CCS) on the time-scale of 'events', i.e., several days to several weeks. We also proposed to investigate seasonal and regional differences in these events. Additionally, we proposed to evaluate methods of estimating surface velocities and horizontal transport of pigment and heat from sequences of AVHRR and CZCS images. The four specific objectives stated in the original proposal were to: (1) test surface current estimates made from sequences of both SST and color images using variations of the statistical method of Emery et al. (1986) and estimate the uncertainties in these satellite-derived surface currents; (2) characterize the spatial and temporal relationships of chlorophyll and temperature in rapidly evolving features for which adequate imagery exist and evaluate the contribution of these events to monthly and seasonal averages; (3) use the methods tested in (1) to determine the nature of the velocity fields in the CCS; and (4) compare the currents, temperature, and currents in different seasons and in different geographic regions.
Development of a New Methodology for Computing Surface Sensible Heat Fluxes using Thermal Imagery
NASA Astrophysics Data System (ADS)
Morrison, T. J.; Calaf, M.; Fernando, H. J.; Price, T. A.; Pardyjak, E.
2017-12-01
Current numerical weather predication models utilize similarity to characterize momentum, moisture, and heat fluxes. Such formulations are only valid under the ideal assumptions of spatial homogeneity, statistical stationary, and zero subsidence. However, recent surface temperature measurements from the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program on the Salt Flats of Utah's West desert, show that even under the most a priori ideal conditions, heterogeneity of the aforementioned variables exists. We present a new method to extract spatially-distributed measurements of surface sensible heat flux from thermal imagery. The approach consists of using a surface energy budget, where the ground heat flux is easily computed from limited measurements using a force-restore-type methodology, the latent heat fluxes are neglected, and the energy storage is computed using a lumped capacitance model. Preliminary validation of the method is presented using experimental data acquired from a nearby sonic anemometer during the MATERHORN campaign. Additional evaluation is required to confirm the method's validity. Further decomposition analysis of on-site instrumentation (thermal camera, cold-hotwire probes, and sonic anemometers) using Proper Orthogonal Decomposition (POD), and wavelet analysis, reveals time scale similarity between the flow and surface fluctuations.
NASA Technical Reports Server (NTRS)
Moore, D. G. (Principal Investigator); Heilman, J.; Beutler, G.
1978-01-01
The author has identified the following significant results. In early April 1978, heavy spring runoff from snowmelt caused significant flooding along a portion of the Big Sioux River Basin in southeastern South Dakota. The flooded area was visible from surrounding areas on a May 15 HCMM IR test image. On May 15, the flood waters had receded but an area of anomalous residual high soil moisture remained. The high soil moisture area was not visible on a HCMM day visible test image of the same scene, or on LANDSAT imagery. To evaluate the effect of water table depth on surface temperatures, thermal scanner data collected on September 5 and 6, 1978 at approximate HCMM overpass times at an altitude of 3650 m were analyzed. Apparent surface temperatures measured by the scanner included emittance contributions from soil surface and the land cover. Results indicated that the shallow water tables produced a damping of the amplitude of the diurnal surface temperature wave.
HCMM hydrological analysis in Utah
NASA Technical Reports Server (NTRS)
Miller, A. W. (Principal Investigator)
1982-01-01
The feasibility of applying a linear model to HCMM data in hopes of obtaining an accurate linear correlation was investigated. The relationship among HCMM sensed data surface temperature and red reflectivity on Utah Lake and water quality factors including algae concentrations, algae type, and nutrient and turbidity concentrations was established and evaluated. Correlation (composite) images of day infrared and reflectance imagery were assessed to determine if remote sensing offers the capability of using masses of accurate and comprehensive data in calculating evaporation. The effects of algae on temperature and evaporation were studied and the possibility of using satellite thermal data to locate areas within Utah Lake where significant thermal sources exist and areas of near surface groundwater was examined.
NASA Astrophysics Data System (ADS)
Brando, V. E.; Braga, F.; Zaggia, L.; Carniel, S.
2016-02-01
Sea surface temperature (SST) and turbidity (T) derived from Landsat-8 (L8) imagery were used to characterize river plumes in the Northern Adriatic Sea (NAS). Sea surface salinity (SSS) from an operational coupled ocean-wave model supported the interpretation of the plumes interaction with the receiving waters and among them. In this study we used L8 OLI and TIRS imagery of 19 November 2014 capturing a significant freshwater inflow into the NAS for mapping both T and SST at 30 meters resolution. Sharp fronts in T and SST delimited each single river plume. The isotherms and turbidity isolines coupling varied among the plumes due to differences in particle loads and surface temperatures in the discharged waters. Overall, there was a good agreement of the SSS, T, and SST fields at the mesoscale delineation of the major river plumes. Landsat-8 30m resolution enabled the identification of smaller plume structures and the description at small scale and sub-mesoscale of the plume dynamical regions for all plume structures, as well as their interactions in the NAS. Although this study presents data captured with a sensor having a revisiting time of 16 days, we expect that with the recent launch of ESA's Sentinel 2A and the forthcoming launch of Sentinel 2B the temporal resolution will increase reaching almost the 1-3 days revisit time normally associated with Ocean Colour Radiometry (OCR). Combined with their radiometric resolution similar to OCR missions, these developments will thus offer an opportunity to also describe the temporal evolution of plume structures at the sub-mesoscale.
Statistics of surface divergence and their relation to air-water gas transfer velocity
NASA Astrophysics Data System (ADS)
Asher, William E.; Liang, Hanzhuang; Zappa, Christopher J.; Loewen, Mark R.; Mukto, Moniz A.; Litchendorf, Trina M.; Jessup, Andrew T.
2012-05-01
Air-sea gas fluxes are generally defined in terms of the air/water concentration difference of the gas and the gas transfer velocity,kL. Because it is difficult to measure kLin the ocean, it is often parameterized using more easily measured physical properties. Surface divergence theory suggests that infrared (IR) images of the water surface, which contain information concerning the movement of water very near the air-water interface, might be used to estimatekL. Therefore, a series of experiments testing whether IR imagery could provide a convenient means for estimating the surface divergence applicable to air-sea exchange were conducted in a synthetic jet array tank embedded in a wind tunnel. Gas transfer velocities were measured as a function of wind stress and mechanically generated turbulence; laser-induced fluorescence was used to measure the concentration of carbon dioxide in the top 300 μm of the water surface; IR imagery was used to measure the spatial and temporal distribution of the aqueous skin temperature; and particle image velocimetry was used to measure turbulence at a depth of 1 cm below the air-water interface. It is shown that an estimate of the surface divergence for both wind-shear driven turbulence and mechanically generated turbulence can be derived from the surface skin temperature. The estimates derived from the IR images are compared to velocity field divergences measured by the PIV and to independent estimates of the divergence made using the laser-induced fluorescence data. Divergence is shown to scale withkLvalues measured using gaseous tracers as predicted by conceptual models for both wind-driven and mechanically generated turbulence.
NASA Technical Reports Server (NTRS)
Kim, Hongsuk H.
1991-01-01
The phenomenon of urban heat island was investigated by the use of LANDSAT Thematic Mapper data sets collected over the metropolitan area of Washington DC (U.S.). By combining the retrieved spectral albedos and temperatures, urban modification on radiation budgets of five surface categories were analyzed. The surface radiation budget imagery of the area show that urban heating is attributable to a large heat flux from the rapidly heating surfaces of asphalt, bare soil and short grass. In summer, symptoms of diurnal heating begin to appear by mid morning and can be about 10 degrees warmer than nearby woodlands in summer.
Multi-temporal analysis of land surface temperature in highly urbanized districts
NASA Astrophysics Data System (ADS)
Kaya, S.; Celik, B.; Sertel, E.; Bayram, B.; Seker, D. Z.
2017-12-01
Istanbul is one of the largest cities around the world with population over 15 million and it has 39 districts. Due to high immigration rate after the 1980s, parallel to the urbanization rapid population increase has occurred in some of these districts. Thus, a significant increase in land surface temperature were monitored and this subject became one of the most popular subject of different researches. Natural landscapes transformed into residential areas with impervious surfaces that causes rise in land surface temperatures which is one of the component of urban heat islands. This study focuses on determining the land use/land cover changes and land surface temperature in highly urbanized districts for last 32 years and examining the relationship between these two parameters using multi-temporal optical and thermal remotely sensed data. In this study, Landsat5 Thematic Mapper and Landsat8 OLI/TIR imagery with acquisition dates June 1984 and June 2016 were used. In order to assess the land use/cover change between 1984 and 2016, Vegetation Impervious Surface-soil (V-I-S) model is used. Each end-member spectra are extracted from ASTER spectral library. Additionally, V-I-S model, NDVI, NDBI and NDBaI indices have been derived for further investigation of land cover changes. The results of the study, presented that in the last 32 years, the amount of impervious surfaces substantially increased along with land surface temperatures.
Application of multispectral radar and LANDSAT imagery to geologic mapping in death valley
NASA Technical Reports Server (NTRS)
Daily, M.; Elachi, C.; Farr, T.; Stromberg, W.; Williams, S.; Schaber, G.
1978-01-01
Side-Looking Airborne Radar (SLAR) images, acquired by JPL and Strategic Air Command Systems, and visible and near-infrared LANDSAT imagery were applied to studies of the Quaternary alluvial and evaporite deposits in Death Valley, California. Unprocessed radar imagery revealed considerable variation in microwave backscatter, generally correlated with surface roughness. For Death Valley, LANDSAT imagery is of limited value in discriminating the Quaternary units except for alluvial units distinguishable by presence or absence of desert varnish or evaporite units whose extremely rough surfaces are strongly shadowed. In contrast, radar returns are most strongly dependent on surface roughness, a property more strongly correlated with surficial geology than is surface chemistry.
Thermographic imaging of the space shuttle during re-entry using a near-infrared sensor
NASA Astrophysics Data System (ADS)
Zalameda, Joseph N.; Horvath, Thomas J.; Kerns, Robbie V.; Burke, Eric R.; Taylor, Jeff C.; Spisz, Tom; Gibson, David M.; Shea, Edward J.; Mercer, C. David; Schwartz, Richard J.; Tack, Steve; Bush, Brett C.; Dantowitz, Ronald F.; Kozubal, Marek J.
2012-06-01
High resolution calibrated near infrared (NIR) imagery of the Space Shuttle Orbiter was obtained during hypervelocity atmospheric re-entry of the STS-119, STS-125, STS-128, STS-131, STS-132, STS-133, and STS-134 missions. This data has provided information on the distribution of surface temperature and the state of the airflow over the windward surface of the Orbiter during descent. The thermal imagery complemented data collected with onboard surface thermocouple instrumentation. The spatially resolved global thermal measurements made during the Orbiter's hypersonic re-entry will provide critical flight data for reducing the uncertainty associated with present day ground-to-flight extrapolation techniques and current state-of-the-art empirical boundary-layer transition or turbulent heating prediction methods. Laminar and turbulent flight data is critical for the validation of physics-based, semi-empirical boundary-layer transition prediction methods as well as stimulating the validation of laminar numerical chemistry models and the development of turbulence models supporting NASA's next-generation spacecraft. In this paper we provide details of the NIR imaging system used on both air and land-based imaging assets. The paper will discuss calibrations performed on the NIR imaging systems that permitted conversion of captured radiant intensity (counts) to temperature values. Image processing techniques are presented to analyze the NIR data for vignetting distortion, best resolution, and image sharpness.
Sea surface and remotely sensed temperatures off Cape Mendocino, California
NASA Technical Reports Server (NTRS)
Breaker, L. C.; Arvesen, J. C.; Frydenlund, D.; Myers, J. S.; Short, K.
1985-01-01
During September 3 to 5, 1979, a multisensor oceanographic experiment was conducted off Cape Mendocino, California. The purpose of this experiment was to validate the use of remote sensing techniques over an area along the U.S. west coast where coasted upwelling is known to be intense. Remotely sensed mutlispectral data, including thermal infrared imagery, were collected above an upwelling feature off Cape Mendocino. Data were acquired from the TIRNOS-N and NOAA-6 polar orbiting satellites, the NASA Ames Research Center's high altitude U-2 aircraft, and a U.S. Coast Guard C-130 aircraft. Supporting surface truth data over the same feature were collected aboard the National Oceanic and Atmospheric Administration (NOAA) ship, OCEANOGRAPHER. Atmospheric soundings were also taken aboard the ship. The results indicate that shipboard measurements of sea surface temperatures can be reproduction within 1 C or better through remote observation of absolute infrared radiance values (whether measured aboard the NOAA polar orbiting satellite, the U-2 aircraft, or the Coast Guard aircraft) by using appropriate atmospheric corrections. Also, the patterns of sea surface temperature which were derived independently from the various remote platforms provide a consistent interpretation of the surface temperature field.
NASA Astrophysics Data System (ADS)
Nowicki, S. A.; Skuse, R. J.
2012-12-01
High-resolution ecological and climate modeling requires quantification of surface characteristics such as rock abundance, soil induration and surface roughness at fine-scale, since these features can affect the micro and macro habitat of a given area and ultimately determine the assemblage of plant and animal species that may occur there. Our objective is to develop quantitative data layers of thermophysical properties of the entire Mojave Desert Ecoregion for applications to habitat modeling being conducted by the USGS Western Ecological Research Center. These research efforts are focused on developing habitat models and a better physical understanding of the Mojave Desert, which have implications the development of solar and wind energy resources, military installation expansion and residential development planned for the Mojave. Thus there is a need to improve our understanding of the mechanical composition and thermal characteristics of natural and modified surfaces in the southwestern US at as high-resolution as possible. Since the Mojave is a sparsely-vegetated, arid landscape with little precipitation, remote sensing-based thermophysical analyses using Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) day and nighttime imagery are ideal for determining the physical properties of the surface. New mosaicking techniques for thermal imagery acquired at different dates, seasons and temperatures have allowed for the highest-resolution mosaics yet generated at 100m/pixel for thermal infrared wavelengths. Among our contributions is the development of seamless day and night ASTER mosaics of land surface temperatures that are calibrated to Moderate Resolution Imaging Spectroradiometer (MODIS) coincident observations to produce both a seamless mosaic and quantitative temperatures across the region that varies spectrally and thermophysically over a large number of orbit tracks. Products derived from this dataset include surface rock abundance, apparent thermal inertia, and diurnal/seasonal thermal regime. Additionally, the combination of moderate and high-resolution thermal observations are used to map the spatial and temporal variation of significant rain storms that intermittently increase the surface moisture. The resulting thermally-derived layers are in the process of being combined with composition, vegetation and surface reflectance datasets to map the Mojave at the highest VNIR resolution (20m/pixel) and compared to currently-available lower-resolution datasets.
NASA Astrophysics Data System (ADS)
Glaser, Barbara; Antonelli, Marta; Pfister, Laurent; Klaus, Julian
2017-04-01
Surface saturated areas are important for the on- and offset of hydrological connectivity within the hillslope-riparian-stream continuum. This is reflected in concepts such as variable contributing areas or critical source areas. However, we still lack a standardized method for areal mapping of surface saturation and for observing its spatiotemporal variability. Proof-of-concept studies in recent years have shown the potential of thermal infrared (TIR) imagery to record surface saturation dynamics at various temporal and spatial scales. Thermal infrared imagery is thus a promising alternative to conventional approaches, such as the squishy boot method or the mapping of vegetation. In this study we use TIR images to investigate the variability of surface saturated areas at different temporal and spatial scales in the forested Weierbach catchment (0.45 km2) in western Luxembourg. We took TIR images of the riparian zone with a hand-held FLIR infrared camera at fortnightly intervals over 18 months at nine different locations distributed over the catchment. Not all of the acquired images were suitable for a derivation of the surface saturated areas, as various factors influence the usability of the TIR images (e.g. temperature contrasts, shadows, fog). Nonetheless, we obtained a large number of usable images that provided a good insight into the dynamic behaviour of surface saturated areas at different scales. The images revealed how diverse the evolution of surface saturated areas can be throughout the hydrologic year. For some locations with similar morphology or topography we identified diverging saturation dynamics, while other locations with different morphology / topography showed more similar behaviour. Moreover, we were able to assess the variability of the dynamics of expansion / contraction of saturated areas within the single locations, which can help to better understand the mechanisms behind surface saturation development.
Current Operational Use of and Future Needs for Microwave Imagery at NOAA
NASA Astrophysics Data System (ADS)
Goldberg, M.; McWilliams, G.; Chang, P.
2017-12-01
There are many applications of microwave imagery served by NOAA's operational products and services. They include the use of microwave imagery and derived products for monitoring precipitation, tropical cyclones, sea surface temperature under all weather conditions, wind speed, snow and ice cover, and even soil moisture. All of NOAA's line offices including the National Weather Service, National Ocean Service, National Marine Fisheries Service, and Office of Oceanic and Atmospheric Research rely on microwave imagery. Currently microwave imagery products used by NOAA come from a constellation of satellites that includes Air Force's Special Sensor Microwave Imager Sounder (SSMIS), the Japanese Advanced Microwave Scanning Radiometer (AMSR), the Navy's WindSat, and NASA's Global Precipitation Monitoring (GPM) Microwave Imager (GMI). Follow-on missions for SSMIS are very uncertain, JAXA approval for a follow-on to AMSR2 is still pending, and GMI is a research satellite (lacking high-latitude coverage) with no commitment for operational continuity. Operational continuity refers to a series of satellites, so when one satellite reaches its design life a new satellite is launched. EUMETSAT has made a commitment to fly a microwave imager in the mid-morning orbit. China and Russia have demonstrated on-orbit microwave imagers. Of utmost importance to NOAA, however, is the quality, access, and latency of the data This presentation will focus on NOAA's current requirements for microwave imagery data which, for the most part, are being fulfilled by AMSR2, SSMIS, and WindSat. It will include examples of products and applications of microwave imagery at NOAA. We will also discuss future needs, especially for improved temporal resolution which hopefully can be met by an international constellation of microwave imagers. Finally, we will discuss what we are doing to address the potential gap in imagery.
Modeling and analysis of LWIR signature variability associated with 3D and BRDF effects
NASA Astrophysics Data System (ADS)
Adler-Golden, Steven; Less, David; Jin, Xuemin; Rynes, Peter
2016-05-01
Algorithms for retrieval of surface reflectance, emissivity or temperature from a spectral image almost always assume uniform illumination across the scene and horizontal surfaces with Lambertian reflectance. When these algorithms are used to process real 3-D scenes, the retrieved "apparent" values contain the strong, spatially dependent variations in illumination as well as surface bidirectional reflectance distribution function (BRDF) effects. This is especially problematic with horizontal or near-horizontal viewing, where many observed surfaces are vertical, and where horizontal surfaces can show strong specularity. The goals of this study are to characterize long-wavelength infrared (LWIR) signature variability in a HSI 3-D scene and develop practical methods for estimating the true surface values. We take advantage of synthetic near-horizontal imagery generated with the high-fidelity MultiService Electro-optic Signature (MuSES) model, and compare retrievals of temperature and directional-hemispherical reflectance using standard sky downwelling illumination and MuSES-based non-uniform environmental illumination.
Evaluation of orthomosics and digital surface models derived from aerial imagery for crop mapping
USDA-ARS?s Scientific Manuscript database
Orthomosics derived from aerial imagery acquired by consumer-grade cameras have been used for crop mapping. However, digital surface models (DSM) derived from aerial imagery have not been evaluated for this application. In this study, a novel method was proposed to extract crop height from DSM and t...
Scanning thermal plumes. [from power plant condensers
NASA Technical Reports Server (NTRS)
Scarpace, F. L.; Madding, R. P.; Green, T., III
1974-01-01
In order to study the behavior and effects of thermal plumes associated with the condenser cooling of power plants, thermal line scans are periodically made from aircraft over all power plants along the Wisconsin shore of Lake Michigan. Simultaneous ground truth is also gathered with a radiometer. Some sequential imagery has been obtained for periods up to two hours to study short term variations in the surface temperature of the plume. The article concentrates on the techniques used to analyze thermal scanner data for a single power plant which was studied intensively. The calibration methods, temperature dependence of the thermal scanner, and calculation of the modulation transfer function for the scanner are treated. It is concluded that obtaining quantitative surface-temperature data from thermal scanning is a nontrivial task. Accuracies up to plus or minus 0.1 C are attainable.
NASA Astrophysics Data System (ADS)
Miller, Steven D.; Bankert, Richard L.; Solbrig, Jeremy E.; Forsythe, John M.; Noh, Yoo-Jeong; Grasso, Lewis D.
2017-12-01
This paper describes a Dynamic Enhancement Background Reduction Algorithm (DEBRA) applicable to multispectral satellite imaging radiometers. DEBRA uses ancillary information about the clear-sky background to reduce false detections of atmospheric parameters in complex scenes. Applied here to the detection of lofted dust, DEBRA enlists a surface emissivity database coupled with a climatological database of surface temperature to approximate the clear-sky equivalent signal for selected infrared-based multispectral dust detection tests. This background allows for suppression of false alarms caused by land surface features while retaining some ability to detect dust above those problematic surfaces. The algorithm is applicable to both day and nighttime observations and enables weighted combinations of dust detection tests. The results are provided quantitatively, as a detection confidence factor [0, 1], but are also readily visualized as enhanced imagery. Utilizing the DEBRA confidence factor as a scaling factor in false color red/green/blue imagery enables depiction of the targeted parameter in the context of the local meteorology and topography. In this way, the method holds utility to both automated clients and human analysts alike. Examples of DEBRA performance from notable dust storms and comparisons against other detection methods and independent observations are presented.
Coolant tube curvature effects on film cooling as detected by infrared imagery
NASA Technical Reports Server (NTRS)
Papell, S. S.; Graham, R. W.
1979-01-01
Reported herein are comparative thermal film cooling footprints observed by infrared imagery from straight, curved and looped coolant tube geometries. It was hypothesized that the difference in secondary flow and turbulence structure of flow through these three tubes should influence the mixing properties between the coolant and mainstream. The coolant was injected across an adiabatic plate through a hole angled at 30 deg to the surface in line with the free stream flow. The data cover a range of blowing rates from 0.37 to 1.25 (mass flow per unit area of coolant divided by free stream). Average temperature difference between coolant and tunnel air was 25 C. Data comparisons confirmed that coolant tube curvature significantly influences film cooling effectiveness.
Remote sensing data acquisition, analysis and archival. Volume 1. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stringer, W.J.; Dean, K.G.; Groves, J.E.
1993-03-25
The project specialized in the acquisition and dissemination of satellite imagery and its utilization for case-specific and statistical analyses of offshore environmental conditions, particularly those involving sea ice. During the duration of this contract, 854 Landsat Multispectral Scanner and 2 Landsat Thematic Mapper scenes, 8,576 Advanced Very High Resolution Radiometer images, and 31,000 European, Earth Resources Satellite, Synthetic Aperture Radar images were archived. Direct assistance was provided to eight Minerals Management Service (MMS)-sponsored studies, including analyses of Port Moller circulation, Bowhead whale migration, distribution, population and behavioral studies, Beaufort Sea fisheries, oil spill trajectory model development, and Kasegaluk Lagoon environmentalmore » assessments. In addition, under this Cooperative Agreement several complete studies were undertaken based on analysis of satellite imagery. The topics included: Kasegaluk Lagoon transport, the effect of winter storms on arctic ice, the relationship between ice surface temperatures as measured by buoys and passive microwave imagery, unusual cloud forms following lead-openings, and analyses of Chukchi and Bering sea polynyas.« less
Thermal Imagery of Groundwater Seeps: Possibilities and Limitations.
Mundy, Erin; Gleeson, Tom; Roberts, Mark; Baraer, Michel; McKenzie, Jeffrey M
2017-03-01
Quantifying groundwater flow at seepage faces is crucial because seepage faces influence the hydroecology and water budgets of watersheds, lakes, rivers and oceans, and because measuring groundwater fluxes directly in aquifers is extremely difficult. Seepage faces provide a direct and measurable groundwater flux but there is no existing method to quantitatively image groundwater processes at this boundary. Our objective is to determine the possibilities and limitations of thermal imagery in quantifying groundwater discharge from discrete seeps. We developed a conceptual model of temperature below discrete seeps, observed 20 seeps spectacularly exposed in three dimensions at an unused limestone quarry and conducted field experiments to examine the role of diurnal changes and rock face heterogeneity on thermal imagery. The conceptual model suggests that convective air-water heat exchange driven by temperature differences is the dominant heat transfer mechanism. Thermal imagery is effective at locating and characterizing the flux of groundwater seeps. Areas of active groundwater flow and ice growth can be identified from thermal images in the winter, and seepage rates can be differentiated in the summer. However, the application of thermal imagery is limited by diverse factors including technical issues of image acquisition, diurnal changes in radiation and temperature, and rock face heterogeneity. Groundwater discharge rates could not be directly quantified from thermal imagery using our observations but our conceptual model and experiments suggest that thermal imagery could quantify groundwater discharge when there are large temperature differences, simple cliff faces, non-freezing conditions, and no solar radiation. © 2016, National Ground Water Association.
Evaluation of the Harmful Algal Bloom Mapping System (HABMapS) and Bulletin
NASA Technical Reports Server (NTRS)
Hall, Callie; Zanoni, Vicki; Estep, Leland; Terrie, Gregory; D'Sa, Eurico; Pagnutti, Mary
2004-01-01
The National Oceanic and Atmospheric Administration (NOAA) Harmful Algal Bloom (HAB) Mapping System and Bulletin provide a Web-based geographic information system (GIS) and an e-mail alert system that allow the detection, monitoring, and tracking of HABs in the Gulf of Mexico. NASA Earth Science data that potentially support HABMapS/Bulletin requirements include ocean color, sea surface temperature (SST), salinity, wind fields, precipitation, water surface elevation, and ocean currents. Modeling contributions include ocean circulation, wave/currents, along-shore current regimes, and chlorophyll modeling (coupled to imagery). The most immediately useful NASA contributions appear to be the 1-km Moderate Resolution Imaging Spectrometer (MODIS) chlorophyll and SST products and the (presently used) SeaWinds wind vector data. MODIS pigment concentration and SST data are sufficiently mature to replace imagery currently used in NOAA HAB applications. The large file size of MODIS data is an impediment to NOAA use and modified processing schemes would aid in NOAA adoption of these products for operational HAB forecasting.
NASA Technical Reports Server (NTRS)
Gossmann, H.; Haberaecker, P. (Principal Investigator)
1980-01-01
The southwestern part of Central Europe between Basal and Frankfurt was used in a study to determine the accuracy with which a regionally bounded HCMM scene could be rectified with respect to a preassigned coordinate system. The scale to which excerpts from HCMM data can be sensibly enlarged and the question of how large natural structures must be in order to be identified in a satellite thermal image with the given resolution were also examined. Relief and forest and population distribution maps and a land use map derived from LANDSAT data were digitalized and adapted to a common reference system and then combined in a single multichannel data system. The control points for geometrical rectification were determined using the coordinates of the reference system. The multichannel scene was evaluated in several different manners such as the correlation of surface temperature and relief, surface temperature and land use, or surface temperature and built up areas.
Torres-Rua, Alfonso
2017-06-26
In recent years, the availability of lightweight microbolometer thermal cameras compatible with small unmanned aerial systems (sUAS) has allowed their use in diverse scientific and management activities that require sub-meter pixel resolution. Nevertheless, as with sensors already used in temperature remote sensing (e.g., Landsat satellites), a radiance atmospheric correction is necessary to estimate land surface temperature. This is because atmospheric conditions at any sUAS flight elevation will have an adverse impact on the image accuracy, derived calculations, and study replicability using the microbolometer technology. This study presents a vicarious calibration methodology (sUAS-specific, time-specific, flight-specific, and sensor-specific) for sUAS temperature imagery traceable back to NIST-standards and current atmospheric correction methods. For this methodology, a three-year data collection campaign with a sUAS called "AggieAir", developed at Utah State University, was performed for vineyards near Lodi, California, for flights conducted at different times (early morning, Landsat overpass, and mid-afternoon") and seasonal conditions. From the results of this study, it was found that, despite the spectral response of microbolometer cameras (7.0 to 14.0 μm), it was possible to account for the effects of atmospheric and sUAS operational conditions, regardless of time and weather, to acquire accurate surface temperature data. In addition, it was found that the main atmospheric correction parameters (transmissivity and atmospheric radiance) significantly varied over the course of a day. These parameters fluctuated the most in early morning and partially stabilized in Landsat overpass and in mid-afternoon times. In terms of accuracy, estimated atmospheric correction parameters presented adequate statistics (confidence bounds under ±0.1 for transmissivity and ±1.2 W/m²/sr/um for atmospheric radiance, with a range of RMSE below 1.0 W/m²/sr/um) for all sUAS flights. Differences in estimated temperatures between original thermal image and the vicarious calibration procedure reported here were estimated from -5 °C to 10 °C for early morning, and from 0 to 20 °C for Landsat overpass and mid-afternoon times.
2017-01-01
In recent years, the availability of lightweight microbolometer thermal cameras compatible with small unmanned aerial systems (sUAS) has allowed their use in diverse scientific and management activities that require sub-meter pixel resolution. Nevertheless, as with sensors already used in temperature remote sensing (e.g., Landsat satellites), a radiance atmospheric correction is necessary to estimate land surface temperature. This is because atmospheric conditions at any sUAS flight elevation will have an adverse impact on the image accuracy, derived calculations, and study replicability using the microbolometer technology. This study presents a vicarious calibration methodology (sUAS-specific, time-specific, flight-specific, and sensor-specific) for sUAS temperature imagery traceable back to NIST-standards and current atmospheric correction methods. For this methodology, a three-year data collection campaign with a sUAS called “AggieAir”, developed at Utah State University, was performed for vineyards near Lodi, California, for flights conducted at different times (early morning, Landsat overpass, and mid-afternoon”) and seasonal conditions. From the results of this study, it was found that, despite the spectral response of microbolometer cameras (7.0 to 14.0 μm), it was possible to account for the effects of atmospheric and sUAS operational conditions, regardless of time and weather, to acquire accurate surface temperature data. In addition, it was found that the main atmospheric correction parameters (transmissivity and atmospheric radiance) significantly varied over the course of a day. These parameters fluctuated the most in early morning and partially stabilized in Landsat overpass and in mid-afternoon times. In terms of accuracy, estimated atmospheric correction parameters presented adequate statistics (confidence bounds under ±0.1 for transmissivity and ±1.2 W/m2/sr/um for atmospheric radiance, with a range of RMSE below 1.0 W/m2/sr/um) for all sUAS flights. Differences in estimated temperatures between original thermal image and the vicarious calibration procedure reported here were estimated from −5 °C to 10 °C for early morning, and from 0 to 20 °C for Landsat overpass and mid-afternoon times. PMID:28672864
A Microwave Technique for Mapping Ice Temperature in the Arctic Seasonal Sea Ice Zone
NASA Technical Reports Server (NTRS)
St.Germain, Karen M.; Cavalieri, Donald J.
1997-01-01
A technique for deriving ice temperature in the Arctic seasonal sea ice zone from passive microwave radiances has been developed. The algorithm operates on brightness temperatures derived from the Special Sensor Microwave/Imager (SSM/I) and uses ice concentration and type from a previously developed thin ice algorithm to estimate the surface emissivity. Comparisons of the microwave derived temperatures with estimates derived from infrared imagery of the Bering Strait yield a correlation coefficient of 0.93 and an RMS difference of 2.1 K when coastal and cloud contaminated pixels are removed. SSM/I temperatures were also compared with a time series of air temperature observations from Gambell on St. Lawrence Island and from Point Barrow, AK weather stations. These comparisons indicate that the relationship between the air temperature and the ice temperature depends on ice type.
Small-Scale Variations in Melt of the Debris-Covered Emmons Glacier, Mount Rainier, USA
NASA Astrophysics Data System (ADS)
Dits, T. M.; Nelson, L. I.; Moore, P. L.; Pasternak, J. H.
2014-12-01
In a warming climate the vitality of mid-latitude glaciers is an important measure of local response to global climate change. However, debris-covered glaciers can respond to climate change in a nonlinear manner. Supraglacial debris alters the energy balance at the atmosphere-glacier interface compared with debris-free glaciers, and can result in both accelerated and reduced ablation through complex processes that occur on a variety of scales. Emmons Glacier, on the northeast slope of Mount Rainier (Washington, USA), offers an opportunity to study these processes in supraglacial debris that are otherwise difficult to study in situ (e.g. Himalayan glaciers). Emmons Glacier underwent a steady advance in the late 20th century despite a warming climate, in part due to increased surface debris cover. Key energy balance variables were measured in August of 2013 and 2014 using a temporary weather station installed directly on the debris-covered terminus of Emmons Glacier. Ablation of debris-covered ice was monitored in situ with ablation stakes drilled into the debris-covered ice in a 3600 m2 grid, a size comparable to a single pixel in leading thermal remote-sensing platforms. Debris thickness at the study site ranged from 3-50 cm at the ablation stakes, and textures varied from sand and gravel to large boulders with open pore space. Daily ablation rates varied by a factor of 5 in this small area and were affected by debris thickness, texture, and moisture as well as local surface slope and aspect. On this scale, ablation rates correlated better with debris surface temperature than air temperature. Spatial gradients in ablation rate may strongly influence long-term melt rates through evolving surface topography and consequent redistribution of supraglacial debris, but cannot be resolved using thermal imagery from most current satellite platforms. A preliminary field experiment with a ground-based thermal infrared camera yielded temperature measurements with fine spatial resolution (<1m pixel) and compared well with direct temperature measurements of the debris surface. This result suggests that high resolution ground-based or low-altitude (UAV) thermal imagery could become a valuable tool for monitoring change in debris-covered glaciers.
NASA Astrophysics Data System (ADS)
Cak, A. D.
2017-12-01
The Amazon Basin has faced innumerable pressures in recent years, including logging, mining and resource extraction, agricultural expansion, road building, and urbanization. These changes have drastically altered the landscape, transforming a predominantly forested environment into a mosaic of different types of land cover. The resulting fragmentation has caused dramatic and negative impacts on its structure and function, including on biodiversity and the transfer of water and energy to and from soil, vegetation, and the atmosphere (e.g., evapotranspiration). Because evapotranspiration from forested areas, which is affected by factors including temperature and water availability, plays a significant role in water dynamics in the Amazon Basin, measuring land surface temperature (LST) across the region can provide a dynamic assessment of hydrological, vegetation, and land use and land cover changes. It can also help to identify widespread urban development, which often has a higher LST signal relative to surrounding vegetation. Here, we discuss results from work to measure and identify drivers of change in LST across the entire Amazon Basin through analysis of past and current thermal and infrared satellite imagery. We leverage cloud computing resources in new ways to allow for more efficient analysis of imagery over the Amazon Basin across multiple years and multiple sensors. We also assess potential drivers of change in LST using spatial and multivariate statistical analyses with additional data sources of land cover, urban development, and demographics.
NASA Astrophysics Data System (ADS)
Anderson, C.; Vivoni, E. R.; Pierini, N.; Robles-Morua, A.; Rango, A.; Laliberte, A.; Saripalli, S.
2012-12-01
Ecohydrological dynamics can be evaluated from field observations of land-atmosphere states and fluxes, including water, carbon, and energy exchanges measured through the eddy covariance method. In heterogeneous landscapes, the representativeness of these measurements is not well understood due to the variable nature of the sampling footprint and the mixture of underlying herbaceous, shrub, and soil patches. In this study, we integrate new field techniques to understand how ecosystem surface states are related to turbulent fluxes in two different semiarid shrubland settings in the Jornada (New Mexico) and Santa Rita (Arizona) Experimental Ranges. The two sites are characteristic of Chihuahuan (NM) and Sonoran (AZ) Desert mixed-shrub communities resulting from woody plant encroachment into grassland areas. In each study site, we deployed continuous soil moisture and soil temperature profile observations at twenty sites around an eddy covariance tower after local footprint estimation revealed the optimal sensor network design. We then characterized the tower footprint through terrain and vegetation analyses derived at high resolution (<1 m) from imagery obtained from a fixed-wing and rotary-wing Unmanned Aerial Vehicles (UAV). Our analysis focuses on the summertime land-atmosphere states and fluxes during which each ecosystem responded differentially to the North American monsoon. We found that vegetation heterogeneity induces spatial differences in soil moisture and temperature that are important to capture when relating these states to the eddy covariance flux measurements. Spatial distributions of surface states at different depths reveal intricate patterns linked to vegetation cover that vary between the two sites. Furthermore, single site measurements at the tower are insufficient to capture the footprint conditions and their influence on turbulent fluxes. We also discuss techniques for aggregating the surface states based upon the vegetation and soil classifications obtained from the high-resolution aerial imagery. Overall, the integration of the different techniques yielded new insight into the spatiotemporal variation of land surface states and their relation to sensible and latent heat fluxes in two shrubland sites, with the potential application in other ecosystems worldwide.
The Looming Potential Gap in Microwave Imagery - How did we get here and what can we do about it?
NASA Astrophysics Data System (ADS)
Wilson, W. S.; Gallaher, D. W.
2017-12-01
The Air Force's Special Sensor Microwave Imager (SSMI), the Japanese Advanced Microwave Scanning Radiometer (AMSR), and the Navy's Windsat have provided a steady and reliable stream of microwave imagery that has served the Earth science community very well. Derived products include sea ice cover, snow cover on land, all-weather sea surface temperature, columnar water vapor, rain rate, and cloud liquid water. Such products are used both in operational weather forecasting, as well as in establishing and maintaining climate data records. When these sources of microwave imagery each reach the end of their life, there is the potential for a gap in coverage to occur prior to the launch of new Air Force, European and Japanese sources. Additionally, the Chinese and Russians have been flying microwave imagers that might be useful in spanning this potential gap, but users in the U.S. have not assessed the reliability and quality of their data. This presentation will set the stage for the session and provide a context for the individual papers. Two papers will address the needs and associated requirements for microwave imagery, as well as how derived products are currently being used - both for maintaining climate records and for operational use. One or two will address the performance of existing systems that are currently contributing imagery. A half-dozen will address the projected performance of future satellite systems that represent potential sources of imagery. One will address the challenges associated with the use of microwave imagery from different satellites in the maintenance of climate data records. Finally, we will plan to have some remaining time available for a general discussion about how we might work together in the future to minimize prospects for such a potential gap in to recur in the future.
Identification and Classification of Transient Signatures in Over-Land SSM/I Imagery
NASA Technical Reports Server (NTRS)
Petty, Grant W.; Conner, Mark D.
1994-01-01
Two distinct yet related factors make it difficult to reliably detect precipitation over land with passive microwave techniques, such as those developed during recent years for the Special Sensor Microwave/Imager (SSM/I). The first factor is the general lack of contrast between radiances from the strongly emitting land background and that from a non-scattering atmosphere. Indeed. for certain common combinations of surface emissivity and temperature (both surface and atmospheric), significant changes in atmospheric opacity due to liquid water may have a negligible effect on satellite observed brightness temperatures. and whatever minor change occurs may be of either positive or negative sign. For this reason it is generally necessary for some degree of volume scattering by precipitation-size ice particles to be present in order to reduce the brightness temperature of the atmosphere relative to the warm background. by which process the precipitation may be observed.
Thermographic Imaging of the Space Shuttle During Re-Entry Using a Near Infrared Sensor
NASA Technical Reports Server (NTRS)
Zalameda, Joseph N.; Horvath, Thomas J.; Kerns, Robbie V.; Burke, Eric R.; Taylor, Jeff C.; Spisz, Tom; Gibson, David M.; Shea, Edward J.; Mercer, C. David; Schwartz, Richard J.;
2012-01-01
High resolution calibrated near infrared (NIR) imagery of the Space Shuttle Orbiter was obtained during hypervelocity atmospheric re-entry of the STS-119, STS-125, STS-128, STS-131, STS-132, STS-133, and STS-134 missions. This data has provided information on the distribution of surface temperature and the state of the airflow over the windward surface of the Orbiter during descent. The thermal imagery complemented data collected with onboard surface thermocouple instrumentation. The spatially resolved global thermal measurements made during the Orbiter s hypersonic re-entry will provide critical flight data for reducing the uncertainty associated with present day ground-to-flight extrapolation techniques and current state-of-the-art empirical boundary-layer transition or turbulent heating prediction methods. Laminar and turbulent flight data is critical for the validation of physics-based, semi-empirical boundary-layer transition prediction methods as well as stimulating the validation of laminar numerical chemistry models and the development of turbulence models supporting NASA s next-generation spacecraft. In this paper we provide details of the NIR imaging system used on both air and land-based imaging assets. The paper will discuss calibrations performed on the NIR imaging systems that permitted conversion of captured radiant intensity (counts) to temperature values. Image processing techniques are presented to analyze the NIR data for vignetting distortion, best resolution, and image sharpness. Keywords: HYTHIRM, Space Shuttle thermography, hypersonic imaging, near infrared imaging, histogram analysis, singular value decomposition, eigenvalue image sharpness
NASA Astrophysics Data System (ADS)
Lee, J. H.
2015-12-01
Urban forests are known for mitigating the urban heat island effect and heat-related health issues by reducing air and surface temperature. Beyond the amount of the canopy area, however, little is known what kind of spatial patterns and structures of urban forests best contributes to reducing temperatures and mitigating the urban heat effects. Previous studies attempted to find the relationship between the land surface temperature and various indicators of vegetation abundance using remote sensed data but the majority of those studies relied on two dimensional area based metrics, such as tree canopy cover, impervious surface area, and Normalized Differential Vegetation Index, etc. This study investigates the relationship between the three-dimensional spatial structure of urban forests and urban surface temperature focusing on vertical variance. We use a Landsat-8 Thermal Infrared Sensor image (acquired on July 24, 2014) to estimate the land surface temperature of the City of Sacramento, CA. We extract the height and volume of urban features (both vegetation and non-vegetation) using airborne LiDAR (Light Detection and Ranging) and high spatial resolution aerial imagery. Using regression analysis, we apply empirical approach to find the relationship between the land surface temperature and different sets of variables, which describe spatial patterns and structures of various urban features including trees. Our analysis demonstrates that incorporating vertical variance parameters improve the accuracy of the model. The results of the study suggest urban tree planting is an effective and viable solution to mitigate urban heat by increasing the variance of urban surface as well as evaporative cooling effect.
High Lapse Rates in AIRS Retrieved Temperatures in Cold Air Outbreaks
NASA Technical Reports Server (NTRS)
Fetzer, Eric J.; Kahn, Brian; Olsen, Edward T.; Fishbein, Evan
2004-01-01
The Atmospheric Infrared Sounder (AIRS) experiment, on NASA's Aqua spacecraft, uses a combination of infrared and microwave observations to retrieve cloud and surface properties, plus temperature and water vapor profiles comparable to radiosondes throughout the troposphere, for cloud cover up to 70%. The high spectral resolution of AIRS provides sensitivity to important information about the near-surface atmosphere and underlying surface. A preliminary analysis of AIRS temperature retrievals taken during January 2003 reveals extensive areas of superadiabatic lapse rates in the lowest kilometer of the atmosphere. These areas are found predominantly east of North America over the Gulf Stream, and, off East Asia over the Kuroshio Current. Accompanying the high lapse rates are low air temperatures, large sea-air temperature differences, and low relative humidities. Imagery from a Visible / Near Infrared instrument on the AIRS experiment shows accompanying clouds. These lines of evidence all point to shallow convection in the bottom layer of a cold air mass overlying warm water, with overturning driven by heat flow from ocean to atmosphere. An examination of operational radiosondes at six coastal stations in Japan shows AIRS to be oversensitive to lower tropospheric lapse rates due to systematically warm near-surface air temperatures. The bias in near-surface air temperature is seen to be independent of sea surface temperature, however. AIRS is therefore sensitive to air-sea temperature difference, but with a warm atmospheric bias. A regression fit to radiosondes is used to correct AIRS near-surface retrieved temperatures, and thereby obtain an estimate of the true atmosphere-ocean thermal contrast in five subtropical regions across the north Pacific. Moving eastward, we show a systematic shift in this air-sea temperature differences toward more isothermal conditions. These results, while preliminary, have implications for our understanding of heat flow from ocean to atmosphere. We anticipate future improvements in the AIRS retrieval algorithm will lead to improved understanding of the exchange of sensible and latent heat from ocean to atmosphere, and more realistic near-surface lapse rates.
Remote sensing applied to prospecting of thermomineral water in the county of Caldas Novas-Goias
NASA Technical Reports Server (NTRS)
Veneziani, P.; Eustaquiodosanjos, C.
1978-01-01
LANDSAT imagery of the region were studied allowing the placement of the area of study in the regional geological context. A geological mapping of the 1.60.000 scale was done. A methodology was developed which consisted in a regional temperature mapping using trend surface analysis. Through the correlation of all these data, four different areas were localized with a high potential as thermomineral sources.
We developed a technique for assessing the accuracy of sub-pixel derived estimates of impervious surface extracted from LANDSAT TM imagery. We utilized spatially coincident
sub-pixel derived impervious surface estimates, high-resolution planimetric GIS data, vector--to-
r...
Multiple Waveband Temperature Sensor (MWTS)
NASA Technical Reports Server (NTRS)
Bandara, Sumith V.; Gunapala, Sarath; Wilson, Daniel; Stirbl, Robert; Blea, Anthony; Harding, Gilbert
2006-01-01
This slide presentation reviews the development of Multiple Waveband Temperature Sensor (MWTS). The MWTS project will result in a highly stable, monolithically integrated, high resolution infrared detector array sensor that records registered thermal imagery in four infrared wavebands to infer dynamic temperature profiles on a laser-irradiated ground target. An accurate surface temperature measurement of a target in extreme environments in a non-intrusive manner is required. The development challenge is to: determine optimum wavebands (suitable for target temperatures, nature of the targets and environments) to measure accurate target surface temperature independent of the emissivity, integrate simultaneously readable multiband Quantum Well Infrared Photodetectors (QWIPs) in a single monolithic focal plane array (FPA) sensor and to integrate the hardware/software and system calibration for remote temperature measurements. The charge was therefore to develop and demonstrate a multiband infrared imaging camera with the detectors simultaneously sensitive to multiple distinct color bands for front surface temperature measurements Wavelength ( m) measurements. Amongst the requirements are: that the measurement system will not affect target dynamics or response to the laser irradiation and that the simplest criterion for spectral band selection is to choose those practically feasible spectral bands that create the most contrast between the objects or scenes of interest in the expected environmental conditions. There is in the presentation a review of the modeling and simulation of multi-wave infrared temperature measurement and also a review of the detector development and QWIP capacities.
The IRGen infrared data base modeler
NASA Technical Reports Server (NTRS)
Bernstein, Uri
1993-01-01
IRGen is a modeling system which creates three-dimensional IR data bases for real-time simulation of thermal IR sensors. Starting from a visual data base, IRGen computes the temperature and radiance of every data base surface with a user-specified thermal environment. The predicted gray shade of each surface is then computed from the user specified sensor characteristics. IRGen is based on first-principles models of heat transport and heat flux sources, and it accurately simulates the variations of IR imagery with time of day and with changing environmental conditions. The starting point for creating an IRGen data base is a visual faceted data base, in which every facet has been labeled with a material code. This code is an index into a material data base which contains surface and bulk thermal properties for the material. IRGen uses the material properties to compute the surface temperature at the specified time of day. IRGen also supports image generator features such as texturing and smooth shading, which greatly enhance image realism.
Marginal Ice Zone Processes Observed from Unmanned Aerial Systems
NASA Astrophysics Data System (ADS)
Zappa, C. J.
2015-12-01
Recent years have seen extreme changes in the Arctic. Marginal ice zones (MIZ), or areas where the "ice-albedo feedback" driven by solar warming is highest and ice melt is extensive, may provide insights into the extent of these changes. Furthermore, MIZ play a central role in setting the air-sea CO2 balance making them a critical component of the global carbon cycle. Incomplete understanding of how the sea-ice modulates gas fluxes renders it difficult to estimate the carbon budget in MIZ. Here, we investigate the turbulent mechanisms driving mixing and gas exchange in leads, polynyas and in the presence of ice floes using both field and laboratory measurements. Measurements from unmanned aerial systems (UAS) in the marginal ice zone were made during 2 experiments: 1) North of Oliktok Point AK in the Beaufort Sea were made during the Marginal Ice Zone Ocean and Ice Observations and Processes EXperiment (MIZOPEX) in July-August 2013 and 2) Fram Strait and Greenland Sea northwest of Ny-Ålesund, Svalbard, Norway during the Air-Sea-Ice Physics and Biogeochemistry Experiment (ASIPBEX) April - May 2015. We developed a number of new payloads that include: i) hyperspectral imaging spectrometers to measure VNIR (400-1000 nm) and NIR (900-1700 nm) spectral radiance; ii) net longwave and net shortwave radiation for ice-ocean albedo studies; iii) air-sea-ice turbulent fluxes as well as wave height, ice freeboard, and surface roughness with a LIDAR; and iv) drone-deployed micro-drifters (DDµD) deployed from the UAS that telemeter temperature, pressure, and RH as it descends through the atmosphere and temperature and salinity of the upper meter of the ocean once it lands on the ocean's surface. Visible and IR imagery of melting ice floes clearly defines the scale of the ice floes. The IR imagery show distinct cooling of the skin sea surface temperature (SST) as well as an intricate circulation and mixing pattern that depends on the surface current, wind speed, and near-surface vertical temperature/salinity structure. Individual ice floes develop turbulent wakes as they drift and cause transient mixing of an influx of colder surface (fresh) melt water. We capture a melting and mixing event that explains the changing pattern observed in skin SST and is substantiated using laboratory experiments.
Estimating maize water stress by standard deviation of canopy temperature in thermal imagery
USDA-ARS?s Scientific Manuscript database
A new crop water stress index using standard deviation of canopy temperature as an input was developed to monitor crop water status. In this study, thermal imagery was taken from maize under various levels of deficit irrigation treatments in different crop growing stages. The Expectation-Maximizatio...
Modeling diurnal land temperature cycles over Los Angeles using downscaled GOES imagery
NASA Astrophysics Data System (ADS)
Weng, Qihao; Fu, Peng
2014-11-01
Land surface temperature is a key parameter for monitoring urban heat islands, assessing heat related risks, and estimating building energy consumption. These environmental issues are characterized by high temporal variability. A possible solution from the remote sensing perspective is to utilize geostationary satellites images, for instance, images from Geostationary Operational Environmental System (GOES) and Meteosat Second Generation (MSG). These satellite systems, however, with coarse spatial but high temporal resolution (sub-hourly imagery at 3-10 km resolution), often limit their usage to meteorological forecasting and global climate modeling. Therefore, how to develop efficient and effective methods to disaggregate these coarse resolution images to a proper scale suitable for regional and local studies need be explored. In this study, we propose a least square support vector machine (LSSVM) method to achieve the goal of downscaling of GOES image data to half-hourly 1-km LSTs by fusing it with MODIS data products and Shuttle Radar Topography Mission (SRTM) digital elevation data. The result of downscaling suggests that the proposed method successfully disaggregated GOES images to half-hourly 1-km LSTs with accuracy of approximately 2.5 K when validated against with MODIS LSTs at the same over-passing time. The synthetic LST datasets were further explored for monitoring of surface urban heat island (UHI) in the Los Angeles region by extracting key diurnal temperature cycle (DTC) parameters. It is found that the datasets and DTC derived parameters were more suitable for monitoring of daytime- other than nighttime-UHI. With the downscaled GOES 1-km LSTs, the diurnal temperature variations can well be characterized. An accuracy of about 2.5 K was achieved in terms of the fitted results at both 1 km and 5 km resolutions.
NASA Astrophysics Data System (ADS)
Bostater, Charles R.; Oney, Taylor S.
2017-10-01
Hyperspectral images of coastal waters in urbanized regions were collected from fixed platform locations. Surf zone imagery, images of shallow bays, lagoons and coastal waters are processed to produce bidirectional reflectance factor (BRF) signatures corrected for changing viewing angles. Angular changes as a function of pixel location within a scene are used to estimate changes in pixel size and ground sampling areas. Diffuse calibration targets collected simultaneously from within the image scene provides the necessary information for calculating BRF signatures of the water surface and shorelines. Automated scanning using a pushbroom hyperspectral sensor allows imagery to be collected on the order of one minute or less for different regions of interest. Imagery is then rectified and georeferenced using ground control points within nadir viewing multispectral imagery via image to image registration techniques. This paper demonstrates the above as well as presenting how spectra can be extracted along different directions in the imagery. The extraction of BRF spectra along track lines allows the application of derivative reflectance spectroscopy for estimating chlorophyll-a, dissolved organic matter and suspended matter concentrations at or near the water surface. Imagery is presented demonstrating the techniques to identify subsurface features and targets within the littoral and surf zones.
NASA Astrophysics Data System (ADS)
Tong, Xiaohua; Luo, Xin; Liu, Shuguang; Xie, Huan; Chao, Wei; Liu, Shuang; Liu, Shijie; Makhinov, A. N.; Makhinova, A. F.; Jiang, Yuying
2018-02-01
Remote sensing techniques offer potential for effective flood detection with the advantages of low-cost, large-scale, and real-time surface observations. The easily accessible data sources of optical remote sensing imagery provide abundant spectral information for accurate surface water body extraction, and synthetic aperture radar (SAR) systems represent a powerful tool for flood monitoring because of their all-weather capability. This paper introduces a new approach for flood monitoring by the combined use of both Landsat 8 optical imagery and COSMO-SkyMed radar imagery. Specifically, the proposed method applies support vector machine and the active contour without edges model for water extent determination in the periods before and during the flood, respectively. A map difference method is used for the flood inundation analysis. The proposed approach is particularly suitable for large-scale flood monitoring, and it was tested on a serious flood that occurred in northeastern China in August 2013, which caused immense loss of human lives and properties. High overall accuracies of 97.46% for the optical imagery and 93.70% for the radar imagery are achieved by the use of the techniques presented in this study. The results show that about 12% of the whole study area was inundated, corresponding to 5466 km2 of land surface.
Sea ice radar signatures from ERS-1 SAR during late Summer and Fall in the Beaufort and Chukchi Seas
NASA Technical Reports Server (NTRS)
Holt, Benjamin; Cunningham, Glenn; Kwok, Ron
1993-01-01
A study which examines ERS-1 C band SAR (Synthetic Aperture Radar) imagery of sea ice obtained in the Beaufort and Chukchi Seas from mid Summer through Fall freeze up and early Winter in 1991 is presented. Radar backscatter statistics of sea ice were obtained from the imagery, using common floes tracked through consecutive repeat images whenever possible. During the Summer months, strong fluctuations in ice signatures of several dB are observed over 2 to 3 day periods, which are found to be closely related to air temperature excursions above and below freezing that alters the phase of the ice surface. As air temperatures drop steadily below freezing in the Fall, the signatures of the pack ice increase in brightness and become more stable with time. Multiyear ice is distinguished from rough and smooth first year ice. There are also variations in the multiyear signatures with latitude. Large variations are seen in new ice and open water contained within leads which results in ambiguous classification.
Cloud cover determination in polar regions from satellite imagery
NASA Technical Reports Server (NTRS)
Barry, R. G.; Key, J.
1989-01-01
The objectives are to develop a suitable validation data set for evaluating the effectiveness of the International Satellite Cloud Climatology Project (ISCCP) algorithm for cloud retrieval in polar regions, to identify limitations of current procedures and to explore potential means to remedy them using textural classifiers, and to compare synoptic cloud data from model runs with observations. Toward the first goal, a polar data set consisting of visible, thermal, and passive microwave data was developed. The AVHRR and SMMR data were digitally merged to a polar stereographic projection with an effective pixel size of 5 sq km. With this data set, two unconventional methods of classifying the imagery for the analysis of polar clouds and surfaces were examined: one based on fuzzy sets theory and another based on a trained neural network. An algorithm for cloud detection was developed from an early test version of the ISCCP algorithm. This algorithm includes the identification of surface types with passive microwave, then temporal tests at each pixel location in the cloud detection phase. Cloud maps and clear sky radiance composites for 5 day periods are produced. Algorithm testing and validation was done with both actural AVHRR/SMMR data, and simulated imagery. From this point in the algorithm, groups of cloud pixels are examined for their spectral and textural characteristics, and a procedure is developed for the analysis of cloud patterns utilizing albedo, IR temperature, and texture. In a completion of earlier work, empirical analyses of arctic cloud cover were explored through manual interpretations of DMSP imagery and compared to U.S. Air Force 3D-nephanalysis. Comparisons of observed cloudiness from existing climatologies to patterns computed by the GISS climate model were also made.
In Situ Thermal Imagery of Antarctic Meteorites and Their Stability on the Ice Surface
NASA Technical Reports Server (NTRS)
Harvey, R. P.; Righter, M.; Karner, J. M.; Hyneck, B.; Keller, L.; Meshik, A.; Mittlefehldt, D.; Radebaugh, J.; Rougeux, B.; Schutt, J.
2017-01-01
The mechanisms behind Antarctic meteorite concentrations remain enigmatic nearly 5 decades after the first recoveries, and much of the research in this direction has been based on anedcotal evidence. While these observations suggest many plausible processes that help explain Antarctic meteorite concentrations, the relative importance of these various processes (which can result in either an increase or decrease of specimens) is a critical component of any more robust model of how these concentrations form. During the 2016-2017 field season of the US Antarctic Search for Meteorites program we aquired in situ thermal imagery of meteorites specimens that provide semi-quantitative assesment of the relative temperature of these specimens and the ice. These provide insight into one hypothesized loss mechanism, the downward thermal tunnelling of meteorites warmed in the sun.
NASA Astrophysics Data System (ADS)
Ito, Rosane Gonçalves; Garcia, Carlos Alberto Eiras; Tavano, Virginia Maria
2016-05-01
Sea-air CO2 fluxes over continental shelves vary substantially in time on both seasonal and sub-seasonal scales, driven primarily by variations in surface pCO2 due to several oceanic mechanisms. Furthermore, coastal zones have not been appropriately considered in global estimates of sea-air CO2 fluxes, despite their importance to ecology and to productivity. In this work, we aimed to improve our understanding of the role played by shelf waters in controlling sea-air CO2 fluxes by investigating the southwestern Atlantic Ocean (21-35°S) region, where physical, chemical and biological measurements were made on board the Brazilian R. V. Cruzeiro do Sul during late spring 2010 and early summer 2011. Features such as discharge from the La Plata River, intrusions of tropical waters on the outer shelf due to meandering and flow instabilities of the Brazil Current, and coastal upwelling in the Santa Marta Grande Cape and São Tomé Cape were detected by both in situ measurements and ocean colour and thermal satellite imagery. Overall, shelf waters in the study area were a source of CO2 to the atmosphere, with an average of 1.2 mmol CO2 m-2 day-1 for the late spring and 11.2 mmol CO2 m-2 day-1 for the early summer cruises. The spatial variability in ocean pCO2 was associated with surface ocean properties (temperature, salinity and chlorophyll-a concentration) in both the slope and shelf waters. Empirical algorithms for predicting temperature-normalized surface ocean pCO2 as a function of surface ocean properties were shown to perform well in both shelf and slope waters, except (a) within cyclonic eddies produced by baroclinic instability of the Brazil Current as detected by satellite SST imagery and (b) in coastal upwelling regions. In these regions, surface ocean pCO2 values were higher as a result of upwelled CO2-enriched subsurface waters. Finally, a pCO2 algorithm based on both sea surface temperature and surface chlorophyll-a was developed that enabled the spatial variability of surface ocean pCO2 to be mapped from satellite data in the southern region.
The summer urban heat island of Bucharest (Romania) as retrieved from satellite imagery
NASA Astrophysics Data System (ADS)
Cheval, Sorin; Dumitrescu, Alexandru
2014-05-01
The summer Urban Heat Island (UHI) of the city of Bucharest (Romania) has been investigated in terms of its shape, intensity, extension, and links to land cover. The study integrates land surface temperature (LST) data retrieved by the MODIS sensors aboard the Terra and Aqua NASA satellites, and SEVIRI sensors on board of the geostationary platform MSG, along 2000-2012. Based on the Rodionov Regime Shift Index, the significant changing points in the land surface temperature values along transverse profiles crossing the city's centre were considered as UHI's limits. The study shows that the intensity calculated as the difference between the LST within the UHI limits and several surrounding buffers is an objective and flexible tool for describing the average thermal state of the urban-rural transition. The method secures the weight of comparing the UHI's intensity of different urban areas. There are little variations from one month to another, but UHI's shapes and intensities under clear-sky conditions are very specific to nighttime (more regular and 2-3°C less in the 7-km width buffer), and daytime (more twisted and more steep temperature decrease). For both cases, strong relationships with the land cover can be assumed. The nighttime UHI's geometry is more regular, and the intensity lower than the day situation, while the land cover exerts a strong influence on the Bucharest LST. After all, the study promotes an objective manner to delimitate and quantify the UHI based on satellite imagery. The study was performed within the STAR project 92/2013 (Urban Heat Island Monitoring under Present and Future Climate - UCLIMESA).
NASA Technical Reports Server (NTRS)
Wood, William A.; Kleb, William L.; Tang, chun Y.; Palmer, Grant E.; Hyatt, Andrew J.; Wise, Adam J.; McCloud, Peter L.
2010-01-01
Surface temperature measurements from the STS-119 boundary-layer transition experiment on the space shuttle orbiter Discovery provide a rare opportunity to assess turbulent CFD models at hypersonic flight conditions. This flight data was acquired by on-board thermocouples and by infrared images taken off-board by the Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) team, and is suitable for hypersonic CFD turbulence assessment between Mach 6 and 14. The primary assessment is for the Baldwin-Lomax and Cebeci-Smith algebraic turbulence models in the DPLR and LAURA CFD codes, respectively. A secondary assessment is made of the Shear-Stress Transport (SST) two-equation turbulence model in the DPLR code. Based upon surface temperature comparisons at eleven thermocouple locations, the algebraic-model turbulent CFD results average 4% lower than the measurements for Mach numbers less than 11. For Mach numbers greater than 11, the algebraic-model turbulent CFD results average 5% higher than the three available thermocouple measurements. Surface temperature predictions from the two SST cases were consistently 3 4% higher than the algebraic-model results. The thermocouple temperatures exhibit a change in trend with Mach number at about Mach 11; this trend is not reflected in the CFD results. Because the temperature trends from the turbulent CFD simulations and the flight data diverge above Mach 11, extrapolation of the turbulent CFD accuracy to higher Mach numbers is not recommended.
New NOAA-15 Advanced Microwave Sounding Unit (AMSU) Datasets for Stratospheric Research
NASA Technical Reports Server (NTRS)
Spencer, Roy W.; Braswell, William D.
1999-01-01
The NOAA-15 spacecraft launched in May 1998 carried the first Advanced Microwave Sounding Unit (AMSU). The AMSU has eleven oxygen absorption channels with weighting functions peaking from near the surface to 2 mb. Twice-daily, limb-corrected I degree gridded datasets of layer temperatures have been constructed since the AMSU went operational in early August 1998. Examples of AMSU imagery will be shown, as will preliminary analyses of daily fluctuations in tropical stratospheric temperatures and their relationship to daily variations in tropical-average rainfall measured by the Special Sensor Microwave Imager (SSM/I). The AMSU datasets are now available for other researchers to utilize.
NASA Astrophysics Data System (ADS)
Saraceno, Martin; Provost, Christine; Piola, Alberto R.
2005-11-01
The time-space distribution of chlorophyll a in the southwestern Atlantic is examined using 6 years (1998-2003) of sea surface color images from Sea-viewing Wide Field of View Sensor (SeaWiFS). Chlorophyll a (chl a) distribution is confronted with sea surface temperature (SST) fronts retrieved from satellite imagery. Histogram analysis of the color, SST, and SST gradient data sets provides a simple procedure for pixel classification from which eight biophysical regions in the SWA are identified, including three new regions with regard to Longhurst (1998) work: Patagonian Shelf Break (PSB), Brazil Current Overshoot, and Zapiola Rise region. In the PSB region, coastal-trapped waves are suggested as a possible mechanism leading to the intraseasonal frequencies observed in SST and chl a. Mesoscale activity associated with the Brazil Current Front and, in particular, eddies drifting southward is probably responsible for the high chl a values observed throughout the Brazil Current Overshoot region. The Zapiola Rise is characterized by a local minimum in SST gradient magnitudes and shows chl a maximum values in February, 3 months later than the austral spring bloom of the surroundings. Significant interannual variability is present in the color imagery. In the PSB, springs and summers with high chl a concentrations seem associated with stronger local northerly wind speed, and possible mechanisms are discussed. Finally, the Brazil-Malvinas front is detected using both SST gradient and SeaWiFS images. The time-averaged position of the front at 54.2°W is estimated at 38.9°S and its alongshore migration of about 300 km.
NASA Technical Reports Server (NTRS)
Gossmann, H. (Principal Investigator)
1980-01-01
The author has identified the following significant results. Satellite data supplied the same information as aerial IR registrations with corresponding averaging for all studies requiring a survey of the thermal pattern within an area measuring 10 km x 10 km ore more, provided that sufficiently precise control points could be established for the purpose of geometric rectification in the surroundings of the area observed. Satellite thermal data are more comprehensive than aircraft data for studies on a regional, rather than a local scale, since airborne images often obscure the basic correlation in thermal patterns because of a variety of irrelevant topographical detail. The satellite data demonstrate the dependence of surface temperature on relief more clearly than comparable airborne imagery.
Use of remote sensing for land use policy formulation
NASA Technical Reports Server (NTRS)
1983-01-01
Multispectral scanning, infrared imagery, thematic mapping, and spectroradiometry from LANDSAT, GOES, and ground based instruments are being used to determine conifer distribution, maximum and minimum temperatures, topography, and crop diseases in Michigan's lower Peninsula. Image interpretation and automatic digital processing information from LANDSAT data are employed to classify and map the coniferous forests. Radiant temperature data from GOES were compared to temperature readings from the climatological station network. Digital data from LANDSAT is being used to develop techniques for detecting, monitoring, and modeling land surface change. Improved reflectance signatures through spectroradiometry aided in the detection of viral diseases in blueberry fields and vineyards. Soil survey maps from aerial reconnaissance are included as well as information on education, conferences, and awards.
Integration of geological remote-sensing techniques in subsurface analysis
Taranik, James V.; Trautwein, Charles M.
1976-01-01
Geological remote sensing is defined as the study of the Earth utilizing electromagnetic radiation which is either reflected or emitted from its surface in wavelengths ranging from 0.3 micrometre to 3 metres. The natural surface of the Earth is composed of a diversified combination of surface cover types, and geologists must understand the characteristics of surface cover types to successfully evaluate remotely-sensed data. In some areas landscape surface cover changes throughout the year, and analysis of imagery acquired at different times of year can yield additional geological information. Integration of different scales of analysis allows landscape features to be effectively interpreted. Interpretation of the static elements displayed on imagery is referred to as an image interpretation. Image interpretation is dependent upon: (1) the geologist's understanding of the fundamental aspects of image formation, and (2.) his ability to detect, delineate, and classify image radiometric data; recognize radiometric patterns; and identify landscape surface characteristics as expressed on imagery. A geologic interpretation integrates surface characteristics of the landscape with subsurface geologic relationships. Development of a geologic interpretation from imagery is dependent upon: (1) the geologist's ability to interpret geomorphic processes from their static surface expression as landscape characteristics on imagery, (2) his ability to conceptualize the dynamic processes responsible for the evolution 6f interpreted geologic relationships (his ability to develop geologic models). The integration of geologic remote-sensing techniques in subsurface analysis is illustrated by development of an exploration model for ground water in the Tucson area of Arizona, and by the development of an exploration model for mineralization in southwest Idaho.
Detection and modeling of subsurface coal oxidation
Leonhart, Leo S.; Rasmussen, William O.; Barringer, Anthony R.
1980-01-01
The oxidation and sustained ignition of coal and coaly wastes within surface coal mine spoils in the southwestern U.S. have hampered the success of reclamation efforts at these locations. To assess better the magnitude, depth, geometry, and dynamics of the oxidation process thermal infrared remote sensing data have been used. Digital thermal imagery was found to be useful for this purpose and was integrated with finite different heat transfer models to yield predictions of several characteristics of the thermal source. In addition to thermal infrared imagery, aerial color and false color infrared imagery were found to provide useful information for the interpretation of oxidation phenomena by means of variations in surface vegetation, color of the surface material, subsidence, etc. The combined use of thermal infrared imagery and thermal modeling techniques are well suited for use in exploration and interpretation of other thermal targets.
Holt, Benjamin; Trinh, Rebecca; Gierach, Michelle M
2017-05-15
Stormwater runoff is the largest source of pollution in the Southern California Bight (SCB), resulting from untreated runoff and pollutants from urban watersheds entering the coastal waters after rainstorms. We make use of both satellite SAR and MODIS-Aqua ocean color imagery to examine two different components of runoff plumes, the surface slick and the sediment discharge. We expand on earlier satellite SAR studies by examining an extensive collection of multi-platform SAR imagery, spanning from 1992 to 2014, that provides a more comprehensive view of the plume surface slick characteristics, illustrated with distribution maps of the extent and flow direction of the plumes. The SAR-detected surface plumes are compared with coincident rain and runoff measurements, and with available measured shoreline fecal bacteria loads. We illustrate differences in the detection of SAR surface plumes with the sediment-related discharge plumes derived from MODIS imagery. A conceptual satellite stormwater runoff monitoring approach is presented. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
1981-01-01
Tasks performed to determine the value of using GOES satellite thermal imagery to enhance fruit crop production in Michigan are described. An overview is presented of the system developed for image processing and thermal image and surface environmental data bases prepared to assess the physical models developed in Florida. These data bases were used to identify correlations between satellite apparent temperatures patterns and Earth surface factors. Significant freeze events in 1981 and the physical models used to provide a perspective on how Florida models can be applied in the context of the Michigan environment are discussed.
NASA Astrophysics Data System (ADS)
Zhao, Chunhong
2018-04-01
The Local Climate Zones (LCZs) concept was initiated in 2012 to improve the documentation of Urban Heat Island (UHI) observations. Despite the indispensable role and initial aim of LCZs concept in metadata reporting for atmospheric UHI research, its role in surface UHI investigation also needs to be emphasized. This study incorporated LCZs concept to study surface UHI effect for San Antonio, Texas. LCZ map was developed by a GIS-based LCZs classification scheme with the aid of airborne Lidar dataset and other freely available GIS data. Then, the summer LST was calculated based Landsat imagery, which was used to analyse the relations between LST and LCZs and the statistical significance of the differences of LST among the typical LCZs, in order to test if LCZs are able to efficiently facilitate SUHI investigation. The linkage of LCZs and land surface temperature (LST) indicated that the LCZs mapping can be used to compare and investigate the SUHI. Most of the pairs of LCZs illustrated significant differences in average LSTs with considerable significance. The intra-urban temperature comparison among different urban classes contributes to investigate the influence of heterogeneous urban morphology on local climate formation.
Remotely Sensed Thermal Anomalies in Western Colorado
Khalid Hussein
2012-02-01
This layer contains the areas identified as areas of anomalous surface temperature from Landsat satellite imagery in Western Colorado. Data was obtained for two different dates. The digital numbers of each Landsat scene were converted to radiance and the temperature was calculated in degrees Kelvin and then converted to degrees Celsius for each land cover type using the emissivity of that cover type. And this process was repeated for each of the land cover types (open water, barren, deciduous forest and evergreen forest, mixed forest, shrub/scrub, grassland/herbaceous, pasture hay, and cultivated crops). The temperature of each pixel within each scene was calculated using the thermal band. In order to calculate the temperature an average emissivity value was used for each land cover type within each scene. The NLCD 2001 land cover classification raster data of the zones that cover Colorado were downloaded from USGS site and used to identify the land cover types within each scene. Areas that had temperature residual greater than 2o, and areas with temperature equal to 1o to 2o, were considered Landsat modeled very warm and warm surface exposures (thermal anomalies), respectively. Note: 'o' is used in this description to represent lowercase sigma.
NASA Technical Reports Server (NTRS)
Berndt, Emily; Folmer, Michael; Dunion, Jason
2014-01-01
RGB air mass imagery is derived from multiple channels or paired channel differences. The combination of channels and channel differences means the resulting imagery does not represent a quantity or physical parameter such as brightness temperature in conventional single channel imagery. Without a specific quantity to reference, forecasters are often confused as to what RGB products represent. Hyperspectral infrared retrieved profiles and NOAA G-IV dropsondes provide insight about the vertical structure of the air mass represented on the RGB air mass imagery and are a first step to validating the imagery.
1987-05-31
phoosphor- ou%. The shoru~iard sigde i-. cold. %clI mixed. and relanttocl rich in theseu elcmcno (7 if 1. 19NI). 19,S)). The nutrient-rich Aater which io...Union, 62(36), 1981, September 8. Master’s Theses Nestor, D.A., M.S. Thesis , A Study of the Relationship Between Oceanic Chemical Mesoscale and Sea...Surface Temperature as Detected by Satellite IR Imagery; Naval Postgraduate School, Monterey, California, 1979. Conrad, J.C., M.S. Thesis , Relationship
Study of optical techniques for the Ames unitary wind tunnel. Part 5: Infrared imagery
NASA Technical Reports Server (NTRS)
Lee, George
1992-01-01
A survey of infrared thermography for aerodynamics was made. Particular attention was paid to boundary layer transition detection. IR thermography flow visualization of 2-D and 3-D separation was surveyed. Heat transfer measurements and surface temperature measurements were also covered. Comparisons of several commercial IR cameras were made. The use of a recently purchased IR camera in the Ames Unitary Plan Wind Tunnels was studied. Optical access for these facilities and the methods to scan typical models was investigated.
Utilization of satellite imagery by in-flight aircraft. [for weather information
NASA Technical Reports Server (NTRS)
Luers, J. K.
1976-01-01
Present and future utilization of satellite weather data by commercial aircraft while in flight was assessed. Weather information of interest to aviation that is available or will become available with future geostationary satellites includes the following: severe weather areas, jet stream location, weather observation at destination airport, fog areas, and vertical temperature profiles. Utilization of this information by in-flight aircraft is especially beneficial for flights over the oceans or over remote land areas where surface-based observations and communications are sparse and inadequate.
Characterization of energy exchange parameters in the Himalayan foothills Pakistan
NASA Astrophysics Data System (ADS)
Khalid, Bushra; Kumar, Mukul; Cholaw, Bueh; Aziz Khan, Junaid; Hayat Khan, Azmat
2017-04-01
The characterization of energy exchange parameters for spring season (April-May) has been done for Margalla hills national park (MHNP) Islamabad, Pakistan. It is important because Islamabad city lies in the foothills of Himalayas and micro meteorological activity makes the climate of surrounding areas. The activity on Himalaya's foothills (i.e., Margalla hills) regulate weather and also provide fresh water to the lakes and ponds by late afternoon thunder showers. This research is also important from the perspective of rain water harvesting in Islamabad, Pakistan. The objective of this study is to characterize the energy exchange parameters in the foothills of great Himalayas particularly on MHNP. Landsat ETM+ imageries have been used for calculating the land surface temperature (LST), normalized difference vegetation index (NDVI), and normalized difference moisture index (NDMI). SPOT 5 image has been used for land use/land cover classification over MHNP. The turbulent fluxes have been calculated by computing the values acquired from the processing of satellite imageries and real time observation data sets. The comparisons have been made between the land and atmospheric temperature and moisture to see the difference and its impacts on weather of twin cities i.e., Islamabad and Rawalpindi. The energy exchange parameters have been characterized by analyzing the impacts of weather parameters and turbulent fluxes on MHNP and surrounding cities. The potential rain water harvesting sites have been marked in the foothills. Weather and surface conditions become more favorable for the growth of vegetation by the end of April as the spring season reaches at its peak. There is the start of growing season in the month of April whereas the vegetation becomes thick over time during the month of May over Margalla hills however, the energy exchange parameters follow the same pattern in May as in April. The relative humidity remains between 18 - 55 % and the atmospheric temperature variations are between 19 to 35 0C during the studied period. As the atmospheric temperature and RH fluctuate, it effects the soil moisture and land surface temperature. Even if the atmospheric temperature rise or fall, the evergreen vegetation is found throughout the year on Margalla hills maintains/regulates the land surface temperature and soil moisture. The latent heat flux cause an increase in the noon temperature and RH levels. It further increases the moisture level in the atmosphere that is greatly supported by sensible heat flux to drive the moisture to the higher vertical levels and cause late afternoon thunder showers on the foothills and surrounding areas. The thundershowers are usually intense that cause light or heavy hail and changes the atmospheric temperature around 20 degrees Celsius in the evening time.
USDA-ARS?s Scientific Manuscript database
Thermal infrared band imagery provides key information for detecting wild fires, mapping land surface energy fluxes and evapotranspiration, monitoring urban heat fluxes and drought monitoring. Thermal infrared (TIR) imagery at fine resolution is required for field scale applications. However, therma...
NASA Technical Reports Server (NTRS)
Scharf, R.
2014-01-01
The ISS External Survey integrates the requirements for photographic and video imagery of the International Space Station (ISS) for the engineering, operations, and science communities. An extensive photographic survey was performed on all Space Shuttle flights to the ISS and continues to be performed daily, though on a level much reduced by the limited available imagery. The acquired video and photo imagery is used for both qualitative and quantitative assessments of external deposition and contamination, surface degradation, dynamic events, and MMOD strikes. Many of these assessments provide important information about ISS surfaces and structural integrity as the ISS ages. The imagery is also used to assess and verify the physical configuration of ISS structure, appendages, and components.
Clear water radiances for atmospheric correction of coastal zone color scanner imagery
NASA Technical Reports Server (NTRS)
Gordon, H. R.; Clark, D. K.
1981-01-01
The possibility of computing the inherent sea surface radiance for regions of clear water from coastal zone color scanner (CZCS) imagery given only a knowledge of the local solar zenith angle is examined. The inherent sea surface radiance is related to the upwelling and downwelling irradiances just beneath the sea surface, and an expression is obtained for a normalized inherent sea surface radiance which is nearly independent of solar zenith angle for low phytoplankton pigment concentrations. An analysis of a data base consisting of vertical profiles of upwelled spectral radiance and pigment concentration, which was used in the development of the CZCS program, confirms the virtual constancy of the normalized inherent sea surface radiance at wavelengths of 520 and 550 nm for cases when the pigment concentration is less than 0.25 mg/cu m. A strategy is then developed for using the normalized inherent sea surface radiance in the atmospheric correction of CZCS imagery.
The Southern Oscillation, Hypoxia, and the Eastern Pacific Tuna Fishery
NASA Astrophysics Data System (ADS)
Webster, D.; Kiefer, D.; Lam, C. H.; Harrison, D. P.; Armstrong, E. M.; Hinton, M.; Luo, L.
2012-12-01
The Eastern Pacific tuna fishery, which is one of the world's major fisheries, covers thousands of square kilometers. The vessels of this fishery are registered in more than 30 nations and largely target bigeye (Thunnus obesus), skipjack (Katsuwonus pelamis), and yellowfin (T. albacores) tuna. In both the Pelagic Habitat Analysis Module project, which is sponsored by NASA, and the Fishscape project, which is sponsored by NSF, we have attempted to define the habitat of the three species by matching a 50 year time series on fish catch and effort with oceanographic information obtained from satellite imagery and from a global circulation model. The fishery time series, which was provided by the Inter-American Tropical Tuna Commission, provided spatial maps of catch and effort at monthly time steps; the satellite imagery of the region consisted of sea surface temperature, chlorophyll, and height from GHRSST, SEAWiFS, and AVISO products, and the modeled flow field at selected depths was output from ECCO-92 simulations from 1992 to present. All information was integrated and analyzed within the EASy marine geographic information system. This GIS will also provides a home for the Fishscape spatial simulation model of the coupled dynamics of the ocean, fish, fleets, and markets. This model will then be applied to an assessment of the potential ecological and economic impacts of climate change, technological advances in fleet operations, and increases in fuel costs. We have determined by application of EOF analysis that the ECCO-2 simulation of sea surface height fits well with that of AVISO imagery; thus, if driven properly by predictions of future air-sea exchange, the model should provide good estimates of circulation patterns. We have also found that strong El Nino events lead to strong recruitment of all three species and strong La Nina events lead to weak recruitment. Finally, we have found that the general spatial distribution of the Eastern Pacific fishing grounds matches well with the spatial distribution of the hypoxic waters at a depth of 150 meters and the surface concentration of chlorophyll a, and monthly variations in the spatial distribution of the catch and effort are closely tied to sea surface temperature. We will conclude by discussing the reasons for these relationships and speculation on how these relations will help guide assessments of the impact of global warming on the fishery.
NASA Astrophysics Data System (ADS)
Nasanbat, Elbegjargal; Erdenebat, Erdenetogtokh; Chogsom, Bolorchuluun; Lkhamjav, Ochirkhuyag; Nanzad, Lkhagvadorj
2018-04-01
The glacier is most important the freshwater resources and indicator of the climate change. The researchers noted that during last decades the glacier is melting due to global warming. The study calculates a spatial distribution of protentional change of glacier coverage in the Ikh Turgen mountain of Western Mongolia, and it integrates long-term climate data and satellite datasets. Therefore, in this experiment has tried to estimation three-dimensional surface area of the glacier. For this purpose, Normalized difference snow index (NDSI) was applied to decision tree approach, using Landsat MSS, TM, ETM+ and LC8 imagery for 1975-2016, a surface and slope for digital elevation model, precipitation and air temperature historical data of meteorological station. The potential volume area significantly changed glacier cover of the Ikh Turgen Mountain, and the area affected by highly variable precipitation and air temperature regimes. Between 1972 and 2016, a potential area of glacier area has been decreased in Ikh Turgen mountain region.
Wind Tunnel Experiments to Study Chaparral Crown Fires.
Cobian-Iñiguez, Jeanette; Aminfar, AmirHessam; Chong, Joey; Burke, Gloria; Zuniga, Albertina; Weise, David R; Princevac, Marko
2017-11-14
The present protocol presents a laboratory technique designed to study chaparral crown fire ignition and spread. Experiments were conducted in a low velocity fire wind tunnel where two distinct layers of fuel were constructed to represent surface and crown fuels in chaparral. Chamise, a common chaparral shrub, comprised the live crown layer. The dead fuel surface layer was constructed with excelsior (shredded wood). We developed a methodology to measure mass loss, temperature, and flame height for both fuel layers. Thermocouples placed in each layer estimated temperature. A video camera captured the visible flame. Post-processing of digital imagery yielded flame characteristics including height and flame tilt. A custom crown mass loss instrument developed in-house measured the evolution of the mass of the crown layer during the burn. Mass loss and temperature trends obtained using the technique matched theory and other empirical studies. In this study, we present detailed experimental procedures and information about the instrumentation used. The representative results for the fuel mass loss rate and temperature filed within the fuel bed are also included and discussed.
Kavak, Mehmet Tahir; Karadogan, Sabri
2012-04-01
Present work investigated the relationship between Chlorophyll (Chl), of phytoplankton biomass, and sea surface temperature (SST) of the Black Sea, using Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Advanced Very High Resolution Radiometer (AVHRR) satellite imagery. Satellite derived data could provide information on the amount of sea life present (Brown algae, called kelp, proliferate, supporting new species of sea life, including otters, fish, and various invertebrates) in a given area throughout the world. SST from AVHRR from 1993 to 2008 showed seasonal, annual and interannual variability of temperature, monthly variability Chl from SeaWiFS from 1997 to 2009 has also been investigated. Chl showed two high peaks for the year 1999 and 2008. The correlation between SST and Chl for the same time has been found to be 60%. Correlation was significant at p<0.05. The information could also be useful in connection with studies of global changes in temperature and what effect they could have on the total abundance of marine life.
Normalization of satellite imagery
NASA Technical Reports Server (NTRS)
Kim, Hongsuk H.; Elman, Gregory C.
1990-01-01
Sets of Thematic Mapper (TM) imagery taken over the Washington, DC metropolitan area during the months of November, March and May were converted into a form of ground reflectance imagery. This conversion was accomplished by adjusting the incident sunlight and view angles and by applying a pixel-by-pixel correction for atmospheric effects. Seasonal color changes of the area can be better observed when such normalization is applied to space imagery taken in time series. In normalized imagery, the grey scale depicts variations in surface reflectance and tonal signature of multi-band color imagery can be directly interpreted for quantitative information of the target.
Topography from shading and stereo
NASA Technical Reports Server (NTRS)
Horn, Berthold K. P.
1994-01-01
Methods exploiting photometric information in images that have been developed in machine vision can be applied to planetary imagery. Integrating shape from shading, binocular stereo, and photometric stereo yields a robust system for recovering detailed surface shape and surface reflectance information. Such a system is useful in producing quantitative information from the vast volume of imagery being received, as well as in helping visualize the underlying surface.
NASA Astrophysics Data System (ADS)
Zoran, Maria A.; Savastru, Roxana S.; Savastru, Dan M.; Tautan, Marina N.; Baschir, Laurentiu V.
2013-10-01
In frame of global warming, the field of urbanization and urban thermal environment are important issues among scientists all over the world. This paper investigated the influences of urbanization on urban thermal environment as well as the relationships of thermal characteristics to other biophysical variables in Bucharest metropolitan area of Romania based on satellite remote sensing imagery Landsat TM/ETM+, time series MODIS Terra/Aqua data and IKONOS acquired during 1990 - 2012 period. Vegetation abundances and percent impervious surfaces were derived by means of linear spectral mixture model, and a method for effectively enhancing impervious surface has been developed to accurately examine the urban growth. The land surface temperature (Ts), a key parameter for urban thermal characteristics analysis, was also retrieved from thermal infrared band of Landsat TM/ETM+, from MODIS Terra/Aqua datasets. Based on these parameters, the urban growth, urban heat island effect (UHI) and the relationships of Ts to other biophysical parameters have been analyzed. Results indicated that the metropolitan area ratio of impervious surface in Bucharest increased significantly during two decades investigated period, the intensity of urban heat island and heat wave events being most significant. The correlation analyses revealed that, at the pixel-scale, Ts possessed a strong positive correlation with percent impervious surfaces and negative correlation with vegetation abundances at the regional scale, respectively. This analysis provided an integrated research scheme and the findings can be very useful for urban ecosystem modeling.
NASA Astrophysics Data System (ADS)
Prats, Jordi; Reynaud, Nathalie; Rebière, Delphine; Peroux, Tiphaine; Tormos, Thierry; Danis, Pierre-Alain
2018-04-01
The spatial and temporal coverage of the Landsat satellite imagery make it an ideal resource for the monitoring of water temperature over large territories at a moderate spatial and temporal scale at a low cost. We used Landsat 5 and Landsat 7 archive images to create the Lake Skin Surface Temperature (LakeSST) data set, which contains skin water surface temperature data for 442 French water bodies (natural lakes, reservoirs, ponds, gravel pit lakes and quarry lakes) for the period 1999-2016. We assessed the quality of the satellite temperature measurements by comparing them to in situ measurements and taking into account the cool skin and warm layer effects. To estimate these effects and to investigate the theoretical differences between the freshwater and seawater cases, we adapted the COARE 3.0 algorithm to the freshwater environment. We also estimated the warm layer effect using in situ data. At the reservoir of Bimont, the estimated cool skin effect was about -0.3 and -0.6 °C most of time, while the warm layer effect at 0.55 m was negligible on average, but could occasionally attain several degrees, and a cool layer was often observed in the night. The overall RMSE of the satellite-derived temperature measurements was about 1.2 °C, similar to other applications of satellite images to estimate freshwater surface temperatures. The LakeSST data can be used for studies on the temporal evolution of lake water temperature and for geographical studies of temperature patterns. The LakeSST data are available at https://doi.org/10.5281/zenodo.1193745.
NASA Astrophysics Data System (ADS)
Cooley, S. W.; Smith, L. C.; Pitcher, L. H.; Pavelsky, T.; Topp, S.
2017-12-01
Quantifying spatial and temporal variability in surface water storage at high latitudes is critical for assessing environmental sensitivity to climate change. Traditionally the tradeoff between high spatial and high temporal resolution space-borne optical imagery has limited the ability to track fine-scale changes in surface water extent. However, the recent launch of hundreds of earth-imaging CubeSats by commercial satellite companies such as Planet opens up new possibilities for monitoring surface water from space. In this study we present a comparison of seasonal evolution of surface water extent in two study areas with differing geologic, hydrologic and permafrost regimes, namely, the Yukon Flats in Central Alaska and the Canadian Shield north of Yellowknife, N.W.T. Using near-daily 3m Planet CubeSat imagery, we track individual lake surface area from break-up to freeze-up during summer 2017 and quantify the spatial and temporal variability in inundation extent. We validate our water delineation method and inundation extent time series using WorldView imagery, coincident in situ lake shoreline mapping and pressure transducer data for 19 lakes in the Northwest Territories and Alaska collected during the NASA Arctic Boreal Vulnerability Experiment (ABoVE) 2017 field campaign. The results of this analysis demonstrate the value of CubeSat imagery for dynamic surface water research particularly at high latitudes and illuminate fine-scale drivers of cold regions surface water extent.
Direct determination of surface albedos from satellite imagery
NASA Technical Reports Server (NTRS)
Mekler, Y.; Joseph, J. H.
1983-01-01
An empirical method to measure the spectral surface albedo of surfaces from Landsat imagery is presented and analyzed. The empiricism in the method is due only to the fact that three parameters of the solution must be determined for each spectral photograph of an image on the basis of independently known albedos at three points. The approach is otherwise based on exact solutions of the radiative transfer equation for upwelling intensity. Application of the method allows the routine construction of spectral albedo maps from satelite imagery, without requiring detailed knowledge of the atmospheric aerosol content, as long as the optical depth is less than 0.75, and of the calibration of the satellite sensor.
Automatic Jet Contrail Detection and Segmentation
NASA Technical Reports Server (NTRS)
Weiss, J.; Christopher, S. A.; Welch, R. M.
1997-01-01
Jet contrails are an important subset of cirrus clouds in the atmosphere, and thin cirrus are thought to enhance the greenhouse effect due to their semi-transparent nature. They are nearly transparent to the solar energy reaching the surface, but they reduce the planetary emission to space due to their cold ambient temperatures. Having 'seeded' the environment, contrails often elongate and widen into cirrus-like features. However, there is great uncertainty regarding the impact of contrails on surface temperature and precipitation. With increasing numbers of subsonic aircraft operating in the upper troposphere, there is the possibility of increasing cloudiness which could lead to changes in the radiation balance. Automatic detection and seg- mentation of jet contrails in satellite imagery is important because (1) it is impractical to compile a contrail climatology by hand, and (2) with the segmented images it will be possible to retrieve contrail physical properties such as optical thickness, effective ice crystal diameter and emissivity.
Calculators Contact Us About Our Site About Our Products USA.gov is the U.S. Government's official web portal to all federal, state, and local government web resources and services. WPC's Surface Analysis analysis overlaid with IR satellite imagery (IR Satellite Imagery) Latest image Loop: [3] [7] Days Latest
Lagrangian large eddy simulations of boundary layer clouds on ERA-Interim and ERA5 trajectories
NASA Astrophysics Data System (ADS)
Kazil, J.; Feingold, G.; Yamaguchi, T.
2017-12-01
This exploratory study examines Lagrangian large eddy simulations of boundary layer clouds along wind trajectories from the ERA-Interim and ERA5 reanalyses. The study is motivated by the need for statistically representative sets of high resolution simulations of cloud field evolution in realistic meteorological conditions. The study will serve as a foundation for the investigation of biomass burning effects on the transition from stratocumulus to shallow cumulus clouds in the South-East Atlantic. Trajectories that pass through a location with radiosonde data (St. Helena) and which exhibit a well-defined cloud structure and evolution were identified in satellite imagery, and sea surface temperature and atmospheric vertical profiles along the trajectories were extracted from the reanalysis data sets. The System for Atmospheric Modeling (SAM) simulated boundary layer turbulence and cloud properties along the trajectories. Mean temperature and moisture (in the free troposphere) and mean wind speed (at all levels) were nudged towards the reanalysis data. Atmospheric and cloud properties in the large eddy simulations were compared with those from the reanalysis products, and evaluated with satellite imagery and radiosonde data. Simulations using ERA-Interim data and the higher resolution ERA5 data are contrasted.
Cory, Robert L.; Nauman, Jon W.
1970-01-01
The effect of power plant cooling water in raising natural water temperatures at a location near the power plant on the Patuxent River estuary is clearly evident from thermograph records. Surface temperature at a station 333 m (1,000 ft) downstream from the discharge canal was raised an average of about 4 C, and at times by as much as 8 C. Temperature rises were greatest during the winter. Infrared imagery showed that elevated surface temperatures could be detected about 5.5 km (3 nautical miles) upstream at flood tide. Temperature profiles obtained from airborne radiation equipment revealed a complicated surface temperature pattern and also showed the effects of density differences and wind action on the steam-electric station (S.E.S.) effluent plume. Mean annual salinity for a 5-year period (1963–1967) was highest in 1966, about 12.3 ‰, and lowest in 1967, about 9.9‰. Dissolved oxygen values for 1966–1967 ranged from 3.2 to 15.6 mg/l, and saturation ranged from 55 to 152%. Turbidity levels were inversely related to salinity, with the highest annual, mean of 28 JCU (Jackson Candle Units) occurring in 1967, the lowest salinity year. The extreme tide range was 2.1 m (6.7 ft); mean water levels at the Patuxent Bridge were highest in summer and lowest in winter. Water stages are more affected by wind speed and direction than by flow in the river.
NASA Technical Reports Server (NTRS)
Gibson, David M.; Spisz, Thomas S.; Taylor, Jeff C.; Zalameda, Joseph N.; Horvath, Thomas J.; Tomek, Deborah M.; Tietjen, Alan B.; Tack, Steve; Bush, Brett C.
2010-01-01
We provide the first geometrically accurate (i.e., 3-D) temperature maps of the entire windward surface of the Space Shuttle during hypersonic reentry. To accomplish this task we began with estimated surface temperatures derived from CFD models at integral high Mach numbers and used them, the Shuttle's surface properties and reasonable estimates of the sensor-to-target geometry to predict the emitted spectral radiance from the surface (in units of W sr-1 m-2 nm-1). These data were converted to sensor counts using properties of the sensor (e.g. aperture, spectral band, and various efficiencies), the expected background, and the atmosphere transmission to inform the optimal settings for the near-infrared and midwave IR cameras on the Cast Glance aircraft. Once these data were collected, calibrated, edited, registered and co-added we formed both 2-D maps of the scene in the above units and 3-D maps of the bottom surface in temperature that could be compared with not only the initial inputs but also thermocouple data from the Shuttle itself. The 3-D temperature mapping process was based on the initial radiance modeling process. Here temperatures were guessed for each node in a well-resolved 3-D framework, a radiance model was produced and compared to the processed imagery, and corrections to the temperature were estimated until the iterative process converged. This process did very well in characterizing the temperature structure of the large asymmetric boundary layer transition the covered much of the starboard bottom surface of STS-119 Discovery. Both internally estimated accuracies and differences with CFD models and thermocouple measurements are at most a few percent. The technique did less well characterizing the temperature structure of the turbulent wedge behind the trip due to limitations in understanding the true sensor resolution. (Note: Those less inclined to read the entire paper are encouraged to read an Executive Summary provided at the end.)
Urban cover mapping using digital, high-resolution aerial imagery
Soojeong Myeong; David J. Nowak; Paul F. Hopkins; Robert H. Brock
2003-01-01
High-spatial resolution digital color-infrared aerial imagery of Syracuse, NY was analyzed to test methods for developing land cover classifications for an urban area. Five cover types were mapped: tree/shrub, grass/herbaceous, bare soil, water and impervious surface. Challenges in high-spatial resolution imagery such as shadow effect and similarity in spectral...
Spatial regression models of park and land-use impacts on the urban heat island in central Beijing.
Dai, Zhaoxin; Guldmann, Jean-Michel; Hu, Yunfeng
2018-06-01
Understanding the relationship between urban land structure and land surface temperatures (LST) is important for mitigating the urban heat island (UHI). This paper explores this relationship within central Beijing, an area located within the 2nd Ring Road. The urban variables include the Normalized Difference Vegetation Index (NDVI), the Normalized Difference Build-up Index (NDBI), the area of building footprints, the area of main roads, the area of water bodies and a gravity index for parks that account for both park size and distance. The data are captured over 8 grids of square cells (30 m, 60 m, 90 m, 120 m, 150 m, 180 m, 210 m, 240 m). The research involves: (1) estimating land surface temperatures using Landsat 8 satellite imagery, (2) building the database of urban variables, and (3) conducting regression analyses. The results show that (1) all the variables impact surface temperatures, (2) spatial regressions are necessary to capture neighboring effects, and (3) higher-order polynomial functions are more suitable for capturing the effects of NDVI and NDBI. Copyright © 2018 Elsevier B.V. All rights reserved.
Giardino, C; Pepe, M; Brivio, P A; Ghezzi, P; Zilioli, E
2001-03-14
Some bio-physical parameters, such as chlorophyll a concentration, Secchi disk depth and water surface temperature were mapped in the sub-alpine Lake Iseo (Italy) using Landsat Thematic Mapper (TM) data acquired on the 7 March 1997. In order to adequately investigate the water-leaving radiance, TM data were atmospherically corrected using a partially image-based method, and the atmospheric transmittance was measured in synchrony with the satellite passage. An empirical approach of relating atmospherically corrected TM spectral reflectance values to in situ measurements, collected during the satellite data acquisition, was used. The models developed were used to map the chlorophyll concentration and Secchi disk depth throughout the lake. Both models gave high determination coefficients (R2 = 0.99 for chlorophyll and R2 = 0.85 for the Secchi disk) and the spatial distribution of chlorophyll concentration and Secchi disk depth was mapped with contour intervals of 1 mg/m3 and 1 m, respectively. A scene-independent procedure was used to derive the surface temperature of the lake from the TM data with a root mean square error of 0.3 degrees C.
Towards a study of synoptic-scale variability of the California current system
NASA Technical Reports Server (NTRS)
1985-01-01
A West Coast satellite time series advisory group was established to consider the scientific rationale for the development of complete west coast time series of imagery of sea surface temperature (as derived by the Advanced Very High Resolution Radiometer on the NOAA polar orbiter, and near-surface phytoplankton pigment concentrations (as derived by the Coastal Zone Color Scanner on Nimbus 7). The scientific and data processing requirements for such time series are also considered. It is determined that such time series are essential if a number of scientific questions regarding the synoptic-scale dynamics of the California Current System are to be addressed. These questions concern both biological and physical processes.
NASA Technical Reports Server (NTRS)
Frazee, C. J.; Westin, F. C.; Gropper, J.; Myers, V. I.
1972-01-01
Research to determine the optimum time or season for obtaining imagery to identify and map soil limitations was conducted in the proposed Oahe irrigation project area in South Dakota. The optimum time for securing photographs or imagery is when the soil surface patterns are most apparent. For cultivated areas similar to the study area, May is the optimum time. The fields are cultivated or the planted crop has not yet masked soil surface features. Soil limitations in 59 percent of the field of the flight line could be mapped using the above criteria. The remaining fields cannot be mapped because the vegetation or growing crops do not express features related to soil differences. This suggests that imagery from more than one year is necessary to map completely the soil limitations of Oahe area by remote sensing techniques. Imagery from the other times studied is not suitable for identifying and mapping soil limitations of Oahe area by remote sensing techniques. Imagery from the other times studied is not suitable for identifying and mapping soil limitations because the vegetative cover masked the soil surface and does not reflect soil differences.
NASA Astrophysics Data System (ADS)
Scheihing, Konstantin; Tröger, Uwe
2018-05-01
The Laguna Lagunillas basin in the arid Andes of northern Chile exhibits a shallow aquifer and is exposed to extreme air temperature variations from 20 to -25 °C. Between 1991 and 2012, groundwater levels in the Pampa Lagunillas aquifer fell from near-surface to 15 m below ground level (bgl) due to severe overexploitation. In the same period, local mean monthly minimum temperatures started a declining trend, dropping by 3-8 °C relative to a nearby reference station. Meanwhile, mean monthly maximum summer temperatures shifted abruptly upwards by 2.7 °C on average in around 1996. The observed air temperature downturns and upturns are in accordance with detected anomalies in land-surface temperature imagery. Two major factors may be causing the local climate change. One is related to a water-table decline below the evaporative energy potential extinction depth of 2 m bgl, which causes an up-heating of the bare soil surface and, in turn, influences the lower atmosphere. At the same time, the removal of near-surface groundwater reduces the thermal conductivity of the upper sedimentary layer, which consequently diminishes the heat exchange between the aquifer (constant heat source of 10 °C) and the lower atmosphere during nights, leading to a severe dropping of minimum air temperatures. The observed critical water-level drawdown was 2-3 m bgl. Future and existing water-production projects in arid high Andean basins with shallow groundwater should avoid a decline of near-surface groundwater below 2 m bgl and take groundwater-climate interactions into account when identifying and monitoring potential environmental impacts.
A Marine Boundary Layer Water Vapor Climatology Derived from Microwave and Near-Infrared Imagery
NASA Astrophysics Data System (ADS)
Millan Valle, L. F.; Lebsock, M. D.; Teixeira, J.
2017-12-01
The synergy of the collocated Advanced Microwave Scanning Radiometer (AMSR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) provides daily global estimates of partial marine planetary boundary layer water vapor. AMSR microwave radiometry provides the total column water vapor, while MODIS near-infrared imagery provides the water vapor above the cloud layers. The difference between the two gives the vapor between the surface and the cloud top, which may be interpreted as the boundary layer water vapor. Comparisons against radiosondes, and GPS-Radio occultation data demonstrate the robustness of these boundary layer water vapor estimates. We exploit the 14 years of AMSR-MODIS synergy to investigate the spatial, seasonal, and inter-annual variations of the boundary layer water vapor. Last, it is shown that the measured AMSR-MODIS partial boundary layer water vapor can be generally prescribed using sea surface temperature, cloud top pressure and the lifting condensation level. The multi-sensor nature of the analysis demonstrates that there exists more information on boundary layer water vapor structure in the satellite observing system than is commonly assumed when considering the capabilities of single instruments. 2017 California Institute of Technology. U.S. Government sponsorship acknowledged.
Enhancements to NASA's Land Atmosphere Near real-time Capability for EOS (LANCE)
NASA Astrophysics Data System (ADS)
Michael, K.; Davies, D. K.; Schmaltz, J. E.; Boller, R. A.; Mauoka, E.; Ye, G.; Vermote, E.; Harrison, S.; Rinsland, P. L.; Protack, S.; Durbin, P. B.; Justice, C. O.
2016-12-01
NASA's Land, Atmosphere Near real-time Capability for EOS (LANCE) supports application users interested in monitoring a wide variety of natural and man-made phenomena. Near Real-Time (NRT) data and imagery from the AIRS, AMSR2, MISR, MLS, MODIS, OMI and VIIRS instruments are available much quicker than routine processing allows. Most data products are available within 3 hours from satellite observation. NRT imagery are generally available 3-5 hours after observation. This article describes LANCE and enhancements made to LANCE over the last year. These enhancements include: the addition of MISR L1 Georeferenced Radiance and L2 Cloud Motion Vector products, AMSR2 Unified L2B Half-Orbit 25 km EASE-Grid Surface Soil Moisture products and VIIRS VIIRS Day/Night Band, Land Surface Reflectance and Corrected Surface reflectance products. In addition, the selection of LANCE NRT imagery that can be interactively viewed through Worldview and the Global Imagery Browse Services (GIBS) has been expanded. LANCE is also working to ingest and process data from OMPS.
Research of BRDF effects on remote sensing imagery
NASA Astrophysics Data System (ADS)
Nina, Peng; Kun, Wang; Tao, Li; Yang, Pan
2011-08-01
The gray distribution and contrast of the optical satellite remote sensing imagery in the same kind of ground surface acquired by sensor is quite different, it depends not only on the satellite's observation and the sun incidence orientation but also the structural and optical properties of the surface. Therefore, the objectives of this research are to analyze the different BRDF characters of soil, vegetation, water and urban surface and also their BRDF effects on the quality of satellite image through 6S radiative transfer model. Furthermore, the causation of CCD blooming and spilling by ground reflectance is discussed by using QUICKBIRD image data and the corresponding ground image data. The general conclusion of BRDF effects on remote sensing imagery is proposed.
An Assessment of Global Organic Carbon Flux Along Continental Margins
NASA Technical Reports Server (NTRS)
Thunell, Robert
2004-01-01
This project was designed to use real-time and historical SeaWiFS and AVHRR data, and real-time MODIS data in order to estimate the global vertical carbon flux along continental margins. This required construction of an empirical model relating surface ocean color and physical variables like temperature and wind to vertical settling flux at sites co-located with sediment trap observations (Santa Barbara Basin, Cariaco Basin, Gulf of California, Hawaii, and Bermuda, etc), and application of the model to imagery in order to obtain spatially-weighted estimates.
Some implications for the clinical use of music facilitated imagery.
Peach, S C
1984-01-01
In this study, Helen Bonny's Guided Imagery and Music technique provided the base experience for questionnaire responses from short-term psychiatric inpatients, students, and staff (total/n = 107). Independent measures of age range, sex, medication type, and recent relaxation practice were compared statistically with dependent responses of skin temperature, perceived ability to relax, production of images, and perceived helpfulness of the experience. Results demonstrated increases in skin temperature and relaxation perception and defined the average experience as manifesting three concurrent imagery modes. Among the man independent-dependent variable relationships, some significant differences in mean responses were present. These differences and their possible clinical implications are discussed; further research in the area, including replication, is recommended.
Monitoring of environmental effects of coal strip mining from satellite imagery
NASA Technical Reports Server (NTRS)
Brooks, R. L.; Parra, C. G.
1976-01-01
This paper evaluates satellite imagery as a means of monitoring coal strip mines and their environmental effects. The satellite imagery employed is Skylab EREP S-190A and S-190B from SL-2, SL-3 and SL-4 missions; a large variety of camera/film/filter combinations has been reviewed. The investigation includes determining the applicability of satellite imagery for detection of disturbed acreage in areas of coal surface mining as well as the much more detailed monitoring of specific surface-mining operations, including: active mines, inactive mines, highwalls, ramp roads, pits, water impoundments and their associated acidity, graded areas and types of grading, and reclamed areas. Techniques have been developed to enable mining personnel to utilize this imagery in a practical and economic manner, requiring no previous photo-interpretation background and no purchases of expensive viewing or data-analysis equipment. To corroborate the photo-interpretation results, on-site observations were made in the very active mining area near Madisonville, Kentucky.
NASA Astrophysics Data System (ADS)
Balick, Lee K.; Ballard, Jerrell R., Jr.; Smith, James A.; Goltz, Stewart M.
2002-01-01
Data assimilation methods applied to hydrologic models can incorporate spatially distributed maps of near surface temperature, especially if such measurements can be reliably inferred from satellite observations. Uncalibrated thermal IR imagery sometimes is scaled to temperature units to obtain such observations using the assumption that dense forest canopies are close to air temperature. For fully leafed deciduous forest canopies in the summer, this approximation is usually valid within 2C. In a leafless canopy, however, the materials views are thick boles and branches and the forest floor, which can store heat and yield significantly higher variations. Winter coniferous forests are intermediate with needles and branches being the predominant viewed materials. The US Dept of Energy's Multispectral Thermal Imager (MTI) is an experimental satellite with the capability to perform quantitative scene measurements in the reflective and thermal infrared region respectively. Its multispectral thermal IR capability enables quantitative surface temperature retrieval if pixel emissivity is known. MTI is pointable and targets multiple times in the winter and spring of 2001 at the Howland, Maine AmeriFlux research site operated by the University of Maine. Supporting meteorological and optical depth measurements also were made from three towers at the site. Directional thermal models of forest woody materials and needles are driver by the surface measurements and compared to satellite data to help evaluate the relationship between air temperature and satellite thermal measurements as a function of look angles, day and night.
Subpixel urban impervious surface mapping: the impact of input Landsat images
NASA Astrophysics Data System (ADS)
Deng, Chengbin; Li, Chaojun; Zhu, Zhe; Lin, Weiying; Xi, Li
2017-11-01
Due to the heterogeneity of urban environments, subpixel urban impervious surface mapping is a challenging task in urban environmental studies. Factors, such as atmospheric correction, climate conditions, seasonal effect, urban settings, substantially affect fractional impervious surface estimation. Their impacts, however, have not been well studied and documented. In this research, we performed direct and comprehensive examinations to explore the impacts of these factors on subpixel estimation when using an effective machine learning technique (Random Forest) and provided solutions to alleviate these influences. Four conclusions can be drawn based on the repeatable experiments in three study areas under different climate conditions (humid continental, tropical monsoon, and Mediterranean climates). First, the performance of subpixel urban impervious surface mapping using top-of-atmosphere (TOA) reflectance imagery is comparable to, and even slightly better than, the surface reflectance imagery provided by U.S. Geological Services in all seasons and in all testing regions. Second, the effect of images with leaf-on/off season varies, and is contingent upon different climate regions. Specifically, humid continental areas may prefer the leaf-on imagery (e.g., summer), while the tropical monsoon and Mediterranean regions seem to favor the fall and winter imagery. Third, the overall estimation performance in the humid continental area is somewhat better than the other regions. Finally, improvements can be achieved by using multi-season imagery, but the increments become less obvious when including more than two seasons. The strategy and results of this research could improve and accommodate regional/national subpixel land cover mapping using Landsat images for large-scale environmental studies.
NASA Astrophysics Data System (ADS)
Kim, Jongyoun; Hogue, Terri S.
2012-01-01
The current study investigates a method to provide land surface parameters [i.e., land surface temperature (LST) and normalized difference vegetation index (NDVI)] at a high spatial (˜30 and 60 m) and temporal (daily and 8-day) resolution by combining advantages from Landsat and moderate-resolution imaging spectroradiometer (MODIS) satellites. We adopt a previously developed subtraction method that merges the spatial detail of higher-resolution imagery (Landsat) with the temporal change observed in coarser or moderate-resolution imagery (MODIS). Applying the temporal difference between MODIS images observed at two different dates to a higher-resolution Landsat image allows prediction of a combined or fused image (Landsat+MODIS) at a future date. Evaluation of the resultant merged products is undertaken within the Southeastern Arizona region where data is available from a range of flux tower sites. The Landsat+MODIS fused products capture the raw Landsat values and also reflect the MODIS temporal variation. The predicted Landsat+MODIS LST improves mean absolute error around 5°C at the more heterogeneous sites compared to the original satellite products. The fused Landsat+MODIS NDVI product also shows good correlation to ground-based data and is relatively consistent except during the acute (monsoon) growing season. The sensitivity of the fused product relative to temporal gaps in Landsat data appears to be more affected by uncertainty associated with regional precipitation and green-up, than the length of the gap associated with Landsat viewing, suggesting the potential to use a minimal number of original Landsat images during relatively stable land surface and climate conditions. Our extensive validation yields insight on the ability of the proposed method to integrate multiscale platforms and the potential for reducing costs associated with high-resolution satellite systems (e.g., SPOT, QuickBird, IKONOS).
NASA Astrophysics Data System (ADS)
Yang, Xiucheng; Chen, Li
2017-04-01
Urban surface water is characterized by complex surface continents and small size of water bodies, and the mapping of urban surface water is currently a challenging task. The moderate-resolution remote sensing satellites provide effective ways of monitoring surface water. This study conducts an exploratory evaluation on the performance of the newly available Sentinel-2A multispectral instrument (MSI) imagery for detecting urban surface water. An automatic framework that integrates pixel-level threshold adjustment and object-oriented segmentation is proposed. Based on the automated workflow, different combinations of visible, near infrared, and short-wave infrared bands in Sentinel-2 image via different water indices are first compared. Results show that object-level modified normalized difference water index (MNDWI with band 11) and automated water extraction index are feasible in urban surface water mapping for Sentinel-2 MSI imagery. Moreover, comparative results are obtained utilizing optimal MNDWI from Sentinel-2 and Landsat 8 images, respectively. Consequently, Sentinel-2 MSI achieves the kappa coefficient of 0.92, compared with that of 0.83 from Landsat 8 operational land imager.
NASA Astrophysics Data System (ADS)
Chasmer, L.; Flade, L.; Virk, R.; Montgomery, J. S.; Hopkinson, C.; Thompson, D. K.; Petrone, R. M.; Devito, K.
2017-12-01
Landscape changes in the hydrological characteristics of wetlands in some parts of the Boreal region of Canada are occurring as a result of climate-induced feedbacks and anthropogenic disturbance. Wetlands are largely resilient to wildfire, however, natural, climatic and anthropogenic disturbances can change surface water regimes and predispose wetlands to greater depth of peat burn. Over broad areas, peat loss contributes to significant pollution emissions, which can affect community health. In this study, we a) quantify depth of peat burn and relationships to antecedent conditions (species type, topography, surficial geology) within three classified wetlands found in the Boreal Plains ecoregion of western Canada; and b) examine the impacts of wildfire on post-fire ground surface energy balance to determine how peat loss might affect local hydro-climatology and surface water feedbacks. High-resolution optical imagery, pre- and post-burn multi-spectral Light Detection And Ranging (LiDAR), airborne thermal infrared imagery, and field validation data products are integrated to identify multiple complex interactions within the study wetlands. LiDAR-derived depth of peat burn is within 1 cm (average) compared with measured (RMSE = 9 cm over the control surface), demonstrating the utility of LiDAR with high point return density. Depth of burn also correlates strongly with variations in Normalised Burn Ratio (NBR) determined for ground surfaces only. Antecedent conditions including topographic position, soil moisture, soil type and wetland species also have complex interactions with depth of peat loss within wetlands observed in other studies. However, while field measurements are important for validation and understanding eco-hydrological processes, results from remote sensing are spatially continuous. Temporal LiDAR data illustrate the full range of variability in depth of burn and wetland characteristics following fire. Finally, measurements of instantaneous surface temperature indicate that the temperatures of burned wetlands are significantly warmer by up to 10oC compared to non-burned wetlands, altering locally variable sensible vs. latent energy exchanges and implications for further post-fire evaporative losses.
NASA Astrophysics Data System (ADS)
Bolles, K.; Forman, S. L.
2017-12-01
Understanding the spatiotemporal dynamics of dust sources is essential to accurately quantify the various impacts of dust on the Earth system; however, a persistent deficiency in modeling dust emission is detailed knowledge of surface texture, geomorphology, and location of dust emissive surfaces, which strongly influence the effects of wind erosion. Particle emission is closely linked to both climatic and physical surface factors - interdependent variables that respond to climate nonlinearly and are mitigated by variability in land use or management practice. Recent efforts have focused on development of a preferential dust source (PDS) identification scheme to improve global dust-cycle models, which posits certain surfaces are more likely to emit dust than others, dependent upon associated sediment texture and geomorphological limitations which constrain sediment supply and availability. In this study, we outline an approach to identify and verify the physical properties and distribution of dust emissive surfaces in the U.S. Great Plains from historical aerial imagery in order to establish baseline records of dust sources, associated erodibility, and spatiotemporal variability, prior to the satellite era. We employ a multi-criteria, spatially-explicit model to identify counties that are "representative" of the broader landscape on the Great Plains during the 1930s. Parameters include: percentage of county cultivated and uncultivated per the 1935 Agricultural Census, average soil sand content, mean annual Palmer Drought Severity Index (PDSI), maximum annual temperature and percent difference to the 30-year normal maximum temperature, and annual precipitation and percent difference to the 30-year normal precipitation level. Within these areas we generate random points to select areas for photo reproduction. Selected frames are photogrammetrically scanned at 1200 dpi, radiometrically corrected, mosaicked and georectified to create an IKONOS-equivalent image. Gray-level co-occurrence matrices are calculated in a 3x3 moving window to determine textural properties of the mosaic and delineate bare surfaces of different sedimentological properties. Field stratigraphic assessments and spatially-referenced historical data are integrated within ArcGIS to ground-truth imagery.
ERTS imagery applied to Alaskan coastal problems. [surface water circulation
NASA Technical Reports Server (NTRS)
Wright, F. F.; Sharma, G. D.; Burbank, D. C.; Burns, J. J.
1974-01-01
Along the Alaska coast, surface water circulation is relatively easy to study with ERTS imagery. Highly turbid river water, sea ice, and fluvial ice have proven to be excellent tracers of the surface waters. Sea truth studies in the Gulf of Alaska, Cook Inlet, Bristol Bay, and the Bering Strait area have established the reliability of these tracers. ERTS imagery in the MSS 4 and 5 bands is particularly useful for observing lower concentrations of suspended sediment, while MSS 6 data is best for the most concentrated plumes. Ice features are most clearly seen on MSS 7 imagery; fracture patterns and the movement of specific floes can be used to map circulation in the winter when runoff is restricted, if appropriate allowance is made for wind influence. Current patterns interpreted from satellite data are only two-dimensional, but since most biological activity and pollution are concentrated near the surface, the information developed can be of direct utility. Details of Alaska inshore circulation of importance to coastal engineering, navigation, pollution studies, and fisheries development have been clarified with satellite data. ERTS has made possible the analysis of circulation in many parts of the Alaskan coast.
MISR Stereo Imagery of Blue Mountain Fires in New South Wales, Australia
Atmospheric Science Data Center
2013-12-17
article title: MISR Stereo Imagery of Blue Mountain Fires in New South Wales, Australia ... mile (2 kilometers). On this date, the winds were relatively light and the temperature was around 77 degrees Fahrenheit (25 degrees ...
Satellite Imagery Products - Office of Satellite and Product Operations
» Disclaimer » Web Linking Policy » Use of Data and Products » FAQs: Imagery Contact Us Services Argos DCS : Page | VIS | IR | Water Vapor Sample GOES Watervapor composite Detailed Product List Composite Imagery Surface Data GIS Data Available Through Interactive Internet Mapping GIS Fire and Smoke Detection Web Page
NASA Technical Reports Server (NTRS)
Duda, James L.; Barth, Suzanna C
2005-01-01
The VIIRS sensor provides measurements for 22 Environmental Data Records (EDRs) addressing the atmosphere, ocean surface temperature, ocean color, land parameters, aerosols, imaging for clouds and ice, and more. That is, the VIIRS collects visible and infrared radiometric data of the Earth's atmosphere, ocean, and land surfaces. Data types include atmospheric, clouds, Earth radiation budget, land/water and sea surface temperature, ocean color, and low light imagery. This wide scope of measurements calls for the preparation of a multiplicity of Algorithm Theoretical Basis Documents (ATBDs), and, additionally, for intermediate products such as cloud mask, et al. Furthermore, the VIIRS interacts with three or more other sensors. This paper addresses selected and crucial elements of the process being used to convert and test an immense volume of a maturing and changing science code to the initial operational source code in preparation for launch of NPP. The integrity of the original science code is maintained and enhanced via baseline comparisons when re-hosted, in addition to multiple planned code performance reviews.
The use of radar imagery for surface water investigations
NASA Technical Reports Server (NTRS)
Bryan, M. L.
1981-01-01
The paper is concerned with the interpretation of hydrologic features using L-band (HH) imagery collected by aircraft and Seasat systems. Areas of research needed to more precisely define the accuracy and repeatability of measurements related to the conditions of surfaces and boundaries of fresh water bodies are identified. These include: the definition of shoreline, the nature of variations in surface roughness across a water body and along streams and lake shores, and the separation of ambiguous conditions which appear similar to lakes.
Users, uses, and value of Landsat satellite imagery: results from the 2012 survey of users
Miller, Holly M.; Richardson, Leslie A.; Koontz, Stephen R.; Loomis, John; Koontz, Lynne
2013-01-01
Landsat satellites have been operating since 1972, providing a continuous global record of the Earth’s land surface. The imagery is currently available at no cost through the U.S. Geological Survey (USGS). Social scientists at the USGS Fort Collins Science Center conducted an extensive survey in early 2012 to explore who uses Landsat imagery, how they use the imagery, and what the value of the imagery is to them. The survey was sent to all users registered with USGS who had accessed Landsat imagery in the year prior to the survey and over 11,000 current Landsat imagery users responded. The results of the survey revealed that respondents from many sectors use Landsat imagery in myriad project locations and scales, as well as application areas. The value of Landsat imagery to these users was demonstrated by the high importance of and dependence on the imagery, the numerous environmental and societal benefits observed from projects using Landsat imagery, the potential negative impacts on users’ work if Landsat imagery was no longer available, and the substantial aggregated annual economic benefit from the imagery. These results represent only the value of Landsat to users registered with USGS; further research would help to determine what the value of the imagery is to a greater segment of the population, such as downstream users of the imagery and imagery-derived products.
Summer snowmelt patterns in the South Shetlands using TerraSAR-X imagery
NASA Astrophysics Data System (ADS)
Mora, C.; Jimenez, J. J.; Catalao Fernades, J.; Ferreira, A.; David, A.; Ramos, M.; Vieira, G.
2014-12-01
Snow plays an important role in controlling ground thermal regime and thus influencing permafrost distribution in the lower areas of the South Shetlands archipelago, where late lying snowpatches protect the soil from summer warming. However, summer snow distribution is complex in the mountainous environments of the Maritime Antarctica and it is very difficult to obtain accurate mapping products of snow cover extent and also to monitor snowmelt. Field observations of snow cover in the region are currently based on: i) thickness data from a very scarce network of meteorological stations, ii) temperature poles allowing to estimate snow thickness, iii) and time-lapse cameras allowing for assessing snow distribution over relatively small areas. The high cloudiness of the Maritime Antarctic environment limits good mapping results from the analysis of optical remote sensing imagery such as Landsat, QuickBird or GeoEye. Therefore, microwave sensors provide the best imagery, since they are not influenced by cloudiness and are sensitive to wet-snow, typical of the melting season. We have acquired TerraSAR-X scenes for Deception and Livingston Islands for January-March 2014 in spotlight (HH, VV and HH/VV) and stripmap modes (HH) and analyse the radar backscattering for determining the differences between wet-snow, dry-snow and bare soil aiming at developing snow melt pattern maps. For ground truthing, snowpits were dug in order to characterize snow stratigraphy, grain size, grain type and snow density and to evaluate its effects on radar backscattering. Time-lapse cameras allow to identify snow patch boundaries in the field and ground surface temperatures obtained with minloggers, together with air temperatures, allow to identify the presence of snow cover in the ground. The current research is conducted in the framework of the project PERMANTAR-3 (Permafrost monitoring and modelling in Antarctic Peninsula - PTDC/AAG-GLO/3908/2012 of the FCT and PROPOLAR).
Evidence and mechanism of Hurricane Fran-Induced ocean cooling in the Charleston Trough
NASA Astrophysics Data System (ADS)
Xie, Lian; Pietrafesa, L. J.; Bohm, E.; Zhang, C.; Li, X.
Evidence of enhanced sea surface cooling during and following the passage of Hurricane Fran in September 1996 over an oceanic depression located on the ocean margin offshore of Charleston, South Carolina (referred to as the Charleston Trough), [Pietrafesa, 1983] is documented. Approximately 4C° of sea surface temperature (SST) reduction within the Charleston Trough following the passage of Hurricane Fran was estimated based on SST imagery from Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-14 polar orbiting satellite. Simulations using a three-dimensional coastal ocean model indicate that the largest SST reduction occurred within the Charleston Trough. This SST reduction can be explained by oceanic mixing due to storm-induced internal inertia-gravity waves.
Brines, Shannon J.; Brown, Daniel G.; Dvonch, J. Timothy; Gronlund, Carina J.; Zhang, Kai; Oswald, Evan M.; O’Neill, Marie S.
2013-01-01
Background: Land surface temperature (LST) and percent surface imperviousness (SI), both derived from satellite imagery, have been used to characterize the urban heat island effect, a phenomenon in which urban areas are warmer than non-urban areas. Objectives: We aimed to assess the correlations between LSTs and SI images with actual temperature readings from a ground-based network of outdoor monitors. Methods: We evaluated the relationships among a) LST calculated from a 2009 summertime satellite image of the Detroit metropolitan region, Michigan; b) SI from the 2006 National Land Cover Data Set; and c) ground-based temperature measurements monitored during the same time period at 19 residences throughout the Detroit metropolitan region. Associations between these ground-based temperatures and the average LSTs and SI at different radii around the point of the ground-based temperature measurement were evaluated at different time intervals. Spearman correlation coefficients and corresponding p-values were calculated. Results: Satellite-derived LST and SI values were significantly correlated with 24-hr average and August monthly average ground temperatures at all but two of the radii examined (100 m for LST and 0 m for SI). Correlations were also significant for temperatures measured between 0400 and 0500 hours for SI, except at 0 m, but not LST. Statistically significant correlations ranging from 0.49 to 0.91 were observed between LST and SI. Conclusions: Both SI and LST could be used to better understand spatial variation in heat exposures over longer time frames but are less useful for estimating shorter-term, actual temperature exposures, which can be useful for public health preparedness during extreme heat events. PMID:23777856
Multisensor analysis of hydrologic features with emphasis on the Seasat SAR
NASA Technical Reports Server (NTRS)
Foster, J. L.; Hall, D. K.
1981-01-01
Synthetic aperture radar (SAR) imagery of the Wind River Range area in Wyoming is compared with visible and near-infrared imagery of the same area. Data from the Seasat L-Band SAR and an aircraft X-Band SAR are compared with Landsat Return Beam Vidicon (RBV) visible data and near-infrared aerial photography and topographic maps of the same area. It is noted that visible and near-infrared data provide more information than the SAR data when conditions are the most favorable. The SAR penetrates clouds and snow, however, and data can be acquired day or night. Drainage density detail is good on SAR imagery because individual streams show up well owing to riparian vegetation; this causes higher radar reflections which result from the 'rough' surface which vegetation creates. In the winter image, the X-Band radar data show high returns because of cracks on the lake ice surfaces. High returns can also be seen in the L-Band SAR imagery of the lakes due to ripples on the surface induced by wind. It is concluded that the use of multispectral data would optimize analysis of hydrologic features.
NASA Astrophysics Data System (ADS)
Petropoulos, G.; Partsinevelos, P.; Mitraka, Z.
2012-04-01
Surface mining has been shown to cause intensive environmental degradation in terms of landscape, vegetation and biological communities. Nowadays, the commercial availability of remote sensing imagery at high spatiotemporal scales, has improved dramatically our ability to monitor surface mining activity and evaluate its impact on the environment and society. In this study we investigate the potential use of Landsat TM imagery combined with diverse classification techniques, namely artificial neural networks and support vector machines for delineating mining exploration and assessing its effect on vegetation in various surface mining sites in the Greek island of Milos. Assessment of the mining impact in the study area is validated through the analysis of available QuickBird imagery acquired nearly concurrently to the TM overpasses. Results indicate the capability of the TM sensor combined with the image analysis applied herein as a potential economically viable solution to provide rapidly and at regular time intervals information on mining activity and its impact to the local environment. KEYWORDS: mining environmental impact, remote sensing, image classification, change detection, land reclamation, support vector machines, neural networks
Environmental Variability in the Florida Keys: Impacts on Coral Reef Resilience and Health
NASA Astrophysics Data System (ADS)
Soto, I. M.; Muller-Karger, F. E.
2005-12-01
Environmental variability contributes to both mass mortality and resilience in tropical coral reef communities. We assess variations in sea surface temperature (SST) and ocean color in the Florida Keys using satellite imagery, and provide insight into how this variability is associated with locations of resilient coral communities (those unaffected by or able to recover from major events). The project tests the hypothesis that areas with historically low environmental variability promote lower levels of coral reef resilience. Time series of SST from the Advanced Very High Resolution Radiometer (AVHRR) sensors and ocean color derived quantities (e.g., turbidity and chlorophyll) from the Sea-viewing Wide Field of View Sensor (SeaWiFS) are being constructed over the entire Florida Keys region for a period of twelve and nine years, respectively. These data will be compared with historical coral cover data derived from Landsat imagery (1984-2002). Improved understanding of the causes of coral reef decline or resilience will help protect and manage these natural treasures.
NASA Astrophysics Data System (ADS)
De Ridder, K.; Bertrand, C.; Casanova, G.; Lefebvre, W.
2012-09-01
Increasingly, mesoscale meteorological and climate models are used to predict urban weather and climate. Yet, large uncertainties remain regarding values of some urban surface properties. In particular, information concerning urban values for thermal roughness length and thermal admittance is scarce. In this paper, we present a method to estimate values for thermal admittance in combination with an optimal scheme for thermal roughness length, based on METEOSAT-8/SEVIRI thermal infrared imagery in conjunction with a deterministic atmospheric model containing a simple urbanized land surface scheme. Given the spatial resolution of the SEVIRI sensor, the resulting parameter values are applicable at scales of the order of 5 km. As a study case we focused on the city of Paris, for the day of 29 June 2006. Land surface temperature was calculated from SEVIRI thermal radiances using a new split-window algorithm specifically designed to handle urban conditions, as described inAppendix A, including a correction for anisotropy effects. Land surface temperature was also calculated in an ensemble of simulations carried out with the ARPS mesoscale atmospheric model, combining different thermal roughness length parameterizations with a range of thermal admittance values. Particular care was taken to spatially match the simulated land surface temperature with the SEVIRI field of view, using the so-called point spread function of the latter. Using Bayesian inference, the best agreement between simulated and observed land surface temperature was obtained for the Zilitinkevich (1970) and Brutsaert (1975) thermal roughness length parameterizations, the latter with the coefficients obtained by Kanda et al. (2007). The retrieved thermal admittance values associated with either thermal roughness parameterization were, respectively, 1843 ± 108 J m-2 s-1/2 K-1 and 1926 ± 115 J m-2 s-1/2 K-1.
Application of ERTS-1 imagery in the Vermont-New York dispute over pollution of Lake Champlain
NASA Technical Reports Server (NTRS)
Lind, A. O. (Principal Investigator)
1973-01-01
The author has identified the following significant results. ERTS-1 imagery and a composite map derived from ERTS-1 imagery were presented as evidence in a U.S. Supreme Court case involving the pollution of an interstate water body (Lake Champlain). A pollution problem generated by a large paper mill forms the basis of the suit (Vermont vs. International Paper Co. and State of New York) and ERTS-1 imagery shows the effluent pattern on the lake surface as extending into Vermont during three different times.
Different atmospheric effects in remote sensing of uniform and nonuniform surfaces
NASA Technical Reports Server (NTRS)
Kaufman, Y. J.; Fraser, R. S.
1982-01-01
The atmospheric effect on the radiance of sunlight scattered from the earth-atmosphere system is greatly dependent on the surface reflectance pattern, the contrast between adjacent fields, and the optical properties of the atmosphere. In addition, the atmospheric effect is described by the range and magnitude of the adjacency effects, the atmospheric modulation transfer function, and the apparent spatial resolution of remotely sensed imagery. This paper discusses the atmospheric effect on classification of surface features and shows that surface nonuniformity can be used for developing procedures to remove the atmospheric effect from the satellite imagery.
NASA Astrophysics Data System (ADS)
Salemi, A.; Ruminski, M. G.
2012-12-01
The Satellite Analysis Branch (SAB) of NOAA/NESDIS uses geostationary and polar orbiting satellite imagery to identify fires and smoke throughout the continental United States. The fires and smoke are analyzed daily on the Hazard Mapping System (HMS) and made available via the internet in various formats. Analysis of smoke plumes generated from wildfires, agricultural and prescribe burns is performed with single channel visible imagery primarily from NOAA's Geostationary Operational Environmental Satellite (GOES) animations. Identification of smoke in visible imagery is complicated by the presence of clouds, the viewing angle produced by the sun, smoke, satellite geometry, and the surface albedo of the ground below the smoke among other factors. This study investigates the role of surface albedo in smoke detection. LIght Detection And Ranging (LIDAR) instruments are capable of detecting smoke and other aerosols. Through the use of ground and space based LIDAR systems in areas of varying albedo a relationship between the subjective analyst drawn smoke plumes versus those detected by LIDAR is established. The ability to detect smoke over regions of higher albedo (brighter surface, such as grassland, scrub and desert) is diminished compared to regions of lower albedo (darker surface, such as forest and water). Users of the HMS smoke product need to be aware of this limitation in smoke detection in areas of higher albedo.
Van Nguyen, On; Kawamura, Kensuke; Trong, Dung Phan; Gong, Zhe; Suwandana, Endan
2015-07-01
Temporal changes in the land surface temperature (LST) in urbanization areas are important for studying an urban heat island (UHI) and regional climate change. This study examined the LST trends under different land use categories in the Red River Delta, Vietnam, using the Moderate Resolution Imaging Spectroradiometer (MODIS) LST product (MOD11A2) and land cover type product (MCD12Q1) for 11 years (2002-2012). Smoothened time-series MODIS LST data were reconstructed by the Harmonic Analysis of Time Series (HANTS) algorithm. The reconstructed LST (maximum and minimum temperatures) was assessed using the hourly air temperature dataset in two land-based meteorological stations provided by the National Climatic Data Center (NCDC). Significant correlation was obtained between MODIS LST and the air temperature for the daytime (R (2) = 0.73, root mean square error [RMSE] = 1.66 °C) and night time (R (2) = 0.84, RMSE = 1.79 °C). Statistical analysis also showed that LST trends vary strongly depending on the land cover type. Forest, wetland, and cropland had a slight tendency to decline, whereas cropland and urban had sharper increases. In urbanized areas, these increasing trends are even more obvious. This is undeniable evidence of the negative impact of urbanization on a surface urban heat island (SUHI) and global warming.
A summary of selected early results from the ERTS-1 menhaden experiment
NASA Technical Reports Server (NTRS)
Stevenson, W. H. (Principal Investigator); Kemmerer, A. J.; Benigno, J. A.; Reese, G. B.; Minkler, F. C.
1973-01-01
The author has identified the following significant results. Imagery from ERTS-1 satellite was used in conjunction with aerial photographically-sensed menhaden distribution information, sea truth oceanographic measurements, and commercial fishing information from a 8685 square kilometer study area in the north-central portion of the Gulf of Mexico to demonstrate relationships between selected oceanographic parameters and menhaden distribution, ERTS-1 imagery and menhaden distribution, and ERTS-1 imagery and oceanographic parameters. ERTS-1, MSS band 5 imagery density levels correlated with photographically detected menhaden distribution patterns and could be explained based on sea truth Secchi disc transparency and water depth measurements. These two parameters, together with surface salinity, Forel-Ule color, and chlorophyll-a also were found to correlate significantly with menhaden distribution. Eight empirical models were developed which provided menhaden distribution predictions for the study area on combinations of Secchi disc transparency, water depth, surface salinity, and Forel-Ule color measurements.
Dome growth at Mount Cleveland, Aleutian Arc, quantified by time-series TerraSAR-X imagery
Wang, Teng; Poland, Michael; Lu, Zhong
2016-01-01
Synthetic aperture radar imagery is widely used to study surface deformation induced by volcanic activity; however, it is rarely applied to quantify the evolution of lava domes, which is important for understanding hazards and magmatic system characteristics. We studied dome formation associated with eruptive activity at Mount Cleveland, Aleutian Volcanic Arc, in 2011–2012 using TerraSAR-X imagery. Interferometry and offset tracking show no consistent deformation and only motion of the crater rim, suggesting that ascending magma may pass through a preexisting conduit system without causing appreciable surface deformation. Amplitude imagery has proven useful for quantifying rates of vertical and areal growth of the lava dome within the crater from formation to removal by explosive activity to rebirth. We expect that this approach can be applied at other volcanoes that host growing lava domes and where hazards are highly dependent on dome geometry and growth rates.
Thermal Imaging of the Waccasassa Bay Preserve: Image Acquisition and Processing
Raabe, Ellen A.; Bialkowska-Jelinska, Elzbieta
2010-01-01
Thermal infrared (TIR) imagery was acquired along coastal Levy County, Florida, in March 2009 with the goal of identifying groundwater-discharge locations in Waccasassa Bay Preserve State Park (WBPSP). Groundwater discharge is thermally distinct in winter when Floridan aquifer temperature, 71-72 degrees F, contrasts with the surrounding cold surface waters. Calibrated imagery was analyzed to assess temperature anomalies and related thermal traces. The influence of warm Gulf water and image artifacts on small features was successfully constrained by image evaluation in three separate zones: Creeks, Bay, and Gulf. Four levels of significant water-temperature anomalies were identified, and 488 sites of interest were mapped. Among the sites identified, at least 80 were determined to be associated with image artifacts and human activity, such as excavation pits and the Florida Barge Canal. Sites of interest were evaluated for geographic concentration and isolation. High site densities, indicating interconnectivity and prevailing flow, were located at Corrigan Reef, No. 4 Channel, Winzy Creek, Cow Creek, Withlacoochee River, and at excavation sites. In other areas, low to moderate site density indicates the presence of independent vents and unique flow paths. A directional distribution assessment of natural seep features produced a northwest trend closely matching the strike direction of regional faults. Naturally occurring seeps were located in karst ponds and tidal creeks, and several submerged sites were detected in Waccasassa River and Bay, representing the first documentation of submarine vents in the Waccasassa region. Drought conditions throughout the region placed constraints on positive feature identification. Low discharge or displacement by landward movement of saltwater may have reduced or reversed flow during this season. Approximately two-thirds of seep locations in the overlap between 2009 and 2005 TIR night imagery were positively re-identified in 2009. These results indicate a 33 percent chance of feature omission in the 2009 imagery. This assessment of seep location and distribution contributes to an understanding of the underlying geology, the role of fault and fracture patterns, and the presence of both interconnected and constrained flow paths in the region. The maps and evaluations will enhance Park management efforts, interpretation of Park resources, and increase understanding of the combined effects of land and water use on the coastal lowlands, estuarine habitats, and natural resources of WBPSP.
Geology of Utah and Nevada by ERTS-1 imagery
NASA Technical Reports Server (NTRS)
Jensen, M. L.
1973-01-01
Repetitive ERTS-1 imagery covering Utah and Nevada is studied as an aid in structural geology, mineral exploration, and limnological and hydrological aspects. Limnological features of algal blooms and varying biological activities in Utah Lake and the Great Salt Lake are grossly evident on the imagery with more subtle details detected on the different bands. Major structural breaks, lineages, or trends are abundant throughout the area of study. The correlation of positive aeromagnetic anomalies with the trends suggests near surface intrusive bodies, not yet exposed at the surface, that can be tested for possible associated mineralization by collecting soil-gas at the surface which is analyzed for mercury that is (1) apparently associated with mineralization, (2) escapes as a vapor, and (3) can be readily measured in extremely low amounts of less than 1 ppb by absorption.
Predictive Mapping of Topsoil Organic Carbon in an Alpine Environment Aided by Landsat TM
Yang, Renmin; Rossiter, David G.; Liu, Feng; Lu, Yuanyuan; Yang, Fan; Yang, Fei; Zhao, Yuguo; Li, Decheng; Zhang, Ganlin
2015-01-01
The objective of this study was to examine the reflectance of Landsat TM imagery for mapping soil organic Carbon (SOC) content in an Alpine environment. The studied area (ca. 3*104 km2) is the upper reaches of the Heihe River at the northeast edge of the Tibetan plateau, China. A set (105) of topsoil samples were analyzed for SOC. Boosted regression tree (BRT) models using Landsat TM imagery were built to predict SOC content, alone or with topography and climate covariates (temperature and precipitation). The best model, combining all covariates, was only marginally better than using only imagery. Imagery alone was sufficient to build a reasonable model; this was a bit better than only using topography and climate covariates. The Lin’s concordance correlation coefficient values of the imagery only model and the full model are very close, larger than the topography and climate variables based model. In the full model, SOC was mainly explained by Landsat TM imagery (65% relative importance), followed by climate variables (20%) and topography (15% of relative importance). The good results from imagery are likely due to (1) the strong dependence of SOC on native vegetation intensity in this Alpine environment; (2) the strong correlation in this environment between imagery and environmental covariables, especially elevation (corresponding to temperature), precipitation, and slope aspect. We conclude that multispectral satellite data from Landsat TM images may be used to predict topsoil SOC with reasonable accuracy in Alpine regions, and perhaps other regions covered with natural vegetation, and that adding topography and climate covariables to the satellite data can improve the predictive accuracy. PMID:26473739
Spatiotemporal remote sensing of ecosystem change and causation across Alaska.
Pastick, Neal J; Jorgenson, M Torre; Goetz, Scott J; Jones, Benjamin M; Wylie, Bruce K; Minsley, Burke J; Genet, Hélène; Knight, Joseph F; Swanson, David K; Jorgenson, Janet C
2018-05-28
Contemporary climate change in Alaska has resulted in amplified rates of press and pulse disturbances that drive ecosystem change with significant consequences for socio-environmental systems. Despite the vulnerability of Arctic and boreal landscapes to change, little has been done to characterize landscape change and associated drivers across northern high-latitude ecosystems. Here we characterize the historical sensitivity of Alaska's ecosystems to environmental change and anthropogenic disturbances using expert knowledge, remote sensing data, and spatiotemporal analyses and modeling. Time-series analysis of moderate-and high-resolution imagery was used to characterize land- and water-surface dynamics across Alaska. Some 430,000 interpretations of ecological and geomorphological change were made using historical air photos and satellite imagery, and corroborate land-surface greening, browning, and wetness/moisture trend parameters derived from peak-growing season Landsat imagery acquired from 1984 to 2015. The time series of change metrics, together with climatic data and maps of landscape characteristics, were incorporated into a modeling framework for mapping and understanding of drivers of change throughout Alaska. According to our analysis, approximately 13% (~174,000 ± 8700 km 2 ) of Alaska has experienced directional change in the last 32 years (±95% confidence intervals). At the ecoregions level, substantial increases in remotely sensed vegetation productivity were most pronounced in western and northern foothills of Alaska, which is explained by vegetation growth associated with increasing air temperatures. Significant browning trends were largely the result of recent wildfires in interior Alaska, but browning trends are also driven by increases in evaporative demand and surface-water gains that have predominately occurred over warming permafrost landscapes. Increased rates of photosynthetic activity are associated with stabilization and recovery processes following wildfire, timber harvesting, insect damage, thermokarst, glacial retreat, and lake infilling and drainage events. Our results fill a critical gap in the understanding of historical and potential future trajectories of change in northern high-latitude regions. © 2018 John Wiley & Sons Ltd.
Landsat imagery: a unique resource
Miller, H.; Sexton, N.; Koontz, L.
2011-01-01
Landsat satellites provide high-quality, multi-spectral imagery of the surface of the Earth. These moderate-resolution, remotely sensed images are not just pictures, but contain many layers of data collected at different points along the visible and invisible light spectrum. These data can be manipulated to reveal what the Earth’s surface looks like, including what types of vegetation are present or how a natural disaster has impacted an area (Fig. 1).
NASA Technical Reports Server (NTRS)
Carlson, P. R. (Principal Investigator); Harden, D. R.
1973-01-01
The author has identified the following significant results. ERTS-1 imagery used in conjunction with the surface-drift cards indicated a southerly flow direction of the central California near surface coastal currents during mid-June 1973. The near-surface currents off northern California and southern Oregon were more complex. Some drift cards were recovered north and some south of their release points; however, the prevalent direction of flow was northerly. General agreement in flow direction of coastal currents obtained from ERTS-1 imagery and drift card data reinforces the image interpretation. Complete seasonal coverage of nearshore circulation interpreted from ERTS-1 imagery will provide information necessary for proper coastal zone management. Extent of snow cover can be readily delimited on ERTS-1 band 5. In the central Sierra Nevada Mountains this past winter season, the snow line, as recorded by ERTS-1, reached an elevation of less than 1500 meters in January but had melted back to between 2500 and 3000 meters by the end of May. ERTS-1 imagery seems to provide sufficient resolution to make it a useful tool for monitoring changes in snow cover in the Sierra Nevada Mountains.
Quantifying sub-pixel urban impervious surface through fusion of optical and inSAR imagery
Yang, L.; Jiang, L.; Lin, H.; Liao, M.
2009-01-01
In this study, we explored the potential to improve urban impervious surface modeling and mapping with the synergistic use of optical and Interferometric Synthetic Aperture Radar (InSAR) imagery. We used a Classification and Regression Tree (CART)-based approach to test the feasibility and accuracy of quantifying Impervious Surface Percentage (ISP) using four spectral bands of SPOT 5 high-resolution geometric (HRG) imagery and three parameters derived from the European Remote Sensing (ERS)-2 Single Look Complex (SLC) SAR image pair. Validated by an independent ISP reference dataset derived from the 33 cm-resolution digital aerial photographs, results show that the addition of InSAR data reduced the ISP modeling error rate from 15.5% to 12.9% and increased the correlation coefficient from 0.71 to 0.77. Spatially, the improvement is especially noted in areas of vacant land and bare ground, which were incorrectly mapped as urban impervious surfaces when using the optical remote sensing data. In addition, the accuracy of ISP prediction using InSAR images alone is only marginally less than that obtained by using SPOT imagery. The finding indicates the potential of using InSAR data for frequent monitoring of urban settings located in cloud-prone areas.
Terrain-Moisture Classification Using GPS Surface-Reflected Signals
NASA Technical Reports Server (NTRS)
Grant, Michael S.; Acton, Scott T.; Katzberg, Stephen J.
2006-01-01
In this study we present a novel method of land surface classification using surface-reflected GPS signals in combination with digital imagery. Two GPS-derived classification features are merged with visible image data to create terrain-moisture (TM) classes, defined here as visibly identifiable terrain or landcover classes containing a surface/soil moisture component. As compared to using surface imagery alone, classification accuracy is significantly improved for a number of visible classes when adding the GPS-based signal features. Since the strength of the reflected GPS signal is proportional to the amount of moisture in the surface, use of these GPS features provides information about the surface that is not obtainable using visible wavelengths alone. Application areas include hydrology, precision agriculture, and wetlands mapping.
1994-07-01
lwir imagery (preliminary calibration) and local lapse rates. Type maps were developed using a supervised multi-spectral classification procedure., 2.5...Atmospherics Conference, R. Lee, chairman, 251-260. 4. Tofsted, D. H., 1993, "Effects of Nonuniform Aerosol Forward Scattering on Imagery," Proceedings of...than channel 4; 4) the channel 4 brightness temperature is high relative to the predicted clear scene temperature; and 5) LWIR channel difference is
NASA Astrophysics Data System (ADS)
Gawuc, L.; Łobocki, L.; Kaminski, J. W.
2017-12-01
Land surface temperature (LST) is a key parameter in various applications for urban environments research. However, remotely-sensed radiative surface temperature is not equivalent to kinetic nor aerodynamic surface temperature (Becker and Li, 1995; Norman and Becker, 1995). Thermal satellite observations of urban areas are also prone to angular anisotropy which is directly connected with the urban structure and relative sun-satellite position (Hu et al., 2016). Sensible heat flux (Qh) is the main component of surface energy balance in urban areas. Retrieval of Qh, requires observations of, among others, a temperature gradient. The lower level of temperature measurement is commonly replaced by remotely-sensed radiative surface temperature (Chrysoulakis, 2003; Voogt and Grimmond, 2000; Xu et al., 2008). However, such replacement requires accounting for the differences between aerodynamic and radiative surface temperature (Chehbouni et al., 1996; Sun and Mahrt, 1995). Moreover, it is important to avoid micro-scale processes, which play a major role in the roughness sublayer. This is due to the fact that Monin-Obukhov similarity theory is valid only in dynamic sublayer. We will present results of the analyses of the impact of urban morphology and land cover on the seasonal changes of sensible heat flux (Qh). Qh will be retrieved by two approaches. First will be based on satellite observations of radiative surface temperature and second will be based on in-situ observations of kinetic road temperature. Both approaches will utilize wind velocity, and air temperature observed in-situ. We will utilize time series of MODIS LST observations for the period of 2005-2014 as well as simultaneous in-situ observations collected by road weather network (9 stations). Ground stations are located across the city of Warsaw, outside the city centre in low-rise urban structure. We will account for differences in urban morphology and land cover in the proximity of ground stations. We will utilize DEM and Urban Atlas LULC database and freely available visible aerial and satellite imagery. All the analyses will be conducted for single pixels, which will be closest to the locations of the ground stations (nearest neighbour approach). Appropriate figures showing the seasonal variability of Qh will be presented.
Effects of music on arousal during imagery in elite shooters: A pilot study.
Kuan, Garry; Morris, Tony; Terry, Peter
2017-01-01
Beneficial effects of music on several performance-related aspects of sport have been reported, but the processes involved are not well understood. The purpose of the present study was to investigate effects of relaxing and arousing classical music on physiological indicators and subjective perceptions of arousal during imagery of a sport task. First, appropriate music excerpts were selected. Then, 12 skilled shooters performed shooting imagery while listening to the three preselected music excerpts in randomized order. Participants' galvanic skin response, peripheral temperature, and electromyography were monitored during music played concurrently with imagery. Subjective music ratings and physiological measures showed, as hypothesized, that unfamiliar relaxing music was the most relaxing and unfamiliar arousing music was the most arousing. Researchers should examine the impact of unfamiliar relaxing and arousing music played during imagery on subsequent performance in diverse sports. Practitioners can apply unfamiliar relaxing and arousing music with imagery to manipulate arousal level.
Effects of music on arousal during imagery in elite shooters: A pilot study
Kuan, Garry; Morris, Tony; Terry, Peter
2017-01-01
Beneficial effects of music on several performance-related aspects of sport have been reported, but the processes involved are not well understood. The purpose of the present study was to investigate effects of relaxing and arousing classical music on physiological indicators and subjective perceptions of arousal during imagery of a sport task. First, appropriate music excerpts were selected. Then, 12 skilled shooters performed shooting imagery while listening to the three preselected music excerpts in randomized order. Participants’ galvanic skin response, peripheral temperature, and electromyography were monitored during music played concurrently with imagery. Subjective music ratings and physiological measures showed, as hypothesized, that unfamiliar relaxing music was the most relaxing and unfamiliar arousing music was the most arousing. Researchers should examine the impact of unfamiliar relaxing and arousing music played during imagery on subsequent performance in diverse sports. Practitioners can apply unfamiliar relaxing and arousing music with imagery to manipulate arousal level. PMID:28414741
NASA Astrophysics Data System (ADS)
Goetz, Jason; Marcer, Marco; Bodin, Xavier; Brenning, Alexander
2017-04-01
Snow depth mapping in open areas using close range aerial imagery is just one of the many cases where developments in structure-from-motion and multi-view-stereo (SfM-MVS) 3D reconstruction techniques have been applied for geosciences - and with good reason. Our ability to increase the spatial resolution and frequency of observations may allow us to improve our understanding of how snow depth distribution varies through space and time. However, to ensure accurate snow depth observations from close range sensing we must adequately characterize the uncertainty related to our measurement techniques. In this study, we explore the spatial uncertainties of snow elevation models for estimation of snow depth in a complex alpine terrain from close range aerial imagery. We accomplish this by conducting repeat autonomous aerial surveys over a snow-covered active-rock glacier located in the French Alps. The imagery obtained from each flight of an unmanned aerial vehicle (UAV) is used to create an individual digital elevation model (DEM) of the snow surface. As result, we obtain multiple DEMs of the snow surface for the same site. These DEMs are obtained from processing the imagery with the photogrammetry software Agisoft Photoscan. The elevation models are also georeferenced within Photoscan using the geotagged imagery from an onboard GNSS in combination with ground targets placed around the rock glacier, which have been surveyed with highly accurate RTK-GNSS equipment. The random error associated with multi-temporal DEMs of the snow surface is estimated from the repeat aerial survey data. The multiple flights are designed to follow the same flight path and altitude above the ground to simulate the optimal conditions of repeat survey of the site, and thus try to estimate the maximum precision associated with our snow-elevation measurement technique. The bias of the DEMs is assessed with RTK-GNSS survey observations of the snow surface elevation of the area on and surrounding the rock glacier. Additionally, one of the challenges with processing snow cover imagery with SfM-MVS is dealing with the general homogeneity of the surface, which makes is difficult for automated-feature detection algorithms to identify key features for point matching. This challenge depends on the snow cover surface conditions, such as scale, lighting conditions (high vs. low contrast), and availability of snow-free features within a scene, among others. We attempt to explore this aspect by spatial modelling the factors influencing the precision and bias of the DEMs from image, flight, and terrain attributes.
Heat Capacity Mapping Mission investigation no. 25 (Tellus project)
NASA Technical Reports Server (NTRS)
Deparatesi, S. G. (Principal Investigator); Reiniger, P. (Editor)
1982-01-01
The TELLUS pilot project, utilizing 0.5 to 1.1 micron and 10.5 to 12.5 micron day and/or night imagery from the Heat Capacity Mapping Mission, is described. The application of remotely sensed data to synoptic evaluation of evapotranspiration and moisture in agricultural soils was considered. The influence of topography, soils, land use, and meteorology on surface temperature distribution was evaluated. Anthropogenic heat release was investigated. Test areas extended from semi-arid land in southern Italy to polders in the Netherlands, and from vine-growing hills in the Rhineland to grasslands in Buckinghamshire.
NASA Astrophysics Data System (ADS)
Noh, M. J.; Howat, I. M.
2017-12-01
Glaciers and ice sheets are changing rapidly. Digital Elevation Models (DEMs) and Velocity Maps (VMs) obtained from repeat satellite imagery provide critical measurements of changes in glacier dynamics and mass balance over large, remote areas. DEMs created from stereopairs obtained during the same satellite pass through sensor re-pointing (i.e. "in-track stereo") have been most commonly used. In-track stereo has the advantage of minimizing the time separation and, thus, surface motion between image acquisitions, so that the ice surface can be assumed motionless in when collocating pixels between image pairs. Since the DEM extraction process assumes that all motion between collocated pixels is due to parallax or sensor model error, significant ice motion results in DEM quality loss or failure. In-track stereo, however, puts a greater demand on satellite tasking resources and, therefore, is much less abundant than single-scan imagery. Thus, if ice surface motion can be mitigated, the ability to extract surface elevation measurements from pairs of repeat single-scan "cross-track" imagery would greatly increase the extent and temporal resolution of ice surface change. Additionally, the ice motion measured by the DEM extraction process would itself provide a useful velocity measurement. We develop a novel algorithm for generating high-quality DEMs and VMs from cross-track image pairs without any prior information using the Surface Extraction from TIN-based Searchspace Minimization (SETSM) algorithm and its sensor model bias correction capabilities. Using a test suite of repeat, single-scan imagery from WorldView and QuickBird sensors collected over fast-moving outlet glaciers, we develop a method by which RPC biases between images are first calculated and removed over ice-free surfaces. Subpixel displacements over the ice are then constrained and used to correct the parallax estimate. Initial tests yield DEM results with the same quality as in-track stereo for cases where snowfall has not occurred between the two images and when the images have similar ground sample distances. The resulting velocity map also closely matches independent measurements.
NASA Astrophysics Data System (ADS)
Rounce, D.; McKinney, D. C.
2013-12-01
Debris cover has a large impact on sub-debris ablation rates and glacier evolution. A thin debris layer may enhance ablation by reducing albedo increasing radiation absorption, while thicker debris insulates the glacier causing ablation to decrease. Debris thickness, thermal conductivity, and meteorological conditions may be measured in the field, but they require extensive fieldwork (Brock et al., 2010; Nicholson and Benn, 2012). This has forced many simplifications and assumptions in models. Satellite imagery combined with an energy balance model has been used with to extract information about debris cover remotely (Nakawo and Rana, 1999; Zhang et al., 2011). The spatial distribution of thermal resistances derived from these studies have agreed well with field values; however, the values were considerably lower than the field values. The difference has been attributed to the mixed pixel effect. Foster et al. (2012) developed an energy balance model that agrees well with debris thickness measured in the field. The model requires knowledge of the thermal conductivity and utilizes a relationship between air and surface temperature to lower sensible heat fluxes. We derive thermal resistances of debris-covered glaciers from satellite imagery in the Everest area. Previous satellite studies have assumed a linear debris temperature gradient, which is valid for time periods of 24 hours or greater (Nicholson and Benn, 2006); however, gradients during the day are nonlinear (Nicholson and Benn, 2006; Reid and Brock, 2010). Landsat 7 imagery is used to account for the non-linear gradient, using the ratio of temperature gradient in the upper 10cm versus the entire debris thickness. These values are derived from temperature profiles on Ngozumpa Glacier (Nicholson, 2004). Meteorological data are obtained from the Pyramid Station. The derived thermal resistances agree well with those found on debris-covered glaciers in the Everest region. Brock, B., Mihalcea, C., Kirkbride, M., Diolaiuti, G., Cutler, M., Smiraglia, C. Meteorology and surface energy fluxes in the 2005-2007 ablation seasons at the Miage debris-covered glacier. J. Geoph. Res., 115, 2010 Foster, L., Brock, B., Cutler, M., Diotri, F. A physically based method for estimating supraglacial debris thickness from thermal band remote-sensing data. J. Glaciol. 58(210):677-691, 2012 Nakawo, M., Rana, B. Estimate of Ablation Rate of Glacier Ice Under a Supraglacial Debris Layer. Geografiska Annaler 81(4):695-701, 1999 Nicholson, L. Modelling melt beneath supraglacial debris: implications for the climatic response of debris-covered glaciers. PhD thesis, Univ. of St Andrews, 2004 Nicholson, L., Benn, D. Calculating ice melt beneath a debris layer using meteorological data. J. Glaciol. 52(178):463-470, 2006 Nicholson, L., Benn, D. Properties of Natural Supraglacial Debris in Relation to Modelling Sub-Debris Ice Ablation. Earth Surf. Proc. and Landforms 38(5):490-501, 2012 Reid, T., Brock, B. An Energy-Balance Model for Debris-Covered Glaciers Including Heat Conduction through the Debris Layer. J. Glaciol. 56(199):903-916, 2010 Zhang, Y., Fujita, K., Liu, S., Liu, Q., Nuimura, T. Distribution of Debris Thickness and its Effect on Ice Melt at Hailuogou Glacier. J. Glaciol. 57(206):1147-1157, 2011
Using infrared thermography for understanding and quantifying soil surface processes
NASA Astrophysics Data System (ADS)
de Lima, João L. M. P.
2017-04-01
At present, our understanding of the soil hydrologic response is restricted by measurement limitations. In the literature, there have been repeatedly calls for interdisciplinary approaches to expand our knowledge in this field and eventually overcome the limitations that are inherent to conventional measuring techniques used, for example, for tracing water at the basin, hillslope and even field or plot scales. Infrared thermography is a versatile, accurate and fast technique of monitoring surface temperature and has been used in a variety of fields, such as military surveillance, medical diagnosis, industrial processes optimisation, building inspections and agriculture. However, many applications are still to be fully explored. In surface hydrology, it has been successfully employed as a high spatial and temporal resolution non-invasive and non-destructive imaging tool to e.g. access groundwater discharges into waterbodies or quantify thermal heterogeneities of streams. It is believed that thermal infrared imagery can grasp the spatial and temporal variability of many processes at the soil surface. Thermography interprets the heat signals and can provide an attractive view for identifying both areas where water is flowing or has infiltrated more, or accumulated temporarily in depressions or macropores. Therefore, we hope to demonstrate the potential for thermal infrared imagery to indirectly make a quantitative estimation of several hydrologic processes. Applications include: e.g. mapping infiltration, microrelief and macropores; estimating flow velocities; defining sampling strategies; identifying water sources, accumulation of waters or even connectivity. Protocols for the assessment of several hydrologic processes with the help of IR thermography will be briefly explained, presenting some examples from laboratory soil flumes and field.
Land-based infrared imagery for marine mammal detection
NASA Astrophysics Data System (ADS)
Graber, Joseph; Thomson, Jim; Polagye, Brian; Jessup, Andrew
2011-09-01
A land-based infrared (IR) camera is used to detect endangered Southern Resident killer whales in Puget Sound, Washington, USA. The observations are motivated by a proposed tidal energy pilot project, which will be required to monitor for environmental effects. Potential monitoring methods also include visual observation, passive acoustics, and active acoustics. The effectiveness of observations in the infrared spectrum is compared to observations in the visible spectrum to assess the viability of infrared imagery for cetacean detection and classification. Imagery was obtained at Lime Kiln Park, Washington from 7/6/10-7/9/10 using a FLIR Thermovision A40M infrared camera (7.5-14μm, 37°HFOV, 320x240 pixels) under ideal atmospheric conditions (clear skies, calm seas, and wind speed 0-4 m/s). Whales were detected during both day (9 detections) and night (75 detections) at distances ranging from 42 to 162 m. The temperature contrast between dorsal fins and the sea surface ranged from 0.5 to 4.6 °C. Differences in emissivity from sea surface to dorsal fin are shown to aid detection at high incidence angles (near grazing). A comparison to theory is presented, and observed deviations from theory are investigated. A guide for infrared camera selection based on site geometry and desired target size is presented, with specific considerations regarding marine mammal detection. Atmospheric conditions required to use visible and infrared cameras for marine mammal detection are established and compared with 2008 meteorological data for the proposed tidal energy site. Using conservative assumptions, infrared observations are predicted to provide a 74% increase in hours of possible detection, compared with visual observations.
NASA Astrophysics Data System (ADS)
Di Tullio, M.; Nocchi, F.; Camplani, A.; Emanuelli, N.; Nascetti, A.; Crespi, M.
2018-04-01
The glaciers are a natural global resource and one of the principal climate change indicator at global and local scale, being influenced by temperature and snow precipitation changes. Among the parameters used for glacier monitoring, the surface velocity is a key element, since it is connected to glaciers changes (mass balance, hydro balance, glaciers stability, landscape erosion). The leading idea of this work is to continuously retrieve glaciers surface velocity using free ESA Sentinel-1 SAR imagery and exploiting the potentialities of the Google Earth Engine (GEE) platform. GEE has been recently released by Google as a platform for petabyte-scale scientific analysis and visualization of geospatial datasets. The algorithm of SAR off-set tracking developed at the Geodesy and Geomatics Division of the University of Rome La Sapienza has been integrated in a cloud based platform that automatically processes large stacks of Sentinel-1 data to retrieve glacier surface velocity field time series. We processed about 600 Sentinel-1 image pairs to obtain a continuous time series of velocity field measurements over 3 years from January 2015 to January 2018 for two wide glaciers located in the Northern Patagonian Ice Field (NPIF), the San Rafael and the San Quintin glaciers. Several results related to these relevant glaciers also validated with respect already available and renown software (i.e. ESA SNAP, CIAS) and with respect optical sensor measurements (i.e. LANDSAT8), highlight the potential of the Big Data analysis to automatically monitor glacier surface velocity fields at global scale, exploiting the synergy between GEE and Sentinel-1 imagery.
NASA Technical Reports Server (NTRS)
Neale, Christopher M. U.; Mcdonnell, Jeffrey J.; Ramsey, Douglas; Hipps, Lawrence; Tarboton, David
1993-01-01
Since the launch of the DMSP Special Sensor Microwave/Imager (SSM/I), several algorithms have been developed to retrieve overland parameters. These include the present operational algorithms resulting from the Navy calibration/validation effort such as land surface type (Neale et al. 1990), land surface temperature (McFarland et al. 1990), surface moisture (McFarland and Neale, 1991) and snow parameters (McFarland and Neale, 1991). In addition, other work has been done including the classification of snow cover and precipitation using the SSM/I (Grody, 1991). Due to the empirical nature of most of the above mentioned algorithms, further research is warranted and improvements can probably be obtained through a combination of radiative transfer modelling to study the physical processes governing the microwave emissions at the SSM/I frequencies, and the incorporation of additional ground truth data and special cases into the regression data sets. We have proposed specifically to improve the retrieval of surface moisture and snow parameters using the WetNet SSM/I data sets along with ground truth information namely climatic variables from the NOAA cooperative network of weather stations as well as imagery from other satellite sensors such as the AVHRR and Thematic Mapper. In the case of surface moisture retrievals the characterization of vegetation density is of primary concern. The higher spatial resolution satellite imagery collected at concurrent periods will be used to characterize vegetation types and amounts which, along with radiative transfer modelling should lead to more physically based retrievals. Snow parameter retrieval algorithm improvement will initially concentrate on the classification of snowpacks (dry snow, wet snow, refrozen snow) and later on specific products such as snow water equivalent. Significant accomplishments in the past year are presented.
Using Remote Sensing to Quantify Roof Albedo in Seven California Cities
NASA Astrophysics Data System (ADS)
Ban-Weiss, G. A.; Woods, J.; Millstein, D.; Levinson, R.
2013-12-01
Cool roofs reflect sunlight and therefore can reduce cooling energy use in buildings. Further, since roofs cover about 20-25% of cities, wide spread deployment of cool roofs could mitigate the urban heat island effect and partially counter urban temperature increases associated with global climate change. Accurately predicting the potential for increasing urban albedo using reflective roofs and its associated energy use and climate benefits requires detailed knowledge of the current stock of roofs at the city scale. Until now this knowledge has been limited due to a lack of availability of albedo data with sufficient spatial coverage, spatial resolution, and spectral information. In this work we use a novel source of multiband aerial imagery to derive the albedos of individual roofs in seven California cities: Los Angeles, Long Beach, San Diego, Bakersfield, Sacramento, San Francisco, and San Jose. The radiometrically calibrated, remotely sensed imagery has high spatial resolution (1 m) and four narrow (less than 0.1 μm wide) band reflectances: blue, green, red, and near-infrared. To derive the albedo of roofs in each city, we first locate roof pixels within GIS building outlines. Next we use laboratory measurements of the solar spectral reflectances of 190 roofing products to empirically relate solar reflectance (albedo) to reflectances in the four narrow bands; the root-mean-square of the residuals for the albedo prediction is 0.016. Albedos computed from remotely sensed reflectances are calibrated to ground measurements of roof albedo in each city. The error (both precision and accuracy) of albedo values is presented for each city. The area-weighted mean roof albedo (× standard deviation) for each city ranges from 0.17 × 0.08 (Los Angeles) to 0.29 × 0.15 (San Diego). In each city most roofs have low albedo in the range of 0.1 to 0.3. Roofs with albedo greater than 0.4 comprise less than 3% of total roofs and 7% of total roof area in each city. The California Building Energy Efficiency Standard (Title-24, Part 6) includes the use of high-albedo surfaces on low-sloped roofs on non-residential buildings. Analyzing a subset of large presumably commercial buildings, we find high albedo roofs represent 0.5% and 10% of total roofs and roof surface area, respectively. The potential for high albedo roofs to reduce urban temperatures was investigated for a California city (Bakersfield) with warm summers using a state-of-the-art meteorological model (Weather Research and Forecasting, WRF). Base case and cool roof scenarios were simulated with the only difference being that the surface albedo was increased under the cool roof scenario. Roof albedos derived from the aerial imagery were used as an input to the climate model in the base case scenario. Simulation results indicate that seasonal average afternoon (1500 h) temperatures could be reduced by up to 0.2 °C across Bakersfield during both the summer and winter. While temperature changes are similar during winter and summer, only summer shows statistically significant temperature changes downwind (southeast) from Bakersfield. This indicates that reduced summertime temperatures may be felt over a distance that is 2 or 3 times the length scale of the region with high albedo roofs.
Television experiment for Mariner Mars 1971
Masursky, H.; Batson, R.; Borgeson, W.; Carr, M.; McCauley, J.; Milton, D.; Wildey, R.; Wilhelms, D.; Murray, B.; Horowitz, N.; Leighton, R.; Sharp, R.; Thompson, W.; Briggs, G.; Chandeysson, P.; Shipley, E.; Sagan, C.; Pollack, J.; Lederberg, J.; Levinthal, E.; Hartmann, W.; McCord, T.; Smith, B.; Davies, M.; De Vaucouleurs, G.; Leovy, C.
1970-01-01
The Television Experiment objectives are to provide imaging data which will complement previously gathered data and extend our knowledge of Mars. The two types of investigations will be fixed-feature (for mapping) and variable-feature (for surface and atmospheric changes). Two cameras with a factor-of-ten difference in resolution will be used on each spacecraft for medium- and high-resolution imagery. Mapping of 70% of the planet's surface will be provided by medium-resolution imagery. Spot coverage of about 5% of the surface will be possible with the high-resolution imagery. The experiment's 5 Principal Investigators and 21 Co-Investigators are organized into a team. Scientific disciplines and technical task groups have been formed to provide the formulation of experiment requirements for mission planning and instrument development. It is expected that the team concept will continue through the operational and reporting phases of the Mariner Mars 1971 Project. ?? 1970.
Remote sensing of ocean currents using ERTS imagery
NASA Technical Reports Server (NTRS)
Maul, G. A.
1973-01-01
Major ocean currents such as the Loop Current in the eastern Gulf of Mexico have surface manifestations which can be exploited for remote sensing. Surface chlorophyll-a concentrations, which contribute to the shift in color from blue to green in the open sea, were found to have high spatial variability; significantly lower concentrations were observed in the current. The cyclonic edge of the current is an accumulation zone which causes a peak in chlorophyll concentration. The dynamics also cause surface concentrations of algae, which have a high reflectance in the near infrared. Combining these observations gives rise to an edge effect which can show up as a bright lineation on multispectral imagery delimiting the current's boundary under certain environmental conditions. When high seas introduce bubbles, white caps, and foam, the reflectance is dominated by scattering rather than absorption. This has been detected in ERTS imagery and used for current location.
Mars Exploration Rovers Entry, Descent, and Landing Trajectory Analysis
NASA Technical Reports Server (NTRS)
Desai, Prasun N.; Knocke, Philip C.
2007-01-01
In this study we present a novel method of land surface classification using surface-reflected GPS signals in combination with digital imagery. Two GPS-derived classification features are merged with visible image data to create terrain-moisture (TM) classes, defined here as visibly identifiable terrain or landcover classes containing a surface/soil moisture component. As compared to using surface imagery alone, classification accuracy is significantly improved for a number of visible classes when adding the GPS-based signal features. Since the strength of the reflected GPS signal is proportional to the amount of moisture in the surface, use of these GPS features provides information about the surface that is not obtainable using visible wavelengths alone. Application areas include hydrology, precision agriculture, and wetlands mapping.
Hammerle, Albin; Meier, Fred; Heinl, Michael; Egger, Angelika; Leitinger, Georg
2017-04-01
Thermal infrared (TIR) cameras perfectly bridge the gap between (i) on-site measurements of land surface temperature (LST) providing high temporal resolution at the cost of low spatial coverage and (ii) remotely sensed data from satellites that provide high spatial coverage at relatively low spatio-temporal resolution. While LST data from satellite (LST sat ) and airborne platforms are routinely corrected for atmospheric effects, such corrections are barely applied for LST from ground-based TIR imagery (using TIR cameras; LST cam ). We show the consequences of neglecting atmospheric effects on LST cam of different vegetated surfaces at landscape scale. We compare LST measured from different platforms, focusing on the comparison of LST data from on-site radiometry (LST osr ) and LST cam using a commercially available TIR camera in the region of Bozen/Bolzano (Italy). Given a digital elevation model and measured vertical air temperature profiles, we developed a multiple linear regression model to correct LST cam data for atmospheric influences. We could show the distinct effect of atmospheric conditions and related radiative processes along the measurement path on LST cam , proving the necessity to correct LST cam data on landscape scale, despite their relatively low measurement distances compared to remotely sensed data. Corrected LST cam data revealed the dampening effect of the atmosphere, especially at high temperature differences between the atmosphere and the vegetated surface. Not correcting for these effects leads to erroneous LST estimates, in particular to an underestimation of the heterogeneity in LST, both in time and space. In the most pronounced case, we found a temperature range extension of almost 10 K.
NASA Technical Reports Server (NTRS)
Vasavada, Ashwin R.; Piqueux, Sylvain; Lewis, Kevin W.; Lemmon, Mark T.; Smith, Michael Doyle
2016-01-01
The REMS instrument onboard the Mars Science Laboratory rover, Curiosity, has measured ground temperature nearly continuously at hourly intervals for two Mars years. Coverage of the entire diurnal cycle at 1 Hz is available every few martian days. We compare these measurements with predictions of surface atmosphere thermal models to derive the apparent thermal inertia and thermally derived albedo along the rovers traverse after accounting for the radiative effects of atmospheric water ice during fall and winter, as is necessary to match the measured seasonal trend. The REMS measurements can distinguish between active sand, other loose materials, mudstone, and sandstone based on their thermophysical properties. However, the apparent thermal inertias of bedrock dominated surfaces [approx. 350-550 J m(exp. -2) K(exp. -1 s(exp. -1/2 )] are lower than expected. We use rover imagery and the detailed shape of the diurnal ground temperature curve to explore whether lateral or vertical heterogeneity in the surface materials within the sensor footprint might explain the low inertias. We find that the bedrock component of the surface can have a thermal inertia as high as 650-1700 J m(exp. -2) K(exp. -1) s(exp. -1/2) for mudstone sites and approx. 700 J m(exp. -2) K(exp. -1) s(exp. - 1/2) for sandstone sites in models runs that include lateral and vertical mixing. Although the results of our forward modeling approach may be non-unique, they demonstrate the potential to extract information about lateral and vertical variations in thermophysical properties from temporally resolved measurements of ground temperature.
Imagery Products Derived from Satellite Imagery Landsat Forest Change Products Amazon Basin Central Africa Paraguay Coastal Marsh Health Index Forest Cover Change Impervious Surface Cover Landsat Mosaics Landsat Guides * Data Policies * Restricted Access Quick Links * EROS Data Center * Global Change Master
Transition and Evaluation of RGB Imagery to WFOs and National Centers by NASA SPoRT
NASA Technical Reports Server (NTRS)
Fuell, Kevin K.; Molthan, Andrew L.
2012-01-01
MODIS Snow/Cloud and True Color RGB imagery has been used by SPoRT partners since 2004 to examine changes in surface features such as snow cover, vegetation, ocean color, fires, smoke plumes, and oil spills.
NASA Astrophysics Data System (ADS)
Svejkosky, Joseph
The spectral signatures of vehicles in hyperspectral imagery exhibit temporal variations due to the preponderance of surfaces with material properties that display non-Lambertian bi-directional reflectance distribution functions (BRDFs). These temporal variations are caused by changing illumination conditions, changing sun-target-sensor geometry, changing road surface properties, and changing vehicle orientations. To quantify these variations and determine their relative importance in a sub-pixel vehicle reacquisition and tracking scenario, a hyperspectral vehicle BRDF sampling experiment was conducted in which four vehicles were rotated at different orientations and imaged over a six-hour period. The hyperspectral imagery was calibrated using novel in-scene methods and converted to reflectance imagery. The resulting BRDF sampled time-series imagery showed a strong vehicle level BRDF dependence on vehicle shape in off-nadir imaging scenarios and a strong dependence on vehicle color in simulated nadir imaging scenarios. The imagery also exhibited spectral features characteristic of sampling the BRDF of non-Lambertian targets, which were subsequently verified with simulations. In addition, the imagery demonstrated that the illumination contribution from vehicle adjacent horizontal surfaces significantly altered the shape and magnitude of the vehicle reflectance spectrum. The results of the BRDF sampling experiment illustrate the need for a target vehicle BRDF model and detection scheme that incorporates non-Lambertian BRDFs. A new detection algorithm called Eigenvector Loading Regression (ELR) is proposed that learns a hyperspectral vehicle BRDF from a series of BRDF measurements using regression in a lower dimensional space and then applies the learned BRDF to make test spectrum predictions. In cases of non-Lambertian vehicle BRDF, this detection methodology performs favorably when compared to subspace detections algorithms and graph-based detection algorithms that do not account for the target BRDF. The algorithms are compared using a test environment in which observed spectral reflectance signatures from the BRDF sampling experiment are implanted into aerial hyperspectral imagery that contain large quantities of vehicles.
Using remotely-sensed multispectral imagery to build age models for alluvial fan surfaces
NASA Astrophysics Data System (ADS)
D'Arcy, Mitch; Mason, Philippa J.; Roda Boluda, Duna C.; Whittaker, Alexander C.; Lewis, James
2016-04-01
Accurate exposure age models are essential for much geomorphological field research, and generally depend on laboratory analyses such as radiocarbon, cosmogenic nuclide, or luminescence techniques. These approaches continue to revolutionise geomorphology, however they cannot be deployed remotely or in situ in the field. Therefore other methods are still needed for producing preliminary age models, performing relative dating of surfaces, or selecting sampling sites for the laboratory analyses above. With the widespread availability of detailed multispectral imagery, a promising approach is to use remotely-sensed data to discriminate surfaces with different ages. Here, we use new Landsat 8 Operational Land Imager (OLI) multispectral imagery to characterise the reflectance of 35 alluvial fan surfaces in the semi-arid Owens Valley, California. Alluvial fans are useful landforms to date, as they are widely used to study the effects of tectonics, climate and sediment transport processes on source-to-sink sedimentation. Our target fan surfaces have all been mapped in detail in the field, and have well-constrained exposure ages ranging from modern to ~ 125 ka measured using a high density of 10Be cosmogenic nuclide samples. Despite all having similar granitic compositions, the spectral properties of these surfaces vary systematically with their exposure ages. Older surfaces demonstrate a predictable shift in reflectance across the visible and short-wave infrared spectrum. Simple calculations, such as the brightness ratios of different wavelengths, generate sensitive power law relationships with exposure age that depend on post-depositional alteration processes affecting these surfaces. We investigate what these processes might be in this dryland location, and evaluate the potential for using remotely-sensed multispectral imagery for developing surface age models. The ability to remotely sense relative exposure ages has useful implications for preliminary mapping, selecting sampling sites for laboratory-based exposure age techniques, and correlating existing age constraints to un-sampled surfaces.
Assessing Field-Specific Risk of Soybean Sudden Death Syndrome Using Satellite Imagery in Iowa.
Yang, S; Li, X; Chen, C; Kyveryga, P; Yang, X B
2016-08-01
Moderate resolution imaging spectroradiometer (MODIS) satellite imagery from 2004 to 2013 were used to assess the field-specific risks of soybean sudden death syndrome (SDS) caused by Fusarium virguliforme in Iowa. Fields with a high frequency of significant decrease (>10%) of the normalized difference vegetation index (NDVI) observed in late July to middle August on historical imagery were hypothetically considered as high SDS risk. These high-risk fields had higher slopes and shorter distances to flowlines, e.g., creeks and drainages, particularly in the Des Moines lobe. Field data in 2014 showed a significantly higher SDS level in the high-risk fields than fields selected without considering NDVI information. On average, low-risk fields had 10 times lower F. virguliforme soil density, determined by quantitative polymerase chain reaction, compared with other surveyed fields. Ordinal logistic regression identified positive correlations between SDS and slope, June NDVI, and May maximum temperature, but high June maximum temperature hindered SDS. A modeled SDS risk map showed a clear trend of potential disease occurrences across Iowa. Landsat imagery was analyzed similarly, to discuss the ability to utilize higher spatial resolution data. The results demonstrated the great potential of both MODIS and Landsat imagery for SDS field-specific risk assessment.
Forest abovegroundbiomass mapping using spaceborne stereo imagery acquired by Chinese ZY-3
NASA Astrophysics Data System (ADS)
Sun, G.; Ni, W.; Zhang, Z.; Xiong, C.
2015-12-01
Besides LiDAR data, another valuable type of data which is also directly sensitive to forest vertical structures and more suitable for regional mapping of forest biomass is the stereo imagery or photogrammetry. Photogrammetry is the traditional technique for deriving terrain elevation. The elevation of the top of a tree canopy can be directly measured from stereo imagery but winter images are required to get the elevation of ground surface because stereo images are acquired by optical sensors which cannot penetrate dense forest canopies with leaf-on condition. Several spaceborne stereoscopic systems with higher spatial resolutions have been launched in the past several years. For example the Chinese satellite Zi Yuan 3 (ZY-3) specifically designed for the collection of stereo imagery with a resolution of 3.6 m for forward and backward views and 2.1 m for the nadir view was launched on January 9, 2012. Our previous studies have demonstrated that the spaceborne stereo imagery acquired in summer has good performance on the description of forest structures. The ground surface elevation could be extracted from spaceborne stereo imagery acquired in winter. This study mainly focused on assessing the mapping of forest biomass through the combination of spaceborne stereo imagery acquired in summer and those in winter. The test sites of this study located at Daxing AnlingMountains areas as shown in Fig.1. The Daxing Anling site is on the south border of boreal forest belonging to frigid-temperate zone coniferous forest vegetation The dominant tree species is Dhurian larch (Larix gmelinii). 10 scenes of ZY-3 stereo images are used in this study. 5 scenes were acquired on March 14,2012 while the other 5 scenes were acquired on September 7, 2012. Their spatial coverage is shown in Fig.2-a. Fig.2-b is the mosaic of nadir images acquired on 09/07/2012 while Fig.2-c is thecorresponding digital surface model (DSM) derived from stereo images acquired on 09/07/2012. Fig.2-d is the difference between the DSM derived from stereo imagery acquired on 09/07/2012 and the digital elevation model (DEM) from stereo imagery acquired on 03/14/2012.The detailed analysis will be given in the final report.
Distribution of near-surface permafrost in Alaska: estimates of present and future conditions
Pastick, Neal J.; Jorgenson, M. Torre; Wylie, Bruce K.; Nield, Shawn J.; Johnson, Kristofer D.; Finley, Andrew O.
2015-01-01
High-latitude regions are experiencing rapid and extensive changes in ecosystem composition and function as the result of increases in average air temperature. Increasing air temperatures have led to widespread thawing and degradation of permafrost, which in turn has affected ecosystems, socioeconomics, and the carbon cycle of high latitudes. Here we overcome complex interactions among surface and subsurface conditions to map nearsurface permafrost through decision and regression tree approaches that statistically and spatially extend field observations using remotely sensed imagery, climatic data, and thematic maps of a wide range of surface and subsurface biophysical characteristics. The data fusion approach generated medium-resolution (30-m pixels) maps of near-surface (within 1 m) permafrost, active-layer thickness, and associated uncertainty estimates throughout mainland Alaska. Our calibrated models (overall test accuracy of ~85%) were used to quantify changes in permafrost distribution under varying future climate scenarios assuming no other changes in biophysical factors. Models indicate that near-surface permafrost underlies 38% of mainland Alaska and that near-surface permafrost will disappear on 16 to 24% of the landscape by the end of the 21st Century. Simulations suggest that near-surface permafrost degradation is more probable in central regions of Alaska than more northerly regions. Taken together, these results have obvious implications for potential remobilization of frozen soil carbon pools under warmer temperatures. Additionally, warmer and drier conditions may increase fire activity and severity, which may exacerbate rates of permafrost thaw and carbon remobilization relative to climate alone. The mapping of permafrost distribution across Alaska is important for land-use planning, environmental assessments, and a wide-array of geophysical studies.
NASA Technical Reports Server (NTRS)
2002-01-01
This spectacular Moderate Resolution Imaging Spectroradiometer (MODIS) 'blue marble' image is based on the most detailed collection of true-color imagery of the entire Earth to date. Using a collection of satellite-based observations, scientists and visualizers stitched together months of observations of the land surface, oceans, sea ice, and clouds into a seamless, true-color mosaic of every square kilometer (.386 square mile) of our planet. Most of the information contained in this image came from MODIS, illustrating MODIS' outstanding capacity to act as an integrated tool for observing a variety of terrestrial, oceanic, and atmospheric features of the Earth. The land and coastal ocean portions of this image is based on surface observations collected from June through September 2001 and combined, or composited, every eight days to compensate for clouds that might block the satellite's view on any single day. Global ocean color (or chlorophyll) data was used to simulate the ocean surface. MODIS doesn't measure 3-D features of the Earth, so the surface observations were draped over topographic data provided by the U.S. Geological Survey EROS Data Center. MODIS observations of polar sea ice were combined with observations of Antarctica made by the National Oceanic and Atmospheric Administration's AVHRR sensor-the Advanced Very High Resolution Radiometer. The cloud image is a composite of two days of MODIS imagery collected in visible light wavelengths and a third day of thermal infra-red imagery over the poles. A large collection of imagery based on the blue marble in a variety of sizes and formats, including animations and the full (1 km) resolution imagery, is available at the Blue Marble page. Image by Reto Stockli, Render by Robert Simmon. Based on data from the MODIS Science Team
Facilitating the exploitation of ERTS-1 imagery utilizing snow enhancement techniques
NASA Technical Reports Server (NTRS)
Wobber, F. J. (Principal Investigator); Martin, K. R.; Amato, R. V.
1973-01-01
The author has identified the following significant results. Snow cover in combination with low angle solar illumination has been found to provide increased tonal contrast of surface feature and is useful in the detection of bedrock fractures. Identical fracture systems were not as readily detectable in the fall due to the lack of a contrasting surface medium (snow) and a relatively high sun angle. Low angle solar illumination emphasizes topographic expressions not as apparent on imagery acquired with a higher sun angle. A strong correlation exists between the major fracture-lineament directions interpreted from multi-sensor imagery (including snow-free and snow cover ERTS) and the strike of bedrock joints recorded in the field indicating the structural origin of interpreted fracture-lineaments. A fracture-annotated ERTS-1 photo base map (1:250,000 scale) is being prepared for western Massachusetts. The map will document the utilization of ERTS-1 imagery for geological analysis in comparative snow-free and snow-covered terrain.
Maxwell, S.K.; Meliker, J.R.; Goovaerts, P.
2010-01-01
In recent years, geographic information systems (GIS) have increasingly been used for reconstructing individual-level exposures to environmental contaminants in epidemiological research. Remotely sensed data can be useful in creating space-time models of environmental measures. The primary advantage of using remotely sensed data is that it allows for study at the local scale (e.g., residential level) without requiring expensive, time-consuming monitoring campaigns. The purpose of our study was to identify how land surface remotely sensed data are currently being used to study the relationship between cancer and environmental contaminants, focusing primarily on agricultural chemical exposure assessment applications. We present the results of a comprehensive literature review of epidemiological research where remotely sensed imagery or land cover maps derived from remotely sensed imagery were applied. We also discuss the strengths and limitations of the most commonly used imagery data (aerial photographs and Landsat satellite imagery) and land cover maps.
NASA Astrophysics Data System (ADS)
Diner, D. J.; Martonchik, J. V.; Sanghavi, S.; Xu, F.; Garay, M. J.; Bradley, C.; Chipman, R.; McClain, S.
2011-12-01
Passive retrievals of aerosol properties from aircraft or satellite must account for surface reflection at the lower boundary. Future missions such as Aerosol-Cloud-Ecosystem (ACE) will use multiangular, multispectral, and polarimetric imagery for aerosol remote sensing. Interpreting such multidimensional measurements requires representing the aerosols by a set of optical and microphysical parameters and modeling the surface bidirectional reflectance distribution function (BRDF). We are developing a surface model represented by a matrix BRDF that describes both intensity and polarization. The BRDF is the sum of a depolarizing volumetric (diffuse) scattering term represented by the modified Rahman-Pinty-Verstraete (mRPV) function, and a specular reflection term corresponding to a distribution of tilted microfacets, each of which reflects according to the Fresnel laws. In order to limit the number of parameters that need to be retrieved, empirical constraints are placed on the surface reflection model, e.g., that the volumetric component can be written as the product of a function only of wavelength and a function only of illumination and view geometry and that the polarized surface reflectance is spectrally neutral. Validation of these assumptions is required to establish a successful surface reflectance model that can be used as part of the aerosol retrievals. The Ground-based and Airborne Multiangle SpectroPolarimetric Imagers (GroundMSPI and AirMSPI) are pushbroom cameras that use a novel dual-photoelastic modulator (PEM) design to measure the Stokes vector components I, Q, and U, degree of linear polarization (DOLP), and angle of linear polarization (AOLP) with high accuracy. Intensity bands are centered at 355, 380, 445, 555, 660, 865, and 935 nm, and polarization channels are at 470, 660, and 865 nm. GroundMSPI and AirMSPI data collected on clear days are being used to further develop and validate the parametric surface model. For GroundMSPI, time sequences of intensity and polarization imagery are acquired throughout the day, and motion of the Sun through the sky provides variable scattering angle. AirMSPI acquires multiangular imagery from the NASA ER-2 aircraft by pointing the camera at different angles using a motorized gimbal. In this paper, we will present examples of GroundMSPI and AirMSPI imagery and explore how well the parametric surface model is able to represent the measured intensity and polarization data.
The Pelagics Habitat Analysis Module (PHAM): Decision Support Tools for Pelagic Fisheries
NASA Astrophysics Data System (ADS)
Armstrong, E. M.; Harrison, D. P.; Kiefer, D.; O'Brien, F.; Hinton, M.; Kohin, S.; Snyder, S.
2009-12-01
PHAM is a project funded by NASA to integrate satellite imagery and circulation models into the management of commercial and threatened pelagic species. Specifically, the project merges data from fishery surveys, and fisheries catch and effort data with satellite imagery and circulation models to define the habitat of each species. This new information on habitat will then be used to inform population distribution and models of population dynamics that are used for management. During the first year of the project, we created two prototype modules. One module, which was developed for the Inter-American Tropical Tuna Commission, is designed to help improve information available to manage the tuna fisheries of the eastern Pacific Ocean. The other module, which was developed for the Coastal Pelagics Division of the Southwest Fishery Science Center, assists management of by-catch of mako, blue, and thresher sharks along the Californian coast. Both modules were built with the EASy marine geographic information system, which provides a 4 dimensional (latitude, longitude, depth, and time) home for integration of the data. The projects currently provide tools for automated downloading and geo-referencing of satellite imagery of sea surface temperature, height, and chlorophyll concentrations; output from JPL’s ECCO2 global circulation model and its ROM California current model; and gridded data from fisheries and fishery surveys. It also provides statistical tools for defining species habitat from these and other types of environmental data. These tools include unbalanced ANOVA, EOF analysis of satellite imagery, and multivariate search routines for fitting fishery data to transforms of the environmental data. Output from the projects consists of dynamic maps of the distribution of the species that are driven by the time series of satellite imagery and output from the circulation models. It also includes relationships between environmental variables and recruitment. During the talk, we will briefly demonstrate features of the software and present the results of our analyses of habitats.
Water mass linkages between the Middle and South Atlantic bights
NASA Astrophysics Data System (ADS)
Pietrafesa, L. J.; Morrison, J. M.; McCann, M. P.; Churchill, J.; Böhm, E.; Houghton, R. W.
Time and frequency domain analyses are used to relate coastal meteorological data with 7 years of daily surface temperature and salinity collected at three coastal light stations; offshore of the mouth of Chesapeake Bay, Virginia, on Diamond Shoals, at Cape Hatteras, North Carolina and on Frying Pan Shoals, off Cape Fear, North Carolina. Salinity fluctuations at Diamond Shoals are highly correlated with alongshore wind stress, implying wind driven advection of the front between Virginia Coastal Water (VCW) and Carolina Coastal Water (CCW) across Diamond Shoals. The data collected at Diamond Shoals indicate that more than half the time there is significant encroachment of Mid Atlantic Bight water into the South Atlantic Bight around Cape Hatteras, contrary to the notion that VCW is entirely entrained into the Gulf Stream. In fact, VCW can appear as far south as Frying Pan Shoals, thereby extending across the entire North Carolina Capes inner to mid shelf. Temperature and salinity time series also indicate that water masses overlying Diamond Shoals respond quickly to cross-shelf winds. Cross-shelf wind stress is significantly correlated with surface water temperature at Diamond Shoals, for periods between 2 and 12 days. Changes in temperature can be brought about by wind-driven cross-shelf circulation and by wind-induced upwelling. Seasurface temperature satellite (AVHRR) imagery taken during the SEEP II confirm these concepts.
Coastal Permafrost Bluff Response to Summer Warming, Barter Island, NE Alaska
NASA Astrophysics Data System (ADS)
Richmond, B. M.; Gibbs, A.; Johnson, C. D.; Swarzenski, P. W.; Oberle, F. J.; Tulaczyk, S. M.; Lorenson, T. D.
2016-12-01
Observations of warming air and sea temperatures in the Arctic are leading to longer periods of permafrost thaw and ice-free conditions during summer, which lead to increased exposure to coastal storm surge, wave impacts, and heightened erosion. Recently collected air and soil (bluff) temperatures, atmospheric pressure, water levels, time-lapse photography, aerial photography and satellite imagery, and electrical resistivity tomography (ERT) surveys were used to document coastal bluff morphological response to seasonal warming. Data collection instruments and time-lapse cameras installed overlooking a bluff face on the exposed open ocean coast and within an erosional gully were used to create an archive of hourly air temperature, pressure, bluff morphology, and sea-state conditions allowing for documentation of individual bluff failure events and coincident meteorology. Permafrost boreholes as deep as 6 m from the upper bluff tundra surface were fitted with thermistor arrays to record a high resolution temperature record that spanned an initial frozen state, a summer thaw cycle, and subsequent re-freezing. Late summer ERT surveys were used to link temperature observations to subsurface electrical resistivities and active-layer dynamics. Preliminary observations suggest surface warming and active layer growth are responsible for a significant amount of bluff face failures that are exacerbated in the shore perpendicular gullies and along the exposed ocean coast. Electrical resistivity surveys and geochemical data reveal concentrated brines at depth, which likely contribute to enhanced, localized erosion in weakened strata.
NASA Technical Reports Server (NTRS)
Honey, F. R.; Simpson, C. J.; Huntington, J.; Horwitz, R.; Byrne, G.; Nilsson, C.
1984-01-01
The objectives of a study to evaluate the potential of Shuttle Imaging Radar-B (SIR-B) imagery for various applications are outlined. Specific goals include: the development of techniques for registration multiple acquisition, varied illumination, and incidence-angle SIR-B imagery, and a model for estimation of the relative contributions to the backscattered radiation of topography, surface roughness, and dielectric and conductivity components; (2) the evaluation of SIR-B imagery for delineation of agricultural lands affected by secondary salinity in the southwest and southeast agricultural regions of Australia; (3) the development of techniques for application of SIR-B imagery for geologic, geomorphologic and soils mapping and mineral exploration; and (4) the evaluation of the use of SIR-B imagery in determining ocean currents, current shear patterns, internal waves and bottom features for specific locations off the Australian coast.
What's crucial in night vision goggle simulation?
NASA Astrophysics Data System (ADS)
Kooi, Frank L.; Toet, Alexander
2005-05-01
Training is required to correctly interpret NVG imagery. Training night operations with simulated intensified imagery has great potential. Compared to direct viewing with the naked eye, intensified imagery is relatively easy to simulate and the cost of real NVG training is high (logistics, risk, civilian sleep deprivation, pollution). On the surface NVG imagery appears to have a structure similar to daylight imagery. However, in actuality its characteristics differ significantly from those of daylight imagery. As a result, NVG imagery frequently induces visual illusions. To achieve realistic training, simulated NVG imagery should at least reproduce the essential visual limitations of real NVG imagery caused by reduced resolution, reduced contrast, limited field-of-view, the absence of color, and the systems sensitivity to nearby infrared radiation. It is particularly important that simulated NVG imagery represents essential NVG visual characteristics, such as the high reflection of chlorophyll and halos. Current real-time simulation software falls short for training purposes because of an incorrect representation of shadow effects. We argue that the development of shading and shadowing merits priority to close the gap between real and simulated NVG flight conditions. Visual conspicuity can be deployed as an efficient metric to measure the 'perceptual distance' between the real NVG and the simulated NVG image.
Integration of hard copy and soft copy exploitation
NASA Astrophysics Data System (ADS)
Fultz, Roy C., Jr.
1996-11-01
Exploitation of remotely sensed and aerially derived imagery has, in the past, been primarily performed through the use of analog light tables, by displaying individual pieces or rolls of imagery over a brightly lit surface to allow light through the nonopaque surface of the film medium. The interpreter would then peer through optical viewing scopes allowing him (or her) to analyze the imagery. Over the course of the last two decades, digital data, or as it is better known, "softcopy imagery," has for many become the desired path which technology has dictated. Softcopy imagery offers many benefits, such as the ability to manipulate imagery in ways analog workstations cannot and were never designed to do. Functions which can be performed on softcopy imagery are endless and growing constantly: image spatial rectification, pixel manipulation, image contrast, and brightness enhancements. All are performed by the running of algorithmic equations to manipulate the digital data. It has become evident that in the future a large portion of imagery analysis will be performed by softcopy. However, studies indicate that aerial imagery will continue to be acquired via hardcopy means for many civil, educational, and commercial applications in the foreseeable future, making it clear that any large scale transformation from hardcopy to softcopy will not be feasible for a long time to come. A major issue dictating the slow-down in this transition is the over 35 years of hardcopy imagery archived and housed in facilities throughout the world, including the recently declassified "Corona" satellite imagery which will provide a wealth of hardcopy data for use by ecologists and conservationists. Yes, the technology to transfer hardcopy to softcopy exists, but the time and cost required to complete this task would be phenomenal and, in many cases, when digitization and storage become affordable, it still may prove beneficial to retain the imagery in a hardcopy form for retention of the highest quality resolution. An analogy which I feel best portrays this dilemma is the automobile-eventually all automobiles will be electric or hydrogen driven but the time and cost involved in the transformation predicts a slow progression. Since a predominate amount of imagery analysis, especially in the intelligence community, is the comparison ofnew imagery data to that of archived imagery in order to detect changes or to monitor progressions, it is conceivable that the majority of imagery analysts will be using a combination of hardcopy and softcopy workstations in order to facilitate analysis. The incorporation of hardcopy and softcopy functions into one workstation is the most cost effective and time essential means in which in-depth analysis can be performed.
Synthesis of optical polarization signatures of military aircraft
NASA Astrophysics Data System (ADS)
Egan, Walter G.; Duggin, Michael J.
2002-01-01
Focal plane wide band IR imagery will be compared with visual wide band focal plane digital imagery of a camouflaged B-52 bomber. Extreme enhancement is possible using digital polarized imagery. The experimental observations will be compared to theoretical calculations and modeling result of both specular and shadowed areas to allow extrapolations to the synthesis of the optical polarization signatures of other aircraft. The relationship of both the specular and the shadowed areas to surface structure, orientation, specularlity, roughness, shadowing and the complex index of refraction will be illustrated. The imagery was obtained in two plane-polarized directions. Many aircraft locations were measured as well as sky background.
Interpretation of surface-water circulation, Aransas Pass, Texas, using Landsat imagery
NASA Technical Reports Server (NTRS)
Finley, R. J.; Baumgardner, R. W., Jr.
1980-01-01
The development of plumes of turbid surface water in the vicinity of Aransas Pass, Texas has been analyzed using Landsat imagery. The shape and extent of plumes present in the Gulf of Mexico is dependent on the wind regime and astronomical tide prior to and at the time of satellite overpass. The best developed plumes are evident when brisk northerly winds resuspend bay-bottom muds and flow through Aransas Pass is increased by wind stress. Seaward diversion of nearshore waters by the inlet jetties was also observed. A knowledge of surface-water circulation through Aransas Pass under various wind conditions is potentially valuable for monitoring suspended and surface pollutants
Interpretation of Passive Microwave Imagery of Surface Snow and Ice: Harding Lake, Alaska
1991-06-01
Circle conditions in microwave imagery depends on the char- (Fig. 1). The lake is roughly circular in shape and has a acteristics of the sensor system...local oscillator frequency 33.6 0Hz IF bandwidth Greaterthan 500 MHz cracks in the ice sheet. The incursion process is de - video bandwidth 1.7 kHz...using pas- surface snow had oct.urred on these similarly sized sive microwave sensors . IEEE/Transactions on Geo- lakes. Additional field verifications
Derivation of cloud-free-region atmospheric motion vectors from FY-2E thermal infrared imagery
NASA Astrophysics Data System (ADS)
Wang, Zhenhui; Sui, Xinxiu; Zhang, Qing; Yang, Lu; Zhao, Hang; Tang, Min; Zhan, Yizhe; Zhang, Zhiguo
2017-02-01
The operational cloud-motion tracking technique fails to retrieve atmospheric motion vectors (AMVs) in areas lacking cloud; and while water vapor shown in water vapor imagery can be used, the heights assigned to the retrieved AMVs are mostly in the upper troposphere. As the noise-equivalent temperature difference (NEdT) performance of FY-2E split window (10.3-11.5 μm, 11.6-12.8 μm) channels has been improved, the weak signals representing the spatial texture of water vapor and aerosols in cloud-free areas can be strengthened with algorithms based on the difference principle, and applied in calculating AMVs in the lower troposphere. This paper is a preliminary summary for this purpose, in which the principles and algorithm schemes for the temporal difference, split window difference and second-order difference (SD) methods are introduced. Results from simulation and cases experiments are reported in order to verify and evaluate the methods, based on comparison among retrievals and the "truth". The results show that all three algorithms, though not perfect in some cases, generally work well. Moreover, the SD method appears to be the best in suppressing the surface temperature influence and clarifying the spatial texture of water vapor and aerosols. The accuracy with respect to NCEP 800 hPa reanalysis data was found to be acceptable, as compared with the accuracy of the cloud motion vectors.
The use of ERTS imagery in reservoir management and operation
NASA Technical Reports Server (NTRS)
Cooper, S. (Principal Investigator)
1973-01-01
There are no author-identified significant results in this report. Preliminary analysis of ERTS-1 imagery suggests that the configuration and areal coverage of surface waters, as well as other hydrologically related terrain features, may be obtained from ERTS-1 imagery to an extent that would be useful. Computer-oriented pattern recognition techniques are being developed to help automate the identification and analysis of hydrologic features. Considerable man-machine interaction is required while training the computer for these tasks.
Sea-Ice Feature Mapping using JERS-1 Imagery
NASA Technical Reports Server (NTRS)
Maslanik, James; Heinrichs, John
1994-01-01
JERS-1 SAR and OPS imagery are examined in combination with other data sets to investigate the utility of the JERS-1 sensors for mapping fine-scale sea ice conditions. Combining ERS-1 C band and JERS-1 L band SAR aids in discriminating multiyear and first-year ice. Analysis of OPS imagery for a field site in the Canadian Archipelago highlights the advantages of OPS's high spatial and spectral resolution for mapping ice structure, melt pond distribution, and surface albedo.
Virlet, Nicolas; Lebourgeois, Valentine; Martinez, Sébastien; Costes, Evelyne; Labbé, Sylvain; Regnard, Jean-Luc
2014-01-01
As field phenotyping of plant response to water constraints constitutes a bottleneck for breeding programmes, airborne thermal imagery can contribute to assessing the water status of a wide range of individuals simultaneously. However, the presence of mixed soil–plant pixels in heterogeneous plant cover complicates the interpretation of canopy temperature. Moran’s Water Deficit Index (WDI = 1–ETact/ETmax), which was designed to overcome this difficulty, was compared with surface minus air temperature (T s–T a) as a water stress indicator. As parameterization of the theoretical equations for WDI computation is difficult, particularly when applied to genotypes with large architectural variability, a simplified procedure based on quantile regression was proposed to delineate the Vegetation Index–Temperature (VIT) scatterplot. The sensitivity of WDI to variations in wet and dry references was assessed by applying more or less stringent quantile levels. The different stress indicators tested on a series of airborne multispectral images (RGB, near-infrared, and thermal infrared) of a population of 122 apple hybrids, under two irrigation regimes, significantly discriminated the tree water statuses. For each acquisition date, the statistical method efficiently delineated the VIT scatterplot, while the limits obtained using the theoretical approach overlapped it, leading to inconsistent WDI values. Once water constraint was established, the different stress indicators were linearly correlated to the stem water potential among a tree subset. T s–T a showed a strong sensitivity to evaporative demand, which limited its relevancy for temporal comparisons. Finally, the statistical approach of WDI appeared the most suitable for high-throughput phenotyping. PMID:25080086
Trace gas exchanges and transports over the Amazonian rain forest
NASA Technical Reports Server (NTRS)
Garstang, Michael; Greco, Steve; Scala, John; Harriss, Robert; Browell, Edward; Sachse, Glenn; Simpson, Joanne; Tao, Wei-Kuo; Torres, Arnold
1986-01-01
Early results are presented from a program to model deep convective transport of chemical species by means of in situ data collection and numerical models. Data were acquired during the NASA GTE Amazon Boundary Layer Experiment in July-August 1985. Airborne instrumentation, including a UV-DIAL system, collected data on the O3, CO, NO, temperature and water vapor profiles from the surface to 400 mb altitude, while GOES imagery tracked convective clouds over the study area. A two-dimensional cloud model with small amplitude random temperature fluctuations at low levels, which simulated thermals, was used to describe the movements of the chemical species sensed in the convective atmosphere. The data was useful for evaluating the accuracy of the cloud model, which in turn was effective in describing the circulation of the chemical species.
Low cost infrared and near infrared sensors for UAVs
NASA Astrophysics Data System (ADS)
Aden, S. T.; Bialas, J. P.; Champion, Z.; Levin, E.; McCarty, J. L.
2014-11-01
Thermal remote sensing has a wide range of applications, though the extent of its use is inhibited by cost. Robotic and computer components are now widely available to consumers on a scale that makes thermal data a readily accessible resource. In this project, thermal imagery collected via a lightweight remote sensing Unmanned Aerial Vehicle (UAV) was used to create a surface temperature map for the purpose of providing wildland firefighting crews with a cost-effective and time-saving resource. The UAV system proved to be flexible, allowing for customized sensor packages to be designed that could include visible or infrared cameras, GPS, temperature sensors, and rangefinders, in addition to many data management options. Altogether, such a UAV system could be used to rapidly collect thermal and aerial data, with a geographic accuracy of less than one meter.
Remote Sensing Product Verification and Validation at the NASA Stennis Space Center
NASA Technical Reports Server (NTRS)
Stanley, Thomas M.
2005-01-01
Remote sensing data product verification and validation (V&V) is critical to successful science research and applications development. People who use remote sensing products to make policy, economic, or scientific decisions require confidence in and an understanding of the products' characteristics to make informed decisions about the products' use. NASA data products of coarse to moderate spatial resolution are validated by NASA science teams. NASA's Stennis Space Center (SSC) serves as the science validation team lead for validating commercial data products of moderate to high spatial resolution. At SSC, the Applications Research Toolbox simulates sensors and targets, and the Instrument Validation Laboratory validates critical sensors. The SSC V&V Site consists of radiometric tarps, a network of ground control points, a water surface temperature sensor, an atmospheric measurement system, painted concrete radial target and edge targets, and other instrumentation. NASA's Applied Sciences Directorate participates in the Joint Agency Commercial Imagery Evaluation (JACIE) team formed by NASA, the U.S. Geological Survey, and the National Geospatial-Intelligence Agency to characterize commercial systems and imagery.
Fluctuating snow line altitudes in the Hunza basin (Karakoram) using Landsat OLI imagery
NASA Astrophysics Data System (ADS)
Racoviteanu, Adina; Rittger, Karl; Brodzik, Mary J.; Painter, Thomas H.; Armstrong, Richard
2016-04-01
Snowline altitudes (SLAs) on glacier surfaces are needed for separating snow and ice as input for melt models. When measured at the end of the ablation season, SLAs are used for inferring stable-state glacier equilibrium line altitudes (ELAs). Direct measurements of snowlines are rarely possible particularly in remote, high altitude glacierized terrain, but remote sensing data can be used to separate these snow and ice surfaces. Snow lines are commonly visible on optical satellite images acquired at the end of the ablation season if the images are contrasted enough, and are manually digitized on screen using various satellite band combinations for visual interpretation, which is a time-consuming, subjective process. Here we use Landsat OLI imagery at 30 m resolution to estimate glacier SLAs for a subset of the Hunza basin in the Upper Indus in the Karakoram. Clean glacier ice surfaces are delineated using a standardized semi-automated band ratio algorithm with image segmentation. Within the glacier surface, snow and ice are separated using supervised classification schemes based on regions of interest, and glacier SLAs are extracted on the basis of these areas. SLAs are compared with estimates from a new automated method that relies on fractional snow covered area rather than on band ratio algorithms for delineating clean glacier ice surfaces, and on grain size (instead of supervised classification) for separating snow from glacier ice on the glacier surface. The two methods produce comparable snow/ice outputs. The fSCA-derived glacierized areas are slightly larger than the band ratio estimates. Some of the additional area is the result of better detection in shadows from spectral mixture analysis (true positive) while the rest is shallow water, which is spectrally similar to snow/ice (false positive). On the glacier surface, a thresholding the snow grain size image (grain size > 500μm) results in similar glacier ice areas derived from the supervised classification, but there is noise (snow) on edges of dirty ice/ moraines at the glacier termini and around rock outcrops on the glacier surface. Neither of the two methods distinguishes the debris-covered ice, so these were mapped separately using a combination of topographic indices (slope, terrain curvature), along with remote sensing surface temperature and texture data. Using average elevation of snow and ice areas, we calculate an ELA of 5260 m for 2013. We construct yearly time series of the ELAs around the centerlines of selected glaciers in the Hunza for the period 2000 - 2014 using Landsat imagery. We explore spatial trends in glacier ELAs within the region, as well as relationships between ELA and topographic characteristics extracted on a glacier-by-glacier basis from a digital elevation model.
NASA Astrophysics Data System (ADS)
Asher, W. E.; Jessup, A. T.; Liang, H.; Zappa, C. J.
2008-12-01
The air-sea flux, F, of a sparingly soluble nonreactive gas can be expressed as F = kG(CS-CW), where kG is the gas transfer velocity, CS is the concentration of gas that would be expected in the water if the system were in Henry's Gas Law equilibrium, and CW is the gas concentration in the bulk water. An analogous relationship for the net heat flux can also be written using the heat transfer velocity, kH, and the bulk-skin temperature difference in the aqueous phase. Surface divergence theory for the air-water transfer of gas and heat predicts that kG and kH will scale as the square root of the surface divergence rate, r. However, because of the interaction between diffusivity and the scale depth of the surface divergences, the scale factor for heat is likely to be different from the scale factor for gases. Infrared imagery was used to measure the timescales of variations in temperature at a water surface and laser-induced fluorescence (LIF) was used to measure temporal fluctuations in aqueous-phase concentrations of carbon dioxide (CO2) at a water surface. The rate at which these temperature and concentration fluctuations occur is then assumed to be related to r. The divergence rates derived for temperature from the IR images can be compared to the rates for gas derived from the LIF measurements to understand how r estimated from the two measurements differ. The square root of r is compared to concurrently measured kG for helium and sulfur hexafluoride to test the assumption that r1/2 scales with kG. Additionally, we measured kH using the active controlled flux technique, and those heat transfer velocities can also be used to test for a r1/2 dependence. All measurements reported here were made in the APL-UW synthetic jet array facility.
NASA Technical Reports Server (NTRS)
Delascuevas, R. N. (Principal Investigator); Dearagon, A. M.
1981-01-01
Data obtained by HCMM satellite over a complex area in eastern Spain were evaluated and found to be most useful in studying macrostructures in geology and in analyzing marine currents, layers, and areas (although other satellites provide more data). The upper scale to work with HCMM data appears to be 1:2.000.000. Techniques used in preprocessing, processing, and analyzing imagery are discussed as well as methods for pattern recognition. Surface temperatures obtained for soils, farmlands, forests, geological structures, and coastal waters are discussed. Suggestions are included for improvements needed to achieve better results in geographic areas similar to the study area.
Use of thermal infrared and colour infrared imagery to detect crop moisture stress. [Alberta, Canada
NASA Technical Reports Server (NTRS)
Mckenzie, R. C.; Clark, N. F.; Cihlar, J. (Principal Investigator)
1979-01-01
The author has identified the following significant results. In the presence of variable plant cover (primarily percent cover) and variable available water content, the remotely sensed apparent temperatures correlate closely with plant cover and poorly with soil water. To the extent that plant cover is not systematically related to available soil water, available water in the root zone values may not be reliably predicted from the thermal infrared data. On the other hand, if plant cover is uniform and the soil surface is shown in a minor way, the thermal data indicate plant stress and consequently available water in the soil profile.
The along track scanning radiometer for ERS-1 - Scan geometry and data simulation
NASA Astrophysics Data System (ADS)
Prata, A. J. Fred; Cechet, Robert P.; Barton, Ian J.; Llewellyn-Jones, David T.
1990-01-01
The first European remote-sensing satellite (ERS-1), due to be launched in 1990, will carry the along track scanning radiometer (ATSR), which has been specifically designed to give accurate satellite measurements of sea surface temperature (SST). Details of the novel scanning technique used by the ATSR are given, and data from the NOAA-9 AVHRR instrument are used to simulate raw ATSR imagery. Because of the high precision of the onboard blackbodies, the active cooling of the detectors, 12-b digitization, and dual-angle capability, the ATSR promises to achieve higher-accuracy satellite-derived SSTs than are currently available.
We used an extensive dataset of remotely sensed summertime river temperature to compare longitudinal profiles (temperature versus distance) for 54 rivers in the Pacific Northwest. We evaluated (1) how often profiles fit theoretical expectations of asymptotic downstream warming, a...
Utility of Thermal Infrared Satellite Data For Urban Landscapes
NASA Astrophysics Data System (ADS)
Xian, G.; Crane, M.; Granneman, B.
2006-12-01
Urban landscapes are comprised of a variety of surfaces that are characterized by contrasting radiative, thermal, aerodynamic, and moisture properties. These different surfaces possess diverse physical and thermal attributes that directly influence surface energy balance and our ability to determine surface characteristics in urban areas. Reflectance properties obtained from satellite imagery have proven useful for mapping urban land use and land cover change, as well as ecosystem health. Landsat reflectance bands are commonly used in regression tree models to generate linear equations that correspond to distinct land surface materials. However, urban land cover is generally a heterogeneous mix of bare soil, vegetation, rock, and anthropogenic impervious surfaces. Surface temperature obtained from satellite thermal infrared bands provides valuable information about surface biophysical properties and radiant thermal characteristics of land cover elements, especially for urban environments. This study demonstrates the improved characterization of land cover conditions for Seattle, Washington, and Las Vegas, Nevada, that were achieved by using both the reflectance and thermal bands of Landsat Enhanced Thematic Mapper Plus (ETM+) data. Including the thermal band in the image analysis increased the accuracy of discriminating cover types in heterogeneous landscapes with extreme contrasts, especially for mixed pixels at the urban interface.
NASA Astrophysics Data System (ADS)
Bayat, F.; Hasanlou, M.
2016-06-01
Sea surface temperature (SST) is one of the critical parameters in marine meteorology and oceanography. The SST datasets are incorporated as conditions for ocean and atmosphere models. The SST needs to be investigated for various scientific phenomenon such as salinity, potential fishing zone, sea level rise, upwelling, eddies, cyclone predictions. On the other hands, high spatial resolution SST maps can illustrate eddies and sea surface currents. Also, near real time producing of SST map is suitable for weather forecasting and fishery applications. Therefore satellite remote sensing with wide coverage of data acquisition capability can use as real time tools for producing SST dataset. Satellite sensor such as AVHRR, MODIS and SeaWIFS are capable of extracting brightness values at different thermal spectral bands. These brightness temperatures are the sole input for the SST retrieval algorithms. Recently, Landsat-8 successfully launched and accessible with two instruments on-board: (1) the Operational Land Imager (OLI) with nine spectral bands in the visual, near infrared, and the shortwave infrared spectral regions; and (2) the Thermal Infrared Sensor (TIRS) with two spectral bands in the long wavelength infrared. The two TIRS bands were selected to enable the atmospheric correction of the thermal data using a split window algorithm (SWA). The TIRS instrument is one of the major payloads aboard this satellite which can observe the sea surface by using the split-window thermal infrared channels (CH10: 10.6 μm to 11.2 μm; CH11: 11.5 μm to 12.5 μm) at a resolution of 30 m. The TIRS sensors have three main advantages comparing with other previous sensors. First, the TIRS has two thermal bands in the atmospheric window that provide a new SST retrieval opportunity using the widely used split-window (SW) algorithm rather than the single channel method. Second, the spectral filters of TIRS two bands present narrower bandwidth than that of the thermal band on board on previous Landsat sensors. Third, TIRS is one of the best space born and high spatial resolution with 30 m. in this regards, Landsat-8 can use the Split-Window (SW) algorithm for retrieving SST dataset. Although several SWs have been developed to use with other sensors, some adaptations are required in order to implement them for the TIRS spectral bands. Therefore, the objective of this paper is to develop a SW, adapted for use with Landsat-8 TIRS data, along with its accuracy assessment. In this research, that has been done for modelling SST using thermal Landsat 8-imagery of the Persian Gulf. Therefore, by incorporating contemporary in situ data and SST map estimated from other sensors like MODIS, we examine our proposed method with coefficient of determination (R2) and root mean square error (RMSE) on check point to model SST retrieval for Landsat-8 imagery. Extracted results for implementing different SW's clearly shows superiority of utilized method by R2 = 0.95 and RMSE = 0.24.
Volumetric Forest Change Detection Through Vhr Satellite Imagery
NASA Astrophysics Data System (ADS)
Akca, Devrim; Stylianidis, Efstratios; Smagas, Konstantinos; Hofer, Martin; Poli, Daniela; Gruen, Armin; Sanchez Martin, Victor; Altan, Orhan; Walli, Andreas; Jimeno, Elisa; Garcia, Alejandro
2016-06-01
Quick and economical ways of detecting of planimetric and volumetric changes of forest areas are in high demand. A research platform, called FORSAT (A satellite processing platform for high resolution forest assessment), was developed for the extraction of 3D geometric information from VHR (very-high resolution) imagery from satellite optical sensors and automatic change detection. This 3D forest information solution was developed during a Eurostars project. FORSAT includes two main units. The first one is dedicated to the geometric and radiometric processing of satellite optical imagery and 2D/3D information extraction. This includes: image radiometric pre-processing, image and ground point measurement, improvement of geometric sensor orientation, quasiepipolar image generation for stereo measurements, digital surface model (DSM) extraction by using a precise and robust image matching approach specially designed for VHR satellite imagery, generation of orthoimages, and 3D measurements in single images using mono-plotting and in stereo images as well as triplets. FORSAT supports most of the VHR optically imagery commonly used for civil applications: IKONOS, OrbView - 3, SPOT - 5 HRS, SPOT - 5 HRG, QuickBird, GeoEye-1, WorldView-1/2, Pléiades 1A/1B, SPOT 6/7, and sensors of similar type to be expected in the future. The second unit of FORSAT is dedicated to 3D surface comparison for change detection. It allows users to import digital elevation models (DEMs), align them using an advanced 3D surface matching approach and calculate the 3D differences and volume changes between epochs. To this end our 3D surface matching method LS3D is being used. FORSAT is a single source and flexible forest information solution with a very competitive price/quality ratio, allowing expert and non-expert remote sensing users to monitor forests in three and four dimensions from VHR optical imagery for many forest information needs. The capacity and benefits of FORSAT have been tested in six case studies located in Austria, Cyprus, Spain, Switzerland and Turkey, using optical data from different sensors and with the purpose to monitor forest with different geometric characteristics. The validation run on Cyprus dataset is reported and commented.
Extraction of Suspended Sediments from Landsat Imagery in the Northern Gulf of Mexico
NASA Astrophysics Data System (ADS)
Hardin, D. M.; Drewry, M.; He, M. Y.; Ebersole, S.
2011-12-01
The Sediment Analysis Network for Decision Support (SANDS) project is utilizing enhancement methods to highlight suspended sediment in remotely sensed data and imagery of the Northern Gulf of Mexico. The analysis thus far has shown that areas of suspended sediments can be extracted from Landsat imagery. In addition, although not an original goal of SANDS, the analysis techniques have revealed oil floating on the water's surface. Detection of oil floating on the surface through remotely sensed imagery can be helpful in identifying and understanding the geographic distribution and movement of oil for environmental concerns. Data from Landsat, and MODIS were obtained from NASA Earth Science Data Centers by the Information Technology and Systems Center at the University of Alabama in Huntsville and prepared for analysis by subsetting to the region of interest and converting from HDF-EOS format (in the case of MODIS) to GeoTiff. Analysts at the Geological Survey of Alabama (GSA) working with Landsat data initially, employed enhancement methods, including false color composites, spectral ratios, and other spectral enhancements based on the mineral composition of sediments, to combinations of visible and infrared bands of data. Initial results of this approach revealed suspended sediments. The analysis technique also revealed areas of oil floating on the surface of the Gulf near Chandeleur Island immediately after Hurricane Katrina in 2005. True color Landsat imagery compares the original Landsat scene to the same region after enhancement. The areas of floating oil are clearly visible. The oil washed out from oil spills on land. This paper will present the intermediate result of the SANDS project thus far.
Investigation of Cyprus thermal tenancy using nine year MODIS LST data and Fourier analysis
NASA Astrophysics Data System (ADS)
Skarlatos, D.; Miliaresis, G.; Georgiou, A.
2013-08-01
Land Surface Temperature (LST) is an extremely important parameter that controls the exchange of long wave radiation between surface and atmosphere. It is a good indicator of the energy balance at the Earth's surface and it is one of the key parameters in the physics of land-surface processes on regional as well as global scale. This paper utilizes monthly night and day averaged LST MODIS imagery over Cyprus for a 9 year period. Fourier analysis and Least squares estimation fitting are implemented to analyze mean daily data over Cyprus in an attempt to investigate possible temperature tenancy over these years and possible differences among areas with different land cover and land use, such as Troodos Mountain and Nicosia, the main city in the center of the island. The analysis of data over a long time period, allows questions such as whether there is a tenancy to temperature increase, to be answered in a statistically better way, provided that `noise' is removed correctly. Dealing with a lot of data, always provides a more accurate estimation, but on the other hand, more noise in implemented on the data, especially when dealing with temperature which is subject to daily and annual cycles. A brief description over semi-automated data acquisition and standardization using object-oriented programming and GIS-based techniques, will be presented. The paper fully describes the time series analysis implemented, the Fourier method and how it was used to analyze and filter mean daily data with high frequency. Comparison of mean monthly daily LST against day and night LSTs is also performed over the 9 year period in order to investigate whether use of the extended data series provide significant advantage over short.
NASA Astrophysics Data System (ADS)
Irani Rahaghi, Abolfazl; Lemmin, Ulrich; Bouffard, Damien; Riffler, Michael; Wunderle, Stefan; Barry, Andrew
2017-04-01
Lake surface water temperature (LSWT), which varies spatially and temporarily, reflects meteorological and climatological forcing more than any other physical lake parameter. There are different data sources for LSWT mapping, including remote sensing and in situ measurements. Depending on cloud cover, satellite data can depict large-scale thermal patterns, but not the meso- or small-scale processes. Meso-scale thermography allows complementing (and hence ground-truth) satellite imagery at the sub-pixel scale. A Balloon Launched Imaging and Monitoring Platform (BLIMP) was used to measure the LSWT at the meso-scale. The BLIMP consists of a small balloon tethered to a boat and is equipped with thermal and RGB cameras, as well as other instrumentation for geo-location and communication. A feature matching-based algorithm was implemented to create composite thermal images. Simultaneous ground-truthing of the BLIMP data were achieved using an autonomous craft measuring among other in situ surface/near surface temperatures, radiation and meteorological data. Latent and sensible surface heat fluxes were calculated using the bulk parameterization algorithm based on similarity theory. Results are presented for the day-time stratified low wind speed (up to 3 ms-1) conditions over Lake Geneva for two field campaigns, each of 6 h on 18 March and 19 July 2016. The meso-scale temperature field ( 1-m pixel resolution) had a range and standard deviation of 2.4°C and 0.3°C, respectively, over a 1-km2 area (typical satellite pixel size). Interestingly, at the sub-pixel scale, various temporal and spatial thermal structures are evident - an obvious example being streaks in the along-wind direction during March, which we hypothesize are caused by the steady 3 h wind condition. The results also show that the spatial variability of the estimated total heat flux is due to the corresponding variability of the longwave cooling from the water surface and the latent heat flux.
NASA Astrophysics Data System (ADS)
McCabe, M.; Rosas Aguilar, J.; Parkes, S. D.; Aragon, B.
2017-12-01
Observation of land surface temperature (LST) has many practical uses, from studying boundary layer dynamics and land-atmosphere coupling, to investigating surface properties such as soil moisture status, heat stress and surface heat fluxes. Typically, LST is observed via satellite based sensors such as LandSat or via point measurements using IR radiometers. These measurements provide either good spatial coverage and resolution or good temporal coverage. However, neither are able to provide the needed spatial and temporal resolution for many of the research applications described above. Technological developments in the use of Unmanned Aerial Vehicles (UAVs), together with small thermal frame cameras, has enabled a capacity to overcome this spatiotemporal constraint. Utilising UAV platforms to collect LST measurements across diurnal cycles provides an opportunity to study how meteorological and surface properties vary in both space and time. Here we describe the collection of LST data from a multi-rotor UAV across a study domain that is observed multiple times throughout the day. Flights over crops of Rhodes grass and alfalfa, along with a bare desert surface, were repeated with between 8 and 11 surveys covering the period from early morning to sunset. Analysis of the collected thermal imagery shows that the constructed LST maps illustrate a strong diurnal cycle consistent with expected trends, but with considerable spatial and temporal variability observed within and between the different domains. These results offer new insights into the dynamics of land surface behavior in both dry and wet soil conditions and at spatiotemporal scales that are unable to be replicated using traditional satellite platforms.
Typhoon Ioke in the Western Pacific
NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] [figure removed for brevity, see original site] Microwave ImageVisible Light Image
These infrared, microwave, and visible images were created with data retrieved by the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite. Infrared Image Because infrared radiation does not penetrate through clouds, AIRS infrared images show either the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures (in purple) are associated with high, cold cloud tops that make up the top of the storm. In cloud-free areas the AIRS instrument will receive the infrared radiation from the surface of the Earth, resulting in the warmest temperatures (orange/red). Microwave Image In the AIRS microwave imagery, deep blue areas in storms show where the most precipitation occurs, or where ice crystals are present in the convective cloud tops. Outside of these storm regions, deep blue areas may also occur over the sea surface due to its low radiation emissivity. On the other hand, land appears much warmer due to its high radiation emissivity. In the AIRS microwave imagery, deep blue areas in storms show where the most precipitation occurs, or where ice crystals are present in the convective cloud tops. Outside of these storm regions, deep blue areas may also occur over the sea surface due to its low radiation emissivity. On the other hand, land appears much warmer due to its high radiation emissivity. Microwave radiation from Earth's surface and lower atmosphere penetrates most clouds to a greater or lesser extent depending upon their water vapor, liquid water and ice content. Precipitation, and ice crystals found at the cloud tops where strong convection is taking place, act as barriers to microwave radiation. Because of this barrier effect, the AIRS microwave sensor detects only the radiation arising at or above their location in the atmospheric column. Where these barriers are not present, the microwave sensor detects radiation arising throughout the air column and down to the surface. Liquid surfaces (oceans, lakes and rivers) have 'low emissivity' (the signal isn't as strong) and their radiation brightness temperature is therefore low. Thus the ocean also appears 'low temperature' in the AIRS microwave images and is assigned the color blue. Therefore deep blue areas in storms show where the most precipitation occurs, or where ice crystals are present in the convective cloud tops. Outside of these storm regions, deep blue areas may also occur over the sea surface due to its low radiation emissivity. Land appears much warmer due to its high radiation emissivity. Vis/NIR Image The AIRS instrument suite contains a sensor that captures radiation in four bands of the visible/near-infrared portion of the electromagetic spectrum. Data from three of these bands are combined to create 'visible' images similar to a snapshot taken with your camera. The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.Theory and measure of certain image norms in SAR
NASA Technical Reports Server (NTRS)
Raney, R. K.
1984-01-01
The principal properties of synthetic aperture radar SAR imagery of point and distributed objects are summarized. Against this background, the response of a SAR (Synthetic Aperture Radar) to the moving surface of the sea is considered. Certain conclusions are drawn as to the mechanism of interaction between microwaves and the sea surface. Focus and speckle spectral tests may be used on selected SAR imagery for areas of the ocean. The fine structure of the sea imagery is sensitive to processor focus and adjustment. The ocean reflectivity mechanism must include point like scatterers of sufficient radar cross section to dominate the return from certain individual resolution elements. Both specular and diffuse scattering mechanisms are observed together, to varying degree. The effect is sea state dependent. Several experiments are proposed based on imaging theory that could assist in the investigation of reflectivity mechanisms.
Virtual Sensors: Using Data Mining to Efficiently Estimate Spectra
NASA Technical Reports Server (NTRS)
Srivastava, Ashok; Oza, Nikunj; Stroeve, Julienne
2004-01-01
Detecting clouds within a satellite image is essential for retrieving surface geophysical parameters, such as albedo and temperature, from optical and thermal imagery because the retrieval methods tend to be valid for clear skies only. Thus, routine satellite data processing requires reliable automated cloud detection algorithms that are applicable to many surface types. Unfortunately, cloud detection over snow and ice is difficult due to the lack of spectral contrast between clouds and snow. Snow and clouds are both highly reflective in the visible wavelen,ats and often show little contrast in the thermal Infrared. However, at 1.6 microns, the spectral signatures of snow and clouds differ enough to allow improved snow/ice/cloud discrimination. The recent Terra and Aqua Moderate Resolution Imaging Spectro-Radiometer (MODIS) sensors have a channel (channel 6) at 1.6 microns. Presently the most comprehensive, long-term information on surface albedo and temperature over snow- and ice-covered surfaces comes from the Advanced Very High Resolution Radiometer ( AVHRR) sensor that has been providing imagery since July 1981. The earlier AVHRR sensors (e.g. AVHRR/2) did not however have a channel designed for discriminating clouds from snow, such as the 1.6 micron channel available on the more recent AVHRR/3 or the MODIS sensors. In the absence of the 1.6 micron channel, the AVHRR Polar Pathfinder (APP) product performs cloud detection using a combination of time-series analysis and multispectral threshold tests based on the satellite's measuring channels to produce a cloud mask. The method has been found to work reasonably well over sea ice, but not so well over the ice sheets. Thus, improving the cloud mask in the APP dataset would be extremely helpful toward increasing the accuracy of the albedo and temperature retrievals, as well as extending the time-series of albedo and temperature retrievals from the more recent sensors to the historical ones. In this work, we use data mining methods to construct a model of MODIS channel 6 as a function of other channels that are common to both MODIS and AVHRR. The idea is to use the model to generate the equivalent of MODIS channel 6 for AVHRR as a function of the AVHRR equivalents to MODIS channels. We call this a Virtual Sensor because it predicts unmeasured spectra. The goal is to use this virtual channel 6. to yield a cloud mask superior to what is currently used in APP . Our results show that several data mining methods such as multilayer perceptrons (MLPs), ensemble methods (e.g., bagging), and kernel methods (e.g., support vector machines) generate channel 6 for unseen MODIS images with high accuracy. Because the true channel 6 is not available for AVHRR images, we qualitatively assess the virtual channel 6 for several AVHRR images.
West, W C; Holcomb, P J
2000-11-01
Words representing concrete concepts are processed more quickly and efficiently than words representing abstract concepts. Concreteness effects have also been observed in studies using event-related brain potentials (ERPs). The aim of this study was to examine concrete and abstract words using both reaction time (RT) and ERP measurements to determine (1) at what point in the stream of cognitive processing concreteness effects emerge and (2) how different types of cognitive operations influence these concreteness effects. Three groups of subjects performed a sentence verification task in which the final word of each sentence was concrete or abstract. For each group the truthfulness judgment required either (1) image generation, (2) semantic decision, or (3) evaluation of surface characteristics. Concrete and abstract words produced similar RTs and ERPs in the surface task, suggesting that postlexical semantic processing is necessary to elicit concreteness effects. In both the semantic and imagery tasks, RTs were shorter for concrete than for abstract words. This difference was greatest in the imagery task. Also, in both of these tasks concrete words elicited more negative ERPs than abstract words between 300 and 550 msec (N400). This effect was widespread across the scalp and may reflect activation in a linguistic semantic system common to both concrete and abstract words. ERPs were also more negative for concrete than abstract words between 550 and 800 msec. This effect was more frontally distributed and was most evident in the imagery task. We propose that this later anterior effect represents a distinct ERP component (N700) that is sensitive to the use of mental imagery. The N700 may reflect the a access of specific characteristics of the imaged item or activation in a working memory system specific to mental imagery. These results also support the extended dual-coding hypothesis that superior associative connections and the use of mental imagery both contribute to processing advantages for concrete words over abstract words.
Kim, Youngshin
2008-01-01
The purpose of this study was to investigate the effects of two music therapy approaches, improvisation-assisted desensitization, and music-assisted progressive muscle relaxation and imagery on ameliorating the symptoms of music performance anxiety (MPA) among student pianists. Thirty female college pianists (N = 30) were randomly assigned to one of two conditions: (a) improvised music-assisted desensitization group (n = 15), or (b) music-assisted progressive muscle relaxation (PMR) and imagery group (n = 15). All participants received 6 weekly music therapy sessions according to their assigned group. Two lab performances were provided; one before and one after the 6 music therapy sessions, as the performance stimuli for MPA. All participants completed pretest and posttest measures that included four types of visual analogue scales (MPA, stress, tension, and comfort), the state portion of Spielberger's State-Trait Anxiety Inventory (STAI), and the Music Performance Anxiety Questionnaire (MPAQ) developed by Lehrer, Goldman, and Strommen (1990). Participants' finger temperatures were also measured. When results of the music-assisted PMR and imagery condition were compared from pretest to posttest, statistically significant differences occurred in 6 out of the 7 measures-MPA, tension, comfort, STAI, MPAQ, and finger temperature, indicating that the music-assisted PMR and imagery treatment was very successful in reducing MPA. For the improvisation-assisted desensitization condition, the statistically significant decreases in tension and STAI, with increases in finger temperature indicated that this approach was effective in managing MPA to some extent. When the difference scores for the two approaches were compared, there was no statistically significant difference between the two approaches for any of the seven measures. Therefore, no one treatment condition appeared more effective than the other. Although statistically significant differences were not found between the two groups, a visual analysis of mean difference scores revealed that the music-assisted PMR and imagery condition resulted in greater mean differences from pretest to posttest than the improvisation-assisted desensitization condition across all seven measures. This result may be due to the fact that all participants in the music-assisted PMR and imagery condition followed the procedure easily, while two of the 15 participants in the improvisation-assisted desensitization group had difficulty improvising.
Fracture mapping and strip mine inventory in the Midwest by using ERTS-1 imagery
NASA Technical Reports Server (NTRS)
Wier, C. W.; Wobber, F. J.; Russell, O. R.; Amato, R. V.
1973-01-01
Analysis of the ERTS-1 imagery and high-altitude infrared photography indicates that useful fracture data can be obtained in Indiana and Illinois despite a glacial till cover. ERTS MSS bands 5 and 7 have proven most useful for fracture mapping in coal-bearing rocks in this region. Preliminary results suggest a reasonable correlation between image-detected fractures and mine roof-fall accidents. Information related to surface mined land, such as disturbed area, water bodies, and kind of reclamation, has been derived from the analysis of ERTS imagery.
Chaotic terrain of Mars - A tectonic interpretation from Mariner 6 imagery
NASA Technical Reports Server (NTRS)
Wilson, R. C.; Harp, E. L.; Picard, M. D.; Ward, S. H.
1973-01-01
Sharp et al. (1971) define chaotic terrain as an irregular jumble of topographic forms covering a certain area within Pyrrhae Regio and adjacent regions centered at about 10 deg S., 35 deg W. This area is covered by Mariner 6 television imagery. An analysis of fracture patterns in the Martian surface from high-resolution Mariner 6 imagery suggests that the lineaments observed in both the chaotic terrain and the cratered plateau areas in Pyrrhae Regio are tectonic fractures resulting from stresses within the Martian crust.
A connectionist-geostatistical approach for classification of deformation types in ice surfaces
NASA Astrophysics Data System (ADS)
Goetz-Weiss, L. R.; Herzfeld, U. C.; Hale, R. G.; Hunke, E. C.; Bobeck, J.
2014-12-01
Deformation is a class of highly non-linear geophysical processes from which one can infer other geophysical variables in a dynamical system. For example, in an ice-dynamic model, deformation is related to velocity, basal sliding, surface elevation changes, and the stress field at the surface as well as internal to a glacier. While many of these variables cannot be observed, deformation state can be an observable variable, because deformation in glaciers (once a viscosity threshold is exceeded) manifests itself in crevasses.Given the amount of information that can be inferred from observing surface deformation, an automated method for classifying surface imagery becomes increasingly desirable. In this paper a Neural Network is used to recognize classes of crevasse types over the Bering Bagley Glacier System (BBGS) during a surge (2011-2013-?). A surge is a spatially and temporally highly variable and rapid acceleration of the glacier. Therefore, many different crevasse types occur in a short time frame and in close proximity, and these crevasse fields hold information on the geophysical processes of the surge.The connectionist-geostatistical approach uses directional experimental (discrete) variograms to parameterize images into a form that the Neural Network can recognize. Recognizing that each surge wave results in different crevasse types and that environmental conditions affect the appearance in imagery, we have developed a semi-automated pre-training software to adapt the Neural Net to chaining conditions.The method is applied to airborne and satellite imagery to classify surge crevasses from the BBGS surge. This method works well for classifying spatially repetitive images such as the crevasses over Bering Glacier. We expand the network for less repetitive images in order to analyze imagery collected over the Arctic sea ice, to assess the percentage of deformed ice for model calibration.
NASA Astrophysics Data System (ADS)
Gong, K.; Fritsch, D.
2018-05-01
Nowadays, multiple-view stereo satellite imagery has become a valuable data source for digital surface model generation and 3D reconstruction. In 2016, a well-organized multiple view stereo publicly benchmark for commercial satellite imagery has been released by the John Hopkins University Applied Physics Laboratory, USA. This benchmark motivates us to explore the method that can generate accurate digital surface models from a large number of high resolution satellite images. In this paper, we propose a pipeline for processing the benchmark data to digital surface models. As a pre-procedure, we filter all the possible image pairs according to the incidence angle and capture date. With the selected image pairs, the relative bias-compensated model is applied for relative orientation. After the epipolar image pairs' generation, dense image matching and triangulation, the 3D point clouds and DSMs are acquired. The DSMs are aligned to a quasi-ground plane by the relative bias-compensated model. We apply the median filter to generate the fused point cloud and DSM. By comparing with the reference LiDAR DSM, the accuracy, the completeness and the robustness are evaluated. The results show, that the point cloud reconstructs the surface with small structures and the fused DSM generated by our pipeline is accurate and robust.
Monitoring and characterizing natural hazards with satellite InSAR imagery
Lu, Zhong; Zhang, Jixian; Zhang, Yonghong; Dzurisin, Daniel
2010-01-01
Interferometric synthetic aperture radar (InSAR) provides an all-weather imaging capability for measuring ground-surface deformation and inferring changes in land surface characteristics. InSAR enables scientists to monitor and characterize hazards posed by volcanic, seismic, and hydrogeologic processes, by landslides and wildfires, and by human activities such as mining and fluid extraction or injection. Measuring how a volcano’s surface deforms before, during, and after eruptions provides essential information about magma dynamics and a basis for mitigating volcanic hazards. Measuring spatial and temporal patterns of surface deformation in seismically active regions is extraordinarily useful for understanding rupture dynamics and estimating seismic risks. Measuring how landslides develop and activate is a prerequisite to minimizing associated hazards. Mapping surface subsidence or uplift related to extraction or injection of fluids during exploitation of groundwater aquifers or petroleum reservoirs provides fundamental data on aquifer or reservoir properties and improves our ability to mitigate undesired consequences. Monitoring dynamic water-level changes in wetlands improves hydrological modeling predictions and the assessment of future flood impacts. In addition, InSAR imagery can provide near-real-time estimates of fire scar extents and fire severity for wildfire management and control. All-weather satellite radar imagery is critical for studying various natural processes and is playing an increasingly important role in understanding and forecasting natural hazards.
NASA Astrophysics Data System (ADS)
Sharaf El Din, Essam; Zhang, Yun
2017-10-01
Traditional surface water quality assessment is costly, labor intensive, and time consuming; however, remote sensing has the potential to assess surface water quality because of its spatiotemporal consistency. Therefore, estimating concentrations of surface water quality parameters (SWQPs) from satellite imagery is essential. Remote sensing estimation of nonoptical SWQPs, such as chemical oxygen demand (COD), biochemical oxygen demand (BOD), and dissolved oxygen (DO), has not yet been performed because they are less likely to affect signals measured by satellite sensors. However, concentrations of nonoptical variables may be correlated with optical variables, such as turbidity and total suspended sediments, which do affect the reflected radiation. In this context, an indirect relationship between satellite multispectral data and COD, BOD, and DO can be assumed. Therefore, this research attempts to develop an integrated Landsat 8 band ratios and stepwise regression to estimate concentrations of both optical and nonoptical SWQPs. Compared with previous studies, a significant correlation between Landsat 8 surface reflectance and concentrations of SWQPs was achieved and the obtained coefficient of determination (R2)>0.85. These findings demonstrated the possibility of using our technique to develop models to estimate concentrations of SWQPs and to generate spatiotemporal maps of SWQPs from Landsat 8 imagery.
Black Sea impact on its west-coast land surface temperature
NASA Astrophysics Data System (ADS)
Cheval, Sorin; Constantin, Sorin
2018-03-01
This study investigates the Black Sea influence on the thermal characteristics of its western hinterland based on satellite imagery acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS). The marine impact on the land surface temperature (LST) values is detected at daily, seasonal and annual time scales, and a strong linkage with the land cover is demonstrated. The remote sensing products used within the study supply LST data with complete areal coverage during clear sky conditions at 1-km spatial resolution, which is appropriate for climate studies. The sea influence is significant up to 4-5 km, by daytime, while the nighttime influence is very strong in the first 1-2 km, and it gradually decreases westward. Excepting the winter, the daytime temperature increases towards the plateau with the distance from the sea, e.g. with a gradient of 0.9 °C/km in the first 5 km in spring or with 0.7 °C/km in summer. By nighttime, the sea water usually remains warmer than the contiguous land triggering higher LST values in the immediate proximity of the coastline in all seasons, e.g. mean summer LST is 19.0 °C for the 1-km buffer, 16.6 °C for the 5-km buffer and 16.0 °C for the 10-km buffer. The results confirm a strong relationship between the land cover and thermal regime in the western hinterland of the Black Sea coast. The satellite-derived LST and air temperature values recorded at the meteorological stations are highly correlated for similar locations, but the marine influence propagates differently, pledging for distinct analysis. Identified anomalies in the general observed trends are investigated in correlation with sea surface temperature dynamics in the coastal area.
NASA Astrophysics Data System (ADS)
Vasavada, A. R.; Piqueux, S.
2016-12-01
The REMS instrument onboard the Mars Science Laboratory rover, Curiosity, has measured ground temperature nearly continuously at hourly intervals for two Mars years. Coverage of the entire diurnal cycle at 1 Hz is achieved every few martian days. We compare these measurements with predictions of surface-atmosphere thermal models to derive the apparent thermal inertia and thermally derived albedo along the rover's traverse, after accounting for the radiative effects of dust as well as atmospheric water ice during fall and winter, as is necessary to match the measured seasonal trend. The REMS measurements can distinguish between active sand, other loose materials, mudstone, and sandstone based on their thermophysical properties. However, the thermal inertias of bedrock-dominated surfaces ( 350-550 J m-2 K-1 s-½) are lower than expected. We use the detailed shape of the diurnal ground temperature curve to infer the effects of lateral mixing of different materials within the sensor footprint, as well as vertical heterogeneity. While results of this forward modeling approach are non-unique, we find surface configurations capable of creating the observed thermal responses that also are consistent with rover imagery. Bedrock thermal inertias isolated by this modeling are 1000-1900 J m-2 K-1 s-½ for mudstone and 700 J m-2 K-1 s-½ for sandstone. This methodology provides a better basis for inferring properties such as rock porosity, cement composition, and degree of cementation from the thermal inertia. These results highlight the advantages of deriving thermophysical properties from ground temperature records well-sampled in local time.
Traverse Planning Experiments for Future Planetary Surface Exploration
NASA Technical Reports Server (NTRS)
Hoffman, Stephen J.; Voels, Stephen A.; Mueller, Robert P.; Lee, Pascal C.
2012-01-01
The purpose of the investigation is to evaluate methodology and data requirements for remotely-assisted robotic traverse of extraterrestrial planetary surface to support human exploration program, assess opportunities for in-transit science operations, and validate landing site survey and selection techniques during planetary surface exploration mission analog demonstration at Haughton Crater on Devon Island, Nunavut, Canada. Additionally, 1) identify quality of remote observation data sets (i.e., surface imagery from orbit) required for effective pre-traverse route planning and determine if surface level data (i.e., onboard robotic imagery or other sensor data) is required for a successful traverse, and if additional surface level data can improve traverse efficiency or probability of success (TRPF Experiment). 2) Evaluate feasibility and techniques for conducting opportunistic science investigations during this type of traverse. (OSP Experiment). 3) Assess utility of remotely-assisted robotic vehicle for landing site validation survey. (LSV Experiment).
NASA Technical Reports Server (NTRS)
Garcia-Moliner, Graciela; Yoder, James A.
1994-01-01
A time series of coastal zone color scanner (CZCS) derived chlorophyll (CZCS-chl) and sea surface temperature (SST) satellite imagery was developed for the Mid-Atlantic Bight (MAB). Warm-core rings (WCR) were identified by both the warmer SST signal as well as the low pigment concentrations of their cores. The variation in pigment concentrations and SST observed in satellite imagery over the geographic range and life span of four WCRs is investigated. The hypotheses are that pigment concentration increase during the lifetime of the WCR is a response to processes such as convective overturn, upwelling, edge enhancement due to increased vertical mixing, active convergence, or lateral exchange. Empirical orthogonal function analysis (EOF) is used to investigate the relationship between SST and pigment patterns observed in the presence of a WCR. The first two EOF modes explain more than 80% of the variability observed in all four WCRs and in both (SST and pigment) data sets. The results of this study show that, at the synoptic scales of staellite data, the variability observed in the WCRs is greater at the periphery of the rings. These results show that advective entrainment, rather than processes at ring center (e.g., shoaling of the pycnocline/nutricline in response to frictional decay) or at the periphery due to other processes such as vertical mixing, is the mechanism responsible for the observed variability.
A Classification of Mediterranean Cyclones Based on Global Analyses
NASA Technical Reports Server (NTRS)
Reale, Oreste; Atlas, Robert
2003-01-01
The Mediterranean Sea region is dominated by baroclinic and orographic cyclogenesis. However, previous work has demonstrated the existence of rare but intense subsynoptic-scale cyclones displaying remarkable similarities to tropical cyclones and polar lows, including, but not limited to, an eye-like feature in the satellite imagery. The terms polar low and tropical cyclone have been often used interchangeably when referring to small-scale, convective Mediterranean vortices and no definitive statement has been made so far on their nature, be it sub-tropical or polar. Moreover, most of the classifications of Mediterranean cyclones have neglected the small-scale convective vortices, focusing only on the larger-scale and far more common baroclinic cyclones. A classification of all Mediterranean cyclones based on operational global analyses is proposed The classification is based on normalized horizontal shear, vertical shear, scale, low versus mid-level vorticity, low-level temperature gradients, and sea surface temperatures. In the classification system there is a continuum of possible events, according to the increasing role of barotropic instability and decreasing role of baroclinic instability. One of the main results is that the Mediterranean tropical cyclone-like vortices and the Mediterranean polar lows appear to be different types of events, in spite of the apparent similarity of their satellite imagery. A consistent terminology is adopted, stating that tropical cyclone- like vortices are the less baroclinic of all, followed by polar lows, cold small-scale cyclones and finally baroclinic lee cyclones. This classification is based on all the cyclones which occurred in a four-year period (between 1996 and 1999). Four cyclones, selected among all the ones which developed during this time-frame, are analyzed. Particularly, the classification allows to discriminate between two cyclones (occurred in October 1996 and in March 1999) which both display a very well-defined eye-like feature in the satellite imagery. According to our classification system, the two events are dynamically different and can be categorized as being respectively a tropical cyclone-like vortex and well-developed polar low.
Leahy, Susannah M.; Kingsford, Michael J.; Steinberg, Craig R.
2013-01-01
Evidence of global climate change and rising sea surface temperatures (SSTs) is now well documented in the scientific literature. With corals already living close to their thermal maxima, increases in SSTs are of great concern for the survival of coral reefs. Cloud feedback processes may have the potential to constrain SSTs, serving to enforce an “ocean thermostat” and promoting the survival of coral reefs. In this study, it was hypothesized that cloud cover can affect summer SSTs in the tropics. Detailed direct and lagged relationships between cloud cover and SST across the central Great Barrier Reef (GBR) shelf were investigated using data from satellite imagery and in situ temperature and light loggers during two relatively hot summers (2005 and 2006) and two relatively cool summers (2007 and 2008). Across all study summers and shelf positions, SSTs exhibited distinct drops during periods of high cloud cover, and conversely, SST increases during periods of low cloud cover, with a three-day temporal lag between a change in cloud cover and a subsequent change in SST. Cloud cover alone was responsible for up to 32.1% of the variation in SSTs three days later. The relationship was strongest in both El Niño (2005) and La Niña (2008) study summers and at the inner-shelf position in those summers. SST effects on subsequent cloud cover were weaker and more variable among study summers, with rising SSTs explaining up to 21.6% of the increase in cloud cover three days later. This work quantifies the often observed cloud cooling effect on coral reefs. It highlights the importance of incorporating local-scale processes into bleaching forecasting models, and encourages the use of remote sensing imagery to value-add to coral bleaching field studies and to more accurately predict risks to coral reefs. PMID:23894649
Combining Imagery and Models to Understand River Dynamics
NASA Astrophysics Data System (ADS)
Blain, C. A.; Mied, R. P.; Linzell, R. S.
2014-12-01
Rivers pose one of the most challenging environments to characterize. Their geometric complexity and continually changing position and character are difficult to measure under optimal circumstances. Further compounding the problem is the often inaccessibility of these areas around the globe. Yet details of the river bank position and bed elevation are essential elements in the construction of accurate predictive river models. To meet this challenge, remote sensing imagery is first used to initialize the construction of advanced high resolution river circulation models. In turn, such models are applied to dynamically interpret remotely-sensed surface features. A method has been developed to automatically extract water and shoreline locations from arbitrarily sourced high resolution (~1m gsd) visual spectrum imagery without recourse to the spectral or color information. The approach relies on quantifying the difference in image texture between the relatively smooth water surface and the comparatively rough surface of surrounding land. Processing the segmented land/water interface results in ordered, continuous shoreline coordinates that bound river model construction. In the absence of observed bed elevations, one of several available analytic bathymetry cross-sectional relations are applied to complete the river model configuration. Successful application of this approach to the Snohomish River, WA and the Pearl River, MS are demonstrated. Once constructed, a hydrodynamic model of the river model can also be applied to unravel the dynamics responsible for observed surface features in the imagery. At a creek-river confluence in the Potomac River, MD, an ebb tide front observed in the imagery is analyzed using the model. The result is knowledge that an ebb shoal located just outside of the creek must be present and is essential for front formation. Furthermore, the front is found to be persistent throughout the tidal cycle, although it changes sign between ebb and flood phases. The presence of the creek only minimally modifies the underlying currents.
NASA Astrophysics Data System (ADS)
Pusparini, Nikita; Prasetyo, Budi; Ambariyanto; Widowati, Ita
2017-02-01
Thermocline layer and chlorophyll-a concentration can be used to investigate the upwelling region. This investigation is focused in the Banda Sea because the upwelling event in this area is quite large and has a longer upwelling duration than other waters in Indonesia. In addition, Banda Sea is also influenced by climatic factors such as monsoon. The aim of this research is to determine the validation of secondary data (from satellite imagery data and model) and in situ observation data (from research cruise) and to determine the variability of thermocline layer and chlorophyll-a concentration during Southeast Monsoon in the Banda Sea. The data used in this study were chlorophyll-a concentration, seawater vertical temperature at depths 0-400 meters, and sea surface temperature from remote sensing and in situ data. Spatial and temporal analysis of all parameters was conducted by quantitative descriptive method. The results showed that the variability of thermocline layer and the chlorophyll-a distribution were strongly related to seasonal pattern. In most cases, the estimates of thermocline layer and chlorophyll-a concentration using remote sensing algorithm were higher than in situ measured values. The greatest variability occurred in the eastern Banda Sea during the Southeast Monsoon with shallower thermocline layer, more abundance of chlorophyll-a concentration, and lower sea surface temperature.
SAR imagery of the Grand Banks (Newfoundland) pack ice pack and its relationship to surface features
NASA Technical Reports Server (NTRS)
Argus, S. D.; Carsey, F. D.
1988-01-01
Synthetic Aperture Radar (SAR) data and aerial photographs were obtained over pack ice off the East Coast of Canada in March 1987 as part of the Labrador Ice Margin Experiment (LIMEX) pilot project. Examination of this data shows that although the pack ice off the Canadian East Coast appears essentially homogeneous to visible light imagery, two clearly defined zones of ice are apparent on C-band SAR imagery. To identify factors that create the zones seen on the radar image, aerial photographs were compared to the SAR imagery. Floe size data from the aerial photographs was compared to digital number values taken from SAR imagery of the same ice. The SAR data of the inner zone acquired three days apart over the melt period was also examined. The studies indicate that the radar response is governed by floe size and meltwater distribution.
NASA Astrophysics Data System (ADS)
Snow, T.; Shepherd, B.; Skinner, S.; Abdalati, W.; Scambos, T. A.
2017-12-01
The Greenland ice sheet (GIS) contributes one-quarter of the globe's total sea level rise each year and one-third of its mass loss occurs at outlet glaciers. One mechanism for this loss is through melting at the ice-ocean boundary through interactions with relatively warm ocean water. In situ ocean measurements serve as the predominant method for studying these harsh and remote fjord environments, but have often only been acquired within the last decade in most Greenland fjords. Since many outlet glaciers began to accelerate and retreat before that period, the lack of earlier measurements requires us to rely on an understanding of contemporary fjord processes and inference of past conditions to evaluate the ocean's role in observed glacier change. Remotely sensed sea surface temperature (SST) have been widely unused in studies of glacial fjords and may hold clues to fjord circulation and ice-ocean interactions spanning before rapid change began at the turn of the century. However, the utility of this method in studying glacial fjords has not been thoroughly explored. In this study, we compare remotely sensed SSTs to previously published in situ ocean temperature measurements taken from 2009 to present at the Sermilik Fjord and 2015-2016 at the Petermann, in order to determine the utility of SSTs in studying polar fjord waters. SSTs were derived from Landsat 7 and 8 thermal infrared imagery to produce a time series of the fjord surface. The time series was correlated with coincident mooring and shipboard ocean temperature measurements using various lags and spatial offsets. Sermilik Fjord SSTs frequently gave temperatures 2C warmer than adjacent surface in situ measurements, while Petermann temperatures show much closer relationships. These trends are likely driven by variability in wind velocities and density gradients that influence mixing within the surface layer of the ocean. However, variability in the offsets between SSTs and in situ measurements also provides insight into subglacial discharge, fjord circulation, and subglacial melting between seasons. Continued work at the Sermilik and Petermann Fjords will help to determine further linkages between SSTs and the fjord water column and how that relationship varies from one glacier system to the next.
Determination of turbidity patterns in Lake Chicot from LANDSAT MSS imagery
NASA Technical Reports Server (NTRS)
Lecroy, S. R. (Principal Investigator)
1982-01-01
A historical analysis of all the applicable LANDSAT imagery was conducted on the turbidity patterns of Lake Chicot, located in the southeastern corner of Arkansas. By examining the seasonal and regional turbidity patterns, a record of sediment dynamics and possible disposition can be obtained. Sketches were generated from the suitable imagery, displaying different intensities of brightness observed in bands 5 and 7 of LANDSAT's multispectral scanner data. Differences in and between bands 5 and 7 indicate variances in the levels of surface sediment concentrations. High sediment loads are revealed when distinct patterns appear in the band 7 imagery. Additionally, the upwelled signal is exponential in nature and saturates in band 5 at low wavelengths for large concentrations of suspended solids.
Geologic and mineral and water resources investigations in western Colorado using ERTS-1 data
NASA Technical Reports Server (NTRS)
Knepper, D. H., Jr. (Compiler)
1973-01-01
The author has identified the following significant results. Geologic interpretation of ERTS-1 imagery is dependent on recognition of the distribution, continuity, trend, and geometry of key surface features. In the examination of ERTS-1 imagery, lithology must be interpreted largely from the geomorphic expression of the terrain. ERTS-1 imagery is extremely useful in detecting local structures. Most mapped structures are topographically-expressed. Consequently, ERTS-1 imagery acquired during mid-winter, when the solar illumination angle is low, provides the largest amount of structural information. Stereoscopic analyses of ERTS-1 images significantly aid geologic interpretation. Positive transparencies of ERTS-1 images (1:1,000,000) commonly contain more geologic information than can be adequately annotated during geologic interpretation.
NASA Astrophysics Data System (ADS)
Tran, Annelise; Goutard, Flavie; Chamaillé, Lise; Baghdadi, Nicolas; Lo Seen, Danny
2010-02-01
Recent studies have highlighted the potential role of water in the transmission of avian influenza (AI) viruses and the existence of often interacting variables that determine the survival rate of these viruses in water; the two main variables are temperature and salinity. Remote sensing has been used to map and monitor water bodies for several decades. In this paper, we review satellite image analysis methods used for water detection and characterization, focusing on the main variables that influence AI virus survival in water. Optical and radar imagery are useful for detecting water bodies at different spatial and temporal scales. Methods to monitor the temperature of large water surfaces are also available. Current methods for estimating other relevant water variables such as salinity, pH, turbidity and water depth are not presently considered to be effective.
Almeida, Andréa Sobral de; Werneck, Guilherme Loureiro; Resendes, Ana Paula da Costa
2014-08-01
This study explored the use of object-oriented classification of remote sensing imagery in epidemiological studies of visceral leishmaniasis (VL) in urban areas. To obtain temperature and environmental information, an object-oriented classification approach was applied to Landsat 5 TM scenes from the city of Teresina, Piauí State, Brazil. For 1993-1996, VL incidence rates correlated positively with census tracts covered by dense vegetation, grass/pasture, and bare soil and negatively with areas covered by water and densely populated areas. In 2001-2006, positive correlations were found with dense vegetation, grass/pasture, bare soil, and densely populated areas and negative correlations with occupied urban areas with some vegetation. Land surface temperature correlated negatively with VL incidence in both periods. Object-oriented classification can be useful to characterize landscape features associated with VL in urban areas and to help identify risk areas in order to prioritize interventions.
We analyzed 10 established and 4 new satellite reflectance algorithms for estimating chlorophyll-a (Chl-a) in a temperate reservoir in southwest Ohio using coincident hyperspectral aircraft imagery and dense water truth collected within one hour of image acquisition to develop si...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lathrop, R.G. Jr.
1988-01-01
The utility of three operational satellite remote sensing systems, namely, the Landsat Thematic Mapper (TM), the SPOT High Resolution Visible (HRV) sensors and the NOAA Advanced Very High Resolution Radiometer (AVHRR), were evaluated as a means of estimating water quality and surface temperature. Empirical calibration through linear regression techniques was used to relate near-simultaneously acquired satellite radiance/reflectance data and water quality observations obtained in Green Bay and the nearshore waters of Lake Michigan. Four dates of TM and one date each of SPOT and AVHRR imagery/surface reference data were acquired and analyzed. Highly significant relationships were identified between the TMmore » and SPOT data and secchi disk depth, nephelometric turbidity, chlorophyll a, total suspended solids (TSS), absorbance, and surface temperature (TM only). The AVHRR data were not analyzed independently but were used for comparison with the TM data. Calibrated water quality image maps were input to a PC-based raster GIS package, EPPL7. Pattern interpretation and spatial analysis techniques were used to document the circulation dynamics and model mixing processes in Green Bay. A GIS facilitates the retrieval, query and spatial analysis of mapped information and provides the framework for an integrated operational monitoring system for the Great Lakes.« less
NASA Astrophysics Data System (ADS)
Thompson, C. K.; Bingham, A. W.; Hall, J. R.; Alarcon, C.; Plesea, L.; Henderson, M. L.; Levoe, S.
2011-12-01
The State of the Oceans (SOTO) web tool was developed at NASA's Physical Oceanography Distributed Active Archive Center (PO.DAAC) at the Jet Propulsion Laboratory (JPL) as an interactive means for users to visually explore and assess ocean-based geophysical parameters extracted from the latest archived data products. The SOTO system consists of four extensible modules, a data polling tool, a preparation and imaging package, image server software, and the graphical user interface. Together, these components support multi-resolution visualization of swath (Level 2) and gridded Level 3/4) data products as either raster- or vector- based KML layers on Google Earth. These layers are automatically updated periodically throughout the day. Current parameters available include sea surface temperature, chlorophyll concentration, ocean winds, sea surface height anomaly, and sea surface temperature anomaly. SOTO also supports mash-ups, allowing KML feeds from other sources to be overlaid directly onto Google Earth such as hurricane tracks and buoy data. A version of the SOTO software has also been installed at Goddard Space Flight Center (GSFC) to support the Land Atmosphere Near real-time Capability for EOS (LANCE). The State of the Earth (SOTE) has similar functionality to SOTO but supports different data sets, among them the MODIS 250m data product.
NASA Astrophysics Data System (ADS)
Wright, N.; Polashenski, C. M.
2017-12-01
Snow, ice, and melt ponds cover the surface of the Arctic Ocean in fractions that change throughout the seasons. These surfaces exert tremendous influence over the energy balance of the Arctic Ocean by controlling the absorption of solar radiation. Here we demonstrate the use of a newly released, open source, image classification algorithm designed to identify surface features in high resolution optical satellite imagery of sea ice. Through explicitly resolving individual features on the surface, the algorithm can determine the percentage of ice that is covered by melt ponds with a high degree of certainty. We then compare observations of melt pond fraction extracted from these images with an established method of estimating melt pond fraction from medium resolution satellite images (e.g. MODIS). Because high resolution satellite imagery does not provide the spatial footprint needed to examine the entire Arctic basin, we propose a method of synthesizing both high and medium resolution satellite imagery for an improved determination of melt pond fraction across whole Arctic. We assess the historical trends of melt pond fraction in the Arctic ocean, and address the question: Is pond coverage changing in response to changing ice conditions? Furthermore, we explore the image area that must be observed in order to get a locally representative sample (i.e. the aggregate scale), and show that it is possible to determine accurate estimates of melt pond fraction by observing sample areas significantly smaller than the typical footprint of high-resolution satellite imagery.
NASA Astrophysics Data System (ADS)
Miles, Katie E.; Willis, Ian C.; Benedek, Corinne L.; Williamson, Andrew G.; Tedesco, Marco
2017-07-01
Supraglacial lakes are an important component of the Greenland Ice Sheet’s mass balance and hydrology, with their drainage affecting ice dynamics. This study uses imagery from the recently launched Sentinel-1A Synthetic Aperture Radar (SAR) satellite to investigate supraglacial lakes in West Greenland. A semi-automated algorithm is developed to detect surface lakes from Sentinel-1 images during the 2015 summer. A combined Landsat-8 and Sentinel-1 dataset, which has a comparable temporal resolution to MODIS (3 days versus daily) but a higher spatial resolution (25-40 m versus 250-500 m), is then used together with a fully-automated lake drainage detection algorithm. Rapid (< 4 days) and slow (> 4 days) drainages are investigated for both small (< 0.125 km2, the minimum size detectable by MODIS) and large (≥ 0.125 km2) lakes through the summer. Drainage events of small lakes occur at lower elevations (mean 159 m), and slightly earlier (mean 4.5 days) in the melt season than those of large lakes. The analysis is extended manually into the early winter to calculate the dates and elevations of lake freeze-through more precisely than is possible with optical imagery (mean 30 August; 1270 m mean elevation). Finally, the Sentinel-1 imagery is used to detect subsurface lakes and, for the first time, their dates of appearance and freeze-through (mean 9 August and 7 October, respectively). These subsurface lakes occur at higher elevations than the surface lakes detected in this study (mean 1593 m and 1185 m, respectively). Sentinel-1 imagery therefore provides great potential for tracking melting, water movement and freezing within both the firn zone and ablation area of the Greenland Ice Sheet.
Use of Visible Satellite Imagery to Determine Velocity in Tidal Rivers
NASA Astrophysics Data System (ADS)
Mied, R. P.; Donato, T. F.; Chen, W.
2006-05-01
In the open ocean and on the continental shelf, current velocities have traditionally been calculated remotely using the Maximum Correlation Coefficient (MCC) technique to track features between sequential sea surface temperature image scenes. These images are obtained from NOAA polar orbiters having an effective ground pixel size of 1.47 km. In contrast to this relatively large distance, spatial scales over which current velocities can vary in rivers and estuaries are hundreds of meters; associated temporal scales vary from tens of minutes to hours. Traditional in-situ measurements can be instructive in determining some aspects of the flow, but truly synoptic overviews are possible only with remote sensing, provided high-resolution imagery is available. With the advent of a constellation of moderate- to high-resolution imaging systems (e.g., Landsat, ASTER, SPOT, Quickbird, Ikonos, and Orbview-3) it is now available to extend current estimations to these areas. For instance, Landsat-7 and ASTER produce imagery with spatial resolutions on the order of 30 m or less and within 30 min of each other. This is sufficient to spatially resolve a wide variety of surface features, and to maintain feature integrity over time for tracking purposes. We apply this approach to a portion of the tidal Potomac River by using pairs of co-registered, sequential, multi-spectral Landsat-7 and ASTER images. The final data used in the analysis set contain three spectral bands (green, red, and near-infrared), and have a ground pixel spacing (GSD) of 30m. The time step between each Landsat-7 and ASTER pair is approximately 29 minutes. Two image sets are used in the present study, one occurring on 5 October 2001 and the other on 2 April 2003. We show current maps derived from both image pairs an discuss the results in the light of model and
Fusing Unmanned Aerial Vehicle Imagery with High Resolution Hydrologic Modeling (Invited)
NASA Astrophysics Data System (ADS)
Vivoni, E. R.; Pierini, N.; Schreiner-McGraw, A.; Anderson, C.; Saripalli, S.; Rango, A.
2013-12-01
After decades of development and applications, high resolution hydrologic models are now common tools in research and increasingly used in practice. More recently, high resolution imagery from unmanned aerial vehicles (UAVs) that provide information on land surface properties have become available for civilian applications. Fusing the two approaches promises to significantly advance the state-of-the-art in terms of hydrologic modeling capabilities. This combination will also challenge assumptions on model processes, parameterizations and scale as land surface characteristics (~0.1 to 1 m) may now surpass traditional model resolutions (~10 to 100 m). Ultimately, predictions from high resolution hydrologic models need to be consistent with the observational data that can be collected from UAVs. This talk will describe our efforts to develop, utilize and test the impact of UAV-derived topographic and vegetation fields on the simulation of two small watersheds in the Sonoran and Chihuahuan Deserts at the Santa Rita Experimental Range (Green Valley, AZ) and the Jornada Experimental Range (Las Cruces, NM). High resolution digital terrain models, image orthomosaics and vegetation species classification were obtained from a fixed wing airplane and a rotary wing helicopter, and compared to coarser analyses and products, including Light Detection and Ranging (LiDAR). We focus the discussion on the relative improvements achieved with UAV-derived fields in terms of terrain-hydrologic-vegetation analyses and summer season simulations using the TIN-based Real-time Integrated Basin Simulator (tRIBS) model. Model simulations are evaluated at each site with respect to a high-resolution sensor network consisting of six rain gauges, forty soil moisture and temperature profiles, four channel runoff flumes, a cosmic-ray soil moisture sensor and an eddy covariance tower over multiple summer periods. We also discuss prospects for the fusion of high resolution models with novel observations from UAVs, including synthetic aperture radar and multispectral imagery.
Wakes from submerged obstacles in an open channel flow
NASA Astrophysics Data System (ADS)
Smith, Geoffrey B.; Marmorino, George; Dong, Charles; Miller, W. D.; Mied, Richard
2015-11-01
Wakes from several submerged obstacles are examined via airborne remote sensing. The primary focus will be bathymetric features in the tidal Potomac river south of Washington, DC, but others may be included as well. In the Potomac the water depth is nominally 10 m with an obstacle height of 8 m, or 80% of the depth. Infrared imagery of the water surface reveals thermal structure suitable both for interpretation of the coherent structures and for estimating surface currents. A novel image processing technique is used to generate two independent scenes with a known time offset from a single overpass from the infrared imagery, suitable for velocity estimation. Color imagery of the suspended sediment also shows suitable texture. Both the `mountain wave' regime and a traditional turbulent wake are observed, depending on flow conditions. Results are validated with in-situ ADCP transects. A computational model is used to further interpret the results.
Compiling Techniques for East Antarctic Ice Velocity Mapping Based on Historical Optical Imagery
NASA Astrophysics Data System (ADS)
Li, X.; Li, R.; Qiao, G.; Cheng, Y.; Ye, W.; Gao, T.; Huang, Y.; Tian, Y.; Tong, X.
2018-05-01
Ice flow velocity over long time series in East Antarctica plays a vital role in estimating and predicting the mass balance of Antarctic Ice Sheet and its contribution to global sea level rise. However, there is no Antarctic ice velocity product with large space scale available showing the East Antarctic ice flow velocity pattern before the 1990s. We proposed three methods including parallax decomposition, grid-based NCC image matching, feature and gird-based image matching with constraints for estimation of surface velocity in East Antarctica based on ARGON KH-5 and LANDSAT imagery, showing the feasibility of using historical optical imagery to obtain Antarctic ice motion. Based on these previous studies, we presented a set of systematic method for developing ice surface velocity product for the entire East Antarctica from the 1960s to the 1980s in this paper.
Multisensor comparison of ice concentration estimates in the marginal ice zone
NASA Technical Reports Server (NTRS)
Burns, B. A.; Cavalieri, D. J.; Gloersen, P.; Keller, M. R.; Campbell, W. J.
1987-01-01
Aircraft remote sensing data collected during the 1984 summer Marginal Ice Zone Experiment in the Fram Strait are used to compare ice concentration estimates derived from synthetic aperture radar (SAR) imagery, passive microwave imagery at several frequencies, aerial photography, and spectral photometer data. The comparison is carried out not only to evaluate SAR performance against more established techniques but also to investigate how ice surface conditions, imaging geometry, and choice of algorithm parameters affect estimates made by each sensor.Active and passive microwave sensor estimates of ice concentration derived using similar algorithms show an rms difference of 13 percent. Agreement between each microwave sensor and near-simultaneous aerial photography is approximately the same (14 percent). The availability of high-resolution microwave imagery makes it possible to ascribe the discrepancies in the concentration estimates to variations in ice surface signatures in the scene.
Evaluation of the capabilities of satellite imagery for monitoring regional air pollution episodes
NASA Technical Reports Server (NTRS)
Barnes, J. C.; Bowley, C. J.; Burke, H. H. K.
1979-01-01
A comparative analysis of satellite visible channel imagery and ground based aerosol measurements is carried out for three cases representing a significant pollution episodes based on low surface visibility and high sulfate levels. The feasibility of detecting pollution episodes from space is also investigated using a simulation model. The model results are compared to quantitative information derived from digitized satellite data. The results show that when levels are or = 30 micrograms/cu, a haze pattern that correlates closely with the area of reported low surface visibilities and high micrograms sulfate levels can be detected in satellite visible channel imagery. The model simulation demonstrates the potential of the satellite to monitor the magnitude and areal extent of pollution episodes. Quantitative information on total aerosol amount derived from the satellite digitized data using the atmospheric radiative transfer model agrees well with the results obtained from the ground based measurements.
Paltineanu, Cristian; Septar, Leinar; Chitu, Emil
2016-03-01
The paper describes the temperature profiles determined by thermal imagery in apricot tree canopies under the semi-arid conditions of the Black Sea Coast in a chernozem of Dobrogea Region, Romania. The study analyzes the thermal vertical profile of apricot orchards for three representative cultivars during summertime. Measurements were done when the soil water content (SWC) was at field capacity (FC) within the rooting depth, after intense sprinkler irrigation applications. Canopy temperature was measured during clear sky days at three heights for both sides of the apricot trees, sunlit (south), and shaded (north). For the SWC studied, i.e., FC, canopy height did not induce a significant difference between the temperature of apricot tree leaves (Tc) and the ambient air temperature (Ta) within the entire vertical tree profile, and temperature measurements by thermal imagery can therefore be taken at any height on the tree crown leaves. Differences between sunlit and shaded sides of the canopy were significant. Because of these differences for Tc-Ta among the apricot tree cultivars studied, lower base lines (LBLs) should be determined for each cultivar separately. The use of thermal imagery technique under the conditions of semi-arid coastal areas with low range of vapor pressure deficit could be useful in irrigation scheduling of apricot trees. The paper discusses the implications of the data obtained in the experiment under the conditions of the coastal area of the Black Sea, Romania, and neighboring countries with similar climate, such as Bulgaria and Turkey.
Downscaling of Seasonal Landsat-8 and MODIS Land Surface Temperature (LST) in Kolkata, India
NASA Astrophysics Data System (ADS)
Garg, R. D.; Guha, S.; Mondal, A.; Lakshmi, V.; Kundu, S.
2017-12-01
The quality of life of urban people is affected by urban heat environment. The urban heat studies can be carried out using remotely sensed thermal infrared imagery for retrieving Land Surface Temperature (LST). Currently, high spatial resolution (<200 m) thermal images are limited and their temporal resolution is low (e.g., 17 days of Landsat-8). Coarse spatial resolution (1000 m) and high temporal resolution (daily) thermal images of MODIS (Moderate Resolution Imaging Spectroradiometer) are frequently available. The present study is to downscale spatially coarser resolution of the thermal image to fine resolution thermal image using regression based downscaling technique. This method is based on the relationship between (LST) and vegetation indices (e.g., Normalized Difference Vegetation Index or NDVI) over a heterogeneous landscape. The Kolkata metropolitan city, which experiences a tropical wet-and-dry type of climate has been selected for the study. This study applied different seasonal open source satellite images viz., Landsat-8 and Terra MODIS. The Landsat-8 images are aggregated at 960 m resolution and downscaled into 480, 240 120 and 60 m. Optical and thermal resolution of Landsat-8 and MODIS are 30 m and 60 m; 250 m and 1000 m respectively. The homogeneous land cover areas have shown better accuracy than heterogeneous land cover areas. The downscaling method plays a crucial role while the spatial resolution of thermal band renders it unable for advanced study. Key words: Land Surface Temperature (LST), Downscale, MODIS, Landsat, Kolkata
Residential Exposure to Nighttime Retained Heat in the El Paso, Texas, USA Desert Metroplex
NASA Astrophysics Data System (ADS)
Amaya, M. A.; Mohammed, M.; Pingitore, N. E.; Aldouri, R. K.; Benedict, B. A.
2013-12-01
The urban heat island is a well recognized and extensively studied phenomenon that has accelerating importance resulting from two trends associated with world-wide population growth: increasing urbanization and global warming. Urbanization, particularly when unplanned and haphazard, changes such thermal parameters as albedo, surface roughness, and heat capacities of surface materials. Rapid urbanization in the contiguous El Paso, Texas, USA - Ciudad Juarez, Chihuahua, Mexico bi-national metroplex has produced an urban heat island that is warmer than the surrounding Chihuahuan desert (temperature: 35-40 C summer; high elevation: 600-1675 m; rainfall: less than 250 mm annual). Despite the extensive literature on the urban heat island, little is known about urban nighttime land surface temperatures. We employed infrared satellite imaging to establish the variation of nighttime neighborhood surface temperatures across the city of El Paso, as well as all of El Paso County. The underlying purpose of our continuing investigation is to evaluate the geography of morbidity risk: are different neighborhoods at different risk of high nighttime temperatures. Those risks can include heat stress, and irritability and sleep deprivation, with possible resultant violence. Heat exposure at night is significant because residents are at home and 90% of El Pasoans do not have 'refrigerated' air conditioning, but instead have evaporative coolers, which are less expensive to own and operate, but are less effective since they raise the humidity of the partially cooled air. Our geographically weighted regression model showed that both day and nighttime land surface temperatures correlated with the normalized difference vegetation index, population density, and albedo. The association with the index and albedo was stronger during the daytime and with population density during the nighttime. Vegetation (negative) and population density (positive) were the dominant temperature drivers, with albedo and elevation as secondary drivers. Using archived satellite imagery we determined that over the last two decades there has been an increase in both day and nighttime temperatures. With no expected change in urban growth and global warming, local residents will be at increasing risk in the future, as will residents in other urban centers in the desert southwest of the US. We currently are evaluating exposure risk in different population sectors. Do the aged or the poor reside in higher risk neighborhoods? Are there simple measures that can be taken to ameliorate nighttime temperatures?
Satellite Analysis of Ocean Biogeochemistry and Mesoscale Variability in the Sargasso Sea
NASA Technical Reports Server (NTRS)
Siegel, D. A.; Micheals, A. F.; Nelson, N. B.
1997-01-01
The objective of this study was to analyze the impact of spatial variability on the time-series of biogeochemical measurements made at the U.S. JGOFS Bermuda Atlantic Time-series Study (BATS) site. Originally the study was planned to use SeaWiFS as well as AVHRR high-resolution data. Despite the SeaWiFS delays we were able to make progress on the following fronts: (1) Operational acquisition, processing, and archive of HRPT data from a ground station located in Bermuda; (2) Validation of AVHRR SST data using BATS time-series and spatial validation cruise CTD data; (3) Use of AVHRR sea surface temperature imagery and ancillary data to assess the impact of mesoscale spatial variability on P(CO2) and carbon flux in the Sargasso Sea; (4) Spatial and temporal extent of tropical cyclone induced surface modifications; and (5) Assessment of eddy variability using TOPEX/Poseidon data.
Applications of thermal remote sensing to detailed ground water studies
NASA Technical Reports Server (NTRS)
Souto-Maior, J.
1973-01-01
Three possible applications of thermal (8-14 microns) remote sensing to detailed hydrogeologic studies are discussed in this paper: (1) the direct detection of seeps and springs, (2) the indirect evaluation of shallow ground water flow through its thermal effects on the land surface, and (3) the indirect location of small volumes of ground water inflow into surface water bodies. An investigation carried out with this purpose in an area containing a complex shallow ground water flow system indicates that the interpretation of the thermal imageries is complicated by many factors, among which the most important are: (1) altitude, angle of view, and thermal-spatial resolution of the sensor; (2) vegetation type, density, and vigor; (3) topography; (4) climatological and micrometeorological effects; (5) variation in soil type and soil moisture; (6) variation in volume and temperature of ground water inflow; (7) the hydraulic characteristics of the receiving water body, and (8) the presence of decaying organic material.
Trends in LST over the peninsular Spain as derived from the AVHRR imagery data
NASA Astrophysics Data System (ADS)
Khorchani, Makki; Vicente-Serrano, Sergio M.; Azorin-Molina, Cesar; Garcia, Monica; Martin-Hernandez, Natalia; Peña-Gallardo, Marina; El Kenawy, Ahmed; Domínguez-Castro, Fernando
2018-07-01
This study analyzes the spatio-temporal variability and trends of land surface temperature (LST) over peninsular Spain, considering all the available historical satellite imagery data from the NOAA-AVHRR product from July 1981 to June 2015 and explores whether changes in LST are related to the observed changes in air temperature, solar radiation and land cover. We found that LST showed a significant increase between 1982 and 2014, with an average increase on the order of 0.71 °C decade-1, being stronger during summertime (1.53 °C decade-1). The results also indicate a strong spatial coherence between LST and NDVI changes. The areas that experienced an increase in the LST were spatially consistent with those areas with no changes or even a dominant decrease in vegetation coverage. In addition, the strong increase of LST is coherent with observations of the recent radiative forcing affecting Spain, particularly during summertime. The confidence of the obtained LST trends during summer is also reinforced by the spatial differences recorded in trends, in addition to the differences found between land cover types. Specifically, the magnitude of this increase was much higher in the dryland non-permanent agricultural areas, which are usually harvested during summer, when soil is dominantly nude. In contrast, in well-developed forests, the magnitude of LST was much lower. Our results on the observed LST trends and their spatial patterns can contribute to better understanding of the recent eco-hydrological processes in peninsular Spain.
Small Glacier Area Studies: A New Approach for Turkey
NASA Technical Reports Server (NTRS)
Yavasli, Dogukan D.; Tucker, Compton J.
2012-01-01
Many regions of Earth have glaciers that have been neglected for study because they are small. We report on a new approach to overcome the problem of studying small glaciers, using Turkey as an example. Prior to our study, no reliable estimates of Turkish glaciers existed because of a lack of systematic mapping, difficulty in using Landsat data collected before 1982, snowpack vs. glacier ice differentiation using existing satellite data and aerial photography, the previous high cost of Landsat images, and a lack of high-resolution imagery of small Turkish glaciers. Since 2008, a large number of < 1 m satellite images have become available at no cost to the research community. In addition, Landsat data are now free of charge from the U.S. Geological Survey, enabling the use of multiple images. We used 174 Landsat and eight high-resolution satellite images to document the areal extent of Turkish glaciers from the 1970s to 2007-2011. Multiple Landsat images, primarily Thematic Mapper (TM) data from 1984 to 2011, enabled us to minimize differentiation problems between snow and glacier ice, a potential source of error. In addition, we used Ikonos, Quickbird, and World View-1 & -2 very high-resolution imagery to evaluate our TM accuracies and determine the area of nine smaller glaciers in Turkey. We also used five Landsat-3 Return Beam Videcon (RBV) 30 m pixel resolution images, all from 1980, for six glaciers. The total area of Turkish glaciers decreased from 23 km2 in the 1970s to 10.1 km2 in 2007-2011. By 2007-2011, six Turkish glaciers disappeared, four were < 0.3 km2, and only three were 1.0 km2 or larger. No trends in precipitation from 1970 to 2006 and cloud cover from 1980 to 2010 were found, while surface temperatures increased, with summer minimum temperatures showing the greatest increase. We conclude that increased surface temperatures during the summer were responsible for the 56% recession of Turkish glaciers from the 1970s to 2006-2011.
NASA Astrophysics Data System (ADS)
Yang, Jian; He, Yuhong
2017-02-01
Quantifying impervious surfaces in urban and suburban areas is a key step toward a sustainable urban planning and management strategy. With the availability of fine-scale remote sensing imagery, automated mapping of impervious surfaces has attracted growing attention. However, the vast majority of existing studies have selected pixel-based and object-based methods for impervious surface mapping, with few adopting sub-pixel analysis of high spatial resolution imagery. This research makes use of a vegetation-bright impervious-dark impervious linear spectral mixture model to characterize urban and suburban surface components. A WorldView-3 image acquired on May 9th, 2015 is analyzed for its potential in automated unmixing of meaningful surface materials for two urban subsets and one suburban subset in Toronto, ON, Canada. Given the wide distribution of shadows in urban areas, the linear spectral unmixing is implemented in non-shadowed and shadowed areas separately for the two urban subsets. The results indicate that the accuracy of impervious surface mapping in suburban areas reaches up to 86.99%, much higher than the accuracies in urban areas (80.03% and 79.67%). Despite its merits in mapping accuracy and automation, the application of our proposed vegetation-bright impervious-dark impervious model to map impervious surfaces is limited due to the absence of soil component. To further extend the operational transferability of our proposed method, especially for the areas where plenty of bare soils exist during urbanization or reclamation, it is still of great necessity to mask out bare soils by automated classification prior to the implementation of linear spectral unmixing.
Impervious surface mapping with Quickbird imagery
Lu, Dengsheng; Hetrick, Scott; Moran, Emilio
2010-01-01
This research selects two study areas with different urban developments, sizes, and spatial patterns to explore the suitable methods for mapping impervious surface distribution using Quickbird imagery. The selected methods include per-pixel based supervised classification, segmentation-based classification, and a hybrid method. A comparative analysis of the results indicates that per-pixel based supervised classification produces a large number of “salt-and-pepper” pixels, and segmentation based methods can significantly reduce this problem. However, neither method can effectively solve the spectral confusion of impervious surfaces with water/wetland and bare soils and the impacts of shadows. In order to accurately map impervious surface distribution from Quickbird images, manual editing is necessary and may be the only way to extract impervious surfaces from the confused land covers and the shadow problem. This research indicates that the hybrid method consisting of thresholding techniques, unsupervised classification and limited manual editing provides the best performance. PMID:21643434
Planetary-scale surface water detection from space
NASA Astrophysics Data System (ADS)
Donchyts, G.; Baart, F.; Winsemius, H.; Gorelick, N.
2017-12-01
Accurate, efficient and high-resolution methods of surface water detection are needed for a better water management. Datasets on surface water extent and dynamics are crucial for a better understanding of natural and human-made processes, and as an input data for hydrological and hydraulic models. In spite of considerable progress in the harmonization of freely available satellite data, producing accurate and efficient higher-level surface water data products remains very challenging. This presentation will provide an overview of existing methods for surface water extent and change detection from multitemporal and multi-sensor satellite imagery. An algorithm to detect surface water changes from multi-temporal satellite imagery will be demonstrated as well as its open-source implementation (http://aqua-monitor.deltares.nl). This algorithm was used to estimate global surface water changes at high spatial resolution. These changes include climate change, land reclamation, reservoir construction/decommissioning, erosion/accretion, and many other. This presentation will demonstrate how open satellite data and open platforms such as Google Earth Engine have helped with this research.
NASA Technical Reports Server (NTRS)
Goebel, J. E.; Walton, M.; Batten, L. G. (Principal Investigator)
1980-01-01
The synergistic relationships among LANDSAT imagery, Skylab photographs, and aerial photographs were useful for establishing areas of near surface bedrock. Lineaments were located on LANDSAT imagery and aerial photographs during 1978 and near surface water tables were to be located during 1980. Both of these subjects can be identified by remote sensing methods more reliably than individual outcrops, which are small and occur in a wide variety of environments with a wide range of responses. Bedrock outcrops themselves could not be resolved by any of the data sources used, nor did any combination of data sources specifically identify rock at the ground surface. The data sources could not simply be combined mathematically to produce a visual image of probable areas of near surface bedrock. Outcrops and near surface bedrock had to be verified visually at the site. Despite these drawbacks, a procedure for locating areas of near surface bedrock within which actual surface outcrops may occur was developed.
Weddell-Scotia sea marginal ice zone observations from space, October 1984
NASA Technical Reports Server (NTRS)
Carsey, F. D.; Holt, B.; Martin, S.; Rothrock, D. A.; Mcnutt, L.
1986-01-01
Imagery from the Shuttle imaging radar-B experiment as well as other satellite and meteorological data are examined to learn more about the open sea ice margin of the Weddell-Scotia Seas region. At the ice edge, the ice forms into bandlike aggregates of small ice floes similar to those observed in the Bering Sea. The radar backscatter characteristics of these bands suggest that their upper surface is wet. Further into the pack, the radar imagery shows a transition to large floes. In the open sea, large icebergs and long surface gravity waves are discernable in the radar images.
NASA Technical Reports Server (NTRS)
Oommen, Thomas; Rebbapragada, Umaa; Cerminaro, Daniel
2012-01-01
In this study, we perform a case study on imagery from the Haiti earthquake that evaluates a novel object-based approach for characterizing earthquake induced surface effects of liquefaction against a traditional pixel based change technique. Our technique, which combines object-oriented change detection with discriminant/categorical functions, shows the power of distinguishing earthquake-induced surface effects from changes in buildings using the object properties concavity, convexity, orthogonality and rectangularity. Our results suggest that object-based analysis holds promise in automatically extracting earthquake-induced damages from high-resolution aerial/satellite imagery.
Aimee H. Fullerton; Christian E. Torgersen; Joshua J. Lawler; Russell N. Faux; Ashley Steel; Timothy J. Beechie; Joseph L. Ebersole; Scott G. Leibowitz
2015-01-01
Prevailing theory suggests that stream temperature warms asymptotically in a downstream direction, beginning at the temperature of the source in the headwaters and levelling off downstream as it converges to matchmeteorological conditions.However, there have been few empirical examples of longitudinal patterns of temperature in large rivers due to a paucity of data. We...
NASA Astrophysics Data System (ADS)
Camus, E.; Elizalde, J. D.; Morata, D.; Wechsler, C.
2017-12-01
In geothermal systems alteration minerals are evidence of hot fluid flow, being present even in absence of other surface manifestations. Because these minerals result from the interaction between geothermal fluids and surrounding host rocks, they will provide information about features of thermal fluids as temperature, composition and pH, allowing tracking their changes and evolution. In this work, we study the Licancura Geothermal field located in the Andean Cordillera in Northern Chile. The combination of Principal Components Analysis on ASTER-L1T imagery and X Ray Diffraction (XRD) allow us to interpret fluid conditions and the areas where fluid flow took place. Results from red, green, blue color composite imagery show the presence of three types of secondary paragenesis. The first one corresponds to hematite and goethite, mainly at the east of the area, in the zone of eroded Pliocene volcanic edifices. The second one, mainly at the center of the area, highlighting propylitic alteration, includes minerals such as chlorite, illite, calcite, zeolites, and epidote. The third paragenesis, spatially related to the intersection between faults, represents advanced argillic alteration, includes minerals as alunite, kaolinite, and jarosite. XRD analysis support results from remote sensing techniques. These results suggest an acid pH hydrothermal fluid reaching temperatures at surface up to 80-100°C, which used faults as a conduit, originating advanced argillic minerals. The same fluid was, probably, responsible for propylitic paragenesis. However, iron oxides paragenesis identified in the area of eroded volcanoes probably corresponds to other processes associated with weathering rather than geothermal activity. In this work, we propose the applicability of remote sensing techniques as a first level exploration tool useful for high-altitude geothermal fields. Detailed clay mineral studies (XRD and SEM) would allow us to a better characterization of the geothermal fluid flow and the defining fluid pathways in the Licancura geothermal field. This work is a contribution to the FONDAP-CONICYT 15090013 Project. E.C. thanks CONICYT for her Ph.D. grant.
Mapping tree and impervious cover using Ikonos imagery: links with water quality and stream health
NASA Astrophysics Data System (ADS)
Wright, R.; Goetz, S. J.; Smith, A.; Zinecker, E.
2002-12-01
Precision georeferened Ikonos satellite imagery was used to map tree cover and impervious surface area in Montgomery county Maryland. The derived maps were used to assess riparian zone stream buffer tree cover and to predict, with multivariate logistic regression, stream health ratings across 246 small watersheds averaging 472 km2 in size. Stream health was assessed by state and county experts using a combination of physical measurements (e.g., dissolved oxygen) and biological indicators (e.g., benthic macroinvertebrates). We found it possible to create highly accurate (90+ per cent) maps of tree and impervious cover using decision tree classifiers, provided extensive field data were available for algorithm training. Impervious surface area was found to be the primary predictor of stream health, followed by tree cover in riparian buffers, and total tree cover within entire watersheds. A number of issues associated with mapping using Ikonos imagery were encountered, including differences in phenological and atmospheric conditions, shadowing within canopies and between scene elements, and limited spectral discrimination of cover types. We report on both the capabilities and limitations of Ikonos imagery for these applications, and considerations for extending these analyses to other areas.
NASA Technical Reports Server (NTRS)
Shahrokhi, F. (Principal Investigator); Sharber, L. A.
1977-01-01
The author has identified the following significant results. LANDSAT imagery and supplementary aircraft photography of the New River drainage basin were subjected to a multilevel analysis using conventional photointerpretation methods, densitometric techniques, multispectral analysis, and statistical tests to determine the accuracy of LANDSAT-1 imagery for measuring strip mines of common size. The LANDSAT areas were compared with low altitude measurements. The average accuracy over all the mined land sample areas mapped from LANDSAT-1 was 90%. The discrimination of strip mine subcategories is somewhat limited on LANDSAT imagery. A mine site, whether active or inactive, can be inferred by lack of vegetation, by shape, or image texture. Mine ponds are difficult or impossible to detect because of their small size and turbidity. Unless bordered and contrasted with vegetation, haulage roads are impossible to delineate. Preparation plants and refuge areas are not detectable. Density slicing of LANDSAT band 7 proved most useful in the detection of reclamation progress within the mined areas. For most state requirements for year-round monitoring of surface mined land, LANDSAT is of limited value. However, for periodic updating of regional surface maps, LANDSAT may provide sufficient accuracies for some users.
Adde, Antoine; Roux, Emmanuel; Mangeas, Morgan; Dessay, Nadine; Nacher, Mathieu; Dusfour, Isabelle; Girod, Romain; Briolant, Sébastien
2016-01-01
Local variation in the density of Anopheles mosquitoes and the risk of exposure to bites are essential to explain the spatial and temporal heterogeneities in the transmission of malaria. Vector distribution is driven by environmental factors. Based on variables derived from satellite imagery and meteorological observations, this study aimed to dynamically model and map the densities of Anopheles darlingi in the municipality of Saint-Georges de l'Oyapock (French Guiana). Longitudinal sampling sessions of An. darlingi densities were conducted between September 2012 and October 2014. Landscape and meteorological data were collected and processed to extract a panel of variables that were potentially related to An. darlingi ecology. Based on these data, a robust methodology was formed to estimate a statistical predictive model of the spatial-temporal variations in the densities of An. darlingi in Saint-Georges de l'Oyapock. The final cross-validated model integrated two landscape variables-dense forest surface and built surface-together with four meteorological variables related to rainfall, evapotranspiration, and the minimal and maximal temperatures. Extrapolation of the model allowed the generation of predictive weekly maps of An. darlingi densities at a resolution of 10-m. Our results supported the use of satellite imagery and meteorological data to predict malaria vector densities. Such fine-scale modeling approach might be a useful tool for health authorities to plan control strategies and social communication in a cost-effective, targeted, and timely manner.
Accuracy of lineaments mapping from space
NASA Technical Reports Server (NTRS)
Short, Nicholas M.
1989-01-01
The use of Landsat and other space imaging systems for lineaments detection is analyzed in terms of their effectiveness in recognizing and mapping fractures and faults, and the results of several studies providing a quantitative assessment of lineaments mapping accuracies are discussed. The cases under investigation include a Landsat image of the surface overlying a part of the Anadarko Basin of Oklahoma, the Landsat images and selected radar imagery of major lineaments systems distributed over much of Canadian Shield, and space imagery covering a part of the East African Rift in Kenya. It is demonstrated that space imagery can detect a significant portion of a region's fracture pattern, however, significant fractions of faults and fractures recorded on a field-produced geological map are missing from the imagery as it is evident in the Kenya case.
Craving by imagery cue reactivity in opiate dependence following detoxification
Behera, Debakanta; Goswami, Utpal; Khastgir, Udayan; Kumar, Satindra
2003-01-01
Background: Frequent relapses in opioid addiction may be a result of abstinentemergent craving. Exposure to various stimuli associated with drug use (drug cues) may trigger craving as a conditioned response to ′drug cues′. Aims: The present study explored the effects of imagery cue exposure on psychophysiological mechanisms of craving, viz. autonomic arousal, in detoxified opiate addicts. Methodology: Opiate dependent subjects (N=38) following detoxification underwent imagery cue reactivity trials.The subjects were asked to describe verbally and then imagine their craving experiences. Results: Craving was measured subjectively by using Visual Analogue Scale and autonomic parameters of galvanic skin resistance (GSR), pulse rate (PR), and skin temperature (ST) was taken during cue imagery. Spearman′s r and Wilcoxon signed ranks test were employed in analysis. Multivariate repeated measurement analysis (wilk′s Lambda) was employed wherever appropriate. Subjective measures of craving, GSR and PR increased significantly whereas ST decreased significantly during drug related cue imagery as compared to neutral cues. Conclusions: The results support that cue imagery is a powerful tool in eliciting craving. Hence, it can be used as a screening manoeuvre for detecting individuals with high cue reactivity, as well as for extinction of craving. PMID:21206851
Users and uses of Landsat 8 satellite imagery—2014 survey results
Miller, Holly M.
2016-04-18
To explore the effect of the availability of Landsat 8 imagery on Landsat imagery use in general, established users (those who had consistently used Landsat imagery both before and after Landsat 8 imagery became available) using Landsat 8 imagery were asked about changes in the amount of Landsat imagery they used. The majority of established users using Landsat 8 imagery (60 percent) reported an average increase of 51 percent in the number of scenes obtained after Landsat 8 imagery became available. Landsat 8 users were asked if they had encountered challenges in using Landsat 8 whereas non-Landsat 8 users were asked if such challenges had played a role in why they were not using Landsat 8 imagery. Although many users did not encounter challenges when using or trying to use Landsat 8 data, slightly less than 30 percent did encounter issues with processing the data to a usable point. The most common issue reported was not being able to create or have access to a surface reflectance corrected product. Other challenges were related to the file sizes of images being too large to download, store, or analyze. There were no statistically significant differences between Landsat 8 and non-Landsat 8 users in terms of challenges encountered when using or trying to use the imagery, which indicates that users were not unduly discouraged by the challenges they may have encountered. When asked about potential consequences of not using Landsat 8, more than half of the non-Landsat 8 users did not report detrimental effects on their work from not using the imagery. Of those who did report detrimental effects, decreased quality of work, decreased scope of work, and increased time spent on work were the most common.
Characterizing tree canopy temperature heterogeneity using an unmanned aircraft-borne thermal imager
NASA Astrophysics Data System (ADS)
Messinger, M.; Powell, R.; Silman, M.; Wright, M.; Nicholson, W.
2013-12-01
Leaf temperature (Tleaf) is an important control on many physiological processes such as photosynthesis and respiration, is a key variable for characterizing canopy energy fluxes, and is a valuable metric for identifying plant water stress or disease. Traditional methods of Tleaf measurement involve either the use of thermocouples, a time and labor-intensive method that samples sparsely in space, or the use of air temperature (Tair) as a proxy measure, which can introduce inaccuracies due to near constant canopy-atmosphere energy flux. Thermal infrared (TIR) imagery provides an efficient means of collecting Tleaf for large areas. Existing satellite and aircraft-based TIR imagery is, however, limited by low spatial and/or temporal resolution, while crane-mounted camera systems have strictly limited spatial extents. Unmanned aerial systems (UAS) offer new opportunities to acquire high spatial and temporal resolution imagery on demand. Here, we demonstrate the feasibility of collecting tree canopy Tleaf data using a small multirotor UAS fitted with a high spatial resolution TIR imager. The goals of this pilot study were to a) characterize basic patterns of within crown Tleaf for 4 study species and b) identify trends in Tleaf between species with varying leaf morphologies and canopy structures. TIR imagery was acquired for individual tree crowns of 4 species common to the North Carolina Piedmont ecoregion (Quercus phellos, Pinus strobus, Liriodendron tulipifera, Magnolia grandiflora) in an urban park environment. Due to significantly above-average summer precipitation, we assumed that none of the sampled trees was limited by soil water availability. We flew the TIR imaging system over 3-4 individuals of each of the 4 target species on 3 separate days. Imagery of all individuals was collected within the same 2-hour period in the afternoon on all days. There was low wind and partly cloudy skies during imaging. Tair, relative humidity, and wind speed were recorded at each site. Emissivity was assumed to be 0.98 for all species. Acquired images had a pixel resolution of <3 cm and measurement accuracy of ×1° C. We found the UAS-borne TIR imaging system to be an effective tool for collection of high resolution canopy imagery. The system imaged all targeted crowns quickly and reliably, providing a viable alternative to current methods of canopy Tleaf measurement. Analysis of the imagery indicated significant variability in Tleaf both within and between crowns. We identified trends in Tleaf related to average leaf size, shape, and crown structural traits. These data on the heterogeneity of Tleaf can further our understanding of canopy-atmosphere energy exchange. This pilot study demonstrates the promise of UAS-borne TIR sensors for acquiring high spatial resolution imagery at the scale of individual tree crowns.
NASA Astrophysics Data System (ADS)
Zarokanellos, N.; Jones, B. H.
2016-02-01
Red Sea is one of the saltiest and warmer seas in the world and acts as inverted estuary. Until recently, the Red Sea has been relatively underexplored. The limited observations that exist and results from various modeling exercises for the Red Sea have indicated that the sea has a complex mesoscale circulation often dominated by eddies. These mesoscale eddies are often visible in satellite imagery of sea surface height, temperature or chlorophyll, but only the surface expression of them. Because of previously limited in situ observations, the processes that drive the physical dynamics and the coupled biological responses have been poorly understood. To resolve and understand the role of these eddies in the dynamics of the north-central Red Sea during the wintertime, we used a combination of approaches that include remote sensing and autonomous underwater gliders equipped with physical, chemical, and bio-optical sensors. Remote sensing analyses of these eddies has shown that these eddies not only affect the physical circulation, but modify and disperse the phytoplankton populations and enhance exchange between the open sea and coastal coral reef ecosystems. During winter 2015, we observed deeper mixing driven by surface cooling and strong winds. As of result of the deeper mixing, phytoplankton populations became well mixed such that the ocean color imagery now reflected the integrated vertical processes. Localized diel fluctuations in phytoplankton are clearly evident during these well mixed periods. The mixing likely contributes to enhanced nutrient fluxes as well. Through sustained AUV observations, we have better understand the development, evolution, and dissipation of eddies. We also now have a better understanding of the mixing of source water from both the northern and southern Red Sea in this region of the north central Red Sea.
Drone based estimation of actual evapotranspiration over different forest types
NASA Astrophysics Data System (ADS)
Marzahn, Philip; Gampe, David; Castro, Saulo; Vega-Araya, Mauricio; Sanchez-Azofeifa, Arturo; Ludwig, Ralf
2017-04-01
Actual evapotranspiration (Eta) plays an important role in surface-atmosphere interactions. Traditionally, Eta is measured by means of lysimeters, eddy-covariance systems or fiber optics, providing estimates which are spatially restricted to a footprint from a few square meters up to several hectares . In the past, several methods have been developed to derive Eta by means of multi-spectral remote sensing data using thermal and VIS/NIR satellite imagery of the land surface. As such approaches do have their justification on coarser scales, they do not provide Eta information on the fine resolution plant level over large areas which is mandatory for the detection of water stress or tree mortality. In this study, we present a comparison of a drone based assessment of Eta with eddy-covariance measurements over two different forest types - a deciduous forest in Alberta, Canada and a tropical dry forest in Costa Rica. Drone based estimates of Eta were calculated applying the Triangle-Method proposed by Jiang and Islam (1999). The Triangle-Method estimates actual evapotranspiration (Eta) by means of the Normalized Difference Vegetation Index (NDVI) and land surface temperature (LST) provided by two camera systems (MicaSense RedEdge, FLIR TAU2 640) flown simultaneously on an octocopter. . Results indicate a high transferability of the original approach from Jiang and Islam (1999) developed for coarse to medium resolution satellite imagery tothe high resolution drone data, leading to a deviation in Eta estimates of 10% compared to the eddy-covariance measurements. In addition, the spatial footprint of the eddy-covariance measurement can be detected with this approach, by showing the spatial heterogeneities of Eta due to the spatial distribution of different trees and understory vegetation.
Optics of the Offshore Columbia River Plume from Glider Observations and Satellite Imagery
NASA Astrophysics Data System (ADS)
Saldias, G.; Shearman, R. K.; Barth, J. A.; Tufillaro, N.
2016-02-01
The Columbia River (CR) is the largest source of freshwater along the U.S. Pacific coast. The resultant plume is often transported southward and offshore forming a large buoyant feature off Oregon and northern California in spring-summer - the offshore CR plume. Observations from autonomous underwater gliders and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery are used to characterize the optics of the offshore CR plume off Newport, Oregon. Vertical sections, under contrasting river flow conditions, reveal a low-salinity and warm surface layer of 20-25 m (fresher in spring and warmer in summer), high Colored Dissolved Organic Matter (CDOM) concentration and backscatter, and associated with the base of the plume high chlorophyll fluorescence. Plume characteristics vary in the offshore direction as the warm and fresh surface layer thickens progressively to an average 30-40 m of depth 270-310 km offshore; CDOM, backscatter, and chlorophyll fluorescence decrease in the upper 20 m and increase at subsurface levels (30-50 m depth). MODIS normalized water-leaving radiance (nLw(λ)) spectra for CR plume cases show enhanced water-leaving radiance at green bands (as compared to no-CR plume cases) up to 154 km from shore. Farther offshore, the spectral shapes for both cases are very similar, and consequently, a contrasting color signature of low-salinity plume water is practically imperceptible from ocean color remote sensing. Empirical algorithms based on multivariate regression analyses of nLw(λ) plus Sea Surface Temperature (SST) data produce more accurate results detecting offshore plume waters than previous studies using single visible bands (e.g. adg(412) or nLw(555)).
Variability of Basal Melt Beneath the Pine Island Glacier Ice Shelf, West Antarctica
NASA Technical Reports Server (NTRS)
Bindschadler, Robert; Vaughan, David G.; Vornberger, Patricia
2011-01-01
Observations from satellite and airborne platforms are combined with model calculations to infer the nature and efficiency of basal melting of the Pine Island Glacier ice shelf, West Antarctica, by ocean waters. Satellite imagery shows surface features that suggest ice-shelf-wide changes to the ocean s influence on the ice shelf as the grounding line retreated. Longitudinal profiles of ice surface and bottom elevations are analyzed to reveal a spatially dependent pattern of basal melt with an annual melt flux of 40.5 Gt/a. One profile captures a persistent set of surface waves that correlates with quasi-annual variations of atmospheric forcing of Amundsen Sea circulation patterns, establishing a direct connection between atmospheric variability and sub-ice-shelf melting. Ice surface troughs are hydrostatically compensated by ice-bottom voids up to 150m deep. Voids form dynamically at the grounding line, triggered by enhanced melting when warmer-than-average water arrives. Subsequent enlargement of the voids is thermally inefficient (4% or less) compared with an overall melting efficiency beneath the ice shelf of 22%. Residual warm water is believed to cause three persistent polynyas at the ice-shelf front seen in Landsat imagery. Landsat thermal imagery confirms the occurrence of warm water at the same locations.
Sequential Imaging of Earth by Astronauts: 50 Years of Global Change
NASA Technical Reports Server (NTRS)
Evans, Cynthia A.
2009-01-01
For nearly 50 years, astronauts have collected sequential imagery of the Earth. In fact, the collection of astronaut photography comprises one of the earliest sets of data (1961 to present) available to scientists to study the regional context of the Earth s surface and how it changes. While today s availability of global high resolution satellite imagery enables anyone with an internet connection to examine specific features on the Earth s surface with a regional context, historical satellite imagery adds another dimension (time) that provides researchers and students insight about the features and processes of a region. For example, one of the geographic areas with the longest length of record contained within the astronaut photography database is the lower Nile River. The database contains images that document the flooding of Lake Nasser (an analog to today s flooding behind China s Three Gorges Dam), the changing levels of Lake Nasser s water with multiyear cycles of flood and drought, the recent flooding and drying of the Toshka Lakes, as well as urban growth, changes in agriculture and coastal subsidence. The imagery database allows investigations using different time scales (hours to decades) and spatial scales (resolutions and fields of view) as variables. To continue the imagery collection, the astronauts on the International Space Station are trained to understand basic the Earth Sciences and look for and photograph major events such as tropical storms, landslides, and volcanic eruptions, and document landscapes undergoing change (e.g., coastal systems, cities, changing forest cover). We present examples of selected sequences of astronaut imagery that illustrate the interdependence of geological processes, climate cycles, human geography and development, and prompt additional questions about the underlying elements of change.
NASA Astrophysics Data System (ADS)
Snavely, Rachel A.
Focusing on the semi-arid and highly disturbed landscape of San Clemente Island, California, this research tests the effectiveness of incorporating a hierarchal object-based image analysis (OBIA) approach with high-spatial resolution imagery and light detection and range (LiDAR) derived canopy height surfaces for mapping vegetation communities. The study is part of a large-scale research effort conducted by researchers at San Diego State University's (SDSU) Center for Earth Systems Analysis Research (CESAR) and Soil Ecology and Restoration Group (SERG), to develop an updated vegetation community map which will support both conservation and management decisions on Naval Auxiliary Landing Field (NALF) San Clemente Island. Trimble's eCognition Developer software was used to develop and generate vegetation community maps for two study sites, with and without vegetation height data as input. Overall and class-specific accuracies were calculated and compared across the two classifications. The highest overall accuracy (approximately 80%) was observed with the classification integrating airborne visible and near infrared imagery having very high spatial resolution with a LiDAR derived canopy height model. Accuracies for individual vegetation classes differed between both classification methods, but were highest when incorporating the LiDAR digital surface data. The addition of a canopy height model, however, yielded little difference in classification accuracies for areas of very dense shrub cover. Overall, the results show the utility of the OBIA approach for mapping vegetation with high spatial resolution imagery, and emphasizes the advantage of both multi-scale analysis and digital surface data for accuracy characterizing highly disturbed landscapes. The integrated imagery and digital canopy height model approach presented both advantages and limitations, which have to be considered prior to its operational use in mapping vegetation communities.
NASA Astrophysics Data System (ADS)
Browning, D. M.; Laliberte, A. S.; Rango, A.; Herrick, J. E.
2009-12-01
Relating field observations of plant phenological events to remotely sensed depictions of land surface phenology remains a challenge to the vertical integration of data from disparate sources. This research conducted at the Jornada Basin Long-Term Ecological Research site in southern New Mexico capitalizes on legacy datasets pertaining to reproductive phenology and biomass and hyperspatial imagery. Large amounts of exposed bare soil and modest cover from shrubs and grasses in these arid and semi-arid ecosystems challenge the integration of field observations of phenology and remotely sensed data to monitor changes in land surface phenology. Drawing on established field protocols for reproductive phenology, hyperspatial imagery (4 cm), and object-based image analysis, we explore the utility of two approaches to scale detailed observations (i.e., field and 4 cm imagery) to the extent of long-term field plots (50 x 50m) and moderate resolution Landsat Thematic Mapper (TM) imagery (30 x 30m). Very high resolution color-infrared imagery was collected June 2007 across 15 LTER study sites that transect five distinct vegetation communities along a continuum of grass to shrub dominance. We examined two methods for scaling spectral vegetation indices (SVI) at 4 cm resolution: pixel averaging and object-based integration. Pixel averaging yields the mean SVI value for all pixels within the plot or TM pixel. Alternatively, the object-based method is based on a weighted average of SVI values that correspond to discrete image objects (e.g., individual shrubs or grass patches). Object-based image analysis of 4 cm imagery provides a detailed depiction of ground cover and allows us to extract species-specific contributions to upscaled SVI values. The ability to discern species- or functional-group contributions to remotely sensed signals of vegetation greenness can greatly enhance the design of field sampling protocols for phenological research. Furthermore, imagery from unmanned aerial vehicles (UAV) is a cost-effective and increasingly available resource and generation of UAV mosaics has been accomplished so that larger study areas can be addressed. This technology can provide a robust basis for scaling relationships for phenology-based research applications.
Satellite-derived vertical profiles of temperature and dew point for mesoscale weather forecast
NASA Astrophysics Data System (ADS)
Masselink, Thomas; Schluessel, P.
1995-12-01
Weather forecast-models need spatially high resolutioned vertical profiles of temperature and dewpoint for their initialisation. These profiles can be supplied by a combination of data from the Tiros-N Operational Vertical Sounder (TOVS) and the imaging Advanced Very High Resolution Radiometer (AVHRR) on board the NOAA polar orbiting sate!- lites. In cloudy cases the profiles derived from TOVS data only are of insufficient accuracy. The stanthrd deviations from radiosonde ascents or numerical weather analyses likely exceed 2 K in temperature and 5Kin dewpoint profiles. It will be shown that additional cloud information as retrieved from AVHIRR allows a significant improvement in theaccuracy of vertical profiles. The International TOVS Processing Package (ITPP) is coupled to an algorithm package called AVHRR Processing scheme Over cLouds, Land and Ocean (APOLLO) where parameters like cloud fraction and cloud-top temperature are determined with higher accuracy than obtained from TOVS retrieval alone. Furthermore, a split-window technique is applied to the cloud-free AVHRR imagery in order to derive more accurate surface temperatures than can be obtained from the pure TOVS retrieval. First results of the impact of AVHRR cloud detection on the quality of the profiles are presented. The temperature and humidity profiles of different retrieval approaches are validated against analyses of the European Centre for Medium-Range Weatherforecasts.
Estimation of human emotions using thermal facial information
NASA Astrophysics Data System (ADS)
Nguyen, Hung; Kotani, Kazunori; Chen, Fan; Le, Bac
2014-01-01
In recent years, research on human emotion estimation using thermal infrared (IR) imagery has appealed to many researchers due to its invariance to visible illumination changes. Although infrared imagery is superior to visible imagery in its invariance to illumination changes and appearance differences, it has difficulties in handling transparent glasses in the thermal infrared spectrum. As a result, when using infrared imagery for the analysis of human facial information, the regions of eyeglasses are dark and eyes' thermal information is not given. We propose a temperature space method to correct eyeglasses' effect using the thermal facial information in the neighboring facial regions, and then use Principal Component Analysis (PCA), Eigen-space Method based on class-features (EMC), and PCA-EMC method to classify human emotions from the corrected thermal images. We collected the Kotani Thermal Facial Emotion (KTFE) database and performed the experiments, which show the improved accuracy rate in estimating human emotions.
NASA Astrophysics Data System (ADS)
Marmorino, George O.; Smith, Geoffrey B.; Miller, W. D.
2017-09-01
A pair of time-lagged satellite images of surface algae in the Great Barrier Reef lagoon is used to investigate characteristics of the horizontal velocity field at a spatial resolution as small as 4 m. A distinctive feature is the occurrence of surface patches that are relatively clear of algae and which grow in size. These patches are interpreted as resulting from the horizontally diverging motion associated with boils. The surface divergence in such boils can be as large as 0.01 s-1, as deduced directly from the imagery. Overall, root-mean-squared values of divergence, vorticity, and strain rate are 45, 58, and 170, respectively, when normalized by the Coriolis parameter. By observing the algae and its fluid environment simultaneously, the analysis thus provides a glimpse of how underlying hydrodynamic processes help shape the distribution of surface algae - under the calm winds that favor the formation of dense surface aggregations.
Understanding Long-term Greenness, Water Use, and Redevelopment in Denver, Colorado
NASA Astrophysics Data System (ADS)
Neel, A.; Hogue, T. S.; Read, L.
2016-12-01
In 2015 the U.S. Census Bureau's found Denver to have the fastest growth rate among large cities in America. With the population of Metro Denver expected to increase from 2.9 to 3.3 million it is critical to consider the impacts of expected redevelopment and increased housing density on the City's ecosystem and future water supply. While prior studies have shown outdoor water use to account for as much as 40-60% of single-family residential water use in western cities, currently no published research examines patterns in urban vegetation, greenness, temperature and water use for cities in the Rocky Mountain West. Normalized Differential Vegetation Index (NDVI) calculated from Landsat imagery was examined to assess how redevelopment in Denver's urban center impacts regional greenness patterns, land surface temperatures and water budgets. Over the last twenty-seven years Denver has shown an overall 4.4% decrease in greenness, with a more rapid decline starting in 2006. While NDVI and cumulative precipitation have a significant relationship over the study period, decreasing NDVI trends across all seasons suggests other factors, such as redevelopment, may be influencing the city's greenness. Comparing water use, NDVI, and precipitation reveals that not only do climate and redevelopment affect NDVI patterns, but mandated water restrictions may also be having a significant impact on NDVI values. NDVI and precipitation patterns are being assessed against regional surface temperatures over time. Surface temperatures, taken from Landsat data, reveal that Urban Heat Island effect may become more pronounced with decreasing NDVI values. As Denver continues to grow, managers can utilize results to better inform decisions about landscape patterns relative to outdoor water use, the effectiveness of restrictions on consumption, and future planning for green infrastructure.
Submarine Combat Systems Engineering Project Capstone Project
2011-06-06
sonar , imaging, Electronic Surveillance (ES) and communications. These sensors passively detect contacts, which emit... passive sensors is included. A Search Detect Identify Track Decide Engage Assess 3 contact can be sensed by the system as either surface or... Detect Track Avoid Search Detect Identify Track Search Engage Assess Detect Track Avoid Search • SONAR •Imagery •TC • SONAR • SONAR •EW •Imagery •ESM
NASA Astrophysics Data System (ADS)
Miles, Katie; Willis, Ian; Benedek, Corinne; Williamson, Andrew; Tedesco, Marco
2017-04-01
Supraglacial lakes (SGLs) on the Greenland Ice Sheet (GrIS) are an important component of the ice sheet's mass balance and hydrology, with their drainage affecting ice dynamics. This study uses imagery from the recently launched Sentinel-1A Synthetic Aperture Radar (SAR) to investigate SGLs in West Greenland. SAR can image through cloud and in darkness, overcoming some of the limitations of commonly used optical sensors. A semi automated algorithm is developed to detect surface lakes from Sentinel images during the 2015 summer. It generally detects water in all locations where a Landsat-8 NDWI classification (with a relatively high threshold value) detects water. A combined set of images from Landsat-8 and Sentinel-1 is used to track lake behaviour at a comparable temporal resolution to that which is possible with MODIS, but at a higher spatial resolution. A fully automated lake drainage detection algorithm is used to investigate both rapid and slow drainages for both small and large lakes through the summer. Our combined Landsat-Sentinel dataset, with a temporal resolution of three days, could track smaller lakes (mean 0.089 km2) than are resolvable in MODIS (minimum 0.125 km2). Small lake drainage events (lakes smaller than can be detected using MODIS) were found to occur at lower elevations ( 200 m) and slightly earlier in the melt season than larger events, as were slow lake drainage events compared to rapid events. The Sentinel imagery allows the analysis to be extended manually into the early winter to calculate the dates and elevations of lake freeze-through more precisely than is possible with optical imagery (mean 30 August, 1270 m mean elevation). Finally, the Sentinel imagery allows subsurface lakes (which are invisible to optical sensors) to be detected, and, for the first time, their dates of appearance and freeze-through to be calculated (mean 9 August and 7 October, respectively). These subsurface lakes occur at higher elevations than the surface lakes detected in this study (1593 m mean elevation). Sentinel imagery therefore provides great potential for tracking melting, water movement and freezing within the firn zone of the GrIS.
Real Time, On Line Crop Monitoring and Analysis with Near Global Landsat-class Mosaics
NASA Astrophysics Data System (ADS)
Varlyguin, D.; Hulina, S.; Crutchfield, J.; Reynolds, C. A.; Frantz, R.
2015-12-01
The presentation will discuss the current status of GDA technology for operational, automated generation of 10-30 meter near global mosaics of Landsat-class data for visualization, monitoring, and analysis. Current version of the mosaic combines Landsat 8 and Landsat 7. Sentinel-2A imagery will be added once it is operationally available. The mosaics are surface reflectance calibrated and are analysis ready. They offer full spatial resolution and all multi-spectral bands of the source imagery. Each mosaic covers all major agricultural regions of the world and 16 day time window. 2014-most current dates are supported. The mosaics are updated in real-time, as soon as GDA downloads Landsat imagery, calibrates it to the surface reflectances, and generates data gap masks (all typically under 10 minutes for a Landsat scene). The technology eliminates the complex, multi-step, hands-on process of data preparation and provides imagery ready for repetitive, field-to-country analysis of crop conditions, progress, acreages, yield, and production. The mosaics can be used for real-time, on-line interactive mapping and time series drilling via GeoSynergy webGIS platform. The imagery is of great value for improved, persistent monitoring of global croplands and for the operational in-season analysis and mapping of crops across the globe in USDA FAS purview as mandated by the US government. The presentation will overview operational processing of Landsat-class mosaics in support of USDA FAS efforts and will look into 2015 and beyond.
Mark Torre Jorgenson,; Mikhail Kanevskiy,; Yuri Shur,; Natalia Moskalenko,; Dana Brown,; Wickland, Kimberly P.; Striegl, Robert G.; Koch, Joshua C.
2015-01-01
Ground ice is abundant in the upper permafrost throughout the Arctic and fundamentally affects terrain responses to climate warming. Ice wedges, which form near the surface and are the dominant type of massive ice in the Arctic, are particularly vulnerable to warming. Yet processes controlling ice wedge degradation and stabilization are poorly understood. Here we quantified ice wedge volume and degradation rates, compared ground ice characteristics and thermal regimes across a sequence of five degradation and stabilization stages and evaluated biophysical feedbacks controlling permafrost stability near Prudhoe Bay, Alaska. Mean ice wedge volume in the top 3 m of permafrost was 21%. Imagery from 1949 to 2012 showed thermokarst extent (area of water-filled troughs) was relatively small from 1949 (0.9%) to 1988 (1.5%), abruptly increased by 2004 (6.3%) and increased slightly by 2012 (7.5%). Mean annual surface temperatures varied by 4.9°C among degradation and stabilization stages and by 9.9°C from polygon center to deep lake bottom. Mean thicknesses of the active layer, ice-poor transient layer, ice-rich intermediate layer, thermokarst cave ice, and wedge ice varied substantially among stages. In early stages, thaw settlement caused water to impound in thermokarst troughs, creating positive feedbacks that increased net radiation, soil heat flux, and soil temperatures. Plant growth and organic matter accumulation in the degraded troughs provided negative feedbacks that allowed ground ice to aggrade and heave the surface, thus reducing surface water depth and soil temperatures in later stages. The ground ice dynamics and ecological feedbacks greatly complicate efforts to assess permafrost responses to climate change.
NASA Astrophysics Data System (ADS)
Jorgenson, M. T.; Kanevskiy, M.; Shur, Y.; Moskalenko, N.; Brown, D. R. N.; Wickland, K.; Striegl, R.; Koch, J.
2015-11-01
Ground ice is abundant in the upper permafrost throughout the Arctic and fundamentally affects terrain responses to climate warming. Ice wedges, which form near the surface and are the dominant type of massive ice in the Arctic, are particularly vulnerable to warming. Yet processes controlling ice wedge degradation and stabilization are poorly understood. Here we quantified ice wedge volume and degradation rates, compared ground ice characteristics and thermal regimes across a sequence of five degradation and stabilization stages and evaluated biophysical feedbacks controlling permafrost stability near Prudhoe Bay, Alaska. Mean ice wedge volume in the top 3 m of permafrost was 21%. Imagery from 1949 to 2012 showed thermokarst extent (area of water-filled troughs) was relatively small from 1949 (0.9%) to 1988 (1.5%), abruptly increased by 2004 (6.3%) and increased slightly by 2012 (7.5%). Mean annual surface temperatures varied by 4.9°C among degradation and stabilization stages and by 9.9°C from polygon center to deep lake bottom. Mean thicknesses of the active layer, ice-poor transient layer, ice-rich intermediate layer, thermokarst cave ice, and wedge ice varied substantially among stages. In early stages, thaw settlement caused water to impound in thermokarst troughs, creating positive feedbacks that increased net radiation, soil heat flux, and soil temperatures. Plant growth and organic matter accumulation in the degraded troughs provided negative feedbacks that allowed ground ice to aggrade and heave the surface, thus reducing surface water depth and soil temperatures in later stages. The ground ice dynamics and ecological feedbacks greatly complicate efforts to assess permafrost responses to climate change.
NASA Technical Reports Server (NTRS)
Johnson, W. H.; Bleuer, N. K.; Fraser, G. S.; Totten, S. M.
1984-01-01
The objectives and expected results of an investigation of the use of the Shuttle Imaging Radar-B (SIR-B) as a basic tool in the recognition and mapping of glacial landforms are discussed. The main goals are: (1) to evaluate the ability of SIR-B to delineate varying sizes, shapes, and relief of surface forms; (2) to compare and contrast SIR-B imagery with selected Seasat SAR imagery; (3) to utilize SIR-B imagery synergistically with available SEASAT SAR, LANDSAT RBV, and other imagery sources to identify and map suites of glacial landforms; and (4) eventually to interpret the suites in terms of ice dynamics and conditions of deglaciation, to relate them to the stratigraphic record, and to evaluate interactions of the major lobes and sublobes.
Water-management models in Florida from ERTS-1 data
NASA Technical Reports Server (NTRS)
Higer, A. L. (Principal Investigator); Rogers, R. H.; Coker, A. E.; Cordes, E. H.
1975-01-01
The author has identified the following significant results. The usefullness of ERTS 1 to improving the overall effectiveness of collecting and disseminating data was evaluated. ERTS MSS imagery and in situ monitoring by DCS were used to evaluate their separate and combined capabilities. Twenty data collection platforms were established in southern Florida. Water level and rainfall measurements were collected and disseminated to users in less than 2 hours, a significant improvement over conventional techniques requiring 2 months. ERTS imagery was found to significantly enhance the utility of ground measurements. Water stage was correlated with water surface areas from imagery in order to obtain water stage-volume relations. Imagery provided an economical basis for extrapolating water parameters from the point samples to unsampled data and provided a synoptic view of water mass boundaries that no amount of ground sampling or monitoring could provide.
Overall evaluation of LANDSAT (ERTS) follow on imagery for cartographic application
NASA Technical Reports Server (NTRS)
Colvocoresses, A. P. (Principal Investigator)
1977-01-01
The author has identified the following significant results. LANDSAT imagery can be operationally applied to the revision of nautical charts. The imagery depicts shallow seas in a form that permits accurate planimetric image mapping of features to 20 meters of depth where the conditions of water clarity and bottom reflection are suitable. LANDSAT data also provide an excellent simulation of the earth's surface, for such applications as aeronautical charting and radar image correlation in aircraft and aircraft simulators. Radiometric enhancement, particularly edge enhancement, a technique only marginally successful with aerial photographs has proved to be high value when applied to LANDSAT data.
Advanced Remote Sensing Research
Slonecker, Terrence; Jones, John W.; Price, Susan D.; Hogan, Dianna
2008-01-01
'Remote sensing' is a generic term for monitoring techniques that collect information without being in physical contact with the object of study. Overhead imagery from aircraft and satellite sensors provides the most common form of remotely sensed data and records the interaction of electromagnetic energy (usually visible light) with matter, such as the Earth's surface. Remotely sensed data are fundamental to geographic science. The Eastern Geographic Science Center (EGSC) of the U.S. Geological Survey (USGS) is currently conducting and promoting the research and development of three different aspects of remote sensing science: spectral analysis, automated orthorectification of historical imagery, and long wave infrared (LWIR) polarimetric imagery (PI).
NASA Astrophysics Data System (ADS)
Greeley, R.; Fink, J. H.
1984-07-01
The unusual rheological properties of sulfur are discussed in order to determine the distinctive volcanic flow morphologies which indicate the presence of sulfur volcanoes on the Saturnian satellite Io. An analysis of high resolution Voyager imagery reveals three features which are considered to be possible sulfur volcanoes: Atar Patera, Daedalus Patera, and Kibero Patera. All three features are distinguished by circular-to-oval central masses surrounded by irregular widespread flows. The central zones of the features are interpreted to be domes formed of high temperature sulfur. To confirm the interpretations of the satellite data, molten sulfur was extruded in the laboratory at a temperature of 210 C on a flat surface sloping 0.5 deg to the left. At this temperature, the sulfur formed a viscous domelike mass over the event. As parts of the mass cooled to 170 C the viscosity decreased to a runny stage, forming breakout flows. It is concluded that a case can be made for sulfur volcanoes on Io sufficient to warrant further study, and it is recommended that the upcoming Galileo mission examine these phenomena.
NASA Technical Reports Server (NTRS)
Greeley, R.; Fink, J. H.
1984-01-01
The unusual rheological properties of sulfur are discussed in order to determine the distinctive volcanic flow morphologies which indicate the presence of sulfur volcanoes on the Saturnian satellite Io. An analysis of high resolution Voyager imagery reveals three features which are considered to be possible sulfur volcanoes: Atar Patera, Daedalus Patera, and Kibero Patera. All three features are distinguished by circular-to-oval central masses surrounded by irregular widespread flows. The central zones of the features are interpreted to be domes formed of high temperature sulfur. To confirm the interpretations of the satellite data, molten sulfur was extruded in the laboratory at a temperature of 210 C on a flat surface sloping 0.5 deg to the left. At this temperature, the sulfur formed a viscous domelike mass over the event. As parts of the mass cooled to 170 C the viscosity decreased to a runny stage, forming breakout flows. It is concluded that a case can be made for sulfur volcanoes on Io sufficient to warrant further study, and it is recommended that the upcoming Galileo mission examine these phenomena.
Yang, Yingbao; Li, Xiaolong; Pan, Xin; Zhang, Yong; Cao, Chen
2017-01-01
Many downscaling algorithms have been proposed to address the issue of coarse-resolution land surface temperature (LST) derived from available satellite-borne sensors. However, few studies have focused on improving LST downscaling in urban areas with several mixed surface types. In this study, LST was downscaled by a multiple linear regression model between LST and multiple scale factors in mixed areas with three or four surface types. The correlation coefficients (CCs) between LST and the scale factors were used to assess the importance of the scale factors within a moving window. CC thresholds determined which factors participated in the fitting of the regression equation. The proposed downscaling approach, which involves an adaptive selection of the scale factors, was evaluated using the LST derived from four Landsat 8 thermal imageries of Nanjing City in different seasons. Results of the visual and quantitative analyses show that the proposed approach achieves relatively satisfactory downscaling results on 11 August, with coefficient of determination and root-mean-square error of 0.87 and 1.13 °C, respectively. Relative to other approaches, our approach shows the similar accuracy and the availability in all seasons. The best (worst) availability occurred in the region of vegetation (water). Thus, the approach is an efficient and reliable LST downscaling method. Future tasks include reliable LST downscaling in challenging regions and the application of our model in middle and low spatial resolutions. PMID:28368301
Evaluation of a technique for satellite-derived area estimation of forest fires
NASA Technical Reports Server (NTRS)
Cahoon, Donald R., Jr.; Stocks, Brian J.; Levine, Joel S.; Cofer, Wesley R., III; Chung, Charles C.
1992-01-01
The advanced very high resolution radiometer (AVHRR), has been found useful for the location and monitoring of both smoke and fires because of the daily observations, the large geographical coverage of the imagery, the spectral characteristics of the instrument, and the spatial resolution of the instrument. This paper will discuss the application of AVHRR data to assess the geographical extent of burning. Methods have been developed to estimate the surface area of burning by analyzing the surface area effected by fire with AVHRR imagery. Characteristics of the AVHRR instrument, its orbit, field of view, and archived data sets are discussed relative to the unique surface area of each pixel. The errors associated with this surface area estimation technique are determined using AVHRR-derived area estimates of target regions with known sizes. This technique is used to evaluate the area burned during the Yellowstone fires of 1988.
Assessment of satellite and aircraft multispectral scanner data for strip-mine monitoring
NASA Technical Reports Server (NTRS)
Spisz, E. W.; Dooley, J. T.
1980-01-01
The application of LANDSAT multispectral scanner data to describe the mining and reclamation changes of a hilltop surface coal mine in the rugged, mountainous area of eastern Kentucky is presented. Original single band satellite imagery, computer enhanced single band imagery, and computer classified imagery are presented for four different data sets in order to demonstrate the land cover changes that can be detected. Data obtained with an 11 band multispectral scanner on board a C-47 aircraft at an altitude of 3000 meters are also presented. Comparing the satellite data with color, infrared aerial photography, and ground survey data shows that significant changes in the disrupted area can be detected from LANDSAT band 5 satellite imagery for mines with more than 100 acres of disturbed area. However, band-ratio (bands 5/6) imagery provides greater contrast than single band imagery and can provide a qualitative level 1 classification of the land cover that may be useful for monitoring either the disturbed mining area or the revegetation progress. However, if a quantitative, accurate classification of the barren or revegetated classes is required, it is necessary to perform a detailed, four band computer classification of the data.
Proceedings of the 2004 High Spatial Resolution Commercial Imagery Workshop
NASA Technical Reports Server (NTRS)
2006-01-01
Topics covered include: NASA Applied Sciences Program; USGS Land Remote Sensing: Overview; QuickBird System Status and Product Overview; ORBIMAGE Overview; IKONOS 2004 Calibration and Validation Status; OrbView-3 Spatial Characterization; On-Orbit Modulation Transfer Function (MTF) Measurement of QuickBird; Spatial Resolution Characterization for QuickBird Image Products 2003-2004 Season; Image Quality Evaluation of QuickBird Super Resolution and Revisit of IKONOS: Civil and Commercial Application Project (CCAP); On-Orbit System MTF Measurement; QuickBird Post Launch Geopositional Characterization Update; OrbView-3 Geometric Calibration and Geopositional Accuracy; Geopositional Statistical Methods; QuickBird and OrbView-3 Geopositional Accuracy Assessment; Initial On-Orbit Spatial Resolution Characterization of OrbView-3 Panchromatic Images; Laboratory Measurement of Bidirectional Reflectance of Radiometric Tarps; Stennis Space Center Verification and Validation Capabilities; Joint Agency Commercial Imagery Evaluation (JACIE) Team; Adjacency Effects in High Resolution Imagery; Effect of Pulse Width vs. GSD on MTF Estimation; Camera and Sensor Calibration at the USGS; QuickBird Geometric Verification; Comparison of MODTRAN to Heritage-based Results in Vicarious Calibration at University of Arizona; Using Remotely Sensed Imagery to Determine Impervious Surface in Sioux Falls, South Dakota; Estimating Sub-Pixel Proportions of Sagebrush with a Regression Tree; How Do YOU Use the National Land Cover Dataset?; The National Map Hazards Data Distribution System; Recording a Troubled World; What Does This-Have to Do with This?; When Can a Picture Save a Thousand Homes?; InSAR Studies of Alaska Volcanoes; Earth Observing-1 (EO-1) Data Products; Improving Access to the USGS Aerial Film Collections: High Resolution Scanners; Improving Access to the USGS Aerial Film Collections: Phoenix Digitizing System Product Distribution; System and Product Characterization: Issues Approach; Innovative Approaches to Analysis of Lidar Data for the National Map; Changes in Imperviousness near Military Installations; Geopositional Accuracy Evaluations of QuickBird and OrbView-3: Civil and Commercial Applications Project (CCAP); Geometric Accuracy Assessment: OrbView ORTHO Products; QuickBird Radiometric Calibration Update; OrbView-3 Radiometric Calibration; QuickBird Radiometric Characterization; NASA Radiometric Characterization; Establishing and Verifying the Traceability of Remote-Sensing Measurements to International Standards; QuickBird Applications; Airport Mapping and Perpetual Monitoring Using IKONOS; OrbView-3 Relative Accuracy Results and Impacts on Exploitation and Accuracy Improvement; Using Remotely Sensed Imagery to Determine Impervious Surface in Sioux Falls, South Dakota; Applying High-Resolution Satellite Imagery and Remotely Sensed Data to Local Government Applications: Sioux Falls, South Dakota; Automatic Co-Registration of QuickBird Data for Change Detection Applications; Developing Coastal Surface Roughness Maps Using ASTER and QuickBird Data Sources; Automated, Near-Real Time Cloud and Cloud Shadow Detection in High Resolution VNIR Imagery; Science Applications of High Resolution Imagery at the USGS EROS Data Center; Draft Plan for Characterizing Commercial Data Products in Support of Earth Science Research; Atmospheric Correction Prototype Algorithm for High Spatial Resolution Multispectral Earth Observing Imaging Systems; Determining Regional Arctic Tundra Carbon Exchange: A Bottom-Up Approach; Using IKONOS Imagery to Assess Impervious Surface Area, Riparian Buffers and Stream Health in the Mid-Atlantic Region; Commercial Remote Sensing Space Policy Civil Implementation Update; USGS Commercial Remote Sensing Data Contracts (CRSDC); and Commercial Remote Sensing Space Policy (CRSSP): Civil Near-Term Requirements Collection Update.
Torregrosa, Alicia
2016-01-01
Within the world of mapping, clouds are a pesky interference to be removed from satellite remote sensed imagery. However, to many of us, that is a waste of pixels. Cloud maps are becoming increasingly valuable in the quest to understand land cover change and surface processes. In coastal California, the dynamic summertime interactions between air masses, the ocean, and topography result in blankets of fog and low clouds flowing into low lying areas of the San Francisco Bay Area. The low clouds and fog advected from the Pacific bring moisture and shade to coastal ecosystems. This acts to reduce temperatures and evapotranspiration stress during the otherwise arid Mediterranean climate season, in turn impacting vegetation distribution, irrigation needs, and urban energy consumption.
NASA Technical Reports Server (NTRS)
Salomonson, V. V.; Rango, A.
1973-01-01
The application of ERTS-1 imagery to the conservation and control of water resources is discussed. The effects of exisiting geology and land use in the water shed area on the hydrologic cycle and the general characteristics of runoff are described. The effects of floods, snowcover, and glaciers are analyzed. The use of ERTS-1 imagery to map surface water and wetland areas to provide rapid inventorying over large regions of water bodies is reported.
Effect of Gas Flaring on the Environment: A Case Study of a Part of Niger Delta, Nigeria
NASA Astrophysics Data System (ADS)
Akeem, N. A.; Anifowose, A. Y. B.
2016-12-01
Gas flaring is a common practice in the Niger Delta region of Nigeria. It releases greenhouse gases into the atmosphere and causes reduction in the biodiversity and health status of inhabitants of the environment. This study examines the use of Remote Sensing and GIS in assessing the impact of gas flaring on water quality, land surface temperature (LST), and vegetation cover within the study area. Landsat imageries (1987, 2002 and 2015) covering the study area were utilized in carrying out time series analysis to compare pollution of surface water, land surface temperature and Normalized Difference Vegetation Index (NDVI) changes. The water quality parameters investigated are pH, Nitrate, Lead, Iron, Sulphate and Total Dissolve Solids. The pH and nitrate values obtained were not within the standard limits set by W.H.O.; they range between 4.12-6.04 and 80.50-88.30mg/l respectively. Values range between 0.0-0.04 mg/l for Pb, 0.01-1.20 mg/l for Fe, 39.98-245.60 mg/l for SO4, and 0.0-7.0 mg/l for TDS. The area covered with vegetation reduced from 63.0% to 54.2% and to 46.4%, with the area occupied by unhealthy vegetation increasing from 49.61% to 53.87% and a further decrease to 48.1%. It was also observed that the volume of gas flared had a direct impact on the variation of the land surface temperature with the mean LST of 1987 as 28.1oC, increasing to 31.3oC in 2002 and decreasing to 25.5oC in 2015. The results therefore revealed gas flaring as a significant factor responsible for unfavorable water quality, high temperature variation and the rapid decline in the health of natural vegetation of the study area.
NASA Astrophysics Data System (ADS)
Rautio, Anne B.; Korkka-Niemi, Kirsti I.; Salonen, Veli-Pekka
2018-02-01
Mining development sites occasionally host complicated aquifer systems with notable connections to natural surface water (SW) bodies. A low-altitude thermal infrared (TIR) imaging survey was conducted to identify hydraulic connections between aquifers and rivers and to map spatial surface temperature patterns along the subarctic rivers in the proximity of the Hannukainen mining development area, northern Finland. In addition to TIR data, stable isotopic compositions ( δ 18O, δD) and dissolved silica concentrations were used as tracers to verify the observed groundwater (GW) discharge into the river system. Based on the TIR survey, notable GW discharge into the main river channel and its tributaries (61 km altogether) was observed and over 500 GW discharge sites were located. On the basis of the survey, the longitudinal temperature patterns of the studied rivers were found to be highly variable. Hydrological and hydrogeological information is crucial in planning and siting essential mining operations, such as tailing areas, in order to prevent any undesirable environmental impacts. The observed notable GW discharge was taken into consideration in the planning of the Hannukainen mining development area. The results of this study support the use of TIR imagery in GW-SW interaction and environmental studies in extensive and remote areas with special concerns for water-related issues but lacking the baseline research.
Retrieval of aerosol optical depth over bare soil surfaces using time series of MODIS imagery
NASA Astrophysics Data System (ADS)
Yuan, Zhengwu; Yuan, Ranyin; Zhong, Bo
2014-11-01
Aerosol Optical Depth (AOD) is one of the key parameters which can not only reflect the characterization of atmospheric turbidity, but also identify the climate effects of aerosol. The current MODIS aerosol estimation algorithm over land is based on the "dark-target" approach which works only over densely vegetated surfaces. For non-densely vegetated surfaces (such as snow/ice, desert, and bare soil surfaces), this method will be failed. In this study, we develop an algorithm to derive AOD over the bare soil surfaces. Firstly, this method uses the time series of MODIS imagery to detect the " clearest" observations during the non-growing season in multiple years for each pixel. Secondly, the "clearest" observations after suitable atmospheric correction are used to fit the bare soil's bidirectional reflectance distribution function (BRDF) using Kernel model. As long as the bare soil's BRDF is established, the surface reflectance of "hazy" observations can be simulated. Eventually, the AOD over the bare soil surfaces are derived. Preliminary validation results by comparing with the ground measurements from AERONET at Xianghe sites show a good agreement.
Atmospheric Science Data Center
2013-04-19
... the albedo. Bright surfaces have albedo near unity, and dark surfaces have albedo near zero. The DHR refers to the amount of spectral ... Atmospheric Science Data Center's MISR Level 3 Imagery web site . The Multi-angle Imaging SpectroRadiometer observes the daylit ...
Seasonal and interannual variability of surface CDOM in the South China Sea associated with El Niño
NASA Astrophysics Data System (ADS)
Ma, Jinfeng; Zhan, Haigang; Du, Yan
2011-04-01
Satellite imagery of SeaWiFS from October 1997 to November 2007 is used to investigate the dominant seasonal and interannual variations of the surface light absorption due to Colored Dissolved Organic Materials (CDOM) in the South China Sea (SCS). Results show that the spatial distribution of CDOM mimics the major features of the SCS basin-scale circulation. High values of CDOM are found in upwelling regions like southeast of Vietnam in summer and northwest of Luzon in winter. At a basin scale, CDOM is high in winter when upwelling is strong, solar shortwave radiation and stratification weak, and vertical mixing intense. Opposite conditions exist in spring and summer. Interannual variability of the basin-wide CDOM is characterized by abnormal troughs during the El Niño events. A strong relationship exists between the time series of the first EOF mode (for both winter and summer) and Niño 3.4 Index. Associations of these events with climatic and hydrographic properties (i.e. wind forcing, solar shortwave radiation, Ekman pumping, vertical mixing, sea surface height and temperature) are discussed.
Microwave remote sensing from space
NASA Technical Reports Server (NTRS)
Carver, K. R.; Elachi, C.; Ulaby, F. T.
1985-01-01
Spaceborne microwave remote sensors provide perspectives of the earth surface and atmosphere which are of unique value in scientific studies of geomorphology, oceanic waves and topography, atmospheric water vapor and temperatures, vegetation classification and stress, ice types and dynamics, and hydrological characteristics. Microwave radars and radiometers offer enhanced sensitivities to the geometrical characteristics of the earth's surface and its cover, to water in all its forms - soil and vegetation moisture, ice, wetlands, oceans, and atmospheric water vapor, and can provide high-resolution imagery of the earth's surface independent of cloud cover or sun angle. A brief review of the historical development and principles of active and passive microwave remote sensing is presented, with emphasis on the unique characteristics of the information obtainable in the microwave spectrum and the value of this information to global geoscientific studies. Various spaceborne microwave remote sensors are described, with applications to geology, planetology, oceanography, glaciology, land biology, meteorology, and hydrology. A discussion of future microwave remote sensor technological developments and challenges is presented, along with a summary of future missions being planned by several countries.
A Bispectral Composite Threshold Approach for Automatic Cloud Detection in VIIRS Imagery
NASA Technical Reports Server (NTRS)
LaFontaine Frank J.; Jedlovec, Gary J.
2015-01-01
The detection of clouds in satellite imagery has a number of important applications in weather and climate studies. The presence of clouds can alter the energy budget of the Earth-atmosphere system through scattering and absorption of shortwave radiation and the absorption and re-emission of infrared radiation at longer wavelengths. The scattering and absorption characteristics of clouds vary with the microphysical properties of clouds, hence the cloud type. Thus, detecting the presence of clouds over a region in satellite imagery is important in order to derive atmospheric or surface parameters that give insight into weather and climate processes. For many applications however, clouds are a contaminant whose presence interferes with retrieving atmosphere or surface information. In these cases, is important to isolate cloud-free pixels, used to retrieve atmospheric thermodynamic information or surface geophysical parameters, from cloudy ones. This abstract describes an application of a two-channel bispectral composite threshold (BCT) approach applied to VIIRS imagery. The simplified BCT approach uses only the 10.76 and 3.75 micrometer spectral channels from VIIRS in two spectral tests; a straight-forward infrared threshold test with the longwave channel and a shortwave - longwave channel difference test. The key to the success of this approach as demonstrated in past applications to GOES and MODIS data is the generation of temporally and spatially dependent thresholds used in the tests from a previous number of days at similar observations to the current data. The paper and subsequent presentation will present an overview of the approach and intercomparison results with other satellites, methods, and against verification data.
Thermal study of the Missouri River in North Dakota using infrared imagery
Crosby, Orlo A.
1971-01-01
The study indicates a marked decrease in water temperature in the Missouri River prior to early fall and a moderate increase in temperature in late fall because of the Lake Sakakawea impoundment. At the present time, thermal additions generated by the powerplants have little effect on the temperature regimen of the Missouri River at high rates of river discharge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCarthy, L.E.; Marsh, S.E.; Lee, C.
1996-07-01
Concern for environmental management of our natural resources is most often focused on the anthropogenic impacts placed upon these resources. Desert landscapes, in particular, are fragile environments, and minimal stresses on surficial materials can greatly increase the rate and character of erosional responses. The National Training Center, Ft. Irwin, located in the middle of the Mojave Desert, California, provides an isolated study area of intense ORV activity occurring over a 50-year period. Geomorphic surfaces, and surficial disruption from two study sites within the Ft. Irwin area were mapped from 1947, 1:28,400, and 1993 1:12,000 black and white aerial photographs. Severalmore » field checks were conducted to verify this mapping. However, mapping from black and white aerial photography relies heavily on tonal differences, patterns, and morphological criteria. Satellite imagery, sensitive to changes in mineralogy, can help improve the ability to distinguish geomorphic units in desert regions. In order to assess both the extent of disrupted surfaces and the surficial geomorphology discemable from satellite imagery, analysis was done on SPOT panchromatic and Landsat Thematic Mapper (TM) multispectral imagery acquired during the spring of 1987 and 1993. The resulting classified images provide a clear indication of the capabilities of the satellite data to aid in the delineation of disrupted geomorphic surfaces.« less
NASA Astrophysics Data System (ADS)
Kanniah, K. D.; sheikhi, A.; Kang, C. S.
2014-02-01
Development of cities has led to various environmental problems as a consequence of non sustaibale town planning. One of the strategies to make cities a livable place and to achieve low levels of CO2 emissions (low carbon cities or LCC) is the integration of the blue and green infrastructure into the development and planning of new urban areas. Iskandar Malaysia (IM) located in the southern part of Malaysia is a special economic zone that has major urban centres. The planning of these urban centres will incorporate LCC strategies to achieve a sustainable development. The role of green (plants) and blue bodies (lakes and rivers) in moderating temperature in IM have been investigated in the current study. A remotely sensed satellite imagery was used to calculate the vegetation density and land surface temperature (LST). The effect of lakes in cooling the surrounding temperature was also investigated. Results show that increasing vegetation density by 1% can decrease the LST by 0.09°C. As for the water bodies we found as the distance increased from the lake side the temperature also increased about 1.7°C and the reduction in air humidity is 9% as the distance increased to 100 meter away from the lake.
Traverse Planning Experiments for Future Planetary Surface Exploration
NASA Technical Reports Server (NTRS)
Hoffman, S. J.; Voels, S. A.; Mueller, R. P.; Lee, P. C.
2011-01-01
This paper describes the results of a recent (July-August 2010 and July 2011) planetary surface traverse planning experiment. The purpose of this experiment was to gather data relevant to robotically repositioning surface assets used for planetary surface exploration. This is a scenario currently being considered for future human exploration missions to the Moon and Mars. The specific scenario selected was a robotic traverse on the lunar surface from an outpost at Shackleton Crater to the Malapert Massif. As these are exploration scenarios, the route will not have been previously traversed and the only pre-traverse data sets available will be remote (orbital) observations. Devon Island was selected as an analog location where a traverse route of significant length could be planned and then traveled. During the first half of 2010, a team of engineers and scientists who had never been to Devon Island used remote sensing data comparable to that which is likely to be available for the Malapert region (eg., 2-meter/pixel imagery, 10-meter interval topographic maps and associated digital elevation models, etc.) to plan a 17-kilometer (km) traverse. Surface-level imagery data was then gathered on-site that was provided to the planning team. This team then assessed whether the route was actually traversable or not. Lessons learned during the 2010 experiment were then used in a second experiment in 2011 for which a much longer traverse (85 km) was planned and additional surface-level imagery different from that gathered in 2010 was obtained for a comparative analysis. This paper will describe the route planning techniques used, the data sets available to the route planners and the lessons learned from the two traverses planned and carried out on Devon Island.
An earth imaging camera simulation using wide-scale construction of reflectance surfaces
NASA Astrophysics Data System (ADS)
Murthy, Kiran; Chau, Alexandra H.; Amin, Minesh B.; Robinson, M. Dirk
2013-10-01
Developing and testing advanced ground-based image processing systems for earth-observing remote sensing applications presents a unique challenge that requires advanced imagery simulation capabilities. This paper presents an earth-imaging multispectral framing camera simulation system called PayloadSim (PaySim) capable of generating terabytes of photorealistic simulated imagery. PaySim leverages previous work in 3-D scene-based image simulation, adding a novel method for automatically and efficiently constructing 3-D reflectance scenes by draping tiled orthorectified imagery over a geo-registered Digital Elevation Map (DEM). PaySim's modeling chain is presented in detail, with emphasis given to the techniques used to achieve computational efficiency. These techniques as well as cluster deployment of the simulator have enabled tuning and robust testing of image processing algorithms, and production of realistic sample data for customer-driven image product development. Examples of simulated imagery of Skybox's first imaging satellite are shown.
Enhanced facial recognition for thermal imagery using polarimetric imaging.
Gurton, Kristan P; Yuffa, Alex J; Videen, Gorden W
2014-07-01
We present a series of long-wave-infrared (LWIR) polarimetric-based thermal images of facial profiles in which polarization-state information of the image-forming radiance is retained and displayed. The resultant polarimetric images show enhanced facial features, additional texture, and details that are not present in corresponding conventional thermal imagery. It has been generally thought that conventional thermal imagery (MidIR or LWIR) could not produce the detailed spatial information required for reliable human identification due to the so-called "ghosting" effect often seen in thermal imagery of human subjects. By using polarimetric information, we are able to extract subtle surface features of the human face, thus improving subject identification. Polarimetric image sets considered include the conventional thermal intensity image, S0, the two Stokes images, S1 and S2, and a Stokes image product called the degree-of-linear-polarization image.
Germaine, Stephen S.; O'Donnell, Michael S.; Aldridge, Cameron L.; Baer, Lori; Fancher, Tammy; McBeth, Jamie; McDougal, Robert R.; Waltermire, Robert; Bowen, Zachary H.; Diffendorfer, James; Garman, Steven; Hanson, Leanne
2012-01-01
We evaluated how well three leading information-extraction software programs (eCognition, Feature Analyst, Feature Extraction) and manual hand digitization interpreted information from remotely sensed imagery of a visually complex gas field in Wyoming. Specifically, we compared how each mapped the area of and classified the disturbance features present on each of three remotely sensed images, including 30-meter-resolution Landsat, 10-meter-resolution SPOT (Satellite Pour l'Observation de la Terre), and 0.6-meter resolution pan-sharpened QuickBird scenes. Feature Extraction mapped the spatial area of disturbance features most accurately on the Landsat and QuickBird imagery, while hand digitization was most accurate on the SPOT imagery. Footprint non-overlap error was smallest on the Feature Analyst map of the Landsat imagery, the hand digitization map of the SPOT imagery, and the Feature Extraction map of the QuickBird imagery. When evaluating feature classification success against a set of ground-truthed control points, Feature Analyst, Feature Extraction, and hand digitization classified features with similar success on the QuickBird and SPOT imagery, while eCognition classified features poorly relative to the other methods. All maps derived from Landsat imagery classified disturbance features poorly. Using the hand digitized QuickBird data as a reference and making pixel-by-pixel comparisons, Feature Extraction classified features best overall on the QuickBird imagery, and Feature Analyst classified features best overall on the SPOT and Landsat imagery. Based on the entire suite of tasks we evaluated, Feature Extraction performed best overall on the Landsat and QuickBird imagery, while hand digitization performed best overall on the SPOT imagery, and eCognition performed worst overall on all three images. Error rates for both area measurements and feature classification were prohibitively high on Landsat imagery, while QuickBird was time and cost prohibitive for mapping large spatial extents. The SPOT imagery produced map products that were far more accurate than Landsat and did so at a far lower cost than QuickBird imagery. Consideration of degree of map accuracy required, costs associated with image acquisition, software, operator and computation time, and tradeoffs in the form of spatial extent versus resolution should all be considered when evaluating which combination of imagery and information-extraction method might best serve any given land use mapping project. When resources permit, attaining imagery that supports the highest classification and measurement accuracy possible is recommended.
NASA Technical Reports Server (NTRS)
Petty, Grant W.; Stettner, David R.
1994-01-01
This paper discusses certain aspects of a new inversion based algorithm for the retrieval of rain rate over the open ocean from the special sensor microwave/imager (SSM/I) multichannel imagery. This algorithm takes a more detailed physical approach to the retrieval problem than previously discussed algorithms that perform explicit forward radiative transfer calculations based on detailed model hydrometer profiles and attempt to match the observations to the predicted brightness temperature.
A Multiscale Surface Water Temperature Data Acquisition Platform: Tests on Lake Geneva, Switzerland
NASA Astrophysics Data System (ADS)
Barry, D. A.; Irani Rahaghi, A.; Lemmin, U.; Riffler, M.; Wunderle, S.
2015-12-01
An improved understanding of surface transport processes is necessary to predict sediment, pollutant and phytoplankton patterns in large lakes. Lake surface water temperature (LSWT), which varies in space and time, reflects meteorological and climatological forcing more than any other physical lake parameter. There are different data sources for LSWT mapping, including remote sensing and in situ measurements. Satellite data can be suitable for detecting large-scale thermal patterns, but not meso- or small scale processes. Lake surface thermography, investigated in this study, has finer resolution compared to satellite images. Thermography at the meso-scale provides the ability to ground-truth satellite imagery over scales of one to several satellite image pixels. On the other hand, thermography data can be used as a control in schemes to upscale local measurements that account for surface energy fluxes and the vertical energy budget. Independently, since such data can be collected at high frequency, they can be also useful in capturing changes in the surface signatures of meso-scale eddies and thus to quantify mixing processes. In the present study, we report results from a Balloon Launched Imaging and Monitoring Platform (BLIMP), which was developed in order to measure the LSWT at meso-scale. The BLIMP consists of a small balloon that is tethered to a boat and equipped with thermal and RGB cameras, as well as other instrumentation for location and communication. Several deployments were carried out on Lake Geneva. In a typical deployment, the BLIMP is towed by a boat, and collects high frequency data from different heights (i.e., spatial resolutions) and locations. Simultaneous ground-truthing of the BLIMP data is achieved using an autonomous craft that collects a variety of data, including in situ surface/near surface temperatures, radiation and meteorological data in the area covered by the BLIMP images. With suitable scaling, our results show good consistency between in situ, BLIMP and concurrent satellite data. In addition, the BLIMP thermography reveals (hydrodynamically-driven) structures in the LSWT - an obvious example being mixing of river discharges.
Water surface temperature profiles for the Rhine River derived from Landsat ETM+ data
NASA Astrophysics Data System (ADS)
Fricke, Katharina; Baschek, Björn
2013-10-01
Water temperature influences physical and chemical parameters of rivers and streams and is an important parameter for water quality. It is a crucial factor for the existence and the growth of animal and plant species in the river ecosystem. The aim of the research project "Remote sensing of water surface temperature" at the Federal Institute of Hydrology (BfG), Germany, is to supplement point measurements of water temperature with remote sensing methodology. The research area investigated here is the Upper and Middle Rhine River, where continuous measurements of water temperature are already available for several water quality monitoring stations. Satellite imagery is used to complement these point measurements and to generate longitudinal temperature profiles for a better systematic understanding of the changes in river temperature along its course. Several products for sea surface temperature derived from radiances in the thermal infrared are available, but for water temperature from rivers less research has been carried out. Problems arise from the characteristics of the river valley and morphology and the proximity to the riverbank. Depending on the river width, a certain spatial resolution of the satellite images is necessary to allow for an accurate identification of the river surface and the calculation of water temperature. The bands from the Landsat ETM+ sensor in the thermal infrared region offer a possibility to extract the river surface temperatures (RST) of a sufficiently wide river such as the Rhine. Additionally, problems such as cloud cover, shadowing effects, georeferencing errors, different emissivity of water and land, scattering of thermal radiation, adjacency and mixed pixel effects had to be accounted for and their effects on the radiance temperatures will be discussed. For this purpose, several temperature data sets derived from radiance and in situ measurements were com- pared. The observed radiance temperatures are strongly influenced by the atmosphere. Without atmospheric correction, the absolute mean difference between RST and in situ measurements was 1.1°C with a standard devi- ation of 1.3°C. Thus, a correction of atmospheric influences on radiances measured at the top of the atmosphere was necessary and two different methods for atmospheric correction (ATCOR2 and the Atmospheric Correction Parameter Calculator) were applied. The correction results showed that for both methods, the correct choice of atmospheric profiles is very important. With the calculator, an absolute mean difference of 0.8 +/- 1.0°C and with the selected overall best scenes, an absolute mean difference of 0.5 ± 0.7°C was achieved. The selected corrected RST can be used to interpolate between in situ measurements available only for a limited number of points along the river course and longitudinal example profiles of the surface water temperature in the Upper and Middle Rhine could be calculated for different seasons. On the basis of these profiles, the increasing temperature gradient along the Upper Rhine could be identified and the possibility to detect heat or cooling discharge from tributaries and other sources is evaluated.
Solid rocket motor witness test
NASA Technical Reports Server (NTRS)
Welch, Christopher S.
1991-01-01
The Solid Rocket Motor Witness Test was undertaken to examine the potential for using thermal infrared imagery as a tool for monitoring static tests of solid rocket motors. The project consisted of several parts: data acquisition, data analysis, and interpretation. For data acquisition, thermal infrared data were obtained of the DM-9 test of the Space Shuttle Solid Rocket Motor on December 23, 1987, at Thiokol, Inc. test facility near Brigham City, Utah. The data analysis portion consisted of processing the video tapes of the test to produce values of temperature at representative test points on the rocket motor surface as the motor cooled down following the test. Interpretation included formulation of a numerical model and evaluation of some of the conditions of the motor which could be extracted from the data. These parameters included estimates of the insulation remaining following the tests and the thickness of the charred layer of insulation at the end of the test. Also visible was a temperature signature of the star grain pattern in the forward motor segment.
MISR Science Data Validation Plan Summary Charts
NASA Technical Reports Server (NTRS)
Conel, J.; Ledeboer, W.; Ackerman, T.; Marchand, R.; Clothiaux, E.
2000-01-01
The purpose of the MISR experiment is to acquire systematic multi-angle imagery for global monitoring over a multi-year period of top-of-atmosphere and surface albedos and to measure the shortwave radiative properties of aerosols, clouds, and surface scenes.
Tests of Spectral Cloud Classification Using DMSP Fine Mode Satellite Data.
1980-06-02
processing techniques of potential value. Fourier spectral analysis was identified as the most promising technique to upgrade automated processing of...these measurements on the Earth’s surface is 0. 3 n mi. 3. Pickett, R.M., and Blackman, E.S. (1976) Automated Processing of Satellite Imagery Data at Air...and Pickett. R. Al. (1977) Automated Processing of Satellite Imagery Data at the Air Force Global Weather Central: Demonstrations of Spectral Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Eeckhout, E.; Pope, P.; Becker, N.
1996-04-01
The proper handling and characterization of past hazardous waste sites is becoming more and more important as world population extends into areas previously deemed undesirable. Historical photographs, past records, current aerial satellite imagery can play an important role in characterizing these sites. These data provide clear insight into defining problem areas which can be surface samples for further detail. Three such areas are discussed in this paper: (1) nuclear wastes buried in trenches at Los Alamos National Laboratory, (2) surface dumping at one site at Los Alamos National Laboratory, and (3) the historical development of a municipal landfill near Lasmore » Cruces, New Mexico.« less
Exploration for fractured petroleum reservoirs using radar/Landsat merge combinations
NASA Technical Reports Server (NTRS)
Macdonald, H.; Waite, W.; Borengasser, M.; Tolman, D.; Elachi, C.
1981-01-01
Since fractures are commonly propagated upward and reflected at the earth's surface as subtle linears, detection of these surface features is extremely important in many phases of petroleum exploration and development. To document the usefulness of microwave analysis for petroleum exploration, the Arkansas part of the Arkoma basin is selected as a prime test site. The research plan involves comparing the aircraft microwave imagery and Landsat imagery in an area where significant subsurface borehole geophysical data are available. In the northern Arkoma basin, a positive correlation between the number of linears in a given area and production from cherty carbonate strata is found. In the southern part of the basin, little relationship is discernible between surface structure and gas production, and no correlation is found between gas productivity and linear proximity or linear density as determined from remote sensor data.
NASA Astrophysics Data System (ADS)
Trunk, Laura; Bernard, Alain
2008-12-01
A two-channel or split-window algorithm designed to correct for atmospheric conditions was applied to thermal images taken by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) of Lake Yugama on Kusatsu-Shirane volcano in Japan in order to measure the temperature of its crater lake. These temperature calculations were validated using lake water temperatures that were collected on the ground. Overall, the agreement between the temperatures calculated using the split-window method and ground truth is quite good, typically ± 1.5 °C for cloud-free images. Data from fieldwork undertaken in the summer of 2004 at Kusatsu-Shirane allow a comparison of ground-truth data with the radiant temperatures measured using ASTER imagery. Further images were analyzed of Ruapehu, Poás, Kawah Ijen, and Copahué volcanoes to acquire time-series of lake temperatures. A total of 64 images of these 4 volcanoes covering a wide range of geographical locations and climates were analyzed. Results of the split-window algorithm applied to ASTER images are reliable for monitoring thermal changes in active volcanic lakes. These temperature data, when considered in conjunction with traditional volcano monitoring techniques, lead to a better understanding of whether and how thermal changes in crater lakes aid in eruption forecasting.
Analysis of passive microwave signatures over snow-covered mountainous area
NASA Astrophysics Data System (ADS)
Kim, R. S.; Durand, M. T.
2015-12-01
Accurate knowledge of snow distribution over mountainous area is critical for climate studies and the passive microwave(PM) measurements have been widely used and invested in order to obtain information about snowpack properties. Understanding and analyzing the signatures for the explicit inversion of the remote sensing data from land surfaces is required for successful using of passive microwave sensors but this task is often ambiguous due to the large variability of physical conditions and object types. In this paper, we discuss the pattern of measured brightness temperatures and emissivities at vertical and horizontal polarization over the frequency range of 10.7 to 89 GHz of land surfaces under various snow and vegetation conditions. The Multiband polarimetric Scanning Radiometer(PSR) imagery is used over NASA Cold Land Processes Field Experiment(CLPX) study area with ground-based measurements of snow depth and snow properties. Classification of snow under various conditions in mountainous area is implemented based on different patterns of microwave signatures.
HCMM Heat Capacity Mapping Mission
NASA Technical Reports Server (NTRS)
Jackson, R. D. (Principal Investigator)
1978-01-01
The author has identified the following significant results. Thermal imagery shows a large temperature variation over the 640 acre experimental site. The variation is due to the slope and aspect of the terrain as well as the aircraft flight direction (east-west versus north-south). In spite of these individual temperature differences, mean temperature values from 40 to 640 acre blocks are essentially identical regardless of aircraft flight direction.
NASA Astrophysics Data System (ADS)
Wodajo, Bikila Teklu
Every year, coastal disasters such as hurricanes and floods claim hundreds of lives and severely damage homes, businesses, and lifeline infrastructure. This research was motivated by the 2005 Hurricane Katrina disaster, which devastated the Mississippi and Louisiana Gulf Coast. The primary objective was to develop a geospatial decision-support system for extracting built-up surfaces and estimating disaster impacts using spaceborne remote sensing satellite imagery. Pre-Katrina 1-m Ikonos imagery of a 5km x 10km area of Gulfport, Mississippi, was used as source data to develop the built-up area and natural surfaces or BANS classification methodology. Autocorrelation of 0.6 or higher values related to spectral reflectance values of groundtruth pixels were used to select spectral bands and establish the BANS decision criteria of unique ranges of reflectance values. Surface classification results using GeoMedia Pro geospatial analysis for Gulfport sample areas, based on BANS criteria and manually drawn polygons, were within +/-7% of the groundtruth. The difference between the BANS results and the groundtruth was statistically not significant. BANS is a significant improvement over other supervised classification methods, which showed only 50% correctly classified pixels. The storm debris and erosion estimation or SDE methodology was developed from analysis of pre- and post-Katrina surface classification results of Gulfport samples. The SDE severity level criteria considered hurricane and flood damages and vulnerability of inhabited built-environment. A linear regression model, with +0.93 Pearson R-value, was developed for predicting SDE as a function of pre-disaster percent built-up area. SDE predictions for Gulfport sample areas, used for validation, were within +/-4% of calculated values. The damage cost model considered maintenance, rehabilitation and reconstruction costs related to infrastructure damage and community impacts of Hurricane Katrina. The developed models were implemented for a study area along I-10 considering the predominantly flood-induced damages in New Orleans. The BANS methodology was calibrated for 0.6-m QuickBird2 multispectral imagery of Karachi Port area in Pakistan. The results were accurate within +/-6% of the groundtruth. Due to its computational simplicity, the unit hydrograph method is recommended for geospatial visualization of surface runoff in the built-environment using BANS surface classification maps and elevations data. Key words. geospatial analysis, satellite imagery, built-environment, hurricane, disaster impacts, runoff.
A Vision of Quantitative Imaging Technology for Validation of Advanced Flight Technologies
NASA Technical Reports Server (NTRS)
Horvath, Thomas J.; Kerns, Robert V.; Jones, Kenneth M.; Grinstead, Jay H.; Schwartz, Richard J.; Gibson, David M.; Taylor, Jeff C.; Tack, Steve; Dantowitz, Ronald F.
2011-01-01
Flight-testing is traditionally an expensive but critical element in the development and ultimate validation and certification of technologies destined for future operational capabilities. Measurements obtained in relevant flight environments also provide unique opportunities to observe flow phenomenon that are often beyond the capabilities of ground testing facilities and computational tools to simulate or duplicate. However, the challenges of minimizing vehicle weight and internal complexity as well as instrumentation bandwidth limitations often restrict the ability to make high-density, in-situ measurements with discrete sensors. Remote imaging offers a potential opportunity to noninvasively obtain such flight data in a complementary fashion. The NASA Hypersonic Thermodynamic Infrared Measurements Project has demonstrated such a capability to obtain calibrated thermal imagery on a hypersonic vehicle in flight. Through the application of existing and accessible technologies, the acreage surface temperature of the Shuttle lower surface was measured during reentry. Future hypersonic cruise vehicles, launcher configurations and reentry vehicles will, however, challenge current remote imaging capability. As NASA embarks on the design and deployment of a new Space Launch System architecture for access beyond earth orbit (and the commercial sector focused on low earth orbit), an opportunity exists to implement an imagery system and its supporting infrastructure that provides sufficient flexibility to incorporate changing technology to address the future needs of the flight test community. A long term vision is offered that supports the application of advanced multi-waveband sensing technology to aid in the development of future aerospace systems and critical technologies to enable highly responsive vehicle operations across the aerospace continuum, spanning launch, reusable space access and global reach. Motivations for development of an Agency level imagery-based measurement capability to support cross cutting applications that span the Agency mission directorates as well as meeting potential needs of the commercial sector and national interests of the Intelligence, Surveillance and Reconnaissance community are explored. A recommendation is made for an assessment study to baseline current imaging technology including the identification of future mission requirements. Development of requirements fostered by the applications suggested in this paper would be used to identify technology gaps and direct roadmapping for implementation of an affordable and sustainable next generation sensor/platform system.
Automated oil spill detection with multispectral imagery
NASA Astrophysics Data System (ADS)
Bradford, Brian N.; Sanchez-Reyes, Pedro J.
2011-06-01
In this publication we present an automated detection method for ocean surface oil, like that which existed in the Gulf of Mexico as a result of the April 20, 2010 Deepwater Horizon drilling rig explosion. Regions of surface oil in airborne imagery are isolated using red, green, and blue bands from multispectral data sets. The oil shape isolation procedure involves a series of image processing functions to draw out the visual phenomenological features of the surface oil. These functions include selective color band combinations, contrast enhancement and histogram warping. An image segmentation process then separates out contiguous regions of oil to provide a raster mask to an analyst. We automate the detection algorithm to allow large volumes of data to be processed in a short time period, which can provide timely oil coverage statistics to response crews. Geo-referenced and mosaicked data sets enable the largest identified oil regions to be mapped to exact geographic coordinates. In our simulation, multispectral imagery came from multiple sources including first-hand data collected from the Gulf. Results of the simulation show the oil spill coverage area as a raster mask, along with histogram statistics of the oil pixels. A rough square footage estimate of the coverage is reported if the image ground sample distance is available.
U.S. Geological Survey Geospatial Data To Support STEM Education And Communication
NASA Astrophysics Data System (ADS)
Molnia, B. F.
2017-12-01
The U.S. Geological Survey (USGS) has a long history of contributing to STEM education, outreach, and communication. The USGS EarthExplorer website: https://earthexplorer.usgs.gov is the USGS gateway to more than 150 geospatial data sets that are freely available to STEM students, educators, and researchers. Two in particular, Global Fiducials data and Declassified Satellite Imagery provide the highest resolution visual record of the Earth's surface that is available for unlimited, unrestricted download. Global Fiducials Data - Since the mid-1990s, more than 500 locations, each termed a 'Fiducial Site', have been systematically and repeatedly imaged with U.S. National Imagery Systems space-based sensors. Each location was selected for long-term monitoring, based on its history and environmental values. Since 2008, imagery from about a quarter of the sites has been publicly released and is available on EarthExplorer. These 5,000 electro-optical (EO) images, with 1.0 - 1.3 m resolution, comprise more than 140 time-series. Individual time-series focus on wildland fire recovery, Arctic sea ice change, Antarctic habitats, temperate glacier behavior, eroding barrier islands, coastline evolution, resource and ecosystem management, natural disaster response, global change studies, and other topics. Declassified Satellite Imagery - Nearly 1 million declassified photographs, collected between 1960 and 1984, by U.S. intelligence satellites KH-1 through KH-9 have been released to the public. The USGS has copies of most of the released film and provides a digital finding aid that can be accessed from the USGS EarthExplorer website. Individual frames were collected at resolutions that range from 0.61 m - 7.6 m. Imagery exists for locations on all continents. Combined with Landsat imagery, also available from the USGS EarthExplorer website, the STEM Community has access to more than 7.5 million images providing nearly 50 years of visual observations of Earth's dynamic surface.
Using Multispectral False Color Imaging to Characterize Tropical Cyclone Structure and Environment
NASA Astrophysics Data System (ADS)
Cossuth, J.; Bankert, R.; Richardson, K.; Surratt, M. L.
2016-12-01
The Naval Research Laboratory's (NRL) tropical cyclone (TC) web page (http://www.nrlmry.navy.mil/TC.html) has provided nearly two decades of near real-time access to TC-centric images and products by TC forecasters and enthusiasts around the world. Particularly, microwave imager and sounder information that is featured on this site provides crucial internal storm structure information by allowing users to perceive hydrometeor structure, providing key details beyond cloud top information provided by visible and infrared channels. Towards improving TC analysis techniques and helping advance the utility of the NRL TC webpage resource, new research efforts are presented. This work demonstrates results as well as the methodology used to develop new automated, objective satellite-based TC structure and intensity guidance and enhanced data fusion imagery products that aim to bolster and streamline TC forecast operations. This presentation focuses on the creation and interpretation of false color RGB composite imagery that leverages the different emissive and scattering properties of atmospheric ice, liquid, and vapor water as well as ocean surface roughness as seen by microwave radiometers. Specifically, a combination of near-realtime data and a standardized digital database of global TCs in microwave imagery from 1987-2012 is employed as a climatology of TC structures. The broad range of TC structures, from pinhole eyes through multiple eyewall configurations, is characterized as resolved by passive microwave sensors. The extraction of these characteristic features from historical data also lends itself to statistical analysis. For example, histograms of brightness temperature distributions allows a rigorous examination of how structural features are conveyed in image products, allowing a better representation of colors and breakpoints as they relate to physical features. Such climatological work also suggests steps to better inform the near-real time application of upcoming satellite datasets to TC analyses.
NASA Astrophysics Data System (ADS)
Wright, L.; Coddington, O.; Pilewskie, P.
2016-12-01
Hyperspectral instruments are a growing class of Earth observing sensors designed to improve remote sensing capabilities beyond discrete multi-band sensors by providing tens to hundreds of continuous spectral channels. Improved spectral resolution, range and radiometric accuracy allow the collection of large amounts of spectral data, facilitating thorough characterization of both atmospheric and surface properties. These new instruments require novel approaches for processing imagery and separating surface and atmospheric signals. One approach is numerical source separation, which allows the determination of the underlying physical causes of observed signals. Improved source separation will enable hyperspectral imagery to better address key science questions relevant to climate change, including land-use changes, trends in clouds and atmospheric water vapor, and aerosol characteristics. We developed an Informed Non-negative Matrix Factorization (INMF) method for separating atmospheric and surface sources. INMF offers marked benefits over other commonly employed techniques including non-negativity, which avoids physically impossible results; and adaptability, which tailors the method to hyperspectral source separation. The INMF algorithm is adapted to separate contributions from physically distinct sources using constraints on spectral and spatial variability, and library spectra to improve the initial guess. We also explore methods to produce an initial guess of the spatial separation patterns. Using this INMF algorithm we decompose hyperspectral imagery from the NASA Hyperspectral Imager for the Coastal Ocean (HICO) with a focus on separating surface and atmospheric signal contributions. HICO's coastal ocean focus provides a dataset with a wide range of atmospheric conditions, including high and low aerosol optical thickness and cloud cover, with only minor contributions from the ocean surfaces in order to isolate the contributions of the multiple atmospheric sources.
Remote sensing investigations at a hazardous-waste landfill
Stohr, C.; Su, W.-J.; DuMontelle, P.B.; Griffin, R.A.
1987-01-01
In 1976 state licensed landfilling of industrial chemicals was begun above an abandoned, underground coal mine in Illinois. Five years later organic chemical pollutants were discovered in a monitoring well, suggesting migration 100 to 1000 times faster than predicted by laboratory tests. Remote sensing contributed to the determination of the causes of faster-than-predicted pollutant migration at the hazardous-waste landfill. Aerial and satellite imagery were employed to supplement field studies of local surface and groundwater hydrology, and to chronicle site history. Drainage impediments and depressions in the trench covers collected runoff, allowing rapid recharge of surface waters to some burial trenches. These features can be more effectively identified by photointerpretation than by conventional field reconnaissance. A ground-based, post-sunset survey of the trench covers that showed that a distinction between depressions which hold moisture at the surface from freely-draining depressions which permit rapid recharge to the burial trenches could be made using thermal infrared imagery.In 1976 state licensed landfilling of industrial chemicals was begun above an abandoned, underground coal mine in Illinois. Five years later organic chemical pollutants were discovered in a monitoring well, suggesting migration 100 to 1000 times faster than predicted by laboratory tests. Remote sensing contributed to the determination of the causes of faster-than-predicted pollutant migration at the hazardous-waste landfill. Aerial and satellite imagery were employed to supplement field studies of local surface and groundwater hydrology, and to chronicle site history. Drainage impediments and depressions in the trench covers collected runoff, allowing rapid recharge of surface waters to some burial trenches.
NASA Astrophysics Data System (ADS)
Sweeney, K.; Major, J. J.
2016-12-01
Advances in structure-from-motion (SfM) photogrammetry and point cloud comparison have fueled a proliferation of studies using modern imagery to monitor geomorphic change. These techniques also have obvious applications for reconstructing historical landscapes from vertical aerial imagery, but known challenges include insufficient photo overlap, systematic "doming" induced by photo-spacing regularity, missing metadata, and lack of ground control. Aerial imagery of landscape change in the North Fork Toutle River (NFTR) following the 1980 eruption of Mount St. Helens is a prime dataset to refine methodologies. In particular, (1) 14-μm film scans are available for 1:9600 images at 4-month intervals from 1980 - 1986, (2) the large magnitude of landscape change swamps systematic error and noise, and (3) stable areas (primary deposit features, roads, etc.) provide targets for both ground control and matching to modern lidar. Using AgiSoft PhotoScan, we create digital surface models from the NFTR imagery and examine how common steps in SfM workflows affect results. Tests of scan quality show high-resolution, professional film scans are superior to office scans of paper prints, reducing spurious points related to scan infidelity and image damage. We confirm earlier findings that cropping and rotating images improves point matching and the final surface model produced by the SfM algorithm. We demonstrate how the iterative closest point algorithm, implemented in CloudCompare and using modern lidar as a reference dataset, can serve as an adequate substitute for absolute ground control. Elevation difference maps derived from our surface models of Mount St. Helens show patterns consistent with field observations, including channel avulsion and migration, though systematic errors remain. We suggest that subtracting an empirical function fit to the long-wavelength topographic signal may be one avenue for correcting systematic error in similar datasets.
The workshop. [use and application of remotely sensed data
NASA Technical Reports Server (NTRS)
Wake, W. H.
1981-01-01
The plan is presented for a two day workshop held to provide educational and training experience in the reading, interpretation, and application of LANDSAT and correlated larger scale imagery, digital printout maps, and other collateral material for a large number of participants with widely diverse levels of expertise, backgrounds, and occupations in government, industry, and education. The need for using surface truth field studies with correlated aerial imagery in solving real world problems was demonstrated.
Global, Frequent Landsat-class Mosaics for Real Time Crop Monitoring and Analysis
NASA Astrophysics Data System (ADS)
Varlyguin, D.; Crutchfield, J.; Hulina, S.; Reynolds, C. A.; Frantz, R.; Tetrault, R. L.
2016-12-01
The presentation will discuss the current status of GDA technology for operational, automated generation of near global mosaics of Landsat-class data for visualization, monitoring, and analysis. Current version of the mosaic combines Landsat 8 and Landsat 7. Sentinel-2A and ASTER imagery are to be added shortly. The mosaics are surface reflectance calibrated and are analysis ready. They offer full spatial resolution and all multi-spectral bands of the source imagery. Each mosaic covers all major agricultural regions of the world for the last 18 months with a 16 day frequency. The mosaics are updated in real-time, as soon as GDA downloads the imagery, calibrates it to the surface reflectances, and generates data gap masks (all typically under 10 minutes for a Landsat scene). Best pixel value from available opportunities is selected during the mosaic update. The technology eliminates the complex, multi-step, hands-on process of data preparation and provides imagery ready for repetitive, field-to-country analysis of crop conditions, progress, acreages, yield, and production. The mosaics are used for real-time, on-line interactive mapping and time series drilling via GeoSynergy webGIS platform and for off line in-season crop mapping. USDA FAS uses this product for persistent monitoring of selected countries and their croplands and for in-season crop analysis. The presentation will overview Landsat-class mosaics and their use in support of USDA FAS efforts.
NASA Astrophysics Data System (ADS)
Kochendorfer, J.; Viers, J.; Niswonger, R.; Paw U, K.; Haas, E.; Reck, R. A.
2005-12-01
In conjunction with the Cosumnes Research Group, we performed a field study along the Cosumnes River in California's Central Valley. The study included tower-based evapotranspiration estimates, continuous hydrologic measurements, and analysis of remote sensing data. We estimated the effects of phreatophytic evapotranspiration on groundwater from scales as small as an individual stand of trees to as large as the watershed and explored the climactic and hydrologic controls over riparian evapotranspiration. Tower-based evapotranspiration measurements included one eddy covariance tower within a cottonwood forest (Populus fremontii), and one surface temperature/micrometeorological evapotranspiration tower within a willow stand (Salix lasiolepis). The technique used on the surface temperature/micrometeorological evapotranspiration tower was developed and chosen in preference to eddy covariance for a site where a considerable quantity of the riparian ecosystem to atmosphere exchange is advective. Hydrologic techniques included measurements of groundwater depth and volumetric soil moisture. We also examined multitemporal, multiresolution remotely sensed imagery to correlate evapotranspiration rates for a restored cottonwood forest with derived vegetation indices. These indices were evaluated for applicability to other restored riparian habitats within the Cosumnes River Preserve and to help guide future restoration actions as a function of hydrologic connectivity and water demand.
High-Resolution Radar Imagery of Mars
NASA Astrophysics Data System (ADS)
Harmon, John K.; Nolan, M. C.
2009-09-01
We present high-resolution radar images of Mars obtained during the 2005 and 2007 oppositions. The images were constructed from long-code delay-Doppler observations made with the Arecibo S-band (13-cm) radar. The average image resolution of 3 km represented a better than order-of-magnitude improvement over pre-upgrade Arecibo imagery of the planet. Images of depolarized reflectivity (an indicator primarily of wavelength-scale surface roughness) show the same bright volcanic flow features seen in earlier imagery, but with much finer detail. A new image of the Elysium region shows fine detail in the radar-bright channels of Athabasca Vallis, Marte Vallis, and Grjota Vallis. The new images of Tharsis and Olympus Mons also show a complex array of radar-bright and radar-dark features. Southern Amazonis exhibits some of the most complex and puzzling radar-bright structure on the planet. Another curiosity is the Chryse/Xanthe/Channels region, where we find some radar-bright features in or adjacent to fluvial chaos structures. Chryse/Xanthe is also the only region of Mars showing radar-bright craters (which are rare on Mars but common on the Moon and Mercury). We also obtained the first delay-Doppler image showing the enhanced backscatter from the residual south polar ice cap. In addition to the depolarized imagery, we were able to make the first delay-Doppler images of the circular polarization ratio (an important diagnostic for surface roughness texture). We find that vast areas of the radar-bright volcanic regions have polarization ratios close to unity. Such high ratios are rare for terrestrial lava flows and only seen for extremely blocky surfaces giving high levels of multiple scattering.
D Surface Generation from Aerial Thermal Imagery
NASA Astrophysics Data System (ADS)
Khodaei, B.; Samadzadegan, F.; Dadras Javan, F.; Hasani, H.
2015-12-01
Aerial thermal imagery has been recently applied to quantitative analysis of several scenes. For the mapping purpose based on aerial thermal imagery, high accuracy photogrammetric process is necessary. However, due to low geometric resolution and low contrast of thermal imaging sensors, there are some challenges in precise 3D measurement of objects. In this paper the potential of thermal video in 3D surface generation is evaluated. In the pre-processing step, thermal camera is geometrically calibrated using a calibration grid based on emissivity differences between the background and the targets. Then, Digital Surface Model (DSM) generation from thermal video imagery is performed in four steps. Initially, frames are extracted from video, then tie points are generated by Scale-Invariant Feature Transform (SIFT) algorithm. Bundle adjustment is then applied and the camera position and orientation parameters are determined. Finally, multi-resolution dense image matching algorithm is used to create 3D point cloud of the scene. Potential of the proposed method is evaluated based on thermal imaging cover an industrial area. The thermal camera has 640×480 Uncooled Focal Plane Array (UFPA) sensor, equipped with a 25 mm lens which mounted in the Unmanned Aerial Vehicle (UAV). The obtained results show the comparable accuracy of 3D model generated based on thermal images with respect to DSM generated from visible images, however thermal based DSM is somehow smoother with lower level of texture. Comparing the generated DSM with the 9 measured GCPs in the area shows the Root Mean Square Error (RMSE) value is smaller than 5 decimetres in both X and Y directions and 1.6 meters for the Z direction.
NASA Astrophysics Data System (ADS)
Kingfield, D.; de Beurs, K.
2014-12-01
It has been demonstrated through various case studies that multispectral satellite imagery can be utilized in the identification of damage caused by a tornado through the change detection process. This process involves the difference in returned surface reflectance between two images and is often summarized through a variety of ratio-based vegetation indices (VIs). Land cover type plays a large contributing role in the change detection process as the reflectance properties of vegetation can vary based on several factors (e.g. species, greenness, density). Consequently, this provides the possibility for a variable magnitude of loss, making certain land cover regimes less reliable in the damage identification process. Furthermore, the tradeoff between sensor resolution and orbital return period may also play a role in the ability to detect catastrophic loss. Moderate resolution imagery (e.g. Moderate Resolution Imaging Spectroradiometer (MODIS)) provides relatively coarse surface detail with a higher update rate which could hinder the identification of small regions that underwent a dynamic change. Alternatively, imagery with higher spatial resolution (e.g. Landsat) have a longer temporal return period between successive images which could result in natural recovery underestimating the absolute magnitude of damage incurred. This study evaluates the role of land cover type and sensor resolution on four high-end (EF3+) tornado events occurring in four different land cover groups (agriculture, forest, grassland, urban) in the spring season. The closest successive clear images from both Landsat 5 and MODIS are quality controlled for each case. Transacts of surface reflectance across a homogenous land cover type both inside and outside the damage swath are extracted. These metrics are synthesized through the calculation of six different VIs to rank the calculated change metrics by land cover type, sensor resolution and VI.
NASA Technical Reports Server (NTRS)
Zelazowski, Przemyslaw; Sayer, Andrew M.; Thomas, Gareth E; Grainger, Roy G.
2011-01-01
This paper investigates to what extent satellite measurements of atmospheric properties can be reconciled with fine-resolution land imagery, in order to improve the estimates of surface reflectance through physically based atmospheric correction. The analysis deals with mountainous area (Landsat scene of Peruvian Amazon/Andes, 72 E and 13 S), where the atmosphere is highly variable. Data from satellite sensors were used for characterization of the key atmospheric constituents: total water vapor (TWV), aerosol optical depth (AOD), and total ozone. Constituent time series revealed the season-dependent mean state of the atmosphere and its variability. Discrepancies between AOD from the Advanced Along-Track Scanning Radiometer (AATSR) and Moderate Resolution Imaging Spectroradiometer (MODIS) highlighted substantial uncertainty of atmospheric aerosol properties. The distribution of TWV and AOD over a Landsat scene was found to be exponentially related to ground elevation (mean R(sup 2) of 0.82 and 0.29, respectively). In consequence, the atmosphere-induced and seasonally varying bias of the top-of-atmosphere signal was also elevation dependent (e.g., mean Normalized Difference Vegetation Index bias at 500 m was 0.06 and at 4000 m was 0.01). We demonstrate that satellite measurements of key atmospheric constituents can be downscaled and gap filled with the proposed "background + anomalies" approach, to allow for a better compatibility with fine-resolution land surface imagery. Older images (i.e., predating the MODIS/ATSR era), without coincident atmospheric data, can be corrected using climatologies derived from time series of satellite retrievals. Averaging such climatologies over space compromises the quality of correction result to a much greater degree than averaging them over time. We conclude that the quality of both recent and older fine-resolution land surface imagery can be improved with satellite-based atmospheric data acquired to date.
Detecting Montane Meadows in the Tahoe National Forest Using LiDAR and ASTER Imagery
NASA Astrophysics Data System (ADS)
Lorenz, A.; Blesius, L.; Davis, J. D.
2016-12-01
In the Sierra Nevada mountains, meadows provide numerous hydraulic and ecosystem functions such as flood attenuation, groundwater storage, and wildlife habitat. However, many meadows have been degraded from historical land use such as water diversion, grazing, and logging. Land managers have altered management strategies for restoration purposes, but there is a lack of comprehensive data on meadow locations. Previous attempts to inventory Sierra Nevada meadows have included several remote sensing techniques including heads up digitizing and pixel based image analysis, but this has been challenging due to geographic variability, seasonal changes, and meadow health. I present a remote sensing method using multiple return LiDAR (Light Detection and Ranging) and ASTER imagery to detect montane meadows in a subset of the Tahoe National Forest. The project used LiDAR data to create a digital terrain model and digital surface model. From these models, I derived canopy height, surface slope, and watercourse for the entire study area. Literature queries returned known values for canopy height and surface slope characteristic of montane meadows. These values were used to select for possible meadows within the study area. To filter out noise, only contiguous areas greater than one acre that satisfied the queries were used. Finally, 15-meter ASTER imagery was used to de-select for areas such as dirt patches or gravel bars that might have satisfied the previous queries and meadow criteria. When using high resolution aerial imagery to assess model accuracy, preliminary results show user accuracy of greater than 80%. Further validation is still needed to improve the accuracy of modeled meadow delineation. This method allows for meadows to be inventoried without discriminating based on geographic variability, seasonal changes, or meadow health.
Moulin Migration and Development on the Greenland Ice Sheet
NASA Astrophysics Data System (ADS)
Chu, V. W.; Yang, L.
2017-12-01
Extensive river networks that terminate into moulins efficiently drain the surface of the Greenland ice sheet. These river moulins connect surface meltwater to englacial and subglacial drainage networks, where increased meltwater can enhance ice sliding dynamics. Previous moulin studies were limited to small geographic areas using field observations and/or high-resolution aerial/satellite imagery, or to medium-resolution satellite imagery for larger areas. In this study, high-resolution moulin maps created from WorldView-1/2/3 imagery near Russell Glacier in southwest Greenland show development of moulins and their migration between 2012 and 2015. Moulins are mapped and categorized as being located: in crevasse fields, along a single ice fracture, within drained lake basins, or having no visible formation mechanism. A majority of moulins mapped in 2015 (73%) are linked to moulins in 2012 and are analysed for their movement patterns and compared to ice velocity and strain rates. New moulins most commonly form in crevassed, thinner ice near the ice sheet edge, but significant quantities also develop at higher elevations (22% above 1300 m elevation).
Integration of remote sensing and surface geophysics in the detection of faults
NASA Technical Reports Server (NTRS)
Jackson, P. L.; Shuchman, R. A.; Wagner, H.; Ruskey, F.
1977-01-01
Remote sensing was included in a comprehensive investigation of the use of geophysical techniques to aid in underground mine placement. The primary objective was to detect faults and slumping, features which, due to structural weakness and excess water, cause construction difficulties and safety hazards in mine construction. Preliminary geologic reconnaissance was performed on a potential site for an underground oil shale mine in the Piceance Creek Basin of Colorado. LANDSAT data, black and white aerial photography and 3 cm radar imagery were obtained. LANDSAT data were primarily used in optical imagery and digital tape forms, both of which were analyzed and enhanced by computer techniques. The aerial photography and radar data offered supplemental information. Surface linears in the test area were located and mapped principally from LANDSAT data. A specific, relatively wide, linear pointed directly toward the test site, but did not extend into it. Density slicing, ratioing, and edge enhancement of the LANDSAT data all indicated the existence of this linear. Radar imagery marginally confirmed the linear, while aerial photography did not confirm it.
In traditional watershed delineation and topographic modeling, surface depressions are generally treated as spurious features and simply removed from a digital elevation model (DEM) to enforce flow continuity of water across the topographic surface to the watershed outlets. In re...
The relationship between landscape impervious surface area and instream biological integrity was investigated for watersheds in the Eastern CornBelt Plains ecoregion (ECBP) in western Ohio. Landsat TM imagery was classified to create an impervious surface map for the ECBP. The ac...
Mission to Earth: LANDSAT Views the World. [Color imagery of the earth's surface
NASA Technical Reports Server (NTRS)
Short, N. M.; Lowman, P. D., Jr.; Freden, S. C.; Finch, W. A., Jr.
1976-01-01
The LANDSAT program and system is described. The entire global land surface of Earth is visualized in 400 color plates at a scale and resolution that specify natural land cultural features in man's familiar environments. A glossary is included.
NASA Astrophysics Data System (ADS)
Klug, Christoph; Nicholson, Lindsey; Rieg, Lorenzo; Sailer, Rudolf; Wirbel, Anna
2016-04-01
Debris-covered glaciers in the eastern Himalaya have pronounced surface relief consisting of hummocks and hollows, ice cliffs, lakes and former lake beds. This relief and spatially variable surface properties are expected to influence the spatially distributed surface energy balance and related ice mass loss and atmospheric interactions, but only a few studies have so far explicitly examined the nature of the surface terrain and its textures . In this work we present a new high-resolution digital terrain model (DTM) of a portion of the Khumbu Himal in the eastern Nepalese Himalaya, derived from Pléiades satellite imagery sampled in spring 2015. We use this DTM to study the terrain characteristics of five sample glaciers and analyse the inter- and intra- glacier variability of terrain characteristics in the context of glacier flow velocities and surface changes presented in previous studies in the area. In parallel to this analysis we also present the seasonal geodetic mass balance between spring and fall 2015, and relate it to the terrain properties, surface velocity and limited knowledge of the local lapse rates in meteorological conditions during this monsoon season.
The analysis of polar clouds from AVHRR satellite data using pattern recognition techniques
NASA Technical Reports Server (NTRS)
Smith, William L.; Ebert, Elizabeth
1990-01-01
The cloud cover in a set of summertime and wintertime AVHRR data from the Arctic and Antarctic regions was analyzed using a pattern recognition algorithm. The data were collected by the NOAA-7 satellite on 6 to 13 Jan. and 1 to 7 Jul. 1984 between 60 deg and 90 deg north and south latitude in 5 spectral channels, at the Global Area Coverage (GAC) resolution of approximately 4 km. This data embodied a Polar Cloud Pilot Data Set which was analyzed by a number of research groups as part of a polar cloud algorithm intercomparison study. This study was intended to determine whether the additional information contained in the AVHRR channels (beyond the standard visible and infrared bands on geostationary satellites) could be effectively utilized in cloud algorithms to resolve some of the cloud detection problems caused by low visible and thermal contrasts in the polar regions. The analysis described makes use of a pattern recognition algorithm which estimates the surface and cloud classification, cloud fraction, and surface and cloudy visible (channel 1) albedo and infrared (channel 4) brightness temperatures on a 2.5 x 2.5 deg latitude-longitude grid. In each grid box several spectral and textural features were computed from the calibrated pixel values in the multispectral imagery, then used to classify the region into one of eighteen surface and/or cloud types using the maximum likelihood decision rule. A slightly different version of the algorithm was used for each season and hemisphere because of differences in categories and because of the lack of visible imagery during winter. The classification of the scene is used to specify the optimal AVHRR channel for separating clear and cloudy pixels using a hybrid histogram-spatial coherence method. This method estimates values for cloud fraction, clear and cloudy albedos and brightness temperatures in each grid box. The choice of a class-dependent AVHRR channel allows for better separation of clear and cloudy pixels than does a global choice of a visible and/or infrared threshold. The classification also prevents erroneous estimates of large fractional cloudiness in areas of cloudfree snow and sea ice. The hybrid histogram-spatial coherence technique and the advantages of first classifying a scene in the polar regions are detailed. The complete Polar Cloud Pilot Data Set was analyzed and the results are presented and discussed.
A feasibility study of using remotely sensed data for water resource models
NASA Technical Reports Server (NTRS)
Ruff, J. F.
1973-01-01
Remotely sensed data were collected to demonstrate the feasibility of applying the results to water resource problems. Photographs of the Wolf Creek watershed in southwestern Colorado were collected over a one year period. Cloud top temperatures were measured using a radiometer. Thermal imagery of the Wolf Creek Pass area was obtained during one pre-dawn flight. Remote sensing studies of water resource problems for user agencies were also conducted. The results indicated that: (1) remote sensing techniques could be used to assist in the solution of water resource problems; (2) photogrammetric determination of snow depths is feasible; (3) changes in turbidity or suspended material concentration can be observed; and (4) surface turbulence can be related to bed scour; and (5) thermal effluents into rivers can be monitored.
NASA Technical Reports Server (NTRS)
Burns, B. A.; Cavalieri, D. J.; Keller, M. R.
1986-01-01
Active and passive microwave data collected during the 1984 summer Marginal Ice Zone Experiment in the Fram Strait (MIZEX 84) are used to compare ice concentration estimates derived from synthetic aperture radar (SAR) data to those obtained from passive microwave imagery at several frequencies. The comparison is carried out to evaluate SAR performance against the more established passive microwave technique, and to investigate discrepancies in terms of how ice surface conditions, imaging geometry, and choice of algorithm parameters affect each sensor. Active and passive estimates of ice concentration agree on average to within 12%. Estimates from the multichannel passive microwave data show best agreement with the SAR estimates because the multichannel algorithm effectively accounts for the range in ice floe brightness temperatures observed in the MIZ.
NASA Astrophysics Data System (ADS)
Li, H.; Kusky, T. M.; Peng, S.; Zhu, M.
2012-12-01
Thermal infrared (TIR) remote sensing is an important technique in the exploration of geothermal resources. In this study, a geothermal survey is conducted in Tengchong area of Yunnan province in China using multi-temporal MODIS LST (Land Surface Temperature). The monthly night MODIS LST data from Mar. 2000 to Mar. 2011 of the study area were collected and analyzed. The 132 month average LST map was derived and three geothermal anomalies were identified. The findings of this study agree well with the results from relative geothermal gradient measurements. Finally, we conclude that TIR remote sensing is a cost-effective technique to detect geothermal anomalies. Combining TIR remote sensing with geological analysis and the understanding of geothermal mechanism is an accurate and efficient approach to geothermal area detection.
New Mexico Tech landmine, UXO, IED detection sensor test facility: measurements in real field soils
NASA Astrophysics Data System (ADS)
Hendrickx, Jan M. H.; Alkov, Nicole; Hong, Sung-ho; Van Dam, Remke L.; Kleissl, Jan; Shannon, Heather; Meason, John; Borchers, Brian; Harmon, Russell S.
2006-05-01
Modeling studies and experimental work have demonstrated that the dynamic behavior of soil physical properties has a significant effect on most sensors for the detection of buried land mines. An outdoor test site has been constructed allowing full control over soil water content and continuous monitoring of important soil properties and environmental conditions. Time domain reflectometry sensors and thermistors measure soil water1 content and temperature, respectively, at different depths above and below the land mines as well as in homogeneous soil away from the land mines. During the two-year operation of the test-site, the soils have evolved to reflect real field soil conditions. This paper compares visual observations as well as ground-penetrating radar and thermal infrared measurements at this site taken immediately after construction in early 2004 with measurements from early 2006. The visual observations reveal that the 2006 soil surfaces exhibit a much higher spatial variability due to the development of mini-reliefs, "loose" and "connected" soil crusts, cracks in clay soils, and vegetation. Evidence is presented that the increased variability of soil surface characteristics leads to a higher natural spatial variability of soil surface temperatures and, thus, to a lower probability to detect landmines using thermal imagery. No evidence was found that the soil surface changes affect the GPR signatures of landmines under the soil conditions encountered in this study. The New Mexico Tech outdoor Landmine Detection Sensor Test Facility is easily accessible and anyone interested is welcome to use it for sensor testing.
NASA Astrophysics Data System (ADS)
Acosta, Roberto I.
The high-energy laser (HEL) lethality community needs for enhanced laser weapons systems requires a better understanding of a wide variety of emerging threats. In order to reduce the dimensionality of laser-materials interaction it is necessary to develop novel predictive capabilities of these events. The objective is to better understand the fundamentals of laser lethality testing by developing empirical models from hyperspectral imagery, enabling a robust library of experiments for vulnerability assessments. Emissive plumes from laser irradiated fiberglass reinforced polymers (FRP), poly(methyl methacrylate) (PMMA) and porous graphite targets were investigated primarily using a mid-wave infrared (MWIR) imaging Fourier transform spectrometer (FTS). Polymer and graphite targets were irradiated with a continuous wave (cw) fiber lasers. Data was acquired with a spectral resolution of 2 cm-1 and spatial resolution as high as 0.52 mm2 per pixel. Strong emission from H2O, CO, CO2 and hydrocarbons were observed in the MWIR between 1900-4000 cm-1. A single-layer radiative transfer model was developed to estimate spatial maps of temperature and column densities of CO and CO2 from the hyperspectral imagery of the boundary layer plume. The spectral model was used to compute the absorption cross sections of CO and CO2, using spectral line parameters from the high temperature extension of the HITRAN. Also, spatial maps of gas-phase temperature and methyl methacrylate (MMA) concentration were developed from laser irradiated carbon black-pigmented PMMA at irradiances of 4-22 W/cm2. Global kinetics interplay between heterogeneous and homogeneous combustion kinetics are shown from experimental observations at high spatial resolutions. Overall the boundary layer profile at steady-state is consistent with CO being mainly produced at the surface by heterogeneous reactions followed by a rapid homogeneous combustion in the boundary layer towards buoyancy.
The edge detection method of the infrared imagery of the laser spot
NASA Astrophysics Data System (ADS)
Che, Jinxi; Zhang, Jinchun; Li, Zhongmin
2016-01-01
In the jamming effectiveness experiments, in which the thermal infrared imager was interfered by the CO2 Laser, in order to evaluate the jamming effect of the thermal infrared imager by the CO2 Laser, it was needed to analyses the obtained infrared imagery of laser spot. Because the laser spot pictures obtained from the thermal infrared imager are irregular, the edge detection is an important process. The image edge is one of the most basic characteristics of the image, and it contains most of the information of the image. Generally, because of the thermal balance effect, the partly temperature of objective is no quite difference; therefore the infrared imagery's ability of reflecting the local detail of object is obvious week. At the same time, when the information of heat distribution of the thermal imagery was combined with the basic information of target, such as the object size, the relative position of field of view, shape and outline, and so on, the information just has more value. Hence, it is an important step for making image processing to extract the objective edge of the infrared imagery. Meanwhile it is an important part of image processing procedure and it is the premise of many subsequent processing. So as to extract outline information of the target from the original thermal imagery, and overcome the disadvantage, such as the low image contrast of the image and serious noise interference, and so on, the edge of thermal imagery needs detecting and processing. The principles of the Roberts, Sobel, Prewitt and Canny operator were analyzed, and then they were used to making edge detection on the thermal imageries of laser spot, which were obtained from the jamming effect experiments of CO2 laser jamming the thermal infrared imager. On the basis of the detection result, their performances were compared. At the end, the characteristics of the operators were summarized, which provide reference for the choice of edge detection operators in thermal imagery processing in future.
NASA Technical Reports Server (NTRS)
Lecroy, S. R. (Principal Investigator)
1981-01-01
The LANDSAT imagery was historically analyzed to determine the circulation and turbidity patterns of Kerr Lake, located on the Virginia-North Carolina border. By examining the seasonal and regional turbidity and circulation patterns, a record of sediment transport and possible disposition can be obtained. Sketches were generated, displaying different intensities of brightness observed in bands 5 and 7 of LANDSAT's multispectral scanner data. Differences in and between bands 5 and 7 indicate variances in the levels of surface sediment concentrations. High sediment loads are revealed when distinct patterns appear in the band 7 imagery. The upwelled signal is exponential in nature and saturates in band 5 at low wavelengths for large concentrations of suspended solids.
Object-Oriented Image Clustering Method Using UAS Photogrammetric Imagery
NASA Astrophysics Data System (ADS)
Lin, Y.; Larson, A.; Schultz-Fellenz, E. S.; Sussman, A. J.; Swanson, E.; Coppersmith, R.
2016-12-01
Unmanned Aerial Systems (UAS) have been used widely as an imaging modality to obtain remotely sensed multi-band surface imagery, and are growing in popularity due to their efficiency, ease of use, and affordability. Los Alamos National Laboratory (LANL) has employed the use of UAS for geologic site characterization and change detection studies at a variety of field sites. The deployed UAS equipped with a standard visible band camera to collect imagery datasets. Based on the imagery collected, we use deep sparse algorithmic processing to detect and discriminate subtle topographic features created or impacted by subsurface activities. In this work, we develop an object-oriented remote sensing imagery clustering method for land cover classification. To improve the clustering and segmentation accuracy, instead of using conventional pixel-based clustering methods, we integrate the spatial information from neighboring regions to create super-pixels to avoid salt-and-pepper noise and subsequent over-segmentation. To further improve robustness of our clustering method, we also incorporate a custom digital elevation model (DEM) dataset generated using a structure-from-motion (SfM) algorithm together with the red, green, and blue (RGB) band data for clustering. In particular, we first employ an agglomerative clustering to create an initial segmentation map, from where every object is treated as a single (new) pixel. Based on the new pixels obtained, we generate new features to implement another level of clustering. We employ our clustering method to the RGB+DEM datasets collected at the field site. Through binary clustering and multi-object clustering tests, we verify that our method can accurately separate vegetation from non-vegetation regions, and are also able to differentiate object features on the surface.
Cloud cover determination in polar regions from satellite imagery
NASA Technical Reports Server (NTRS)
Barry, R. G.; Maslanik, J. A.; Key, J. R.
1987-01-01
A definition is undertaken of the spectral and spatial characteristics of clouds and surface conditions in the polar regions, and to the creation of calibrated, geometrically correct data sets suitable for quantitative analysis. Ways are explored in which this information can be applied to cloud classifications as new methods or as extensions to existing classification schemes. A methodology is developed that uses automated techniques to merge Advanced Very High Resolution Radiometer (AVHRR) and Scanning Multichannel Microwave Radiometer (SMMR) data, and to apply first-order calibration and zenith angle corrections to the AVHRR imagery. Cloud cover and surface types are manually interpreted, and manual methods are used to define relatively pure training areas to describe the textural and multispectral characteristics of clouds over several surface conditions. The effects of viewing angle and bidirectional reflectance differences are studied for several classes, and the effectiveness of some key components of existing classification schemes is tested.
Fast Monte Carlo-assisted simulation of cloudy Earth backgrounds
NASA Astrophysics Data System (ADS)
Adler-Golden, Steven; Richtsmeier, Steven C.; Berk, Alexander; Duff, James W.
2012-11-01
A calculation method has been developed for rapidly synthesizing radiometrically accurate ultraviolet through longwavelengthinfrared spectral imagery of the Earth for arbitrary locations and cloud fields. The method combines cloudfree surface reflectance imagery with cloud radiance images calculated from a first-principles 3-D radiation transport model. The MCScene Monte Carlo code [1-4] is used to build a cloud image library; a data fusion method is incorporated to speed convergence. The surface and cloud images are combined with an upper atmospheric description with the aid of solar and thermal radiation transport equations that account for atmospheric inhomogeneity. The method enables a wide variety of sensor and sun locations, cloud fields, and surfaces to be combined on-the-fly, and provides hyperspectral wavelength resolution with minimal computational effort. The simulations agree very well with much more time-consuming direct Monte Carlo calculations of the same scene.
Weinman, J A
1988-10-01
A simulated analysis is presented that shows that returns from a single-frequency space-borne lidar can be combined with data from conventional visible satellite imagery to yield profiles of aerosol extinction coefficients and the wind speed at the ocean surface. The optical thickness of the aerosols in the atmosphere can be derived from visible imagery. That measurement of the total optical thickness can constrain the solution to the lidar equation to yield a robust estimate of the extinction profile. The specular reflection of the lidar beam from the ocean can be used to determine the wind speed at the sea surface once the transmission of the atmosphere is known. The impact on the retrieved aerosol profiles and surface wind speed produced by errors in the input parameters and noise in the lidar measurements is also considered.
2016-03-17
This enhanced color view of Pluto's surface diversity was created by merging Ralph/Multispectral Visible Imaging Camera (MVIC) color imagery (650 meters per pixel) with Long Range Reconnaissance Imager panchromatic imagery (230 meters per pixel). At lower right, ancient, heavily cratered terrain is coated with dark, reddish tholins. At upper right, volatile ices filling the informally named Sputnik Planum have modified the surface, creating a chaos-like array of blocky mountains. Volatile ice also occupies a few nearby deep craters, and in some areas the volatile ice is pocked with arrays of small sublimation pits. At left, and across the bottom of the scene, gray-white CH4 ice deposits modify tectonic ridges, the rims of craters, and north-facing slopes. The scene in this image is 260 miles (420 kilometers) wide and 140 miles (225 kilometers) from top to bottom; north is to the upper left. http://photojournal.jpl.nasa.gov/catalog/PIA20534
Photometric anomalies in the Apollo landing sites as seen from the Lunar Reconnaissance Orbiter
NASA Astrophysics Data System (ADS)
Kaydash, Vadym; Shkuratov, Yuriy; Korokhin, Viktor; Videen, Gorden
2011-01-01
Phase-ratio imagery is a new tool of qualitative photometric analyses of the upper layer of the lunar regolith, which allows the identification of natural surface structure anomalies and artificially altered regolith. We apply phase-ratio imagery to analyze the Apollo-14, -15, and -17 landing sites. This reveals photometric anomalies of ˜170 × 120 m size that are characterized by lower values of the phase-function steepness, indicating a smoothing of the surface microstructure caused by the engine jets of the landing modules. Other photometric anomalies characterized by higher phase-function slopes are the result of regolith loosening by astronaut boots and the wheels of the Modular Equipment Transporter and the Lunar Roving Vehicle. We also provide a possible explanation for the high brightness of the wheel tracks seen in on-surface images acquired at very large phase angles.
Radar signal return from near-shore surface and shallow subsurface features, Darien Province, Panama
NASA Technical Reports Server (NTRS)
Hanson, B. C.; Dellwig, L. F.
1973-01-01
The AN/APQ-97 radar imagery over eastern Panama is analyzed. The imagery was directed toward extraction of geologic and engineering data and the establishment of operational parameters. Subsequent investigations emphasized landform identification and vegetation distribution. The parameters affecting the observed return signal strength from such features are considered. Near-shore ocean phenomena were analyzed. Tidal zone features such as mud flats and reefs were identified in the near range, but were not detectable in the far range. Surface roughness dictated the nature of reflected energy (specular or diffuse). In surf zones, changes in wave train orientation relative to look direction, the slope of the surface, and the physical character of the wave must be considered. It is concluded that the establishment of the areal extent of the tidal flats, distributary channels, and reefs is practical only in the near to intermediate range under minimal low tide conditions.
Parot, Vicente; Lim, Daryl; González, Germán; Traverso, Giovanni; Nishioka, Norman S; Vakoc, Benjamin J; Durr, Nicholas J
2013-07-01
While color video endoscopy has enabled wide-field examination of the gastrointestinal tract, it often misses or incorrectly classifies lesions. Many of these missed lesions exhibit characteristic three-dimensional surface topographies. An endoscopic system that adds topographical measurements to conventional color imagery could therefore increase lesion detection and improve classification accuracy. We introduce photometric stereo endoscopy (PSE), a technique which allows high spatial frequency components of surface topography to be acquired simultaneously with conventional two-dimensional color imagery. We implement this technique in an endoscopic form factor and demonstrate that it can acquire the topography of small features with complex geometries and heterogeneous optical properties. PSE imaging of ex vivo human gastrointestinal tissue shows that surface topography measurements enable differentiation of abnormal shapes from surrounding normal tissue. Together, these results confirm that the topographical measurements can be obtained with relatively simple hardware in an endoscopic form factor, and suggest the potential of PSE to improve lesion detection and classification in gastrointestinal imaging.
Thermal IR satellite data application for earthquake research in Pakistan
NASA Astrophysics Data System (ADS)
Barkat, Adnan; Ali, Aamir; Rehman, Khaista; Awais, Muhammad; Riaz, Muhammad Shahid; Iqbal, Talat
2018-05-01
The scientific progress in space research indicates earthquake-related processes of surface temperature growth, gas/aerosol exhalation and electromagnetic disturbances in the ionosphere prior to seismic activity. Among them surface temperature growth calculated using the satellite thermal infrared images carries valuable earthquake precursory information for near/distant earthquakes. Previous studies have concluded that such information can appear few days before the occurrence of an earthquake. The objective of this study is to use MODIS thermal imagery data for precursory analysis of Kashmir (Oct 8, 2005; Mw 7.6; 26 km), Ziarat (Oct 28, 2008; Mw 6.4; 13 km) and Dalbandin (Jan 18, 2011; Mw 7.2; 69 km) earthquakes. Our results suggest that there exists an evident correlation of Land Surface Temperature (thermal; LST) anomalies with seismic activity. In particular, a rise of 3-10 °C in LST is observed 6, 4 and 14 days prior to Kashmir, Ziarat and Dalbandin earthquakes. In order to further elaborate our findings, we have presented a comparative and percentile analysis of daily and five years averaged LST for a selected time window with respect to the month of earthquake occurrence. Our comparative analyses of daily and five years averaged LST show a significant change of 6.5-7.9 °C for Kashmir, 8.0-8.1 °C for Ziarat and 2.7-5.4 °C for Dalbandin earthquakes. This significant change has high percentile values for the selected events i.e. 70-100% for Kashmir, 87-100% for Ziarat and 84-100% for Dalbandin earthquakes. We expect that such consistent results may help in devising an optimal earthquake forecasting strategy and to mitigate the effect of associated seismic hazards.
NASA Astrophysics Data System (ADS)
Silvestri, Malvina; Musacchio, Massimo; Fabrizia Buongiorno, Maria
2017-04-01
The Geohazards Exploitation Platform, or GEP is one of six Thematic Exploitation Platforms developed by ESA to serve data user communities. As a new element of the ground segment delivering satellite results to users, these cloud-based platforms provide an online environment to access information, processing tools, computing resources for community collaboration. The aim is to enable the easy extraction of valuable knowledge from vast quantities of satellite-sensed data now being produced by Europe's Copernicus programme and other Earth observation satellites. In this context, the estimation of surface temperature on active volcanoes around the world is considered. E2E processing chains have been developed for different satellite data (ASTER, Landsat8 and Sentinel 3 missions) using thermal infrared (TIR) channels by applying specific algorithms. These chains have been implemented on the GEP platform enabling the use of EO missions and the generation of added value product such as surface temperature map, from not skilled users. This solution will enhance the use of satellite data and improve the dissemination of the results saving valuable time (no manual browsing, downloading or processing is needed) and producing time series data that can be speedily extracted from a single co-registered pixel, to highlight gradual trends within a narrow area. Moreover, thanks to the high-resolution optical imagery of Sentinel 2 (MSI), the detection of lava maps during an eruption can be automatically obtained. The proposed lava detection method is based on a contextual algorithm applied to Sentinel-2 NIR (band 8 - 0.8 micron) and SWIR (band 12 - 2.25 micron) data. Examples derived by last eruptions on active volcanoes are showed.
NASA Technical Reports Server (NTRS)
Lo, Chor Pang
1996-01-01
The main objective of this research is to apply airborne high-resolution thermal infrared imagery for urban heat island studies, using Huntsville, AL, a medium-sized American city, as the study area. The occurrence of urban heat islands represents human-induced urban/rural contrast, which is caused by deforestation and the replacement of the land surface by non-evaporating and non-porous materials such as asphalt and concrete. The result is reduced evapotranspiration and more rapid runoff of rain water. The urban landscape forms a canopy acting as a transitional zone between the atmosphere and the land surface. The composition and structure of this canopy have a significant impact on the thermal behavior of the urban environment. Research on the trends of surface temperature at rapidly growing urban sites in the United States during the last 30 to 50 years suggests that significant urban heat island effects have caused the temperatures at these sites to rise by 1 to 2 C. Urban heat islands have caused changes in urban precipitation and temperature that are at least similar to, if not greater than, those predicted to develop over the next 100 years by global change models. Satellite remote sensing, particularly NOAA AVHRR thermal data, has been used in the study of urban heat islands. Because of the low spatial resolution (1.1 km at nadir) of the AVHRR data, these studies can only examine and map the phenomenon at the macro-level. The present research provides the rare opportunity to utilize 5-meter thermal infrared data acquired from an airplane to characterize more accurately the thermal responses of different land cover types in the urban landscape as input to urban heat island studies.
An Integrated Atmospheric and Hydrological Based Malaria Epidemic Alert System
NASA Astrophysics Data System (ADS)
Asefi Najafabady, S.; Li, J.; Nair, U. S.; Welch, R. M.; Srivastava, A.; Nagpal, B. N.; Saxena, R.; Benedict, M. E.
2005-05-01
Malaria is a growing global threat, with increasing morbidity and mortality. In India there have been >40 epidemics in the last five years, in part due to abnormal meteorological conditions as well as the buildup of an immunologically naïve population. In most parts of India, periodic epidemics of malaria occur every five to seven years. Malaria epidemics are serious national/regional health emergencies, occurring with little or no warning where the public health system is unprepared to respond to the emerging problem. However, epidemic conditions develop over several weeks, theoretically allowing time for preventative action. The study area for the proposed research is located in Mewat, south of Delhi. It is estimated that 90% of the malaria burden is influenced by environmental factors, so that successful malaria intervention approaches must be adapted to local environmental conditions. Of particular importance are air and water temperature, relative humidity, soil moisture, and precipitation. Extreme climatic conditions prevail in Mewat, with uneven topography, 450mm average annual rainfall in 25 to 35 days, high temperature variability in different seasons, low relative humidity. Automated surface measurements are obtained for temperature, relative humidity, water temperature, precipitation and soil moisture. The Regional Atmospheric Modeling System (RAMS) is used to predict these variables over the spatial domain which are used in dynamic hydrological models to yield the parameters important to malaria transmission, including surface wetness, mean water table depth, percent surface saturation and total surface runoff. The locations of saturated surface regions associated with mosquito breeding sites near populated regions, along with water temperature, and then are used to determine larvae development and mosquito abundance. ASTER, LANDSAT and MODIS imagery are used to retrieve soil moisture, vegetation indices and land cover types. Pan-sharpened 1m spatial resolution QuickBird data has been used to identify small mosquito breeding sites with an accuracy of 90 %, as verified by ground observations. These layers of information, along with a 30m resolution Digital Elevation Model and field measurements of malaria incidence, larvae and mosquito counts, were examined in a GIS system to identify the environmental parameters effective in mosquito distribution. The Genetic Algorithm for Rule Set Production (GARP) has been applied to the region using the parameters defined above to predict regions susceptible to malaria transmission.
Li, Jing; Zipper, Carl E; Donovan, Patricia F; Wynne, Randolph H; Oliphant, Adam J
2015-09-01
Surface mining disturbances have attracted attention globally due to extensive influence on topography, land use, ecosystems, and human populations in mineral-rich regions. We analyzed a time series of Landsat satellite imagery to produce a 28-year disturbance history for surface coal mining in a segment of eastern USA's central Appalachian coalfield, southwestern Virginia. The method was developed and applied as a three-step sequence: vegetation index selection, persistent vegetation identification, and mined-land delineation by year of disturbance. The overall classification accuracy and kappa coefficient were 0.9350 and 0.9252, respectively. Most surface coal mines were identified correctly by location and by time of initial disturbance. More than 8 % of southwestern Virginia's >4000-km(2) coalfield area was disturbed by surface coal mining over the 28-year period. Approximately 19.5 % of the Appalachian coalfield surface within the most intensively mined county (Wise County) has been disturbed by mining. Mining disturbances expanded steadily and progressively over the study period. Information generated can be applied to gain further insight concerning mining influences on ecosystems and other essential environmental features.
Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner
NASA Technical Reports Server (NTRS)
Gordon, Howard R.; Brown, James W.; Evans, Robert H.
1988-01-01
The radiance reflected from a plane-parallel atmosphere and flat sea surface in the absence of aerosols has been determined with an exact multiple scattering code to improve the analysis of Nimbus-7 CZCS imagery. It is shown that the single scattering approximation normally used to compute this radiance can result in errors of up to 5 percent for small and moderate solar zenith angles. A scheme to include the effect of variations in the surface pressure in the exact computation of the Rayleigh radiance is discussed. The results of an application of these computations to CZCS imagery suggest that accurate atmospheric corrections can be obtained for solar zenith angles at least as large as 65 deg.
High-quality observation of surface imperviousness for urban runoff modelling using UAV imagery
NASA Astrophysics Data System (ADS)
Tokarczyk, P.; Leitao, J. P.; Rieckermann, J.; Schindler, K.; Blumensaat, F.
2015-01-01
Modelling rainfall-runoff in urban areas is increasingly applied to support flood risk assessment particularly against the background of a changing climate and an increasing urbanization. These models typically rely on high-quality data for rainfall and surface characteristics of the area. While recent research in urban drainage has been focusing on providing spatially detailed rainfall data, the technological advances in remote sensing that ease the acquisition of detailed land-use information are less prominently discussed within the community. The relevance of such methods increase as in many parts of the globe, accurate land-use information is generally lacking, because detailed image data is unavailable. Modern unmanned air vehicles (UAVs) allow acquiring high-resolution images on a local level at comparably lower cost, performing on-demand repetitive measurements, and obtaining a degree of detail tailored for the purpose of the study. In this study, we investigate for the first time the possibility to derive high-resolution imperviousness maps for urban areas from UAV imagery and to use this information as input for urban drainage models. To do so, an automatic processing pipeline with a modern classification method is tested and applied in a state-of-the-art urban drainage modelling exercise. In a real-life case study in the area of Lucerne, Switzerland, we compare imperviousness maps generated from a consumer micro-UAV and standard large-format aerial images acquired by the Swiss national mapping agency (swisstopo). After assessing their correctness, we perform an end-to-end comparison, in which they are used as an input for an urban drainage model. Then, we evaluate the influence which different image data sources and their processing methods have on hydrological and hydraulic model performance. We analyze the surface runoff of the 307 individual subcatchments regarding relevant attributes, such as peak runoff and volume. Finally, we evaluate the model's channel flow prediction performance through a cross-comparison with reference flow measured at the catchment outlet. We show that imperviousness maps generated using UAV imagery processed with modern classification methods achieve accuracy comparable with standard, off-the-shelf aerial imagery. In the examined case study, we find that the different imperviousness maps only have a limited influence on modelled surface runoff and pipe flows. We conclude that UAV imagery represents a valuable alternative data source for urban drainage model applications due to the possibility to flexibly acquire up-to-date aerial images at a superior quality and a competitive price. Our analyses furthermore suggest that spatially more detailed urban drainage models can even better benefit from the full detail of UAV imagery.
Thermal Remote Sensing with Uav-Based Workflows
NASA Astrophysics Data System (ADS)
Boesch, R.
2017-08-01
Climate change will have a significant influence on vegetation health and growth. Predictions of higher mean summer temperatures and prolonged summer draughts may pose a threat to agriculture areas and forest canopies. Rising canopy temperatures can be an indicator of plant stress because of the closure of stomata and a decrease in the transpiration rate. Thermal cameras are available for decades, but still often used for single image analysis, only in oblique view manner or with visual evaluations of video sequences. Therefore remote sensing using a thermal camera can be an important data source to understand transpiration processes. Photogrammetric workflows allow to process thermal images similar to RGB data. But low spatial resolution of thermal cameras, significant optical distortion and typically low contrast require an adapted workflow. Temperature distribution in forest canopies is typically completely unknown and less distinct than for urban or industrial areas, where metal constructions and surfaces yield high contrast and sharp edge information. The aim of this paper is to investigate the influence of interior camera orientation, tie point matching and ground control points on the resulting accuracy of bundle adjustment and dense cloud generation with a typically used photogrammetric workflow for UAVbased thermal imagery in natural environments.
South Pole Hydrogen Distribution for Present Lunar Conditions: Implications for Past Impacts
NASA Technical Reports Server (NTRS)
Elphic, R. C.; Paige, D. A.; Siegler, M. A.; Vasavada, A. R.; Eke, V. R.; Teodoro, L. F. A.; Lawrence, D. J.
2010-01-01
It has been known since the Lunar Prospector mission that the poles of the Moon evidently harbor enhanced concentrations of hydrogen [1,2]. The physical and chemical form of the hydrogen has been much debated. Using imagery from Clementine it was possible to roughly estimate permanently-shadowed regions (PSRs), and to perform image reconstructions of the Lunar Prospector epithermal neutron flux maps [3,4]. The hydrogen concentrations resulting from these reconstructions were consistent with a few weight percent water ice in selected locations. With the LCROSS impact, we now know that hydrogen in the form of ice does exist in lunar polar cold traps [5]. Armed with this information, and new data from LRO/Diviner, we can examine whether the pre-sent-day distribution of hydrogen in the form of water ice is consistent with a past large impact that delivered a large mass of volatiles to the lunar surface. These volatiles, mixed with solid impact ejecta, would then be lost from locations having high mean temperatures but would otherwise remain trapped in locations with sufficiently low mean annual temperatures [6]. The time scales for loss would depend on the location-dependent temperatures as well as impact history.
NASA Technical Reports Server (NTRS)
Anderson, D. M.; Mckim, H. L.; Haugen, R. K.; Gatto, L. W.; Slaughter, C. W.; Marlar, T. L. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Physiognomic landscape features were used as geologic and vegetative indicators in preparation of a surficial geology, vegetation, and permafrost map at a scale of 1:1 million using ERTS-1 band 7 imagery. The detail from this map compared favorably with USGS maps at 1:250,000 scale. Physical boundaries mapped from ERTS-1 imagery in combination with ground truth obtained from existing small maps and other sources resulted in improved and more detailed maps of permafrost terrain and vegetation for the same area. ERTS-1 imagery provides for the first time, a means of monitoring the following regional estuarine processes: daily and periodic surface water circulation patterns; changes in the relative sediment load of rivers discharging into the inlet; and, several local patterns not recognized before, such as a clockwise back eddy offshore from Clam Gulch and a counterclockwise current north of the Forelands. Comparison of ERTS-1 and Mariner imagery has revealed that the thermokarst depressions found on the Alaskan North Slope and polygonal patterns on the Yukon River Delta are possible analogs to some Martian terrain features.
Analysis of GOES imagery and digitized data for the SEV-UPS period, August 1979
NASA Technical Reports Server (NTRS)
Bowley, C. J.; Burke, H. H. K.; Barnes, J. C.
1981-01-01
In support of the Southeastern Virginia Urban Plume Study (SEV-UPS), GOES satellite imagery was analyzed for the month of August 1979. The analyzed GOES images provide an additional source of meteorological input useful in the evaluation of air quality data collected during the month long period of the SEV-UPS experiment. In addition to the imagery analysis, GOES digitized data were analyzed for the period of August 6 to 11, during which a regional haze pattern was detectable in the imagery. The results of the study indicate that the observed haze patterns correspond closely with areas shown in surface based measurements to have reduced visibilities and elevated pollution levels. Moreover, the results of the analysis of digitized data indicate that digital reflectance counts can be directly related to haze intensity both over land and ocean. The model results agree closely with the observed GOES digital reflectance counts, providing further indication that satellite remote sensing can be a useful tool for monitoring regional elevated pollution episodes.
Hydrologic interpretations based on infrared imagery of Long Island, New York
NASA Technical Reports Server (NTRS)
Pluhowski, E. J.
1972-01-01
Six remote-sensing flights over Long Island's north and south shores were made during the period July 13, 1967, to February 25, 1970. Infrared imagery in the 8- to 14-micrometer range was obtained; results varied from poor to excellent in quality. The ability of the RS 7 and Reconofax 4 imagers to discern thermal contrasts of as little as 1 to 2 C (Celsius) permitted identification of areas of heavy ground-water discharge. These areas were concentrated primarily along the eroded headlands of the north shore and in the lower reaches of watercourses draining into Great South Bay. Only a few highly localized examples of direct ground-water discharge into the embayments along Long Island's south shore were detected in the imagery. Thermal loading emanating from a powerplant near Oceanside is shown to be quickly dissipated in Middle Bay. Optimal time for the collection of infrared imagery for hydrologic studies on Long Island is in summer and in winter, when surface-water thermal differences are relatively large.
Polluted and turbid water masses in Osaka Bay and its vicinity revealed with ERTS-A imageries
NASA Technical Reports Server (NTRS)
Watanabe, K.
1973-01-01
ERTS-1 took very valuable MSS imageries of Osaka Bay and its vicinity on October 24, 1972. In the MSS-4 and MSS-5 imageries a complex grey pattern of water masses can be seen. Though some of grey colored patterns seen in black and white prints of the MSS-4 and MSS-5 imageries are easily identified from their shapes as cloud covers or polluted water masses characterized by their color tone in longer wavelengths in the visible region, any correct distribution pattern of polluted or turbid water masses can be hardly detected separately from thin cloud covers in a quick look analysis. In the present investigation, a simple photographic technique was applied using the fact that reflected sun light from cloud including smog and inclined water surfaces of wave have a certain component in the near infrared region, that MSS-7, whereas the light scattered from fine materials suspended in the sea water has nearly no component sensible in MSS-4 and MSS-5 channels.
Mapping informal small-scale mining features in a data-sparse tropical environment with a small UAS
Chirico, Peter G.; Dewitt, Jessica D.
2017-01-01
This study evaluates the use of a small unmanned aerial system (UAS) to collect imagery over artisanal mining sites in West Africa. The purpose of this study is to consider how very high-resolution imagery and digital surface models (DSMs) derived from structure-from-motion (SfM) photogrammetric techniques from a small UAS can fill the gap in geospatial data collection between satellite imagery and data gathered during field work to map and monitor informal mining sites in tropical environments. The study compares both wide-angle and narrow field of view camera systems in the collection and analysis of high-resolution orthoimages and DSMs of artisanal mining pits. The results of the study indicate that UAS imagery and SfM photogrammetric techniques permit DSMs to be produced with a high degree of precision and relative accuracy, but highlight the challenges of mapping small artisanal mining pits in remote and data sparse terrain.
Sensor-agnostic photogrammetric image registration with applications to population modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Devin A; Moehl, Jessica J
2016-01-01
Photogrammetric registration of airborne and spaceborne imagery is a crucial prerequisite to many data fusion tasks. While embedded sensor models provide a rough geolocation estimate, these metadata may be incomplete or imprecise. Manual solutions are appropriate for small-scale projects, but for rapid streams of cross-modal, multi-sensor, multi-temporal imagery with varying metadata standards, an automated approach is required. We present a high-performance image registration workflow to address this need. This paper outlines the core development concepts and demonstrates its utility with respect to the 2016 data fusion contest imagery. In particular, Iris ultra-HD video is georeferenced to the Earth surface viamore » registration to DEIMOS-2 imagery, which serves as a trusted control source. Geolocation provides opportunity to augment the video with spatial context, stereo-derived disparity, spectral sensitivity, change detection, and numerous ancillary geospatial layers. We conclude by leveraging these derivative data layers towards one such fusion application: population distribution modeling.« less
NASA Astrophysics Data System (ADS)
Aslan, N.; Koc-San, D.
2016-06-01
The main objectives of this study are (i) to calculate Land Surface Temperature (LST) from Landsat imageries, (ii) to determine the UHI effects from Landsat 7 ETM+ (June 5, 2001) and Landsat 8 OLI (June 17, 2014) imageries, (iii) to examine the relationship between LST and different Land Use/Land Cover (LU/LC) types for the years 2001 and 2014. The study is implemented in the central districts of Antalya. Initially, the brightness temperatures are retrieved and the LST values are calculated from Landsat thermal images. Then, the LU/LC maps are created from Landsat pan-sharpened images using Random Forest (RF) classifier. Normalized Difference Vegetation Index (NDVI) image, ASTER Global Digital Elevation Model (GDEM) and DMSP_OLS nighttime lights data are used as auxiliary data during the classification procedure. Finally, UHI effect is determined and the LST values are compared with LU/LC classes. The overall accuracies of RF classification results were computed higher than 88 % for both Landsat images. During 13-year time interval, it was observed that the urban and industrial areas were increased significantly. Maximum LST values were detected for dry agriculture, urban, and bareland classes, while minimum LST values were detected for vegetation and irrigated agriculture classes. The UHI effect was computed as 5.6 °C for 2001 and 6.8 °C for 2014. The validity of the study results were assessed using MODIS/Terra LST and Emissivity data and it was found that there are high correlation between Landsat LST and MODIS LST data (r2 = 0.7 and r2 = 0.9 for 2001 and 2014, respectively).
Seismic Signatures of Brine Release at Blood Falls, Taylor Glacier, Antarctica
NASA Astrophysics Data System (ADS)
Carr, C. G.; Pettit, E. C.; Carmichael, J.
2017-12-01
Blood Falls is created by the release of subglacially-sourced, iron-rich brine at the surface of Taylor Glacier, McMurdo Dry Valleys, Antarctica. The supraglacial portion of this hydrological feature is episodically active. Englacial liquid brine flow occurs despite ice temperatures of -17°C and we document supraglacial liquid brine release despite ambient air temperatures average -20°C. In this study, we use data from a seismic network, time-lapse cameras, and publicly available weather station data to address the questions: what are the characteristics of seismic events that occur during Blood Falls brine release and how do these compare with seismic events that occur during times of Blood Falls quiescence? How are different processes observable in the time-lapse imagery represented in the seismic record? Time-lapse photography constrains the timing of brine release events during the austral winter of 2014. We use a noise-adaptive digital power detector to identify seismic events and cluster analysis to identify repeating events based on waveform similarity across the network. During the 2014 wintertime brine release, high-energy repeated seismic events occurred proximal to Blood Falls. We investigate the ground motions associated with these clustered events, as well as their spatial distribution. We see evidence of possible tremor during the brine release periods, an indicator of fluid movement. If distinctive seismic signatures are associated with Blood Falls brine release they could be identified based solely on seismic data without any aid from time-lapse cameras. Passive seismologic monitoring has the benefit of continuity during the polar night and other poor visibility conditions, which make time-lapse imagery unusable.
Stormwater plume detection by MODIS imagery in the southern California coastal ocean
Nezlin, N.P.; DiGiacomo, P.M.; Diehl, D.W.; Jones, B.H.; Johnson, S.C.; Mengel, M.J.; Reifel, K.M.; Warrick, J.A.; Wang, M.
2008-01-01
Stormwater plumes in the southern California coastal ocean were detected by MODIS-Aqua satellite imagery and compared to ship-based data on surface salinity and fecal indicator bacterial (FIB) counts collected during the Bight'03 Regional Water Quality Program surveys in February-March of 2004 and 2005. MODIS imagery was processed using a combined near-infrared/shortwave-infrared (NIR-SWIR) atmospheric correction method, which substantially improved normalized water-leaving radiation (nLw) optical spectra in coastal waters with high turbidity. Plumes were detected using a minimum-distance supervised classification method based on nLw spectra averaged within the training areas, defined as circular zones of 1.5-5.0-km radii around field stations with a surface salinity of S 33.0 ('ocean'). The plume optical signatures (i.e., the nLw differences between 'plume' and 'ocean') were most evident during the first 2 days after the rainstorms. To assess the accuracy of plume detection, stations were classified into 'plume' and 'ocean' using two criteria: (1) 'plume' included the stations with salinity below a certain threshold estimated from the maximum accuracy of plume detection; and (2) FIB counts in 'plume' exceeded the California State Water Board standards. The salinity threshold between 'plume' and 'ocean' was estimated as 32.2. The total accuracy of plume detection in terms of surface salinity was not high (68% on average), seemingly because of imperfect correlation between plume salinity and ocean color. The accuracy of plume detection in terms of FIB exceedances was even lower (64% on average), resulting from low correlation between ocean color and bacterial contamination. Nevertheless, satellite imagery was shown to be a useful tool for the estimation of the extent of potentially polluted plumes, which was hardly achievable by direct sampling methods (in particular, because the grids of ship-based stations covered only small parts of the plumes detected via synoptic MODIS imagery). In most southern California coastal areas, the zones of bacterial contamination were much smaller than the areas of turbid plumes; an exception was the plume of the Tijuana River, where the zone of bacterial contamination was comparable with the zone of plume detected by ocean color. ?? 2008 Elsevier Ltd.
Stormwater plume detection by MODIS imagery in the southern California coastal ocean
NASA Astrophysics Data System (ADS)
Nezlin, Nikolay P.; DiGiacomo, Paul M.; Diehl, Dario W.; Jones, Burton H.; Johnson, Scott C.; Mengel, Michael J.; Reifel, Kristen M.; Warrick, Jonathan A.; Wang, Menghua
2008-10-01
Stormwater plumes in the southern California coastal ocean were detected by MODIS-Aqua satellite imagery and compared to ship-based data on surface salinity and fecal indicator bacterial (FIB) counts collected during the Bight'03 Regional Water Quality Program surveys in February-March of 2004 and 2005. MODIS imagery was processed using a combined near-infrared/shortwave-infrared (NIR-SWIR) atmospheric correction method, which substantially improved normalized water-leaving radiation (nLw) optical spectra in coastal waters with high turbidity. Plumes were detected using a minimum-distance supervised classification method based on nLw spectra averaged within the training areas, defined as circular zones of 1.5-5.0-km radii around field stations with a surface salinity of S < 32.0 ("plume") and S > 33.0 ("ocean"). The plume optical signatures (i.e., the nLw differences between "plume" and "ocean") were most evident during the first 2 days after the rainstorms. To assess the accuracy of plume detection, stations were classified into "plume" and "ocean" using two criteria: (1) "plume" included the stations with salinity below a certain threshold estimated from the maximum accuracy of plume detection; and (2) FIB counts in "plume" exceeded the California State Water Board standards. The salinity threshold between "plume" and "ocean" was estimated as 32.2. The total accuracy of plume detection in terms of surface salinity was not high (68% on average), seemingly because of imperfect correlation between plume salinity and ocean color. The accuracy of plume detection in terms of FIB exceedances was even lower (64% on average), resulting from low correlation between ocean color and bacterial contamination. Nevertheless, satellite imagery was shown to be a useful tool for the estimation of the extent of potentially polluted plumes, which was hardly achievable by direct sampling methods (in particular, because the grids of ship-based stations covered only small parts of the plumes detected via synoptic MODIS imagery). In most southern California coastal areas, the zones of bacterial contamination were much smaller than the areas of turbid plumes; an exception was the plume of the Tijuana River, where the zone of bacterial contamination was comparable with the zone of plume detected by ocean color.
A Comparison of the Red Green Blue Air Mass Imagery and Hyperspectral Infrared Retrieved Profiles
NASA Technical Reports Server (NTRS)
Berndt, E. B.; Folmer, Michael; Dunion, Jason
2014-01-01
The Red Green Blue (RGB) Air Mass imagery is derived from multiple channels or paired channel differences. Multiple channel products typically provide additional information than a single channel can provide alone. The RGB Air Mass imagery simplifies the interpretation of temperature and moisture characteristics of air masses surrounding synoptic and mesoscale features. Despite the ease of interpretation of multiple channel products, the combination of channels and channel differences means the resulting product does not represent a quantity or physical parameter such as brightness temperature in conventional single channel satellite imagery. Without a specific quantity to reference, forecasters are often confused as to what RGB products represent. Hyperspectral infrared retrieved profiles of temperature, moisture, and ozone can provide insight about the air mass represented on the RGB Air Mass product and provide confidence in the product and representation of air masses despite the lack of a quantity to reference for interpretation. This study focuses on RGB Air Mass analysis of Hurricane Sandy as it moved north along the U.S. East Coast, while transitioning to a hybrid extratropical storm. Soundings and total column ozone retrievals were analyzed using data from the Cross-track Infrared and Advanced Technology Microwave Sounder Suite (CrIMSS) on the Suomi National Polar Orbiting Partnership satellite and the Atmospheric Infrared Sounder (AIRS) on the National Aeronautics and Space Administration Aqua satellite along with dropsondes that were collected from National Oceanic and Atmospheric Administration and Air Force research aircraft. By comparing these datasets to the RGB Air Mass, it is possible to capture quantitative information that could help in analyzing the synoptic environment enough to diagnose the onset of extratropical transition. This was done by identifying any stratospheric air intrusions (SAIs) that existed in the vicinity of Sandy as the wind field expanded and the cloud pattern evolved into an atypical pattern.
New perspectives on the accretion and internal evolution of Venus
NASA Astrophysics Data System (ADS)
O'Rourke, J. G.
2017-12-01
Dichotomous conditions on Earth and Venus present one of the most compelling mysteries in our Solar System. Ongoing debate centers on how the internal dynamics of Venus have shaped its atmospheric composition, surface features, and even habitability over geologic time. In particular, Venus may have resembled Earth for billions of years before suffering catastrophic transformation, or perhaps some accretionary process set these twin planets on divergent paths from the beginning. Unfortunately, the limited quality of decades-old data—particularly the low resolution of radar imagery and global topography from NASA's Magellan mission—harms our ability to draw definite conclusions. But some progress is possible given recent advances in modeling techniques and improved topography derived from stereo images that are available for roughly twenty percent of the surface. Here I present simulations of the interior evolution of Venus consistent with all available constraints and, more importantly, identify future measurements that would dramatically narrow the range of acceptable scenarios. Obtaining high-resolution imagery and topography, along with any information about the temporal history of a magnetic field, is extremely important. Deformation of geologic features constrains the surface heat flow and lithospheric rheology during their formation. Determining whether craters with radar-dark floors (which comprise 80% of the population) are actually embayed by lava flows would finally settle the controversy over catastrophic versus equilibrium resurfacing. If the core of Venus has completely solidified, then the lack of an internally generated magnetic field today is unsurprising. We might expect dynamo action in the past since relatively high mantle temperatures may increase the rate of core cooling—unless a lack of giant impacts during accretion permitted chemical stratification that resists convection. In any case, uncertainty about our celestial cousin reveals a general ignorance of fundamental processes governing planetary evolution and demands renewed effort to gather new observations.
NASA Astrophysics Data System (ADS)
Mahdavi, Sahel; Maghsoudi, Yasser; Amani, Meisam
2017-07-01
Environmental conditions have considerable effects on synthetic aperture radar (SAR) imagery. Therefore, assessing these effects is important for obtaining accurate and reliable results. In this study, three series of RADARSAT-2 SAR images were evaluated. In each of these series, the sensor configuration was fixed, but the environmental conditions differed. The effects of variable environmental conditions were also investigated on co- and cross-polarized backscattering coefficients, Freeman-Durden scattering contributions, and the pedestal height in different classes of a forest area in Ottawa, Ontario. It was observed that the backscattering coefficient of wet snow was up to 2 dB more than that of dry snow. The absence of snow also caused a decrease of up to 3 dB in the surface scattering of ground and up to 5 dB in that of trees. In addition, the backscatter coefficients of ground vegetation, hardwood species, and softwood species were more similar at temperatures below 0°C than those at temperatures above 0°C. Moreover, the pedestal height was generally greater at temperatures above 0°C than at temperatures below 0°C. Finally, the highest class separability was observed when the temperature was at or above 0°C and there was no snow on the ground or trees.
Seymour, A. C.; Dale, J.; Hammill, M.; Halpin, P. N.; Johnston, D. W.
2017-01-01
Estimating animal populations is critical for wildlife management. Aerial surveys are used for generating population estimates, but can be hampered by cost, logistical complexity, and human risk. Additionally, human counts of organisms in aerial imagery can be tedious and subjective. Automated approaches show promise, but can be constrained by long setup times and difficulty discriminating animals in aggregations. We combine unmanned aircraft systems (UAS), thermal imagery and computer vision to improve traditional wildlife survey methods. During spring 2015, we flew fixed-wing UAS equipped with thermal sensors, imaging two grey seal (Halichoerus grypus) breeding colonies in eastern Canada. Human analysts counted and classified individual seals in imagery manually. Concurrently, an automated classification and detection algorithm discriminated seals based upon temperature, size, and shape of thermal signatures. Automated counts were within 95–98% of human estimates; at Saddle Island, the model estimated 894 seals compared to analyst counts of 913, and at Hay Island estimated 2188 seals compared to analysts’ 2311. The algorithm improves upon shortcomings of computer vision by effectively recognizing seals in aggregations while keeping model setup time minimal. Our study illustrates how UAS, thermal imagery, and automated detection can be combined to efficiently collect population data critical to wildlife management. PMID:28338047
NASA Astrophysics Data System (ADS)
Seymour, A. C.; Dale, J.; Hammill, M.; Halpin, P. N.; Johnston, D. W.
2017-03-01
Estimating animal populations is critical for wildlife management. Aerial surveys are used for generating population estimates, but can be hampered by cost, logistical complexity, and human risk. Additionally, human counts of organisms in aerial imagery can be tedious and subjective. Automated approaches show promise, but can be constrained by long setup times and difficulty discriminating animals in aggregations. We combine unmanned aircraft systems (UAS), thermal imagery and computer vision to improve traditional wildlife survey methods. During spring 2015, we flew fixed-wing UAS equipped with thermal sensors, imaging two grey seal (Halichoerus grypus) breeding colonies in eastern Canada. Human analysts counted and classified individual seals in imagery manually. Concurrently, an automated classification and detection algorithm discriminated seals based upon temperature, size, and shape of thermal signatures. Automated counts were within 95-98% of human estimates; at Saddle Island, the model estimated 894 seals compared to analyst counts of 913, and at Hay Island estimated 2188 seals compared to analysts’ 2311. The algorithm improves upon shortcomings of computer vision by effectively recognizing seals in aggregations while keeping model setup time minimal. Our study illustrates how UAS, thermal imagery, and automated detection can be combined to efficiently collect population data critical to wildlife management.
Jiang, L.; Liao, M.; Lin, H.; Yang, L.
2009-01-01
A wide range of urban ecosystem studies, including urban hydrology, urban climate, land use planning and watershed resource management, require accurate and up‐to‐date geospatial data of urban impervious surfaces. In this study, the potential of the synergistic use of optical and InSAR data in urban impervious surface mapping at the sub‐pixel level was investigated. A case study in Hong Kong was conducted for this purpose by applying a classification and regression tree (CART) algorithm to SPOT 5 multispectral imagery and ERS‐2 SAR data. Validated by reference data derived from high‐resolution colour‐infrared (CIR) aerial photographs, our results show that the addition of InSAR feature information can improve the estimation of impervious surface percentage (ISP) in comparison with using SPOT imagery alone. The improvement is especially notable in separating urban impervious surface from the vacant land/bare ground, which has been a difficult task in ISP modelling with optical remote sensing data. In addition, the results demonstrate the potential to map urban impervious surface by using InSAR data alone. This allows frequent monitoring of world's cities located in cloud‐prone and rainy areas.
NASA Astrophysics Data System (ADS)
Chybicki, Andrzej; Łubniewski, Zbigniew
2017-09-01
Satellite imaging systems have known limitations regarding their spatial and temporal resolution. The approaches based on subpixel mapping of the Earth's environment, which rely on combining the data retrieved from sensors of higher temporal and lower spatial resolution with the data characterized by lower temporal but higher spatial resolution, are of considerable interest. The paper presents the downscaling process of the land surface temperature (LST) derived from low resolution imagery acquired by the Advanced Very High Resolution Radiometer (AVHRR), using the inverse technique. The effective emissivity derived from another data source is used as a quantity describing thermal properties of the terrain in higher resolution, and allows the downsampling of low spatial resolution LST images. The authors propose an optimized downscaling method formulated as the inverse problem and show that the proposed approach yields better results than the use of other downsampling methods. The proposed method aims to find estimation of high spatial resolution LST data by minimizing the global error of the downscaling. In particular, for the investigated region of the Gulf of Gdansk, the RMSE between the AVHRR image downscaled by the proposed method and the Landsat 8 LST reference image was 2.255°C with correlation coefficient R equal to 0.828 and Bias = 0.557°C. For comparison, using the PBIM method, it was obtained RMSE = 2.832°C, R = 0.775 and Bias = 0.997°C for the same satellite scene. It also has been shown that the obtained results are also good in local scale and can be used for areas much smaller than the entire satellite imagery scene, depicting diverse biophysical conditions. Specifically, for the analyzed set of small sub-datasets of the whole scene, the obtained RSME between the downscaled and reference image was smaller, by approx. 0.53°C on average, in the case of applying the proposed method than in the case of using the PBIM method.
In traditional watershed delineation and topographic modelling, surface depressions are generally treated as spurious features and simply removed from a digital elevation model (DEM) to enforce flow continuity of water across the topographic surface to the watershed outlets. In r...
DARLA: Data Assimilation and Remote Sensing for Littoral Applications
2017-03-01
in the surf zone. The foam produced in an actively breaking crest, or wave roller, has a distinct signature in IR imagery. A retrieval algorithm is...the surface. The velocity profiles are obtained from a pulse-coherent acoustic Doppler sonar on a wave-following platform, termed a Surface Wave
NASA Astrophysics Data System (ADS)
Leydsman-McGinty, E. I.; Ramsey, R. D.; McGinty, C.
2013-12-01
The Remote Sensing/GIS Laboratory at Utah State University, in cooperation with the United States Environmental Protection Agency, is quantifying impervious surfaces for three watershed sub-basins in Utah. The primary objective of developing watershed-scale quantifications of impervious surfaces is to provide an indicator of potential impacts to wetlands that occur within the Wasatch Front and along the Great Salt Lake. A geospatial layer of impervious surfaces can assist state agencies involved with Utah's Wetlands Program Plan (WPP) in understanding the impacts of impervious surfaces on wetlands, as well as support them in carrying out goals and actions identified in the WPP. The three watershed sub-basins, Lower Bear-Malad, Lower Weber, and Jordan, span the highly urbanized Wasatch Front and are consistent with focal areas in need of wetland monitoring and assessment as identified in Utah's WPP. Geospatial layers of impervious surface currently exist in the form of national and regional land cover datasets; however, these datasets are too coarse to be utilized in fine-scale analyses. In addition, the pixel-based image processing techniques used to develop these coarse datasets have proven insufficient in smaller scale or detailed studies, particularly when applied to high-resolution satellite imagery or aerial photography. Therefore, object-based image analysis techniques are being implemented to develop the geospatial layer of impervious surfaces. Object-based image analysis techniques employ a combination of both geospatial and image processing methods to extract meaningful information from high-resolution imagery. Spectral, spatial, textural, and contextual information is used to group pixels into image objects and then subsequently used to develop rule sets for image classification. eCognition, an object-based image analysis software program, is being utilized in conjunction with one-meter resolution National Agriculture Imagery Program (NAIP) aerial photography from 2011.
Surface Rupture and Slip Distribution Resulting from the 2013 M7.7 Balochistan, Pakistan Earthquake
NASA Astrophysics Data System (ADS)
Reitman, N. G.; Gold, R. D.; Briggs, R. W.; Barnhart, W. D.; Hayes, G. P.
2014-12-01
The 24 September 2013 M7.7 earthquake in Balochistan, Pakistan, produced a ~200 km long left-lateral strike-slip surface rupture along a portion of the Hoshab fault, a moderately dipping (45-75º) structure in the Makran accretionary prism. The rupture is remarkably continuous and crosses only two (0.7 and 1.5 km wide) step-overs along its arcuate path through southern Pakistan. Displacements are dominantly strike-slip, with a minor component of reverse motion. We remotely mapped the surface rupture at 1:5,000 scale and measured displacements using high resolution (0.5 m) pre- and post-event satellite imagery. We mapped 295 laterally faulted stream channels, terrace margins, and roads to quantify near-field displacement proximal (±10 m) to the rupture trace. The maximum near-field left-lateral offset is 15±2 m (average of ~7 m). Additionally, we used pre-event imagery to digitize 254 unique landforms in the "medium-field" (~100-200 m from the rupture) and then measured their displacements compared to the post-event imagery. At this scale, maximum left-lateral offset approaches 17 m (average of ~8.5 m). The width (extent of observed surface faulting) of the rupture zone varies from ~1 m to 3.7 km. Near- and medium-field offsets show similar slip distributions that are inversely correlated with the width of the fault zone at the surface (larger offsets correspond to narrow fault zones). The medium-field offset is usually greater than the near-field offset. The along-strike surface slip distribution is highly variable, similar to the slip distributions documented for the 2002 Denali M7.9 earthquake and 2001 Kunlun M7.8 earthquake, although the Pakistan offsets are larger in magnitude. The 2013 Pakistan earthquake ranks among the largest documented continental strike-slip displacements, possibly second only to the 18+ m surface displacements attributed to the 1855 Wairarapa M~8.1 earthquake.
NASA Technical Reports Server (NTRS)
2014-01-01
Topics include: Data Fusion for Global Estimation of Forest Characteristics From Sparse Lidar Data; Debris and Ice Mapping Analysis Tool - Database; Data Acquisition and Processing Software - DAPS; Metal-Assisted Fabrication of Biodegradable Porous Silicon Nanostructures; Post-Growth, In Situ Adhesion of Carbon Nanotubes to a Substrate for Robust CNT Cathodes; Integrated PEMFC Flow Field Design for Gravity-Independent Passive Water Removal; Thermal Mechanical Preparation of Glass Spheres; Mechanistic-Based Multiaxial-Stochastic-Strength Model for Transversely-Isotropic Brittle Materials; Methods for Mitigating Space Radiation Effects, Fault Detection and Correction, and Processing Sensor Data; Compact Ka-Band Antenna Feed with Double Circularly Polarized Capability; Dual-Leadframe Transient Liquid Phase Bonded Power Semiconductor Module Assembly and Bonding Process; Quad First Stage Processor: A Four-Channel Digitizer and Digital Beam-Forming Processor; Protective Sleeve for a Pyrotechnic Reefing Line Cutter; Metabolic Heat Regenerated Temperature Swing Adsorption; CubeSat Deployable Log Periodic Dipole Array; Re-entry Vehicle Shape for Enhanced Performance; NanoRacks-Scale MEMS Gas Chromatograph System; Variable Camber Aerodynamic Control Surfaces and Active Wing Shaping Control; Spacecraft Line-of-Sight Stabilization Using LWIR Earth Signature; Technique for Finding Retro-Reflectors in Flash LIDAR Imagery; Novel Hemispherical Dynamic Camera for EVAs; 360 deg Visual Detection and Object Tracking on an Autonomous Surface Vehicle; Simulation of Charge Carrier Mobility in Conducting Polymers; Observational Data Formatter Using CMOR for CMIP5; Propellant Loading Physics Model for Fault Detection Isolation and Recovery; Probabilistic Guidance for Swarms of Autonomous Agents; Reducing Drift in Stereo Visual Odometry; Future Air-Traffic Management Concepts Evaluation Tool; Examination and A Priori Analysis of a Direct Numerical Simulation Database for High-Pressure Turbulent Flows; and Resource-Constrained Application of Support Vector Machines to Imagery.
NASA Technical Reports Server (NTRS)
Carlson, P. R. (Principal Investigator); Janda, R. J.
1973-01-01
The author has identified the following significant results. Release-recovery paths of drift cards released in conjunction with ERTS-1 overflight show that nearshore surface currents along the central and northern California coast flowed southward at an average rate in excess of 10 cm/sec (8.5 km/day) during August and September 1973 (California Current). By the middle of October 1973, the nearshore surface currents had reversed and the dominant flow velocity was northward at an average rate in excess of 20 cm/sec (17 km/ day) (Davidson Current). The August-September data suggested the presence of counterclockwise gyres in Monterey Bay and the Gulf of the Farallones, but by the middle of October, the gyres were no longer evident. Imagery of April 1973 showed well developed plumes of suspended sediment in Monterey Bay from the Salinas River and in the Gulf of the Farallones from San Francisco Bay. ERTS-1 imagery provides an effective means of monitoring timber harvest in the redwood forest along the northern California coast. ERTS-1 imagery also clearly portrays contrasting topographic belts characterized by fluvial erosion and by mass movement. The most visually apparent and most persistent river mouth suspended sediment plumes are associated with those rivers that drain belts of topography that appear to have been eroded primarily by mass movement.
HYPGEO - A collaboration between geophysics and remote sensing for mineral exploration
NASA Astrophysics Data System (ADS)
Meyer, Uwe; Frei, Michaela; Petersen, Hauke; Papenfuß, Anne; Ibs-von Seht, Malte; Stolz, Ronny; Queitsch, Matthias; Buchholz, Peter; Siemon, Bernhard
2017-04-01
The German Federal Institute for Geosciences and Natural Resources (BGR) aims to promote and design application oriented, generic techniques for the detection and 3D-characterisation of mineral deposits. Most newly developed mineral mining structures are still exploiting near surface sources. Since exploration and exploitation of mineral resources are increasingly under public review concerning environmental issues and social acceptance, non-invasive methods using satellites, fixed-wing aircraft, helicopters or unmanned aerial vehicles are preferred techniques within this investigation. Therefore, a data combination of helicopter-borne gamma ray spectrometry, hyperspectral imagery and full tensor gradient magnetometry is being evaluated. Test areas are open pit mining structures in Aznalcollar and Tharsis within the Pyrite Belt of southern Spain. First test flights using gamma-ray spectrometry and gradient magnetometry using SQUID-based sensors have been performed. Hyperspectral imagery has been applied on ground. Rock and core samples from the mines have been taken or investigated for further analysis. The basic idea is to combine surface triggered signals from gamma-ray spectrometry and hyperspectral imagery to enhance the detection of shallow mineralisation structures. In order to investigate whether these structures are connected with near-surface ore veins, gradient magnetometry was applied to model subsurface formations. To verify that good correlations between the applied methods are given, open pit mining structures were chosen, where the mineral content and the local to regional geology is well known.
InGaAs detectors and FPA's for a large span of applications: design and material considerations
NASA Astrophysics Data System (ADS)
Vermeiren, J. P.; Merken, P.
2017-11-01
Compared with the other Infrared detector materials, such as HgCdTe (or MCT) and lead salts (e.g.: PbS, PbSe, PbSnTe, …), the history of InGaAs FPA's is not that old. Some 25 years ago the first linear detectors were used for space missions [1,2]. During the last 15-20 years InGaAs, grown lattice matched on InP, has become the work horse for the telecommunication industry [3] and later on for passive and active imagery in the SWIR range. For longer wavelengths than 1.7 μm, III-V materials are in strong competition with SWIR MCT and till now the performance of MCT is better than high In-content InGaAs. During the last years some alternatives based on quaternary materials [4] and on Superlattice structures [5] are making gradual progress in such a way that they can yield performing Focal planes in the (near) future. As the SWIR wavelengths range covers a large variety of applications, also the FPA characteristics and mainly the ROIC properties need to be adjusted to fulfil the mission requirements with the requested performance. Additionally one has to bear in mind that the nature of SWIR radiation is completely different from what is usually encountered in IR imaging. Whereas the signal of thermal imagery in the Middle Wavelength (MWIR: [3 - 5 μm]) or Long Wavelength (LWIR: [8 - 10 μm] or [8 - 12 μm]) band is characterized by a large DC pedestal, caused by objects at ambient temperature, and a small AC signal, due to the small temperature or emissivity variations, SWIR range imagery is characterized by a large dynamic range and almost no DC signal. In this sense the SWIR imagery is resembling more the nature of Visible and NIR imaging than that of thermal imagery.
Speed and accuracy improvements in FLAASH atmospheric correction of hyperspectral imagery
NASA Astrophysics Data System (ADS)
Perkins, Timothy; Adler-Golden, Steven; Matthew, Michael W.; Berk, Alexander; Bernstein, Lawrence S.; Lee, Jamine; Fox, Marsha
2012-11-01
Remotely sensed spectral imagery of the earth's surface can be used to fullest advantage when the influence of the atmosphere has been removed and the measurements are reduced to units of reflectance. Here, we provide a comprehensive summary of the latest version of the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes atmospheric correction algorithm. We also report some new code improvements for speed and accuracy. These include the re-working of the original algorithm in C-language code parallelized with message passing interface and containing a new radiative transfer look-up table option, which replaces executions of the MODTRAN model. With computation times now as low as ~10 s per image per computer processor, automated, real-time, on-board atmospheric correction of hyper- and multi-spectral imagery is within reach.
NASA Technical Reports Server (NTRS)
Myers, V. I. (Principal Investigator); Dalsted, K. J.; Best, R. G.; Smith, J. R.; Eidenshink, J. C.; Schmer, F. A.; Andrawis, A. S.; Rahn, P. H.
1977-01-01
The author has identified the following significant results. Digital analysis of LANDSAT CCT's indicated that two discrete spectral background zones occurred among the five soil zone. K-CLASS classification of corn revealed that accuracy increased when two background zones were used, compared to the classification of corn stratified by five soil zones. Selectively varying film type developer and development time produces higher contract in reprocessed imagery. Interpretation of rangeland and cropped land data from 1968 aerial photography and 1976 LANDSAT imagery indicated losses in rangeland habitat. Thermal imagery was useful in locating potential sources of sub-surface water and geothermal energy, estimating evapotranspiration, and inventorying the land.
Analysis of Photosynthetic Rate and Bio-Optical Components from Ocean Color Imagery
NASA Technical Reports Server (NTRS)
Kiefer, Dale A.; Stramski, Dariusz
1997-01-01
Our research over the last 5 years indicates that the successful transformation of ocean color imagery into maps of bio-optical properties will require continued development and testing of algorithms. In particular improvements in the accuracy of predicting from ocean color imagery the concentration of the bio-optical components of sea as well as the rate of photosynthesis will require progress in at least three areas: (1) we must improve mathematical models of the growth and physiological acclimation of phytoplankton; (2) we must better understand the sources of variability in the absorption and backscattering properties of phytoplankton and associated microparticles; and (3) we must better understand how the radiance distribution just below the sea surface varies as a function sun and sky conditions and inherent optical properties.
Haynes, Jonathan V.; Senay, Gabriel B.
2012-01-01
The Simplified Surface Energy Balance (SSEB) model uses satellite imagery to estimate actual evapotranspiration (ETa) at 1-kilometer resolution. SSEB ETa is useful for estimating irrigation water use; however, resolution limitations restrict its use to regional scale applications. The U.S. Geological Survey investigated the downscaling potential of SSEB ETa from 1 kilometer to 250 meters by correlating ETa with the Normalized Difference Vegetation Index (NDVI) from the Moderate Resolution Imaging Spectroradiometer instrument (MODIS). Correlations were studied in three arid to semiarid irrigated landscapes of the Western United States (Escalante Valley near Enterprise, Utah; Palo Verde Valley near Blythe, California; and part of the Columbia Plateau near Quincy, Washington) during several periods from 2002 to 2008. Irrigation season ETa-NDVI correlations were lower than expected, ranging from R2 of 0.20 to 0.61 because of an eastward 2–3 kilometer shift in ETadata. The shift is due to a similar shift identified in the land-surface temperature (LST) data from the MODIS Terra satellite, which is used in the SSEB model. Further study is needed to delineate the Terra LST shift, its effect on SSEB ETa, and the relation between ETa and NDVI.
Postfire soil burn severity mapping with hyperspectral image unmixing
Robichaud, P.R.; Lewis, S.A.; Laes, D.Y.M.; Hudak, A.T.; Kokaly, R.F.; Zamudio, J.A.
2007-01-01
Burn severity is mapped after wildfires to evaluate immediate and long-term fire effects on the landscape. Remotely sensed hyperspectral imagery has the potential to provide important information about fine-scale ground cover components that are indicative of burn severity after large wildland fires. Airborne hyperspectral imagery and ground data were collected after the 2002 Hayman Fire in Colorado to assess the application of high resolution imagery for burn severity mapping and to compare it to standard burn severity mapping methods. Mixture Tuned Matched Filtering (MTMF), a partial spectral unmixing algorithm, was used to identify the spectral abundance of ash, soil, and scorched and green vegetation in the burned area. The overall performance of the MTMF for predicting the ground cover components was satisfactory (r2 = 0.21 to 0.48) based on a comparison to fractional ash, soil, and vegetation cover measured on ground validation plots. The relationship between Landsat-derived differenced Normalized Burn Ratio (dNBR) values and the ground data was also evaluated (r2 = 0.20 to 0.58) and found to be comparable to the MTMF. However, the quantitative information provided by the fine-scale hyperspectral imagery makes it possible to more accurately assess the effects of the fire on the soil surface by identifying discrete ground cover characteristics. These surface effects, especially soil and ash cover and the lack of any remaining vegetative cover, directly relate to potential postfire watershed response processes. ?? 2006 Elsevier Inc. All rights reserved.
Glacier Changes in the Russian High Arctic.
NASA Astrophysics Data System (ADS)
Pritchard, M. E.; Willis, M. J.; Melkonian, A. K.; Golos, E. M.; Stewart, A.; Ornelas, G.; Ramage, J. M.
2014-12-01
We provide new surveys of ice speeds and surface elevation changes for ~40,000 km2 of glaciers and ice caps at the Novaya Zemlya (NovZ) and Severnaya Zemlya (SevZ) Archipelagoes in the Russian High Arctic. The contribution to sea level rise from this ice is expected to increase as the region continues to warm at above average rates. We derive ice speeds using pixel-tracking on radar and optical imagery, with additional information from InSAR. Ice speeds have generally increased at outlet glaciers compared to those measured using interferometry from the mid-1990s'. The most pronounced acceleration is at Inostrantseva Glacier, one of the northernmost glaciers draining into the Barents Sea on NovZ. Thinning rates over the last few decades are derived by regressing stacked elevations from multiple Digital Elevations Models (DEMs) sourced from ASTER and Worldview stereo-imagery and cartographically derived DEMs. DEMs are calibrated and co-registered using ICESat returns over bedrock. On NovZ thinning of between 60 and 100 meters since the 1950s' is common. Similar rates between the late 1980s' and the present are seen at SevZ. We examine in detail the response of the outlet glaciers of the Karpinsky and Russanov Ice Caps on SevZ to the rapid collapse of the Matusevich Ice Shelf in the late summer of 2012. We do not see a dynamic thinning response at the largest feeder glaciers. This may be due to the slow response of the cold polar glaciers to changing boundary conditions, or the glaciers may be grounded well above sea level. Speed increases in the interior are difficult to assess with optical imagery as there are few trackable features. We therefore use pixel tracking on Terra SARX acquisitions before and after the collapse of the ice shelf to compute rates of flow inland, at slow moving ice. Interior ice flow has not accelerated in response to the collapse of the ice shelf but interior rates at the Karpinsky Ice Cap have increased by about 50% on the largest outlet glacier compared to rates found using ERS data in the mid-90s. Speeds have at least doubled at some of the smaller glaciers that feed the Matusevich from the south. We investigate the causes of acceleration at both archipelagoes by comparing sea surface temperatures and passive microwave observations of the timing and duration of ice surface melting.
NASA Technical Reports Server (NTRS)
Patzert, William C.
1999-01-01
The goal of this research is to monitor the health and vigor of coral reef ecosystems, and their sensitivity to natural and anthropogenic climate changes. To achieve these lofty goals, this research is investigating the feasibility of using spaceborne high-resolution spectrometers (on the US Landsat, French Systeme Probatoire pour l'Observation de la Terre [SPOT] and/or the Indian Resources Satellite [IRS 1C & 1D] spacecraft) to first map the aerial extent of coral reef systems, and second separate the amount of particular corals. If this is successful, we could potentially provide a quantum leap in our understanding of coral reef systems, as well as provide much needed baseline data to measure future changes in global coral reef ecosystems. In collaboration with Tomas Tomascik, Yann Morel, and other colleagues, a series of experiments were planned to coordinate in situ coral observations, high-resolution spaceborne imagery (from Landsat, SPOT, and, possibly, IRS IC spacecraft), and NASA Space Shuttle photographs and digital images. Our eventual goal is to develop "coral health algorithms" that can be used to assess time series of imagery collected from satellite sensors (Landsat since 1972, SPOT since 1986) in concert with in situ observations. The bad news from last year was that from 1997 to mid- 1998, the extreme cloudiness over southeast Asia due to prolonged smoke from El Nino-related fires and the economic chaos in this region frustrated both our space and reef-based data collection activities. When this volatile situation stabilizes, we will restart these activities. The good news was that in collaboration with Al Strong at the National Oceanic and Atmospheric Administration (NOAA) we had an exciting year operationally using the NOAA's Advanced Very High Resolution Radiometer sensor derived sea surface temperature products to warn of coral "bleaching" at many locations throughout the tropics. Data from NOAA's satellites showed that during the El Nino of 1997 and the first half of 1998, more ocean area in the tropics experienced exceptionally high sea surface temperatures, or "hot spots," than have been observed in any fall year since the El Nino of 1982. From January to July, the coral bleaching events were concentrated in the Southern Hemisphere (during its warm season). Since July 1998, the reports of extensive coral bleaching have again spread into regions of the Northern Hemisphere following abnormally high sea surface temperatures, especially around the Philippines and throughout the Caribbean Basin, Bahamas, Bermuda and Florida Keys. These El Nino induced events clearly demonstrated that corals are the "canaries of the marine ecosystem," highly sensitive to short-term natural climate events (El Nino), and should be monitored as measures of longer-term environmental and climate change. Additional information is contained in the original.
NASA Technical Reports Server (NTRS)
Cole, M. M. (Principal Investigator); Owen-Jones, S.
1976-01-01
The author has identified the following significant results. Distinctive spectral signatures were found associated with areas of near surface bedrock with covered ground east of Dugald River and along the Thorntonia River valley west of Lady Annie. Linears identified in the Dugald River area on LANDSAT 2 imagery taken in March and July 1975 over the Cloncurry-Dobbyn area, displayed preferred orientation. A linear group with NE-SW orientation was identified in the Lady Annie area. In this area, the copper mineralization in the Mt. Kelly area occurs along a well marked linear with NNW/SSE direction apparent on images for March, September, and November 1975. Geobotanical anomalies provided surface expression of the copper deposits in Mt. Kelley.
FEX: A Knowledge-Based System For Planimetric Feature Extraction
NASA Astrophysics Data System (ADS)
Zelek, John S.
1988-10-01
Topographical planimetric features include natural surfaces (rivers, lakes) and man-made surfaces (roads, railways, bridges). In conventional planimetric feature extraction, a photointerpreter manually interprets and extracts features from imagery on a stereoplotter. Visual planimetric feature extraction is a very labour intensive operation. The advantages of automating feature extraction include: time and labour savings; accuracy improvements; and planimetric data consistency. FEX (Feature EXtraction) combines techniques from image processing, remote sensing and artificial intelligence for automatic feature extraction. The feature extraction process co-ordinates the information and knowledge in a hierarchical data structure. The system simulates the reasoning of a photointerpreter in determining the planimetric features. Present efforts have concentrated on the extraction of road-like features in SPOT imagery. Keywords: Remote Sensing, Artificial Intelligence (AI), SPOT, image understanding, knowledge base, apars.
NASA Astrophysics Data System (ADS)
Nelli, Narendra Reddy; Choudhary, Raj Kumar; Rao, Kusuma
The UTLS region, a transition region between the troposphere and the stratosphere is of concern to climate scientists as its temperature variations are crucial in determining the water vapour and the other trace gases transport between the two regions, which inturn determine the radiative warming and cooling of the troposphere and the stratosphere. To examine, the temperature variations from surface to lower stratosphere,a major experiment facility was set up for upper air and surface measurements during the Annular Solar Eclipse (ASE) of January 15, 2010 at Tirunelveli (8.72 N, 77.81 E) located in 94% eclipse path in the southern peninsular India. The instruments,namely, 1. high resolution GPS radiosonde system, 2. an instrumented 15 m high Mini Boundary Layer Mast, 3. an instrumented 1 m high Near Surface Mast (NSM), radiation and other ground sensors were operated during the period 14-19 Jan, 2010. The ASE of January 15, 2010 was unique being the longest in duration (9 min, 15.3 sec) among the similar ones that occurred in the past. The major inference from an analysis of surface and upper air measurements is the occurrence of troposphere cooling during the eclipse with the peak cooling of 5 K at 15 km height with respect to no-eclispe conditions. Also, intense warming in the stratosphere is observed with the peak warming of 7 K at 19 km height.Cooling of the Troposphere as the eclipse advanced and the revival to its normal temperature is clearly captured in upper air measurements. The downward vertical velocities observed at 100 hPa in NCEP Re-analyses, consistent with the tropospheric cooling during the ASE window, may be causing the stratospheric warming. Partly, these vertical velocities could be induced by the mesoscale circulation associated with the mesoscale convective system that prevailed parallel to the eclipse path as described in METEOSAT imageries of brightness temperatures from IR channel. Further analysis is being carried out to quantify the variations in turbulent parameters during ASE window using the high resolution GPS Radiosonde data.
NASA Astrophysics Data System (ADS)
Wright, L.; Coddington, O.; Pilewskie, P.
2015-12-01
Current challenges in Earth remote sensing require improved instrument spectral resolution, spectral coverage, and radiometric accuracy. Hyperspectral instruments, deployed on both aircraft and spacecraft, are a growing class of Earth observing sensors designed to meet these challenges. They collect large amounts of spectral data, allowing thorough characterization of both atmospheric and surface properties. The higher accuracy and increased spectral and spatial resolutions of new imagers require new numerical approaches for processing imagery and separating surface and atmospheric signals. One potential approach is source separation, which allows us to determine the underlying physical causes of observed changes. Improved signal separation will allow hyperspectral instruments to better address key science questions relevant to climate change, including land-use changes, trends in clouds and atmospheric water vapor, and aerosol characteristics. In this work, we investigate a Non-negative Matrix Factorization (NMF) method for the separation of atmospheric and land surface signal sources. NMF offers marked benefits over other commonly employed techniques, including non-negativity, which avoids physically impossible results, and adaptability, which allows the method to be tailored to hyperspectral source separation. We adapt our NMF algorithm to distinguish between contributions from different physically distinct sources by introducing constraints on spectral and spatial variability and by using library spectra to inform separation. We evaluate our NMF algorithm with simulated hyperspectral images as well as hyperspectral imagery from several instruments including, the NASA Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), NASA Hyperspectral Imager for the Coastal Ocean (HICO) and National Ecological Observatory Network (NEON) Imaging Spectrometer.
Storlazzi, C.D.; McManus, M.A.; Figurski, J.D.
2003-01-01
Thermistor chains and acoustic Doppler current profilers were deployed at the northern and southern ends of Monterey Bay to examine the thermal and hydrodynamic structure of the inner (h ??? 20 m) shelf of central California. These instruments sampled temperature and current velocity at 2-min intervals over a 13-month period from June 2000 to July 2001. Time series of these data, in conjunction with SST imagery and CODAR sea surface current maps, helped to establish the basic hydrography for Monterey Bay. Analysis of time series data revealed that depth integrated flow at both sites was shore parallel (northwest-southeast) with net flows out of the Bay (northwest). The current and temperature records were dominated by semi-diurnal and diurnal tidal signals that lagged the surface tides by 3 h on average. Over the course of an internal tidal cycle these flows were asymmetric, with the flow during the flooding internal tide to the southeast typically lasting only one-third as long as the flow to the northwest during the ebbing internal tide. The transitions from ebb to flood were rapid and bore-like in nature; they were also marked by rapid increases in temperature and high shear. During the spring and summer, when thermal stratification was high, we observed almost 2000 high-frequency (Tp ??? 4-20 min) internal waves in packets of 8-10 following the heads of these bore-like features. Previous studies along the West Coast of the US have concluded that warm water bores and high-frequency internal waves may play a significant role in the onshore transport of larvae.
Exploring Antarctic Land Surface Temperature Extremes Using Condensed Anomaly Databases
NASA Astrophysics Data System (ADS)
Grant, Glenn Edwin
Satellite observations have revolutionized the Earth Sciences and climate studies. However, data and imagery continue to accumulate at an accelerating rate, and efficient tools for data discovery, analysis, and quality checking lag behind. In particular, studies of long-term, continental-scale processes at high spatiotemporal resolutions are especially problematic. The traditional technique of downloading an entire dataset and using customized analysis code is often impractical or consumes too many resources. The Condensate Database Project was envisioned as an alternative method for data exploration and quality checking. The project's premise was that much of the data in any satellite dataset is unneeded and can be eliminated, compacting massive datasets into more manageable sizes. Dataset sizes are further reduced by retaining only anomalous data of high interest. Hosting the resulting "condensed" datasets in high-speed databases enables immediate availability for queries and exploration. Proof of the project's success relied on demonstrating that the anomaly database methods can enhance and accelerate scientific investigations. The hypothesis of this dissertation is that the condensed datasets are effective tools for exploring many scientific questions, spurring further investigations and revealing important information that might otherwise remain undetected. This dissertation uses condensed databases containing 17 years of Antarctic land surface temperature anomalies as its primary data. The study demonstrates the utility of the condensate database methods by discovering new information. In particular, the process revealed critical quality problems in the source satellite data. The results are used as the starting point for four case studies, investigating Antarctic temperature extremes, cloud detection errors, and the teleconnections between Antarctic temperature anomalies and climate indices. The results confirm the hypothesis that the condensate databases are a highly useful tool for Earth Science analyses. Moreover, the quality checking capabilities provide an important method for independent evaluation of dataset veracity.
Aerial thermal scanner data for monitoring rooftop temperatures
NASA Technical Reports Server (NTRS)
Bjorkland, J.; Schmer, F. A.; Isakson, R. E.
1975-01-01
Four Nebraska communities and one South Dakota community were surveyed. Thermal scanner data were converted to a film format and the resultant imagery was successfully employed to monitor rooftop temperatures. The program places emphasis on heat losses resulting from inadequate home insulation, offers CENGAS customers the opportunity to observe a thermogram of their rooftop, and assists homeowners in evaluating insulation needs.
An evaluation of satellite-derived humidity and its relationship to convective development
NASA Technical Reports Server (NTRS)
Fuelberg, Henry E.
1993-01-01
An aircraft prototype of the High-Resolution Interferometer Sounder (HIS) was flown over Tennessee and northern Alabama during summer 1986. The HIS temperature and dewpoint soundings were examined on two flight days to determine their error characteristics and utility in mesoscale analyses. Random errors were calculated from structure functions while total errors were obtained by pairing the HIS soundings with radiosonde-derived profiles. Random temperature errors were found to be less than 1 C at most levels, but random dewpoint errors ranged from 1 to 5 C. Total errors of both parameters were considerably greater, with dewpoint errors especially large on the day having a pronounced subsidence inversion. Cumulus cloud cover on 15 June limited HIS mesoscale analyses on that day. Previously undetected clouds were found in many HIS fields of view, and these probably produced the low-level horizontal temperature and dewpoint variations observed in the retrievals. HIS dewpoints at 300 mb indicated a strong moisture gradient that was confirmed by GOES 6.7-micron imagery. HIS mesoscale analyses on 19 June revealed a tongue of humid air stretching across the study area. The moist region was confirmed by radiosonde data and imagery from the Multispectral Atmospheric Mapping Sensor (MAMS). Convective temperatures derived from HIS retrievals helped explain the cloud formation that occurred after the HIS overflights. Crude estimates of Bowen ratio were obtained from HIS data using a mixing-line approach. Values indicated that areas of large sensible heat flux were the areas of first cloud development. These locations were also suggested by GOES visible and infrared imagery. The HIS retrievals indicated that areas of thunderstorm formation were regions of greatest instability. Local landscape variability and atmospheric temperature and humidity fluctuations were found to be important factors in producing the cumulus clouds on 19 June. HIS soundings were capable of detecting some of this variability. The authors were impressed by HIS's performance on the two study days.
Skin Temperature Processes in the Presence of Sea Ice
NASA Astrophysics Data System (ADS)
Brumer, S. E.; Zappa, C. J.; Brown, S.; McGillis, W. R.; Loose, B.
2013-12-01
Monitoring the sea-ice margins of polar oceans and understanding the physical processes at play at the ice-ocean-air interface is essential in the perspective of a changing climate in which we face an accelerated decline of ice caps and sea ice. Remote sensing and in particular InfraRed (IR) imaging offer a unique opportunity not only to observe physical processes at sea-ice margins, but also to measure air-sea exchanges near ice. It permits monitoring ice and ocean temperature variability, and can be used for derivation of surface flow field allowing investigating turbulence and shearing at the ice-ocean interface as well as ocean-atmosphere gas transfer. Here we present experiments conducted with the aim of gaining an insight on how the presence of sea ice affects the momentum exchange between the atmosphere and ocean and investigate turbulence production in the interplay of ice-water shear, convection, waves and wind. A set of over 200 high resolution IR imagery records was taken at the US Army Cold Regions Research and Engineering Laboratory (CRREL, Hanover NH) under varying ice coverage, fan and pump settings. In situ instruments provided air and water temperature, salinity, subsurface currents and wave height. Air side profiling provided environmental parameters such as wind speed, humidity and heat fluxes. The study aims to investigate what can be gained from small-scale high-resolution IR imaging of the ice-ocean-air interface; in particular how sea ice modulates local physics and gas transfer. The relationship between water and ice temperatures with current and wind will be addressed looking at the ocean and ice temperature variance. Various skin temperature and gas transfer parameterizations will be evaluated at ice margins under varying environmental conditions. Furthermore the accuracy of various techniques used to determine surface flow will be assessed from which turbulence statistics will be determined. This will give an insight on how ice presence may affect the dissipation of turbulent kinetic energy.
NASA Astrophysics Data System (ADS)
Gasiewski, A. J.; Sanders, B. T.; Gallaher, D. W.; Periasamy, L.; Alvarenga, G.; Weaver, R.; Scambos, T. A.
2014-12-01
PolarCube is a 3U CubeSat based on the CU ALL-STAR bus hosting an eight-channel passive microwave scanning spectrometer operating at the 118.7503 GHz (1-) O2 resonance. The anticipated launch date is in late 2015. It is being designed to operate for 12 months on orbit to provide global 118-GHz spectral imagery of the Earth over a full seasonal cycle. The mission will focus on the study of Arctic vertical temperature structure and its relation to sea ice coverage, but include the secondary goals of assessing the potential for convective cloud mass detection and cloud top altitude measurement and hurricane warm core sounding. The principles used by PolarCube for sounding and cloud measurement have been well established in number of peer-reviewed papers, although measurements using the 118 GHz oxygen line over the dry polar regions (unaffected by water vapor) have never been demonstrated from space. The PolarCube channels are selected to probe clear-air emission over vertical levels from the surface to the lower stratosphere. Operational spaceborne microwave soundings have available for decades but using lower frequencies (50-57 GHz) and from higher altitudes. While the JPSS ATMS sensor provides global coverage at ~32 km resolution PolarCube will improve on this resolution by a factor of two (~16 km), thus facilitating a key science goal of mapping sea ice concentration and extent while obtaining temperature profile data. Additionally, we seek to correlate freeze-thaw line data from the NASA SMAP mission with atmospheric temperature structure to help understand the relationship between clouds, temperature, and surface energy fluxes during seasonal transitions. PolarCube will also provide the first demonstration of a very low cost passive microwave sounder that if operated in a fleet configuration would have the potential to fulfill the goals of the Precipitation Atmospheric Temperature and Humidity (PATH) mission, as defined in the NRC Decadal Survey.
NASA Astrophysics Data System (ADS)
Smigaj, M.; Gaulton, R.; Barr, S. L.; Suárez, J. C.
2015-08-01
Climate change has a major influence on forest health and growth, by indirectly affecting the distribution and abundance of forest pathogens, as well as the severity of tree diseases. Temperature rise and changes in precipitation may also allow the ranges of some species to expand, resulting in the introduction of non-native invasive species, which pose a significant risk to forests worldwide. The detection and robust monitoring of affected forest stands is therefore crucial for allowing management interventions to reduce the spread of infections. This paper investigates the use of a low-cost fixed-wing UAV-borne thermal system for monitoring disease-induced canopy temperature rise. Initially, camera calibration was performed revealing a significant overestimation (by over 1 K) of the temperature readings and a non-uniformity (exceeding 1 K) across the imagery. These effects have been minimised with a two-point calibration technique ensuring the offsets of mean image temperature readings from blackbody temperature did not exceed ± 0.23 K, whilst 95.4% of all the image pixels fell within ± 0.14 K (average) of mean temperature reading. The derived calibration parameters were applied to a test data set of UAV-borne imagery acquired over a Scots pine stand, representing a range of Red Band Needle Blight infection levels. At canopy level, the comparison of tree crown temperature recorded by a UAV-borne infrared camera suggests a small temperature increase related to disease progression (R = 0.527, p = 0.001); indicating that UAV-borne cameras might be able to detect sub-degree temperature differences induced by disease onset.
Crew Earth Observations: Twelve Years of Documenting Earth from the International Space Station
NASA Technical Reports Server (NTRS)
Evans, Cynthia A.; Stefanov, William L.; Willis, Kimberley; Runco, Susan; Wilkinson, M. Justin; Dawson, Melissa; Trenchard, Michael
2012-01-01
The Crew Earth Observations (CEO) payload was one of the initial experiments aboard the International Space Station, and has been continuously collecting data about the Earth since Expedition 1. The design of the experiment is simple: using state-of-the-art camera equipment, astronauts collect imagery of the Earth's surface over defined regions of scientific interest and also document dynamic events such as storms systems, floods, wild fires and volcanic eruptions. To date, CEO has provided roughly 600,000 images of Earth, capturing views of features and processes on land, the oceans, and the atmosphere. CEO data are less rigorously constrained than other remote sensing data, but the volume of data, and the unique attributes of the imagery provide a rich and understandable view of the Earth that is difficult to achieve from the classic remote sensing platforms. In addition, the length-of-record of the imagery dataset, especially when combined with astronaut photography from other NASA and Russian missions starting in the early 1960s, provides a valuable record of changes on the surface of the Earth over 50 years. This time period coincides with the rapid growth of human settlements and human infrastructure.
Using remotely sensed imagery to estimate potential annual pollutant loads in river basins.
He, Bin; Oki, Kazuo; Wang, Yi; Oki, Taikan
2009-01-01
Land cover changes around river basins have caused serious environmental degradation in global surface water areas, in which the direct monitoring and numerical modeling is inherently difficult. Prediction of pollutant loads is therefore crucial to river environmental management under the impact of climate change and intensified human activities. This research analyzed the relationship between land cover types estimated from NOAA Advanced Very High Resolution Radiometer (AVHRR) imagery and the potential annual pollutant loads of river basins in Japan. Then an empirical approach, which estimates annual pollutant loads directly from satellite imagery and hydrological data, was investigated. Six water quality indicators were examined, including total nitrogen (TN), total phosphorus (TP), suspended sediment (SS), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), and Dissolved Oxygen (DO). The pollutant loads of TN, TP, SS, BOD, COD, and DO were then estimated for 30 river basins in Japan. Results show that the proposed simulation technique can be used to predict the pollutant loads of river basins in Japan. These results may be useful in establishing total maximum annual pollutant loads and developing best management strategies for surface water pollution at river basin scale.
2014-07-01
Radar and satellite imagery indicate that the convective organization of the cyclone has improved, and the cyclone is being upgraded based on a sustained wind report of 33 kt from Settlement Point, Grand Bahama Island earlier this morning. Low shear conditions and warm sea-surface temperatures should allow for at least steady strengthening, and the cyclone is expected to become a hurricane by 72 hours. This image was taken by GOES East at 1445Z on July 1, 2014. Credit: NOAA/NASA GOES Project Caption: NOAA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Survey of the Pompeii (IT) archaeological Regions with the multispectral thermal airborne TASI data
NASA Astrophysics Data System (ADS)
Pignatti, Stefano; Palombo, Angelo; Pascucci, Simone; Santini, Federico; Laneve, Giovanni
2017-04-01
Thermal remote sensing, as a tool for analyzing environmental variables with regards to archaeological prospecting, has been growing ever mainly because airborne surveys allow to provide to archaeologists images at meter scale. The importance of this study lies in the evaluation of TIR imagery in view of the use of unmanned aerial vehicles (UAVs) imagery, for the Conservation of Cultural Heritage, that should provide at low cost very high spatial resolution thermal imaging. The research aims at analyzing the potential of the thermal imaging [1] on some selected areas of the Pompeii archaeological park. To this purpose, on December the 7th, 2015, a TASI-600, an [2] airborne multispectral thermal imagery (32 channels from 8 to 11.5 nm with a spectral resolution of 100nm and a spatial resolution of 1m/pixel) has surveyed the archaeological Pompeii Regions. Thermal images have been corrected, calibrated in order to obtain land surface temperatures (LST) and emissivity data set to be applied for the further analysis. The thermal data pre-processing has included: ii) radiometric calibration of the raw data and the correction of the blinking pixel; ii) atmospheric correction performed by using MODTRAN; iii) Temperature Emissivity Separation (TES) to obtain emissivity and LST maps [3]. Our objective is to shows the major results of the IR survey, the pre-processing of the multispectral thermal imagery. LST and emissivity maps have been analysed to describe the thermal/emissivity pattern of the different Regions as function of the presence, in first subsurface, of archaeological features. The obtained preliminary results are encouraging, even though, the vegetation cover, covering the different Pompeii Regions, is one of the major issues affecting the usefulness of the TIR sensing. Of course, LST anomalies and emissivity maps need to be further integrated with the classical geophysical investigation techniques to have a complete validation and to better evaluate the usefulness of the IR sensing References 1. Pascucci S., Cavalli R M., Palombo A. & Pignatti S. (2010), Suitability of CASI and ATM airborne remote sensing data for archaeological subsurface structure detection under different land cover: the Arpi case study (Italy). In Journal of Geophysics and Engineering, Vol. 7 (2), pp. 183-189. 2. Pignatti, S.; Lapenna, V.; Palombo, A.; Pascucci, S.; Pergola, N.; Cuomo, V. 2011. An advanced tool of the CNR IMAA EO facilities: Overview of the TASI-600 hyperspectral thermal spectrometer. 3rd Hyperspectral Image and Signal Processing: Evolution in Remote Sensing Conference (WHISPERS), 2011; DOI 10.1109/WHISPERS.2011.6080890. 3. Z.L. Li, F. Becker, M.P Stoll and Z. Wan. 1999. Evaluation of six methods for extracting relative emissivity spectra from thermal infrared images. Remote Sensing of Environment, vol. 69, 197-214.
An intercomparison study of TSM, SEBS, and SEBAL using high-resolution imagery and lysimetric data
USDA-ARS?s Scientific Manuscript database
Over the past three decades, numerous remote sensing based ET mapping algorithms were developed. These algorithms provided a robust, economical, and efficient tool for ET estimations at field and regional scales. The Two Source Model (TSM), Surface Energy Balance System (SEBS), and Surface Energy Ba...
Optimizing Hyperspectral Imagery Anomaly Detection through Robust Parameter Design
2011-10-01
72 3.2.1 Standard RSM Model ( y (1)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.2.2 RPD Model Including N ×N ( y (2...LT surface plot for y (1) model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.6. LT surface plot for y (2) model...88 3.12. AutoGAD y (1) residual versus predicted plot. . . . . . . . . . . . . . . . . . . . . . . . 96 3.13
Generating multi-scale albedo look-up maps using MODIS BRDF/Albedo products and landsat imagery
USDA-ARS?s Scientific Manuscript database
Surface albedo determines radiative forcing and is a key parameter for driving Earth’s climate. Better characterization of surface albedo for individual land cover types can reduce the uncertainty in estimating changes to Earth’s radiation balance due to land cover change. This paper presents a mult...
Tropical West Pacific Imagery - Satellite Products and Services
Division/Office of Satellite and Product Operations Skip Navigation Link NESDIS banner image Information Service Home Page Default Office of Satellite and Product Operations banner image and link to OSPO MIRS MSPPS Ocean -- Coral Bleaching -- Ocean Color -- Sea/Lake Ice -- Sea Surface Height -- Sea Surface
NASA Astrophysics Data System (ADS)
Maggs, William Ward
A new agreement provides $220 million for development and construction of the Landsat 6 remote sensing satellite and its ground systems. The contract, signed on March 31, 1988, by the Department of Commerce (DOC) and the Earth Observation Satellite (EOSAT) Company of Lanham, Md., came just days after approval of DOC's Landsat commercialization plan by subcommittees of the House and Senate appropriations committees.The Landsat 6 spacecraft is due to be launched into orbit on a Titan II rocket in June 1991 from Vandenburg Air Force Base, Calif. The satellite will carry an Enhanced Thematic Mapper (ETM) sensor, an instrument sensitive to electromagnetic radiation in seven ranges or bands of wavelengths. The satellite's payload will also include the Sea Wide Field Sensor (Sea-WiFS), designed to provide information on sea surface temperature and ocean color. The sensor is being developed in a cooperative effort by EOSAT and the National Aeronautics and Space Administration (NASA). A less certain passenger is a proposed 5-m resolution, three-band sensor sensitive to visible light. EOSAT is trying to find both private financing for the device and potential buyers of the high-resolution imagery that it could produce. The company has been actively courting U.S. television networks, which have in the past used imagery from the European Système Probatoire d'Observation de la Terre (SPOT) satellite for news coverage.
NASA Technical Reports Server (NTRS)
Carlson, P. R. (Principal Investigator); Conomos, T. J.; Janda, R. J.; Peterson, D. H.
1973-01-01
The author has identified the following significant results. ERTS-1 multispectral scanner imagery of the nearshore surface waters of the Northeast Pacific Ocean is proving to be a useful tool for determining source and dispersal of suspended particulate matter. The principal sources of the turbid water, seen best on the green and red bands, are river and stream effluents and actively eroding coastlines; secondary sources are waste effluents and production of planktonic organisms, but these may sometimes be masked by the very turbid plumes of suspended sediment being discharged into the nearshore zone during times of high river discharge. The configuration and distribution of the plumes of turbid water also can be used to infer near-surface current directions. Comparison of imagery of the nearshore water off the northern California coast from October 1972 and January 1973 shows a reversal of the near-surface currents, from predominantly south-setting in the fall (California Current) to north-setting in the winter (Davidson Current).
NASA Technical Reports Server (NTRS)
Paden, Cynthia A.; Winant, Clinton D.; Abbott, Mark R.
1991-01-01
SST variability in the northern Gulf of California is examined on the basis of findings of two years of satellite infrared imagery (1984-1986). Empirical orthogonal functions of the temporal and spatial SST variance for 20 monthly mean images show that the dominant SST patterns are generated by spatially varying tidal mixing in the presence of seasonal heating and cooling. Atmospheric forcing of the northern gulf appears to occur over large spatial scales. Area-averaged SSTs for the Guaymas Basin, island region, and northern basin exhibit significant fluctuations which are highly correlated. These fluctuations in SST correspond to similar fluctuations in the air temperature which are related to synoptic weather events over the gulf. A regression analysis of the SST relative to the fortnightly tidal range shows that tidal mixing occurs over the sills in the island region as well as on the shallow northern shelf. Mixing over the sills occurs as a result of large breaking internal waves of internal hydraulic jumps which mix over water in the upper 300-500 m.
Tropical Storm Ernesto over Cuba
NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] Microwave Image
These infrared, microwave, and visible images were created with data retrieved by the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite. Infrared Image Because infrared radiation does not penetrate through clouds, AIRS infrared images show either the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures (in purple) are associated with high, cold cloud tops that make up the top of the storm. In cloud-free areas the AIRS instrument will receive the infrared radiation from the surface of the Earth, resulting in the warmest temperatures (orange/red). Microwave Image In the AIRS microwave imagery, deep blue areas in storms show where the most precipitation occurs, or where ice crystals are present in the convective cloud tops. Outside of these storm regions, deep blue areas may also occur over the sea surface due to its low radiation emissivity. On the other hand, land appears much warmer due to its high radiation emissivity. Microwave radiation from Earth's surface and lower atmosphere penetrates most clouds to a greater or lesser extent depending upon their water vapor, liquid water and ice content. Precipitation, and ice crystals found at the cloud tops where strong convection is taking place, act as barriers to microwave radiation. Because of this barrier effect, the AIRS microwave sensor detects only the radiation arising at or above their location in the atmospheric column. Where these barriers are not present, the microwave sensor detects radiation arising throughout the air column and down to the surface. Liquid surfaces (oceans, lakes and rivers) have 'low emissivity' (the signal isn't as strong) and their radiation brightness temperature is therefore low. Thus the ocean also appears 'low temperature' in the AIRS microwave images and is assigned the color blue. Therefore deep blue areas in storms show where the most precipitation occurs, or where ice crystals are present in the convective cloud tops. Outside of these storm regions, deep blue areas may also occur over the sea surface due to its low radiation emissivity. Land appears much warmer due to its high radiation emissivity. The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.NASA Technical Reports Server (NTRS)
Kemmerer, A. J.; Benigno, J. A.
1973-01-01
The author has identified the following significant results. A feasibility study to demonstrate the potential of satellites for providing fisheries significant information was conducted in the Mississippi Sound and adjacent offshore waters. Attempts were made to relate satellite acquired imagery to selected oceanographic parameters and then to relate these parameters to aircraft remotely sensed distribution patterns of resident surface schooling fishes. Initial results suggest that this approach is valid and that the satellite acquired imagery may have important fisheries resource assessment implications.
Investigation using data from ERTS to develop and implement utilization of living marine resources
NASA Technical Reports Server (NTRS)
Stevenson, W. H. (Principal Investigator); Pastula, E. J., Jr.
1973-01-01
The author has identified the following significant results. A feasibility study to demonstrate the potential of satellites for providing fisheries significant information was conducted in the Mississippi Sound and adjacent offshore waters. Attempts were made to relate satellite acquired imagery to selected oceanographic parameters and then to relate these parameters to aircraft remotely sensed distribution patterns of resident surface schooling fishes. Initial results suggest that this approach is valid and that the satellite acquired imagery may have important fisheries resource assessment implications.
NASA Astrophysics Data System (ADS)
Haritashya, U. K.; Strattman, K.; Kargel, J. S.
2017-12-01
A high altitude glacierized region in the central Himalaya hosts thousands of glaciers and originates major rivers like the Ganges and Yamuna. This region has seen significant changes in last few decades due to climate system coupling involving the westerlies and the monsoon, high seismic activities, complex topography, extensive glacier debris cover, and widespread mass movement. Consequently, we analyzed regional variability in hundreds of glacier surface processes and downstream river basins of varying geomorphology using a variety of satellite imagery from the early 1990s to 2017. Our results indicate a massive increase in supraglacial ponds in south facing glaciers. Several of these ponds are either seasonal and forms exactly at the same location every year or forms at the beginning of the melt season and drains out as the season progresses from April to July/August. We also observed evolution in size of these ponds in the last two decades to the point where some of them now seem to be stationary and might increase in size and develop large lake in the future. To understand our result and melting pattern in the region, we also analyzed ice velocity and surface temperature; both of which reveals a temporal shift in the pattern. Glacier surface temperatures, especially show a warming pattern in recent years and strong correlation with debris cover. Additionally, we also observed changes in the downstream region both around the river bed and steep slopes where massive erosion of Himalayan glaciers are depositing and transporting excessive amount of sediments. Overall, our results are discussed in the context of better landscape evolution modeling from the top of the glacier to the several km downstream from the glacier terminus.