Microcantilever heater-thermometer with integrated temperature-compensated strain sensor
King, William P [Champaign, IL; Lee, Jungchul [Champaign, IL; Goericke, Fabian T [Wolfsburg, DE
2011-04-19
The present invention provides microcantilever hotplate devices which incorporate temperature compensating strain sensors. The microcantilever hotplate devices of the present invention comprise microcantilevers having temperature compensating strain sensors and resistive heaters. The present invention also provides methods for using a microcantilever hotplate for temperature compensated surface stress measurements, chemical/biochemical sensing, measuring various properties of compounds adhered to the microcantilever hotplate surface, or for temperature compensated deflection measurements.
Verification of Experimental Techniques for Flow Surface Determination
NASA Technical Reports Server (NTRS)
Lissenden, Cliff J.; Lerch, Bradley A.; Ellis, John R.; Robinson, David N.
1996-01-01
The concept of a yield surface is central to the mathematical formulation of a classical plasticity theory. However, at elevated temperatures, material response can be highly time-dependent, which is beyond the realm of classical plasticity. Viscoplastic theories have been developed for just such conditions. In viscoplastic theories, the flow law is given in terms of inelastic strain rate rather than the inelastic strain increment used in time-independent plasticity. Thus, surfaces of constant inelastic strain rate or flow surfaces are to viscoplastic theories what yield surfaces are to classical plasticity. The purpose of the work reported herein was to validate experimental procedures for determining flow surfaces at elevated temperatures. Since experimental procedures for determining yield surfaces in axial/torsional stress space are well established, they were employed -- except inelastic strain rates were used rather than total inelastic strains. In yield-surface determinations, the use of small-offset definitions of yield minimizes the change of material state and allows multiple loadings to be applied to a single specimen. The key to the experiments reported here was precise, decoupled measurement of axial and torsional strain. With this requirement in mind, the performance of a high-temperature multi-axial extensometer was evaluated by comparing its results with strain gauge results at room temperature. Both the extensometer and strain gauges gave nearly identical yield surfaces (both initial and subsequent) for type 316 stainless steel (316 SS). The extensometer also successfully determined flow surfaces for 316 SS at 650 C. Furthermore, to judge the applicability of the technique for composite materials, yield surfaces were determined for unidirectional tungsten/Kanthal (Fe-Cr-Al).
Ceramic Strain Gages for Use at Temperatures up to 1500 Celsius
NASA Technical Reports Server (NTRS)
Gregory, Otto; Fralick, Gustave (Technical Monitor)
2003-01-01
Indium-tin-oxide (ITO) thin film strain gages were successfully demonstrated at temperatures beyond 1500 C. High temperature static strain tests revealed that the piezoresistive response and electrical stability of the ceramic sensors depended on the thickness of the ITO films comprising the active strain elements. When 2.5 microns-thick ITO films were employed as the active strain elements, the piezoresistive response became unstable at temperatures above 1225 C. In contrast to this, ceramic sensors prepared with 5 microns-thick ITO were stable beyond 1430 C and sensors prepared with 8 microns-thick ITO survived more than 20 hr of operation at 1481 C. Very thick (10 microns) ITo strain gages were extremely stable and responsive at 1528 C. ESCA depth profiles confirmed that an interfacial reaction between the ITO strain gage and alumina substrate was responsible for the high temperature electrical stability observed. Similar improvements in high temperature stability were achieved by doping the active ITO strain elements with aluminum. Several Sic-Sic CMC constant strain beams were instrumented with ITO strain gages and delivered to NASA for testing. Due to the extreme surface roughness of the CMC substrates, new lithography techniques and surface preparation methods were developed. These techniques relied heavily on a combination of Sic and A12O3 cement layers to provide the necessary surface finish for efficient pattern transfer. Micro-contact printing using soft lithography and PDMS stamps was also used to successfully transfer the thin film strain gage patterns to the resist coated CMC substrates. This latter approach has considerable potential for transferring the thin film strain gage patterns to the extremely rough surfaces associated with the CMC's.
2013-01-01
The influence of lattice strain on the oxygen exchange kinetics and diffusion in oxides was investigated on (100) epitaxial La1–xSrxCoO3−δ (LSC) thin films grown by pulsed laser deposition. Planar tensile and compressively strained LSC films were obtained on single-crystalline SrTiO3 and LaAlO3. 18O isotope exchange depth profiling with ToF-SIMS was employed to simultaneously measure the tracer surface exchange coefficient k* and the tracer diffusion coefficient D* in the temperature range 280–475 °C. In accordance with recent theoretical findings, much faster surface exchange (∼4 times) and diffusion (∼10 times) were observed for the tensile strained films compared to the compressively strained films in the entire temperature range. The same strain effect—tensile strain leading to higher k* and D*—was found for different LSC compositions (x = 0.2 and x = 0.4) and for surface-etched films. The temperature dependence of k* and D* is discussed with respect to the contributions of strain states, formation enthalpy of oxygen vacancies, and vacancy mobility at different temperatures. Our findings point toward the control of oxygen surface exchange and diffusion kinetics by means of lattice strain in existing mixed conducting oxides for energy conversion applications. PMID:23527691
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rojacz, H., E-mail: rojacz@ac2t.at
2016-08-15
Strain hardening is commonly used to reach the full potential of materials and can be beneficial in tribological contacts. 2-body abrasive wear was simulated in a scratch test, aimed at strain hardening effects in various steels. Different working conditions were examined at various temperatures and velocities. Strain hardening effects and microstructural changes were analysed with high resolution scanning electron microscopy (HRSEM), electron backscatter diffraction (EBSD), micro hardness measurements and nanoindentation. Statistical analysing was performed quantifying the influence of different parameters on microstructures. Results show a crucial influence of temperature and velocity on the strain hardening in tribological contacts. Increased velocitymore » leads to higher deformed microstructures and higher increased surface hardness at a lower depth of the deformed zones at all materials investigated. An optimised surface hardness can be achieved knowing the influence of velocity (strain rate) and temperature for a “tailor-made” surface hardening in tribological systems aimed at increased wear resistance. - Highlights: •Hardening mechanisms and their intensity in tribological contacts are dependent on relative velocity and temperature. •Beneficial surface hardened zones are formed at certain running-in conditions; the scientific background is presented here. •Ferritic-pearlitic steels strain hardens via grain size reduction and decreasing interlamellar distances in pearlite. •Austenitic steels show excellent surface hardening (120% hardness increase) by twinning and martensitic transformation. •Ferritic steels with hard phases harden in the ferrite phase as per Hall-Petch equation and degree of deformation.« less
High-Temperature, Thin-Film Strain Gages Improved
NASA Technical Reports Server (NTRS)
2005-01-01
Conventional resistance strain gage technology uses "bonded" strain gages. These foil or wire gages are bonded onto the surface of the test article with glue, ceramic cements, or flame-sprayed ceramics. These bonding agents can, in some instances, limit both the degree of strain transmission from the test structure to the gage and the maximum working temperature of the gage. Also, the bulky, bonded gage normally disrupts aerodynamic gas flow on the surface of the test structure because of its intrusive character. To respond to the urgent needs in aeronautic and aerospace research where stress and temperature gradients are high, aerodynamic effects need to be minimized, and higher operational temperatures are required, the NASA Lewis Research Center developed a thin film strain gage. This gage, a vacuum-deposited thin film formed directly on the surface of a test structure, operates at much higher temperatures than commercially available gages do and with minimal disruption of the aerodynamic flow. The gage uses an alloy, palladium-13 wt % chromium (hereafter, PdCr), which was developed by United Technologies Research Center under a NASA contract. PdCr is structurally stable and oxidation resistant up to at least 1100 C (2000 F); its temperature-induced resistance change is linear, repeatable, and not sensitive to the rates of heating and cooling. An early strain gage, which was made of 25-micrometer-diameter PdCr wire and demonstrated to be useable to 800 C, won an R&D 100 award in 1991. By further improving the purity of the material and by developing gage fabrication techniques that use sputter-deposition, photolithography patterning, and chemical etching, we have made an 8- to 10-m PdCr thin-film strain gage that can measure dynamic and static strain to at least 1100 C. For static strain measurements, a 5-m-thick Pt element serves as a temperature compensator to further minimize the temperature effect of the gage. These thin-film gages provide the advantage of minimally intrusive surface strain measurements and give highly repeatable readings with low drift at temperatures from ambient to 1100 C. This is a 300 C advance in operating temperature over the PdCr wire gage and a 500 C advance over commercially available gages made of other materials.
Temperature and Strain Coefficient of Velocity for Langasite SAW Devices
NASA Technical Reports Server (NTRS)
Wilson, W. C.; Atkinson, G. M.
2013-01-01
Surface Acoustic Wave sensors on Langasite substrates are being investigated for aerospace applications. Characterization of the Langasite material properties must be performed before sensors can be installed in research vehicles. The coefficients of velocity for both strain and temperature have been determined. These values have also been used to perform temperature compensation of the strain measurements.
Mata, Marcia M; da Silva, Wladimir P; Wilson, Richard; Lowe, Edwin; Bowman, John P
2015-02-06
Contamination of industrial and domestic food usage environments by the attachement of bacterial food-borne pathogen Listeria monocytogenes has public health and economic implications. Comprehensive proteomics experiments using label-free liquid chromatography/tandem mass spectrometry were used to compare the proteomes of two different L. monocytogenes strains (Siliken_1/2c and F2365_4b), which show very different capacities to attach to surfaces. Growth temperature and strain type were highly influential on the proteomes in both attached and planktonic cells. On the basis of the proteomic data, it is highly unlikely that specific surface proteins play a direct role in adherence to inanimate surfaces. Instead, strain-dependent responses related to cell envelope polymer biosynthesis and stress response regulation likely contribute to a different ability to attach and also to survive external stressors. Collectively, the divergent proteome-level responses observed define strain- and growth-temperature-dependent differences relevant to attachment efficacy, highlight relevant proteins involved in stress protection in attached cells, and suggest that strain differences and growth conditions are important in relation to environmental persistence.
Crack growth measured on flat and curved surfaces at cryogenic temperatures
NASA Technical Reports Server (NTRS)
Orange, T. W.; Sullivan, T. L.
1967-01-01
Multiple element continuity gage measures plane stress crack growth plus surface crack growth under plane strain conditions. The gage measures flat and curved surfaces and operates at cryogenic temperatures.
Khalid, Muhammad Waqas; Ahmed, Rajib; Yetisen, Ali K.
2018-01-01
Optical sensors for detecting temperature and strain play a crucial role in the analysis of environmental conditions and real-time remote sensing. However, the development of a single optical device that can sense temperature and strain simultaneously remains a challenge. Here, a flexible corner cube retroreflector (CCR) array based on passive dual optical sensing (temperature and strain) is demonstrated. A mechanical embossing process was utilised to replicate a three-dimensional (3D) CCR array in a soft flexible polymer film. The fabricated flexible CCR array samples were experimentally characterised through reflection measurements followed by computational modelling. As fabricated samples were illuminated with a monochromatic laser beam (635, 532, and 450 nm), a triangular shape reflection was obtained at the far-field. The fabricated flexible CCR array samples tuned retroreflected light based on external stimuli (temperature and strain as an applied force). For strain and temperature sensing, an applied force and temperature, in the form of weight suspension, and heat flow was applied to alter the replicated CCR surface structure, which in turn changed its optical response. Directional reflection from the heated flexible CCR array surface was also measured with tilt angle variation (max. up to 10°). Soft polymer CCRs may have potential in remote sensing applications, including measuring the temperature in space and in nuclear power stations. PMID:29568510
Thin Film Sensors for Surface Measurements
NASA Technical Reports Server (NTRS)
Martin, Lisa C.; Wrbanek, John D.; Fralick, Gustave C.
2001-01-01
Advanced thin film sensors that can provide accurate surface temperature, strain, and heat flux measurements have been developed at NASA Glenn Research Center. These sensors provide minimally intrusive characterization of advanced propulsion materials and components in hostile, high-temperature environments as well as validation of propulsion system design codes. The sensors are designed for applications on different material systems and engine components for testing in engine simulation facilities. Thin film thermocouples and strain gauges for the measurement of surface temperature and strain have been demonstrated on metals, ceramics and advanced ceramic-based composites of various component configurations. Test environments have included both air-breathing and space propulsion-based engine and burner rig environments at surface temperatures up to 1100 C and under high gas flow and pressure conditions. The technologies developed for these sensors as well as for a thin film heat flux gauge have been integrated into a single multifunctional gauge for the simultaneous real-time measurement of surface temperature, strain, and heat flux. This is the first step toward the development of smart sensors with integrated signal conditioning and high temperature electronics that would have the capability to provide feedback to the operating system in real-time. A description of the fabrication process for the thin film sensors and multifunctional gauge will be provided. In addition, the material systems on which the sensors have been demonstrated, the test facilities and the results of the tests to-date will be described. Finally, the results will be provided of the current effort to demonstrate the capabilities of the multifunctional gauge.
Measurement of high temperature strain by the laser-speckle strain gauge
NASA Technical Reports Server (NTRS)
Yamaguchi, I.
1984-01-01
By using the laser-speckle strain gauge, the strain of metal at the temperature lower than 250 C is measured. The principle of the gauge is to measure the expansion or contraction of the fine structures of surface by detecting the resultant speckle displacement in an optoelectronic way, whereby the effect of rigid-body motion is automatically cancelled out with the aid of a differential detection system. A transportable apparatus was built and a comparison experiment performed with a resistance strain gauge at room temperature. It has a strain sensitivity of .00002, a gauge length smaller than 1 mm, and no upper limit in a range of strain measurement. In the measurement of high-temperature strain it is free from the need for a dummy gauge and insensitive to an electric drift effect. As examples of strain measurement at high-temperature, thermal expansion and contraction of a top of a soldering iron are measured. The interval of the measurement can be made at shortest 1.6 sec. and the change in the strain is clearly followed until the ultimate stationary temperature is reached.
2013-05-10
13. SUPPLEMENTARY NOTES 14. ABSTRACT In this research, fiber Bragg grating ( FBG ) optical temperature sensors are used for structural health...surface of a composite structure. FBG sensors also respond to axial strain in the optical fiber, thus any structural strain experienced by the composite...features. First, a three-dimensional array of FBG temperature sensors has been embedded in a carbon/epoxy composite structure, consisting of both in
Strain Evolution of Annealed Hydrogen-Implanted (0001) Sapphire
NASA Astrophysics Data System (ADS)
Wong, Christine Megan
Exfoliation is a technique used to remove a thin, uniform layer of material from the bulk that involves the annealing of hydrogen ion-implanted materials in order to initiate defect nucleation and growth leading to guided crack propagation. This study presents an investigation into the annealing process required to initiate blistering (an essential precursor to exfoliation) in (0001) sapphire implanted at room temperature with hydrogen ions. Triple axis x-ray diffraction was used to characterize the evolution of the implanted layer for single crystal (0001) sapphire substrates implanted at room temperature at 360 keV with either a 5x1016 cm -2 or 8x1016 cm-2 dose of hydrogen ions. A simulation of the ion distribution in TRIM estimated that the projected range and thickness of the implanted layer for both doses was approximately 2.2 mum. Following implantation, the implanted sapphire was annealed using a two-step annealing procedure. The first step was performed at a lower temperature, ideally to nucleate and coarsen defects. Temperatures investigated ranged from 550 - 650 °C. The second step was performed at a higher temperature (800 °C) to induce further defect coarsening and surface blistering. After all annealing steps, triple axis o/2theta and o scans were taken to observe any changes in the diffraction profile - namely, any reduction in the amplitude and shift in the location of the fringes associated with strain in the crystal - which would correlate with defect growth and nucleation. It was found that significant strain fringe reduction first occurred after annealing at 650 °C for 8 hours for both doses; however, it was not clear whether or not this strain reduction was due primarily to hydrogen diffusion or to recovery of other defects induced during the ion implantation. The o/2theta curves were then fit using Bede RADS in order to quantify the strain within the crystal and confirm the reduction of the strained layer within the crystal. Finally, Nomarski optical images of the sample surfaces were taken after each step to observe any visual changes or blistering that might have occurred. These optical images showed that the strain reduction observed using XRD did not correlate to blistering, as no blisters were observed in any of the optical images. Experimental results showed that at temperatures below 650 °C, no significant strain reduction occurs in hydrogen ion implanted (0001) sapphire. It has also been determined that for (0001) sapphire implanted at room temperature, it was not possible to produce surface blistering after a two-step annealing process at 650 °C and 800 °C, although significant strain reduction did occur, and ? scans showed peak broadening with subsequent annealing, indicating increasing mosaicity and potential defect nucleation. This was in contrast to previous findings that asserted that for sapphire annealed at 650 °C, surface blistering was observable. As previous findings were based on sapphire implanted at elevated temperatures, this may imply that the sapphire substrate reaches a higher temperature than expected during such implantation processes, which may account for the capability for surface blistering at a lower temperature. Conversely, for room temperature ion implantation, temperatures greater than 800 °C may be necessary to first nucleate hydrogen platelet defects and then produce surface blistering.
Strain localization parameters of AlCu4MgSi processed by high-energy electron beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lunev, A. G., E-mail: agl@ispms.ru; Nadezhkin, M. V., E-mail: mvn@ispms.ru; National Research Tomsk Polytechnic University, Tomsk, 634050
2015-10-27
The influence of the electron beam surface treatment of AlCu4MgSi on the strain localization parameters and on the critical strain value of the Portevin–Le Chatelier effect has been considered. The strain localization parameters were measured using speckle imaging of the specimens subjected to the constant strain rate uniaxial tension at a room temperature. Impact of the surface treatment on the Portevin–Le Chatelier effect has been investigated.
Experimental Techniques Verified for Determining Yield and Flow Surfaces
NASA Technical Reports Server (NTRS)
Lerch, Brad A.; Ellis, Rod; Lissenden, Cliff J.
1998-01-01
Structural components in aircraft engines are subjected to multiaxial loads when in service. For such components, life prediction methodologies are dependent on the accuracy of the constitutive models that determine the elastic and inelastic portions of a loading cycle. A threshold surface (such as a yield surface) is customarily used to differentiate between reversible and irreversible flow. For elastoplastic materials, a yield surface can be used to delimit the elastic region in a given stress space. The concept of a yield surface is central to the mathematical formulation of a classical plasticity theory, but at elevated temperatures, material response can be highly time dependent. Thus, viscoplastic theories have been developed to account for this time dependency. Since the key to many of these theories is experimental validation, the objective of this work (refs. 1 and 2) at the NASA Lewis Research Center was to verify that current laboratory techniques and equipment are sufficient to determine flow surfaces at elevated temperatures. By probing many times in the axial-torsional stress space, we could define the yield and flow surfaces. A small offset definition of yield (10 me) was used to delineate the boundary between reversible and irreversible behavior so that the material state remained essentially unchanged and multiple probes could be done on the same specimen. The strain was measured with an off-the-shelf multiaxial extensometer that could measure the axial and torsional strains over a wide range of temperatures. The accuracy and resolution of this extensometer was verified by comparing its data with strain gauge data at room temperature. The extensometer was found to have sufficient resolution for these experiments. In addition, the amount of crosstalk (i.e., the accumulation of apparent strain in one direction when strain in the other direction is applied) was found to be negligible. Tubular specimens were induction heated to determine the flow surfaces at elevated temperatures. The heating system induced a large amount of noise in the data. By reducing thermal fluctuations and using appropriate data averaging schemes, we could render the noise inconsequential. Thus, accurate and reproducible flow surfaces (see the figure) could be obtained.
NASA Technical Reports Server (NTRS)
Richards, W. Lance
1996-01-01
Significant strain-gage errors may exist in measurements acquired in transient-temperature environments if conventional correction methods are applied. As heating or cooling rates increase, temperature gradients between the strain-gage sensor and substrate surface increase proportionally. These temperature gradients introduce strain-measurement errors that are currently neglected in both conventional strain-correction theory and practice. Therefore, the conventional correction theory has been modified to account for these errors. A new experimental method has been developed to correct strain-gage measurements acquired in environments experiencing significant temperature transients. The new correction technique has been demonstrated through a series of tests in which strain measurements were acquired for temperature-rise rates ranging from 1 to greater than 100 degrees F/sec. Strain-gage data from these tests have been corrected with both the new and conventional methods and then compared with an analysis. Results show that, for temperature-rise rates greater than 10 degrees F/sec, the strain measurements corrected with the conventional technique produced strain errors that deviated from analysis by as much as 45 percent, whereas results corrected with the new technique were in good agreement with analytical results.
Practical approaches for application of resistance type strain gages on high temperature composites
NASA Technical Reports Server (NTRS)
Moore, Thomas C., Sr.
1991-01-01
Four major areas of interest with respect to utilizing strain gages on carbon/carbon (with SiC surfaces) and titanium matrix composites are addressed. Strain gage and adhesive combinations on carbon/carbon (C/C) at temperatures from minus 190 C to to 540 C, half-bridge gaging for reducing apparent strain on C/C using Poisson's ratio and bending configurations, a review of the 'field installation' techniques developed for gaging a C/C hypersonic generic elevon, and results of initial strain gaging efforts on titanium matrix composites are discussed. Current research in developing techniques for increasing the maximum temperature for strain gages on carbon/carbon are reviewed.
NASA Astrophysics Data System (ADS)
Hruszkewycz, S. O.; Cha, W.; Andrich, P.; Anderson, C. P.; Ulvestad, A.; Harder, R.; Fuoss, P. H.; Awschalom, D. D.; Heremans, F. J.
2017-02-01
We observed changes in morphology and internal strain state of commercial diamond nanocrystals during high-temperature annealing. Three nanodiamonds were measured with Bragg coherent x-ray diffraction imaging, yielding three-dimensional strain-sensitive images as a function of time/temperature. Up to temperatures of 800 °C, crystals with Gaussian strain distributions with a full-width-at-half-maximum of less than 8 × 10 - 4 were largely unchanged, and annealing-induced strain relaxation was observed in a nanodiamond with maximum lattice distortions above this threshold. X-ray measurements found changes in nanodiamond morphology at temperatures above 600 °C that are consistent with graphitization of the surface, a result verified with ensemble Raman measurements.
Teh, Amy Huei Teen; Lee, Sui Mae; Dykes, Gary A
2016-12-01
Campylobacter jejuni is one of the most common causes of bacterial gastrointestinal food-borne infection worldwide. It has been suggested that biofilm formation may play a role in survival of these bacteria in the environment. In this study, the influence of prior modes of growth (planktonic or sessile), temperatures (37 and 42 °C), and nutrient conditions (nutrient broth and Mueller-Hinton broth) on biofilm formation by eight C. jejuni strains with different antibiotic resistance profiles was examined. The ability of these strains to form biofilm on different abiotic surfaces (stainless steel, glass, and polystyrene) as well as factors potentially associated with biofilm formation (bacterial surface hydrophobicity, auto-aggregation, and initial attachment) was also determined. The results showed that cells grown as sessile culture generally have a greater ability to form biofilm (P < 0.05) compared to their planktonic counterparts. Biofilm was also greater (P < 0.05) in lower nutrient media, while growth at different temperatures affects biofilm formation in a strain-dependent manner. The strains were able to attach and form biofilms on different abiotic surfaces, but none of them demonstrated strong, complex, or structured biofilm formation. There were no clear trends between the bacterial surface hydrophobicity, auto-aggregation, attachment, and biofilm formation by the strains. This finding suggests that environmental factors did affect biofilm formation by C. jejuni, and they are more likely to persist in the environment in the form of mixed-species rather than monospecies biofilms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, M.; Hansson, G. V.; Ni, W.-X.
A double-low-temperature-buffer variable-temperature growth scheme was studied for fabrication of strain-relaxed thin Si{sub 0.6}Ge{sub 0.4} layer on Si(001) by using molecular beam epitaxy (MBE), with particular focuses on the influence of growth temperature of individual low-temperature-buffer layers on the relaxation process and final structural qualities. The low-temperature buffers consisted of a 40 nm Si layer grown at an optimized temperature of {approx}400 deg. C, followed by a 20 nm Si{sub 0.6}Ge{sub 0.4} layer grown at temperatures ranging from 50 to 550 deg. C. A significant relaxation increase together with a surface roughness decrease both by a factor of {approx}2, accompaniedmore » with the cross-hatch/cross-hatch-free surface morphology transition, took place for the sample containing a low-temperature Si{sub 0.6}Ge{sub 0.4} layer that was grown at {approx}200 deg. C. This dramatic change was explained by the association with a certain onset stage of the ordered/disordered growth transition during the low-temperature MBE, where the high density of misfit dislocation segments generated near surface cusps largely facilitated the strain relaxation of the top Si{sub 0.6}Ge{sub 0.4} layer.« less
Optical Fiber Strain Instrumentation for High Temperature Aerospace Structural Monitoring
NASA Technical Reports Server (NTRS)
Wang, A.
2002-01-01
The objective of the program is the development and laboratory demonstration of sensors based on silica optical fibers for measurement of high temperature strain for aerospace materials evaluations. A complete fiber strain sensor system based on white-light interferometry was designed and implemented. An experiment set-up was constructed to permit testing of strain measurement up to 850 C. The strain is created by bending an alumina cantilever beam to which is the fiber sensor is attached. The strain calibration is provided by the application of known beam deflections. To ensure the high temperature operation capability of the sensor, gold-coated single-mode fiber is used. Moreover, a new method of sensor surface attachment which permits accurate sensor gage length determination is also developed. Excellent results were obtained at temperatures up to 800-850 C.
Technology for Elevated Temperature Tests of Structural Panels
NASA Technical Reports Server (NTRS)
Thornton, E. A.
1999-01-01
A technique for full-field measurement of surface temperature and in-plane strain using a single grid imaging technique was demonstrated on a sample subjected to thermally-induced strain. The technique is based on digital imaging of a sample marked by an alternating line array of La2O2S:Eu(+3) thermographic phosphor and chromium illuminated by a UV lamp. Digital images of this array in unstrained and strained states were processed using a modified spin filter. Normal strain distribution was determined by combining unstrained and strained grid images using a single grid digital moire technique. Temperature distribution was determined by ratioing images of phosphor intensity at two wavelengths. Combined strain and temperature measurements demonstrated on the thermally heated sample were DELTA-epsilon = +/- 250 microepsilon and DELTA-T = +/- 5 K respectively with a spatial resolution of 0.8 mm.
Incipient plasticity and indentation response of MgO surfaces using molecular dynamics
NASA Astrophysics Data System (ADS)
Tran, Anh-Son; Hong, Zheng-Han; Chen, Ming-Yuan; Fang, Te-Hua
2018-05-01
The mechanical characteristics of magnesium oxide (MgO) based on nanoindentation are studied using molecular dynamics (MD) simulation. The effects of indenting speed and temperature on the structural deformation and loading-unloading curve are investigated. Results show that the strained surface of the MgO expands to produce a greater relaxation of atoms in the surroundings of the indent. The dislocation propagation and pile-up for MgO occur more significantly with the increasing temperature from 300 K to 973 K. In addition, with increasing temperature, the high strained atoms with a great perturbation appearing at the groove location.
Su, Chun; Zhou, Jianzhong; Meng, Xiankai; Huang, Shu
2016-09-26
As a new treatment process after welding, the process parameters of laser shock peening (LSP) in dynamic strain aging (DSA) temperature regimes can be precisely controlled, and the process is a non-contact one. The effects of LSP at elevated temperatures on the distribution of the surface residual stress of AA6061-T6 welded joints were investigated by using X-ray diffraction technology with the sin² ϕ method and Abaqus software. The fatigue life of the welded joints was estimated by performing tensile fatigue tests. The microstructural evolution in surface and fatigue fractures of the welded joints was presented by means of surface integrity and fracture surface testing. In the DSA temperature regime of AA6061-T6 welded joints, the residual compressive stress was distributed more stably than that of LSP at room temperature. The thermal corrosion resistance and fatigue properties of the welded joints were also improved. The experimental results and numerical analysis were in mutual agreement.
Su, Chun; Zhou, Jianzhong; Meng, Xiankai; Huang, Shu
2016-01-01
As a new treatment process after welding, the process parameters of laser shock peening (LSP) in dynamic strain aging (DSA) temperature regimes can be precisely controlled, and the process is a non-contact one. The effects of LSP at elevated temperatures on the distribution of the surface residual stress of AA6061-T6 welded joints were investigated by using X-ray diffraction technology with the sin2ϕ method and Abaqus software. The fatigue life of the welded joints was estimated by performing tensile fatigue tests. The microstructural evolution in surface and fatigue fractures of the welded joints was presented by means of surface integrity and fracture surface testing. In the DSA temperature regime of AA6061-T6 welded joints, the residual compressive stress was distributed more stably than that of LSP at room temperature. The thermal corrosion resistance and fatigue properties of the welded joints were also improved. The experimental results and numerical analysis were in mutual agreement. PMID:28773920
Hruszkewycz, S. O.; Cha, W.; Andrich, P.; ...
2017-02-14
Here, we observed changes in morphology and internal strain state of commercial diamond nanocrystals during high-temperature annealing. Three nanodiamonds were measured with Bragg coherent x-ray diffraction imaging, yielding three-dimensional strain-sensitive images as a function of time/temperature. Up to temperatures of 800 °C, crystals with Gaussian strain distributions with a full-width-at-half-maximum of less than 8 × 10 –4 were largely unchanged, and annealing-induced strain relaxation was observed in a nanodiamond with maximum lattice distortions above this threshold. X-ray measurements found changes in nanodiamond morphology at temperatures above 600 °C that are consistent with graphitization of the surface, a result verified withmore » ensemble Raman measurements.« less
Strain-tolerant ceramic coated seal
Schienle, James L.; Strangman, Thomas E.
1994-01-01
A metallic regenerator seal is provided having multi-layer coating comprising a NiCrAlY bond layer, a yttria stabilized zirconia (YSZ) intermediate layer, and a ceramic high temperature solid lubricant surface layer comprising zinc oxide, calcium fluoride, and tin oxide. An array of discontinuous grooves is laser machined into the outer surface of the solid lubricant surface layer making the coating strain tolerant.
NASA Technical Reports Server (NTRS)
Atkinson, W. H.; Cyr, M. A.; Strange, R. R.
1988-01-01
The report presents the final results of Tasks 1 and 2, Development of Sensors for Ceramic Components in Advanced Propulsion Systems (NASA program NAS3-25141). During Task 1, an extensive survey was conducted of sensor concepts which have the potential for measuring surface temperature, strain and heat flux on ceramic components for advanced propulsion systems. Each sensor concept was analyzed and evaluated under Task 2; sensor concepts were then recommended for further development. For temperature measurement, both pyrometry and thermographic phosphors are recommended for measurements up to and beyond the melting point of ceramic materials. For lower temperature test programs, the thin-film techniques offer advantages in the installation of temperature sensors. Optical strain measurement techniques are recommended because they offer the possibility of being useful at very high temperature levels. Techniques for the measurement of heat flux are recommended for development based on both a surface mounted sensor and the measurement of the temperature differential across a portion of a ceramic component or metallic substrate.
NASA Astrophysics Data System (ADS)
Tung, S.-T.; Glisic, B.
2016-12-01
Sensing sheets based on large-area electronics consist of a dense array of unit strain sensors. This new technology has potential for becoming an effective and affordable monitoring tool that can identify, localize and quantify surface damage in structures. This research contributes to their development by investigating the response of full-bridge unit strain sensors to thermal variations. Overall, this investigation quantifies the effects of temperature on thin-film full-bridge strain sensors monitoring uncracked and cracked concrete. Additionally, an empirical formula is developed to estimate crack width given an observed strain change and a measured temperature change. This research led to the understanding of the behavior of full-bridge strain sensors installed on cracked concrete and exposed to temperature variations. It proves the concept of the sensing sheet and its suitability for application in environments with variable temperature.
Electro optical system to measure strains at high temperature
NASA Technical Reports Server (NTRS)
Sciammarella, Cesar A.
1991-01-01
The measurement of strains at temperatures of the order of 1000 C has become a very important field of research. Technological advances in areas such as the analysis of high speed aircraft structures and high efficiency thermal engines require operational temperatures of this order of magnitude. Current techniques for the measurement of strains, such as electrical strain gages, are at the limit of their useful range and new methods need to be developed. Optical techniques are very attractive in this type of application because of their noncontacting nature. Holography is of particular interest because a minimal preparation of the surfaces is required. Optoelectronics holography is specially suited for this type of application, from the point of view of industrial use. There are a number of technical problems that need to be overcome to measure strains using holographic interferometry at high temperatures. Some of these problems are discussed, and solutions are given. A specimen instrumented with high temperature strains gages is used to compare the results of both technologies.
Electro optical system to measure strains at high temperature
NASA Astrophysics Data System (ADS)
Sciammarella, Cesar A.
1991-12-01
The measurement of strains at temperatures of the order of 1000 C has become a very important field of research. Technological advances in areas such as the analysis of high speed aircraft structures and high efficiency thermal engines require operational temperatures of this order of magnitude. Current techniques for the measurement of strains, such as electrical strain gages, are at the limit of their useful range and new methods need to be developed. Optical techniques are very attractive in this type of application because of their noncontacting nature. Holography is of particular interest because a minimal preparation of the surfaces is required. Optoelectronics holography is specially suited for this type of application, from the point of view of industrial use. There are a number of technical problems that need to be overcome to measure strains using holographic interferometry at high temperatures. Some of these problems are discussed, and solutions are given. A specimen instrumented with high temperature strains gages is used to compare the results of both technologies.
Flexible surface acoustic wave strain sensor based on single crystalline LiNbO3 thin film
NASA Astrophysics Data System (ADS)
Xu, Hongsheng; Dong, Shurong; Xuan, Weipeng; Farooq, Umar; Huang, Shuyi; Li, Menglu; Wu, Ting; Jin, Hao; Wang, Xiaozhi; Luo, Jikui
2018-02-01
A flexible surface acoustic wave (SAW) strain sensor in the frequency range of 162-325 MHz was developed based on a single crystalline LiNbO3 thin film with dual resonance modes, namely, the Rayleigh mode and the thickness shear mode (TSM). This SAW sensor could handle a wide strain range up to ±3500 μɛ owing to its excellent flexibility, which is nearly six times the detecting range of bulk piezoelectric substrate based SAW strain sensors. The sensor exhibited a high sensitivity of 193 Hz/ μɛ with a maximum hysteresis less than 1.5%. The temperature coefficients of frequency, for Rayleigh and TSM modes, were -85 and -59 ppm/ °C , respectively. No visible deterioration was observed after cyclic bending for hundreds of times, showing its desirable stability and reliability. By utilizing the dual modes, the strain sensor with a self-temperature calibrated capability can be achieved. The results demonstrate that the sensor is an excellent candidate for strain sensing.
Rheology of water and ammonia-water ices
NASA Technical Reports Server (NTRS)
Goldsby, D. L.; Kohlstedt, D. L.; Durham, W. B.
1993-01-01
Creep experiments on fine-grained water and ammonia-water ices have been performed at one atmosphere and high confining pressure in order to develop constitutive relationships necessary to model tectonic processes and interpret surface features of icy moons of the outer solar system. The present series of experiments explores the effects of temperature, strain rate, grain size, and melt fraction on creep strength. In general, creep strength decreases with increasing temperature, decreasing strain rate, and increasing melt fraction. A transition from dislocation creep to diffusion creep occurs at finer grain sizes, higher temperatures, and lower strain rates.
Atomic scale study of strain relaxation in Sn islands on Sn-induced Si(111)-(2√3 ×2√3 ) surface
NASA Astrophysics Data System (ADS)
Wang, L. L.; Ma, X. C.; Ning, Y. X.; Ji, S. H.; Fu, Y. S.; Jia, J. F.; Kelly, K. F.; Xue, Q. K.
2009-04-01
Surface structure of the Sn islands 5 ML high, prepared on Si(111)-(2√3 ×2√3 )-Sn substrate, is investigated by low temperature scanning tunneling microscopy/spectroscopy. Due to the elastic strain relaxation in the islands, the in-plane unit cell structure distorts and the apparent height of the surface atoms varies regularly to form an overall modulated strip structure. The quantum well states are observed to depend on the relative position within this structure, which implies the change of the surface chemical potential induced by the elastic strain relaxation as well.
Advanced one-dimensional optical strain measurement system, phase 4
NASA Technical Reports Server (NTRS)
Lant, Christian T.
1992-01-01
An improved version of the speckle-shift strain measurement system was developed. The system uses a two-dimensional sensor array to maintain speckle correlation in the presence of large off-axis rigid body motions. A digital signal processor (DSP) is used to calculate strains at a rate near the RS-170 camera frame rate. Strain measurements were demonstrated on small diameter wires and fibers used in composite materials research. Accurate values of Young's modulus were measured on tungsten wires, and silicon carbide and sapphire fibers. This optical technique has measured surface strains at specimen temperatures above 750 C and has shown the potential for measurements at much higher temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hajilar, Shahin, E-mail: shajilar@iastate.edu; Shafei, Behrouz, E-mail: shafei@iastate.edu
The structural, thermal, and mechanical properties of portlandite, the primary solid phase of ordinary hydrated cement paste, are investigated using the molecular dynamics method. To understand the effects of temperature on the structural properties of portlandite, the coefficients of thermal expansion of portlandite are determined in the current study and validated with what reported from the experimental tests. The atomic structure of portlandite equilibrated at various temperatures is then subjected to uniaxial tensile strains in the three orthogonal directions and the stress-strain curves are developed. Based on the obtained results, the effect of the direction of straining on the mechanicalmore » properties of portlandite is investigated in detail. Structural damage analysis is performed to reveal the failure mechanisms in different directions. The energies of the fractured surfaces are calculated in different directions and compared to those of the ideal surfaces available in the literature. The key mechanical properties, including tensile strength, Young's modulus, and fracture strain, are extracted from the stress-strain curves. The sensitivity of the obtained mechanical properties to temperature and strain rate is then explored in a systematic way. This leads to valuable information on how the structural and mechanical properties of portlandite are affected under various exposure conditions and loading rates. - Graphical abstract: Fracture mechanism of portlandite under uniaxial strain in the z-direction. - Highlights: • The structural, thermal, and mechanical properties of portlandite are investigated. • The coefficients of thermal expansion are determined. • The stress-strain relationships are studied in three orthogonal directions. • The effects of temperature and strain rate on mechanical properties are examined. • The plastic energy required for fracture in the crystalline structure is reported.« less
Internal stress-induced melting below melting temperature at high-rate laser heating
NASA Astrophysics Data System (ADS)
Hwang, Yong Seok; Levitas, Valery I.
2014-06-01
In this Letter, continuum thermodynamic and phase field approaches (PFAs) predicted internal stress-induced reduction in melting temperature for laser-irradiated heating of a nanolayer. Internal stresses appear due to thermal strain under constrained conditions and completely relax during melting, producing an additional thermodynamic driving force for melting. Thermodynamic melting temperature for Al reduces from 933.67 K for a stress-free condition down to 898.1 K for uniaxial strain and to 920.8 K for plane strain. Our PFA simulations demonstrated barrierless surface-induced melt nucleation below these temperatures and propagation of two solid-melt interfaces toward each other at the temperatures very close to the corresponding predicted thermodynamic equilibrium temperatures for the heating rate Q ≤1.51×1010K/s. At higher heating rates, kinetic superheating competes with a reduction in melting temperature and melting under uniaxial strain occurs at 902.1 K for Q = 1.51 × 1011 K/s and 936.9 K for Q = 1.46 × 1012 K/s.
NASA Astrophysics Data System (ADS)
Katiyar, Ajit K.; Grimm, Andreas; Bar, R.; Schmidt, Jan; Wietler, Tobias; Joerg Osten, H.; Ray, Samit K.
2016-10-01
Compressively strained Ge films have been grown on relaxed Si0.45Ge0.55 virtual substrates using molecular beam epitaxy in the presence of Sb as a surfactant. Structural characterization has shown that films grown in the presence of surfactant exhibit very smooth surfaces with a relatively higher strain value in comparison to those grown without any surfactant. The variation of strain with increasing Ge layer thickness was analyzed using Raman spectroscopy. The strain is found to be reduced with increasing film thickness due to the onset of island nucleation following Stranski-Krastanov growth mechanism. No phonon assisted direct band gap photoluminescence from compressively strained Ge films grown on relaxed Si0.45Ge0.55 has been achieved up to room temperature. Excitation power and temperature dependent photoluminescence have been studied in details to investigate the origin of different emission sub-bands.
Advances in Thin Film Sensor Technologies for Engine Applications
NASA Technical Reports Server (NTRS)
Lei, Jih-Fen; Martin, Lisa C.; Will, Herbert A.
1997-01-01
Advanced thin film sensor techniques that can provide accurate surface strain and temperature measurements are being developed at NASA Lewis Research Center. These sensors are needed to provide minimally intrusive characterization of advanced materials (such as ceramics and composites) and structures (such as components for Space Shuttle Main Engine, High Speed Civil Transport, Advanced Subsonic Transports and General Aviation Aircraft) in hostile, high-temperature environments and for validation of design codes. This paper presents two advanced thin film sensor technologies: strain gauges and thermocouples. These sensors are sputter deposited directly onto the test articles and are only a few micrometers thick; the surface of the test article is not structurally altered and there is minimal disturbance of the gas flow over the surface. The strain gauges are palladium-13% chromium based and the thermocouples are platinum-13% rhodium vs. platinum. The fabrication techniques of these thin film sensors in a class 1000 cleanroom at the NASA Lewis Research Center are described. Their demonstration on a variety of engine materials, including superalloys, ceramics and advanced ceramic matrix composites, in several hostile, high-temperature test environments are discussed.
Confounding effects of oxygen and temperature on the TEX86 signature of marine Thaumarchaeota
Qin, Wei; Carlson, Laura T.; Armbrust, E. Virginia; Devol, Allan H.; Moffett, James W.; Stahl, David A.; Ingalls, Anitra E.
2015-01-01
Marine ammonia-oxidizing archaea (AOA) are among the most abundant of marine microorganisms, spanning nearly the entire water column of diverse oceanic provinces. Historical patterns of abundance are preserved in sediments in the form of their distinctive glycerol dibiphytanyl glycerol tetraether (GDGT) membrane lipids. The correlation between the composition of GDGTs in surface sediment and the overlying annual average sea surface temperature forms the basis for a paleotemperature proxy (TEX86) that is used to reconstruct surface ocean temperature as far back as the Middle Jurassic. However, mounting evidence suggests that factors other than temperature could also play an important role in determining GDGT distributions. We here use a study set of four marine AOA isolates to demonstrate that these closely related strains generate different TEX86–temperature relationships and that oxygen (O2) concentration is at least as important as temperature in controlling TEX86 values in culture. All of the four strains characterized showed a unique membrane compositional response to temperature, with TEX86-inferred temperatures varying as much as 12 °C from the incubation temperatures. In addition, both linear and nonlinear TEX86–temperature relationships were characteristic of individual strains. Increasing relative abundance of GDGT-2 and GDGT-3 with increasing O2 limitation, at the expense of GDGT-1, led to significant elevations in TEX86-derived temperature. Although the adaptive significance of GDGT compositional changes in response to both temperature and O2 is unclear, this observation necessitates a reassessment of archaeal lipid-based paleotemperature proxies, particularly in records that span low-oxygen events or underlie oxygen minimum zones. PMID:26283385
NASA Astrophysics Data System (ADS)
Zhang, Yumin; Zhu, Lianqing; Luo, Fei; Dong, Mingli; Ding, Xiangdong; He, Wei
2016-06-01
A metallic packaging technique of fiber Bragg grating (FBG) sensors is developed for measurement of strain and temperature, and it can be simply achieved via one-step ultrasonic welding. The average strain transfer rate of the metal-packaged sensor is theoretically evaluated by a proposed model aiming at surface-bonded metallic packaging FBG. According to analytical results, the metallic packaging shows higher average strain transfer rate compared with traditional adhesive packaging under the same packaging conditions. Strain tests are performed on an elaborate uniform strength beam for both tensile and compressive strains; strain sensitivities of approximately 1.16 and 1.30 pm/μɛ are obtained for the tensile and compressive situations, respectively. Temperature rising and cooling tests are also executed from 50°C to 200°C, and the sensitivity of temperature is 36.59 pm/°C. All the measurements of strain and temperature exhibit good linearity and stability. These results demonstrate that the metal-packaged sensors can be successfully fabricated by one-step welding technique and provide great promise for long-term and high-precision structural health monitoring.
NASA Astrophysics Data System (ADS)
Nacif el Alaoui, Reda
Mechanical structure-property relations have been quantified for AISI 4140 steel. under different strain rates and temperatures. The structure-property relations were used. to calibrate a microstructure-based internal state variable plasticity-damage model for. monotonic tension, compression and torsion plasticity, as well as damage evolution. Strong stress state and temperature dependences were observed for the AISI 4140 steel. Tension tests on three different notched Bridgman specimens were undertaken to study. the damage-triaxiality dependence for model validation purposes. Fracture surface. analysis was performed using Scanning Electron Microscopy (SEM) to quantify the void. nucleation and void sizes in the different specimens. The stress-strain behavior exhibited. a fairly large applied stress state (tension, compression dependence, and torsion), a. moderate temperature dependence, and a relatively small strain rate dependence.
NASA Astrophysics Data System (ADS)
Duan, Leiguang; Wang, Guang; Zhang, Guoxing; Sun, Xinya; Shang, Hehao
2018-06-01
In order to study the uniaxial and quasi-biaxial mechanical properties of aging solid propellants under low temperature and high strain rate, stress-strain curves and tensile fracture surfaces of HTPB propellant were obtained in a wide range of temperature (-30,25 °C) and strain rates (0.4,4.0 and 14.29 s-1), respectively, by means of uniaxial and biaxial tensile tests and electron microscopy scanning on the fracture cross section. The results indicate that the quasi-biaxial tensile mechanical properties of aging HTPB propellant is same as the uniaxial tensile mechanical properties influenced distinctly by temperature and strain rate. With decreasing temperature and increasing strain rate, the mechanical properties gradually strengthen. The damage for HTPB propellant changes from "dehumidification" to grain fracture. The initial elastic modulus E and maximum tensile stress σ of the uniaxial and biaxial tensile increase gradually with decreasing temperature and increasing strain rate, and well present linear-log function relation with strain rate. The ratio of quasi-biaxial and uniaxial stretching under different loading conditions was obtained so that the researchers could predict the quasi-biaxial tensile mechanical properties of the propellant based on the uniaxial test data.
Stress and Strain Distributions during Machining of Ti-6Al-4V at Ambient and Cryogenic Temperatures
NASA Astrophysics Data System (ADS)
Rahman, Md. Fahim
Dry and liquid nitrogen pre-cooled Ti-6Al-4V samples were machined at a cutting speed of 43.2 m/min and at low (0.1 mm/rev) to high (0.4 mm/rev) feed rates for understanding the effects of temperature and strain rate on chip microstructures. During cryogenic machining, it was observed that between feed rates of 0.10 and 0.30 mm/rev, a 25% pressure reduction on tool occurred. Smaller number of chips and low tool/chip contact time and temperature were observed (compared to dry machining under ambient conditions). An in-situ set-up that consisted of a microscope and a lathe was constructed and helped to propose a novel serrated chip formation mechanism when microstructures (strain localization) and surface roughness were considered. Dimpled fracture surfaces observed in high-speed-machined chips were formed due to stable crack propagation that was also recorded during in-situ machining. An instability criterion was developed that showed easier strain localization within the 0.10-0.30mm/rev feed rate range.
NASA Astrophysics Data System (ADS)
Sarkar, Aritra; Nagesha, A.; Parameswaran, P.; Sandhya, R.; Laha, K.
2015-12-01
Formation of surface relief and short cracks under cyclic creep (stress-controlled fatigue) in type 316LN stainless steel was studied at temperatures ranging from ambient to 923 K using scanning electron microscopy technique. The surface topography and crack distribution behaviour under cyclic creep were found to be strong functions of testing temperature due to the difference in strain accumulation. At 823 K, surface relief mainly consisted of fine slip markings due to negligible accumulation of strain as a consequence of dynamic strain ageing (DSA) which led to an increase in the cyclic life. Persistent slip markings (PSM) with distinct extrusions containing minute cracks were seen to prevail in the temperature range 873-923 K, indicating a higher slip activity causing higher strain accumulation in the absence of DSA. Besides, a large number of secondary cracks (both transgranular and intergranular) which were partially accentuated by severe oxidation, were observed. Extensive cavitation-induced grain boundary cracking took place at 923 K, which coalesced with PSM-induced transgranular cracks resulting in failure dominated by creep that in turn led to a drastic reduction in cyclic life. Investigations on the influence of stress rate were also carried out which underlined the presence of DSA at 823 K. At 923 K, lowering the stress rate caused further strengthening of the contribution from creep damage marked by a shift in the damage mechanism from cyclic slip to diffusion.
The use of heterodyne speckle photogrammetry to measure high-temperature strain distributions
NASA Technical Reports Server (NTRS)
Stetson, K. A.
1983-01-01
Thermal and mechanical strains have been measured on samples of a common material used in jet engine burner liners, which were heated from room temperature to 870 C and cooled back to 220 C, in a laboratory furnace. The physical geometry of the sample surface was recorded to select temperatures by means of a set of twelve single-exposure specklegrams. Sequential pairs of specklegrams were compared in a heterodyne interferometer which allowed high-precision measurement of differential displacements. Good speckle correlation was observed between the first and last specklegrams also, which showed the durability of the surface microstructure, and permitted a check on accumulated errors. Agreement with calculated thermal expansion was to within a few hundred microstrain over a range of fourteen thousand.
Bonomo, Maria Grazia; Cafaro, Caterina; Salzano, Giovanni
2015-01-01
Twenty-two Brevibacterium linens strains isolated from 'Pecorino di Filiano' cheese ripened in two different environments (natural cave and storeroom) were characterized and differentiated for features of technological interest and by genotypic methods, in order to select strains with specific features to be used as surface starter cultures. Results showed significant differences among strains on the basis of physiological and technological features, indicating heterogeneity within the species. A middle-low level of proteolytic activity was observed in 27.3 % of strains, while a small group (9.1 %) showed a high ability. Lipolytic activity was observed at three different temperatures and the highest value was detected at 20 °C with 13.6 % of strains, while an increase in temperature produced a slightly lower lipolysis in all strains. The evaluation of diacetyl production revealed that only 22.8 % of strains showed this ability, and most of them were isolated from product ripened in the natural cave. All strains exhibited only leu-aminopeptidase activity, with values more elevated in strains coming from the natural cave product. The combined analysis of genotypic results with the data obtained by the features of technological interest study established that the random amplified polymorphic DNA (RAPD) clusters obtained were composed not only of different genotypes but of different profiles based on technological properties too. This study demonstrated the importance of the ripening environment that affects the typical features of the artisanal product, leading to the selection of a specific surface microflora. Characterized strains could be associated within surface starters to standardize the production process of cheese, but preserving its typical organoleptic and sensory characteristics and improving the quality of the final product.
Strain engineered barium strontium titanate for tunable thin film resonators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khassaf, H.; Khakpash, N.; Sun, F.
2014-05-19
Piezoelectric properties of epitaxial (001) barium strontium titanate (BST) films are computed as functions of composition, misfit strain, and temperature using a non-linear thermodynamic model. Results show that through adjusting in-plane strains, a highly adaptive rhombohedral ferroelectric phase can be stabilized at room temperature with outstanding piezoelectric response exceeding those of lead based piezoceramics. Furthermore, by adjusting the composition and the in-plane misfit, an electrically tunable piezoelectric response can be obtained in the paraelectric state. These findings indicate that strain engineered BST films can be utilized in the development of electrically tunable and switchable surface and bulk acoustic wave resonators.
NASA Astrophysics Data System (ADS)
Yu, Zhou
Silicon oxides thermally grown on Si surface are the core gate materials of metal-oxide-semiconductor field effect transistor (MOSFET). This thin oxide layer insulates the gate terminals and the transistors substrate which make MOSFET has certain advantages over those conventional junctions, such as field-effect transistor (FET) and junction field effect transistor (JFET). With an oxide insulating layer, MOSFET is able to sustain higher input impedance and the corresponding gate leakage current can be minimized. Today, though the oxidation process on Si substrate is popular in industry, there are still some uncertainties about its oxidation kinetics. On a path to clarify and modeling the oxidation kinetics, a study of initial oxidation kinetics on Si (001) surface has attracted attentions due to having a relatively low surface electron density and few adsorption channels compared with other Si surface direction. Based on previous studies, there are two oxidation models of Si (001) that extensively accepted, which are dual oxide species mode and autocatalytic reaction model. These models suggest the oxidation kinetics on Si (001) mainly relies on the metastable oxygen atom on the surface and the kinetic is temperature dependent. Professor Yuji Takakuwa's group, Surface Physics laboratory, Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, observed surface strain existed during the oxidation kinetics on Si (001) and this is the first time that strain was discovered during Si oxidation. Therefore, it is necessary to explain where the strain comes from since none of previous model research included the surface strain (defects generation) into considerations. Moreover, recent developing of complementary metal-oxide-semiconductor (CMOS) requires a simultaneous oxidation process on p- and n-type Si substrate. However, none of those previous models included the dopant factor into the oxidation kinetic modeling. All of these points that further work is necessary to update and modify the traditional Si (001) oxidation models that had been accepted for several decades. To update and complement the Si (001) oxidation kinetics, an understanding of the temperature and dopant factor during initial oxidation kinetics on Si (001) is our first step. In this study, real-time photoelectron spectroscopy is applied to characterize the oxidized (001) surface and surface information was collected by ultraviolet photoelectron spectroscopy technique. By analyzing parameters such as O 2p spectra uptake, change of work function and the surface state in respect of p- and n- type Si (001) substrate under different temperature, the oxygen adsorption structure and the dopant factor can be determined. In this study, experiments with temperature gradients on p-type Si (001) were conducted and this aims to clarify the temperature dependent characteristic of Si (001) surface oxidation. A comparison of the O 2p uptake, change of work function and surface state between p-and n-type Si (001) is made under a normal temperature and these provides with the data to explain how the dopant factor impacts the oxygen adsorption structure on the surface. In the future, the study of the oxygen adsorption structure will lead to an explanation of the surface strain that discovered; therefore, fundamental of the initial oxidation on Si (001) would be updated and complemented, which would contribute to the future gate technology in MOSFET and CMOS.
Mechanical Behavior of Glidcop Al-15 at High Temperature and Strain Rate
NASA Astrophysics Data System (ADS)
Scapin, M.; Peroni, L.; Fichera, C.
2014-05-01
Strain rate and temperature are variables of fundamental importance for the definition of the mechanical behavior of materials. In some elastic-plastic models, the effects, coming from these two quantities, are considered to act independently. This approach should, in some cases, allow to greatly simplify the experimental phase correlated to the parameter identification of the material model. Nevertheless, in several applications, the material is subjected to dynamic load at very high temperature, as, for example, in case of machining operation or high energy deposition on metals. In these cases, to consider the effect of strain rate and temperature decoupled could not be acceptable. In this perspective, in this work, a methodology for testing materials varying both strain rate and temperature was described and applied for the mechanical characterization of Glidcop Al-15, a copper-based composite reinforced with alumina dispersion, often used in nuclear applications. The tests at high strain rate were performed using the Hopkinson Bar setup for the direct tensile tests. The heating of the specimen was performed using an induction coil system and the temperature was controlled on the basis of signals from thermocouples directly welded on the specimen surface. Varying the strain rate, Glidcop Al-15 shows a moderate strain-rate sensitivity at room temperature, while it considerably increases at high temperature: material thermal softening and strain-rate hardening are strongly coupled. The experimental data were fitted using a modified formulation of the Zerilli-Armstrong model able to reproduce this kind of behavior with a good level of accuracy.
Paz-Méndez, Alba María; Lamas, Alexandre; Vázquez, Beatriz; Miranda, José Manuel; Cepeda, Alberto; Franco, Carlos Manuel
2017-11-29
Salmonella spp. is a major food-borne pathogen around the world. The ability of Salmonella to produce biofilm is one of the main obstacles in reducing the prevalence of these bacteria in the food chain. Most of Salmonella biofilm studies found in the literature used laboratory growth media. However, in the food chain, food residues are the principal source of nutrients of Salmonella . In this study, the biofilm formation, morphotype, and motility of 13 Salmonella strains belonging to three different subspecies and isolated from poultry houses was evaluated. To simulate food chain conditions, four different growth media (Tryptic Soy Broth at 1/20 dilution, milk at 1/20 dilution, tomato juice, and chicken meat juice), two different surfaces (stainless steel and polystyrene) and two temperatures (6 °C and 22 °C) were used to evaluate the biofilm formation. The morphotype, motility, and biofilm formation of Salmonella was temperature-dependent. Biofilm formation was significantly higher with 1/20 Tryptic Soy Broth in all the surfaces and temperatures tested, in comparison with the other growth media. The laboratory growth medium 1/20 Tryptic Soy Broth enhanced biofilm formation in Salmonella . This could explain the great differences in biofilm formation found between this growth medium and food residues. However, Salmonella strains were able to produce biofilm on the presence of food residues in all the conditions tested. Therefore, the Salmonella strain can use food residues to produce biofilm on common surfaces of the food chain. More studies combining more strains and food residues are necessary to fully understand the mechanism used by Salmonella to produce biofilm on the presence of these sources of nutrients.
Paz-Méndez, Alba María; Vázquez, Beatriz; Cepeda, Alberto; Franco, Carlos Manuel
2017-01-01
Salmonella spp. is a major food-borne pathogen around the world. The ability of Salmonella to produce biofilm is one of the main obstacles in reducing the prevalence of these bacteria in the food chain. Most of Salmonella biofilm studies found in the literature used laboratory growth media. However, in the food chain, food residues are the principal source of nutrients of Salmonella. In this study, the biofilm formation, morphotype, and motility of 13 Salmonella strains belonging to three different subspecies and isolated from poultry houses was evaluated. To simulate food chain conditions, four different growth media (Tryptic Soy Broth at 1/20 dilution, milk at 1/20 dilution, tomato juice, and chicken meat juice), two different surfaces (stainless steel and polystyrene) and two temperatures (6 °C and 22 °C) were used to evaluate the biofilm formation. The morphotype, motility, and biofilm formation of Salmonella was temperature-dependent. Biofilm formation was significantly higher with 1/20 Tryptic Soy Broth in all the surfaces and temperatures tested, in comparison with the other growth media. The laboratory growth medium 1/20 Tryptic Soy Broth enhanced biofilm formation in Salmonella. This could explain the great differences in biofilm formation found between this growth medium and food residues. However, Salmonella strains were able to produce biofilm on the presence of food residues in all the conditions tested. Therefore, the Salmonella strain can use food residues to produce biofilm on common surfaces of the food chain. More studies combining more strains and food residues are necessary to fully understand the mechanism used by Salmonella to produce biofilm on the presence of these sources of nutrients. PMID:29186017
1989-08-18
conditions, strain rate , geometry, manufacturing variables, microstructure, surface conditions, and alloy contamination. Exzvples of service failures are...depends on the ductility of the material, strain rate and stress concentration. The macrosocpic appearances of two ductile overstress fractures are shown...distribution of nucleation sites, stress orientation, temperature, ductility and strain rate . The size of the dimples is oontrolled by the size, number ard
Luo, Sihai; Zhou, Liucheng; Wang, Xuede; Cao, Xin; Nie, Xiangfan
2018-01-01
As an innovative surface technology for ultrahigh strain-rate plastic deformation, laser shock peening (LSP) was applied to the dual-phase TC11 titanium alloy to fabricate an amorphous and nanocrystalline surface layer at room temperature. X-ray diffraction, transmission electron microscopy, and high-resolution transmission electron microscopy (HRTEM) were used to investigate the microstructural evolution, and the deformation mechanism was discussed. The results showed that a surface nanostructured surface layer was synthesized after LSP treatment with adequate laser parameters. Simultaneously, the behavior of dislocations was also studied for different laser parameters. The rapid slipping, accumulation, annihilation, and rearrangement of dislocations under the laser-induced shock waves contributed greatly to the surface nanocrystallization. In addition, a 10 nm-thick amorphous structure layer was found through HRTEM in the top surface and the formation mechanism was attributed to the local temperature rising to the melting point, followed by its subsequent fast cooling. PMID:29642379
Luo, Sihai; Zhou, Liucheng; Wang, Xuede; Cao, Xin; Nie, Xiangfan; He, Weifeng
2018-04-06
As an innovative surface technology for ultrahigh strain-rate plastic deformation, laser shock peening (LSP) was applied to the dual-phase TC11 titanium alloy to fabricate an amorphous and nanocrystalline surface layer at room temperature. X-ray diffraction, transmission electron microscopy, and high-resolution transmission electron microscopy (HRTEM) were used to investigate the microstructural evolution, and the deformation mechanism was discussed. The results showed that a surface nanostructured surface layer was synthesized after LSP treatment with adequate laser parameters. Simultaneously, the behavior of dislocations was also studied for different laser parameters. The rapid slipping, accumulation, annihilation, and rearrangement of dislocations under the laser-induced shock waves contributed greatly to the surface nanocrystallization. In addition, a 10 nm-thick amorphous structure layer was found through HRTEM in the top surface and the formation mechanism was attributed to the local temperature rising to the melting point, followed by its subsequent fast cooling.
NASA Astrophysics Data System (ADS)
Chen, Jing; Liu, Huiqun; Zhang, Ruiqian; Li, Gang; Yi, Danqing; Lin, Gaoyong; Guo, Zhen; Liu, Shaoqiang
2018-06-01
High-temperature compression deformation of a Zr-4 metal matrix with dispersed coated surrogate nuclear fuel particles was investigated at 750 °C-950 °C with a strain rate of 0.01-1.0 s-1 and height reduction of 20%. Scanning electron microscopy was utilized to investigate the influence of the deformation conditions on the microstructure of the composite and damage to the coated surrogate fuel particles. The results indicated that the flow stress of the composite increased with increasing strain rate and decreasing temperature. The true stress-strain curves showed obvious serrated oscillation characteristics. There were stable deformation ranges at the initial deformation stage with low true strain at strain rate 0.01 s-1 for all measured temperatures. Additionally, the coating on the surface of the surrogate nuclear fuel particles was damaged when the Zr-4 matrix was deformed at conditions of high strain rate and low temperature. The deformation stability was obtained from the processing maps and microstructural characterization. The high-temperature deformation activation energy was 354.22, 407.68, and 433.81 kJ/mol at true strains of 0.02, 0.08, and 0.15, respectively. The optimum deformation parameters for the composite were 900-950 °C and 0.01 s-1. These results are expected to provide guidance for subsequent determination of possible hot working processes for this composite.
Zuanetti, Bryan; McGrane, Shawn David; Bolme, Cynthia Anne; ...
2018-05-18
Here, this article presents results from laser-driven shock compression experiments performed on pre-heated pure aluminum films at temperatures ranging from 23 to 400 °C. The samples were vapor deposited on the surface of a 500 μm thick sapphire substrate and mounted onto a custom holder with an integrated ring-heater to enable variable initial temperature conditions. A chirped pulse amplified laser was used to generate a pulse for both shocking the films and for probing the free surface velocity using Ultrafast Dynamic Ellipsometry. The particle velocity traces measured at the free surface clearly show elastic and plastic wave separation, which wasmore » used to estimate the decay of the elastic precursor amplitude over propagation distances ranging from 0.278 to 4.595 μm. Elastic precursors (which also correspond to dynamic material strength under uniaxial strain) of increasing amplitudes were observed with increasing initial sample temperatures for all propagation distances, which is consistent with expectations for aluminum in a deformation regime where phonon drag limits the mobility of dislocations. The experimental results show peak elastic amplitudes corresponding to axial stresses of over 7.5 GPa; estimates for plastic strain-rates in the samples are of the order 10 9/s. The measured elastic amplitudes at the micron length scales are compared with those at the millimeter length-scales using a two-parameter model and used to correlate the rate sensitivity of the dynamic strength at strain-rates ranging from 10 3 to 10 9/s and elevated temperature conditions. The overall trend, as inferred from the experimental data, indicates that the temperature-strengthening effect decreases with increasing plastic strain-rates.« less
NASA Astrophysics Data System (ADS)
Zuanetti, Bryan; McGrane, Shawn D.; Bolme, Cynthia A.; Prakash, Vikas
2018-05-01
This article presents results from laser-driven shock compression experiments performed on pre-heated pure aluminum films at temperatures ranging from 23 to 400 °C. The samples were vapor deposited on the surface of a 500 μm thick sapphire substrate and mounted onto a custom holder with an integrated ring-heater to enable variable initial temperature conditions. A chirped pulse amplified laser was used to generate a pulse for both shocking the films and for probing the free surface velocity using Ultrafast Dynamic Ellipsometry. The particle velocity traces measured at the free surface clearly show elastic and plastic wave separation, which was used to estimate the decay of the elastic precursor amplitude over propagation distances ranging from 0.278 to 4.595 μm. Elastic precursors (which also correspond to dynamic material strength under uniaxial strain) of increasing amplitudes were observed with increasing initial sample temperatures for all propagation distances, which is consistent with expectations for aluminum in a deformation regime where phonon drag limits the mobility of dislocations. The experimental results show peak elastic amplitudes corresponding to axial stresses of over 7.5 GPa; estimates for plastic strain-rates in the samples are of the order 109/s. The measured elastic amplitudes at the micron length scales are compared with those at the millimeter length-scales using a two-parameter model and used to correlate the rate sensitivity of the dynamic strength at strain-rates ranging from 103 to 109/s and elevated temperature conditions. The overall trend, as inferred from the experimental data, indicates that the temperature-strengthening effect decreases with increasing plastic strain-rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuanetti, Bryan; McGrane, Shawn David; Bolme, Cynthia Anne
Here, this article presents results from laser-driven shock compression experiments performed on pre-heated pure aluminum films at temperatures ranging from 23 to 400 °C. The samples were vapor deposited on the surface of a 500 μm thick sapphire substrate and mounted onto a custom holder with an integrated ring-heater to enable variable initial temperature conditions. A chirped pulse amplified laser was used to generate a pulse for both shocking the films and for probing the free surface velocity using Ultrafast Dynamic Ellipsometry. The particle velocity traces measured at the free surface clearly show elastic and plastic wave separation, which wasmore » used to estimate the decay of the elastic precursor amplitude over propagation distances ranging from 0.278 to 4.595 μm. Elastic precursors (which also correspond to dynamic material strength under uniaxial strain) of increasing amplitudes were observed with increasing initial sample temperatures for all propagation distances, which is consistent with expectations for aluminum in a deformation regime where phonon drag limits the mobility of dislocations. The experimental results show peak elastic amplitudes corresponding to axial stresses of over 7.5 GPa; estimates for plastic strain-rates in the samples are of the order 10 9/s. The measured elastic amplitudes at the micron length scales are compared with those at the millimeter length-scales using a two-parameter model and used to correlate the rate sensitivity of the dynamic strength at strain-rates ranging from 10 3 to 10 9/s and elevated temperature conditions. The overall trend, as inferred from the experimental data, indicates that the temperature-strengthening effect decreases with increasing plastic strain-rates.« less
Investigation of rolling variables on the structure of steel
NASA Astrophysics Data System (ADS)
Ekebuisi, Godwyn O.
The Literature pertaining to the present research has been critically reviewed. Hot deformation of Nb-free and Nb-containing stainless and C-Mn steels has been carried out by: upset-forging, rolling, and plane strain compression testing. Also, some gridded lead alloy and some mild steel containing Type I MnS inclusions as markers have been hot rolled. Subsequently investigations have been made into: barrelling and lubrication in upsetting; distributions of temperature and strain during thermomechanical working; microstructural processes associated with hot deformation of steel and the evolution of microstructures particularly recrystallised gamma-grain size; isothermal transformation of austenite to ferrite; and the mechanisms governing hot deformation of austenite.Barrelling during the hot upsetting of a solid cylinder arises from the combined effects of interface friction and inhomogeneous distribution of temperature. A barrelling factor, B[f], has been defined to quantify the degree of barrelling and hence of inhomogeneity of deformation in an upset-forged cylinder. Employing glass as a lubricant, an optimised lubrication technique, which ensures homogeneous deformation in upsetting, has been developed and a mechanism of lubrication proposed. The through-thickness temperature distribution of a deforming material, particularly during hot rolling, is inhomogeneous. Generally, the centre-plane temperature rises due to heat generation while the surface-plane temperature drops due to the cooling effects of the tools. Strain distribution during hot rolling is also inhomogeneous. In particular, the vertical strain (epsilon[z]) is minimum at the surface-plane of the material, maximum at the mid-plane and intermediate at the centre-plane.Hot deformation of the stainless steels leads to substructure formation and, at suitably high strains, dynamic and metadynamic recrystallisation. Only a small amount of static recovery precedes static recrystallisation. Nucleation for recrystallisation occurs at preferential sites, particularly serrated boundaries and triple junctions of the deformed prior gamma-grains.The nucleated gamma-grains grow anisotropically and link up to form chains of grains at the prior gamma-grain boundaries. Recrystallisation in hot-rolled samples is inhomogeneous at micro and macro-levels. Particularly, recrystallisation is accelerated at the centre-plane and retarded at the surface plane. This effect arises mainly from non-uniform distribution of temperature and is influenced by material and hot rolling variables. Nb retards recrystallisation by the combined effects of Nb carbide/ nitride particles and Nb atoms in solid solution, the particle effect predominating at 1100°C. Recrystallisation is accelerated by a higher strain, a higher deformation temperature, a higher strain rate, a decrease in the prior ?-grain size, and the presence of deformation bands and twins. A non-isothermal multiple deformation sequence increases the incubation time due to a large temperature drop but promotes a fast recrystallisation rate at the recrystallisation temperature. (Abstract shortened by ProQuest.).
Thermoregulation of Capsule Production by Streptococcus pyogenes
Kang, Song Ok; Wright, Jordan O.; Tesorero, Rafael A.; Lee, Hyunwoo; Beall, Bernard; Cho, Kyu Hong
2012-01-01
The capsule of Streptococcus pyogenes serves as an adhesin as well as an anti-phagocytic factor by binding to CD44 on keratinocytes of the pharyngeal mucosa and the skin, the main entry sites of the pathogen. We discovered that S. pyogenes HSC5 and MGAS315 strains are further thermoregulated for capsule production at a post-transcriptional level in addition to the transcriptional regulation by the CovRS two-component regulatory system. When the transcription of the hasABC capsular biosynthetic locus was de-repressed through mutation of the covRS system, the two strains, which have been used for pathogenesis studies in the laboratory, exhibited markedly increased capsule production at sub-body temperature. Employing transposon mutagenesis, we found that CvfA, a previously identified membrane-associated endoribonuclease, is required for the thermoregulation of capsule synthesis. The mutation of the cvfA gene conferred increased capsule production regardless of temperature. However, the amount of the capsule transcript was not changed by the mutation, indicating that a post-transcriptional regulator mediates between CvfA and thermoregulated capsule production. When we tested naturally occurring invasive mucoid strains, a high percentage (11/53, 21%) of the strains exhibited thermoregulated capsule production. As expected, the mucoid phenotype of these strains at sub-body temperature was due to mutations within the chromosomal covRS genes. Capsule thermoregulation that exhibits high capsule production at lower temperatures that occur on the skin or mucosal surface potentially confers better capability of adhesion and invasion when S. pyogenes penetrates the epithelial surface. PMID:22615992
NASA Astrophysics Data System (ADS)
Takahashi, Kyouhei; Ogawa, Takeshi
Ultrasonic fatigue tests have been performed in austenitic stainless steel, SUS316NG, in order to investigate giga-cycle fatigue strength of pre-strained materials, i.e. 5, 10 and 20% tensile pre-strains and -20% compressive pre-strain. The pre-strains were applied before specimen machining. The austenitic stainless steels are known to exhibit remarkable self-heating during the fatigue experiment. Therefore, heat radiation method was established by setting fatigue specimens in a low temperature chamber at about -100°C. The self-heating was controlled by intermittent loading condition, which enabled us to maintain the test section of the specimens at about room temperature. The results revealed that the fatigue strength increased with increasing pre-strain levels. Fish-eye fracture was observed for -20% pre-strained specimen fractured at 4.11×107 cycles, while the other specimens exhibited ordinary fatigue fracture surface originated from stage I facet on the specimen surface. The increase in fatigue limit was predicted by Vickers hardness, HV, which depended on the size of indented region. The prediction was successful using HV values obtained by the size of the indented region similar to those of the stage I facets.
Advanced high temperature static strain sensor development
NASA Technical Reports Server (NTRS)
Hulse, C. O.; Stetson, K. A.; Grant, H. P.; Jameikis, S. M.; Morey, W. W.; Raymondo, P.; Grudkowski, T. W.; Bailey, R. S.
1986-01-01
An examination was made into various techniques to be used to measure static strain in gas turbine liners at temperatures up to 1150 K (1600 F). The methods evaluated included thin film and wire resistive devices, optical fibers, surface acoustic waves, the laser speckle technique with a heterodyne readout, optical surface image and reflective approaches and capacitive devices. A preliminary experimental program to develop a thin film capacitive device was dropped because calculations showed that it would be too sensitive to thermal gradients. In a final evaluation program, the laser speckle technique appeared to work well up to 1150 K when it was used through a relatively stagnant air path. The surface guided acoustic wave approach appeared to be interesting but to require too much development effort for the funds available. Efforts to develop a FeCrAl resistive strain gage system were only partially successful and this part of the effort was finally reduced to a characterization study of the properties of the 25 micron diameter FeCrAl (Kanthal A-1) wire. It was concluded that this particular alloy was not suitable for use as the resistive element in a strain gage above about 1000 K.
Advanced high temperature static strain sensor development
NASA Astrophysics Data System (ADS)
Hulse, C. O.; Stetson, K. A.; Grant, H. P.; Jameikis, S. M.; Morey, W. W.; Raymondo, P.; Grudkowski, T. W.; Bailey, R. S.
1986-08-01
An examination was made into various techniques to be used to measure static strain in gas turbine liners at temperatures up to 1150 K (1600 F). The methods evaluated included thin film and wire resistive devices, optical fibers, surface acoustic waves, the laser speckle technique with a heterodyne readout, optical surface image and reflective approaches and capacitive devices. A preliminary experimental program to develop a thin film capacitive device was dropped because calculations showed that it would be too sensitive to thermal gradients. In a final evaluation program, the laser speckle technique appeared to work well up to 1150 K when it was used through a relatively stagnant air path. The surface guided acoustic wave approach appeared to be interesting but to require too much development effort for the funds available. Efforts to develop a FeCrAl resistive strain gage system were only partially successful and this part of the effort was finally reduced to a characterization study of the properties of the 25 micron diameter FeCrAl (Kanthal A-1) wire. It was concluded that this particular alloy was not suitable for use as the resistive element in a strain gage above about 1000 K.
Photodiode Camera Measurement of Surface Strains on Tendons during Multiple Cyclic Tests
NASA Astrophysics Data System (ADS)
Chun, Keyoung Jin; Hubbard, Robert Philip
The objectives of this study are to introduce the use of a photodiode camera for measuring surface strain on soft tissue and to present some representative responses of the tendon. Tendon specimens were obtained from the hindlimbs of canines and frozen to -70°C. After thawing, specimens were mounted in the immersion bath at a room temperature (22°C), preloaded to 0.13N and then subjected to 3% of the initial length at a strain rate of 2%/sec. In tendons which were tested in two blocks of seven repeated extensions to 3% strain with a 120 seconds wait period between, the surface strains were measured with a photodiode camera and near the gripped ends generally were greater than the surface strains in the middle segment of the tendon specimens. The recovery for peak load after the rest period was consistent but the changes in patterns of surface strains after the rest period were not consistent. The advantages of a photodiode measurement of surface strains include the followings: 1) it is a noncontacting method which eliminates errors and distortions caused by clip gauges or mechanical/electronic transducers; 2) it is more accurate than previous noncontact methods, e.g. the VDA and the high speed photographic method; 3) it is a fully automatic, thus reducing labor for replaying video tapes or films and potential errors from human judgement which can occur during digitizing data from photographs. Because the photodiode camera, employs a solid state photodiode array to sense black and white images, scan targets (black image) on the surface of the tendon specimen and back lighting system (white image), and stored automatically image data for surface strains of the tendon specimen on the computer during cyclic extensions.
Compression, bend, and tension studies on forged Al67Ti25Cr8 and Al66Ti25Mn(g) L1(2) compounds
NASA Technical Reports Server (NTRS)
Kumar, K. S.; Brown, S. A.; Whittenberger, J. D.
1991-01-01
Cast, homogenized, and isothermally forged aluminum-rich L1(2) compounds Al67Ti25Cr8 and Al66Ti25Mn(g) were tested in compression as a function of temperature and as a function of strain rate at elevated temperatures (1000 K and 1100 K). Three-point bend specimens were tested as a function of temperature in the range 300 K to 873 K. Strain gages glued on the tensile side of the ambient and 473 K specimens enabled direct strain measurements. A number of 'buttonhead' tensile specimens were electro-discharge machined, fine polished, and tested between ambient and 1073 K for yield strength and ductility as a function of temperature. Scanning electron microscope (SEM) examination of fracture surfaces from both the bend and tensile specimens revealed a gradual transition from transgranular cleavage to intergranular failure with increasing temperature.
Lim, H.; Hale, L. M.; Zimmerman, J. A.; ...
2015-01-05
In this study, we develop an atomistically informed crystal plasticity finite element (CP-FE) model for body-centered-cubic (BCC) α-Fe that incorporates non-Schmid stress dependent slip with temperature and strain rate effects. Based on recent insights obtained from atomistic simulations, we propose a new constitutive model that combines a generalized non-Schmid yield law with aspects from a line tension (LT) model for describing activation enthalpy required for the motion of dislocation kinks. Atomistic calculations are conducted to quantify the non-Schmid effects while both experimental data and atomistic simulations are used to assess the temperature and strain rate effects. The parameterized constitutive equationmore » is implemented into a BCC CP-FE model to simulate plastic deformation of single and polycrystalline Fe which is compared with experimental data from the literature. This direct comparison demonstrates that the atomistically informed model accurately captures the effects of crystal orientation, temperature and strain rate on the flow behavior of siangle crystal Fe. Furthermore, our proposed CP-FE model exhibits temperature and strain rate dependent flow and yield surfaces in polycrystalline Fe that deviate from conventional CP-FE models based on Schmid's law.« less
NASA Astrophysics Data System (ADS)
Makarov, A. V.; Skorynina, P. A.; Yurovskikh, A. S.; Osintseva, A. L.
2017-12-01
The effect of the multiplicity of frictional loading with a sliding synthetic diamond indenter at room temperature in an argon medium and the temperature of loading in the range of -196 to +250°C on the phase composition, fine structure, and micromechanical properties of the surface layer of metastable austenitic chromium-nickel steel has been studied. It has been established that the completeness of the strain-induced martensitic γ → α' transformation in the surface layer of steel is determined by the loading multiplicity and temperature, as well as the level of strengthening grows with an increase in the frictional loading multiplicity, but weakly depends on the frictional treatment temperature. According to the microindentation data, the characteristics of the surface layer strength and resistance to elastic and plastic deformation are improved with an increase in the frictional loading multiplicity. Frictional treatment by scanning with a synthetic diamond indenter at room and negative temperatures provides high quality for the treated surface with a low roughness parameter ( Ra = 80.115 nm), and an increase in the frictional loading temperature to 150-250°C leads to the development of a seizure and growth in Ra to 195-255 nm. Using transmission electron microscopy (TEM), it has been shown that frictional treatment results in the formation of nanocrystalline and fragmented submicrocrystalline structures of strain-induced α'-martensite (at a loading temperature of -196°C) and austenite (at a loading temperature of +250°C) in the surface layer of steel alongside with two-phase martensitic-austenitic structures (at a loading temperature of +20°C).
NASA Astrophysics Data System (ADS)
Cao, Penghui; Park, Harold S.; Lin, Xi
2013-10-01
We couple the recently developed self-learning metabasin escape algorithm, which enables efficient exploration of the potential energy surface (PES), with shear deformation to elucidate strain-rate and temperature effects on the shear transformation zone (STZ) characteristics in two-dimensional amorphous solids. In doing so, we report a transition in the STZ characteristics that can be obtained through either increasing the temperature or decreasing the strain rate. The transition separates regions having two distinct STZ characteristics. Specifically, at high temperatures and high strain rates, we show that the STZs have characteristics identical to those that emerge from purely strain-driven, athermal quasistatic atomistic calculations. At lower temperatures and experimentally relevant strain rates, we use the newly coupled PES + shear deformation method to show that the STZs have characteristics identical to those that emerge from a purely thermally activated state. The specific changes in STZ characteristics that occur in moving from the strain-driven to thermally activated STZ regime include a 33% increase in STZ size, faster spatial decay of the displacement field, a change in the deformation mechanism inside the STZ from shear to tension, a reduction in the stress needed to nucleate the first STZ, and finally a notable loss in characteristic quadrupolar symmetry of the surrounding elastic matrix that has previously been seen in athermal, quasistatic shear studies of STZs.
Effect of Machining Parameters on Oxidation Behavior of Mild Steel
NASA Astrophysics Data System (ADS)
Majumdar, P.; Shekhar, S.; Mondal, K.
2015-01-01
This study aims to find out a correlation between machining parameters, resultant microstructure, and isothermal oxidation behavior of lathe-machined mild steel in the temperature range of 660-710 °C. The tool rake angles "α" used were +20°, 0°, and -20°, and cutting speeds used were 41, 232, and 541 mm/s. Under isothermal conditions, non-machined and machined mild steel samples follow parabolic oxidation kinetics with activation energy of 181 and ~400 kJ/mol, respectively. Exaggerated grain growth of the machined surface was observed, whereas, the center part of the machined sample showed minimal grain growth during oxidation at higher temperatures. Grain growth on the surface was attributed to the reduction of strain energy at high temperature oxidation, which was accumulated on the sub-region of the machined surface during machining. It was also observed that characteristic surface oxide controlled the oxidation behavior of the machined samples. This study clearly demonstrates the effect of equivalent strain, roughness, and grain size due to machining, and subsequent grain growth on the oxidation behavior of the mild steel.
NASA Technical Reports Server (NTRS)
Norman, I.; Rochelle, W. C.; Kimbrough, B. S.; Ritrivi, C. A.; Ting, P. C.; Dotts, R. L.
1982-01-01
Thermal performance verification of Reusable Surface Insulation (RSI) has been accomplished by comparisons of STS-2 Orbiter Flight Test (OFT) data with Thermal Math Model (TMM) predictions. The OFT data was obtained from Development Flight Instrumentation RSI plug and gap thermocouples. Quartertile RSI TMMs were developed using measured flight data for surface temperature and pressure environments. Reference surface heating rates, derived from surface temperature data, were multiplied by gap heating ratios to obtain tile sidewall heating rates. This TMM analysis resulted in good agreement of predicted temperatures with flight data for thermocouples located in the RSI, Strain Isolation Pad, filler bar and structure.
Internal stress-induced melting below melting temperature at high-rate laser heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Yong Seok, E-mail: yshwang@iastate.edu; Levitas, Valery I., E-mail: vlevitas@iastate.edu
In this Letter, continuum thermodynamic and phase field approaches (PFAs) predicted internal stress-induced reduction in melting temperature for laser-irradiated heating of a nanolayer. Internal stresses appear due to thermal strain under constrained conditions and completely relax during melting, producing an additional thermodynamic driving force for melting. Thermodynamic melting temperature for Al reduces from 933.67 K for a stress-free condition down to 898.1 K for uniaxial strain and to 920.8 K for plane strain. Our PFA simulations demonstrated barrierless surface-induced melt nucleation below these temperatures and propagation of two solid-melt interfaces toward each other at the temperatures very close to the corresponding predicted thermodynamicmore » equilibrium temperatures for the heating rate Q≤1.51×10{sup 10}K/s. At higher heating rates, kinetic superheating competes with a reduction in melting temperature and melting under uniaxial strain occurs at 902.1 K for Q = 1.51 × 10{sup 11 }K/s and 936.9 K for Q = 1.46 × 10{sup 12 }K/s.« less
NASA Astrophysics Data System (ADS)
Warren, K.; Eppes, M.-C.; Swami, S.; Garbini, J.; Putkonen, J.
2013-11-01
The rates and processes that lead to non-tectonic rock fracture on Earth's surface are widely debated but poorly understood. Few, if any, studies have made the direct observations of rock fracturing under natural conditions that are necessary to directly address this problem. An instrumentation design that enables concurrent high spatial and temporal monitoring resolution of (1) diurnal environmental conditions of a natural boulder and its surroundings in addition to (2) the fracturing of that boulder under natural full-sun exposure is described herein. The surface of a fluvially transported granite boulder was instrumented with (1) six acoustic emission (AE) sensors that record micro-crack associated, elastic wave-generated activity within the three-dimensional space of the boulder, (2) eight rectangular rosette foil strain gages to measure surface strain, (3) eight thermocouples to measure surface temperature, and (4) one surface moisture sensor. Additionally, a soil moisture probe and a full weather station that measures ambient temperature, relative humidity, wind speed, wind direction, barometric pressure, insolation, and precipitation were installed adjacent to the test boulder. AE activity was continuously monitored by one logger while all other variables were acquired by a separate logger every 60 s. The protocols associated with the instrumentation, data acquisition, and analysis are discussed in detail. During the first four months, the deployed boulder experienced almost 12 000 AE events, the majority of which occur in the afternoon when temperatures are decreasing. This paper presents preliminary data that illustrates data validity and typical patterns and behaviors observed. This system offers the potential to (1) obtain an unprecedented record of the natural conditions under which rocks fracture and (2) decipher the mechanical processes that lead to rock fracture at a variety of temporal scales under a range of natural conditions.
NASA Astrophysics Data System (ADS)
Warren, K.; Eppes, M.-C.; Swami, S.; Garbini, J.; Putkonen, J.
2013-07-01
The rates and processes that lead to non-tectonic rock fracture on the Earth's surface are widely debated but poorly understood. Few, if any, studies have made the direct observations of rock fracturing under natural conditions that are necessary to directly address this problem. An instrumentation design that enables concurrent high spatial and temporal monitoring resolution of (1) diurnal environmental conditions of a natural boulder and its surroundings in addition to (2) the fracturing of that boulder under natural full-sun exposure is described herein. The surface of a fluvially transported granite boulder was instrumented with (1) six acoustic emission (AE) sensors that record micro-crack associated, elastic wave-generated activity within the three-dimensional space of the boulder, (2) eight rectangular rosette foil strain gages to measure surface strain, (3) eight thermocouples to measure surface temperature, and (4) one surface moisture sensor. Additionally, a soil moisture probe and a full weather station that measures ambient temperature, relative humidity, wind speed, wind direction, barometric pressure, insolation, and precipitation were installed adjacent to the test boulder. AE activity was continuously monitored by one logger while all other variables were acquired by a separate logger every 60 s. The protocols associated with the instrumentation, data acquisition, and analyses are discussed in detail. During the first four months, the deployed boulder experienced almost 12 000 AE events, the majority of which occur in the afternoon when temperatures are decreasing. This paper presents preliminary data that illustrates data validity and typical patterns and behaviors observed. This system offers the potential to (1) obtain an unprecedented record of the natural conditions under which rocks fracture and (2) decipher the mechanical processes that lead to rock fracture at a variety of temporal scales under a range of natural conditions.
Multicolor Nanostructured High Efficiency Photovoltaic Devices
2007-06-30
the surface of strained buffer layer starts to form some nanoholes and nanogrooves. The depth of these nanoholes and nanogrooves is more than 3 nm...This indicates that the nanoholes and nanogrooves are formed not only just in the top GaAs (5 ML) layer, but also deep in the strained GaAsSb buffer...temperature during the InAs growth. As the InAs growth temperature decreases, the density of the nanoholes and nanogrooves is significantly reduced
Marshall, B; Flynn, P; Kamely, D; Levy, S B
1988-01-01
The survival of a laboratory strain and a naturally occurring fecal strain of Escherichia coli, with and without a Tn5-containing derivative of ColE1, was examined after aerosol dispersal in a laboratory office and a barn under ambient temperature and humidity conditions. Following the release of paired strains, air and diverse types of surfaces were assayed for the test organisms. In both environments, the number of airborne bacteria declined rapidly within the first 2 h. Longer survival was found on surfaces and varied with surface type: recovery was greatest from wood products. Organisms persisted for 1 day in the office and for up to 20 days in the barn. Survival of the fecal strain was better than that of the laboratory strain in both test environments. In general, plasmid-bearing strains fared similarly to their plasmidless parents, but in several comparisons the ColE1::Tn5-containing strain showed enhanced survival. These studies have implications for the present and proposed release of genetically engineered organisms with and without plasmid vectors. PMID:2843099
NASA Astrophysics Data System (ADS)
Winczek, J.; Makles, K.; Gucwa, M.; Gnatowska, R.; Hatala, M.
2017-08-01
In the paper, the model of the thermal and structural strain calculation in a steel element during single-pass SAW surfacing is presented. The temperature field is described analytically assuming a bimodal volumetric model of heat source and a semi-infinite body model of the surfaced (rebuilt) workpiece. The electric arc is treated physically as one heat source. Part of the heat is transferred by the direct impact of the electric arc, while another part of the heat is transferred to the weld by the melted material of the electrode. Kinetics of phase transformations during heating is limited by temperature values at the beginning and at the end of austenitic transformation, while the progress of phase transformations during cooling is determined on the basis of TTT-welding diagramand JMA-K law for diffusive transformations, and K-M law for martensitic transformation. Totalstrains equal to the sum ofthermaland structuralstrainsinduced by phasetransformationsin weldingcycle.
[Development of a simultaneous strain and temperature sensor with small-diameter FBG].
Liu, Rong-mei; Liang, Da-kai
2011-03-01
Manufacture of the small diameter FBG was designed. Cross sensitivity of temperature and strain at sensing point was solved. Based on coupled-mode theory, optical properties of the designed FBG were studied. The reflection and transmission spectra of the designed FBG in small diameter were studied A single mode optical fiber, whose cladding diameter is 80 microm, was manufactured to a fiber Bragg grating (phi80FBG). According to spectrum simulation, the grating length and period were chosen as the wavelength was 1528 nm. The connector of the small diameter FBG with demodulation was designed too. In applications, the FBG measures the total deformation including strain due to forces applied to the structures as well as thermal expansion. In order to overcome this inconvenience and to measure both parameters at the same time and location, a novel scheme for simultaneous strain and temperature sensor was presented. Since the uniform strength beam has same deformation at all points, a pair of phi80 FBG was attached on a uniform strength cantilever. One of the FBG was on the upper surface, with the other one on the below. Therefore, the strains at the monitoring points were equal in magnitude but of opposite sign. The strain and temperature in sensing point could be discriminated by matrix equation. The determination of the K is not null and thus matrix inversion is well conditioned, even the values for the K elements are close. Consequently, the cross sensitivity of the FBG with temperature and strain can be experimentally solved. Experiments were carried out to study the strain discriminability of small-diameter FBG sensors. The temperature and strain were calculated and the errors were, respectively, 5% and 6%.
Chemical structural analysis of diamondlike carbon films: II. Raman analysis
NASA Astrophysics Data System (ADS)
Takabayashi, Susumu; Ješko, Radek; Shinohara, Masanori; Hayashi, Hiroyuki; Sugimoto, Rintaro; Ogawa, Shuichi; Takakuwa, Yuji
2018-02-01
The chemical structure of diamondlike carbon (DLC) films, synthesized by photoemission-assisted glow discharge, has been analyzed by Raman spectroscopy. Raman analysis in conjunction with the sp2 cluster model clarified the film structure. The sp2 clusters in DLC films synthesized at low temperature preferred various aliphatic structures. Sufficient argon-ion assist allowed for formation of less strained DLC films containing large amounts of hydrogen. As the synthesis temperature was increased, thermal desorption of hydrogen left carbon dangling bonds with active unpaired electrons in the films, and the reactions that followed created strained films containing aromatic sp2 clusters. In parallel, the desorption of methane molecules from the growing surface by chemisorption of hydrogen radicals prevented the action of argon ions, promoting internal strain of the films. However, in synthesis at very high temperature, where sp2 clusters are sufficiently dominant, the strain was dissolved gradually. In contrast, the DLC films synthesized at low temperature were more stable than other films synthesized at the same temperature because of stable hydrogen-carbon bonds in the films.
In situ strain and temperature measurement and modelling during arc welding
Chen, Jian; Yu, Xinghua; Miller, Roger G.; ...
2014-12-26
In this study, experiments and numerical models were applied to investigate the thermal and mechanical behaviours of materials adjacent to the weld pool during arc welding. In the experiment, a new high temperature strain measurement technique based on digital image correlation (DIC) was developed and applied to measure the in situ strain evolution. In contrast to the conventional DIC method that is vulnerable to the high temperature and intense arc light involved in fusion welding processes, the new technique utilised a special surface preparation method to produce high temperature sustaining speckle patterns required by the DIC algorithm as well asmore » a unique optical illumination and filtering system to suppress the influence of the intense arc light. These efforts made it possible for the first time to measure in situ the strain field 1 mm away from the fusion line. The temperature evolution in the weld and the adjacent regions was simultaneously monitored by an infrared camera. Finally and additionally, a thermal–mechanical finite element model was applied to substantiate the experimental measurement.« less
Smart sensing of aviation structures with fiber optic Bragg grating sensors
NASA Astrophysics Data System (ADS)
Trutzel, Michael N.; Wauer, Karsten; Betz, Daniel; Staudigel, Lothar; Krumpholz, Oskar; Muehlmann, Hans-Christian; Muellert, Thomas; Gleine, Wolfgang
2000-06-01
We developed a surface mounting technique where fiber-optic Bragg grating (FBG) sensors are glued to the surface of structures and tested the technique on the surface of a CFRP- wing at the DASA Airbus test center Hamburg for over one year. The FBG sensors were interrogated with a measurement system capable of determining the Bragg wavelength in a few seconds over a spectral range of 60 nm (around 1.53 μm) with an absolute accuracy better than 1 pm. A polarization scrambler was used to account for polarization effects. Excellent consistence between the values of electrical strain gauges and the FBG sensors were found during all measurements. However because this method shows drawbacks in a harsher environment such as a flight test, we are currently investigating the possibilities of integrating FBG sensors into the varnish of the structures. For reasons of their better mechanical performance we use FBG sensors produced on the fiber draw-tower with a special UV-curable coating. The sensors are integrated into an original Airbus varnish build- up. We observed linear strain sensitivities in a temperature range between -50 and +100 °C. Furthermore, at negative temperatures we found a vanish- induced polarization dependence which could be used to differentiate between strain and temperature effects.
Thermal-mechanical coupling effect on initial stage oxidation of Si(100) surface
NASA Astrophysics Data System (ADS)
Sun, Yu; Liu, Yilun; Chen, Xuefeng; Zhai, Zhi; Izumi, Satoshi
2018-04-01
The initial stage oxidation of biaxially strained Si(100) at temperatures ranging from 300 K to 1200 K has been investigated by Reactive Force Field Molecular Dynamics simulations. We reported that the oxidation process involving the reaction rate and the amount of absorbed O atoms could be enhanced by the coupling effect of higher temperatures and larger external tension. By fitting the simulation results, the relationship between absorbed oxygen and the coupling of temperature and strain was obtained. In probing the mechanism, we observed that there was a ballistic transport of O atoms, displaying an enhancement of inward penetration by external tension. Since such an inward transport was favored by thermal actuation, more O atoms penetrated into deeper layers when the 9% strained Si oxidized at 1200 K. Moreover, the evolution of stress in the surface region during the oxidation process was discussed, as well as the related oxide structure and the film quality. These present results may provide a way to understand the thermally-mechanically coupled chemical reactions and propose an effective approach to optimize microscale component processing in the electronic field.
Mutation-Screening of Pleurotus Ferulae with High Temperature Tolerance by Nitrogen Ion Implantation
NASA Astrophysics Data System (ADS)
Chen, Henglei; Wan, Honggui; Zhang, Jun; Zeng, Xianxian
2008-08-01
In order to obtain Pleurotus ferulae with high temperature tolerance, conidiophores of wild type strain ACK were implanted with nitrogen ions in energy of 5 ~15 keV and dose of 1.5 × 1015 ~ 1.5 × 1016 cm-2, and a mutant CGMCC1763 was isolated subsequently through thermotolerant screening method. It was found that during riper period the surface layer mycelium of the mutant in mushroom bag wasn't aging neither grew tegument even above 30° C. The mycelium endurable temperature of the mutant was increased by 5°C compared to that of the wild type strain. The fruiting bodies growth temperature of the mutant was 18 ~22°C in daytime and 8~14°C at night. The highest growth temperature of fruiting bodies of the mutant was increased about 7°C w.r.t. that of original strain. Through three generations investigations, it was found that the mutant CGMCC1763 was stable with high temperature tolerance.
High-rate deformation and fracture of steel 09G2S
NASA Astrophysics Data System (ADS)
Balandin, Vl. Vas.; Balandin, Vl. Vl.; Bragov, A. M.; Igumnov, L. A.; Konstantinov, A. Yu.; Lomunov, A. K.
2014-11-01
The results of experimental and theoretical studies of steel 09G2S deformation and fracture laws in a wide range of strain rates and temperature variations are given. The dynamic deformation curves and the ultimate characteristics of plasticity in high-rate strain were determined by the Kolsky method in compression, extension, and shear tests. The elastoplastic properties and spall strength were studied by using the gaseous gun of calibre 57 mm and the interferometer VISAR according to the plane-wave experiment technique. The data obtained by the Kolsky method were used to determine the parameters of the Johnson-Cook model which, in the framework of the theory of flow, describes how the yield surface radius depends on the strain, strain rate, and temperature.
NASA Technical Reports Server (NTRS)
Gil, Christopher M.
1998-01-01
An experimental program to determine flow surfaces has been established and implemented for solution annealed and aged IN718. The procedure involved subjecting tubular specimens to various ratios of axial-torsional stress at temperatures between 23 and 649 C and measuring strain with a biaxial extensometer. Each stress probe corresponds to a different direction in stress space, and unloading occurs when a 30 microstrain (1 micro eplison = 10(exp -6) mm/mm) offset is detected. This technique was used to map out yield loci in axial-torsional stress space. Flow surfaces were determined by post-processing the experimental data to determine the inelastic strain rate components. Surfaces of constant inelastic strain rate (SCISRS) and surfaces of constant inelastic power (SCIPS) were mapped out in the axial-shear stress plane. The von Mises yield criterion appeared to closely fit the initial loci for solutioned IN718 at 23 C. However, the initial loci for solutioned IN718 at 371 and 454 C, and all of the initial loci for aged IN718 were offset in the compression direction. Subsequent loci showed translation, distortion, and for the case of solutioned IN718, a slight cross effect. Aged IN718 showed significantly more hardening behavior than solutioned IN718.
Moraes, Juliana O; Cruz, Ellen A; Souza, Enio G F; Oliveira, Tereza C M; Alvarenga, Verônica O; Peña, Wilmer E L; Sant'Ana, Anderson S; Magnani, Marciane
2018-05-26
This study aimed to assess the capability of 97 epidemic S. enterica strains belonging to 18 serovars to form biofilm. Five strains characterized as strong biofilm-producers, belonging to distinct serovars (S. Enteritidis 132, S. Infantis 176, S. Typhimurium 177, S. Heidelberg 281 and S. Corvallis 297) were assayed for adhesion/biofilm formation on stainless steel surfaces. The experiments were conducted in different combinations of NaCl (0, 2, 4, 5, 6, 8 and 10% w/v), pH (4, 5, 6 and 7) and temperatures (8 °C, 12 °C, 20 °C and 35 °C). Only adhesion was assumed to occur when S. enterica counts were ≥3 and <5 log CFU/cm 2 , whereas biofilm formation was defined as when the counts were ≥5 log CFU/cm 2 . The binary responses were used to develop models to predict the probability of adhesion/biofilm formation on stainless steel surfaces by five strains belonging to different S. enterica serovars. A total of 99% (96/97) of the tested S. enterica strains were characterized as biofilm-producers in the microtiter plate assays. The ability to form biofilm varied (P < 0.05) within and among the different serovars. Among the biofilm-producers, 21% (20/96), 45% (43/96), and 35% (34/96) were weak, moderate and strong biofilm-producers, respectively. The capability for adhesion/biofilm formation on stainless steel surfaces under the experimental conditions studied varied among the strains studied, and distinct secondary models were obtained to describe the behavior of the five S. enterica tested. All strains showed adhesion at pH 4 up to 4% of NaCl and at 20 °C and 35 °C. The probability of adhesion decreased when NaCl concentrations were >8% and at 8 °C, as well as in pH values ≤ 5 and NaCl concentrations > 6%, for all tested strains. At pH 7 and 6, biofilm formation for S. Enteritidis, S. Infantis, S. Typhimurium, S. Heidelberg was observed up to 6% of NaCl at 35 °C and 20 °C. The predicted boundaries for adhesion were pH values < 5 and NaCl ≥ 4% and at temperatures <20 °C. For biofilm formation, the predicted boundaries were pH values < 5 and NaCl concentrations ≥ 2% and at temperatures <20 °C for all strains. The secondary models obtained describe the variability in boundaries of adhesion and biofilm formation on stainless steel by five strains belonging to different S. enterica serovars. The boundary models can be used to predict adhesion and biofilm formation ability on stainless steel by S. enterica as affected by pH, NaCl and temperature. Copyright © 2018 Elsevier B.V. All rights reserved.
Epi-cleaning of Ge/GeSn heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Gaspare, L.; Sabbagh, D.; De Seta, M.
2015-01-28
We demonstrate a very-low temperature cleaning technique based on atomic hydrogen irradiation for highly (1%) tensile strained Ge epilayers grown on metastable, partially strain relaxed GeSn buffer layers. Atomic hydrogen is obtained by catalytic cracking of hydrogen gas on a hot tungsten filament in an ultra-high vacuum chamber. X-ray photoemission spectroscopy, reflection high energy electron spectroscopy, atomic force microscopy, secondary ion mass spectroscopy, and micro-Raman showed that an O- and C-free Ge surface was achieved, while maintaining the same roughness and strain condition of the as-deposited sample and without any Sn segregation, at a process temperature in the 100–300 °C range.
Epi-cleaning of Ge/GeSn heterostructures
NASA Astrophysics Data System (ADS)
Di Gaspare, L.; Sabbagh, D.; De Seta, M.; Sodo, A.; Wirths, S.; Buca, D.; Zaumseil, P.; Schroeder, T.; Capellini, G.
2015-01-01
We demonstrate a very-low temperature cleaning technique based on atomic hydrogen irradiation for highly (1%) tensile strained Ge epilayers grown on metastable, partially strain relaxed GeSn buffer layers. Atomic hydrogen is obtained by catalytic cracking of hydrogen gas on a hot tungsten filament in an ultra-high vacuum chamber. X-ray photoemission spectroscopy, reflection high energy electron spectroscopy, atomic force microscopy, secondary ion mass spectroscopy, and micro-Raman showed that an O- and C-free Ge surface was achieved, while maintaining the same roughness and strain condition of the as-deposited sample and without any Sn segregation, at a process temperature in the 100-300 °C range.
2011-07-06
biaxial compressive strain is known to split the light- and heavy-hole bands, reducing the interband scattering and causing the light hole band to move up...and heterostructure design are presented. In Section V, we use temperature- dependent measurements and pulsed I-V measurements to analyze the results...minimal in our devices. The temperature dependence of hole mobility was stud- ied for both the surface and buried channel devices, as plot- ted in Fig
Pan, Bing; Jiang, Tianyun; Wu, Dafang
2014-11-01
In thermomechanical testing of hypersonic materials and structures, direct observation and quantitative strain measurement of the front surface of a test specimen directly exposed to severe aerodynamic heating has been considered as a very challenging task. In this work, a novel quartz infrared heating device with an observation window is designed to reproduce the transient thermal environment experienced by hypersonic vehicles. The specially designed experimental system allows the capture of test article's surface images at various temperatures using an optical system outfitted with a bandpass filter. The captured images are post-processed by digital image correlation to extract full-field thermal deformation. To verify the viability and accuracy of the established system, thermal strains of a chromiumnickel austenite stainless steel sample heated from room temperature up to 600 °C were determined. The preliminary results indicate that the air disturbance between the camera and the specimen due to heat haze induces apparent distortions in the recorded images and large errors in the measured strains, but the average values of the measured strains are accurate enough. Limitations and further improvements of the proposed technique are discussed.
NASA Technical Reports Server (NTRS)
Yao, Huade; Snyder, Paul G.
1991-01-01
A rotating-polarizer ellipsometer was attached to an ultrahigh vacuum (UHV) chamber. A GaAs(100) sample was introduced into the UHV chamber and heated at anumber of fixed elevated temperatures, without arsenic overpressure. In-situ spectroscopic ellipsometric (SE) measurements were taken, through a pair of low-strain quartz windows, to monitor the surface changes and measure the pseudodielectric functions at elevated temperatures. Real-time data from GaAs surface covered with native oxide showed clearly the evolution of oxide desorption at approximately 580 C. In addition, surface degradation was found before and after the oxide desorption. An oxide free and smooth GaAs surface was obtained by depositing an arsenic protective coating onto a molecular beam epitaxy grown GaAs surface. The arsenic coating was evaporated immediately prior to SE measurements. A comparison showed that our room temperature data from this GaAs surface, measured in the UHV, are in good agreement with those in the literature obtained by wet-chemical etching. The surface also remained clean and smooth at higher temperatures, so that reliable temperature-dependent dielectric functions were obtained.
Martin, José Guilherme Prado; de Oliveira E Silva, Gabriela; da Fonseca, Carolina Rodrigues; Morales, Caio Baptista; Souza Pamplona Silva, Caroline; Miquelluti, Daniel Lima; Porto, Ernani
2016-12-05
Staphylococci are considered a major concern in dairy plants mainly due to the intensive production flow, automation of processing plants and increased demand in the microbiological quality of dairy products. This study aimed to identify S. aureus strains isolated from three Brazilian dairy plants, evaluate the influence of time, temperature and contact surface on the bacterial adhesion process, as well as the efficiency of simulated hygiene and sanitation protocol in removing adhered cells. For genotypic analyses, the presence of icaA and icaD in strains was evaluated. Adherence assays were performed in biofilm reactor, comparing the influence of 2 temperatures (5°C and 35°C), 2 surfaces (stainless steel and polypropylene) and 4 contact times (3, 6, 12h and post-sanitization). To evaluate the process effectiveness in removing adhered cells, neutral detergent and sanitizing agent based on sodium hypochlorite were used in order to simulate the situation observed in one of the dairy plants analyzed. The presence of icaA and icaD genes was determined in 75.3% and 77.6% of strains, respectively; 70.6% of isolates showed both genes, whereas 17.6% showed no genes. Genes for enterotoxin production were found in all samples, relating to SEG and SEH toxins. The number of cells adhered on both surfaces was about 3 and 6 log 10 CFU/cm 2 at temperatures of 5°C and 35°C, respectively, for most situations evaluated, with significant increase over the evaluation period. In general, the temperature of 35°C favored greater adherence of S. aureus. At 5°C, there was a considerable number of adhered cells, but in populations significantly lower than those observed at 35°C. The cleaning and sanitizing protocol was ineffective in removing adhered cells; better performance of sodium hypochlorite was observed at 5°C, which should be related to lower adherence observed at this temperature. Thus, the process was not able to reduce the number of S. aureus bacteria adhered on both surfaces to safe levels under the conditions evaluated. Copyright © 2016 Elsevier B.V. All rights reserved.
Tomičić, Ružica; Raspor, Peter
2017-08-01
An understanding of adhesion behavior of Candida and Pichia yeast under different environmental conditions is key to the development of effective preventive measures against biofilm-associated infection. Hence in this study we investigated the impact of growth medium and temperature on Candida and Pichia adherence using stainless steel (AISI 304) discs with different degrees of surface roughness (Ra = 25.20-961.9 nm), material typical for the food processing industry as well as medical devices. The adhesion of the yeast strains to stainless steel surfaces grown in Malt Extract broth (MEB) or YPD broth at three temperatures (7 °C, 37 °C, 43 °C for Candida strains and 7 °C, 27 °C, 32 °C for Pichia strains) was assessed by crystal violet staining. The results showed that the nutrient content of medium significantly influenced the quantity of adhered cells by the tested yeasts. Adhesion of C. albicans and C. glabrata on stainless steel surfaces were significantly higher in MEB, whereas for C. parapsilosis and C. krusei it was YPD broth. In the case with P. pijperi and P. membranifaciens, YPD broth was more effective in promoting adhesion than MEB. On the other hand, our data indicated that temperature is a very important factor which considerably affects the adhesion of these yeast. There was also significant difference in cell adhesion on all types of stainless steel surfaces for all tested yeast. Copyright © 2017 Elsevier Ltd. All rights reserved.
Thermal effects on shearing resistance of fractures in Tak granite
NASA Astrophysics Data System (ADS)
Khamrat, S.; Thongprapha, T.; Fuenkajorn, K.
2018-06-01
Triaxial shear tests have been performed on tension-induced fractures and smooth saw-cut surfaces in Tak granite under temperatures up to 773 K. The objective is to gain an understanding of the movement of shallow faults that cause seismic activities in the Tak batholith in the north of Thailand. The results indicate that the peak and residual shear strengths and fracture dilations notably decrease as the temperatures increase. The thermal effect is enhanced under higher confining pressures. The areas of the sheared-off asperities increase with temperature and confining pressure. A power equation can describe the increase of shear strengths with normal stress where the normal stress exponent is a linear function of the temperature. The strain energy principle is applied to incorporate the principal stresses and strains into a strength criterion. A linear relation between the distortional strain energy (Wd) and the mean strain energy (Wm) of the fractures is obtained. The Wd-Wm slope depends on the fracture roughness and strength of the asperities, which can be defined as a function of shear and mean strains and dilation of the fractures. This may allow predicting the peak strength of the shallow faults in the Tak batholith.
Work Hardening Behavior of 1020 Steel During Cold-Beating Simulation
NASA Astrophysics Data System (ADS)
CUI, Fengkui; LING, Yuanfei; XUE, Jinxue; LIU, Jia; LIU, Yuhui; LI, Yan
2017-03-01
The present research of cold-beating formation mainly focused on roller design and manufacture, kinematics, constitutive relation, metal flow law, thermo-mechanical coupling, surface micro-topography and microstructure evolution. However, the research on surface quality and performance of workpieces in the process of cold-beating is rare. Cold-beating simulation experiment of 1020 steel is conducted at room temperature and strain rates ranging from 2000 to 4000 s-1 base on the law of plastic forming. According to the experimental data, the model of strain hardening of 1020 steel is established, Scanning Electron Microscopy(SEM) is conducted, the mechanism of the work hardening of 1020 steel is clarified by analyzing microstructure variation of 1020 steel. It is found that the strain rate hardening effect of 1020 steel is stronger than the softening effect induced by increasing temperatures, the process of simulation cold-beating cause the grain shape of 1020 steel significant change and microstructure elongate significantly to form a fibrous tissue parallel to the direction of deformation, the higher strain rate, the more obvious grain refinement and the more hardening effect. Additionally, the change law of the work hardening rate is investigated, the relationship between dislocation density and strain, the relationship between work hardening rate and dislocation density is obtained. Results show that the change trend of the work hardening rate of 1020 steel is divided into two stages, the work hardening rate decreases dramatically in the first stage and slowly decreases in the second stage, finally tending toward zero. Dislocation density increases with increasing strain and strain rate, work hardening rate decreases with increasing dislocation density. The research results provide the basis for solving the problem of improving the surface quality and performance of workpieces under cold-beating formation of 1020 steel.
NASA Astrophysics Data System (ADS)
Wang, Tianxue; Zuanetti, Bryan; Prakash, Vikas
2017-12-01
In the present paper, results of plate impact experiments designed to investigate the onset of incipient plasticity in commercial purity polycrystalline magnesium (99.9%) under weak uniaxial strain compression and elevated temperatures up to melt are presented. The dynamic stress at yield and post yield of magnesium, as inferred from the measured normal component of the particle velocity histories at the free (rear) surface of the target plate, are observed to decrease progressively with increasing test temperatures in the range from 23 to 500 °C. At (higher) test temperatures in the range 500-610 °C, the rate of decrease of dynamic stress with temperature at yield and post-yield in the sample is observed to weaken. At still higher test temperatures (617 and 630 °C), a dramatic increase in dynamic yield as well as flow stress is observed indicating a change in dominant mechanism of plastic deformation as the sample approaches the melt point of magnesium at strain rates of 105/s. In addition to these measurements at the wavefront, the plateau region of the free surface particle velocity profiles indicates that the longitudinal (plastic) impedance of the magnesium samples decreases continuously as the sample temperatures are increased from room to 610 °C, and then reverses trend (indicating increasing material longitudinal impedance/strength) as the sample temperatures are increased to 617 and 630 °C. Electron back scattered diffraction analysis of the as-received and annealed pre-test magnesium samples reveal grain coarsening as well as grain re-orientation to a different texture during the heating process of the samples.
Determination of high temperature strains using a PC based vision system
NASA Astrophysics Data System (ADS)
McNeill, Stephen R.; Sutton, Michael A.; Russell, Samuel S.
1992-09-01
With the widespread availability of video digitizers and cheap personal computers, the use of computer vision as an experimental tool is becoming common place. These systems are being used to make a wide variety of measurements that range from simple surface characterization to velocity profiles. The Sub-Pixel Digital Image Correlation technique has been developed to measure full field displacement and gradients of the surface of an object subjected to a driving force. The technique has shown its utility by measuring the deformation and movement of objects that range from simple translation to fluid velocity profiles to crack tip deformation of solid rocket fuel. This technique has recently been improved and used to measure the surface displacement field of an object at high temperature. The development of a PC based Sub-Pixel Digital Image Correlation system has yielded an accurate and easy to use system for measuring surface displacements and gradients. Experiments have been performed to show the system is viable for measuring thermal strain.
Local strain-induced band gap fluctuations and exciton localization in aged WS2 monolayers
NASA Astrophysics Data System (ADS)
Krustok, J.; Kaupmees, R.; Jaaniso, R.; Kiisk, V.; Sildos, I.; Li, B.; Gong, Y.
2017-06-01
Optical properties of aged WS2 monolayers grown by CVD method on Si/SiO2 substrates are studied using temperature dependent photoluminescence and reflectance contrast spectroscopy. Aged WS2 monolayers have a typical surface roughness about 0.5 nm and, in addition, a high density of nanoparticles (nanocaps) with the base diameter about 30 nm and average height of 7 nm. The A-exciton of aged monolayer has a peak position at 1.951 eV while in as-grown monolayer the peak is at about 24 meV higher energy at room temperature. This red-shift is explained using local tensile strain concept, where strain value of 2.1% was calculated for these nanocap regions. Strained nanocaps have lower band gap energy and excitons will funnel into these regions. At T=10K a double exciton and trion peaks were revealed. The separation between double peaks is about 20 meV and the origin of higher energy peaks is related to the optical band gap energy fluctuations caused by random distribution of local tensile strain due to increased surface roughness. In addition, a wide defect related exciton band XD was found at about 1.93 eV in all aged monolayers. It is shown that the theory of localized excitons describes well the temperature dependence of peak position and halfwidth of the A-exciton band. The possible origin of nanocaps is also discussed.
Temperature-Induced Viral Resistance in Emiliania huxleyi (Prymnesiophyceae)
Kendrick, B. Jacob; DiTullio, Giacomo R.; Cyronak, Tyler J.; Fulton, James M.; Van Mooy, Benjamin A. S.; Bidle, Kay D.
2014-01-01
Annual Emiliania huxleyi blooms (along with other coccolithophorid species) play important roles in the global carbon and sulfur cycles. E. huxleyi blooms are routinely terminated by large, host-specific dsDNA viruses, (Emiliania huxleyi Viruses; EhVs), making these host-virus interactions a driving force behind their potential impact on global biogeochemical cycles. Given projected increases in sea surface temperature due to climate change, it is imperative to understand the effects of temperature on E. huxleyi’s susceptibility to viral infection and its production of climatically active dimethylated sulfur species (DSS). Here we demonstrate that a 3°C increase in temperature induces EhV-resistant phenotypes in three E. huxleyi strains and that successful virus infection impacts DSS pool sizes. We also examined cellular polar lipids, given their documented roles in regulating host-virus interactions in this system, and propose that alterations to membrane-bound surface receptors are responsible for the observed temperature-induced resistance. Our findings have potential implications for global biogeochemical cycles in a warming climate and for deciphering the particular mechanism(s) by which some E. huxleyi strains exhibit viral resistance. PMID:25405345
Temperature-induced viral resistance in Emiliania huxleyi (Prymnesiophyceae).
Kendrick, B Jacob; DiTullio, Giacomo R; Cyronak, Tyler J; Fulton, James M; Van Mooy, Benjamin A S; Bidle, Kay D
2014-01-01
Annual Emiliania huxleyi blooms (along with other coccolithophorid species) play important roles in the global carbon and sulfur cycles. E. huxleyi blooms are routinely terminated by large, host-specific dsDNA viruses, (Emiliania huxleyi Viruses; EhVs), making these host-virus interactions a driving force behind their potential impact on global biogeochemical cycles. Given projected increases in sea surface temperature due to climate change, it is imperative to understand the effects of temperature on E. huxleyi's susceptibility to viral infection and its production of climatically active dimethylated sulfur species (DSS). Here we demonstrate that a 3°C increase in temperature induces EhV-resistant phenotypes in three E. huxleyi strains and that successful virus infection impacts DSS pool sizes. We also examined cellular polar lipids, given their documented roles in regulating host-virus interactions in this system, and propose that alterations to membrane-bound surface receptors are responsible for the observed temperature-induced resistance. Our findings have potential implications for global biogeochemical cycles in a warming climate and for deciphering the particular mechanism(s) by which some E. huxleyi strains exhibit viral resistance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elsworth, Derek; Im, Kyungjae; Guglielmi, Yves
2016-11-14
We explore the utility of combining active downhole experimentation with borehole and surface geodesy to determine both the characteristics and evolving state of EGS reservoirs during stimulation through production. The study is divided into two parts. We demonstrate the feasibility of determining in situ reservoir characteristics of reservoir size, strain and fracture permeability and their dependence on feedbacks of stress and temperature using surface and borehole geodetic measurements (Part I). We then define the opportunity to apply the unique hydraulic pulse protocol (HPP) borehole tool to evaluate reservoir state. This can be accomplished by monitoring and co-inverting measured reservoir characteristicsmore » (from the HPP tool) with surface geodetic measurements of deformation, tilt and strain with continuous measurements of borehole-wall strain (via optical fiber and fiber Bragg gratings) and measured flow rates (Part II).« less
The influence of strain rate and hydrogen on the plane-strain ductility of Zircaloy cladding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Link, T.M.; Motta, A.T.; Koss, D.A.
1998-03-01
The authors studied the ductility of unirradiated Zircaloy-4 cladding under loading conditions prototypical of those found in reactivity-initiated accidents (RIA), i.e.: near plane-strain deformation in the hoop direction (transverse to the cladding axis) at room temperature and 300 C and high strain rates. To conduct these studies, they developed a specimen configuration in which near plane-strain deformation is achieved in the gage section, and a testing methodology that allows one to determine both the limit strain at the onset of localized necking and the fracture strain. The experiments indicate that there is little effect of strain rate (10{sup {minus}3} tomore » 10{sup 2} s{sup {minus}1}) on the ductility of unhydrided Zircaloy tubing deformed under near plane-strain conditions at either room temperature or 300 C. Preliminary experiments on cladding containing 190 ppm hydrogen show only a small loss of fracture strain but no clear effect on limit strain. The experiments also indicate that there is a significant loss of Zircaloy ductility when surface flaws are present in the form of thickness imperfections.« less
Analysis of Abrasive Blasting of DOP-26 Iridium Alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohriner, Evan Keith; Zhang, Wei; Ulrich, George B
2012-01-01
The effects of abrasive blasting on the surface geometry and microstructure of DOP-26 iridium alloy (Ir-0.3% W-0.006% Th 0.005% Al) have been investigated. Abrasive blasting has been used to control emissivity of components operating at elevated temperature. The effects of abrasive blasting conditions on surface morphology were investigated both experimentally and by numerical modeling. The simplified model, based on finite element analysis of a single angular particle impacting on Ir alloy disk, calculates the surface deformation and residual strain distribution. The experimental results and modeling results both indicate that the surface geometry is not sensitive to the abrasive blast processmore » conditions of nozzle pressure and standoff distance considered in this study. On the other hand, the modeling results suggest that the angularity of the abrasive particle has an important role in determining surface geometry, which in turn, affects the emissivity. Abrasive blasting causes localized surface strains and localized recrystallization, but it does not affect grain size following extended exposure at elevated temperature. The dependence of emissivity of the DOP-26 alloy on mean surface slope follows a similar trend to that reported for pure iridium.« less
Laser speckle technique for burner liner strain measurements
NASA Technical Reports Server (NTRS)
Stetson, K. A.
1982-01-01
Thermal and mechanical strains were measured on samples of a common material used in jet engine burner liners, which were heated from room temperature to 870 C and cooled back to 220 C, in a laboratory furnance. The physical geometry of the sample surface was recorded at selected temperatures by a set of 12 single exposure speckle-grams. Sequential pairs of specklegrams were compared in a heterodyne interferometer which give high precision measurement of differential displacements. Good speckle correlation between the first and last specklegrams is noted which allows a check on accumulate errors.
Long-time dynamic compatibility of elastomeric materials with hydrazine
NASA Technical Reports Server (NTRS)
Coulbert, C. D.; Cuddihy, E. F.; Fedors, R. F.
1973-01-01
The tensile property surfaces for two elastomeric materials, EPT-10 and AF-E-332, were generated in air and in liquid hydrazine environments using constant strain rate tensile tests over a range of temperatures and elongation rates. These results were used to predict the time-to-rupture for these materials in hydrazine as a function of temperature and amount of strain covering a span of operating times from less than a minute to twenty years. The results of limited sheet-folding tests and their relationship to the tensile failure boundary are presented and discussed.
NASA Astrophysics Data System (ADS)
Guo, Long; Zhang, Xingzhong
2018-03-01
Mechanical and creep properties of Q345c continuous casting slab subjected to uniaxial tensile tests at high temperature were considered in this paper. The minimum creep strain rate and creep rupture life equations whose parameters are calculated by inverse-estimation using the regression analysis were derived based on experimental data. The minimum creep strain rate under constant stress increases with the increase of the temperature from 1000 °C to 1200 °C. A new casting machine curve with the aim of fully using high-temperature creep behaviour is proposed in this paper. The basic arc segment is cancelled in the new curve so that length of the straightening area can be extended and time of creep behaviour can be increased significantly. For the new casting machine curve, the maximum straightening strain rate at the slab surface is less than the minimum creep strain rate. So slab straightening deformation based on the steel creep behaviour at high temperature can be carried out in the process of Q345c steel continuous casting. The effect of creep property at high temperature on slab straightening deformation is positive. It is helpful for the design of new casting machine and improvement of old casting machine.
Shape of Strained Solid He-4 at Low Temperatures
NASA Technical Reports Server (NTRS)
Kojima, Harry
2004-01-01
(1) Interferometer apparatus for measuring surface profile (2) For small strains, the expected linear decrease in height is not seen. (3) For large strains, undulation and irreversible deformations begin to set in, but we cannot yet make clear connection with stress-driven instability theory. Torii and Balibar have observed appearances of deformations beyond threshold stress on He-4 solid surface. The difference of our results from theory real? We are not ready to claim in affirmative. To be able to answer: 1) improve crystal growth techniques; (orientation, annealing, better pressure control) 2) improve homogeneity of stress; (better alignment with vertical, better understanding of interaction between solid He-4 and walls) 4) improve optics.
NASA Astrophysics Data System (ADS)
Cline, Julia Elaine
2011-12-01
Ultra-high temperature deformation measurements are required to characterize the thermo-mechanical response of material systems for thermal protection systems for aerospace applications. The use of conventional surface-contacting strain measurement techniques is not practical in elevated temperature conditions. Technological advancements in digital imaging provide impetus to measure full-field displacement and determine strain fields with sub-pixel accuracy by image processing. In this work, an Instron electromechanical axial testing machine with a custom-designed high temperature gripping mechanism is used to apply quasi-static tensile loads to graphite specimens heated to 2000°F (1093°C). Specimen heating via Joule effect is achieved and maintained with a custom-designed temperature control system. Images are captured at monotonically increasing load levels throughout the test duration using an 18 megapixel Canon EOS Rebel T2i digital camera with a modified Schneider Kreutznach telecentric lens and a combination of blue light illumination and narrow band-pass filter system. Images are processed using an open-source Matlab-based digital image correlation (DIC) code. Validation of source code is performed using Mathematica generated images with specified known displacement fields in order to gain confidence in accurate software tracking capabilities. Room temperature results are compared with extensometer readings. Ultra-high temperature strain measurements for graphite are obtained at low load levels, demonstrating the potential for non-contacting digital image correlation techniques to accurately determine full-field strain measurements at ultra-high temperature. Recommendations are given to improve the experimental set-up to achieve displacement field measurements accurate to 1/10 pixel and strain field accuracy of less than 2%.
Inexpensive Implementation of Many Strain Gauges
NASA Technical Reports Server (NTRS)
Berkun, Andrew C.
2010-01-01
It has been proposed to develop arrays of strain gauges as arrays of ordinary metal film resistors and associated electronic readout circuitry on printed circuit boards or other suitable substrates. This proposal is a by-product of a development of instrumentation utilizing metal film resistors on printed-circuit boards to measure temperatures at multiple locations. In the course of that development, it was observed that in addition to being sensitive to temperature, the metal film resistors were also sensitive to strains in the printed-circuit boards to which they were attached. Because of the low cost of ordinary metal film resistors (typically <$0.01 apiece at 2007 prices), the proposal could enable inexpensive implementation of arrays of many (e.g., 100 or more) strain gauges, possibly concentrated in small areas. For example, such an array could be designed for use as a computer keyboard with no moving parts, as a device for sensing the shape of an object resting on a surface, or as a device for measuring strains at many points on a mirror, a fuel tank, an airplane wing, or other large object. Ordinarily, the effect of strain on resistance would be regarded as a nuisance in a temperature-measuring application, and the effect of temperature on resistance would be regarded as a nuisance in a strain-measuring application. The strain-induced changes in resistance of the metal film resistors in question are less than those of films in traditional strain gauges. The main novel aspect of present proposal lies in the use of circuitry affording sufficient sensitivity to measure strain plus means for compensating for the effect of temperature. For an array of metal film resistors used as proposed, the readout circuits would include a high-accuracy analog-to-digital converter fed by a low noise current source, amplifier chain, and an analog multiplexer chain. Corrections would be provided by use of high-accuracy calibration resistors and a temperature sensor. By use of such readout circuitry, it would be possible to read the resistances of as many as 100 fixed resistors in a time interval of 1 second at a resolution much greater than 16 bits. The readout data would be processed, along with temperature calibration data, to deduce the strain on the printed-circuit board or other substrate in the areas around the resistors. It should also be possible to also deduce the temperature from the readings.
NASA Astrophysics Data System (ADS)
Noel, P.; Thomas, C.; Fu, Y.; Vila, L.; Haas, B.; Jouneau, P.-H.; Gambarelli, S.; Meunier, T.; Ballet, P.; Attané, J. P.
2018-04-01
We report the observation of spin-to-charge current conversion in strained mercury telluride at room temperature, using spin pumping experiments. We show that a HgCdTe barrier can be used to protect the HgTe from direct contact with the ferromagnet, leading to very high conversion rates, with inverse Edelstein lengths up to 2.0 ±0.5 nm . The influence of the HgTe layer thickness on the conversion efficiency is found to differ strongly from what is expected in spin Hall effect systems. These measurements, associated with the temperature dependence of the resistivity, suggest that these high conversion rates are due to the spin momentum locking property of HgTe surface states.
SSME main combustion chamber life prediction
NASA Technical Reports Server (NTRS)
Cook, R. T.; Fryk, E. E.; Newell, J. F.
1983-01-01
Typically, low cycle fatigue life is a function of the cyclic strain range, the material properties, and the operating temperature. The reusable life is normally defined by the number of strain cycles that can be accrued before severe material degradation occurs. Reusable life is normally signified by the initiation or propagation of surface cracks. Hot-fire testing of channel wall combustors has shown significant mid-channel wall thinning or deformation during accrued cyclic testing. This phenomenon is termed cyclic-creep and appears to be significantly accelerated at elevated surface temperatures. This failure mode was analytically modelled. The cyclic life of the baseline SSME-MCC based on measured calorimeter heat transfer data, and the life sensitivity of local hot spots caused by injector effects were determined. Four life enhanced designs were assessed.
NASA Astrophysics Data System (ADS)
Haynes, M.; Fabian, P.
2015-12-01
Liquid propellant tank insulation for space flight requires low weight as well as high insulation factors. Use of Spray-On Foam Insulation (SOFI) is an accepted, cost effective technique for insulating a single wall cryogenic propellant tank and has been used extensively throughout the aerospace industry. Determining the bond integrity of the SOFI to the metallic substrate as well as its ability to withstand the in-service strains, both mechanical and thermal, is critical to the longevity of the insulation. This determination has previously been performed using highly volatile, explosive cryogens, which increases the test costs enormously, as well as greatly increasing the risk to both equipment and personnel. CTD has developed a new test system, based on a previous NASA test that simulates the mechanical and thermal strains associated with filling a large fuel tank with a cryogen. The test enables a relatively small SOFI/substrate sample to be monitored for any deformations, delaminations, or disjunctures during the cooling and mechanical straining process of the substrate, and enables the concurrent application of thermal and physical strains to two specimens at the same time. The thermal strains are applied by cooling the substrate to the desired cryogen temperature (from 4 K to 250 K) while maintaining the outside surface of the SOFI foam at ambient conditions. Multiple temperature monitoring points are exercised to ensure even cooling across the substrate, while at the same time, surface temperatures of the SOFI can be monitored to determine the heat flow. The system also allows for direct measurement of the strains in the substrate during the test. The test system as well as test data from testing at 20 K, for liquid Hydrogen simulation, will be discussed.
Low cycle fatigue behavior of a ferritic reactor pressure vessel steel
NASA Astrophysics Data System (ADS)
Sarkar, Apu; Kumawat, Bhupendra K.; Chakravartty, J. K.
2015-07-01
The cyclic stress-strain response and the low cycle fatigue (LCF) behavior of 20MnMoNi55 pressure vessel steel were studied. Tensile strength and LCF properties were examined at room temperature (RT) using specimens cut from rolling direction of a rolled block. The fully reversed strain-controlled LCF tests were conducted at a constant total strain rate with different axial strain amplitude levels. The cyclic strain-stress relationships and the strain-life relationships were obtained through the test results, and related LCF parameters of the steel were calculated. The studied steel exhibits cyclic softening behavior. Furthermore, analysis of stabilized hysteresis loops showed that the steel exhibits non-Masing behavior. Complementary scanning electron microscopy examinations were also carried out on fracture surfaces to reveal dominant damage mechanisms during crack initiation, propagation and fracture. Multiple crack initiation sites were observed on the fracture surface. The investigated LCF behavior can provide reference for pressure vessel life assessment and fracture mechanisms analysis.
Solid Fuel Burning in Steady, Strained, Premixed Flow Fields: The Graphite/Air/Methane System
NASA Technical Reports Server (NTRS)
Egolfopoulos, Fokion N.; Wu, Ming-Shin (Technical Monitor)
2000-01-01
A detailed numerical investigation was conducted on the simultaneous burning of laminar premixed CH4/air flames and solid graphite in a stagnation flow configuration. The graphite and methane were chosen for this model, given that they are practical fuels and their chemical kinetics are considered as the most reliable ones among solid and hydrocarbon fuels, respectively. The simulation was performed by solving the quasi-one-dimensional equations of mass, momentum, energy, and species. The GRI 2.1 scheme was used for the gas-phase kinetics, while the heterogeneous kinetics were described by a six-step mechanism including stable and radical species. The effects of the graphite surface temperature, the gas-phase equivalence ratio, and the aerodynamic strain rate on the graphite burning rate and NO, production and destruction mechanisms were assessed. Results indicate that as the graphite temperature increases, its burning rate as well as the NO, concentration increase. Furthermore, it was found that by increasing the strain rate, the graphite burning rate increases as a result of the augmented supply of the gas-phase reactants towards the surface, while the NO, concentration decreases as a result of the reduced residence time. The effect of the equivalence ratio on both the graphite burning rate and NO, concentration was found to be non-monotonic and strongly dependent on the graphite temperature. Comparisons between results obtained for a graphite and a chemically inert surface revealed that the chemical activity of the graphite surface can result to the reduction of NO through reactions of the CH3, CH2, CH, and N radicals with NO.
Begg, Douglas J.; Dhand, Navneet K.; Watt, Bruce; Whittington, Richard J.
2014-01-01
The duration of survival of both the S and C strains of Mycobacterium avium subsp. paratuberculosis in feces was quantified in contrasting climatic zones of New South Wales, Australia, and detailed environmental temperature data were collected. Known concentrations of S and C strains in feces placed on soil in polystyrene boxes were exposed to the environment with or without the provision of shade (70%) at Bathurst, Armidale, Condobolin, and Broken Hill, and subsamples taken every 2 weeks were cultured for the presence of M. avium subsp. paratuberculosis. The duration of survival ranged from a minimum of 1 week to a maximum of 16 weeks, and the provision of 70% shade was the most important factor in extending the survival time. The hazard of death for exposed compared to shaded samples was 20 and 9 times higher for the S and C strains, respectively. Site did not affect the survival of the C strain, but for the S strain, the hazard of death was 2.3 times higher at the two arid zone sites (Broken Hill and Condobolin) than at the two temperate zone sites (Bathurst and Armidale). Temperature measurements revealed maximum temperatures exceeding 60°C and large daily temperature ranges at the soil surface, particularly in exposed boxes. PMID:24463974
Multiple charge density wave states at the surface of TbT e 3
Fu, Ling; Kraft, Aaron M.; Sharma, Bishnu; ...
2016-11-01
We studied TbTe 3 using scanning tunneling microscopy (STM) in the temperature range of 298–355 K. Our measurements detect a unidirectional charge density wave (CDW) state in the surface Te layer with a wave vector consistent with that of the bulk q CDW = 0.30 ± 0.01c*. However, unlike previous STM measurements, and differing from measurements probing the bulk, we detect two perpendicular orientations for the unidirectional CDW with no directional preference for the in-plane crystal axes (a or c axis) and no noticeable difference in wave vector magnitude. In addition, we find regions in which the bidirectional CDW statesmore » coexist. We propose that observation of two unidirectional CDW states indicates a decoupling of the surface Te layer from the rare-earth block layer below, and that strain variations in the Te surface layer drive the local CDW direction to the specific unidirectional or, in rare occurrences, bidirectional CDW orders observed. This indicates that similar driving mechanisms for CDW formation in the bulk, where anisotropic lattice strain energy is important, are at play at the surface. Furthermore, the wave vectors for the bidirectional order we observe differ from those theoretically predicted for checkerboard order competing with stripe order in a Fermi-surface nesting scenario, suggesting that factors beyond Fermi-surface nesting drive CDW order in TbTe 3. As a result, our temperature-dependent measurements provide evidence for localized CDW formation above the bulk transition temperature T CDW.« less
NASA Astrophysics Data System (ADS)
Jain, Rahul; Pal, Surjya Kanta; Singh, Shiv Brat
2017-02-01
Friction Stir Welding (FSW) is a solid state joining process and is handy for welding aluminum alloys. Finite Element Method (FEM) is an important tool to predict state variables of the process but numerical simulation of FSW is highly complex due to non-linear contact interactions between tool and work piece and interdependency of displacement and temperature. In the present work, a three dimensional coupled thermo-mechanical method based on Lagrangian implicit method is proposed to study the thermal history, strain distribution and thermo-mechanical process in butt welding of Aluminum alloy 2024 using DEFORM-3D software. Workpiece is defined as rigid-visco plastic material and sticking condition between tool and work piece is defined. Adaptive re-meshing is used to tackle high mesh distortion. Effect of tool rotational and welding speed on plastic strain is studied and insight is given on asymmetric nature of FSW process. Temperature distribution on the workpiece and tool is predicted and maximum temperature is found in workpiece top surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helzel, J.; Jankowski, S.; El Helou, M.
The optical transitions of pentacene films deposited on ZnO have been studied by absorption spectroscopy as a function of temperature in the range of room temperature down to 10 K. The pentacene films were prepared with thicknesses of 10 nm, 20 nm, and 100 nm on the ZnO-O(000-1) surface by molecular beam deposition. A unique temperature dependence has been observed for the two Davydov components of the excitons for different film thicknesses. At room temperature, the energetic positions of the respective absorption bands are the same for all films, whereas the positions differ more than 20 meV at 10 Kmore » caused by the very different expansion coefficients of pentacene and ZnO. Although the pentacene is just bonded via van der Waals interaction to the ZnO substrate, the very first pentacene monolayer (adlayer) is forced to keep the initial position on the ZnO surface and suffering, therefore, a substantial tensile strain. For all the subsequent pentacene monolayers, the strain is reduced step by step resulting electronically in a strong potential gradient at the interface.« less
Analysis of Surface and Bulk Behavior in Ni-Pd Alloys
NASA Technical Reports Server (NTRS)
Bozzolo, Guillermo; Noebe, Rondald D.
2003-01-01
The most salient features of the surface structure and bulk behavior of Ni-Pd alloys have been studied using the BFS method for alloys. Large-scale atomistic simulations were performed to investigate surface segregation profiles as a function of temperature, crystal face, and composition. Pd enrichment of the first layer was observed in (111) and (100) surfaces, and enrichment of the top two layers occurred for (110) surfaces. In all cases, the segregation profile shows alternate planes enriched and depleted in Pd. In addition, the phase structure of bulk Ni-Pd alloys as a function of temperature and composition was studied. A weak ordering tendency was observed at low temperatures, which helps explain the compositional oscillations in the segregation profiles. Finally, based on atom-by-atom static energy calculations, a comprehensive explanation for the observed surface and bulk features will be presented in terms of competing chemical and strain energy effects.
On the effectiveness of surface severe plastic deformation by shot peening at cryogenic temperature
NASA Astrophysics Data System (ADS)
Novelli, M.; Fundenberger, J.-J.; Bocher, P.; Grosdidier, T.
2016-12-01
The effect of cryogenic temperature (CT) on the graded microstructures obtained by severe shot peening using surface mechanical attrition treatment (SMAT) was investigated for two austenitic steels that used different mechanisms for assisting plastic deformation. For the metastable 304L steel, the depth of the hardened region increases because CT promotes the formation of strain induced martensite. Comparatively, for the 310S steel that remained austenitic, the size of the subsurface affected region decreases because of the improved strength of the material at CT but the fine twinned nanostructures results in significant top surface hardening.
Advanced high temperature instrument for hot section research applications
NASA Technical Reports Server (NTRS)
Englund, D. R.; Seasholtz, R. G.
1989-01-01
Programs to develop research instrumentation for use in turbine engine hot sections are described. These programs were initiated to provide improved measurements capability as support for a multidisciplinary effort to establish technology leading to improved hot section durability. Specific measurement systems described here include heat flux sensors, a dynamic gas temperature measuring system, laser anemometry for hot section applications, an optical system for viewing the interior of a combustor during operation, thin film sensors for surface temperature and strain measurements, and high temperature strain measuring systems. The state of development of these sensors and measuring systems is described, and, in some cases, examples of measurements made with these instruments are shown. Work done at the NASA Lewis Research Center and at various contract and grant facilities is covered.
Elevated temperature mechanical properties of line pipe steels
NASA Astrophysics Data System (ADS)
Jacobs, Taylor Roth
The effects of test temperature on the tensile properties of four line pipe steels were evaluated. The four materials include a ferrite-pearlite line pipe steel with a yield strength specification of 359 MPa (52 ksi) and three 485 MPa (70 ksi) yield strength acicular ferrite line pipe steels. Deformation behavior, ductility, strength, strain hardening rate, strain rate sensitivity, and fracture behavior were characterized at room temperature and in the temperature range of 200--350 °C, the potential operating range for steels used in oil production by the steam assisted gravity drainage process. Elevated temperature tensile testing was conducted on commercially produced as-received plates at engineering strain rates of 1.67 x 10 -4, 8.33 x 10-4, and 1.67 x 10-3 s-1. The acicular ferrite (X70) line pipe steels were also tested at elevated temperatures after aging at 200, 275, and 350 °C for 100 h under a tensile load of 419 MPa. The presence of serrated yielding depended on temperature and strain rate, and the upper bound of the temperature range where serrated yielding was observed was independent of microstructure between the ferrite-pearlite (X52) steel and the X70 steels. Serrated yielding was observed at intermediate temperatures and continuous plastic deformation was observed at room temperature and high temperatures. All steels exhibited a minimum in ductility as a function of temperature at testing conditions where serrated yielding was observed. At the higher temperatures (>275 °C) the X52 steel exhibited an increase in ductility with an increase in temperature and the X70 steels exhibited a maximum in ductility as a function of temperature. All steels exhibited a maximum in flow strength and average strain hardening rate as a function of temperature. The X52 steel exhibited maxima in flow strength and average strain hardening rate at lower temperatures than observed for the X70 steels. For all steels, the temperature where the maximum in both flow strength and strain hardening occurred increased with increasing strain rate. Strain rate sensitivities were measured using flow stress data from multiple tensile tests and strain rate jump tests on single tensile samples. In flow stress strain rate sensitivity measurements, a transition from negative to positive strain rate sensitivity was observed in the X52 steel at approximately 275--300 °C, and negative strain rate sensitivity was observed at all elevated temperature testing conditions in the X70 steels. In jump test strain rate sensitivity measurements, all four steels exhibited a transition from negative to positive strain rate sensitivity at approximately 250--275 °C. Anisotropic deformation in the X70 steels was observed by measuring the geometry of the fracture surfaces of the tensile samples. The degree of anisotropy changed as a function of temperature and minima in the degree of anisotropy was observed at approximately 300 °C for all three X70 steels. DSA was verified as an active strengthening mechanism at elevated temperatures for all line pipe steels tested resulting in serrated yielding, a minimum in ductility as a function of temperature, a maximum in flow strength as a function of temperature, a maximum in average strain hardening rate as a function of temperature, and negative strain rate sensitivities. Mechanical properties of the X70 steels exhibited different functionality with respect to temperature compared to the X52 steels at temperatures greater than 250 ºC. Changes in the acicular ferrite microstructure during deformation such as precipitate coarsening, dynamic precipitation, tempering of martensite in martensite-austenite islands, or transformation of retained austenite could account for differences in tensile property functionality between the X52 and X70 steels. Long term aging under load (LTA) testing of the X70 steels resulted in increased yield strength compared to standard elevated temperature tensile tests at all temperatures as a result of static strain aging. LTA specimen ultimate tensile strengths (UTS) increased slightly at 200 °C, were comparable at 275 °C, and decreased significantly at 350 °C when compared to as-received (standard) tests at 350 °C. Observed reductions in UTS were a result of decreased strain hardening in the LTA specimens compared to standard tensile specimens. Ideal elevated temperature operating conditions (based on tensile properties) for the X70 line pipe steels in the temperature range relevant to the steam assisted gravity drainage process are around 275--325 °C at the strain rates tested. In the temperature range of 275--325 °C the X70 steels exhibited continuous plastic deformation, a maximum in ductility, a maximum in flow stress, improved strain hardening compared to intermediate temperatures, reduced anisotropic deformation, and after extended use at elevated temperatures, yield strength increases with little change in UTS.
Liquid-Like, Self-Healing Aluminum Oxide during Deformation at Room Temperature.
Yang, Yang; Kushima, Akihiro; Han, Weizhong; Xin, Huolin; Li, Ju
2018-04-11
Effective protection from environmental degradation relies on the integrity of oxide as diffusion barriers. Ideally, the passivation layer can repair its own breaches quickly under deformation. While studies suggest that the native aluminum oxide may manifest such properties, it has yet to be experimentally proven because direct observations of the air-environmental deformation of aluminum oxide and its initial formation at room temperature are challenging. Here, we report in situ experiments to stretch pure aluminum nanotips under O 2 gas environments in a transmission electron microscope (TEM). We discovered that aluminum oxide indeed deforms like liquid and can match the deformation of Al without any cracks/spallation at moderate strain rate. At higher strain rate, we exposed fresh metal surface, and visualized the self-healing process of aluminum oxide at atomic resolution. Unlike traditional thin-film growth or nanoglass consolidation processes, we observe seamless coalescence of new oxide islands without forming any glass-glass interface or surface grooves, indicating greatly accelerated glass kinetics at the surface compared to the bulk.
Stress-induced nematicity in EuFe 2 As 2 studied by Raman spectroscopy
Zhang, W. -L.; Sefat, Athena S.; Ding, H.; ...
2016-07-18
Here, we use polarized Raman scattering to study the structural phase transition in EuFe 2 As 2 , the parent compound of the 122-ferropnictide superconductors. The in-plane lattice anisotropy is characterized by measurements of the side surface with different strains induced by different preparation methods. We also show that while a fine surface polishing leaves the samples free of residual internal strain, in which case the onset of the C 4 symmetry breaking is observed at the nominal structural phase transition temperature T S , cutting the side surface induces a permanent fourfold rotational symmetry breaking spanning tens ofmore » degrees above T S .« less
Dadrasnia, Arezoo; Ismail, Salmah
2015-08-19
This study investigated the capability of a biosurfactant produced by a novel strain of Bacillus salmalaya to enhance the biodegradation rates and bioavailability of organic contaminants. The biosurfactant produced by cultured strain 139SI showed high physicochemical properties and surface activity in the selected medium. The biosurfactant exhibited a high emulsification index and a positive result in the drop collapse test, with the results demonstrating the wetting activity of the biosurfactant and its potential to produce surface-active molecules. Strain 139SI can significantly reduce the surface tension (ST) from 70.5 to 27 mN/m, with a critical micelle concentration of 0.4%. Moreover, lubricating oil at 2% (v/v) was degraded on Day 20 (71.5). Furthermore, the biosurfactant demonstrated high stability at different ranges of salinity, pH, and temperature. Overall, the results indicated the potential use of B. salmalaya 139SI in environmental remediation processes.
Lee, Hee Suk; Sobsey, Mark D
2011-06-01
The potential use of specific somatic coliphage taxonomic groups as viral indicators based on their persistence and prevalence in water was investigated. Representative type strains of the 4 major somatic coliphage taxonomic groups were seeded into reagent water and an ambient surface water source of drinking water and the survival of the added phages was measured over 90 days at temperatures of 23-25 and 4 °C. Microviridae (type strain PhiX174), Siphoviridae (type strain Lambda), and Myoviridae (type strain T4) viruses were the most persistent in water at the temperatures tested. The Microviridae (type strain PhiX174) and the Siphoviridae (type strain Lambda) were the most resistant viruses to UV radiation and the Myoviridae (type strain T4) and the Microviridae (type strain PhiX174) were the most resistant viruses to heat. Based on their greater persistence in water over time and their relative resistance to heat and/or UV radiation, the Myoviridae (type strain T4), the Microviridae (type strain PhiX174), and the Siphoviridae (type strain Lambda) were the preferred candidate somatic coliphages as fecal indicator viruses in water, with the Microviridae (type strain PhiX174) the most resistant to these conditions overall. Copyright © 2011 Elsevier Ltd. All rights reserved.
Rai, Sudhir K; Roy, Jetendra K; Mukherjee, Ashis K
2010-02-01
An alkaline-protease-producing bacterial strain (AS-S24-II) isolated from a soil sample in Assam is a Gram-stain-positive, catalase-positive, endospore-forming rod and grows at temperatures ranging from 30 degrees C to 60 degrees C and salinity ranging from 0% to 7% (w/v) NaCl. Phenotypic characterisation, chemotaxonomic properties, presence of Paenibacillus-specific signature sequences, and ribotyping data suggested that the strain AS-S24-II represents a novel species of the genus Paenibacillus, for which the name Paenibacillus tezpurensis sp. nov. (MTCC 8959) is proposed. Phylogenetic analysis revealed that P. lentimorbus strain DNG-14 and P. lentimorbus strain DNG-16 represent the closest phylogenetic neighbour of this novel strain. Alkaline protease production (598 x 10(3) U l(-1)) by P. tezpurensis sp. nov. in SmF was optimised by response surface method. A laundry-detergent-stable, Ca(2+)-independent, 43-kDa molecular weight alkaline serine protease from this strain was purified with a 1.7-fold increase in specific activity. The purified protease displayed optimum activity at pH 9.5 and 45-50 degrees C temperature range and exhibited a significant stability and compatibility with surfactants and most of the tested commercial laundry detergents at room temperature. Further, the protease improved the wash performance of detergents, thus demonstrating its feasibility for inclusion in laundry detergent formulations.
Investigation of Carbon-Polymer Structures with Embedded Fiber-Optic Bragg Gratings
NASA Technical Reports Server (NTRS)
Grant, Joseph; Kaul, R.; Taylor, S.; Myers, G.; Sharma, A.
2003-01-01
Several Bragg-grating sensors fabricated within the same optical fiber are buried within multiple-ply carbon-epoxy planar and cylindrical structures. Effect of different orientation of fiber-sensors with respect to carbon fibers in the composite structure is investigated. This is done for both fabric and uni-tape material samples. Response of planar structures to axial and transverse strain up to 1 millistrain is investigated with distributed Bragg-grating sensors. Material properties like Young's Modulus and Poisson ratio is measured. A comparison is made between response measured by sensors in different ply-layers and those bonded on the surface. The results from buried fiber- sensors do not completely agree with surface bonded conventional strain gauges. A plausible explanation is given for observed differences. The planar structures are subjected to impacts with energies up to 10 ft-lb. Effect of this impact on the material stiffness is also investigated with buried fiber-optic Bragg sensors. The strain response of such optical sensors is also measured for cylindrical carbon-epoxy composite structures. The sensors are buried within the walls of the cylinder as well as surface bonded in both the axial as well as hoop directions. The response of these fiber-optic sensors is investigated by pressurizing the cylinder up to its burst pressure of around 1500 psi. This is done at both room temperature as well as cryogenic temperatures. The recorded response is compared with that from a conventional strain gauge.
Static characterization of a soft elastomeric capacitor for non destructive evaluation applications
NASA Astrophysics Data System (ADS)
Saleem, Hussam; Laflamme, Simon; Zhang, Huanhuan; Geiger, Randall; Kessler, Michael; Rajan, Krishna
2014-02-01
A large and flexible strain transducer consisting of a soft elastomeric capacitor (SEC) has been proposed by the authors. Arranged in a network setup, the sensing strategy offers tremendous potential at conducting non-destructive evaluation of large-scale surfaces. In prior work, the authors have demonstrated the performance of the sensor at tracking strain history, localizing cracks, and detecting vibration signatures. In this paper, we characterize the static performance of the proposed SEC. The characterization includes sensitivity of the signal, and temperature and humidity dependences. Tests are conducted on a simply supported aluminum beam subjected to bending as well as on a free standing sensor. The performance of the SEC is compared against off-the-shelf resistance-based strain gauges with resolution of 1 μɛ. A sensitivity of 1190 pF/ɛ is obtained experimentally, in agreement with theory. Results also show the sensor linearity over the given level of strain, showing the promise of the SEC at monitoring of surface strain.
Immotile Active Matter: Activity from Death and Reproduction
NASA Astrophysics Data System (ADS)
Kalziqi, Arben; Yanni, David; Thomas, Jacob; Ng, Siu Lung; Vivek, Skanda; Hammer, Brian K.; Yunker, Peter J.
2018-01-01
Unlike equilibrium atomic solids, biofilms—soft solids composed of bacterial cells—do not experience significant thermal fluctuations at the constituent level. However, living cells stochastically reproduce and die, provoking a mechanical response. We investigate the mechanical consequences of cellular death and reproduction by measuring surface-height fluctuations of biofilms containing two mutually antagonistic strains of Vibrio cholerae that kill one another on contact via the type VI secretion system. While studies of active matter typically focus on activity via constituent mobility, here, activity is mediated by reproduction and death events in otherwise immobilized cells. Biofilm surface topography is measured in the nearly homeostatic limit via white light interferometry. Although biofilms are far from equilibrium systems, measured surface-height fluctuation spectra resemble the spectra of thermal permeable membranes but with an activity-mediated effective temperature, as predicted by Risler, Peilloux, and Prost [Phys. Rev. Lett. 115, 258104 (2015), 10.1103/PhysRevLett.115.258104]. By comparing the activity of killer strains of V. cholerae with that of genetically modified strains that cannot kill each other and validating with individual-based simulations, we demonstrate that extracted effective temperatures increase with the amount of death and reproduction and that death and reproduction can fluidize biofilms. Together, these observations demonstrate the unique physical consequences of activity mediated by death and reproduction events.
Immotile Active Matter: Activity from Death and Reproduction.
Kalziqi, Arben; Yanni, David; Thomas, Jacob; Ng, Siu Lung; Vivek, Skanda; Hammer, Brian K; Yunker, Peter J
2018-01-05
Unlike equilibrium atomic solids, biofilms-soft solids composed of bacterial cells-do not experience significant thermal fluctuations at the constituent level. However, living cells stochastically reproduce and die, provoking a mechanical response. We investigate the mechanical consequences of cellular death and reproduction by measuring surface-height fluctuations of biofilms containing two mutually antagonistic strains of Vibrio cholerae that kill one another on contact via the type VI secretion system. While studies of active matter typically focus on activity via constituent mobility, here, activity is mediated by reproduction and death events in otherwise immobilized cells. Biofilm surface topography is measured in the nearly homeostatic limit via white light interferometry. Although biofilms are far from equilibrium systems, measured surface-height fluctuation spectra resemble the spectra of thermal permeable membranes but with an activity-mediated effective temperature, as predicted by Risler, Peilloux, and Prost [Phys. Rev. Lett. 115, 258104 (2015)PRLTAO0031-900710.1103/PhysRevLett.115.258104]. By comparing the activity of killer strains of V. cholerae with that of genetically modified strains that cannot kill each other and validating with individual-based simulations, we demonstrate that extracted effective temperatures increase with the amount of death and reproduction and that death and reproduction can fluidize biofilms. Together, these observations demonstrate the unique physical consequences of activity mediated by death and reproduction events.
NASA Astrophysics Data System (ADS)
Han, Young-Geun
2017-04-01
Transmission characteristics of periodically surface-corrugated long-period gratings (LPGs) inscribed on photonic crystal fibers (PCFs) using a wet-etching technique were experimentally investigated. A conventional wet method was implemented to periodically engrave the silica cladding region of the PCFs resulting in the periodic surface corrugation in the PCF. After applying the external strain to the PCF with the periodic surface micro-ridges, periodic modulation of refractive index based on the photoelastic effect is induced resulting in the formation of the PCF-based LPG. Increasing the applied strain successfully improves the extinction ratio of the resonant peak of the PCF-based LPG without the resonant wavelength shift. We also measured the transmission characteristics of the PCF-based LPG with variations in temperature and ambient index.
Seel, Waldemar; Derichs, Julia; Lipski, André
2016-07-01
Five isolates from chilled food and refrigerator inner surfaces and closely related reference strains of the species Escherichia coli, Listeria monocytogenes, Staphylococcus xylosus, Bacillus cereus, Pedobacter nutrimenti, and Pedobacter panaciterrae were tested for the effect of growth temperature (30°C and 10°C) on biomass formation. Growth was monitored via optical density, and biomass formation was measured at the early stationary phase based on the following parameters in complex and defined media: viable cell count, total cell count, cell dry weight, whole-cell protein content, and cell morphology. According to the lack of growth at 1°C, all strains were assigned to the thermal class of mesophiles. Glucose and ammonium consumption related to cell yield were analyzed in defined media. Except for the protein content, temperature had a significant (t test, P < 0.05) effect on all biomass formation parameters for each strain. The results show a significant difference between the isolates and the related reference strains. Isolates achieved an increase in biomass production between 20% and 110% at the 10°C temperature, which is 15 to 25°C lower than their maximum growth rate temperatures. In contrast, reference strains showed a maximum increase of only about 25%, and some reference strains showed no increase or a decrease of approximately 25%. As expected, growth rates for all strains were higher at 30°C than at 10°C, while biomass production for isolates was higher at 10°C than at 30°C. In contrast, the reference strains showed similar growth yields at the two temperatures. This also demonstrates for mesophilic bacterial strains more efficient nutrient assimilation during growth at low temperatures. Until now, this characteristic was attributed only to psychrophilic microorganisms. For several psychrophilic species, increased biomass formation was described at temperatures lower than optimum growth temperatures, which are defined by the highest growth rate. This work shows increased biomass formation at low growth temperatures for mesophilic isolates. A comparison with closely related reference strains from culture collections showed a significantly smaller increase or no increase in biomass formation. This indicates a loss of specific adaptive mechanisms (e.g., cold adaptation) for mesophiles during long-term cultivation. The increased biomass production for mesophiles under low-temperature conditions opens new avenues for a more efficient biotechnological transformation of nutrients to microbial biomass. These findings may also be important for risk assessment of cooled foods since risk potential is often correlated with the cell numbers present in food samples. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
van der Kooij, Dick; Brouwer-Hanzens, Anke J.; Veenendaal, Harm R.
2016-01-01
ABSTRACT Legionella pneumophila proliferates in freshwater environments at temperatures ranging from 25 to 45°C. To investigate the preference of different sequence types (ST) for a specific temperature range, growth of L. pneumophila serogroup 1 (SG1) ST1 (environmental strains), ST47, and ST62 (disease-associated strains) was measured in buffered yeast extract broth (BYEB) and biofilms grown on plasticized polyvinyl chloride in flowing heated drinking water originating from a groundwater supply. The optimum growth temperatures in BYEB were approximately 37°C (ST1), 39°C (ST47), and 41°C (ST62), with maximum growth temperatures of 42°C (ST1) and 43°C (ST47 and ST62). In the biofilm at 38°C, the ST47 and ST62 strains multiplied equally well compared to growth of the environmental ST1 strain and an indigenous L. pneumophila non-SG1 strain, all attaining a concentration of approximately 107 CFU/cm−2. Raising the temperature to 41°C did not impact these levels within 4 weeks, but the colony counts of all strains tested declined (at a specific decline rate of 0.14 to 0.41 day−1) when the temperature was raised to 42°C. At this temperature, the concentration of Vermamoeba vermiformis in the biofilm, determined with quantitative PCR (qPCR), was about 2 log units lower than the concentration at 38°C. In columns operated at a constant temperature, ranging from 38 to 41°C, none of the tested strains multiplied in the biofilm at 41°C, in which also V. vermiformis was not detected. These observations suggest that strains of ST47 and ST62 did not multiply in the biofilm at a temperature of ≥41°C because of the absence of a thermotolerant host. IMPORTANCE Growth of Legionella pneumophila in tap water installations is a serious public health concern. The organism includes more than 2,100 varieties (sequence types). More than 50% of the reported cases of Legionnaires' disease are caused by a few sequence types which are very rarely detected in the environment. Strains of selected virulent sequence types proliferated in biofilms on surfaces exposed to warm (38°C) tap water to the same level as environmental varieties and multiplied well as pure culture in a nutrient-rich medium at temperatures of 42 and 43°C. However, these organisms did not grow in the biofilms at temperatures of ≥41°C. Typical host amoebae also did not multiply at these temperatures. Apparently, proliferation of thermotolerant host amoebae is needed to enable multiplication of the virulent L. pneumophila strains in the environment at elevated temperatures. The detection of these amoebae in water installations therefore is a scientific challenge with practical implications. PMID:27613680
Isolation and characterization of diuron-degrading bacteria from lotic surface water.
Batisson, Isabelle; Pesce, Stéphane; Besse-Hoggan, Pascale; Sancelme, Martine; Bohatier, Jacques
2007-11-01
The bacterial community structure of a diuron-degrading enrichment culture from lotic surface water samples was analyzed and the diuron-degrading strains were selected using a series of techniques combining temporal temperature gradient gel electrophoresis (TTGE) of 16 S rDNA gene V1-V3 variable regions, isolation of strains on agar plates, colony hybridization methods, and biodegradation assays. The TTGE fingerprints revealed that diuron had a strong impact on bacterial community structure and highlighted both diuron-sensitive and diuron-adapted bacterial strains. Two bacterial strains, designated IB78 and IB93 and identified as belonging to Pseudomonas sp. and Stenotrophomonas sp., were isolated and shown to degrade diuron in pure resting cells in a first-order kinetic reaction during the first 24 h of incubation with no 3,4-DCA detected. The percentages of degradation varied from 25% to 60% for IB78 and 20% to 65% for IB93 and for a diuron concentration range from 20 mg/L to 2 mg/L, respectively. It is interesting to note that diuron was less degraded by single isolates than by mixed resting cells, thereby underlining a cumulative effect between these two strains. To the best of our knowledge, this is the first report of diuron-degrading strains isolated from lotic surface water.
Galán-Ladero, M A; Blanco-Blanco, M T; Hurtado, C; Pérez-Giraldo, C; Blanco, M T; Gómez-García, A C
2013-09-01
Candida tropicalis is an emerging virulent species. The aim of this study is to determine the biofilm-forming ability of 29 strains of C. tropicalis isolated from inpatients, and to examine its relation with other virulence factors such as cellular surface hydrophobicity (CSH), immediate (15 min, IA) and late (24 h, LA) plastic adherence and filamentation ability. The study was performed in parallel using two incubation temperatures - 37 and 22 °C - to determine the effect of growth temperature variations on these pathogenic attributes of C. tropicalis. Biofilm formation (BF) was measured by optical density (OD) and by XTT reduction (XTT); Slime index (SI), which includes growth as a correction factor in BF, was calculated in both methods. All strains were hydrophobic and adherent - at 15 min and 24 h - at both temperatures, with higher values for 22 °C; the adhered basal yeast layer appears to be necessary to achieve subsequent development of biofilm. Filamentation ability varied from 76.2% of strains at 37 °C to 26.6% at 22 °C. All C. tropicalis strains were biofilm producers, with similar results obtained using OD determination and XTT measurement to evaluation methods; SI is useful when good growth is not presented. BF at 37 °C was similar at 24 h and 96 h incubation; conversely, at 22 °C, the highest number of biofilm-producing strains was detected at 96 h. CSH is an important pathogenic factor which is involved in adherence, is influenced by the filamentation of yeast, and plays a critical role in BF. Copyright © 2013 John Wiley & Sons, Ltd.
Liu, Kewei; Sakurai, Makoto; Aono, Masakazu
2012-12-07
The humidity sensitivity of a single β-Ga(2) O(3) /amorphous SnO(2) core/shell microribbon on a flexible substrate is enhanced by the application of tensile strain and increases linearly with the strain. The strain-induced enhancement originates from the increase in the effective surface area where water molecules are adsorbed. This strain dependence of humidity sensitivity can be used to monitor the external strain. The strain sensing of the microribbon device under various amounts of mechanical loading shows excellent reliability and reproducibility with a gauge factor of -41. The flexible device has high potential to detect both humidity and strain at room temperature. These findings and the mechanism involved are expected to pave the way for new flexible strain and multifunctional sensors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Plate Like Convection with Viscous Strain Weakening and Corresponding Surface Deformation Pattern
NASA Astrophysics Data System (ADS)
Fuchs, L.; Becker, T. W.
2017-12-01
How plate tectonic surface motions are generated by mantle convection on Earth and possibly other terrestrial type planets has recently become more readily accessible with fully dynamic convection computations. However, it remains debated how plate-like the behavior in such models truly is, and in particular how the well plate boundary dynamics are captured in models which typically exclude the effects of deformation history and memory. Here, we analyze some of the effects of viscous strain weakening on plate behavior and the interactions between interior convection dynamics and surface deformation patterns. We use the finite element code CitcomCU to model convection in a 3D Cartesian model setup. The models are internally heated, with an Arrhenius-type temperature dependent viscosity including plastic yielding and viscous strain weakening (VSW) and healing (VSWH). VSW can mimic first order features of more complex damage mechanisms such as grain-size dependent rheology. Besides plate diagnostic parameters (Plateness, Mobility, and Toroidal: Poloidal ratio) to analyze the tectonic behavior our models, we also explore how "plate boundaries" link to convective patterns. In a first model series, we analyze general surface deformation patterns without VSW. In the early stages, deformation patterns are clearly co-located with up- and downwelling limbs of convection. Along downwellings strain-rates are high and localized, whereas upwellings tend to lead to broad zones of high deformation. At a more advanced stage, however, the plates' interior is highly deformed due to continuous strain accumulation and resurfaced inherited strain. Including only VSW leads to more localized deformation along downwellings. However, at a more advanced stage plate-like convection fails due an overall weakening of the material. This is prevented including strain healing. Deformation pattern at the surface more closely coincide with the internal convection patterns. The average surface deformation is reduced significantly and mainly governed by the location of the up- and downwellings. VSWH thereby affects plate dynamics due to two main properties: the intensity of weakening with increasing strain and the strain healing rate. As both increase, mobility increases as well and strain becomes more localized at the downwellings.
Surface temperatures and glassy state investigations in tribology, part 1
NASA Technical Reports Server (NTRS)
Winer, W. O.; Sanborn, D. M.
1978-01-01
The research in this report is divided into two categories: (1) lubricant rheological behavior, and (2) thermal behavior of a simulated elastohydrodynamic contact. The studies of the lubricant rheological behavior consists of high pressure, low shear rate viscosity measurements, viscoelastic transition measurements, by volume dilatometry, dielectric transitions at atmospheric pressure and light scattering transitions. Lubricant shear stress-strain behavior in the amorphous glassy state was measured on several fluids. It appears clear from these investigations that many lubricants undergo viscoplastic transitions in typical EHD contacts and that the lubricant has a limiting maximum shear stress it can support which in turn will determine the traction in the contact except in cases of very low slide-roll ratio. Surface temperature measurements were made for a naphthenic mineral oil and a polyphenyl ether. The maximum surface temperature in these experiments was approximately symmetrical about the zero slide-roll ration except for absolute values of slide-roll ratio greater than about 0.9. Additional surface temperature measurements were made in contacts with rough surfaces where the composite surface roughness was approximately equal to the EHD film thickness. A regression analysis was done to obtain a predictive equation for surface temperatures as a function of pressure, sliding speed, and surface roughness. A correction factor for surface roughness effects to the typical flash temperature analysis was found.
Yield surface evolution for columnar ice
NASA Astrophysics Data System (ADS)
Zhou, Zhiwei; Ma, Wei; Zhang, Shujuan; Mu, Yanhu; Zhao, Shunpin; Li, Guoyu
A series of triaxial compression tests, which has capable of measuring the volumetric strain of the sample, were conducted on columnar ice. A new testing approach of probing the experimental yield surface was performed from a single sample in order to investigate yield and hardening behaviors of the columnar ice under complex stress states. Based on the characteristic of the volumetric strain, a new method of defined the multiaxial yield strengths of the columnar ice is proposed. The experimental yield surface remains elliptical shape in the stress space of effective stress versus mean stress. The effect of temperature, loading rate and loading path in the initial yield surface and deformation properties of the columnar ice were also studied. Subsequent yield surfaces of the columnar ice have been explored by using uniaxial and hydrostatic paths. The evolution of the subsequent yield surface exhibits significant path-dependent characteristics. The multiaxial hardening law of the columnar ice was established experimentally. A phenomenological yield criterion was presented for multiaxial yield and hardening behaviors of the columnar ice. The comparisons between the theoretical and measured results indicate that this current model is capable of giving a reasonable prediction for the multiaxial yield and post-yield properties of the columnar ice subjected to different temperature, loading rate and path conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, A.J.; Fritz, I.J.; Drummond, T.J.
1993-11-01
Using atomic force microscopy (AFM), the authors have investigated the effects of growth temperature and dopant incorporation on the surface morphology of MBE grown graded buffer layers and strained layer superlattices (SLSs) in the InGaAlAs/GaAs and InAsSb/InSb material systems. The AFM results show quantitatively that over the temperature range from 380 to 545 C, graded in{sub x}Al{sub 1{minus}x}As(x = 0.05 {minus} 0.32) buffer layers grown at high temperatures ({approximately}520 C), and graded In{sub x}Ga{sub 1{minus}x}As (x = 0.05 {minus} 0.33) buffer layers and In{sub 0.4}Ga{sub 0.6}As/In{sub 0.26}Al{sub 0.35}Ga{sub 0.39}As SLSs grown at low temperatures ({approximately}400 C) have the lowest RMSmore » roughness. Also, for SLSs InAs{sub 0.21}Sb{sub 0.79}/InSb, undoped layers grown at 470 C were smoother than undoped layers grown at 420 C and Be-doped layers grown at 470 C. These results illustrate the role of surface tension in the growth of strained layer materials near the melting temperature of the InAs{sub x}Sb{sub {minus}x}/InSb superlattice. Nomarski interference and transmission electron microscopies, IR photoluminescence, x-ray diffraction, and photocurrent spectroscopy were also used to evaluate the relative quality of the material but usually, the results were not conclusive.« less
Adjustable Membrane Mirrors Incorporating G-Elastomers
NASA Technical Reports Server (NTRS)
Chang, Zensheu; Morgan, Rhonda M.; Xu, Tian-Bing; Su, Ji; Hishinuma, Yoshikazu; Yang, Eui-Hyeok
2008-01-01
Lightweight, flexible, large-aperture mirrors of a type being developed for use in outer space have unimorph structures that enable precise adjustment of their surface figures. A mirror of this type includes a reflective membrane layer bonded with an electrostrictive grafted elastomer (G-elastomer) layer, plus electrodes suitably positioned with respect to these layers. By virtue of the electrostrictive effect, an electric field applied to the G-elastomer membrane induces a strain along the membrane and thus causes a deflection of the mirror surface. Utilizing this effect, the mirror surface figure can be adjusted locally by individually addressing pairs of electrodes. G-elastomers, which were developed at NASA Langley Research Center, were chosen for this development in preference to other electroactive polymers partly because they offer superior electromechanical performance. Whereas other electroactive polymers offer, variously, large strains with low moduli of elasticity or small strains with high moduli of elasticity, G-elastomers offer both large strains (as large as 4 percent) and high moduli of elasticity (about 580 MPa). In addition, G-elastomer layers can be made by standard melt pressing or room-temperature solution casting.
NASA Astrophysics Data System (ADS)
Elling, Felix J.; Könneke, Martin; Mußmann, Marc; Greve, Andreas; Hinrichs, Kai-Uwe
2015-12-01
Marine ammonia-oxidizing archaea of the phylum Thaumarchaeota are a cosmopolitan group of microorganisms representing a major fraction of the picoplankton in the ocean. The cytoplasmic membranes of Thaumarchaeota consist predominantly of intact polar isoprenoid glycerol dibiphytanyl glycerol tetraether (GDGT) lipids, which may be used as biomarkers for living Thaumarchaeota. Fossil thaumarchaeal GDGT core lipids accumulate in marine sediments and serve as the basis for geochemical proxies such as the TEX86 paleothermometer. Here, we demonstrate that the responses of membrane lipid compositions and resulting TEX86 values to growth temperature strongly diverge in three closely related thaumarchaeal pure cultures, i.e., Nitrosopumilus maritimus and two novel strains isolated from South Atlantic surface water, although the inventories of intact polar lipids and core lipids were overall similar in the three strains. N. maritimus and its closely related strain NAOA6 showed linear relationships of TEX86 and growth temperature but no correlation of TEX86 and temperature was observed in the more distantly related strain NAOA2. In contrast, the weighted average number of cycloalkyl moieties (ring index) was linearly correlated with growth temperature in all strains. This disparate relationship of TEX86 to growth temperature among closely related Thaumarchaeota suggests that the ring index but not the TEX86 ratio represents a universal response to growth temperature in marine planktonic Thaumarchaeota. Furthermore, the distinct TEX86-temperature relationships in the cultivated strains indicate that environmental GDGT signals may include an ecological component, which has important implications for ocean temperature reconstructions using the TEX86 proxy. In contrast, different growth medium salinities in the range 27-51‰ tested for N. maritimus showed no systematic effect on intact polar GDGT composition and TEX86. Similarly, N. maritimus showed only small changes in intact polar GDGT composition and TEX86 when grown at different medium pH in the range 7.3-7.9. Overall, our pure culture studies suggest that the TEX86 paleotemperature proxy is not solely dependent on growth temperature, but may amalgamate physiological, environmental, and ecological factors.
NASA Astrophysics Data System (ADS)
Winter, S.; Schmitz, F.; Clausmeyer, T.; Tekkaya, A. E.; F-X Wagner, M.
2017-03-01
In the automotive industry, advanced high strength steels (AHSS) are widely used as sheet part components to reduce weight, even though this leads to several challenges. The demand for high-quality shear cutting surfaces that do not require reworking can be fulfilled by adiabatic shear cutting: High strain rates and local temperatures lead to the formation of adiabatic shear bands (ASB). While this process is well suited to produce AHSS parts with excellent cutting surface quality, a fundamental understanding of the process is still missing today. In this study, compression tests in a Split-Hopkinson Pressure Bar with an initial strain rate of 1000 s-1 were performed in a temperature range between 200 °C and 1000 °C. The experimental results show that high strength steels with nearly the same mechanical properties at RT may possess a considerably different behavior at higher temperatures. The resulting microstructures after testing at different temperatures were analyzed by optical microscopy. The thermo-mechanical material behavior was then considered in an analytical model. To predict the local temperature increase that occurs during the adiabatic blanking process, experimentally determined flow curves were used. Furthermore, the influence of temperature evolution with respect to phase transformation is discussed. This study contributes to a more complete understanding of the relevant microstructural and thermo-mechanical mechanisms leading to the evolution of ASB during cutting of AHSS.
Interlaminar fracture toughness of thermoplastic composites
NASA Technical Reports Server (NTRS)
Hinkley, J. A.; Johnston, N. J.; Obrien, T. K.
1988-01-01
Edge delamination tension and double cantilever beam tests were used to characterize the interlaminar fracture toughness of continuous graphite-fiber composites made from experimental thermoplastic polyimides and a model thermoplastic. Residual thermal stresses, known to be significant in materials processed at high temperatures, were included in the edge delamination calculations. In the model thermoplastic system (polycarbonate matrix), surface properties of the graphite fiber were shown to be significant. Critical strain energy release rates for two different fibers having similar nominal tensile properties differed by 30 to 60 percent. The reason for the difference is not clear. Interlaminar toughness values for the thermoplastic polyimide composites (LARC-TPI and polyimidesulfone) were 3 to 4 in-lb/sq in. Scanning electron micrographs of the EDT fracture surfaces suggest poor fiber/matrix bonding. Residual thermal stresses account for up to 32 percent of the strain energy release in composites made from these high-temperature resins.
Subsidence from an artificial permafrost warming experiment.
NASA Astrophysics Data System (ADS)
Gelvin, A.; Wagner, A. M.; Lindsey, N.; Dou, S.; Martin, E. R.; Ekblaw, I.; Ulrich, C.; James, S. R.; Freifeld, B. M.; Daley, T. M.; Saari, S.; Ajo Franklin, J. B.
2017-12-01
Using fiber optic sensing technologies (seismic, strain, and temperature) we installed a geophysical detection system to predict thaw subsidence in Fairbanks, Alaska, United States. Approximately 5 km of fiber optic was buried in shallow trenches (20 cm depth), in an area with discontinuous permafrost, where the top of the permafrost is approximately 4 - 4.5m below the surface. The thaw subsidence was enforced by 122 60-Watt vertical heaters installed over a 140 m2 area where seismic, strain, and temperature were continuously monitored throughout the length of the fiber. Several vertical thermistor strings were also recording ground temperatures to a depth of 10 m in parallel to the fiber optic to verify the measurements collected from the fiber optic cable. GPS, Electronic Distance Measurement (EDM) Traditional and LiDAR (Light and Detection and Ranging) scanning were used to investigate the surface subsidence. The heaters were operating for approximately a three month period starting in August, 2016. During the heating process the soil temperatures at the heater element increased from 3.5 to 45 °C at a depth of 3 - 4 m. It took approximately 7 months for the temperature at the heater elements to recover to their initial temperature. The depth to the permafrost table was deepened by about 1 m during the heating process. By the end of the active heating, the surface had subsided approximately 8 cm in the heating section where permafrost was closest to the surface. This was conclusively confirmed with GPS, EDM, and LiDAR. An additional LiDAR survey was performed about seven months after the heaters were turned off (in May 2017). A total subsidence of approximately 20 cm was measured by the end of the passive heating process. This project successfully demonstrates that this is a viable approach for simulating both deep permafrost thaw and the resulting surface subsidence.
Strain-induced modulation of near-field radiative transfer.
Ghanekar, Alok; Ricci, Matthew; Tian, Yanpei; Gregory, Otto; Zheng, Yi
2018-06-11
In this theoretical study, we present a near-field thermal modulator that exhibits change in radiative heat transfer when subjected to mechanical stress/strain. The device has two terminals at different temperatures separated by vacuum: one fixed and one stretchable. The stretchable side contains one-dimensional grating. When subjected to mechanical strain, the effective optical properties of the stretchable side are affected upon deformation of the grating. This results in modulation of surface waves across the interfaces influencing near-field radiative heat transfer. We show that for a separation of 100 nm, it is possible to achieve 25% change in radiative heat transfer for a strain of 10%.
Passive wireless surface acoustic wave sensors for monitoring sequestration sites CO 2 emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yizhong; Chyu, Minking; Wang, Qing-Ming
2013-02-14
University of Pittsburgh’s Transducer lab has teamed with the U.S. Department of Energy’s National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient CO 2 measuring technologies for geological sequestration sites leakage monitoring. A passive wireless CO 2 sensing system based on surface acoustic wave technology and carbon nanotube nanocomposite was developed. Surface acoustic wave device was studied to determine the optimum parameters. Delay line structure was adopted as basic sensor structure. CNT polymer nanocomposite was fabricated and tested under different temperature and strain condition for natural environment impact evaluation. Nanocomposite resistance increased for 5more » times under pure strain, while the temperature dependence of resistance for CNT solely was -1375ppm/°C. The overall effect of temperature on nanocomposite resistance was -1000ppm/°C. The gas response of the nanocomposite was about 10% resistance increase under pure CO 2 . The sensor frequency change was around 300ppm for pure CO 2 . With paralyne packaging, the sensor frequency change from relative humidity of 0% to 100% at room temperature decreased from over 1000ppm to less than 100ppm. The lowest detection limit of the sensor is 1% gas concentration, with 36ppm frequency change. Wireless module was tested and showed over one foot transmission distance at preferred parallel orientation.« less
Indium tin oxide thin film strain gages for use at elevated temperatures
NASA Astrophysics Data System (ADS)
Luo, Qing
A robust ceramic thin film strain gage based on indium-tin-oxide (ITO) has been developed for static and dynamic strain measurements in advanced propulsion systems at temperatures up to 1400°C. These thin film sensors are ideally suited for in-situ strain measurement in harsh environments such as those encountered in the hot sections of gas turbine engines. A novel self-compensation scheme was developed using thin film platinum resistors placed in series with the active strain element (ITO) to minimize the thermal effect of strain or apparent strain. A mathematical model as well as design rules were developed for the self-compensated circuitry using this approach and close agreement between the model and actual static strain results has been achieved. High frequency dynamic strain tests were performed at temperatures up to 500°C and at frequencies up to 2000Hz to simulate conditions that would be encountered during engine vibration fatigue. The results indicated that the sensors could survive extreme test conditions while maintaining sensitivity. A reversible change in sign of the piezoresistive response from -G to +G was observed in the vicinity of 950°C, suggesting that the change carrier responsible for conduction in the ITO gage had been converted from a net "n-carrier" to a net "p-carrier" semiconductor. Electron spectroscopy for chemical analysis (ESCA) of the ITO films suggested they experienced an interfacial reaction with the Al2O3 substrate at 1400°C. It is likely that oxygen uptake from the substrate is responsible for stabilizing the ITO films to elevated temperatures through the interfacial reaction. Thermo gravimetric analysis of ITO films on alumina at elevated temperatures showed no sublimation of ITO films at temperature up to 1400°C. The surface morphology of ITO films heated to 800, 1200 and 1400°C were also evaluated by atomic force microscopy (AFM). A linear current-voltage (I--V) characteristic indicated that the contact interface between the ITO and platinum was ohmic in nature. The small specific contact resistivities were determined in the range of 10-3 to 10-1 Ocm2 from room temperature up to 1400°C using a transmission line model (TLM).
Tozakidis, Iasson E P; Brossette, Tatjana; Lenz, Florian; Maas, Ruth M; Jose, Joachim
2016-06-10
The production and employment of cellulases still represents an economic bottleneck in the conversion of lignocellulosic biomass to biofuels and other biocommodities. This process could be simplified by displaying the necessary enzymes on a microbial cell surface. Such an approach, however, requires an appropriate host organism which on the one hand can withstand the rough environment coming along with lignocellulose hydrolysis, and on the other hand does not consume the generated glucose so that it remains available for subsequent fermentation steps. The robust soil bacterium Pseudomonas putida showed a strongly reduced uptake of glucose above a temperature of 50 °C, while remaining structurally intact hence recyclable, which makes it suitable for cellulose hydrolysis at elevated temperatures. Consequently, three complementary, thermophilic cellulases from Ruminiclostridium thermocellum were displayed on the surface of the bacterium. All three enzymes retained their activity on the cell surface. A mixture of three strains displaying each one of these enzymes was able to synergistically hydrolyze filter paper at 55 °C, producing 20 μg glucose per mL cell suspension in 24 h. We could establish Pseudomonas putida as host for the surface display of cellulases, and provided proof-of-concept for a fast and simple cellulose breakdown process at elevated temperatures. This study opens up new perspectives for the application of P. putida in the production of biofuels and other biotechnological products.
Rubber friction on road surfaces: Experiment and theory for low sliding speeds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorenz, B.; Persson, B. N. J.; Oh, Y. R.
We study rubber friction for tire tread compounds on asphalt road surfaces. The road surface topographies are measured using a stylus instrument and atomic force microscopy, and the surface roughness power spectra are calculated. The rubber viscoelastic modulus mastercurves are obtained from dynamic mechanical analysis measurements and the large-strain effective modulus is obtained from strain sweep data. The rubber friction is measured at different temperatures and sliding velocities, and is compared to the calculated data obtained using the Persson contact mechanics theory. We conclude that in addition to the viscoelastic deformations of the rubber surface by the road asperities, theremore » is an important contribution to the rubber friction from shear processes in the area of contact. The analysis shows that the latter contribution may arise from rubber molecules (or patches of rubber) undergoing bonding-stretching-debonding cycles as discussed in a classic paper by Schallamach.« less
NASA Astrophysics Data System (ADS)
Gali, Olufisayo A.
Near-surface deformed layers developed on aluminum alloys significantly influence the corrosion and tribological behavior as well as reduce the surface quality of the rolled aluminum. The evolution of the near-surface microstructures induced on magnesium containing aluminum alloys during thermomechanical processing has been investigated with the aim generating an understanding of the influence of individual forming parameters on its evolution and examine the microstructure of the roll coating induced on the mating steel roll through material transfer during rolling. The micro-mechanisms related to the various features of near-surface microstructure developed during tribological conditions of the simulated hot rolling process were identified. Thermomechanical processing experiments were performed with the aid of hot rolling (operating temperature: 550 to 460 °C, 4, 10 and 20 rolling pass schedules) and hot forming (operating temperature: 350 to 545 °C, strain rate: 4 x 10-2 s-1) tribo-simulators. The surface, near-surface features and material transfer induced during the elevated temperature plastic deformation were examined and characterized employing optical interferometry, SEM/EDS, FIB and TEM. Near-surface features characterized on the rolled aluminum alloys included; cracks, fractured intermetallic particles, aluminum nano-particles, oxide decorated grain boundaries, rolled-in oxides, shingles and blisters. These features were related to various individual rolling parameters which included, the work roll roughness, which induced the formation of shingles, rolling marks and were responsible for the redistribution of surface oxide and the enhancements of the depth of the near-surface damage. The enhanced stresses and strains experienced during rolling were related to the formation and propagation of cracks, the nanocrystalline structure of the near-surface layers and aluminum nano-particles. The mechanism of the evolution of the near-surface microstructure were determined to include grain boundary sliding which induced the cracks at the surface and subsurface of the alloy, magnesium diffusion to free surfaces, crack propagation from shear stresses and the shear strains inducing the nanocrystalline grain structure, the formation of shingles by the shear deformation of micro-wedges induced by the work roll grooves, and the deformation of this oxide covered micro-wedges inducing the rolled-in oxides. Magnesium diffusion to free surfaces was identified as inducing crack healing due to the formation of MgO within cracks and was responsible for the oxide decorated grain boundaries. An examination of the roll coating revealed a complex layered microstructure that was induced through tribo-chemical and mechanical entrapment mechanisms. The microstructure of the roll coating suggested that the work roll material and the rolled aluminum alloy were essential in determining its composition and structure. Subsequent hot forming processes revealed the rich oxide-layer of the near-surface microstructure was beneficial for reducing the coefficient of friction during tribological contact with the steel die. Damage to the microstructure include cracks induced from grain boundary sliding of near-surface grains and the formation of oxide fibres within cracks of the near-surface deformed layers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis, L.B.
1994-12-01
This research extends the existing knowledge of cross-ply metal matrix composites (MMC) to include fatigue behavior under strain-controlled fully reversed loading. This study investigated fatigue life, failure modes and damage mechanisms of the SCS-6/Ti-15-3, (O/9O)2s, MMC. The laminate was subjected to fully reversed fatigue at elevated temperature (427 deg C) at various strain levels. Stress, strain and modulus data were analyzed to characterize the macro-mechanical behavior of the composite. Microscopy and fractography were accomplished to identify and characterize the damage mechanisms at the microscopic level. Failure modes varied according to the maximum applied strain level showing either mixed mode (i.e.more » combination of both fiber and matrix dominated modes) or matrix dominated fatigue failures. As expected, higher strain loadings resulted in more ductility of the matrix at failure, evidenced by fracture surface features. For testing of the same composite laminate, the fatigue life under strain controlled mode slightly increased, compared to its load-controlled mode counterpart, using the effective strain range comparison basis. However, the respective fatigue life curves converged in the high cycle region, suggesting that the matrix dominated failure mode produces equivalent predicted fatigue lives for both control modes.« less
NASA Astrophysics Data System (ADS)
Zhen, Yaxin; Zhou, Lin
2017-03-01
Based on nonlocal strain gradient theory, wave propagation in fluid-conveying viscoelastic single-walled carbon nanotubes (SWCNTs) is studied in this paper. With consideration of thermal effect and surface effect, wave equation is derived for fluid-conveying viscoelastic SWCNTs under longitudinal magnetic field utilizing Euler-Bernoulli beam theory. The closed-form expressions are derived for the frequency and phase velocity of the wave motion. The influences of fluid flow velocity, structural damping coefficient, temperature change, magnetic flux and surface effect are discussed in detail. SWCNTs’ viscoelasticity reduces the wave frequency of the system and the influence gets remarkable with the increase of wave number. The fluid in SWCNTs decreases the frequency of wave propagation to a certain extent. The frequency (phase velocity) gets larger due to the existence of surface effect, especially when the diameters of SWCNTs and the wave number decrease. The wave frequency increases with the increase of the longitudinal magnetic field, while decreases with the increase of the temperature change. The results may be helpful for better understanding the potential applications of SWCNTs in nanotechnology.
NASA Technical Reports Server (NTRS)
Finger, R. W.
1978-01-01
Static fracture tests were performed on surface flawed specimens of aluminum and titanium alloys. A simulated proof overload cycle was applied prior to all of the cyclic tests. Variables included in each test series were flaw shapes and thickness. Additionally, test temperature was a variable for the aluminum test series. The crack opening displacement and stress-strain data obtained are presented.
NASA Astrophysics Data System (ADS)
Henault, J. M.; Salin, J.; Moreau, G.; Delepine-Lesoille, S.; Bertand, J.; Taillade, F.; Quiertant, M.; Benzarti, K.
2011-04-01
Structural health monitoring is a key factor in life cycle management of infrastructures. Truly distributed fiber optic sensors are able to provide relevant information on large structures, such as nuclear power plants or nuclear waste disposal facilities. The sensing chain includes an optoelectronic unit and a sensing cable made of one or more optical fibers. A new instrument based on Optical Frequency Domain Reflectometry (OFDR), enables to perform temperature and strain measurements with a centimeter scale spatial resolution over hundred of meters and with a level of precision equal to 1 μ strain and 0.1 °C. Several sensing cables are designed with different materials targeting to last for decades, either embedded in the concrete or attached to the surface of the structure. They must ensure an optimal transfer of temperature and strain from the concrete matrix to the optical fiber. Based on the European guide FD CEN/TR 14748 "Non-destructive testing - Methodology for qualification of non-destructive tests", a qualification method was developed. Tests were carried out using various sensing cables embedded in the volume or fixed to the surface of plain concrete specimens and representative-scale reinforced concrete structural elements. Measurements were performed with an OFDR instrument, while mechanical solicitations were imposed to the concrete element. Preliminary experiments seem very promising since measurements performed with distributed sensing systems are found comparable to values obtained with conventional sensors used in civil engineering and with the Strength of Materials Modelling. Moreover, the distributed sensing system makes it possible to detect and localize cracks appearing in concrete during the mechanical loading.
Liquid-Like, Self-Healing Aluminum Oxide during Deformation at Room Temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yang; Kushima, Akihiro; Han, Weizhong
Effective protection from environmental degradation relies on the integrity of oxide as diffusion barriers. Ideally, the passivation layer can repair its own breaches quickly under deformation. While studies suggest that the native aluminum oxide may manifest such properties, it has yet to be experimentally proven because direct observations of the air-environmental deformation of aluminum oxide and its initial formation at room temperature are challenging. In this letter, we report in situ experiments to stretch pure aluminum nanotips under O 2 gas environments in a transmission electron microscope (TEM). We discovered that aluminum oxide indeed deforms like liquid and can matchmore » the deformation of Al without any cracks/spallation at moderate strain rate. At higher strain rate, we exposed fresh metal surface, and visualized the self-healing process of aluminum oxide at atomic resolution. Unlike traditional thin-film growth or nanoglass consolidation processes, we observe seamless coalescence of new oxide islands without forming any glass–glass interface or surface grooves, indicating greatly accelerated glass kinetics at the surface compared to the bulk.« less
Liquid-Like, Self-Healing Aluminum Oxide during Deformation at Room Temperature
Yang, Yang; Kushima, Akihiro; Han, Weizhong; ...
2018-02-28
Effective protection from environmental degradation relies on the integrity of oxide as diffusion barriers. Ideally, the passivation layer can repair its own breaches quickly under deformation. While studies suggest that the native aluminum oxide may manifest such properties, it has yet to be experimentally proven because direct observations of the air-environmental deformation of aluminum oxide and its initial formation at room temperature are challenging. In this letter, we report in situ experiments to stretch pure aluminum nanotips under O 2 gas environments in a transmission electron microscope (TEM). We discovered that aluminum oxide indeed deforms like liquid and can matchmore » the deformation of Al without any cracks/spallation at moderate strain rate. At higher strain rate, we exposed fresh metal surface, and visualized the self-healing process of aluminum oxide at atomic resolution. Unlike traditional thin-film growth or nanoglass consolidation processes, we observe seamless coalescence of new oxide islands without forming any glass–glass interface or surface grooves, indicating greatly accelerated glass kinetics at the surface compared to the bulk.« less
Deformation and fracture of aluminum-lithium alloys: The effect of dissolved hydrogen
NASA Technical Reports Server (NTRS)
Rivet, F. C.; Swanson, R. E.
1990-01-01
The effects of dissolved hydrogen on the mechanical properties of 2090 and 2219 alloys are studied. The work done during this semi-annual period consists of the hydrogen charging study and some preliminary mechanical tests. Prior to SIMS analysis, several potentiostatic and galvanostatic experiments were performed for various times (going from 10 minutes to several hours) in the cathodic zone, and for the two aqueous solutions: 0.04N of HCl and 0.1N NaOH both combined with a small amount of As2O3. A study of the surface damage was conducted in parallel with the charging experiments. Those tests were performed to choose the best charging conditions without surface damage. Disk rupture tests and tensile tests are part of the study designed to investigate the effect of temperature, surface roughness, strain rate, and environment on the fracture behavior. The importance of the roughness and environment were shown using the disk rupture test as well as the importance of the strain rate under hydrogen environment. The tensile tests, without hydrogen effects, have not shown significant differences between low and room temperature.
Characterization of Nb Superconducting Radio Frequency Cavities Based On In-Situ STEM And EELS
NASA Astrophysics Data System (ADS)
Tao, Runzhe
Niobium, a 4d transition metal, has the highest superconducting transition temperature (Tc=9.2K) of any elemental superconductor as type II superconductor with coherent length, sigma approximately that of the penetration length, lambda. Pure niobium is grey in color and very soft, which makes this metal easily fabricable into different shapes for superconducting radio- frequency (SRF) cavities. Such cavities are used in some modern accelerators (SNS, CEBAF, XFEL), and are intended for usage in the next generation of particle accelerators, such as ILC. Since the crucial part of the cavities is top 100 nm of Nb near the inner cavity surface, considering the penetration depth is around 40 nm, it has attracted more and more attention in improving the surface process for optimizing the performance of the cavities. Nowadays, the main treatment of the Nb surface includes electro polishing (EP), buffered chemical polishing (BCP), high temperature baking (800 °C, 1000 °C and 1200 °C) and mild baking (120 °C). Firstly, the two half cells are welded together and the weld line is quite rough; there exists a lot of visible pits and defects on the inner shell of cavities. In this Ph.D. thesis, novel techniques in a scanning transmission electron microscope (STEM) that can be used to analyze the atomic scale structure-property relationship, both at room tem- perature and high/LN 2 temperature, are explored. Specifically, by using correlated Z-contrast imaging and electron energy loss spectrum (EELS), the structure, composition and bonding can be characterized directly on the atomic scale, also, light atoms, like H, O and C, are visible in ABF images. For the examining the defect behavior on the cavity surface, heating and cold stages are involved to simulate the baking treatment and low-temperature environments. These studies will serve as an important reference for qualifying different surface treatments to further improve SRF cavities' performance. The experimental results were obtained using JEOL JEM-ARM200CF STEM/TEM, having a cold-field emission gun and being operated at 200 kV. It is equipped with a probe-side Cs corrector, multiple imaging detectors (HAADF, LAADF, ABF, BF) and spectrometers (Gatan Infina EELS, Oxford Instruments XMAX EDS). This setup can achieve spatial resolution better than 70 pm and energy resolution 0.35 eV. Utilizing STEM imaging technologies, the crystal structure of Nb and even light impurities are visualized in HAADF and ABF images. Atomic- resolution EELS contains information about the local density of occupied states as the physical principle behind EELS relates to the interaction of the fast electrons with the sample to cause either collective excitations of electrons (plasmons), or discrete transitions between atomic energy levels. The study for different Nb oxides establishes a set of methodologies to quantify the Nb cavity surface oxidation state based on low-loss/core-loss EELS. Oxygen K-edge split due to orbital hybridation and Nb-M peak chemical shift work well for identifying the Nb valence in oxide. Using this method, the surface oxidation state of Nb is studied, and the effects of oxygen diffusion during the mild baking process is revealed. I suggest that this diffusion may act as an important reason for the observed Q-slope in high field region. Considering that the SRF cavities are operated inside liquid helium vessels, the behavior of surface impurity at low temperature draws more and more attention. Since NbH is conducting material with a transition temperature of 150 K and hydrogen can easily concentrate near the surface, NbH is regarded as the key for the observed Q-disease at low temperature. But the difficulty of studying Nb hydride in a TEM is obvious: the light atom (for hydrogen, Z=1) is almost impossible to visualize in STEM images; the only hydrogen peak in EELS is the H K-edge which is located at 12 eV and it is easily covered by tail of zero-loss peak or plasmon peaks. The second part of my research starts with a study of different NbH superlattices using electron beam diffraction patterns, and then careful low-loss EELS measurements to identify hydrogen concentration at the Nb cavity surface. All of these results provide strong evidence for the existence of hydrogen near the cavity surface, the diffusion of hydrogen into bulk Nb atLN2 temperature, and the relationship between hydrogen segregation and local defects. The last part of the thesis focuses on the surface deformation caused by local strain. Local strain is a common problem of Nb cavity fabrication. Nb carbon layers and particles form at the cavity surface after strain tests, and inside of such particles, smaller dislocations are found which exhibit high strain center and higher oxygen concentration. It is clear that the impurities of light atoms is unavoidable during the cavity manufacturing process, oxide is the dominant impurity and it forms a distinguishable amorphous layer around 5 nm in thickness, hydrides are present following the oxide layer and can diffusion into Nb matrix more than 20 nm. Undoubtedly, these impurities will reduce the cavities' performance, and it will be necessary to find more effective methods for post-production cavity treatments to obtain a smoother and cleaner surface. Another problem, local strain, will effect the surface structure and introduce grain boundaries and other extended defects. Potentially, these defects may interact with surface impurities, correspondingly, the hydrogen segregation increases the mobility of the defects. Such positive correlation will accelerate the degeneration of the surface structure and finally lead to catastrophic effect on the local superconductivity. In summary, various impurities of Nb are investigated with atomic resolution. Methodologies for quantifying Nb oxides and hydrides are developed. Direct observation of hydrogen atoms is realized in ABF images at room temperature, and can also serve as a promising method to identify different hydrides in Nb bulk at LN2 temperature if the cold stage is stable enough. My work on the local strain of Nb cavities points out that Nb carbides play a significant role in the performance of SRF cavities at low temperature and intermediate to high fields.
Huang, Tinglin; Guo, Lin; Zhang, Haihan; Su, Junfeng; Wen, Gang; Zhang, Kai
2015-11-01
An aerobic denitrifier, identified as Pseudomonas stutzeri strain ZF31, was isolated from the Zhoucun drinking-water reservoir. Strain ZF31 removed 97% of nitrate nitrogen after 16h, without nitrite accumulation. Sequence amplification indicated the presence of the denitrification genes napA, nirS, norB, and nosZ. Nitrogen balance analysis revealed that approximately 75% of the initial nitrogen was removed as gas products. Response surface methodology (RSM) experiments showed that maximum removal of total nitrogen (TN) occurred at pH 8.23, a C/N ratio of 6.68, temperature of 27.72°C, and with shaking at 54.15rpm. The TN removal rate at low C/N ratio (i.e., 3) and low temperature (i.e., 10°C) was 73.30% and 60.08%, respectively. These results suggest that strain ZF31 has potential applications for the bioremediation of slightly polluted drinking-water reservoirs. Copyright © 2015 Elsevier Ltd. All rights reserved.
Temperature Evolution During Plane Strain Compression Of Tertiary Oxide Scale On Steel
NASA Astrophysics Data System (ADS)
Suarez, L.; Vanden Eynde, X.; Lamberigts, M.; Houbaert, Y.
2007-04-01
An oxide scale layer always forms at the steel surface during hot rolling. This scale layer separates the work roll from the metal substrate. Understanding the deformation behaviour and mechanical properties of the scale is of great interest because it affects the frictional conditions during hot rolling and the heat-transfer behaviour at the strip-roll interface. A thin wustite scale layer (<20 μm) was created under controlled conditions in an original laboratory device adequately positioned in a compression testing machine to investigate plane strain compression. Oxidation tests were performed on an ULC steel grade. After the oxide growth at 1050°C, plane strain compression (PSC) was performed immediately to simulate the hot rolling process. PSC experiments were performed at a deformation temperature of 1050°C, with reduction ratios from 5 to 70%, and strain rates of 10s-1 under controlled gas atmospheres. Results show that for wustite, ductility is obvious at 1050°C. Even after deformation oxide layers exhibit good adhesion to the substrate and homogeneity over the thickness. The tool/sample temperature difference seems to be the reason for the unexpected ductile behaviour of the scale layer.
A generalized law for brittle deformation of Westerly granite
Lockner, D.A.
1998-01-01
A semiempirical constitutive law is presented for the brittle deformation of intact Westerly granite. The law can be extended to larger displacements, dominated by localized deformation, by including a displacement-weakening break-down region terminating in a frictional sliding regime often described by a rate- and state-dependent constitutive law. The intact deformation law, based on an Arrhenius type rate equation, relates inelastic strain rate to confining pressure Pc, differential stress ????, inelastic strain ??i, and temperature T. The basic form of the law for deformation prior to fault nucleation is In ????i = c - (E*/RT) + (????/a??o)sin-??(???? i/2??o) where ??o and ??o are normalization constants (dependent on confining pressure), a is rate sensitivity of stress, and ?? is a shape parameter. At room temperature, eight experimentally determined coefficients are needed to fully describe the stress-strain-strain rate response for Westerly granite from initial loading to failure. Temperature dependence requires apparent activation energy (E* ??? 90 kJ/mol) and one additional experimentally determined coefficient. The similarity between the prefailure constitutive law for intact rock and the rate- and state-dependent friction laws for frictional sliding on fracture surfaces suggests a close connection between these brittle phenomena.
Effects of NaCl, pH, and Potential on the Static Creep Behavior of AA1100
NASA Astrophysics Data System (ADS)
Wan, Quanhe; Quesnel, David J.
2013-03-01
The creep rates of AA1100 are measured during exposure to a variety of aggressive environments. NaCl solutions of various concentrations have no influence on the steady-state creep behavior, producing creep rates comparable to those measured in lab air at room temperature. However, after an initial incubation period of steady strain rate, a dramatic increase of strain rate is observed on exposure to HCl solutions and NaOH solutions, as well as during cathodic polarization of specimens in NaCl solutions. Creep strain produces a continuous deformation and elongation of the sample surface that is comparable to slow strain rates at crack tips thought to control the kinetics of crack growth during stress corrosion cracking (SCC). In this experiment, we separate the strain and surface deformation from the complex geometry of the crack tip to better understand the processes at work. Based on this concept, two possible explanations for the environmental influences on creep strain rates are discussed relating to the anodic dissolution of the free surface and hydrogen influences on deformation mechanisms. Consistencies of pH dependence between corrosion creep and SCC at low pH prove a creep-involved SCC mechanism, while the discrepancies between corrosion creep behavior and previous SCC results at high pH indicate a rate-limit step change in the crack propagation of the SCC process.
Effects of Internal and External Hydrogen on Inconel 718
NASA Technical Reports Server (NTRS)
Walter, R. J.; Frandsen, J. D.
1999-01-01
Internal hydrogen embrittlement (IHE) and hydrogen environment embrittlement (HEE) tensile and bend crack growth tests were performed on Inconel 718. For the IHE tests, the specimens were precharged to approximately 90 ppm hydrogen by exposure to 34.5 MPa H2 at 650 C. The HEE tests were performed in 34.5 MPa H2. Parameters evaluated were test temperature, strain rate for smooth and notch specimen geometries. The strain rate effect was very significant at ambient temperature for both IHE and HEE and decreased with increasing temperatures. For IHE, the strain rate effect was neglible at 260'C, and for HEE the strain rate effect was neglible at 400 C. At low temperatures, IHE was more severe than HEE, and at high temperatures HEE was more severe than IHE with a cross over temperature about 350 C. At 350 C, the equilibrium hydrogen concentration in Inconel 718 is about 50% lower than the hydrogen content of the precharged IHE specimens. Dislocation hydrogen sweeping of surface absorbed hydrogen was the likely transport mechanism for increasing the hydrogen concentration in the HEE tests sufficiently to produce the same degree of embrittlement as that of the more highly hydrogen charged IHE specimens. The main IHE fracture characteristic was formation of large, brittle flat facets, which decreased with increasing test temperature. The IHE fracture matrix surrounding the large facets ranged between brittle fine faceted to microvoid ductility depending upon strain rate, specimen geometry as well as temperature. The HEE fractures were characteristically fine featured, transgranular and brittle with a significant portion forming a "saw tooth" crystallographic pattern. Both IHE and HEE fractures were predominantly along the {1 1 1) slip and twin boundaries. With respect to embrittlement mechanism, it was postulated that dislocation hydrogen sweeping and hydrogen enhanced localized plasticity were active in HEE and IHE for concentrating hydrogen along (1 1 1) slip and twin planes. Final brittle failure occurred by hydrogen induced planer decohesion.
Finite element modelling of fibre Bragg grating strain sensors and experimental validation
NASA Astrophysics Data System (ADS)
Malik, Shoaib A.; Mahendran, Ramani S.; Harris, Dee; Paget, Mark; Pandita, Surya D.; Machavaram, Venkata R.; Collins, David; Burns, Jonathan M.; Wang, Liwei; Fernando, Gerard F.
2009-03-01
Fibre Bragg grating (FBG) sensors continue to be used extensively for monitoring strain and temperature in and on engineering materials and structures. Previous researchers have also developed analytical models to predict the loadtransfer characteristics of FBG sensors as a function of applied strain. The general properties of the coating or adhesive that is used to surface-bond the FBG sensor to the substrate has also been modelled using finite element analysis. In this current paper, a technique was developed to surface-mount FBG sensors with a known volume and thickness of adhesive. The substrates used were aluminium dog-bone tensile test specimens. The FBG sensors were tensile tested in a series of ramp-hold sequences until failure. The reflected FBG spectra were recorded using a commercial instrument. Finite element analysis was performed to model the response of the surface-mounted FBG sensors. In the first instance, the effect of the mechanical properties of the adhesive and substrate were modelled. This was followed by modelling the volume of adhesive used to bond the FBG sensor to the substrate. Finally, the predicted values obtained via finite element modelling were correlated to the experimental results. In addition to the FBG sensors, the tensile test specimens were instrumented with surface-mounted electrical resistance strain gauges.
Evolution of Ge nanoislands on Si(110)-'16 × 2' surface under thermal annealing studied using STM
NASA Astrophysics Data System (ADS)
Gangopadhyay, Subhashis; Yoshimura, Masamichi; Ueda, Kazuyuki
2009-11-01
The initial nucleation of Ge nanoclusters on Si(110) at room temperature (RT), annealing-induced surface roughening and the evolution of three-dimensional Ge nanoislands have been investigated using scanning tunneling microscopy (STM). A few monolayers (ML) of Ge deposited at room temperature lead to the formation of Ge clusters which are homogeneously distributed across the surface. The stripe-like patterns, characteristic of the Si(110)-'16 × 2' surface reconstruction are also retained. Increasing annealing temperatures, however, lead to significant surface diffusion and thus, disruption of the underlying '16 × 2' reconstruction. The annealing-induced removal of the stripe structures (originated from '16 × 2' reconstruction) starts at approximately 300 °C, whereas the terrace structures of Si(110) are thermally stable up to 500 °C. At approximately 650 °C, shallow Ge islands of pyramidal shape with (15,17,1) side facets start to form. Annealing at even higher temperatures enhances Ge island formation. Our findings are explained in terms of partial dewetting of the metastable Ge wetting layer (WL) (formed at room temperature) as well as partial relaxation of lattice strain through three-dimensional (3D) island growth.
NASA Astrophysics Data System (ADS)
Ko, Won-Seok; Grabowski, Blazej; Neugebauer, Jörg
2018-03-01
Martensitic transformations in nanoscaled shape-memory alloys exhibit characteristic features absent for the bulk counterparts. Detailed understanding is required for applications in micro- and nanoelectromechanical systems, and experimental limitations render atomistic simulation an important complementary approach. Using a recently developed, accurate potential we investigate the phase transformation in freestanding Ni-Ti shape-memory nanoparticles with molecular-dynamics simulations. The results confirm that the decrease in the transformation temperature with decreasing particle size is correlated with an overstabilization of the austenitic surface energy over the martensitic surface energy. However, a detailed atomistic analysis of the nucleation and growth behavior reveals an unexpected difference in the mechanisms determining the austenite finish and martensite start temperature. While the austenite finish temperature is directly affected by a contribution of the surface energy difference, the martensite start temperature is mostly affected by the transformation strain, contrary to general expectations. This insight not only explains the reduced transformation temperature but also the reduced thermal hysteresis in freestanding nanoparticles.
Experimental studies on fatigue behavior of macro fiber composite (MFC) under mechanical loading
NASA Astrophysics Data System (ADS)
Pandey, Akash; Arockiarajan, A.
2016-04-01
Macro fiber Composite (MFC) finds its application in active control, vibration control and sensing elements. MFC can be laminated to surfaces or embedded in the structures to be used as an actuator and sensors. Due to its attractive properties and applications, it may be subjected to continuous loading, which leads to the deterioration of the properties. This study is focused on the fatigue lifetime of MFC under tensile and compressive loading at room temperature. Experiments were performed using 4 point bending setup, with MFC pasted at the center of the mild steel beam, to maintain constant bending stress along MFC. MFC is pasted using vacuum bagging technique. Sinusoidal loading is given to sample while maintaining R=0.13 (for tensile testing) and R=10 (for compressive testing). For d31 and d33 type of MFC, test was conducted for the strain values of 727 μ strain, 1400 μ strain, 1700 μ strain and 1900 μ strain for fatigue under tensile loading. For fatigue under compressive loading, both d33 and d31, was subjected to minimum strain of -2000 μ strain. Decrease in the slope of dielectric displacement vs. strain is the measure for the degradation. 10 percent decrease in the slope is set as the failure criteria. Experimental results show that MFC is very reliable below 1700 μ strain (R=0.13) at the room temperature.
NASA Astrophysics Data System (ADS)
Texier, Damien; Gómez, Ana Casanova; Pierret, Stéphane; Franchet, Jean-Michel; Pollock, Tresa M.; Villechaise, Patrick; Cormier, Jonathan
2016-03-01
The low-cycle fatigue behavior of two direct-aged versions of the nickel-based superalloy Inconel 718 (IN718DA) was examined in the low-strain amplitude regime at intermediate temperature. High variability in fatigue life was observed, and abnormally short lifetimes were systematically observed to be due to crack initiation at (sub)-surface non-metallic inclusions. However, crack initiation within (sub)-surface non-metallic inclusions did not necessarily lead to short fatigue life. The macro- to micro-mechanical mechanisms of deformation and damage have been examined by means of detailed microstructural characterization, tensile and fatigue mechanical tests, and in situ tensile testing. The initial stages of crack micro-propagation from cracked non-metallic particles into the surrounding metallic matrix occupies a large fraction of the fatigue life and requires extensive local plastic straining in the matrix adjacent to the cracked inclusions. Differences in microstructure that influence local plastic straining, i.e., the δ-phase content and the grain size, coupled with the presence of non-metallic inclusions at the high end of the size distribution contribute strongly to the fatigue life variability.
Improvement of Reusable Surface Insulation (RSI) materials
NASA Technical Reports Server (NTRS)
Blome, J. C.
1972-01-01
The mullite fiber based hardened compacted fibers (HCF) type of reusable surface insulation was further developed for use in the Space Shuttle Program. Two hundred fifty formulations of fiber mixtures, fillers, binders, and organic processing aids were made using mullite fibers as the basic ingredient. Most of the work was accomplished on 15-lb/cu ft material. It was established that higher density materials are stronger with strength values as high as 250 lb/sq in. in tension. New measurement techniques and equipment were developed for accurate determination of strength and strain to failure. Room temperature to 2300 F stress-strain relationships were made. The room temperature tensile modulus of elasticity is 61,700 lb/sq in. and the strain at failure is 0.165 percent, typically, when measured longitudinally parallel to the long axes of the fibers. Thermal insulating effectiveness was increased 20 percent by reducing the diameter of some of the fibers in the material. Improvements were made in density uniformity and strength uniformity in a block of HCF by mixing improvements and by the use of organic additives. Specifications were established on the materials and processes used in making the insulation.
Thermography detection on the fatigue damage
NASA Astrophysics Data System (ADS)
Yang, Bing
It has always been a great temptation in finding new methods to in-situ "watch" the material fatigue-damage processes so that in-time reparations will be possible, and failures or losses can be minimized to the maximum extent. Realizing that temperature patterns may serve as fingerprints for stress-strain behaviors of materials, a state-of-art infrared (IR) thermography camera has been used to "watch" the temperature evolutions of both crystalline and amorphous materials "cycle by cycle" during fatigue experiments in the current research. The two-dimensional (2D) thermography technique records the surface-temperature evolutions of materials. Since all plastic deformations are related to heat dissipations, thermography provides an innovative method to in-situ monitor the heat-evolution processes, including plastic-deformation, mechanical-damage, and phase-transformation characteristics. With the understanding of the temperature evolutions during fatigue, thermography could provide the direct information and evidence of the stress-strain distribution, crack initiation and propagation, shear-band growth, and plastic-zone evolution, which will open up wide applications in studying the structural integrity of engineering components in service. In the current research, theoretical models combining thermodynamics and heat-conduction theory have been developed. Key issues in fatigue, such as in-situ stress-strain states, cyclic softening and hardening observations, and fatigue-life predictions, have been resolved by simply monitoring the specimen-temperature variation during fatigue. Furthermore, in-situ visulizations as well as qualitative and quantitative analyses of fatigue-damage processes, such as Luders-band evolutions, crack propagation, plastic zones, and final fracture, have been performed by thermography. As a method requiring no special sample preparation or surface contact by sensors, thermography provides an innovative and convenient method to in-situ monitor and analyze the mechanical-damage processes of materials and components.
Thermal Strain Analysis of Optic Fiber Sensors
Her, Shiuh-Chuan; Huang, Chih-Ying
2013-01-01
An optical fiber sensor surface bonded onto a host structure and subjected to a temperature change is analytically studied in this work. The analysis is developed in order to assess the thermal behavior of an optical fiber sensor designed for measuring the strain in the host structure. For a surface bonded optical fiber sensor, the measuring sensitivity is strongly dependent on the bonding characteristics which include the protective coating, adhesive layer and the bonding length. Thermal stresses can be generated due to a mismatch of thermal expansion coefficients between the optical fiber and host structure. The optical fiber thermal strain induced by the host structure is transferred via the adhesive layer and protective coating. In this investigation, an analytical expression of the thermal strain and stress in the optical fiber is presented. The theoretical predictions are validated using the finite element method. Numerical results show that the thermal strain and stress are linearly dependent on the difference in thermal expansion coefficients between the optical fiber and host structure and independent of the thermal expansion coefficients of the adhesive and coating. PMID:23385407
Evaluation of ionic liquid epoxy carbon fiber composites in a cryogenic environment
NASA Astrophysics Data System (ADS)
Lyne, Christopher T.; Henry, Christopher R.; Kaukler, William F.; Grugel, R. N.
2018-03-01
A novel ionic liquid epoxy (ILE) was used to fabricate carbon fiber composite discs which were then subjected to biaxial strain testing in liquid nitrogen. The ILE composite showed a greater strain-to-failure at cryogenic temperatures when compared to a commercial epoxy. This result is likely an effect, as shown in micrographs, of the strong ILE bonding with the carbon fibers as well as it exhibiting plastic deformation at the fracture surface.
Survival of Salmonella enterica serovar infantis on and within stored table eggs.
Lublin, Avishai; Maler, Ilana; Mechani, Sara; Pinto, Riky; Sela-Saldinger, Shlomo
2015-02-01
Contaminated table eggs are considered a primary source of foodborne salmonellosis globally. Recently, a single clone of Salmonella enterica serovar Infantis emerged in Israel and became the predominant serovar isolated in poultry. This clone is currently the most prevalent strain in poultry and is the leading cause of salmonellosis in humans. Because little is known regarding the potential transmission of this strain from contaminated eggs to humans, the objective of this study was to evaluate the ability of Salmonella Infantis to survive on the eggshell or within the egg during cold storage or at room temperature. Salmonella cells (5.7 log CFU per egg) were inoculated on the surface of 120 intact eggs or injected into the egg yolk (3.7 log CFU per egg) of another 120 eggs. Half of the eggs were stored at 5.5 ± 0.3°C and half at room temperature (25.5 ± 0.1°C) for up to 10 weeks. At both temperatures, the number of Salmonella cells on the shell declined by 2 log up to 4 weeks and remained constant thereafter. Yolk-inoculated Salmonella counts at cold storage declined by 1 log up to 4 weeks and remained constant, while room-temperature storage supported the growth of the pathogen to a level of 8 log CFU/ml of total egg content, as early as 4 weeks postinoculation. Examination of egg content following surface inoculation revealed the presence of Salmonella in a portion of the eggs at both temperatures up to 10 weeks, suggesting that this strain can also penetrate through the shell and survive within the egg. These findings imply that Salmonella enterica serovar Infantis is capable of survival both on the exterior and interior of table eggs and even multiply inside the egg at room temperature. Our findings support the need for prompt refrigeration to prevent Salmonella multiplication during storage of eggs at room temperature.
Strain Engineering Defect Concentrations in Reduced Ceria for Improved Electro-Catalytic Performance
2014-06-30
coupling, curvature relaxation, lanthanum strontium ferrite, ceria. oxygen surface exchange 16. SECURITY CLASSIFICATION OF: 17. LlMITATJON OF a. REPORT...Temperature Lanthanum Strontium Ferrite Oxygen Surface Exchange Coefficient Measurements by Curvature Relaxation. 225th Meeting of the Electrochemical...Manuscripts Received Paper TOTAL: Received Paper TOTAL: 06/30/2014 Received Paper 1.00 Qing Yang, Jason Nicholas. Porous Thick Film Lanthanum Strontium
NASA Astrophysics Data System (ADS)
Grzesik, W.; Niesłony, P.; Laskowski, P.
2017-12-01
In this paper, a special procedure for the prediction of parameters of the Johnson-Cook constitutive material models is proposed based on the experimental data and specially developed MATLAB scripts which allow advanced modeling of complex 3D response surfaces. Experimental investigations concern two various strain rates of 10-3 and 101 1/s and the testing temperature ranging from the ambient up to 700 °C. As a result, a set of mathematical equations which fit the experimental data is determined. The applicability of the experimentally derived constitutive models to the FEM modeling of real machining processes of Inconel 718 alloy is verified.
Catalytic combustion of hydrogen-air mixtures in stagnation flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikeda, H.; Libby, P.A.; Williams, F.A.
1993-04-01
The interaction between heterogeneous and homogeneous reactions arising when a mixture of hydrogen and air impinges on a platinum plate at elevated temperature is studied. A reasonably complete description of the kinetic mechanism for homogeneous reactions is employed along with a simplified model for heterogeneous reactions. Four regimes are identified depending on the temperature of the plate, on the rate of strain imposed on the flow adjacent to the plate and on the composition and temperature of the reactant stream: (1) surface reaction alone; (2) surface reaction inhibiting homogeneous reaction; (3) homogeneous reaction inhibiting surface reaction; and (4) homogeneous reactionmore » alone. These regimes are related to those found earlier for other chemical systems and form the basis of future experimental investigation of the chemical system considered in the present study.« less
NASA Astrophysics Data System (ADS)
Bannykh, O. A.; Betsofen, S. Ya.; Lukin, E. I.; Blinov, V. M.; Voznesenskaya, N. M.; Tonysheva, O. A.; Blinov, E. V.
2016-04-01
The effect of the rolling temperature and strain on the structure and the properties of corrosionresistant austenitic-martensitic 14Kh15AN4M steel is studied. The steel is shown to exhibit high ductility: upon rolling in the temperature range 700-1100°C at a reduction per pass up to 80%, wedge steel specimens are uniformly deformed along and across the rolling direction without cracking and other surface defects. Subsequent cold treatment and low-temperature tempering ensure a high hardness of the steel (50-56 HRC). Austenite mainly contributes to the hardening upon rolling in the temperature range 700-800°C at a reduction of 50-70%, and martensite makes the main contribution at higher temperatures and lower strains. Texture does not form under the chosen deformation conditions, which indicates dynamic recrystallization with the nucleation and growth of grains having no preferential orientation.
(Nanotechnology Iniatitive) Multicolor Nanostructured High Efficiency Photovoltaic Devices
2007-06-30
temperature reaches 520 °C, the surface of strained buffer layer starts to form some nanoholes and nanogrooves. The depth of these nanoholes and...nanogrooves is more than 3 nm. This indicates that the nanoholes and nanogrooves are formed not only just in the top GaAs (5 ML) layer, but also deep...segregated Sb or unstabled GaAsSb at high temperature during the InAs growth. As the InAs growth temperature decreases, the density of the nanoholes and
NASA Astrophysics Data System (ADS)
Mueller, Richard N.; Howard, J. Lawrence; Sikorra, Charles F.; Swegle, Allan R.
Commercial strain gages were evaluated for proposed strain measurement on a Rene 41 honeycomb test panel to be subjected to temperatures from -423 F to +1600 F. Foil strain gages of three different temperature compensations, a weldable strain gage, and a capacitive strain gage, were tested to determine characteristics of apparent strain, strain sensitivity, and temperature operational limits under stabilized temperature and several heating and cooling temperature rates. Test results show that strain measurement over the total temperature range can be made using a combination of gages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, Judy; Dong, Lei; Howe, Jane Y
2011-01-01
The microstructure of the secondary deformation zone (SDZ) near the cutting surface in metal chips of Ti-6Al-4V formed during machining was investigated using focused ion beam (FIB) specimen preparation and transmission electron microscopy (TEM) imaging. Use of the FIB allowed precise extraction of the specimen across this region to reveal its inhomogeneous microstructure resulting from the non-uniform distribution of strain, strain rate, and temperature generated during the cutting process. Initial imaging from conventional TEM foil preparation revealed microstructures ranging from heavily textured to regions of fine grains. Using FIB preparation, the transverse microstructure could be interpreted as fine grains nearmore » the cutting surface which transitioned to coarse grains toward the free surface. At the cutting surface a 10 nm thick recrystallized layer was observed capping a 20 nm thick amorphous layer.« less
Laboratory testing of a building envelope segment based on cellular concrete
NASA Astrophysics Data System (ADS)
Fořt, Jan; Pavlík, Zbyšek; Černý, Robert
2016-07-01
Hygrothermal performance of a building envelope based on cellular concrete blocks is studied in the paper. Simultaneously, the strain fields induced by the heat and moisture changes are monitored. The studied wall is exposed to the climatic load corresponding to the winter climatic conditions of the moderate year for Prague. The winter climatic exposure is chosen in order to simulate the critical conditions of the building structure from the point of view of material performance and temperature and humidity loading. The evaluation of hygrothermal performance of a researched wall is done on the basis of relative humidity and temperature profiles measured along the cross section of the cellular concrete blocks. Strain gauges are fixed on the wall surface in expected orientation of the blocks expansion. The obtained results show a good hygrothermal function of the analyzed cellular concrete wall and its insignificant strain.
Benforte, Florencia C; Colonnella, Maria A; Ricardi, Martiniano M; Solar Venero, Esmeralda C; Lizarraga, Leonardo; López, Nancy I; Tribelli, Paula M
2018-01-01
Psychrotroph microorganisms have developed cellular mechanisms to cope with cold stress. Cell envelopes are key components for bacterial survival. Outer membrane is a constituent of Gram negative bacterial envelopes, consisting of several components, such as lipopolysaccharides (LPS). In this work we investigated the relevance of envelope characteristics for cold adaptation in the Antarctic bacterium Pseudomonas extremaustralis by analyzing a mini Tn5 wapH mutant strain, encoding a core LPS glycosyltransferase. Our results showed that wapH strain is impaired to grow under low temperature but not for cold survival. The mutation in wapH, provoked a strong aggregative phenotype and modifications of envelope nanomechanical properties such as lower flexibility and higher turgor pressure, cell permeability and surface area to volume ratio (S/V). Changes in these characteristics were also observed in the wild type strain grown at different temperatures, showing higher cell flexibility but lower turgor pressure under cold conditions. Cold shock experiments indicated that an acclimation period in the wild type is necessary for cell flexibility and S/V ratio adjustments. Alteration in cell-cell interaction capabilities was observed in wapH strain. Mixed cells of wild type and wapH strains, as well as those of the wild type strain grown at different temperatures, showed a mosaic pattern of aggregation. These results indicate that wapH mutation provoked marked envelope alterations showing that LPS core conservation appears as a novel essential feature for active growth under cold conditions.
Zhang, Changxing; Qu, Zhe; Fang, Xufei; Feng, Xue; Hwang, Keh-Chih
2015-02-01
Thin film stresses in thin film/substrate systems at elevated temperatures affect the reliability and safety of such structures in microelectronic devices. The stresses result from the thermal mismatch strain between the film and substrate. The reflection mode digital gradient sensing (DGS) method, a real-time, full-field optical technique, measures deformations of reflective surface topographies. In this paper, we developed this method to measure topographies and thin film stresses of thin film/substrate systems at elevated temperatures. We calibrated and compensated for the air convection at elevated temperatures, which is a serious problem for optical techniques. We covered the principles for surface topography measurements by the reflection mode DGS method at elevated temperatures and the governing equations to remove the air convection effects. The proposed method is applied to successfully measure the full-field topography and deformation of a NiTi thin film on a silicon substrate at elevated temperatures. The evolution of thin film stresses obtained by extending Stoney's formula implies the "nonuniform" effect the experimental results have shown.
Computationally derived rules for persistence of C60 nanowires on recumbent pentacene bilayers.
Cantrell, Rebecca A; James, Christine; Clancy, Paulette
2011-08-16
The tendency for C(60) nanowires to persist on two monolayers of recumbent pentacene is studied using molecular dynamics (MD) simulations. A review of existing experimental literature for the tilt angle adopted by pentacene on noble metal surfaces shows that studies cover a limited range from 55° to 90°, motivating simulation studies of essentially the entire range of tilt angles (10°-90°) to predict the optimum surface tilt angle for C(60) nanowire formation. The persistence of a 1D nanowire depends sensitively on this tilt angle, the amount of initial tensile strain, and the presence of surface step edges. At room temperature, C(60) nanowires oriented along the pentacene short axes persist for several nanoseconds and are more likely to occur if they reside between, or within, pentacene rows for ϕ ≤ ∼60°. The likelihood of this persistence increases the smaller the tilt angle. Nanowires oriented along the long axes of pentacene molecules are unlikely to form. The limit of stability of nanowires was tested by raising the temperature to 400 K. Nanowires located between pentacene rows survived this temperature rise, but those located initially within pentacene rows are only stable in the range ϕ(1) = 30°-50°. Flatter pentacene surfaces, that is, tilt angles above about 60°, are subject to disorder caused by C(60) molecules "burrowing" into the pentacene surface. An initial strain of 5% applied to the C(60) nanowires significantly decreases the likelihood of nanowire persistence. In contrast, any appreciable surface roughness, even by half a monolayer in height of a third pentacene monolayer, strongly enhances the likelihood of nanowire formation due to the strong binding energy of C(60) molecules to step edges.
Highly Stretchable Electrodes on Wrinkled Polydimethylsiloxane Substrates
Tang, Jun; Guo, Hao; Zhao, Miaomiao; Yang, Jiangtao; Tsoukalas, Dimitris; Zhang, Binzhen; Liu, Jun; Xue, Chenyang; Zhang, Wendong
2015-01-01
This paper demonstrates a fabrication technology of Ag wrinkled electrodes with application in highly stretchable wireless sensors. Ag wrinkled thin films that were formed by vacuum deposition on top of pre-strained and relaxed polydimethylsiloxane (PDMS) substrates which have been treated using an O2 plasma and a surface chemical functionalization process can reach a strain limit up to 200%, while surface adhesion area can reach 95%. The electrical characteristics of components such as resistors, inductors and capacitors made from such Ag conductors have remained stable under stretching exhibiting low temperature and humidity coefficients. This technology was then demonstrated for wireless wearable electronics using compatible processing with established micro/nano fabrication technology. PMID:26585636
NASA Astrophysics Data System (ADS)
Skuza, J. R.; Scott, D. W.; Pradhan, A. K.
2015-11-01
We investigate the structural and electronic properties of VO2 thin films on c-plane sapphire substrates with three different surface morphologies to control the strain at the substrate-film interface. Only non-annealed substrates with no discernible surface features (terraces) provided a suitable template for VO2 film growth with a semiconductor-metal transition (SMT), which was much lower than the bulk transition temperature. In addition to strain, oxygen vacancy concentration also affects the properties of VO2, which can be controlled through deposition conditions. Oxygen plasma-assisted pulsed laser deposition allows favorable conditions for VO2 film growth with SMTs that can be easily tailored for device applications.
NASA Astrophysics Data System (ADS)
Amanov, A.; Umarov, R.
2018-05-01
In this study, a combination of local heat treatment (LHT) with (w/) and without (w/o) ultrasonic nanocrystal surface modification (UNSM) technique was applied to Inconel 690 alloy at room and high temperatures (RT and HT). The main purpose of this study is to investigate the influence of LHT w/ and w/o UNSM processing on the mechanical and fretting wear mitigation of Inconel 690 alloy. The surface roughness of the specimens was increased with increasing the LHT temperature w/ and w/o UNSM from RT to HT at 700 °C, while the surface hardness of the RT and HT at 300 °C specimens was increased and softening occurred at HT at 700 °C. The mechanical properties of the specimens were investigated using a tensile stress test. It was found that the stress-strain curve of the UNSM-treated at RT exhibited better mechanical characteristics in comparison with the as-received one. Moreover, the specimens treated at HT at 300 and 700 °C exhibited better results in terms of strain, but there was no significant difference in stress. The UNSM treated specimens at HT of 300 °C had better results in comparison with other specimens. In addition, the fretting wear resistance of those specimens was assessed using a ball-on-disk fretting wear tester at temperatures of 25 and 80 °C. The fretting wear resistance of Inconel 690 alloy was also increased by the combination of LHT + UNSM processing, which may be attributed to the increase in mechanical properties, increase in surface roughness, induced compressive residual stress and the presence of a nanostructured surface layer. Hence, Inconel 690 alloy with the increased mechanical properties and fretting wear resistance by the combination of LHT + UNSM processing could be beneficial for nuclear applications.
NASA Technical Reports Server (NTRS)
Kumar, Parikshith K.; Desai, Uri; Monroe, James; Lagoudas, Dimitris C.; Karaman, Ibrahim; Noebe, Ron; Bigelow, Glenn
2010-01-01
The creep behavior and the phase transformation of Ti50Pd30Ni20 High Temperature Shape Memory Alloy (HTSMA) is investigated by standard creep tests and thermomechanical tests. Ingots of the alloy are induction melted, extruded at high temperature, from which cylindrical specimens are cut and surface polished. A custom high temperature test setup is assembled to conduct the thermomechanical tests. Following preliminary monotonic tests, standard creep tests and thermally induced phase transformation tests are conducted on the specimen. The creep test results suggest that over the operating temperatures and stresses of this alloy, the microstructural mechanisms responsible for creep change. At lower stresses and temperatures, the primary creep mechanism is a mixture of dislocation glide and dislocation creep. As the stress and temperature increase, the mechanism shifts to predominantly dislocation creep. If the operational stress or temperature is raised even further, the mechanism shifts to diffusion creep. The thermally induced phase transformation tests show that actuator performance can be affected by rate independent irrecoverable strain (transformation induced plasticity + retained martensite) as well as creep. The rate of heating and cooling can adversely impact the actuators performance. While the rate independent irrecoverable strain is readily apparent early in the actuators life, viscoplastic strain continues to accumulate over the lifespan of the HTSMA. Thus, in order to get full actuation out of the HTSMA, the heating and cooling rates must be sufficiently high enough to avoid creep.
Ewert, Marcela; Deming, Jody W
2014-08-01
Wintertime measurements near Barrow, Alaska, showed that bacteria near the surface of first-year sea ice and in overlying saline snow experience more extreme temperatures and salinities, and wider fluctuations in both parameters, than bacteria deeper in the ice. To examine impacts of such conditions on bacterial survival, two Arctic isolates with different environmental tolerances were subjected to winter-freezing conditions, with and without the presence of organic solutes involved in osmoprotection: proline, choline, or glycine betaine. Obligate psychrophile Colwellia psychrerythraea strain 34H suffered cell losses under all treatments, with maximal loss after 15-day exposure to temperatures fluctuating between -7 and -25 °C. Osmoprotectants significantly reduced the losses, implying that salinity rather than temperature extremes presents the greater stress for this organism. In contrast, psychrotolerant Psychrobacter sp. strain 7E underwent miniaturization and fragmentation under both fluctuating and stable-freezing conditions, with cell numbers increasing in most cases, implying a different survival strategy that may include enhanced dispersal. Thus, the composition and abundance of the bacterial community that survives in winter sea ice may depend on the extent to which overlying snow buffers against extreme temperature and salinity conditions and on the availability of solutes that mitigate osmotic shock, especially during melting. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Strain-driven growth of GaAs(111) quantum dots with low fine structure splitting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yerino, Christopher D.; Jung, Daehwan; Lee, Minjoo Larry, E-mail: minjoo.lee@yale.edu
2014-12-22
Symmetric quantum dots (QDs) on (111)-oriented surfaces are promising candidates for generating polarization-entangled photons due to their low excitonic fine structure splitting (FSS). However, (111) QDs are difficult to grow. The conventional use of compressive strain to drive QD self-assembly fails to form 3D nanostructures on (111) surfaces. Instead, we demonstrate that (111) QDs self-assemble under tensile strain by growing GaAs QDs on an InP(111)A substrate. Tensile GaAs self-assembly produces a low density of QDs with a symmetric triangular morphology. Coherent, tensile QDs are observed without dislocations, and the QDs luminescence at room temperature. Single QD measurements reveal low FSSmore » with a median value of 7.6 μeV, due to the high symmetry of the (111) QDs. Tensile self-assembly thus offers a simple route to symmetric (111) QDs for entangled photon emitters.« less
NASA Technical Reports Server (NTRS)
Gayda, J.; Srolovitz, D. J.
1989-01-01
This paper presents a specialized microstructural lattice model, MCFET (Monte Carlo finite element technique), which simulates microstructural evolution in materials in which strain energy has an important role in determining morphology. The model is capable of accounting for externally applied stress, surface tension, misfit, elastic inhomogeneity, elastic anisotropy, and arbitrary temperatures. The MCFET analysis was found to compare well with the results of analytical calculations of the equilibrium morphologies of isolated particles in an infinite matrix.
Tajabadi, Naser; Ebrahimpour, Afshin; Baradaran, Ali; Rahim, Raha Abdul; Mahyudin, Nor Ainy; Manap, Mohd Yazid Abdul; Bakar, Fatimah Abu; Saari, Nazamid
2015-04-15
Dominant strains of lactic acid bacteria (LAB) isolated from honey bees were evaluated for their γ-aminobutyric acid (GABA)-producing ability. Out of 24 strains, strain Taj-Apis362 showed the highest GABA-producing ability (1.76 mM) in MRS broth containing 50 mM initial glutamic acid cultured for 60 h. Effects of fermentation parameters, including initial glutamic acid level, culture temperature, initial pH and incubation time on GABA production were investigated via a single parameter optimization strategy. The optimal fermentation condition for GABA production was modeled using response surface methodology (RSM). The results showed that the culture temperature was the most significant factor for GABA production. The optimum conditions for maximum GABA production by Lactobacillus plantarum Taj-Apis362 were an initial glutamic acid concentration of 497.97 mM, culture temperature of 36 °C, initial pH of 5.31 and incubation time of 60 h, which produced 7.15 mM of GABA. The value is comparable with the predicted value of 7.21 mM.
High-Temperature, Thin-Film Ceramic Thermocouples Developed
NASA Technical Reports Server (NTRS)
Sayir, Ali; Blaha, Charles A.; Gonzalez, Jose M.
2005-01-01
To enable long-duration, more distant human and robotic missions for the Vision for Space Exploration, as well as safer, lighter, quieter, and more fuel efficient vehicles for aeronautics and space transportation, NASA is developing instrumentation and material technologies. The high-temperature capabilities of thin-film ceramic thermocouples are being explored at the NASA Glenn Research Center by the Sensors and Electronics Branch and the Ceramics Branch in partnership with Case Western Reserve University (CWRU). Glenn s Sensors and Electronics Branch is developing thin-film sensors for surface measurement of strain, temperature, heat flux, and surface flow in propulsion system research. Glenn s Ceramics Branch, in conjunction with CWRU, is developing structural and functional ceramic technology for aeropropulsion and space propulsion.
NASA Technical Reports Server (NTRS)
Gabb, Timothy P.; Danetti, Andrew; Draper, Susan L.; Locci, Ivan E.; Telesman, Jack
2016-01-01
The fatigue lives of disk superalloys can be increased by shot peening their surfaces, to induce compressive residual stresses near the surface that impede cracking there. As disk application temperatures increase for improved efficiency, the persistence of these beneficial stresses could be impaired, especially with continued fatigue cycling. The objective of this work was to study the retention of residual stresses introduced by shot peening, when subjected to fatigue and high temperatures. Fatigue specimens of powder metallurgy processed nickel-base disk superalloy ME3 were prepared with consistent processing and heat treatment. They were then shot peened using varied conditions. Strain-controlled fatigue cycles were run at room temperature and 704 C, to allow re-assessment of residual stresses.
USDA-ARS?s Scientific Manuscript database
The behavior of Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella Typhimurium was evaluated on kippered beef. Individual pieces of the product were separately inoculated on the top and bottom surfaces with each 3- to 5-strain pathogen cocktail at ca. 6.0 log10 CFU/piece and stored at...
Bonding of reusable surface insulation with low density silicone foams
NASA Technical Reports Server (NTRS)
Hiltz, A. A.; Hockridge, R. R.; Curtis, F. P.
1972-01-01
The development and evaluation of a reduced density, high reliable foamed bond strain isolation system for attaching reusable surface insulation to the space shuttle structure are reported. Included are data on virgin materials as well as on materials that received 100 cycles of exposure to 650 F for approximately 20 minutes per cycle. Room temperature vulcanizing silicon elastomers meet all the requirments for an adhesive bonding system.
Oxidation stress evolution and relaxation of oxide film/metal substrate system
NASA Astrophysics Data System (ADS)
Dong, Xuelin; Feng, Xue; Hwang, Keh-Chih
2012-07-01
Stresses in the oxide film/metal substrate system are crucial to the reliability of the system at high temperature. Two models for predicting the stress evolution during isothermal oxidation are proposed. The deformation of the system is depicted by the curvature for single surface oxidation. The creep strain of the oxide and metal, and the lateral growth strain of the oxide are considered. The proposed models are compared with the experimental results in literature, which demonstrates that the elastic model only considering for elastic strain gives an overestimated stress in magnitude, but the creep model is consistent with the experimental data and captures the stress relaxation phenomenon during oxidation. The effects of the parameter for the lateral growth strain rate are also analyzed.
NASA Astrophysics Data System (ADS)
Hussnain, Ali; Singh Rawat, Rajdeep; Ahmad, Riaz; Hussain, Tousif; Umar, Z. A.; Ikhlaq, Uzma; Chen, Zhong; Shen, Lu
2015-02-01
Nano-crystalline tungsten nitride thin films are synthesized on AISI-304 steel at room temperature using Mather-type plasma focus system. The surface properties of the exposed substrate against different deposition shots are examined for crystal structure, surface morphology and mechanical properties using X-ray diffraction (XRD), atomic force microscope, field emission scanning electron microscope and nano-indenter. The XRD results show the growth of WN and WN2 phases and the development of strain/stress in the deposited films by varying the number of deposition shots. Morphology of deposited films shows the significant change in the surface structure with different ion energy doses (number of deposition shots). Due to the effect of different ion energy doses, the strain/stress developed in the deposited film leads to an improvement of hardness of deposited films.
NASA Astrophysics Data System (ADS)
Barthelmie, J.; Schram, A.; Wesling, V.
2016-03-01
Automotive industry strives to reduce vehicle weight and therefore fuel consumption and carbon dioxide emissions. Especially in the auto body, material light weight construction is practiced, but the occupant safety must be ensured. These requirements demand high-strength steels with good forming and crash characteristics. Such an approach is the use of high- manganese-content TWIP steels, which achieve strengths of around 1,000 MPa and fracture strains of more than 60%. Welding surface-refined TWIP steels reduces their elongation at break and produces cracks due to the contact with liquid metal and the subsequent liquid metal embrittlement (LME). The results of resistance spot welds of mixed joints of high-manganese- content steel in combination with micro-alloyed ferritic steel and hot tensile tests are presented. The influence of different welding parameters on the sensitivity to liquid metal embrittlement is investigated by means of spot welding. In a high temperature tensile testing machine, the influence of different parameters is determined regardless of the welding process. Defined strains just below or above the yield point, and at 25% of elongation at break, show the correlation between the applied strain and liquid metal crack initiation. Due to the possibility to carry out tensile tests on a wide range of temperatures, dependencies of different temperatures of the zinc coating to the steel can be identified. Furthermore, the attack time of the zinc on the base material is investigated by defined heating periods.
MBE growth technology for high quality strained III-V layers
NASA Technical Reports Server (NTRS)
Grunthaner, Frank J. (Inventor); Liu, John K. (Inventor); Hancock, Bruce R. (Inventor)
1990-01-01
The III-V films are grown on large automatically perfect terraces of III-V substrates which have a different lattice constant, with temperature and Group III and V arrival rates chosen to give a Group III element stable surface. The growth is pulsed to inhibit Group III metal accumulation of low temperature, and to permit the film to relax to equilibrium. The method of the invention: (1) minimizes starting step density on sample surface; (2) deposits InAs and GaAs using an interrupted growth mode (0.25 to 2 monolayers at a time); (3) maintains the instantaneous surface stoichiometry during growth (As-stable for GaAs, In-stable for InAs); and (4) uses time-resolved RHEED to achieve aspects (1) through (3).
Liu, Yun-Tao; Luo, Ze-Yu; Long, Chuan-Nan; Wang, Hai-Dong; Long, Min-Nan; Hu, Zhong
2011-10-01
To produce cellulolytic enzyme efficiently, Penicillium decumbens strain L-06 was used to prepare mutants with ethyl methane sulfonate (EMS) and UV-irradiation. A mutant strain ML-017 is shown to have a higher cellulase activity than others. Box-Behnken's design (BBD) and response surface methodology (RSM) were adopted to optimize the conditions of cellulase (filter paper activity, FPA) production in strain ML-017 by solid-state fermentation (SSF) with rice bran as the substrate. And the result shows that the initial pH, moisture content and culture temperature all have significant effect on the production of cellulase. The optimized condition shall be initial pH 5.7, moisture content 72% and culture temperature 30°C. The maximum cellulase (FPA) production was obtained under the optimized condition, which is 5.76 IU g(-1), increased by 44.12% to its original strain. It corresponded well with the calculated results (5.15 IU g(-1)) by model prediction. The result shows that both BBD and RSM are the cellulase optimization methods with good prospects. Copyright © 2011 Elsevier B.V. All rights reserved.
Pan, Huanyu; Devasahayam, Sheila; Bandyopadhyay, Sri
2017-07-21
This paper examines the effect of a broad range of crosshead speed (0.05 to 100 mm/min) and a small range of temperature (25 °C and 45 °C) on the failure behaviour of high density polyethylene (HDPE) specimens containing a) standard size blunt notch and b) standard size blunt notch plus small sharp crack - all tested in air. It was observed that the yield stress properties showed linear increase with the natural logarithm of strain rate. The stress intensity factors under blunt notch and sharp crack conditions also increased linearly with natural logarithm of the crosshead speed. The results indicate that in the practical temperature range of 25 °C and 45 °C under normal atmosphere and increasing strain rates, HDPE specimens with both blunt notches and sharp cracks possess superior fracture properties. SEM microstructure studies of fracture surfaces showed craze initiation mechanisms at lower strain rate, whilst at higher strain rates there is evidence of dimple patterns absorbing the strain energy and creating plastic deformation. The stress intensity factor and the yield strength were higher at 25 °C compared to those at 45 °C.
Effects of mechanical strain amplitude on the isothermal fatigue behavior of H13
NASA Astrophysics Data System (ADS)
Zeng, Yan; Zuo, Peng-peng; Wu, Xiao-chun; Xia, Shu-wen
2017-09-01
Isothermal fatigue (IF) tests were performed on H13 tool steel subjected to three different mechanical strain amplitudes at a constant temperature to determine the effects of mechanical strain amplitude on the microstructure of the steel samples. The samples' extent of damage after IF tests was compared by observation of their cracks and calculation of their damage parameters. Optical microscopy (OM) and scanning electron microscopy (SEM) were used to observe the microstructure of the samples. Cracks were observed to initiate at the surface because the strains and stresses there were the largest during thermal cycling. Mechanical strain accelerated the damage and softening of the steel. A larger mechanical strain caused greater deformation of the steel, which made the precipitated carbides easier to gather and grow along the deformation direction, possibly resulting in softening of the material or the initiation of cracks.
Investigation of the reaction of 5Al-2.5Sn titanium with hydrogen at subzero temperature
NASA Technical Reports Server (NTRS)
Williams, D. N.; Wood, R. A.
1972-01-01
An investigation of the effect of temperature on the surface hydriding reaction of 5Al-2.5Sn titanium exposed to hydrogen at 250 psig was made. The temperature range studied extended from 160 F to -160 F. Reaction conditions were controlled so as to expose a vacuum-cleaned, oxide-free alloy surface to an ultrapure hydrogen atmosphere. Reaction times up to 1458 hours were studied. The hydriding reaction was extremely sensitive to experimental variables and the reproducibility of reaction behavior was poor. However, it was demonstrated that the reaction proceeded quite rapidly at 160 F; as much as 1 mil surface hydriding being observed after exposure for 162 hours. The amount of hydriding appeared to decrease with decreasing temperature at 75 F, -36 F, and -76 F. No surface hydriding was detected either by vacuum fusion analysis or by metallographic examination after exposure for 1458 hours at -110 F or -160 F. Tensile properties were unaffected by surface hydriding of the severity developed in this program (up to 1 mil thick) as determined by slow strain rate testing of hydrided sheet tensile samples.
Shklyaev, A A; Latyshev, A V
2016-12-01
We study the surface morphology and chemical composition of SiGe layers after their formation under high-temperature annealing at 800-1100 °C of 30-150 nm Ge layers deposited on Si(100) at 400-500 °C. It is found that the annealing leads to the appearance of the SiGe layers of two types, i.e., porous and continuous. The continuous layers have a smoothened surface morphology and a high concentration of threading dislocations. The porous and continuous layers can coexist. Their formation conditions and the ratio between their areas on the surface depend on the thickness of deposited Ge layers, as well as on the temperature and the annealing time. The data obtained suggest that the porous SiGe layers are formed due to melting of the strained Ge layers and their solidification in the conditions of SiGe dewetting on Si. The porous and dislocation-rich SiGe layers may have properties interesting for applications.
Mechanical constraints on the triggering of vulcanian explosions at Santiaguito volcano, Guatemala
NASA Astrophysics Data System (ADS)
Hornby, Adrian; Lavallée, Yan; Collinson, Amy; Neuberg, Jurgen; De Angelis, Silvio; Kendrick, Jackie; Lamur, Anthony
2016-04-01
Gas- and ash explosions at Santiaguito volcano occur at regular 20-200 minute intervals, exiting through arcuate fractures in the summit dome of the Caliente vent. Infrasound, ground deformation and seismic monitoring collected during a long term monitoring survey conducted by the University of Liverpool have constrained a stable, repeatable source for these explosions. The explosions maintain similar magnitudes and (low) erupted mass throughout examined period. Ground deformation reveals stable ~25 minute inflation-deflation cycles, which culminate in either explosions or passive outgassing. Inversion of infrasound sources has revealed that faster inflation rates during the final minutes before peak inflation lead to explosions. These explosions fragment a consistently small-volume pressurized, gas-rich domain within magma located below a denser, lower permeability magma plug. Rapid decompression of this gas-rich domain occurs through fracturing and faulting, creating a highly permeable connection with atmospheric pressures near to the dome surface. We surmise that the dominant fracture mode at these shallow depths is tensile due to the volumetric strain exerted by a pressurising source below the magma plug, however a component of shear is also detected during explosive events. Fractures may either propagate downwards from the dome surface (due to greater magma stiffness and lower confining pressure) or upwards from the gas-rich domain (due to higher strain rates at the deformation source in the case of viscous deformation). In order to constrain the origin and evolution of these fractures we have conducted Brazilian tensile stress tests on lavas from the Caliente vent at strain rates from 10-3-10-5, porosities 3-30% and temperatures 20-800 °C. Across the expected conduit temperature range (750-800 °C) the dome material becomes highly sensitive to strain rate, showing a range of response from elastic failure to viscous flow. The total strain accommodated prior to failure shows a non-linear increase as viscous deformation becomes more important (i.e. temperature is increased or strain rate decreased). This allows us to constrain timescales for fracture propagation for given temperature-strain rate scenarios. We use these results, together with monitoring data and the results of numerical modelling to compare the probability of fractures propagating from the top-down or bottom-up prior to explosions at Santiaguito. Thus, we shed light on the triggers and signals leading to vulcanian explosions, which may be widely applicable to vulcanian explosions at active volcanoes.
Apparent critical thickness versus temperature for InAs quantum dot growth on GaAs(001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patella, F.; Arciprete, F.; Fanfoni, M.
2006-04-17
We studied the temperature dependence of the two-dimensional to three-dimensional growth transition in InAs/GaAs(001) heteroepitaxy by means of reflection high energy electron diffraction and atomic force microscopy. The observed shift of the transition to higher InAs deposition times, at temperatures above 500 deg. C, is not a change of critical thickness for islanding, which instead, is constant in the 450-560 deg. C range. Consequently, In-Ga intermixing and surface and interface strain have a negligible dependence on temperature in this range.
Temperature Based Stress Analysis of Notched Members
1979-03-01
Strain Behavior 98 of Mild Steel 17 Percent Restoration vs. Residual Stress 99 18 Examples of a Good Weld and Three 100 Defective Welds vi LIST OF TABLES...measuring temperatures in deforming metals based on the use 27 of thermistor flakes. The system was used to show that more heating occurs near stress...thermocouples were welded to the specimen surface. This particular attachment method is quite suitable for stress analysis for the following reasons
Das, Reena; Tiwary, Bhupendra N
2013-09-01
A novel bacterial strain (B6) degrading high concentration of diesel oil [up to 2.5% (v/v)] was isolated from a site contaminated with petroleum hydrocarbons in the state of Chhattisgarh, India. The strain demonstrated efficient degradation for diesel oil range alkanes (C14 to C36 i.e., mostly linear chain alkanes). It was identified to be 99% similar to Planomicrobium chinense on the basis of partial 16S rRNA gene sequencing and biochemical characteristics. The efficiency of degradation was optimized at pH 7.2 and temperature at 32 °C. GC analysis demonstrated complete mineralization of higher chain alkanes into lower chain alkanes within 96 h. The organism also displayed surface tension reduction by producing stable emulsification on the onset of stationary phase. A multidimensional characteristics of the strain to grow at a high temperature range, resistance to various heavy metals as well as tolerance to moderate concentration of NaCl makes it suitable for bioremediation of soil contaminated with diesel oil in tropical environment. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Hossain, M. S. A.; Motaman, A.; Çiçek, Ö.; Ağıl, H.; Ertekin, E.; Gencer, A.; Wang, X. L.; Dou, S. X.
2012-12-01
The effects of sintering temperature on the lattice parameters, full width at half maximum (FWHM), strain, critical temperature (Tc), critical current density (Jc), irreversibility field (Hirr), upper critical field (Hc2), and resistivity (ρ) of 10 wt.% silicone oil doped MgB2 bulk and wire samples are investigated in state of the art by this article. The a-lattice parameter of the silicone oil doped samples which were sintered at different temperatures was drastically reduced from 3.0864 Å to 3.0745 Å, compared to the un-doped samples, which indicates the substitution of the carbon (C) into the boron sites. It was found that sintered samples at the low temperature of 600 °C shows more lattice distortion by more C-substitution and higher strain, lower Tc, higher impurity scattering, and enhancement of both magnetic Jc and Hc2, compared to those sintered samples at high temperatures. The flux pinning mechanism has been analyzed based on the extended normalized pinning force density fp = Fp/Fp,max scaled with b = B/Bmax. Results show that surface pinning is the dominant pinning mechanism for the doped sample sintered at the low temperature of 600 °C, while point pinning is dominant for the un-doped sample. The powder in tube (PIT) MgB2 wire was also fabricated by using of this liquid doping and found that both transport Jc and n-factor increased which proves this cheap and abundant silicone oil doping can be a good candidate for industrial application.
Application of fiber Bragg grating sensors to real-time strain measurement of cryogenic tanks
NASA Astrophysics Data System (ADS)
Takeda, Nobuo; Mizutani, Tadahito; Hayashi, Kentaro; Okabe, Yoji
2003-08-01
Although many researches of strain measurement using fiber Bragg grating (FBG) sensors were conducted, there were few applications of FBG sensors to spacecraft in operation. It is very significant to develop an onboard system for the real-time strain measurement during the flight operation. In the present research, the real-time strain measurement of a composite liquid hydrogen (LH2) tank, which consisted of CFRP and aluminum liner, was attempted. Adhesive property of the FBG sensors was investigated first of all. As a result, UV coated FBG sensors and polyurethane adhesive were adopted. Then, reflection spectra from FBG sensors were measured through the tensile test at liquid helium (LHe) temperature. Since the center wavelength shifted in proportion to the applied strain, the FBG sensor was suitable as a precise strain sensor even at LHe temperature. Next, the development of an onboard FBG demodulator was discussed. This onboard demodulator was designed for weight saving to be mounted on a reusable rocket vehicle test (RVT) operated by the Institute of Space and Astronautical Science (ISAS). FBG sensors were bonded on the surface of the composite LH2 tank for the RVT. Then, strain measurement using the onboard demodulator was conducted through the cryogenic pressure test of the tank and compared with the result measured using the optical spectrum analyzer (OSA).
NASA Astrophysics Data System (ADS)
Yuan, Lijian
This thesis investigates the structure-property relations for the calcium silicate hydrate (C-S-H) gel phase in hardened cement pastes (HCP). Studies were performed with the purpose of gaining insight into the origin of the electromechanical behavior and exploring the dynamic nature of the pore structures of HCP during water transport by using an electrically induced strain method. Emphasis was placed on the fundamental characteristics of the electrically induced strains, the role that electrically stimulated water transport through the interconnecting pore structures in HCP plays, as well as the mechanism underlying the induced strains. Reversible and irreversible components of the induced strains were distinguished under ac electric field. Evidence showed that the reversible strains were due to redistribution of water along the structure of the pore network of specimens, whereas the irreversible strains were related to long-range water transport toward the surface of specimens. In contrast, the contractive strains were found following the water loss during measurements. Investigations as a function of measurement frequency revealed a strong relaxation of the induced strains in the frequency range from 6.7 × 10sp{-3} to 1 Hz. The strong relaxation in the induced strains with electric field was found to be due to space charge polarization and a creep-like deformation. The induced strains were shown to be strongly affected by changes in the gel pore structures. The magnitude of the induced strains was found to be significantly dependent on the moisture content adsorbed. Evidence of a critical percolation of pore solution was also observed. A strong decrease in the induced strains was observed with decreasing temperature due to the influence of ice formation. This decrease was interpreted in terms of a decrease in the electroosmotic volumetric flux and hydraulic permeability with decreasing temperature. The strong non-linearity in the induced strains was found with respect to the electric field strength. The presence of non-linear electric streaming current vs. electric field characteristics was examined, which was modeled by using an electrokinetic equation of state. Evidence of an anomalous temperature dependence in both electrical conductivity and dielectric permitivity was observed, indicating the presence of anomalies associated with a percolation-like transition.
The Low Temperature Epitaxy of Strained GeSn Layers Using RTCVD System
NASA Astrophysics Data System (ADS)
Kil, Yeon-Ho; Yuk, Sim-Hoon; Jang, Han-Soo; Lee, Sang-Geul; Choi, Chel-Jong; Shim, Kyu-Hwan
2018-03-01
We have investigated the low temperature (LT) growth of GeSn-Ge-Si structures using rapid thermal chemical vapor deposition system utilizing Ge2H6 and SnCl4 as the reactive precursors. Due to inappropriate phenomena, such as, Ge etch and Sn segregation, it was hard to achieve high quality GeSn epitaxy at the temperature > 350 °C. On the contrary, we found that the SnCl4 promoted the reaction of Ge2H6 precursors in a certain process condition of LT, 240-360 °C. In return, we could perform the growth of GeSn epi layer with 7.7% of Sn and its remaining compressive strain of 71.7%. The surface propagated defects were increased with increasing the Sn content in the GeSn layer confirmed by TEM analysis. And we could calculate the activation energies at lower GeSn growth temperature regime using by Ge2H6 and SnCl4 precursors about 0.43 eV.
NASA Astrophysics Data System (ADS)
Avery, Katherine R.
Isothermal low cycle fatigue (LCF) and anisothermal thermomechanical fatigue (TMF) tests were conducted on a high silicon molybdenum (HiSiMo) cast iron for temperatures up to 1073K. LCF and out-of-phase (OP) TMF lives were significantly reduced when the temperature was near 673K due to an embrittlement phenomenon which decreases the ductility of HiSiMo at this temperature. In this case, intergranular fracture was predominant, and magnesium was observed at the fracture surface. When the thermal cycle did not include 673K, the failure mode was predominantly transgranular, and magnesium was not present on the fracture surface. The in-phase (IP) TMF lives were unaffected when the thermal cycle included 673K, and the predominant failure mode was found to be transgranular fracture, regardless of the temperature. No magnesium was present on the IP TMF fracture surfaces. Thus, the embrittlement phenomenon was found to contribute to fatigue damage only when the temperature was near 673K and a tensile stress was present. To account for the temperature- and stress-dependence of the embrittlement phenomenon on the TMF life of HiSiMo cast iron, an original model based on the cyclic inelastic energy dissipation is proposed which accounts for temperature-dependent differences in the rate of fatigue damage accumulation in tension and compression. The proposed model has few empirical parameters. Despite the simplicity of the model, the predicted fatigue life shows good agreement with more than 130 uniaxial low cycle and thermomechanical fatigue tests, cyclic creep tests, and tests conducted at slow strain rates and with hold times. The proposed model was implemented in a multiaxial formulation and applied to the fatigue life prediction of an exhaust manifold subjected to severe thermal cycles. The simulation results show good agreement with the failure locations and number of cycles to failure observed in a component-level experiment.
Chip morphology as a performance predictor during high speed end milling of soda lime glass
NASA Astrophysics Data System (ADS)
Bagum, M. N.; Konneh, M.; Abdullah, K. A.; Ali, M. Y.
2018-01-01
Soda lime glass has application in DNA arrays and lab on chip manufacturing. Although investigation revealed that machining of such brittle material is possible using ductile mode under controlled cutting parameters and tool geometry, it remains a challenging task. Furthermore, ability of ductile machining is usually assed through machined surface texture examination. Soda lime glass is a strain rate and temperature sensitive material. Hence, influence on attainment of ductile surface due to adiabatic heat generated during high speed end milling using uncoated tungsten carbide tool is investigated in this research. Experimental runs were designed using central composite design (CCD), taking spindle speed, feed rate and depth of cut as input variable and tool-chip contact point temperature (Ttc) and the surface roughness (Rt) as responses. Along with machined surface texture, Rt and chip morphology was examined to assess machinability of soda lime glass. The relation between Ttc and chip morphology was examined. Investigation showed that around glass transition temperature (Tg) ductile chip produced and subsequently clean and ductile final machined surface produced.
NASA Astrophysics Data System (ADS)
Sahi, Qurat-ul-ain; Kim, Yong-Soo
2018-05-01
Knowledge of defects generation, their mobility, growth rate, and spatial distribution is the cornerstone for understanding the surface and structural evolution of a material used under irradiation conditions. In this study, molecular dynamics simulations were used to investigate the coupled effect of primary knock-on atom (PKA) energy and applied strain (uniaxial and hydrostatic) fields on primary radiation damage evolution in pure aluminum. Cascade damage simulations were carried out for PKA energy ranging between 1 and 20 keV and for applied strain values ranging between -2% and 2% at the fixed temperature of 300 K. Simulation results showed that as the atomic displacement cascade proceeds under uniaxial and hydrostatic strains, the peak and surviving number of Frenkel point defects increases with increasing tension; however, these increments were more prominent under larger volume changing deformations (hydrostatic strain). The percentage fraction of point defects that aggregate into clusters increases under tension conditions; compared to the reference conditions with no strain, these increases are around 13% and 7% for interstitials and vacancies, respectively (under 2% uniaxial strain), and 19% and 11% for interstitials and vacancies, respectively (under 2% hydrostatic strain). Clusters formed of vacancies and interstitials were both larger under tensile strain conditions, with increases in both the average and maximum cluster sizes. The rate of increase/decrease in the number of Frenkel pairs, their clustering, and their size distributions under expansion/compression strain conditions were higher for higher PKA energies. Overall, the present results suggest that strain effects should be considered carefully in radiation damage environments, specifically for conditions of low temperature and high radiation energy. Compressive strain conditions could be beneficial for materials used in nuclear reactor power systems.
2011-01-01
Background Surface-enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF-MS) was applied to analyze the protein profiles in both somatic and metabolic extracts of Aspergillus species. The study was carried out on some Aspergillus species within the Fumigati section (Aspergillus fumigatus wild-types and natural abnormally pigmented mutants, and Aspergillus lentulus). The aim was to validate whether mass spectrometry protein profiles can be used as specific signatures to discriminate different Aspergillus species or even mutants within the same species. Results The growth conditions and the SELDI-TOF parameters were determined to generate characteristic protein profiles of somatic and metabolic extracts of Aspergillus fumigatus strains using five different ProteinChips®, eight growth conditions combining two temperatures, two media and two oxygenation conditions. Nine strains were investigated: three wild-types and four natural abnormally pigmented mutant strains of A. fumigatus and two strains of A. lentulus. A total of 242 fungal extracts were prepared. The spectra obtained are protein signatures linked to the physiological states of fungal strains depending on culture conditions. The best resolutions were obtained using the chromatographic surfaces CM10, NP20 and H50 with fractions of fungi grown on modified Sabouraud medium at 37°C in static condition. Under these conditions, the SELDI-TOF analysis allowed A. fumigatus and A. lentulus strains to be grouped into distinct clusters. Conclusions SELDI-TOF analysis distinguishes A. fumigatus from A. lentulus strains and moreover, permits separate clusters of natural abnormally pigmented A. fumigatus strains to be obtained. In addition, this methodology allowed us to point out fungal components specifically produced by a wild-type strain or natural mutants. It offers attractive potential for further studies of the Aspergillus biology or pathogenesis. PMID:21798007
Pinel, Claudine; Arlotto, Marie; Issartel, Jean-Paul; Berger, François; Pelloux, Hervé; Grillot, Renée; Symoens, Françoise
2011-07-28
Surface-enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF-MS) was applied to analyze the protein profiles in both somatic and metabolic extracts of Aspergillus species. The study was carried out on some Aspergillus species within the Fumigati section (Aspergillus fumigatus wild-types and natural abnormally pigmented mutants, and Aspergillus lentulus). The aim was to validate whether mass spectrometry protein profiles can be used as specific signatures to discriminate different Aspergillus species or even mutants within the same species. The growth conditions and the SELDI-TOF parameters were determined to generate characteristic protein profiles of somatic and metabolic extracts of Aspergillus fumigatus strains using five different ProteinChips®, eight growth conditions combining two temperatures, two media and two oxygenation conditions. Nine strains were investigated: three wild-types and four natural abnormally pigmented mutant strains of A. fumigatus and two strains of A. lentulus. A total of 242 fungal extracts were prepared. The spectra obtained are protein signatures linked to the physiological states of fungal strains depending on culture conditions. The best resolutions were obtained using the chromatographic surfaces CM10, NP20 and H50 with fractions of fungi grown on modified Sabouraud medium at 37 °C in static condition. Under these conditions, the SELDI-TOF analysis allowed A. fumigatus and A. lentulus strains to be grouped into distinct clusters. SELDI-TOF analysis distinguishes A. fumigatus from A. lentulus strains and moreover, permits separate clusters of natural abnormally pigmented A. fumigatus strains to be obtained. In addition, this methodology allowed us to point out fungal components specifically produced by a wild-type strain or natural mutants. It offers attractive potential for further studies of the Aspergillus biology or pathogenesis. © 2011 Pinel et al; licensee BioMed Central Ltd.
SEM and TEM characterization of the microstructure of post-compressed TiB2/2024Al composite.
Guo, Q; Jiang, L T; Chen, G Q; Feng, D; Sun, D L; Wu, G H
2012-02-01
In the present work, 55 vol.% TiB(2)/2024Al composites were obtained by pressure infiltration method. Compressive properties of 55 vol.% TiB(2)/2024Al composite under the strain rates of 10(-3) and 1S(-1) at different temperature were measured and microstructure of post-compressed TiB(2)/2024Al composite was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). No trace of Al(3)Ti compound flake was found. TiB(2)-Al interface was smooth without significant reaction products, and orientation relationships ( [Formula: see text] and [Formula: see text] ) were revealed by HRTEM. Compressive strength of TiB(2)/2024Al composites decreased with temperature regardless of strain rates. The strain-rate-sensitivity of TiB(2)/2024Al composites increased with the increasing temperature. Fracture surface of specimens compressed at 25 and 250°C under 10(-3)S(-1) were characterized by furrow. Under 10(-3)S(-1), high density dislocations were formed in Al matrix when compressed at 25°C and dynamic recrystallization occurred at 250°C. Segregation of Mg and Cu on the subgrain boundary was also revealed at 550°C. Dislocations, whose density increased with temperature, were formed in TiB(2) particles under 1S(-1). Deformation of composites is affected by matrix, reinforcement and strain rate. Copyright © 2011 Elsevier Ltd. All rights reserved.
Computational Modeling of Shape Memory Polymer Origami that Responds to Light
NASA Astrophysics Data System (ADS)
Mailen, Russell William
Shape memory polymers (SMPs) transform in response to external stimuli, such as infrared (IR) light. Although SMPs have many applications, this investigation focuses on their use as actuators in self-folding origami structures. Ink patterned on the surface of the SMP sheet absorbs thermal energy from the IR light, which produces localized heating. The material shrinks wherever the activation temperature is exceeded and can produce out-of-plane deformation. The time and temperature dependent response of these SMPs provides unique opportunities for developing complex three-dimensional (3D) structures from initially flat sheets through self-folding origami, but the application of this technique requires predicting accurately the final folded or deformed shape. Furthermore, current computational approaches for SMPs do not fully couple the thermo-mechanical response of the material. Hence, a proposed nonlinear, 3D, thermo-viscoelastic finite element framework was formulated to predict deformed shapes for different self-folding systems and compared to experimental results for self-folding origami structures. A detailed understanding of the shape memory response and the effect of controllable design parameters, such as the ink pattern, pre-strain conditions, and applied thermal and mechanical fields, allows for a predictive understanding and design of functional, 3D structures. The proposed modeling framework was used to obtain a fundamental understanding of the thermo-mechanical behavior of SMPs and the impact of the material behavior on hinged self-folding. These predictions indicated how the thermal and mechanical conditions during pre-strain significantly affect the shrinking and folding response of the SMP. Additionally, the externally applied thermal loads significantly influenced the folding rate and maximum bending angle. The computational framework was also adapted to understand the effects of fully coupling the thermal and mechanical response of the material. This updated framework accounted for external heat sources, such as ambient temperature and incident surface heat flux, as well as internal temperature changes due to conduction and viscous heat generation. Viscous heating during the pre-strain sequence affected the residual stresses after cooling due to accelerated viscoelastic relaxation. This resulted in a delayed shrinking and folding response. Other factors that affected the folding response include sheet thickness, hinge width, degree of pre-strain, and hinge temperature. The predicted results indicated that the maximum bending angle can be increased for a folded structure by increasing the hinge width, degree of pre-strain, and hinge surface temperature. Folding time can be reduced by decreasing the sheet thickness, increasing the hinge width, and increasing the hinge temperature. The coupled thermo-mechanical approach was also extended to investigate both curved and folded structures by varying the ink pattern and the substrate geometry. With this approach, two continuous curvature mechanisms were obtained. One was an indirect curvature mechanism which resulted from internal stresses that evolved from the shrinking of activated regions of the material relative to unactivated regions. The second was a direct curvature mechanism that resulted from ink distributed in gradients across the surface of the material. Furthermore, the effects of hinge orientation, proximity of multiple hinges, sheet aspect ratio, and axisymmetric ink patterns were characterized for other shapes, such as rectangles and discs. The findings of this investigation clearly indicate that this validated computational approach can be used to predict and understand the myriad mechanisms of self-folding origami structures. By varying the location of ink on the polymer surface and making changes to the substrate geometry, complex 3D structures can be obtained. The developed thermo-mechanical framework can be used to design optimized origami structures for biomedical devices, space telescopes, and functional, engineered origami devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Bo; Nelson, Kevin; Lipinski, Ronald J.
Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-temperature high-strain-rate performance are needed for understanding high-speed impacts in severe elevated-temperature environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain-rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. Current high-temperature Kolsky compression bar techniques are not capable of obtaining satisfactory high-temperature high-strain-rate stress-strain response of thin iridium specimens investigated in this study. We analyzedmore » the difficulties encountered in high-temperature Kolsky compression bar testing of thin iridium alloy specimens. Appropriate modifications were made to the current high-temperature Kolsky compression bar technique to obtain reliable compressive stress-strain response of an iridium alloy at high strain rates (300 – 10000 s -1) and temperatures (750°C and 1030°C). Uncertainties in such high-temperature high-strain-rate experiments on thin iridium specimens were also analyzed. The compressive stress-strain response of the iridium alloy showed significant sensitivity to strain rate and temperature.« less
Strain control of oxygen kinetics in the Ruddlesden-Popper oxide La 1.85Sr 0.15CuO 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Tricia L.; Jacobs, Ryan; Lee, Dongkyu
Oxygen defect control has long been considered an important route to functionalizing complex oxide films. However, the nature of oxygen defects in thin films is often not investigated beyond basic redox chemistry. One of the model examples for oxygen-defect studies is the layered Ruddlesden–Popper phase La 2-xSr x CuO 4-δ (LSCO), in which the superconducting transition temperature is highly sensitive to epitaxial strain. However, previous observations of strain-superconductivity coupling in LSCO thin films were mainly understood in terms of elastic contributions to mechanical buckling, with minimal consideration of kinetic or thermodynamic factors. Here, we report that the oxygen nonstoichiometry commonlymore » reported for strained cuprates is mediated by the strain-modified surface exchange kinetics, rather than reduced thermodynamic oxygen formation energies. Remarkably, tensile-strained LSCO shows nearly an order of magnitude faster oxygen exchange rate than a compressively strained film, providing a strategy for developing high-performance energy materials.« less
Strain control of oxygen kinetics in the Ruddlesden-Popper oxide La 1.85Sr 0.15CuO 4
Meyer, Tricia L.; Jacobs, Ryan; Lee, Dongkyu; ...
2018-01-08
Oxygen defect control has long been considered an important route to functionalizing complex oxide films. However, the nature of oxygen defects in thin films is often not investigated beyond basic redox chemistry. One of the model examples for oxygen-defect studies is the layered Ruddlesden–Popper phase La 2-xSr x CuO 4-δ (LSCO), in which the superconducting transition temperature is highly sensitive to epitaxial strain. However, previous observations of strain-superconductivity coupling in LSCO thin films were mainly understood in terms of elastic contributions to mechanical buckling, with minimal consideration of kinetic or thermodynamic factors. Here, we report that the oxygen nonstoichiometry commonlymore » reported for strained cuprates is mediated by the strain-modified surface exchange kinetics, rather than reduced thermodynamic oxygen formation energies. Remarkably, tensile-strained LSCO shows nearly an order of magnitude faster oxygen exchange rate than a compressively strained film, providing a strategy for developing high-performance energy materials.« less
de-Bashan, Luz E; Trejo, Adan; Huss, Volker A R; Hernandez, Juan-Pablo; Bashan, Yoav
2008-07-01
In the summer of 2003, a microalga strain was isolated from a massive green microalgae bloom in wastewater stabilization ponds at the treatment facility of La Paz, B.C.S., Mexico. Prevailing environmental conditions were air temperatures over 40 degrees C, water temperature of 37 degrees C, and insolation of up to 2400 micromol m2 s(-1) at midday for several hours at the water surface for four months. The microalga was identified as Chlorella sorokiniana Shih. et Krauss, based on sequencing its entire 18S rRNA gene. In a controlled photo-bioreactor, this strain can grow to high population densities in synthetic wastewater at temperatures of 40-42 degrees C and light intensity of 2500 micromol m2 s(-1) for 5h daily and efficiently remove ammonium from the wastewater under these conditions better than under normal lower temperature (28 degrees C) and lower light intensity (60 micromol m2 s(-1)). When co-immobilized with the bacterium Azospirillum brasilense that promotes growth of microalgae, the population of microalga grew faster and removed even more ammonium. Under exposure to extreme growth conditions, the quantity of four photosynthetic pigments increased in the co-immobilized cultures. This strain of microalga has potential as a wastewater treatment agent under extreme conditions of temperature and light intensity.
Polycrystalline Terfenol-D thin films grown at CMOS compatible temperature
NASA Astrophysics Data System (ADS)
Panduranga, Mohanchandra K.; Lee, Taehwan; Chavez, Andres; Prikhodko, Sergey V.; Carman, Gregory P.
2018-05-01
Terfenol-D thin films have the largest magnetoelastic coefficient at room temperature of any material system and thus are ideal for voltage induced strain multiferroics. However, Terfenol-D requires 500 0C processing temperature which prohibits its use in CMOS devices where processing temperatures must be below 450 0C. In this paper, we describe a deposition process that produces quality Terfenol-D film with processing temperature below 450 0C. These films have extremely smooth surfaces (Ra˜1nm) with excellent magnetoelastic properties (λs=880 microstrain) similar to its bulk polycrystalline counterpart. The films are produced by DC magnetron sputtering and deposited on heated substrates at 250 0C and post annealed at either 250 0C, 400 0C or 450 0C. Among these films only the film annealed at 450 0C produces crystalline Terfenol-D with a face centered cubic crystal structure and saturation magnetization of ˜700 emu/cc. MOKE Magnetic hysteresis loops measured with four point bending fixture show compressive strain dramatically alter the coercive field from 2300 Oe to 1600 Oe.
NASA Technical Reports Server (NTRS)
Roberts, J. Brent; Clayson, Carol A.
2012-01-01
The Eastern tropical ocean basins are regions of significant atmosphere-ocean interaction and are important to variability across subseasonal to decadal time scales. The numerous physical processes at play in these areas strain the abilities of coupled general circulation models to accurately reproduce observed upper ocean variability. Furthermore, limitations in the observing system of important terms in the surface temperature balance (e.g., turbulent and radiative heat fluxes, advection) introduce uncertainty into the analyses of processes controlling sea surface temperature variability. This study presents recent efforts to close the surface temperature balance through estimation of the terms in the mixed layer temperature budget using state-of-the-art remotely sensed and model-reanalysis derived products. A set of twelve net heat flux estimates constructed using combinations of radiative and turbulent heat flux products - including GEWEX-SRB, ISCCP-SRF, OAFlux, SeaFlux, among several others - are used with estimates of oceanic advection, entrainment, and mixed layer depth variability to investigate the seasonal variability of ocean surface temperatures. Particular emphasis is placed on how well the upper ocean temperature balance is, or is not, closed on these scales using the current generation of observational and model reanalysis products. That is, the magnitudes and spatial variability of residual imbalances are addressed. These residuals are placed into context within the current uncertainties of the surface net heat fluxes and the role of the mixed layer depth variability in scaling the impact of those uncertainties, particularly in the shallow mixed layers of the Eastern tropical ocean basins.
Thin Film Physical Sensor Instrumentation Research and Development at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Fralick, Gustave C.
2006-01-01
A range of thin film sensor technology has been demonstrated enabling measurement of multiple parameters either individually or in sensor arrays including temperature, strain, heat flux, and flow. Multiple techniques exist for refractory thin film fabrication, fabrication and integration on complex surfaces and multilayered thin film insulation. Leveraging expertise in thin films and high temperature materials, investigations for the applications of thin film ceramic sensors has begun. The current challenges of instrumentation technology are to further develop systems packaging and component testing of specialized sensors, further develop instrumentation techniques on complex surfaces, improve sensor durability, and to address needs for extreme temperature applications. The technology research and development ongoing at NASA Glenn for applications to future launch vehicles, space vehicles, and ground systems is outlined.
Epitaxial strain relaxation by provoking edge dislocation dipoles
NASA Astrophysics Data System (ADS)
Soufi, A.; El-Hami, K.
2018-02-01
Thin solid films have been used in various devices and engineering systems such as rapid development of highly integrated electronic circuits, the use of surface coatings to protect structural materials in high temperature environments, and thin films are integral parts of many micro-electro-mechanical systems designed to serve as sensors, actuators. Among techniques of ultra-thin films deposition, the heteroepitaxial method becomes the most useful at nanoscale level to obtain performed materials in various applications areas. On the other hand, stresses that appeared during the elaboration of thin films could rise deformations and fractures in materials. The key solution to solve this problem at the nanoscale level is the nucleation of interface dislocations from free surfaces. By provoking edge dislocation dipoles we obtained a strain relaxation in thin films. Moreover, the dynamic of nucleation in edge dislocations from free lateral surfaces was also studied.
NASA Technical Reports Server (NTRS)
Bennethum, W. H.; Sherwood, L. T.
1988-01-01
The results of a literature survey and concept analysis related to sensing techniques for measuring of surface temperature, strain, and heat flux for (non-specific) ceramic materials exposed to elevated temperatures (to 2200 K) are summarized. Concepts capable of functioning in a gas turbine hot section environment are favored but others are reviewed also. Recommendation are made for sensor development in each of the three areas.
Recent deformation rates on Venus
NASA Technical Reports Server (NTRS)
Grimm, Robert E.
1994-01-01
Constraints on the recent geological evolution of Venus may be provided by quantitative estimates of the rates of the principal resurfacing processes, volcanism and tectonism. This paper focuses on the latter, using impact craters as strain indicators. The total postimpact tectonic strain lies in the range 0.5-6.5%, which defines a recent mean strain rate of 10(exp -18)-10(exp -17)/s when divided by the mean surface age. Interpretation of the cratering record as one of pure production requires a decline in resurfacing rates at about 500 Ma (catastrophic resurfacing model). If distributed tectonic resurfacing contributed strongly before that time, as suggested by the widespread occurrence of tessera as inliers, the mean global strain rate must have been at least approximately 10(exp -15)/s, which is also typical of terrestrial active margins. Numerical calculations of the response of the lithosphere to inferred mantle convective forces were performed to test the hypothesis that a decrease in surface strain rate by at least two orders of magnitude could be caused by a steady decline in heat flow over the last billion years. Parameterized convection models predict that the mean global thermal gradient decreases by only about 5 K/km over this time; even with the exponential dependence of viscosity upon temperature, the surface strain rate drops by little more than one order of magnitude. Strongly unsteady cooling and very low thermal gradients today are necessary to satisfy the catastrophic model. An alternative, uniformitarian resurfacing hypothesis holds that Venus is resurfaced in quasi-random 'patches' several hundred kilometers in size that occur in response to changing mantle convection patterns.
NASA Technical Reports Server (NTRS)
Revilock, Duane M., Jr.; Thesken, John C.; Schmidt, Timothy E.
2007-01-01
Ambient temperature hydrostatic pressurization tests were conducted on a composite overwrapped pressure vessel (COPV) to understand the fiber stresses in COPV components. Two three-dimensional digital image correlation systems with high speed cameras were used in the evaluation to provide full field displacement and strain data for each pressurization test. A few of the key findings will be discussed including how the principal strains provided better insight into system behavior than traditional gauges, a high localized strain that was measured where gages were not present and the challenges of measuring curved surfaces with the use of a 1.25 in. thick layered polycarbonate panel that protected the cameras.
Measuring unsteady pressure on rotating compressor blades
NASA Technical Reports Server (NTRS)
Englund, D. R.; Grant, H. P.; Lanati, G. A.
1979-01-01
Miniature semiconductor strain gage pressure transducers mounted in several arrangements were studied. Both surface mountings and recessed flush mountings were tested. Test parameters included mounting arrangement, blade material, temperature, local strain in the acceleration normal to the transducer diaphragm, centripetal acceleration, and pressure. Test results show no failures of transducers or mountings and indicate an uncertainty of unsteady pressure measurement of approximately + or - 6 percent + 0.1 kPa for a typical application. Two configurations were used on a rotating fan flutter program. Examples of transducer data and correction factors are presented.
Thermal resistance model for CSP central receivers
NASA Astrophysics Data System (ADS)
de Meyer, O. A. J.; Dinter, F.; Govender, S.
2016-05-01
The receiver design and heliostat field aiming strategy play a vital role in the heat transfer efficiency of the receiver. In molten salt external receivers, the common operating temperature of the heat transfer fluid or molten salt ranges between 285°C to 565°C. The optimum output temperature of 565°C is achieved by adjusting the mass flow rate of the molten salt through the receiver. The reflected solar radiation onto the receiver contributes to the temperature rise in the molten salt by means of heat transfer. By investigating published work on molten salt external receiver operating temperatures, corresponding receiver tube surface temperatures and heat losses, a model has been developed to obtain a detailed thermographic representation of the receiver. The steady state model uses a receiver flux map as input to determine: i) heat transfer fluid mass flow rate through the receiver to obtain the desired molten salt output temperature of 565°C, ii) receiver surface temperatures iii) receiver tube temperatures iv) receiver efficiency v) pressure drop across the receiver and vi) corresponding tube strain per panel.
Huang, Xiao; Bai, Jie; Li, Kui-Ran; Zhao, Yang-Guo; Tian, Wei-Jun; Dang, Jia-Jia
2017-01-15
To achieve a better contaminant removal efficiency in a low-temperature and high-salt environment, two novel strains of cold- and salt-tolerant ammonia-oxidizing bacteria (AOB), i.e., Ochrobactrum sp. (HXN-1) and Aquamicrobium sp. (HXN-2), were isolated from the surface sediment of Liaohe Estuarine Wetland (LEW), China. The optimization of initial ammonia nitrogen concentration, pH, carbon-nitrogen ratio, and petroleum hydrocarbons (PHCs) to improve the ammonia-oxidation capacity of the two bacterial strains was studied. Both bacterial strains showed a high ammonia nitrogen removal rate of over 80% under a high salinity of 10‰. Even at a temperature as low as 15°C, HXN-1 and HXN-2 could achieve an ammonia nitrogen removal rate of 53% and 62%, respectively. The cold- and salt-tolerant AOB in this study demonstrated a high potential for ammonia nitrogen removal from LEW. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jandl, Adam, E-mail: jandl@mit.edu; Bulsara, Mayank T.; Fitzgerald, Eugene A.
The properties of InAs{sub x}P{sub 1−x} compositionally graded buffers grown by metal organic chemical vapor deposition are investigated. We report the effects of strain gradient (ε/thickness), growth temperature, and strain initiation sequence (gradual or abrupt strain introduction) on threading dislocation density, surface roughness, epi-layer relaxation, and tilt. We find that gradual introduction of strain causes increased dislocation densities (>10{sup 6}/cm{sup 2}) and tilt of the epi-layer (>0.1°). A method of abrupt strain initiation is proposed which can result in dislocation densities as low as 1.01 × 10{sup 5} cm{sup −2} for films graded from the InP lattice constant to InAs{sub 0.15}P{sub 0.85}.more » A model for a two-energy level dislocation nucleation system is proposed based on our results.« less
Characterization of Thermo-Mechanical and Fracture Behaviors of Thermoplastic Polymers
Ghorbel, Elhem; Hadriche, Ismail; Casalino, Giuseppe; Masmoudi, Neila
2014-01-01
In this paper the effects of the strain rate on the inelastic behavior and the self-heating under load conditions are presented for polymeric materials, such as polymethyl methacrylate (PMMA), polycarbonate (PC), and polyamide (PA66). By a torsion test, it was established that the shear yield stress behavior of PMMA, PC, and PA66 is well-described by the Ree-Eyring theory in the range of the considered strain rates. During the investigation, the surface temperature was monitored using an infrared camera. The heat release appeared at the early stage of the deformation and increased with the strain and strain rate. This suggested that the external work of deformation was dissipated into heat so the torsion tests could not be considered isothermal. Eventually, the effect of the strain rate on the failure modes was analyzed by scanning electron microscopy. PMID:28788462
Fatigue data for polyether ether ketone (PEEK) under fully-reversed cyclic loading
Shrestha, Rakish; Simsiriwong, Jutima; Shamsaei, Nima
2016-01-01
In this article, the data obtained from the uniaxial fully-reversed fatigue experiments conducted on polyether ether ketone (PEEK), a semi-crystalline thermoplastic, are presented. The tests were performed in either strain-controlled or load-controlled mode under various levels of loading. The data are categorized into four subsets according to the type of tests, including (1) strain-controlled fatigue tests with adjusted frequency to obtain the nominal temperature rise of the specimen surface, (2) strain-controlled fatigue tests with various frequencies, (3) load-controlled fatigue tests without step loadings, and (4) load-controlled fatigue tests with step loadings. Accompanied data for each test include the fatigue life, the maximum (peak) and minimum (valley) stress–strain responses for each cycle, and the hysteresis stress–strain responses for each collected cycle in a logarithmic increment. A brief description of the experimental method is also given. PMID:26937465
Fatigue data for polyether ether ketone (PEEK) under fully-reversed cyclic loading.
Shrestha, Rakish; Simsiriwong, Jutima; Shamsaei, Nima
2016-03-01
In this article, the data obtained from the uniaxial fully-reversed fatigue experiments conducted on polyether ether ketone (PEEK), a semi-crystalline thermoplastic, are presented. The tests were performed in either strain-controlled or load-controlled mode under various levels of loading. The data are categorized into four subsets according to the type of tests, including (1) strain-controlled fatigue tests with adjusted frequency to obtain the nominal temperature rise of the specimen surface, (2) strain-controlled fatigue tests with various frequencies, (3) load-controlled fatigue tests without step loadings, and (4) load-controlled fatigue tests with step loadings. Accompanied data for each test include the fatigue life, the maximum (peak) and minimum (valley) stress-strain responses for each cycle, and the hysteresis stress-strain responses for each collected cycle in a logarithmic increment. A brief description of the experimental method is also given.
NASA Astrophysics Data System (ADS)
Phan, G. N.; Nakayama, K.; Sugawara, K.; Sato, T.; Urata, T.; Tanabe, Y.; Tanigaki, K.; Nabeshima, F.; Imai, Y.; Maeda, A.; Takahashi, T.
2017-06-01
One of central issues in iron-based superconductors is the role of structural change to the superconducting transition temperature (Tc). It was found in FeSe that the lattice strain leads to a drastic increase in Tc, accompanied by suppression of nematic order. By angle-resolved photoemission spectroscopy on tensile- or compressive-strained and strain-free FeSe, we experimentally show that the in-plane strain causes a marked change in the energy overlap (Δ Eh -e ) between the hole and electron pockets in the normal state. The change in Δ Eh -e modifies the Fermi-surface volume, leading to a change in Tc. Furthermore, the strength of nematicity is also found to be characterized by Δ Eh -e . These results suggest that the key to understanding the phase diagram is the fermiology and interactions linked to the semimetallic band overlap.
NASA Astrophysics Data System (ADS)
Sinha, Navita
Mars is one of the suitable bodies in our solar system that can accommodate extraterrestrial life. The detection of plumes of methane in the Martian atmosphere, geochemical evidence, indication of flow of intermittent liquid water on the Martian surface, and geomorphologies of Mars have bolstered the plausibility of finding extant or evidence of extinct life on its surface and/or subsurface. However, contemporary Mars has been considered as an inhospitable planet for several reasons, such as low atmospheric surface pressure, low surface temperature, and intense DNA damaging radiation. Despite the hostile conditions of Mars, a few strains of methanogenic archaea have shown survivability in limited surface and subsurface conditions of Mars. Methanogens, which are chemolithoautotrophic non-photosynthetic anaerobic archaea, have been considered ideal models for possible Martian life forms for a long time. The search for biosignatures in the Martian atmosphere and possibility of life on the Martian surface under UVC radiation and deep subsurface under high pressure, temperature, and various pHs are the motivations of this research. Analogous to Earth, Martian atmospheric methane could be biological in origin. Chapter 1 provides relevant information about Mars' habitability, methane on Mars, and different strains of methanogens used in this study. Chapter 2 describes the interpretation of the carbon isotopic data of biogenic methane produced by methanogens grown on various Mars analogs and the results provide clues to determine ambiguous sources of methane on Mars. Chapter 3 illustrates the sensitivity of hydrated and desiccated cultures of halophilic and non-halophilic methanogens to DNA-damaging ultraviolet radiations, and the results imply that UVC radiation may not be an enormous constraint for methanogenic life forms on the surface of Mars. Chapters 4, 5, and 6 discuss the data for the survivability, growth, and morphology of methanogens in presumed deep subsurface physicochemical conditions such as temperature, pressure, hydrogen concentration, and pH of Mars. Finally, chapter 7 provides conclusions, limitations of the experiments, and future perspective of the work. Overall, the quantitative measurements obtained in the various sections of this novel work provide insights to atmospheric biosignatures and survivability of methanogenic organisms on the surface and subsurface of Mars.
NASA Astrophysics Data System (ADS)
Fischer, Bennet; Hopf, Barbara; Lindner, Markus; Koch, Alexander W.; Roths, Johannes
2017-04-01
A 3D FEM model of an FBG in a PANDA fiber with an extended fiber length of 25.4 mm is presented. Simulating long fiber lengths with limited computer power is achieved by using an iterative solver and by optimizing the FEM mesh. For verification purposes, the model is adapted to a configuration with transversal loads on the fiber. The 3D FEM model results correspond with experimental data and with the results of an additional 2D FEM plain strain model. In further studies, this 3D model shall be applied to more sophisticated situations, for example to study the temperature dependence of surface-glued or embedded FBGs in PANDA fibers that are used for strain-temperature decoupling.
Recent Basal Melting of a Mid-Latitude Glacier on Mars
NASA Astrophysics Data System (ADS)
Butcher, Frances E. G.; Balme, M. R.; Gallagher, C.; Arnold, N. S.; Conway, S. J.; Hagermann, A.; Lewis, S. R.
2017-12-01
Evidence for past basal melting of young (late Amazonian-aged), debris-covered glaciers in Mars' mid-latitudes is extremely rare. Thus, it is widely thought that these viscous flow features (VFFs) have been perennially frozen to their beds. We identify an instance of recent, localized wet-based mid-latitude glaciation, evidenced by a candidate esker emerging from a VFF in a tectonic rift in Tempe Terra. Eskers are sedimentary ridges deposited in ice-walled meltwater conduits and are indicative of glacial melting. We compare the candidate esker to terrestrial analogues, present a geomorphic map of landforms in the rift, and develop a landsystem model to explain their formation. We propose that the candidate esker formed during a transient phase of wet-based glaciation. We then consider the similarity between the geologic setting of the new candidate esker and that of the only other candidate esker to be identified in association with an existing mid-latitude VFF; both are within tectonic graben/rifts proximal to volcanic provinces. Finally, we calculate potential basal temperatures for a range of VFF thicknesses, driving stresses, mean annual surface temperatures, and geothermal heat fluxes, which unlike previous studies, include the possible role of internal strain heating. Strain heating can form an important additional heat source, especially in flow convergence zones, or where ice is warmer due to elevated surface temperatures or geothermal heat flux. Elevated geothermal heat flux within rifts, perhaps combined with locally-elevated strain heating, may have permitted wet-based glaciation during the late Amazonian, when cold climates precluded more extensive wet-based glaciation on Mars.
USDA-ARS?s Scientific Manuscript database
The objective of this study was to determine the effect of strain and temperature on growth and biofilm formation by Listeria monocytogenes (Lm) in high and low concentrations of catfish mucus extract on different food-contact surfaces at 10°C and 22°C. The second objective of this study was to eval...
Simulations and Experiments of the Nonisothermal Forging Process of a Ti-6Al-4V Impeller
NASA Astrophysics Data System (ADS)
Prabhu, T. Ram
2016-09-01
In the present study, a nonisothermal precision forging process of a Ti-6Al-4V first-stage impeller for the gas turbine engine was simulated using the finite element software. The simulation results such as load requirements, damage, velocity field, stress, strain, and temperature distributions are discussed in detail. Simulations predicted the maximum load requirement of about 80 MN. The maximum temperature loss was observed at the contour surface regions. The center and contour regions are the high-strained regions in the part. To validate the model, forging experiments mimicking simulations were performed in the α + β phases region (930 °C). The selected locations of the part were characterized for tensile properties at 27 and 200 °C, hardness, microstructure, grain size, and the amount of primary α phase based on the strain distribution results. The soundness of the forged part was verified using fluorescent penetrant test (Mil Std 2175 Grade A) and ultrasonic test (AMS 2630 class A1). From the experimental results, it was found that the variations in the hardness, tensile properties at room, and elevated temperature are not significant. The microstructure, grain size, and primary α phase content are nearly same.
Ablation of gold irradiated by femtosecond laser pulse: Experiment and modeling
NASA Astrophysics Data System (ADS)
Ashitkov, S. I.; Komarov, P. S.; Zhakhovsky, V. V.; Petrov, Yu V.; Khokhlov, V. A.; Yurkevich, A. A.; Ilnitsky, D. K.; Inogamov, N. A.; Agranat, M. B.
2016-11-01
We report on the ablation phenomena in gold sample irradiated by femtosecond laser pulses of moderate intensity. Dynamics of optical constants and expansion of a heated surface layer was investigated in a range from picosecond up to subnanosecond using ultrafast interferometry. Also morphology of the ablation craters and value of an ablation threshold (for absorbed fluence) were measured. The experimental data are compared with simulations of mass flows obtained by two-temperature hydrodynamics and molecular dynamics methods. Simulation shows evolution of a thin surface layer pressurized by a laser pulse. Unloading of the pressurized layer proceeds together with electron-ion thermalization, melting, cavitation and spallation of a part of surface liquid layer. The experimental and simulation results on two-temperature physics and on a fracture, surface morphology and strength of liquid gold at a strain rate ∼ 109 s-1 are discussed.
Application of millisecond pulsed laser for thermal fatigue property evaluation
NASA Astrophysics Data System (ADS)
Pan, Sining; Yu, Gang; Li, Shaoxia; He, Xiuli; Xia, Chunyang; Ning, Weijian; Zheng, Caiyun
2018-02-01
An approach based on millisecond pulsed laser is proposed for thermal fatigue property evaluation in this paper. Cyclic thermal stresses and strains within millisecond interval are induced by complex and transient temperature gradients with pulsed laser heating. The influence of laser parameters on surface temperature is studied. The combination of low pulse repetition rate and high pulse energy produces small temperature oscillation, while high pulse repetition rate and low pulse energy introduces large temperature shock. The possibility of application is confirmed by two thermal fatigue tests of compacted graphite iron with different laser controlled modes. The developed approach is able to fulfill the preset temperature cycles and simulate thermal fatigue failure of engine components.
Dadrasnia, Arezoo; Azirun, Mohd Sofian; Ismail, Salmah Binti
2017-11-28
When the unavoidable waste generation is considered as damaging to our environment, it becomes crucial to develop a sustainable technology to remediate the pollutant source towards an environmental protection and safety. The development of a bioengineering technology for highly efficient pollutant removal is this regard. Given the high ammonia nitrogen content and chemical oxygen demand of landfill leachate, Bacillus salmalaya strain 139SI, a novel resident strain microbe that can survive in high ammonia nitrogen concentrations, was investigated for the bioremoval of ammonia nitrogen from landfill leachate. The treatability of landfill leachate was evaluated under different treatment parameters, such as temperature, inoculum dosage, and pH. Results demonstrated that bioaugmentation with the novel strain can potentially improve the biodegradability of landfill leachate. B. salmalaya strain 139SI showed high potential to enhance biological treatment given its maximum NH 3 -N and COD removal efficiencies. The response surface plot pattern indicated that within 11 days and under optimum conditions (10% v/v inoculant, pH 6, and 35 °C), B. salmalaya strain139SI removed 78% of ammonia nitrogen. At the end of the study, biological and chemical oxygen demands remarkably decreased by 88% and 91.4%, respectively. Scanning electron microscopy images revealed that ammonia ions covered the cell surface of B. salmalaya strain139SI. Therefore, novel resistant Bacillus salmalaya strain139SI significantly reduces the chemical oxygen demand and NH 3 -N content of landfill leachate. Leachate treatment by B. salmalaya strain 139SI within 11 days.
O'brien, R D; Lindow, S E
1988-09-01
Selected plant species and environmental conditions were investigated for their influences on expression of ice nucleation activity by 15 Pseudomonas syringae strains grown on plants in constant-temperature growth chamber studies. Ice nucleation frequencies (INFs), the fraction of cells that expressed ice nucleation at -5 or -9 degrees C, of individual strains varied greatly, both on plants and in culture. This suggests that the probability of frost injury, which is proportional to the number of ice nuclei on leaf surfaces, is strongly determined by the particular bacterial strains that are present on a leaf surface. The INFs of strains were generally higher when they were grown on plants than when they were grown in culture. In addition, INFs in culture did not correlate closely with INFs on plants, suggesting that frost injury prediction should be based on INF measurements of cells grown on plants rather than in culture. The relative INFs of individual strains varied with plant host and environment. However, none of seven plant species tested optimized the INFs of all 15 strains. Similarly, incubation for 48 h at near 100% relative humidity with short photoperiods did not always decrease the INF when compared with a 72 h, 40% relative humidity, long-photoperiod incubation. Pathogenic strains on susceptible hosts were not associated with higher or lower INFs relative to their INFs on nonsusceptible plant species. The ice nucleation activity of individual bacterial strains on plants therefore appears to be controlled by complex and interacting factors such as strain genotype, environment, and host plant species.
NASA Technical Reports Server (NTRS)
Guy, R. W.; Mueller, J. N.; Pinckney, S. Z.; Lee, L. P.
1976-01-01
An aerodynamic model of a hydrogen burning, airframe integrated scramjet engine has been designed, fabricated, and instrumented. This model is to be tested in an electric arc heated wind tunnel at an altitude of 35.39 km (116,094 ft.) but with an inlet Mach number of 6 simulating precompression on an aircraft undersurface. The scramjet model is constructed from oxygen free, high conductivity copper and is a heat sink design except for water cooling in some critical locations. The model is instrumented for pressure, surface temperature, heat transfer rate, and thrust measurements. Calculated flow properties, heat transfer rates, and surface temperature distributions along the various engine components are included for the conditions stated above. For some components, estimates of thermal strain are presented which indicate significant reductions in plastic strain by selective cooling of the model. These results show that the 100 thermal cycle life of the engine was met with minimum distortion while staying within the 2669 N (600 lbf) engine weight limitation and while cooling the engine only in critical locations.
Sass, Henrik; Cypionka, Heribert
2004-09-01
Deep subsurface sandstones in the area of Berlin (Germany) located 600 to 1060 m below the surface were examined for the presence of viable microorganisms. The in situ temperatures at the sampling sites ranged from 37 to 45 degrees C. Investigations focussed on sulfate-reducing bacteria able to grow on methanol and triethylene glycol, which are added as chemicals to facilitate the long-term underground storage of natural gas. Seven strains were isolated from porewater brines in the porous sandstone. Three of them were obtained with methanol (strains H1M, H3M, and B1M), three strains with triethylene glycol (strains H1T, B1T, and B2T) and one strain with a mixture of lactate, acetate and butyrate (strain H1-13). Due to phenotypic properties six isolates could be identified as members of the genus Desulfovibrio, and strain B2T as a Desulfotomaculum. The salt tolerance and temperature range for growth indicated that the isolates originated from the indigenous deep subsurface sandstones. They grew in mineral media reflecting the in situ ionic composition of the different brines, which contained 1.5 to 190 g NaCl x l(-1) and high calcium and magnesium concentrations. The Desulfovibrio strains grew at temperatures between 20 and 50 degrees C, while the Desulfotomaculum strain was thermophilic and grew between 30 and 65 degrees C. The strains utilized a broad spectrum of electron donors and acceptors. They grew with carbon compounds like lactate, pyruvate, formate, n-alcohols (C1-C5), glycerol, ethylene glycol, malate, succinate, and fumarate. Some strains even utilized glucose as electron donor and carbon source. All strains were able to use sulfate, sulfite and nitrate as electron acceptors. Additionally, three Desulfovibrio strains reduced manganese oxide, the Desulfotomaculum strain reduced manganese oxide, iron oxide, and elemental sulfur. The 16S rRNA analysis revealed that the isolates belong to three different species. The strains H1T, H3M and B1M could be identified as Desulfovibrio indonesiensis, and strain B2T as Desulfotomaculum geothermicum. The other Desulfovibrio strains (H1M, H1-13, and B1T) showed identical 16S rDNA sequences and similarities as low as 93% to their closest relative, Desulfovibrio aminophilusT. Therefore, these isolates were assigned to a new species, Desulfovibrio cavernae sp. nov., with strain H1M as the type strain.
Sharma, Shivani; Khanna, P K; Kapoor, S
2016-01-01
Mycelial growth in a defined medium by submerged fermentation is a rapid and alternative method for obtaining fungal biomass of consistent quality. Biomass, exopolysaccharides (EPS) and intracellular polysaccharides (IPS) production were optimised by response surface methodology in Lentinula edodes strain LeS (NCBI JX915793). The optimised conditions were pH 5.0, temperature 26°C, incubation period of 25 days and agitation rate of 52 r/min for L. edodes strain LeS. Under the calculated optimal culture conditions, biomass production (5.88 mg mL(-1)), EPS production (0.40 mg mL(-1)) and IPS production (12.45 mg g(-1)) were in agreement with the predicted values for biomass (5.93 mg mL(-1)), EPS (0.55 mg mL(-1)) and IPS production (12.64 mg g(-1)). Crude lentinan exhibited highest antibacterial effects followed by alcoholic, crude and aqueous extracts. The results obtained may be useful for highly effective yield of biomass and bioactive metabolites.
NASA Astrophysics Data System (ADS)
Klein, M.; Eifler, D.
2010-07-01
To analyse interactions between single steps of process chains, variations in material properties, especially the microstructure and the resulting mechanical properties, specimens with tension screw geometry were manufactured with five process chains. The different process chains as well as their parameters influence the near surface condition and consequently the fatigue behaviour in a characteristic manner. The cyclic deformation behaviour of these specimens can be benchmarked equivalently with conventional strain measurements as well as with high-precision temperature and electrical resistance measurements. The development of temperature-values provides substantial information on cyclic load dependent changes in the microstructure.
Guo, Q; Sun, D L; Han, X L; Cheng, S R; Chen, G Q; Jiang, L T; Wu, G H
2012-02-01
Compressive properties of Al matrix composite reinforced with Ti-6Al-4V meshes (TC4(m)/5A06 Al composite) under the strain rates of 10(-3)S(-1) and 1S(-1) at different temperature were measured and microstructure of composites after compression was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). Compressive strength decreased with the test temperature increased and the strain-rate sensitivity (R) of composite increased with the increasing temperature. SEM observations showed that grains of Al matrix were elongated severely along 45° direction (angle between axis direction and fracture surface) and TC4 fibres were sheared into several parts in composite compressed under the strain rate of 10(-3)S(-1) at 25°C and 250°C. Besides, amounts of cracks were produced at the interfacial layer between TC4 fibre and Al matrix and in (Fe, Mn)Al(6) phases. With the compressive temperature increasing to 400°C, there was no damage at the interfacial layer between TC4 fibre and Al matrix and in (Fe, Mn)Al(6) phases, while equiaxed recrystal grains with sizes about 10 μm at the original grain boundaries of Al matrix were observed. However, interface separation of TC4 fibres and Al matrix occurred in composite compressed under the strain rate of 1S(-1) at 250°C and 400°C. With the compressive temperature increasing from 25°C to 100°C under the strain rate of 10(-3) S(-1), TEM microstructure in Al matrix exhibited high density dislocations and slipping bands (25°C), polygonized dislocations and dynamic recovery (100°C), equiaxed recrystals with sizes below 500 μm (250°C) and growth of equiaxed recrystals (400°C), respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skuza, J. R., E-mail: jrskuza@nsu.edu, E-mail: apradhan@nsu.edu; Scott, D. W.; Pradhan, A. K., E-mail: jrskuza@nsu.edu, E-mail: apradhan@nsu.edu
2015-11-21
We investigate the structural and electronic properties of VO{sub 2} thin films on c-plane sapphire substrates with three different surface morphologies to control the strain at the substrate-film interface. Only non-annealed substrates with no discernible surface features (terraces) provided a suitable template for VO{sub 2} film growth with a semiconductor-metal transition (SMT), which was much lower than the bulk transition temperature. In addition to strain, oxygen vacancy concentration also affects the properties of VO{sub 2}, which can be controlled through deposition conditions. Oxygen plasma-assisted pulsed laser deposition allows favorable conditions for VO{sub 2} film growth with SMTs that can bemore » easily tailored for device applications.« less
NASA Astrophysics Data System (ADS)
Fink, Herman J.; Haley, Stephen B.; Giuraniuc, Claudiu V.; Kozhevnikov, Vladimir F.; Indekeu, Joseph O.
2005-11-01
For various sample geometries (slabs, cylinders, spheres, hypercubes), de Gennes' boundary condition parameter b is used to study its effect upon the transition temperature Tc of a superconductor. For b > 0 the order parameter at the surface is decreased, and as a consequence Tc is reduced, while for b < 0 the order parameter at the surface is increased, thereby enhancing Tc of a specimen in zero magnetic field. Exact solutions, derived by Fink and Haley (Int. J. mod. Phys. B, 17, 2171 (2003)), of the order parameter of a slab of finite thickness as a function of temperature are presented, both for reduced and enhanced transition (nucleation) temperatures. At the nucleation temperature the order parameter approaches zero. This concise review closes with a link established between de Gennes' microscopic boundary condition and the Ginzburg-Landau phenomenological approach, and a discussion of some relevant experiments. For example, applying the boundary condition with b < 0 to tin whiskers elucidates the increase of Tc with strain.
Boundary layers at a dynamic interface: Air-sea exchange of heat and mass
NASA Astrophysics Data System (ADS)
Szeri, Andrew J.
2017-04-01
Exchange of mass or heat across a turbulent liquid-gas interface is a problem of critical interest, especially in air-sea transfer of natural and anthropogenic gases involved in the study of climate. The goal in this research area is to determine the gas flux from air to sea or vice versa. For sparingly soluble nonreactive gases, this is controlled by liquid phase turbulent velocity fluctuations that act on the thin species concentration boundary layer on the liquid side of the interface. If the fluctuations in surface-normal velocity w' and gas concentration c' are known, then it is possible to determine the turbulent contribution to the gas flux. However, there is no suitable fundamental direct approach in the general case where neither w' nor c' can be easily measured. A new approach is presented to deduce key aspects about the near-surface turbulent motions from measurements that can be taken by an infrared (IR) camera. An equation is derived with inputs being the surface temperature and heat flux, and a solution method developed for the surface-normal strain experienced over time by boundary layers at the interface. Because the thermal and concentration boundary layers experience the same near-surface fluid motions, the solution for the surface-normal strain determines the gas flux or gas transfer velocity. Examples illustrate the approach in the cases of complete surface renewal, partial surface renewal, and insolation. The prospects for use of the approach in flows characterized by sheared interfaces or rapid boundary layer straining are explored.
Enhanced Bifunctional Oxygen Catalysis in Strained LaNiO 3 Perovskites
Petrie, Jonathan R.; Cooper, Valentino R.; Freeland, John W.; ...
2016-02-11
Strain is known to greatly influence low-temperature oxygen electrocatalysis on noble metal films, leading to significant enhancements in bifunctional activity essential for fuel cells and metal-air batteries. Still, its catalytic impact on transition-metal oxide thin films, such as perovskites, is not widely understood. Here, we epitaxially strain the conducting perovskite LaNiO 3 to systematically determine its influence on both the oxygen reduction and oxygen evolution reaction. Uniquely, we found that compressive strain could significantly enhance both reactions, yielding a bifunctional catalyst that surpasses the performance of noble metals such as Pt. We attribute the improved bifunctionality to strain-induced splitting ofmore » the e g orbitals, which can customize orbital asymmetry at the surface. Lastly, analogous to strain-induced shifts in the d-band center of noble metals relative to the Fermi level, such splitting can dramatically affect catalytic activity in this perovskite and other potentially more active oxides.« less
Song, B.; Nelson, K.; Lipinski, R.; ...
2014-08-21
Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-strain -rate performance are needed for understanding high-speed impacts in severe environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain -rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. In our study, we analyzed the difficulties encountered in high-temperature Kolsky bar testing of thin iridium alloy specimens in compression. We made appropriate modifications using themore » current high-temperature Kolsky bar technique in order to obtain reliable compressive stress–strain response of an iridium alloy at high-strain rates (300–10 000 s -1) and temperatures (750 and 1030°C). The compressive stress–strain response of the iridium alloy showed significant sensitivity to both strain rate and temperature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Bo; Nelson, Kevin; Jin, Helena
Iridium alloys have been utilized as structural materials for certain high-temperature applications, due to their superior strength and ductility at elevated temperatures. The mechanical properties, including failure response at high strain rates and elevated temperatures of the iridium alloys need to be characterized to better understand high-speed impacts at elevated temperatures. A DOP-26 iridium alloy has been dynamically characterized in compression at elevated temperatures with high-temperature Kolsky compression bar techniques. However, the dynamic high-temperature compression tests were not able to provide sufficient dynamic high-temperature failure information of the iridium alloy. In this study, we modified current room-temperature Kolsky tension barmore » techniques for obtaining dynamic tensile stress-strain curves of the DOP-26 iridium alloy at two different strain rates (~1000 and ~3000 s-1) and temperatures (~750°C and ~1030°C). The effects of strain rate and temperature on the tensile stress-strain response of the iridium alloy were determined. The DOP-26 iridium alloy exhibited high ductility in stress-strain response that strongly depended on both strain rate and temperature.« less
Characterization of triclosan metabolism in Sphingomonas sp. strain YL-JM2C
NASA Astrophysics Data System (ADS)
Mulla, Sikandar I.; Wang, Han; Sun, Qian; Hu, Anyi; Yu, Chang-Ping
2016-02-01
Triclosan (TCS) is one of the most widespread emerging contaminants and has adverse impact on aquatic ecosystem, yet little is known about its complete biodegradation mechanism in bacteria. Sphingomonas sp, strain YL-JM2C, isolated from activated sludge of a wastewater treatment plant, was very effective on degrading TCS. Response surface methodology (RSM) was applied to optimize the conditions like temperature and pH. From RSM, the optimal TCS degradation conditions were found to be 30 °C and pH 7.0. Under optimal conditions, strain YL-JM2C completely mineralized TCS (5 mg L-1) within 72 h. Gas chromatography-mass spectrometry analysis revealed that 2,4-dichlorophenol, 2-chlorohydroquinone and hydroquinone are three main by-products of TCS. Furthermore, stable isotope experimental results revealed that the 13C12-TCS was completely mineralized into CO2 and part of heavier carbon (13C) of labeled TCS was utilized by strain YL-JM2C to synthesize fatty acids (PLFAs). Cell surface hydrophobicity (CSH) and degradation test results suggested that the strain could enhance degradation capacity of TCS through increasing CSH. In addition, the bacterium also completely degraded spiked TCS (5 mg L-1) in wastewater collected from the wastewater treatment plant. Hence, these results suggest that the strain has potential to remediate TCS in the environment.
NASA Astrophysics Data System (ADS)
Tapia Gutierrez, Patricio Enrique
Whitetopping (WT) is a rehabilitation method to resurface deteriorated asphalt pavements. While some of these composite pavements have performed very well carrying heavy load, other have shown poor performance with early cracking. With the objective of analyzing the applicability of WT pavements under Florida conditions, a total of nine full-scale WT test sections were constructed and tested using a Heavy Vehicle Simulator (HVS) in the APT facility at the FDOT Material Research Park. The test sections were instrumented to monitor both strain and temperature. A 3-D finite element model was developed to analyze the WT test sections. The model was calibrated and verified using measured FWD deflections and HVS load-induced strains from the test sections. The model was then used to evaluate the potential performance of these test sections under critical temperature-load condition in Florida. Six of the WT pavement test sections had a bonded concrete-asphalt interface by milling, cleaning and spraying with water the asphalt surface. This method produced excellent bonding at the interface, with shear strength of 195 to 220 psi. Three of the test sections were intended to have an unbonded concrete-asphalt interface by applying a debonding agent in the asphalt surface. However, shear strengths between 119 and 135 psi and a careful analysis of the strain and the temperature data indicated a partial bond condition. The computer model was able to satisfactorily model the behavior of the composite pavement by mainly considering material properties from standard laboratory tests and calibrating the spring elements used to model the interface. Reasonable matches between the measured and the calculated strains were achieved when a temperature-dependent AC elastic modulus was included in the analytical model. The expected numbers of repetitions of the 24-kip single axle loads at critical thermal condition were computed for the nine test sections based on maximum tensile stresses and fatigue theory. The results showed that 4" slabs can be used for heavy loads only for low-volume traffic. To withstand the critical load without fear of fatigue failure, 6" slabs and 8" slabs would be needed for joint spacings of 4' and 6', respectively.
Modelling and optimization of semi-solid processing of 7075 Al alloy
NASA Astrophysics Data System (ADS)
Binesh, B.; Aghaie-Khafri, M.
2017-09-01
The new modified strain-induced melt activation (SIMA) process presented by Binesh and Aghaie-Khafri was optimized using a response surface methodology to improve the thixotropic characteristics of semi-solid 7075 alloy. The responses, namely the average grain size and the shape factor, were considered as functions of three independent input variables: effective strain, isothermal holding temperature and time. Mathematical models for the responses were developed using the regression analysis technique, and the adequacy of the models was validated by the analysis of variance method. The calculated results correlated fairly well with the experiments. It was found that all the first- and second-order terms of the independent parameters and the interactive terms of the effective strain and holding time were statistically significant for the responses. In order to simultaneously optimize the responses, the desirable values for the effective strain, holding temperature and time were predicted to be 5.1, 609 °C and 14 min, respectively, when employing the desirability function approach. Based on the optimization results, a significant improvement in the average grain size and shape factor of the semi-solid slurry prepared by the new modified SIMA process was observed.
NASA Astrophysics Data System (ADS)
Bland, Michael T.; McKinnon, William B.
2015-01-01
The ubiquity of tectonic features formed in extension, and the apparent absence of ones formed in contraction, has led to the hypothesis that Ganymede has undergone global expansion in its past. Determining the magnitude of such expansion is challenging however, and extrapolation of locally or regionally inferred strains to global scales often results in strain estimates that exceed those based on global constraints. Here we use numerical simulations of groove terrain formation to develop a strain history for Ganymede that is generally consistent at local, regional, and global scales. These simulations reproduce groove-like amplitudes, wavelengths, and average slopes at modest regional extensions (10-15%). The modest strains are more consistent with global constraints on Ganymede's expansion. Yet locally, we also find that surface strains can be much larger (30-60%) in the same simulations, consistent with observations of highly-extended impact craters. Thus our simulations satisfy both the smallest-scale and largest-scale inferences of strain on Ganymede. The growth rate of the topography is consistent with (or exceeds) predictions of analytical models, and results from the use of a non-associated plastic rheology that naturally permits localization of brittle failure (plastic strain) into linear fault-like shear zones. These fault-like zones are organized into periodically-spaced graben-like structures with stepped, steeply-dipping faults. As in previous work, groove amplitudes and wavelengths depend on both the imposed heat flux and surface temperature, but because our brittle strength increases with depth, we find (for the parameters explored) that the growth rate of topography is initially faster for lower heat flows. We observe a transition to narrow rifting for higher heat flows and larger strains, which is a potential pathway for breakaway margin or band formation.
Bland, Michael T.; McKinnon, W. B.
2015-01-01
The ubiquity of tectonic features formed in extension, and the apparent absence of ones formed in contraction, has led to the hypothesis that Ganymede has undergone global expansion in its past. Determining the magnitude of such expansion is challenging however, and extrapolation of locally or regionally inferred strains to global scales often results in strain estimates that exceed those based on global constraints. Here we use numerical simulations of groove terrain formation to develop a strain history for Ganymede that is generally consistent at local, regional, and global scales. These simulations reproduce groove-like amplitudes, wavelengths, and average slopes at modest regional extensions (10–15%). The modest strains are more consistent with global constraints on Ganymede’s expansion. Yet locally, we also find that surface strains can be much larger (30–60%) in the same simulations, consistent with observations of highly-extended impact craters. Thus our simulations satisfy both the smallest-scale and largest-scale inferences of strain on Ganymede. The growth rate of the topography is consistent with (or exceeds) predictions of analytical models, and results from the use of a non-associated plastic rheology that naturally permits localization of brittle failure (plastic strain) into linear fault-like shear zones. These fault-like zones are organized into periodically-spaced graben-like structures with stepped, steeply-dipping faults. As in previous work, groove amplitudes and wavelengths depend on both the imposed heat flux and surface temperature, but because our brittle strength increases with depth, we find (for the parameters explored) that the growth rate of topography is initially faster for lower heat flows. We observe a transition to narrow rifting for higher heat flows and larger strains, which is a potential pathway for breakaway margin or band formation.
Model of thermal fatigue of a copper surface under the action of high-power microwaves
NASA Astrophysics Data System (ADS)
Kuzikov, S. V.; Plotkin, M. E.
2007-10-01
The accelerating structures of modern supercolliders, as well as the components of high-power microwave electron devices operated in strong cyclic electromagnetic fields should have long lifetimes. Along with the electric breakdown, the surfaces of these microwave components deteriorate and their lifetimes decrease due to thermal strains and subsequent mechanical loads on the surface metal layer. The elementary theory of thermal fatigue was developed in the 1970s. In particular, a model of metal as a continuous medium was considered. Within the framework of this model, thermal fatigue is caused by the strains arising between the hot surface layer and the cold internal layer of the metal. However, this theory does not describe all the currently available experimental data. In particular, the notion of “safe temperature” of the heating, i.e., temperature at which the surface is not destroyed during an arbitrarily long series of pulses, which was proposed in the theoretical model, is in poor agreement with the experiment performed in the Stanford Linear Accelerator Center (SLAC, USA). In this work, the thermal-fatigue theory is developed on the basis of consideration of the copper polycrystalline structure. The necessity to take it into account was demonstrated by the results of the SLAC experiment, in which a change in the mutual orientation of copper grains and the formation of cracks at their boundaries was recorded for the first time. The developed theory makes it possible to use the experimental data to refine the coefficients in the obtained formulas for the lifetime of the metal surface and to predict the number of microwave pulses before its destruction as a function of the radiation power, the surface-temperature increase at the pulse peak, and the pulse duration.
Cyclic deformation of NI/sub 3/(Al,Nb) single crystals at ambient and elevated temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonda, N.R.
Cyclic tests were performed on Ni/sub 3/(Al,Nb) (..gamma..' phase) single crystals by using a servo-hydraulic machine under fully reversed plastic strain control at a frequency of 0.1-0.2 Hz at room temperature, 400/sup 0/C and 700/sup 0/C. Since the monotonic behavior is orientation dependent, three orientations were studied. Asymmetry in tensile and compressive stresses was observed in the cyclic hardening curves of specimens tested at these temperatures and they were discussed with regard to the model suggested by Paider et al for monotonic behavior. The stress levels in the cyclic stress-strain curves (CSSC) at room temperature depended on orientation and cyclicmore » history. No CSSCs were established at 400/sup 0/C and 700/sup 0/C. The deformation in cyclic tests at small plastic strain amplitudes was found to be different from that in monotonic tests in the microplastic regions in which the deformation is believed to be carried by a small density of edge dislocations. But in cyclic deformation, to and from motion of dislocations trap the edge dislocations into dipoles and therefore screw dislocations will be forced to participate in the deformation. Cracks on the surfaces of specimens tested at room temperature and 400/sup 0/C were found to be of stage I type, whereas at 700/sup 0/C, they were of stage II type.« less
Analysis, compensation, and correction of temperature effects on FBG strain sensors
NASA Astrophysics Data System (ADS)
Haber, T. C.; Ferguson, S.; Guthrie, D.; Graver, T. W.; Soller, B. J.; Mendez, Alexis
2013-05-01
One of the most common fiber optic sensor (FOS) types used are fiber Bragg gratings (FBG), and the most frequently measured parameter is strain. Hence, FBG strain sensors are one of the most prevalent FOS devices in use today in structural sensing and monitoring in civil engineering, aerospace, marine, oil and gas, composites and smart structure applications. However, since FBGs are simultaneously sensitive to both temperature and strain, it becomes essential to utilize sensors that are either fully temperature insensitive or, alternatively, properly temperature compensated to avoid erroneous measurements. In this paper, we introduce the concept of measured "total strain", which is inherent and unique to optical strain sensors. We review and analyze the temperature and strain sensitivities of FBG strain sensors and decompose the total measured strain into thermal and non-thermal components. We explore the differences between substrate CTE and System Thermal Response Coefficients, which govern the type and quality of thermal strain decomposition analysis. Finally, we present specific guidelines to achieve proper temperature-insensitive strain measurements by combining adequate installation, sensor packaging and data correction techniques.
Evolution of Deformation Studies on Active Hawaiian Volcanoes
Decker, Robert W.; Okamura, Arnold; Miklius, Asta; Poland, Michael
2008-01-01
Everything responds to pressure, even rocks. Deformation studies involve measuring and interpreting the changes in elevations and horizontal positions of the land surface or sea floor. These studies are variously referred to as geodetic changes or ground-surface deformations and are sometimes indexed under the general heading of geodesy. Deformation studies have been particularly useful on active volcanoes and in active tectonic areas. A great amount of time and energy has been spent on measuring geodetic changes on Kilauea and Mauna Loa Volcanoes in Hawai`i. These changes include the build-up of the surface by the piling up and ponding of lava flows, the changes in the surface caused by erosion, and the uplift, subsidence, and horizontal displacements of the surface caused by internal processes acting beneath the surface. It is these latter changes that are the principal concern of this review. A complete and objective review of deformation studies on active Hawaiian volcanoes would take many volumes. Instead, we attempt to follow the evolution of the most significant observations and interpretations in a roughly chronological way. It is correct to say that this is a subjective review. We have spent years measuring and recording deformation changes on these great volcanoes and more years trying to understand what makes these changes occur. We attempt to make this a balanced as well as a subjective review; the references are also selective rather than exhaustive. Geodetic changes caused by internal geologic processes vary in magnitude from the nearly infinitesimal - one micron or less, to the very large - hundreds of meters. Their apparent causes also are varied and include changes in material properties and composition, atmospheric pressure, tidal stress, thermal stress, subsurface-fluid pressure (including magma pressure, magma intrusion, or magma removal), gravity, and tectonic stress. Deformation is measured in units of strain or displacement. For example, tilt of the ground surface on the rim of Kilauea Caldera is measured in microradians, a strain unit that gives the change in angle from some reference. The direction in which the tilt is measured must be defined - north or south, or some direction normal to the maximum changes. For displacements related to surface faulting, the changes are normally given in linear measures of offset. Changes in the diameter of a caldera can be given in either displacements or strain units. In the later case, the displacement divided by the 'original' diameter gives the strain ratio. Strains are dimensionless numbers; displacements have the dimensions of length. Vectors commonly are used to show the direction and amount of displacements in plan view. Strain results from stress. It can be elastic strain, when the strain is linearly related to stress and is recoverable; it can be viscous strain, where the rate of strain is proportional to the stress and is not recoverable; or it can be plastic strain that is often some complex stress-strain relationship, for example, elastic up to some yield strength and viscous beyond. Volcanic rocks are brittle when cold and under near-surface pressures but plastic to viscous under higher temperature and pressure regimes. It is important in deformation studies to try to define the nature of the strain and the rheology of the rocks being deformed. A good text on rheology is 'The Structure and Rheology of Complex Fluids' by R.G. Larson, 1999. Under changing tensional or compressional stresses, tiny cracks in brittle rocks may open or close, causing a quasielastic strain response. If the stresses exceed the breaking strength of the rock, brittle failure occurs, and the stress-strain relationship breaks down. This is generally the situation with near-field deformation related to earthquakes. Stresses change in complex patterns in both the near- and far-fields of the fracture, and the near-fiel
Machining and grinding: High rate deformation in practice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Follansbee, P.S.
1993-04-01
Machining and grinding are well-established material-working operations involving highly non-uniform deformation and failure processes. A typical machining operation is characterized by uncertain boundary conditions (e.g.,surface interactions), three-dimensional stress states, large strains, high strain rates, non-uniform temperatures, highly localized deformations, and failure by both nominally ductile and brittle mechanisms. While machining and grinding are thought to be dominated by empiricism, even a cursory inspection leads one to the conclusion that this results more from necessity arising out of the complicated and highly interdisciplinary nature of the processes than from the lack thereof. With these conditions in mind, the purpose of thismore » paper is to outline the current understanding of strain rate effects in metals.« less
Machining and grinding: High rate deformation in practice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Follansbee, P.S.
1993-01-01
Machining and grinding are well-established material-working operations involving highly non-uniform deformation and failure processes. A typical machining operation is characterized by uncertain boundary conditions (e.g.,surface interactions), three-dimensional stress states, large strains, high strain rates, non-uniform temperatures, highly localized deformations, and failure by both nominally ductile and brittle mechanisms. While machining and grinding are thought to be dominated by empiricism, even a cursory inspection leads one to the conclusion that this results more from necessity arising out of the complicated and highly interdisciplinary nature of the processes than from the lack thereof. With these conditions in mind, the purpose of thismore » paper is to outline the current understanding of strain rate effects in metals.« less
Multifunctional Characteristics of Carbon Nanotube (CNT) Yarn Composites
NASA Technical Reports Server (NTRS)
Hernandez, Corey D.; Zhang, Mei; Fang, Shaoli; Baughman, Ray H.; Gates, Thomas S.; Kahng, Seun K.
2006-01-01
By forming composite structures with Carbon Nanotube (CNT) yarns we achieve materials capable of measuring strain and composite structures with increased mechanical strength. The CNT yarns used are of the 2-ply and 4-ply variety with the yarns having diameters of about 15-30 micrometers. The strain sensing characteristics of the yarns are investigated on test beams with the yarns arranged in a bridge configuration. Additionally, the strain sensing properties are also investigated on yarns embedded on the surface of a flexible membrane. Initial mechanical strength tests also show an increase in the modulus of elasticity of the composite materials while incurring a weight penalty of less than one-percent. Also presented are initial temperature characterizations of the yarns.
Dynamic strain aging in the high-temperature low-cycle fatigue of SA508 Cl. 3 forging steel
NASA Astrophysics Data System (ADS)
Lee, Byung Ho; Kim, In Sup
1995-10-01
The effect of dynamic strain aging on cyclic stress response and fatigue resistance of ASME SA508 Cl.3 forging steel for nuclear reactor pressure vessels has been evaluated in the temperature range of room temperature to 500°C. Total strain ranges and strain rates were varied from 0.7 to 2.0% and from 4 × 10 -4 to 1 × 10 -2 s -1, respectively. The cyclic stress response depended on the testing temperature, strain rate, and range. Generally, the initial cyclic hardening was immediately followed by cyclic softening at all strain rates. However, at 300°C, the operating temperature of nuclear reactor pressure vessels, the variation of cyclic stress amplitude showed the primary and secondary hardening stages dependent on the strain rate and strain range. Dynamic strain aging was manifested by enhanced cyclic hardening, distinguished secondary hardening, and negative strain rate sensitivity. A modified cell shutting model was described for the onset of the secondary hardening due to the dynamic strain aging and it was in good agreement with the experimental results. Fatigue life increased in strain rate at all testing temperatures. Specifically the fatigue life was longer at the dynamic strain aging temperature. Further, the dynamic strain aging was easy to initiate the crack, while crack propagation was retarded by crack branching and suppression of plastic zone, hence the dynamic strain aging caused the improvement of fatigue resistance.
Skowron, Krzysztof; Grudlewska, Katarzyna; Gryń, Grzegorz; Skowron, Karolina Jadwiga; Świeca, Agnieszka; Paluszak, Zbigniew; Zimek, Zbigniew; Rafalski, Andrzej; Gospodarek-Komkowska, Eugenia
2018-05-04
To investigate the effect of gamma radiation and high energy electron beam doses on the inactivation of antibiotic-susceptible and antibiotic-resistant Listeria monocytogenes strains inoculated on the surface of raw salmon fillets stored at different temperature (-20°C, 4°C and 25°C). The population of bacteria strains resistance to penicillin, ampicillin, meropenem, erythromycin and trimethoprim-sulfamethoxazole was generated. When using gamma irradiation, the theoretical lethal dose ranged from 1.44 to 5.68 kGy and for electron beam the values ranged from 2.99 to 6.83 kGy. The theoretical lethal dose for both radiation methods was higher for antibiotic-resistant strains. Gamma radiation proved to be a more effective method for extending salmon fillet shelf-life. The evaluation of PFGE electrophoregram revealed that the repair of radiation-caused DNA damage occurred faster in antibiotic-resistant L. monocytogenes strains. The number of live L. monocytogenes cells, 40 hours after irradiation, also was higher in antibiotic-resistant strain suspension. The present study showed that gamma radiation was more effective in the elimination of the tested microorganisms and food preservation, than a high energy electron beam. The antibiotic-resistant L. monocytogenes strains were more resistant to both radiation methods. There are a lot of research on the effect of radiation on the number of bacteria in food products. However, there is almost no information about the effect of strain properties, such as drug susceptibility, virulence, etc., on their resistance to ionizing radiation. An increasing number of drug resistant bacterial strains isolated from food, encourages to take up this research subject. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Highly sensitive long-period fiber-grating strain sensor with low temperature sensitivity
NASA Astrophysics Data System (ADS)
Wang, Yi-Ping; Xiao, Limin; Wang, D. N.; Jin, Wei
2006-12-01
A long-period fiber-grating sensor with a high strain sensitivity of -7.6 pm/μɛ and a low temperature sensitivity of 3.91 pm/°C is fabricated by use of focused CO2 laser beam to carve periodic grooves on a large- mode-area photonic crystal fiber. Such a strain sensor can effectively reduce the cross-sensitivity between strain and temperature, and the temperature-induced strain error obtained is only 0.5 μɛ/°C without using temperature compensation.
Crescent shaped Fabry-Perot fiber cavity for ultra-sensitive strain measurement.
Liu, Ye; Wang, D N; Chen, W P
2016-12-02
Optical Fabry-Perot interferometer sensors based on inner air-cavity is featured with compact size, good robustness and high strain sensitivity, especially when an ultra-thin air-cavity is adopted. The typical shape of Fabry-Perot inner air-cavity with reflection mode of operation is elliptic, with minor axis along with and major axis perpendicular to the fiber length. The first reflection surface is diverging whereas the second one is converging. To increase the visibility of the output interference pattern, the length of major axis should be large for a given cavity length. However, the largest value of the major axis is limited by the optical fiber diameter. If the major axis length reaches the fiber diameter, the robustness of the Fabry-Perot cavity device would be decreased. Here we demonstrate an ultra-thin crescent shaped Fabry-Perot cavity for strain sensing with ultra-high sensitivity and low temperature cross-sensitivity. The crescent-shape cavity consists of two converging reflection surfaces, which provide the advantages of enhanced strain sensitivity when compared with elliptic or D-shaped FP cavity. The device is fabricated by fusion splicing an etched multimode fiber with a single mode fiber, and hence is simple in structure and economic in cost.
Crescent shaped Fabry-Perot fiber cavity for ultra-sensitive strain measurement
NASA Astrophysics Data System (ADS)
Liu, Ye; Wang, D. N.; Chen, W. P.
2016-12-01
Optical Fabry-Perot interferometer sensors based on inner air-cavity is featured with compact size, good robustness and high strain sensitivity, especially when an ultra-thin air-cavity is adopted. The typical shape of Fabry-Perot inner air-cavity with reflection mode of operation is elliptic, with minor axis along with and major axis perpendicular to the fiber length. The first reflection surface is diverging whereas the second one is converging. To increase the visibility of the output interference pattern, the length of major axis should be large for a given cavity length. However, the largest value of the major axis is limited by the optical fiber diameter. If the major axis length reaches the fiber diameter, the robustness of the Fabry-Perot cavity device would be decreased. Here we demonstrate an ultra-thin crescent shaped Fabry-Perot cavity for strain sensing with ultra-high sensitivity and low temperature cross-sensitivity. The crescent-shape cavity consists of two converging reflection surfaces, which provide the advantages of enhanced strain sensitivity when compared with elliptic or D-shaped FP cavity. The device is fabricated by fusion splicing an etched multimode fiber with a single mode fiber, and hence is simple in structure and economic in cost.
NASA Astrophysics Data System (ADS)
Cunha, Renato; Perea-López, Néstor; Elías, Ana Laura; Fujisawa, Kazunori; Carozo, Victor; Feng, Simin; Lv, Ruitao; dos Santos, Maria Cristina; Terrones, Mauricio; Araujo, Paulo T.
2018-05-01
The interactions of adsorbates with graphene have received increasing attention due to its importance in the development of applications involving graphene-based coatings. Here, we present a study of the adsorption of noble gases on pristine and nitrogen-doped graphene. Single-layer graphene samples were synthesized by chemical vapor deposition (CVD) and transferred to transmission electron microscopy (TEM) grids. Several noble gases were allowed to adsorb on the suspended graphene substrate at very low temperatures. Raman spectra show distinct frequency blue shifts in both the 2D and G bands, which are induced by gas adsorption onto high quality single layer graphene (1LG). These shifts, which we associate with compressive biaxial strain in the graphene layers induced by the noble gases, are negligible for nitrogen-doped graphene. Additionally, a thermal depinning transition, which is related to the desorption of a noble gas layer from the graphene surface at low temperatures (ranging from 20 to 35 K), was also observed at different transition temperatures for different noble gases. These transition temperatures were found to be 25 K for argon and 35 K for xenon. Moreover, we were able to obtain values for the compressive biaxial strain in graphene induced by the adsorbed layer of noble gases, using Raman spectroscopy. Ab initio calculations confirmed the correlation between the noble gas-induced strain and the changes in the Raman features observed.
Blana, Vasiliki A; Grounta, Athena; Tassou, Chrysoula C; Nychas, George-John E; Panagou, Efstathios Z
2014-04-01
The performance of two strains of lactic acid bacteria (LAB), namely Lactobacillus pentosus B281 and Lactobacillus plantarum B282, previously isolated from industrially fermented table olives and screened in vitro for probiotic potential, was investigated as starter cultures in Spanish style fermentation of cv. Halkidiki green olives. Fermentation was undertaken at room temperature in two different initial salt concentrations (8% and 10%, w/v, NaCl) in the brines. The strains were inoculated as single and combined cultures and the dynamics of their population on the surface of olives was monitored for a period of 114 days. The survival of inoculated strains on olives was determined using Pulsed Field Gel Electrophoresis (PFGE). Both probiotic strains successfully colonized the olive surface at populations ranged from 6.0 to 7.0 log CFU/g throughout fermentation. PFGE analysis revealed that L. pentosus B281 presented higher colonization in both salt levels at the end of fermentation (81.2% and 93.3% in 8% and 10% NaCl brines, respectively). For L. plantarum B282 a high survival rate (83.3%) was observed in 8% NaCl brines, but in 10% NaCl the strain could not colonize the surface of olives. L. pentosus B281 also dominated over L. plantarum B282 in inoculated fermentations when the two strains were used as combined culture. The biochemical profile (pH, organic acids, volatile compounds) attained during fermentation and the sensory analysis of the final product indicated a typical lactic acid fermentation process of green olives. Copyright © 2013 Elsevier Ltd. All rights reserved.
Nanostructural Evolution of Hard Turning Layers in Carburized Steel
NASA Astrophysics Data System (ADS)
Bedekar, Vikram
The mechanisms of failure for components subjected to contact fatigue are sensitive to the structure and properties of the material surface. Although, the bulk material properties are determined by the steel making, forming and the heat treatment; the near surface material properties are altered during final material removal processes such as hard turning or grinding. Therefore, the ability to optimize, modulate and predict the near surface properties during final metal removal operations would be extremely useful in the enhancement of service life of a component. Hard machining is known to induce severely deformed layers causing dramatic microstructural transformations. These transformations occur via grain refinement or thermal phenomena depending upon cutting conditions. The aim of this work is to engineer the near surface nanoscale structure and properties during hard turning by altering strain, strain rate, temperature and incoming microstructure. The near surface material transformations due to hard turning were studied on carburized SAE 8620 bearing steel. Variations in parent material microstructures were introduced by altering the retained austenite content. The strain, strain rate and temperature achieved during final metal cutting were altered by varying insert geometry, insert wear and cutting speed. The subsurface evolution was quantified by a series of advanced characterization techniques such as transmission electron microscopy (TEM), glancing angle X-ray diffraction (GAXRD), X-ray stress evaluation and nanoindentation which were coupled with numerical modeling. Results showed that the grain size of the nanocrystalline near surface microstructure can be effectively controlled by altering the insert geometry, insert wear, cutting speed and the incoming microstructure. It was also evident that the near surface retained austenite decreased at lower cutting speed indicating transformation due to plastic deformation, while it increased at higher cutting speed indicated thermal transformation. Nanoindentation tests showed that the substructures produced by plastic deformation follow the Hall-Petch relationship while the structures produced by thermal transformation did not. This indicated a change in the hardness driver from dislocation hardening to phase transformation, both of which have a significant impact on fatigue life. Using hardness based flow stress numerical model, these relationships between the processing conditions and structural parameters were further explored. Results indicated that the hard turning process design space can be partitioned into three regions based on thermal phase transformations, plastic grain refinement, and a third regime where both mechanisms are active. It was found that the Zener-Holloman parameter can not only be used to predict post-turning grain size but also to partition the process space into regions of dominant microstructural mechanisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleischmann, C.; Lieten, R. R.; Shimura, Y.
Strained Ge{sub 1-x}Sn{sub x} thin films have recently attracted a lot of attention as promising high mobility or light emitting materials for future micro- and optoelectronic devices. While they can be grown nowadays with high crystal quality, the mechanism by which strain energy is relieved upon thermal treatments remains speculative. To this end, we investigated the evolution (and the interplay) of composition, strain, and morphology of strained Ge{sub 0.94}Sn{sub 0.06} films with temperature. We observed a diffusion-driven formation of Sn-enriched islands (and their self-organization) as well as surface depressions (pits), resulting in phase separation and (local) reduction in strain energy,more » respectively. Remarkably, these compositional and morphological instabilities were found to be the dominating mechanisms to relieve energy, implying that the relaxation via misfit generation and propagation is not intrinsic to compressively strained Ge{sub 0.94}Sn{sub 0.06} films grown by molecular beam epitaxy.« less
Investigation of the Optical and Electronic Properties of Crystalline Organic Materials
1990-06-14
38 (A) EFFECTS OF DEPOSTION RATE ---------------- 38 0 (B) EFFECTS OF SUBSTRATE TEMPERATURE ------ 40 11.5 ANISOTROPIES IN CRYSTALLINE ORGANIC THIN...depostion rate .- ------------------------------------------------------------------ 41 Fig. 2.10: Scanning electron micrographs showing the surface...materials grown be lattice-matched. Hence, relatively strain -free heterostructures using materials with large lattice-mismatch can be realized by the
Biofilm formation by Salmonella spp. in catfish mucus extract under industrial conditions
USDA-ARS?s Scientific Manuscript database
The objective of this study was to determine the effect of strain and temperature on the growth and biofilm formation of Salmonella spp. in high and low concentrations of catfish mucus extract on different food-contact surfaces at 22°C and 10°C. The second objective of this study was to evaluate the...
Ferromagnetic order in epitaxially strained LaCoO3 thin films
NASA Astrophysics Data System (ADS)
Fuchs, D.; Pinta, C.; Schwarz, T.; Schweiss, P.; Nagel, P.; Schuppler, S.; Schneider, R.; Merz, M.; Roth, G.; v. Löhneysen, H.
2007-04-01
LaCoO3 films grown epitaxially on ⟨001⟩ oriented (LaAlO3)0.3(Sr2AlTaO6)0.7 substrates by pulsed laser deposition exhibit ferromagnetic ordering below a critical temperature, Tc , of 85K . Polycrystalline films of LaCoO3 prepared in the same way did not show ferromagnetic order down to T≈5K , and their temperature dependent susceptibility was identical to that of bulk LaCoO3 . The ferromagnetism in epitaxial films is not simply a property of the surface region, rather it extends over the complete film thickness, as shown by the linear increase of the saturated magnetic moment with increasing film thickness. We discuss this surprising result in terms of epitaxial tensile strain via the properly chosen substrate inducing ferromagnetic order.
In vitro effects of Salvia officinalis L. essential oil on Candida albicans
Sookto, Tularat; Srithavaj, Theerathavaj; Thaweboon, Sroisiri; Thaweboon, Boonyanit; Shrestha, Binit
2013-01-01
Objective To determine the anticandidal activities of Salvia officinalis L. (S. officinalis) essential oil against Candida albicans (C. albicans) and the inhibitory effects on the adhesion of C. albicans to polymethyl methacrylate (PMMA) resin surface. Methods Disc diffusion method was first used to test the anticandidal activities of the S. officinalis L. essential oil against the reference strain (ATCC 90028) and 2 clinical strains of C. albicans. Then the minimal inhibitory concentration (MIC) and minimal lethal concentration (MLC) were determined by modified membrane method. The adhesion of C. albicans to PMMA resin surface was assessed after immersion with S. officinalis L. essential oil at various concentrations of 1×MIC, 0.5×MIC and 0.25×MIC at room temperature for 30 min. One-way ANOVA was used to compare the Candida cell adhesion with the pretreatment agents and Tukey's test was used for multiple comparisons. Results S. officinalis L. essential oil exhibited anticandidal activity against all strains of C. albicans with inhibition zone ranging from 40.5 mm to 19.5 mm. The MIC and MLC of the oil were determined as 2.780 g/L against all test strains. According to the effects on C. albicans adhesion to PMMA resin surface, it was found that immersion in the essential oil at concentrations of 1×MIC (2.780 g/L), 0.5×MIC (1.390 g/L) and 0.25×MIC (0.695 g/L) for 30 min significantly reduced the adhesion of all 3 test strains to PMMA resin surface in a dose dependent manner (P<0.05). Conclusions S. officinalis L. essential oil exhibited anticandidal activities against C. albicans and had inhibitory effects on the adhesion of the cells to PMMA resin surface. With further testing and development, S. officinalis essential oil may be used as an antifungal denture cleanser to prevent candidal adhesion and thus reduce the risk of candida-associated denture stomatitis. PMID:23646301
Simulation of the temperature distribution in crystals grown by Czochralski method
NASA Technical Reports Server (NTRS)
Dudokovic, M. P.; Ramachandran, P. A.
1985-01-01
Production of perfect crystals, free of residual strain and dislocations and with prescribed dopant concentration, by the Czochralski method is possible only if the complex, interacting phenomena that affect crystal growth in a Cz-puller are fully understood and quantified. Natural and forced convection in the melt, thermocapillary effect and heat transfer in and around the crystal affect its growth rate, the shape of the crystal-melt interface and the temperature gradients in the crystal. The heat transfer problem in the crystal and between the crystal and all other surfaces present in the crystal pulling apparatus are discussed at length. A simulation and computer algorithm are used, based on the following assumptions: (1) only conduction occurs in the crystal (experimentally determined conductivity as a function of temperature is used), (2) melt temperature and the melt-crystal heat transfer coefficient are available (either as constant values or functions of radial position), (3) pseudo-steady state is achieved with respect to temperature gradients, (4) crystal radius is fixed, and (5) both direct and reflected radiation exchange occurs among all surfaces at various temperatures in the crystal puller enclosure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Bo; Nelson, Kevin; Lipinski, Ronald
In this study, conventional Kolsky tension bar techniques were modified to characterize an iridium alloy in tension at elevated strain rates and temperatures. The specimen was heated to elevated temperatures with an induction coil heater before dynamic loading; whereas, a cooling system was applied to keep the bars at room temperature during heating. A preload system was developed to generate a small pretension load in the bar system during heating in order to compensate for the effect of thermal expansion generated in the high-temperature tensile specimen. A laser system was applied to directly measure the displacements at both ends ofmore » the tensile specimen in order to calculate the strain in the specimen. A pair of high-sensitivity semiconductor strain gages was used to measure the weak transmitted force due to the low flow stress in the thin specimen at elevated temperatures. The dynamic high-temperature tensile stress–strain curves of a DOP-26 iridium alloy were experimentally obtained at two different strain rates (~1000 and 3000 s -1) and temperatures (~750 and 1030°C). The effects of strain rate and temperature on the tensile stress–strain response of the iridium alloy were determined. Finally, the iridium alloy exhibited high ductility in stress–strain response that strongly depended on strain-rate and temperature.« less
Characterization of a Ultra-high Temperature Ceramic Composite
NASA Technical Reports Server (NTRS)
Levine, Stanley R.; Opila, Elizabeth J.; Robinson, Raymond C.; Lorincz, Jonathan A.
2003-01-01
Ultra-high temperature ceramics (UHTC) are of interest for hypersonic vehicle leading edge applications. Monolithic UHTCs are of concern because of their low fracture toughness and brittle behavior. UHTC composites (UHTCC) are being investigated as a possible approach to overcome these deficiencies. In this study a small sample of a UHTCC was evaluated by limited mechanical property tests, furnace oxidation exposures, and oxidation exposures in a flowing environment. The composite was prepared from a carbon fiber perform using ceramic particulates and a preceramic polymer. The as-received composite plate was non-uniform from front to back surface. Plate dimensions were 150 x 150 x 6 mm. The back surface had a fibrous, uniform appearance; XRD analysis revealed the presence of Sic and C. The front surface was smooth and non-uniform in appearance with evidence of a coarse grain structure produced by a liquid phase; XRD analysis revealed the presence of HfB2. Microcracks were present throughout the thickness as one might expect from a carbon fiber reinforced composite with attendant large thermal expansion mismatch between the matrix phases and the fibers. The HfB2 phase on the front surface was comparable in thickness to a fiber ply or about 0.6 mm, and surface microcracks were evident. Limited four point flexural tests were carried out at span to depth ratios of approximately 14 and 16 with markedly different results. Tests were run with the front or the back surface in tension. At the shorter span to depth failures occurred under a loading pin for both orientations. At a span to depth of 16 failures occurred in the center of the span with fracture clearly initiating from a tensile failure. Ultimate flexural strength, strain at ultimate stress, stress and strain at deviation from linear elastic behavior are reported. Strains at ultimate stress ranged from about 0.6 to 0.7 % for the back surface in tension, and 0.4 to 0.6 for the front surface in tension. At constant span to depth the strain at ultimate stress was about 0.2% greater for the back surface in tension and the ultimate strength was also higher. Strengths were in line with predictions from theory. Furnace oxidation studies were carried out at 1627 and 1927OC in a static furnace environment using ten minute cycles and one, five, and ten cycles. Limited oxidation studies were also carried out in a flowing oxyacetylene torch environment. Specimens were photographed, and weight and dimensional changes were determined. XRD and SEM characterizations were performed. Weight losses were attributed primarily to carbon fiber oxidation. The composite survived the torch test with little visible distress. Further details will be determined once metallographic studies are completed.
Two-Dimensional Laser-Speckle Surface-Strain Gauge
NASA Technical Reports Server (NTRS)
Barranger, John P.; Lant, Christian
1992-01-01
Extension of Yamaguchi's laser-speckle surface-strain-gauge method yields data on two-dimensional surface strains in times as short as fractions of second. Laser beams probe rough spot on surface of specimen before and after processing. Changes in speckle pattern of laser light reflected from spot indicative of changes in surface strains during processing. Used to monitor strains and changes in strains induced by hot-forming and subsequent cooling of steel.
Song, Bo; Nelson, Kevin; Lipinski, Ronald; ...
2015-05-29
In this study, conventional Kolsky tension bar techniques were modified to characterize an iridium alloy in tension at elevated strain rates and temperatures. The specimen was heated to elevated temperatures with an induction coil heater before dynamic loading; whereas, a cooling system was applied to keep the bars at room temperature during heating. A preload system was developed to generate a small pretension load in the bar system during heating in order to compensate for the effect of thermal expansion generated in the high-temperature tensile specimen. A laser system was applied to directly measure the displacements at both ends ofmore » the tensile specimen in order to calculate the strain in the specimen. A pair of high-sensitivity semiconductor strain gages was used to measure the weak transmitted force due to the low flow stress in the thin specimen at elevated temperatures. The dynamic high-temperature tensile stress–strain curves of a DOP-26 iridium alloy were experimentally obtained at two different strain rates (~1000 and 3000 s -1) and temperatures (~750 and 1030°C). The effects of strain rate and temperature on the tensile stress–strain response of the iridium alloy were determined. Finally, the iridium alloy exhibited high ductility in stress–strain response that strongly depended on strain-rate and temperature.« less
NASA Astrophysics Data System (ADS)
Lin, Deng-Sung; Ku, Tsai-Shuan; Chen, Ru-Ping
2000-01-01
In this paper, we investigate the interaction of phosphine (PH3) on the Si(100)-2×1 surface at temperatures between 635 and 900 K. The hydrogen desorption, growth mode, surface morphology, and chemical composition and ordering of the surface layer are examined by synchrotron radiation core-level photoemission and real-time high-temperature scanning tunneling microscopy. The P 2p core-level spectra indicate that decomposition of PHn is complete above ~550 K and the maximum P coverage is strongly influenced by the growth temperature, which governs the coverage of H-terminated sites. The scanning tunneling microscopy (STM) images taken at real time during PH3 exposure indicate that a surface phosphorus atom readily and randomly displaces one Si atom from the substrate. The ejected Si diffuses, nucleates, and incorporates itself into islands or step edges, leading to similar growth behavior as that found in Si chemical vapor deposition. Line defects both perpendicular and parallel to the dimer rows are observed on the nearly P-saturated surface. Perpendicular line defects act as a strain relief mechanism. Parallel line defects result from growth kinetics. STM images also indicate that incorporating a small amount of phosphorus eliminates the line defects in the Si(100)-2×n surface.
Wind reduction by aerosol particles
NASA Astrophysics Data System (ADS)
Jacobson, Mark Z.; Kaufman, Yoram J.
2006-12-01
Aerosol particles are known to affect radiation, temperatures, stability, clouds, and precipitation, but their effects on spatially-distributed wind speed have not been examined to date. Here, it is found that aerosol particles, directly and through their enhancement of clouds, may reduce near-surface wind speeds below them by up to 8% locally. This reduction may explain a portion of observed ``disappearing winds'' in China, and it decreases the energy available for wind-turbine electricity. In California, slower winds reduce emissions of wind-driven soil dust and sea spray. Slower winds and cooler surface temperatures also reduce moisture advection and evaporation. These factors, along with the second indirect aerosol effect, may reduce California precipitation by 2-5%, contributing to a strain on water supply.
NASA Technical Reports Server (NTRS)
Rohde, J. E.
1982-01-01
Objectives and approaches to research in turbine heat transfer are discussed. Generally, improvements in the method of determining the hot gas flow through the turbine passage is one area of concern, as is the cooling air flow inside the airfoil, and the methods of predicting the heat transfer rates on the hot gas side and on the coolant side of the airfoil. More specific areas of research are: (1) local hot gas recovery temperatures along the airfoil surfaces; (2) local airfoil wall temperature; (3) local hot gas side heat transfer coefficients on the airfoil surfaces; (4) local coolant side heat transfer coefficients inside the airfoils; (5) local hot gas flow velocities and secondary flows at real engine conditions; and (6) local delta strain range of the airfoil walls.
What Drives Metal-Surface Step Bunching in Graphene Chemical Vapor Deposition?
NASA Astrophysics Data System (ADS)
Yi, Ding; Luo, Da; Wang, Zhu-Jun; Dong, Jichen; Zhang, Xu; Willinger, Marc-Georg; Ruoff, Rodney S.; Ding, Feng
2018-06-01
Compressive strain relaxation of a chemical vapor deposition (CVD) grown graphene overlayer has been considered to be the main driving force behind metal surface step bunching (SB) in CVD graphene growth. Here, by combining theoretical studies with experimental observations, we prove that the SB can occur even in the absence of a compressive strain, is enabled by the rapid diffusion of metal adatoms beneath the graphene and is driven by the release of the bending energy of the graphene overlayer in the vicinity of steps. Based on this new understanding, we explain a number of experimental observations such as the temperature dependence of SB, and how SB depends on the thickness of the graphene film. This study also shows that SB is a general phenomenon that can occur in all substrates covered by films of two-dimensional (2D) materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, B.; Nelson, K.; Lipinski, R.
Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-strain -rate performance are needed for understanding high-speed impacts in severe environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain -rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. In our study, we analyzed the difficulties encountered in high-temperature Kolsky bar testing of thin iridium alloy specimens in compression. We made appropriate modifications using themore » current high-temperature Kolsky bar technique in order to obtain reliable compressive stress–strain response of an iridium alloy at high-strain rates (300–10 000 s -1) and temperatures (750 and 1030°C). The compressive stress–strain response of the iridium alloy showed significant sensitivity to both strain rate and temperature.« less
NASA Astrophysics Data System (ADS)
Dartnell, Lewis R.; Hunter, Stephanie J.; Lovell, Keith V.; Coates, Andrew J.; Ward, John M.
2010-09-01
The high flux of cosmic rays onto the unshielded surface of Mars poses a significant hazard to the survival of martian microbial life. Here, we determined the survival responses of several bacterial strains to ionizing radiation exposure while frozen at a low temperature characteristic of the martian near-subsurface. Novel psychrotolerant bacterial strains were isolated from the Antarctic Dry Valleys, an environmental analogue of the martian surface, and identified by 16S rRNA gene phylogeny as representatives of Brevundimonas, Rhodococcus, and Pseudomonas genera. These isolates, in addition to the known radioresistant extremophile Deinococcus radiodurans, were exposed to gamma rays while frozen on dry ice (-79°C). We found D. radiodurans to exhibit far greater radiation resistance when irradiated at -79°C than was observed in similar studies performed at higher temperatures. This greater radiation resistance has important implications for the estimation of potential survival times of microorganisms near the martian surface. Furthermore, the most radiation resistant of these Dry Valley isolates, Brevundimonas sp. MV.7, was found to show 99% 16S rRNA gene similarity to contaminant bacteria discovered in clean rooms at both Kennedy and Johnson Space Centers and so is of prime concern to efforts in the planetary protection of Mars from our lander probes. Results from this experimental irradiation, combined with previous radiation modeling, indicate that Brevundimonas sp. MV.7 emplaced only 30 cm deep in martian dust could survive the cosmic radiation for up to 100,000 years before suffering 106 population reduction.
Molecular dynamics simulation of shock induced ejection on fused silica surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Rui; Xiang, Meizhen; Jiang, Shengli
2014-05-21
Shock response and surface ejection behaviors of fused silica are studied by using non-equilibrium molecular dynamics combining with the Tersoff potential. First, bulk structure and Hugoniot curves of fused silica are calculated and compared with experimental results. Then, the dynamical process of surface ejection behavior is simulated under different loading velocities ranging from 3.5 to 5.0 km∕s, corresponding to shock wave velocities from 7.1 to 8.8 km∕s. The local atomistic shear strain parameter is used to describe the local plastic deformation under conditions of shock compression or releasing. Our result shows that the shear strain is localized in the bottom area ofmore » groove under the shock compression. Surface ejection is observed when the loading velocity exceeds 4.0 km∕s. Meanwhile, the temperature of the micro-jet is ∼5574.7 K, which is close to experiment measurement. Several kinds of structural defects including non-bridging oxygen are found in the bulk area of the sample after ejection.« less
NASA Astrophysics Data System (ADS)
Strehlow, Karen; Gottsmann, Jo
2014-05-01
Aquifers respond to and modify the surface expressions of magmatic activity, and they can also become agents of unrest themselves. Therefore, monitoring the hydrology can provide a valuable window into subsurface processes in volcanic areas. Interpretations of unrest signals as groundwater responses to changes in the magmatic system can be found for many volcanoes. Changes in temperature and strain conditions, seismic excitation or the injection of magmatic fluids into hydrothermal systems are just a few of the proposed processes induced by magmatic activity that affect the local hydrology. Aquifer responses are described to include changes in water table levels, changes in temperature or composition of hydrothermal waters and pore pressure-induced ground deformation. We can observe these effects at the surface via geophysical and geochemical signals. To fully to utilise these indicators as monitoring and forecasting tools, however, it is necessary to improve our still poor understanding of the ongoing mechanisms in the interactions of hydrological and magmatic systems. An extensive literature research provided an overview on reported effects, which we investigate in detail using numerical modelling. The hydrogeophysical study uses finite element analysis to quantitatively test proposed mechanisms of aquifer excitation and the resultant geophysical signals. We present a set of generic models for two typical volcanic landforms - a stratovolcano and a caldera - that simulate the interaction between deeper magmatic systems with shallow-seated aquifers, focusing on strain and temperature effects. They predict pore pressure induced hydraulic head changes in the aquifer as well as changing groundwater temperatures and strain induced fluid migration. Volcano observatories can track these hydrological effects for example with potential field investigations or the monitoring of wells. The models allow us to explore the parameter space, contributing to a better understanding of the coupling of these two highly complex systems. Our results provide further insight into the subsurface processes at volcanic systems and will aid the evaluation of unrest signals with potential for improved eruption forecasting.
Empirical Study of the Multiaxial, Thermomechanical Behavior of NiTiHf Shape Memory Alloys
NASA Technical Reports Server (NTRS)
Shukla, Dhwanil; Noebe, Ronald D.; Stebner Aaron P.
2013-01-01
An empirical study was conducted to characterize the multiaxial, thermomechanical responses of new high temperature NiTiHf alloys. The experimentation included loading thin walled tube Ni(sub 50.3)Ti(sub 29.7)Hf(sub 20) alloy samples along both proportional and nonproportional axial-torsion paths at different temperatures while measuring surface strains using stereo digital image correlation. A Ni(sub 50.3)Ti(sub 33.7)Hf(sub 16) alloy was also studied in tension and compression to document the effect of slightly depleting the Hf content on the constitutive responses of NiTiHf alloys. Samples of both alloys were made from nearly texture free polycrystalline material processed by hot extrusion. Analysis of the data shows that very small changes in composition significantly alter NiTiHf alloy properties, as the austenite finish (Af) temperature of the 16-at Hf alloy was found to be approximately 60 C less than the 20-at Hf alloy (approximately 120 C vs. 180 C). In addition, the 16-at Hf alloy exhibited smaller compressive transformation strains (2 vs. 2.5 percent). Multi-axial characterization of the 20-at % Hf alloy showed that while the random polycrystal transformation strains in tension (4 percent) and compression (2.5 percent) are modest in comparison with binary NiTi (6 percent, 4 percent), the torsion performance is superior (7 vs. 4 shear strain width to the pseudoelastic plateau).
Effects of Variable Surface Temperatures on the Dynamics of Convection within Enceladus' Ice Shell
NASA Astrophysics Data System (ADS)
Weller, M. B.; Fuchs, L.; Becker, T. W.; Soderlund, K. M.
2017-12-01
Despite Enceladus' relatively small size, observations reveal it as one of the more geologically active bodies in the solar system. Its surface is heavily deformed, including ridges, grooves, grabens, rifts, and folds that cover a significant fraction of the planet. Perhaps most notably, there is evidence of a hemispheric dichotomy between the south (the South Polar Terrain - SPT), and the remainder of the satellite. While the origin of the SPT has spurred much debate, ranging from oceans and tides to impacts, its existence suggests some form of localization process. Here, we use the mantle convection code CitcomS with temperature-dependent viscosity to address the effects of latitudinally variable surface temperature (due to differences in solar heating) for a range of internal heating rates (as proxy for tidal heating)on the convective vigor and planform within Enceladus' ice shell. Heterogeneous surface temperatures can produce a large, degree-1 upwelling with the other hemisphere fully dominated by a slower, colder downwelling. As internal heating decreases, the degree-1 upwelling forms and localizes, resulting in larger strain rates that arerestricted to 5-20% of the satellite. The remaining 80-95% of the surface remains cold and relatively quiescent, in general agreement with observations of Enceladus and the SPT today. These results show the initial degree-1 structure forms at a polar latitude, the region of greatest radial temperature contrast. This configuration is unstable, however, with the plume structure migrating towards a stable orientation at equatorial latitudes, the region of the highest absolute surface temperature. While an equatorial configuration is currently not witnessed on Enceladus,such a large and persistent dynamic structure could lead to reorientation of the satellite.
The Portevin–Le Chatelier effect: a review of experimental findings
Yilmaz, Ahmet
2011-01-01
The Portevin–Le Chatelier (PLC) effect manifests itself as an unstable plastic flow during tensile tests of some dilute alloys under certain regimes of strain rate and temperature. The plastic strain becomes localized in the form of bands which move along a specimen gauge in various ways as the PLC effect occurs. Because the localization of strain causes degradation of the inherent structural properties and surface quality of materials, understanding the effect is crucial for the effective use of alloys. The characteristic behaviors of localized strain bands and techniques commonly used to study the PLC effect are summarized in this review. A brief overview of experimental findings, the effect of material properties and test parameters on the PLC effect, and some discussion on the mechanisms of the effect are included. Tests for predicting the early failure of structural materials due to embrittlement induced by the PLC effect are also discussed. PMID:27877450
Sittenfeld, Ana; Mora, Marielos; Ortega, José María; Albertazzi, Federico; Cordero, Andrés; Roncel, Mercedes; Sánchez, Ethel; Vargas, Maribel; Fernández, Mario; Weckesser, Jürgen; Serrano, Aurelio
2002-10-01
Abstract Conspicuous green patches on the surface of an acidic hot mud pool located near the Rincón de la Vieja volcano (northwestern Costa Rica) consisted of apparently unialgal populations of a chloroplast-bearing euglenoid. Morphological and physiological studies showed that it is a non-flagellated photosynthetic Euglena strain able to grow in defined mineral media at temperatures up to 40 degrees C and exhibiting higher thermotolerance than Euglena gracilis SAG 5/15 in photosynthetic activity analyses. Molecular phylogeny studies using 18S rDNA and GapC genes indicated that this strain is closely related to Euglena mutabilis, another acid-tolerant photosynthetic euglenoid, forming a clade deeply rooted in the Euglenales lineage. To our knowledge this is the most thermotolerant euglenoid described so far and the first Euglenozoan strain reported to inhabit acidic hot aquatic habitats.
Bennett, S. P.; Wong, A. T.; Glavic, A.; Herklotz, A.; Urban, C.; Valmianski, I.; Biegalski, M. D.; Christen, H. M.; Ward, T. Z.; Lauter, V.
2016-01-01
The realization of a controllable metamagnetic transition from AFM to FM ordering would open the door to a plethora of new spintronics based devices that, rather than reorienting spins in a ferromagnet, harness direct control of a materials intrinsic magnetic ordering. In this study FeRh films with drastically reduced transition temperatures and a large magneto-thermal hysteresis were produced for magnetocaloric and spintronics applications. Remarkably, giant controllable magnetization changes (measured to be as high has ~25%) are realized by manipulating the strain transfer from the external lattice when subjected to two structural phase transitions of BaTiO3 (001) single crystal substrate. These magnetization changes are the largest seen to date to be controllably induced in the FeRh system. Using polarized neutron reflectometry we reveal how just a slight in plane surface strain change at ~290C results in a massive magnetic transformation in the bottom half of the film clearly demonstrating a strong lattice-spin coupling in FeRh. By means of these substrate induced strain changes we show a way to reproducibly explore the effects of temperature and strain on the relative stabilities of the FM and AFM phases in multi-domain metamagnetic systems. This study also demonstrates for the first time the depth dependent nature of a controllable magnetic order using strain in an artificial multiferroic heterostructure. PMID:26940159
Bennett, S. P.; Wong, A. T.; Glavic, A.; ...
2016-03-04
We realize that a controllable metamagnetic transition from AFM to FM ordering would open the door to a plethora of new spintronics based devices that, rather than reorienting spins in a ferromagnet, harness direct control of a materials intrinsic magnetic ordering. In this study FeRh films with drastically reduced transition temperatures and a large magneto-thermal hysteresis were produced for magnetocaloric and spintronics applications. Remarkably, giant controllable magnetization changes (measured to be as high has ~25%) are realized and by manipulating the strain transfer from the external lattice when subjected to two structural phase transitions of BaTiO3 (001) single crystal substrate.more » These magnetization changes are the largest seen to date to be controllably induced in the FeRh system. Using polarized neutron reflectometry we reveal how just a slight in plane surface strain change at ~290C results in a massive magnetic transformation in the bottom half of the film clearly demonstrating a strong lattice-spin coupling in FeRh. By means of these substrate induced strain changes we show a way to reproducibly explore the effects of temperature and strain on the relative stabilities of the FM and AFM phases in multi-domain metamagnetic systems. In our study also demonstrates for the first time the depth dependent nature of a controllable magnetic order using strain in an artificial multiferroic heterostructure.« less
Measuring Torque and Temperature in a Rotating Shaft Using Commercial SAW Sensors
Silva, Diogo; Pereira, António B.; Gégot, François
2017-01-01
Real-time monitoring of torque in a rotating shaft is not easy to implement with technologies such as optic fiber sensors or strain gages. Surface acoustic wave (SAW) sensors are wireless and passive and can be used to monitor strain in moving parts. Commercial solutions (sensors, antennas and interrogation unit) can easily be purchased from some companies; however, they are not customized and may not meet the specificity of the measurements. In order to evaluate the adequacy of commercial off-the-shelf (COTS) solutions, temperature and strain sensors fabricated by SENSeOR (Besançon, France) were mounted on a load cell. The sensors were calibrated using a thermal chamber and a universal testing machine. The load cell was then assembled together with a steel shaft that rotated at different speeds inside an oven. The commercial antennas were replaced with an RF (radio frequency) coupler and the sensors were interrogated with the commercial interrogation unit. The influence of rotation in the accuracy on the measurements, as well as the adequacy of the sensors structure, was evaluated. It can be concluded that SAW sensors can be used to measure temperature or torque in a rotating environment; however, some customization of the components is required in order to overcome the limitations posed by COTS sensing solutions. PMID:28671594
Measuring Torque and Temperature in a Rotating Shaft Using Commercial SAW Sensors.
Silva, Diogo; Mendes, Joana C; Pereira, António B; Gégot, François; Alves, Luís N
2017-07-02
Real-time monitoring of torque in a rotating shaft is not easy to implement with technologies such as optic fiber sensors or strain gages. Surface acoustic wave (SAW) sensors are wireless and passive and can be used to monitor strain in moving parts. Commercial solutions (sensors, antennas and interrogation unit) can easily be purchased from some companies; however, they are not customized and may not meet the specificity of the measurements. In order to evaluate the adequacy of commercial off-the-shelf (COTS) solutions, temperature and strain sensors fabricated by SENSeOR (Besançon, France) were mounted on a load cell. The sensors were calibrated using a thermal chamber and a universal testing machine. The load cell was then assembled together with a steel shaft that rotated at different speeds inside an oven. The commercial antennas were replaced with an RF (radio frequency) coupler and the sensors were interrogated with the commercial interrogation unit. The influence of rotation in the accuracy on the measurements, as well as the adequacy of the sensors structure, was evaluated. It can be concluded that SAW sensors can be used to measure temperature or torque in a rotating environment; however, some customization of the components is required in order to overcome the limitations posed by COTS sensing solutions.
Thermal/Mechanical Durability of Polymer-Matrix Composites in Cryogenic Environments
NASA Technical Reports Server (NTRS)
Gates, Thomas S.; Whitley, Karen S.; Grenoble, Ray W.; Bandorawalla, Tozer
2003-01-01
In order to increase the reliability of the next generation of space transportation systems, the mechanical behavior of polymeric-matrix composite (PMC) materials at cryogenic temperatures must be investigated. This paper presents experimental data on the residual mechanical properties of a carbon fiber polymeric composite, IM7/PETI-5 as a function of temperature and aging. Tension modulus and strength were measured at room temperature, -196 C, and -269 C on five different specimens ply lay-ups. Specimens were preconditioned with one set of coupons being isothermally aged for 576 hours at -184 C, in an unloaded state. Another set of corresponding coupons were mounted in constant strain fixtures such that a constant uniaxial strain was applied to the specimens for 576 hours at -184 C. A third set was mechanically cycled in tension at -184 C. The measured properties indicated that temperature, aging, and loading mode can all have significant influence on performance. Moreover, this influence is a strong function of laminate stacking sequence. Thermal-stress calculations based on lamination theory predicted that the transverse tensile ply stresses could be quite high for cryogenic test temperatures. Microscopic examination of the surface morphology showed evidence of degradation along the exposed edges of the material because of aging at cryogenic temperatures. ________________
Feedbacks Between Surface Processes and Tectonics at Rifted Margins: a Numerical Approach
NASA Astrophysics Data System (ADS)
Andres-Martinez, M.; Perez-Gussinye, M.; Morgan, J. P.; Armitage, J. J.
2014-12-01
Mantle dynamics drives the rifting of the continents and consequent crustal processes shape the topography of the rifted margins. Surface processes modify the topography by eroding positive reliefs and sedimenting on the basins. This lateral displacement of masses implies a change in the loads during rifting, affecting the architecture of the resulting margins. Furthermore, thermal insulation due to sediments could potentially have an impact on the rheologies, which are proved to be one of the most influential parameters that control the deformation style at the continental margins. In order to understand the feedback between these processes we have developed a numerical geodynamic model based on MILAMIN. Our model consists of a 2D Lagrangian triangular mesh for which velocities, displacements, pressures and temperatures are calculated each time step. The model is visco-elastic and includes a free-surface stabilization algorithm, strain weakening and an erosion/sedimentation algorithm. Sediment loads and temperatures on the sediments are taken into account when solving velocities and temperatures for the whole model. Although surface processes are strongly three-dimensional, we have chosen to study a 2D section parallel to the extension as a first approach. Results show that where sedimentation occurs strain further localizes. This is due to the extra load of the sediments exerting a gravitational force over the topography. We also observed angular unconformities on the sediments due to the rotation of crustal blocks associated with normal faults. In order to illustrate the feedbacks between surface and inner processes we will show a series of models calculated with different rheologies and extension velocities, with and without erosion/sedimentation. We will then discuss to which extent thermal insulation due to sedimentation and increased stresses due to sediment loading affect the geometry and distribution of faulting, the rheology of the lower crust and consequently margin architecture.
NASA Astrophysics Data System (ADS)
López-Escalante, M. C.; Ściana, B.; Dawidowski, W.; Bielak, K.; Gabás, M.
2018-03-01
This work presents the results of X-ray photoelectron spectroscopy studies on the bonding N configuration in InGaAsN epilayers grown by atmospheric pressure metal organic vapour phase epitaxy. Growth temperature has been tuned in order to obtain both, relaxed and strained layers. The studies were concentrated on analysing the influence of the growth temperature, post growth thermal annealing process and surface quality on the formation of Ga-N and In-N bonds as well as N-related defects. The contamination of InGaAsN films by growth precursor residues and oxides has also been addressed. The growth temperature stands out as a decisive factor boosting In-N bonds formation, while the thermal annealing seems to affect the N-related defects density in the layers.
Survival of Vibrio parahaemolyticus in Cooked Seafood at Refrigeration Temperatures
Bradshaw, Joe G.; Francis, David W.; Twedt, Robert M.
1974-01-01
The growth and survival of two strains of Vibrio parahaemolyticus isolated during food-borne gastroenteritis outbreaks in Japan and surface inoculated on cooked shrimp, shrimp with sauce, or cooked crab were tested at various refrigeration temperatures during a 48-h holding period. On cooked shrimp and crab, the vibrios grew well at 18.3 C, but their numbers declined gradually at 10 C and below. At 12.8 C, vibrios remained static for the most part. Thus, it appeared that 12.8 C was the borderline temperature for growth of the organism on cooked seafood. When cocktail sauce was added to surface-inoculated shrimp at a ratio of 2:1, the vibrio die-off rate was accelerated. In the shrimp and sauce few cells remained after 48 h, but in the sauce alone die-off was complete at 6 h. PMID:4825975
NASA Astrophysics Data System (ADS)
Chong, Haining; Wang, Zhewei; Chen, Chaonan; Xu, Zemin; Wu, Ke; Wu, Lan; Xu, Bo; Ye, Hui
2018-04-01
In order to suppress dislocation generation, we develop a "three-step growth" method to heteroepitaxy low dislocation density germanium (Ge) layers on silicon with the MBE process. The method is composed of 3 growth steps: low temperature (LT) seed layer, LT-HT intermediate layer as well as high temperature (HT) epilayer, successively. Threading dislocation density (TDD) of epitaxial Ge layers is measured as low as 1.4 × 106 cm-2 by optimizing the growth parameters. The results of Raman spectrum showed that the internal strain of heteroepitaxial Ge layers is tensile and homogeneous. During the growth of LT-HT intermediate layer, TDD reduction can be obtained by lowering the temperature ramping rate, and high rate deposition maintains smooth surface morphology in Ge epilayer. A mechanism based on thermodynamics is used to explain the TDD and surface morphological dependence on temperature ramping rate and deposition rate. Furthermore, we demonstrate that the Ge layer obtained can provide an excellent platform for III-V materials integrated on Si.
Dynamic Uniaxial Compression of HSLA-65 Steel at Elevated Temperatures
NASA Astrophysics Data System (ADS)
Dike, Shweta; Wang, Tianxue; Zuanetti, Bryan; Prakash, Vikas
2017-12-01
In the present study, the dynamic response of a high-strength, low alloy Grade 65 (HSLA-65) steel, used by the United States Navy for ship hull construction, is investigated under dynamic uniaxial compression at temperatures ranging from room temperature to 1000 °C using a novel elevated temperature split-Hopkinson pressure bar. These experiments are designed to probe the dynamic response of HSLA-65 steel in its single α-ferrite phase, mixed α + γ-austenite phase, and the single γ-austenite phase, as a function of temperature. The investigation is conducted at two different average strain rates—1450 and 2100/s. The experimental results indicate that at test temperatures in the range from room temperature to lower than 600 °C, i.e. prior to the development of the mixed α + γ phase, a net softening in flow strength is observed at all levels of plastic strain with increase in test temperatures. As the test temperatures are increased, the rate of this strain softening with temperature is observed to decrease, and at 600 °C the trend reverses itself resulting in an increase in flow stress at all strains tested. This increase in flow stress is understood be due to dynamic strain aging, where solute atoms play a distinctive role in hindering dislocation motion. At 800 °C, a (sharp) drop in the flow stress, equivalent to one-half of its value at room temperature, is observed. As the test temperature are increased to 900 and 1000 °C, further drop in flow stress are observed at all plastic strain levels. In addition, strain hardening in flow stress is observed at all test temperatures up to 600 °C; beyond 800 °C the rate of strain hardening is observed to decrease, with strain softening becoming dominant at temperatures of 900 °C and higher. Moreover, comparing the high strain rate stress versus strain data gathered on HSLA 65 in the current investigation with those available in the literature at quasi-static strain rates, strain-rate hardening can be inferred. The flow stress increases from 700 MPa at 8 × 10-4/s to 950 MPa at 1450/s and then to 1000 MPa at 2100/s at a strain of 0.1. Optical microscopy is used to understand evolution of microstructure in the post-test samples at the various test temperatures employed in the present study.
Approaching the ideal elastic strain limit in silicon nanowires
Zhang, Hongti; Tersoff, Jerry; Xu, Shang; Chen, Huixin; Zhang, Qiaobao; Zhang, Kaili; Yang, Yong; Lee, Chun-Sing; Tu, King-Ning; Li, Ju; Lu, Yang
2016-01-01
Achieving high elasticity for silicon (Si) nanowires, one of the most important and versatile building blocks in nanoelectronics, would enable their application in flexible electronics and bio-nano interfaces. We show that vapor-liquid-solid–grown single-crystalline Si nanowires with diameters of ~100 nm can be repeatedly stretched above 10% elastic strain at room temperature, approaching the theoretical elastic limit of silicon (17 to 20%). A few samples even reached ~16% tensile strain, with estimated fracture stress up to ~20 GPa. The deformations were fully reversible and hysteresis-free under loading-unloading tests with varied strain rates, and the failures still occurred in brittle fracture, with no visible sign of plasticity. The ability to achieve this “deep ultra-strength” for Si nanowires can be attributed mainly to their pristine, defect-scarce, nanosized single-crystalline structure and atomically smooth surfaces. This result indicates that semiconductor nanowires could have ultra-large elasticity with tunable band structures for promising “elastic strain engineering” applications. PMID:27540586
NASA Astrophysics Data System (ADS)
Pandey, Chandan; Mahapatra, M. M.; Kumar, Pradeep; Saini, N.
2018-01-01
Creep strength enhanced ferritic (CSEF) P91 steel were subjected to room temperature tensile test for quasi-static (less than 10-1/s) strain rate by using the Instron Vertical Tensile Testing Machine. Effect of different type of notch geometry, notch depth and angle on mechanical properties were also considered for different strain rate. In quasi-static rates, the P91 steel showed a positive strain rate sensitivity. On the basis of tensile data, fracture toughness of P91 steel was also calculated numerically. For 1 mm notch depth (constant strain rate), notch strength and fracture toughness were found to be increased with increase in notch angle from 45° to 60° while the maximum value attained in U-type notch. Notch angle and notch depth has found a minute effect on P91 steel strength and fracture toughness. The fracture surface morphology was studied by field emission scanning electron microscopy (FESEM).
Remote temperature-set-point controller
Burke, W.F.; Winiecki, A.L.
1984-10-17
An instrument is described for carrying out mechanical strain tests on metallic samples with the addition of means for varying the temperature with strain. The instrument includes opposing arms and associated equipment for holding a sample and varying the mechanical strain on the sample through a plurality of cycles of increasing and decreasing strain within predetermined limits, circuitry for producing an output signal representative of the strain during the tests, apparatus including a a set point and a coil about the sample for providing a controlled temperature in the sample, and circuitry interconnected between the strain output signal and set point for varying the temperature of the sample linearly with strain during the tests.
Remote temperature-set-point controller
Burke, William F.; Winiecki, Alan L.
1986-01-01
An instrument for carrying out mechanical strain tests on metallic samples with the addition of an electrical system for varying the temperature with strain, the instrument including opposing arms and associated equipment for holding a sample and varying the mechanical strain on the sample through a plurality of cycles of increasing and decreasing strain within predetermined limits, circuitry for producing an output signal representative of the strain during the tests, apparatus including a set point and a coil about the sample for providing a controlled temperature in the sample, and circuitry interconnected between the strain output signal and set point for varying the temperature of the sample linearly with strain during the tests.
NASA Astrophysics Data System (ADS)
Zhao, Jun; Quan, Guo-Zheng; Pan, Jia; Wang, Xuan; Wu, Dong-Sen; Xia, Yu-Feng
2018-01-01
Constitutive model of materials is one of the most requisite mathematical model in the finite element analysis, which describes the relationships of flow behaviors with strain, strain rate and temperature. In order to construct such constitutive relationships of ultra-high-strength BR1500HS steel at medium and low temperature regions, the true stress-strain data over a wide temperature range of 293-873 K and strain rate range of 0.01-10 s-1 were collected from a series of isothermal uniaxial tensile tests. The experimental results show that stress-strain relationships are highly non-linear and susceptible to three parameters involving temperature, strain and strain rate. By considering the impacts of strain rate and temperature on strain hardening, a modified constitutive model based on Johnson-Cook model was proposed to characterize flow behaviors in medium and low temperature ranges. The predictability of the improved model was also evaluated by the relative error (W(%)), correlation coefficient (R) and average absolute relative error (AARE). The R-value and AARE-value for modified constitutive model at medium and low temperature regions are 0.9915 & 1.56 % and 0.9570 & 5.39 %, respectively, which indicates that the modified constitutive model can precisely estimate the flow behaviors for BR1500HS steel in the medium and low temperature regions.
Dertli, Enes; Toker, Omer S; Durak, M Zeki; Yilmaz, Mustafa T; Tatlısu, Nevruz Berna; Sagdic, Osman; Cankurt, Hasan
2016-01-20
This study aimed to investigate the role of in situ exopolysaccharide (EPS) production by EPS(+)Streptococcus thermophilus strains on physicochemical, rheological, molecular, microstructural and sensory properties of ice cream in order to develop a fermented and consequently functional ice-cream in which no stabilizers would be required in ice-cream production. For this purpose, the effect of EPS producing strains (control, strain 1, strain 2 and mixture) and fermentation conditions (fermentation temperature; 32, 37 and 42 °C and time; 2, 3 and 4h) on pH, S. thermophilus count, EPS amount, consistency coefficient (K), and apparent viscosity (η50) were investigated and optimized using single and multiple response optimization tools of response surface methodology. Optimization analyses indicated that functional ice-cream should be fermented with strain 1 or strain mixture at 40-42 °C for 4h in order to produce the most viscous ice-cream with maximum EPS content. Optimization analysis results also revealed that strain specific conditions appeared to be more effective factor on in situ EPS production amount, K and η50 parameters than did fermentation temperature and time. The rheological analysis of the ice-cream produced by EPS(+) strains revealed its high viscous and pseudoplastic non-Newtonian fluid behavior, which demonstrates potential of S. thermophilus EPS as thickening and gelling agent in dairy industry. FTIR analysis proved that the EPS in ice-cream corresponded to a typical EPS, as revealed by the presence of carboxyl, hydroxyl and amide groups with additional α-glycosidic linkages. SEM studies demonstrated that it had a web-like compact microstructure with pores in ice-cream, revealing its application possibility in dairy products to improve their rheological properties. Copyright © 2015. Published by Elsevier Ltd.
High-Temperature Resistance Strain Gauges
NASA Technical Reports Server (NTRS)
Lei, Jih-Fen
1994-01-01
Resistance strain gauges developed for use at high temperatures in demanding applications like testing aircraft engines and structures. Measures static strains at temperatures up to 800 degrees C. Small and highly reproducible. Readings corrected for temperature within small tolerances, provided temperatures measured simultaneously by thermocouples or other suitable devices. Connected in wheatstone bridge.
Fracture resistance of a TiB2 particle/SiC matrix composite at elevated temperature
NASA Technical Reports Server (NTRS)
Jenkins, Michael G.; Salem, Jonathan A.; Seshadri, Srinivasa G.
1988-01-01
The fracture resistance of a comercial TiB2 particle/SiC matrix composite was evaluated at temperatures ranging from 20 to 1400 C. A laser interferometric strain gauge (LISG) was used to continuously monitor the crack mouth opening displacement (CMOD) of the chevron-notched and straight-notched, three-point bend specimens used. Crack growth resistance curves (R-curves) were determined from the load versus displacement curves and displacement calibrations. Fracture toughness, work-of-fracture, and R-curve levels were found to decrease with increasing temperature. Microstructure, fracture surface, and oxidation coat were examined to explain the fracture behavior.
Fracture resistance of a TiB2 particle/SiC matrix composite at elevated temperature
NASA Technical Reports Server (NTRS)
Jenkins, Michael G.; Salem, Jonathan A.; Seshadri, Srinivasa G.
1989-01-01
The fracture resistance of a commercial TiB2 particle/SiC matrix composite was evaluated at temperatures ranging from 20 to 1400 C. A laser interferometric strain gauge (LiSG) was used to continuously monitor the crack mouth opening displacement (CMOD) of the chevron-notched and straight-notched, three-point bend specimens used. Crack growth resistance curves (R-curves) were determined from the load versus displacement curves and displacement calibrations. Fracture toughness, work-of-fracture, and R-curve levels were found to decrease with increasing temperature. Microstructure, fracture surface, and oxidation coat were examined to explain the fracture behavior.
Analyzing the effect of tool edge radius on cutting temperature in micro-milling process
NASA Astrophysics Data System (ADS)
Liang, Y. C.; Yang, K.; Zheng, K. N.; Bai, Q. S.; Chen, W. Q.; Sun, G. Y.
2010-10-01
Cutting heat is one of the important physical subjects in the cutting process. Cutting heat together with cutting temperature produced by the cutting process will directly have effects on the tool wear and the life as well as on the workpiece processing precision and surface quality. The feature size of the workpiece is usually several microns. Thus, the tiny changes of cutting temperature will affect the workpiece on the surface quality and accuracy. Therefore, cutting heat and temperature generated in micro-milling will have significantly different effect than the one in the traditional tools cutting. In this paper, a two-dimensional coupled thermal-mechanical finite element model is adopted to determine thermal fields and cutting temperature during the Micro-milling process, by using software Deform-2D. The effect of tool edge radius on effective stress, effective strain, velocity field and cutting temperature distribution in micro-milling of aluminum alloy Al2024-T6 were investigated and analyzed. Also, the transient cutting temperature distribution was simulated dynamically. The simulation results show that the cutting temperature in Micro-milling is lower than those occurring in conventional milling processes due to the small loads and low cutting velocity. With increase of tool edge radius, the maximum temperature region gradually occurs on the contact region between finished surfaced and flank face of micro-cutter, instead of the rake face or the corner of micro-cutter. And this phenomenon shows an obvious size effect.
NASA Astrophysics Data System (ADS)
Vanaja, J.; Laha, K.; Sam, Shiju; Nandagopal, M.; Panneer Selvi, S.; Mathew, M. D.; Jayakumar, T.; Rajendra Kumar, E.
2012-05-01
Tensile strength and flow behaviour of a Reduced Activation Ferritic-Martensitic (RAFM) steel (9Cr-1W-0.06Ta-0.22V-0.08C) have been investigated over a temperature range of 300-873 K at different strain rates. Tensile strength of the steel decreased with temperature and increased with strain rate except at intermediate temperatures. Negative strain rate sensitivity of flow stress of the steel at intermediate temperatures revealed the occurrence of dynamic strain ageing in the steel, even though no serrated flow was observed. The tensile flow behaviour of the material was well represented by the Voce strain hardening equation for all the test conditions. Temperature and strain rate dependence of the various parameters of Voce equation were interpreted with the possible deformation mechanisms. The equivalence between the saturation stress at a given strain rate in tensile test and steady state deformation rate at a given stress in creep test was found to be satisfied by the RAFM steel.
NASA Technical Reports Server (NTRS)
Sikora, Paul F.; Hall, Robert W.
1961-01-01
Specimens of wrought sintered commercially pure tungsten were made from 1/8-inch swaged rods. All the specimens were recrystallized at 4050 F for 1 hour prior to testing at temperatures from 2500 to 4000 F at various strain rates from 0.002 to 20 inches per inch per minute. Results showed that, at a constant temperature, increasing the strain rate increased the ultimate tensile strength significantly. The effects of both strain rate and temperature on the ultimate tensile strength of tungsten may be correlated by the linear parameter method of Manson and Haferd and may be used to predict the ultimate tensile strength at higher temperatures, 4500 and 5000 F. As previously reported, ductility, as measured by reduction of area in a tensile test, decreases with increasing temperature above about 3000 F. Increasing the strain rate at temperatures above 3000 F increases the ductility. Fractures are generally transgranular at the higher strain rates and intergranular at the lower strain rates.
NASA Astrophysics Data System (ADS)
Schulte, K. L.; Zutter, B. T.; Wood, A. W.; Babcock, S. E.; Kuech, T. F.
2014-03-01
Thick InxGa1-xAs metamorphic buffer layers (MBLs) grown by hydride vapor phase epitaxy (HVPE) were studied. Relationships between MBL properties and growth parameters such as grading rate, cap layer thickness, final xInAs, and deposition temperature (TD) were explored. The MBLs were characterized by measurement of in-plane residual strain (ɛ¦¦), surface etch pit density (EPD), and surface roughness. Capping layer thickness had a strong effect on strain relaxation, with thickly capped samples exhibiting the lowest ɛ¦¦. EPD was higher in samples with thicker caps, reflecting their increased relaxation through dislocation generation. ɛ¦¦ and EPD were weakly affected by the grading rate, making capping layer thickness the primary structural parameter which controls these properties. MBLs graded in discrete steps had similar properties to MBLs with continuous grading. In samples with identical thickness and 10-step grading style, ɛ¦¦ increased almost linearly with final xInAs, while total relaxation stayed relatively constant. Relaxation as a function of xInAs could be described by an equilibrium model in which dislocation nucleation is impeded by the energy of the existing dislocation array. EPD was constant from xInAs = 0 to 0.24 then increased exponentially, which is related to the increased dislocation interaction and blocking seen at higher dislocation densities. RMS roughness increased with xInAs above a certain strain rate (0.15%/µm) samples grown below this level possessed large surface hillocks and high roughness values. The elimination of hillocks at higher values of xInAs is attributed to increased density of surface steps and is related to the out-of-plane component of the burgers vector of the dominant type of 60° dislocation. TD did not affect ɛ¦¦ for samples with a given xInAs. EPD tended to increase with TD, indicating dislocation glide likely is impeded at higher temperatures.
Echinicola rosea sp. nov., a marine bacterium isolated from surface seawater.
Liang, Pan; Sun, Jia; Li, Hao; Liu, Minyuan; Xue, Zhaocheng; Zhang, Yao
2016-09-01
A novel Gram-stain-negative, rod-shaped, gliding, halotolerant, aerobic, light-pink-pigmented bacterium, strain JL3085T, was isolated from surface water of the South China Sea (16° 49' 4″ N 112° 20' 24″ E; temperature: 28.3 °C, salinity: 34.5%). The major respiratory quinone was menaquinone 7 (MK-7). The polar lipids of strain JL3085T comprised phosphatidylethanolamine, four unidentified phospholipids and three unidentified lipids. The major fatty acids were iso-C15 : 0, summed feature 3 (comprising iso-C15 : 0 2-OH and/or C16 : 1ω7c), iso-C17 : 0 3-OH, iso-C17 : 1ω9c, C17 : 1ω6c, anteiso-C15 : 0 and C16 : 1ω5c. The DNA G+C content of strain JL3085T was 43.8 mol%. 16S rRNA gene sequence analysis indicated that strain JL3085T was affiliated with the genus Echinicola, a member of the phylum Bacteroidetes, and was related most closely to Echinicola vietnamensis KMM 6221T (96.8 % similarity). DNA-DNA relatedness between strain JL3085T and E. vietnamensis KMM 6221T was 27.5 %. Based on the evidence presented here, strain JL3085T is regarded as representing a novel species of the genus Echinicola, for which the name Echinicola rosea sp. nov. is proposed. The type strain is JL3085T (=NBRC 111782T=CGMCC 1.15407T).
Elevated temperature strain gages
NASA Technical Reports Server (NTRS)
Brittain, J. O.; Geslin, D.; Lei, J. F.
1985-01-01
Materials were evaluated that could be used in manufacturing electrical resistance strain gages for static strain measurements at temperatures at or above 1273 K. Strain gage materials must have a characteristic response to strain, temperature and time that is reproducible or that varies in a predictable manner within specified limits. Several metallic alloys were evaluated, as well as a series of transition metal carbides, nitrides and silicides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le, K. C.; Tran, T. M.; Langer, J. S.
The statistical-thermodynamic dislocation theory developed in previous papers is used here in an analysis of high-temperature deformation of aluminum and steel. Using physics-based parameters that we expect theoretically to be independent of strain rate and temperature, we are able to fit experimental stress-strain curves for three different strain rates and three different temperatures for each of these two materials. Here, our theoretical curves include yielding transitions at zero strain in agreement with experiment. We find that thermal softening effects are important even at the lowest temperatures and smallest strain rates.
Precursor-Surface Reactions in Plasma Deposition of Silicon Thin Films
NASA Astrophysics Data System (ADS)
Bakos, Tamas
2005-03-01
Device-quality hydrogenated amorphous silicon (a-Si:H) thin films are usually grown by plasma deposition under conditions where the SiH3 radical is the dominant deposition precursor. In this presentation, we report results of first-principles density functional theory calculations on the interactions of the SiH3 radical with the crystalline Si(100)-(2x1):H surface in conjunction with molecular-dynamics simulations of a-Si:H thin film growth by SiH3 radicals, which elucidate the pathways and energetics of surface reactions that govern important film properties. In particular, we show that an SiH3 radical can insert into strained surface Si-Si dimer bonds, abstract surface H through an Eley-Rideal mechanism, and passivate surface dangling bonds; these reactions follow exothermic and barrierless pathways that lead to a temperature-independent growth rate in agreement with experimental measurements. We also identify a thermally activated surface H abstraction process, in which the SiH3 radical diffuses through overcoordinated surface Si atoms until it encounters a favorable site for H abstraction; the diffusion and H-abstraction steps have commensurate activation barriers. This mechanism explains partly the reduction of the film H content at elevated substrate temperatures.
Adator, Emelia Hornam; Cheng, Meining; Holley, Rick; McAllister, Tim; Narvaez-Bravo, Claudia
2018-03-23
Biofilms are known to play important roles in bacterial survival and persistence in food-processing environments. This study aimed to determine the ability of the top 7 STEC serotypes to form biofilms on polystyrene (POL) and stainless steel (SS) plates and to quantify their survival and transfer from dry-surface biofilms to lettuce pieces. The ability of 14 STEC strains to form biofilms on these two materials at different exposure times and temperatures was assessed using crystal violet, Congo red and SEM. At 10 °C all serotypes were weak biofilm producers on both surfaces. In contrast, serotypes O45-040, O45-445, O103-102, O103-670 and O157-R508 were strong biofilm producers at 25 °C. Strains O103-102, O103-670, O111-CFS, O111-053 and O157:H7-R508 were expressers of curli. Under scanning electron microscopy, strains O103-670, O111-CFS, O157-R508, and O121-083 formed more discernible multilayer, mature biofilms on SS coupons. Regardless of the surface (POL/SS), all STEC strains were able to transfer viable cells onto fresh lettuce within a short contact time (2 min) to varying degrees (up to 6.35 log cfu/g). On POL, viable cell of almost all serotypes exhibited decreased detachment (p = 0.001) over 6 days; while after 30 days on SS, serotypes O45-040, O103-102, O103-670, O111-053, O111-CFS, O121-083, O145-231 O157:H7-R508 and O157:H7-122 were transferred to lettuce. After enrichment, all 14 STEC strains were recovered from dry-surface biofilms on POL and SS plates after 30 days. Results demonstrated that the top 7 STEC remained viable within dry-surface biofilms for at least 30 days, transferring to lettuce within 2 min of exposure and acting as a source of adulteration. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhu, Mengshi; Murayama, Hideaki
2017-04-01
New approach in simultaneous measurement of dynamic strain and temperature has been done by using a high birefringence PANDA fiber Bragg grating sensor. By this technique, we have succeeded in discriminating dynamic strain and temperature distribution at the sampling rate of 800 Hz and the spatial resolution of 1 mm. The dynamic distribution of strain and temperature were measured with the deviation of 5mm spatially. In addition, we have designed an experimental setup by which we can apply quantitative dynamic strain and temperature distribution to the fiber under testing without bounding it to a specimen.
Consideration of Wear Rates at High Velocities
2010-03-01
Strain vs. Three-dimensional Model . . . . . . . . . . . . 57 3.11 Example Single Asperity Wear Rate Integral . . . . . . . . . . 58 4.1 Third Stage...Slipper Accumulated Frictional Heating . . . . . . 67 4.2 Surface Temperature Third Stage Slipper, ave=0.5 . . . . . . . 67 4.3 Melt Depth Example...64 A3S Coefficient for Frictional Heat Curve Fit, Third Stage Slipper 66 B3S Coefficient for Frictional Heat Curve Fit, Third
NASA Technical Reports Server (NTRS)
Delgado, Irebert R.; Steinetz, Bruce M.; Rimnac, Clare M.; Lewandowski, John J.
2008-01-01
The fatigue crack growth behavior of Grainex Mar-M 247 is evaluated for NASA s Turbine Seal Test Facility. The facility is used to test air-to-air seals primarily for use in advanced jet engine applications. Because of extreme seal test conditions of temperature, pressure, and surface speeds, surface cracks may develop over time in the disk bolt holes. An inspection interval is developed to preclude catastrophic disk failure by using experimental fatigue crack growth data. By combining current fatigue crack growth results with previous fatigue strain-life experimental work, an inspection interval is determined for the test disk. The fatigue crack growth life of the NASA disk bolt holes is found to be 367 cycles at a crack depth of 0.501 mm using a factor of 2 on life at maximum operating conditions. Combining this result with previous fatigue strain-life experimental work gives a total fatigue life of 1032 cycles at a crack depth of 0.501 mm. Eddy-current inspections are suggested starting at 665 cycles since eddy current detection thresholds are currently at 0.381 mm. Inspection intervals are recommended every 50 cycles when operated at maximum operating conditions.
Life prediction of expulsion bladders through fatigue test and fold strain analysis
NASA Technical Reports Server (NTRS)
Chu, H. N.; Unterberg, W.
1972-01-01
Cycle life data are presented in terms of true maximum strain for four metals, two plastics, and two elastomers. The Coffin-Manson fatigue theory was applied for metals and plastics, and cut-growth fatigue theory for elastomers. The data are based on measurements made at room and elevated temperatures. It was found that double folds give rise to far severer folding strains than do simple folds. It was also found that, except for the elastomers, all the bladder materials develop surface cracks due to double folds after only one cycle. The findings indicate that metals, which are bets for premeation resistance, are worst for fatigue resistance, and vice versa for elastomers. The intermediate plastics were found to be unsatisfactory for both permeation and fatigue resistance for missions of extended duration.
Characterization of strain relaxation behavior in Si1- x Ge x epitaxial layers by dry oxidation
NASA Astrophysics Data System (ADS)
Jang, Hyunchul; Kim, Byongju; Koo, Sangmo; Park, Seran; Ko, Dae-Hong
2017-11-01
We fabricated fully strained Si0.77Ge0.23 epitaxial layers on Si substrates and investigated their strain relaxation behaviors under dry oxidation and the effect of oxidation temperatures and times. After the oxidation process, a Ge-rich layer was formed between the oxide and the remaining Si0.77Ge0.23 layer. Using reciprocal space mapping measurements, we confirmed that the strain of the Si0.77Ge0.23 layers was efficiently relaxed after oxidation, with a maximum relaxation value of 70% after oxidation at 850 °C for 120 min. The surface of Si0.77Ge0.23 layer after strain relaxation by dry oxidation was smoother than a thick Si0.77Ge0.23 layer, which achieved a similar strain relaxation value by increasing the film thickness. Additionally, N2 annealing was performed in order to compare its effect on the relaxation compared to dry oxidation and to identify relaxation mechanisms, other than the thermally driven ones, occurring during dry oxidation.
NASA Astrophysics Data System (ADS)
Ali, Mohammed Ali Nasser
The research project presents a fundamental understanding of the fatigue crack growth mechanisms of AISI 420 martensitic stainless steel, based on the comparison analysis between the theoretical and numerical modelling, incorporating research findings under isothermal fatigue loading for solid cylindrical specimen and the theoretical modelling with the numerical simulation for tubular specimen when subjected to cyclic mechanical loading superimposed by cyclic thermal shock.The experimental part of this research programme studied the fatigue stress-life data for three types of surface conditions specimen and the isothermal stress-controlled fatigue testing at 300 °C - 600 °C temperature range. It is observed that the highest strength is obtained for the polished specimen, while the machined specimen shows lower strength, and the lowest strength is the notched specimen due to the high effect of the stress concentration. The material behaviour at room and high temperatures shows an initial hardening, followed by slow extension until fully plastic saturation then followed by crack initiation and growth eventually reaching the failure of the specimen, resulting from the dynamic strain ageing occurred from the transformation of austenitic microstructure to martensite and also, the nucleation of precipitation at grain boundaries and the incremental temperature increase the fatigue crack growth rate with stress intensity factor however, the crack growth rate at 600 °C test temperature is less than 500 °C because of the creep-fatigue taking place.The theoretical modelling presents the crack growth analysis and stress and strain intensity factor approaches analysed in two case studies based on the addition of thermo-elastic-plastic stresses to the experimental fatigue applied loading. Case study one estimates the thermal stresses superimposed sinusoidal cyclic mechanical stress results in solid cylinder under isothermal fatigue simulation. Case study two estimates the transient thermal stresses superimposed on cyclic mechanical loading results in hollow cylinder under thermal shock in heating case and down shock cooling case. The combination of stress and strain intensity factor theoretical calculations with the experimental output recorded data shows a similar behaviour with increasing temperature, and there is a fair correlation between the profiles at the beginning and then divergence with increasing the crack length. The transient influence of high temperature in case two, giving a very high thermal shock stress as a heating or cooling effects, shifting up the combined stress, when applied a cyclic mechanical load in fraction of seconds, and the reputations of these shocks, causing a fast failure under high thermal shock stress superimposed with mechanical loading.Finally, the numerical modelling analyses three cases studied were solved due to the types of loading and types of specimen geometry by using finite element models constructed through the ANSYS Workbench version 13.0. The first case is a low cyclic fatigue case for a solid cylinder specimen simulated by applying a cyclic mechanical loading. The second is an isothermal fatigue case for solid cylinder specimen simulated by supplying different constant temperatures on the outer surface with cyclic mechanical loading, where the two cases are similar to the experimental tests and the third case, is a thermo-mechanical fatigue for a hollow cylinder model by simulating a thermal up-shock generated due to transient heating on the outer surface of the model or down shock cooling on the inner surface with the cyclic mechanical loading. The results show a good agreement with the experimental data in terms of alternative stress and life in the first case. In case two results show the strain intensity factor is increases with increasing temperature similar to the theoretical solution due to the influence of the modulus of elasticity and the difference in life estimation with the experimental output record is related to the input data made of theoretical physical properties and the experimental stress-life data.
Leskovšek, Vojteh; Godec, Matjaž; Kogej, Peter
2016-08-05
We have investigated the possibility of producing a magnetic encoder by an innovative process. Instead of turning grooves in the encoder bar for precise positioning, we incorporated the information in 304L stainless steel by transforming the austenite to martensite after bar extrusion in liquid nitrogen and marking it with a laser, which caused a local transformation of martensite back into austenite. 304L has an excellent corrosion resistance, but a low hardness and poor wear resistance, which limits its range of applications. However, nitriding is a very promising way to enhance the mechanical and magnetic properties. After low-temperature nitriding at 400 °C it is clear that both ε- and α'-martensite are present in the deformed microstructure, indicating the simultaneous stress-induced and strain-induced transformations of the austenite. The effects of a laser surface treatment and the consequent appearance of a non-magnetic phase due to the α' → γ transformation were investigated. The EDS maps show a high concentration of nitrogen in the alternating hard surface layers of γN and α'N (expanded austenite and martensite), but no significantly higher concentration of chromium or iron was detected. The high surface hardness of this nitride layer will lead to steels and encoders with better wear and corrosion resistance.
Leskovšek, Vojteh; Godec, Matjaž; Kogej, Peter
2016-01-01
We have investigated the possibility of producing a magnetic encoder by an innovative process. Instead of turning grooves in the encoder bar for precise positioning, we incorporated the information in 304L stainless steel by transforming the austenite to martensite after bar extrusion in liquid nitrogen and marking it with a laser, which caused a local transformation of martensite back into austenite. 304L has an excellent corrosion resistance, but a low hardness and poor wear resistance, which limits its range of applications. However, nitriding is a very promising way to enhance the mechanical and magnetic properties. After low-temperature nitriding at 400 °C it is clear that both ε- and α′-martensite are present in the deformed microstructure, indicating the simultaneous stress-induced and strain-induced transformations of the austenite. The effects of a laser surface treatment and the consequent appearance of a non-magnetic phase due to the α′ → γ transformation were investigated. The EDS maps show a high concentration of nitrogen in the alternating hard surface layers of γN and α′N (expanded austenite and martensite), but no significantly higher concentration of chromium or iron was detected. The high surface hardness of this nitride layer will lead to steels and encoders with better wear and corrosion resistance. PMID:27492862
Temperature evolution of the structural properties of monodomain ferroelectric thin film
NASA Astrophysics Data System (ADS)
Janolin, Pierre-Eymeric; Le Marrec, Françoise; Chevreul, Jacques; Dkhil, Brahim
2007-05-01
The structural evolution of epitaxial monodomain (only 180° domains) ferroelectric PbTiO3 thin film has been investigated, using high-resolution, temperature-dependent, x-ray diffraction. The full set of lattice parameters was obtained from room temperature up to 850K. It allowed the calculation of the different strains stored in the film at room temperature, underlying the difference between the mechanical strain and the misfit strain. The evolution of the misfit strain as a function of temperature was also calculated and was found to be consistent with the theoretical temperature-misfit strain phase diagram. These data strongly suggest that the film remains ferroelectric and tetragonal up to 940K.
Materials and structural aspects of advanced gas-turbine helicopter engines
NASA Technical Reports Server (NTRS)
Freche, J. C.; Acurio, J.
1979-01-01
Advances in materials, coatings, turbine cooling technology, structural and design concepts, and component-life prediction of helicopter gas-turbine-engine components are presented. Stationary parts including the inlet particle separator, the front frame, rotor tip seals, vanes and combustors and rotating components - compressor blades, disks, and turbine blades - are discussed. Advanced composite materials are considered for the front frame and compressor blades, prealloyed powder superalloys will increase strength and reduce costs of disks, the oxide dispersion strengthened alloys will have 100C higher use temperature in combustors and vanes than conventional superalloys, ceramics will provide the highest use temperature of 1400C for stator vanes and 1370C for turbine blades, and directionally solidified eutectics will afford up to 50C temperature advantage at turbine blade operating conditions. Coatings for surface protection at higher surface temperatures and design trends in turbine cooling technology are discussed. New analytical methods of life prediction such as strain gage partitioning for high temperature prediction, fatigue life, computerized prediction of oxidation resistance, and advanced techniques for estimating coating life are described.
Alvarez, Vanessa Marques; Jurelevicius, Diogo; Marques, Joana Montezano; de Souza, Pamella Macedo; de Araújo, Livia Vieira; Barros, Thalita Gonçalves; de Souza, Rodrigo Octavio Mendonça Alves; Freire, Denise Maria Guimarães; Seldin, Lucy
2015-12-01
A screening for biosurfactant-producing bacteria was conducted with 217 strains that were isolated from environmental samples contaminated with crude oil and/or petroleum derivatives. Although 19 promising biosurfactant producers were detected, strain TSBSO 3.8, which was identified by molecular methods as Bacillus amyloliquefaciens, drew attention for its production of a high-activity compound that presented an emulsification activity of 63% and considerably decreased surface (28.5 mN/m) and interfacial (11.4 mN/m) tensions in Trypticase Soy Broth culture medium. TSBSO 3.8 growth and biosurfactant production were tested under different physical and chemical conditions to evaluate its biotechnological potential. Biosurfactant production occurred between 0.5% and 7% NaCl, at pH values varying from 6 to 9 and temperatures ranging from 28 to 50 °C. Moreover, biosurfactant properties remained the same after autoclaving at 121 °C for 15 min. The biosurfactant was also successful in a test to simulate microbial enhanced oil recovery (MEOR). Mass spectrometry analysis showed that the surface active compound was a surfactin, known as a powerful biosurfactant that is commonly produced by Bacillus species. The production of a high-efficiency biosurfactant, under some physical and chemical conditions that resemble those experienced in an oil production reservoir, such as high salinities and temperatures, makes TSBSO 3.8 an excellent candidate and creates good expectations for its application in MEOR. Copyright © 2015 Elsevier B.V. All rights reserved.
Tensile Strength of Carbon Nanotubes Under Realistic Temperature and Strain Rate
NASA Technical Reports Server (NTRS)
Wei, Chen-Yu; Cho, Kyeong-Jae; Srivastava, Deepak; Biegel, Bryan (Technical Monitor)
2002-01-01
Strain rate and temperature dependence of the tensile strength of single-wall carbon nanotubes has been investigated with molecular dynamics simulations. The tensile failure or yield strain is found to be strongly dependent on the temperature and strain rate. A transition state theory based predictive model is developed for the tensile failure of nanotubes. Based on the parameters fitted from high-strain rate and temperature dependent molecular dynamics simulations, the model predicts that a defect free micrometer long single-wall nanotube at 300 K, stretched with a strain rate of 1%/hour, fails at about 9 plus or minus 1% tensile strain. This is in good agreement with recent experimental findings.
NASA Technical Reports Server (NTRS)
Grant, Joseph
2005-01-01
Fiber Bragg gratings are use to monitor the structural properties of composite pressure vessels. These gratings optically inscribed into the core of a single mode fiber are used as a tool to monitor the stress strain relation in laminate structure. The fiber Bragg sensors are both embedded within the composite laminates and bonded to the surface of the vessel with varying orientations with respect to the carbon fiber in the epoxy matrix. The response of these fiber-optic sensors is investigated by pressurizing the cylinder up to its burst pressure of around 2800 psi. This is done at both ambient and cryogenic temperatures using water and liquid nitrogen. The recorded response is compared with the response from conventional strain gauge also present on the vessel. Additionally, several vessels were tested that had been damaged to simulate different type of events, such as cut tow, delimitation and impact damage.
NASA Technical Reports Server (NTRS)
Grant, Joseph
2004-01-01
Fiber Bragg gratings are use to monitor the structural properties of composite pressure vessels. These gratings optically inscribed into the core of a single mode fiber are used as a tool to monitor the stress strain relation in laminate structure. The fiber Bragg sensors are both embedded within the composite laminates and bonded to the surface of the vessel with varying orientations with respect to the carbon fiber in the epoxy matrix. The response of these fiber-optic sensors is investigated by pressurizing the cylinder up to its burst pressure of around 2800 psi. This is done at both ambient and cryogenic temperatures using water and liquid nitrogen. The recorded response is compared with the response from conventional strain gauge also present on the vessel. Additionally, several vessels were tested that had been damaged to simulate different type of events, such as cut tow, delimitation and impact damage.
NASA Astrophysics Data System (ADS)
Zhang, Z.; Hu, Z. F.; Zhang, L. F.; Chen, K.; Singh, P. M.
2018-01-01
The effect of temperature and dissolved oxygen (DO) on stress corrosion cracking (SCC) of P92 martensitic steel in supercritical water (SCW) was investigated using slow strain rate test (SSRT) and fractography analysis. The SSRT was carried out at temperatures of 400, 500, 600 °C in deaerated supercritical water and at DO contents of 0, 200, 500 ppb at the temperature of 600 °C, respectively. The results of SSRT show that the decrease of ductility at the temperature of 400 °C may be related to the dynamic strain aging (DSA) of P92 steel. The degradation of the mechanical properties in SCW is the joint effect of temperature and SCC. Compared with the effect of temperature, DO in SCW has no significant effect on the SCC susceptibility of P92 steel. The observation of oxide layer shows that large numbers of pores are nucleated in the oxide layer, which is related to vacancy accumulation and hydrogen generated in the oxide layer. Under the combined action of the growth stress and tensile stress, micro cracks, nucleated from the pores in the oxide layer, are easily propagated intergranularly outward to the surface of specimen, and fewer cracks can extend inward along the intrinsic pores to the inner oxide/metal interface, which is the reason for the exfoliation of oxide films.
Biofilm formation by Salmonella spp. in catfish mucus extract under industrial conditions.
Dhowlaghar, Nitin; De Abrew Abeysundara, Piumi; Nannapaneni, Ramakrishna; Schilling, Mark W; Chang, Sam; Cheng, Wen-Hsing; Sharma, Chander S
2018-04-01
The objective of this study was to determine the effect of strain and temperature on the growth and biofilm formation of Salmonella spp. in high and low concentrations of catfish mucus extract on different food-contact surfaces at 22 °C and 10 °C. The second objective of this study was to evaluate the efficacy of disinfectants at recommended concentrations and contact times for removing Salmonella biofilms cells on a stainless steel surface containing catfish mucus extract. Growth and biofilm formation of all Salmonella strains increased with higher concentrations of catfish mucus extract at both 10 °C and 22 °C. In 15 μg/ml of catfish mucus extract inoculated with 3 log CFU/ml, the biofilm levels of Salmonella on stainless steel surface reached to 3.5 log CFU/cm 2 at 10 °C or 5.5 log CFU/cm 2 at 22 °C in 7 days. In 375 μg/ml of catfish mucus extract inoculated with 3 log CFU/ml, the biofilm levels of Salmonella on the stainless steel surface reached 4.5 log CFU/cm 2 at 10 °C and 6.5 log CFU/cm 2 at 22 °C in 7 days. No differences were observed between Salmonella strains tested for biofilm formation in catfish mucus extract on the stainless steel surface. The biofilm formation by Salmonella Blockley (7175) in catfish mucus extract was less (P < 0.05) on buna-N rubber when compared to stainless steel, polyethylene and polyurethane surfaces. Salmonella biofilm cells were not detectable on the stainless steel surface after treatment with a mixture of disinfectants but were still present when single compound disinfectants were used. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dislocation nucleation facilitated by atomic segregation
NASA Astrophysics Data System (ADS)
Zou, Lianfeng; Yang, Chaoming; Lei, Yinkai; Zakharov, Dmitri; Wiezorek, Jörg M. K.; Su, Dong; Yin, Qiyue; Li, Jonathan; Liu, Zhenyu; Stach, Eric A.; Yang, Judith C.; Qi, Liang; Wang, Guofeng; Zhou, Guangwen
2018-01-01
Surface segregation--the enrichment of one element at the surface, relative to the bulk--is ubiquitous to multi-component materials. Using the example of a Cu-Au solid solution, we demonstrate that compositional variations induced by surface segregation are accompanied by misfit strain and the formation of dislocations in the subsurface region via a surface diffusion and trapping process. The resulting chemically ordered surface regions acts as an effective barrier that inhibits subsequent dislocation annihilation at free surfaces. Using dynamic, atomic-scale resolution electron microscopy observations and theory modelling, we show that the dislocations are highly active, and we delineate the specific atomic-scale mechanisms associated with their nucleation, glide, climb, and annihilation at elevated temperatures. These observations provide mechanistic detail of how dislocations nucleate and migrate at heterointerfaces in dissimilar-material systems.
Effect of temperature on motility and chemotaxis of Escherichia coli.
Maeda, K; Imae, Y; Shioi, J I; Oosawa, F
1976-01-01
The swimming velocity of Escherichia coli at various constant temperatures was found to increase with increasing temperature. The frequency of tumbling had a peak at 34 degrees C and was very low both at 20 and at 39 degrees C. The swimming tracks near the surface of a slide glass showed curves, and the curvature increased the temperature. When the temperature of a bacterial suspension was suddenly changed, a transient change of the tumbling frequency was observed. A temperature drop induced a temporary increase in the tumbling frequency, and a quick rise of temperature, on the other hand, resulted in a temporary suppression of the tumbling. These dynamic responses to sudden changes of temperature was not observed in the smoothly swimming nonchemotactic strains bearing the mutations cheA and cheC and also in a mutant with the metF mutation under a smooth swimming condition. Images PMID:783127
1976-03-01
Temperature dependence of flow stress of titanium, at (a) low and (b) high strain rates. 76 18 Strain dependence of apparent and intrinsic strain-rate...Cryostat in position surrounding specimen 98 B3 General view of low- temperature apparatus 98 CI Design of high - temperature titanium specimen and grip 99 C2... High - temperature titanium specimen and stainless- steel grips 100 C3 Transmission of torsional wave through mechanical connectors, at (a) 2000C (b
NASA Astrophysics Data System (ADS)
Gupta, R. K.; Anil Kumar, V.; Sukumaran, Arjun; Kumar, Vinod
2018-05-01
Electron beam welding of Ni-20Cr-9Mo-4Nb alloy sheets was carried out, and high-temperature tensile behaviors of base metal and weldments were studied. Tensile properties were evaluated at ambient temperature, at elevated temperatures of 625 °C to 1025 °C, and at strain rates of 0.1 to 0.001 s-1. Microstructure of the weld consisted of columnar dendritic structure and revealed epitaxial mode of solidification. Weld efficiency of 90 pct in terms of strength (UTS) was observed at ambient temperature and up to an elevated temperature of 850 °C. Reduction in strength continued with further increase of test temperature (up to 1025 °C); however, a significant improvement in pct elongation is found up to 775 °C, which was sustained even at higher test temperatures. The tensile behaviors of base metal and weldments were similar at the elevated temperatures at the respective strain rates. Strain hardening exponent `n' of the base metal and weldment was 0.519. Activation energy `Q' of base metal and EB weldments were 420 to 535 kJ mol-1 determined through isothermal tensile tests and 625 to 662 kJ mol-1 through jump-temperature tensile tests. Strain rate sensitivity `m' was low (< 0.119) for the base metal and (< 0.164) for the weldment. The δ phase was revealed in specimens annealed at 700 °C, whereas, twins and fully recrystallized grains were observed in specimens annealed at 1025 °C. Low-angle misorientation and strain localization in the welds and the HAZ during tensile testing at higher temperature and strain rates indicates subgrain formation and recrystallization. Higher elongation in the weldment (at Test temperature > 775 °C) is attributed to the presence of recrystallized grains. Up to 700 °C, the deformation is through slip, where strain hardening is predominant and effect of strain rate is minimal. Between 775 °C to 850 °C, strain hardening is counterbalanced by flow softening, where cavitation limits the deformation (predominantly at lower strain rate). Above 925 °C, flow softening is predominant resulting in a significant reduction in strength. Presence of precipitates/accumulated strain at high strain rate results in high strength, but when the precipitates were coarsened at lower strain rates or precipitates were dissolved at a higher temperature, the result was a reduction in strength. Further, the accumulated strain assisted in recrystallization, which also resulted in a reduction in strength.
Thermomechanical modelling of laser surface glazing for H13 tool steel
NASA Astrophysics Data System (ADS)
Kabir, I. R.; Yin, D.; Tamanna, N.; Naher, S.
2018-03-01
A two-dimensional thermomechanical finite element (FE) model of laser surface glazing (LSG) has been developed for H13 tool steel. The direct coupling technique of ANSYS 17.2 (APDL) has been utilised to solve the transient thermomechanical process. A H13 tool steel cylindrical cross-section has been modelled for laser power 200 W and 300 W at constant 0.2 mm beam width and 0.15 ms residence time. The model can predict temperature distribution, stress-strain increments in elastic and plastic region with time and space. The crack formation tendency also can be assumed by analysing the von Mises stress in the heat-concentrated zone. Isotropic and kinematic hardening models have been applied separately to predict the after-yield phenomena. At 200 W laser power, the peak surface temperature achieved is 1520 K which is below the melting point (1727 K) of H13 tool steel. For laser power 300 W, the peak surface temperature is 2523 K. Tensile residual stresses on surface have been found after cooling, which are in agreement with literature. Isotropic model shows higher residual stress that increases with laser power. Conversely, kinematic model gives lower residual stress which decreases with laser power. Therefore, both plasticity models could work in LSG for H13 tool steel.
2017-03-27
7 The objective is to demonstrate simultaneous strain and temperature measurement using a single Fiber Bragg Grating (FBG). We developed two...huang@uta.edu Contract Information Contract Number: N00014-14-1-0636 Contract Title: : Simultaneous Strain and Temperature Measurement Using a...University of Texas Arlington Abstract: the objective of this project is to demonstrate simultaneous strain and temperature measurement using a single
NASA Technical Reports Server (NTRS)
Huron, Eric S.
1986-01-01
Directionally solidified (DS) MAR-M246+Hf was tested in tension and fatigue, at temperatures from 20 C to 1093 C. Tests were performed on (001) oriented specimens at strain rates of 50 % and 0.5 % per minute. In tension, the yield strength was constant up to 704 C, above which the strength dropped off rapidly. A strong dependence of strength on strain rate was seen at the higher temperatures. The deformation mode was observed to change from heterogeneous to homogeneous with increasing temperature. Low Cycle Fatigue tests were done using a fully reversed waveform and total strain control. For a given plastic strain range, lives increased with increasing temperature. For a given temperature strain rate had a strong effect on life. At 704 C, decreasing strain rates decreased life, while at the higher temperatures, decreasing strain rates increased life, for a given plastic strain range. These results could be explained through considerations of the deformation modes and stress levels. At the higher temperatures, marked coarsening caused beneficial stress reductions, but oxidation limited the life. The longitudinal grain boundaries were found to influence slip behavior. The degree of secondary slip adjacent to the boundaries was found to be related to the degree of misorientation between the grains.
Molecular deformation and stress-strain behavior of poly(bisphenol-A-diphenyl sulfone)
NASA Technical Reports Server (NTRS)
Hong, S.-D.; Chung, S. Y.; Fedors, R. F.
1983-01-01
The strain-birefringence response of poly(bisphenol-A-diphenyl sulfone) is found to be independent of temperature at temperatures below -100 C; at higher temperatures, the response becomes slightly dependent on temperature, with lower birefringence seen at higher temperatures. The stress-strain behavior and the stress-birefringence response both depend on temperature over the entire testing temperature range (-179 C to 150 C) studied; this dependence, however, is not pronounced. The evidence is seen as suggesting that the polymer molecules respond to deformation by undergoing conformational rearrangements; the mode of the molecular deformation remains unchanged for temperatures of -100 C or lower. At higher temperatures, the average length of the chain segments involved in the rearrangement increases. The stress-strain response is attributed mainly to chain orientation. The entropic contribution deriving from chain orientation at temperatures below -100 C is still substantial. The modest temperature dependence of the stress-strain response suggests that the energy barriers for the chain segments involved in the rearrangement are relatively low.
Kashefi, Kazem; Holmes, Dawn E; Baross, John A; Lovley, Derek R
2003-05-01
Little is known about the microbiology of the "Bag City" hydrothermal vent, which is part of a new eruption site on the Juan de Fuca Ridge and which is notable for its accumulation of polysaccharide on the sediment surface. A pure culture, designated strain SS015, was recovered from a vent fluid sample from the Bag City site through serial dilution in liquid medium with malate as the electron donor and Fe(III) oxide as the electron acceptor and then isolation of single colonies on solid Fe(III) oxide medium. The cells were gram-negative rods, about 0.5 micro m by 1.2 to 1.5 micro m, and motile and contained c-type cytochromes. Analysis of the 16S ribosomal DNA (rDNA) sequence of strain SS015 placed it in the family Geobacteraceae in the delta subclass of the Proteobacteria. Unlike previously described members of the Geobacteraceae, which are mesophiles, strain SS015 was a thermophile and grew at temperatures of between 35 and 65 degrees C, with an optimum temperature of 55 degrees C. Like many previously described members of the Geobacteraceae, strain SS015 grew with organic acids as the electron donors and Fe(III) or nitrate as the electron acceptor, with nitrate being reduced to ammonia. Strain SS015 was unique among the Geobacteraceae in its ability to use sugars, starch, or amino acids as electron donors for Fe(III) reduction. Under stress conditions, strain SS015 produced copious quantities of extracellular polysaccharide, providing a model for the microbial production of the polysaccharide accumulation at the Bag City site. The 16S rDNA sequence of strain SS015 was less than 94% similar to the sequences of previously described members of the Geobacteraceae; this fact, coupled with its unique physiological properties, suggests that strain SS015 represents a new genus in the family Geobacteraceae. The name Geothermobacter ehrlichii gen. nov., sp. nov., is proposed (ATCC BAA-635 and DSM 15274). Although strains of Geobacteraceae are known to be the predominant Fe(III)-reducing microorganisms in a variety of Fe(III)-reducing environments at moderate temperatures, strain SS015 represents the first described thermophilic member of the Geobacteraceae and thus extends the known environmental range of this family to hydrothermal environments.
Topological Insulator State in Thin Bismuth Films Subjected to Plane Tensile Strain
NASA Astrophysics Data System (ADS)
Demidov, E. V.; Grabov, V. M.; Komarov, V. A.; Kablukova, N. S.; Krushel'nitskii, A. N.
2018-03-01
The results of experimental examination of galvanomagnetic properties of thin bismuth films subjected to plane tensile strain resulting from the difference in thermal expansion coefficients of the substrate material and bismuth are presented. The resistivity, the magnetoresistance, and the Hall coefficient were studied at temperatures ranging from 5 to 300 K in magnetic fields as strong as 0.65 T. Carrier densities were calculated. A considerable increase in carrier density in films thinner than 30 nm was observed. This suggests that surface states are more prominent in thin bismuth films on mica substrates, while the films themselves may exhibit the properties of a topological insulator.
Multiparameter thermo-mechanical OCT-based characterization of laser-induced cornea reshaping
NASA Astrophysics Data System (ADS)
Zaitsev, Vladimir Yu.; Matveyev, Alexandr L.; Matveev, Lev A.; Gelikonov, Grigory V.; Vitkin, Alex; Omelchenko, Alexander I.; Baum, Olga I.; Shabanov, Dmitry V.; Sovetsky, Alexander A.; Sobol, Emil N.
2017-02-01
Phase-sensitive optical coherence tomography (OCT) is used for visualizing dynamic and cumulative strains and corneashape changes during laser-produced tissue heating. Such non-destructive (non-ablative) cornea reshaping can be used as a basis of emerging technologies of laser vision correction. In experiments with cartilaginous samples, polyacrilamide phantoms and excised rabbit eyes we demonstrate ability of the developed OCT system to simultaneously characterize transient and cumulated strain distributions, surface displacements, scattering tissue properties and possibility of temperature estimation via thermal-expansion measurements. The proposed approach can be implemented in perspective real-time OCT systems for ensuring safety of new methods of laser reshaping of cornea.
Strain tolerance in technical Nb3Al superconductors
NASA Astrophysics Data System (ADS)
Banno, N.; Takeuchi, T.; Kitaguchi, H.; Tagawa, K.
2006-10-01
We observed crack formation in transformation-processed Nb3Al wires at room temperature, the wire being bent with a small clamp fixture with a curvature. The polished cross-section parallel to the longitudinal axis was observed, using a high power optical microscope or a field-emission scanning electron microscope. The bend strain limit for microcrack formation is found, changing the radius of the curvature of the clamp. The bend strain limit was found to be around 0.3% for standard Nb3Al wires. This corresponds to the irreversible tensile strain limit of the Ic characteristics determined with a 0.1 µV cm-1 criterion. Reduction of the barrier thickness should be avoided to keep to the bend strain limit. A new configuration of the Nb3Al wire is demonstrated to improve the bend strain limit. The filament is divided into segments in the transverse cross-section. The wire is fabricated by a double-stacking method. The bend strain limit is enhanced to about 0.85% for the wire surface; the equivalent strain of the outermost filament location is about 0.66%. A simple react and wind test for this wire was performed, where the wire experienced 0.86% bend strain. The degradation of Jc was found to be very small.
Retention of ductility in high-strength steels
NASA Technical Reports Server (NTRS)
Parker, E. R.; Zackay, V. F.
1969-01-01
To produce high strength alloy steel with retention of ductility, include tempering, cooling and subsequent tempering. Five parameters for optimum results are pretempering temperature, amount of strain, strain rate, temperature during strain, and retempering temperature.
Simultaneous measurement of temperature and strain using four connecting wires
NASA Technical Reports Server (NTRS)
Parker, Allen R., Jr.
1993-01-01
This paper describes a new signal-conditioning technique for measuring strain and temperature which uses fewer connecting wires than conventional techniques. Simultaneous measurement of temperature and strain has been achieved by using thermocouple wire to connect strain gages to signal conditioning. This signal conditioning uses a new method for demultiplexing sampled analog signals and the Anderson current loop circuit. Theory is presented along with data to confirm that strain gage resistance change is sensed without appreciable error because of thermoelectric effects. Furthermore, temperature is sensed without appreciable error because of voltage drops caused by strain gage excitation current flowing through the gage resistance.
Lee, Woei-Shyan; Chen, Tao-Hsing; Lin, Chi-Feng; Luo, Wen-Zhen
2011-01-01
A split Hopkinson pressure bar is used to investigate the dynamic mechanical properties of biomedical 316L stainless steel under strain rates ranging from 1 × 103 s−1 to 5 × 103 s−1 and temperatures between 25°C and 800°C. The results indicate that the flow stress, work-hardening rate, strain rate sensitivity, and thermal activation energy are all significantly dependent on the strain, strain rate, and temperature. For a constant temperature, the flow stress, work-hardening rate, and strain rate sensitivity increase with increasing strain rate, while the thermal activation energy decreases. Catastrophic failure occurs only for the specimens deformed at a strain rate of 5 × 103 s−1 and temperatures of 25°C or 200°C. Scanning electron microscopy observations show that the specimens fracture in a ductile shear mode. Optical microscopy analyses reveal that the number of slip bands within the grains increases with an increasing strain rate. Moreover, a dynamic recrystallisation of the deformed microstructure is observed in the specimens tested at the highest temperature of 800°C. PMID:22216015
Microstrip patch antenna for simultaneous strain and temperature sensing
NASA Astrophysics Data System (ADS)
Mbanya Tchafa, F.; Huang, H.
2018-06-01
A patch antenna, consisting of a radiation patch, a dielectric substrate, and a ground plane, resonates at distinct fundamental frequencies that depend on the substrate dielectric constant and the dimensions of the radiation patch. Since these parameters change with the applied strain and temperature, this study investigates simultaneous strain and temperature sensing using a single antenna that has two fundamental resonant frequencies. The theoretical relationship between the antenna resonant frequency shifts, the temperature, and the applied strain was first established to guide the selection of the dielectric substrate, based on which an antenna sensor with a rectangular radiation patch was designed and fabricated. A tensile test specimen instrumented with the antenna sensor was subjected to thermo-mechanical tests. Experiment results validated the theoretical predictions that the normalized antenna resonant frequency shifts are linearly proportional to the applied strain and temperature changes. An inverse method was developed to determine the strain and temperature changes from the normalized antenna resonant frequency shifts, yielding measurement uncertainty of 0.4 °C and 17.22 μ \\varepsilon for temperature and strain measurement, respectively.
NASA Astrophysics Data System (ADS)
Aróztegui, Juan J.; Urcola, José J.; Fuentes, Manuel
1989-09-01
Commercial electric arc melted low-carbon steels, provided as I beams, were characterized both microstructurally and mechanically in the as-rolled, copper precipitation, and plastically pre-deformed conditions. Inclusion size distribution, ferrite grain size, pearlite volume fraction, precipitated volume fraction of copper, and size distribution of these precipitates were deter-mined by conventional quantitative optical and electron metallographic techniques. From the tensile tests conducted at a strain rate of 10-3 s-1 and impact Charpy V-notched tests carried out, stress/strain curves, yield stress, and impact-transition temperature were obtained. The spe-cific fractographic features of the fracture surfaces also were quantitatively characterized. The increases in yield stress and transition temperature experienced upon either aging or work hard-ening were related through empirical relationships. These dependences were analyzed semi-quantitatively by combining microscopic and macroscopic fracture criteria based on measured fundamental properties (fracture stress and yield stress) and observed fractographic parameters (crack nucleation distance and nuclei size). The rationale developed from these fracture criteria allows the semiquantitative prediction of the temperature transition shifts produced upon aging and work hardening. The values obtained are of the right order of magnitude.
NASA Technical Reports Server (NTRS)
Gabb, Timothy P.; Telesman, Jack; Banik, Anthony; McDevitt, Erin
2014-01-01
Intergranular fatigue crack initiation and growth due to environmental degradation, especially at notched features, can often limit the fatigue life of disk superalloys at high temperatures. For clear comparisons, the effects of alloy composition on cracking in air needs to be understood and compared separately from variables associated with notches and cracks such as effective stress concentration, plastic flow, stress relaxation, and stress redistribution. The objective of this study was to attempt using simple tensile tests of specimens with uniform gage sections to compare the effects of varied alloy composition on environment-assisted cracking of several powder metal and cast and wrought superalloys including ME3, LSHR, Udimet 720(TradeMark) ATI 718Plus(Registered TradeMark) alloy, Haynes 282(Trademark), and Inconel 740(TradeMark) Slow and fast strain-rate tensile tests were found to be a useful tool to compare propensities for intergranular surface crack initiation and growth. The effects of composition and heat treatment on tensile fracture strain and associated failure modes were compared. Environment interactions were determined to often limit ductility, by promoting intergranular surface cracking. The response of various superalloys and heat treatments to slow strain rate tensile testing varied substantially, showing that composition and microstructure can significantly influence environmental resistance to cracking.
Research on the novel FBG detection system for temperature and strain field distribution
NASA Astrophysics Data System (ADS)
Liu, Zhi-chao; Yang, Jin-hua
2017-10-01
In order to collect the information of temperature and strain field distribution information, the novel FBG detection system was designed. The system applied linear chirped FBG structure for large bandwidth. The structure of novel FBG cover was designed as a linear change in thickness, in order to have a different response at different locations. It can obtain the temperature and strain field distribution information by reflection spectrum simultaneously. The structure of novel FBG cover was designed, and its theoretical function is calculated. Its solution is derived for strain field distribution. By simulation analysis the change trend of temperature and strain field distribution were analyzed in the conditions of different strain strength and action position, the strain field distribution can be resolved. The FOB100 series equipment was used to test the temperature in experiment, and The JSM-A10 series equipment was used to test the strain field distribution in experiment. The average error of experimental results was better than 1.1% for temperature, and the average error of experimental results was better than 1.3% for strain. There were individual errors when the strain was small in test data. It is feasibility by theoretical analysis, simulation calculation and experiment, and it is very suitable for application practice.
Electrochemically induced annealing of stainless-steel surfaces.
Burstein, G T; Hutchings, I M; Sasaki, K
2000-10-19
Modification of the surface properties of metals without affecting their bulk properties is of technological interest in demanding applications where surface stability and hardness are important. When austenitic stainless steel is heavily plastically deformed by grinding or rolling, a martensitic phase transformation occurs that causes significant changes in the bulk and surface mechanical properties of the alloy. This martensitic phase can also be generated in stainless-steel surfaces by cathodic charging, as a consequence of lattice strain generated by absorbed hydrogen. Heat treatment of the steel to temperatures of several hundred degrees can result in loss of the martensitic structure, but this alters the bulk properties of the alloy. Here we show that martensitic structures in stainless steel can be removed by appropriate electrochemical treatment in aqueous solutions at much lower temperature than conventional annealing treatments. This electrochemically induced annealing process allows the hardness of cold-worked stainless steels to be maintained, while eliminating the brittle martensitic phase from the surface. Using this approach, we are able to anneal the surface and near-surface regions of specimens that contain rolling-induced martensite throughout their bulk, as well as those containing surface martensite induced by grinding. Although the origin of the electrochemical annealing process still needs further clarification, we expect that this treatment will lead to further development in enhancing the surface properties of metals.
Iliadis, Ioannis; Daskalopoulou, Aikaterini; Simões, Manuel; Giaouris, Efstathios
2018-05-01
Salmonella enterica is a major foodborne bacterial pathogen. This forms biofilms on surfaces and persists, depending on the strain and the environment. The integrative interaction of temperature (T; 13-39 °C), pH (5-8) and sodium chloride (NaCl) concentration (0.5-8.5%) on biofilm formation by two S. enterica strains (ser. Enteritidis and Typhimurium) was here evaluated under low nutrient conditions. This was achieved using response surface methodology to model the combined effect of each factor on the response, through mathematical quadratic fitting of the outcomes of a sequence of designed experiments. These last were executed by incubating stainless steel coupons carrying sessile bacteria, for 24 h, in 1:10 diluted tryptone soya broth, under 15 different combinations of three independent factors (T, pH and NaCl). For each strain, a second order polynomial model, describing the relationship between biofilm formation (log CFU/cm 2 ) and the factors (T, pH and NaCl), was developed using least square regression analysis. Both derived models predicted the combined influences of these factors on biofilm formation, with agreement between predictions and experimental observations (R 2 ≥ 0.96, P ≤ 0.0001). For both strains, the increase of NaCl content restricted their sessile growth, while under low salinity conditions (NaCl < 4%) biofilm formation was favored as pH increased, regardless of T. Interestingly, under low salt content, and depending on the strain, biofilm formation was either favored or hindered by increasing T. Thus, 34.5 and 13 °C were the T predicted to maximize biofilm formation by strains Enteritidis and Typhimurium, respectively, something which was also experimentally verified. To sum, these models can predict the interactive influences of crucial food-related factors on biofilm growth of a significant foodborne pathogen towards the efforts to limit its persistence in food industry. Copyright © 2018 Elsevier Ltd. All rights reserved.
Study on the growth mechanism and optical properties of sputtered lead selenide thin films
NASA Astrophysics Data System (ADS)
Sun, Xigui; Gao, Kewei; Pang, Xiaolu; Yang, Huisheng; Volinsky, Alex A.
2015-11-01
Lead selenide thin films with different microstructure were deposited on Si (1 0 0) substrates using magnetron sputtering at 50 °C, 150 °C and 250 °C, respectively. The crystal structure of the sputtered PbSe thin films varies from amorphous crystalline to columnar grain, and then to double-layer (nano-crystalline layer and columnar grain layer) structure as the deposition temperature increases, which is due to the dominating growth mode of the thin films changes from Frank-van der Merwe (or layer-by-layer) growth mode at 50 °C to Volmer-Weber (or 3D island) growth mode at 150 °C, and then to Stranski-Krastanow (or 3D island-on-wetting-layer) growth mode at 250 °C. The growth mechanism of the sputtered PbSe thin films is mainly dominated by the surface and strain energy contributions. Moreover, the strain energy contribution is more prominent when the deposition temperature is less than 180 °C, while, the surface energy contribution is more prominent when the deposition temperature is higher than 180 °C. The absorption spectra of the sputtered PbSe thin films are in 3.1-5 μm range. Besides, the sputtered PbSe thin film prepared at 250 °C has two different optical band gaps due to its unique double-layer structure. According to the theoretical calculation results, the variation of the band gap with the deposition temperature is determined by the shift of the valence band maximum with the lattice constant.
NASA Astrophysics Data System (ADS)
Yan, Qi; Liu, Weiliang; Duan, Shujie; Sun, Cuiting; Zhang, Shuo; Han, Zhihang; Jin, Xiren; Zhao, Lei; Geng, Tao; Sun, Weimin; Yuan, Libo
2018-05-01
In this paper, a new cascade structure is presented to measure temperature and strain simultaneously. It is made of a CO2-laser-notched long-period fiber grating (CO2-LFPG) and a modular LFPG. Experiments prove that the temperature sensitivity of the modular LPFG is about 5 times lower than that of the CO2-LFPG. Before and after connecting the modular LPFG and the CO2-LPFG together, the experimental results indicate that the temperature and the strain sensitivities of them almost have no change and are retained. The temperature and the strain sensitivities of modular LPFG (resonance wavelength at 1258 nm) are -15.4 pm/°C and -1.2 pm/με, respectively. And the temperature and the strain sensitivities of CO2-LPFG (resonance wavelength at 1356 nm) are 58.3 pm/°C and -0.5 pm/με, respectively. Through the experiments, the feasibility of using the proposed sensor to measure strain and temperature simultaneously has been verified. Therefore, it is strongly believed that the proposed sensor can be used to achieve simultaneous measurement of strain and temperature.
NASA Astrophysics Data System (ADS)
Jost, Benjamin; Klein, Marcus; Eifler, Dietmar
This paper focuses on the ductile cast iron EN-GJS-600 which is often used for components of combustion engines. Under service conditions, those components are mechanically loaded at different temperatures. Therefore, this investigation targets at the fatigue behavior of EN-GJS-600 at ambient and elevated temperatures. Light and scanning electron microscopic investigations were done to characterize the sphericity of the graphite as well as the ferrite, pearlite and graphite fraction. At elevated temperatures, the consideration of dynamic strain ageing effects is of major importance. In total strain increase, temperature increase and constant total strain amplitude tests, the plastic strain amplitude, the stress amplitude, the change in temperature and the change in electrical resistance were measured. The measured values depend on plastic deformation processes in the bulk of the specimens and at the interfaces between matrix and graphite. The fatigue behavior of EN-GJS-600 is dominated by cyclic hardening processes. The physically based fatigue life calculation "PHYBALSIT" (SIT = strain increase test) was developed for total strain controlled fatigue tests. Only one temperature increase test is necessary to determine the temperature interval of pronounced dynamic strain ageing effects.
Hot Deformation and Dynamic Recrystallization Behavior of the Cu-Cr-Zr-Y Alloy
NASA Astrophysics Data System (ADS)
Zhang, Yi; Huili, Sun; Volinsky, Alex A.; Tian, Baohong; Chai, Zhe; Liu, Ping; Liu, Yong
2016-03-01
To study the workability and to optimize the hot deformation processing parameters of the Cu-Cr-Zr-Y alloy, the strain hardening effect and dynamic softening behavior of the Cu-Cr-Zr-Y alloy were investigated. The flow stress increases with the strain rate and stress decreases with deformation temperature. The critical conditions, including the critical strain and stress for the occurrence of dynamic recrystallization, were determined based on the alloy strain hardening rate. The critical stress related to the onset of dynamic recrystallization decreases with temperature. The evolution of DRX microstructure strongly depends on the deformation temperature and the strain rate. Dynamic recrystallization appears at high temperatures and low strain rates. The addition of Y can refine the grain and effectively accelerate dynamic recrystallization. Dislocation generation and multiplication are the main hot deformation mechanisms for the alloy. The deformation temperature increase and the strain rate decrease can promote dynamic recrystallization of the alloy.
Development and characterization of PdCr temperature-compensated wire resistance strain gage
NASA Technical Reports Server (NTRS)
Lei, Jih-Fen
1989-01-01
A temperature-compensated resistance static strain gage with potential to be used to 600 C was recently developed. Gages were fabricated from specially developed palladium-13 w/o chromium (Pd-13Cr) wire and platinum (Pt) compensator. When bonded to high temperature Hastelloy X, the apparent strain from room temperature to 600 C was within 400 microstrain for gages with no preheat treatment and within 3500 microstrain for gages with 16 hours prestabilization at 640 C. The apparent strain versus temperature relationship of stabilized PdCr gages were repeatable with the reproducibility within 100 microstrain during three thermal cycles to 600 C and an 11 hours soak at 600 C. The gage fabrication, construction and installation is described. Also, the coating system used for this compensated resistance strain gage is explained. The electrical properties of the strain sensing element and main characteristics of the compensated gage including apparent strain, drift and reproducibility are discussed.
Temperature and Strain-Rate Effects on Low-Cycle Fatigue Behavior of Alloy 800H
NASA Technical Reports Server (NTRS)
Rao, K. Bhanu Sankara; Schiffers, H.; Schuster, H.; Halford, G. R.
1996-01-01
The effects of strain rate (4 x 10(exp -6) to 4 x 10(exp -3)/s) and temperature on the Low-Cycle Fatigue (LCF) behavior of alloy 800H have been evaluated in the range 750 C to 950 C. Total axial strain controlled LCF tests were conducted in air at a strain amplitude of +/- 0.30 pct. LCF life decreased with decreasing strain rate and increasing temperature. The cyclic stress response behavior showed a marked variation with temperature and strain rate. The time- and temperature- dependent processes which influence the cyclic stress response and life have been identified and their relative importance assessed. Dynamic strain aging, time-dependent deformation, precipitation of parallel platelets of M(23)C6 on grain boundaries and incoherent ledges of twins, and oxidation were found to operate depending on the test conditions. The largest effect on life was shown by oxidation processes.
Zaghloul, Mohamed A. S.; Wang, Mohan; Milione, Giovanni; Li, Ming-Jun; Li, Shenping; Huang, Yue-Kai; Wang, Ting; Chen, Kevin P.
2018-01-01
Brillouin optical time domain analysis is the sensing of temperature and strain changes along an optical fiber by measuring the frequency shift changes of Brillouin backscattering. Because frequency shift changes are a linear combination of temperature and strain changes, their discrimination is a challenge. Here, a multicore optical fiber that has two cores is fabricated. The differences between the cores’ temperature and strain coefficients are such that temperature (strain) changes can be discriminated with error amplification factors of 4.57 °C/MHz (69.11 μϵ/MHz), which is 2.63 (3.67) times lower than previously demonstrated. As proof of principle, using the multicore optical fiber and a commercial Brillouin optical time domain analyzer, the temperature (strain) changes of a thermally expanding metal cylinder are discriminated with an error of 0.24% (3.7%). PMID:29649148
Zaghloul, Mohamed A S; Wang, Mohan; Milione, Giovanni; Li, Ming-Jun; Li, Shenping; Huang, Yue-Kai; Wang, Ting; Chen, Kevin P
2018-04-12
Brillouin optical time domain analysis is the sensing of temperature and strain changes along an optical fiber by measuring the frequency shift changes of Brillouin backscattering. Because frequency shift changes are a linear combination of temperature and strain changes, their discrimination is a challenge. Here, a multicore optical fiber that has two cores is fabricated. The differences between the cores' temperature and strain coefficients are such that temperature (strain) changes can be discriminated with error amplification factors of 4.57 °C/MHz (69.11 μ ϵ /MHz), which is 2.63 (3.67) times lower than previously demonstrated. As proof of principle, using the multicore optical fiber and a commercial Brillouin optical time domain analyzer, the temperature (strain) changes of a thermally expanding metal cylinder are discriminated with an error of 0.24% (3.7%).
Columnar jointing - the mechanics of thermal contraction in cooling lavas
NASA Astrophysics Data System (ADS)
Lavallée, Y.; Iddon, F.; Hornby, A. J.; Kendrick, J. E.; von Aulock, F. W.; Wadsworth, F. B.
2014-12-01
Columnar joints are spectacular features of volcanic rocks, which form by cracking during cooling-induced contraction of lava. The process, and resultant geometry, manifests a complex interplay between heat dissipation, contraction and tensile strength, yet the formation temperature of such joints remains elusive. Here, we present results from a combination of field survey, thermo-analytical characterisation and mechanical investigation to constrain conditions favourable for columnar jointing. Columnar joints at Seljavellir, a basaltic lava flow at the base of Eyjafjallajökull volcano (Iceland) produce quadratic to heptagonal cross sectional patterns with column widths ranging from 20 to 70 cm in size. The fracture surfaces are characterised by striae with spacing (between 1 to 6 cm) that shares a positive linear relationship to the joint spacing. The striae exhibit both a rough and smooth portion, interpreted to express a change in deformation regime from a ductile response as stress builds up to a fully brittle, mode-I fracture propagation at high stress accumulation. To test the thermo-mechanics of columnar joints we developed an experimental setup to investigate the stress, strain-to-failure and temperature at which basalts undergo tensile failure during cooling from the solidus temperature of 980 °C. We find that fractures initiate at ~800 °C, revealed by a change in stress accumulation (i.e., Young modulus), and complete failure completes after some 0.4% strain at ~670 °C. We interpret the two-stage fracture dynamics as the cause for the change in fracture surface roughness observed in nature. We coupled this dataset with Brazil tensile tests at 30, 400, 600, 800 and 1000 °C. We note that the strain to failure decrease from 1% (>800 °C) to 0.4% (<800 °C). Complementary dilatometric measurements (at 3mN of normal stress and a rate of 2 C/min) constrain the expansion coefficient to be linear and equal to 10-5/°C below the solid temperature. Simple ratio between strain-to-failure and expansion coefficient suggests that 400 °C of cooling (from the solidus) is require to achieve tensile failure by thermal contraction, supporting the first suite of experiments. We conclude that columnar jointing is not a phenomenon that takes place in molten lava, but rather occurs well within the solid state of volcanic rocks.
Comparison Testings between Two High-temperature Strain Measurement Systems
NASA Technical Reports Server (NTRS)
Lei, J.-F.; Castelli, M. G.; Androjna, D.; Blue, C.; Blue, R.; Lin, R. Y.
1996-01-01
An experimental evaluation was conducted at NASA Lewis Research Center to compare and contrast the performance of a newly developed resistance strain gage, the PdCr temperature-compensated wire strain gage, to that of a conventional high-temperature extensometry. The evaluation of the two strain measurement systems was conducted through the application of various thermal and mechanical loading spectra using a high-temperature thermomechanical uniaxial testing system equipped with quartz lamp heating. The purpose of the testing was not only to compare and contrast the two strain sensors but also to investigate the applicability of the PdCr strain gage to the testing environment typically employed when characterizing the high-temperature mechanical behavior of structural materials. Strain measurement capabilities to 8OO C were investigated with a nickel base superalloy IN100 substrate material, and application to titanium matrix composite (TMC) materials was examined with the SCS-6/Ti-15-3 08 system. PdCr strain gages installed by three attachment techniques, namely, flame spraying, spot welding and rapid infrared joining were investigated.
X-ray Characterization and Defect Control of III-Nitrides
NASA Astrophysics Data System (ADS)
Tweedie, James
A process for controlling point defects in a semiconductor using excess charge carriers was developed in theory and practice. A theoretical framework based on first principles was developed to model the effect of excess charge carriers on the formation energy and concentration of charged point defects in a semiconductor. The framework was validated for the completely general case of a generic carrier source and a generic point defect in a generic semiconductor, and then refined for the more specific case of a generic carrier source applied during the growth of a doped semiconductor crystal. It was theoretically demonstrated that the process as defined will always reduce the degree of compensation in the semiconductor. The established theoretical framework was applied to the case of above-bandgap illumination on both the MOCVD growth and the post-growth annealing of Mg-doped GaN thin films. It was theoretically demonstrated that UV light will lower the concentration of compensating defects during growth and will facilitate complete activation of the Mg acceptor at lower annealing temperatures. Annealing experiments demonstrated that UV illumination of GaN:Mg thin films during annealing lowers the resistivity of the film at any given temperature below the 650 °C threshold at which complete activation is achieved without illumination. Broad spectrum analysis of the photoluminescence (PL) spectra together with a correlation between the acceptor-bound exciton transition and room temperature resistivity demonstrated that UV light only acts to enhance the activation Mg. Surface chemistry and interface chemistry of AlN and high Al mole fraction AlGaN films were studied using x-ray photoelectron spectroscopy (XPS). It was seen that surfaces readily form stable surface oxides. The Schottky barrier height (SBH) of various metals contacted to these surfaces was using XPS. Finally, an x-ray diffraction method (XRD) was developed to quantify strain and composition of alloy films in the context of a processing environment. Reciprocal space mapping revealed intensity limitations on the accuracy of the method. The method was used to demonstrate a bimodal strain distribution across the composition spectrum for 200 nm AlGaN thin films grown on GaN. A weak, linear strain dependence on composition was observed for Al mole fractions below 30%. Above this threshold the films were observed to be completely relaxed by cracking.
Connecting thermal physiology and latitudinal niche partitioning in marine Synechococcus
Pittera, Justine; Humily, Florian; Thorel, Maxine; Grulois, Daphné; Garczarek, Laurence; Six, Christophe
2014-01-01
Marine Synechococcus cyanobacteria constitute a monophyletic group that displays a wide latitudinal distribution, ranging from the equator to the polar fronts. Whether these organisms are all physiologically adapted to stand a large temperature gradient or stenotherms with narrow growth temperature ranges has so far remained unexplored. We submitted a panel of six strains, isolated along a gradient of latitude in the North Atlantic Ocean, to long- and short-term variations of temperature. Upon a downward shift of temperature, the strains showed strikingly distinct resistance, seemingly related to their latitude of isolation, with tropical strains collapsing while northern strains were capable of growing. This behaviour was associated to differential photosynthetic performances. In the tropical strains, the rapid photosystem II inactivation and the decrease of the antioxydant β-carotene relative to chl a suggested a strong induction of oxidative stress. These different responses were related to the thermal preferenda of the strains. The northern strains could grow at 10 °C while the other strains preferred higher temperatures. In addition, we pointed out a correspondence between strain isolation temperature and phylogeny. In particular, clades I and IV laboratory strains were all collected in the coldest waters of the distribution area of marine Synechococus. We, however, show that clade I Synechococcus exhibit different levels of adaptation, which apparently reflect their location on the latitudinal temperature gradient. This study reveals the existence of lineages of marine Synechococcus physiologically specialised in different thermal niches, therefore suggesting the existence of temperature ecotypes within the marine Synechococcus radiation. PMID:24401861
Defining the Post-Machined Sub-surface in Austenitic Stainless Steels
NASA Astrophysics Data System (ADS)
Srinivasan, N.; Sunil Kumar, B.; Kain, V.; Birbilis, N.; Joshi, S. S.; Sivaprasad, P. V.; Chai, G.; Durgaprasad, A.; Bhattacharya, S.; Samajdar, I.
2018-04-01
Austenitic stainless steels grades, with differences in chemistry, stacking fault energy, and thermal conductivity, were subjected to vertical milling. Anodic potentiodynamic polarization was able to differentiate (with machining speed/strain rate) between different post-machined sub-surfaces in SS 316L and Alloy A (a Cu containing austenitic stainless steel: Sanicroe 28™), but not in SS 304L. However, such differences (in the post-machined sub-surfaces) were revealed in surface roughness, sub-surface residual stresses and misorientations, and in the relative presence of sub-surface Cr2O3 films. It was shown, quantitatively, that higher machining speed reduced surface roughness and also reduced the effective depths of the affected sub-surface layers. A qualitative explanation on the sub-surface microstructural developments was provided based on the temperature-dependent thermal conductivity values. The results herein represent a mechanistic understanding to rationalize the corrosion performance of widely adopted engineering alloys.
Defining the Post-Machined Sub-surface in Austenitic Stainless Steels
NASA Astrophysics Data System (ADS)
Srinivasan, N.; Sunil Kumar, B.; Kain, V.; Birbilis, N.; Joshi, S. S.; Sivaprasad, P. V.; Chai, G.; Durgaprasad, A.; Bhattacharya, S.; Samajdar, I.
2018-06-01
Austenitic stainless steels grades, with differences in chemistry, stacking fault energy, and thermal conductivity, were subjected to vertical milling. Anodic potentiodynamic polarization was able to differentiate (with machining speed/strain rate) between different post-machined sub-surfaces in SS 316L and Alloy A (a Cu containing austenitic stainless steel: Sanicroe 28™), but not in SS 304L. However, such differences (in the post-machined sub-surfaces) were revealed in surface roughness, sub-surface residual stresses and misorientations, and in the relative presence of sub-surface Cr2O3 films. It was shown, quantitatively, that higher machining speed reduced surface roughness and also reduced the effective depths of the affected sub-surface layers. A qualitative explanation on the sub-surface microstructural developments was provided based on the temperature-dependent thermal conductivity values. The results herein represent a mechanistic understanding to rationalize the corrosion performance of widely adopted engineering alloys.
NASA Technical Reports Server (NTRS)
Lissenden, Cliff J.; Arnold, Steven M.
1996-01-01
Guidance for the formulation of robust, multiaxial, constitutive models for advanced materials is provided by addressing theoretical and experimental issues using micromechanics. The multiaxial response of metal matrix composites, depicted in terms of macro flow/damage surfaces, is predicted at room and elevated temperatures using an analytical micromechanical model that includes viscoplastic matrix response as well as fiber-matrix debonding. Macro flow/damage surfaces (i.e., debonding envelopes, matrix threshold surfaces, macro 'yield' surfaces, surfaces of constant inelastic strain rate, and surfaces of constant dissipation rate) are determined for silicon carbide/titanium in three stress spaces. Residual stresses are shown to offset the centers of the flow/damage surfaces from the origin and their shape is significantly altered by debonding. The results indicate which type of flow/damage surfaces should be characterized and what loadings applied to provide the most meaningful experimental data for guiding theoretical model development and verification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alevli, Mustafa, E-mail: mustafaalevli@marmara.edu.tr; Gungor, Neşe; Haider, Ali
2016-01-15
Gallium nitride films were grown by hollow cathode plasma-assisted atomic layer deposition using triethylgallium and N{sub 2}/H{sub 2} plasma. An optimized recipe for GaN film was developed, and the effect of substrate temperature was studied in both self-limiting growth window and thermal decomposition-limited growth region. With increased substrate temperature, film crystallinity improved, and the optical band edge decreased from 3.60 to 3.52 eV. The refractive index and reflectivity in Reststrahlen band increased with the substrate temperature. Compressive strain is observed for both samples, and the surface roughness is observed to increase with the substrate temperature. Despite these temperature dependent material properties,more » the chemical composition, E{sub 1}(TO), phonon position, and crystalline phases present in the GaN film were relatively independent from growth temperature.« less
Apparent-Strain Correction for Combined Thermal and Mechanical Testing
NASA Technical Reports Server (NTRS)
Johnson, Theodore F.; O'Neil, Teresa L.
2007-01-01
Combined thermal and mechanical testing requires that the total strain be corrected for the coefficient of thermal expansion mismatch between the strain gage and the specimen or apparent strain when the temperature varies while a mechanical load is being applied. Collecting data for an apparent strain test becomes problematic as the specimen size increases. If the test specimen cannot be placed in a variable temperature test chamber to generate apparent strain data with no mechanical loads, coupons can be used to generate the required data. The coupons, however, must have the same strain gage type, coefficient of thermal expansion, and constraints as the specimen to be useful. Obtaining apparent-strain data at temperatures lower than -320 F is challenging due to the difficulty to maintain steady-state and uniform temperatures on a given specimen. Equations to correct for apparent strain in a real-time fashion and data from apparent-strain tests for composite and metallic specimens over a temperature range from -450 F to +250 F are presented in this paper. Three approaches to extrapolate apparent-strain data from -320 F to -430 F are presented and compared to the measured apparent-strain data. The first two approaches use a subset of the apparent-strain curves between -320 F and 100 F to extrapolate to -430 F, while the third approach extrapolates the apparent-strain curve over the temperature range of -320 F to +250 F to -430 F. The first two approaches are superior to the third approach but the use of either of the first two approaches is contingent upon the degree of non-linearity of the apparent-strain curve.
High-Temperature Adhesive Strain Gage Developed
NASA Technical Reports Server (NTRS)
Pereira, J. Michael; Roberts, Gary D.
1997-01-01
Researchers at the NASA Lewis Research Center have developed a unique strain gage and adhesive system for measuring the mechanical properties of polymers and polymer composites at elevated temperatures. This system overcomes some of the problems encountered in using commercial strain gages and adhesives. For example, typical commercial strain gage adhesives require a postcure at temperatures substantially higher than the maximum test temperature. The exposure of the specimen to this temperature may affect subsequent results, and in some cases may be higher than the glass-transition temperature of the polymer. In addition, although typical commercial strain gages can be used for short times at temperatures up to 370 C, their long-term use is limited to 230 C. This precludes their use for testing some high-temperature polyimides near their maximum temperature capability. Lewis' strain gage and adhesive system consists of a nonencapsulated, unbacked gage grid that is bonded directly to the polymer after the specimen has been cured but prior to the normal postcure cycle. The gage is applied with an adhesive specially formulated to cure under the specimen postcure conditions. Special handling, mounting, and electrical connection procedures were developed, and a fixture was designed to calibrate each strain gage after it was applied to a specimen. A variety of tests was conducted to determine the performance characteristics of the gages at elevated temperatures on PMR-15 neat resin and titanium specimens. For these tests, which included static tension, thermal exposure, and creep tests, the gage and adhesive system performed within normal strain gage specifications at 315 C. An example of the performance characteristics of the gage can be seen in the figure, which compares the strain gage measurement on a polyimide specimen at 315 C with an extensometer measurement.
NASA Astrophysics Data System (ADS)
Aizawa, T.; Yoshihara, S.-I.
2018-06-01
The austenitic stainless steels have been widely utilized as a structural component and member as well as a die and mold substrate for stamping. AISI316 dies and molds require for the surface treatment to accommodate the sufficient hardness and wear resistance to them. In addition, the candidate treatment methods must be free from toxicity, energy consumption and inefficiency. The low temperature plasma nitriding process has become one of the most promising methods to make solid-solution hardening by the nitrogen super-saturation. In the present paper, the high density RF/DC plasma nitriding process was applied to form the uniform nitrided layer in the AISI316 matrix and to describe the essential mechanism of inner nitriding in this low temperature nitriding process. In case of the nitrided AISI316 at 673 K for 14.4ks, the nitrided layer thickness became 60 μm with the surface hardness of 1700 HV and the surface nitrogen content of 7 mass %. This inner nitriding process is governed by the synergetic interrelation among the nitrogen super-saturation, the lattice expansion, the phase transformation, the plastic straining, the microstructure refinement and the acceleration of nitrogen diffusion. As far as this interrelation is sustained during the nitriding process, the original austenitic microstructure is homogeneously nitrided to have fine grains with the average size of 0.1 μm and the high crystallographic misorientation angles and to have two phase (γ + α’) structures with the plateau of nitrogen content by 5 mass%. Once this interrelation does not work anymore, the homogeneous microstructure changed itself to the heterogeneous one. The plastic straining took place in the selected coarse grains; they were partially refined into subgrains. This plastic localization accompanied the localized phase transformation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, E.; Aversano, P.J.; Zylstra, G.J.
The cloned genes for aromatic hydrocarbon degradation from Sphingomonas yanoikuyae B1 were utilized in Southern hybridization experiments with Sphingomonas strains from the surface and deep-subsurface environments. One hybridization pattern was obtained with BamHI-digested genomic DNAs for two surface strains, while a differing pattern was seen for five deep-subsurface strains. The cross-hybridizing genes were located in the chromosomes of the surface strains and on plasmids in the deep-subsurface strains. 31 refs., 3 figs., 1 tab.
Strain effects on thermal conductivity of nanostructured silicon by Raman piezothermography
NASA Astrophysics Data System (ADS)
Murphy, Kathryn Fay
A fundamental problem facing the rational design of materials is the independent control of electrical and thermal properties, with implications for a wide range of applications including thermoelectrics, solar thermal power generation, and thermal logic. One strategy for controlling transport involves manipulating the length scales which affect it. For instance, Si thermal conductivity may be reduced with relatively little change in electrical properties when the confining dimension (e.g., nanowire diameter) is small enough that heat carriers are preferentially scattered at free surfaces. However, tailoring properties by geometry or chemistry alone does not allow for on-demand modification, precluding applications which require responsive behavior such as thermal transistors, thermoelectric modules which adapt to their environmental temperature, or switchable thermal barriers. One means of tuning transport is elastic strain, which has long been exploited to improve carrier mobility in electronic devices. Uniform strain is predicted to affect thermal conductivity primarily via changes in heat capacity and phonon velocity, and crystalline defects such as vacancies or dislocations---which induce large strain gradients---should lower thermal conductivity by decreasing the phonon mean free path. Nanowires are ideal for the study of strain and defect effects due to the availability of a range of elastic strain an order of magnitude larger than in bulk and due to their small volumes. However, experimental measurements of strain-mediated thermal conductivity in nanowires have been limited due to the complexity of simultaneously applying and measuring stress or strain, heating, and measuring temperature. In this dissertation, we measure strain effects on thermal conductivity using a novel non-contact approach which we name Raman piezothermography. We apply a uniaxial load to individual Si nanowires, Si thin films, and Si micromeshes under a confocal mu-Raman microscope and, using the Raman laser as a heat source and the Raman spectrum as a measure of temperature, determine thermal transport properties. We show that uniaxial strain up to ˜1% has a weak effect on Si nanowire or thin film thermal conductivity, but irradiation-induced defects in nanowires yield dramatic reductions due to increased phonon scattering. Such defects are accompanied by large strain gradients, but decoupling the effect of these gradients from local changes in mass and interatomic potential is experimentally untenable. To isolate the effect of strain gradients, we extend our method to Si micromeshes, which exhibit nonuniform strains upon loading. The complex strain states achieved cause more drastic reductions of thermal conductivity due to enhanced phonon-phonon scattering in the presence of a strain gradient. The directions suggested by our experiments, as well as the development of the method, will allow for more robust understanding and control of thermal transport in nanostructures.
NASA Astrophysics Data System (ADS)
Lee, Kok-Keong; Lim, Phaik-Eem; Poong, Sze-Wan; Wong, Chiew-Yen; Phang, Siew-Moi; Beardall, John
2017-09-01
Elevated temperatures as a consequence of global warming have significant impacts on the adaptation and survival of microalgae which are important primary producers in many ecosystems. The impact of temperature on the photosynthesis of microalgae is of great interest as the primary production of algal biomass is strongly dependent on the photosynthetic rates in a dynamic environment. Here, we examine the effects of elevated temperature on Chlorella strains originating from different latitudes, namely Antarctic, Arctic, temperate and tropical regions. Chlorophyll fluorescence was used to assess the photosynthetic responses of the microalgae. Rapid light curves (RLCs) and maximum quantum yield (F v/F m) were recorded. The results showed that Chlorella originating from different latitudes portrayed different growth trends and photosynthetic performance. The Chlorella genus is eurythermal, with a broad temperature tolerance range, but with strain-specific characteristics. However, there was a large overlap between the tolerance range of the four strains due to their "eurythermal adaptivity". Changes in the photosynthetic parameters indicated temperature stress. The ability of the four strains to reactivate photosynthesis after inhibition of photosynthesis under high temperatures was also studied. The Chlorella strains were shown to recover in terms of photosynthesis and growth (measured as Chl a) when they were returned to their ambient temperatures. Polar strains showed faster recovery in their optimal temperature compared to that under the ambient temperature from which they were isolated.
Nomura, Kazuki; Kuwabara, Yuki; Kuwabara, Wataru; Takahashi, Hiroyuki; Nakajima, Kanako; Hayashi, Mayumi; Iguchi, Akinori; Shigematsu, Toru
2017-12-01
We previously obtained a pressure-tolerant (piezotolerant) and a pressure sensitive (piezosensitive) mutant strain, under ambient temperature, from Saccharomyces cerevisiae strain KA31a. The inactivation kinetics of these mutants were analyzed at 150 to 250MPa with 4 to 40°C. By a multiple regression analysis, the pressure and temperature dependency of the inactivation rate constants k values of both mutants, as well as the parent strain KA31a, were well approximated with high correlation coefficients (0.92 to 0.95). For both mutants, as well as strain KA31a, the lowest k value was shown at a low pressure levels with around ambient temperature. The k value approximately increased with increase in pressure level, and with increase and decrease in temperature. The piezosensitive mutant strain a924E1 showed piezosensitivity at all pressure and temperature levels, compared with the parent strain KA31a. In contrast, the piezotolerant mutant strain a2568D8 showed piezotolerance at 4 to 20°C, but did not show significant piezotolerance at 40°C. These results of the variable influence of temperature on pressure inactivation of these strains would be important for better understanding of piezosensitive and piezotolerant mechanisms, as well as the pressure inactivation mechanism of S. cerevisiae. Copyright © 2017 Elsevier B.V. All rights reserved.
Method for in-situ restoration of plantinum resistance thermometer calibration
Carroll, Radford M.
1989-01-01
A method is provided for in-situ restoration of platinum resistance thermometers (PRT's) that have undergone surface oxide contamination and/or strain-related damage causing decalibration. The method, which may be automated using a programmed computer control arrangement, consists of applying a dc heating current to the resistive sensing element of the PRT of sufficient magnitude to heat the element to an annealing temperature and maintaining the temperature for a specified period to restore the element to a stress-free calibration condition. The process anneals the sensing element of the PRT without subjecting the entire PRT assembly to the annealing temperature and may be used in the periodic maintenance of installed PRT's.
Optical Fiber Thermometer Based on Fiber Bragg Gratings
NASA Astrophysics Data System (ADS)
Rosli, Ekbal Bin; Mohd. Noor, Uzer
2018-03-01
Fiber Bragg grating has generated much interest in use as sensors to measure strain, temperature, and other physical parameters. It also the most common component used to develop this sensor with the advantages of simple, intrinsic sensing elements, electrically passive operation, EMI immunity, high sensitivity, compact size and potentially low cost [6]. This paper reports the design of an optical fiber thermometer based on fiber Bragg gratings. The system was developed for detecting temperature and strain by monitoring the shift of Bragg wavelength. The shifting of Bragg wavelength is used to indicate the temperature and strain due to the change in the surrounding temperature and strain. When the temperature and strain reach the exact wavelength level of the system, the temperature and strain value will display on the Arduino liquid crystal display (LCD). The optical fiber will provide the broadband light source and after passing the FBG the Bragg wavelength into the optical spectrum analyzer (OSA). The system is based on FBG as a physical quantity sensor. The temperatures measured is taken from the water bath and that of the strain is provided by amount of slotted mass used. The outcome of this project is to characterize the Bragg wavelength shifting from the fiber Bragg grating output. As the conclusion, this project provides an efficient optical fiber thermometer in measuring temperature and strain in order to replace the use of conventional electrical instruments.
Liu, Jiawei; Xu, Guanbao; Dong, Weiliang; Xu, Ning; Xin, Fengxue; Ma, Jiangfeng; Fang, Yan; Zhou, Jie; Jiang, Min
2018-06-01
Polyethylene terephthalate (PET), a synthetic polyester material made of diethyl terephthalate (DET) monomers, is widely used in plastic products of daily life and caused serious pollution to the global environment. Microbial metabolism is the major degradation pathway responsible for DET degradation in natural soil; however, the microbial DET-degradation mechanism remains unclear. In this study, the newly isolated strain WL-3, identified as belonging to the genus Delftia, was found to be able to degrade 94% of 5 g·L -1 of DET and utilize it as the sole carbon source for growth within 7 days. Furthermore, strain WL-3 was capable of stable DET degradation under a wide range of pH values (6.0-9.0) and temperatures (20-42°C) with the optimal pH and temperature of 7.0 and 30°C respectively. Furthermore, the biochemical pathway of DET degradation by strain WL-3 was proposed based on the identified degradation intermediates. DET is first transformed into terephthalic acid (TPA) by the hydrolysis of two ester bonds, which is subsequently converted to protocatechuic acid (PCA) and further mineralized. SEM observations revealed obvious cracks on the surface of PET film after inoculation of 2 months with strain WL-3, indicating the strain's potential for the bioremediation of PET-contaminated environments. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Selected wild strains of Agaricus bisporus produce high yields of mushrooms at 25°C.
Navarro, Pilar; Savoie, Jean-Michel
2015-01-01
To cultivate the button mushroom Agaricus bisporus in warm countries or during summer in temperate countries, while saving energy, is a challenge that could be addressed by using the biological diversity of the species. The objective was to evaluate the yield potential of eight wild strains previously selected in small scale experiments for their ability to produce mature fruiting bodies at 25°C and above. Culture units of 8 kg of compost were used. The yield expressed as weight or number per surface unit and earliness of fruiting were recorded during cultivation in climatic rooms at 17, 25 or 30°C. Only strains of A. bisporus var. burnettii were able to fruit at 30°C. At 25°C they produced the highest yields (27 kg m(-2)) and had best earliness. The yields at 25°C for the strains of A. bisporus var. bisporus ranged from 12 to 16 kg m(-2). The yield ratios 25°C/17°C ranged from 0.8 to 1.2. The variety burnettii originated in the Sonoran Desert in California showed adaptation for quickly producing fruiting bodies at high temperature when humidity conditions were favorable. Strains of the variety bisporus showed interesting potentials for their ability to produce mature fruiting bodies at higher temperature than present cultivars and might be used in breeding programs. Copyright © 2012 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.
Bacterial migration along solid surfaces.
Harkes, G; Dankert, J; Feijen, J
1992-01-01
An in vitro system was developed to study the migration of uropathogenic Escherichia coli strains. In this system an aqueous agar gel is placed against a solid surface, allowing the bacteria to migrate along the gel/solid surface interface. Bacterial strains as well as solid surfaces were characterized by means of water contact angle and zeta potential measurements. When glass was used as the solid surface, significantly different migration times for the strains investigated were observed. Relationships among the observed migration times of six strains, their contact angles, and their zeta potentials were found. Relatively hydrophobic strains exhibited migration times shorter than those of hydrophilic strains. For highly negatively charged strains shorter migration times were found than were found for less negatively charged strains. When the fastest-migrating strain with respect to glass was allowed to migrate along solid surfaces differing in hydrophobicity and charge, no differences in migration times were found. Our findings indicate that strategies to prevent catheter-associated bacteriuria should be based on inhibition of bacterial growth rather than on modifying the physicochemical character of the catheter surface. PMID:1622217
Fracture surface analysis of a quenched (α+β)-metastable titanium alloy
NASA Astrophysics Data System (ADS)
Illarionov, A. G.; Stepanov, S. I.; Demakov, S. L.
2017-12-01
Fracture surface analysis is conducted by means of SEM for VT16 titanium alloy specimens solution-treated at temperatures ranging from 700 to 875 °C, water-quenched and subjected to tensile testing. A cup and cone shape failure and dimple microstructure of the fracture surface indicates the ductile behavior of the alloy. Dimple dimensions correlated with the β-grain size of the alloy in quenched condition. The fracture area (namely, the size; the cup and cone shape) depends on the volume fraction of the primary α-phase in the quenched sample. However, the fracture surface changes considerably when the strain-induced β-αʺ-transformation takes place during tensile testing, resulting in the increase of alloy ductility.
Thermomechanical processing of HAYNES alloy No. 188 sheet to improve creep strength
NASA Technical Reports Server (NTRS)
Klarstrom, D. L.
1978-01-01
Improvements in the low strain creep strength of HAYNES alloy No. 188 thin gauge sheet by means of thermomechanical processing were developed. Processing methods designed to develop a sheet with strong crystallographic texture after recrystallization and to optimize grain size were principally studied. The effects of thickness-to-grain diameter ratio and prestrain on low strain creep strength were also briefly examined. Results indicate that the most significant improvements were obtained in the sheets having a strong crystallographic texture. The low strain creep strength of the textured sheets was observed to be superior to that of standard production sheets in the 922 K to 1255 K temperature range. Tensile, stress rupture, fabricability, and surface stability properties of the experimental sheets were also measured and compared to property values reported for the baseline production sheets.
NASA Astrophysics Data System (ADS)
Zhou, Xiaolan
Ferroelectrics are used in FeRAM (Ferroelectric random-access memory). Currently (Pb,Zr)TiO3 is the most common ferroelectric material. To get lead-free and high performance ferroelectric material, we investigated perovskite ferroelectric oxides (Ba,Sr)TiO3 and BiFeO3 films with strain. Compressive strain has been investigated intensively, but the effects of tensile strain on the perovskite films have yet to be explored. We have deposited (Ba,Sr)TiO3, BiFeO3 and related films by pulsed laser deposition (PLD) and analyzed the films by X-ray diffractometry (XRD), atomic force microscopy (AFM), etc. To obtain inherently fully strained films, the selection of the appropriate substrates is crucial. MgAl2O4 matches best with good quality and size, yet the spinel structure has an intrinsic incompatibility to that of perovskite. We introduced a rock-salt structure material (Ni 1-xAlxO1+delta) as a buffer layer to mediate the structural mismatch for (Ba,Sr)TiO3 films. With buffer layer Ni1-xAlxO1+delta, we show that the BST films have high quality crystallization and are coherently epitaxial. AFM images show that the films have smoother surfaces when including the buffer layer, indicating an inherent compatibility between BST-NAO and NAO-MAO. In-plane Ferroelectricity measurement shows double hysteresis loops, indicating an antiferroelectric-like behavior: pinned ferroelectric domains with antiparallel alignments of polarization. The Curie temperatures of the coherent fully strained BST films are also measured. It is higher than 900°C, at least 800°C higher than that of bulk. The improved Curie temperature makes the use of BST as FeRAM feasible. We found that the special behaviors of ferroelectricity including hysteresis loop and Curie temperature are due to inherent fully tensile strain. This might be a clue of physics inside ferroelectric stain engineering. An out-of-plane ferroelectricity measurement would provide a full whole story of the tensile strain. However, a well suited electrode material that is both conducting, and full strained on the MgAl2O4 substrate is quite rare. We will supply some answers to this unique problem. XRD results show that Ni1-xAlxO1+delta (x=0.3, 0.4 & 0.5) film, although highly mixed with Al2O3, still takes rock-salt structure and is grown very well on the spinel MgAl 2O4 substrate, with perfect crystallization and a smooth surface. Ni0.7Al0.3O1+ delta and Ni 0.6Al0.4O1+ delta are good buffer layers for perovskite film on spinel MgAl2O4 substrate. Ni 0.5Al0.5O1+ delta could also be a good buffer layer. The structural transition from rock-salt to spinel was found at x=0.67. Tensile strain effects from thermal expansion difference of BiFeO3 films were found. Thermal expansion difference caused strain does not change the ferroelectric property greatly, due to film relaxation. BiFeO3 film with NAO buffer exhibit much larger strain.
High-Temperature Extensometry and PdCr Temperature-Compensated Wire Resistance Strain Gages Compared
NASA Technical Reports Server (NTRS)
1996-01-01
A detailed experimental evaluation is underway at the NASA Lewis Research Center to compare and contrast the performance of the PdCr/Pt dual-element temperature-compensated wire resistance strain gage with that of conventional high-temperature extensometry. The advanced PdCr gage, developed by researchers at Lewis, exhibits desirable properties and a relatively small and repeatable apparent strain to 800 C. This gage represents a significant advance in technology because existing commercial resistance strain gages are not reliable for quasi-static strain measurements above approximately 400 C. Various thermal and mechanical loading spectra are being applied by a high-temperature thermomechanical uniaxial testing system to evaluate the two strain-measurement systems. This is being done not only to compare and contrast the two strain sensors, but also to investigate the applicability of the PdCr strain gage to the coupon-level specimen testing environment typically employed when the high-temperature mechanical behavior of structural materials is characterized. Strain measurement capabilities to 800 C are being investigated with a nickel-base superalloy, Inconel 100 (IN 100), substrate material and application to TMC's is being examined with the model system, SCS-6/Ti-15-3. Furthermore, two gage application techniques are being investigated in the comparison study: namely, flame-sprayed and spot welding.
Kitichantaropas, Yasin; Boonchird, Chuenchit; Sugiyama, Minetaka; Kaneko, Yoshinobu; Harashima, Satoshi; Auesukaree, Choowong
2016-12-01
High-temperature ethanol fermentation has several benefits including a reduction in cooling cost, minimizing risk of bacterial contamination, and enabling simultaneous saccharification and fermentation. To achieve the efficient ethanol fermentation at high temperature, yeast strain that tolerates to not only high temperature but also the other stresses present during fermentation, e.g., ethanol, osmotic, and oxidative stresses, is indispensable. The C3253, C3751, and C4377 Saccharomyces cerevisiae strains, which have been previously isolated as thermotolerant yeasts, were found to be multiple stress-tolerant. In these strains, continuous expression of heat shock protein genes and intracellular trehalose accumulation were induced in response to stresses causing protein denaturation. Compared to the control strains, these multiple stress-tolerant strains displayed low intracellular reactive oxygen species levels and effective cell wall remodeling upon exposures to almost all stresses tested. In response to simultaneous multi-stress mimicking fermentation stress, cell wall remodeling and redox homeostasis seem to be the primary mechanisms required for protection against cell damage. Moreover, these strains showed better performances of ethanol production than the control strains at both optimal and high temperatures, suggesting their potential use in high-temperature ethanol fermentation.
Self-assembled ultrathin nanotubes on diamond (100) surface
NASA Astrophysics Data System (ADS)
Lu, Shaohua; Wang, Yanchao; Liu, Hanyu; Miao, Mao-Sheng; Ma, Yanming
2014-04-01
Surfaces of semiconductors are crucially important for electronics, especially when the devices are reduced to the nanoscale. However, surface structures are often elusive, impeding greatly the engineering of devices. Here we develop an efficient method that can automatically explore the surface structures using structure swarm intelligence. Its application to a simple diamond (100) surface reveals an unexpected surface reconstruction featuring self-assembled carbon nanotubes arrays. Such a surface is energetically competitive with the known dimer structure under normal conditions, but it becomes more favourable under a small compressive strain or at high temperatures. The intriguing covalent bonding between neighbouring tubes creates a unique feature of carrier kinetics (that is, one dimensionality of hole states, while two dimensionality of electron states) that could lead to novel design of superior electronics. Our findings highlight that the surface plays vital roles in the fabrication of nanodevices by being a functional part of them.
NASA Astrophysics Data System (ADS)
Jing, Lin; Su, Xingya; Zhao, Longmao
The dynamic compressive behavior of D1 railway wheel steel at high strain rates was investigated using a split Hopkinson pressure bar (SHPB) apparatus. Three types of specimens, which were derived from the different positions (i.e., the rim, web and hub) of a railway wheel, were tested over a wide range of strain rates from 10-3 s-1 to 2.4 × 103 s-1 and temperatures from 213 K to 973 K. Influences of the strain rate and temperature on flow stress were discussed, and rate- and temperature-dependent constitutive relationships were assessed by the Cowper-Symonds model, Johnson-Cook model and a physically-based model, respectively. The experimental results show that the compressive true stress versus true strain response of D1 wheel steel is strain rate-dependent, and the strain hardening rate during the plastic flow stage decreases with the elevation of strain rate. Besides, the D1 wheel steel displays obvious temperature-dependence, and the third-type strain aging (3rd SA) is occurred at the temperature region of 673-973 K at a strain rate of ∼1500 s-1. Comparisons of experimental results with theoretical predictions indicate that the physically-based model has a better prediction capability for the 3rd SA characteristic of the tested D1 wheel steel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Ujjal; Zhang, Guanghui; Hu, Bo
2015-10-28
Amorphous silica (SiO 2) is commonly used as a support in heterogeneous catalysis. However, due to the structural disorder and temperature induced change of surface morphology, the structures of silica supported metal catalysts are difficult to determine. Most studies are primarily focused on understanding the interactions of different types of surface hydroxyl groups with metal ions. In comparison, the effect of siloxane ring size on the structure of silica supported metal catalysts and how it affects catalytic activity is poorly understood. Here, we have used density functional theory calculations to understand the effect of siloxane ring strain on structure andmore » activity of different monomeric Lewis acid metal sites on silica. In particular, we have found that large siloxane rings favor strong dative bonding interaction between metal ion and surface hydroxyls, leading to the formation of high-coordinate metal sites. In comparison, metal-silanol interaction is weak in small siloxane rings, resulting in low-coordinate metal sites. The physical origin of this size dependence is associated with siloxane ring strain, and, a correlation between metal-silanol interaction energy and ring strain energy has been observed. In addition to ring strain, the strength of the metal-silanol interaction also depends on the positive charge density of the cations. In fact, a correlation also exists between metal-silanol interaction energy and charge density of several first-row transition and post-transition metals. The theoretical results are compared with the EXAFS data of monomeric Zn(II) and Ga(III) ions grafted on silica. In conclusion, the molecular level insights of how metal ion coordination on silica depends on siloxane ring strain and cation charge density will be useful in the synthesis of new catalysts.« less
Amorphization of quartz by friction: Implication to silica-gel lubrication of fault surfaces
NASA Astrophysics Data System (ADS)
Nakamura, Yu; Muto, Jun; Nagahama, Hiroyuki; Shimizu, Ichiko; Miura, Takashi; Arakawa, Ichiro
2012-11-01
To understand physico-chemical processes at real contacts (asperities) on fault surfaces, we conducted pin-on-disk friction experiments at room temperature, using single crystalline quartz disks and quartz pins. Velocity weakening from friction coefficient μ ˜ 0.6 to 0.4 was observed under apparent normal stresses of 8-19 (18 > 19), when the slip rate was increased from 0.003 to 2.6 m/s. Frictional surfaces revealed ductile deformation of wear materials. The Raman spectra of frictional tracks showed blue shifts and broadening of quartz main bands, and appearance of new peaks at 490-520 and 610 cm-1. All these features are indicative of pressure- and strain-induced amorphization of quartz. The mapping analyses of Fourier transform infrared (FT-IR) spectroscopy at room dry conditions suggest selective hydration of wear materials. It is possible that the strained Si-O-Si bridges in amorphous silica preferentially react with water to form silica-gel. In natural fault systems, amorphous materials would be produced at real fault contacts and accumulate over the fault surfaces with displacements. Subsequent hydration would lead to significant reduction of fault strength during slip.
An Elevated-Temperature Tension-Compression Test and Its Application to Magnesium AZ31B
NASA Astrophysics Data System (ADS)
Piao, Kun
Many metals, particularly ones with HCP crystal structures, undergo deformation by combinations of twinning and slip, the proportion of which depends on variables such as temperature and strain rate. Typical techniques to reveal such mechanisms rely on metallography, x-ray diffraction, or electron optics. Simpler, faster, less expensive mechanical tests were developed in the current work and applied to Mg AZ31B. An apparatus was designed, simulated, optimized, and constructed to enable the large-strain, continuous tension/compression testing of sheet materials at elevated temperature. Thermal and mechanical FE analyses were used to locate cartridge heaters, thus enabling the attainment of temperatures up to 350°C within 15 minutes of start-up, and ensuring temperature uniformity throughout the gage length within 8°C. The low-cost device also makes isothermal testing possible at strain rates higher than corresponding tests in air. Analysis was carried out to predict the attainable compressive strains using novel finite element (FE) modeling and a single parameter characteristic of the machine and fixtures. The limits of compressive strain vary primarily with the material thickness and the applied-side-force-to-material-strength ratio. Predictions for a range of sheet alloys with measured buckling strains from -0.04 to -0.17 agreed within a standard deviation of 0.025 (0.015 excluding one material that was not initially flat). In order to demonstrate the utility of the new method, several sheet materials were tested over a range of temperatures. Some of the data obtained is the first of its kind. Magnesium AZ31B sheets were tested at temperatures up to 250°C with strain rate of 0.001/s. The inflected stress-strain curve observed in compression at room temperature disappeared between 125°C and 150°C, corresponding to the suppression of twinning, and suggesting a simple method for identifying the deformation mechanism transition temperature. The temperature-dependent behavior of selected advanced high strength steels (TWIP and DP) was revealed by preliminary tests at room temperature, 150°C and 250°C. For Mg AZ31B alloy sheets, the curvature of compressive stress-strain plots over a fixed strain range was found to be a consistent indicator of twinning magnitude, independent of temperature and strain rate. The relationship between curvature and areal fraction of twins is presented. Transition temperatures determined based on stress-strain curvature were consistent with ones determined by metallographic analysis and flow stresses, and depended on strain rate by the Zener-Hollomon parameter, a critical value for which was measured. The transition temperature was found to depend significantly on grain size, a relationship for which was established. Finally, it was shown that the transition temperature can be determined consistently, and much faster, using a single novel "Step-Temperature" test.
In Situ Optical Creep Observation of Joint-Scale Tin-Silver-Copper Solder Shear Samples
NASA Astrophysics Data System (ADS)
Herkommer, Dominik; Reid, Michael; Punch, Jeff
2009-10-01
In this paper the creep behavior of lead-free 96.5Sn-3.0Ag-0.5Cu solder is evaluated. A series of creep tests at different stress/temperature and strain rate/temperature pairs has been conducted. The tests were observed in situ with a high-magnification camera system. Optical observation results are presented from selected tests, showing the occurrence of surface effects such as shear bands, voiding, and rumpling. From these observations the main deformation mechanisms were derived and compiled in terms of their dependence on the test conditions.
Lamellar Thickness and Stretching Temperature Dependency of Cavitation in Semicrystalline Polymers
Wang, Yaotao; Jiang, Zhiyong; Fu, Lianlian; Lu, Ying; Men, Yongfeng
2014-01-01
Polybutene-1 (PB-1), a typical semicrystalline polymer, in its stable form I shows a peculiar temperature dependent strain-whitening behavior when being stretched at temperatures in between room temperature and melting temperature of the crystallites where the extent of strain-whitening weakens with the increasing of stretching temperature reaching a minima value followed by an increase at higher stretching temperatures. Correspondingly, a stronger strain-hardening phenomenon was observed at higher temperatures. The strain-whitening phenomenon in semicrystalline polymers has its origin of cavitation process during stretching. In this work, the effect of crystalline lamellar thickness and stretching temperature on the cavitation process in PB-1 has been investigated by means of combined synchrotron ultrasmall-angle and wide-angle X-ray scattering techniques. Three modes of cavitation during the stretching process can be identified, namely “no cavitation” for the quenched sample with the thinnest lamellae where only shear yielding occurred, “cavitation with reorientation” for the samples stretched at lower temperatures and samples with thicker lamellae, and “cavitation without reorientation” for samples with thinner lamellae stretched at higher temperatures. The mode “cavitation with reorientation” occurs before yield point where the plate-like cavities start to be generated within the lamellar stacks with normal perpendicular to the stretching direction due to the blocky substructure of the crystalline lamellae and reorient gradually to the stretching direction after strain-hardening. The mode of “cavitation without reorientation” appears after yield point where ellipsoidal shaped cavities are generated in those lamellae stacks with normal parallel to the stretching direction followed by an improvement of their orientation at larger strains. X-ray diffraction results reveal a much improved crystalline orientation for samples with thinner lamellae stretched at higher temperatures. The observed behavior of microscopic structural evolution in PB-1 stretched at different temperatures explains above mentioned changes in macroscopic strain-whitening phenomenon with increasing in stretching temperature and stress-strain curves. PMID:24820772
Low-Temperature Friction-Stir Welding of 2024 Aluminum
NASA Technical Reports Server (NTRS)
Benavides, S.; Li, Y.; Murr, L. E.; Brown, D.; McClure, J. C.
1998-01-01
Solid state friction-stir welding (FSW) has been demonstrated to involve dynamic recrystallization producing ultra-fine, equiaxed grain structures to facilitate superplastic deformation as the welding or joining mechanism. However, the average residual, equiaxed, grain size in the weld zone has ranged from roughly 0.5 micron to slightly more than 10 micron, and the larger weld zone grain sizes have been characterized as residual or static grain growth as a consequence of the temperatures in the weld zone (where center-line temperatures in the FSW of 6061 Al have been shown to be as high as 480C or -0.8 T(sub M) where T(sub M) is the absolute melting temperature)). In addition, the average residual weld zone grain size has been observed to increase near the top of the weld, and to decrease with distance on either side of the weld-zone centerline, an d this corresponds roughly to temperature variations within the weld zone. The residual grain size also generally decreases with decreasing FSW tool rotation speed. These observations are consistent with the general rules for recrystallization where the recrystallized grain size decreases with increasing strain (or deformation) at constant strain rate, or with increasing strain-rate, or with increasing strain rate at constant strain; especially at lower ambient temperatures, (or annealing temperatures). Since the recrystallization temperature also decreases with increasing strain rate, the FSW process is somewhat complicated because the ambient temperature, the frictional heating fraction, and the adiabatic heating fraction )proportional to the product of strain and strain-rate) will all influence both the recrystallization and growth within the FSW zone. Significantly reducing the ambient temperature of the base metal or work pieces to be welded would be expected to reduce the residual weld-zone grain size. The practical consequences of this temperature reduction would be the achievement of low temperature welding. This study compares the residual grain sizes and microstructures in 2024 Al friction-stir welded at room temperature (about 30C and low temperature (-30C).
Handeland, S.O.; Wilkinson, E.; Sveinsbo, B.; McCormick, S.D.; Stefansson, S.O.
2004-01-01
Development of hypo-osmoregulatory ability, gill Na+,K +-ATPase activity, condition factor and growth in Atlantic salmon during parr-smolt transformation was studied in a 2??3 factorial design with three temperatures (12.0, 8.9??C and ambient, 2.4-11.9??C, mean: 6.0??C) and two farmed strains of smolts (Mowi and AquaGen). The development of hypo-osmoregulatory ability and gill Na+,K+-ATPase activity were significantly influenced by freshwater temperature. In smolts raised at 12.0??C, maximum gill Na+,K+-ATPase activity was reached in late April, compared with late May and mid-June in the 8.9??C and ambient groups, respectively. In all groups, peak gill Na+,K +-ATPase activity was seen 350 degree days (d??C) after the onset of the smolt-related increase in enzyme activity (30 March) The period of high enzyme activity (>90% of maximum) lasted approximately 250 d??C. No distinct peak level in gill Na+,K+-ATPase activity was seen in the AquaGen strain at ambient temperature. Elevated temperatures also accelerated the loss of hypo-osmoregulatory capacity. In all groups, gill Na+,K+-ATPase activity reached pre-smolt levels approximately 500 d??C after the calculated peak level. Growth rate in freshwater was influenced by strain, temperature and their interaction, with the Mowi strain showing a higher growth rate than the AquaGen strain at 8.9??C and ambient temperatures. Following transfer to seawater, a higher growth rate was recorded in smolts from the Mowi strain than the AquaGen strain from the ambient temperature regime. Temperature influences the development and loss of smolt characteristics in both strains, and has long-term effects on post-smolt performance in seawater. ?? 2004 Elsevier B.V. All rights reserved.
Exploiting strain to enhance the Bi incorporation in GaAs-based III/V semiconductors using MOVPE
NASA Astrophysics Data System (ADS)
Nattermann, L.; Ludewig, P.; Sterzer, E.; Volz, K.
2017-07-01
Bi containing III/V semiconductors are frequently mentioned for their importance as part of the next generation of optoelectronic devices. Bi containing ternary and quaternary materials like Ga(AsBi), Ga(NAsBi) or Ga(PAsBi) are promising candidates to meet the requirements for new laser structures for telecommunications and solar cell applications. However, in previous studies it was determined that the incorporation of sufficient amounts of Bi still poses a challenge, especially when using MOVPE (metalorganic vapour phase epitaxy) as the growth technique. In order to figure out which mechanisms are responsible for the limitation of Bi incorporation, this work deals with the question of whether there is a relationship between strain, induced by the large Bi atoms, and the saturation level of Bi incorporation in Ga(AsBi). Ga(NAsBi) structures were grown by MOVPE at a low temperature, 400 °C, and compared to Ga(PAsBi) as well as Ga(AsBi) growth. By using the two group V atoms P and N, which have a smaller covalent radius than Bi, the effect of local strain compensation was investigated systematically. The comparison of Bi incorporation in the two quaternary materials systems proved the importance of local strain for the limitation of Bi incorporation, in addition to other effects, like Bi surface coverage and hydrocarbon groups at the growth surface. This, of course, also opens up ways to strain-state-engineer the Bi incorporation in semiconductor alloys.
Cyclic deformation leads to defect healing and strengthening of small-volume metal crystals
Wang, Zhang-Jie; Li, Qing-Jie; Cui, Yi-Nan; ...
2015-10-19
When microscopic and macroscopic specimens of metals are subjected to cyclic loading, the creation, interaction, and accumulation of defects lead to damage, cracking, and failure. We demonstrate that when aluminum single crystals of submicrometer dimensions are subjected to low-amplitude cyclic deformation at room temperature, the density of preexisting dislocation lines and loops can be dramatically reduced with virtually no change of the overall sample geometry and essentially no permanent plastic strain. Furthermore, this “cyclic healing” of the metal crystal leads to significant strengthening through dramatic reductions in dislocation density, in distinct contrast to conventional cyclic strain hardening mechanisms arising frommore » increases in dislocation density and interactions among defects in microcrystalline and macrocrystalline metals and alloys. Our real-time, in situ transmission electron microscopy observations of tensile tests reveal that pinned dislocation lines undergo shakedown during cyclic straining, with the extent of dislocation unpinning dependent on the amplitude, sequence, and number of strain cycles. Those unpinned mobile dislocations moving close enough to the free surface of the thin specimens as a result of such repeated straining are then further attracted to the surface by image forces that facilitate their egress from the crystal. Our results point to a versatile pathway for controlled mechanical annealing and defect engineering in submicrometer-sized metal crystals, thereby obviating the need for thermal annealing or significant plastic deformation that could cause change in shape and/or dimensions of the specimen.« less
Cyclic deformation leads to defect healing and strengthening of small-volume metal crystals
Wang, Zhang-Jie; Li, Qing-Jie; Cui, Yi-Nan; Liu, Zhan-Li; Ma, Evan; Li, Ju; Sun, Jun; Zhuang, Zhuo; Dao, Ming; Shan, Zhi-Wei; Suresh, Subra
2015-01-01
When microscopic and macroscopic specimens of metals are subjected to cyclic loading, the creation, interaction, and accumulation of defects lead to damage, cracking, and failure. Here we demonstrate that when aluminum single crystals of submicrometer dimensions are subjected to low-amplitude cyclic deformation at room temperature, the density of preexisting dislocation lines and loops can be dramatically reduced with virtually no change of the overall sample geometry and essentially no permanent plastic strain. This “cyclic healing” of the metal crystal leads to significant strengthening through dramatic reductions in dislocation density, in distinct contrast to conventional cyclic strain hardening mechanisms arising from increases in dislocation density and interactions among defects in microcrystalline and macrocrystalline metals and alloys. Our real-time, in situ transmission electron microscopy observations of tensile tests reveal that pinned dislocation lines undergo shakedown during cyclic straining, with the extent of dislocation unpinning dependent on the amplitude, sequence, and number of strain cycles. Those unpinned mobile dislocations moving close enough to the free surface of the thin specimens as a result of such repeated straining are then further attracted to the surface by image forces that facilitate their egress from the crystal. These results point to a versatile pathway for controlled mechanical annealing and defect engineering in submicrometer-sized metal crystals, thereby obviating the need for thermal annealing or significant plastic deformation that could cause change in shape and/or dimensions of the specimen. PMID:26483463
Sharma, Praveen; Singh, Lakhvinder; Dilbaghi, Neeraj
2009-05-30
Decolorization of textile azo dye Disperse Yellow 211 (DY 211) was carried out from simulated aqueous solution by bacterial strain Bacillus subtilis. Response surface methodology (RSM), involving Box-Behnken design matrix in three most important operating variables; temperature, pH and initial dye concentration was successfully employed for the study and optimization of decolorization process. The total 17 experiments were conducted in the study towards the construction of a quadratic model. According to analysis of variance (ANOVA) results, the proposed model can be used to navigate the design space. Under optimized conditions the bacterial strain was able to decolorize DY 211 up to 80%. Model indicated that initial dye concentration of 100 mgl(-1), pH 7 and a temperature of 32.5 degrees C were found optimum for maximum % decolorization. Very high regression coefficient between the variables and the response (R(2)=0.9930) indicated excellent evaluation of experimental data by polynomial regression model. The combination of the three variables predicted through RSM was confirmed through confirmatory experiments, hence the bacterial strain holds a great potential for the treatment of colored textile effluents.
Role of orthopyroxene in rheological weakening of the lithosphere via dynamic recrystallization
Farla, Robert J. M.; Karato, Shun-ichiro; Cai, Zhengyu
2013-01-01
For plate tectonics to operate on a terrestrial planet, the surface layer (the lithosphere) must have a modest strength (Earth, ≤200 MPa), but a standard strength profile based on olivine far exceeds this threshold value. Consequently, it is essential to identify mechanisms that reduce the strength of the lithosphere on Earth. Here we report results of high-strain laboratory deformation experiments on a representative olivine–orthopyroxene composition that show the addition of orthopyroxene substantially reduces the strength in the ductile regime within a certain temperature window. The reduction in strength is associated with the formation of small orthopyroxene and olivine grains. Our samples show heterogeneous microstructures similar to those observed in natural peridotites in shear zones: fine-grained regions containing both orthopyroxene and olivine that form interconnected bands where a large fraction of strain is accommodated. A model is developed to apply these results to geological conditions. Such a model, combined with our experimental observations, suggests that orthopyroxene may play a key role in the plastic deformation of the lithosphere in a critical temperature range, leading to long-term weakening associated with strain localization in the lithosphere. PMID:24067645
NASA Technical Reports Server (NTRS)
Gabb, T. P.; Gayda, J.; Miner, R. V.
1986-01-01
The low cycle fatigue (LCF) properties of a single-crystal nickel-base superalloy Rene N4, have been examined at 760 and 980 C in air. Specimens having crystallographic orientations near the 001, 011, -111, 023, -236, and -145 lines were tested in fully reversed, total-strain-controlled LCF tests at a frequency of 0.1 Hz. At 760 C, this alloy exhibited orientation dependent tension-compression anisotropies of yielding which continued to failure. Also at 760 C, orientations exhibiting predominately single slip exhibited serrated yielding for many cycles. At 980 C, orientation dependencies of yielding behavior were smaller. In spite of the tension-compression anisotropies, cyclic stress range-strain range behavior was not strongly orientation dependent for either test temperature. Fatigue life on a total strain range basis was highly orientation dependent at 760 and 980 C and was related chiefly to elastic modulus, low modulus orientations having longer lives. Stage I crack growth on 111 planes was dominant at 760 C, while Stage II crack growth occurred at 980 C. Crack initiation generally occurred at near-surface micropores, but occasionally at oxidation spikes in the 980 C tests.
Fabry-Perot cavity cascaded sagnac loops for temperature and strain measurements
NASA Astrophysics Data System (ADS)
Shangguan, Chunmei; Zhang, Wen; Hei, Wei; Luo, Fei; Zhu, Lianqing
2018-04-01
The fabrication process and temperature and strain characterizations of an all-fiber sensor are presented. The sensing structure based on a Fabry-Perot cavity (FPC) and sagnac loops was proposed and experimentally demonstrated for measurements of temperature and strain. The FPC consists of a micropiece of chemical etched multimode fiber end face, welded with another single mode fiber. Then, the sagnac loops composed of polarization maintaining fiber was connected to the FPC. The sensor was fabricated and tested for temperature and strain. Experimental results show that sensitivity of temperature and strain is 0.71 ± 0.03 nm / ° C and 1.30 ± 0.01 pm / μɛ, respectively; the linearity are 0.9970 and 0.9996, respectively.
Du, Jiangbing; He, Zuyuan
2013-11-04
In this work, highly sensitive measurements of strain and temperature have been demonstrated using a fiber Bragg grating (FBG) sensor with significantly enhance sensitivity by all-optical signal processing. The sensitivity enhancement is achieved by degenerated Four Wave Mixing (FWM) for frequency chirp magnification (FCM), which can be used for magnifying the wavelength drift of the FBG sensor induced by strain and temperature change. Highly sensitive measurements of static strain and temperature have been experimentally demonstrated with strain sensitivity of 5.36 pm/με and temperature sensitivity of 54.09 pm/°C. The sensitivity has been enhanced by a factor of five based on a 4-order FWM in a highly nonlinear fiber (HNLF).
Fu, Gui-Ming; Li, Ru-Yi; Li, Kai-Min; Hu, Ming; Yuan, Xiao-Qiang; Li, Bin; Wang, Feng-Xue; Liu, Cheng-Mei; Wan, Yin
2016-11-16
This study aimed to obtain strains with high glyphosate-degrading ability and improve the ability of glyphosate degradation enzyme by the optimization of fermentation conditions. Spore from Aspergillus oryzae A-F02 was subjected to ultraviolet mutagenesis. Single-factor experiment and response surface methodology were used to optimize glyphosate degradation enzyme production from mutant strain by liquid-state fermentation. Four mutant strains were obtained and named as FUJX 001, FUJX 002, FUJX 003, and FUJX 004, in which FUJX 001 gave the highest total enzyme activity. Starch concentration at 0.56%, GP concentration at 1,370 mg/l, initial pH at 6.8, and temperature at 30°C were the optimum conditions for the improved glyphosate degradation endoenzyme production of A. oryzae FUJX 001. Under these conditions, the experimental endoenzyme activity was 784.15 U/100 ml fermentation liquor. The result (784.15 U/100 ml fermentation liquor) was approximately 14-fold higher than that of the original strain. The result highlights the potential of glyphosate degradation enzyme to degrade glyphosate.
A FEM simulation study of the solid state hydrostatic extrusion of PMMA
NASA Astrophysics Data System (ADS)
Costa, André L. M.; Riffel, Douglas B.; Misiolek, Wojciech Z.; Valberg, Henry S.
2018-05-01
Solid state hydrostatic extrusion (SSHE) of polymers below glass transition temperature is used to obtain highly oriented structures. Experimental studies on the SSHE of polymethyl-methacrylate (PMMA) have been made since early eighties but there is no information on internal temperature, stress and strain distribution. In this work we have made 3D FEM simulations of SSHE of PMMA by using the commercial DEFORM package with experimental flow curves and thermal properties from literature. The initial temperature of tooling and workpiece was 90°C, ram speeds were 1.0 and 10.0 mm/min with extrusion ratio R = 3.0. For a comparative analysis, SSHE simulation of the AA7108 aluminum alloy at 400°C was also performed. These ranges of parameters were chosen in order to encompass the parameters found in previously mentioned experiments. The best correlation with experimental hydrostatic pressure was verified for a shear friction coefficient at the material-conical die interface m = 0.50. Force-displacement curve for PMMA presented a constitutive and thermal softening in contrast to a constant force curve for aluminum. The internal temperature in the deformation zone increased in a characteristic "owl's face" profile in contrast to quasi-constant profile of aluminum alloy. In both PMMA and aluminum the stress is hydrostatic inside the container, but the stress profiles are significantly different inside the deformation zone. As expected, the strain and strain-rate profiles are practically the same for the two materials, but the temperature profile has promoted slightly differences in material flow. The velocity gradient from center to surface is higher in PMMA than aluminum. It's supposed that during hydrostatic extrusion solid PMMA has a characteristic thermally-inducted mechanical behavior.
NASA Astrophysics Data System (ADS)
Ren, W. W.; Xu, C. G.; Chen, X. L.; Qin, S. X.
2018-05-01
Using high temperature compression experiments, true stress true strain curve of 6082 aluminium alloy were obtained at the temperature 460°C-560°C and the strain rate 0.01 s-1-10 s-1. The effects of deformation temperature and strain rate on the microstructure are investigated; (‑∂lnθ/∂ε) ‑ ε curves are plotted based on σ-ε curve. Critical strains of dynamic recrystallization of 6082 aluminium alloy model were obtained. The results showed lower strain rates were beneficial to increase the volume fraction of recrystallization, the average recrystallized grain size was coarse; High strain rates are beneficial to refine average grain size, the volume fraction of dynamic recrystallized grain is less than that by using low strain rates. High temperature reduced the dislocation density and provided less driving force for recrystallization so that coarse grains remained. Dynamic recrystallization critical strain model and thermal experiment results can effectively predict recrystallization critical point of 6082 aluminium alloy during thermal deformation.
NASA Astrophysics Data System (ADS)
Kalziqi, Arben; Yunker, Peter; Thomas, Jacob
Unlike equilibrium atomic solids, biofilms do not experience significant thermal fluctuations at the constituent level. However, cells inside the biofilm stochastically die and reproduce, provoking a mechanical response. We investigate the mechanical response of biofilms to the death and reproduction of cells by measuring surface-height fluctuations of biofilms with two mutual predator strains of Vibrio cholerae which kill one another on contact via the Type VI Secretion System. Biofilm surface topography is measured in the homeostatic limit, wherein cell division and death occur at roughly the same rate, via white light interferometry. Although biofilms are far from equilibrium systems, measured height correlation functions line up with expectations from a generalized fluctuation-response relation derived from replication and death events, as predicted by Risler et al. (PRL 2015). Using genetically modified strains of V. cholerae which cannot kill, we demonstrate that extracted effective temperatures increase with the amount of death and reproduction. Thus, high-precision measurement of surface topography reveals the physical consequences of death and reproduction within a biofilm, providing a new approach to studying interactions between bacteria and cells.
NASA Technical Reports Server (NTRS)
Haisler, W. E.
1983-01-01
An uncoupled constitutive model for predicting the transient response of thermal and rate dependent, inelastic material behavior was developed. The uncoupled model assumes that there is a temperature below which the total strain consists essentially of elastic and rate insensitive inelastic strains only. Above this temperature, the rate dependent inelastic strain (creep) dominates. The rate insensitive inelastic strain component is modelled in an incremental form with a yield function, blow rule and hardening law. Revisions to the hardening rule permit the model to predict temperature-dependent kinematic-isotropic hardening behavior, cyclic saturation, asymmetric stress-strain response upon stress reversal, and variable Bauschinger effect. The rate dependent inelastic strain component is modelled using a rate equation in terms of back stress, drag stress and exponent n as functions of temperature and strain. A sequence of hysteresis loops and relaxation tests are utilized to define the rate dependent inelastic strain rate. Evaluation of the model has been performed by comparison with experiments involving various thermal and mechanical load histories on 5086 aluminum alloy, 304 stainless steel and Hastelloy X.
Elevated temperature strain gages
NASA Technical Reports Server (NTRS)
Brittain, J. O.; Geslin, D.; Lei, J. F.
1986-01-01
One of the goals of the HOST Program is the development of electrical resistance strain gages for static strain measurements at temperatures equal to or greater than 1273 K. Strain gage materials must have a reproducible or predictable response to temperature, time and strain. It is the objective of this research to investigate criteria for the selection of materials for such applications through electrical properties studies. The results of the investigation of two groups of materials, refractory compounds and binary alloy solid solutions are presented.
Palladium-chromium static strain gage for high temperature propulsion systems
NASA Technical Reports Server (NTRS)
Lei, Jih-Fen
1991-01-01
The present electrical strain gage for high temperature static strain measurements is in its fine-wire and thin-film forms designed to be temperature-compensated on any substrate material. The gage element is of Pd-Cr alloy, while the compensator is of Pt. Because the thermally-induced apparent strain of this compensated wire strain gage is sufficiently small, with good reproducibility between thermal cycles to 800 C, output figures can be corrected within a reasonable margin of error.
A high-precision, distributed geodetic strainmeter based on dual coaxial cable Bragg gratings
NASA Astrophysics Data System (ADS)
Fu, J.; Wei, T.; Wei, M.; Shen, Y.
2014-12-01
Observations of surface deformation are essential for understanding a wide range of geophysical problems, including earthquakes, volcanoes, landslides, and glaciers. Current geodetic technologies, such as GPS, InSAR, borehole and laser strainmeters, are costly and limited in their temporal or spatial resolution. Here we present a new type of strainmeter based on coaxial cable Bragg grating (CCBG) sensing technology that provides high-precision, distributed strain measurements at a moderate cost. The coaxial-cable-based strainmeter is designed to cover a long distance (~ km) under harsh environmental conditions such as extreme temperatures. To minimize the environmental noises, two CCBGs are introduced into the geodetic strainmeter: one is used to measure the strain applied on it, and the other acts as a reference only to detect the environmental noises. The environmental noises are removed using the inputs from the strained CCBG and the reference CCBG in a frequency mixer. The test results show that the geodetic strainmeter with dual CCBGs has micron-strain accuracy in the lab.
Processing method for forming dislocation-free SOI and other materials for semiconductor use
Holland, Orin Wayne; Thomas, Darrell Keith; Zhou, Dashun
1997-01-01
A method for preparing a silicon-on-insulator material having a relatively defect-free Si overlayer involves the implanting of oxygen ions within a silicon body and the interruption of the oxygen-implanting step to implant Si ions within the silicon body. The implanting of the oxygen ions develops an oxide layer beneath the surface of the silicon body, and the Si ions introduced by the Si ion-implanting step relieves strain which is developed in the Si overlayer during the implanting step without the need for any intervening annealing step. By relieving the strain in this manner, the likelihood of the formation of strain-induced defects in the Si overlayer is reduced. In addition, the method can be carried out at lower processing temperatures than have heretofore been used with SIMOX processes of the prior art. The principles of the invention can also be used to relieve negative strain which has been induced in a silicon body of relatively ordered lattice structure.
NASA Astrophysics Data System (ADS)
Cappa, Paolo; Marinozzi, Franco; Sciuto, Salvatore Andrea
2001-04-01
A novel methodology to simultaneously measure strain and temperature by means of an electrical resistance strain gauge powered by an ac signal and connected to a strain indicator by means of thermocouple wires is proposed. The experimental validation of the viability of this method is conducted by means of a purely electrical simulation of both strain and temperature signals, respectively from -2000 to 2000 µm m-1 and -250 to 230 °C. The results obtained showed that strain measurement is affected by an error always less than ±2 µm m-1 for the whole range of simulated strains, while the error in temperature evaluation is always less than 0.6 °C. The effect of cross-talk between the two signals was determined to be insignificant.
García-Ríos, Estéfani; López-Malo, María; Guillamón, José Manuel
2014-12-03
The wine industry needs better-adapted yeasts to grow at low temperature because it is interested in fermenting at low temperature to improve wine aroma. Elucidating the response to cold in Saccharomyces cerevisiae is of paramount importance for the selection or genetic improvement of wine strains. We followed a global approach by comparing transcriptomic, proteomic and genomic changes in two commercial wine strains, which showed clear differences in their growth and fermentation capacity at low temperature. These strains were selected according to the maximum growth rate in a synthetic grape must during miniaturized batch cultures at different temperatures. The fitness differences of the selected strains were corroborated by directly competing during fermentations at optimum and low temperatures. The up-regulation of the genes of the sulfur assimilation pathway and glutathione biosynthesis suggested a crucial role in better performance at low temperature. The presence of some metabolites of these pathways, such as S-Adenosilmethionine (SAM) and glutathione, counteracted the differences in growth rate at low temperature in both strains. Generally, the proteomic and genomic changes observed in both strains also supported the importance of these metabolic pathways in adaptation at low temperature. This work reveals a novel role of the sulfur assimilation pathway in adaptation at low temperature. We propose that a greater activation of this metabolic route enhances the synthesis of key metabolites, such as glutathione, whose protective effects can contribute to improve the fermentation process.
NASA Astrophysics Data System (ADS)
Nikitin, I.; Juijerm, P.
2018-02-01
The effects of loading frequency on the fatigue behavior of non-deep-rolled (NDR) and deep-rolled (DR) austenitic stainless steel AISI 304 were systematically clarified at elevated temperatures, especially at temperatures exhibiting the dynamic strain aging (DSA) phenomena. Tension-compression fatigue tests were performed isothermally at temperatures of 573 K and 773 K (300 °C and 500 °C) with different loading frequencies of 5, 0.5, 0.05, and 0.005 Hz. For the DR condition, the residual stresses and work-hardening states will be presented. It was found that DSA would be detected at appropriate temperatures and deformation rates. The cyclic deformation curves and the fatigue lives of the investigated austenitic stainless steel AISI 304 are considerably affected by the DSA, especially on the DR condition having high dislocation densities at the surface and in near-surface regions. In the temperature range of the DSA, residual stresses and work-hardening states of the DR condition seem to be stabilized. The microstructural alterations were investigated by transmission electron microscopy (TEM). At an appropriate temperature with low loading frequency, the plastic deformation mechanism shifted from a wavy slip manner to a planar slip manner in the DSA regimes, whereas the dislocation movements were obstructed.
Size effects in PbTiO3 nanocrystals: Effect of particle size on spontaneous polarization and strains
NASA Astrophysics Data System (ADS)
Akdogan, E. K.; Rawn, C. J.; Porter, W. D.; Payzant, E. A.; Safari, A.
2005-04-01
The spontaneous polarization (Ps) and spontaneous strains (xi) in mechanically unclamped and surface charge compensated PbTiO3 nanocrystals were determined as a function of particle size in the range <150nm by differential scanning calorimetry and x-ray powder diffraction, respectively. Significant deviations from bulk order parameters (P,xi) have been observed as the particle size decreased below ˜100nm. The critical size (rc) below which the ferroelectric tetragonal phase transforms to the paraelectric cubic phase was determined as ˜15nm. The depression in transition temperature with particle size is 14 °C at 28 nm. No change in the order of m3m →4mm ferrodistortive phase transition is observed. A simple analysis showed that ΔHtr/(kBT )˜103 at 25 °C for r =16nm, indicating that the stabilization of the cubic phase at rc cannot be linked to an instability in dipolar ordering due to thermal agitations. Comparison of the spontaneous volumetric strains with the strain induced by surface stress indicated that the effect of surface stress on ferroelectric phase stability was negligible. Anomalies in electrostrictive properties were determined for r →rc. The observed size dependence of PS is attributed to the reduced extent of long-range dipole-dipole interactions that arise due to the changes in bonding characteristics of ions with decreasing particle size in the perovskite lattice, in conformity with a recent study by Tsunekawa et al. [Phys. Rev. Lett. 85 (16), 4340 (2000)].
Yang, Weinan; Zou, Shanmei; He, Meilin; Fei, Cong; Luo, Wei; Zheng, Shiyan; Chen, Bo; Wang, Changhai
2016-02-01
It was economically feasible to screen strains adaptive to wide temperature fluctuation for outdoor cultivation without temperature control. In this research, three Chlorella strains from arctic glacier, desert soil and temperate native lake were isolated and identified. The growth, biochemical composition, lipid content and fatty acid composition of each strain cultured under the mode of diurnal temperature fluctuations were compared. All the three Chlorella strains showed desirable abilities of accumulating lipid under diurnal temperature fluctuations and their fatty acid profiles were suitable for biodiesel production, although the growth and biochemical composition were seemed to be region-specific. The highest lipid content was at 51.83±2.49% DW, 42.80±2.97% DW and 36.13±2.27% DW under different temperature fluctuation of 11 °C, 25 °C, 7 °C, respectively. The results indicated that the three Chlorella strains could be promising biodiesel feedstock for outdoor cultivation by the cultural mode of diurnal temperature fluctuations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Controlled growth of heteroepitaxial zinc oxide nanostructures on gallium nitride.
Kong, Bo Hyun; Kim, Dong Chan; Mohanta, Sanjay Kumar; Han, Won Suk; Cho, Hyung Koun; Hong, Chang-Hee; Kim, Hyung Gu
2009-07-01
ZnO epitaxial layers were grown on GaN underlying films by metalorganic chemical vapor deposition at various temperatures. An increase in growth temperature led to morphological changes from a smooth film with hexagonal-shaped surface pits to honeycomb-like nanostructures with deep hollow, and additionally resulted in a decrease in dislocation density in the interfacial layers. The reduced dislocation density at the higher growth temperature was attributed to an increase in the size of the critical nucleus and the low nucleation density at the initial stage. The shifts in the peak positions in the X-ray diffraction and photoluminescence were also observed in the samples grown at different temperatures, and were caused by the variation of residual strains after the complete coalescence of the nuclei.
UHV-TEM-REM Studies of Si(111) Surfaces
NASA Astrophysics Data System (ADS)
Yagi, K.; Yamanaka, A.; Sato, H.; Shima, M.; Ohse, H.; Ozawa, S.; Tanishiro, Y.
Recent progresses of ultra-high vacuum transmission and reflection electron microscope studies of clean Si(111) surfaces are described. Anisotropy of surface atomic steps such as step energy, bunching of steps, are studied. Out of phase boundaries are observed in transmission mode and its energy relative to the step energy is studied. The phase transition between the 1 × 1 and the 7 × 7 structures around 830°C, studied previously is re-examined under various conditions. Contraction strains of the 7 × 7 structure and adatom density on terraces play important role during the transition. Diffuse scattering observed by LEED and RHEED above the transition temperature is not observed in teh TED pattern from a thin film.
Souagui, Y; Tritsch, D; Grosdemange-Billiard, C; Kecha, M
2015-06-01
Optimization of medium components and physicochemical parameters for antifungal production by an alkaliphilic and salt-tolerant actinomycete designated Streptomyces sp. SY-BS5; isolated from an arid region in south of Algeria. The strain showed broad-spectrum activity against pathogenic and toxinogenic fungi. Identification of the actinomycete strain was realized on the basis of 16S rRNA gene sequencing. Antifungal production was optimized following one-factor-at-a-time (OFAT) and response surface methodology (RSM) approaches. The most suitable medium for growth and antifungal production was found using one-factor-at-a-time methodology. The individual and interaction effects of three nutritional variables, carbon source (glucose), nitrogen source (yeast extract) and sodium chloride (NaCl) were optimized by Box-Behnken design. Finally, culture conditions for the antifungal production, pH and temperature were studied and determined. Analysis of the 16S rRNA gene sequence (1454 nucleotides) assigned this strain to Streptomyces genus with 99% similarity with Streptomyces cyaneofuscatus JCM4364(T), the most closely related. The results of the optimization study show that concentrations 3.476g/L of glucose, 3.876g/L of yeast extract and 41.140g/L of NaCl are responsible for the enhancement of antifungal production by Streptomyces sp. SY-BS5. The preferable culture conditions for antifungal production were pH 10, temperature 30°C for 09 days. This study proved that RSM is usual and powerful tool for the optimization of antifungal production from actinomycetes. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Jiang, Yajun; Liu, Chi; Li, Dong; Yang, Dexing; Zhao, Jianlin
2018-04-01
A novel method for simultaneous measurement of temperature and strain using a single phase-shifted fiber Bragg grating (PS-FBG) is proposed. The PS-FBG is produced by exposing the fusion-spliced fiber with a femtosecond laser and uniform phase mask. Due to the non-uniform structure and strain distribution in the fusion-spliced region, the phase-shift changes with different responses during increases to the temperature and strain; by measuring the central wavelengths and the loss difference of two transmission dips, temperature and strain can be determined simultaneously. The resolutions of this particular sensor in measuring temperature and strain are estimated to be ±1.5 °C and ±12.2 µɛ in a range from -50 °C to 150 °C and from 0 µɛ to 2070 µɛ.
Acoustic testing of high temperature panels
NASA Technical Reports Server (NTRS)
Leatherwood, Jack D.; Clevenson, Sherman A.; Powell, Clemans A.; Daniels, Edward F.
1990-01-01
Results are presented of a series of thermal-acoustic tests conducted on the NASA Langley Research Center Thermal-Acoustic Test Apparatus to (1) investigate techniques for obtaining strain measurements on metallic and carbon-carbon materials at elevated temperature; (2) document the dynamic strain response characteristics of several superalloy honeycomb thermal protection system panels at elevated temperatures of up to 1200 F; and (3) determine the strain response and sonic fatigue behavior of four carbon-carbon panels at both ambient and elevated temperatures. A second study tested four carbon-carbon panels to document panel dynamic response characteristics at ambient and elevated temperature, determine time to failure and faliure modes, and collect continuous strain data up to panel failure. Strain data are presented from both types of panels, and problems encountered in obtaining reliable strain data on the carbon-carbon panels are described. The failure modes of the carbon-carbon panels are examined.
Structure and properties of silk from the African wild silkmoth Gonometa postica reared indoors
Teshome, Addis; Raina, S. K.; Vollrath, Fritz
2014-01-01
Abstract African wild silkmoth, Gonometa postica Walker (Lepidoptera: Lasiocampidae), were reared indoors in order to examine the influence of rearing conditions on the structure and properties of silk cocoon shells and degummed fibers by using a scanning electron microscope, an Instron tensile tester, and a thermogravimetric analyzer. The cocoons reared indoors showed inferior quality in weight, length, width, and cocoon shell ratio compared to cocoons reared outdoors. There were no differences in cocoon shell and fiber surfaces and cross sectional structures. Cocoon shells were covered with calcium oxalate crystals with few visible fibers on their surface. Degummed fibers were smooth with minimum unfractured surfaces and globular to triangular cross sections. Indoor-reared cocoon shells had a significantly higher breaking strain, while the breaking stress was higher for cocoons reared outdoors. Fibers from indoor cocoons had a significantly higher breaking stress while outdoor fibers had higher breaking strain. Thermogravimetric analysis curves showed two main thermal reactions revealing the dehydration of water molecules and ir-reversible decomposition of the crystallites in both cocoons and fibers reared indoors and outdoors. Cocoon shells underwent additional peaks of decomposition with increased temperature. The total weight loss was higher for cocoon shells and degummed fibers from indoors. Rearing conditions (temperature and relative humidity), feeding method used, changes in total life span, days to molting, and spinning might have influenced the variation in the properties observed.The ecological and commercial significances of indoor rearing of G. postica are discussed. PMID:25373183
Biofilm Formation Characteristics of Pseudomonas lundensis Isolated from Meat.
Liu, Yong-Ji; Xie, Jing; Zhao, Li-Jun; Qian, Yun-Fang; Zhao, Yong; Liu, Xiao
2015-12-01
Biofilms formations of spoilage and pathogenic bacteria on food or food contact surfaces have attracted increasing attention. These events may lead to a higher risk of food spoilage and foodborne disease transmission. While Pseudomonas lundensis is one of the most important bacteria that cause spoilage in chilled meat, its capability for biofilm formation has been seldom reported. Here, we investigated biofilm formation characteristics of P. lundensis mainly by using crystal violet staining, and confocal laser scanning microscopy (CLSM). The swarming and swimming motility, biofilm formation in different temperatures (30, 10, and 4 °C) and the protease activity of the target strain were also assessed. The results showed that P. lundensis showed a typical surface-associated motility and was quite capable of forming biofilms in different temperatures (30, 10, and 4 °C). The strain began to adhere to the contact surfaces and form biofilms early in the 4 to 6 h. The biofilms began to be formed in massive amounts after 12 h at 30 °C, and the extracellular polysaccharides increased as the biofilm structure developed. Compared with at 30 °C, more biofilms were formed at 4 and 10 °C even by a low bacterial density. The protease activity in the biofilm was significantly correlated with the biofilm formation. Moreover, the protease activity in biofilm was significantly higher than that of the corresponding planktonic cultures after cultured 12 h at 30 °C. © 2015 Institute of Food Technologists®
Interfacial diffusion aided deformation during nanoindentation
Samanta, Amit; E., Weinan
2015-07-06
Nanoindentation is commonly used to quantify the mechanical response of material surfaces. Despite its widespread use, a detailed understanding of the deformation mechanisms responsible for plasticity during these experiments has remained elusive. Nanoindentation measurements often show stress values close to a material’s ideal strength which suggests that dislocation nucleation and subsequent dislocation activity dominates the deformation. However, low strain-rate exponents and small activation volumes have also been reported which indicates high temperature sensitivity of the deformation processes. Using an order parameter aided temperature accelerated sampling technique called adiabatic free energy dynamics [J. B. Abrams and M. E. Tuckerman, J. Phys.more » Chem. B, 112, 15742 (2008)], and molecular dynamics we have probed the diffusive mode of deformation during nanoindentation. Localized processes such as surface vacancy and ad-atom pair formation, vacancy diffusion are found to play an important role during indentation. Furthermore, our analysis suggests a change in the dominant deformation mode from dislocation mediated plasticity to diffusional flow at high temperatures, slow indentation rates and small indenter tip radii.« less
Effect of elastic excitations on the surface structure of hadfield steel under friction
NASA Astrophysics Data System (ADS)
Kolubaev, A. V.; Ivanov, Yu. F.; Sizova, O. V.; Kolubaev, E. A.; Aleshina, E. A.; Gromov, V. E.
2008-02-01
The structure of the Hadfield steel (H13) surface layer forming under dry friction is examined. The deformation of the material under the friction surface is studied at a low slip velocity and a low pressure (much smaller than the yields stress of H13 steel). The phase composition and defect substructure on the friction surface are studied using scanning, optical, and diffraction electron microscopy methods. It is shown that a thin highly deformed nanocrystalline layer arises near the friction surface that transforms into a polycrystalline layer containing deformation twins and dislocations. The nanocrystalline structure and the presence of oxides in the surface layer and friction zone indicate a high temperature and high plastic strains responsible for the formation of the layer. It is suggested that the deformation of the material observed far from the surface is due to elastic wave generation at friction.
NASA Astrophysics Data System (ADS)
Jezequel, T.; Auzoux, Q.; Le Boulch, D.; Bono, M.; Andrieu, E.; Blanc, C.; Chabretou, V.; Mozzani, N.; Rautenberg, M.
2018-02-01
During accidental power transient conditions with Pellet Cladding Interaction (PCI), the synergistic effect of the stress and strain imposed on the cladding by thermal expansion of the fuel, and corrosion by iodine released as a fission product, may lead to cladding failure by Stress Corrosion Cracking (SCC). In this study, internal pressure tests were conducted on unirradiated cold-worked stress-relieved Zircaloy-4 cladding tubes in an iodine vapor environment. The goal was to investigate the influence of loading type (constant pressure tests, constant circumferential strain rate tests, or constant circumferential strain tests) and test temperature (320, 350, or 380 °C) on iodine-induced stress corrosion cracking (I-SCC). The experimental results obtained with different loading types were consistent with each other. The apparent threshold hoop stress for I-SCC was found to be independent of the test temperature. SEM micrographs of the tested samples showed many pits distributed over the inner surface, which tended to coalesce into large pits in which a microcrack could initiate. A model for the time-to-failure of a cladding tube was developed using finite element simulations of the viscoplastic mechanical behavior of the material and a modified Kachanov's damage growth model. The times-to-failure predicted by this model are consistent with the experimental data.
DAS Microseismic and Strain Monitoring During Hydraulic Fracturing
NASA Astrophysics Data System (ADS)
Kahn, D.; Karrenbach, M. H.; Cole, S.; Boone, K.; Ridge, A.; Rich, J.; Langton, D.; Silver, K.
2017-12-01
Hydraulic fracturing operations in unconventional subsurface reservoirs are typically monitored using geophones located either at the surface or in adjacent wellbores. A novel approach to record hydraulic stimulations utilizes fiber-optic Distributed Acoustic Sensing (DAS). A fiber-optic cable was installed in a treatment well in a subsurface reservoir (Meramec formation). DAS data were recorded during fluid injection of same fibered well and also during injection into a nearby treatment well at a distance of 350m. For both scenarios the DAS sensing array consisted of approximately 1000 channels at a fine spatial and temporal sampling and with a large sensing aperture. Thus, the full strain wave field is measured along the borehole over its entire length. A variety of physical effects, such as temperature, low-frequency strain and microseismicity were measured and correlated with the treatment program during hydraulic fracturing of the wells. These physical effects occur at various frequency scales and produce complementary measurements. Microseismic events in the magnitude range of -0.5 and -2.0 at a maximum distance of 500m were observed and analyzed for recordings from the fiber-equipped treatment well and also neighboring treatment well. The analysis of this DAS data set demonstrates that current fiber-optic sensing technology can provide enough sensitivity to detect a significant number of microseismic events and that these events can be integrated with temperature and strain measurements for an improved subsurface reservoir description.
Dehydration of lawsonite could directly trigger earthquakes in subducting oceanic crust
NASA Astrophysics Data System (ADS)
Okazaki, Keishi; Hirth, Greg
2016-02-01
Intermediate-depth earthquakes in cold subduction zones are observed within the subducting oceanic crust, as well as the mantle. In contrast, intermediate-depth earthquakes in hot subduction zones predominantly occur just below the Mohorovičić discontinuity. These observations have stimulated interest in relationships between blueschist-facies metamorphism and seismicity, particularly through dehydration reactions involving the mineral lawsonite. Here we conducted deformation experiments on lawsonite, while monitoring acoustic emissions, in a Griggs-type deformation apparatus. The temperature was increased above the thermal stability of lawsonite, while the sample was deforming, to test whether the lawsonite dehydration reaction induces unstable fault slip. In contrast to similar tests on antigorite, unstable fault slip (that is, stick-slip) occurred during dehydration reactions in the lawsonite and acoustic emission signals were continuously observed. Microstructural observations indicate that strain is highly localized along the fault (R1 and B shears), and that the fault surface develops slickensides (very smooth fault surfaces polished by frictional sliding). The unloading slope during the unstable slip follows the stiffness of the apparatus at all experimental conditions, regardless of the strain rate and temperature ramping rate. A thermomechanical scaling factor for the experiments is within the range estimated for natural subduction zones, indicating the potential for unstable frictional sliding within natural lawsonite layers.
Food poisoning potential of Bacillus cereus strains from Norwegian dairies.
Stenfors Arnesen, Lotte P; O'sullivan, Kristin; Granum, Per Einar
2007-05-10
Characteristics concerning diarrhoeal potential were investigated in B. cereus dairy strains. The thirty-nine strains, isolated from whipping cream, were tested for cytotoxicity after culturing at human body temperature as well as 25 degrees C and 32 degrees C. At 37 degrees C, none of the strains were highly cytotoxic. This observation suggests that those strains should be considered to pose a minor risk with regard to diarrhoeal food poisoning. However, some strains were moderately or highly cytotoxic when grown at 25 degrees C and 32 degrees C. While the majority of the strains were able to grow at refrigeration temperatures, only four B. weihenstephanensis strains were identified among them when subjected to discriminative PCR assays and growth temperatures which delimit this species.
The strength and rheology of methane clathrate hydrate
Durham, W.B.; Kirby, S.H.; Stern, L.A.; Zhang, W.
2003-01-01
Methane clathrate hydrate (structure I) is found to be very strong, based on laboratory triaxial deformation experiments we have carried out on samples of synthetic, high-purity, polycrystalline material. Samples were deformed in compressional creep tests (i.e., constant applied stress, ??), at conditions of confining pressure P = 50 and 100 MPa, strain rate 4.5 ?? 10-8 ??? ?? ??? 4.3 ?? 10-4 s-1, temperature 260 ??? T ??? 287 K, and internal methane pressure 10 ??? PCH4 ??? 15 MPa. At steady state, typically reached in a few percent strain, methane hydrate exhibited strength that was far higher than expected on the basis of published work. In terms of the standard high-temperature creep law, ?? = A??ne-(E*+PV*)/RT the rheology is described by the constants A = 108.55 MPa-n s-1, n = 2.2, E* = 90,000 J mol-1, and V* = 19 cm3 mol-1. For comparison at temperatures just below the ice point, methane hydrate at a given strain rate is over 20 times stronger than ice, and the contrast increases at lower temperatures. The possible occurrence of syntectonic dissociation of methane hydrate to methane plus free water in these experiments suggests that the high strength measured here may be only a lower bound. On Earth, high strength in hydrate-bearing formations implies higher energy release upon decomposition and subsequent failure. In the outer solar system, if Titan has a 100-km-thick near-surface layer of high-strength, low-thermal conductivity methane hydrate as has been suggested, its interior is likely to be considerably warmer than previously expected.
Rollero, Stéphanie; Bloem, Audrey; Camarasa, Carole; Sanchez, Isabelle; Ortiz-Julien, Anne; Sablayrolles, Jean-Marie; Dequin, Sylvie; Mouret, Jean-Roch
2015-03-01
Volatile compounds produced by yeast during fermentation greatly influence the organoleptic qualities of wine. We developed a model to predict the combined effects of initial nitrogen and phytosterol content and fermentation temperature on the production of volatile compounds. We used a Box-Behnken design and response surface modeling to study the response of Lalvin EC1118® to these environmental conditions. Initial nitrogen content had the greatest influence on most compounds; however, there were differences in the value of fermentation parameters required for the maximal production of the various compounds. Fermentation parameters affected differently the production of isobutanol and isoamyl alcohol, although their synthesis involve the same enzymes and intermediate. We found differences in regulation of the synthesis of acetates of higher alcohols and ethyl esters, suggesting that fatty acid availability is the main factor influencing the synthesis of ethyl esters whereas the production of acetates depends on the activity of alcohol acetyltransferases. We also evaluated the effect of temperature on the total production of three esters by determining gas-liquid balances. Evaporation largely accounted for the effect of temperature on the accumulation of esters in liquid. Nonetheless, the metabolism of isoamyl acetate and ethyl octanoate was significantly affected by this parameter. We extended this study to other strains. Environmental parameters had a similar effect on aroma production in most strains. Nevertheless, the regulation of the synthesis of fermentative aromas was atypical in two strains: Lalvin K1M® and Affinity™ ECA5, which produces a high amount of aromatic compounds and was obtained by experimental evolution.
Synthesis and photoluminescence of ultra-pure germanium nanoparticles
NASA Astrophysics Data System (ADS)
Chivas, R.; Yerci, S.; Li, R.; Dal Negro, L.; Morse, T. F.
2011-09-01
We have used aerosol deposition to synthesize defect and micro-strain free, ultra-pure germanium nanoparticles. Transmission electron microscopy images show a core-shell configuration with highly crystalline core material. Powder X-ray diffraction measurements verify the presence of highly pure, nano-scale germanium with average crystallite size of 30 nm and micro-strain of 0.058%. X-ray photoelectron spectroscopy demonstrates that GeO x ( x ⩽ 2) shells cover the surfaces of the nanoparticles. Under optical excitation, these nanoparticles exhibit two separate emission bands at room temperature: a visible emission at 500 nm with 0.5-1 ns decay times and an intense near-infrared emission at 1575 nm with up to ˜20 μs lifetime.
Roto-flexoelectric coupling impact on the phase diagrams and pyroelectricity of thin SrTiO 3 films
Morozovska, Anna N.; Eliseev, Eugene A.; Bravina, Svetlana L.; ...
2012-09-20
The influence of the flexoelectric and rotostriction coupling on the phase diagrams of ferroelastic-quantum paraelectric SrTiO 3 films was studied using Landau-Ginzburg-Devonshire (LGD) theory. We calculated the phase diagrams in coordinates temperature - film thickness for different epitaxial misfit strains. Tensile misfit strains stimulate appearance of the spontaneous out-of-plane structural order parameter (displacement vector of an appropriate oxygen atom from its cubic position) in the structural phase. For compressive misfit strains are stimulated because of the spontaneous in-plane structural order parameter. Furthermore, gradients of the structural order parameter components, which inevitably exist in the vicinity of film surfaces due tomore » the termination and symmetry breaking, induce improper polarization and pyroelectric response via the flexoelectric and rotostriction coupling mechanism. Flexoelectric and rotostriction coupling results in the roto-flexoelectric field that is antisymmetric inside the film, small in the central part of the film, where the gradients of the structural parameter are small, and maximal near the surfaces, where the gradients of the structural parameter are highest. The field induces improper polarization and pyroelectric response. Penetration depths of the improper phases (both polar and structural) can reach several nm from the film surfaces. An improper pyroelectric response of thin films is high enough to be registered with planar-type electrode configurations by conventional pyroelectric methods.« less
Elevated-Temperature Tests Under Static and Aerodynamic Conditions on Honeycomb-Core Sandwich Panels
NASA Technical Reports Server (NTRS)
Groen, Joseph M.; Johnson, Aldie E., Jr.
1959-01-01
Stainless-steel honeycomb-core sandwich panels which differed primarily in skin thicknesses were tested at elevated temperatures under static and aerodynamic conditions. The results of these tests were evaluated to determine the insulating effectiveness and structural integrity of the panels. The static radiant-heating tests were performed in front of a quartz-tube radiant heater at panel skin temperatures up to 1,5000 F. The aerodynamic tests were made in a Mach 1.4 heated blowdown wind tunnel. The tunnel temperature was augmented by additional heat supplied by a radiant heater which raised the panel surface temperature above 8000 F during air flow. Static radiant-heating tests of 2 minutes duration showed that all the panels protected the load-carrying structure about equally well. Thin-skin panels showed an advantage for this short-time test over thick-skin panels from a standpoint of weight against insulation. Permanent inelastic strains in the form of local buckles over each cell of the honeycomb core caused an increase in surface roughness. During the aero- dynamic tests all of the panels survived with little or no damage, and panel flutter did not occur.
NASA Astrophysics Data System (ADS)
Tallman, Robert E.
Raman scattering is utilized to explore the effects of applied pressure and strain on anharmonic phonon interactions and nucleation of structural transitions in several bulk and nanoparticle semiconductor systems. The systems investigated are bulk ZnS and ZnSe in several isotopic compositions, InP/CdS core/shell nanoparticles exhibiting confined and surface optical Raman modes, and amorphous selenium films undergoing photo-induced crystallization. The anharmonic decay of long-wavelength optical modes into two-phonon acoustic combinations modes is studied in 64Zn32S, 64Zn34S, natZnatS bulk crystals by measuring the TO(Gamma) Raman line-shape as a function of applied hydrostatic pressure. The experiments are carried out at room temperature and 16K for pressures up to 150 kbars using diamond-anvil cells. The most striking effects occur in 68Zn32S where the TO(Gamma) peak narrows by a factor of 10 and increases in intensity at pressures for which the TO(Gamma) frequency has been tuned into a gap in the two-phonon density of states (DOS). In all the isotopic compositions, the observed phonon decay processes can be adequately explained by a second order perturbation treatment of the anharmonic coupling between TO(Gamma) and TA + LA combinations at various critical points, combined with an adiabatic bond-charge model for the phonon DOS and the known mode Gruneisen parameters. Bulk ZnSe crystals exhibit very different behavior. Here we find that anharmonic decay alone can not explain the excessive (˜ 60 cm-1 ) broadening in the TO(Gamma) Raman peak observed as the pressure approaches to within 50kbar of the ZB -> B1 phase transition (at P ˜ 137 kbar). Rather the broadening appears to arise from antecedent nucleation of structural changes within nanoscopic domains, with the mechanism for line-shape changes being mode mixing via localization and disorder instead of anharmonicity. To sort out these contributions, pressure experiments on natural ZnSe and on isotopically pure 68Zn76Se are compared. Again we use an appropriate bond-charge model to obtain the phonon DOS. It is concluded that the antecedent nucleation mechanism is much more important in ZnSe than in ZnS. In order to further investigate interactions of vibrational modes in spatially confined systems, pressure-Raman experiments are carried out on InP/CdS core/shell nanoparticles. This system differs from most other core/shell nanoparticles systems, in that the near degeneracy of the bulk InP TO(Gamma) and CdS LO(Gamma) phonons leads to possible cross-interface mode coupling. Different confined and surface (or interface) optical modes are studied as a function of pressure up 65 kbar at 373 and 230 K. The results are compared with the predictions of dielectric continuum theory using a phenomenological macroscopic approach (PMA) to include the pressure dependence. Three different pressure media are employed, and the effects on the surface modes of their different static dielectric constants are investigated. The pressure-shifts of the observed confined and surface modes are well accounted for without the need to include cross-interface coupling. We conclude that the conventional boundary condition, of vanishing phonon amplitude at the heterointerface, remains valid in the InP/CdS nanoparticle system, in spite of the near degeneracy of the bulk optical phonons. Photo-induced crystallization in amorphous selenium (a-Se) was also explored in this dissertation, as another example of a nanoscopic nucleation process influenced by strain, in this case internal strain. In order to observe photo-crystallization, the Raman spectra of commercial a-Se films used as targets in high-gain avalanche rushing photodetectors (HARP) cameras was studied at temperatures in the range 260 - 330 K. We find a rich temperature behavior that reflects the competition of changes in viscosity and strain, and defines four distinct regimes. These results are in qualitative accord with a theory by R.B.Stephens treating the effects of local strain on the secondary growth of crystalline nuclei in a-Se. We were able to conclude that the growth of trigonal selenium is driven by local strain, and that the relaxation of this strain field around the glass transition temperature suppresses crystalline growth until thermally assisted processes accelerate the photo-crystallization at higher temperatures. The observed nucleation kinetics was also found to be relevant to understanding the formation of blemishes in the output images of advanced HARP video cameras.
NASA Astrophysics Data System (ADS)
Rodriguez, A. K.; Kridli, G.; Ayoub, G.; Zbib, H.
2013-10-01
This article investigates the effects of the strain rate and temperature on the microstructural evolution of twin-rolled cast wrought AZ31B sheets. This was achieved through static heating and through tensile test performed at strain rates from 10-4 to 10-1 s-1 and temperatures between room temperature (RT) and 300 °C. While brittle fracture with high stresses and limited elongation was observed at the RT, ductile behavior was obtained at higher temperatures with low strain rates. The strain rate sensitivity and activation energy calculations indicate that grain boundary diffusion and lattice diffusion are the two rate-controlling mechanisms at warm and high temperatures, respectively. An analysis of the evolution of the microstructure provided some indications of the most probable deformation mechanisms in the material: twinning operates at lower temperatures, and dynamic recrystallization dominates at higher temperatures. The static evolution of the microstructure was also studied, proving a gradual static grain growth of the AZ31B with annealing temperature and time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thayer, D.W.; Boyd, G.
1991-04-01
Response-surface methodology was used to develop predictive equations for the response of Salmonella typhimurium ATCC 14028 on the surface of chicken legs or within mechanically deboned chicken meat (MDCM) to the effects of {gamma} radiation doses of 0 to 3.60 kGy (100 krad = 1 kGy) at temperatures of -20 to +20 C in air or vacuum. A streptomycin-resistant mutant was used in these studies to allow accurate estimations of the surviving salmonellae in the presence of residual normal flora. This strain has been demonstrated to have no significant shift in its biological properties nor in its resistance to ionizingmore » radiation. The response of S. typhimurium to gamma radiation was similar on both chicken legs and MDCM. The radiation was significantly more lethal to the bacterial cells at temperatures above freezing. The response-surface equations developed from the studies predict that the number of viable cells per gram of MDCM or per square centimeter of the surface of chicken legs would be reduced approximately 2.8 to 5.1 log units at 0 C by radiation doses within the range of 1.5 to 3.0 kGy. The results of the present studies are similar to those obtained previously with sterile mechanically deboned chicken meat.« less
NASA Astrophysics Data System (ADS)
Karmiol, Zachary; Chidambaram, Dev
2016-05-01
This work investigates two austenitic stainless steels, Nitronic-50 and stainless steel 316, for use in both subcritical and supercritical water (SCW) conditions. The mechanical characteristics of the materials were investigated using slow strain rate testing in a SCW test loop under the following conditions: nitrogen at ambient temperature and pressure, liquid water at 473 K (200 °C) and 8 MPa, liquid water at 573 K (300 °C) and 15 MPa, and SCW at 698 K (425 °C) and 27 MPa. The surfaces of the failed samples were characterized using Raman spectroscopy, and X-ray photoelectron spectroscopy. Nitronic-50 was found to have superior mechanical strength characteristics at all conditions compared to stainless steel 316. At all elevated temperature conditions, stainless steel 316 was found to have a surface film consisting of iron oxides, while the surface film of Nitronic-50 predominantly consisted of nickel-iron spinel.
2014-01-01
Response surface methodology using a face-centered cube design was used to describe and predict spore inactivation of Bacillus anthracis ∆Sterne and Bacillus thuringiensis Al Hakam spores after exposure of six spore-contaminated materials to hot, humid air. For each strain/material pair, an attempt was made to fit a first or second order model. All three independent predictor variables (temperature, relative humidity, and time) were significant in the models except that time was not significant for B. thuringiensis Al Hakam on nylon. Modeling was unsuccessful for wiring insulation and wet spores because there was complete spore inactivation in the majority of the experimental space. In cases where a predictive equation could be fit, response surface plots with time set to four days were generated. The survival of highly purified Bacillus spores can be predicted for most materials tested when given the settings for temperature, relative humidity, and time. These predictions were cross-checked with spore inactivation measurements. PMID:24949256
Transmission Spectra of HgTe-Based Quantum Wells and Films in the Far-Infrared Range
NASA Astrophysics Data System (ADS)
Savchenko, M. L.; Vasil'ev, N. N.; Yaroshevich, A. S.; Kozlov, D. A.; Kvon, Z. D.; Mikhailov, N. N.; Dvoretskii, S. A.
2018-04-01
Strained 80-nm-thick HgTe films belong to a new class of materials referred to as three-dimensional topological insulators (i.e., they have a bulk band gap and spin-nondegenerate surface states). Though there are a number of studies devoted to analysis of the properties of surface states using both transport and magnetooptical techniques in the THz range, the information about direct optical transitions between bulk and surface bands in these systems has not been reported. This study is devoted to the analysis of transmission and reflection spectra of HgTe films of different thicknesses in the far-infrared range recorded in a wide temperature range in order to detect the above interband transitions. A peculiarity at 15 meV, which is sensitive to a change in the temperature, is observed in spectra of both types. Detailed analysis of the data obtained revealed that this feature is related to absorption by HgTe optical phonons, while the interband optical transitions are suppressed.
Temperature and strain rate dependent behavior of polymer separator for Li-ion batteries
Kalnaus, Sergiy; Wang, Yanli; Li, Jianlin; ...
2018-03-07
Safe performance of advanced Li-ion batteries relies on integrity of the separator membrane which prevents contact between electrodes of opposite polarity. Current work provides detailed study of mechanical behavior of such membrane. Temperature and strain rate sensitivity of the triple-layer polypropylene (PP)/polyethylene (PE)/polypropylene (PP) porous separator for Li-ion batteries was studied experimentally under controlled temperatures of up to 120° (393 K), and strain rates (from 1∙10-4s-1 to 0.1s-1). Digital image correlation was used to study strain localization in separator under load. The results show significant dependence of mechanical properties on temperature, with the yield stress decreasing by 30% and elasticmore » modulus decreasing by a factor of two when the temperature is increased from 20 °C to 50 °C. The strain rate strengthening also decreased with higher temperatures while the temperature softening remained independent of the applied strain rate. Application of temperature creates long lasting changes in mechanical behavior of separator as was revealed by performing experiments after the annealing. Such delayed effect of temperature application appears to have directional dependence. The results demonstrate complex behavior of polymer separator which needs to be considered in proper safety assessments of Li-ion batteries.« less
Temperature and strain rate dependent behavior of polymer separator for Li-ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalnaus, Sergiy; Wang, Yanli; Li, Jianlin
Safe performance of advanced Li-ion batteries relies on integrity of the separator membrane which prevents contact between electrodes of opposite polarity. Current work provides detailed study of mechanical behavior of such membrane. Temperature and strain rate sensitivity of the triple-layer polypropylene (PP)/polyethylene (PE)/polypropylene (PP) porous separator for Li-ion batteries was studied experimentally under controlled temperatures of up to 120° (393 K), and strain rates (from 1∙10-4s-1 to 0.1s-1). Digital image correlation was used to study strain localization in separator under load. The results show significant dependence of mechanical properties on temperature, with the yield stress decreasing by 30% and elasticmore » modulus decreasing by a factor of two when the temperature is increased from 20 °C to 50 °C. The strain rate strengthening also decreased with higher temperatures while the temperature softening remained independent of the applied strain rate. Application of temperature creates long lasting changes in mechanical behavior of separator as was revealed by performing experiments after the annealing. Such delayed effect of temperature application appears to have directional dependence. The results demonstrate complex behavior of polymer separator which needs to be considered in proper safety assessments of Li-ion batteries.« less
Zhou, Da-Peng; Li, Wenhai; Chen, Liang; Bao, Xiaoyi
2013-01-31
A distributed optical fiber sensor with the capability of simultaneously measuring temperature and strain is proposed using a large effective area non-zero dispersion shifted fiber (LEAF) with sub-meter spatial resolution. The Brillouin frequency shift is measured using Brillouin optical time-domain analysis (BOTDA) with differential pulse-width pair technique, while the spectrum shift of the Rayleigh backscatter is measured using optical frequency-domain reflectometry (OFDR). These shifts are the functions of both temperature and strain, and can be used as two independent parameters for the discrimination of temperature and strain. A 92 m measurable range with the spatial resolution of 50 cm is demonstrated experimentally, and accuracies of ±1.2 °C in temperature and ±15 με in strain could be achieved.
High Temperature - Thin Film Strain Gages Based on Alloys of Indium Tin Oxide
NASA Technical Reports Server (NTRS)
Gregory, Otto J.; Cooke, James D.; Bienkiewicz, Joseph M.
1998-01-01
A stable, high temperature strain gage based on reactively sputtered indium tin oxide (ITO) was demonstrated at temperatures up to 1050 C. These strain sensors exhibited relatively large, negative gage factors at room temperature and their piezoresistive response was both linear and reproducible when strained up to 700 micro-in/in. When cycled between compression and tension, these sensors also showed very little hysteresis, indicating excellent mechanical stability. Thin film strain gages based on selected ITO alloys withstood more than 50,000 strain cycles of +/- 500 micro-in/in during 180 hours of testing in air at 1000 C, with minimal drift at temperature. Drift rates as low as 0.0009%/hr at 1000 C were observed for ITO films that were annealed in nitrogen at 700 C prior to strain testing. These results compare favorably with state of the art 10 micro-m thick PdCr films deposited by NASA, where drift rates of 0.047%/hr at 1050 C were observed. Nitrogen annealing not only produced the lowest drift rates to date, but also produce the largest dynamic gage factors (G = 23.5). These wide bandgap, semiconductor strain sensors also exhibited moderately low temperature coefficients of resistance (TCR) at temperatures up to 1100 C, when tested in a nitrogen ambient. A TCR of +230 ppm/C over the temperature range 200 C < T < 500 C and a TCR of -469 ppm/C over the temperature range 600 C < T < 1100 C was observed for the films tested in nitrogen. However, the resistivity behavior changed considerably when the same films were tested in oxygen ambients. A TCR of -1560 ppm/C was obtained over the temperature range of 200 C < T < 1100 C. When similar films were protected with an overcoat or when ITO films were prepared with higher oxygen contents in the plasma, two distinct TCR's were observed. At T < 800 C, a linear TCR of -210 ppm/C was observed and at T > 800 C, a linear TCR of -2170 DDm/C was observed. The combination of a moderately low TCR and a relatively large gage factor make these semiconducting oxide films promising candidates for the active strain elements in high temperature thin film strain gages, particularly in applications where static strain measurement is desired.
Generation of volcanic ash: a textural study of ash produced in various laboratory experiments
NASA Astrophysics Data System (ADS)
Lavallée, Yan; Kueppers, Ulrich; Dingwell, Donald B.
2010-05-01
In volcanology, ash is commonly understood as a fragment of a bubble wall that gets disrupted during explosive eruptions. Most volcanic ashes are indeed the product of explosive eruptions, but the true definition is however that of a particle size being inferior to 2 mm. The term does not hold any information about its genesis. During fragmentation, particles of all sizes in various amounts are generated. In nature, fragmentation is a brittle response of the material (whether a rock or magma) caused by changes in 1) strain rate and 2) temperature, and/or 3) chemical composition. Here we used different experimental techniques to produce ash and study their physical characteristics. The effects of strain rate were investigated by deforming volcanic rocks and magma (pure silicate melt and crystal-bearing magma) at different temperatures and stresses in a uniaxial compression apparatus. Failure of pure silicate melts is spontaneous and generates more ash particles than fragmentation of crystal-bearing melts. In the latter, the abundance of generated ash correlates positively with the strain rate. We complemented this investigation with a study of particles generated during rapid decompression of porous rocks, using a fragmentation apparatus. Products of decompression experiments at different initial applied pore pressure show that the amount of ash generated by bubble burst increase with the initial applied pressure and the open porosity. The effects of temperature were investigated by dropping pure silicate melts and crystal-bearing magma at 900 and 1100°C in water at room temperature. Quenching of the material is accompanied by rapid contraction and near instantaneous fragmentation. Pure silicate melts respond more violently to the interaction with water and completely fragmented into small particles, including a variety of ash morphologies and surface textures. Crystal-bearing magmas however fragmented only very partially when in contact with water and produced a few ash particles (< 0.05 g). The morphology and surface textures of the experimentally generated ash particles were imaged through scanning electron microscopy, and the observations will be discussed in terms of fragmentation processes.
Strain monitoring of bismaleimide composites using embedded microcavity sensor
NASA Astrophysics Data System (ADS)
Kaur, Amardeep; Anandan, Sudharshan; Yuan, Lei; Watkins, Steve E.; Chandrashekhara, K.; Xiao, Hai; Phan, Nam
2016-03-01
A type of extrinsic Fabry-Perot interferometer (EFPI) fiber optic sensor, i.e., the microcavity strain sensor, is demonstrated for embedded, high-temperature applications. The sensor is fabricated using a femtosecond (fs) laser. The fs-laser-based fabrication makes the sensor thermally stable to sustain operating temperatures as high as 800°C. The sensor has low sensitivity toward the temperature as compared to its response toward the applied strain. The performance of the EFPI sensor is tested in an embedded application. The host material is carbon fiber/bismaleimide (BMI) composite laminate that offer thermally stable characteristics at high ambient temperatures. The sensor exhibits highly linear response toward the temperature and strain. Analytical work done with embedded optical-fiber sensors using the out-of-autoclave BMI laminate was limited until now. The work presented in this paper offers an insight into the strain and temperature interactions of the embedded sensors with the BMI composites.
Strain-rate/temperature behavior of high density polyethylene in compression
NASA Technical Reports Server (NTRS)
Clements, L. L.; Sherby, O. D.
1978-01-01
The compressive strain rate/temperature behavior of highly linear, high density polyethylene was analyzed in terms of the predictive relations developed for metals and other crystalline materials. For strains of 5 percent and above, the relationship between applied strain rate, dotted epsilon, and resulting flow stress, sigma, was found to be: dotted epsilon exp times (Q sub f/RT) = k'(sigma/sigma sub c) to the nth power; the left-hand side is the activation-energy-compensated strain rate, where Q sub f is activation energy for flow, R is gas constant, and T is temperature; k is a constant, n is temperature-independent stress exponent, and sigma/sigma sub c is structure-compensated stress. A master curve resulted from a logarithmic plot of activation-energy-compensated strain rate versus structure-compensated stress.
Surface structure of coherently strained ceria ultrathin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Yezhou; Stone, Kevin H.; Guan, Zixuan
2016-11-14
Cerium oxide, or ceria, is an important material for solid oxide fuel cells and water splitting devices. Although the ceria surface is active in catalytic and electrochemical reactions, how its catalytic properties are affected by the surface structure under operating conditions is far from understood. We investigate the structure of the coherently strained CeO 2 ultrathin films on yttria-stabilized zirconia (001) single crystals by specular synchrotron x-ray diffraction (XRD) under oxidizing conditions as a first step to study the surface structure in situ. An excellent agreement between the experiment data and the model is achieved by using a “stacks andmore » islands” model that has a two-component roughness. One component is due to the tiny clusters of nanometer scale in lateral dimensions on each terrace, while the other component is due to slightly different CeO 2 thickness that span over hundreds of nanometers on neighboring terraces. We attribute the nonuniform thickness to step depairing during the thin film deposition that is supported by the surface morphology results on the microscopic level. Importantly, our model also shows that the polarity of the ceria surface is removed by a half monolayer surface coverage of oxygen. In conclusion, the successful resolution of the ceria surface structure using in situ specular synchrotron XRD paves the way to study the structural evolution of ceria as a fuel cell electrode under catalytically relevant temperatures and gas pressures.« less
Processing pathway dependence of amorphous silica nanoparticle toxicity - colloidal versus pyrolytic
Zhang, Haiyuan; Dunphy, Darren R.; Jiang, Xingmao; Meng, Huan; Sun, Bingbing; Tarn, Derrick; Xue, Min; Wang, Xiang; Lin, Sijie; Ji, Zhaoxia; Li, Ruibin; Garcia, Fred L.; Yang, Jing; Kirk, Martin L.; Xia, Tian; Zink, Jeffrey I; Nel, Andre; Brinker, C. Jeffrey
2012-01-01
We have developed structure/toxicity relationships for amorphous silica nanoparticles (NPs) synthesized through low temperature, colloidal (e.g. Stöber silica) or high temperature pyrolysis (e.g. fumed silica) routes. Through combined spectroscopic and physical analyses, we have determined the state of aggregation, hydroxyl concentration, relative proportion of strained and unstrained siloxane rings, and potential to generate hydroxyl radicals for Stöber and fumed silica NPs with comparable primary particle sizes (16-nm in diameter). Based on erythrocyte hemolytic assays and assessment of the viability and ATP levels in epithelial and macrophage cells, we discovered for fumed silica an important toxicity relationship to post-synthesis thermal annealing or environmental exposure, whereas colloidal silicas were essentially non-toxic under identical treatment conditions. Specifically, we find for fumed silica a positive correlation of toxicity with hydroxyl concentration and its potential to generate reactive oxygen species (ROS) and cause red blood cell hemolysis. We propose fumed silica toxicity stems from its intrinsic population of strained three-membered rings (3MRs) along with its chain-like aggregation and hydroxyl content. Hydrogen-bonding and electrostatic interactions of the silanol surfaces of fumed silica aggregates with the extracellular plasma membrane cause membrane perturbations sensed by the Nalp3 inflammasome, whose subsequent activation leads to secretion of the cytokine IL-1β. Hydroxyl radicals generated by the strained 3MRs in fumed silica but largely absent in colloidal silicas may contribute to the inflammasome activation. Formation of colloidal silica into aggregates mimicking those of fumed silica had no effect on cell viability or hemolysis. This study emphasizes that not all amorphous silica is created equal and that the unusual toxicity of fumed silica compared to colloidal silica derives from its framework and surface chemistry along with its fused chain-like morphology established by high temperature synthesis (>1300°C) and rapid thermal quenching. PMID:22924492
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ravikumar, Patta; Kisan, Bhagaban; Perumal, A., E-mail: perumal@iitg.ernet.in
We report systematic investigations of structural, vibrational, resonance and magnetic properties of nanoscale NiO powders prepared by ball milling process under different milling speeds for 30 hours of milling. Structural properties revealed that both pure NiO and as-milled NiO powders exhibit face centered cubic structure, but average crystallite size decreases to around 11 nm along with significant increase in strain with increasing milling speed. Vibrational properties show the enhancement in the intensity of one-phonon longitudinal optical (LO) band and disappearance of two-magnon band due to size reduction. In addition, two-phonon LO band exhibits red shift due to size-induced phonon confinementmore » effect and surface relaxation. Pure NiO powder exhibit antiferromagnetic nature, which transforms into induced ferromagnetic after size reduction. The average magnetization at room temperature increases with decreasing the crystallite size and a maximum moment of 0.016 μ{sub B}/f.u. at 12 kOe applied field and coercivity of 170 Oe were obtained for 30 hours milled NiO powders at 600 rotation per minute milling speed. The change in the magnetic properties is also supported by the vibrational properties. Thermomagnetization measurements at high temperature reveal a well-defined magnetic phase transition at high temperature (T{sub C}) around 780 K due to induced ferromagnetic phase. Electron paramagnetic resonance (EPR) studies reveal a good agreement between the EPR results and magnetic properties. The observed results are described on the basis of crystallite size variation, defect density, large strain, oxidation/reduction of Ni and interaction between uncompensated surfaces and particle core with lattice expansion. The obtained results suggest that nanoscale NiO powders with high T{sub C} and moderate magnetic moment at room temperature with cubic structure would be useful to expedite for spintronic devices.« less
High-Temperature Extensometry and PdCr Temperature-Compensated Wire Resistance Strain Gages Compared
NASA Technical Reports Server (NTRS)
1997-01-01
A detailed experimental evaluation is underway at the NASA Lewis Research Center to compare and contrast the performance of the PdCr/Pt dual-element temperature-compensated wire resistance strain gage with that of conventional high-temperature extensometry. The advanced PdCr gage, developed by researchers at Lewis, exhibits desirable properties and a relatively small and repeatable apparent strain to 800 C. This gage represents a significant advance in technology because existing commercial resistance strain gages are not reliable for quasi-static strain measurements above approx. 400 C. Various thermal and mechanical loading spectra are being applied by a high-temperature thermomechanical uniaxial testing system to evaluate the two strain-measurement systems. This is being done not only to compare and contrast the two strain sensors, but also to investigate the applicability of the PdCr strain gage to the coupon-level specimen testing environment typically employed when the high-temperature mechanical behavior of structural materials is characterized. Strain measurement capabilities to 800 C are being investigated with a nickel-base superalloy, Inconel 100 (IN 100), substrate material and application to TMC's is being examined with the model system, SCS-6/Ti-15-3. Furthermore, two gage application techniques are being investigated in the comparison study: namely, flame-sprayed and spot welding. The apparent strain responses of both the weldable and flame-sprayed PdCr wire strain gages were found to be cyclically repeatable on both IN 100 and SCS-6/Ti-15-3 [0]_8. In general, each gage exhibited some uniqueness with respect to apparent strain behavior. Gages mounted on the IN 100 specimens tended to show a repeatable apparent strain within the first few cycles, because the thermal response of IN 100 was stable. This was not the case, however, for the TMC specimens, which typically required several thermal cycles to stabilize the thermal strain response. Thus, progressive changes in the apparent strain behavior were corroborated by the extensometer, which unlike the mounted gage can distinguish quantitative changes in the material's thermal strain response. One specimen was instrumented with both a fixed and floating gage. From the difference in output of these two gages, the thermal expansion strains were calculated. These data, which are given in the figure, show excellent agreement with the values measured by the high-temperature extensometry.
Shi, Cangji; Lai, Jing; Chen, X.-Grant
2014-01-01
The hot deformation behavior and microstructural evolution of an Al-Zn-Mg-Cu (7150) alloy was studied during hot compression at various temperatures (300 to 450 °C) and strain rates (0.001 to 10 s−1). A decline ratio map of flow stresses was proposed and divided into five deformation domains, in which the flow stress behavior was correlated with different microstructures and dynamic softening mechanisms. The results reveal that the dynamic recovery is the sole softening mechanism at temperatures of 300 to 400 °C with various strain rates and at temperatures of 400 to 450 °C with strain rates between 1 and 10 s−1. The level of dynamic recovery increases with increasing temperature and with decreasing strain rate. At the high deformation temperature of 450 °C with strain rates of 0.001 to 0.1 s−1, a partially recrystallized microstructure was observed, and the dynamic recrystallization (DRX) provided an alternative softening mechanism. Two kinds of DRX might operate at the high temperature, in which discontinuous dynamic recrystallization was involved at higher strain rates and continuous dynamic recrystallization was implied at lower strain rates. PMID:28788454
Mechanical and Infrared Thermography Analysis of Shape Memory Polyurethane
NASA Astrophysics Data System (ADS)
Pieczyska, Elzbieta Alicja; Maj, Michal; Kowalczyk-Gajewska, Katarzyna; Staszczak, Maria; Urbanski, Leszek; Tobushi, Hisaaki; Hayashi, Shunichi; Cristea, Mariana
2014-07-01
Multifunctional new material—polyurethane shape memory polymer (PU-SMP)—was subjected to tension carried out at room temperature at various strain rates. The influence of effects of thermomechanical couplings on the SMP mechanical properties was studied, based on the sample temperature changes, measured by a fast and sensitive infrared camera. It was found that the polymer deformation process strongly depends on the strain rate applied. The initial reversible strain is accompanied by a small drop in temperature, called thermoelastic effect. Its maximal value is related to the SMP yield point and increases upon increase of the strain rate. At higher strains, the stress and temperature significantly increase, caused by reorientation of the polymer molecular chains, followed by the stress drop and its subsequent increase accompanying the sample rupture. The higher strain rate, the higher stress, and temperature changes were obtained, since the deformation process was more dynamic and has occurred in almost adiabatic conditions. The constitutive model of SMP valid in finite strain regime was developed. In the proposed approach, SMP is described as a two-phase material composed of hyperelastic rubbery phase and elastic-viscoplastic glassy phase, while the volume content of phases is specified by the current temperature.
Study on Dynamic Strain Aging and Low-Cycle Fatigue of Stainless Steel in Ultra-Supercritical Unit
NASA Astrophysics Data System (ADS)
Hongwei, Zhou; Yizhu, He; Jizu, Lv; Sixian, Rao
Dynamic strain aging (DSA) and low-cycle fatigue (LCF) behavior of TP347H stainless steel in ultra-supercritical unit were investigated at 550-650 °C. All the LCF tests were carried out under a fully-reversed, total axial strain control mode at the total strain amplitude from ±0.2% to ±1.0%. The effects of DSA in cyclic stress response, microstructure evolution and fatigue fracture surfaces and fatigue life were investigated in detail. The results show that DSA occurs during tensile, which is manifested as serrated flow in tensile stress-strain curves. The apparent activation energy for appearing of serrations in tensile stress-strain curves was 270 kJ/mol. Pipe diffusion of substitutional solutes such as Cr and Nb along the dislocation core, and strong interactions between segregated solutes and dislocations are considered as the mechanism of DSA. DSA partly restricts dislocation cross-slip, and dislocation cross-slip and planar-slip happen simultaneously during LCF. A lot of planar structures form, which is due to dislocation gliding on the special plane. This localized deformation structures result in many crack initiation sites. Meanwhile, DSA hardening increases cyclic stress response, accelerating crack propagation, which reduces high temperature strain fatigue life of steel.
NASA Technical Reports Server (NTRS)
Shideler, John L.; Fields, Roger A.; Reardon, Lawrence F.; Gong, Leslie
1992-01-01
Two flat 12 by 72 inch Rene 41 honeycomb sandwich panels were tested in a manner to produce combined thermal and mechanical longitudinal stresses that simulated those that would occur in a larger, more complex integral tank and fuselage structure of an earth to orbit vehicle. Elastic strains measured at temperatures below 400 F are compared with calculated values obtained from a linear elastic finite element analysis to verify the analytical model and to establish confidence in the calculated strains. Elastic strain measurement at higher temperatures (between 600 F and 1400 F), where strain measurement is more difficult and less certain, are also compared with calculated strains. Agreement between measured and calculated strains for the lower temperatures is good, but agreement for the higher temperatures is poor because of unreliable strain measurements. Test results indicate that an ascent and entry life cycle of 500 is attainable under high combined thermal and mechanical elastic strains.
High temperature strain measurement with a resistance strain gage
NASA Technical Reports Server (NTRS)
Lei, Jih-Fen; Fichtel, ED; Mcdaniel, Amos
1993-01-01
A PdCr based electrical resistance strain gage was demonstrated in the laboratory to be a viable sensor candidate for static strain measurement at high temperatures. However, difficulties were encountered while transferring the sensor to field applications. This paper is therefore prepared for recognition and resolution of the problems likely to be encountered with PdCr strain gages in field applications. Errors caused by the measurement system, installation technique and lead wire attachment are discussed. The limitations and some considerations related to the temperature compensation technique used for this gage are also addressed.
Temperature affects the morphology and calcification of Emiliania huxleyi strains
NASA Astrophysics Data System (ADS)
Rosas-Navarro, Anaid; Langer, Gerald; Ziveri, Patrizia
2016-05-01
The global warming debate has sparked an unprecedented interest in temperature effects on coccolithophores. The calcification response to temperature changes reported in the literature, however, is ambiguous. The two main sources of this ambiguity are putatively differences in experimental setup and strain specificity. In this study we therefore compare three strains isolated in the North Pacific under identical experimental conditions. Three strains of Emiliania huxleyi type A were grown under non-limiting nutrient and light conditions, at 10, 15, 20 and 25 °C. All three strains displayed similar growth rate versus temperature relationships, with an optimum at 20-25 °C. Elemental production (particulate inorganic carbon (PIC), particulate organic carbon (POC), total particulate nitrogen (TPN)), coccolith mass, coccolith size, and width of the tube element cycle were positively correlated with temperature over the sub-optimum to optimum temperature range. The correlation between PIC production and coccolith mass/size supports the notion that coccolith mass can be used as a proxy for PIC production in sediment samples. Increasing PIC production was significantly positively correlated with the percentage of incomplete coccoliths in one strain only. Generally, coccoliths were heavier when PIC production was higher. This shows that incompleteness of coccoliths is not due to time shortage at high PIC production. Sub-optimal growth temperatures lead to an increase in the percentage of malformed coccoliths in a strain-specific fashion. Since in total only six strains have been tested thus far, it is presently difficult to say whether sub-optimal temperature is an important factor causing malformations in the field. The most important parameter in biogeochemical terms, the PIC : POC ratio, shows a minimum at optimum growth temperature in all investigated strains. This clarifies the ambiguous picture featuring in the literature, i.e. discrepancies between PIC : POC-temperature relationships reported in different studies using different strains and different experimental setups. In summary, global warming might cause a decline in coccolithophore's PIC contribution to the rain ratio, as well as improved fitness in some genotypes due to fewer coccolith malformations.
Sun, Wei; Xuan, Xihua; Li, Liang; An, Jian
2018-01-01
Dry friction and wear tests were performed on as-cast Mg97Zn1Y2 alloy using a pin-on-disc configuration. Coefficients of friction and wear rates were measured as a function of applied load at sliding speeds of 0.2, 0.8 and 3.0 m/s. The wear mechanisms were identified in the mild and severe wear regimes by means of morphological observation and composition analysis of worn surfaces using scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDS). Analyses of microstructure and hardness changes in subsurfaces verified the microstructure transformation from the deformed to the dynamically recrystallized, and properties changed from the strain hardening to dynamic crystallization (DRX) softening before and after the mild–severe wear transition. The mild–severe wear transition can be determined by a proposed contact surface DRX temperature criterion, from which the critical DRX temperatures at different sliding speeds are calculated using DRX dynamics; hence transition loads can also be calculated using a transition load model. The calculated transition loads are in good agreement with the measured ones, demonstrating the validity and applicability of the contact surface DRX temperature criterion. PMID:29584692
Study of recrystallization and devitrification of lunar glass
NASA Technical Reports Server (NTRS)
Ulrich, D. R.
1974-01-01
The technique of differential thermal analysis (DTA) was applied to the study of the Apollo 17 orange soil (74220,63) and the Apollo 16 glass coated anorthite (64455,21). These glasses show accentuated exotherms of strain relief in the annealing range which is indicative of rapid cooling. These are amenable to interpretation by comparison to the known history of synthetic glasses. Synthetic glasses were prepared whose similarity in behavior between the lunar glasses and their synthetic analogs is striking. Approximate rates of cooling of the lunar glasses were determined from comparative DTA of lunar and synthetic glasses and from the determination of the relation of strain relief in the annealing range to quench rate. At higher temperatures the glasses show exotherms of crystallization. The crystallization products associated with the exothermic reactions have been identified by X-ray diffraction and the surface morphologies developed by strain relief and crystallization have been characterized with scanning electron microscopy.
NASA Astrophysics Data System (ADS)
Wang, Xi-Guang; Chotorlishvili, Levan; Berakdar, Jamal
2017-07-01
We analyze the magnetic dynamics and particularlythe spin current in an open-circuit ferromagnetic insulator irradiated by two intense, phase-locked laser pulses. The interference of the laser beams generates a transient optical grating and a transient spatio-temporal temperature distribution. Both effects lead to elastic and heat waves at the surface and into the bulk of the sample. The strain induced spin current as well as the thermally induced magnonic spin current are evaluated numerically on the basis of micromagnetic simulations using solutions of the heat equation. We observe that the thermo-elastically induced magnonic spin current propagates on a distance larger than the characteristic size of thermal profile, an effect useful for applications in remote detection of spin caloritronics phenomena. Our findings point out that exploiting strain adds a new twist to heat-assisted magnetic switching and spin-current generation for spintronic applications.
NASA Astrophysics Data System (ADS)
Ma, Changdong; Lu, Fei; Xu, Bo; Fan, Ranran
2016-05-01
We investigated lattice modification and its physical mechanism in H and He co-implanted, z-cut potassium titanyl phosphate (KTiOPO4). The samples were implanted with 110 keV H and 190 keV He, both to a fluence of 4 × 1016 cm-2, at room temperature. Rutherford backscattering/channeling, high-resolution x-ray diffraction, and transmission electron microscopy were used to examine the implantation-induced structural changes and strain. Experimental and simulated x-ray diffraction results show that the strain in the implanted KTiOPO4 crystal is caused by interstitial atoms. The strain and stress are anisotropic and depend on the crystal's orientation. Transmission electron microscopy studies indicate that ion implantation produces many dislocations in the as-implanted samples. Annealing can induce ion aggregation to form nanobubbles, but plastic deformation and ion out-diffusion prevent the KTiOPO4 surface from blistering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Changdong; Department of Radiation Oncology, Qilu Hospital, Shandong University, Jinan, Shandong 250012; Lu, Fei, E-mail: lufei@sdu.edu.cn
We investigated lattice modification and its physical mechanism in H and He co-implanted, z-cut potassium titanyl phosphate (KTiOPO{sub 4}). The samples were implanted with 110 keV H and 190 keV He, both to a fluence of 4 × 10{sup 16 }cm{sup −2}, at room temperature. Rutherford backscattering/channeling, high-resolution x-ray diffraction, and transmission electron microscopy were used to examine the implantation-induced structural changes and strain. Experimental and simulated x-ray diffraction results show that the strain in the implanted KTiOPO{sub 4} crystal is caused by interstitial atoms. The strain and stress are anisotropic and depend on the crystal's orientation. Transmission electron microscopy studies indicate that ion implantationmore » produces many dislocations in the as-implanted samples. Annealing can induce ion aggregation to form nanobubbles, but plastic deformation and ion out-diffusion prevent the KTiOPO{sub 4} surface from blistering.« less
Electron nematic fluid in a strained S r3R u2O7 film
NASA Astrophysics Data System (ADS)
Marshall, Patrick B.; Ahadi, Kaveh; Kim, Honggyu; Stemmer, Susanne
2018-04-01
S r3R u2O7 belongs to the family of layered strontium ruthenates and exhibits a range of unusual emergent properties, such as electron nematic behavior and metamagnetism. Here, we show that epitaxial film strain significantly modifies these phenomena. In particular, we observe enhanced magnetic interactions and an electron nematic phase that extends to much higher temperatures and over a larger magnetic-field range than in bulk single crystals. Furthermore, the films show an unusual anisotropic non-Fermi-liquid behavior that is controlled by the direction of the applied magnetic field. At high magnetic fields, the metamagnetic transition to a ferromagnetic phase recovers isotropic Fermi-liquid behavior. The results support the interpretation that these phenomena are linked to the special features of the Fermi surface, which can be tuned by both film strain and an applied magnetic field.
Summary of laser speckle photogrammetry for HOST
NASA Technical Reports Server (NTRS)
Pollack, Frank G.
1986-01-01
High temperature static strain measurement capability is important for the success of the HOST program. As part of the NASA Lewis effort to develop the technology for improved hot-section durability, the HOST instrumentation program has, as a major goal, the development of methods for measuring strain at high temperature. Development work includes both improvements in resistance strain-gauge technology and, as an alternative approach, the development of optical techniques for high temperature strain measurement.
Mahakarnchanakul, W; Beuchat, L R
1999-01-01
A shift in growth temperature of a psychrotrophic (F3802A/84) strain and a mesophilic strain (B4ac-1) of Bacillus cereus grown at 30 degrees C for 10 h, then at 37 degrees C or 40 degrees C for 14 h, enhanced thermotolerance. Sodium chloride, at concentrations of 2.0 and 4.0% in brain heart infusion (BHI) broth, had no effect on thermotolerance of strain B4ac-1 heated at 50 degrees C, whereas the same concentrations of NaCl caused a decrease in thermotolerance of strain F3802A/84 heated at 48 degrees C. A downshift in growth temperature from 30 degrees C to 10 degrees C followed by incubation for 3 to 9 days increased thermotolerance of strain F3802A/84 but not strain B4ac-1 heated in BHI broth containing 2.0 or 4.0% NaCl compared to thermotolerance in BHI broth containing 0.5% NaCl. Protein analysis using one-dimensional gel electrophoresis revealed an increase in proteins with molecular weights of 54, 50, 44, and 42 kDa in cells of strain F3802A/84 and 83 and 69 kDa in cells of strain B4ac-1 subjected to an upshift in growth temperature from 30 degrees C to 37 degrees C or 40 degrees C, respectively. A downshift in growth temperature from 30 degrees C to 10 degrees C resulted in substantial amounts of proteins with molecular weights of 63, 40, and 29 kDa produced by strain F3802A/84 and 63 kDa to be produced by strain B4ac-1. Proteins produced in response to upshift or downshift in growth temperature are suspected to play an important role in heat resistance of the psychrotrophic and mesophilic strains of B. cereus examined in this study. Changes in resistance to heat or refrigeration temperatures, as well as tolerance to NaCl, as affected by previous exposure of cells to temperature shifts may influence the ability of B. cereus to grow in minimally processed foods during distribution and storage.
NASA Astrophysics Data System (ADS)
Bressan, José Divo; Liewald, Mathias; Drotleff, Klaus
2017-10-01
Forming limit strain curves of conventional aluminium alloy AA6014 sheets after loading with non-linear strain paths are presented and compared with D-Bressan macroscopic model of sheet metal rupture by critical shear stress criterion. AA6014 exhibits good formability at room temperature and, thus, is mainly employed in car body external parts by manufacturing at room temperature. According to Weber et al., experimental bi-linear strain paths were carried out in specimens with 1mm thickness by pre-stretching in uniaxial and biaxial directions up to 5%, 10% and 20% strain levels before performing Nakajima testing experiments to obtain the forming limit strain curves, FLCs. In addition, FLCs of AA6014 were predicted by employing D-Bressan critical shear stress criterion for bi-linear strain path and comparisons with the experimental FLCs were analyzed and discussed. In order to obtain the material coefficients of plastic anisotropy, strain and strain rate hardening behavior and calibrate the D-Bressan model, tensile tests, two different strain rate on specimens cut at 0°, 45° and 90° to the rolling direction and also bulge test were carried out at room temperature. The correlation of experimental bi-linear strain path FLCs is reasonably good with the predicted limit strains from D-Bressan model, assuming equivalent pre-strain calculated by Hill 1979 yield criterion.
Tsuda, Kentaro; Nagano, Hideaki; Ando, Akinori; Shima, Jun; Ogawa, Jun
2017-06-01
Psychrotolerant endospore-forming Sporosarcina species have been predominantly isolated from minced fish meat (surimi), which is stored under refrigeration after heat treatment. To develop a better method for preserving surimi-based food products, we studied the growth and fatty acid compositions of the isolated strain S92h as well as Sporosarcina koreensis and Sporosarcina aquimarina at cold and moderate temperatures. The growth rates of strain S92h and S. koreensis were the fastest and slowest at cold temperatures, respectively, although these strains grew at a similar rate at moderate temperatures. In all three strains, the proportions of anteiso-C 15:0 and unsaturated fatty acids (UFAs) were significantly higher at cold temperatures than at moderate temperatures. Furthermore, supplementation with valine, leucine, and isoleucine resulted in proportional increases in iso-C 16:0 , iso-C 15:0 , and anteiso-C 15:0 , respectively, among the fatty acid compositions of these strains. The proportions of the UFAs were also altered by the supplementation. At cold temperatures, the growth rates of strain S92h and S. koreensis, but not of S. aquimarina, were affected by supplementation with leucine. Supplementation with isoleucine enhanced the growth of S. koreensis at cold temperatures but not that of the other strains. Valine did not affect the growth of any strain. These results indicate that anteiso-C 15:0 and UFAs both play important roles in the cold tolerance of the genus Sporosarcina and that these bacteria modulate their fatty acid compositions in response to the growth environment.
Wang, Yanfei; Zhou, Zhiling; Wu, Weijie; Gong, Jianming
2017-01-01
Plastic pre-strains were applied to the metastable 304L austenitic stainless steel at both room temperature (20 °C) and higher temperatures (i.e., 50, 80 and 100 °C), and then the hydrogen embrittlement (HE) susceptibility of the steel was evaluated by cathodically hydrogen-charging and tensile testing. The 20 °C pre-strain greatly strengthened the steel, but simultaneously significantly increased the HE susceptibility of the steel, since α′ martensite was induced by the pre-strain, causing the pre-existence of α′ martensite, which provided “highways” for hydrogen to transport deep into the steel during the hydrogen-charging. Although the warm pre-strains did not strengthen the steel as significantly as the 20 °C pre-strain, they retained the HE resistance of the steel. This is because the higher temperatures, particularly 80 and 100 °C, suppressed the α′ martensite transformation during the pre-straining. Pre-strain at a temperature slightly higher than room temperature has a potential to strengthen the metastable 304L austenitic stainless steel without compromising its initial HE resistance. PMID:29160830
NASA Astrophysics Data System (ADS)
Chen, Hsi-Chao; Huang, Chen-Yu; Lin, Ssu-Fan; Chen, Sheng-Hui
2011-09-01
Residual or internal stresses directly affect a variety of phenomena including adhesion, generation of crystalline defects, perfection of epitaxial layers and formation of film surface growths such as hillocks and whiskers. Sputtering oxide films with high density promote high compressive stress, and it offers researchers a reference if the value of residual stress could be analyzed directly. Since, the study of residual stress of SiO2 and Nb2O5 thin film deposited by DC magnetron sputtered on hard substrate (BK7) and flexible substrate (PET and PC). A finite element method (FEM) with an equivalent-reference-temperature (ERT) technique had been proposed and used to model and evaluate the intrinsic strains of layered structures. The research has improved the equivalent reference temperature (ERT) technique of the simulation of intrinsic strain for oxygen film. The results have also generalized two models connecting to the lattice volume to predict the residual stress of hard substrate and flexible substrate with error of 3% and 6%, respectively.
NASA Technical Reports Server (NTRS)
Ko, William L.; Fleischer, Van Tran
2015-01-01
Variable-Domain Displacement Transfer Functions were formulated for shape predictions of complex wing structures, for which surface strain-sensing stations must be properly distributed to avoid jointed junctures, and must be increased in the high strain gradient region. Each embedded beam (depth-wise cross section of structure along a surface strain-sensing line) was discretized into small variable domains. Thus, the surface strain distribution can be described with a piecewise linear or a piecewise nonlinear function. Through discretization, the embedded beam curvature equation can be piece-wisely integrated to obtain the Variable-Domain Displacement Transfer Functions (for each embedded beam), which are expressed in terms of geometrical parameters of the embedded beam and the surface strains along the strain-sensing line. By inputting the surface strain data into the Displacement Transfer Functions, slopes and deflections along each embedded beam can be calculated for mapping out overall structural deformed shapes. A long tapered cantilever tubular beam was chosen for shape prediction analysis. The input surface strains were analytically generated from finite-element analysis. The shape prediction accuracies of the Variable- Domain Displacement Transfer Functions were then determined in light of the finite-element generated slopes and deflections, and were fofound to be comparable to the accuracies of the constant-domain Displacement Transfer Functions
Tribological Behavior of Mg97Zn1Y2 Alloy at Elevated Temperatures of 50-200 °C
NASA Astrophysics Data System (ADS)
An, J.; Feng, J. H.; Yan, X. H.; Li, R. G.
2017-10-01
The tribological behavior of Mg97Zn1Y2 alloy was investigated using a pin-on-disk wear machine at wear temperatures of 50-200 °C. Morphologies and chemical compositions of worn surfaces were analyzed using scanning electron microscope and energy-dispersive x-ray spectrometer. The microstructural evolution and hardness change in subsurfaces were examined by optical microscopy and hardness tester. The results showed that the wear temperature had significant influence on the coefficient of friction and wear rate. At wear temperatures of 50-200 °C, with increasing applied load, the coefficient of friction went down rapidly then turned to decrease slowly in the mild wear regime, and continuously decreased modestly until the largest applied load in the severe wear regime. Increasing wear temperature from 50 to 200 °C decreased the mild to severe wear transition load linearly from 120 to 60 N. In the mild wear regime, the main wear mechanisms were identified as abrasion + oxidation and delamination + surface oxidation at 50-150 °C, and delamination at 200 °C, while in the severe wear regime, the main wear mechanisms were identified as severe plastic deformation + spallation of oxide layer and surface melting at 50-150 °C, and severe plastic deformation and surface melting at 200 °C. The microstructural transformation from the deformed to the dynamically recrystallized (DRX), and hardness change from the strain hardening to softening were found in the subsurfaces before and after mild to severe transition. The DRX softening mechanism was determined for mild to severe wear transition at 50-200 °C. A wear transition map was constructed for Mg97Zn1Y2 alloy on applied load versus wear temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skarlinski, Michael D., E-mail: michael.skarlinski@rochester.edu; Quesnel, David J.; Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627
2015-12-21
Metal-oxide layers are likely to be present on metallic nano-structures due to either environmental exposure during use, or high temperature processing techniques such as annealing. It is well known that nano-structured metals have vastly different mechanical properties from bulk metals; however, difficulties in modeling the transition between metallic and ionic bonding have prevented the computational investigation of the effects of oxide surface layers. Newly developed charge-optimized many body [Liang et al., Mater. Sci. Eng., R 74, 255 (2013)] potentials are used to perform fully reactive molecular dynamics simulations which elucidate the effects that metal-oxide layers have on the mechanical propertiesmore » of a copper thin-film. Simulated tensile tests are performed on thin-films while using different strain-rates, temperatures, and oxide thicknesses to evaluate changes in yield stress, modulus, and failure mechanisms. Findings indicate that copper-thin film mechanical properties are strongly affected by native oxide layers. The formed oxide layers have an amorphous structure with lower Cu-O bond-densities than bulk CuO, and a mixture of Cu{sub 2}O and CuO charge character. It is found that oxidation will cause modifications to the strain response of the elastic modulii, producing a stiffened modulii at low temperatures (<75 K) and low strain values (<5%), and a softened modulii at higher temperatures. While under strain, structural reorganization within the oxide layers facilitates brittle yielding through nucleation of defects across the oxide/metal interface. The oxide-free copper thin-film yielding mechanism is found to be a tensile-axis reorientation and grain creation. The oxide layers change the observed yielding mechanism, allowing for the inner copper thin-film to sustain an FCC-to-BCC transition during yielding. The mechanical properties are fit to a thermodynamic model based on classical nucleation theory. The fit implies that the oxidation of the films reduces the activation volume for yielding.« less
Diomandé, Sara Esther; Chamot, Stéphanie; Antolinos, Vera; Vasai, Florian; Guinebretière, Marie-Hélène; Bornard, Isabelle; Nguyen-the, Christophe; Broussolle, Véronique
2014-01-01
The different strains of Bacillus cereus can grow at temperatures covering a very diverse range. Some B. cereus strains can grow in chilled food and consequently cause food poisoning. We have identified a new sensor/regulator mechanism involved in low-temperature B. cereus growth. Construction of a mutant of this two-component system enabled us to show that this system, called CasKR, is required for growth at the minimal temperature (Tmin). CasKR was also involved in optimal cold growth above Tmin and in cell survival below Tmin. Microscopic observation showed that CasKR plays a key role in cell shape during cold growth. Introducing the casKR genes in a ΔcasKR mutant restored its ability to grow at Tmin. Although it was first identified in the ATCC 14579 model strain, this mechanism has been conserved in most strains of the B. cereus group. We show that the role of CasKR in cold growth is similar in other B. cereus sensu lato strains with different growth temperature ranges, including psychrotolerant strains. PMID:24509924
More About High-Temperature Resistance Strain Gauges
NASA Technical Reports Server (NTRS)
Englund, D. R.; Williams, W. D.; Lei, Jih-Fen; Hulse, C. O.
1994-01-01
Two reports present additional information on electrical-resistance strain gauges described in "High-Temperature Resistance Strain Gauges" (LEW-15379). For protection against oxidation at high temperatures, gauges covered, by flame spraying, with coats of alumina containing up to 1 weight percent of yttria or, perferably, containing 4 to 6 weight percent of zirconia.
NASA Astrophysics Data System (ADS)
Motoyama, Yuichi; Shiga, Hidetoshi; Sato, Takeshi; Kambe, Hiroshi; Yoshida, Makoto
2017-06-01
Recovery behavior (recovery) and strain-rate dependence of the stress-strain curve (strain-rate dependence) are incorporated into constitutive equations of alloys to predict residual stress and thermal stress during casting. Nevertheless, few studies have systematically investigated the effects of these metallurgical phenomena on the prediction accuracy of thermal stress in a casting. This study compares the thermal stress analysis results with in situ thermal stress measurement results of an Al-Si-Cu specimen during casting. The results underscore the importance for the alloy constitutive equation of incorporating strain-rate dependence to predict thermal stress that develops at high temperatures where the alloy shows strong strain-rate dependence of the stress-strain curve. However, the prediction accuracy of the thermal stress developed at low temperatures did not improve by considering the strain-rate dependence. Incorporating recovery into the constitutive equation improved the accuracy of the simulated thermal stress at low temperatures. Results of comparison implied that the constitutive equation should include strain-rate dependence to simulate defects that develop from thermal stress at high temperatures, such as hot tearing and hot cracking. Recovery should be incorporated into the alloy constitutive equation to predict the casting residual stress and deformation caused by the thermal stress developed mainly in the low temperature range.
Final Report Auto/Steel Partnership Phase II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cady, C.M.; Chen, S.R.; Gray, G.T. III
1999-06-09
This is the final report in which effects of strain-rate, temperature, and stress-state on the yield stress and the strain hardening behavior of many common steels used in automobile construction were investigated. The yield and flow stresses were found to exhibit very high rate sensitivities for most of the steels while the hardening rates were found to be insensitive to strain rate and temperature at lower temperatures or at higher strain rates. This behavior is consistent with the observation that overcoming the intrinsic Peierls stress is shown to be the rate-controlling mechanism in these materials at low temperatures. The dependencemore » of the yield stress on temperature and strain rate was found to decrease while the strain hardening rate increased. The Mechanical Threshold Stress (MTS) model was adopted to model the stress-strain behavior of the steels. Parameters for the constitutive relations were derived for the MTS model and also for the Johnson-Cook (JC) and the Zerilli-Armstrong (ZA) models. The results of this study substantiate the applicability of these models for describing the high strain-rate deformation of these materials. The JC and ZA models, however, due to their use of a power strain hardening law were found to yield constitutive relations for the materials which are strongly dependent on the range of strains for which the models were optimized.« less
Development of high temperature strain gages
NASA Technical Reports Server (NTRS)
Lemcoe, M. M.
1973-01-01
High temperature electric resistance wire strain gages were developed and evaluated for use at temperatures exceeding 922 K (1200 F). A special high temperature strain gage alloy (Fe-25Cr-7.5A1), designated BCL-3, was used to fabricate the gages. Pertinent gage characteristics were determined at temperatures up to 1255 K (1800 F). The results of the evaluation were reported in graphical and tabular form. It was concluded that the gages will perform satisfactorily at temperatures to at least 1089 K (1500 F) for at least one hour.
Lu, Xin; Soto, Marcelo A; Thévenaz, Luc
2017-07-10
A method based on coherent Rayleigh scattering distinctly evaluating temperature and strain is proposed and experimentally demonstrated for distributed optical fiber sensing. Combining conventional phase-sensitive optical time-domain domain reflectometry (ϕOTDR) and ϕOTDR-based birefringence measurements, independent distributed temperature and strain profiles are obtained along a polarization-maintaining fiber. A theoretical analysis, supported by experimental data, indicates that the proposed system for temperature-strain discrimination is intrinsically better conditioned than an equivalent existing approach that combines classical Brillouin sensing with Brillouin dynamic gratings. This is due to the higher sensitivity of coherent Rayleigh scatting compared to Brillouin scattering, thus offering better performance and lower temperature-strain uncertainties in the discrimination. Compared to the Brillouin-based approach, the ϕOTDR-based system here proposed requires access to only one fiber-end, and a much simpler experimental layout. Experimental results validate the full discrimination of temperature and strain along a 100 m-long elliptical-core polarization-maintaining fiber with measurement uncertainties of ~40 mK and ~0.5 με, respectively. These values agree very well with the theoretically expected measurand resolutions.
Chaffin, Kimberly A; Wilson, Charles L; Himes, Adam K; Dawson, James W; Haddad, Tarek D; Buckalew, Adam J; Miller, Jennifer P; Untereker, Darrel F; Simha, Narendra K
2013-11-01
Segmented polyurethane multiblock polymers containing polydimethylsiloxane and polyether soft segments form tough and easily processed thermoplastic elastomers (PDMS-urethanes). Two commercially available examples, PurSil 35 (denoted as P35) and Elast-Eon E2A (denoted as E2A), were evaluated for abrasion and fatigue resistance after immersion in 85 °C buffered water for up to 80 weeks. We previously reported that water exposure in these experiments resulted in a molar mass reduction, where the kinetics of the hydrolysis reaction is supported by a straight forward Arrhenius analysis over a range of accelerated temperatures (37-85 °C). We also showed that the ultimate tensile properties of P35 and E2A were significantly compromised when the molar mass was reduced. Here, we show that the reduction in molar mass also correlated with a reduction in both the abrasion and fatigue resistance. The instantaneous wear rate of both P35 and E2A, when exposed to the reciprocating motion of an ethylene tetrafluoroethylene (ETFE) jacketed cable, increased with the inverse of the number averaged molar mass (1/Mn). Both materials showed a change in the wear surface when the number-averaged molar mass was reduced to ≈ 16 kg/mole, where a smooth wear surface transitioned to a 'spalling-like' pattern, leaving the wear surface with ≈ 0.3 mm cracks that propagated beyond the contact surface. The fatigue crack growth rate for P35 and E2A also increased in proportion to 1/Mn, after the molar mass was reduced below a critical value of ≈30 kg/mole. Interestingly, this critical molar mass coincided with that at which the single cycle stress-strain response changed from strain hardening to strain softening. The changes in both abrasion and fatigue resistance, key predictors for long term reliability of cardiac leads, after exposure of this class of PDMS-urethanes to water suggests that these materials are susceptible to mechanical compromise in vivo. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Dislocation nucleation facilitated by atomic segregation
Zou, Lianfeng; Yang, Chaoming; Lei, Yinkai; ...
2017-11-27
Surface segregation—the enrichment of one element at the surface, relative to the bulk—is ubiquitous to multi-component materials. Using the example of a Cu–Au solid solution, we demonstrate that compositional variations induced by surface segregation are accompanied by misfit strain and the formation of dislocations in the subsurface region via a surface di˙usion and trapping process. The resulting chemically ordered surface regions acts as an e˙ective barrier that inhibits subsequent dislocation annihilation at free surfaces. Using dynamic, atomic-scale resolution electron microscopy observations and theory modelling, we show that the dislocations are highly active, and we delineate the specific atomic-scale mechanisms associatedmore » with their nucleation, glide, climb, and annihilation at elevated temperatures. As a result, these observations provide mechanistic detail of how dislocations nucleate and migrate at heterointerfaces in dissimilar-material systems.« less
Evaluation of physiological strain in hot work areas using thermal imagery.
Holm, Clint A; Pahler, Leon; Thiese, Matthew S; Handy, Rodney
2016-10-01
Monitoring core body temperature to identify heat strain in workers engaged in hot work in heat stress environments is intrusive and expensive. Nonintrusive, inexpensive methods are needed to calculate individual Physiological Strain Index (PSI). Thermal imaging and heart rate monitoring were used in this study to calculate Physiological Strain Index (PSI) from thermal imaging temperatures of human subjects wearing thermal protective garments during recovery from hot work. Ten male subjects were evaluated for physiological strain while participating in hot work. Thermal images of the head and neck were captured with a high-resolution thermal imaging camera concomitant with measures of gastrointestinal and skin temperature. Lin's concordance correlation coefficient (rho_c), Pearson's coefficient (r) and bias correction factor (C-b) were calculated to compare thermal imaging based temperatures to gastrointestinal temperatures. Calculations of PSI based thermal imaging recorded temperatures were compared to gastrointestinal based PSI. Participants reached a peak PSI of 5.2, indicating moderate heat strain. Sagittal measurements showed low correlation (rho_c=0.133), moderate precision (r=0.496) and low accuracy (C_b=0.269) with gastrointestinal temperature. Bland-Altman plots of imaging measurements showed increasing agreement as gastrointestinal temperature rose; however, the Limits of Agreement (LoA) fell outside the ±0.25C range of clinical significance. Bland-Altman plots of PSI calculated from imaging measurements showed increasing agreement as gastrointestinal temperature rose; however, the LoA fell outside the ±0.5 range of clinical significance. Results of this study confirmed previous research showing thermal imagery is not highly correlated to body core temperature during recovery from moderate heat strain in mild ambient conditions. Measurements display a trend toward increasing correlation at higher body core temperatures. Accuracy was not sufficient at mild to moderate heat strain to allow calculation of individual physiological stress. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ahmed, Zaheer; Wang, Yanping; Anjum, Nomana; Ahmad, Hajra; Ahmad, Asif; Raza, Mohsin
2013-08-01
This project was designed to study the coculturing affect of exopolysaccharide (EPS) producing strains Lactobacillus kefiranofaciens (L.k) ZW3, with non EPS producing strains L. bulgaricus (L.b) and Streptococcus thermophilus (S.t) in three different combinations: L.k+L.b, L.k+S.t, and L.k+L.b+S.t. FTIR analysis revealed presence of strong stretch in regions of 3400, 2900 and 1647cm(-1) which is characteristic of a typical polysaccharide. Co-cultured EPSs were composed of glucose, galactose, arabinose and xylose; and their sugar compositions were different from ZW3 polysaccharide that was mainly composed of gluco-galactan. Peak temperature for L.k+L.b, L.k+S.t, L.k+S.t+L.b and ZW3 polymers were 90.59, 87.61, 95.18 and 97.38°C, respectively. Thermal analysis revealed degradation temperature of 326.44, 294.6, 296.7 and 299.62°C for L.k+L.b, L.k+S.t, L.k+S.t+L.b and ZW3 polymers, respectively. SEM and AFM analysis divulged that three cocultured EPSs had different surface morphology than ZW3 polymer. Since co-cultured polymers have different structure than the polymer produced exclusively by EPS producing strain, it can be safely concluded from the study that co-culturing can be one way to change the structure of polymers. Coculturing of L. kefiranofaciens with non-EPS producing strains resulted in yoghurt with increased viscosity and delayed syneresis. Copyright © 2013 Elsevier B.V. All rights reserved.
The Relation Between Alloy Chemistry and Hot-Cracking
NASA Technical Reports Server (NTRS)
Nunes, A. C., Jr.; Talia, J. E.
2000-01-01
Hot cracking is a problem in welding 2195 aluminum-lithium alloy. Weld wire additives seem to reduce the problem. This study proposes a model intended to clarify the way alloying elements affect hot-cracking. The brittle temperature range of an alloy extends wherever the tensile stress required to move the meniscus of the liquid film at the grain/dendrite boundaries is less than the bulks flow stress Sigma(sub B) of the grains: 2gamma/delta <= sigma(sub B) + P where gamma is boundary film surface tension delta= boundary film thickness P = gas pressure (Some alloys outgas.) If the above condition is not met, the grains deform under stress and the liquid film remains in place. Curves of 2gamma/delta and sigma(sub B) vs. temperature in the range just below the melting temperature determine the hot cracking susceptibility of an alloy. Both are zero at onset of solidification. sigma(sub B) rises as the thermal activation of the slip mechanism is reduced. 2gamma/delta rises as the film thickness delta which can be estimated from the Scheil equation, drops. But, given an embrittled alloy, whether the alloy actually cracks is determined by the strain imposed upon it in the embrittled condition. A critical strain is estimated, Epsilon(sub C) on the order of Epsilon(sub C) is approximately delta/l where L = grain size and where the the volume increment due to the strain, concentrated at the liquid film, is on the order of the liquid film volume. In the early 80's an empirical critical strain cracking envelope Epsilon(sub C)(T) was incorporated into a damage criterion to estimate the effect of welding parameters on the formation of microfissures in a superalloy with good results. These concepts, liquid film decoherence vs. grain bulk deformation and critical strain, form the key elements of a quantitative theory of hot-cracking applicable for assessing the effect of alloying elements on hot-cracking during welding.