Sample records for surface temperature tests

  1. 30 CFR 36.48 - Tests of surface temperature of engine and components of the cooling system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Tests of surface temperature of engine and... temperature of engine and components of the cooling system. (a) The surface temperatures of the engine... components shall have reached their respective equilibrium temperatures. The exhaust cooling system shall be...

  2. 30 CFR 36.48 - Tests of surface temperature of engine and components of the cooling system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Tests of surface temperature of engine and... temperature of engine and components of the cooling system. (a) The surface temperatures of the engine... components shall have reached their respective equilibrium temperatures. The exhaust cooling system shall be...

  3. 30 CFR 36.48 - Tests of surface temperature of engine and components of the cooling system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Tests of surface temperature of engine and... temperature of engine and components of the cooling system. (a) The surface temperatures of the engine... components shall have reached their respective equilibrium temperatures. The exhaust cooling system shall be...

  4. Effect of SiC Content on the Ablation and Oxidation Behavior of ZrB2-Based Ultra High Temperature Ceramic Composites

    PubMed Central

    Hu, Ping; Gui, Kaixuan; Yang, Yang; Dong, Shun; Zhang, Xinghong

    2013-01-01

    The ablation and oxidation of ZrB2-based ultra high temperature ceramic (UHTC) composites containing 10%, 15% and 30% v/v SiC were tested under different heat fluxes in a high frequency plasma wind tunnel. Performance was significantly affected by the surface temperature, which was strongly dependent on the composition. Composites containing 10% SiC showed the highest surface temperature (>2300 °C) and underwent a marked degradation under both conditions. In contrast, composites with 30% SiC exhibited the lowest surface temperature (<2000 °C) and demonstrated excellent ablation resistance. The surface temperature of UHTCs in aerothermal testing was closely associated with the dynamic evolution of the surface and bulk oxide properties, especially for the change in chemical composition on the exposed surface, which was strongly dependent on the material composition and testing parameters (i.e., heat flux, enthalpy, pressure and test time), and in turn affected its oxidation performance. PMID:28809239

  5. Effect of SiC Content on the Ablation and Oxidation Behavior of ZrB₂-Based Ultra High Temperature Ceramic Composites.

    PubMed

    Hu, Ping; Gui, Kaixuan; Yang, Yang; Dong, Shun; Zhang, Xinghong

    2013-04-29

    The ablation and oxidation of ZrB₂-based ultra high temperature ceramic (UHTC) composites containing 10%, 15% and 30% v/v SiC were tested under different heat fluxes in a high frequency plasma wind tunnel. Performance was significantly affected by the surface temperature, which was strongly dependent on the composition. Composites containing 10% SiC showed the highest surface temperature (>2300 °C) and underwent a marked degradation under both conditions. In contrast, composites with 30% SiC exhibited the lowest surface temperature (<2000 °C) and demonstrated excellent ablation resistance. The surface temperature of UHTCs in aerothermal testing was closely associated with the dynamic evolution of the surface and bulk oxide properties, especially for the change in chemical composition on the exposed surface, which was strongly dependent on the material composition and testing parameters ( i.e. , heat flux, enthalpy, pressure and test time), and in turn affected its oxidation performance.

  6. Arcjet Testing and Thermal Model Development for Multilayer Felt Reusable Surface Insulation

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Scott, Carl Douglas; Papa, Steven V.

    2012-01-01

    Felt Reusable Surface Insulation was used extensively on leeward external surfaces of the Shuttle Orbiter, where the material is reusable for temperatures up to 670 K. For application on leeward surfaces of the Orion Multi-Purpose Crew Vehicle, where predicted temperatures reach 1620 K, the material functions as a pyrolyzing conformal ablator. An arcjet test series was conducted to assess the performance of multilayer Felt Reusable Surface Insulation at high temperatures, and a thermal-response, pyrolysis, and ablation model was developed. Model predictions compare favorably with the arcjet test data

  7. Method and apparatus for measuring surface contour on parts with elevated temperatures

    DOEpatents

    Horvath, Mark S.; Nance, Roy A.; Cohen, George H.; Fodor, George

    1991-01-01

    The invention is directed to a method and apparatus for measuring the surface contour of a test piece, such as the bow of a radioactive fuel rod, which is completely immersed in water. The invention utilizes ultrasonic technology and is capable of measuring surface contours of test pieces which are at a higher temperature than the surrounding water. The presence of a test piece at a higher temperature adversely affects the distance measurements by causing thermal variations in the water near the surface of the test piece. The contour measurements depend upon a constant temperature of the water in the path of the ultrasonic wave to provide a constant acoustical velocity (the measurement is made by the time of flight measurement for an ultrasonic wave). Therefore, any variations of water temperature near the surface will introduce errors degrading the measurement. The present invention overcomes these problems by assuring that the supply of water through which the ultrasonic waves travel is at a predetermined and constant temperature.

  8. Arc Jet Screening Tests Of Phase 1 Orbiter Tile Repair Materials and Uncoated RSI High Temperature Emittance Measurements

    NASA Technical Reports Server (NTRS)

    DelPapa, Steven V.

    2005-01-01

    Arc jet tests of candidate tile repair materials and baseline Orbiter uncoated reusable surface insulation (RSI) were performed in the Johnson Space Center's (JSC) Atmospheric Reentry Materials and Structures Evaluation Facility (ARMSEF) from June 23, 2003, through August 19, 2003. These tests were performed to screen candidate tile repair materials by verifying the high temperature performance and determining the thermal stability. In addition, tests to determine the surface emissivity at high temperatures and the geometric shrinkage of bare RSI were performed. In addition, tests were performed to determine the surface emissivity at high temperatures and the geometric shrinkage of uncoated RSI.

  9. Pressure-Sensitive Paint Measurements on Surfaces with Non-Uniform Temperature

    NASA Technical Reports Server (NTRS)

    Bencic, Timothy J.

    1999-01-01

    Pressure-sensitive paint (PSP) has become a useful tool to augment conventional pressure taps in measuring the surface pressure distribution of aerodynamic components in wind tunnel testing. While the PSP offers the advantage of a non-intrusive global mapping of the surface pressure, one prominent drawback to the accuracy of this technique is the inherent temperature sensitivity of the coating's luminescent intensity. A typical aerodynamic surface PSP test has relied on the coated surface to be both spatially and temporally isothermal, along with conventional instrumentation for an in situ calibration to generate the highest accuracy pressure mappings. In some tests however, spatial and temporal thermal gradients are generated by the nature of the test as in a blowing jet impinging on a surface. In these cases, the temperature variations on the painted surface must be accounted for in order to yield high accuracy and reliable data. A new temperature correction technique was developed at NASA Lewis to collapse a "family" of PSP calibration curves to a single intensity ratio versus pressure curve. This correction allows a streamlined procedure to be followed whether or not temperature information is used in the data reduction of the PSP. This paper explores the use of conventional instrumentation such as thermocouples and pressure taps along with temperature-sensitive paint (TSP) to correct for the thermal gradients that exist in aeropropulsion PSP tests. Temperature corrected PSP measurements for both a supersonic mixer ejector and jet cavity interaction tests are presented.

  10. Detection of surface temperature from LANDSAT-7/ETM+

    NASA Astrophysics Data System (ADS)

    Suga, Y.; Ogawa, H.; Ohno, K.; Yamada, K.

    2003-12-01

    Hiroshima Institute of Technology (HIT) in Japan has established a LANDSAT-7 Ground Station in cooperation with NASDA for receiving and processing the ETM+ data on March 15 th, 2000 in Japan. The authors performed a verification study on the surface temperature derived from thermal infrared band image data of LANDSAT 7/Enhanced Thematic Mapper Plus (ETM+) for the estimation of temperatures around Hiroshima city and bay area in the western part of Japan as a test site. As to the thermal infrared band, the approximate functions for converting the spectral radiance into the surface temperature are estimated by considering both typical surface temperatures measured by the simultaneous field survey with the satellite observation and the spectral radiance observed by ETM+ band 6 (10.40-12.50μm), and then the estimation of the surface temperature distribution around the test site was examined.In this study, the authors estimated the surface temperature distribution equivalent to the land cover categories around the test site for establishing a guideline of surface temperature detection by LANDSAT7/ETM+ data. As the result of comparison of the truth data and the estimated surface temperature, the correlation coefficients of the approximate function referred to the truth data are from 0.9821 to 0.9994, and the differences are observed from +0.7 to -1.5°C in summer, from +0.4 to -0.9 *C in autumn, from -1.6 to -3.4°C in winter and from +0.5 to -0.5C in spring season respectively. It is clearly found that the estimation of surface temperature based on the approximate functions for converting the spectral radiance into the surface temperature referred to the truth data is improved over the directly estimated surface temperature obtained from satellite data. Finally, the successive seasonal change of surface temperature distribution pattern of the test site is precisely detected with the temperature legend of 0 to 80'C derived from LANDSAT-7/ETM+ band 6 image data for the thermal environment monitoring. 2003 COSPAR. Published by Elsevier Ltd.

  11. Production test IP-376-D, Supplement B Irradiation of MGCR-HDR-3 Test Element

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baars, R.E.

    The objective of this supplement to PT-IP-376-D, Irradiation of MGCR-HDR-3 Test Element is to authorize 1000 hours of operation at a maximum test specimen surface temperature of 1700 F. The original production test authorized a test duration of four months at a maximum specimen surface temperature of 1500 F; supplement A authorized extension of the test duration to ten months. The desired increase in surface temperature is requested to demonstrate the general feasibility of operation of the fuel element at 1700 F, and to obtain specific information on the performance of Hastelloy-X cladding and fuel bodies. The increased temperature hasmore » been approved by the Atomic Energy Commission.« less

  12. Spectral and temperature-dependent infrared emissivity measurements of painted metals for improved temperature estimation during laser damage testing

    NASA Astrophysics Data System (ADS)

    Baumann, Sean M.; Keenan, Cameron; Marciniak, Michael A.; Perram, Glen P.

    2014-10-01

    A database of spectral and temperature-dependent emissivities was created for painted Al-alloy laser-damage-testing targets for the purpose of improving the uncertainty to which temperature on the front and back target surfaces may be estimated during laser-damage testing. Previous temperature estimates had been made by fitting an assumed gray-body radiance curve to the calibrated spectral radiance data collected from the back surface using a Telops Imaging Fourier Transform Spectrometer (IFTS). In this work, temperature-dependent spectral emissivity measurements of the samples were made from room temperature to 500 °C using a Surface Optics Corp. SOC-100 Hemispherical Directional Reflectometer (HDR) with Nicolet FTS. Of particular interest was a high-temperature matte-black enamel paint used to coat the rear surfaces of the Al-alloy samples. The paint had been assumed to have a spectrally flat and temperatureinvariant emissivity. However, the data collected using the HDR showed both spectral variation and temperature dependence. The uncertainty in back-surface temperature estimation during laser-damage testing made using the measured emissivities was improved from greater than +10 °C to less than +5 °C for IFTS pixels away from the laser burn-through hole, where temperatures never exceeded those used in the SOC-100 HDR measurements. At beam center, where temperatures exceeded those used in the SOC-100 HDR, uncertainty in temperature estimates grew beyond those made assuming gray-body emissivity. Accurate temperature estimations during laser-damage testing are useful in informing a predictive model for future high-energy-laser weapon applications.

  13. High-temperature effects on the light transmission through sapphire optical fiber

    DOE PAGES

    Wilson, Brandon A.; Petrie, Christian M.; Blue, Thomas E.

    2018-03-13

    Single crystal sapphire optical fiber was tested at high temperatures (1500°C) to determine its suitability for optical instrumentation in high-temperature environments. Broadband light transmission (450-2300 nm) through sapphire fiber was measured as a function of temperature as a test of the fiber's ability to survive and operate in high-temperature environments. Upon heating sapphire fiber to 1400°C, large amounts of light attenuation were measured across the entire range of light wavelengths that were tested. SEM and TEM images of the heated sapphire fiber indicated that a layer had formed at the surface of the fiber, most likely due to a chemicalmore » change at high temperatures. The microscopy results suggest that the surface layer may be in the form of aluminum hydroxide. Subsequent tests of sapphire fiber in an inert atmosphere showed minimal light attenuation at high temperatures along with the elimination of any surface layers on the fiber, indicating that the air atmosphere is indeed responsible for the increased attenuation and surface layer formation at high temperatures.« less

  14. High-temperature effects on the light transmission through sapphire optical fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Brandon A.; Petrie, Christian M.; Blue, Thomas E.

    Single crystal sapphire optical fiber was tested at high temperatures (1500°C) to determine its suitability for optical instrumentation in high-temperature environments. Broadband light transmission (450-2300 nm) through sapphire fiber was measured as a function of temperature as a test of the fiber's ability to survive and operate in high-temperature environments. Upon heating sapphire fiber to 1400°C, large amounts of light attenuation were measured across the entire range of light wavelengths that were tested. SEM and TEM images of the heated sapphire fiber indicated that a layer had formed at the surface of the fiber, most likely due to a chemicalmore » change at high temperatures. The microscopy results suggest that the surface layer may be in the form of aluminum hydroxide. Subsequent tests of sapphire fiber in an inert atmosphere showed minimal light attenuation at high temperatures along with the elimination of any surface layers on the fiber, indicating that the air atmosphere is indeed responsible for the increased attenuation and surface layer formation at high temperatures.« less

  15. Thermal insulation testing method and apparatus

    NASA Technical Reports Server (NTRS)

    Fesmire, James E. (Inventor); Augustynowicz, Stanislaw D. (Inventor)

    2004-01-01

    A test apparatus and method of its use for evaluating various performance aspects of a test specimen is disclosed. A chamber within a housing contains a cold mass tank with a contact surface in contact with a first surface of a test specimen. The first surface of the test specimen is spaced from the second surface of the test specimen by a thickness. The second surface of the test specimen is maintained at a desired warm temperature. The first surface is maintained at a constant temperature by a liquid disposed within the cold mass tank. A boil-off flow rate of the gas is monitored and provided to a processor along with the temperature of the first and second surfaces of the test specimen. The processor calculates thermal insulation values of the test specimen including comparative values for heat flux and apparent thermal conductivity (k-value). The test specimen may be placed in any vacuum pressure level ranging from about 0.01 millitorr to 1,000,000 millitorr with different residual gases as desired. The test specimen may be placed under a mechanical load with the cold mass tank and another factors may be imposed upon the test specimen so as to simulate the actual use conditions.

  16. An evaluation of surface properties and frictional forces generated from Al-Mo-Ni coating on piston ring

    NASA Astrophysics Data System (ADS)

    Karamış, M. B.; Yıldızlı, K.; Çakırer, H.

    2004-05-01

    Surface properties of the Al-Mo-Ni coating plasma sprayed on the piston ring material and the frictional forces obtained by testing carried out under different loads, temperatures and frictional conditions were evaluated. Al-Mo-Ni composite material was deposited on the AISI 440C test steel using plasma spraying method. The coated and uncoated samples were tested by being exposed to frictional testing under dry and lubricated conditions. Test temperatures of 25, 100, 200, and 300 °C and loads of 83, 100, 200, and 300 N were applied during the tests in order to obtain the frictional response of the coating under conditions similar to real piston ring/cylinder friction conditions. Gray cast iron was used as a counterface material. All the tests were carried out with a constant sliding speed of 1 m/s. The properties of the coating were determined by using EDX and SEM analyses. Hardness distribution on the cross-section of the coating was also determined. In addition, the variations of the surface roughness after testing with test temperatures and loads under dry and lubricated conditions were recorded versus sliding distance. It was determined that the surface roughness increased with increasing loads. It increased with temperature up to 200 °C and then decreased at 300 °C under dry test conditions. Under lubricated conditions, the roughness decreased under the loads of 100 N and then increased. The roughness decreased at 200 °C but below and above this point it increased with the test temperature. Frictional forces observed under dry and lubricated test conditions increased with load at running-in period of the sliding. The steady-state period was then established with the sliding distance as a normal situation. However, the frictional forces were generally lower at a higher test temperature than those at a lower test temperature. Surprisingly, the test temperature of 200 °C was a critical point for frictional forces and surface roughness.

  17. Effect of surface condition to temperature distribution in living tissue during cryopreservation

    NASA Astrophysics Data System (ADS)

    Nozawa, M.; Hatakeyama, S.; Sugimoto, Y.; Sasaki, H.

    2017-12-01

    The temperature distribution of the simulated living tissue is measured for the improvement of the cooling rate during cryopreservation when the surface condition of the test sample is changed by covering the stainless steel mesh. Agar is used as a simulated living tissue and is filled inside the test sample. The variation of the transient temperature with mesh by the directly immersion in the liquid nitrogen is measured. The temperatures on the sample surface and the inside of the sample are measured by use of type T thermocouples. It is confirmed that on the sample surface there is the slightly temperature increase than that in the saturated liquid nitrogen at the atmospheric pressure. It is found by the comparison of the degree of superheat with or without the mesh that the surface temperature of the test sample with the mesh is lower than that without the mesh. On the other hand, the time series variations of the temperature located in the center of the sample does not change with or without the mesh. It is considered that the center of the sample used is too deep from the surface to respond to the boiling state on the sample surface.

  18. Development of Advanced Thermal and Environmental Barrier Coatings Using a High-Heat-Flux Testing Approach

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2003-01-01

    The development of low conductivity, robust thermal and environmental barrier coatings requires advanced testing techniques that can accurately and effectively evaluate coating thermal conductivity and cyclic resistance at very high surface temperatures (up to 1700 C) under large thermal gradients. In this study, a laser high-heat-flux test approach is established for evaluating advanced low conductivity, high temperature capability thermal and environmental barrier coatings under the NASA Ultra Efficient Engine Technology (UEET) program. The test approach emphasizes the real-time monitoring and assessment of the coating thermal conductivity, which initially rises under the steady-state high temperature thermal gradient test due to coating sintering, and later drops under the cyclic thermal gradient test due to coating cracking/delamination. The coating system is then evaluated based on damage accumulation and failure after the combined steady-state and cyclic thermal gradient tests. The lattice and radiation thermal conductivity of advanced ceramic coatings can also be evaluated using laser heat-flux techniques. The external radiation resistance of the coating is assessed based on the measured specimen temperature response under a laser- heated intense radiation-flux source. The coating internal radiation contribution is investigated based on the measured apparent coating conductivity increases with the coating surface test temperature under large thermal gradient test conditions. Since an increased radiation contribution is observed at these very high surface test temperatures, by varying the laser heat-flux and coating average test temperature, the complex relation between the lattice and radiation conductivity as a function of surface and interface test temperature may be derived.

  19. Outdoor surface temperature measurement: ground truth or lie?

    NASA Astrophysics Data System (ADS)

    Skauli, Torbjorn

    2004-08-01

    Contact surface temperature measurement in the field is essential in trials of thermal imaging systems and camouflage, as well as for scene modeling studies. The accuracy of such measurements is challenged by environmental factors such as sun and wind, which induce temperature gradients around a surface sensor and lead to incorrect temperature readings. In this work, a simple method is used to test temperature sensors under conditions representative of a surface whose temperature is determined by heat exchange with the environment. The tested sensors are different types of thermocouples and platinum thermistors typically used in field trials, as well as digital temperature sensors. The results illustrate that the actual measurement errors can be much larger than the specified accuracy of the sensors. The measurement error typically scales with the difference between surface temperature and ambient air temperature. Unless proper care is taken, systematic errors can easily reach 10% of this temperature difference, which is often unacceptable. Reasonably accurate readings are obtained using a miniature platinum thermistor. Thermocouples can perform well on bare metal surfaces if the connection to the surface is highly conductive. It is pointed out that digital temperature sensors have many advantages for field trials use.

  20. Evaluation of reusable surface insulation for space shuttle over a range of heat-transfer rate and surface temperature

    NASA Technical Reports Server (NTRS)

    Chapman, A. J.

    1973-01-01

    Reusable surface insulation materials, which were developed as heat shields for the space shuttle, were tested over a range of conditions including heat-transfer rates between 160 and 620 kW/sq m. The lowest of these heating rates was in a range predicted for the space shuttle during reentry, and the highest was more than twice the predicted entry heating on shuttle areas where reusable surface insulation would be used. Individual specimens were tested repeatedly at increasingly severe conditions to determine the maximum heating rate and temperature capability. A silica-base material experienced only minimal degradation during repeated tests which included conditions twice as severe as predicted shuttle entry and withstood cumulative exposures three times longer than the best mullite material. Mullite-base materials cracked and experienced incipient melting at conditions within the range predicted for shuttle entry. Neither silica nor mullite materials consistently survived the test series with unbroken waterproof surfaces. Surface temperatures for a silica and a mullite material followed a trend expected for noncatalytic surfaces, whereas surface temperatures for a second mullite material appeared to follow a trend expected for a catalytic surface.

  1. Thermal certification tests of Orbiter Thermal Protection System tiles coated with KSC coating slurries

    NASA Technical Reports Server (NTRS)

    Milhoan, James D.; Pham, Vuong T.; Sherborne, William D.

    1993-01-01

    Thermal tests of Orbiter thermal protection system (TPS) tiles, which were coated with borosilicate glass slurries fabricated at Kennedy Space Center (KSC), were performed in the Radiant Heat Test Facility and the Atmospheric Reentry Materials & Structures Evaluation Facility at Johnson Space Center to verify tile coating integrity after exposure to multiple entry simulation cycles in both radiant and convective heating environments. Eight high temperature reusable surface insulation (HRSI) tiles and six low temperature reusable surface insulation (LRSI) tiles were subjected to 25 cycles of radiant heat at peaked surface temperatures of 2300 F and 1200 F, respectively. For the LRSI tiles, an additional cycle at peaked surface temperature of 2100 F was performed. There was no coating crack on any of the HRSI specimens. However, there were eight small coating cracks (less than 2 inches long) on two of the six LRSI tiles on the 26th cycle. There was practically no change on the surface reflectivity, physical dimensions, or weight of any of the test specimens. There was no observable thermal-chemical degradation of the coating either. For the convective heat test, eight HRSI tiles were tested for five cycles at a surface temperature of 2300 F. There was no thermal-induced coating crack on any of the test specimens, almost no change on the surface reflectivity, and no observable thermal-chemical degradation with an exception of minor slumping of the coating under painted TPS identification numbers. The tests demonstrated that KSC's TPS slurries and coating processes meet the Orbiter's thermal specification requirements.

  2. Wetting Properties of EMIIm & its Relevance to Electrospray Design

    DTIC Science & Technology

    2012-03-12

    apparent surface area S Distance separating two grid apertures T Absolute temperature of the test liquid TC Critical temperature of the test liquid V...include the choice of solid materials being used as insulators, emitters or electrodes, thin film surface coatings that have a de- sired high or low...wettability, and changing the solid component surface roughness or temperature during operation.678 An electrospray thruster has been developed by

  3. Investigations of Control Surface Seals for Re-entry Vehicles

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Curry, Donald M.; DeMange, Jeffrey J.; Rivers, H. Kevin; Hsu, Su-Yuen

    2002-01-01

    Re-entry vehicles generally require control surfaces (e.g., rudders, body flaps) to steer them during flight. Control surface seals are installed along hinge lines and where control surface edges move close to the vehicle body. These seals must operate at high temperatures and limit heat transfer to underlying structures to prevent them from overheating and causing possible loss of vehicle structural integrity. This paper presents results for thermal analyses and mechanical testing conducted on the baseline rudder/fin seal design for the X-38 re-entry vehicle. Exposure of the seals in a compressed state at the predicted peak seal temperature of 1900 F resulted in loss of seal resiliency. The vertical Inconel rudder/fin rub surface was re-designed to account for this loss of resiliency. Room temperature compression tests revealed that seal unit loads and contact pressures were below limits set to protect Shuttle thermal tiles on the horizontal sealing surface. The seals survived an ambient temperature 1000 cycle scrub test over sanded Shuttle tiles and were able to disengage and re-engage the tile edges during testing. Arc jet tests confirmed the need for seals in the rudder/fin gap location because a single seal caused a large temperature drop (delta T = 1710 F) in the gap.

  4. 30 CFR 18.23 - Limitation of external surface temperatures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Limitation of external surface temperatures. 18.23 Section 18.23 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING... and Design Requirements § 18.23 Limitation of external surface temperatures. The temperature of the...

  5. 30 CFR 18.23 - Limitation of external surface temperatures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Limitation of external surface temperatures. 18.23 Section 18.23 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING... and Design Requirements § 18.23 Limitation of external surface temperatures. The temperature of the...

  6. 30 CFR 18.23 - Limitation of external surface temperatures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Limitation of external surface temperatures. 18.23 Section 18.23 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING... and Design Requirements § 18.23 Limitation of external surface temperatures. The temperature of the...

  7. 30 CFR 18.23 - Limitation of external surface temperatures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Limitation of external surface temperatures. 18.23 Section 18.23 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING... and Design Requirements § 18.23 Limitation of external surface temperatures. The temperature of the...

  8. Fiber Optic Temperature Sensor Insert for High Temperature Environments

    NASA Technical Reports Server (NTRS)

    Black, Richard James (Inventor); Costa, Joannes M. (Inventor); Moslehi, Behzad (Inventor); Zarnescu, Livia (Inventor)

    2017-01-01

    A thermal protection system (TPS) test plug has optical fibers with FBGs embedded in the optical fiber arranged in a helix, an axial fiber, and a combination of the two. Optionally, one of the optical fibers is a sapphire FBG for measurement of the highest temperatures in the TPS plug. The test plug may include an ablating surface and a non-ablating surface, with an engagement surface with threads formed, the threads having a groove for placement of the optical fiber. The test plug may also include an optical connector positioned at the non-ablating surface for protection of the optical fiber during insertion and removal.

  9. Reduction effect of surface temperature of baked bricks with different pore shapes during absorption-evaporation test

    NASA Astrophysics Data System (ADS)

    Oguchi, Chiaki T.; Shinozuka, Katsumi

    2017-04-01

    To study the effect of decreasing in surface temperature of baked bricks with various pore shapes, the present study performed several experiments such as water absorbance test and heating test. For the preparation of experimental specimens, bricks with artificial spherical pores, artificial linear pores and non-additional artificial pores were made. The bricks were examined their properties of bulk density, Equotip hardness and absorbing properties by putting in the water. Wet bricks were also put in the incubator set at 50 °C, and monitored the increasing of surface temperature of each brick. Brick with linear pores shows higher water absorption rate in a short time than those with spherical pores. They evaporated moisture faster than those with a spherical pores. They kept the temperature by 11.7 °C lower than the setting temperature, whereas the bricks with a spherical pores kept the temperature by 10.5 °C . Bricks with linear pores has about 10% higher effectiveness of decreasing in surface temperature than those with spheroidal pores.

  10. A fundamental study of nucleate pool boiling under microgravity

    NASA Technical Reports Server (NTRS)

    Ervin, Jamie S.; Merte, Herman, Jr.

    1991-01-01

    An experimental study of incipient boiling in short-term microgravity and with a/g = +/- 1 for pool boiling was performed. Calibrated thin gold films sputtered on a smoothly polished quartz surface were used simultaneously for thermal resistance measurements and heating of the boiling surface. The gold films were used for both transient and quasi-steady heating surface temperature measurements. Two test vessels were constructed for precise measurement and control of fluid temperature and pressure: a laboratory pool boiling vessel for the a/g = +/- experiments and a pool boiling vessel designed for the 131 m free-fall in the NASA Lewis Research Center Microgravity Research Facility for the microgravity tests. Measurements included the heater surface temperature, the pressure near the heating surface, and the bulk liquid temperatures. High speed photography was used in the experiments. With high quality microgravity and the measured initial temperature of the quiescent test fluid, R113, the temperature distribution in the liquid at the moment of boiling inception resulting from an imposed step in heat flux is known with a certainty not possible previously. The types of boiling propagation across the large flat heating surface are categorized; the conditions necessary for their occurrence are described. Explosive boiling propagation with a striking pattern of small scale protuberances over the entire vapor mass periphery not observed previously at low heat flux levels is described. For the heater surface with a/g = -1, a step in the heater surface temperature of short duration was imposed. The resulting liquid temperature distribution at the moment of boiling inception was different from that obtained with a step in heat flux.

  11. Correlations among ocular surface temperature difference value, the tear meniscus height, Schirmer's test and fluorescein tear film break up time.

    PubMed

    Su, Tai Yuan; Ho, Wei Ting; Lu, Chien Yi; Chang, Shu Wen; Chiang, Huihua Kenny

    2015-04-01

    To report the use of a thermographer for measuring ocular surface temperature, and to evaluate the correlation among the obtained temperature difference values (TDVs) and dry eye parameters (tear meniscus height (TMH); Schirmer's test results; fluorescent tear breakup time (FTBUT)). Forty-three participants (age 40.2±14.7 years; range 21-67 years) from Far Eastern Memorial Hospital, Taiwan were recruited for the study. The surface temperature was measured at the centre of the ocular surface for 4 s after blinking. TDV was defined as the change in corneal surface temperature relative to that of the preceding eye opening, where TDV01, TDV02, TDV03, and TDV04 represent the values obtained 1, 2, 3, and 4 s after blinking, respectively. Anterior segment optical coherence tomography (AS-OCT) was employed to measure the lower TMH. Schirmer's test with topical anaesthetic was conducted to measure the basal tear secretion. The FTBUT was recorded using a digital camera. TDV measurement exhibited high reliability (intraclass correlation coefficient=0.91). TDV03 exhibited the highest significance and strongest positive correlation with the TMH (r=0.52, p=0.0003) and Schirmer's test value (r=0.39, p=0.008), whereas the TDV03-FTBUT correlation was non-significant. Age correlated negatively and significantly with the TDV (r= -0.35, p=0.021), TMH (r= -0.33, p=0.031), and Schirmer's test value (r= -0.31, p=0.044). TDV03 remained significantly correlated with the TMH and Schirmer's test value after adjustment for age. The thermographer was effective in capturing temperature changes in the ocular surface. The temperature difference 3 s after blinking appears to be correlated with lower TMH and Schirmer test values. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  12. 46 CFR 164.008-5 - Test report.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., including initial temperature, for each thermocouple together with curves of average temperature for the unexposed surface of the insulation and the thermocouple recording the highest temperature. In addition, for... each furnace and each surface of insulation thermocouple together with the initial temperature of each...

  13. 46 CFR 164.008-5 - Test report.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., including initial temperature, for each thermocouple together with curves of average temperature for the unexposed surface of the insulation and the thermocouple recording the highest temperature. In addition, for... each furnace and each surface of insulation thermocouple together with the initial temperature of each...

  14. Sound absorption of low-temperature reusable surface insulation candidate materials

    NASA Technical Reports Server (NTRS)

    Johnston, J. D.

    1974-01-01

    Sound absorption data from tests of four candidate low-temperature reusable surface insulation materials are presented. Limitations on the use of the data are discussed, conclusions concerning the effective absorption of the materials are drawn, and the relative significance to Vibration and Acoustic Test Facility test planning of the absorption of each material is assessed.

  15. 3D thermography for improving temperature measurements in thermal vacuum testing

    NASA Astrophysics Data System (ADS)

    Robinson, D. W.; Simpson, R.; Parian, J. A.; Cozzani, A.; Casarosa, G.; Sablerolle, S.; Ertel, H.

    2017-09-01

    The application of thermography to thermal vacuum (TV) testing of spacecrafts is becoming a vital additional tool in the mapping of structures during thermal cycles and thermal balance (TB) testing. Many of the customers at the European Space Agency (ESA) test centre, European Space Research and Technology Centre (ESTEC), The Netherlands, now make use of a thermal camera during TB-TV campaigns. This complements the use of embedded thermocouples on the structure, providing the prospect of monitoring temperatures at high resolution and high frequency. For simple flat structures with a well-defined emissivity, it is possible to determine the surface temperatures with reasonable confidence. However, for most real spacecraft and sub-systems, the complexity of the structure's shape and its test environment creates inter-reflections from external structures. This and the additional complication of angular and spectral variations of the spacecraft surface emissivity make the interpretation of the radiation detected by a thermal camera more difficult in terms of determining a validated temperature with high confidence and well-defined uncertainty. One solution to this problem is: to map the geometry of the test specimen and thermal test environment; to model the surface temperatures and emissivity variations of the structures and materials; and to use this model to correct the apparent temperatures recorded by the thermal camera. This approach has been used by a team from NPL (National Physical Laboratory), Psi-tran, and PhotoCore, working with ESA, to develop a 3D thermography system to provide a means to validate thermal camera temperatures, based on a combination of thermal imaging photogrammetry and ray-tracing scene modeling. The system has been tested at ESTEC in ambient conditions with a dummy spacecraft structure containing a representative set of surface temperatures, shapes, and spacecraft materials, and with hot external sources and a high power lamp as a sun simulator. The results are presented here with estimated temperature measurement uncertainties and defined confidence levels according to the internationally accepted Guide to Uncertainty of Measurement as used in the IEC/ISO17025 test and measurement standard. This work is understood to represent the first application of well-understood thermal imaging theory, commercial photogrammetry software, and open-source ray-tracing software (adapted to realize the Planck function for thermal wavebands and target emission), and to produce from these elements a complete system for determining true surface temperatures for complex spacecraft-testing applications.

  16. Inverse problem of flame surface properties of wood using a repulsive particle swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Yoon, Kyung-Beom; Park, Won-Hee

    2015-04-01

    The convective heat transfer coefficient and surface emissivity before and after flame occurrence on a wood specimen surface and the flame heat flux were estimated using the repulsive particle swarm optimization algorithm and cone heater test results. The cone heater specified in the ISO 5660 standards was used, and six cone heater heat fluxes were tested. Preservative-treated Douglas fir 21 mm in thickness was used as the wood specimen in the tests. This study confirmed that the surface temperature of the specimen, which was calculated using the convective heat transfer coefficient, surface emissivity and flame heat flux on the wood specimen by a repulsive particle swarm optimization algorithm, was consistent with the measured temperature. Considering the measurement errors in the surface temperature of the specimen, the applicability of the optimization method considered in this study was evaluated.

  17. Ground-Water Temperature Data, Nevada Test Site and Vicinity, Nye, Clark, and Lincoln Counties, Nevada, 2000-2006

    USGS Publications Warehouse

    Reiner, Steven R.

    2007-01-01

    Ground-water temperature data were collected by the U.S. Geological Survey in wells at and in the vicinity of the Nevada Test Site during the years 2000-2006. Periodic ground-water temperatures were collected in 166 wells. In general, periodic ground-water temperatures were measured annually in each well at 5 and 55 feet below the water surface. Ground-water temperature profiles were collected in 73 wells. Temperatures were measured at multiple depths below the water surface to produce these profiles. Databases were constructed to present the ground-water temperature data.

  18. Ground-Water Temperature Data, Nevada Test Site and Vicinity, Nye, Clark, and Lincoln Counties, Nevada, 2000-2006.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven R. Reiner

    2007-08-07

    Ground-water temperature data were collected by the U.S. Geological Survey in wells at and in the vicinity of the Nevada Test Site during the years 2000–2006. Periodic ground-water temperatures were collected in 166 wells. In general, periodic ground-water temperatures were measured annually in each well at 5 and 55 feet below the water surface. Ground-water temperature profiles were collected in 73 wells. Temperatures were measured at multiple depths below the water surface to produce these profiles. Databases were constructed to present the ground-water temperature data.

  19. Testing and COBRA-SFS analysis of the VSC-17 ventilated concrete, spent fuel storage cask

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKinnon, M.A.; Dodge, R.E.; Schmitt, R.C.

    1992-04-01

    A performance test of a Pacific Sierra Nuclear VSC-17 ventilated concrete storage cask loaded with 17 canisters of consolidated PWR spent fuel generating approximately 15 kW was conducted. The performance test included measuring the cask surface, concrete, air channel surface, and fuel temperatures, as well as cask surface gamma and neutron dose rates. Testing was performed using vacuum, nitrogen, and helium backfill environments. Pretest predictions of cask thermal performance were made using the COBRA-SFS computer code. Analysis results were within 15{degrees}C of measured peak fuel temperature. Peak fuel temperature for normal operation was 321{degrees}C. In general, the surface dose ratesmore » were less than 30 mrem/h on the side of the cask and 40 mrem/h on the top of the cask.« less

  20. New Technologies for Enhanced Environmental Testing on Spacecraft Structures

    NASA Astrophysics Data System (ADS)

    Ascani, Maurizio; Alemanno, Leonardo; Rinalducci, Fabrizio

    2014-06-01

    This paper presents engineering approaches to realize Thermal Vacuum Chambers (TVC) for different R&D applications: (1) testing of propulsion systems, operating as a Hall thruster, (2) increasing of the DUT (device under test) surface temperature up to +550°C, (3) installation of the solar system inside the TVC. Each application implies specific problems that need to be managed by TVC during the tests. In particular, emission of high-energy ionized gas at high temperatures, surface temperatures higher 800 K and optical specimen contamination represent under high vacuum conditions significant challenges for test equipment.

  1. Surface Power Radiative Cooling Tests

    NASA Astrophysics Data System (ADS)

    Vaughn, Jason; Schneider, Todd

    2006-01-01

    Terrestrial nuclear power plants typically maintain their temperature through convective cooling, such as water and forced air. However, the space environment is a vacuum environment, typically 10-8 Torr pressure, therefore in proposed missions to the lunar surface, power plants would have to rely on radiative cooling to remove waste heat. Also, the Martian surface has a very tenuous atmosphere (e.g. ~5 Torr CO2), therefore, the main heat transfer method on the Martian surface is also radiative. Because of the lack of atmosphere on the Moon and the tenuous atmosphere on Mars, surface power systems on both the Lunar and Martian surface must rely heavily on radiative heat transfer. Because of the large temperature swings on both the lunar and the Martian surfaces, trying to radiate heat is inefficient. In order to increase power system efficiency, an effort is underway to test various combinations of materials with high emissivities to demonstrate their ability to survive these degrading atmospheres to maintain a constant radiator temperature improving surface power plant efficiency. An important part of this effort is the development of a unique capability that would allow the determination of a materials emissivity at high temperatures. A description of the test capability as well as initial data is presented.

  2. 46 CFR 164.007-6 - Test report.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... temperature, for each thermocouple together with curves of average temperature for the unexposed surface of the insulation and the thermocouple recording the highest temperature. In addition, for § 164.007-9(g... and each surface of insulation thermocouple together with the initial temperature of each thermocouple...

  3. 46 CFR 164.007-6 - Test report.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... temperature, for each thermocouple together with curves of average temperature for the unexposed surface of the insulation and the thermocouple recording the highest temperature. In addition, for § 164.007-9(g... and each surface of insulation thermocouple together with the initial temperature of each thermocouple...

  4. Detection of surface temperature from LANDSAT-7/ETM+

    NASA Astrophysics Data System (ADS)

    Suga, Y.; Ogawa, H.; Ohno, K.; Yamada, K.

    Hiroshima Institute of Technology (HIT) in Japan has established LANDSAT-7 Ground Station in cooperated with NASDA for receiving and processing the ETM+ data on March 15t h , 2000 in Japan. The authors performed a verification study on the surface temperature derived from thermal infrared band image data of LANDSAT- 7/Enhanced Thematic Mapper Plus (ETM+) for the estimation of the thermal condition around Hiroshima City and Bay area in the western part of Japan as a test site. As to the thermal infrared band, the approximate functions for converting the spectral radiance into the surface temperature are estimated by considering both typical surface temperatures measured by the simultaneous field survey with the satellite observation and the spectral radiance observed by ETM+ band 6, and then the estimation of the surface temperature distribution around the test site was examined. In this paper, the authors estimated the surface temperature distribution equivalent to the land cover types around Hiroshima City and Bay area. For the further study, the authors performed the modification of approximate functions for converting the spectral radiance into the surface temperature by the field and satellite observation throughout a year and the development of various monitoring systems for the environmental issues such as the sea surface anomalies and heat island phenomena.

  5. Surface temperature/heat transfer measurement using a quantitative phosphor thermography system

    NASA Technical Reports Server (NTRS)

    Buck, G. M.

    1991-01-01

    A relative-intensity phosphor thermography technique developed for surface heating studies in hypersonic wind tunnels is described. A direct relationship between relative emission intensity and phosphor temperature is used for quantitative surface temperature measurements in time. The technique provides global surface temperature-time histories using a 3-CCD (Charge Coupled Device) video camera and digital recording system. A current history of technique development at Langley is discussed. Latest developments include a phosphor mixture for a greater range of temperature sensitivity and use of castable ceramics for inexpensive test models. A method of calculating surface heat-transfer from thermal image data in blowdown wind tunnels is included in an appendix, with an analysis of material thermal heat-transfer properties. Results from tests in the Langley 31-Inch Mach 10 Tunnel are presented for a ceramic orbiter configuration and a four-inch diameter hemisphere model. Data include windward heating for bow-shock/wing-shock interactions on the orbiter wing surface, and a comparison with prediction for hemisphere heating distribution.

  6. A Fundamental Study of Nucleate Pool Boiling Under Microgravity

    NASA Technical Reports Server (NTRS)

    Ervin, Jamie S.; Merte, Herman, Jr.

    1996-01-01

    An experimental study of incipient boiling in short-term microgravity and with a/g = +/- 1 for pool boiling was performed. Calibrated thin gold films sputtered on a smoothly polished quartz surface were used simultaneously for thermal-resistance measurements and heating of the boiling surface. The gold films were used for both transient and quasi-steady heating surface temperature measurements. Two test vessels were constructed for precise measurement and control of fluid temperature and pressure: a laboratory pool boiling vessel for the a/g = +/- 1 experiments and a pool boiling vessel designed for the 131 m free-fall in the NASA Lewis Research Center Microgravity Research Facility for the microgravity tests. Measurements included the heater surface temperature, the pressure near the heating surface, the bulk liquid temperatures. High speed photography (up to 1,000 frames per second) was used in the experiments. With high quality microgravity and the measured initial temperature of the quiescent test fluid, R113, the temperature distribution in the liquid at the moment of boiling inception resulting from an imposed step in heat flux is known with a certainty not possible previously. The types of boiling propagation across the large flat heating surface, some observed here for the first time, are categorized; the conditions necessary for their occurrence are described. Explosive boiling propagation with a striking pattern of small scale protuberances over the entire vapor mass periphery not observed previously at low heat flux levels (on the order of 5 W/cm(exp 2)) is described. For the heater surface with a/g = -1, a step in the heater surface temperature of short duration was imposed. The resulting liquid temperature distribution at the moment of boiling inception was different from that obtained with a step in heat flux.

  7. CW laser damage testing of RAR nano-textured fused silica and YAG

    NASA Astrophysics Data System (ADS)

    MacLeod, Bruce D.; Hobbs, Douglas S.; Manni, Anthony D.; Sabatino, Ernest; Bernot, David M.; DeFrances, Sage; Randi, Joseph A.; Thomas, Jeffrey

    2017-11-01

    A study of the continuous wave (CW) laser induced damage threshold (LiDT) of fused silica and yttrium aluminum garnet (YAG) optics was conducted to further illustrate the enhanced survivability within high power laser systems of an anti-reflection (AR) treatment consisting of randomly distributed surface relief nanostructures (RAR). A series of three CW LiDT tests using the 1070nm wavelength, 16 KW fiber laser test bed at Penn State Electro-Optic Center (PSEOC) were designed and completed, with improvements in the testing protocol, areal coverage, and maximum exposure intensities implemented between test cycles. Initial results for accumulated power, stationary site exposures of RAR nano-textured optics showed no damage and low surface temperatures similar to the control optics with no AR treatment. In contrast, optics with thin-film AR coatings showed high surface temperatures consistent with absorption by the film layers. Surface discriminating absorption measurements made using the Photothermal Common-path Interferometry (PCI) method, showed zero added surface absorption for the RAR nanotextured optics, and absorption levels in the 2-5 part per million range for thin-film AR coated optics. In addition, the surface absorption of thin-film AR coatings was also found to have localized absorption spikes that are likely pre-cursors for damage. Subsequent CW LiDT testing protocol included raster scanning an increased intensity focused beam over the test optic surface where it was found that thin-film AR coated optics damaged at intensities in the 2 to 5 MW/cm2 range with surface temperatures over 250C during the long-duration exposures. Significantly, none of the 10 RAR nano-textured fused silica optics tested could be damaged up to the maximum system intensity of 15.5 MW/cm2, and surface temperatures remained low. YAG optics tested during the final cycle exhibited a similar result with RAR nano-textured surfaces surviving intensities over 3 times higher than thin-film AR coated surfaces. This result was correlated with PCI measurements that also show zero-added surface absorption for the RAR nano-textured YAG optics.

  8. Surface treatment process of Al-Mg alloy powder by BTSPS

    NASA Astrophysics Data System (ADS)

    Zhao, Ran; Gao, Xinbao; Lu, Yanling; Du, Fengzhen; Zhang, Li; Liu, Dazhi; Chen, Xuefang

    2018-04-01

    The surface of Al-Mg alloy powder was treated by BTSPS(bis(triethoxysilylpropyl)tetrasulfide) in order to avoid easy oxidation in air. The pH value, reaction temperature, reaction time, and reaction concentration were used as test conditions. The results show that the BTSPS can form a protected film on the surface of Al-Mg alloy powder. Select the best test solution by orthogonal test. The study found that the reaction time and reaction temperature have the biggest influence on the two indexes of the orthogonal test (melting enthalpy of heat and enthalpy of oxidation). The optimal conditions were as follows: pH value is 8, reaction concentration is 2%, reaction temperature is 25 °C, reaction time is 2 h. The oxidation weight gain of the alloy reached 74.45% and the decomposition temperature of silane film is 181.8 °C.

  9. Improving the Performance of Temperature Index Snowmelt Model of SWAT by Using MODIS Land Surface Temperature Data

    PubMed Central

    Yang, Yan; Onishi, Takeo; Hiramatsu, Ken

    2014-01-01

    Simulation results of the widely used temperature index snowmelt model are greatly influenced by input air temperature data. Spatially sparse air temperature data remain the main factor inducing uncertainties and errors in that model, which limits its applications. Thus, to solve this problem, we created new air temperature data using linear regression relationships that can be formulated based on MODIS land surface temperature data. The Soil Water Assessment Tool model, which includes an improved temperature index snowmelt module, was chosen to test the newly created data. By evaluating simulation performance for daily snowmelt in three test basins of the Amur River, performance of the newly created data was assessed. The coefficient of determination (R 2) and Nash-Sutcliffe efficiency (NSE) were used for evaluation. The results indicate that MODIS land surface temperature data can be used as a new source for air temperature data creation. This will improve snow simulation using the temperature index model in an area with sparse air temperature observations. PMID:25165746

  10. Compilation of reinforced carbon-carbon transatlantic abort landing arc jet test results

    NASA Technical Reports Server (NTRS)

    Milhoan, James D.; Pham, Vuong T.; Yuen, Eric H.

    1993-01-01

    This document consists of the entire test database generated to support the Reinforced Carbon-Carbon Transatlantic Abort Landing Study. RCC components used for orbiter nose cap and wing leading edge thermal protection were originally designed to have a multi-mission entry capability of 2800 F. Increased orbiter range capability required a predicted increase in excess of 3300 F. Three test series were conducted. Test series #1 used ENKA-based RCC specimens coated with silicon carbide, treated with tetraethyl orthosilicate, sealed with Type A surface enhancement, and tested at 3000-3400 F with surface pressure of 60-101 psf. Series #2 used ENKA- or AVTEX-based RCC, with and without silicon carbide, Type A or double Type AA surface enhancement, all impregnated with TEOS, and at temperatures from 1440-3350 F with pressures from 100-350 psf. Series #3 tested ENKA-based RCC, with and without silicon carbide coating. No specimens were treated with TEOS or sealed with Type A. Surface temperatures ranged from 2690-3440 F and pressures ranged from 313-400 psf. These combined test results provided the database for establishing RCC material single-mission-limit temperature and developing surface recession correlations used to predict mass loss for abort conditions.

  11. Advanced Control Surface Seal Development at NASA GRC for Future Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; DeMange, Jeffrey J.

    2003-01-01

    NASA s Glenn Research Center (GRC) is developing advanced control surface seal technologies for future space launch vehicles as part of the Next Generation Launch Technology project (NGLT). New resilient seal designs are currently being fabricated and high temperature seal preloading devices are being developed as a means of improving seal resiliency. GRC has designed several new test rigs to simulate the temperatures, pressures, and scrubbing conditions that seals would have to endure during service. A hot compression test rig and hot scrub test rig have been developed to perform tests at temperatures up to 3000 F. Another new test rig allows simultaneous seal flow and scrub tests at room temperature to evaluate changes in seal performance with scrubbing. These test rigs will be used to evaluate the new seal designs. The group is also performing tests on advanced TPS seal concepts for Boeing using these new test facilities.

  12. Thermal Performance of Surface Wick Structures.

    NASA Astrophysics Data System (ADS)

    Chen, Yongkang; Tavan, Noel; Baker, John; Melvin, Lawrence; Weislogel, Mark

    2010-03-01

    Microscale surface wick structures that exploit capillary driven flow in interior corners have been designed. In this study we examine the interplay between capillary flow and evaporative heat transfer that effectively reduces the surface temperature. The tests are performed by raising the surface temperature to various levels before the flow is introduced to the surfaces. Certainly heat transfer weakens the capillary driven flow. It is observed, however, the surface temperature can be reduced significantly. The effects of geometric parameters and interconnectivity are to be characterized to identify optimal configurations.

  13. Probabilistic thermal-shock strength testing using infrared imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wereszczak, A.A.; Scheidt, R.A.; Ferber, M.K.

    1999-12-01

    A thermal-shock strength-testing technique has been developed that uses a high-resolution, high-temperature infrared camera to capture a specimen's surface temperature distribution at fracture. Aluminum nitride (AlN) substrates are thermally shocked to fracture to demonstrate the technique. The surface temperature distribution for each test and AlN's thermal expansion are used as input in a finite-element model to determine the thermal-shock strength for each specimen. An uncensored thermal-shock strength Weibull distribution is then determined. The test and analysis algorithm show promise as a means to characterize thermal shock strength of ceramic materials.

  14. Heat Flux and Wall Temperature Estimates for the NASA Langley HIFiRE Direct Connect Rig

    NASA Technical Reports Server (NTRS)

    Cuda, Vincent, Jr.; Hass, Neal E.

    2010-01-01

    An objective of the Hypersonic International Flight Research Experimentation (HIFiRE) Program Flight 2 is to provide validation data for high enthalpy scramjet prediction tools through a single flight test and accompanying ground tests of the HIFiRE Direct Connect Rig (HDCR) tested in the NASA LaRC Arc Heated Scramjet Test Facility (AHSTF). The HDCR is a full-scale, copper heat sink structure designed to simulate the isolator entrance conditions and isolator, pilot, and combustor section of the HIFiRE flight test experiment flowpath and is fully instrumented to assess combustion performance over a range of operating conditions simulating flight from Mach 5.5 to 8.5 and for various fueling schemes. As part of the instrumentation package, temperature and heat flux sensors were provided along the flowpath surface and also imbedded in the structure. The purpose of this paper is to demonstrate that the surface heat flux and wall temperature of the Zirconia coated copper wall can be obtained with a water-cooled heat flux gage and a sub-surface temperature measurement. An algorithm was developed which used these two measurements to reconstruct the surface conditions along the flowpath. Determinations of the surface conditions of the Zirconia coating were conducted for a variety of conditions.

  15. Cryogenic Temperature-Gradient Foam/Substrate Tensile Tester

    NASA Technical Reports Server (NTRS)

    Vailhe, Christophe

    2003-01-01

    The figure shows a fixture for measuring the tensile strength of the bond between an aluminum substrate and a thermally insulating polymeric foam. The specimen is meant to be representative of insulating foam on an aluminum tank that holds a cryogenic liquid. Prior to the development of this fixture, tensile tests of this type were performed on foam/substrate specimens immersed in cryogenic fluids. Because the specimens were cooled to cryogenic temperatures throughout their thicknesses, they tended to become brittle and to fracture at loads below true bond tensile strengths. The present fixture is equipped to provide a thermal gradient from cryogenic temperature at the foam/substrate interface to room temperature on the opposite foam surface. The fixture includes an upper aluminum block at room temperature and a lower aluminum block cooled to -423 F (approx. -253 C) by use of liquid helium. In preparation for a test, the metal outer surface (the lower surface) of a foam/substrate specimen is bonded to the lower block and the foam outer surface (the upper surface) of the specimen is bonded to the upper block. In comparison with the through-the-thickness cooling of immersion testing, the cryogenic-to-room-temperature thermal gradient that exists during testing on this fixture is a more realistic approximation of the operational thermal condition of sprayed insulating foam on a tank of cryogenic liquid. Hence, tensile tests performed on this fixture provide more accurate indications of operational bond tensile strengths. In addition, the introduction of the present fixture reduces the cost of testing by reducing the amount of cryogenic liquid consumed and the time needed to cool a specimen.

  16. Development and testing of advanced fire-resistant photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Sugimura, R. S.; Otth, D. H.; Ross, R. G., Jr.

    1985-01-01

    The evaluation of back-surface materials flammability in order to identify fire resistant module designs is examined. The fire test apparatus, burning-brand test sequence, and spread-of-flame test sequence are described. Video recordings and time-temperature profiles of module back surfaces are utilized to study the flammability failure mechanism and identify high-temperature materials. A table of flammability test results for various module designs is provided. The data reveals that 2-mil kapton, fiberglass cloth coated or impregnated with a material to plug pores, and metal foil back-surface materials achieve class A and B fire-resistance levels, and are applicable for photovoltaic module designs.

  17. High-Temperature Modal Survey of a Hot-Structure Control Surface

    NASA Technical Reports Server (NTRS)

    Spivey, Natalie D.

    2011-01-01

    Ground vibration tests are routinely conducted for supporting flutter analysis for subsonic and supersonic vehicles; however, for hypersonic vehicles, thermoelastic vibration testing techniques are neither well established nor routinely performed. New high-temperature material systems, fabrication technologies and high-temperature sensors expand the opportunities to develop advanced techniques for performing ground vibration tests at elevated temperatures. When high-temperature materials, which increase in stiffness when heated, are incorporated into a hot-structure that contains metallic components that decrease in stiffness when heated, the interaction between those materials can affect the hypersonic flutter analysis. A high-temperature modal survey will expand the research database for hypersonics and improve the understanding of this dual-material interaction. This report discusses the vibration testing of the carbon-silicon carbide Ruddervator Subcomponent Test Article, which is a truncated version of a full-scale hot-structure control surface. Two series of room-temperature modal test configurations were performed in order to define the modal characteristics of the test article during the elevated-temperature modal survey: one with the test article suspended from a bungee cord (free-free) and the second with it mounted on the strongback (fixed boundary). Testing was performed in the NASA Dryden Flight Research Center Flight Loads Laboratory Large Nitrogen Test Chamber.

  18. Characterization Test Report for the Mnemonics-UCS Wireless Surface Acoustic Wave Sensor System

    NASA Technical Reports Server (NTRS)

    Duncan, Joshua J.; Youngquist, Robert C.

    2013-01-01

    The scope of this testing includes the Surface Acoustic Wave Sensor System delivered to KSC: two interrogator (transceiver) systems, four temperature sensors, with wooden mounting blocks, two antennas, two power supplies, network cables, and analysis software. Also included are a number of additional temperature sensors and newly-developed hydrogen sensors

  19. Surface Tension Driven Convection Experiment (STDCE)

    NASA Technical Reports Server (NTRS)

    Ostrach, S.; Kamotani, Y.

    1996-01-01

    This document reports the results obtained from the Surface Tension Driven Convection Experiment (STDCE) conducted aboard the USML-1 Spacelab in 1992. The experiments used 10 cSt silicone oil placed in an open circular container that was 10 cm wide and 5 cm deep. Thermocapillary flow was induced by using either a cylindrical heater placed along the container centerline or by a CO2 laser. The tests were conducted under various power settings, laser beam diameters, and free surface shapes. Thermistors located at various positions in the test section recorded the temperature of the fluid, heater, walls, and air. An infrared imager was used to measure the free surface temperature. The flow field was studied by flow visualization and the data was analyzed by a PTV technique. The results from the flow visualization and the temperature measurements are compared with the numerical analysis that was conducted in conjunction with the experiment. The compared results include the experimental and numerical velocity vector plots, the streamline plots, the fluid temperature, and the surface temperature distribution.

  20. Frost Growth and Densification in Laminar Flow Over Flat Surfaces

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2011-01-01

    One-dimensional frost growth and densification in laminar flow over flat surfaces has been theoretically investigated. Improved representations of frost density and effective thermal conductivity applicable to a wide range of frost circumstances have been incorporated. The validity of the proposed model considering heat and mass diffusion in the frost layer is tested by a comparison of the predictions with data from various investigators for frost parameters including frost thickness, frost surface temperature, frost density and heat flux. The test conditions cover a range of wall temperature, air humidity ratio, air velocity, and air temperature, and the effect of these variables on the frost parameters has been exemplified. Satisfactory agreement is achieved between the model predictions and the various test data considered. The prevailing uncertainties concerning the role air velocity and air temperature on frost development have been elucidated. It is concluded that that for flat surfaces increases in air velocity have no appreciable effect on frost thickness but contribute to significant frost densification, while increase in air temperatures results in a slight increase the frost thickness and appreciable frost densification.

  1. Aerothermal Test of Thermal Protection Systems for X-33 Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Sawyer, James Wayne; Hodge, Jefferson; Moore, Brad; Snyder, Kevin

    1999-01-01

    An array of metallic Thermal Protection System (TPS) panels developed for the windward surface of the X-33 vehicle was tested in the 8-Foot High Temperature Tunnel at the NASA Langley Research Center. These tests were the first aerothermal tests of an X-33 TPS array and the test results will be used to validate the TPS for the X-33 flight program. Specifically, the tests evaluated the structural and thermal performance of the TPS, the effectiveness of the high temperature seals between adjacent panels and the durability of the TPS under realistic aerothermal flight conditions. The effect of varying panel-to-panel step heights, intentional damage to the seals between adjacent panels, and the use of secondary seals were also investigated during the test program. The metallic TPS developed for the windward surface of the X-33, the blanket TPS developed to protect the leeward surfaces of the X-33, and the test program in the 8-Foot High Temperature Tunnel are presented and discussed.

  2. Football helmet drop tests on different fields using an instrumented Hybrid III head.

    PubMed

    Viano, David C; Withnall, Chris; Wonnacott, Michael

    2012-01-01

    An instrumented Hybrid III head was placed in a Schutt ION 4D football helmet and dropped on different turfs to study field types and temperature on head responses. The head was dropped 0.91 and 1.83 m giving impacts of 4.2 and 6.0 m/s on nine different football fields (natural, Astroplay, Fieldturf, or Gameday turfs) at turf temperatures of -2.7 to 23.9 °C. Six repeat tests were conducted for each surface at 0.3 m (1') intervals. The Hybrid III was instrumented with triaxial accelerometers to determine head responses for the different playing surfaces. For the 0.91-m drops, peak head acceleration varied from 63.3 to 117.1 g and HIC(15) from 195 to 478 with the different playing surfaces. The lowest response was with Astroplay, followed by the engineered natural turf. Gameday and Fieldturf involved higher responses. The differences between surfaces decreased in the 1.83 m tests. The cold weather testing involved higher accelerations, HIC(15) and delta V for each surface. The helmet drop test used in this study provides a simple and convenient means of evaluating the compliance and energy absorption of football playing surfaces. The type and temperature of the playing surface influence head responses.

  3. The effects of engine operating conditions on CCD chemistry and morphology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, S.W.; Moore, S.M.; Sabourin, E.T.

    1996-10-01

    The effects of engine driving cycle and engine coolant temperature on combustion chamber deposit (CCD) surface chemistry and morphology were assessed by the use of XPS and scanning electron micrographs. A 3.1L V6 test cell engine was used to generate a six test matrix that compared deposit surface chemistry and morphology under two distinctly different driving cycles, each cycle being evaluated at three separate engine coolant temperatures. Deposit material for each respective test was collected by removable combustion chamber sample probes that were subjected to XPS surface analysis and SEM evaluation. Discernible trends were observed in surface chemistry and depositmore » amounts with respect to changes in both driving cycle and coolant temperature. However, much more pronounced were deposit morphological changes recorded by SEM in different engine coolant temperature regimes for both of the utilized driving cycles. Deposit nodules formed in one temperature regime were seen to be typically much larger in size, highly irregular in shape, and appeared to be porous in structure. At a different operating temperature, the deposit nodules were observed to be extremely uniform and more tightly packed.« less

  4. Relative sliding durability of two candidate high temperature oxide fiber seal materials

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Steinetz, Bruce M.

    1991-01-01

    A test program to determine the relative sliding durability of two candidate ceramic fibers for high temperature sliding seal applications is described. Pin on disk tests were used to evaluate potential seal materials. Friction during the tests and fiber wear, indicated by the extent of fibers broken in a test bundle or yarn, was measured at the end of a test. In general, friction and wear increase with test temperature. This may be due to a reduction in fiber strength, a change in the surface chemistry at the fiber/counterface interface due to oxidation, adsorption and/or desorption of surface species and, to a lesser extent, an increase in counterface surface roughness due to oxidation at elevated temperatures. The relative fiber durability correlates with tensile strength indicating that tensile data, which is more readily available than sliding durability data, may be useful in predicting fiber wear behavior under various conditions. A simple model developed using dimensional analysis shows that the fiber durability is related to a dimensionless parameter which represents the ratio of the fiber strength to the fiber stresses imposed by sliding.

  5. Low temperature self-cleaning properties of superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Fajun; Shen, Taohua; Li, Changquan; Li, Wen; Yan, Guilong

    2014-10-01

    Outdoor surfaces are usually dirty surfaces. Ice accretion on outdoor surfaces could lead to serious accidents. In the present work, the superhydrophobic surface based on 1H, 1H, 2H, 2H-Perfluorodecanethiol (PFDT) modified Ag/PDMS composite was prepared to investigate the anti-icing property and self-cleaning property at temperatures below freezing point. The superhydrophobic surface was deliberately polluted with activated carbon before testing. It was observed that water droplet picked up dusts on the cold superhydrophobic surface and took it away without freezing at a measuring temperature of -10 °C. While on a smooth PFDT surface and a rough surface base on Ag/PDMS composite without PFDT modification, water droplets accumulated and then froze quickly at the same temperature. However, at even lower temperature of -12 °C, the superhydrophobic surface could not prevent the surface water from icing. In addition, it was observed that the frost layer condensed from the moisture pay an important role in determining the low temperature self-cleaning properties of a superhydrophobic surface.

  6. Thermal and aerothermal performance of a titanium multiwall thermal protection system

    NASA Technical Reports Server (NTRS)

    Avery, D. E.; Shideler, J. L.; Stuckey, R. N.

    1981-01-01

    A metallic thermal protection system (TPS) concept the multiwall designed for temperature and pressure at Shuttle body point 3140 where the maximum surface temperature is approximately 811 K was tested to evaluate thermal performance and structural integrity. A two tile model of titanium multiwall and a model consisting of a low temperature reusable surface insulation (LRSI) tiles were exposed to 25 simulated thermal and pressure Shuttle entry missions. The two systems performed the same, and neither system deteriorated during the tests. It is indicated that redesign of the multiwall tiles reduces tile thickness and/or weight. A nine tile model of titanium multiwal was tested for radiant heating and aerothermodynamics. Minor design changes that improve structural integrity without having a significant impact on the thermal protection ability of the titanium multiwall TPS are identified. The capability of a titanium multiwall thermal protection system to protect an aluminum surface during a Shuttle type entry trajectory at locations on the vehicle where the maximum surface temperature is below 811 K is demonstrated.

  7. Further Investigations of Control Surface Seals for the X-38 Re-Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Curry, Donald M.; Newquist, Charles W.; Verzemnieks, Juris

    2001-01-01

    NASA is currently developing the X-38 vehicle that will be used to demonstrate the technologies required for a potential crew return vehicle (CRV) for the International Space Station. This vehicle would serve both as an ambulance for medical emergencies and as an evacuation vehicle for the Space Station. Control surfaces on the X-38 (body flaps and rudder/fin assemblies) require high temperature seals to limit hot gas ingestion and transfer of heat to underlying low-temperature structures to prevent over-temperature of these structures and possible loss of the vehicle. NASAs Johnson Space Center (JSC) and Glenn Research Center (GRC) are working together to develop and evaluate seals for these control surfaces. This paper presents results for compression. flow, scrub, and arc jet tests conducted on the baseline X-38 rudder/fin seal design. Room temperature seal compression tests were performed at low compression levels to determine load versus linear compression, preload. contact area, stiffness. and resiliency characteristics under low load conditions. For all compression levels that were tested, unit loads and contact pressures for the seals were below the 5 lb/in. and 10 psi limits required to limit the loads on the adjoining Shuttle thermal tiles that the seals will contact. Flow rates through an unloaded (i.e. 0% compression) double arrangement were twice those of a double seal compressed to the 20% design compression level. The seals survived an ambient temperature 1000 cycle scrub test over relatively rough Shuttle tile surfaces. The seals were able to disengage and re-engage the edges of the rub surface tiles while being scrubbed over them. Arc jet tests were performed to experimentally determine anticipated seal temperatures for representative flow boundary conditions (pressures and temperatures) under simulated vehicle re-entry conditions. Installation of a single seat in the gap of the test fixture caused a large temperature drop (1710 F) across the seal location as compared to an open gap condition (140 F) confirming the need for seals in the rudder/fin gap location. The seal acted as an effective thermal barrier limiting heat convection through the seal gap and minimizing temperature increases downstream of the seal during maximum heating conditions.

  8. Heated Surface Temperatures Measured by Infrared Detector in a Cascade Environment

    NASA Technical Reports Server (NTRS)

    Boyle, Robert J.

    2002-01-01

    Investigators have used infrared devices to accurately measure heated surface temperatures. Several of these applications have been for turbine heat transfer studies involving film cooling and surface roughness, typically, these measurements use an infrared camera positioned externally to the test section. In cascade studies, where several blades are used to ensure periodic flow, adjacent blades block the externally positioned camera's views of the test blade. To obtain a more complete mapping of the surface temperatures, researchers at the NASA Glenn Research Center fabricated a probe with an infrared detector to sense the blade temperatures. The probe size was kept small to minimize the flow disturbance. By traversing and rotating the probe, using the same approach as for total pressure surveys, one can find the blade surface temperatures. Probe mounted infrared detectors are appropriate for measuring surface temperatures where an externally positioned infrared camera is unable to completely view the test object. This probe consists of a 8-mm gallium arsenide (GaAs) lens mounted in front of a mercury-cadmium-zinc-tellurium (HgCdZnTe) detector. This type of photovoltaic detector was chosen because of its high sensitivity to temperature when the detector is uncooled. The particular application is for relatively low surface temperatures, typically ambient to 100 C. This requires a detector sensitive at long wavelengths. The detector is a commercial product enclosed in a 9-mm-diameter package. The GaAs lens material was chosen because of its glass-like hardness and its good long-wavelength transmission characteristics. When assembled, the 6.4-mm probe stem is held in the traversing actuator. Since the entire probe is above the measurement plane, the flow field disturbance in the measurement plane is minimized. This particular probe body is somewhat wider than necessary, because it was designed to have replaceable detectors and lenses. The signal for the detector is fed through the hollow probe body. The detector's signal goes to an externally mounted preamplifier. The detector assembly, along with a preamplifier, is calibrated as a function of the surface temperature for various detector temperatures. The output voltage is a function of both the detector and object temperatures.

  9. Thermal Insulation Testing Method and Apparatus

    NASA Technical Reports Server (NTRS)

    Fesmire, James E. (Inventor); Augustynowicz, Stanislaw D. (Inventor)

    2004-01-01

    A test apparatus and method of its use for evaluating various performance aspects of a test specimen is disclosed. A chamber within a housing contains a cold mass tank with a contact surface in contact with a first surface of a test specimen. The first surface of the test specimen is spaced from the second surface of the test specimen by a thickness. The second surface of the test specimen is maintained at a a constant temperature by a liquid disposed within the cold mass tank. A boil-off flow rate of the gas is monitored and provided to a processor along with the temperature of the first and second surfaces of the test specimen. The processor calculates thermal insulation values of the test specimen including comparative values for heat flux and apparent thermal conductivity k-value). The test specimen may be placed in any vacuum pressure level ranging from about 0.01 millitorr to 1,000,000 millitorr with different residual gases as desired. The test specimen may be placed under a mechanical load with the cold mass tank and another factors may be imposed upon the test specimen so as to simulate the actual use conditions.

  10. High Temperature Mechanisms for Venus Exploration

    NASA Astrophysics Data System (ADS)

    Ji, Jerri; Narine, Roop; Kumar, Nishant; Singh, Sase; Gorevan, Steven

    Future Venus missions, including New Frontiers Venus In-Situ Explorer and three Flagship Missions - Venus Geophysical Network, Venus Mobile Explorer and Venus Surface Sample Return all focus on searching for evidence of past climate change both on the surface and in the atmospheric composition as well as in the interior dynamics of the planet. In order to achieve these goals and objectives, many key technologies need to be developed for the Venus extreme environment. These key technologies include sample acquisition systems and other high-temperature mechanisms and mobility systems capable of extended operation when directly exposed to the Venus surface or lower atmosphere environment. Honeybee Robotics has developed two types of high temperature motors, the materials and components in both motors were selected based on the requirement to survive temperatures above a minimum of 460° C, at earth atmosphere. The prototype Switched Reluctance Motor (SRM) has been operated non-continuously for over 20 hours at Venus-like conditions (460° C temperature, mostly CO2 gas environment) and it remains functional. A drilling system, actuated by two SRMs was tested in Venus-like conditions, 460° C temperature and mostly CO2 gas environment, for more than 15 hours. The drill successfully completed three tests by drilling into chalk up to 6 inches deep in each test. A first generation Brushless DC (BLDC) Motor and high temperature resolver were also tested and the feasibility of the designs was demonstrated by the extended operation of both devices under Venus-like condition. Further development of the BLDC motor and resolver continues and these devices will, ultimately, be integrated into the development of a high temperature sample acquisition scoop and high temperature joint (awarded SBIR Phase II in October, 2007). Both the SR and BLDC motors will undergo extensive testing at Venus temperature and pressure (TRL6) and are expected to be mission ready before the next New Frontiers AO release. Scalable high temperature motor, resolver and bearing developments allow for creation of long lasting sample acquisition systems, booms, robot arms and even mobility systems that operate outside of an environment-controlled landed platform on the surface of Venus. The SR and BLDC motors are no longer expected to limit the life of Venus surface operations. With the accompanying high temperature bearing and other mechanisms development, surface operations will be limited only by available power. Therefore, the motor and resolver's capability to survive for hours (and potentially longer) in the environment is a major benefit to future Venus science missions and they also allow time for communication ground loops to optimize sample target selection and the possibility for acquiring multiple samples from the surface. The extreme temperature motors, resolver and other high temperature mechanisms therefore revolutionize the exploration of Venus.

  11. Advanced Control Surface Seal Development for Future Space Vehicles

    NASA Technical Reports Server (NTRS)

    DeMange, J. J.; Dunlap, P. H., Jr.; Steinetz, B. M.

    2004-01-01

    NASA s Glenn Research Center (GRC) has been developing advanced high temperature structural seals since the late 1980's and is currently developing seals for future space vehicles as part of the Next Generation Launch Technology (NGLT) program. This includes control surface seals that seal the edges and hinge lines of movable flaps and elevons on future reentry vehicles. In these applications, the seals must operate at temperatures above 2000 F in an oxidizing environment, limit hot gas leakage to protect underlying structures, endure high temperature scrubbing against rough surfaces, and remain flexible and resilient enough to stay in contact with sealing surfaces for multiple heating and loading cycles. For this study, three seal designs were compared against the baseline spring tube seal through a series of compression tests at room temperature and 2000 F and flow tests at room temperature. In addition, canted coil springs were tested as preloaders behind the seals at room temperature to assess their potential for improving resiliency. Addition of these preloader elements resulted in significant increases in resiliency compared to the seals by themselves and surpassed the performance of the baseline seal at room temperature. Flow tests demonstrated that the seal candidates with engineered cores had lower leakage rates than the baseline spring tube design. However, when the seals were placed on the preloader elements, the flow rates were higher as the seals were not compressed as much and therefore were not able to fill the groove as well. High temperature tests were also conducted to asses the compatibility of seal fabrics against ceramic matrix composite (CMC) panels anticipated for use in next generation launch vehicles. These evaluations demonstrated potential bonding issues between the Nextel fabrics and CMC candidates.

  12. Transient liquid-crystal technique used to produce high-resolution convective heat-transfer-coefficient maps

    NASA Technical Reports Server (NTRS)

    Hippensteele, Steven A.; Poinsatte, Philip E.

    1993-01-01

    In this transient technique the preheated isothermal model wall simulates the classic one-dimensional, semi-infinite wall heat transfer conduction problem. By knowing the temperature of the air flowing through the model, the initial temperature of the model wall, and the surface cooling rate measured at any location with time (using the fast-response liquid-crystal patterns recorded on video tape), the heat transfer coefficient can be calculated for the color isothermal pattern produced. Although the test was run transiently, the heat transfer coefficients are for the steady-state case. The upstream thermal boundary condition was considered to be isothermal. This transient liquid-crystal heat-transfer technique was used in a transient air tunnel in which a square-inlet, 3-to-1 exit transition duct was placed. The duct was preheated prior to allowing room temperature air to be suddenly drawn through it. The resulting isothermal contours on the duct surfaces were revealed using a surface coating of thermochromic liquid crystals that display distinctive colors at particular temperatures. A video record was made of the temperature and time data for all points on the duct surfaces during each test. The duct surfaces were uniformly heated using two heating systems: the first was an automatic temperature-controlled heater blanket completely surrounding the test duct like an oven, and the second was an internal hot-air loop through the inside of the test duct. The hot-air loop path was confined inside the test duct by insulated heat dams located at the inlet and exit ends of the test duct. A recirculating fan moved hot air into the duct inlet, through the duct, out of the duct exit, through the oven, and back to the duct inlet. The temperature nonuniformity of the test duct model wall was held very small. Test results are reported for two inlet Reynolds numbers of 200,000 and 1,150,000 (based on the square-inlet hydraulic diameter) and two free-stream turbulence intensities of about 1 percent, which is typical of wind tunnels, and up to 20 percent (using a grid), which is typical of real engine conditions.

  13. Infrared Low Temperature Turbine Vane Rough Surface Heat Transfer Measurements

    NASA Technical Reports Server (NTRS)

    Boyle, R. J.; Spuckler, C. M.; Lucci, B. L.; Camperchioli, W. P.

    2000-01-01

    Turbine vane heat transfer distributions obtained using an infrared camera technique are described. Infrared thermography was used because noncontact surface temperature measurements were desired. Surface temperatures were 80 C or less. Tests were conducted in a three vane linear cascade, with inlet pressures between 0.14 and 1.02 atm., and exit Mach numbers of 0.3, 0.7, and 0.9, for turbulence intensities of approximately 1 and 10%. Measurements were taken on the vane suction side, and on the pressure side leading edge region. The designs for both the vane and test facility are discussed. The approach used to account for conduction within the vane is described. Midspan heat transfer distributions are given for the range of test conditions.

  14. Temperature-dependent residual shear strength characteristics of smectite-rich landslide soils

    NASA Astrophysics Data System (ADS)

    Shibasaki, Tatsuya; Matsuura, Sumio; Okamoto, Takashi

    2015-04-01

    On gentle clayey slopes in weathered argillaceous rock areas, there exist many landslides which repeatedly reactivate with slow movement. The slip surface soils of these landslides are sometimes composed dominantly of swelling clay mineral (smectite) which is well known to show extremely low residual friction angle. From field data monitored at landslide sites in Japan, it has become clear that some landslides with relatively shallow slip surface begin to move and become active in late autumn or early winter every year. In such cases, the triggering mechanisms of landslides have not been understood well enough, because landslide initiation and movement are not always clearly linked with rises in pore water pressures (ground water levels). In this study, we focus on the influence of seasonal variation in ground temperature on slope stability and have investigated the effect of temperature on the shear strength of slip surface soils. Undisturbed soil samples were collected by boring from the Busuno landslide in Japan. We performed box shear experiments on undisturbed slip surface soils at low temperature ranges (approximately 5-25 °C). XRD analysis revealed that these soils contain high fraction of smectite. Slickensided slip surface within test specimen was coincided with the shearing plane of the shear box and shear displacement was applied precisely along the localized slip surface. Experiments were performed under slow shearing rate condition (0.005mm/min) and the results showed that shear strength decreased with decreasing temperature. Temperature effect was rather significant on frictional angle than on cohesion. Ring shear experiments were also performed on normally-consolidated remoulded samples. Under residual strength condition, temperature-change experiments (cooling-event tests) ranging approximately from 5 to 25 °C were performed on smectite-rich landslide soils and commercial bentonites. As well as the results by box shear test, shear weakening behaviors were also recognized during cooling-event tests. Shear stress fluctuations, which were obtained by 1 Hz data sampling, showed that shear behavior characteristically changed in response to temperature conditions. Stick-slip behavior prevailed under room temperature conditions, whereas shear behavior gradually changed into stable sliding behavior as temperature decreased. SEM (Scanning Electric Microscope) observation on shear surfaces indicated that silt- and sand-size asperities in the vicinity of the shear surface influence the occurrence of stick-slip behavior. It is also characteristically noted that rod-shaped smectitic clays, here called "roll", developed on shear surfaces and are arrayed densely perpendicular to the shearing direction in a micrometer scale. We assume that these rolls are probably rotating slowly within shear zone and acting as a lubricant which affects the temperature-dependent frictional properties of the shearing plane. These experimental results show that residual strength characteristics of smectite-rich soils are sensitive to temperature conditions. Our findings imply that if slip surface soils contain a high fraction of smectite, a decrease in ground temperature can lead to lowered shear resistance of the slip surface and triggering of slow landslide movement.

  15. Determination of the core temperature of a Li-ion cell during thermal runaway

    NASA Astrophysics Data System (ADS)

    Parhizi, M.; Ahmed, M. B.; Jain, A.

    2017-12-01

    Safety and performance of Li-ion cells is severely affected by thermal runaway where exothermic processes within the cell cause uncontrolled temperature rise, eventually leading to catastrophic failure. Most past experimental papers on thermal runaway only report surface temperature measurement, while the core temperature of the cell remains largely unknown. This paper presents an experimentally validated method based on thermal conduction analysis to determine the core temperature of a Li-ion cell during thermal runaway using surface temperature and chemical kinetics data. Experiments conducted on a thermal test cell show that core temperature computed using this method is in good agreement with independent thermocouple-based measurements in a wide range of experimental conditions. The validated method is used to predict core temperature as a function of time for several previously reported thermal runaway tests. In each case, the predicted peak core temperature is found to be several hundreds of degrees Celsius higher than the measured surface temperature. This shows that surface temperature alone is not sufficient for thermally characterizing the cell during thermal runaway. Besides providing key insights into the fundamental nature of thermal runaway, the ability to determine the core temperature shown here may lead to practical tools for characterizing and mitigating thermal runaway.

  16. High-Temperature Modal Survey of a Hot-Structure Control Surface

    NASA Technical Reports Server (NTRS)

    Spivey, Natalie Dawn

    2010-01-01

    Ground vibration tests or modal surveys are routinely conducted for supporting flutter analysis for subsonic and supersonic vehicles; however, for hypersonic vehicle applications, thermoelastic vibration testing techniques are not well established and are not routinely performed for supporting hypersonic flutter analysis. New high-temperature material systems, fabrication technologies and high-temperature sensors expand the opportunities to develop advanced techniques for performing ground vibration tests at elevated temperatures. High-temperature materials have the unique property of increasing in stiffness when heated. When these materials are incorporated into a hot-structure, which includes metallic components that decrease in stiffness with increasing temperature, the interaction between the two materials systems needs to be understood because that interaction could ultimately affect the hypersonic flutter analysis. Performing a high-temperature modal survey will expand the research database for hypersonics and will help build upon the understanding of the dual material interaction. This paper will discuss the vibration testing of the Carbon-Silicon Carbide Ruddervator Subcomponent Test Article which is a truncated version of the full-scale X-37 hot-structure control surface. In order to define the modal characteristics of the test article during the elevated-temperature modal survey, two series of room-temperature modal test configurations had to be performed. The room-temperature test series included one with the test article suspended from a bungee cord (free-free) and the second with it mounted on the strongback (fixed boundary condition) in NASA Dryden's Flight Loads Lab large nitrogen test chamber.

  17. Transition of the Laminar Boundary Layer on a Delta Wing with 74 degree Sweep in Free Flight at Mach Numbers from 2.8 to 5.3

    NASA Technical Reports Server (NTRS)

    Chapman, Gary T.

    1961-01-01

    The tests were conducted at Mach numbers from 2.8 to 5.3, with model surface temperatures small compared to boundary-layer recovery temperature. The effects of Mach number, temperature ratio, unit Reynolds number, leading-edge diameter, and angle of attack were investigated in an exploratory fashion. The effect of heat-transfer condition (i.e., wall temperature to total temperature ratio) and Mach number can not be separated explicitly in free-flight tests. However, the data of the present report, as well as those of NACA TN 3473, were found to be more consistent when plotted versus temperature ratio. Decreasing temperature ratio increased the transition Reynolds number. The effect of unit Reynolds number was small as was the effect of leading-edge diameter within the range tested. At small values of angle of attack, transition moved forward on the windward surface and rearward on the leeward surface. This trend was reversed at high angles of attack (6 deg to 18 deg). Possible reasons for this are the reduction of crossflow on the windward side and the influence of the lifting vortices on the leeward surface. When the transition results on the 740 delta wing were compared to data at similar test conditions for an unswept leading edge, the results bore out the results of earlier research at nearly zero heat transfer; namely, sweep causes a large reduction in the transition Reynolds number.

  18. Inactivation of Burkholderia pseudomallei on environmental surfaces using spray-applied, common liquid disinfectants.

    PubMed

    Calfee, M W; Wendling, M

    2015-11-01

    Five commercially available liquid antimicrobials were evaluated for their ability to decontaminate common environmental surface materials, contaminated with Burkholderia pseudomallei, using a spray-based disinfectant delivery procedure. Tests were conducted at both an ambient temperature (c. 20°C) and a lower temperature (c. 12°C) condition. Nonporous materials (glass and aluminium) were more easily decontaminated than porous materials (wood, concrete and carpet). Citric acid (1%) demonstrated poor efficacy in all test conditions. Bleach (pH-adjusted), ethanol (70%), quaternary ammonium and PineSol®, demonstrated high (>6 log10 reduction) efficacies on glass and aluminium at both temperatures, but achieved varying results for wood, carpet and concrete. Temperature had minimal effect on decontamination efficacy during these tests. Much of the antimicrobial efficacy data for pathogenic micro-organisms are generated with testing that utilizes hard nonporous surface materials. These data are not directly translatable for decontaminant selection following an incident whereby complex and porous environmental surfaces are contaminated. This study presents efficacy data for spray-applied antimicrobial liquids, when used to decontaminate common environmental surfaces contaminated with Burkholderia pseudomallei. These data can help responders develop effective remediation strategies following an environmental contamination incident involving B. pseudomallei. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  19. A Technique for Transient Thermal Testing of Thick Structures

    NASA Technical Reports Server (NTRS)

    Horn, Thomas J.; Richards, W. Lance; Gong, Leslie

    1997-01-01

    A new open-loop heat flux control technique has been developed to conduct transient thermal testing of thick, thermally-conductive aerospace structures. This technique uses calibration of the radiant heater system power level as a function of heat flux, predicted aerodynamic heat flux, and the properties of an instrumented test article. An iterative process was used to generate open-loop heater power profiles prior to each transient thermal test. Differences between the measured and predicted surface temperatures were used to refine the heater power level command profiles through the iteration process. This iteration process has reduced the effects of environmental and test system design factors, which are normally compensated for by closed-loop temperature control, to acceptable levels. The final revised heater power profiles resulted in measured temperature time histories which deviated less than 25 F from the predicted surface temperatures.

  20. Application of Sol-Gel Method as a Protective Layer on a Specular Reflective Surface for Secondary Reflector in a Solar Receiver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afrin, Samia; Dagdelen, John; Ma, Zhiwen

    Highly-specular reflective surfaces that can withstand elevated-temperatures are desirable for many applications including reflective heat shielding in solar receivers and secondary reflectors, which can be used between primary concentrators and heat collectors. A high-efficiency, high-temperature solar receiver design based on arrays of cavities needs a highly-specular reflective surface on its front section to help sunlight penetrate into the absorber tubes for effective flux spreading. Since this application is for high-temperature solar receivers, this surface needs to be durable and to maintain its optical properties through the usable life. Degradation mechanisms associated with elevated temperatures and thermal cycling, which include cracking,more » delamination, corrosion/oxidation, and environmental effects, could cause the optical properties of surfaces to degrade rapidly in these conditions. Protected mirror surfaces for these applications have been tested by depositing a thin layer of SiO2 on top of electrodeposited silver by means of the sol-gel method. To obtain an effective thin film structure, this sol-gel procedure has been investigated extensively by varying process parameters that affect film porosity and thickness. Endurance tests have been performed in a furnace at 150 degrees C for thousands of hours. This paper presents the sol-gel process for intermediate-temperature specular reflective coatings and provides the long-term reliability test results of sol-gel protected silver-coated surfaces.« less

  1. Thin Film Sensors for Surface Measurements

    NASA Technical Reports Server (NTRS)

    Martin, Lisa C.; Wrbanek, John D.; Fralick, Gustave C.

    2001-01-01

    Advanced thin film sensors that can provide accurate surface temperature, strain, and heat flux measurements have been developed at NASA Glenn Research Center. These sensors provide minimally intrusive characterization of advanced propulsion materials and components in hostile, high-temperature environments as well as validation of propulsion system design codes. The sensors are designed for applications on different material systems and engine components for testing in engine simulation facilities. Thin film thermocouples and strain gauges for the measurement of surface temperature and strain have been demonstrated on metals, ceramics and advanced ceramic-based composites of various component configurations. Test environments have included both air-breathing and space propulsion-based engine and burner rig environments at surface temperatures up to 1100 C and under high gas flow and pressure conditions. The technologies developed for these sensors as well as for a thin film heat flux gauge have been integrated into a single multifunctional gauge for the simultaneous real-time measurement of surface temperature, strain, and heat flux. This is the first step toward the development of smart sensors with integrated signal conditioning and high temperature electronics that would have the capability to provide feedback to the operating system in real-time. A description of the fabrication process for the thin film sensors and multifunctional gauge will be provided. In addition, the material systems on which the sensors have been demonstrated, the test facilities and the results of the tests to-date will be described. Finally, the results will be provided of the current effort to demonstrate the capabilities of the multifunctional gauge.

  2. Boundary Layer Transition Protuberance Tests at NASA JSC Arc-Jet Facility

    NASA Technical Reports Server (NTRS)

    Larin, M. E.; Marichalar, J. J.; Kinder, G. R.; Campbell, C. H.; Riccio, J. R.; Nquyen, T. Q.; DelPapa, S. V.; Pulsonetti, M. V.

    2009-01-01

    A series of arc-jet tests in support of the Shuttle Orbiter Boundary Layer Transition flight experiment was conducted in the Channel Nozzle of the NASA Johnson Space Center Atmospheric Reentry Materials and Structures Facility. The boundary layer trip was a protrusion of a certain height and geometry fabricated as part of a 6"x6" tile insert, a special test article made of the Boeing Rigid Insulation tile material and coated with the Reaction Cured Glass used for the bottom fuselage tiles of the Space Shuttle Orbiter. A total of five such tile inserts were manufactured: four with the 0.25-in. trip height, and one with the 0.35-in. trip height. The tile inserts were interchangeably installed in the center of the 24"x24" variable configuration tile array mounted in the 24"x24" test section of the channel nozzle. The objectives of the test series were to demonstrate that the boundary layer trip can safely withstand the Space Shuttle Orbiter flight-like re-entry environments and provide temperature data on the protrusion surface, surfaces of the nearby tiles upstream and downstream of the trip, as well as the bond line between the tiles and the structure. The targeted test environments were defined for the tip of the protrusion, away from the nominal surface of the tile array. The arc jet test conditions were approximated in order to produce the levels of the free stream total enthalpy at the protrusion height similar to those expected in flight. The test articles were instrumented with surface, sidewall and bond line thermocouples. Additionally, Tempilaq temperature-indicating paint was applied to the nominal tiles of the tile array in locations not interfering with the protrusion trip. Five different grades of paint were used that disintegrate at different temperatures between 1500 and 2000 deg F. The intent of using the paint was to gauge the RCG-coated tile surface temperature, as well as determine its usefulness for a flight experiment. This paper provides an overview of the channel nozzle arc jet, test articles and test conditions, as well as the results of the arc-jet tests including the measured temperature response of the test articles, their pre- and post-test surface scans, condition of the thermal paint, and continents on the protrusion tip heating achieved in tests compared to the computational fluid dynamics predictions.

  3. Controlled Atmosphere High Temperature SPM for electrochemical measurements

    NASA Astrophysics Data System (ADS)

    Vels Hansen, K.; Sander, C.; Koch, S.; Mogensen, M.

    2007-03-01

    A new controlled atmosphere high temperature SPM has been designed and build for the purpose of performing electrochemical measurements on solid oxide fuel cell materials. The first tests show that images can be obtained at a surface temperature of 465°C in air with a standard AFM AC probe. The aim is to produce images at a surface temperature of 800°C with electrically conducting ceramic probes as working electrodes that can be positioned at desired locations at the surface for electrochemical measurements.

  4. Improvement in Fatigue Performance of Aluminium Alloy Welded Joints by Laser Shock Peening in a Dynamic Strain Aging Temperature Regime.

    PubMed

    Su, Chun; Zhou, Jianzhong; Meng, Xiankai; Huang, Shu

    2016-09-26

    As a new treatment process after welding, the process parameters of laser shock peening (LSP) in dynamic strain aging (DSA) temperature regimes can be precisely controlled, and the process is a non-contact one. The effects of LSP at elevated temperatures on the distribution of the surface residual stress of AA6061-T6 welded joints were investigated by using X-ray diffraction technology with the sin² ϕ method and Abaqus software. The fatigue life of the welded joints was estimated by performing tensile fatigue tests. The microstructural evolution in surface and fatigue fractures of the welded joints was presented by means of surface integrity and fracture surface testing. In the DSA temperature regime of AA6061-T6 welded joints, the residual compressive stress was distributed more stably than that of LSP at room temperature. The thermal corrosion resistance and fatigue properties of the welded joints were also improved. The experimental results and numerical analysis were in mutual agreement.

  5. Improvement in Fatigue Performance of Aluminium Alloy Welded Joints by Laser Shock Peening in a Dynamic Strain Aging Temperature Regime

    PubMed Central

    Su, Chun; Zhou, Jianzhong; Meng, Xiankai; Huang, Shu

    2016-01-01

    As a new treatment process after welding, the process parameters of laser shock peening (LSP) in dynamic strain aging (DSA) temperature regimes can be precisely controlled, and the process is a non-contact one. The effects of LSP at elevated temperatures on the distribution of the surface residual stress of AA6061-T6 welded joints were investigated by using X-ray diffraction technology with the sin2ϕ method and Abaqus software. The fatigue life of the welded joints was estimated by performing tensile fatigue tests. The microstructural evolution in surface and fatigue fractures of the welded joints was presented by means of surface integrity and fracture surface testing. In the DSA temperature regime of AA6061-T6 welded joints, the residual compressive stress was distributed more stably than that of LSP at room temperature. The thermal corrosion resistance and fatigue properties of the welded joints were also improved. The experimental results and numerical analysis were in mutual agreement. PMID:28773920

  6. In vitro radicular temperatures produced by injectable thermoplasticized gutta-percha.

    PubMed

    Weller, R N; Koch, K A

    1995-03-01

    In vitro temperatures produced in the root canal and on the root surface were measured simultaneously as heated gutta-percha was injected into the prepared canal. The canals were obturated with the Obtura II heated gutta-percha system with temperature settings of 160, 185, and 200 degrees C. The mean intracanal temperatures ranged from 40.21 to 57.24 degrees C, whereas the mean root surface temperatures were recorded from 37.22 to 41.90 degrees C for all three temperatures tested. The rise in temperature on the root surface was below the critical level of 10 degrees C and should not cause damage to the periodontal ligament.

  7. A Methodology for Surface Soil Moisture and Vegetation Optical Depth Retrieval Using the Microwave Polarization Difference Index

    NASA Technical Reports Server (NTRS)

    Owe, Manfred; deJeu, Richard; Walker, Jeffrey; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    A methodology for retrieving surface soil moisture and vegetation optical depth from satellite microwave radiometer data is presented. The procedure is tested with historical 6.6 GHz brightness temperature observations from the Scanning Multichannel Microwave Radiometer over several test sites in Illinois. Results using only nighttime data are presented at this time, due to the greater stability of nighttime surface temperature estimation. The methodology uses a radiative transfer model to solve for surface soil moisture and vegetation optical depth simultaneously using a non-linear iterative optimization procedure. It assumes known constant values for the scattering albedo and roughness. Surface temperature is derived by a procedure using high frequency vertically polarized brightness temperatures. The methodology does not require any field observations of soil moisture or canopy biophysical properties for calibration purposes and is totally independent of wavelength. Results compare well with field observations of soil moisture and satellite-derived vegetation index data from optical sensors.

  8. Effects of subclinical footpad dermatitis and emotional arousal on surface foot temperature recorded with infrared thermography in turkey toms (Meleagris gallopavo).

    PubMed

    Moe, R O; Bohlin, J; Flø, A; Vasdal, G; Erlandsen, H; Guneriussen, E; Sjökvist, E C; Stubsjøen, S M

    2018-04-17

    Footpad dermatitis is a condition that causes lesions on the plantar surface of the footpads in growing turkeys. Potential inflammatory processes and pain associated with increasing severity of footpad dermatitis raise animal welfare concerns. This study investigated whether the temperature of the plantar surface of the foot (the footpads and the entire plantar foot including interdigital membranes) assessed with infrared thermography reflects severity of mild footpad dermatitis as assessed with a Visual Analogue Scale in 80 turkey toms at 10 weeks of age. In order to study effects of a potential emotional arousal due to the testing procedures, effects of sequential testing order and duration of handling of the turkeys was included in the model. Footpad temperatures were significantly lower than foot temperatures (P < 0.001, R2 = 0.57, -3.36°C ± 0.28°C), and higher visual analogue scale scores were anti-correlated with footpad (-0.06°C ± 0.037°C) and foot temperatures (-0.07°C ± 0.066°C). Furthermore, a negative association between footpad temperature and handling time (-0.02 ± 0.0227, P = 0.048), and a non-linear association between foot and footpad temperatures and sequential testing order, were found (P<0.001). The results indicate that severity of mild footpad dermatitis as scored visually was associated with the temperatures of the plantar surface of the foot and footpads, and that thermal imaging therefore represents a novel tool for the reliable and non-invasive early detection of subclinical foot pathologies in turkeys. The association was negative, and the findings therefore indicate that potential inflammatory processes in the epidermis at this early stage of footpad dermatitis are negligible, and/or that the hyperkeratosis of the surface keratin shielded heat emission from the footpads. The associations between surface temperatures, handling time, and sequential testing order suggest an emotional arousal in response to the experimental procedures, and these factors need to be considered when applying infrared thermography in future studies of leg health in turkeys.

  9. Heat Transfer in a Superelliptic Transition Duct

    NASA Technical Reports Server (NTRS)

    Poinsatte, Philip; Thurman, Douglas; Hippensteele, Steven

    2008-01-01

    Local heat transfer measurements were experimentally mapped using a transient liquid-crystal heat transfer technique on the surface of a circular-to-rectangular transition duct. The transition duct had a length-to-diameter ratio of 1.5 and an exit-plane aspect ratio of 3. The crosssectional geometry was defined by the equation of a superellipse. The cross-sectional area was the same at the inlet and exit but varied up to 15 percent higher through the transition. The duct was preheated to a uniform temperature (nominally 64 C) before allowing room temperature air to be suddenly drawn through it. As the surface cooled, the resulting isothermal contours on the duct surface were revealed using a surface coating of thermochromic liquid crystals that display distinctive colors at particular temperatures. A video record was made of the surface temperature and time data for all points on the duct surfaces during each test. Using this surface temperature-time data together with the temperature of the air flowing through the model and the initial temperature of the model wall, the heat transfer coefficient was calculated by employing the classic one-dimensional, semi-infinite wall heat transfer conduction model. Test results are reported for inlet diameter-based Reynolds numbers ranging from 0.4x106 to 2.4x106 and two grid-generated freestream turbulence intensities of about 1 percent, which is typical of wind tunnels, and up to 16 percent, which may be more typical of real engine conditions.

  10. Evaluation of a surface/vegetation parameterization using satellite measurements of surface temperature

    NASA Technical Reports Server (NTRS)

    Taconet, O.; Carlson, T.; Bernard, R.; Vidal-Madjar, D.

    1986-01-01

    Ground measurements of surface-sensible heat flux and soil moisture for a wheat-growing area of Beauce in France were compared with the values derived by inverting two boundary layer models with a surface/vegetation formulation using surface temperature measurements made from NOAA-AVHRR. The results indicated that the trends in the surface heat fluxes and soil moisture observed during the 5 days of the field experiment were effectively captured by the inversion method using the remotely measured radiative temperatures and either of the two boundary layer methods, both of which contain nearly identical vegetation parameterizations described by Taconet et al. (1986). The sensitivity of the results to errors in the initial sounding values or measured surface temperature was tested by varying the initial sounding temperature, dewpoint, and wind speed and the measured surface temperature by amounts corresponding to typical measurement error. In general, the vegetation component was more sensitive to error than the bare soil model.

  11. Further Investigations of High Temperature Knitted Spring Tubes for Advanced Control Surface Seal Applications

    NASA Technical Reports Server (NTRS)

    Taylor, Shawn C.; DeMange, Jeffrey J.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.

    2006-01-01

    Knitted metallic spring tubes are the structural backbones that provide resiliency in control surface seals for use on current and future reusable space launch vehicles. Control surface seals fill the space between movable control surfaces such as body flaps, rudders and elevons, and the static body structures to which they are attached. These seals must remain in continuous contact with opposing surfaces to prevent the ingestion of damaging hot gases encountered during atmospheric re-entry. The Inconel X-750 (Special Metals Corporation) spring tube utilized in the baseline control surface seal shows significant resiliency loss when compressed at temperatures as low as 1200 F. High temperature compression testing and microstructural analysis show that creep is the dominant deformation mechanism leading to permanent set and resiliency loss in tested spring tube samples. Additional evaluation using a structured design of experiments approach shows that spring tube performance, primarily high temperature resiliency, can be enhanced through material substitution of Rene 41 (Allvac) alloy (for the baseline Inconel X-750 material) when coupled with specialized thermal processing.

  12. Lubricant-infused micro/nano-structured surfaces with tunable dynamic omniphobicity at high temperatures

    DOE PAGES

    Daniel, Daniel; Mankin, Max N.; Belisle, Rebecca A.; ...

    2013-06-10

    Omniphobic surfaces that can repel fluids at temperatures higher than 100 °C are rare. Most state-of- the-art liquid-repellent materials are based on the lotus effect, where a thin air layer is maintained throughout micro/nanotextures leading to high mobility of liquids. However, such behavior eventually fails at elevated temperatures when the surface tension of test liquids decreases significantly. Here, we demonstrate a class of lubricant-infused structured surfaces that can maintain a robust omniphobic state even for low-surface-tension liquids at temperatures up to at least 200 °C. We also demonstrate how liquid mobility on such surfaces can be tuned by a factormore » of 1000.« less

  13. Global surface temperature/heat transfer measurements using infrared imaging

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran

    1992-01-01

    A series of studies were conducted to evaluate the use of scanning radiometric infrared imaging systems for providing global surface temperature/heat transfer measurements in support of hypersonic wind tunnel testing. The in situ precision of the technique with narrow temperature span setting over the temperature range of 20 to 200 C was investigated. The precision of the technique over wider temperature span settings was also determined. The accuracy of technique for providing aerodynamic heating rates was investigated by performing measurements on a 10.2-centimeter hemisphere model in the Langley 31-inch Mach 10 tunnel, and comparing the results with theoretical predictions. Data from tests conducted on a generic orbiter model in this tunnel are also presented.

  14. Phenol-Formaldehyde Resin for Optical-Chemical Temperature Sensing.

    PubMed

    Claucherty, Steven; Sakaue, Hirotaka

    2018-05-30

    The application of phenol-formaldehyde (PF) resin as an optical temperature sensor is investigated. Recent developments in optical luminescent sensors allow for global measurements to be made over the surface of a test article, extending beyond conventional point measurements. Global temperature distributions are particularly helpful when validating computational models or when mapping temperature over complex geometries, and can be used to calculate surface heat flux values. Temperature-sensitive paint (TSP) is a novel chemical approach to obtaining these global temperature measurements, but there are still challenges to overcome to make it a reliable tool. A sensor with a wide range of temperature sensitivity is desired to provide the maximum amount of utility, especially for tests spanning large temperature gradients. Naturally luminescent materials such as PF resin provide an attractive alternative to chemical sensor coatings, and PF resin is studied for this reason. Static tests of different PF resin samples are conducted using two binder materials to strengthen the material: cloth and paper. The material shows temperature sensitivities up to -0.8%/K, demonstrating the usefulness of PF resin as a temperature sensor.

  15. Using Pressure- and Temperature-Sensitive Paint for Global Surface Pressure and Temperature Measurements on the Aft-Body of a Capsule Reentry Vehicle

    NASA Technical Reports Server (NTRS)

    Watkins, A. Neal; Buck, Gregory M.; Leighty, Bradley D.; Lipford, William E.; Oglesby, Donald M.

    2008-01-01

    Pressure Sensitive Paint (PSP) and Temperature Sensitive Paint (TSP) were used to visualize and quantify the surface interactions of reaction control system (RCS) jets on the aft body of capsule reentry vehicle shapes. The first model tested was an Apollo-like configuration and was used to focus primarily on the effects of the forward facing roll and yaw jets. The second model tested was an early Orion Crew Module configuration blowing only out of its forward-most yaw jet, which was expected to have the most intense aerodynamic heating augmentation on the model surface. This paper will present the results from the experiments, which show that with proper system design, both PSP and TSP are effective tools for studying these types of interaction in hypersonic testing environments.

  16. Slat Heater Boxes for Thermal Vacuum Testing

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene

    2003-01-01

    Slat heater boxes have been invented for controlling the sink temperatures of objects under test in a thermal vacuum chamber, the walls of which are cooled to the temperature of liquid nitrogen. A slat heater box (see Figure 1) includes a framework of struts that support electrically heated slats that are coated with a high-emissivity optically gray paint. The slats can be grouped together into heater zones for the purpose of maintaining an even temperature within each side. The sink temperature of an object under test is defined as the steady-state temperature of the object in the vacuum/ radiative environment during the absence of any internal heat source or sink. The slat heater box makes it possible to closely control the radiation environment to obtain a desired sink temperature. The slat heater box is placed inside the cold thermal vacuum chamber, and the object under test is placed inside (but not in contact with) the slat heater box. The slat heaters occupy about a third of the field of view from any point on the surface of the object under test, the remainder of the field of view being occupied by the cold chamber wall. Thus, the radiation environment is established by the combined effects of the slat heater box and the cold chamber wall. Given (1) the temperature of the chamber wall, (2) the fractions of the field of view occupied by the chamber wall and the slat heater box, and (3) the emissivities of the slats, chamber wall, and the surface of object under test, the slat temperature required to maintain a desired sink temperature can be calculated by solving the equations of gray-body radiation for the steady-state adiabatic case (equal absorption and emission by the object under test). Slat heater boxes offer an important advantage over the infrared lamps that have been previously used to obtain desired sink temperatures: In comparison with an infrared lamp, a slat heater box provides a greater degree of sink temperature uniformity for a test-object surface that includes multiple areas with differing optical properties.

  17. High-resolution heat-transfer-coefficient maps applicable to compound-curve surfaces using liquid crystals in a transient wind tunnel

    NASA Technical Reports Server (NTRS)

    Jones, Terry V.; Hippensteele, Steven A.

    1988-01-01

    Tests were performed in a transient heat transfer tunnel in which the model under test was preheated prior to allowing room temperature air to be suddenly drawn over the model. The resulting movement of isothermal contours on the model is revealed using a surface coating of thermochromic liquid crystals that display distinctive colors at particular temperatures. A video record is obtained of a temperature and time data pair for all points on the model during a single test. Experiments on a duct model are reported in which the model was preheated using a hot air stream. A manner in which initial model temperature nonuniformities could be taken into account was investigated. The duct model was also tested with a steady-state measurement technique and results were compared with the transient measurements, but recognizing that differences existed between the upstream thermal boundary conditions. The steady-state and transient measurements were shown to be consistent with predicted values. The main advantage of this transient heat transfer technique using liquid crystals is that since the test model need not be actively heated, high-resolution measurements on surfaces with complex shapes may be obtained.

  18. Elevated-Temperature Tests Under Static and Aerodynamic Conditions on Honeycomb-Core Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Groen, Joseph M.; Johnson, Aldie E., Jr.

    1959-01-01

    Stainless-steel honeycomb-core sandwich panels which differed primarily in skin thicknesses were tested at elevated temperatures under static and aerodynamic conditions. The results of these tests were evaluated to determine the insulating effectiveness and structural integrity of the panels. The static radiant-heating tests were performed in front of a quartz-tube radiant heater at panel skin temperatures up to 1,5000 F. The aerodynamic tests were made in a Mach 1.4 heated blowdown wind tunnel. The tunnel temperature was augmented by additional heat supplied by a radiant heater which raised the panel surface temperature above 8000 F during air flow. Static radiant-heating tests of 2 minutes duration showed that all the panels protected the load-carrying structure about equally well. Thin-skin panels showed an advantage for this short-time test over thick-skin panels from a standpoint of weight against insulation. Permanent inelastic strains in the form of local buckles over each cell of the honeycomb core caused an increase in surface roughness. During the aero- dynamic tests all of the panels survived with little or no damage, and panel flutter did not occur.

  19. Effect of design factors on surface temperature and wear in disk brakes

    NASA Technical Reports Server (NTRS)

    Santini, J. J.; Kennedy, F. E.; Ling, F. F.

    1976-01-01

    The temperatures, friction, wear and contact conditions that occur in high energy disk brakes are studied. Surface and near surface temperatures were monitored at various locations in a caliper disk brake during drag type testing, with friction coefficient and wear rates also being determined. The recorded transient temperature distributions in the friction pads and infrared photographs of the rotor disk surface both showed that contact at the friction surface was not uniform, with contact areas constantly shifting due to nonuniform thermal expansion and wear. The effect of external cooling and of design modifications on friction, wear and temperatures was also investigated. It was found that significant decreases in surface temperature and in wear rate can be achieved without a reduction in friction either by slotting the contacting face of the brake pad or by modifying the design of the pad support to improve pad compliance. Both design changes result in more uniform contact conditions on the friction surface.

  20. Performance of LI-1542 reusable surface insulation system in a hypersonic stream

    NASA Technical Reports Server (NTRS)

    Hunt, L. R.; Bohon, H. L.

    1974-01-01

    The thermal and structural performance of a large panel of LI-1542 reusable surface insulation tiles was determined by a series of cyclic heating tests using radiant lamps and aerothemal tests in the Langley 8-foot high-temperature structures tunnel. Aerothermal tests were conducted at a free-stream Mach number of 6.6, a total temperature of 1830 K, Reynolds numbers of 2.0 and 4,900,000 per meter, and dynamic pressures of 29 and 65 kPa. The results suggest that pressure gradients in gaps and flow impingement on the header walls at the end of longitudinal gaps are sources for increased gap heating. Temperatures higher than surface radiation equilibrium temperature were measured deep in gaps and at the header walls. Also, the damage tolerance of the LI-1542 tiles appears to be very high. Tile edge erosion rate was slow; could not be tolerated in a shuttle application. Tiles soaked with water and subjected to rapid depressurization and aerodynamic heating showed no visible evidence of damage.

  1. Surface fatigue life and failure characteristics of EX-53, CBS 1000M, and AISI 9310 gear materials

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.

    1985-01-01

    Spur gear endurance tests and rolling-element surface fatigue tests are conducted to investigate EX-53 and CBS 1000M steels for use as advanced application gear materials, to determine their endurance characteristics, and to compare the results with the standard AISI 9310 gear material. The gear pitch diameter is 8.89 cm (3.50 in). Gear test conditions are an oil inlet temperature of 320 K (116 F), an oil outlet temperature of 350 K (170 F), a maximum Hertz stress of 1.71 GPa (248 ksi), and a speed of 10,000 rpm. Bench-type rolling-element fatigue tests are conducted at ambient temperature with a bar specimen speed of 12,500 rpm and a maximum Hertz stress of 4.83 GPa (700 ksi). The EX-53 test gears have a surface fatigue life of twice that of the AISI 9310 spur gears. The CBS 1000M test gears have a surface fatigue life of more than twice that of the AISI 9310 spur gears. However, the CBS 1000M gears experience a 30-percent tooth fracture failure which limits its use as a gear material. The rolling-contact fatigue lines of RC bar specimens of EX-53 and ASISI 9310 are approximately equal. However, the CBS 1000M RC specimens have a surface fatigue life of about 50 percent that of the AISI 9310.

  2. Evaluation of High Temperature Knitted Spring Tubes for Structural Seal Applications

    NASA Technical Reports Server (NTRS)

    Taylor, Shawn C.; DeMange, Jeffrey J.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.

    2004-01-01

    Control surface seals are crucial to current and future space vehicles, as they are used to seal the gaps surrounding body flaps, elevons, and other actuated exterior surfaces. During reentry, leakage of high temperature gases through these gaps could damage underlying lower temperature structures such as rudder drive motors and mechanical actuators, resulting in impaired vehicle control. To be effective, control surface seals must shield lower temperature structures from heat transfer by maintaining sufficient resiliency to remain in contact with opposing sealing surfaces through multiple compression cycles. The current seal exhibits significant loss of resiliency after a few compression cycles at elevated temperatures (i.e., 1900 F) and therefore would be inadequate for advanced space vehicles. This seal utilizes a knitted Inconel X-750 spring tube as its primary resilient element. As part of a larger effort to enhance seal resiliency, researchers at the NASA Glenn Research Center performed high temperature compression testing (up to 2000 F) on candidate spring tube designs employing material substitutions and modified geometries. These tests demonstrated significant improvements in spring tube resiliency (5.5x better at 1750 F) through direct substitution of heat treated Rene 41 alloy in the baseline knit design. The impact of geometry modification was minor within the range of parameters tested, however trends did suggest that moderate resiliency improvements could be obtained by optimizing the current spring tube geometry.

  3. A rolling-sliding bench test for investigating rear axle lubrication

    DOE PAGES

    Stump, Benjamin C.; Zhou, Yan; Viola, Michael B.; ...

    2018-02-07

    An automotive rear axle is composed of a set of hypoid gears, whose contact surfaces experience a complex combination of rolling contact fatigue damage and sliding wear. Full-scale rear axle dynamometer tests are used in the industry for efficiency and durability assessment. Here, this study developed a bench-scale rolling-sliding test protocol by simulating the contact pressure, oil temperature, and lubrication regime experienced in a dynamometer duty cycle test. Initial bench results have demonstrated the ability of generating both rolling contact-induced micropitting and sliding wear and the feasibility of investigating the impact of slide-to-roll ratio, surface roughness, test duration, and oilmore » temperature on the friction behavior, vibration noise, and surface damage. Finally, this bench test will allow studying candidate rear axle lubricants and materials under relevant conditions.« less

  4. A rolling-sliding bench test for investigating rear axle lubrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stump, Benjamin C.; Zhou, Yan; Viola, Michael B.

    An automotive rear axle is composed of a set of hypoid gears, whose contact surfaces experience a complex combination of rolling contact fatigue damage and sliding wear. Full-scale rear axle dynamometer tests are used in the industry for efficiency and durability assessment. Here, this study developed a bench-scale rolling-sliding test protocol by simulating the contact pressure, oil temperature, and lubrication regime experienced in a dynamometer duty cycle test. Initial bench results have demonstrated the ability of generating both rolling contact-induced micropitting and sliding wear and the feasibility of investigating the impact of slide-to-roll ratio, surface roughness, test duration, and oilmore » temperature on the friction behavior, vibration noise, and surface damage. Finally, this bench test will allow studying candidate rear axle lubricants and materials under relevant conditions.« less

  5. Thermal transfer in extracted incisors during thermal pulp sensitivity testing.

    PubMed

    Linsuwanont, P; Palamara, J E; Messer, H H

    2008-03-01

    To measure the temperature distribution within tooth structure during and after application of thermal stimuli used during pulp sensitivity testing. Extracted intact human maxillary anterior teeth were investigated for temperature changes at the labial enamel, the dentino-enamel junction (DEJ) and pulpal surface during and after a 5-s application of six different thermal stimuli: hot water (80 degrees C), heated gutta-percha (140 degrees C), carbon dioxide dry ice (-72 degrees C), refrigerant spray (-50 degrees C), ice stick (0 degrees C) and cold water (2 degrees C). J-type thermocouples and heat conduction paste were used to detect temperature changes, together with a data acquisition system (Labview). Data were analysed using analysis of variance, with a confidence level of P < 0.05. Temperature change was detected more quickly at the DEJ and pulpal surface with the application of hot water, heated gutta-percha and refrigerant spray than with carbon dioxide dry ice and ice (P < 0.05). Cold water and refrigerant spray were in the same range in terms of time to detect temperature change at both the DEJ and pulpal surface. Thermal stimuli with greater temperature difference from tooth temperature created a greater thermal gradient initially, followed by a greater temperature change at the DEJ and the pulpal surface. In this regard, ice and cold water were weaker stimuli than others (P < 0.05). Thermal stimuli used in pulp testing are highly variable in terms of temperature of the stimulus, rate of thermal transfer to the tooth and extent of temperature change within tooth structure. Overall, dry ice and refrigerant spray provide the most consistent stimuli, whereas heated gutta-percha and hot water were highly variable. Ice was a weak stimulus.

  6. High Temperature Ceramic Guide Vane Temperature and Pressure Distribution Calculation for Flow with Cooling Jets

    NASA Technical Reports Server (NTRS)

    Srivastava, Rakesh

    2004-01-01

    A ceramic guide vane has been designed and tested for operation under high temperature. Previous efforts have suggested that some cooling flow may be required to alleviate the high temperatures observed near the trailing edge region. The present report describes briefly a three-dimensional viscous analysis carried out to calculate the temperature and pressure distribution on the blade surface and in the flow path with a jet of cooling air exiting from the suction surface near the trailing edge region. The data for analysis was obtained from Dr. Craig Robinson. The surface temperature and pressure distribution along with a flowfield distribution is shown in the results. The surface distribution is also given in a tabular form at the end of the document.

  7. A microscale three-dimensional urban energy balance model for studying surface temperatures

    NASA Astrophysics Data System (ADS)

    Krayenhoff, E. Scott; Voogt, James A.

    2007-06-01

    A microscale three-dimensional (3-D) urban energy balance model, Temperatures of Urban Facets in 3-D (TUF-3D), is developed to predict urban surface temperatures for a variety of surface geometries and properties, weather conditions, and solar angles. The surface is composed of plane-parallel facets: roofs, walls, and streets, which are further sub-divided into identical square patches, resulting in a 3-D raster-type model geometry. The model code is structured into radiation, conduction and convection sub-models. The radiation sub-model uses the radiosity approach and accounts for multiple reflections and shading of direct solar radiation. Conduction is solved by finite differencing of the heat conduction equation, and convection is modelled by empirically relating patch heat transfer coefficients to the momentum forcing and the building morphology. The radiation and conduction sub-models are tested individually against measurements, and the complete model is tested against full-scale urban surface temperature and energy balance observations. Modelled surface temperatures perform well at both the facet-average and the sub-facet scales given the precision of the observations and the uncertainties in the model inputs. The model has several potential applications, such as the calculation of radiative loads, and the investigation of effective thermal anisotropy (when combined with a sensor-view model).

  8. Design, develop and test high temperature dynamic seals for the space shuttle's aerodynamic control surfaces

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A description is given of the design, development and testing of high temperature dynamic seals for the gaps between the structure and aerodynamic control surfaces on the space shuttle. These aerodynamic seals are required to prevent high temperature airflow from damaging thermally unprotected structures and components during entry. Two seal concepts evolved a curtain seal for the spanwise elevon cove gap, and a labyrinth seal for the area above the elevon, at the gap between the end of the elevon and the fuselage. On the basis of development testing, both seal concepts were shown to be feasible for controlling internal temperatures to 350 F or less when exposed to a typical space shuttle entry environment. The curtain seal concept demonstrated excellent test results and merits strong consideration for application on the space shuttle orbiter. The labyrinth seal concept, although demonstrating significant temperature reduction characteristics, may or may not be required on the Orbiter, depending on the actual design configuration and flight environment.

  9. Rayleigh surface acoustic wave as an efficient heating system for biological reactions: investigation of microdroplet temperature uniformity.

    PubMed

    Roux-Marchand, Thibaut; Beyssen, Denis; Sarry, Frederic; Elmazria, Omar

    2015-04-01

    When a microdroplet is put on the Rayleigh surface acoustic wave path, longitudinal waves are radiated into the liquid and induce several phenomena such as the wellknown surface acoustic wave streaming. At the same time, the temperature of the microdroplet increases as it has been shown. In this paper, we study the temperature uniformity of a microdroplet heated by Rayleigh surface acoustic wave for discrete microfluidic applications such as biological reactions. To precisely ascertain the temperature uniformity and not interfere with the biological reaction, we used an infrared camera. We then tested the temperature uniformity as a function of three parameters: the microdroplet volume, the Rayleigh surface acoustic wave frequency, and the continuous applied radio frequency power. Based on these results, we propose a new device structure to develop a future lab on a chip based on reaction temperatures.

  10. Systems and methods for thermal imaging technique for measuring mixing of fluids

    DOEpatents

    Booten, Charles; Tomerlin, Jeff; Winkler, Jon

    2016-06-14

    Systems and methods for thermal imaging for measuring mixing of fluids are provided. In one embodiment, a method for measuring mixing of gaseous fluids using thermal imaging comprises: positioning a thermal test medium parallel to a direction gaseous fluid flow from an outlet vent of a momentum source, wherein when the source is operating, the fluid flows across a surface of the medium; obtaining an ambient temperature value from a baseline thermal image of the surface; obtaining at least one operational thermal image of the surface when the fluid is flowing from the outlet vent across the surface, wherein the fluid has a temperature different than the ambient temperature; and calculating at least one temperature-difference fraction associated with at least a first position on the surface based on a difference between temperature measurements obtained from the at least one operational thermal image and the ambient temperature value.

  11. Mechanical properties of anodized coatings over molten aluminum alloy

    DOE PAGES

    Grillet, Anne M.; Gorby, Allen D.; Trujillo, Steven M.; ...

    2007-10-22

    A method to measure interfacial mechanical properties at high temperatures and in a controlled atmosphere has been developed to study anodized aluminum surface coatings at temperatures where the interior aluminum alloy is molten. This is the first time that the coating strength has been studied under these conditions. In this study, we have investigated the effects of ambient atmosphere, temperature, and surface finish on coating strength for samples of aluminum alloy 7075. Surprisingly, the effective Young's modulus or strength of the coating when tested in air was twice as high as when samples were tested in an inert nitrogen ormore » argon atmosphere. Additionally, the effective Young's modulus of the anodized coating increased with temperature in an air atmosphere but was independent of temperature in an inert atmosphere. The effect of surface finish was also examined. Sandblasting the surface prior to anodization was found to increase the strength of the anodized coating with the greatest enhancement noted for a nitrogen atmosphere. Lastly, machining marks were not found to significantly affect the strength.« less

  12. SiGe Based Low Temperature Electronics for Lunar Surface Applications

    NASA Technical Reports Server (NTRS)

    Mojarradi, Mohammad M.; Kolawa, Elizabeth; Blalock, Benjamin; Cressler, John

    2012-01-01

    The temperature at the permanently shadowed regions of the moon's surface is approximately -240 C. Other areas of the lunar surface experience temperatures that vary between 120 C and -180 C during the day and night respectively. To protect against the large temperature variations of the moon surface, traditional electronics used in lunar robotics systems are placed inside a thermally controlled housing which is bulky, consumes power and adds complexity to the integration and test. SiGe Based electronics have the capability to operate over wide temperature range like that of the lunar surface. Deploying low temperature SiGe electronics in a lander platform can minimize the need for the central thermal protection system and enable the development of a new generation of landers and mobility platforms with highly efficient distributed architecture. For the past five years a team consisting of NASA, university and industry researchers has been examining the low temperature and wide temperature characteristic of SiGe based transistors for developing electronics for wide temperature needs of NASA environments such as the Moon, Titan, Mars and Europa. This presentation reports on the status of the development of wide temperature SiGe based electronics for the landers and lunar surface mobility systems.

  13. Estimation of regional surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data. [Normalized Difference Vegetation Index

    NASA Technical Reports Server (NTRS)

    Nemani, Ramakrishna R.; Running, Steven W.

    1989-01-01

    Infrared surface temperatures from satellite sensors have been used to infer evaporation and soil moisture distribution over large areas. However, surface energy partitioning to latent versus sensible heat changes with surface vegetation cover and water availability. The hypothesis that the relationship between surface temperature and canopy density is sensitivite to seasonal changes in canopy resistance of conifer forests is presently tested. Surface temperature and canopy density were computed for a 20 x 25 km forested region in Montana, from the NOAA/AVHRR for 8 days during the summer of 1985. A forest ecosystem model, FOREST-BGC, simulated canopy resistance for the same period. For all eight days, surface temperatures had high association with canopy density, measured as Normalized Difference Vegetation Index, implying that latent heat exchange is the major cause of spatial variations in surface radiant tmeperatures.

  14. Cyclic arc plasma tests of RSI materials using a preheater

    NASA Technical Reports Server (NTRS)

    Stewart, D. A.

    1973-01-01

    The results of a test program are reported in which a preheater was used with an arc plasma stream to study the thermal response of samples of candidate reusable surface insulation materials for the space shuttle. The preheater simulated the shuttle temperature history during the first and last portions of the test cycle, which could not be simulated by the air arc plasma flow. Pre- and post-test data taken for each of the materials included magnified views, optical properties, and chemical analyses. The test results indicate that the mullite base samples experience higher surface temperatures than the other materials at heating rates greater than 225 kw/sq m. The ceramic fibrous mullite and silica coatings show noncatalytic wall behavior. Internal temperature response data for the materials are compared and correlated with analytical predictions.

  15. Temperature dependence of liquid metal embrittlement susceptibility of a modified 9Cr-1Mo steel under low cycle fatigue in lead-bismuth eutectic at 160-450 °C

    NASA Astrophysics Data System (ADS)

    Gong, Xing; Marmy, Pierre; Qin, Ling; Verlinden, Bert; Wevers, Martine; Seefeldt, Marc

    2016-01-01

    Low cycle fatigue properties of a 9Cr-1Mo ferritic-martensitic steel (T91) have been tested in a low oxygen concentration (LOC) lead-bismuth eutectic (LBE) environment and in vacuum at 160-450 °C. The results show a clear fatigue endurance "trough" in LOC LBE, while no such a strong temperature dependence of the fatigue endurance is observed when the steel is tested in vacuum. The fractographic observations by means of scanning electron microscopy (SEM) show that ductile microdimples are prevalent on the fracture surfaces of the specimens tested in vacuum, whereas the fracture surfaces produced in LOC LBE at all the temperatures are characterized by quasi-cleavage. Interestingly, using electron backscatter diffraction (EBSD), martensitic laths close to the fatigue crack walls or to the fracture surfaces of the specimens tested in vacuum are found to have transformed into very fine equiaxed subgrains. Nevertheless, such microstructural modifications do not happen to the specimens tested in LOC LBE at 160-450 °C. These interesting microstructural distinctions indicate that liquid metal embrittlement (LME) is able to occur throughout the fatigue crack propagation phase in the full range of the temperatures investigated, i.e. LME is not very sensitive to temperature during the fatigue crack propagation.

  16. Low work function silicon collector for thermionic converters

    NASA Technical Reports Server (NTRS)

    Chang, K. H.; Shimada, K.

    1976-01-01

    To improve the efficiency of present thermionic converters, single crystal silicon was investigated as a low work function collector material. The experiments were conducted in a test vehicle which resembled an actual thermionic converter. Work function as low as 1.0eV was obtained with an n-type silicon. The stabilities of the activated surfaces at elevated temperatures were tested by raising the collector temperature up to 829 K. By increasing the Cs arrival rate, it was possible to restore the originally activated low work function of the surface at elevated surface temperatures. These results, plotted in the form of Rasor-Warner curve, show a behavior similar to that of metal electrode except that the minimum work function was much lower with silicon than with metals.

  17. Wear Characteristic of Stellite 6 Alloy Hardfacing Layer by Plasma Arc Surfacing Processes

    PubMed Central

    Zhou, Xiaowei

    2017-01-01

    The microstructure and wear resistance of Stellite 6 alloy hardfacing layer at two different temperatures (room temperature and 300°C) were investigated by plasma arc surfacing processes on Q235 Steel. Tribological test was conducted to characterize the wear property. The microstructure of Stellite 6 alloy coating mainly consists of α-Co and (Cr, Fe)7C3 phases. The friction coefficient of Stellite 6 alloys fluctuates slightly under different loads at 300°C. The oxide layer is formed on the coating surface and serves as a special lubricant during the wear test. Abrasive wear is the dominant mechanism at room temperature, and microploughing and plasticity are the key wear mechanisms at 300°C. PMID:29359005

  18. Use of a variable exposure photographic pyrometer to measure surface temperatures on a hemispherical-face model

    NASA Technical Reports Server (NTRS)

    Kantsios, A. G.; Henley, W. C., Jr.; Snow, W. L.

    1982-01-01

    The use of a photographic pyrometer for nonintrusive measurement of high temperature surfaces in a wind tunnel test is described. The advantages of the pyrometer for measuring surfaces whose unique shape makes use of thermocouples difficult are pointed out. The use of computer operated densitometers or optical processors for the data reduction is recommended.

  19. Event-scale relationships between surface velocity, temperature and chlorophyll in the coastal ocean, as seen by satellite

    NASA Technical Reports Server (NTRS)

    Strub, P. Ted

    1991-01-01

    The overall goal of this project was to increase our understanding of processes which determine the temporally varying distributions of surface chlorophyll pigment concentration and surface temperature in the California Current System (CCS) on the time-scale of 'events', i.e., several days to several weeks. We also proposed to investigate seasonal and regional differences in these events. Additionally, we proposed to evaluate methods of estimating surface velocities and horizontal transport of pigment and heat from sequences of AVHRR and CZCS images. The four specific objectives stated in the original proposal were to: (1) test surface current estimates made from sequences of both SST and color images using variations of the statistical method of Emery et al. (1986) and estimate the uncertainties in these satellite-derived surface currents; (2) characterize the spatial and temporal relationships of chlorophyll and temperature in rapidly evolving features for which adequate imagery exist and evaluate the contribution of these events to monthly and seasonal averages; (3) use the methods tested in (1) to determine the nature of the velocity fields in the CCS; and (4) compare the currents, temperature, and currents in different seasons and in different geographic regions.

  20. Boundary-Layer Detection at Cryogenic Conditions Using Temperature Sensitive Paint Coupled with a Carbon Nanotube Heating Layer

    NASA Technical Reports Server (NTRS)

    Goodman, Kyle Z.; Lipford, William E.; Watkins, Anthony Neal

    2016-01-01

    Detection of flow transition on aircraft surfaces and models can be vital to the development of future vehicles and computational methods for evaluating vehicle concepts. In testing at ambient conditions, IR thermography is ideal for this measurement. However, for higher Reynolds number testing, cryogenic facilities are often used, in which IR thermography is difficult to employ. In these facilities, temperature sensitive paint is an alternative with a temperature step introduced to enhance the natural temperature change from transition. Traditional methods for inducing the temperature step by changing the liquid nitrogen injection rate often change the tunnel conditions. Recent work has shown that adding a layer consisting of carbon nanotubes to the surface can be used to impart a temperature step on the model surface with little change in the operating conditions. Unfortunately, this system physically degraded at 130 K and lost heating capability. This paper describes a modification of this technique enabling operation down to at least 77 K, well below the temperature reached in cryogenic facilities. This is possible because the CNT layer is in a polyurethane binder. This was tested on a Natural Laminar Flow model in a cryogenic facility and transition detection was successfully visualized at conditions from 200 K to 110 K. Results were also compared with the traditional temperature step method.

  1. Boundary-Layer Detection at Cryogenic Conditions Using Temperature Sensitive Paint Coupled with a Carbon Nanotube Heating Layer.

    PubMed

    Goodman, Kyle Z; Lipford, William E; Watkins, Anthony Neal

    2016-12-03

    Detection of flow transition on aircraft surfaces and models can be vital to the development of future vehicles and computational methods for evaluating vehicle concepts. In testing at ambient conditions, IR thermography is ideal for this measurement. However, for higher Reynolds number testing, cryogenic facilities are often used, in which IR thermography is difficult to employ. In these facilities, temperature sensitive paint is an alternative with a temperature step introduced to enhance the natural temperature change from transition. Traditional methods for inducing the temperature step by changing the liquid nitrogen injection rate often change the tunnel conditions. Recent work has shown that adding a layer consisting of carbon nanotubes to the surface can be used to impart a temperature step on the model surface with little change in the operating conditions. Unfortunately, this system physically degraded at 130 K and lost heating capability. This paper describes a modification of this technique enabling operation down to at least 77 K, well below the temperature reached in cryogenic facilities. This is possible because the CNT layer is in a polyurethane binder. This was tested on a Natural Laminar Flow model in a cryogenic facility and transition detection was successfully visualized at conditions from 200 K to 110 K. Results were also compared with the traditional temperature step method.

  2. Boundary-Layer Detection at Cryogenic Conditions Using Temperature Sensitive Paint Coupled with a Carbon Nanotube Heating Layer

    PubMed Central

    Goodman, Kyle Z.; Lipford, William E.; Watkins, Anthony Neal

    2016-01-01

    Detection of flow transition on aircraft surfaces and models can be vital to the development of future vehicles and computational methods for evaluating vehicle concepts. In testing at ambient conditions, IR thermography is ideal for this measurement. However, for higher Reynolds number testing, cryogenic facilities are often used, in which IR thermography is difficult to employ. In these facilities, temperature sensitive paint is an alternative with a temperature step introduced to enhance the natural temperature change from transition. Traditional methods for inducing the temperature step by changing the liquid nitrogen injection rate often change the tunnel conditions. Recent work has shown that adding a layer consisting of carbon nanotubes to the surface can be used to impart a temperature step on the model surface with little change in the operating conditions. Unfortunately, this system physically degraded at 130 K and lost heating capability. This paper describes a modification of this technique enabling operation down to at least 77 K, well below the temperature reached in cryogenic facilities. This is possible because the CNT layer is in a polyurethane binder. This was tested on a Natural Laminar Flow model in a cryogenic facility and transition detection was successfully visualized at conditions from 200 K to 110 K. Results were also compared with the traditional temperature step method. PMID:27918493

  3. Assessment of surface turbulent fluxes using geostationary satellite surface skin temperatures and a mixed layer planetary boundary layer scheme

    NASA Technical Reports Server (NTRS)

    Diak, George R.; Stewart, Tod R.

    1989-01-01

    A method is presented for evaluating the fluxes of sensible and latent heating at the land surface, using satellite-measured surface temperature changes in a composite surface layer-mixed layer representation of the planetary boundary layer. The basic prognostic model is tested by comparison with synoptic station information at sites where surface evaporation climatology is well known. The remote sensing version of the model, using satellite-measured surface temperature changes, is then used to quantify the sharp spatial gradient in surface heating/evaporation across the central United States. An error analysis indicates that perhaps five levels of evaporation are recognizable by these methods and that the chief cause of error is the interaction of errors in the measurement of surface temperature change with errors in the assigment of surface roughness character. Finally, two new potential methods for remote sensing of the land-surface energy balance are suggested which will relay on space-borne instrumentation planned for the 1990s.

  4. Thermal Vacuum Facility for Testing Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Knutson, Jeffrey R.; Sikora, Joseph G.

    2002-01-01

    A thermal vacuum facility for testing launch vehicle thermal protection systems by subjecting them to transient thermal conditions simulating re-entry aerodynamic heating is described. Re-entry heating is simulated by controlling the test specimen surface temperature and the environmental pressure in the chamber. Design requirements for simulating re-entry conditions are briefly described. A description of the thermal vacuum facility, the quartz lamp array and the control system is provided. The facility was evaluated by subjecting an 18 by 36 in. Inconel honeycomb panel to a typical re-entry pressure and surface temperature profile. For most of the test duration, the average difference between the measured and desired pressures was 1.6% of reading with a standard deviation of +/- 7.4%, while the average difference between measured and desired temperatures was 7.6% of reading with a standard deviation of +/- 6.5%. The temperature non-uniformity across the panel was 12% during the initial heating phase (t less than 500 sec.), and less than 2% during the remainder of the test.

  5. Testing superalloys at 2000 (1367) and 2200 F (1478 K) in a Mach 4.6 airstream

    NASA Technical Reports Server (NTRS)

    Land, D. W.; Williams, R. R.; Rinehart, W. A.

    1972-01-01

    Seven superalloy models were tested in a plasma arc tunnel facility. The test models were 3 in. (7.62cm) square flat surfaces (nominally 0.01 to 0.02 in. (0.0254 to 0.0508 cm) thick) held in a water-cooled wedge holder at a 60 deg (1.05 rad) angle of attack. The models were cycled 25 times (two were cycled 50 times) for 10 min each cycle in a Mach 4.6 test stream with the model leading edge temperature maintained at 2200 F (1478 K) (one at 2000 F (1367 K)). Backface temperatures were measured with four platinum-platinum 10% rhodium thermocouples and the front surface temperatures with an optical pyrometer. Four different nickel base alloy materials and one cobalt material were evaluated.

  6. Cyclic tests of P-bulb end-seal designs for a shuttle-type wing-elevon cove membrane seal

    NASA Technical Reports Server (NTRS)

    Hunt, L. R.

    1979-01-01

    Four P-bulb end seal designs were tested at room temperature in a cyclic seal test apparatus. Test results show that all the P-bulb end seals have the durability required for a 100 mission life (neglecting possible elevated-temperature effects) and three of the four P-bulbs provide an adequate seal against a 7.0-kPa air pressure differential. Antifriction material attached to the P-bulb rub surface reduced friction slightly but could degrade the sealing effectiveness. A flat rub surface molded into the P-bulb discouraged wrinkling and rolling and thereby reduced leakage. However, the P-bulbs lacked resilience, as indicated by increased leakage when P-bulb compression was reduced. The best P-bulb design tested included an antifriction interface bonded to a flat surface molded into the P-bulb.

  7. Hypervelocity Impact Testing of IM7/977-3 with Micro-Sized Particles

    NASA Technical Reports Server (NTRS)

    Smith, J. G.; Jegley, D. C.; Siochi, E. J.; Wells, B. K.

    2010-01-01

    Ground-based hypervelocity imapct testing was conducted on IM7/977-3 quasi-isotropic flat panels at normal incidence using micron-sized particles (i.e. less than or equal to 100 microns) of soda lime glass and olivine. Testing was performed at room temperature (RT) and 175 C with results from the 175 C test compared to those obtained at RT. Between 10 and 30 particles with velocities ranging from 5 to 13 km/s impacted each panel surface for each test temperature. Panels were ultrasonically scanned prior to and after impact testing to assess internal damage. Post-impact analysis included microscopic examination of the surface, determination of particle speed and location, and photomicroscopy for microcrack assessment. Internal damage was observed by ultrasonic inspection on panels impacted at 175 C, whereas damage for the RT impacted panels was confined to surface divets/craters as determined by microscopic analysis.

  8. Description and testing of three moisture sensors for measuring surface wetness on carbonate building stones

    USGS Publications Warehouse

    See, R.B.; Reddy, M.M.; Martin, R.G.

    1988-01-01

    Three moisture sensors were tested as a means for determining the surface wetness on carbonate building stones exposed to conditions that produce deposition of moisture. A relative-humidity probe, a gypsum-coated circuit grid, and a limestone-block resistor were tested as sensors for determining surface wetness. Sensors were tested under laboratory conditions of constant relative humidity and temperature and also under on-site conditions of variable relative humidity and temperature for eight weeks at Newcomb, NY. Laboratory tests indicated that relative humidity alone did not cause sensors to become saturated with water. However, the rates of drying indicated by the sensors after an initial saturation were inversely related to the relative humidity. On-site testing of the relative-humidity probe and the gypsum-coated ciruit grid indicated that they respond to a diurnal wetting and drying cycle; the limestone-block resistor responded only to rainfall.

  9. Thin film temperature sensor

    NASA Technical Reports Server (NTRS)

    Grant, H. P.; Przybyszewski, J. S.

    1980-01-01

    Thin film surface temperature sensors were developed. The sensors were made of platinum-platinum/10 percent rhodium thermocouples with associated thin film-to-lead wire connections and sputtered on aluminum oxide coated simulated turbine blades for testing. Tests included exposure to vibration, low velocity hydrocarbon hot gas flow to 1250 K, and furnace calibrations. Thermal electromotive force was typically two percent below standard type S thermocouples. Mean time to failure was 42 hours at a hot gas flow temperature of 1250 K and an average of 15 cycles to room temperature. Failures were mainly due to separation of the platinum thin film from the aluminum oxide surface. Several techniques to improve the adhesion of the platinum are discussed.

  10. Recent High Heat Flux Tests on W-Rod-Armored Mockups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NYGREN,RICHARD E.; YOUCHISON,DENNIS L.; MCDONALD,JIMMIE M.

    2000-07-18

    In the authors initial high heat flux tests on small mockups armored with W rods, done in the small electron beam facility (EBTS) at Sandia National Laboratories, the mockups exhibited excellent thermal performance. However, to reach high heat fluxes, they reduced the heated area to only a portion ({approximately}25%) of the sample. They have now begun tests in their larger electron beam facility, EB 1200, where the available power (1.2 MW) is more than enough to heat the entire surface area of the small mockups. The initial results indicate that, at a given power, the surface temperatures of rods inmore » the EB 1200 tests is somewhat higher than was observed in the EBTS tests. Also, it appears that one mockup (PW-10) has higher surface temperatures than other mockups with similar height (10mm) W rods, and that the previously reported values of absorbed heat flux on this mockup were too high. In the tests in EB 1200 of a second mockup, PW-4, absorbed heat fluxes of {approximately}22MW/m{sup 2} were reached but the corresponding surface temperatures were somewhat higher than in EBTS. A further conclusion is that the simple 1-D model initially used in evaluating some of the results from the EBTS testing was not adequate, and 3-D thermal modeling will be needed to interpret the results.« less

  11. Combined Effect of Textured Patterns and Graphene Flake Additives on Tribological Behavior under Boundary Lubrication

    PubMed Central

    Cai, Zhen-bing; Zhao, Lei; Zhang, Xu; Yue, Wen; Zhu, Min-hao

    2016-01-01

    A ball-on-plate wear test was employed to investigate the effectiveness of graphene (GP) nanoparticles dispersed in a synthetic-oil-based lubricant in reducing wear. The effect by area ratio of elliptically shaped dimple textures and elevated temperatures were also explored. Pure PAO4 based oil and a mixture of this oil with 0.01 wt% GP were compared as lubricants. At pit area ratio of 5%, GP-base oil effectively reduced friction and wear, especially at 60 and 100°C. Under pure PAO4 oil lubrication, the untextured surfaces gained low friction coefficients (COFs) and wear rates under 60 and 100°C. With increasing laser—texture area ratio, the COF and wear rate decreased at 25 and 150°C but increased at 60 and 100°C. Under the GP-based oil lubrication, the textured surface with 5% area ratio achieved the lowest COF among those of the area ratios tested at all test temperatures. Meanwhile, the textured surface with 20% area ratio obtained the highest COF among those of the area ratios. With the joint action of GP and texture, the textured surface with 10% area ratio exhibited the best anti-wear performance among all of the textured surfaces at all test temperatures. PMID:27054762

  12. Performance of a mullite reusable surface insulation system in a hypersonic stream

    NASA Technical Reports Server (NTRS)

    Hunt, L. R.

    1976-01-01

    The thermal and structural performance of a large panel of mullite reusable surface insulation (RSI) tiles was determined by a series of aerothermal tests in the Langley 8-foot high-temperature structures tunnel. The test panel was designed to represent a portion of the surface structure on a space shuttle orbiter fuselage along a 1,150 K isotherm with the mullite tile system bonded directly to the primary structure. Aerothermal tests were conducted at a free-stream Mach number of 6.7, a total temperature of 1,880 K, a unit Reynolds number of 4.6 million per meter, and dynamic pressure of 62 kPa. The thermal response of the mullite tile was as predicted, and the bond-line temperature did not exceed the design level of 570 K during a typical entry-heat cycle. Geometric irregularities of the tile gaps affected the tile edge temperatures when exposed to hypersonic flow. The tile coating demonstrated good toughness to particle impacts, but the coating cracked and flaked with thermal cycles. The gap filler of woven silica fibers appeared to hinder flow penetration into the gaps and withstood the flow shear of the present tests.

  13. High Temperatures Health Monitoring of the Condensed Water Height in Steam Pipe Systems

    NASA Technical Reports Server (NTRS)

    Lih, Shyh-Shiuh; Bar-Cohen, Yoseph; Lee, Hyeong Jae; Badescu, Mircea; Bao, Xiaoqi; Sherrit, Stewart; Takano, Nobuyuki; Ostlund, Patrick; Blosiu, Julian

    2013-01-01

    Ultrasonic probes were designed, fabricated and tested for high temperature health monitoring system. The goal of this work was to develop the health monitoring system that can determine the height level of the condensed water through the pipe wall at high temperature up to 250 deg while accounting for the effects of surface perturbation. Among different ultrasonic probe designs, 2.25 MHz probes with air backed configuration provide satisfactory results in terms of sensitivity, receiving reflections from the target through the pipe wall. A series of tests were performed using the air-backed probes under irregular conditions, such as surface perturbation and surface disturbance at elevated temperature, to qualify the developed ultrasonic system. The results demonstrate that the fabricated air-backed probes combined with advanced signal processing techniques offer the capability of health monitoring of steam pipe under various operating conditions.

  14. Effect of shroud geometry on the effectiveness of a short mixing stack gas eductor model

    NASA Astrophysics Data System (ADS)

    Kavalis, A. E.

    1983-06-01

    An existing apparatus for testing models of gas eductor systems using high temperature primary flow was modified to provide improved control and performance over a wide range of gas temperature and flow rates. Secondary flow pumping, temperature and pressure data were recorded for two gas eductor system models. The first, previously tested under hot flow conditions, consists of a primary plate with four tilted-angled nozzles and a slotted, shrouded mixing stack with two diffuser rings (overall L/D = 1.5). A portable pyrometer with a surface probe was used for the second model in order to identify any hot spots at the external surface of the mixing stack, shroud and diffuser rings. The second model is shown to have almost the same mixing and pumping performance with the first one but to exhibit much lower shroud and diffuser surface temperatures.

  15. Evaluation of the Effect of Surface Finish on High-Cycle Fatigue of SLM-IN718

    NASA Technical Reports Server (NTRS)

    Lambert, D. M.

    2016-01-01

    The surface finish of parts produced by additive manufacturing processes is much rougher than the surface finish generated by machining processes, and a rougher surface can reduce the fatigue strength of a part. This paper discusses an effort to quantify that reduction of strength in high-cycle fatigue for selective laser melt (SLM) coupons. A high-cycle fatigue (HCF) knockdown factor was estimated for Inconel 718, manufactured with the SLM process. This factor is the percentage reduction from the maximum stress in fatigue for low-stress ground (LSG) specimens to the maximum stress of those left with the original surface condition at the same fatigue life. Specimens were provided by a number of vendors, free to use their "best practice"; only one heat treat condition was considered; and several test temperatures were characterized, including room temperature, 800F, 1000F, and 1200F. The 1000F data had a large variance, and was omitted from consideration in this document. A first method used linear approximations extracted from the graphs, and only where data was available for both. A recommended knockdown factor of the as-built surface condition (average roughness of approximately 245 micro-inches/inch) versus low-stress ground condition (roughness no more than 4 micro-inches/inch) was established at approximately 1/3 or 33%. This is to say that for the as-built surface condition, a maximum stress of 2/3 of the stress for LSG can be expected to produce a similar life in the as-built surface condition. In this first evaluation, the knockdown factor did not appear to be a function of temperature. A second approach, the "KP method", incorporated the surface finish measure into a new parameter termed the pseudo-stress intensity factor, Kp, which was formulated to be similar to the fracture mechanics stress intensity factor. Using Kp, the variance seemed to be reduced across all sources, and knockdown factors were estimated using Kp over the range where data occurred. A plot of the results suggests that the knockdown factor is a function of temperature, and that for low lives the knockdown might be lower than the knockdown observed above about one million cycles, where it tended to stabilize. This was not universal for all temperatures tested. The higher temperature tests are thought to be influenced by the test temperature, which perhaps continued the aging process. Further evaluation of the method is suggested.

  16. A study on tensile deformation at room temperature and 650 °C in the directional solidified Ni-base superalloy GTD-111

    NASA Astrophysics Data System (ADS)

    Pauzi, AA; Ghaffar, MH Abdul; Chang, SY; Ng, GP; Husin, S.

    2017-10-01

    GTD-111 DS generally used for gas turbine blades is a high performance Ni-base superalloy. This alloy, with high volume of γ’ phase, has excellent tensile properties at high temperature. The effect of temperature on the tensile deformation of GTD-111 DS was investigated by using tensile test and microstructure evaluation of the fractured specimens. The tensile behaviour of GTD-111 DS was studied in the room temperature (RT) and 650 °C. From the yield strength results, the yield strength decreases from the average of 702.72 MPa to the average of 645.62 MPa with the increase of temperature from RT to 650 °C. The scanning electron microscope (SEM) results on fractured specimens confirmed that the tensile behaviour affected by deformation of the surface at 650 °C compared to fractured surface at RT. Based on the laboratory testing results, the correlation between tensile deformation of fractured surface and yield strength were discussed.

  17. Spatiotemporal investigation of long-term seasonal temperature variability in Libya

    NASA Astrophysics Data System (ADS)

    Elsharkawy, S. G.; Elmallah, E. S.

    2016-09-01

    Throughout this work, spatial and temporal variations of seasonal surface air temperature have been investigated. Moreover, the effects of relative internal (teleconnection) and external (solar) forcing on surface air temperature variability have been examined. Seasonal temperature time series covering 30 different meteorological locations and lasting over the last century are considered. These locations are classified into two groups based on their spatial distribution. One represents Coast Libya Surface Air Temperature (CLSAT), contains 19 locations, and the other represents Desert Libya Surface Air Temperature (DLSAT), contains 11 locations. Average temperature departure test is applied to investigate the nature of temperature variations. Temperature trends are analyzed using the nonparametric Mann-Kendall test and their coefficients are calculated using Sen's slope estimate. Cross-correlation and spectral analysis techniques are also applied. Our results showed temperature deviation from average within a band of ± 2°C at coast region, while ± 4°C at desert region. Extreme behavior intensions between summer and winter temperatures at coast region are noticed. Segmentation process declared reversal cooling/warming behavior within temperature records for all seasons. Desert region shows warming trend for all seasons with higher coefficients than obtained at coast region. Results obtained for spectral analysis show different short and medium signals and concluded that not only the spectral properties are different for different geographical regions but also different for different climatic seasons on regional scale as well. Cross-correlation results showed that highest influence for Rz upon coastal temperature is always in conjunction with highest influence of NAO upon coastal temperature during the period 1981-2010. Desert region does not obey this phenomenon, where highest temperature-NAO correlations at desert during autumn and winter seasons are not accompanied with highest correlations for temperature-Rz.

  18. Active Oxidation of a UHTC-Based CMC

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Splinter, Scott C.

    2012-01-01

    The active oxidation of ceramic matrix composites (CMC) is a severe problem that must be avoided for multi-use hypersonic vehicles. Much work has been performed studying the active oxidation of silicon-based CMCs such as C/SiC and SiC-coated carbon/carbon (C/C). Ultra high temperature ceramics (UTHC) have been proposed as a possible material solution for high-temperature applications on hypersonic vehicles. However, little work has been performed studying the active oxidation of UHTCs. The intent of this paper is to present test data indicating an active oxidation process for a UHTC-based CMC similar to the active oxidation observed with Si-based CMCs. A UHTC-based CMC was tested in the HyMETS arc-jet facility (or plasma wind tunnel, PWT) at NASA Langley Research Center, Hampton, VA. The coupon was tested at a nominal surface temperature of 3000 F (1650 C), with a stagnation pressure of 0.026 atm. A sudden and large increase in surface temperature was noticed with negligible increase in the heat flux, indicative of the onset of active oxidation. It is shown that the surface conditions, both temperature and pressure, fall within the region for a passive to active transition (PAT) of the oxidation.

  19. Dynamic Mechanical Properties and Fracture Surface Morphologies of Core-Shell Rubber (CSR) Toughened Epoxy at Liquid Nitrogen (Ln2) Temperatures

    NASA Technical Reports Server (NTRS)

    Wang, J.; Magee, D.; Schneider, J. A.

    2009-01-01

    The dynamic mechanical properties and fracture surface morphologies were evaluated for a commercial epoxy resin toughened with two types of core-shell rubber (CSR) toughening agents (Kane Ace(Registered TradeMark) MX130 and MX960). The impact resistance (R) was evaluated by the resulting breaking energy measured in Charpy impact tests conducted on an instrumented drop tower. The resulting fracture surface morphologies were examined using Scanning Electron Microscopy (SEM). Fractographic observations of the CSR toughened epoxy tested at ambient temperature, showed a fracture as characterized by slender dendrite textures with large voids. The increasing number of dendrites and decreasing size of scale-like texture with more CSR particles corresponded with increased R. As the temperature decreased to Liquid Nitrogen (LN 2), the fracture surfaces showed a fracture characterized by a rough, torn texture containing many river markings and deep furrows.

  20. Performance Evaluation of an Actuator Dust Seal for Lunar Operation

    NASA Technical Reports Server (NTRS)

    Delgado, Irebert R.; Gaier, James R.; Handschuh, Michael; Panko, Scott; Sechkar, Ed

    2013-01-01

    Exploration of extraterrestrial surfaces (e.g. moon, Mars, asteroid) will require durable space mechanisms that will survive potentially dusty surface conditions in addition to the hard vacuum and extreme temperatures of space. Baseline tests with lunar simulant were recently completed at NASA GRC on a new Low-Temperature Mechanism (LTM) dust seal for space actuator application. Following are top-level findings of the tests completed to date in vacuum using NU-LHT-2M lunar-highlands simulant. A complete set of findings are found in the conclusions section.Tests were run at approximately 10-7 torr with unidirectional rotational speed of 39 RPM.Initial break-in runs were performed at atmospheric conditions with no simulant. During the break-in runs, the maximum torque observed was 16.7 lbf-in. while the maximum seal outer diameter temperature was 103F. Only 0.4 milligrams of NU-LHT-2M simulant passed through the sealshaft interface in the first 511,000 cycles while under vacuum despite a chip on the secondary sealing surface.Approximately 650,000 of a planned 1,000,000 cycles were completed in vacuum with NU-LHT-2M simulant.Upon test disassembly NU-LHT-2M was found on the secondary sealing surface.

  1. Analytic and experimental evaluation of flowing air test conditions for selected metallics in a shuttle TPS application

    NASA Technical Reports Server (NTRS)

    Schaefer, J. W.; Tong, H.; Clark, K. J.; Suchsland, K. E.; Neuner, G. J.

    1975-01-01

    A detailed experimental and analytical evaluation was performed to define the response of TD nickel chromium alloy (20 percent chromium) and coated columbium (R512E on CB-752 and VH-109 on WC129Y) to shuttle orbiter reentry heating. Flight conditions important to the response of these thermal protection system (TPS) materials were calculated, and test conditions appropriate to simulation of these flight conditions in flowing air ground test facilities were defined. The response characteristics of these metallics were then evaluated for the flight and representative ground test conditions by analytical techniques employing appropriate thermochemical and thermal response computer codes and by experimental techniques employing an arc heater flowing air test facility and flat face stagnation point and wedge test models. These results were analyzed to define the ground test requirements to obtain valid TPS response characteristics for application to flight. For both material types in the range of conditions appropriate to the shuttle application, the surface thermochemical response resulted in a small rate of change of mass and a negligible energy contribution. The thermal response in terms of surface temperature was controlled by the net heat flux to the surface; this net flux was influenced significantly by the surface catalycity and surface emissivity. The surface catalycity must be accounted for in defining simulation test conditions so that proper heat flux levels to, and therefore surface temperatures of, the test samples are achieved.

  2. Testing for the Possible Influence of Unknown Climate Forcings upon Global Temperature Increases from 1950-2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Bruce T.; Knight, Jeff R.; Ringer, Mark A.

    2012-10-15

    Global-scale variations in the climate system over the last half of the twentieth century, including long-term increases in global-mean near-surface temperatures, are consistent with concurrent human-induced emissions of radiatively active gases and aerosols. However, such consistency does not preclude the possible influence of other forcing agents, including internal modes of climate variability or unaccounted for aerosol effects. To test whether other unknown forcing agents may have contributed to multidecadal increases in global-mean near-surface temperatures from 1950 to 2000, data pertaining to observed changes in global-scale sea surface temperatures and observed changes in radiatively active atmospheric constituents are incorporated into numericalmore » global climate models. Results indicate that the radiative forcing needed to produce the observed long-term trends in sea surface temperatures—and global-mean near-surface temperatures—is provided predominantly by known changes in greenhouse gases and aerosols. Further, results indicate that less than 10% of the long-term historical increase in global-mean near-surface temperatures over the last half of the twentieth century could have been the result of internal climate variability. In addition, they indicate that less than 25%of the total radiative forcing needed to produce the observed long-term trend in global-mean near-surface temperatures could have been provided by changes in net radiative forcing from unknown sources (either positive or negative). These results, which are derived from simple energy balance requirements, emphasize the important role humans have played in modifying the global climate over the last half of the twentieth century.« less

  3. Finding Blackbody Temperature and Emissivity on a Sub-Pixel Scale

    NASA Astrophysics Data System (ADS)

    Bernstein, D. J.; Bausell, J.; Grigsby, S.; Kudela, R. M.

    2015-12-01

    Surface temperature and emissivity provide important insight into the ecosystem being remotely sensed. Dozier (1981) proposed a an algorithm to solve for percent coverage and temperatures of two different surface types (e.g. sea surface, cloud cover, etc.) within a given pixel, with a constant value for emissivity assumed. Here we build on Dozier (1981) by proposing an algorithm that solves for both temperature and emissivity of a water body within a satellite pixel by assuming known percent coverage of surface types within the pixel. Our algorithm generates thermal infrared (TIR) and emissivity end-member spectra for the two surface types. Our algorithm then superposes these end-member spectra on emissivity and TIR spectra emitted from four pixels with varying percent coverage of different surface types. The algorithm was tested preliminarily (48 iterations) using simulated pixels containing more than one surface type, with temperature and emissivity percent errors of ranging from 0 to 1.071% and 2.516 to 15.311% respectively[1]. We then tested the algorithm using a MASTER image from MASTER collected as part of the NASA Student Airborne Research Program (NASA SARP). Here the temperature of water was calculated to be within 0.22 K of in situ data. The algorithm calculated emissivity of water with an accuracy of 0.13 to 1.53% error for Salton Sea pixels collected with MASTER, also collected as part of NASA SARP. This method could improve retrievals for the HyspIRI sensor. [1] Percent error for emissivity was generated by averaging percent error across all selected bands widths.

  4. Estimation of Surface Temperature and Heat Flux by Inverse Heat Transfer Methods Using Internal Temperatures Measured While Radiantly Heating a Carbon/Carbon Specimen up to 1920 F

    NASA Technical Reports Server (NTRS)

    Pizzo, Michelle; Daryabeigi, Kamran; Glass, David

    2015-01-01

    The ability to solve the heat conduction equation is needed when designing materials to be used on vehicles exposed to extremely high temperatures; e.g. vehicles used for atmospheric entry or hypersonic flight. When using test and flight data, computational methods such as finite difference schemes may be used to solve for both the direct heat conduction problem, i.e., solving between internal temperature measurements, and the inverse heat conduction problem, i.e., using the direct solution to march forward in space to the surface of the material to estimate both surface temperature and heat flux. The completed research first discusses the methods used in developing a computational code to solve both the direct and inverse heat transfer problems using one dimensional, centered, implicit finite volume schemes and one dimensional, centered, explicit space marching techniques. The developed code assumed the boundary conditions to be specified time varying temperatures and also considered temperature dependent thermal properties. The completed research then discusses the results of analyzing temperature data measured while radiantly heating a carbon/carbon specimen up to 1920 F. The temperature was measured using thermocouple (TC) plugs (small carbon/carbon material specimens) with four embedded TC plugs inserted into the larger carbon/carbon specimen. The purpose of analyzing the test data was to estimate the surface heat flux and temperature values from the internal temperature measurements using direct and inverse heat transfer methods, thus aiding in the thermal and structural design and analysis of high temperature vehicles.

  5. Heat flux microsensor measurements and calibrations

    NASA Technical Reports Server (NTRS)

    Terrell, James P.; Hager, Jon M.; Onishi, Shinzo; Diller, Thomas E.

    1992-01-01

    A new thin-film heat flux gage has been fabricated specifically for severe high temperature operation using platinum and platinum-10 percent rhodium for the thermocouple elements. Radiation calibrations of this gage were performed at the AEDC facility over the available heat flux range (approx. 1.0 - 1,000 W/cu cm). The gage output was linear with heat flux with a slight increase in sensitivity with increasing surface temperature. Survivability of gages was demonstrated in quench tests from 500 C into liquid nitrogen. Successful operation of gages to surface temperatures of 750 C has been achieved. No additional cooling of the gages is required because the gages are always at the same temperature as the substrate material. A video of oxyacetylene flame tests with real-time heat flux and temperature output is available.

  6. Impact of cycling at low temperatures on the safety behavior of 18650-type lithium ion cells: Combined study of mechanical and thermal abuse testing accompanied by post-mortem analysis

    NASA Astrophysics Data System (ADS)

    Friesen, Alex; Horsthemke, Fabian; Mönnighoff, Xaver; Brunklaus, Gunther; Krafft, Roman; Börner, Markus; Risthaus, Tim; Winter, Martin; Schappacher, Falko M.

    2016-12-01

    The impact of cycling at low temperatures on the thermal and mechanical abuse behavior of commercial 18650-type lithium ion cells was compared to fresh cells. Post-mortem analyses revealed a deposition of high surface area lithium (HSAL) metal on the graphite surface accompanied by severe electrolyte decomposition. Heat wait search (HWS) tests in an accelerating rate calorimeter (ARC) were performed to investigate the thermal abuse behavior of aged and fresh cells under quasi-adiabatic conditions, showing a strong shift of the onset temperature for exothermic reactions. HSAL deposition promotes the reduction of the carbonate based electrolyte due to the high reactivity of lithium metal with high surface area, leading to a thermally induced decomposition of the electrolyte to produce volatile gaseous products. Nail penetration tests showed a change in the thermal runaway (TR) behavior affected by the decomposition reaction. This study indicates a greater thermal hazard for LIB cells at higher SOC and experiencing aging at low temperature.

  7. Manufacture of Cryoshroud Surfaces for Space Simulation Chambers

    NASA Technical Reports Server (NTRS)

    Ash, Gary S.

    2008-01-01

    Environmental test chambers for space applications use internal shrouds to simulate temperature conditions encountered in space. Shroud temperatures may range from +150 C to -253 C (20 K), and internal surfaces are coated with special high emissivity/absorptivity paints. To obtain temperature uniformity over large areas, detailed thermal design is required for placement of tubing for gaseous or liquid nitrogen and helium and other exotic heat exchange fluids. The recent increase in space simulation activity related to the James Webb Space Telescope has led to the design of new cryogenic shrouds to meet critical needs in instrument package testing. This paper will review the design and manufacturing of shroud surfaces for several of these programs, including fabrication methods and the selection and application of paints for simulation chambers.

  8. A coaxial thermocouple for shock tunnel applications.

    PubMed

    Menezes, Viren; Bhat, Sandeep

    2010-10-01

    A chromel-constantan coaxial surface junction thermocouple has been designed, fabricated, calibrated, and tested to measure the temperature-time history on the surface of a body in a hypersonic freestream of Mach 8 in a shock tunnel. The coaxial thermocouple with a diameter of 3.25 mm was flush mounted in the surface of a hemisphere of 25 mm diameter. The hypersonic freestream was of a very low temperature and density, and had a flow time of about a millisecond. Preliminary test results indicate that the thermocouple is quite sensitive to low temperature-rarefied freestreams, and also has a response time of a few microseconds (≈5 μs) to meet the requirements of short duration transient measurements. The sensor developed is accurate, robust, reproducible, and is highly inexpensive.

  9. ASTM E 1559 method for measuring material outgassing/deposition kinetics has applications to aerospace, electronics, and semiconductor industries

    NASA Technical Reports Server (NTRS)

    Garrett, J. W.; Glassford, A. P. M.; Steakley, J. M.

    1994-01-01

    The American Society for Testing and Materials has published a new standard test method for characterizing time and temperature-dependence of material outgassing kinetics and the deposition kinetics of outgassed species on surfaces at various temperatures. This new ASTM standard, E 1559(1), uses the quartz crystal microbalance (QCM) collection measurement approach. The test method was originally developed under a program sponsored by the United States Air Force Materials Laboratory (AFML) to create a standard test method for obtaining outgassing and deposition kinetics data for spacecraft materials. Standardization by ASTM recognizes that the method has applications beyond aerospace. In particular, the method will provide data of use to the electronics, semiconductor, and high vacuum industries. In ASTM E 1559 the material sample is held in vacuum in a temperature-controlled effusion cell, while its outgassing flux impinges on several QCM's which view the orifice of the effusion cell. Sample isothermal total mass loss (TML) is measured as a function of time from the mass collected on one of the QCM's which is cooled by liquid nitrogen, and the view factor from this QCM to the cell. The amount of outgassed volatile condensable material (VCM) on surfaces at higher temperatures is measured as a function of time during the isothermal outgassing test by controlling the temperatures of the remaining QCM's to selected values. The VCM on surfaces at temperatures in between those of the collector QCM's is determined at the end of the isothermal test by heating the QCM's at a controlled rate and measuring the mass loss from the end of the QCM's as a function of time and temperature. This reevaporation of the deposit collected on the QCM's is referred to as QCM thermogravimetric analysis. Isothermal outgassing and deposition rates can be determined by differentiating the isothermal TML and VCM data, respectively, while the evaporation rates of the species can be obtained as a function of temperature by differentiating the QCM thermogravimetric analysis data.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swarctz, Christopher; Alijallis, Elias; Hunter, Scott Robert

    In this study, a closed loop low-temperature wind tunnel was custom-built and uniquely used to investigate the anti-icing mechanism of superhydrophobic surfaces in regulated flow velocities, temperatures, humidity, and water moisture particle sizes. Silica nanoparticle-based hydrophobic coatings were tested as superhydrophobic surface models. During tests, images of ice formation were captured by a camera and used for analysis of ice morphology. Prior to and after wind tunnel testing, apparent contact angles of water sessile droplets on samples were measured by a contact angle meter to check degradation of surface superhydrophobicity. A simple peel test was also performed to estimate adhesionmore » of ice on the surfaces. When compared to an untreated sample, superhydrophobic surfaces inhibited initial ice formation. After a period of time, random droplet strikes attached to the superhydrophobic surfaces and started to coalesce with previously deposited ice droplets. These sites appear as mounds of accreted ice across the surface. The appearance of the ice formations on the superhydrophobic samples is white rather than transparent, and is due to trapped air. These ice formations resemble soft rime ice rather than the transparent glaze ice seen on the untreated sample. Compared to untreated surfaces, the icing film formed on superhydrophobic surfaces was easy to peel off by shear flows.« less

  11. Effect of surface oxidation on the onset of nucleate boiling in a materials test reactor coolant channel

    DOE PAGES

    Forrest, Eric C.; Don, Sarah M.; Hu, Lin -Wen; ...

    2016-02-29

    The onset of nucleate boiling (ONB) serves as the thermal-hydraulic operating limit for many research and test reactors. However, boiling incipience under forced convection has not been well-characterized in narrow channel geometries or for oxidized surface conditions. This study presents experimental data for the ONB in vertical upflow of deionized (DI) water in a simulated materials test reactor (MTR) coolant channel. The channel gap thickness and aspect ratio were 1.96 mm and 29:1, respectively. Boiling surface conditions were carefully controlled and characterized, with both heavily oxidized and native oxide surfaces tested. Measurements were performed for mass fluxes ranging from 750more » to 3000 kg/m 2s and for subcoolings ranging from 10 to 45°C. ONB was identified using a combination of high-speed visual observation, surface temperature measurements, and channel pressure drop measurements. Surface temperature measurements were found to be most reliable in identifying the ONB. For the nominal (native oxide) surface, results indicate that the correlation of Bergles and Rohsenow, when paired with the appropriate single-phase heat transfer correlation, adequately predicts the ONB heat flux. Furthermore, incipience on the oxidized surface occurred at a higher heat flux and superheat than on the plain surface.« less

  12. The influence of urban heat islands and socioeconomic factors on the spatial distribution of Aedes aegypti larval habitats.

    PubMed

    De Azevedo, Thiago S; Bourke, Brian Patrick; Piovezan, Rafael; Sallum, Maria Anice M

    2018-05-08

    We addressed the potential associations among the temporal and spatial distribution of larval habitats of Aedes (Stegomyia) aegypti, the presence of urban heat islands and socioeconomic factors. Data on larval habitats were collected in Santa Bárbara d'Oeste, São Paulo, Brazil, from 2004 to 2006, and spatial and temporal variations were analysed using a wavelet-based approach. We quantified urban heat islands by calculating surface temperatures using the results of wavelet analyses and grey level transformation from Thematic Mapper images (Landsat 5). Ae. aegypti larval habitats were geo-referenced corresponding to the wavelet analyses to test the potential association between geographical distribution of habitats and surface temperature. In an inhomogeneous spatial point process, we estimated the frequency of occurrence of larval habitats in relation to temperature. The São Paulo State Social Vulnerability Index in the municipality of Santa Barbára d'Oeste was used to test the potential association between presence of larval habitats and social vulnerability. We found abundant Ae. aegypti larval habitats in areas of higher surface temperature and social vulnerability and fewer larval habitats in areas with lower surface temperature and social vulnerability.

  13. Temperature Distribution Measurement of The Wing Surface under Icing Conditions

    NASA Astrophysics Data System (ADS)

    Isokawa, Hiroshi; Miyazaki, Takeshi; Kimura, Shigeo; Sakaue, Hirotaka; Morita, Katsuaki; Japan Aerospace Exploration Agency Collaboration; Univ of Notre Dame Collaboration; Kanagawa Institute of Technology Collaboration; Univ of Electro-(UEC) Team, Comm

    2016-11-01

    De- or anti-icing system of an aircraft is necessary for a safe flight operation. Icing is a phenomenon which is caused by a collision of supercooled water frozen to an object. For the in-flight icing, it may cause a change in the wing cross section that causes stall, and in the worst case, the aircraft would fall. Therefore it is important to know the surface temperature of the wing for de- or anti-icing system. In aerospace field, temperature-sensitive paint (TSP) has been widely used for obtaining the surface temperature distribution on a testing article. The luminescent image from the TSP can be related to the temperature distribution. (TSP measurement system) In icing wind tunnel, we measured the surface temperature distribution of the wing model using the TSP measurement system. The effect of icing conditions on the TSP measurement system is discussed.

  14. Surface temperature effect on subsonic stall.

    NASA Technical Reports Server (NTRS)

    Macha, J. M.; Norton, D. J.; Young, J. C.

    1972-01-01

    Results of an analytical and experimental study of boundary layer flow over an aerodynamic surface rejecting heat to a cool environment. This occurs following reentry of a Space Shuttle vehicle. Analytical studies revealed that a surface to freestream temperature ratio, greater than unity tended to destabilize the boundary layer, hastening transition and separation. Therefore, heat transfer accentuated the effect of an adverse pressure gradient. Wind tunnel tests of a 0012-64 NACA airfoil showed that the stall angle was significantly reduced while drag tended to increase for freestream temperature ratios up to 2.2.

  15. Pressure and Temperature Sensitive Paint Field System

    NASA Technical Reports Server (NTRS)

    Sprinkle, Danny R.; Obara, Clifford J.; Amer, Tahani R.; Faulcon, Nettie D.; Carmine, Michael T.; Burkett, Cecil G.; Pritchard, Daniel W.; Oglesby, Donald M.

    2004-01-01

    This report documents the Pressure and Temperature Sensitive Paint Field System that is used to provide global surface pressure and temperature measurements on models tested in Langley wind tunnels. The system was developed and is maintained by Global Surface Measurements Team personnel of the Data Acquisition and Information Management Branch in the Research Facilities Services Competency. Descriptions of the system hardware and software are presented and operational procedures are detailed.

  16. Quantitative Infrared Image Analysis Of Thermally-Thin Cellulose Surface Temperatures During Upstream and Downstream Microgravity Flame Spread from A Central Ignition Line

    NASA Technical Reports Server (NTRS)

    Olson, Sandra L.; Lee, J. R.; Fujita, O.; Kikuchi, M.; Kashiwagi, T.

    2012-01-01

    Surface view calibrated infrared images of ignition and flame spread over a thin cellulose fuel were obtained at 30 Hz during microgravity flame spread tests in the 10 second Japan Microgravity Center (JAMIC). The tests also used a color video of the surface view and color images of the edge view using 35 millimeter 1600 Kodak Ektapress film at 2 Hz. The cellulose fuel samples (50% long fibers from lumi pine and 50% short fibers from birch) were made with an area density of 60 grams per square meters. The samples were mounted in the center of a 12 centimeter wide by 16 centimeter tall flow duct that uses a downstream fan to draw the air through the flow duct. Samples were ignited after the experiment package was released using a straight hot wire across the center of the 7.5 centimeter wide by 14 centimeter long samples. One case, at 1 atmosphere 35%O2 in N2, at a forced flow of 10 centimeters per second, is presented here. In this case, as the test progresses, the single flame begins to separate into simultaneous upstream and downstream flames. Surface temperature profiles are evaluated as a function of time, and temperature gradients for upstream and downstream flame spread are measured. Flame spread rates from IR image data are compared to visible image spread rate data. IR blackbody temperatures are compared to surface thermocouple readings to evaluate the effective emissivity of the pyrolyzing surface. Preheat lengths are evaluated both upstream and downstream of the central ignition point. A surface energy balance estimates the net heat flux from the flame to the fuel surface along the length of the fuel.

  17. Detection of moisture and moisture related phenomena from Skylab. [correlation of brightness and antenna temperature with soil moisture for Texas and Kansas test sites

    NASA Technical Reports Server (NTRS)

    Eagleman, J. R.; Pogge, E. C.; Moore, R. K. (Principal Investigator); Hardy, N.; Lin, W.; League, L.

    1974-01-01

    The author has identified the following significant results. Skylab 2 data for June 5, 1973 (Texas site) relates favorably with previously calculated aircraft data when correlating brightness temperature to soil moisture. However, more detailed work is needed to determine the corrected surface temperature. In addition, correlations between the S194 antenna temperature and soil moisture have been obtained for five sets of Skylab data. The best correlations were obtained for the surface to one inch depth in four cases and for surface to two inches depth for the fifth case. Correlation coefficients for the surface to one inch depth were -0.98, -0.95, -0.90, -0.82, and -0.80.

  18. Thermal sensing of cryogenic wind tunnel model surfaces Evaluation of silicon diodes

    NASA Technical Reports Server (NTRS)

    Daryabeigi, K.; Ash, R. L.; Dillon-Townes, L. A.

    1986-01-01

    Different sensors and installation techniques for surface temperature measurement of cryogenic wind tunnel models were investigated. Silicon diodes were selected for further consideration because of their good inherent accuracy. Their average absolute temperature deviation in comparison tests with standard platinum resistance thermometers was found to be 0.2 K in the range from 125 to 273 K. Subsurface temperature measurement was selected as the installation technique in order to minimize aerodynamic interference. Temperature distortion caused by an embedded silicon diode was studied numerically.

  19. Thermal sensing of cryogenic wind tunnel model surfaces - Evaluation of silicon diodes

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Ash, Robert L.; Dillon-Townes, Lawrence A.

    1986-01-01

    Different sensors and installation techniques for surface temperature measurement of cryogenic wind tunnel models were investigated. Silicon diodes were selected for further consideration because of their good inherent accuracy. Their average absolute temperature deviation in comparison tests with standard platinum resistance thermometers was found to be 0.2 K in the range from 125 to 273 K. Subsurface temperature measurement was selected as the installation technique in order to minimize aerodynamic interference. Temperature distortion caused by an embedded silicon diode was studied numerically.

  20. Evaluation of new in vitro efficacy test for antimicrobial surface activity reflecting UK hospital conditions.

    PubMed

    Ojeil, M; Jermann, C; Holah, J; Denyer, S P; Maillard, J-Y

    2013-12-01

    Antimicrobial surfaces aim to reduce microbial bioburden and improve hygiene. The current antimicrobial surface efficacy test (ISO22196) is an initial screening test but its conditions, high temperature (37°C) and relative humidity (RH) (100%) bear little relationship to in-use conditions. To develop an antimicrobial surface efficacy test providing a realistic second-tier test, simulating in-use conditions. Surface relative humidity, temperature and soiling were measured over one year at a UK hospital, enabling realistic parameters to be set for our surface efficacy test. A nebulizer, connected to a cascade impactor, aerosolized and uniformly deposited a Staphylococcus aureus suspension over test copper alloys and control stainless steel surfaces. Bacteria were enumerated following nebulization, and after a range of contact times, under [20°C, 50% RH] and [20°C, 40% RH] parameters reflecting in-use conditions; [37°C, 100% RH] was employed to reflect conditions used in ISO22196. All copper alloys produced a >4 log10 reduction after 24h under all conditions tested. Copper alloys were more effective at [37°C, 100% RH] showing a >4 log10 reduction after 30 min than at in-use conditions [20°C, 50% RH and 20°C, 40% RH], for which 60 min was required to achieve the same level of kill, for most but not all alloys. The use of the nebulizer to deposit bacterial inocula on surfaces showed little variability in results. Our method was more discriminatory than the ISO22196 enabling distinction between the bactericidal surface activity, which allows for a more rigorous selection of antimicrobial surfaces for potential use in healthcare settings. Copyright © 2013 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  1. A Nonequilibrium Finite-Rate Carbon Ablation Model for Radiating Earth Re-entry Flows

    DTIC Science & Technology

    2015-09-17

    model was a short half-cylinder made of isomolded graphite and was tested in 8.6 km/ s Earth entry ow. The model surface was heated within a temperature...capsule [98, 49, 112]. For the Star- dust return capsule that had an Earth entry velocity of 12 km/ s , equilibrium surface recession was over predicted...was tested at 8.6 km/ s Earth entry ow monitored by ultraviolet (UV) spec- trometry. The experiments pre-heated the model to high temperatures to

  2. Remote measurement of salinity: Repeated measurements over a single flight line near the Mississippi Sound

    NASA Technical Reports Server (NTRS)

    Thomann, G. C.

    1973-01-01

    Experiments to remotely determine sea water salinity from measurements of the sea surface radiometric temperature over the Mississippi Sound were conducted. The line was flown six times at an altitude of 244 meters. The radiometric temperature of the sea surface was measured in two spectral intervals. The specifications of the equipment and the conditions under which the tests were conducted are described. Results of the tests are presented in the form of graphs.

  3. Tribological properties of multifunctional coatings with Shape Memory Effect in abrasive wear

    NASA Astrophysics Data System (ADS)

    Blednova, Zh. M.; Dmitrenko, D. V.; Balaev, E. U. O.

    2018-01-01

    The article gives research results of the abrasive wear process on samples made of Steel 1045, U10 and with applied composite surface layer "Nickel-Multicomponent material with Shape Memory Effect (SME) based on TiNi". For the tests we have chosen TiNiZr, which is in the martensite state and TiNiHfCu, which is in the austenitic state at the test temperature. The formation of the surface layer was carried out by high-speed oxygen-fuel deposition in a protective atmosphere of argon. In the wear test, Al2O3 corundum powder was used as an abrasive. It is shown that the wear rate of samples with a composite surface layer of multicomponent materials with SME is significantly reduced in comparison with the base, which is explained by reversible phase transformations of the surface layer with SME. After carrying out the additional surface plastic deformation (SPD), the resistance of the laminated composition to abrasion wear has greatly enhanced, due to the reinforcing effect of the SPD. It is recommended for products working in conditions of abrasive wear and high temperatures to use the complex formation technology of the surface composition "steel-nickel-material with high-temperature SME", including preparation of the substrate surface and the deposited material, high-speed spraying in the protective atmosphere of argon, followed by SPD.

  4. Numerical simulation of the world ocean circulation

    NASA Technical Reports Server (NTRS)

    Takano, K.; Mintz, Y.; Han, Y. J.

    1973-01-01

    A multi-level model, based on the primitive equations, is developed for simulating the temperature and velocity fields produced in the world ocean by differential heating and surface wind stress. The model ocean has constant depth, free slip at the lower boundary, and neglects momentum advection; so that there is no energy exchange between the barotropic and baroclinic components of the motion, although the former influences the latter through temperature advection. The ocean model was designed to be coupled to the UCLA atmospheric general circulation model, for the study of the dynamics of climate and climate changes. But here, the model is tested by prescribing the observed seasonally varying surface wind stress and the incident solar radiation, the surface air temperature and humidity, cloudiness and the surface wind speed, which, together with the predicted ocean surface temperature, determine the surface flux of radiant energy, sensible heat and latent heat.

  5. Gas diffusion electrode setup for catalyst testing in concentrated phosphoric acid at elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiberg, Gustav K. H., E-mail: gustav.wiberg@gmail.com, E-mail: m.arenz@chem.ku.dk; Fleige, Michael; Arenz, Matthias, E-mail: gustav.wiberg@gmail.com, E-mail: m.arenz@chem.ku.dk

    2015-02-15

    We present a detailed description of the construction and testing of an electrochemical cell setup allowing the investigation of a gas diffusion electrode containing carbon supported high surface area catalysts. The setup is designed for measurements in concentrated phosphoric acid at elevated temperature, i.e., very close to the actual conditions in high temperature proton exchange membrane fuel cells (HT-PEMFCs). The cell consists of a stainless steel flow field and a PEEK plastic cell body comprising the electrochemical cell, which exhibits a three electrode configuration. The cell body and flow field are braced using a KF-25 vacuum flange clamp, which allowsmore » an easy assembly of the setup. As demonstrated, the setup can be used to investigate temperature dependent electrochemical processes on high surface area type electrocatalysts, but it also enables quick screening tests of HT-PEMFC catalysts under realistic conditions.« less

  6. Gas diffusion electrode setup for catalyst testing in concentrated phosphoric acid at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Wiberg, Gustav K. H.; Fleige, Michael; Arenz, Matthias

    2015-02-01

    We present a detailed description of the construction and testing of an electrochemical cell setup allowing the investigation of a gas diffusion electrode containing carbon supported high surface area catalysts. The setup is designed for measurements in concentrated phosphoric acid at elevated temperature, i.e., very close to the actual conditions in high temperature proton exchange membrane fuel cells (HT-PEMFCs). The cell consists of a stainless steel flow field and a PEEK plastic cell body comprising the electrochemical cell, which exhibits a three electrode configuration. The cell body and flow field are braced using a KF-25 vacuum flange clamp, which allows an easy assembly of the setup. As demonstrated, the setup can be used to investigate temperature dependent electrochemical processes on high surface area type electrocatalysts, but it also enables quick screening tests of HT-PEMFC catalysts under realistic conditions.

  7. Effect of ageing time and temperature on corrosion behaviour of aluminum alloy 2014

    NASA Astrophysics Data System (ADS)

    Gadpale, Vikas; Banjare, Pragya N.; Manoj, Manoranjan Kumar

    2018-03-01

    In this paper, the effect of corrosion behaviour of aluminium alloy 2014 were studied by potentiodynamic polarization in 1 mole of NaCl solution of aged sample. The experimental testing results concluded that, corrosion resistance of Aluminum alloy 2014 degraded with the increasing the temperature (150°C & 200°C) and time of ageing. Corroded surface of the aged specimens was tested under optical microscopes for microstructures for phase analysis. Optical micrographs of corroded surfaces showed general corrosion and pitting corrosion. The corrosion resistance of lower ageing temperature and lower ageing time is higher because of its fine distribution of precipitates in matrix phase.

  8. Experimental study on corrosion and precipitation in non-isothermal Pb-17Li system for development of liquid breeder blanket of fusion reactor

    NASA Astrophysics Data System (ADS)

    Kondo, Masatoshi; Ishii, Masaomi; Norimatsu, Takayoshi; Muroga, Takeo

    2017-07-01

    The corrosion characteristics of RAFM steel JLF-1 in a non-isothermal Pb-17Li flowing system were investigated by means of the corrosion test using a non-isothermal mixing pot. The corrosion test was performed at 739K with a temperature gradient of 14K for 500 hours. The corrosion tests at a static and a flowing conditions in an isothermal Pb-17Li system were also performed at the same temperature for the same duration with the non-isothermal test. Then, the effect of mass transfer both by the flow and the temperature gradient on the corrosion behaviors was featured by the comparison of these results. The corrosion was caused by the dissolution of Fe and Cr from the steel surface into the flowing Pb-17Li. The specimen surface revealed a fine granular microstructure after the corrosion tests. A large number of pebbleshaped protrusions were observed on the specimen surface. This microstructure was different from the original martensite microstructure of the steel, and might be formed by the influence of the reaction with Li component in the alloy. The formation of the granular microstructure was accelerated by the flow and the temperature gradient. Some pebble-shaped protrusions had gaps at their bases. The removal of these pebble-shaped granules by the flowing Pb-17Li might cause a small-scale corrosion-erosion. The results of metallurgical analysis indicated that a large-scale corrosion-erosion was also caused by their destruction of the corroded layer on the surface. The non-isothermal mixing pot equipped a cold trap by a metal mesh in the low temperature region. The metal elements of Fe and Cr were recovered as they precipitated on the surface of the metal mesh. It was found that a Fe-Cr binary intermetallic compound was formed in the precipitation procedure. The overall mass transfer coefficient for the dissolution type corrosion in the non-isothermal system was much bigger than that in the isothermal system. This model evaluation indicated that the temperature gradient accelerated the corrosion.

  9. Comparison of Orbiter STS-2 development flight instrumentation data with thermal math model predictions

    NASA Technical Reports Server (NTRS)

    Norman, I.; Rochelle, W. C.; Kimbrough, B. S.; Ritrivi, C. A.; Ting, P. C.; Dotts, R. L.

    1982-01-01

    Thermal performance verification of Reusable Surface Insulation (RSI) has been accomplished by comparisons of STS-2 Orbiter Flight Test (OFT) data with Thermal Math Model (TMM) predictions. The OFT data was obtained from Development Flight Instrumentation RSI plug and gap thermocouples. Quartertile RSI TMMs were developed using measured flight data for surface temperature and pressure environments. Reference surface heating rates, derived from surface temperature data, were multiplied by gap heating ratios to obtain tile sidewall heating rates. This TMM analysis resulted in good agreement of predicted temperatures with flight data for thermocouples located in the RSI, Strain Isolation Pad, filler bar and structure.

  10. The effects of temperature on the surface resistivity of polyvinyl alcohol (PVA) thin films doped with silver nanoparticles and multi-walled carbon-nanotubes for optoelectronic and sensor applications

    NASA Astrophysics Data System (ADS)

    Polius, Jemilia R.

    This thesis reports measurements of the temperature-dependent surface resistivity of multi-wall carbon nanotube doped polyvinyl alcohol (PVA) thin films. In the temperature range from 22°C to 40°C in a humidity controlled environment, it was found that the surface resistivity decreased initially but raised as the temperature continued to increase. I report surface resistivity measurements as a function of temperature of both multiwall and single-wall carbon nanotube doped PVA thin films, with comparison of the similarities and differences between the two types of film types. This research was conducted using the combined instrumentation of the KEITHLEY Model 6517 Electrometer and the KEITHLEY Model 8009 resistivity test fixture using both commercial and in-house produced organic thin films.

  11. 30 CFR 7.101 - Surface temperature tests.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... in the application, § 7.97(a)(3). (iii) If a wet exhaust conditioner is used to cool the exhaust gas... temperature tests. The test for determination of exhaust gas cooling efficiency described in § 7.102 may be..., by volume, of methane in the intake air mixture until all parts of the engine, exhaust coolant system...

  12. 30 CFR 7.101 - Surface temperature tests.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... in the application, § 7.97(a)(3). (iii) If a wet exhaust conditioner is used to cool the exhaust gas... temperature tests. The test for determination of exhaust gas cooling efficiency described in § 7.102 may be..., by volume, of methane in the intake air mixture until all parts of the engine, exhaust coolant system...

  13. 30 CFR 7.101 - Surface temperature tests.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... in the application, § 7.97(a)(3). (iii) If a wet exhaust conditioner is used to cool the exhaust gas... temperature tests. The test for determination of exhaust gas cooling efficiency described in § 7.102 may be..., by volume, of methane in the intake air mixture until all parts of the engine, exhaust coolant system...

  14. 30 CFR 7.101 - Surface temperature tests.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... in the application, § 7.97(a)(3). (iii) If a wet exhaust conditioner is used to cool the exhaust gas... temperature tests. The test for determination of exhaust gas cooling efficiency described in § 7.102 may be..., by volume, of methane in the intake air mixture until all parts of the engine, exhaust coolant system...

  15. 30 CFR 7.101 - Surface temperature tests.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... in the application, § 7.97(a)(3). (iii) If a wet exhaust conditioner is used to cool the exhaust gas... temperature tests. The test for determination of exhaust gas cooling efficiency described in § 7.102 may be..., by volume, of methane in the intake air mixture until all parts of the engine, exhaust coolant system...

  16. Effect of polymer properties and adherend surfaces on adhesion. [titanium, aluminum

    NASA Technical Reports Server (NTRS)

    Dwight, D. W.; Counts, M. E.; Wightman, J. P.

    1975-01-01

    The surface properties associated with good adhesive joints were evaluated in terms of application of adhesive bonding in aerospace technology. The physical and chemical nature was determined of Ti and Al adherend surfaces after various surface treatments, and the effects on fracture surfaces of high temperature aging, and variations in amide, anhydride, and solvent during polymer synthesis. The effects were characterized of (1) high temperature during shear strength testing, (2) fiber-reinforced composites as adherends, (3) acid/base nature of adherends, (4) aluminum powder adhesive filler, and (5) bonding pressure.

  17. Effects of High Temperature Exposures on Fatigue Life of Disk Superalloys

    NASA Technical Reports Server (NTRS)

    Gabb, Tim P.; Telesman, Jack; Kantzos, Pete T.; Smith, James W.; Browning, Paul F.

    2004-01-01

    The effects on fatigue life of high temperature exposures simulating service conditions were considered for two disk superalloys. Powder metallurgy processed, supersolvus heat treated Udimet (trademark) 720 and ME3 fatigue specimens were exposed in air at temperatures of 650 to 704 C, for times of 100 h to over 1000 h. They were then tested using conventional fatigue tests at 650 and 704 C, to determine the effects of exposure on fatigue resistance. Cyclic dwell verification tests were also performed to contrast the effects of intermixed exposures and fatigue cycles. The prior exposures reduced life by up to 70% and increased the scatter in life, compared to unexposed levels. Cyclic dwell tests reduced lives even more. Fractographic evaluations indicated the failure mode was shifted by the exposures and cyclic dwells from predominantly internal to often surface crack initiations. The increased scatter in life was related to the competition between internal crack initiations at inclusions or large grains producing longer lives, and surface crack initiations at an environmentally affected surface layer producing shorter lives.

  18. The friction and wear of carbon-carbon composites for aircraft brakes

    NASA Astrophysics Data System (ADS)

    Hutton, Toby

    Many carbon-carbon composite aircraft brakes encounter high wear rates during low energy braking operations. The work presented in this thesis addresses this issue, but it also elucidates the microstructural changes and wear mechanisms that take place in these materials during all braking conditions encountered by aircraft brakes. A variety of investigations were conducted using friction and wear testing, as well as examination of wear surfaces and wear debris using OM, SEM, X-RD, TGA and Density Gradient Separation (DOS). Friction and wear tests were conducted on a PAN fibre/CVI matrix carbon-carbon composite (Dunlop) and a pitch fibre/Resin-CVI matrix carbon-carbon composite (Bendix). Extensive testing was undertaken on the Dunlop composites to asses the effects of composite architecture, fibre orientation and heat treatment temperatures on friction and wear. Other friction and wear tests, conducted on the base Dunlop composite, were used to investigate the relative influences of temperature and sliding speed. It was found that the effect of temperature was dominant over composite architecture, fibre orientation and sliding speed in governing the friction and wear performance of the Dunlop composites. The development of bulk temperatures in excess of 110 C by frictional heating resulted in smooth friction and a low wear rate. Reducing heat treatment temperature also reduced the thermal conductivity producing high interface temperatures, low smooth friction coefficients and low wear rates under low energy braking conditions. However, this was at the expense of high oxidative wear rates under higher energy braking conditions. The Bendix composites had lower thermal conductivities than the fully heat treated Dunlop composite and exhibited similar friction and wear behaviour to Dunlop composites heat treated to lower temperatures. Examination of the wear surfaces using OM and SEM revealed particulate or Type I surface debris on wear surfaces tested under low energy conditions. Type I debris was stable on the wear surfaces to a temperature of 110C, after which it was gradually converted to film material or Type II surface debris by the action of heat and shear. Type I debris was associated with high erratic friction coefficients (ja.=0.55- 0.65) and high wear rates (~ 8 mg/min), whereas. Type II debris was associated low smooth friction (|LI=0.35-0.45) and low wear rates (~ 4 mg/min). Analysis of the wear debris produced from testing on large dynamometers under the simulated conditions of taxiing and landing indicated that the structure of the wear debris became highly disordered as a result of the wear process. However, evidence from XRD, TGA and DGS suggested that, under very high energy conditions, such as those encountered in a rejected take off (RTO), the wear debris was partially regraphitised at the wear face by the action of heat and shear. The results from analysis of the wear surfaces and the wear debris supported the theory that a regenerative process or friction film formation, delamination and repair operated on the wear surfaces of these brake materials.

  19. [Study on Hollow Brick Wall's Surface Temperature with Infrared Thermal Imaging Method].

    PubMed

    Tang, Ming-fang; Yin, Yi-hua

    2015-05-01

    To address the characteristic of uneven surface temperature of hollow brick wall, the present research adopts soft wares of both ThermaCAM P20 and ThermaCAM Reporter to test the application of infrared thermal image technique in measuring surface temperature of hollow brick wall, and further analyzes the thermal characteristics of hollow brick wall, and building material's impact on surface temperature distribution including hollow brick, masonry mortar, and so on. The research selects the construction site of a three-story-high residential, carries out the heat transfer experiment, and further examines the exterior wall constructed by 3 different hollow bricks including sintering shale hollow brick, masonry mortar and brick masonry. Infrared thermal image maps are collected, including 3 kinds of sintering shale hollow brick walls under indoor heating in winter; and temperature data of wall surface, and uniformity and frequency distribution are also collected for comparative analysis between 2 hollow bricks and 2 kinds of mortar masonry. The results show that improving heat preservation of hollow brick aid masonry mortar can effectively improve inner wall surface temperature and indoor thermal environment; non-uniformity of surface temperature decreases from 0. 6 to 0. 4 °C , and surface temperature frequency distribution changes from the asymmetric distribution into a normal distribution under the condition that energy-saving sintering shale hollow brick wall is constructed by thermal mortar replacing cement mortar masonry; frequency of average temperature increases as uniformity of surface temperature increases. This research provides a certain basis for promotion and optimization of hollow brick wall's thermal function.

  20. Novel development of the micro-tensile test at elevated temperature using a test structure with integrated micro-heater

    NASA Astrophysics Data System (ADS)

    Ang, W. C.; Kropelnicki, P.; Soe, Oak; Ling, J. H. L.; Randles, A. B.; Hum, A. J. W.; Tsai, J. M. L.; Tay, A. A. O.; Leong, K. C.; Tan, C. S.

    2012-08-01

    This paper describes the novel development of a micro-tensile testing method that allows testing at elevated temperatures. Instead of using a furnace, a titanium/platinum thin film micro-heater was fabricated on a conventional dog-bone-shaped test structure to heat up its gauge section locally. An infrared (IR) camera with 5 µm resolution was employed to verify the temperature uniformity across the gauge section of the test structure. With this micro-heater-integrated test structure, micro-tensile tests can be performed at elevated temperatures using any conventional tensile testing system without any major modification to the system. In this study, the tensile test of the single crystal silicon (SCS) thin film with (1 0 0) surface orientation and <1 1 0> tensile direction was performed at room temperature and elevated temperatures, up to 300 °C. Experimental results for Young's modulus as a function of temperature are presented. A micro-sized SCS film showed a low dependence of mechanical properties on temperature up to 300 °C.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wereszczak, A.A.; Ferber, M.K.; Kirkland, T.P.

    Several yttria-fluxed, hot-isostatically pressed (HIPed) silicon nitrides have been tensile creep tested at temperatures representative of gas turbine engines. Creep and oxidation assisted damage mechanisms concurrently evolve when these materials are tested at high temperatures and low stresses (i.e., long exposure times at temperature). Atmospheric creep testing results in creation of oxygen and yttrium gradients across the radial dimension. High concentrations of oxygen and yttrium coincide with dense populations of lenticular-shaped cavities near the surface of crept specimens. The center of the tensile specimens was devoid of oxygen or yttrium; in addition, lenticular cavities were rare. The gradient in lenticular-cavitymore » concentration is coincident with the oxygen and yttrium gradients. Stress corrosion cracking (SCC) also occurs in these HIPed silicon nitrides when they are subjected to stress at high temperatures in ambient air. The size of this damage zone increases when the temperature is higher and/or the applied stress is lower. Stress-corrosion cracking initiates at the surface of the tensile specimen and advances radially inwards. What nucleates SCC has not yet been identified, but it is believed to result from a stress-concentrator (e.g., machining damage) at the surface and its growth is a result of coalescence of microcracks and cavities. The higher concentration of oxygen and yttrium in the grain boundaries near the specimen`s surface lessens the local high temperature mechanical integrity; this is believed to be associated with the growth of the SCC zone. This SCC zone continues to grow in size during tensile loading until it reaches a critical size which causes fracture.« less

  2. Atomization of Impinging Droplets on Superheated Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Emerson, Preston; Crockett, Julie; Maynes, Daniel

    2017-11-01

    Water droplets impinging smooth superheated surfaces may be characterized by dynamic vapor bubbles rising to the surface, popping, and causing a spray of tiny droplets to erupt from the droplet. This spray is called secondary atomization. Here, atomization is quantified experimentally for water droplets impinging superheated superhydrophobic surfaces. Smooth hydrophobic and superhydrophobic surfaces with varying rib and post microstructuring were explored. Each surface was placed on an aluminum heating block, and impingement events were captured with a high speed camera at 3000 fps. For consistency among tests, all events were normalized by the maximum atomization found over a range of temperatures on a smooth hydrophobic surface. An estimate of the level of atomization during an impingement event was created by quantifying the volume of fluid present in the atomization spray. Droplet diameter and Weber number were held constant, and atomization was found for a range of temperatures through the lifetime of the impinging droplet. The Leidenfrost temperature was also determined and defined to be the lowest temperature at which atomization ceases to occur. Both atomization and Leidenfrost temperature increase with decreasing pitch (distance between microstructures).

  3. Thermography During Thermal Test of the Gaia Deployable Sunshield Assembly Qualification Model in the ESTEC Large Space Simulator

    NASA Astrophysics Data System (ADS)

    Simpson, R.; Broussely, M.; Edwards, G.; Robinson, D.; Cozzani, A.; Casarosa, G.

    2012-07-01

    The National Physical Laboratory (NPL) and The European Space Research and Technology Centre (ESTEC) have performed for the first time successful surface temperature measurements using infrared thermal imaging in the ESTEC Large Space Simulator (LSS) under vacuum and with the Sun Simulator (SUSI) switched on during thermal qualification tests of the GAIA Deployable Sunshield Assembly (DSA). The thermal imager temperature measurements, with radiosity model corrections, show good agreement with thermocouple readings on well characterised regions of the spacecraft. In addition, the thermal imaging measurements identified potentially misleading thermocouple temperature readings and provided qualitative real-time observations of the thermal and spatial evolution of surface structure changes and heat dissipation during hot test loadings, which may yield additional thermal and physical measurement information through further research.

  4. Liquid oxygen liquid acquisition device bubble point tests with high pressure lox at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Jurns, J. M.; Hartwig, J. W.

    2012-04-01

    When transferring propellant in space, it is most efficient to transfer single phase liquid from a propellant tank to an engine. In earth's gravity field or under acceleration, propellant transfer is fairly simple. However, in low gravity, withdrawing single-phase fluid becomes a challenge. A variety of propellant management devices (PMDs) are used to ensure single-phase flow. One type of PMD, a liquid acquisition device (LAD) takes advantage of capillary flow and surface tension to acquire liquid. The present work reports on testing with liquid oxygen (LOX) at elevated pressures (and thus temperatures) (maximum pressure 1724 kPa and maximum temperature 122 K) as part of NASA's continuing cryogenic LAD development program. These tests evaluate LAD performance for LOX stored in higher pressure vessels that may be used in propellant systems using pressure fed engines. Test data shows a significant drop in LAD bubble point values at higher liquid temperatures, consistent with lower liquid surface tension at those temperatures. Test data also indicates that there are no first order effects of helium solubility in LOX on LAD bubble point prediction. Test results here extend the range of data for LOX fluid conditions, and provide insight into factors affecting predicting LAD bubble point pressures.

  5. Liquid Oxygen Liquid Acquisition Device Bubble Point Tests with High Pressure LOX at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Jurns, John M.; Hartwig, Jason W.

    2011-01-01

    When transferring propellant in space, it is most efficient to transfer single phase liquid from a propellant tank to an engine. In earth s gravity field or under acceleration, propellant transfer is fairly simple. However, in low gravity, withdrawing single-phase fluid becomes a challenge. A variety of propellant management devices (PMD) are used to ensure single-phase flow. One type of PMD, a liquid acquisition device (LAD) takes advantage of capillary flow and surface tension to acquire liquid. The present work reports on testing with liquid oxygen (LOX) at elevated pressures (and thus temperatures) (maximum pressure 1724 kPa and maximum temperature 122K) as part of NASA s continuing cryogenic LAD development program. These tests evaluate LAD performance for LOX stored in higher pressure vessels that may be used in propellant systems using pressure fed engines. Test data shows a significant drop in LAD bubble point values at higher liquid temperatures, consistent with lower liquid surface tension at those temperatures. Test data also indicates that there are no first order effects of helium solubility in LOX on LAD bubble point prediction. Test results here extend the range of data for LOX fluid conditions, and provide insight into factors affecting predicting LAD bubble point pressures.

  6. HCMM energy budget data as a model input for assessing regions of high potential groundwater pollution. [South Dakota

    NASA Technical Reports Server (NTRS)

    Moore, D. G. (Principal Investigator); Heilman, J. L.

    1980-01-01

    The author has identified the following significant results. Day thermal data were analyzed to assess depth to groundwater in the test site. HCMM apparent temperature was corrected for atmospheric effects using lake temperature of the Oahe Reservoir in central South Dakota. Soil surface temperatures were estimated using an equation developed for ground studies. A significant relationship was found between surface soil temperature and depth to groundwater, as well as between the surface soil-maximum air temperature differential and soil water content (% of field capacity) in the 0 cm and 4 cm layer of the profile. Land use for the data points consisted of row crops, small grains, stubble, and pasture.

  7. Meteorological data for four sites at surface-disruption features in Yucca Flat, Nevada Test Site, Nye County, Nevada, 1985-86

    USGS Publications Warehouse

    Carman, Rita L.

    1994-01-01

    Surface-disruption features, or craters, resulting from underground nuclear testing at the Nevada Test Site may increase the potential for ground-water recharge in an area that would normally produce little, if any, recharge. This report presents selected meteorological data resulting from a study of two surface-disruption features during May 1985 through June 1986. The data were collected at four adjacent sites in Yucca Flat, about 56 kilometers north of Mercury, Nevada. Three sites (one in each of two craters and one at an undisturbed site at the original land surface) were instrumented to collect meteorological data for calculating bare-soil evaporation. These data include (1) long-wave radiation, (2) short-wave radiation, (3) net radiation, (4) air temperae, and (5) soil surface temperature. Meteorological data also were collected at a weather station at an undisturbed site near the study craters. Data collected at this site include (1) air temperature, (2) relative humidity, (3) wind velocity, and (4) wind direction.

  8. 30 CFR 36.48 - Tests of surface temperature of engine and components of the cooling system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... with the engine operated as prescribed by MSHA. All parts of the engine, cooling system, and other... components of the cooling system. 36.48 Section 36.48 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.48 Tests of surface...

  9. 30 CFR 36.48 - Tests of surface temperature of engine and components of the cooling system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... with the engine operated as prescribed by MSHA. All parts of the engine, cooling system, and other... components of the cooling system. 36.48 Section 36.48 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.48 Tests of surface...

  10. Effects of Temperature and Humidity on the Characterization of C-4 Explosive Threats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. J. Miller

    The amount of time that an explosive is present on the surface of a material is dependent upon the original amount of explosive on the surface, adhesive forces, temperature and humidity, as well as other environmental factors. This laboratory study focused on evaluating RDX crystal morphology changes resulting from variations in temperature and humidity conditions of the sample. The temperature and humidity conditions were controlled using a Tenney THRJ environmental chamber and a Tenney T11RC-1.5 environmental chamber. These chambers allow the temperature and humidity to be held within ±3°C and ±5% RH. The temperature and humidity conditions used for thismore » test series were: 40°F/40%RH, ~70°F/20%RH (samples left on benchtop), 70°F/70%RH, 70°F/95%RH, 95°F/40%RH, 95°F/70%RH, and 95°F/95%RH. These temperature and humidity set points were chosen to represent a wide range of conditions that may be found in real world scenarios. C-4 (RDX crystals and binder material) was deposited on the surface of one of six substrates by placing a fingerprint from the explosive block onto the matrix surface. The substrates were chosen to provide a range of items that are commonly used. Six substrate types were used during these tests: 50% cotton/50% polyester as found in T-shirts, 100% cotton with a smooth surface such as that found in a cotton dress shirt, 100% cotton on a rough surface such as that found on canvas or denim, suede leather such as might be found on jackets, purses, or shoes, painted metal obtained from a junked car hood, and a computer diskette. The samples were not pre-cleaned prior to testing and contained sizing agents, and in the case of the metal: oil, dirt, scratches, and rust spots. The substrates were photographed at various stages of testing, using a Zeiss Discover V12 stereoscope with Axiocam ICc1 3 megapixel digital camera, to determine any changes in the crystalline morphology. Some of the samples were examined using scanning electron microscopy (SEM) and atomic force microscopy (AFM) in an attempt to determine how the explosive was bound to the substrate.« less

  11. Assessment of the Microbial Control Measures for the Temperature and Humidity Control Subsystem Condensing Heat Exchanger of the International Space Station

    NASA Technical Reports Server (NTRS)

    Roman, Monsi C.; Steele, John W.; Marsh, Robert W.; Callahan, David M.; VonJouanne, Roger G.

    1999-01-01

    In August 1997 NASA/ Marshall Space Flight Center (MSFC) began a test with the objective of monitoring the growth of microorganisms on material simulating the surface of the International Space Station (ISS) Temperature and Humidity Control (THC) Condensing Heat Exchanger (CHX). The test addressed the concerns of potential uncontrolled microbial growth on the surface of the THC CHX subsystem. For this study, humidity condensate from a closed manned environment was used as a direct challenge to the surfaces of six cascades in a test set-up. The condensate was collected using a Shuttle-type CHX within the MSFC End-Use Equipment Testing Facility. Panels in four of the six cascades tested were coated with the ISS CHX silver impregnated hydrophilic coating. The remainder two cascade panels were coated with the hydrophilic coating without the antimicrobial component, silver. Results of the fourteen-month study are discussed in this paper. The effects on the microbial population when drying vs. not-drying the simulated THC CHX surface are also discussed.

  12. Ball Aerospace SBMD Coating Test Results

    NASA Technical Reports Server (NTRS)

    Brown, Robert; Lightsey, Paul; Russell, J. Kevin (Technical Monitor)

    2002-01-01

    The Sub-scale Beryllium Mirror Demonstrator that was successfully tested to demonstrate cryogenic figuring of a bare mirror has been coated with a protected gold reflective surface and retested at cryogenic temperatures. Results showing less than 9 nm rms surface distortion attributable to the added coating are presented.

  13. Directional emittance surface measurement system and process

    NASA Technical Reports Server (NTRS)

    Puram, Chith K. (Inventor); Daryabeigi, Kamran (Inventor); Wright, Robert (Inventor); Alderfer, David W. (Inventor)

    1994-01-01

    Apparatus and process for measuring the variation of directional emittance of surfaces at various temperatures using a radiometric infrared imaging system. A surface test sample is coated onto a copper target plate provided with selective heating within the desired incremental temperature range to be tested and positioned onto a precision rotator to present selected inclination angles of the sample relative to the fixed positioned and optically aligned infrared imager. A thermal insulator holder maintains the target plate on the precision rotator. A screen display of the temperature obtained by the infrared imager, and inclination readings are provided with computer calculations of directional emittance being performed automatically according to equations provided to convert selected incremental target temperatures and inclination angles to relative target directional emittance values. The directional emittance of flat black lacquer and an epoxy resin measurements obtained are in agreement with the predictions of the electromagnetic theory and with directional emittance data inferred from directional reflectance measurements made on a spectrophotometer.

  14. A technique for measurement of instantaneous heat transfer in steady-flow ambient-temperature facilities

    NASA Technical Reports Server (NTRS)

    O'Brien, James E.

    1990-01-01

    An experimental technique is described for obtaining time-resolved heat flux measurements with high-frequency response (up to 100 kHz) in a steady-flow ambient-temperature facility. The heat transfer test object is preheated and suddenly injected into an established steady flow. Thin-film gages deposited on the test surface detect the unsteady substrate surface temperature. Analog circuitry designed for use in short-duration facilities and based on one-dimensional semiinfinite heat conduction is used to perform the temperature/heat flux transformation. A detailed description of substrate properties, instrumentation, experimental procedure, and data reduction is given, along with representative results obtained in the stagnation region of a circular cylinder subjected to a wake-dominated unsteady flow. An in-depth discussion of related work is also provided.

  15. An electronic system for measuring thermophysical properties of wind tunnel models

    NASA Technical Reports Server (NTRS)

    Corwin, R. R.; Kramer, J. S.

    1975-01-01

    An electronic system is described which measures the surface temperature of a small portion of the surface of the model or sample at high speeds using an infrared radiometer. This data is processed along with heating rate data from the reference heat gauge in a small computer and prints out the desired thermophysical properties, time, surface temperature, and reference heat rate. This system allows fast and accurate property measurements over thirty temperature increments. The technique, the details of the apparatus, the procedure for making these measurements, and the results of some preliminary tests are presented.

  16. Performance Evaluations of Ceramic Wafer Seals

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; DeMange, Jeffrey J.; Steinetz, Bruce M.

    2006-01-01

    Future hypersonic vehicles will require high temperature, dynamic seals in advanced ramjet/scramjet engines and on the vehicle airframe to seal the perimeters of movable panels, flaps, and doors. Seal temperatures in these locations can exceed 2000 F, especially when the seals are in contact with hot ceramic matrix composite sealing surfaces. NASA Glenn Research Center is developing advanced ceramic wafer seals to meet the needs of these applications. High temperature scrub tests performed between silicon nitride wafers and carbon-silicon carbide rub surfaces revealed high friction forces and evidence of material transfer from the rub surfaces to the wafer seals. Stickage between adjacent wafers was also observed after testing. Several design changes to the wafer seals were evaluated as possible solutions to these concerns. Wafers with recessed sides were evaluated as a potential means of reducing friction between adjacent wafers. Alternative wafer materials are also being considered as a means of reducing friction between the seals and their sealing surfaces and because the baseline silicon nitride wafer material (AS800) is no longer commercially available.

  17. HCMM energy budget data as a model input for assessing regions of high potential groundwater pollution

    NASA Technical Reports Server (NTRS)

    Moore, D. G. (Principal Investigator); Heilman, J.; Beutler, G.

    1978-01-01

    The author has identified the following significant results. In early April 1978, heavy spring runoff from snowmelt caused significant flooding along a portion of the Big Sioux River Basin in southeastern South Dakota. The flooded area was visible from surrounding areas on a May 15 HCMM IR test image. On May 15, the flood waters had receded but an area of anomalous residual high soil moisture remained. The high soil moisture area was not visible on a HCMM day visible test image of the same scene, or on LANDSAT imagery. To evaluate the effect of water table depth on surface temperatures, thermal scanner data collected on September 5 and 6, 1978 at approximate HCMM overpass times at an altitude of 3650 m were analyzed. Apparent surface temperatures measured by the scanner included emittance contributions from soil surface and the land cover. Results indicated that the shallow water tables produced a damping of the amplitude of the diurnal surface temperature wave.

  18. Surface Fatigue Life of High Temperature Gear Materials

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis P.

    1994-01-01

    Three high temperature gear materials were evaluated using spur gear surface fatigue tests. These materials were, VASCO max 350, VASCO matrix 2, and nitralloy N and were evaluated for possible use in high temperature gear applications. The fatigue life of the three high temperature gear materials were compared with the life of the standard AISI 9310 aircraft gear material. Surface fatigue tests were conducted at a lubricant inlet temperature of 321 K (120 F), a lubricant outlet temperature of 350 K (170 F), a maximum Hertz stress of 1.71 GPa (248 ksi), a speed of 10,000 rpm, and with a synthetic paraffinic lubricant. The life of the nitralloy N was approximately the same as the AISI 9310, the life of the VASCO max 350 was much less than the AISI 9310 while the life of the VASCO matrix 2 was several times the life of the AISI 9310. The VASCO max 350 also showed very low fracture toughness with approximately half of the gears failed by tooth fracture through the fatigue spall. The VASCO matrix 2 had approximately 10-percent fracture failure through the fatigue spalls indicating moderate to good fracture toughness.

  19. Design, fabrication and test of a liquid hydrogen titanium honeycomb cryogenic test tank for use as a reusable launch vehicle main propellant tank

    NASA Astrophysics Data System (ADS)

    Stickler, Patrick B.; Keller, Peter C.

    1998-01-01

    Reusable Launch Vehicles (RLV's) utilizing LOX\\LH2 as the propellant require lightweight durable structural systems to meet mass fraction goals and to reduce overall systems operating costs. Titanium honeycomb sandwich with flexible blanket TPS on the windward surface is potentially the lightest-weight and most operable option. Light weight is achieved in part because the honeycomb sandwich tank provides insulation to its liquid hydrogen contents, with no need for separate cryogenic insulation, and in part because the high use temperature of titanium honeycomb reduces the required surface area of re-entry thermal protection systems. System operability is increased because TPS needs to be applied only to surfaces where temperatures exceed approximately 650 K. In order to demonstrate the viability of a titanium sandwich constructed propellant tank, a technology demonstration program was conducted including the design, fabrication and testing of a propellant tank-TPS system. The tank was tested in controlled as well as ambient environments representing ground hold conditions for a RLV main propellant tank. Data collected during each test run was used to validate predictions for air liquefaction, outside wall temperature, boil-off rates, frost buildup and its insulation effects, and the effects of placing a thermal protection system blanket on the external surface. Test results indicated that titanium honeycomb, when used as a RLV propellant tank material, has great promise as a light-weight structural system.

  20. An assessment of surface emissivity variation effects on plasma uniformity analysis using IR cameras

    NASA Astrophysics Data System (ADS)

    Greenhalgh, Abigail; Showers, Melissa; Biewer, Theodore

    2017-10-01

    The Prototype-Material Plasma Exposure eXperiment (Proto-MPEX) is a linear plasma device operating at Oak Ridge National Laboratory (ORNL). Its purpose is to test plasma source and heating concepts for the planned Material Plasma Exposure eXperiment (MPEX), which has the mission to test the plasma-material interactions under fusion reactor conditions. In this device material targets will be exposed to high heat fluxes (>10 MW/m2). To characterize the heat fluxes to the target a IR thermography system is used taking up to 432 frames per second videos. The data is analyzed to determine the surface temperature on the target in specific regions of interest. The IR analysis has indicated a low level of plasma uniformity; the plasma often deposits more heat to the edge of the plate than the center. An essential parameter for IR temperature calculation is the surface emissivity of the plate (stainless steel). A study has been performed to characterize the variation in the surface emissivity of the plate as its temperature changes and its surface finish is modified by plasma exposure.

  1. City landscape changes effects on land surface temperature in Bucharest metropolitan area

    NASA Astrophysics Data System (ADS)

    Savastru, Dan M.; Zoran, Maria A.; Savastru, Roxana S.; Dida, Adrian I.

    2017-10-01

    This study investigated the influences of city land cover changes and extreme climate events on land surface temperature in relationship with several biophysical variables in Bucharest metropolitan area of Romania through satellite and in-situ monitoring data. Remote sensing data from IKONOS, Landsat TM/ETM+ and time series MODIS Terra/Aqua and NOAA AVHRR sensors have been used to assess urban land cover- temperature interactions over 2000 - 2016 period. Time series Thermal InfraRed (TIR) satellite remote sensing data in synergy with meteorological data (air temperatureAT, precipitations, wind, solar radiation, etc.) were applied mainly for analyzing land surface temperature (LST) pattern and its relationship with surface landscape characteristics, assessing urban heat island (UHI), and relating urban land cover temperatures (LST). The land surface temperature, a key parameter for urban thermal characteristics analysis, was also analyzed in relation with the Normalized Difference Vegetation Index (NDVI) at city level. Results show that in the metropolitan area ratio of impervious surface in Bucharest increased significantly during investigated period, the intensity of urban heat island and heat wave events being most significant. The correlation analyses revealed that, at the pixel-scale, LST and AT possessed a strong positive correlation with percent impervious surfaces and negative correlation with vegetation abundances at metropolitan scale respectively. The NDVI was significantly correlated with precipitation. The spatial average air temperatures in urban test areas rise with the expansion of the urban size.

  2. Wearing surface testing and screening : Yukon River Bridge.

    DOT National Transportation Integrated Search

    2015-09-01

    There is a demand and a need for cheaper and alternative surface coverings in environments with high temperature fluctuations. Our : design for an alternative surface covering involves a basic two-part component epoxy with the addition of a solvent. ...

  3. Evaluation of Advanced Solid Lubricant Coatings for Foil Air Bearings Operating at 25 and 500 C

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Fellenstein, James A.; Benoy, Patricia A.

    1998-01-01

    The tribological properties of one chrome oxide and one chrome carbide based solid lubricant coating were evaluated in a partial-arc foil bearing at 25 and 500 C. Start/stop bearing operation up to 20,000 cycles were run under 10 kPa (1.5 psi) static deadweight load. Bearing friction (torque) was measured during the test. Specimen wear and SEM/EDS surface analyses were conducted after testing to understand and elucidate the tribological characteristics observed. The chrome oxide coating which contains both (Ag) and (BaF2/CaF2) for low and high temperature lubrication, exhibited low friction in sliding against Al2O3 coated foils at 25 and 500 C. The chrome carbide coating, which lacked a low temperature lubricant but contained BaF2/CaF2 as a high temperature lubricant, exhibited high friction at 25 C and low friction at 500 C against both bare and Al2O3 coated superalloy foil surfaces. Post test surface analyses suggest that improved tribological performance is exhibited when a lubricant film from the coating transfers to the foil surface.

  4. Assessment of a landfill methane emission screening method using an unmanned aerial vehicle mounted thermal infrared camera - A field study.

    PubMed

    Fjelsted, L; Christensen, A G; Larsen, J E; Kjeldsen, P; Scheutz, C

    2018-05-28

    An unmanned aerial vehicle (UAV)-mounted thermal infrared (TIR) camera's ability to delineate landfill gas (LFG) emission hotspots was evaluated in a field test at two Danish landfills (Hedeland landfill and Audebo landfill). At both sites, a test area of 100 m 2 was established and divided into about 100 measuring points. The relationship between LFG emissions and soil surface temperatures were investigated through four to five measuring campaigns, in order to cover different atmospheric conditions along with increasing, decreasing and stable barometric pressure. For each measuring campaign, a TIR image of the test area was obtained followed by the measurement of methane (CH 4 ) and carbon dioxide (CO 2 ) emissions at each measuring point, using a static flux chamber. At the same time, soil temperatures measured on the surface, at 5 cm and 10 cm depths, were registered. At the Hedeland landfill, no relationship was found between LFG emissions and surface temperatures. In addition, CH 4 emissions were very limited, on average 0.92-4.52 g CH 4  m -2  d -1 , and only measureable on the two days with decreasing barometric pressure. TIR images from Hedeland did not show any significant temperature differences in the test area. At the Audebo landfill, an area with slightly higher surface temperatures was found in the TIR images, and the same pattern with slightly higher temperatures was found at a depth of 10 cm. The main LFG emissions were found in the area with the higher surface temperatures. LFG emissions at Audebo were influenced significantly by changes in barometric pressure, and the average CH 4 emissions varied between 111 g m -2  d -1 and 314 g m -2  d -1 , depending on whether the barometric pressure gradient had increased or decreased, respectively. The temperature differences observed in the TIR images from both landfills were limited to between 0.7 °C and 1.2 °C. The minimum observable CH 4 emission for the TIR camera to identify an emission hotspot was 150 g CH 4  m -2  d -1 from an area of more than 1 m 2 . Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. A dynamic tester to evaluate the thermal and moisture behaviour of the surface of textiles.

    PubMed

    Li, Wenbin; Xu, Weilin; Wang, Hao; Wang, Xin

    2016-01-01

    The thermal and moisture behaviour of the microclimate of textiles is crucial in determining the physiological comfort of apparel, but it has not been investigated sufficiently due to the lack of particular evaluation techniques. Based on sensing, temperature controlling and wireless communicating technology, a specially designed tester has been developed in this study to evaluate the thermal and moisture behaviour of the surface of textiles in moving status. A temperature acquisition system and a temperature controllable hotplate have been established to test temperature and simulate the heat of human body, respectively. Relative humidity of the surface of fabric in the dynamic process has been successfully tested through sensing. Meanwhile, wireless communication technology was applied to transport the acquired data of temperature and humidity to computer for further processing. Continuous power supply was achieved by intensive contact between an elastic copper plate and copper ring on the rotating shaft. This tester provides the platform to evaluate the thermal and moisture behaviour of textiles. It enables users to conduct a dynamic analysis on the temperature and humidity together with the thermal and moisture transport behaviour of the surface of fabric in moving condition. Development of this tester opens the door of investigation on the micro-climate of textiles in real time service, and eventually benefits the understanding of the sensation comfort and wellbeing of apparel wearers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Compilation of Local Fallout Data from Test Detonations 1945-1962 Extracted from DASA 1251. Volume I. Continental U.S. Tests

    DTIC Science & Technology

    1979-05-01

    fallout patterns by "dot-dash" lines. The time lines are intended to give only a rough average arrival time in hours as estimated from the wind reports and...by interpolation between the H-lI and H+11 hour values. 4. The surface air pressure was 13.10 psi, the temperature -2.O°C and the relative humidity...surface air pressure was 13.04 psi, the temperature -2.8 0 C, and the relative humidity 87%. 17 i’ 17 I

  7. A means to estimate thermal and kinetic parameters of coal dust layer from hot surface ignition tests.

    PubMed

    Park, Haejun; Rangwala, Ali S; Dembsey, Nicholas A

    2009-08-30

    A method to estimate thermal and kinetic parameters of Pittsburgh seam coal subject to thermal runaway is presented using the standard ASTM E 2021 hot surface ignition test apparatus. Parameters include thermal conductivity (k), activation energy (E), coupled term (QA) of heat of reaction (Q) and pre-exponential factor (A) which are required, but rarely known input values to determine the thermal runaway propensity of a dust material. Four different dust layer thicknesses: 6.4, 12.7, 19.1 and 25.4mm, are tested, and among them, a single steady state dust layer temperature profile of 12.7 mm thick dust layer is used to estimate k, E and QA. k is calculated by equating heat flux from the hot surface layer and heat loss rate on the boundary assuming negligible heat generation in the coal dust layer at a low hot surface temperature. E and QA are calculated by optimizing a numerically estimated steady state dust layer temperature distribution to the experimentally obtained temperature profile of a 12.7 mm thick dust layer. Two unknowns, E and QA, are reduced to one from the correlation of E and QA obtained at criticality of thermal runaway. The estimated k is 0.1 W/mK matching the previously reported value. E ranges from 61.7 to 83.1 kJ/mol, and the corresponding QA ranges from 1.7 x 10(9) to 4.8 x 10(11)J/kg s. The mean values of E (72.4 kJ/mol) and QA (2.8 x 10(10)J/kg s) are used to predict the critical hot surface temperatures for other thicknesses, and good agreement is observed between measured and experimental values. Also, the estimated E and QA ranges match the corresponding ranges calculated from the multiple tests method and values reported in previous research.

  8. Effects of Temperature and Humidity on the Characterization of C-4 Explosive Threats

    NASA Astrophysics Data System (ADS)

    Miller, C. J.; Yoder, T. S.

    2012-06-01

    Both the quantity and the amount of time that an explosive is present on the surface of a material is dependent upon the amount of explosive originally deposited on the surface, the adhesive forces, temperature and humidity, as well as other environmental factors. This laboratory study focused on evaluating RDX crystal morphology changes resulting from variations in temperature and humidity conditions of the sample. The temperature and humidity conditions were controlled using a Tenney THRJ environmental chamber and a Tenney T11RC-1.5 environmental chamber. These chambers allow the temperature and humidity to be held within ±3 °C and ±5 % RH. The temperature and humidity conditions used for this test series were: 4 °C/40 %RH, 21 °C/20 %RH (samples left on benchtop), 21 °C/70 %RH, 21 °C/95 %RH, 35 °C/40 %RH, 35 °C/70 %RH, and 35 °C/95 %RH. These temperature and humidity set points were chosen to represent a wide range of conditions that may be found in real world scenarios. C-4 (RDX crystals and binder material) was deposited on the surface of one of six substrates by placing a fingerprint from the explosive block onto the matrix surface. The substrates were chosen to provide a range of items that are commonly used. Six substrate types were used during these tests: 50 % cotton/50 % polyester as found in T-shirts, 100 % cotton with a smooth surface such as that found in a cotton dress shirt, 100 % cotton on a rough surface such as that found on canvas or denim, suede leather such as might be found on jackets, purses, or shoes, painted metal obtained from a car hood, and a computer diskette. The samples were not pre-cleaned prior to testing and contained sizing agents, and in the case of the metal: oil, dirt, scratches, and rust spots. The substrates were photographed at various stages of testing, using a Zeiss Discover V12 stereoscope with Axiocam ICc1 3 megapixel digital camera, to determine any changes in the crystalline morphology. Some of the samples were examined using scanning electron microscopy and atomic force microscopy in an attempt to determine how the explosive was bound to the substrate. This is the second article in a series on the effects of temperature and relative humidity on trace explosive threats.

  9. Infrared Observations of the Orion Capsule During EFT-1 Hypersonic Reentry

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.; Rufer, Shann J.; Schuster, David M.; Mendeck, Gavin F.; Oliver, A. Brandon; Schwartz, Richard J.; Verstynen, Harry A.; Mercer, C. David; Tack, Steven; Ingram, Ben; hide

    2016-01-01

    High-resolution infrared observations of the Orion capsule during its atmospheric reentry on December 5, 2015 were made from a US Navy NP-3D. This aircraft, equipped with a long-range optical sensor system, tracked the capsule from Mach 10 to 7 from a distance of approximately 60 nmi. Global surface temperatures of the capsule's thermal heatshield were derived from near infrared intensity measurements. The global surface temperature measurements complemented onboard instrumentation and were invaluable to the interpretation of the in-depth thermocouple measurements which rely on inverse heat transfer methods and material response codes to infer the desired surface temperature from the sub-surface measurements. The full paper will address the motivations behind the NASA Engineering Safety Center sponsored observation and highlight premission planning processes with an emphasis on aircraft placement, optimal instrument configuration and sensor calibrations. Critical aspects of mission operations coordinated from the NASA Johnson Spaceflight Center and integration with the JSC Flight Test Management Office will be discussed. A summary of the imagery that was obtained and processed to global surface temperature will be presented. At the capsule's point of closest approach relative to the imaging system, the spatial resolution was estimated to be approximately 15-inches per pixel and was sufficient to identify localized temperature increases associated with compression pad support hardware on the heatshield. The full paper will discuss the synergy of the quantitative imagery derived temperature maps with in-situ thermocouple measurements. Comparison of limited onboard surface thermocouple data to the image derived surface temperature will be presented. The two complimentary measurements serve as an example of the effective leveraging of resources to advance the understanding of high Mach number environments associated with an ablated heatshield and provide unique data for the validation of design tools and numerical flight simulation techniques. Collaborative opportunities and technology investments in support of planned observations of NASA's next Orion flight test in 2018 will be explored in the full manuscript.

  10. Verification tests of durable TPS concepts

    NASA Technical Reports Server (NTRS)

    Shideler, J. L.; Webb, G. L.; Pittman, C. M.

    1984-01-01

    Titanium multiwall, superalloy honeycomb, and Advanced Carbon-carbon (ACC) multipost Thermal Protection System (TPS) concepts are being developed to provide durable protection for surfaces of future space transportation systems. Verification tests including thermal, vibration, acoustic, water absorption, lightning strike, and aerothermal tests are described. Preliminary results indicate that the three TPS concepts are viable up to a surface temperature in excess of 2300 F.

  11. Effect of exposure intensity and post-cure temperature storage on hardness of contemporary photo-activated composites.

    PubMed

    Quance, S C; Shortall, A C; Harrington, E; Lumley, P J

    2001-11-01

    The effect of variation in post-exposure storage temperature (18 vs. 37 degrees C) and light intensity (200 vs. 500mW/cm(2)) on micro-hardness of seven light-activated resin composite materials, cured with a Prismetics Mk II (Dentsply) light activation unit, were studied. Hardness values at the upper and lower surfaces of 2mm thick disc shaped specimens of seven light-cured resin composite materials (Herculite XRV and Prodigy/Kerr, Z100 and Silux Plus/3M, TPH/Dentsply, Pertac-Hybrid/Espe, and Charisma/Kulzer), which had been stored dry, were determined 24h after irradiation with a Prismetics Mk II (Dentsply) light activation unit. Hardness values varied with product, surface, storage temperature, and curing light intensity. In no case did the hardness at the lower surface equal that of the upper surface, and the combination of 500mW/cm(2) intensity and 37 degrees C storage produced the best hardness results at the lower surface. Material composition had a significant influence on surface hardness. Only one of the seven products (TPH) produced a mean hardness values at the lower surface >80% of the maximum mean upper surface hardness obtained for the corresponding product at 500mW/cm(2) intensity/37 degrees C storage temperature when subjected to all four test regimes. Despite optimum post-cure storage conditions, 200mW/cm(2) intensity curing for 40s will not produce acceptable hardness at the lower surface of 2mm increments of the majority of products tested.

  12. Design of an experimental apparatus for measurement of the surface tension of metastable fluids

    NASA Astrophysics Data System (ADS)

    Vinš, V.; Hrubý, J.; Hykl, J.; Blaha, J.; Šmíd, B.

    2013-04-01

    A unique experimental apparatus for measurement of the surface tension of aqueous mixtures has been designed, manufactured, and tested in our laboratory. The novelty of the setup is that it allows measurement of surface tension by two different methods: a modified capillary elevation method in a long vertical capillary tube and a method inspired by the approach of Hacker (National Advisory Committee for Aeronautics, Technical Note 2510, 1-20, 1951), i.e. in a short horizontal capillary tube. Functionality of all main components of the apparatus, e.g., glass chamber with the capillary tube, temperature control unit consisting of two thermostatic baths with special valves for rapid temperature jumps, helium distribution setup allowing pressure variation above the liquid meniscus inside the capillary tube, has been successfully tested. Preliminary results for the surface tension of the stable and metastable supercooled water measured by the capillary elevation method at atmospheric pressure are provided. The surface tension of water measured at temperatures between +26 °C and -11 °C is in good agreement with the extrapolated IAPWS correlation (IAPWS Release on Surface Tension of Ordinary Water Substance, September 1994); however it disagrees with data by Hacker.

  13. Surface temperature determination in surface analytic systems by infrared optical pyrometry

    NASA Technical Reports Server (NTRS)

    Wheeler, Donald R.; Jones, William R., Jr.; Pepper, Stephen V.

    1988-01-01

    An IR pyrometric technique for measuring the surface temperatures of metal specimens in an ultrahigh-vacuum analytic chamber is described and demonstrated. The experimental setup comprises a commercial IR microscope with a long-working-distance right-angle objective (focal spot diameter 1 mm at 53 cm), a metal-coated glass vacuum chamber with a Ta-mesh-covered quartz viewport, an Mo specimen stub with an internal heating element, and a Ta disk test specimen with a flat side coated with a high-emissivity graphite film. The results of an initial calibration test are presented graphically and briefly characterized. The measurement error at 450 C is found to be less than 10 C.

  14. Quantifying the effects of wildfire on changes in soil properties by surface burning of soils from the Boulder Creek Critical Zone Observatory

    USGS Publications Warehouse

    Wieting, Celeste; Ebel, Brian A.; Singha, Kamini

    2017-01-01

    Study regionThis study used intact soil cores collected at the Boulder Creek Critical Zone Observatory near Boulder, Colorado, USA to explore fire impacts on soil properties.Study focusThree soil scenarios were considered: unburned control soils, and low- and high-temperature burned soils. We explored simulated fire impacts on field-saturated hydraulic conductivity, dry bulk density, total organic carbon, and infiltration processes during rainfall simulations.New hydrological insights for the regionSoils burned to high temperatures became more homogeneous with depth with respect to total organic carbon and bulk density, suggesting reductions in near-surface porosity. Organic matter decreased significantly with increasing soil temperature. Tension infiltration experiments suggested a decrease in infiltration rates from unburned to low-temperature burned soils, and an increase in infiltration rates in high-temperature burned soils. Non-parametric statistical tests showed that field-saturated hydraulic conductivity similarly decreased from unburned to low-temperature burned soils, and then increased with high-temperature burned soils. We interpret these changes result from the combustion of surface and near-surface organic materials, enabling water to infiltrate directly into soil instead of being stored in the litter and duff layer at the surface. Together, these results indicate that fire-induced changes in soil properties from low temperatures were not as drastic as high temperatures, but that reductions in surface soil water repellency in high temperatures may increase infiltration relative to low temperatures.

  15. Cryogenic optical testing results of JWST aspheric test plate lens

    NASA Astrophysics Data System (ADS)

    Smith, Koby Z.; Towell, Timothy C.

    2011-09-01

    The James Webb Space Telescope (JWST) Secondary Mirror Assembly (SMA) is a circular 740mm diameter beryllium convex hyperboloid that has a 23.5nm-RMS (λ/27 RMS) on-orbit surface figure error requirement. The radius of curvature of the SMA is 1778.913mm+/-0.45mm and has a conic constant of -1.6598+/-0.0005. The on-orbit operating temperature of the JWST SMA is 22.5K. Ball Aerospace & Technologies Corp. (BATC) is under contract to Northrop Grumman Aerospace Systems (NGAS) to fabricate, assemble, and test the JWST SMA to its on-orbit requirements including the optical testing of the SMA at its cryogenic operating temperature. BATC has fabricated and tested an Aspheric Test Plate Lens (ATPL) that is an 870mm diameter fused silica lens used as the Fizeau optical reference in the ambient and cryogenic optical testing of the JWST Secondary Mirror Assembly (SMA). As the optical reference for the SMA optical test, the concave optical surface of the ATPL is required to be verified at the same 20K temperature range required for the SMA. In order to meet this objective, a state-of-the-art helium cryogenic testing facility was developed to support the optical testing requirements of a number of the JWST optical testing needs, including the ATPL and SMA. With the implementation of this cryogenic testing facility, the ATPL was successfully cryogenically tested and performed to less than 10nm-RMS (λ/63 RMS) surface figure uncertainty levels for proper reference backout during the SMA optical testing program.

  16. Surface Damage and Treatment by Impact of a Low Temperature Nitrogen Jet

    NASA Astrophysics Data System (ADS)

    Laribou, Hicham; Fressengeas, Claude; Entemeyer, Denis; Jeanclaude, Véronique; Tazibt, Abdel

    2011-01-01

    Nitrogen jets under high pressure and low temperature have been introduced recently. The process consists in projecting onto a surface a low temperature jet obtained from releasing the liquid nitrogen stored in a high pressure tank (e.g. 3000 bars) through a nozzle. It can be used in a range of industrial applications, including surface treatment or material removal through cutting, drilling, striping and cleaning. The process does not generate waste other than the removed matter, and it only releases neutral gas into the atmosphere. This work is aimed at understanding the mechanisms of the interaction between the jet and the material surface. Depending on the impacted material, the thermo-mechanical shock and blast effect induced by the jet can activate a wide range of damage mechanisms, including cleavage, crack nucleation and spalling, as well as void expansion and localized ductile failure. The test parameters (standoff distance, dwell time, operating pressure) play a role in selecting the dominant damage mechanism, but combinations of these various modes are usually present. Surface treatment through phase transformation or grain fragmentation in a layer below the surface can also be obtained by adequate tuning of the process parameters. In the current study, work is undertaken to map the damage mechanisms in metallic materials as well as the influence of the test parameters on damage, along with measurements of the thermo-mechanical conditions (impact force, temperature) in the impacted area.

  17. [Effects of different patterns surface mulching on soil properties and fruit trees growth and yield in an apple orchard].

    PubMed

    Zhang, Yi; Xie, Yong-Sheng; Hao, Ming-De; She, Xiao-Yan

    2010-02-01

    Taking a nine-year-old Fuji apple orchard in Loess Plateau as test object, this paper studied the effects of different patterns surface mulching (clean tillage, grass cover, plastic film mulch, straw mulch, and gravel mulch) on the soil properties and fruit trees growth and yield in this orchard. Grass cover induced the lowest differentiation of soil moisture profile, while gravel mulch induced the highest one. In treatment gravel mulch, the soil moisture content in apple trees root zone was the highest, which meant that there was more water available to apple trees. Surface mulching had significant effects on soil temperature, and generally resulted in a decrease in the maximum soil temperature. The exception was treatment plastic film mulch, in which, the soil temperature in summer exceeded the maximum allowable temperature for continuous root growth and physiological function. With the exception of treatment plastic film mulch, surface mulching increased the soil CO2 flux, which was the highest in treatment grass cover. Surface mulching also affected the proportion of various branch types and fruit yield. The proportion of medium-sized branches and fruit yield were the highest in treatment gravel mulch, while the fruit yield was the lowest in treatment grass cover. Factor analysis indicated that among the test surface mulching patterns, gravel mulch was most suitable for the apple orchards in gully region of Loess Plateau.

  18. Measuring and Estimating Normalized Contrast in Infrared Flash Thermography

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2013-01-01

    Infrared flash thermography (IRFT) is used to detect void-like flaws in a test object. The IRFT technique involves heating up the part surface using a flash of flash lamps. The post-flash evolution of the part surface temperature is sensed by an IR camera in terms of pixel intensity of image pixels. The IR technique involves recording of the IR video image data and analysis of the data using the normalized pixel intensity and temperature contrast analysis method for characterization of void-like flaws for depth and width. This work introduces a new definition of the normalized IR pixel intensity contrast and normalized surface temperature contrast. A procedure is provided to compute the pixel intensity contrast from the camera pixel intensity evolution data. The pixel intensity contrast and the corresponding surface temperature contrast differ but are related. This work provides a method to estimate the temperature evolution and the normalized temperature contrast from the measured pixel intensity evolution data and some additional measurements during data acquisition.

  19. Ceramic Matrix Composites: High Temperature Effects. (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The bibliography contains citations concerning the development and testing of ceramic matrix composites for high temperature use. Tests examining effects of the high temperatures on bond strength, thermal degradation, oxidation, thermal stress, thermal fatigue, and thermal expansion properties are referenced. Applications of the composites include space structures, gas turbine and engine components, control surfaces for spacecraft and transatmospheric vehicles, heat shields, and heat exchangers.

  20. Advanced High Temperature Structural Seals

    NASA Technical Reports Server (NTRS)

    Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Shorey, Mark W.; Steinetz, Bruce (Technical Monitor)

    2000-01-01

    This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 lb payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs. During the first phase of this program the existing launch vehicle control surface sealing concepts were reviewed, the aerothermal environment for a high temperature seal design was analyzed and a mock up of an arc-jet test fixture for evaluating seal concepts was fabricated.

  1. Two-phase working fluids for the temperature range of 50 to 350 deg, phase 2

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.; Hartl, J. H.

    1980-01-01

    Several two phase heat transfer fluids were tested in aluminum and carbon steel reflux capsules for over 25,000 hours at temperatures up to 300 C. Several fluids showed very good stability and would be useful for long duration heat transfer applications over the range 100 to 350 C. Instrumentation for the measurement of surface tension and viscosity were constructed for use with heat transfer fluids over the temperature range 0 to 300 C and with pressures from 0 to 10 atmospheres. The surface tension measuring device constructed requires less than a 1.0 cc sample and displays an accuracy of about 5 percent in preliminary tests, while the viscometer constructed for this program requires a 0.05 cc sample and shows an accuracy of about 5 percent in initial tests.

  2. Methodology of investigation of ultra high temperature ceramics thermochemical stability and catalycity

    NASA Astrophysics Data System (ADS)

    Vaganov, A. V.; Zhestkov, B. E.; Lyamin, Yu. B.; Poilov, V. Z.; Pryamilova, E. N.

    2016-10-01

    The 12 ceramics samples of Ural Research Institute of Composite Materials were investigated in the wind tunnel VAT-104 of TsAGI in air plasma flow which simulated the hypervelocity flight. Model used were discs and blunted cones. All samples had withstood the tests without decomposition, the sample temperature and test time being respectively up to 2800 K and 1200 seconds. It was found there is a big delay in heating of the samples, thought they are of great thermo conductivity. A very interesting phenomenon, the formation of highly catalytic thermo barrier film on the front surface of sample, was also observed. It was a formation of this film that coursed a jump of 500-1000 K of surface temperature during the test. The sample catalytic activity was evaluated using modernized methodology based upon parametrical numerical simulation.

  3. Reliability of Sn/Pb and Lead-Free (SnAgCu) Solders of Surface Mounted Miniaturized Passive Components for Extreme Temperature (-185 C to +125 C) Space Missions

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni

    2011-01-01

    Surface mount electronic package test boards have been assembled using tin/lead (Sn/Pb) and lead-free (Pb-free or SnAgCu or SAC305) solders. The soldered surface mount packages include ball grid arrays (BGA), flat packs, various sizes of passive chip components, etc. They have been optically inspected after assembly and subsequently subjected to extreme temperature thermal cycling to assess their reliability or future deep space, long-term, extreme temperature environmental missions. In this study, the employed temperature range (-185oC to +125oC) covers military specifications (-55oC to +100oC), extreme old Martian (-120oC to +115oC), asteroid Nereus (-180oC to +25oC) and JUNO (-150oC to +120oC) environments. The boards were inspected at room temperature and at various intervals as a function of extreme temperature thermal cycling and bake duration. Electrical resistance measurements made at room temperature are reported and the tests to date have shown some change in resistance as a function of extreme temperature thermal cycling and some showed increase in resistance. However, the change in interconnect resistance becomes more noticeable with increasing number of thermal cycles. Further research work will be carried out to understand the reliability of packages under extreme temperature applications (-185oC to +125oC) via continuously monitoring the daisy chain resistance for BGA, Flat-packs, lead less chip packages, etc. This paper will describe the experimental reliability results of miniaturized passive components (01005, 0201, 0402, 0603, 0805, and 1206) assembled using surface mounting processes with tin-lead and lead-free solder alloys under extreme temperature environments.

  4. Reliability of Sn/Pb and lead-free (SnAgCu) solders of surface mounted miniaturized passive components for extreme temperature (-185°C to +125°C) space missions

    NASA Astrophysics Data System (ADS)

    Ramesham, Rajeshuni

    2011-02-01

    Surface mount electronic package test boards have been assembled using tin/lead (Sn/Pb) and lead-free (Pb-free or SnAgCu or SAC305) solders. The soldered surface mount packages include ball grid arrays (BGA), flat packs, various sizes of passive chip components, etc. They have been optically inspected after assembly and subsequently subjected to extreme temperature thermal cycling to assess their reliability for future deep space, long-term, extreme temperature environmental missions. In this study, the employed temperature range (-185°C to +125°C) covers military specifications (-55°C to +100°C), extreme cold Martian (-120°C to +115°C), asteroid Nereus (-180°C to +25°C) and JUNO (-150°C to +120°C) environments. The boards were inspected at room temperature and at various intervals as a function of extreme temperature thermal cycling and bake duration. Electrical resistance measurements made at room temperature are reported and the tests to date have shown some change in resistance as a function of extreme temperature thermal cycling and some showed increase in resistance. However, the change in interconnect resistance becomes more noticeable with increasing number of thermal cycles. Further research work will be carried out to understand the reliability of packages under extreme temperature applications (-185°C to +125°C) via continuously monitoring the daisy chain resistance for BGA, Flat-packs, lead less chip packages, etc. This paper will describe the experimental reliability results of miniaturized passive components (01005, 0201, 0402, 0603, 0805, and 1206) assembled using surface mounting processes with tin-lead and lead-free solder alloys under extreme temperature environments.

  5. Detailed studies of aviation fuel flowability

    NASA Technical Reports Server (NTRS)

    Mehta, H. K.; Armstrong, R. S.

    1985-01-01

    Six Jet A fuels, with varying compositions, were tested for low temperature flowability in a 190-liter simulator tank that modeled a section of a wing tank of a wide-body commercial airplane. The insulated tank was chilled by circulating coolant through the upper and lower surfaces. Flow-ability was determined as a function of fuel temperature by holdup, the fraction of unflowable fuel remaining in the tank after otherwise complete withdrawal. In static tests with subfreezing tank conditions, hold up varied with temperature and fuel composition. However, a general correlation of two or three classes of fuel type was obtained by plotting holdup as a function of the difference between freezing point and boundary-layer temperature, measured 0.6 cm above the bottom tank surface. Dynamic conditions of vibrations and slosh or rate of fuel withdrawal had very minor effects on holdup. Tests with cooling schedules to represent extreme, cold-day flights showed, at most, slight holdup for any combination of fuel type or dynamic conditions. Tests that superimposed external fuel heating and recirculation during the cooldown period indicates reduced hold up by modification of the low-temperature boundary layer. Fuel heating was just as effective when initiated during the later times of the tests as when applied continuously.

  6. Development and Analysis of Cold Trap for Use in Fission Surface Power-Primary Test Circuit

    NASA Technical Reports Server (NTRS)

    Wolfe, T. M.; Dervan, C. A.; Pearson, J. B.; Godfroy, T. J.

    2012-01-01

    The design and analysis of a cold trap proposed for use in the purification of circulated eutectic sodium potassium (NaK-78) loops is presented. The cold trap is designed to be incorporated into the Fission Surface Power-Primary Test Circuit (FSP-PTC), which incorporates a pumped NaK loop to simulate in-space nuclear reactor-based technology using non-nuclear test methodology as developed by the Early Flight Fission-Test Facility. The FSP-PTC provides a test circuit for the development of fission surface power technology. This system operates at temperatures that would be similar to those found in a reactor (500-800 K). By dropping the operating temperature of a specified percentage of NaK flow through a bypass containing a forced circulation cold trap, the NaK purity level can be increased by precipitating oxides from the NaK and capturing them within the cold trap. This would prevent recirculation of these oxides back through the system, which may help prevent corrosion.

  7. HCMM satellite follow-on investigation no. 25. Soil moisture and heat budget evalution in selected European zones of agricultural and environmental interest (TELLUS project)

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A simple procedure to evaluate actual evaporation was derived by linearizing the surface energy balance equation, using Taylor's expansion. The original multidimensional hypersurface could be reduced to a linear relationship between evaporation and surface temperature or to a surface relationship involving evaporation, surface temperature and albedo. This procedure permits a rapid sensitivity analysis of the surface energy balance equation as well as a speedy mapping of evaporation from remotely sensed surface temperatures and albedo. Comparison with experimental data yielded promising results. The validity of evapotranspiration and soil moisture models in semiarid conditions was tested. Wheat was the crop chosen for a continuous measurement campaign made in the south of Italy. Radiometric, micrometeorologic, agronomic and soil data were collected for processing and interpretation.

  8. Non-invasive, transient determination of the core temperature of a heat-generating solid body

    PubMed Central

    Anthony, Dean; Sarkar, Daipayan; Jain, Ankur

    2016-01-01

    While temperature on the surface of a heat-generating solid body can be easily measured using a variety of methods, very few techniques exist for non-invasively measuring the temperature inside the solid body as a function of time. Measurement of internal temperature is very desirable since measurement of just the surface temperature gives no indication of temperature inside the body, and system performance and safety is governed primarily by the highest temperature, encountered usually at the core of the body. This paper presents a technique to non-invasively determine the internal temperature based on the theoretical relationship between the core temperature and surface temperature distribution on the outside of a heat-generating solid body as functions of time. Experiments using infrared thermography of the outside surface of a thermal test cell in a variety of heating and cooling conditions demonstrate good agreement of the predicted core temperature as a function of time with actual core temperature measurement using an embedded thermocouple. This paper demonstrates a capability to thermally probe inside solid bodies in a non-invasive fashion. This directly benefits the accurate performance prediction and control of a variety of engineering systems where the time-varying core temperature plays a key role. PMID:27804981

  9. Non-invasive, transient determination of the core temperature of a heat-generating solid body

    NASA Astrophysics Data System (ADS)

    Anthony, Dean; Sarkar, Daipayan; Jain, Ankur

    2016-11-01

    While temperature on the surface of a heat-generating solid body can be easily measured using a variety of methods, very few techniques exist for non-invasively measuring the temperature inside the solid body as a function of time. Measurement of internal temperature is very desirable since measurement of just the surface temperature gives no indication of temperature inside the body, and system performance and safety is governed primarily by the highest temperature, encountered usually at the core of the body. This paper presents a technique to non-invasively determine the internal temperature based on the theoretical relationship between the core temperature and surface temperature distribution on the outside of a heat-generating solid body as functions of time. Experiments using infrared thermography of the outside surface of a thermal test cell in a variety of heating and cooling conditions demonstrate good agreement of the predicted core temperature as a function of time with actual core temperature measurement using an embedded thermocouple. This paper demonstrates a capability to thermally probe inside solid bodies in a non-invasive fashion. This directly benefits the accurate performance prediction and control of a variety of engineering systems where the time-varying core temperature plays a key role.

  10. On Laminar to Turbulent Transition of Arc-Jet Flow in the NASA Ames Panel Test Facility

    NASA Technical Reports Server (NTRS)

    Gokcen, Tahir; Alunni, Antonella I.

    2012-01-01

    This paper provides experimental evidence and supporting computational analysis to characterize the laminar to turbulent flow transition in a high enthalpy arc-jet facility at NASA Ames Research Center. The arc-jet test data obtained in the 20 MW Panel Test Facility include measurements of surface pressure and heat flux on a water-cooled calibration plate, and measurements of surface temperature on a reaction-cured glass coated tile plate. Computational fluid dynamics simulations are performed to characterize the arc-jet test environment and estimate its parameters consistent with the facility and calibration measurements. The present analysis comprises simulations of the nonequilibrium flowfield in the facility nozzle, test box, and flowfield over test articles. Both laminar and turbulent simulations are performed, and the computed results are compared with the experimental measurements, including Stanton number dependence on Reynolds number. Comparisons of computed and measured surface heat fluxes (and temperatures), along with the accompanying analysis, confirm that that the boundary layer in the Panel Test Facility flow is transitional at certain archeater conditions.

  11. Infrared non-destructive evaluation method and apparatus

    DOEpatents

    Baleine, Erwan; Erwan, James F; Lee, Ching-Pang; Stinelli, Stephanie

    2014-10-21

    A method of nondestructive evaluation and related system. The method includes arranging a test piece (14) having an internal passage (18) and an external surface (15) and a thermal calibrator (12) within a field of view (42) of an infrared sensor (44); generating a flow (16) of fluid characterized by a fluid temperature; exposing the test piece internal passage (18) and the thermal calibrator (12) to fluid from the flow (16); capturing infrared emission information of the test piece external surface (15) and of the thermal calibrator (12) simultaneously using the infrared sensor (44), wherein the test piece infrared emission information includes emission intensity information, and wherein the thermal calibrator infrared emission information includes a reference emission intensity associated with the fluid temperature; and normalizing the test piece emission intensity information against the reference emission intensity.

  12. Graphene Nanoplatelet Reinforced Tantalum Carbide

    DTIC Science & Technology

    2015-08-27

    testing showed an increase in thermal conductivity in GNP reinforced composites resulting in a reduction of peak sample surface temperature. This study...showed an increase in thermal conductivity in GNP reinforced composites resulting in a reduction of peak sample surface temperature. This study resulted...Wetting angle measurements are conducted to demonstrate the effectiveness of the PLC coating . Mechanical properties of the GrF-PLC hybrid are

  13. Laminar flow studies of a low-temperature space radiator model using D-shaped tubes

    NASA Technical Reports Server (NTRS)

    Cintula, T. C.; Prok, G. M.; Johnston, D. B.

    1972-01-01

    Test results of a low-temperature space radiator model are presented. Radiator performance is evaluated with a low-thermal-conductivity fluid in laminar flow in D-shaped cross-section tubes. The test covered a Reynolds number range from 50 to 4500 and a fluid temperature range from 294 to 414 K (70 to 286 F). For low-temperature radiators, the fluid-to-surface temperature differential was predominately influenced by fluid temperature in laminar flow. Heat transfer and pressure drop for the radiator tube could be predicted within engineering accuracy from existing correlations.

  14. Investigations of structural transformation within metal (austenite chromium-manganese steel) at the external surface of steam superheating tubes

    NASA Astrophysics Data System (ADS)

    Bogachev, V. A.; Pshechenkova, T. P.; Shumovskaya, M. A.

    2016-04-01

    The elemental composition of an altered layer at the external surface of a steam superheating tube of grade DI59 steel is investigated after long-term operation. It is shown that the layer is located between a scale and a matrix and depleted by silicon, manganese, copper, and chromium with the maximum oxidizer affinity, enriched by iron and nickel to 90%, and mainly composed of the α-Fe phase (ferrite) with the ferromagnetic properties. The layer formed as a result of selective oxidation and diffusion from the matrix into the metal scale with the less standard free energy of the formation of sulfides and oxides. A magnetic ferrite meter is used in the experimental investigation of the layer evolution by testing grade DI59 steel for heat resistance in air environment at temperatures of 585, 650, and 700°C for 15 × 103 h; creep at a temperature of 750°C and a stress of 60 MPa; and long-term strength at temperatures of 700 and 750°C and stresses of from 30 to 80 MPa. Specimens for tests are made of tubes under as-received conditions. The relationship between the ferrite phase content in the surface metal layer and the temperature and time of test is determined. The dependence is developed to evaluate the equivalent temperature for operation of the external surface of steam superheating tubes using data of magnetic ferritometry. It is shown that operation temperatures that are determined by the ferrite phase content and the σ phase concentration in the metal structure of steam superheating tubes with the significant operating time are close. It is proposed to use magnetic ferritometry for revelation of thermal nonuniformity and worst tubes of steam superheaters of HPP boilers.

  15. Rudder/Fin Seal Investigations for the X-38 Re-Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Curry, Donald M.

    2000-01-01

    NASA is currently developing the X-38 vehicle that will be used to demonstrate the technologies required for a crew return vehicle (CRV) for the International Space Station. The X-38 control surfaces require high temperature seals to limit hot gas ingestion and transfer of heat to underlying low-temperature structures to prevent over-temperature of these structures and possible loss of the vehicle. This paper presents results for thermal analyses and flow and compression tests conducted on as-received and thermally exposed seals for the rudder/fin location of the X-38. A thermal analysis of the rudder/fin dual seal assembly based on representative heating rates on the windward surface of the rudder/fin area predicted a peak seal temperature of 1900 F. The temperature-exposed seals were heated in a compressed state at 1900 F corresponding to the predicted peak temperature. Room temperature compression tests were performed to determine load versus linear compression, preload, contact area, stiffness, and resiliency characteristics for the as-received and temperature-exposed seals. Temperature exposure resulted in permanent set and loss of resiliency in these seals. Unit loads and contact pressures for the seals were below the 5 lb/in. and 10 psi limits set to limit the loads on the Shuttle thermal tiles that the seals seal against in the rudder/fin location. Measured seal flow rates for a double seal were about 4.5 times higher than the preliminary seal flow goal. The seal designs examined in this study are expected to be able to endure the high temperatures that they will be exposed to for a single-use life. Tests performed herein combined with future analyses, arc jet tests, and scrubbing tests will be used to select the final seal design for this application.

  16. Rudder/Fin Seal Investigations for the X-38 Re-Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Curry, Donald M.

    2000-01-01

    NASA is currently developing the X-38 vehicle that will be used to demonstrate the technologies required for a crew return vehicle (CRV) for the International Space Station. The X-38 control surfaces require high temperature seals to limit hot gas ingestion and transfer of heat to underlying low-temperature structures to prevent over-temperature of these structures and possible loss of the vehicle. This paper presents results for thermal analyses and flow and compression tests conducted on as-received and thermally exposed seals for the rudder/fin location of the X-38. A thermal analysis of the rudder/fin dual seal assembly based on representative heating rates on the windward surface of the rudder/fin area predicted a peak seal temperature of 1900 F. The temperature-exposed seals were heated in a compressed state at 1900 F corresponding to the predicted peak temperature. Room temperature compression tests were performed to determine load versus linear compression, preload, contact area, stiffness, and resiliency characteristics for the as-received and temperature-exposed seals. Temperature exposure resulted in permanent set and loss of resiliency in these seals. Unit loads and contact pressures for the seals were below the five pounds/inch and ten psi limits set to limit the loads on the Shuttle thermal tiles that the seals seal against in the rudder/fin location. Measured seal flow rates for a double seal were about 4.5 times higher than the preliminary seal flow goal. The seal designs examined in this study are expected to be able to endure the high temperatures that they will be exposed to for a single-use life. Tests performed herein combined with future analyses, arc jet tests, and scrubbing tests will be used to select the final seal design for this application.

  17. Guarded Flat Plate Cryogenic Test Apparatus and Calorimeter

    NASA Technical Reports Server (NTRS)

    Fesmire, James E. (Inventor); Johnson, Wesley L. (Inventor)

    2017-01-01

    A test apparatus for thermal energy measurement of disk-shaped test specimens has a cold mass assembly locatable within a sealable chamber with a guard vessel having a guard chamber to receive a liquid fluid and a bottom surface to contact a cold side of a test specimen, and a test vessel having a test chamber to receive a liquid fluid and encompassed on one side by a center portion of the bottom surface shared with the guard vessel. A lateral wall assembly of the test vessel is closed by a vessel top, the lateral wall assembly comprising an outer wall and an inner wall having opposing surfaces that define a thermal break including a condensable vapor pocket to inhibit heat transfer through the lateral wall from the guard vessel to the test vessel. A warm boundary temperature surface is in thermal communication with a lower surface of the test specimen.

  18. Radiometric analysis of the longwave infrared channel of the Thematic Mapper on LANDSAT 4 and 5

    NASA Technical Reports Server (NTRS)

    Schott, John R.; Volchok, William J.; Biegel, Joseph D.

    1986-01-01

    The first objective was to evaluate the postlaunch radiometric calibration of the LANDSAT Thematic Mapper (TM) band 6 data. The second objective was to determine to what extent surface temperatures could be computed from the TM and 6 data using atmospheric propagation models. To accomplish this, ground truth data were compared to a single TM-4 band 6 data set. This comparison indicated satisfactory agreement over a narrow temperature range. The atmospheric propagation model (modified LOWTRAN 5A) was used to predict surface temperature values based on the radiance at the spacecraft. The aircraft data were calibrated using a multi-altitude profile calibration technique which had been extensively tested in previous studies. This aircraft calibration permitted measurement of surface temperatures based on the radiance reaching the aircraft. When these temperature values are evaluated, an error in the satellite's ability to predict surface temperatures can be estimated. This study indicated that by carefully accounting for various sensor calibration and atmospheric propagation effects, and expected error (1 standard deviation) in surface temperature would be 0.9 K. This assumes no error in surface emissivity and no sampling error due to target location. These results indicate that the satellite calibration is within nominal limits to within this study's ability to measure error.

  19. High-Temperature, Thin-Film Strain Gages Improved

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Conventional resistance strain gage technology uses "bonded" strain gages. These foil or wire gages are bonded onto the surface of the test article with glue, ceramic cements, or flame-sprayed ceramics. These bonding agents can, in some instances, limit both the degree of strain transmission from the test structure to the gage and the maximum working temperature of the gage. Also, the bulky, bonded gage normally disrupts aerodynamic gas flow on the surface of the test structure because of its intrusive character. To respond to the urgent needs in aeronautic and aerospace research where stress and temperature gradients are high, aerodynamic effects need to be minimized, and higher operational temperatures are required, the NASA Lewis Research Center developed a thin film strain gage. This gage, a vacuum-deposited thin film formed directly on the surface of a test structure, operates at much higher temperatures than commercially available gages do and with minimal disruption of the aerodynamic flow. The gage uses an alloy, palladium-13 wt % chromium (hereafter, PdCr), which was developed by United Technologies Research Center under a NASA contract. PdCr is structurally stable and oxidation resistant up to at least 1100 C (2000 F); its temperature-induced resistance change is linear, repeatable, and not sensitive to the rates of heating and cooling. An early strain gage, which was made of 25-micrometer-diameter PdCr wire and demonstrated to be useable to 800 C, won an R&D 100 award in 1991. By further improving the purity of the material and by developing gage fabrication techniques that use sputter-deposition, photolithography patterning, and chemical etching, we have made an 8- to 10-m PdCr thin-film strain gage that can measure dynamic and static strain to at least 1100 C. For static strain measurements, a 5-m-thick Pt element serves as a temperature compensator to further minimize the temperature effect of the gage. These thin-film gages provide the advantage of minimally intrusive surface strain measurements and give highly repeatable readings with low drift at temperatures from ambient to 1100 C. This is a 300 C advance in operating temperature over the PdCr wire gage and a 500 C advance over commercially available gages made of other materials.

  20. Tensile properties of candidate structural materials for high power spallation sources at high helium contents

    NASA Astrophysics Data System (ADS)

    Jung, P.; Henry, J.; Chen, J.

    2005-08-01

    Low activation 9%Cr martensitic steels EUROFER97, pure tantalum, and low carbon austenitic stainless steel 316L were homogeneously implanted with helium to concentrations up to 5000 appm at temperatures from 70 °C to 400 °C. The specimens were tensile tested at room temperature and at the respective implantation temperatures. In all materials the helium caused an increased in strength and reduction in ductility, with both changes being generally larger at lower implantation and testing temperatures. After implantation some work hardening was retained in 316L and in tantalum, while it almost completely disappeared in EUROFER97. After tensile testing, fracture surfaces were analysed by scanning electron microscopy (SEM). Implantation caused reduction of necking, but up to concentrations of 2500 appm He fracture surface still showed transgranular ductile appearance. Completely brittle intergranular fracture was observed in tantalum at 9000 appm He and is also expected for EUROFER97 at this concentration, according to previous results on similar 9%Cr steels.

  1. Description and testing of three moisture sensors for measuring surface wetness on carbonate building stones

    USGS Publications Warehouse

    See, R.B.; Reddy, M.M.; Martin, R.G.

    1987-01-01

    Three sensors were tested on building stones exposed to conditions that produce deposition of moisture. A relative humidity probe, a gypsum collected circuit grid, and a limestone block resistor were tested as sensors for determining surface wetness. Sensors were tested under laboratory conditions of constant relative humidity and temperature and also under on-site conditions of variable relative humidity and temperature for 8 weeks at Newcomb, New York. Laboratory tests indicated that relative humidity alone did not cause sensors to become saturated. However, relative humidity did control the rate at which sensors dried after being saturated with distilled water. On-site testing of the relative humidity probe and the gypsum coated circuit grid indicated that they respond to a diurnal wetting and drying cycle; the limestone block resistor only responded to rainfall. (Author 's abstract)

  2. Dynamic Acquisition and Retrieval Tool (DART) for Comet Sample Return : Session: 2.06.Robotic Mobility and Sample Acquisition Systems

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Bonitz, Robert; Kulczycki, Erick; Aisen, Norman; Dandino, Charles M.; Cantrell, Brett S.; Gallagher, William; Shevin, Jesse; Ganino, Anthony; Haddad, Nicolas; hide

    2013-01-01

    The 2011 Decadal Survey for planetary science released by the National Research Council of the National Academies identified Comet Surface Sample Return (CSSR) as one of five high priority potential New Frontiers-class missions in the next decade. The main objectives of the research described in this publication are: develop a concept for an end-to-end system for collecting and storing a comet sample to be returned to Earth; design, fabricate and test a prototype Dynamic Acquisition and Retrieval Tool (DART) capable of collecting 500 cc sample in a canister and eject the canister with a predetermined speed; identify a set of simulants with physical properties at room temperature that suitably match the physical properties of the comet surface as it would be sampled. We propose the use of a dart that would be launched from the spacecraft to impact and penetrate the comet surface. After collecting the sample, the sample canister would be ejected at a speed greater than the comet's escape velocity and captured by the spacecraft, packaged into a return capsule and returned to Earth. The dart would be composed of an inner tube or sample canister, an outer tube, a decelerator, a means of capturing and retaining the sample, and a mechanism to eject the canister with the sample for later rendezvous with the spacecraft. One of the significant unknowns is the physical properties of the comet surface. Based on new findings from the recent Deep Impact comet encounter mission, we have limited our search of solutions for sampling materials to materials with 10 to 100 kPa shear strength in loose or consolidated form. As the possible range of values for the comet surface temperature is also significantly different than room temperature and testing at conditions other than the room temperature can become resource intensive, we sought sample simulants with physical properties at room temperature similar to the expected physical properties of the comet surface material. The chosen DART configuration, the efforts to identify a test simulant and the properties of these simulants, and the results of the preliminary testing will be described in this paper.

  3. Water Plume Temperature Measurements by an Unmanned Aerial System (UAS)

    PubMed Central

    DeMario, Anthony; Lopez, Pete; Plewka, Eli; Wix, Ryan; Xia, Hai; Zamora, Emily; Gessler, Dan; Yalin, Azer P.

    2017-01-01

    We report on the development and testing of a proof of principle water temperature measurement system deployed on an unmanned aerial system (UAS), for field measurements of thermal discharges into water. The primary elements of the system include a quad-copter UAS to which has been integrated, for the first time, both a thermal imaging infrared (IR) camera and an immersible probe that can be dipped below the water surface to obtain vertical water temperature profiles. The IR camera is used to take images of the overall water surface to geo-locate the plume, while the immersible probe provides quantitative temperature depth profiles at specific locations. The full system has been tested including the navigation of the UAS, its ability to safely carry the sensor payload, and the performance of both the IR camera and the temperature probe. Finally, the UAS sensor system was successfully deployed in a pilot field study at a coal burning power plant, and obtained images and temperature profiles of the thermal effluent. PMID:28178215

  4. Water Plume Temperature Measurements by an Unmanned Aerial System (UAS).

    PubMed

    DeMario, Anthony; Lopez, Pete; Plewka, Eli; Wix, Ryan; Xia, Hai; Zamora, Emily; Gessler, Dan; Yalin, Azer P

    2017-02-07

    We report on the development and testing of a proof of principle water temperature measurement system deployed on an unmanned aerial system (UAS), for field measurements of thermal discharges into water. The primary elements of the system include a quad-copter UAS to which has been integrated, for the first time, both a thermal imaging infrared (IR) camera and an immersible probe that can be dipped below the water surface to obtain vertical water temperature profiles. The IR camera is used to take images of the overall water surface to geo-locate the plume, while the immersible probe provides quantitative temperature depth profiles at specific locations. The full system has been tested including the navigation of the UAS, its ability to safely carry the sensor payload, and the performance of both the IR camera and the temperature probe. Finally, the UAS sensor system was successfully deployed in a pilot field study at a coal burning power plant, and obtained images and temperature profiles of the thermal effluent.

  5. Modelling of surface-water temperature for the estimation of the Czech fishery productivity under the climate change

    NASA Astrophysics Data System (ADS)

    Svobodová, Eva; Trnka, Miroslav; Kopp, Radovan; Mareš, Jan; Dubrovský, Martin; Spurný, Petr; Žalud, Zděněk

    2015-04-01

    Freshwater fish production is significantly correlated with water temperature which is expected to increase under the climate change. This study is dealing with the estimation of the change of water temperature in productive ponds and its impact on the fishery in the Czech Republic. Calculation of surface-water temperature which was based on three-day mean of the air temperature was developed and tested in several ponds in three main fish production areas. Output of surface-water temperature model was compared with measured data and showed that the lower range of model accuracy is surface-water temperature 3°C, under this temperature threshold the model loses its predictive competence. In the expecting of surface-water temperature above the temperature 3°C the model has proved the well consistence between observed and modelled surface-water temperature (R 0.79 - 0.96). Verified model was applied in the conditions of climate change determined by the pattern scaling method, in which standardised scenarios were derived from five global circulation models MPEH5, CSMK3, IPCM4, GFCM21 and HADGEM. Results were evaluated with regard to thresholds which characterise the fish species requirements on water temperature. Used thresholds involved the upper temperature threshold for fish survival and the tolerable number of days in continual period with mentioned threshold surface-water temperature. Target fish species were Common carp (Cyprinus carpio), Maraene whitefish (Coregonus maraena), Northern whitefish (Coregonus peled) and Rainbow trout (Oncorhynchus mykis). Results indicated the limitation of the Czech fish-farming in terms of i) the increase of the length of continual periods with surface-water temperature above the threshold appropriate to given fish species toleration, ii) the increase of the number of continual periods with surface-water temperature above the threshold, both appropriate to given fish species toleration, and iii) the increase of overall number of days within the continual period with temperature above the threshold tolerated by given fish species. ACKNOWLEDGEMENTS: This study was funded by project "Building up a multidisciplinary scientific team focused on drought" No. CZ.1.07/2.3.00/20.0248.

  6. Investigation of boundary conditions for biomimetic HA deposition on titanium oxide surfaces.

    PubMed

    Lindgren, M; Astrand, M; Wiklund, U; Engqvist, H

    2009-07-01

    To improve the clinical outcome of metal implants, i.e. earlier loading and reduction of the incidence of revision surgery, better bone bonding ability is wanted. One method to achieve this is to change the surface chemistry to give a surface that facilitates bone bonding in vivo, i.e. a bioactive surface. Crystalline titanium oxide has recently been proven to be bioactive in vitro and is an interesting option to the more common hydroxylapatite (HA) coatings on implants. A materials possible in vitro bioactivity is tested through soaking in simulated body fluid and studies of possible HA formation on the surface. For bioactive materials, the formed HA layer can also be used as a coating. The aim of the current paper is to investigate some boundary conditions for HA formation on crystalline titanium oxide surfaces regarding influence from coating thickness, soaking time and soaking temperature. The influence from soaking time and temperature on the HA growth were investigated on oxidised Ti samples, (24 h at 800 degrees C) resulting in a rutile surface structure. The oxidised samples were tested at three temperatures (4, 37 and 65 degrees C) and four times (1 h, 1 day, 1 week and 4 weeks). The influence from titanium coating thickness on the HA growth was investigated via depositing thin films of crystalline titanium dioxide on Ti plates using a reactive magnetron sputtering process. Four different PVD runs with coating thicknesses between 19 and 74 nm were tested. The soaking temperature had an effect on the HA formation and growth on both rutile surfaces and native oxide on Ti substrates. Higher temperatures lead to easier formation of HA. It was even possible, at 65 degrees C, to grow HA on native titanium oxide from soaking in PBS. The coating quality was better for HA formed at 65 degrees C compared to 37 degrees C. All PVD-coatings showed HA growth after 1 week in PBS at 37 degrees C, thus even very thin coatings of crystalline titanium oxide coatings are bioactive.

  7. High pressure combustion of liquid fuels. [alcohol and n-paraffin fuels

    NASA Technical Reports Server (NTRS)

    Canada, G. S.

    1974-01-01

    Measurements were made of the burning rates and liquid surface temperatures for a number of alcohol and n-paraffin fuels under natural and forced convection conditions. Porous spheres ranging in size from 0.64-1.9 cm O.D. were emloyed to simulate the fuel droplets. The natural convection cold gas tests considered the combustion in air of methanol, ethanol, propanol-1, n-pentane, n-heptane, and n-decane droplets at pressures up to 78 atmospheres. The pressure levels of the natural convection tests were high enough so that near critical combustion was observed for methanol and ethanol vaporization rates and liquid surface temperature measurements were made of droplets burning in a simulated combustion chamber environment. Ambient oxygen molar concentrations included 13%, 9.5% and pure evaporation. Fuels used in the forced convection atmospheric tests included those listed above for the natural convection tests. The ambient gas temperature ranged from 600 to 1500 K and the Reynolds number varied from 30 to 300. The high pressure forced convection tests employed ethanol and n-heptane as fuels over a pressure range of one to 40 atmospheres. The ambient gas temperature was 1145 K for the two combustion cases and 1255 K for the evaporation case.

  8. Effect of thermal profile on cyclic flaw growth in aluminum

    NASA Technical Reports Server (NTRS)

    Engstrom, W. L.

    1975-01-01

    Surface flawed and single edge notch tension specimens of 2219-T851 and -T87 aluminum were tested to determine static fracture characteristics and base line (constant amplitude, constant temperature) cyclic flaw growth behavior. Subsequent testing was then conducted in which flawed specimens were subjected to a thermal profile in which the applied stress was varied simultaneously with the temperature. The profile used represents a simplified space shuttle orbiter load/temperature flight cycle. Test temperatures included the range from 144K (-200 F) up to 450K (350 F). The measured flaw growth rates obtained from the thermal profile tests were then compared with rates predicted by assuming linear cumulative damage of base line rates.

  9. Satellite Estimation of Daily Land Surface Water Vapor Pressure Deficit from AMSR- E

    NASA Astrophysics Data System (ADS)

    Jones, L. A.; Kimball, J. S.; McDonald, K. C.; Chan, S. K.; Njoku, E. G.; Oechel, W. C.

    2007-12-01

    Vapor pressure deficit (VPD) is a key variable for monitoring land surface water and energy exchanges, and estimating plant water stress. Multi-frequency day/night brightness temperatures from the Advanced Microwave Scanning Radiometer on EOS Aqua (AMSR-E) were used to estimate daily minimum and average near surface (2 m) air temperatures across a North American boreal-Arctic transect. A simple method for determining daily mean VPD (Pa) from AMSR-E air temperature retrievals was developed and validated against observations across a regional network of eight study sites ranging from boreal grassland and forest to arctic tundra. The method assumes that the dew point and minimum daily air temperatures tend to equilibrate in areas with low night time temperatures and relatively moist conditions. This assumption was tested by comparing the VPD algorithm results derived from site daily temperature observations against results derived from AMSR-E retrieved temperatures alone. An error analysis was conducted to determine the amount of error introduced in VPD estimates given known levels of error in satellite retrieved temperatures. Results indicate that the assumption generally holds for the high latitude study sites except for arid locations in mid-summer. VPD estimates using the method with AMSR-E retrieved temperatures compare favorably with site observations. The method can be applied to land surface temperature retrievals from any sensor with day and night surface or near-surface thermal measurements and shows potential for inferring near-surface wetness conditions where dense vegetation may hinder surface soil moisture retrievals from low-frequency microwave sensors. This work was carried out at The University of Montana, at San Diego State University, and at the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration.

  10. Thermal sensation, rate of temperature change, and the heat dissipation design for tablet computers.

    PubMed

    Zhang, Han; Hedge, Alan; Cosley, Daniel

    2017-07-01

    Past research has shown that the rate of change of skin surface temperature can affect thermal sensation. This study investigated users' thermal responses to a tablet heating surface with different heat pads and different temperature change rates. The test conditions included: A. keeping the surface at a constant 42 °C, B. increasing the surface temperature from 38 °C to 42 °C at a rate of 0.02 °C/s in progressive intervals, C. increasing the temperature at 0.15 °C/s in progressive intervals, and D. Heating two left and right side pads alternately from 38 °C to 42 °C at 0.15 °C/s in progressive intervals. Overall results showed the lowest temperature change rate of 0.02 °C/s was most preferred in terms of thermal comfort. The findings suggest a potential to improve user thermal experience by dissipating tablet computer heat at a lower temperature change rate, or by alternating the dissipation areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Cryogenic rf test of the first SRF cavity etched in an rf Ar/Cl2 plasma

    NASA Astrophysics Data System (ADS)

    Upadhyay, J.; Palczewski, A.; Popović, S.; Valente-Feliciano, A.-M.; Im, Do; Phillips, H. L.; Vušković, L.

    2017-12-01

    An apparatus and a method for etching of the inner surfaces of superconducting radio frequency (SRF) accelerator cavities are described. The apparatus is based on the reactive ion etching performed in an Ar/Cl2 cylindrical capacitive discharge with reversed asymmetry. To test the effect of the plasma etching on the cavity rf performance, a 1497 MHz single cell SRF cavity was used. The single cell cavity was mechanically polished and buffer chemically etched and then rf tested at cryogenic temperatures to provide a baseline characterization. The cavity's inner wall was then exposed to the capacitive discharge in a mixture of Argon and Chlorine. The inner wall acted as the grounded electrode, while kept at elevated temperature. The processing was accomplished by axially moving the dc-biased, corrugated inner electrode and the gas flow inlet in a step-wise manner to establish a sequence of longitudinally segmented discharges. The cavity was then tested in a standard vertical test stand at cryogenic temperatures. The rf tests and surface condition results, including the electron field emission elimination, are presented.

  12. Correlation of nosetip boundary-layer transition data measured in ballistics-range experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reda, D.C.

    1979-11-01

    Preablated nosetips of various carbonaceous materials were tested in a ballistics range. Surface-temperature contours, measured with image-converter cameras, were used to define boundary-layer transition-fron contours. Measurements of surface roughness, surface temperature, average transition-calculations of nosetip flowfields, and with calculations of laminar boundary-layer development in these flowfields, to transform all data into various dimensionless parameters. These parameters were defined by previous attempts to correlate existing wind-tunnel data for transition on rough/blunt bodies.

  13. Surface fatigue life of M50NiL and AISI 9310 spur gears and R C bars

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis P.; Bamberger, Eric N.

    1991-01-01

    Spur gear endurance tests and rolling element surface fatigue tests were conducted to study vacuum induction melted, vacuum arc remelted (VIM-VAR) M50NiL steel for use as a gear steel in advanced aircraft applications, to determine its endurance characteristics, and to compare the results with those for standard VAR and VIM-VAR AISI 9310 gear material. Tests were conducted with spur gears and rolling contact bars manufactured from VIM-VAR M50NiL and VAR and VIM-VAR AISI 9310. The gear pitch diameter was 8.9 cm. Gear test conditions were an inlet oil temperature of 320 K, and outlet oil temperature of 350 K, a maximum Hertz stress of 1.71 GPa, and a speed of 10000 rpm. Bench rolling element fatigue tests were conducted at ambient temperatures with a bar speed of 12,500 rpm and a maximum Hertz stress of 4.83 GPa. The VIM-VAR M50NiL gears had a surface fatigue life that was 4.5 and 11.5 times that for VIM-VAR and VAR AISI 9310 gears, respectively. The surface fatigue life of the VIM-VAR M50NiL rolling contact bars was 13.2 and 21.6 times that for the VIM-VAR and VAR AISI 9310, respectively. The VIM-VAR M50NiL material was shown to have good resistance to fracture through a fatigue spall and superior fatigue life to both other gears.

  14. Surface Temperature Measurements from a Stator Vane Doublet in a Turbine Engine Afterburner Flame using Ultra-Bright Cr-Doped GdAlO3 Thermographic Phosphor

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.; Jenkins, Thomas P.; Allison, Stephen W.; Wolfe, Douglas E.; Howard, Robert P.

    2013-01-01

    Luminescence-based surface temperature measurements from an ultra-bright Cr-doped GdAlO3 perovskite (GAP:Cr) coating were successfully conducted on an air-film-cooled stator vane doublet exposed to the afterburner flame of a J85 test engine at University of Tennessee Space Institute (UTSI). The objective of the testing at UTSI was to demonstrate that reliable thermal barrier coating (TBC) surface temperatures based on luminescence decay of a thermographic phosphor could be obtained from the surface of an actual engine component in an aggressive afterburner flame environment and to address the challenges of a highly radiant background and high velocity gases. A high-pressure turbine vane doublet from a Honeywell TECH7000 turbine engine was coated with a standard electron-beam physical vapor deposited (EB-PVD) 200-m-thick TBC composed of yttria-stabilized zirconia (YSZ) onto which a 25-m-thick GAP:Cr thermographic phosphor layer was deposited by EB-PVD. The ultra-bright broadband luminescence from the GAP:Cr thermographic phosphor is shown to offer the advantage of over an order-of-magnitude greater emission intensity compared to rare-earth-doped phosphors in the engine test environment. This higher emission intensity was shown to be very desirable for overcoming the necessarily restricted probe light collection solid angle and for achieving high signal-to-background levels. Luminescence-decay-based surface temperature measurements varied from 500 to over 1000C depending on engine operating conditions and level of air film cooling.

  15. Development and Testing of High Surface Area Iridium Anodes for Molten Oxide Electrolysis

    NASA Technical Reports Server (NTRS)

    Shchetkovskiy, Anatoliy; McKechnie, Timothy; Sadoway, Donald R.; Paramore, James; Melendez, Orlando; Curreri, Peter A.

    2010-01-01

    Processing of lunar regolith into oxygen for habitat and propulsion is needed to support future space missions. Direct electrochemical reduction of molten regolith is an attractive method of processing, because no additional chemical reagents are needed. The electrochemical processing of molten oxides requires high surface area, inert anodes. Such electrodes need to be structurally robust at elevated temperatures (1400-1600?C), be resistant to thermal shock, have good electrical conductivity, be resistant to attack by molten oxide (silicate), be electrochemically stable and support high current density. Iridium with its high melting point, good oxidation resistance, superior high temperature strength and ductility is the most promising candidate for anodes in high temperature electrochemical processes. Several innovative concepts for manufacturing such anodes by electrodeposition of iridium from molten salt electrolyte (EL-Form? process) were evaluated. Iridium electrodeposition to form of complex shape components and coating was investigated. Iridium coated graphite, porous iridium structure and solid iridium anodes were fabricated. Testing of electroformed iridium anodes shows no visible degradation. The result of development, manufacturing and testing of high surface, inert iridium anodes will be presented.

  16. Development and Testing of High Surface Area Iridium Anodes for Molten Oxide Electrolysis

    NASA Technical Reports Server (NTRS)

    Shchetkovskiy, Anatoliy; McKechnie, Timothy; Sadoway, Donald R.; Paramore, James; Melendez, Orlando; Curreri, Peter A.

    2010-01-01

    Processing of lunar regolith into oxygen for habitat and propulsion is needed to support future space missions. Direct electrochemical reduction of molten regolith is an attractive method of processing, because no additional chemical reagents are needed. The electrochemical processing of molten oxides requires high surface area, inert anodes. Such electrodes need to be structurally robust at elevated temperatures (1400-1600 C), be resistant to thermal shock, have good electrical conductivity, be resistant to attack by molten oxide (silicate), be electrochemically stable and support high current density. Iridium with its high melting point, good oxidation resistance, superior high temperature strength and ductility is the most promising candidate for anodes in high temperature electrochemical processes. Several innovative concepts for manufacturing such anodes by electrodeposition of iridium from molten salt electrolyte (EL-Form process) were evaluated. Iridium electrodeposition to form of complex shape components and coating was investigated. Iridium coated graphite, porous iridium structure and solid iridium anodes were fabricated. Testing of electroformed iridium anodes shows no visible degradation. The result of development, manufacturing and testing of high surface, inert iridium anodes will be presented.

  17. Advances in Thin Film Sensor Technologies for Engine Applications

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen; Martin, Lisa C.; Will, Herbert A.

    1997-01-01

    Advanced thin film sensor techniques that can provide accurate surface strain and temperature measurements are being developed at NASA Lewis Research Center. These sensors are needed to provide minimally intrusive characterization of advanced materials (such as ceramics and composites) and structures (such as components for Space Shuttle Main Engine, High Speed Civil Transport, Advanced Subsonic Transports and General Aviation Aircraft) in hostile, high-temperature environments and for validation of design codes. This paper presents two advanced thin film sensor technologies: strain gauges and thermocouples. These sensors are sputter deposited directly onto the test articles and are only a few micrometers thick; the surface of the test article is not structurally altered and there is minimal disturbance of the gas flow over the surface. The strain gauges are palladium-13% chromium based and the thermocouples are platinum-13% rhodium vs. platinum. The fabrication techniques of these thin film sensors in a class 1000 cleanroom at the NASA Lewis Research Center are described. Their demonstration on a variety of engine materials, including superalloys, ceramics and advanced ceramic matrix composites, in several hostile, high-temperature test environments are discussed.

  18. Preliminary measurements on heat balance in pneumatic tires

    NASA Technical Reports Server (NTRS)

    Nybakken, G. H.; Collart, D. Y.; Staples, R. J.; Lackey, J. I.; Clark, S. K.; Dodge, R. N.

    1973-01-01

    A variety of tests was undertaken to determine the nature of heat generation associated with a pneumatic tire operating under various conditions. Tests were conducted to determine the magnitude and distribution of internally generated heat caused by hysteresis in the rubber and ply fabric in an automobile tire operating under conditions of load, pressure, and velocity representative of normal operating conditions. These included tests at various yaw angles and tests with braking applied. In other tests, temperature sensors were mounted on a road to measure the effect of a tire rolling over and an attempt was made to deduce the magnitude and nature of interfacial friction from the resulting information. In addition, tests were performed using the scratch plate technique to determine the nature of the motion between the tire and road. Finally, a model tire was tested on a roadwheel, the surface covering which could be changed, and an optical pyrometer was used to measure rubber surface temperatures.

  19. Temperature Rise on the Plugger Surface of 2 Commercially Available Gutta-percha Heating Devices.

    PubMed

    Dimopoulos, Fotis; Dervenis, Konstantinos; Gogos, Christos; Lambrianidis, Theodoros

    2017-11-01

    The objective of this study was to examine the temperature rise on the plugger surface of 2 commercially available gutta-percha heating devices: the System B (Kerr Dental, Amersfoort, The Netherlands) and the System B Cordless Pack Unit (Kerr Dental). Temperature changes were recorded by a Thermocouple Data Logger device (Pico Technology Ltd, St Neots, UK) and 2 thermocouples: the first to record the temperature on the plugger surface in an isolated polytetrafluoroethylene system and the second to record the base temperature of the environment. The gutta-percha heating devices studied were System B with F, FM, M, and ML pluggers set at the "use" position, "touch" mode, temperature of 200°C, and a power setting of 10 and the System B Cordless Pack Unit with the FM plugger set at low power. Two variables were extracted from the collected temperature data: the temperature on the plugger surface 10 seconds after activating each gutta-percha heating device (θ 10 ) and the time required to reach 60°C (t 60 ). The differences between the pluggers over those 2 variables were investigated using analysis of variance and the Tukey B test for post hoc comparisons (P < .05). The mean θ 10 for all pluggers ranged between 73°C and 87°C. The mean t 60 for all pluggers ranged between 1.3 and 3.3 seconds. No clinically significant differences between the pluggers were observed. The gutta-percha heating devices tested achieve maximum temperatures lower than 94°C and are capable of gutta-percha phase transformation within approximately 4 seconds of activation. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. Strength evaluation test of pressureless-sintered silicon nitride at room temperature

    NASA Technical Reports Server (NTRS)

    Matsusue, K.; Takahara, K.; Hashimoto, R.

    1984-01-01

    In order to study strength characteristics at room temperature and the strength evaluating method of ceramic materials, the following tests were conducted on pressureless sintered silicon nitride specimens: bending tests, the three tensile tests of rectangular plates, holed plates, and notched plates, and spin tests of centrally holed disks. The relationship between the mean strength of specimens and the effective volume of specimens are examined using Weibull's theory. The effect of surface grinding on the strength of specimens is discussed.

  1. Attribution of precipitation changes on ground-air temperature offset: Granger causality analysis

    NASA Astrophysics Data System (ADS)

    Cermak, Vladimir; Bodri, Louise

    2018-01-01

    This work examines the causal relationship between the value of the ground-air temperature offset and the precipitation changes for monitored 5-min data series together with their hourly and daily averages obtained at the Sporilov Geophysical Observatory (Prague). Shallow subsurface soil temperatures were monitored under four different land cover types (bare soil, sand, short-cut grass and asphalt). The ground surface temperature (GST) and surface air temperature (SAT) offset, Δ T(GST-SAT), is defined as the difference between the temperature measured at the depth of 2 cm below the surface and the air temperature measured at 5 cm above the surface. The results of the Granger causality test did not reveal any evidence of Granger causality for precipitation to ground-air temperature offsets on the daily scale of aggregation except for the asphalt pavement. On the contrary, a strong evidence of Granger causality for precipitation to the ground-air temperature offsets was found on the hourly scale of aggregation for all land cover types except for the sand surface cover. All results are sensitive to the lag choice of the autoregressive model. On the whole, obtained results contain valuable information on the delay time of Δ T(GST-SAT) caused by the rainfall events and confirmed the importance of using autoregressive models to understand the ground-air temperature relationship.

  2. Development and testing of instrumentation for ship-based UAV measurements of ocean surface processes and the marine atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Reineman, B. D.; Lenain, L.; Statom, N.; Melville, W. K.

    2012-12-01

    We have developed instrumentation packages for unmanned aerial vehicles (UAVs) to measure ocean surface processes along with momentum fluxes and latent, sensible, and radiative heat fluxes in the marine atmospheric boundary layer (MABL). The packages have been flown over land on BAE Manta C1s and over water on Boeing-Insitu ScanEagles. The low altitude required for accurate surface flux measurements (< 30 m) is below the typical safety limit of manned research aircraft; however, with advances in laser altimeters, small-aircraft flight control, and real-time kinematic differential GPS, low-altitude flight is now within the capability of small UAV platforms. Fast-response turbulence, hygrometer, and temperature probes permit turbulent flux measurements, and short- and long-wave radiometers allow the determination of net radiation, surface temperature, and albedo. Onboard laser altimetry and high-resolution visible and infrared video permit observations of surface waves and fine-scale (O(10) cm) ocean surface temperature structure. Flight tests of payloads aboard ScanEagle UAVs were conducted in April 2012 at the Naval Surface Warfare Center Dahlgren Division (Dahlgren, VA), where measurements of water vapor, heat, and momentum fluxes were made from low-altitude (31-m) UAV flights over water (Potomac River). ScanEagles are capable of ship-based launch and recovery, which can extend the reach of research vessels and enable scientific measurements out to ranges of O(10-100) km and altitudes up to 5 km. UAV-based atmospheric and surface observations can complement observations of surface and subsurface phenomena made from a research vessel and avoid the well-known problems of vessel interference in MABL measurements. We present a description of the instrumentation, summarize results from flight tests, and discuss potential applications of these UAVs for ship-based MABL studies.

  3. Temperature-dependent residual shear strength characteristics of smectite-bearing landslide soils

    NASA Astrophysics Data System (ADS)

    Shibasaki, Tatsuya; Matsuura, Sumio; Hasegawa, Yoichi

    2017-02-01

    This paper presents experimental investigations regarding the effect of temperature on the residual strength of landslide soils at slow-to-moderate shearing velocities. We performed ring-shear tests on 23 soil samples at temperatures of 6-29°C. The test results show that the shear strength of smectite-rich soils decreased when temperatures were relatively low. These positive temperature effects (strength losses at lower temperatures) observed for smectite-bearing soils are typical under relatively slow shearing rates. In contrast, under relatively high shearing rates, strength was gained as temperature decreased. As rheological properties of smectite suspensions are sensitive to environmental factors, such as temperature, pH, and dissolved ions, we inferred that temperature-dependent residual strengths of smectitic soils are also attributed to their specific rheological properties. Visual and scanning electron microscope observations of Ca-bentonite suggest that slickensided shear surfaces at slow shearing rates are very shiny and smooth, whereas those at moderate shearing rates are not glossy and are slightly turbulent, indicating that platy smectite particles are strongly orientated at slow velocities. The positive temperature effect is probably due to temperature-dependent microfriction that is mobilized in the parallel directions of the sheet structure of hydrous smectite particles. On the contrary, the influence of microviscous resistance, which appears in the vertical directions of the lamination, is assumed to increase at faster velocities. Our results imply that if slip-surface soils contain high fractions of smectite, decreases in ground temperature can lead to lowered shear resistance of the slip surface and trigger slow landslide movement.

  4. Measuring Humidity in Sealed Glass Encasements

    NASA Technical Reports Server (NTRS)

    West, James W.; Burkett, Cecil G.; Levine, Joel S.

    2005-01-01

    A technique has been devised for measuring the relative humidity levels in the protective helium/water vapor atmosphere in which the Declaration of Independence, the United States Constitution, and the Bill of Rights are encased behind glass panels on display at the National Archives in Washington, DC. The technique is noninvasive: it does not involve penetrating the encasements (thereby risking contamination or damage to the priceless documents) to acquire samples of the atmosphere. The technique could also be applied to similar glass encasements used to protect and display important documents and other precious objects in museums. The basic principle of the technique is straightforward: An encasement is maintained at its normal display or operating temperature (e.g., room temperature) while a portion of its glass front panel is chilled (see Figure 1) until condensed water droplets become visible on the inside of the panel. The relative humidity of the enclosed atmosphere can then be determined as a known function of the dew point, the temperature below which the droplets condense. Notwithstanding the straightforwardness of the basic principle, careful attention to detail is necessary to enable accurate determination of the dew point. In the initial application, the affected portion of the glass panel was cooled by contact with an aluminum plate that was cooled by a thermoelectric module, the exhaust heat of which was dissipated by a heat sink cooled by a fan. A thermocouple was used to measure the interior temperature of the aluminum plate, and six other thermocouples were used to measure the temperatures at six locations on the cooled outer surface of the glass panel (see Figure 2). Thermal grease was applied to the aluminum plate and the thermocouples to ensure close thermal contact. Power was supplied to the thermoelectric module in small increments, based on previous laboratory tests. A small flashlight and a magnifying glass were used to look for water droplets condensing on the inner surface of the glass. The temperature readings of the thermocouples were taken during cool-down and upon observing condensation. In determining the dew point, it was necessary to make a correction for the differences between the temperatures measured on the chilled outer surface of the glass and the temperature of the inner surface, where the condensation took place. The correction was derived from a laboratory test on a measurement setup that was nearly identical, except that the dew location on the inner surface was also instrumented with a thermocouple. The test showed that the temperature at the dew location on the inner surface of the glass panel was 0.9 C above the temperature determined from the measurements on the chilled outer surface of the panel.

  5. Roughness induced transition and heat transfer augmentation in hypersonic environments

    NASA Astrophysics Data System (ADS)

    Wassel, A. T.; Shih, W. C. L.; Courtney, J. F.

    Boundary layer transition and surface heating distributions on graphite, fine weave carbon-carbon, and metallic nosetip materials were derived from surface temperature responses measured in nitrogen environments during both free-flight and track-guided testing in hypersonic environments. Innovative test procedures were developed, and heat transfer results were validated against established theory through experiments using a super-smooth tungsten model. Quantitative definitions of mean transition front locations were established by deriving heat flux distributions from measured temperatures, and comparisons made with existing nosetip transition correlations. Qualitative transition locations were inferred directly from temperature distributions to investigate preferred orientations on fine weave nosetips. Levels of roughness augmented heat transfer were generally shown to be below values predicted by state-of-the-art methods.

  6. Surface-mount sapphire interferometric temperature sensor.

    PubMed

    Zhu, Yizheng; Wang, Anbo

    2006-08-20

    A fiber-optic high-temperature sensor is demonstrated by bonding a 45 degrees -polished single-crystal sapphire fiber on the surface of a sapphire wafer, whose optical thickness is temperature dependent and measured by white-light interferometry. A novel adhesive-free coupling between the silica and sapphire fibers is achieved by fusion splicing, and its performance is characterized. The sensor's interference signal is investigated for its dependence on angular alignment between the fiber and the wafer. A prototype sensor is tested to 1,170 degrees C with a resolution of 0.4 degrees C, demonstrating excellent potential for high-temperature measurement.

  7. Deformation and fracture of aluminum-lithium alloys: The effect of dissolved hydrogen

    NASA Technical Reports Server (NTRS)

    Rivet, F. C.; Swanson, R. E.

    1990-01-01

    The effects of dissolved hydrogen on the mechanical properties of 2090 and 2219 alloys are studied. The work done during this semi-annual period consists of the hydrogen charging study and some preliminary mechanical tests. Prior to SIMS analysis, several potentiostatic and galvanostatic experiments were performed for various times (going from 10 minutes to several hours) in the cathodic zone, and for the two aqueous solutions: 0.04N of HCl and 0.1N NaOH both combined with a small amount of As2O3. A study of the surface damage was conducted in parallel with the charging experiments. Those tests were performed to choose the best charging conditions without surface damage. Disk rupture tests and tensile tests are part of the study designed to investigate the effect of temperature, surface roughness, strain rate, and environment on the fracture behavior. The importance of the roughness and environment were shown using the disk rupture test as well as the importance of the strain rate under hydrogen environment. The tensile tests, without hydrogen effects, have not shown significant differences between low and room temperature.

  8. Thermal Design, Test and Analysis of PharmaSat, a Small Class D Spacecraft with a Biological Experiment

    NASA Technical Reports Server (NTRS)

    Diaz-Aguado, Millan F.; VanOutryve, Cassandra; Ghassemiah, Shakib; Beasley, Christopher; Schooley, Aaron

    2009-01-01

    Small spacecraft have been increasing in popularity because of their low cost, short turnaround and relative efficiency. In the past, small spacecraft have been primarily used for technology demonstrations, but advances in technology have made the miniaturization of space science possible [1,2]. PharmaSat is a low cost, small three cube size spacecraft, with a biological experiment on board, built at NASA (National Aeronautics and Space Administration) Ames Research Center. The thermal design of small spacecraft presents challenges as their smaller surface areas translate into power and thermal constraints. The spacecraft is thermally designed to run colder in the Low Earth Orbit space environment, and heated to reach the temperatures required by the science payload. The limited power supply obtained from the solar panels on small surfaces creates a constraint in the power used to heat the payload to required temperatures. The pressurized payload is isolated with low thermally conductance paths from the large ambient temperature changes. The thermal design consists of different optical properties of section surfaces, Multi Layer Insulation (MLI), low thermal conductance materials, flexible heaters and thermal spreaders. The payload temperature is controlled with temperature sensors and flexible heaters. Finite Element Analysis (FEA) and testing were used to aid the thermal design of the spacecraft. Various tests were conducted to verify the thermal design. An infrared imager was used on the electronic boards to find large heat sources and eliminate any possible temperature runaways. The spacecraft was tested in a thermal vacuum chamber to optimize the thermal and power analysis and qualify the thermal design of the spacecraft for the mission.

  9. Continued Development of a Global Heat Transfer Measurement System at AEDC Hypervelocity Wind Tunnel 9

    NASA Technical Reports Server (NTRS)

    Kurits, Inna; Lewis, M. J.; Hamner, M. P.; Norris, Joseph D.

    2007-01-01

    Heat transfer rates are an extremely important consideration in the design of hypersonic vehicles such as atmospheric reentry vehicles. This paper describes the development of a data reduction methodology to evaluate global heat transfer rates using surface temperature-time histories measured with the temperature sensitive paint (TSP) system at AEDC Hypervelocity Wind Tunnel 9. As a part of this development effort, a scale model of the NASA Crew Exploration Vehicle (CEV) was painted with TSP and multiple sequences of high resolution images were acquired during a five run test program. Heat transfer calculation from TSP data in Tunnel 9 is challenging due to relatively long run times, high Reynolds number environment and the desire to utilize typical stainless steel wind tunnel models used for force and moment testing. An approach to reduce TSP data into convective heat flux was developed, taking into consideration the conditions listed above. Surface temperatures from high quality quantitative global temperature maps acquired with the TSP system were then used as an input into the algorithm. Preliminary comparison of the heat flux calculated using the TSP surface temperature data with the value calculated using the standard thermocouple data is reported.

  10. Methodology, Technical Approach and Measurement Techniques for Testing of TPM Thermal Protection Materials in IPM Plasmatrons

    DTIC Science & Technology

    2000-04-01

    system, 8 - experiments on a study of boundary layer spectrum infrared window). before boiling of glass- silicide coating. This simple 3. SAMPLES AND...dependencies of surface temperature of tested materials and make conclusions concerned joint gllass- silicide coating and anode power of generator...obtained using test stagnation point configuration. glass- silicide coating vs anode power of HF-generator. Temperature peak at constant power

  11. Revision and further validation of surface-performance graded specification for surface treatment binders.

    DOT National Transportation Integrated Search

    2012-12-01

    The design and selection of surface treatment binders in service is currently based on specifications that include tests of emulsion residues or hot-applied asphalt cements at standard temperatures that do not cover the entire range of in service tem...

  12. Enhanced corrosion resistance of magnesium alloy by a silane-based solution treatment after an in-situ formation of the Mg(OH)2 layer

    NASA Astrophysics Data System (ADS)

    Gong, Fubao; Shen, Jun; Gao, Runhua; Xie, Xiong; Luo, Xiong

    2016-03-01

    A novel organic-inorganic Mg(OH)2/silane surface layer has been developed for corrosion protection of AZ31 magnesium alloy. The results of electrochemical impedance spectroscopy (EIS), the immersion tests, Fourier-transform infrared spectroscopy (FTIR) and sellotape tests showed that the Mg(OH)2/silane-based composite surface layer possessed excellent corrosion resistance and very good adhesion due to the formation of Si-O-Mg bond between Mg(OH)2 layer and silane layer. Electrochemical impedance spectroscopy tests results indicated that for the long-term corrosion protection of AZ31 the increase of the curing temperature improved the impedance of the composited layer when the curing temperature was lower than 130 °С. However, the impedance of the composited layer deceased when the curing temperature was more than 130 °С due to the carbonization of the silane layer.

  13. A mosaic infrared sensor for space astronomy, phase 3

    NASA Technical Reports Server (NTRS)

    Sood, A. K.

    1985-01-01

    Short wavelength (1 to 3 micron) HgCdTe mosaic detector arrays for space astronomy purposes were fabricated and studied. Honeywell will test and analyze these arrays at moderate temperatures (300-130K). Low temperature testing will be performed at the University of Hawaii. Short wavelength mosaic arrays were fabricated on three wafers and one array from each wafer was tested and analyzed. The p-type base carrier concentration on these wafers was an order of magnitude lower than typically used so far on this program (10 to the 14/cc as compared to 10 to the 15/cc). Tunneling currents are expected to decrease with this decrease in carrier concentration, resulting in improved performance at very low temperatures. The risk with such a low carrier concentration is that fixed charge in the surface passivating layer must be carefully controlled to prevent surface inversion layers.

  14. Surface tension propellant control for Viking 75 Orbiter

    NASA Technical Reports Server (NTRS)

    Dowdy, M. W.; Hise, R. E.; Peterson, R. G.; Debrock, S. C.

    1976-01-01

    The paper describes the selection, development and qualification of the surface tension system and includes results of low-g drop tower tests of scale models, 1-g simulation tests of low-g large ullage settling and liquid withdrawal, structural qualification tests, and propellant surface tension/contact angle studies. Subscale testing and analyses were used to evaluate the ability of the system to maintain or recover the desired propellant orientation following possible disturbances during the Viking mission. This effort included drop tower tests to demonstrate that valid wick paths exist for moving any displaced propellant back over the tank outlet. Variations in surface tension resulting from aging, temperature, and lubricant contamination were studied and the effects of surface finish, referee fluid exposure, aging, and lubricant contamination on contact angle were assessed. Results of movies of typical subscale drop tower tests and full scale slosh tests are discussed.

  15. Characteristic of Low Temperature Carburized Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Istiroyah; Pamungkas, M. A.; Saroja, G.; Ghufron, M.; Juwono, A. M.

    2018-01-01

    Low temperature carburizing process has been carried out on austenitic stainless steel (ASS) type AISI 316L, that contain chromium in above 12 at%. Therefore, conventional heat treatment processes that are usually carried out at high temperatures are not applicable. The sensitization process due to chromium migration from the grain boundary will lead to stress corrosion crack and decrease the corrosion resistance of the steel. In this study, the carburizing process was carried out at low temperatures below 500 °C. Surface morphology and mechanical properties of carburized specimens were investigated using optical microscopy, non destructive profilometer, and Vicker microhardness. The surface roughness analysis show the carburising process improves the roughness of ASS surface. This improvement is due to the adsorption of carbon atoms on the surface of the specimen. Likewise, the hardness test results indicate the carburising process increases the hardness of ASS.

  16. Applications of Thin Film Thermocouples for Surface Temperature Measurement

    NASA Technical Reports Server (NTRS)

    Martin, Lisa C.; Holanda, Raymond

    1994-01-01

    Thin film thermocouples provide a minimally intrusive means of measuring surface temperature in hostile, high temperature environments. Unlike wire thermocouples, thin films do not necessitate any machining of the surface, therefore leaving intact its structural integrity. Thin films are many orders of magnitude thinner than wire, resulting in less disruption to the gas flow and thermal patterns that exist in the operating environment. Thin film thermocouples have been developed for surface temperature measurement on a variety of engine materials. The sensors are fabricated in the NASA Lewis Research Center's Thin Film Sensor Lab, which is a class 1000 clean room. The thermocouples are platinum-13 percent rhodium versus platinum and are fabricated by the sputtering process. Thin film-to-leadwire connections are made using the parallel-gap welding process. Thermocouples have been developed for use on superalloys, ceramics and ceramic composites, and intermetallics. Some applications of thin film thermocouples are: temperature measurement of space shuttle main engine turbine blade materials, temperature measurement in gas turbine engine testing of advanced materials, and temperature and heat flux measurements in a diesel engine. Fabrication of thin film thermocouples is described. Sensor durability, drift rate, and maximum temperature capabilities are addressed.

  17. USB environment measurements based on full-scale static engine ground tests. [Upper Surface Blowing for YC-14

    NASA Technical Reports Server (NTRS)

    Sussman, M. B.; Harkonen, D. L.; Reed, J. B.

    1976-01-01

    Flow turning parameters, static pressures, surface temperatures, surface fluctuating pressures and acceleration levels were measured in the environment of a full-scale upper surface blowing (USB) propulsive-lift test configuration. The test components included a flightworthy CF6-50D engine, nacelle and USB flap assembly utilized in conjunction with ground verification testing of the USAF YC-14 Advanced Medium STOL Transport propulsion system. Results, based on a preliminary analysis of the data, generally show reasonable agreement with predicted levels based on model data. However, additional detailed analysis is required to confirm the preliminary evaluation, to help delineate certain discrepancies with model data and to establish a basis for future flight test comparisons.

  18. Novel poly(dimethylsiloxane) bonding strategy via room temperature "chemical gluing".

    PubMed

    Lee, Nae Yoon; Chung, Bong Hyun

    2009-04-09

    Here we propose a new scheme for bonding poly(dimethylsiloxane) (PDMS), namely, a "chemical gluing", at room temperature by anchoring chemical functionalities on the surfaces of PDMS. Aminosilane and epoxysilane are anchored separately on the surfaces of two PDMS substrates, the reaction of which are well-known to form a strong amine-epoxy bond, therefore acting as a chemical glue. The bonding is performed for 1 h at room temperature without employing heat. We characterize the surface properties and composition by contact angle measurement, X-ray photoelectron spectroscopy analysis, and fluorescence measurement to confirm the formation of surface functionalities and investigate the adhesion strength by means of pulling, tearing, and leakage tests. As confirmed by the above-mentioned analyses and tests, PDMS surfaces were successfully modified with amine and epoxy functionalities, and a bonding based on the amine-epoxy chemical gluing was successfully realized within 1 h at room temperature. The bonding was sufficiently robust to tolerate intense introduction of liquid whose per minute injection volume was almost 2000 times larger than the total internal volume of the microchannel used. In addition to the bonding of PDMS-PDMS homogeneous assembly, the bonding of the PDMS-poly(ethylene terephthalate) heterogeneous assembly was also examined. We also investigate the potential use of the multifunctionalized walls inside the microchannel, generated as a consequence of the chemical gluing, as a platform for the targeted immobilization.

  19. Study on evaluation of corrosion condition of reinforcing bar embedded concrete using infrared thermal imaging camera

    NASA Astrophysics Data System (ADS)

    Ruiko, Watanabe; Toshiaki, Mizobuchi

    2017-04-01

    Rapid aging of many concrete structures, which have been developed during rapid economic growth period in Japan, has become a serious problem for us these days. And thus, there is an urgent need to prolong their service life expectancies. For this purpose, the deterioration of reinforcing bars in the concrete structures should be detected quickly and correctly at the early stages. Nevertheless, conventional testing methods such as destructive and nondestructive testing have disadvantages: partial damages on concrete structures; difficulty with quantitative evaluation, etc. Many preceding studies have examined to estimate the deterioration of reinforcing bars based on the temperature of the concrete specimen surfaces. According to those papers, the differences in corrosion degree of reinforcing bars have a certain effect on the temperature of concrete specimen surfaces. In this study, firstly, the quantitative evaluation of the corrosion degree was conducted with 3D scanner which could measure the volume, coverage area and cross-sectional area. Secondly, the surface of the concrete specimen was cooled down with liquid nitrogen, and thirdly, thermographic change was observed up until the air temperature. Finally, the surface of the concrete specimen was detected clearly by the thermal images. As a result, this study shows that the corrosion thickness tends to get bigger, following the uprising temperature of the concrete specimen surfaces. The same kind of tendency can be observed by the thermal images, too.

  20. Pool boiler heat transport system for a 25 kWe advanced Stirling conversion system

    NASA Astrophysics Data System (ADS)

    Anderson, W. G.; Rosenfeld, J. H.; Saaski, E. L.; Noble, J.; Tower, L.

    Experiments to determine alkali metal/enhanced surface combinations that have stable boiling at the temperatures and heat fluxes that occur in the Stirling engine are reported. Two enhanced surfaces and two alkali metal working fluids were evaluated. The enhanced surfaces were an EDM hole covered surface and a sintered-powder-metal porous layer surface. The working fluids tested were potassium and eutectic sodium-potasium alloy (NaK), both with and without undissolved noncondensible gas. Noncondensible gas (He and Xe) was added to the system to provide gas in the nucleation sites, preventing quenching of the sites. The experiments demonstrated the potential of an alkali metal pool boiler heat transport system for use in a solar-powered Stirling engine. The most favorable fluid/surface combination tested was NaK boiling on a -100 +140 mesh 304L stainless steel sintered porous layer with no undissolved noncondensible gas. This combination provided stable, high-performance boiling at the operating temperature of 700 C. Heat fluxes into the system ranged from 10 to 50 W/sq cm. The transition from free convection to nucleate boiling occurred at temperatures near 540 C. Based on these experiments, a pool boiler was designed for a full-scale 25-kWe Stirling system.

  1. Miniature Convection Cooled Plug-type Heat Flux Gauges

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.

    1994-01-01

    Tests and analysis of a new miniature plug-type heat flux gauge configuration are described. This gauge can simultaneously measure heat flux on two opposed active surfaces when heat flux levels are equal to or greater than about 0.2 MW/m(sup 2). The performance of this dual active surface gauge was investigated over a wide transient and steady heat flux and temperature range. The tests were performed by radiatively heating the front surface with an argon arc lamp while the back surface was convection cooled with air. Accuracy is about +20 percent. The gauge is responsive to fast heat flux transients and is designed to withstand the high temperature (1300 K), high pressure (15 MPa), erosive and corrosive environments in modern engines. This gauge can be used to measure heat flux on the surfaces of internally cooled apparatus such as turbine blades and combustors used in jet propulsion systems and on the surfaces of hypersonic vehicles. Heat flux measurement accuracy is not compromised when design considerations call for various size gauges to be fabricated into alloys of various shapes and properties. Significant gauge temperature reductions (120 K), which can lead to potential gauge durability improvement, were obtained when the gauges were air-cooled by forced convection.

  2. Pool boiler heat transport system for a 25 kWe advanced Stirling conversion system

    NASA Technical Reports Server (NTRS)

    Anderson, W. G.; Rosenfeld, J. H.; Saaski, E. L.; Noble, J.; Tower, L.

    1990-01-01

    Experiments to determine alkali metal/enhanced surface combinations that have stable boiling at the temperatures and heat fluxes that occur in the Stirling engine are reported. Two enhanced surfaces and two alkali metal working fluids were evaluated. The enhanced surfaces were an EDM hole covered surface and a sintered-powder-metal porous layer surface. The working fluids tested were potassium and eutectic sodium-potasium alloy (NaK), both with and without undissolved noncondensible gas. Noncondensible gas (He and Xe) was added to the system to provide gas in the nucleation sites, preventing quenching of the sites. The experiments demonstrated the potential of an alkali metal pool boiler heat transport system for use in a solar-powered Stirling engine. The most favorable fluid/surface combination tested was NaK boiling on a -100 +140 mesh 304L stainless steel sintered porous layer with no undissolved noncondensible gas. This combination provided stable, high-performance boiling at the operating temperature of 700 C. Heat fluxes into the system ranged from 10 to 50 W/sq cm. The transition from free convection to nucleate boiling occurred at temperatures near 540 C. Based on these experiments, a pool boiler was designed for a full-scale 25-kWe Stirling system.

  3. Evaluation of Finite-Rate Gas/Surface Interaction Models for a Carbon Based Ablator

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq; Goekcen, Tahir

    2015-01-01

    Two sets of finite-rate gas-surface interaction model between air and the carbon surface are studied. The first set is an engineering model with one-way chemical reactions, and the second set is a more detailed model with two-way chemical reactions. These two proposed models intend to cover the carbon surface ablation conditions including the low temperature rate-controlled oxidation, the mid-temperature diffusion-controlled oxidation, and the high temperature sublimation. The prediction of carbon surface recession is achieved by coupling a material thermal response code and a Navier-Stokes flow code. The material thermal response code used in this study is the Two-dimensional Implicit Thermal-response and Ablation Program, which predicts charring material thermal response and shape change on hypersonic space vehicles. The flow code solves the reacting full Navier-Stokes equations using Data Parallel Line Relaxation method. Recession analyses of stagnation tests conducted in NASA Ames Research Center arc-jet facilities with heat fluxes ranging from 45 to 1100 wcm2 are performed and compared with data for model validation. The ablating material used in these arc-jet tests is Phenolic Impregnated Carbon Ablator. Additionally, computational predictions of surface recession and shape change are in good agreement with measurement for arc-jet conditions of Small Probe Reentry Investigation for Thermal Protection System Engineering.

  4. Electromechanical properties of amorphous In-Zn-Sn-O transparent conducting film deposited at various substrate temperatures on polyimide substrate

    NASA Astrophysics Data System (ADS)

    Kim, Young Sung; Lee, Eun Kyung; Eun, Kyoungtae; Choa, Sung-Hoon

    2015-09-01

    The electromechanical properties of the amorphous In-Zn-Sn-O (IZTO) film deposited at various substrate temperatures were investigated by bending, stretching, twisting, and cyclic bending fatigue tests. Amorphous IZTO films were grown on a transparent polyimide substrate using a pulsed DC magnetron sputtering system at different substrate temperatures ranging from room temperature to 200 °C. A single oxide alloyed ceramic target (In2O3: 80 wt %, ZnO: 10 wt %, SnO2: 10 wt % composition) was used. The amorphous IZTO film deposited at 150 °C exhibited an optimized electrical resistivity of 5.8 × 10-4 Ω cm, optical transmittance of 87%, and figure of merit of 8.3 × 10-3 Ω-1. The outer bending tests showed that the critical bending radius decreased as substrate temperature increased. On the other hand, in the inner bending tests, the critical bending radius increased with an increase in substrate temperature. The differences in the bendability of IZTO films for the outer and inner bending tests could be attributed to the internal residual stress of the films. The uniaxial stretching tests also showed the effects of the internal stress on the mechanical flexibility of the film. The bending and stretching test results demonstrated that the IZTO film had higher bendability and stretchability than the conventional ITO film. The IZTO film could withstand 10,000 bending cycles at a bending radius of 10 mm. The effect of the surface roughness on the mechanical durability of all IZTO films was very small due to their very smooth surfaces.

  5. Arctic (and Antarctic) Observing Experiment - an Assessment of Methods to Measure Temperature over Polar Environments

    NASA Astrophysics Data System (ADS)

    Rigor, I. G.; Clemente-Colon, P.; Nghiem, S. V.; Hall, D. K.; Woods, J. E.; Henderson, G. R.; Zook, J.; Marshall, C.; Gallage, C.

    2014-12-01

    The Arctic environment has been undergoing profound changes; the most visible is the dramatic decrease in Arctic sea ice extent (SIE). These changes pose a challenge to our ability to measure surface temperature across the Polar Regions. Traditionally, the International Arctic Buoy Programme (IABP) and International Programme for Antarctic Buoys (IPAB) have measured surface air temperature (SAT) at 2-m height, which minimizes the ambiguity of measurements near of the surface. Specifically, is the temperature sensor measuring open water, snow, sea ice, or air? But now, with the dramatic decrease in Arctic SIE, increase in open water during summer, and the frailty of the younger sea ice pack, the IABP has had to deploy and develop new instruments to measure temperature. These instruments include Surface Velocity Program (SVP) buoys, which are commonly deployed on the world's ice-free oceans and typically measure sea surface temperature (SST), and the new robust Airborne eXpendable Ice Beacons (AXIB), which measure both SST and SAT. "Best Practice" requires that these instruments are inter-compared, and early results showing differences in collocated temperature measurements of over 2°C prompted the establishment of the IABP Arctic Observing Experiment (AOX) buoy test site at the US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) site in Barrow, Alaska. Preliminary results showed that the color of the hull of SVP buoys introduces a bias due to solar heating of the buoy. Since then, we have recommended that buoys should be painted white to reduce biases in temperature measurements due to different colors of the buoys deployed in different regions of the Arctic or the Antarctic. Measurements of SAT are more robust, but some of the temperature shields are susceptible to frosting. During our presentation we will provide an intercomparison of the temperature measurements at the AOX test site (i.e. high quality DOE/ARM observations compared with unattended buoy measurements, and satellite retrievals). We will also show how these data may be used to improve our record of temperature over polar environments.

  6. Real-Time Thermographic-Phosphor-Based Temperature Measurements of Thermal Barrier Coating Surfaces Subjected to a High-Velocity Combustor Burner Environment

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.; Jenkins, Thomas P.; Allison, Stephen W.; Cruzen, Scott; Condevaux, J. J.; Senk, J. R.; Paul, A. D.

    2011-01-01

    Surface temperature measurements were conducted on metallic specimens coated with an yttria-stabilized zirconia (YSZ) thermal barrier coating (TBC) with a YAG:Dy phosphor layer that were subjected to an aggressive high-velocity combustor burner environment. Luminescence-based surface temperature measurements of the same TBC system have previously been demonstrated for specimens subjected to static furnace or laser heating. Surface temperatures were determined from the decay time of the luminescence signal of the YAG:Dy phosphor layer that was excited by a pulsed laser source. However, the furnace and laser heating provides a much more benign environment than that which exists in a turbine engine, where there are additional challenges of a highly radiant background and high velocity gases. As the next step in validating the suitability of luminescence-based temperature measurements for turbine engine environments, new testing was performed where heating was provided by a high-velocity combustor burner rig at Williams International. Real-time surface temperature measurements during burner rig heating were obtained from the decay of the luminescence from the YAG:Dy surface layer. The robustness of several temperature probe designs in the sonic velocity, high radiance flame environment was evaluated. In addition, analysis was performed to show whether the luminescence decay could be satisfactorily extracted from the high radiance background.

  7. Tribological properties and surface chemistry of silicon carbide at temperatures to 1500 C

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1981-01-01

    Silicon carbide surfaces were heated to 1500 C in a vacuum and analyzed at room temperature with X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). The basic unit of the surfaces was considered as a plane of a tetrahedron of either SiC4 and CSi4 composition. AES spectra were obtained from 250-1500 C, with an analysis depth of 1 nm revealed the presence of little Si and mostly graphite. XPS analysis depth was 2 nm or less, and Si was found in the second 1 nm. Sliding friction tests with single-crystal silicon carbide in contact with iron in a vacuum were characterized by a stock-slip value. The coefficient of friction increased with increasing temperature up to 400 C, then decreased with increasing temperature from 400-600 C. Reheating surfaces to 800 C after preheating them to that temperature produced no changes in AES readings. It is concluded that the maximum density of silicon and silicon-carbide is at 800 C, and the higher the sliding temperature, the more metal that is transferred.

  8. Advances in Thin Film Thermocouple Durability Under High Temperature and Pressure Testing Conditions

    NASA Technical Reports Server (NTRS)

    Martin, Lisa C.; Fralick, Gustave C.; Taylor, Keith F.

    1999-01-01

    Thin film thermocouples for measuring material surface temperature have been previously demonstrated on several material systems and in various hostile test environments. A well-developed thin film fabrication procedure utilizing shadow masking for patterning the sensors elements had produced thin films with sufficient durability for applications in high temperature and pressure environments that exist in air-breathing and hydrogen-fueled burner rig and engine test facilities. However, while shadow masking had been a reliable method for specimens with flat and gently curved surfaces, it had not been consistently reliable for use on test components with sharp contours. This work reports on the feasibility of utilizing photolithography processing for patterning thin film thermocouples. Because this patterning process required changes in the thin film deposition process from that developed for shadow masking, the effect of these changes on thin film adherence during burner rig testing was evaluated. In addition to the results of changing the patterning method, the effects on thin film adherence of other processes used in the thin film fabrication procedure is also presented.

  9. Multi-Dimensional, Non-Pyrolyzing Ablation Test Problems

    NASA Technical Reports Server (NTRS)

    Risch, Tim; Kostyk, Chris

    2016-01-01

    Non-pyrolyzingcarbonaceous materials represent a class of candidate material for hypersonic vehicle components providing both structural and thermal protection system capabilities. Two problems relevant to this technology are presented. The first considers the one-dimensional ablation of a carbon material subject to convective heating. The second considers two-dimensional conduction in a rectangular block subject to radiative heating. Surface thermochemistry for both problems includes finite-rate surface kinetics at low temperatures, diffusion limited ablation at intermediate temperatures, and vaporization at high temperatures. The first problem requires the solution of both the steady-state thermal profile with respect to the ablating surface and the transient thermal history for a one-dimensional ablating planar slab with temperature-dependent material properties. The slab front face is convectively heated and also reradiates to a room temperature environment. The back face is adiabatic. The steady-state temperature profile and steady-state mass loss rate should be predicted. Time-dependent front and back face temperature, surface recession and recession rate along with the final temperature profile should be predicted for the time-dependent solution. The second problem requires the solution for the transient temperature history for an ablating, two-dimensional rectangular solid with anisotropic, temperature-dependent thermal properties. The front face is radiatively heated, convectively cooled, and also reradiates to a room temperature environment. The back face and sidewalls are adiabatic. The solution should include the following 9 items: final surface recession profile, time-dependent temperature history of both the front face and back face at both the centerline and sidewall, as well as the time-dependent surface recession and recession rate on the front face at both the centerline and sidewall. The results of the problems from all submitters will be collected, summarized, and presented at a later conference.

  10. Temperature Mapping of Air Film-Cooled Thermal Barrier Coated Surfaces Using Cr-Doped GdAlO3 Phosphor Thermography

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.; Shyam, Vikram; Wroblewski, Adam C.; Zhu, Dongming; Cuy, Michael D.; Wolfe, Douglas E.

    2016-01-01

    It has been recently shown that the high luminescence intensity from a Cr-doped GdAlO3 (Cr:GdAlO3) thermographic phosphor enables non-rastered full-field temperature mapping of thermal barrier coating (TBC) surfaces to temperatures above 1000C. In this presentation, temperature mapping by Cr:GdAlO3 based phosphor thermometry of air film-cooled TBC-coated surfaces is demonstrated for both scaled-up cooling hole geometries as well as for actual components in a burner rig test environment. The effects of thermal background radiation and flame chemiluminescence on the measurements are investigated, and advantages of this method over infrared thermography as well as the limitations of this method for studying air film cooling are discussed.

  11. A radiant heating test facility for space shuttle orbiter thermal protection system certification

    NASA Technical Reports Server (NTRS)

    Sherborne, W. D.; Milhoan, J. D.

    1980-01-01

    A large scale radiant heating test facility was constructed so that thermal certification tests can be performed on the new generation of thermal protection systems developed for the space shuttle orbiter. This facility simulates surface thermal gradients, onorbit cold-soak temperatures down to 200 K, entry heating temperatures to 1710 K in an oxidizing environment, and the dynamic entry pressure environment. The capabilities of the facility and the development of new test equipment are presented.

  12. Comparison of forced-air warming systems with lower body blankets using a copper manikin of the human body.

    PubMed

    Bräuer, A; English, M J M; Lorenz, N; Steinmetz, N; Perl, T; Braun, U; Weyland, W

    2003-01-01

    Forced-air warming has gained high acceptance as a measure for the prevention of intraoperative hypothermia. However, data on heat transfer with lower body blankets are not yet available. This study was conducted to determine the heat transfer efficacy of six complete lower body warming systems. Heat transfer of forced-air warmers can be described as follows:[1]Qdot;=h.DeltaT.A where Qdot; = heat transfer [W], h = heat exchange coefficient [W m-2 degrees C-1], DeltaT = temperature gradient between blanket and surface [ degrees C], A = covered area [m2]. We tested the following forced-air warmers in a previously validated copper manikin of the human body: (1) Bair Hugger and lower body blanket (Augustine Medical Inc., Eden Prairie, MN); (2) Thermacare and lower body blanket (Gaymar Industries, Orchard Park, NY); (3) WarmAir and lower body blanket (Cincinnati Sub-Zero Products, Cincinnati, OH); (4) Warm-Gard(R) and lower body blanket (Luis Gibeck AB, Upplands Väsby, Sweden); (5) Warm-Gard and reusable lower body blanket (Luis Gibeck AB); and (6) WarmTouch and lower body blanket (Mallinckrodt Medical Inc., St. Luis, MO). Heat flux and surface temperature were measured with 16 calibrated heat flux transducers. Blanket temperature was measured using 16 thermocouples. DeltaT was varied between -10 and +10 degrees C and h was determined by a linear regression analysis as the slope of DeltaT vs. heat flux. Mean DeltaT was determined for surface temperatures between 36 and 38 degrees C, because similar mean skin temperatures have been found in volunteers. The area covered by the blankets was estimated to be 0.54 m2. Heat transfer from the blanket to the manikin was different for surface temperatures between 36 degrees C and 38 degrees C. At a surface temperature of 36 degrees C the heat transfer was higher (between 13.4 W to 18.3 W) than at surface temperatures of 38 degrees C (8-11.5 W). The highest heat transfer was delivered by the Thermacare system (8.3-18.3 W), the lowest heat transfer was delivered by the Warm-Gard system with the single use blanket (8-13.4 W). The heat exchange coefficient varied between 12.5 W m-2 degrees C-1 and 30.8 W m-2 degrees C-1, mean DeltaT varied between 1.04 degrees C and 2.48 degrees C for surface temperatures of 36 degrees C and between 0.50 degrees C and 1.63 degrees C for surface temperatures of 38 degrees C. No relevant differences in heat transfer of lower body blankets were found between the different forced-air warming systems tested. Heat transfer was lower than heat transfer by upper body blankets tested in a previous study. However, forced-air warming systems with lower body blankets are still more effective than forced-air warming systems with upper body blankets in the prevention of perioperative hypothermia, because they cover a larger area of the body surface.

  13. Aquarius Reflector Surface Temperature Monitoring Test and Analysis

    NASA Technical Reports Server (NTRS)

    Abbott, Jamie; Lee, Siu-Chun; Becker, Ray

    2008-01-01

    The presentation addresses how to infer the front side temperatures for the Aquarius L-band reflector based upon backside measurement sites. Slides discussing the mission objectives and design details are at the same level found on typical project outreach websites and in conference papers respectively. The test discussion provides modest detail of an ordinary thermal balance test using mockup hardware. The photographs show an off-Lab vacuum chamber facility with no compromising details.

  14. Soil water content and evaporation determined by thermal parameters obtained from ground-based and remote measurements

    NASA Technical Reports Server (NTRS)

    Reginato, R.; Idso, S.; Vedder, J.; Jackson, R.; Blanchard, M.; Goettelman, R.

    1975-01-01

    A procedure is presented for calculating 24-hour totals of evaporation from wet and drying soils. Its application requires a knowledge of the daily solar radiation, the maximum and minimum, air temperatures, moist surface albedo, and maximum and minimum surface temperatures. Tests of the technique on a bare field of Avondale loam at Phoenix, Arizona showed it to be independent of season.

  15. Fabrication of High-Temperature Heat Exchangers by Plasma Spraying Exterior Skins on Nickel Foams

    NASA Astrophysics Data System (ADS)

    Hafeez, P.; Yugeswaran, S.; Chandra, S.; Mostaghimi, J.; Coyle, T. W.

    2016-06-01

    Thermal-sprayed heat exchangers were tested at high temperatures (750 °C), and their performances were compared to the foam heat exchangers made by brazing Inconel sheets to their surface. Nickel foil was brazed to the exterior surface of 10-mm-thick layers of 10 and 40 PPI nickel foam. A plasma torch was used to spray an Inconel coating on the surface of the foil. A burner test rig was built to produce hot combustion gases that flowed over exposed face of the heat exchanger. Cooling air flowed through the foam heat exchanger at rates of up to 200 SLPM. Surface temperature and air inlet/exit temperature were measured. Heat transfer to air flowing through the foam was significantly higher for the thermally sprayed heat exchangers than for the brazed heat exchangers. On an average, thermally sprayed heat exchangers show 36% higher heat transfer than conventionally brazed foam heat exchangers. At low flow rates, the convective resistance is large (~4 × 10-2 m2 K/W), and the effect of thermal contact resistance is negligible. At higher flow rates, the convective resistance decreases (~2 × 10-3 m2 K/W), and the lower contact resistance of the thermally sprayed heat exchanger provides better performance than the brazed heat exchangers.

  16. 40 CFR 86.1207-96 - Sampling and analytical systems; evaporative emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... profile throughout the test, and an average tolerance of 2.0 °F over the duration of the test (where the... about the desired long-term ambient temperature profile. Interior surface temperatures shall not be less... atmosphere within the enclosure (a heated FID (HFID)(235° ±15 °F (113±8 °C)) is recommended for methanol...

  17. 40 CFR 86.107-96 - Sampling and analytical systems; evaporative emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... profile throughout the test, and an average tolerance of 2.0 °F over the duration of the test (where the... about the desired long-term ambient temperature profile. Interior surface temperatures shall not be less... monitor the atmosphere within the enclosure (a heated FID (HFID)(235°±15 °F (113±8 °C)) is recommended for...

  18. 40 CFR 86.1207-96 - Sampling and analytical systems; evaporative emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... profile throughout the test, and an average tolerance of 2.0 °F over the duration of the test (where the... about the desired long-term ambient temperature profile. Interior surface temperatures shall not be less... atmosphere within the enclosure (a heated FID (HFID)(235° ±15 °F (113 ±8 °C)) is recommended for methanol...

  19. 40 CFR 86.107-96 - Sampling and analytical systems; evaporative emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... profile throughout the test, and an average tolerance of 2.0 °F over the duration of the test (where the... about the desired long-term ambient temperature profile. Interior surface temperatures shall not be less... monitor the atmosphere within the enclosure (a heated FID (HFID)(235°±15 °F (113±8 °C)) is recommended for...

  20. 40 CFR 86.107-96 - Sampling and analytical systems; evaporative emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... profile throughout the test, and an average tolerance of 2.0 °F over the duration of the test (where the... about the desired long-term ambient temperature profile. Interior surface temperatures shall not be less... monitor the atmosphere within the enclosure (a heated FID (HFID)(235°±15 °F (113±8 °C)) is recommended for...

  1. Exploratory Environmental Tests of Several Heat Shields

    NASA Technical Reports Server (NTRS)

    Goodman, George P.; Betts, John, Jr.

    1961-01-01

    Exploratory tests have been conducted with several conceptual radiative heat shields of composite construction. Measured transient temperature distributions were obtained for a graphite heat shield without insulation and with three types of insulating materials, and for a metal multipost heat shield, at surface temperatures of approximately 2,000 F and 1,450 F, respectively, by use of a radiant-heat facility. The graphite configurations suffered loss of surface material under repeated irradiation. Temperature distribution calculated for the metal heat shield by a numerical procedure was in good agreement with measured data. Environmental survival tests of the graphite heat shield without insulation, an insulated multipost heat shield, and a stainless-steel-tile heat shield were made at temperatures of 2,000 F and dynamic pressures of approximately 6,000 lb/sq ft, provided by an ethylene-heated jet operating at a Mach number of 2.0 and sea-level conditions. The graphite heat shield survived the simulated aerodynamic heating and pressure loading. A problem area exists in the design and materials for heat-resistant fasteners between the graphite shield and the base structure. The insulated multipost heat shield was found to be superior to the stainless-steel-tile heat shield in retarding heat flow. Over-lapped face-plate joints and surface smoothness of the insulated multi- post heat shield were not adversely affected by the test environment. The graphite heat shield without insulation survived tests made in the acoustic environment of a large air jet. This acoustic environment is random in frequency and has an overall noise level of 160 decibels.

  2. Performance evaluation of a conformal thermal monitoring sheet (TMS) sensor array for measurement of surface temperature distributions during superficial hyperthermia treatments

    PubMed Central

    Arunachalam, K.; Maccarini, P.; Juang, T.; Gaeta, C.; Stauffer, P. R.

    2009-01-01

    Purpose This paper presents a novel conformal thermal monitoring sheet sensor array with differential thermal sensitivity for measuring temperature distributions over large surface areas. Performance of the sensor array is evaluated in terms of thermal accuracy, mechanical stability and conformity to contoured surfaces, probe self heating under irradiation from microwave and ultrasound hyperthermia sources, and electromagnetic field perturbation. Materials and Methods A prototype TMS with 4×4 array of fiberoptic sensors embedded between two flexible and thermally conducting polyimide films was developed as an alternative to the standard 1-2 mm diameter plastic catheter based probes used in clinical hyperthermia. Computed tomography images and bending tests were performed to evaluate the conformability and mechanical stability respectively. Irradiation and thermal barrier tests were conducted and thermal response of the prototype was compared with round cross-sectional clinical probes. Results Bending and conformity tests demonstrated higher flexibility, dimensional stability and close conformity to human torso. Minimal perturbation of microwave fields and low probe self heating was observed when irradiated with 915MHz microwave and 3.4MHz ultrasound sources. The transient and steady state thermal responses of the TMS array were superior compared to the clinical probes. Conclusions A conformal TMS sensor array with improved thermal sensitivity and dimensional stability was investigated for real-time skin temperature monitoring. This fixed-geometry, body-conforming array of thermal sensors allows fast and accurate characterization of two-dimensional temperature distributions over large surface areas. The prototype TMS demonstrates significant advantages over clinical probes for characterizing skin temperature distributions during hyperthermia treatments of superficial tissue disease. PMID:18465416

  3. Oxidation behavior of a thermal barrier coating

    NASA Technical Reports Server (NTRS)

    Miller, R. A.

    1984-01-01

    Thermal barrier coatings, consisting of a plasma sprayed calcium silicate ceramic layer and a CoCrAlY or NiCrAlY bond coat, were applied on B-1900 coupons and cycled hourly in air in a rapid-response furnace to maximum temperatures of 1030, 1100, or 1160 C. Eight specimens were tested for each of the six conditions of bond-coat composition and temperature. Specimens were removed from test at the onset of failure, which was taken to be the formation of a fine surface crack visible at 10X magnification. Specimens were weighed periodically, and plots of weight gain vs time indicate that weight is gained at a parabolic rate after an initial period where weight was gained at a much greater rate. The high initial oxidation rate is thought to arise from the initially high surface area in the porous bond coat. Specimen life (time to first crack) was found to be a strong function of temperature. However, while test lives varied greatly with time, the weight gain at the time of specimen failure was quite insensitive to temperature. This indicates that there is a critical weight gain at which the coating fails when subjected to this test.

  4. Surface microstructure and high temperature corrosion resistance of arc-sprayed FeCrAl coating irradiated by high current pulsed electron beam

    NASA Astrophysics Data System (ADS)

    Hao, Shengzhi; Zhao, Limin; He, Dongyun

    2013-10-01

    The surface microstructure of arc-sprayed FeCrAl coating irradiated by high current pulsed electron beam (HCPEB) with long pulse duration of 200 μs was characterized by using optical microscopy, scanning electron microscopy and X-ray diffractometry. The distribution of chemical composition in modified surface layer was measured with electron probe micro-analyzer. The high temperature corrosion resistance of FeCrAl coating was tested in a saturated Na2SO4 and K2SO4 solution at 650 °C. After HCPEB irradiation, the coarse surface of arc-sprayed coating was changed as discrete bulged nodules with smooth and compact appearance. When using low energy density of 20 J/cm2, the surface modified layer was continuous entirely with an average melting depth of ˜30 μm. In the surface remelted layer, Fe and Cr elements gave a uniform distribution, while Al and O elements agglomerated particularly at the concave part between nodule structures to form α-Al2O3 phase. After high temperature corrosion tests, the FeCrAl coating treated with HCPEB of 20 J/cm2 remained a glossy surface with weight increment of ˜51 mg/cm2, decreased by 20% as compared to the initial sample. With the increasing energy density of HCPEB irradiation, the integrity of surface modified layer got segmented due to the formation of larger bulged nodules and cracks at the concave parts. For the HCPEB irradiation of 40 J/cm2, the high temperature corrosion resistance of FeCrAl coating was deteriorated drastically.

  5. Annealing temperature dependent reversible wettability switching of micro/nano structured ZnO superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Velayi, Elmira; Norouzbeigi, Reza

    2018-05-01

    Superhydrophobic ZnO surfaces with reversibly tunable wettability were fabricated on stainless steel meshes via a facile chemical bath deposition method just by regulating the micro/nano structured ZnO needles without using chemical post modifications. The obtained surfaces can be easily and reversibly switched between superhydrophobic and superhydrophilic/underwater superoleophobic characteristics by altering the annealing temperatures. As-prepared sample exhibited long-term superhydrophobic properties with a water contact angle (WCA) of 163.8° ± 1.8° and contact angle hysteresis (CAH) of 1.1° ± 0.8°. The SEM, XRD, XPS and Raman analyses were employed to characterize the morphological features and surface chemistry of the prepared samples. SEM images showed the formation of ZnO micro/nanoneedles with a diameter of ∼90 nm on the substrate. The superhydrophobic ZnO surface was switched to highly hydrophilic and underwater superoleophobic properties with an oil contact angle (OCA) of about 172.5° after being annealed at 400 °C in air for 30 min and restored to superhydrophobic state again by altering the annealing temperature to 150 °C. Mechanical durability of the ZnO superhydrophobic surface was tested by an abrasion test. Results confirmed that the prepared surface exhibited an excellent robustness after 20 abrasion cycles under the pressure of 4.7 kPa.

  6. Hydrodynamic air lubricated compliant surface bearing for an automotive gas turbine engine. 2: Materials and coatings

    NASA Technical Reports Server (NTRS)

    Bhushan, B.; Ruscitto, D.; Gray, S.

    1978-01-01

    Material coatings for an air-lubricated, compliant journal bearing for an automotive gas turbine engine were exposed to service test temperatures of 540 C or 650 C for 300 hours, and to 10 temperature cycles from room temperatures to the service test temperatures. Selected coatings were then put on journal and partial-arc foils and tested in start-stop cycle tests at 14 kPa (2 psi) loading for 2000 cycles. Half of the test cycles were performed at a test chamber service temperature of 540 C (1000 F) or 650 C (1200 F); the other half were performed at room temperature. Based on test results, the following combinations and their service temperature limitations are recommended: HL-800 TM (CdO and graphite) on foil versus chrome carbide on journal up to 370 C (700 F); NASA PS 120 (Tribaloy 400, silver and CaF2 on journal versus uncoated foil up to 540 C (1000 F); and Kaman DES on journal and foil up to 640 C (1200 F). Kaman DES coating system was further tested successfully at 35 kPa (5 psi) loading for 2000 start-stop cycles.

  7. Complex permittivity measurements during high temperature recycling of space shuttle antenna window and dielectric heat shield materials

    NASA Technical Reports Server (NTRS)

    Bassett, H. L.; Bomar, S. H., Jr.

    1973-01-01

    The research performed and the data obtained on candidate space shuttle antenna window and heat shield materials are presented. The measurement technique employs a free-space focused beam microwave bridge for obtaining RF transmission data, and a device which rotates a sample holder which is heated on one side by natural gas-air flames. The surface temperature of each sample is monitored by IR pyrometry; embedded and rear surface thermocouples are also used in obtaining temperature data. The surface of the sample undergoing test is subjected to approximately the same temperature/time profile that occurs at a proposed antenna position on the space shuttle as it re-enters. The samples are cycled through ten of these temperature profiles to determine the recycling effects. Very little change was noted in the materials due to the recycling.

  8. Molecular diffusion of stable water isotopes in polar firn as a proxy for past temperatures

    NASA Astrophysics Data System (ADS)

    Holme, Christian; Gkinis, Vasileios; Vinther, Bo M.

    2018-03-01

    Polar precipitation archived in ice caps contains information on past temperature conditions. Such information can be retrieved by measuring the water isotopic signals of δ18O and δD in ice cores. These signals have been attenuated during densification due to molecular diffusion in the firn column, where the magnitude of the diffusion is isotopologue specific and temperature dependent. By utilizing the differential diffusion signal, dual isotope measurements of δ18O and δD enable multiple temperature reconstruction techniques. This study assesses how well six different methods can be used to reconstruct past surface temperatures from the diffusion-based temperature proxies. Two of the methods are based on the single diffusion lengths of δ18O and δD , three of the methods employ the differential diffusion signal, while the last uses the ratio between the single diffusion lengths. All techniques are tested on synthetic data in order to evaluate their accuracy and precision. We perform a benchmark test to thirteen high resolution Holocene data sets from Greenland and Antarctica, which represent a broad range of mean annual surface temperatures and accumulation rates. Based on the benchmark test, we comment on the accuracy and precision of the methods. Both the benchmark test and the synthetic data test demonstrate that the most precise reconstructions are obtained when using the single isotope diffusion lengths, with precisions of approximately 1.0 °C . In the benchmark test, the single isotope diffusion lengths are also found to reconstruct consistent temperatures with a root-mean-square-deviation of 0.7 °C . The techniques employing the differential diffusion signals are more uncertain, where the most precise method has a precision of 1.9 °C . The diffusion length ratio method is the least precise with a precision of 13.7 °C . The absolute temperature estimates from this method are also shown to be highly sensitive to the choice of fractionation factor parameterization.

  9. Collecting cometary soil samples? Development of the ROSETTA sample acquisition system

    NASA Technical Reports Server (NTRS)

    Coste, P. A.; Fenzi, M.; Eiden, Michael

    1993-01-01

    In the reference scenario of the ROSETTA CNRS mission, the Sample Acquisition System is mounted on the Comet Lander. Its tasks are to acquire three kinds of cometary samples and to transfer them to the Earth Return Capsule. Operations are to be performed in vacuum and microgravity, on a probably rough and dusty surface, in a largely unknown material, at temperatures in the order of 100 K. The concept and operation of the Sample Acquisition System are presented. The design of the prototype corer and surface sampling tool, and of the equipment for testing them at cryogenic temperatures in ambient conditions and in vacuum in various materials representing cometary soil, are described. Results of recent preliminary tests performed in low temperature thermal vacuum in a cometary analog ice-dust mixture are provided.

  10. Nozzle cooling of hot surfaces with various orientations

    NASA Astrophysics Data System (ADS)

    Ondrouskova, Jana; Luks, Tomas; Horsky, Jaroslav

    2012-04-01

    The aim of this research is an investigation of hot surface orientation influence on heat transfer during cooling by a nozzle. Two types of nozzles were used for the experiments (air-mist nozzle and hydraulic nozzle). A test plate was cooled in three positions - top, side and bottom position. The aim was to simulate a cooling situation in the secondary zone of a continuous casting machine. Temperature was measured in seven locations under the cooled surface by thermocouples. These data were used for an inverse heat conduction problem and then boundary conditions were computed. These boundary conditions are represented by surface temperature, heat transfer coefficient and heat flux. Results from an inverse calculation were compared in each position of thermocouples separately. The total cooling intensity was specified for all configurations of nozzles and test plate orientation. Results are summarised in a graphical and numerical format.

  11. Effects of High-Temperature Exposures on the Fatigue Life of Superalloy Udimet(Registered Trademark) 720

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Telesman, Jack; Kantzos, Peter T.; Sweeney, Joseph W.; Browning, Paul F.

    2002-01-01

    The purpose of this study was to examine the effects of extended exposures on the near-surface fatigue resistance of a disk superalloy. Powder metallurgy processed, supersolvus heat-treated Udimet 720 (U720) fatigue specimens were exposed in air at temperatures from 650 to 705 C for 100 hr to over 1000 hr. They were then tested using conventional fatigue tests at 650 C to determine the effects of exposure on fatigue resistance. The exposures reduced life by up to 70% and increased the scatter in life, compared to unexposed levels. Fractographic evaluations indicated the failure mode was shifted by the exposures from internal to surface crack initiations. The increased scatter in life was related to the competition between internal crack initiations at inclusions or large grains producing longer lives, and surface crack initiations at an environmentally affected surface layer producing shorter lives.

  12. Method and Apparatus for the Portable Identification of Material Thickness and Defects Using Spatially Controlled Heat Application

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott (Inventor); Winfree, William P. (Inventor)

    1999-01-01

    A method and a portable apparatus for the nondestructive identification of defects in structures. The apparatus comprises a heat source and a thermal imager that move at a constant speed past a test surface of a structure. The thermal imager is off set at a predetermined distance from the heat source. The heat source induces a constant surface temperature. The imager follows the heat source and produces a video image of the thermal characteristics of the test surface. Material defects produce deviations from the constant surface temperature that move at the inverse of the constant speed. Thermal noise produces deviations that move at random speed. Computer averaging of the digitized thermal image data with respect to the constant speed minimizes noise and improves the signal of valid defects. The motion of thermographic equipment coupled with the high signal to noise ratio render it suitable for portable, on site analysis.

  13. A model of the ground surface temperature for micrometeorological analysis

    NASA Astrophysics Data System (ADS)

    Leaf, Julian S.; Erell, Evyatar

    2017-07-01

    Micrometeorological models at various scales require ground surface temperature, which may not always be measured in sufficient spatial or temporal detail. There is thus a need for a model that can calculate the surface temperature using only widely available weather data, thermal properties of the ground, and surface properties. The vegetated/permeable surface energy balance (VP-SEB) model introduced here requires no a priori knowledge of soil temperature or moisture at any depth. It combines a two-layer characterization of the soil column following the heat conservation law with a sinusoidal function to estimate deep soil temperature, and a simplified procedure for calculating moisture content. A physically based solution is used for each of the energy balance components allowing VP-SEB to be highly portable. VP-SEB was tested using field data measuring bare loess desert soil in dry weather and following rain events. Modeled hourly surface temperature correlated well with the measured data (r 2 = 0.95 for a whole year), with a root-mean-square error of 2.77 K. The model was used to generate input for a pedestrian thermal comfort study using the Index of Thermal Stress (ITS). The simulation shows that the thermal stress on a pedestrian standing in the sun on a fully paved surface, which may be over 500 W on a warm summer day, may be as much as 100 W lower on a grass surface exposed to the same meteorological conditions.

  14. Thermal fatigue testing of a diffusion-bonded beryllium divertor mock-up under ITER-relevant conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youchison, D.L.; Watson, R.D.; McDonald, J.M.

    Thermal response and thermal fatigue tests of four 5-mm-thick beryllium tiles on a Russian Federation International Thermonuclear Experimental Reactor (ITER)-relevant divertor mock-up were completed on the electron beam test system at Sandia National Laboratories. Thermal response tests were performed on the tiles to an absorbed heat flux of 5 MW/m{sup 2} and surface temperatures near 300{degree}C using 1.4 MPa water at 5 m/s flow velocity and an inlet temperature of 8 to 15{degree}C. One tile was exposed to incrementally increasing heat fluxes up to 9.5 MW/m{sup 2} and surface temperatures up to 690{degree}C before debonding at 10MW/m{sup 2}. A secondmore » tile debonded in 25 to 30 cycles at <0.5 MW/m{sup 2}. However, a third tile debonded after 9200 thermal fatigue cycles at 5 MW/m{sup 2}, while another debonded after 6800 cycles. Posttest surface analysis indicated that fatigue failure occurred in the intermetallic layers between the beryllium and copper. No fatigue cracking of the bulk beryllium was observed. It appears that microcracks growing at the diffusion bond produced the observed gradual temperature increases during thermal cycling. These experiments indicate that diffusion-bonded beryllium tiles can survive several thousand thermal cycles under ITER-relevant conditions. However, the reliability of the diffusion-bonded joint remains a serious issue. 17 refs., 25 figs., 6 tabs.« less

  15. Automated thermal mapping techniques using chromatic image analysis

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M.

    1989-01-01

    Thermal imaging techniques are introduced using a chromatic image analysis system and temperature sensitive coatings. These techniques are used for thermal mapping and surface heat transfer measurements on aerothermodynamic test models in hypersonic wind tunnels. Measurements are made on complex vehicle configurations in a timely manner and at minimal expense. The image analysis system uses separate wavelength filtered images to analyze surface spectral intensity data. The system was initially developed for quantitative surface temperature mapping using two-color thermographic phosphors but was found useful in interpreting phase change paint and liquid crystal data as well.

  16. A Predictive Framework for Thermomechanical Fatigue Life of High Silicon Molybdenum Ductile Cast Iron Based on Considerations of Strain Energy Dissipation

    NASA Astrophysics Data System (ADS)

    Avery, Katherine R.

    Isothermal low cycle fatigue (LCF) and anisothermal thermomechanical fatigue (TMF) tests were conducted on a high silicon molybdenum (HiSiMo) cast iron for temperatures up to 1073K. LCF and out-of-phase (OP) TMF lives were significantly reduced when the temperature was near 673K due to an embrittlement phenomenon which decreases the ductility of HiSiMo at this temperature. In this case, intergranular fracture was predominant, and magnesium was observed at the fracture surface. When the thermal cycle did not include 673K, the failure mode was predominantly transgranular, and magnesium was not present on the fracture surface. The in-phase (IP) TMF lives were unaffected when the thermal cycle included 673K, and the predominant failure mode was found to be transgranular fracture, regardless of the temperature. No magnesium was present on the IP TMF fracture surfaces. Thus, the embrittlement phenomenon was found to contribute to fatigue damage only when the temperature was near 673K and a tensile stress was present. To account for the temperature- and stress-dependence of the embrittlement phenomenon on the TMF life of HiSiMo cast iron, an original model based on the cyclic inelastic energy dissipation is proposed which accounts for temperature-dependent differences in the rate of fatigue damage accumulation in tension and compression. The proposed model has few empirical parameters. Despite the simplicity of the model, the predicted fatigue life shows good agreement with more than 130 uniaxial low cycle and thermomechanical fatigue tests, cyclic creep tests, and tests conducted at slow strain rates and with hold times. The proposed model was implemented in a multiaxial formulation and applied to the fatigue life prediction of an exhaust manifold subjected to severe thermal cycles. The simulation results show good agreement with the failure locations and number of cycles to failure observed in a component-level experiment.

  17. Radiative, actively cooled panel tests results

    NASA Technical Reports Server (NTRS)

    Shore, C. P.; Nowak, R. J.; Sharpe, E. L.

    1978-01-01

    The radiative, actively cooled panel designed to withstand a uniform incident heat flux of 136 kW/sq m to a 444 K surface temperature was evaluated. The test program consisted of preliminary static thermal mechanical loading and aerothermal flow tests. Test results are briefly discussed.

  18. Land Surface Temperature Measurements form EOS MODIS Data

    NASA Technical Reports Server (NTRS)

    Wan, Zhengming

    1996-01-01

    We have developed a physics-based land-surface temperature (LST) algorithm for simultaneously retrieving surface band-averaged emissivities and temperatures from day/night pairs of MODIS (Moderate Resolution Imaging Spectroradiometer) data in seven thermal infrared bands. The set of 14 nonlinear equations in the algorithm is solved with the statistical regression method and the least-squares fit method. This new LST algorithm was tested with simulated MODIS data for 80 sets of band-averaged emissivities calculated from published spectral data of terrestrial materials in wide ranges of atmospheric and surface temperature conditions. Comprehensive sensitivity and error analysis has been made to evaluate the performance of the new LST algorithm and its dependence on variations in surface emissivity and temperature, upon atmospheric conditions, as well as the noise-equivalent temperature difference (NE(Delta)T) and calibration accuracy specifications of the MODIS instrument. In cases with a systematic calibration error of 0.5%, the standard deviations of errors in retrieved surface daytime and nighttime temperatures fall between 0.4-0.5 K over a wide range of surface temperatures for mid-latitude summer conditions. The standard deviations of errors in retrieved emissivities in bands 31 and 32 (in the 10-12.5 micrometer IR spectral window region) are 0.009, and the maximum error in retrieved LST values falls between 2-3 K. Several issues related to the day/night LST algorithm (uncertainties in the day/night registration and in surface emissivity changes caused by dew occurrence, and the cloud cover) have been investigated. The LST algorithms have been validated with MODIS Airborne Simulator (MAS) dada and ground-based measurement data in two field campaigns conducted in Railroad Valley playa, NV in 1995 and 1996. The MODIS LST version 1 software has been delivered.

  19. Shock Response of Commercial Purity Polycrystalline Magnesium Under Uniaxial Strain at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Tianxue; Zuanetti, Bryan; Prakash, Vikas

    2017-12-01

    In the present paper, results of plate impact experiments designed to investigate the onset of incipient plasticity in commercial purity polycrystalline magnesium (99.9%) under weak uniaxial strain compression and elevated temperatures up to melt are presented. The dynamic stress at yield and post yield of magnesium, as inferred from the measured normal component of the particle velocity histories at the free (rear) surface of the target plate, are observed to decrease progressively with increasing test temperatures in the range from 23 to 500 °C. At (higher) test temperatures in the range 500-610 °C, the rate of decrease of dynamic stress with temperature at yield and post-yield in the sample is observed to weaken. At still higher test temperatures (617 and 630 °C), a dramatic increase in dynamic yield as well as flow stress is observed indicating a change in dominant mechanism of plastic deformation as the sample approaches the melt point of magnesium at strain rates of 105/s. In addition to these measurements at the wavefront, the plateau region of the free surface particle velocity profiles indicates that the longitudinal (plastic) impedance of the magnesium samples decreases continuously as the sample temperatures are increased from room to 610 °C, and then reverses trend (indicating increasing material longitudinal impedance/strength) as the sample temperatures are increased to 617 and 630 °C. Electron back scattered diffraction analysis of the as-received and annealed pre-test magnesium samples reveal grain coarsening as well as grain re-orientation to a different texture during the heating process of the samples.

  20. Root surface temperature variation during mechanical removal of root canal filling material. An in vitro study.

    PubMed

    García-Cuerva, Martín; Horvath, Lucía; Pinasco, Laura; Ciparelli, Verónica; Gualtieri, Ariel; Casadoumecq, Ana C; Rodríguez, Pablo; Gonzalez-Zanotto, Carlos

    2017-04-01

    The aim of this study was to analyze in vitro temperature changes on the outer surface of the dental root during mechanical filling removal procedures. Thirty recently extracted single-rooted lower premolars were cut transversally at 16 mm from the apex in order to standardize sample length. Endodontic treatment was performed on them. The filling material was subsequently removed using Gates Glidden (G1, G2, G3); Peeso (P1, P2, P3) and PostecPlus FRC (FRC) reamers while temperatures were measured on the outer surface using a digital device with thermocouple at 0, 2, 4, 6, 8, 10 and 15 seconds. Temperatures were compared using repeated measures ANOVA followed by pairwise comparison with Tukey's test. All reamers caused significant temperature variation between different times (p<0.05). Pairwise comparisons indicated that temperature increased with time for all reamers (p<0.05). Significant differences in temperature were found between different reamers after 0, 2, 4, 6, 8,10 and 15 seconds (p<0.05). Temperature at the root surface increased considerably. Values higher than 50°C were recorded, the greatest increase from baseline being 16°C. Accordingly, if the procedure were begun at 37°C (physiological temperature), the temperature in the surrounding tissues - cementum, periodontium and bone - would rise to 53°C. An increase in 10°C above body temperature at the root surface may cause lesions in surrounding tissues. While removing filling material, it is essential to cool, control action time and use instruments in perfect condition, all of which may contribute to reducing the heat generated and transmitted to the outer root surface. Sociedad Argentina de Pediatría.

  1. Identification of modes of fracture in a 2618-T6 aluminum alloy using stereophotogrammetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salas Zamarripa, A., E-mail: a.salaszamarripa@gmail.com; Pinna, C.; Brown, M.W.

    2011-12-15

    The identification and the development of a quantification technique of the modes of fracture in fatigue fracture surfaces of a 2618-T6 aluminum alloy were developed during this research. Fatigue tests at room and high temperature (230 Degree-Sign C) were carried out to be able to compare the microscopic fractographic features developed by this material under these testing conditions. The overall observations by scanning electron microscopy (SEM) of the fracture surfaces showed a mixture of transgranular and ductile intergranular fracture. The ductile intergranular fracture contribution appears to be more significant at room temperature than at 230 Degree-Sign C. A quantitative methodologymore » was developed to identify and to measure the contribution of these microscopic fractographic features. The technique consisted of a combination of stereophotogrammetry and image analysis. Stereo-pairs were randomly taken along the crack paths and were then analyzed using the profile module of MeX software. The analysis involved the 3-D surface reconstruction, the trace of primary profile lines in both vertical and horizontal directions within the stereo-pair area, the measurements of the contribution of the modes of fracture in each profile, and finally, the calculation of the average contribution in each stereo-pair. The technique results confirmed a higher contribution of ductile intergranular fracture at room temperature than at 230 Degree-Sign C. Moreover, there was no indication of a direct relationship between this contribution and the strain amplitudes range applied during the fatigue testing. - Highlights: Black-Right-Pointing-Pointer Stereophotogrammetry and image analysis as a measuring tool of modes of fracture in fatigue fracture surfaces. Black-Right-Pointing-Pointer A mixture of ductile intergranular and transgranular fracture was identified at room temperature and 230 Degree-Sign C testing. Black-Right-Pointing-Pointer Development of a quantitative methodology to obtain the percentage of modes of fracture within the fracture surface.« less

  2. Analysis of the Shuttle Orbiter reinforced carbon-carbon oxidation protection system

    NASA Technical Reports Server (NTRS)

    Williams, S. D.; Curry, Donald M.; Chao, Dennis; Pham, Vuong T.

    1994-01-01

    Reusable, oxidation-protected reinforced carbon-carbon (RCC) has been successfully flown on all Shuttle Orbiter flights. Thermal testing of the silicon carbide-coated RCC to determine its oxidation characteristics has been performed in convective (plasma Arc-Jet) heating facilities. Surface sealant mass loss was characterized as a function of temperature and pressure. High-temperature testing was performed to develop coating recession correlations for predicting performance at the over-temperature flight conditions associated with abort trajectories. Methods for using these test data to establish multi-mission re-use (i.e., mission life) and single mission limits are presented.

  3. Effect of fiber-matrix adhesion on the creep behavior of CF/PPS composites: temperature and physical aging characterization

    NASA Astrophysics Data System (ADS)

    Motta Dias, M. H.; Jansen, K. M. B.; Luinge, J. W.; Bersee, H. E. N.; Benedictus, R.

    2016-06-01

    The influence of fiber-matrix adhesion on the linear viscoelastic creep behavior of `as received' and `surface modified' carbon fibers (AR-CF and SM-CF, respectively) reinforced polyphenylene sulfide (PPS) composite materials was investigated. Short-term tensile creep tests were performed on ±45° specimens under six different isothermal conditions, 40, 50, 60, 65, 70 and 75 °C. Physical aging effects were evaluated on both systems using the short-term test method established by Struik. The results showed that the shapes of the curves were affected neither by physical aging nor by the test temperature, allowing then superposition to be made. A unified model was proposed with a single physical aging and temperature-dependent shift factor, a_{T,te}. It was suggested that the surface treatment carried out in SM-CF/PPS had two major effects on the creep response of CF/PPS composites at a reference temperature of 40 °C: a lowering of the initial compliance of about 25 % and a slowing down of the creep response of about 1.1 decade.

  4. Frost Growth and Densification on a Flat Surface in Laminar Flow with Variable Humidity

    NASA Technical Reports Server (NTRS)

    Kandula, M.

    2012-01-01

    Experiments are performed concerning frost growth and densification in laminar flow over a flat surface under conditions of constant and variable humidity. The flat plate test specimen is made of aluminum-6031, and has dimensions of 0.3 mx0.3 mx6.35 mm. Results for the first variable humidity case are obtained for a plate temperature of 255.4 K, air velocity of 1.77 m/s, air temperature of 295.1 K, and a relative humidity continuously ranging from 81 to 54%. The second variable humidity test case corresponds to plate temperature of 255.4 K, air velocity of 2.44 m/s, air temperature of 291.8 K, and a relative humidity ranging from 66 to 59%. Results for the constant humidity case are obtained for a plate temperature of 263.7 K, air velocity of 1.7 m/s, air temperature of 295 K, and a relative humidity of 71.6 %. Comparisons of the data with the author's frost model extended to accommodate variable humidity suggest satisfactory agreement between the theory and the data for both constant and variable humidity.

  5. Sodium and potassium in the lunar atmosphere

    NASA Technical Reports Server (NTRS)

    Potter, A. E.; Morgan, T. H.

    1991-01-01

    The discovery that sodium and potassium vapor can be observed in the lunar atmosphere using ground-based telescopes has opened up a field of investigation that was closed after the last Apollo mission to the Moon. Sodium has been detected at altitudes up to 1500 km above the surface. This implies a high effective temperature for sodium, of the order of 1000 K. However, there is some evidence for two populations of sodium and potassium, one at temperatures corresponding to the surface, and another corresponding to high temperatures. The sources for the lunar atmosphere are not understood. Meteoric bombardment of the surface, solar wind sputtering of the surface, and photo-sputtering of the surface have all been suggested as possible sources for the lunar atmosphere. One of the objectives of the current research is to test different hypotheses by measurements of the atmosphere under different conditions of solar illumination and shielding from the solar wind by the Earth.

  6. The effect of surface boundary conditions on the climate generated by a coarse-mesh general circulation model

    NASA Technical Reports Server (NTRS)

    Cohen, C.

    1981-01-01

    A hierarchy of experiments was run, starting with an all water planet with zonally symmetric sea surface temperatures, then adding, one at a time, flat continents, mountains, surface physics, and realistic sea surface temperatures. The model was run with the sun fixed at a perpetual January. Ensemble means and standard deviations were computed and the t-test was used to determine the statistical significance of the results. The addition of realistic surface physics does not affect the model climatology to as large as extent as does the addition of mountains. Departures from zonal symmetry of the SST field result in a better simulation of the real atmosphere.

  7. Dynamics of Liquids in Edges and Corners (DYLCO): IML-2 Experiment for the BDPU

    NASA Technical Reports Server (NTRS)

    Langbein, D.; Weislogel, M.

    1998-01-01

    Knowledge of the behavior of fluids possessing free surfaces is important to many fluid systems, particularly in space, where the normally subtle effects of surface wettability play a more dramatic and often surprising role. DYLCO for the IML-2 mission was proposed as a simple experiment to probe the particular behavior of capillary surfaces in containers of irregular cross section. Temperature control was utilized to vary the fluid-solid contact angle, a questionable thermodynamic parameter of the system, small changes in which can dramatically influence the configuration, stability, and flow of a capillary surface. Container shapes, test fluid, and temperature ranges were selected for observing both local changes in interface curvature as well as a global change in fluid orientation due to a critical wetting phenomenon. The experiment hardware performed beyond what was expected and fluid interfaces could be readily digitized post flight to show the dependence of the interface curvature on temperature. For each of the containers tested surfaces were observed which did not satisfy the classic equations for the prediction of interface shape with constant contact angle boundary condition. This is explained by the presence of contact angle hysteresis arising from expansion and contraction of the liquid during the heating and cooling steps of the test procedure. More importantly, surfaces exceeding the critical surface curvature required for critical wetting were measured, yet no wetting was observed. These findings are indeed curious and pose key questions concerning the role of hysteresis for this critical wetting phenomena. The stability of such surfaces was determined numerically and it is shown that stability is enhance (reduced) when a surface is in its 'advancing' ('receding') state, The analysis shows complete instability as the critical wetting condition is reached. The case of ideal dynamic wetting is addressed analytically in detail with results of significant flow characteristics presented in closed form. The solutions indicate a square root of T dependence of the capillary 'rise' rate which is corroborated by drop tower tests. The analysis clearly shows that infinite time is necessary for surfaces to reorient at the critical wetting transition.

  8. Preliminary Report on Oak Ridge National Laboratory Testing of Drake/ACSS/MA2/E3X

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irminger, Philip; King, Daniel J.; Herron, Andrew N.

    2016-01-01

    A key to industry acceptance of a new technology is extensive validation in field trials. The Powerline Conductor Accelerated Test facility (PCAT) at Oak Ridge National Laboratory (ORNL) is specifically designed to evaluate the performance and reliability of a new conductor technology under real world conditions. The facility is set up to capture large amounts of data during testing. General Cable used the ORNL PCAT facility to validate the performance of TransPowr with E3X Technology a standard overhead conductor with an inorganic high emissivity, low absorptivity surface coating. Extensive testing has demonstrated a significant improvement in conductor performance across amore » wide range of operating temperatures, indicating that E3X Technology can provide a reduction in temperature, a reduction in sag, and an increase in ampacity when applied to the surface of any overhead conductor. This report provides initial results of that testing.« less

  9. Characterization of the thermal structure inside an urban canyon: field measurements and validation of a simple model

    NASA Astrophysics Data System (ADS)

    Giovannini, Lorenzo; Zardi, Dino; de Franceschi, Massimiliano

    2013-04-01

    The results of measurement campaigns are analyzed to investigate the thermal structure in an urban canyon, and to validate a simplified model simulating the air and surface temperatures from surface energy budgets. Starting from measurements at roof-top level, the model provides time series of air and surface temperatures, as well as surface fluxes. Two campaigns were carried out in summer 2007 and in winter 2008/09 in a street of the city of Trento (Italy). Temperature sensors were placed at various levels near the walls flanking the canyon and on a traffic light in the street center. Furthermore, the atmosphere above the mean roof-top level was monitored by a weather station on top of a tower located nearby. Air temperatures near the walls, being strongly influenced by direct solar radiation, display considerable contrasts between the opposite sides of the canyon. On the other hand, when solar radiation is weak or absent, the temperature field remains rather homogeneous.Moreover, air temperature inside the canyon is generally higher than above roof level, with larger differences during summertime. Air temperatures from the above street measurements are well simulated by the model in both seasons. Furthermore, the modeled surface temperatures are tested against a dataset of wall surface temperatures from the Advanced Tools for Rational Energy Use Towards Sustainability-Photocatalytic Innovative Coverings Applications for Depollution (ATREUS-PICADA) experiment, and a very good agreement is found. Results suggest that themodel is a reliable and convenient tool for simplified assessment of climatic conditions occurring in urban canyons under various weather situations.

  10. Induced superhydrophobic and antimicrobial character of zinc metal modified ceramic wall tile surfaces

    NASA Astrophysics Data System (ADS)

    Özcan, Selçuk; Açıkbaş, Gökhan; Çalış Açıkbaş, Nurcan

    2018-04-01

    Hydrophobic surfaces are also known to have antimicrobial effect by restricting the adherence of microorganisms. However, ceramic products are produced by high temperature processes resulting in a hydrophilic surface. In this study, an industrial ceramic wall tile glaze composition was modified by the inclusion of metallic zinc powder in the glaze suspension applied on the pre-sintered wall tile bodies by spraying. The glazed tiles were gloss fired at industrially applicable peak temperatures ranging from 980 °C to 1100 °C. The fired tile surfaces were coated with a commercial fluoropolymer avoiding water absorption. The surfaces were characterized with SEM, EDS, XRD techniques, roughness, sessile water drop contact angle, surface energy measurements, and standard antimicrobial tests. The surface hydrophobicity and the antimicrobial activity results were compared with that of unmodified, uncoated gloss fired wall tiles. A superhydrophobic contact angle of 150° was achieved at 1000 °C peak temperature due to the formation of micro-structured nanocrystalline zinc oxide granules providing a specific surface topography. At higher peak temperatures the hydrophobicity was lost as the specific granular surface topography deteriorated with the conversion of zinc oxide granules to the ubiquitous willemite crystals embedded in the glassy matrix. The antimicrobial efficacy also correlated with the hydrophobic character.

  11. Infrared surface temperature measurements for the surface tension driven convection experiment. M.S. Thesis - Case Western Reserve Univ., Aug. 1988

    NASA Technical Reports Server (NTRS)

    Pline, Alexander D.

    1989-01-01

    In support of the Surface Tension Driven Convection Experiment (STDCE), a planned space transportation system (STS) flight experiment, a commercially available infrared thermal imaging system is used to quantify the imposed thermal signature along the free surface. The system was tested and calibrated for the STDCE with ground-based equivalents of the STDCE hardware. Before using the system, consideration was given to the radiation characteristics of the target (silicone oil). Absorption coefficients were calculated to understand the surface depth as seen by the imager and the penetration depth of the surface heater (CO2 laser). The performance and operational specifications for the imager and image processing system are described in detail to provide an understanding of the equipment. Measurements made with the system were compared to thermocouple measurements and a calculated surface temperature distribution. This comparison showed that in certain regions the IR imager measurements were within 5 percent of the overall temperature difference across the free surface. In other regions the measurements were within + or - 10 percent of the overall temperature gradient across the free surface. The effective emissivity of silicone oil for these experimental conditions was also determined. Measurement errors and their possible solutions are discussed.

  12. Thermal design of composite material high temperature attachments

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An evaluation has been made of the thermal aspects of utilizing advanced filamentary composite materials as primary structures on the shuttle vehicle. The technical objectives of this study are to: (1) establish and design concepts for maintaining material temperatures within allowable limits at TPS attachments and or penetrations applicable to the space shuttle; and (2) verify the thermal design analysis by testing selected concepts. Specific composite materials being evaluated are boron epoxy, graphite/epoxy, boron polyimide, and boron aluminum; graphite/polyimide has been added to this list for property data identification and preliminary evaluation of thermal design problems. The TPS standoff to composite structure attachment over-temperature problem is directly related to TPS maximum surface temperature. To provide a thermally comprehensive evaluation of attachment temperature characteristics, maximum surface temperatures of 900 F, 1200 F, 1800 F, 2500 F and 3000 F are considered in this study. This range of surface temperatures and the high and low maximum temperature capability of the selected composite materials will result in a wide range of thermal requirements for composite/TPS standoff attachments.

  13. Fracture Behavior of High-Nitrogen Austenitic Stainless Steel Under Continuous Cooling: Physical Simulation of Free-Surface Cracking of Heavy Forgings

    NASA Astrophysics Data System (ADS)

    Wang, Zhenhua; Xue, Hongpeng; Fu, Wantang

    2018-03-01

    18Mn18Cr0.6N steel was tension tested at 0.001 s-1 to fracture from 1473 K to 1363 K (1200 °C to 1090 °C, fracture temperature) at a cooling rate of 0.4 Ks-1. For comparison, specimens were tension tested at temperatures of 1473 K and 1363 K (1200 °C and 1090 °C). The microstructure near the fracture surface was examined using electron backscatter diffraction analysis. The lowest hot ductility was observed under continuous cooling and was attributed to the suppression of dynamic recrystallization nucleation.

  14. The Effect of Composition on the Surface Finish of PS400: A New High Temperature Solid Lubricant Coating

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Stanford, malcolm K.; Thomas, Fransua; Edmonds, Brian J.

    2010-01-01

    A new composite, multi-constituent, solid lubricant coating, NASA PS400, developed for high temperature tribological applications, exhibits a smoother surface finish after grinding and polishing than its predecessors PS200 and PS300. In this paper, the baseline composition of PS400 is modified to investigate each individual constituent s role on the achievable surface finish through a series of coating deposition, grinding, and polishing experiments. Furthermore, to explore the limits of compositional tailoring for improved tribological performance, several PS400 coatings were doped with additional solid lubricants (graphite, MoS2 and BN) and tribologically tested. The test results clearly showed that, compared to PS300 coatings, PS400 achieves a smoother surface finish via a reduced lubricant content. Coatings prepared with higher than the baseline level (10 wt%) of lubricants exhibited higher final surface roughness than the earlier generation PS300 coatings. Reducing or eliminating the one or both lubricants (fluorides or silver) did not further improve the surface finish suggesting that the current composition of PS400 is near optimal with respect to surface finish. Lastly, attempts to improve the poor initial room temperature tribological behavior of PS400 via the addition of traditional solid lubricants were unsuccessful. Based upon this work and earlier results it is expected that future research will concentrate on developing methods to produce a lubricious glaze on the rubbing surface during break in to ensure that low friction and wear are rapidly achieved.

  15. Delocalized metallic state on insulating, disordered BiSbTeSe2 thin films - a test of Z2 protection.

    NASA Astrophysics Data System (ADS)

    Gopal, Rk; Singh, Sourabh; Sarkar, Jit; Patro, Reshma; Roy, Subhadip; Mitra, Chiranjib; Quantum computation; Topological matter Group Team

    We present thickness and temperature dependent magneto transport properties of bulk insulating and granular BiSbTeSe2 thin films, grown by pulsed laser deposition technique. The temperature dependent resistivity (R-T) of these films is found to be insulating (d ρ/dT <0) and resistivity changes thrice the magnitude measured at room temperature as temperature is varied from 300K to 1.8K. On application of small perpendicular magnetic field in the low temperature regime, the R-T takes an upward shift from the zero field R-T - a trademark signature of a metallic state on an insulating bulk film. The grain boundaries in these films, as seen by scanning electron microscopy, present an additional disorder and hence confinement/trapping centers to the surface Dirac states in comparison to the films grown by molecular beam epitaxy and single crystals, which have atomically flat surface. Therefore these films present real test for the topological protection of surface Dirac states and their immunity against localization which is known as Z2 protection. From the magnetoresistance (MR) measurements at low temperatures a sharp and relatively large rise in MR is found a signature of weak - antilocalization (WAL) -a signature of topologically protected surface states. The WAL analysis of the MR data reveals a phase breaking length of the order of grain size suggesting that grain Author is grateful to the Government of India and IISER-Kolkata for providing funding and experimental facilities for the following research work.

  16. Performance testing and analyses of the VSC-17 ventilated concrete cask. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKinnon, M.A.; Dodge, R.E.; Schmitt, R.C.

    1992-05-01

    This document details performance test which was conducted on a Pacific Sierra Nuclear VSC-17 ventilated concrete storage cask configured for pressurized-water reactor (PWR) spent fuel. The performance test consisted of loading the VSC-17 cask with 17 canisters of consolidated PWR spent fuel from Virginia Power`s Surry and Florida Power & Light Turkey Point reactors. Cask surface, concrete, air channel surfaces, and fuel canister guide tube temperatures were measured, as were cask surface gamma and neutron dose rates. Testing was performed with vacuum, nitrogen, and helium backfill environments in a vertical cask orientation. Data on spent fuel integrity were also obtained.

  17. Piercing mandrel strengthening by surfacing with nickel aluminide-based alloy

    NASA Astrophysics Data System (ADS)

    Zorin, I. V.; Dubtsov, Yu N.; Sokolov, G. N.; Artem'ev, A. A.; Lysak, V. I.; Elsukov, S. N.

    2017-02-01

    Electrode composite wire (CW) was used for argon-arc surfacing of a thermal-resisting nickel aluminide-based alloy (Ni-Al-Cr-W-Mo-Ta system) on the butt-end surface of the non-water-cooled piercing mandrel. It was shown that multipassing surfacing forms a defect-free deposited metal based on the γ’-Ni3Al phase of various structural origins. Using high-temperature sclerometry and thermal fatigue testing methods, the metal deposited with CW containing ultrafine particle of 0.3-0.4 % wt. WC carbide features increased resistance to thermal and force effects at temperatures up to 1200 °C.

  18. High temperature and dynamic testing of AHSS for an analytical description of the adiabatic cutting process

    NASA Astrophysics Data System (ADS)

    Winter, S.; Schmitz, F.; Clausmeyer, T.; Tekkaya, A. E.; F-X Wagner, M.

    2017-03-01

    In the automotive industry, advanced high strength steels (AHSS) are widely used as sheet part components to reduce weight, even though this leads to several challenges. The demand for high-quality shear cutting surfaces that do not require reworking can be fulfilled by adiabatic shear cutting: High strain rates and local temperatures lead to the formation of adiabatic shear bands (ASB). While this process is well suited to produce AHSS parts with excellent cutting surface quality, a fundamental understanding of the process is still missing today. In this study, compression tests in a Split-Hopkinson Pressure Bar with an initial strain rate of 1000 s-1 were performed in a temperature range between 200 °C and 1000 °C. The experimental results show that high strength steels with nearly the same mechanical properties at RT may possess a considerably different behavior at higher temperatures. The resulting microstructures after testing at different temperatures were analyzed by optical microscopy. The thermo-mechanical material behavior was then considered in an analytical model. To predict the local temperature increase that occurs during the adiabatic blanking process, experimentally determined flow curves were used. Furthermore, the influence of temperature evolution with respect to phase transformation is discussed. This study contributes to a more complete understanding of the relevant microstructural and thermo-mechanical mechanisms leading to the evolution of ASB during cutting of AHSS.

  19. Improving the Accuracy of Satellite Sea Surface Temperature Measurements by Explicitly Accounting for the Bulk-Skin Temperature Difference

    NASA Technical Reports Server (NTRS)

    Castro, Sandra L.; Emery, William J.

    2002-01-01

    The focus of this research was to determine whether the accuracy of satellite measurements of sea surface temperature (SST) could be improved by explicitly accounting for the complex temperature gradients at the surface of the ocean associated with the cool skin and diurnal warm layers. To achieve this goal, work centered on the development and deployment of low-cost infrared radiometers to enable the direct validation of satellite measurements of skin temperature. During this one year grant, design and construction of an improved infrared radiometer was completed and testing was initiated. In addition, development of an improved parametric model for the bulk-skin temperature difference was completed using data from the previous version of the radiometer. This model will comprise a key component of an improved procedure for estimating the bulk SST from satellites. The results comprised a significant portion of the Ph.D. thesis completed by one graduate student and they are currently being converted into a journal publication.

  20. Ultrasonic infrared thermal wave nondestructive evaluation for crack detection of several aerospace materials

    NASA Astrophysics Data System (ADS)

    Xu, Weichao; Shen, Jingling; Zhang, Cunlin; Tao, Ning; Feng, Lichun

    2008-03-01

    The applications of ultrasonic infrared thermal wave nondestructive evaluation for crack detection of several materials, which often used in aviation alloy. For instance, steel and carbon fiber. It is difficult to test cracks interfacial or vertical with structure's surface by the traditional nondestructive testing methods. Ultrasonic infrared thermal wave nondestructive testing technology uses high-power and low-frequency ultrasonic as heat source to excite the sample and an infrared video camera as a detector to detect the surface temperature. The ultrasonic emitter launch pulses of ultrasonic into the skin of the sample, which causes the crack interfaces to rub and dissipate energy as heat, and then caused local increase in temperature at one of the specimen surfaces. The infrared camera images the returning thermal wave reflections from subsurface cracks. A computer collects and processes the thermal images according to different properties of samples to get the satisfied effect. In this paper, a steel plate with fatigue crack we designed and a juncture of carbon fiber composite that has been used in a space probe were tested and get satisfying results. The ultrasonic infrared thermal wave nondestructive detection is fast, sensitive for cracks, especially cracks that vertical with structure's surface. It is significative for nondestructive testing in manufacture produce and application of aviation, cosmography and optoelectronics.

  1. Surface Temperature Measurements from a Stator Vane Doublet in a Turbine Engine Afterburner Flame Using a YAG:Tm Thermographic Phosphor

    NASA Technical Reports Server (NTRS)

    Eldridge, J. I.; Walker, D. G.; Gollub, S. L.; Jenkins, T. P.; Allison, S. W.

    2015-01-01

    Luminescence-based surface temperature measurements were obtained from a YAG:Tm-coated stator vane doublet exposed to the afterburner flame of a J85 test engine at University of Tennessee Space Institute (UTSI). The objective of the testing was to demonstrate that reliable surface temperatures based on luminescence decay of a thermographic phosphor producing short-wavelength emission could be obtained from the surface of an actual engine component in a high gas velocity, highly radiative afterburner flame environment. YAG:Tm was selected as the thermographic phosphor for its blue emission at 456 nm (1D23F4 transition) and UV emission at 365 nm (1D23H6 transition) because background thermal radiation is lower at these wavelengths, which are shorter than those of many previously used thermographic phosphors. Luminescence decay measurements were acquired using a probe designed to operate in the afterburner flame environment. The probe was mounted on the sidewall of a high-pressure turbine vane doublet from a Honeywell TECH7000 turbine engine coated with a standard electron-beam physical vapor deposited (EB-PVD) 200-m-thick TBC composed of yttria-stabilized zirconia (YSZ) onto which a 25-m-thick YAG:Tm thermographic phosphor layer was deposited by solution precursor plasma spray (SPPS). Spot temperature measurements were obtained by measuring luminescence decay times at different afterburner power settings and then converting decay time to temperature via calibration curves. Temperature measurements using the decays of the 456 and 365 nm emissions are compared. While successful afterburner environment measurements were obtained to about 1300C with the 456 nm emission, successful temperature measurements using the 365 nm emission were limited to about 1100C due to interference by autofluorescence of probe optics at short decay times.

  2. Tensile testing apparatus

    NASA Technical Reports Server (NTRS)

    Blackburn, L. B.; Ellingsworth, J. R. (Inventor)

    1985-01-01

    An improved mechanical extensometer is described for use with a constant load creep test machine. The dead weight of the extensometer is counterbalanced by two pairs of weights connected through a pulley system and to rod extension and leading into the furnace where the test sample is undergoing elevated temperature (above 500 F.) tensile testing. Novel gripper surfaces, conical tip and flat surface are provided in each sampling engaging platens to reduce the grip pressure normally required for attachment of the extensometer to the specimen and reduce initial specimen bending normally associated with foil-gage metal testing.

  3. USB environment measurements based on full-scale static engine ground tests

    NASA Technical Reports Server (NTRS)

    Sussman, M. B.; Harkonen, D. L.; Reed, J. B.

    1976-01-01

    Flow turning parameters, static pressures, surface temperatures, surface fluctuating pressures and acceleration levels were measured in the environment of a full-scale upper surface blowing (USB) propulsive lift test configuration. The test components included a flightworthy CF6-50D engine, nacelle, and USB flap assembly utilized in conjunction with ground verification testing of the USAF YC-14 Advanced Medium STOL Transport propulsion system. Results, based on a preliminary analysis of the data, generally show reasonable agreement with predicted levels based on model data. However, additional detailed analysis is required to confirm the preliminary evaluation, to help delineate certain discrepancies with model data, and to establish a basis for future flight test comparisons.

  4. Behavior of graphite under heat load and in contact with a hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Bohdansky, J.; Croessmann, C. D.; Linke, J.; McDonald, J. M.; Morse, D. H.; Pontau, A. E.; Watson, R. D.; Whitley, J. B.; Goebel, D. M.; Hirooka, Y.; Leung, K.; Conn, R. W.; Roth, J.; Ottenberger, W.; Kotzlowski, H. E.

    1987-05-01

    Graphite is extensively used in large tokamaks today. In these machines the material is exposed to vacuum, to intense heat loads, and to the edge plasma. The use of graphite in such machines, therefore, depends on the outgassing behavior, the heat shock resistance, and thermochemical properties in a hydrogen plasma. Investigations of these properties made at different laboratories are described here. Experiments conducted at Sandia National Laboratories (SNL), Livermore, and the Max-Planck-Institut für Plasmaphysik (IPP) in Garching showed that the outgassing behavior of fine-grain reactor-grade graphite and carbon fiber composites depends on the pretreatment (manufacturing and/or storage). However, after proper outgassing the samples tested behave similarly in the case of fine-grain graphite, but the outgassing remains high for the carbon fiber composites. Heat shock tests have been made with the Electron Beam Test System (EBTS) at SNL, Albuquerque. Directly cooled graphite samples (FE 159 graphite brazed onto Mo tubes) showed no failure at a heat load of 700 W/cm 2, 20 s; or 10 kW, 1 s. Thermal erosion due to sublimination and particle emission from the graphite surface was observed. This effect is related to the surface temperature and becomes significant at temperatures above 2500°K. Fourteen different types of graphite were tested; the main differences among these samples were the different surface temperatures obtained under the same heating conditions. Cracking due to heat shocks was observed in some of the samples, but none of the carbon fiber composites failed. Thermochemical properties have been tested in the PISCES plasma generator at UCLA for ion energies of around 100 eV. The formation of C-H compounds was observed spectroscopically at sample temperatures of around 600°C. However, this chemical reaction did not lead to erosion as observed in beam experiments but to a drastic change of the surface structure due to redeposition. Carbon-hydrogen lines were still observed at sample temperatures of around 100°C. Under these conditions the erosion yield is high and in agreement with those measured in beam experiments.

  5. Evaluation of replacement thread lubricants for red lead and graphite in mineral oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jungling, T.L.; Rauth, D.R.; Goldberg, D.

    1998-04-30

    Eight commercially available thread lubricants were evaluated to determine the best replacement for Red Lead and Graphite in Mineral Oil (RLGMO). The evaluation included coefficient of friction testing, high temperature anti-seizing testing, room temperature anti-galling testing, chemical analysis for detrimental impurities, corrosion testing, off-gas testing, and a review of health and environmental factors. The coefficient of friction testing covered a wide variety of factors including stud, nut, and washer materials, sizes, manufacturing methods, surface coatings, surface finishes, applied loads, run-in cycles, and relubrication. Only one lubricant, Dow Corning Molykote P37, met all the criteria established for a replacement lubricant. Itmore » has a coefficient of friction range similar to RLGMO. Therefore, it can be substituted directly for RLGMO without changing the currently specified fastener torque values for the sizes, materials and conditions evaluated. Other lubricants did not perform as well as Molykote P37 in one or more test or evaluation categories.« less

  6. Tensile test of pressureless-sintered silicon nitride at elevated temperature

    NASA Technical Reports Server (NTRS)

    Matsusue, K.; Fujisawa, Y.; Takahara, K.

    1985-01-01

    Uniaxial tensile strength tests of pressureless sintered silicon nitride were carried out in air at temperatures ranging from room temperature up to 1600 C. Silicon nitrides containing Y2O3, Al2O3, Al2O3-MgO, or MgO-CeO2 additives were tested. The results show that the composition of the additive used influences the strength characteristics of the silicon nitride. The tensile strength rapidly decreased at temperatures above 1000 C for the materials containing MgO as the additive and above 1000 C for the material with Y2O3. When the temperature increased to as high as 1300 C, the strength decreased to about 10 percent of the room temperature strength in each case. Observations of the fracture origin and of the crack propagation on the fracture surfaces are discussed.

  7. Oxidation- and Creep-Enhanced Fatigue of Haynes 188 Alloy-Oxide Scale System Under Simulated Pulse Detonation Engine Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Fox, Dennis S.; Miller, Robert A.

    2002-01-01

    The development of the pulse detonation engine (PDE) requires robust design of the engine components that are capable of enduring harsh detonation environments. In this study, a high cycle thermal fatigue test rig was developed for evaluating candidate PDE combustor materials using a CO2 laser. The high cycle thermal fatigue behavior of Haynes 188 alloy was investigated under an enhanced pulsed laser test condition of 30 Hz cycle frequency (33 ms pulse period, and 10 ms pulse width including 0.2 ms pulse spike). The temperature swings generated by the laser pulses near the specimen surface were characterized by using one-dimensional finite difference modeling combined with experimental measurements. The temperature swings resulted in significant thermal cyclic stresses in the oxide scale/alloy system, and induced extensive surface cracking. Striations of various sizes were observed at the cracked surfaces and oxide/alloy interfaces under the cyclic stresses. The test results indicated that oxidation and creep-enhanced fatigue at the oxide scale/alloy interface was an important mechanism for the surface crack initiation and propagation under the simulated PDE condition.

  8. In-depth Analysis of Land Surface Emissivity using Microwave Polarization Difference Index to Improve Satellite QPE

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Kirstetter, P. E.; Hong, Y.; Wen, Y.; Turk, J.; Gourley, J. J.

    2015-12-01

    One of primary uncertainties in satellite overland quantitative precipitation estimates (QPE) from passive sensors such as radiometers is the impact on the brightness temperatures by the surface land emissivity. The complexity of surface land emissivity is linked to its temporal variations (diurnal and seasonal) and spatial variations (subsurface vertical profiles of soil moisture, vegetation structure and surface temperature) translating into sub-pixel heterogeneity within the satellite field of view (FOV). To better extract the useful signal from hydrometeors, surface land emissivity needs to be determined and filtered from the satellite-measured brightness temperatures. Based on the dielectric properties of surface land cover constitutes, Microwave Polarization Differential index (MPDI) is expected to carry the composite effect of surface land properties on land surface emissivity, with a higher MPDI indicating a lower emissivity. This study analyses the dependence of MPDI to soil moisture, vegetation and surface skin temperature over 9 different land surface types. Such analysis is performed using the normalized difference vegetation index (NDVI) from MODIS, the near surface air temperature from the RAP model and ante-precedent precipitation accumulation from the Multi-Radar Multi-Sensor as surrogates for the vegetation, surface skin temperature and shallow layer soil moisture, respectively. This paper provides 1) evaluations of brightness temperature-based MPDI from the TRMM and GPM Microwave Imagers in both raining and non-raining conditions to test the dependence of MPDI to precipitation; 2) comparisons of MPDI categorized into instantly before, during and immediately after selected precipitation events to examine the impact of modest-to-heavy precipitation on the spatial pattern of MPDI; 3) inspections of relationship between MPDI versus rain fraction and rain rate within the satellite sensors FOV to investigate the behaviors of MPDI in varying precipitation conditions; 4) analysis of discrepancies of MPDI over 10.65, 19.35, 37 and 85.8 GHz to identify the sensitivity of MPDS to microwave wavelengths.

  9. Ciguatera fish poisoning and sea surface temperatures in the Caribbean Sea and the West Indies.

    PubMed

    Tester, Patricia A; Feldman, Rebecca L; Nau, Amy W; Kibler, Steven R; Wayne Litaker, R

    2010-10-01

    Ciguatera fish poisoning (CFP) is a circumtropical disease caused by ingestion of a variety of reef fish that bioaccumulate algal toxins. Distribution and abundance of the organisms that produce these toxins, chiefly dinoflagellates of the genus Gambierdiscus, are reported to correlate positively with water temperature. Consequently, there is growing concern that increasing temperatures associated with climate change could increase the incidence of CFP. This concern prompted experiments on the growth rates of six Gambierdiscus species at temperatures between 18 degrees C and 33 degrees C and the examination of sea surface temperatures in the Caribbean and West Indies for areas that could sustain rapid Gambierdiscus growth rates year-round. The thermal optimum for five of six Gambierdiscus species tested was >/=29 degrees C. Long-term SST data from the southern Gulf of Mexico indicate the number of days with sea surface temperatures >/=29 degrees C has nearly doubled (44 to 86) in the last three decades. To determine how the sea surface temperatures and Gambierdiscus growth data correlate with CFP incidences in the Caribbean, a literature review and a uniform, region-wide survey (1996-2006) of CFP cases were conducted. The highest CFP incidence rates were in the eastern Caribbean where water temperatures are warmest and least variable. Published by Elsevier Ltd.

  10. Goddard Laboratory for Atmospheric Sciences physical retrieval system for remote determination of weather and climate parameter from HIRS2 and MSU observations

    NASA Technical Reports Server (NTRS)

    Susskind, J.

    1984-01-01

    At the Goddard Laboratory for Atmospheric Sciences (GLAS) a physically based satellite temperature sounding retrieval system, involving the simultaneous analysis of HIRS2 and MSU sounding data, was developed for determining atmospheric and surface conditions which are consistent with the observed radiances. In addition to determining accurate atmospheric temperature profiles even in the presence of cloud contamination, the system provides global estimates of day and night sea or land surface temperatures, snow and ice cover, and parameters related to cloud cover. Details of the system are described elsewhere. A brief overview of the system is presented, as well as recent improvements and previously unpublished results, relating to the sea-surface intercomparison workshop, the diurnal variation of ground temperatures, and forecast impact tests.

  11. Au/Cr Sputter Coating for the Protection of Alumina During Sliding at High Temperatures

    NASA Technical Reports Server (NTRS)

    Benoy, Patricia A.; Dellacorte, Christopher

    1995-01-01

    A sputter deposited bilayer coating of gold and chromium was investigated as a potential solid lubricant to protect alumina substrates in applications involving sliding at high temperature. The proposed lubricant was tested in a pin-on-disk tribometer with coated alumina disks sliding against uncoated alumina pins. Three test parameters; temperature, load, and sliding velocity were varied over a wide range in order to determine the performance envelope on the gold/chromium (Au/Cr) solid lubricant film. The tribo-tests were run in an air atmosphere at temperatures of 25 to 1000 C, under loads of 4.9 to 49.0 N and at sliding velocities from 1 to 15 m/sec. Post test analyses included surface profilometry, wear factor determination and scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) examination of worn surfaces. Compared to unlubricated Al2O3 sliding, the use of the Au/Cr film reduced friction by 30 to 50 percent and wear by one to two orders of magnitude. Increases in test temperature resulted in lower friction and the Au/Cr film continued to provide low friction, about 0.3, even at 1000 C. Pin wear factors and friction were largely unaffected by increasing loads up to 29.4 N. Sliding velocity had essentially no effect on friction, however, increased velocity reduced coating life (total sliding distance). Based upon these research results, the Au/Cr film is a promising lubricant for moderately loaded, low speed applications operating at temperatures as high as 1000 C.

  12. Heat and mass transfer scale-up issues during freeze-drying, III: control and characterization of dryer differences via operational qualification tests.

    PubMed

    Rambhatla, S; Tchessalov, S; Pikal, Michael J

    2006-04-21

    The objective of this research was to estimate differences in heat and mass transfer between freeze dryers due to inherent design characteristics using data obtained from sublimation tests. This study also aimed to provide guidelines for convenient scale-up of the freeze-drying process. Data obtained from sublimation tests performed on laboratory-scale, pilot, and production freeze dryers were used to evaluate various heat and mass transfer parameters: nonuniformity in shelf surface temperatures, resistance of pipe, refrigeration system, and condenser. Emissivity measurements of relevant surfaces such as the chamber wall and the freeze dryer door were taken to evaluate the impact of atypical radiation heat transfer during scale-up. "Hot" and "cold" spots were identified on the shelf surface of different freeze dryers, and the impact of variation in shelf surface temperatures on the primary drying time and the product temperature during primary drying was studied. Calculations performed using emissivity measurements on different freeze dryers suggest that a front vial in the laboratory lyophilizer received 1.8 times more heat than a front vial in a manufacturing freeze dryer operating at a shelf temperature of -25 degrees C and a chamber pressure of 150 mTorr during primary drying. Therefore, front vials in the laboratory are much more atypical than front vials in manufacturing. Steady-state heat and mass transfer equations were used to study a combination of different scale-up issues pertinent during lyophilization cycles commonly used for the freeze-drying of pharmaceuticals.

  13. Temperature Mapping of Air Film-Cooled Thermal Barrier Coated Surfaces Using Phosphor Thermometry

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.

    2016-01-01

    While the effects of thermal barrier coating (TBC) thermal protection and air film cooling effectiveness for jet engine components are usually studied separately, their contributions to combined cooling effectiveness are interdependent and are not simply additive. Therefore, combined cooling effectiveness must be measured to achieve an optimum balance between TBC thermal protection and air film cooling. Phosphor thermometry offers several advantages for mapping temperatures of air film cooled surfaces. While infrared thermography has been typically applied to study air film cooling effectiveness, temperature accuracy depends on knowing surface emissivity (which may change) and correcting for effects of reflected radiation. Because decay time-based full-field phosphor thermometry is relatively immune to these effects, it can be applied advantageously to temperature mapping of air film-cooled TBC-coated surfaces. In this presentation, an overview will be given of efforts at NASA Glenn Research Center to perform temperature mapping of air film-cooled TBC-coated surfaces in a burner rig test environment. The effects of thermal background radiation and flame chemiluminescence on the measurements are investigated, and the strengths and limitations of this method for studying air film cooling effectiveness are discussed.

  14. Modeling of surface temperature effects on mixed material migration in NSTX-U

    NASA Astrophysics Data System (ADS)

    Nichols, J. H.; Jaworski, M. A.; Schmid, K.

    2016-10-01

    NSTX-U will initially operate with graphite walls, periodically coated with thin lithium films to improve plasma performance. However, the spatial and temporal evolution of these films during and after plasma exposure is poorly understood. The WallDYN global mixed-material surface evolution model has recently been applied to the NSTX-U geometry to simulate the evolution of poloidally inhomogenous mixed C/Li/O plasma-facing surfaces. The WallDYN model couples local erosion and deposition processes with plasma impurity transport in a non-iterative, self-consistent manner that maintains overall material balance. Temperature-dependent sputtering of lithium has been added to WallDYN, utilizing an adatom sputtering model developed from test stand experimental data. Additionally, a simplified temperature-dependent diffusion model has been added to WallDYN so as to capture the intercalation of lithium into a graphite bulk matrix. The sensitivity of global lithium migration patterns to changes in surface temperature magnitude and distribution will be examined. The effect of intra-discharge increases in surface temperature due to plasma heating, such as those observed during NSTX Liquid Lithium Divertor experiments, will also be examined. Work supported by US DOE contract DE-AC02-09CH11466.

  15. 3D Surface Temperature Measurement of Plant Canopies Using Photogrammetry Techniques From A UAV.

    NASA Astrophysics Data System (ADS)

    Irvine, M.; Lagouarde, J. P.

    2017-12-01

    Surface temperature of plant canopies and within canopies results from the coupling of radiative and energy exchanges processes which govern the fluxes at the interface soil-plant-atmosphere. As a key parameter, surface temperature permits the estimation of canopy exchanges using processes based modeling methods. However detailed 3D surface temperature measurements or even profile surface temperature measurements are rarely made as they have inherent difficulties. Such measurements would greatly improve multi-level canopy models such as NOAH (Chen and Dudhia 2001) or MuSICA (Ogée and Brunet 2002, Ogée et al 2003) where key surface temperature estimations, at present, are not tested. Additionally, at larger scales, canopy structure greatly influences satellite based surface temperature measurements as the structure impacts the observations which are intrinsically made at varying satellite viewing angles and solar heights. In order to account for these differences, again accurate modeling is required such as through the above mentioned multi-layer models or with several source type models such as SCOPE (Van der Tol 2009) in order to standardize observations. As before, in order to validate these models, detailed field observations are required. With the need for detailed surface temperature observations in mind we have planned a series of experiments over non-dense plant canopies to investigate the use of photogrammetry techniques. Photogrammetry is normally used for visible wavelengths to produce 3D images using cloud point reconstruction of aerial images (for example Dandois and Ellis, 2010, 2013 over a forest). From these cloud point models it should be possible to establish 3D plant surface temperature images when using thermal infrared array sensors. In order to do this our experiments are based on the use of a thermal Infrared camera embarked on a UAV. We adapt standard photogrammetry to account for limits imposed by thermal imaginary, especially the low image resolution compared with standard RGB sensors. At the session B081, we intend to present first results of our thermal photogrammetric experiments with 3D surface temperature plots in order to discuss and adapt our methods to the modelling community's needs.

  16. Thermoresponsive light scattering device utilizing surface behavior effects between polyimide and an ionic liquid-water mixture exhibiting lower critical solution temperature (LCST)-type phase separation

    NASA Astrophysics Data System (ADS)

    Goda, Kazuya; Takatoh, Kohki; Funasako, Yusuke; Inokuchi, Makoto

    2018-06-01

    We proposed a thermoresponsive light scattering device that utilizes the surface behavior between polyimide and an ionic liquid-water mixture exhibiting lower critical solution temperature (LCST)-type phase separation. The LCST behavior for an ionic liquid device utilizing the polyimide with and without alkyl side chains was investigated. In the here-reported ionic liquid device that utilized the polyimide with alkyl side chains, [nBu4P][CF3COO] droplets were generated by phase separation—they were predominantly formed at the alkyl surface by a surface pinning effect. A stable transmittance in the opaque state could be obtained with this device. In contrast, an ionic liquid device using polyimide without alkyl side chains deteriorated transmittance in the opaque state because there was no surface pinning effect. Additionally, the viewing angle, contrast ratio, and heat cycle testing of this ionic liquid device with polyimide with alkyl side chains were also investigated. The results indicated that no parallax was obtained and that the ionic liquid device has a stable transmittance (verified by heat cycle testing). This unique device is expected to find use in the smart window applications that are activated by temperature changes.

  17. Evaluation of a standard test method for total hemispherical emittance of surfaces from 293K to 1673K

    NASA Technical Reports Server (NTRS)

    Compton, E. C.

    1986-01-01

    Emittance tests were made on samples of Rene' 41, Haynes 188, and Inconel 625 superalloy metals in an evaluation of a standard test method for determining total hemispherical emittances of surfaces from 293 K to 1673 K. The intent of this evaluation was to address any problems encountered, check repeatability of measured emittances, and gain experience in use of the test procedure. Five test specimens were fabricated to prescribe test dimensions and surfaces cleaned of oil and residue. Three of these specimens were without oxidized surfaces and two with oxidized surfaces. The oxidized specimens were Rene' 41 and Haynes 188. The tests were conducted in a vacuum where the samples were resistance-heated to various temperature levels ranging from 503 K to 1293 K. The calculated results for emittance, in the worst case, were repeatable to a maximum spread to + or - 4% from the mean of five sets of plotted data for each specimen.

  18. Development of design allowables data for adhesives for attaching reusables surface insulation, addendum 1A

    NASA Technical Reports Server (NTRS)

    Owen, H. P.; Carroll, M. T.

    1973-01-01

    The task consisted of conducting mechanical and thermal tests to establish design allowables data on a new room temperature vulcanizing (RTV) silicone adhesive, X3-6004. Low modulus, coupled with relatively low density and good low-temperature properties of this adhesive, places it in contention as a candidate for attaching reusable surface insulation on the space shuttle. Data obtained show that the modulus values of X3-6004 are significantly lower than those of RTV-560 and the other three adhesives characterized at test temperatures from 550 to -175 F. At -175, -200 and -270 F, the modulus of X3-6004 is approximately the same as GE RTV-560 and the other three silicone adhesives. The X3-6004 adhesive exhibits good processing properties. It has a 12 percent lower density than RTV-560. Although lower in overall strength properties as compared to the other adhesives in the program, X3-6004 has adequate adhesion to 2024T81 aluminum to compete as an adhesive for attaching reusable surface insulation. It does exhibit some tendency to revert and soften at temperatures above 350 F when in a confined area.

  19. The Effect of High Temperature Corrosion on Mechanical Behavior of a GAMMA-TiAl Alloy

    NASA Astrophysics Data System (ADS)

    Zhao, Wenyue; Ma, Yue; Gong, Shengkai

    The mechanical properties of Ti-48Al-2Cr-2Nb alloy were discussed after the high temperature corrosion tests carried out with salt mixture of 75wt. % Na2SO4 and 25wt. % NaCl at 800°C. The microstructure of the alloy after corrosion was observed by SEM and the fracture behavior of the corroded and uncorroded alloys was investigated by means of the three-point bending tests. It has been shown that the corrosion path was mainly along the lamellar structure and rough surface with a large number of corrosion pits formed during the high temperature corrosion. The experimental results also indicated that the bearing capacity of bending fracture descended evidently due to the molten salt corrosion at high temperature, which only had remarkable effects on the surface state of the alloy. The microcracks inside the alloy always propagated along the phase interfaces and grain boundaries while the corrosion pits on salt-deposited surface became the main crack initiation location in corroded alloy. The stress concentration caused by corrosion was considered as the essential reason of the property reduction, which decreased the energy barrier of crack nucleation and shortened the incubation period.

  20. The Influence of The Temperature on Dry Friction of AISI 3315 Steel Sliding Against AISI 3150 Steel

    NASA Astrophysics Data System (ADS)

    Odabas, D.

    2018-01-01

    In this paper, the effects the influence of frictional heating on the wear of AISI 3315 Steel were investigated experimentally using a pin-on-ring geometry. All the tests were carried out in air without any lubricant. In order to understand the variation in frictional coefficient and temperature with load and speed, the friction tests were carried out at a speed of 1 m/s and loads in the range 115-250 N, and at a speed range 1-4 m/s, a load of 115 N. The sliding distance was 1500 m. The bulk temperature of the specimen was measured from the interface surface at a distance of 1 mm from the contact surface by using type K thermocouples (Ni-Cr-Ni). The coefficient of friction was determined as a function of test load and speed. The steady state coefficient of friction of the test material decreases with increasing load and speed due to the oxide formation. But the unsteady state coefficient of friction increases with an increase in load and speed.

  1. Thermal testing results of an electroformed nickel secondary (M2) mirror

    NASA Astrophysics Data System (ADS)

    Smith, David R.; Gale, David M.; Cabrera Cuevas, Lizeth; Lucero Álvarez, Maribel; Castro Santos, David; Olmos Tapia, Arak

    2016-07-01

    To support higher-frequency operation, the Large Millimeter Telescope/Gran Telescopio Milimetrico (or LMT/GTM) is replacing its existing monolithic aluminum secondary mirror (M2). The new mirror is a segmented design based on the same electroformed nickel reflector panel technology that is already in use for the primary reflector segments. While the new M2 is lighter and has better surface accuracy than the original mirror, the electroformed panels are more sensitive to high temperatures. During the design phase, concerns were raised over the level of temperature increase that could occur at M2 during daytime observations. Although the panel surface is designed to scatter visible light, the LMT primary mirror is large enough to cause substantial solar heating, even at significant angular separation from the Sun. To address these concerns, the project conducted a series of field tests, within the constraint of having minimum impact on night time observations. The supplier sent two coupon samples of a reflector panel prepared identically to their proposed M2 surface. Temperature sensors were mounted on the samples and they were temporarily secured to the existing M2 mirror at different distances from the center. The goal was to obtain direct monitoring of the surface temperature under site thermal conditions and the concentration effects from the primary reflector. With the sensors installed, the telescope was then commanded to track the Sun with an elevation offset. Initially, elevation offsets from as far as 40 degrees to as close as 6 degrees were tested. The 6 degree separation test quickly passed the target maximum temperature and the telescope was returned to a safer separation. Based on these initial results, a second set of tests was performed using elevation separations from 30 degrees to 8 degrees. To account for the variability of site conditions, the temperature data were analyzed using multiple metrics. These metrics included maximum temperature, final time average temperature, and an curve fit for heating/ cooling. The results indicate that a solar separation angle of 20 degrees should be suitable for full performance operation of the LMT/GTM. This separation not only is sufficient to avoid high temperatures at the mirror, but also provides time to respond to any emergency conditions that could occur (e.g., switching to a generator after a power failure) for observations that are ahead of the motion of the Sun. Additionally, even approaches of 10 to 15 degrees of angular separation on the sky may be achievable for longer wavelength observations, though these would likely be limited to positions that are behind the position of the Sun along its motion.

  2. Friction behavior of network-structured CNT coating on pure titanium plate

    NASA Astrophysics Data System (ADS)

    Umeda, Junko; Fugetsu, Bunshi; Nishida, Erika; Miyaji, Hirofumi; Kondoh, Katsuyoshi

    2015-12-01

    Friction behavior of the network-structured CNTs coated pure Ti plate was evaluated by ball-on-disk wear test using SUS304 ball specimen under dry condition. The friction coefficient was significantly low and stable compared to the as-received Ti plate with no coating film. CNTs coating film had two important roles; self-lubrication and bearing effects to reduce the friction coefficient and carbon solid-solution hardening to improve the abrasive wear property of Ti plate. The annealing treatment at higher temperature (1123 K) was more effective to reduce the friction coefficient than that at lower temperature (973 K) because the Ti plate surface was uniformly covered with CNTs film even after sliding wear test. This is due to TiC interlayer formation via a reaction between Ti plate and carbon elements originated from CNTs during annealing. As a result, a strong interface bonding between CNTs film and Ti plate surface was obtained by higher temperature annealing treatment, and obstructed the detachment of CNTs film during wear test.

  3. Large Scale Drivers for the Extreme Storm Season over the North Atlantic and the UK in Winter 2013-14

    NASA Astrophysics Data System (ADS)

    Wild, Simon; Befort, Daniel J.; Leckebusch, Gregor C.

    2016-04-01

    The British Isles experienced exceptional stormy and rainy weather conditions in winter 2013-2014 while large parts of central North America recorded near record minimum surface temperatures values. Potential drivers for these cold conditions include increasingly warm surface waters of the tropical west Pacific. It has been suggested these increasing sea surface temperatures could also be the cause for extreme weather over the Europe, particularly the UK. Testing this hypothesis, we investigate mechanisms linking the tropical west Pacific and European wind storm activity. We will firstly analyse anomaly patterns along such a potential link in winter 2013-14. Secondly, we will investigate whether these identified anomaly patterns show a strong interannual relationship in the recent past. Our results, using primarily ERA-Interim Reanalysis from 1979 to 2014, show an absolute maximum of wind storm frequency over the northeast Atlantic and the British Isles in winter 2013-14. We also find absolute minimum surface temperatures in central North America and increased convective activity over the tropical west Pacific in the same season. The winter 2013-14 was additionally characterized by anomalous warm sea surface temperatures over the subtropical northwest Atlantic. Although the interannual variability of wind storms in the northeast Atlantic and surface temperatures in North America are significantly anti-correlated, we cannot directly relate wind storm frequency with tropical west Pacific anomalies. We thus conclude that the conditions over the Pacific in winter 2013-14 were favourable but not sufficient to explain the record number of wind storms in this season. Instead, we suggest that warm north Atlantic sea surface temperature anomalies in combination with cold surface temperatures over North America played a more important role for generating higher wind storm counts over the northeast Atlantic and the UK.

  4. Performance Technology Program (PTP-S 2). Volume 9: Evaluation of reentry vehicle nosetip transition and heat transfer in the AEDC hyperballistics track G

    NASA Astrophysics Data System (ADS)

    Wassel, A. T.; Shih, W. C. L.; Curtis, R. J.

    1981-01-01

    Boundary layer transition and surface heating distributions on graphite fine weave carbon-carbon, and metallic nosetip materials were derived from surface temperature responses measured in nitrogen environments during both free-flight and track-guided testing in the AEDC Hyperballistics Range/Track G. Innovative test procedures were developed, and heat transfer results were validated against established theory through experiments using a super-smooth tungsten model. Quantitative definitions of mean transition front locations were established by deriving heat flux distributions from measured temperatures, and comparisons made with existing nosetip transition correlations. Qualitative transition locations were inferred directly from temperature distributions to investigate preferred orientations on fine weave nosetips. Levels of roughness augmented heat transfer were generally shown to be below values predicted by state of the art methods.

  5. TlCaBaCuO high Tc superconducting microstrip ring resonators designed for 12 GHz

    NASA Technical Reports Server (NTRS)

    Subramanyam, G.; Kapoor, V. J.; Chorey, C. M.; Bhasin, K. B.

    1993-01-01

    Microwave properties of sputtered Tl-Ca-Ba-Cu-O thin films were investigated by designing, fabricating, and testing microstrip ring resonators. Ring resonators designed for 12 GHz fundamental resonance frequency, were fabricated and tested. From the unloaded Q values for the resonators, the surface resistance was calculated by separating the conductor losses from the total losses. The penetration depth was obtained from the temperature dependence of resonance frequency, assuming that the shift in resonance frequency is mainly due to the temperature dependence of penetration depth. The effective surface resistance at 12 GHz and 77 K was determined to be between 1.5 and 2.75 mOmega, almost an order lower than Cu at the same temperature and frequency. The effective penetration depth at 0 K is approximately 7000 A.

  6. The evaluation of evaporation by infrared thermography: A critical analysis of the measurements on the Crau test site. [France

    NASA Technical Reports Server (NTRS)

    Seguin, B.; Petit, V.; Devillard, R.; Reich, P.; Thouy, G. (Principal Investigator)

    1980-01-01

    Evapotranspiration was calculated for both the dry and irrigated zone by four methods which were compared with the energy balance method serving as a reference. Two methods did not involve the surface temperature. They are ETR(n) = R(n), liable to be valid under wet conditions and ET(eq) = (delta/delta + gamma) R(n) i.e, the first term of Penman's equation, adapted to moderately dry conditions. The methods using surface temperature were the combined energy balance aerodynamic approach and a simplified approach proposed by Jackson et al. Tests show the surface temperature methods give relatively satisfactory results both in the dry and wet zone, with a precision of 10% to 15% compared with the reference method. As was to be expected, ET(eq) gave satisfactory results only in the dry zone and ET(Rn) in the irrigated zone. Thermography increased the precision in the estimate of ET relative to the most suitable classical method by 5% to 8% and is equally suitable for both dry and wet conditions. The Jackson method does not require extensive ground measurements and the evaluation of the surface roughness.

  7. Polymer functionalized nanostructured porous silicon for selective water vapor sensing at room temperature

    NASA Astrophysics Data System (ADS)

    Dwivedi, Priyanka; Das, Samaresh; Dhanekar, Saakshi

    2017-04-01

    This paper highlights the surface treatment of porous silicon (PSi) for enhancing the sensitivity of water vapors at room temperature. A simple and low cost technique was used for fabrication and functionalization of PSi. Spin coated polyvinyl alcohol (PVA) was used for functionalizing PSi surface. Morphological and structural studies were conducted to analyze samples using SEM and XRD/Raman spectroscopy respectively. Contact angle measurements were performed for assessing the wettability of the surfaces. PSi and functionalized PSi samples were tested as sensors in presence of different analytes like ethanol, acetone, isopropyl alcohol (IPA) and water vapors in the range of 50-500 ppm. Electrical measurements were taken from parallel aluminium electrodes fabricated on the functionalized surface, using metal mask and thermal evaporation. Functionalized PSi sensors in comparison to non-functionalized sensors depicted selective and enhanced response to water vapor at room temperature. The results portray an efficient and selective water vapor detection at room temperature.

  8. Experimental study on water content detection of traditional masonry based on infrared thermal image

    NASA Astrophysics Data System (ADS)

    Zhang, Baoqing; Lei, Zukang

    2017-10-01

    Based on infrared thermal imaging technology for seepage test of two kinds of brick masonry, find out the relationship between the distribution of one-dimensional two brick surface temperature distribution and one-dimensional surface moisture content were determined after seepage brick masonry minimum temperature zone and water content determination method of the highest point of the regression equation, the relationship between temperature and moisture content of the brick masonry reflected the quantitative and establish the initial wet masonry building disease analysis method, then the infrared technology is applied to the protection of historic buildings in.

  9. High-Temperature Surface-Acoustic-Wave Transducer

    NASA Technical Reports Server (NTRS)

    Zhao, Xiaoliang; Tittmann, Bernhard R.

    2010-01-01

    Aircraft-engine rotating equipment usually operates at high temperature and stress. Non-invasive inspection of microcracks in those components poses a challenge for the non-destructive evaluation community. A low-profile ultrasonic guided wave sensor can detect cracks in situ. The key feature of the sensor is that it should withstand high temperatures and excite strong surface wave energy to inspect surface/subsurface cracks. As far as the innovators know at the time of this reporting, there is no existing sensor that is mounted to the rotor disks for crack inspection; the most often used technology includes fluorescent penetrant inspection or eddy-current probes for disassembled part inspection. An efficient, high-temperature, low-profile surface acoustic wave transducer design has been identified and tested for nondestructive evaluation of structures or materials. The development is a Sol-Gel bismuth titanate-based surface-acoustic-wave (SAW) sensor that can generate efficient surface acoustic waves for crack inspection. The produced sensor is very thin (submillimeter), and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. One major uniqueness of the Sol-Gel bismuth titanate SAW sensor is that it is easy to implement to structures of various shapes. With a spray coating process, the sensor can be applied to surfaces of large curvatures. Second, the sensor is very thin (as a coating) and has very minimal effect on airflow or rotating equipment imbalance. Third, it can withstand temperatures up to 530 C, which is very useful for engine applications where high temperature is an issue.

  10. Interactions Between Mineral Surfaces, Substrates, Enzymes, and Microbes Result in Hysteretic Temperature Sensitivities and Microbial Carbon Use Efficiencies and Weaker Predicted Carbon-Climate Feedbacks

    NASA Astrophysics Data System (ADS)

    Riley, W. J.; Tang, J.

    2014-12-01

    We hypothesize that the large observed variability in decomposition temperature sensitivity and carbon use efficiency arises from interactions between temperature, microbial biogeochemistry, and mineral surface sorptive reactions. To test this hypothesis, we developed a numerical model that integrates the Dynamic Energy Budget concept for microbial physiology, microbial trait-based community structure and competition, process-specific thermodynamically ­­based temperature sensitivity, a non-linear mineral sorption isotherm, and enzyme dynamics. We show, because mineral surfaces interact with substrates, enzymes, and microbes, both temperature sensitivity and microbial carbon use efficiency are hysteretic and highly variable. Further, by mimicking the traditional approach to interpreting soil incubation observations, we demonstrate that the conventional labile and recalcitrant substrate characterization for temperature sensitivity is flawed. In a 4 K temperature perturbation experiment, our fully dynamic model predicted more variable but weaker carbon-climate feedbacks than did the static temperature sensitivity and carbon use efficiency model when forced with yearly, daily, and hourly variable temperatures. These results imply that current earth system models likely over-estimate the response of soil carbon stocks to global warming.

  11. The total hemispheric emissivity of painted aluminum honeycomb at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Tuttle, J.; Canavan, E.; DiPirro, M.; Li, X.; Knollenberg, P.

    2014-01-01

    NASA uses high-emissivity surfaces on deep-space radiators and thermal radiation absorbers in test chambers. Aluminum honeycomb core material, when coated with a high-emissivity paint, provides a lightweight, mechanically robust, and relatively inexpensive black surface that retains its high emissivity down to low temperatures. At temperatures below about 100 Kelvin, this material performs much better than the paint itself. We measured the total hemispheric emissivity of various painted honeycomb configurations using an adaptation of an innovative technique developed for characterizing thin black coatings. These measurements were performed from room temperature down to 30 Kelvin. We describe the measurement technique and compare the results with predictions from a detailed thermal model of each honeycomb configuration.

  12. The Total Hemispheric Emissivity of Painted Aluminum Honeycomb at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Tuttle, J.; Canavan, E.; DiPirro, M.; Li, X.; Knollenberg, K.

    2013-01-01

    NASA uses high-emissivity surfaces on deep-space radiators or thermal radiation absorbers in test chambers. Aluminum honeycomb core material, when coated with a high-emissivity paint, provides a lightweight, mechanically robust, and relatively inexpensive black surface that retains its high emissivity down to low temperatures. At temperatures below about 100 Kelvin, this material performs much better than the paint itself. We measured the total hemispheric emissivity of various painted honeycomb configurations using an adaptation of an innovative technique developed for characterizing thin black coatings. These measurements were performed from room temperature down to 30 Kelvin. We describe the measurement technique and compare the results with predictions from a detailed thermal model of each honeycomb configuration.

  13. Performance of LI-1542 reusable surface insulation system in a hypersonic stream

    NASA Technical Reports Server (NTRS)

    Hunt, L. R.; Shideler, J. L.; Weinstein, I.

    1976-01-01

    The thermal and structural performance LI-1542 reusable surface insulation (RSI) tiles was investigated. The test panel was designed to represent part of the surface structure on a space shuttle orbiter fuselage along a 1250 K isotherm. Aerothermal tests were conducted at a free-stream Mach number of 6.6, a total temperature of 1820 K, Reynolds numbers of 2 millon and 5 million per meter, and dynamic pressures of 26 and 65 kPa. The RSI tiles demonstrated good thermal protection and structural integrity. High temperatures were caused by misalinement in tile height, offset the tile longitudinal alinement, and leakage around thermal seals when differential pressure existed across the panel. The damage tolerance of LI-1542 RSI appeared high. The tile coating crazed early in the test program, but this did not effect the tile integrity. Erosion of the tile edges occurred at forward-facing steps and at the ends of longitudinal gaps because of particle impacts and flow shear.

  14. Lessons Learned During Cryogenic Optical Testing of the Advanced Mirror System Demonstrators (AMSDs)

    NASA Technical Reports Server (NTRS)

    Hadaway, James; Reardon, Patrick; Geary, Joseph; Robinson, Brian; Stahl, Philip; Eng, Ron; Kegley, Jeff

    2004-01-01

    Optical testing in a cryogenic environment presents a host of challenges above and beyond those encountered during room temperature testing. The Advanced Mirror System Demonstrators (AMSDs) are 1.4 m diameter, ultra light-weight (<20 kg/mA2), off-axis parabolic segments. They are required to have 250 nm PV & 50 nm RMS surface figure error or less at 35 K. An optical testing system, consisting of an Instantaneous Phase Interferometer (PI), a diffractive null corrector (DNC), and an Absolute Distance Meter (ADM), was used to measure the surface figure & radius-of-curvature of these mirrors at the operational temperature within the X-Ray Calibration Facility (XRCF) at Marshall Space Flight Center (MSFC). The Ah4SD program was designed to improve the technology related to the design, fabrication, & testing of such mirrors in support of NASA s James Webb Space Telescope (JWST). This paper will describe the lessons learned during preparation & cryogenic testing of the AMSDs.

  15. Defect characterization by inductive heated thermography

    NASA Astrophysics Data System (ADS)

    Noethen, Matthias; Meyendorf, Norbert

    2012-05-01

    During inductive-thermographic inspection, an eddy current of high intensity is induced into the inspected material and the thermal response is detected by an infrared camera. Anomalies in the surface temperature during and after inductive heating correspond to inhomogeneities in the material. A finite element simulation of the surface crack detection process using active thermography with inductive heating has been developed. The simulation model is based on the finite element software ANSYS. The simulation tool was tested and used for investigations on steel components with different longitudinal orientated cracks, varying in shape, width and height. This paper focuses on surface connected longitudinal orientated cracks in austenitic steel. The results show that depending on the excitation frequency the temperature distribution of the material under test are different and a possible way to measure the depth of the crack will be discussed.

  16. Thermal infrared data of active lava surfaces using a newly-developed camera system

    NASA Astrophysics Data System (ADS)

    Thompson, J. O.; Ramsey, M. S.

    2017-12-01

    Our ability to acquire accurate data during lava flow emplacement greatly improves models designed to predict their dynamics and down-flow hazard potential. For example, better constraint on the physical property of emissivity as a lava cools improves the accuracy of the derived temperature, a critical parameter for flow models that estimate at-vent eruption rate, flow length, and distribution. Thermal infrared (TIR) data are increasingly used as a tool to determine eruption styles and cooling regimes by measuring temperatures at high temporal resolutions. Factors that control the accurate measurement of surface temperatures include both material properties (e.g., emissivity and surface texture) as well as external factors (e.g., camera geometry and the intervening atmosphere). We present a newly-developed, field-portable miniature multispectral thermal infrared camera (MMT-Cam) to measure both temperature and emissivity of basaltic lava surfaces at up to 7 Hz. The MMT-Cam acquires emitted radiance in six wavelength channels in addition to the broadband temperature. The instrument was laboratory calibrated for systematic errors and fully field tested at the Overlook Crater lava lake (Kilauea, HI) in January 2017. The data show that the major emissivity absorption feature (around 8.5 to 9.0 µm) transitions to higher wavelengths and the depth of the feature decreases as a lava surface cools, forming a progressively thicker crust. This transition occurs over a temperature range of 758 to 518 K. Constraining the relationship between this spectral change and temperature derived from this data will provide more accurate temperatures and therefore, more accurate modeling results. This is the first time that emissivity and its link to temperature has been measured in situ on active lava surfaces, which will improve input parameters of flow propagation models and possibly improve flow forecasting.

  17. Wire and Cable Cold Bending Test

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony

    2010-01-01

    One of the factors in assessing the applicability of wire or cable on the lunar surface is its flexibility under extreme cold conditions. Existing wire specifications did not address their mechanical behavior under cold, cryogenic temperature conditions. Therefore tests were performed to provide this information. To assess this characteristic 35 different insulated wire and cable pieces were cold soaked in liquid nitrogen. The segments were then subjected to bending and the force was recorded. Any failure of the insulation or jacketing was also documented for each sample tested. The bending force tests were performed at room temperature to provide a comparison to the change in force needed to bend the samples due to the low temperature conditions. The results from the bending tests were plotted and showed how various types of insulated wire and cable responded to bending under cold conditions. These results were then used to estimate the torque needed to unroll the wire under these low temperature conditions.

  18. An activated energy approach for accelerated testing of the deformation of UHMWPE in artificial joints.

    PubMed

    Galetz, Mathias Christian; Glatzel, Uwe

    2010-05-01

    The deformation behavior of ultrahigh molecular polyethylene (UHMWPE) is studied in the temperature range of 23-80 degrees C. Samples are examined in quasi-static compression, tensile and creep tests to determine the accelerated deformation of UHMWPE at elevated temperatures. The deformation mechanisms under compression load can be described by one strain rate and temperature dependent Eyring process. The activation energy and volume of that process do not change between 23 degrees C and 50 degrees C. This suggests that the deformation mechanism under compression remains stable within this temperature range. Tribological tests are conducted to transfer this activated energy approach to the deformation behavior under loading typical for artificial knee joints. While this approach does not cover the wear mechanisms close to the surface, testing at higher temperatures is shown to have a significant potential to reduce the testing time for lifetime predictions in terms of the macroscopic creep and deformation behavior of artificial joints. Copyright 2010. Published by Elsevier Ltd.

  19. Fabrication and radio frequency test of large-area MgB 2 films on niobium substrates

    DOE PAGES

    Ni, Zhimao; Guo, Xin; Welander, Paul B.; ...

    2017-01-19

    Magnesium diboride (MgB 2) is a promising candidate material for superconducting radio frequency (RF) cavities because of its higher transition temperature and critical field compared with niobium. To meet the demand of RF test devices, the fabrication of large-area MgB 2 films on metal substrates is needed. Here, in this work, high quality MgB 2 films with 50 mm diameter were fabricated on niobium by using an improved HPCVD system at Peking University, and RF tests were carried out at SLAC National Accelerator Laboratory. The transition temperature is approximately 39.6 K and the RF surface resistance is about 120 μΩmore » at 4 K and 11.4 GHz. Finally, the fabrication processes, surface morphology, DC superconducting properties and RF tests of these large-area MgB 2 films are presented.« less

  20. Fabrication and radio frequency test of large-area MgB 2 films on niobium substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ni, Zhimao; Guo, Xin; Welander, Paul B.

    Magnesium diboride (MgB 2) is a promising candidate material for superconducting radio frequency (RF) cavities because of its higher transition temperature and critical field compared with niobium. To meet the demand of RF test devices, the fabrication of large-area MgB 2 films on metal substrates is needed. Here, in this work, high quality MgB 2 films with 50 mm diameter were fabricated on niobium by using an improved HPCVD system at Peking University, and RF tests were carried out at SLAC National Accelerator Laboratory. The transition temperature is approximately 39.6 K and the RF surface resistance is about 120 μΩmore » at 4 K and 11.4 GHz. Finally, the fabrication processes, surface morphology, DC superconducting properties and RF tests of these large-area MgB 2 films are presented.« less

  1. COI Structural Analysis Presentation

    NASA Technical Reports Server (NTRS)

    Cline, Todd; Stahl, H. Philip (Technical Monitor)

    2001-01-01

    This report discusses the structural analysis of the Next Generation Space Telescope Mirror System Demonstrator (NMSD) developed by Composite Optics Incorporated (COI) in support of the Next Generation Space Telescope (NGST) project. The mirror was submitted to Marshall Space Flight Center (MSFC) for cryogenic testing and evaluation. Once at MSFC, the mirror was lowered to approximately 40 K and the optical surface distortions were measured. Alongside this experiment, an analytical model was developed and used to compare to the test results. A NASTRAN finite element model was provided by COI and a thermal model was developed from it. Using the thermal model, steady state nodal temperatures were calculated based on the predicted environment of the large cryogenic test chamber at MSFC. This temperature distribution was applied in the structural analysis to solve for the deflections of the optical surface. Finally, these deflections were submitted for optical analysis and comparison to the interferometer test data.

  2. LOX/Methane Main Engine Igniter Tests and Modeling

    NASA Technical Reports Server (NTRS)

    Breisacher, Kevin J.; Ajmani, Kumund

    2008-01-01

    The LOX/methane propellant combination is being considered for the Lunar Surface Access Module ascent main engine propulsion system. The proposed switch from the hypergolic propellants used in the Apollo lunar ascent engine to LOX/methane propellants requires the development of igniters capable of highly reliable performance in a lunar surface environment. An ignition test program was conducted that used an in-house designed LOX/methane spark torch igniter. The testing occurred in Cell 21 of the Research Combustion Laboratory to utilize its altitude capability to simulate a space vacuum environment. Approximately 750 ignition test were performed to evaluate the effects of methane purity, igniter body temperature, spark energy level and frequency, mixture ratio, flowrate, and igniter geometry on the ability to obtain successful ignitions. Ignitions were obtained down to an igniter body temperature of approximately 260 R with a 10 torr back-pressure. The data obtained is also being used to anchor a CFD based igniter model.

  3. Assessment of the Sensitivity to the Thermal Roughness Length in Noah and Noah-MP Land Surface Model Using WRF in an Arid Region

    NASA Astrophysics Data System (ADS)

    Weston, Michael; Chaouch, Naira; Valappil, Vineeth; Temimi, Marouane; Ek, Michael; Zheng, Weizhong

    2018-06-01

    Atmospheric models are known to underestimate land surface temperature and, by association, 2 m air temperature over dry arid regions during the day due to the treatment of the thermal roughness length also known as roughness length of heat. The thermal roughness length can be controlled by the Zilitinkevich parameter, known as Czil, which is a tunable parameter within the models. Three different scenarios with the WRF model are run to test the impact of the Czil parameter on the simulations using two land surface models: the Noah and Noah-MP models. In this study, a modified version of the Noah-MP model is tested, in which the Czil parameter, and, therefore, the thermal roughness length varies depending on the land cover and vegetation height. The model domain is over the United Arab Emirates (UAE) where the major land cover type is desert. The following configurations are tested: the Noah model with Czil = 0.1, Noah model with Czil = 0.5 and the Noah-MP model with Czil = 0.5 over desert. Results of 2 m air temperature are verified against three stations in the UAE. Mean gross error of the diurnal 2 m temperature was reduced by up to 1.48 and 1.54 °C in the 24 and 48 h forecasts, respectively. This reduced the cold bias in the model. This improvement in air temperature showed to improve the diurnal cycle of relative humidity at the three monitoring stations as well as the duration of the sea breeze in some cases.

  4. Experimental Investigation of a Temperature-Controlled Car Seat Powered by an Exhaust Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Du, H.; Wang, Y. P.; Yuan, X. H.; Deng, Y. D.; Su, C. Q.

    2016-03-01

    To improve the riding comfort and rational utilization of the electrical energy captured by an automotive thermoelectric generator (ATEG), a temperature-controlled car seat was constructed to adjust the temperature of the car seat surface. Powered by the ATEG and the battery, the seat-embedded air conditioner can improve the riding comfort using a thermoelectric device to adjust the surface temperature of the seat, with an air duct to regulate the cold side and hot side of the thermoelectric device. The performance of the thermoelectric cooler (TEC) and theoretical analysis on the optimum state of the TEC device are put forward. To verify the rationality of the air duct design and to ensure sufficient air supply, the velocity field of the air duct system was obtained by means of the finite element method. To validate the reliability of the numerical simulation, the air velocity around the thermoelectric device was measured by a wind speed transmitter. The performance of the temperature-controlled car seat has been validated and is in good agreement with bench tests and real vehicle tests.

  5. Mechanical Properties of LaRC(tm) SI Polymer for a Range of Molecular Weights

    NASA Technical Reports Server (NTRS)

    Whitley, Karen S.; Gates, Thomas S.; Hinkley, Jeffrey A.; Nicholson, Lee M.

    2000-01-01

    Mechanical testing of an advanced polyimide resin (LaRC(tm)-SI) with known variations in molecular weight was performed over a range of temperatures below the glass transition temperature. Elastic and inelastic properties were characterized as a function of molecular weight and test temperature. It was shown that notched tensile strength is a strong function of both temperature and molecular weight, whereas stiffness is only a strong function of temperature. The combined analysis of calculated yield stress and notched tensile strength indicated that low molecular weight materials tended to fail in a brittle manner, whereas high molecular weight materials exhibited ductile failure. The microphotographs of the failure surfaces also supported these findings.

  6. A leading edge heating array and a flat surface heating array: Final design. [for testing the thermal protection system of the space shuttle

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A heating array is described for testing full-scale sections of the leading edge and lower fuselage surfaces of the shuttle. The heating array was designed to provide a tool for development and acceptance testing of leading edge segments and large flat sections of the main body thermal protection system. The array was designed using a variable length module concept to meet test requirements using interchangeable components from one test configuration in another configuration. Heat generating modules and heat absorbing modules were employed to achieve the thermal gradient around the leading edge. A support was developed to hold the modules to form an envelope around a variety of leading edges; to supply coolant to each module; the support structure and to hold the modules in the flat surface heater configuration. An optical pyrometer system mounted within the array was designed to monitor specimen surface temperatures without altering the test article's surface.

  7. Effects of High-Temperature Treatment on the Reaction Between Sn-3%Ag-0.5%Cu Solder and Sputtered Ni-V Film on Ferrite Substrate

    NASA Astrophysics Data System (ADS)

    Shen, Xiaohu; Jin, Hao; Dong, Shurong; Wong, Hei; Zhou, Jian; Guo, Zhaodi; Wang, Demiao

    2012-11-01

    We have demonstrated a novel sputtering method for lead-free thin metal films on ferrite substrates for surface-mount inductor applications. In a surface-mounting process, the cladding of enameled wire needs to be burnt off at high temperature, which requires the devices to withstand a high-temperature reliability test at 420°C for 10 s. There are no reports that a sputtered film of thickness less than 6 μm can withstand this test. In this work, we used Ag/Ni-7 wt.%V double metal layers for the metallization. The dissolution of Ni-7 wt.%V in Sn-3%Ag-0.5%Cu lead-free solder at various temperatures was studied in detail. Scanning electron microscopy with energy-dispersive x-ray spectroscopy was used to investigate the interfacial reaction between the sputtered films and the solder. The intermetallic compounds are mainly (Cu,Ni)6Sn5 at 250°C; however, (Ni,Cu)3Sn4 becomes the predominant composition at 420°C. In addition, although outdiffusion of V atoms from the Ni-V layer was observed, its effect on the intermetallic compound (IMC) was insignificant. We further confirmed that the proposed metallization is able to pass the aforementioned high-temperature reliability test.

  8. Evaluation of thermal loading on a methane injector at high pressure and temperature

    NASA Technical Reports Server (NTRS)

    Harvin, Stephen F.

    1990-01-01

    Experimental and numerical analyses are conducted to determine the surface temperature on a methane fuel injector used to produce a high enthalpy test stream for a combustion-fed subscale wind tunnel facility. It was found that the ratio of the methane fuel injection velocity to the air stream velocity is a significant factor in the production of high injector surface temperatures which lead to rapid deterioration of the fuel injector structure. The numerical code utilized for the computational analysis was found to be representative of the experimentally measured data since the experimental trends were reproduced by the numerical simulation. The quantitative accuracy of the numerical predictions could not be assessed from the data gathered because of the difficulty of making a noninterfering injector surface temperature measurement. The numerical code can be used for parametric evaluation of combustor parameters and thus will serve as an important tool in the design of such fuel injector systems.

  9. Method and apparatus for detecting irregularities on or in the wall of a vessel

    DOEpatents

    Bowling, Michael Keith

    2000-09-12

    A method of detecting irregularities on or in the wall of a vessel by detecting localized spatial temperature differentials on the wall surface, comprising scanning the vessel surface with a thermal imaging camera and recording the position of the or each region for which the thermal image from the camera is indicative of such a temperature differential across the region. The spatial temperature differential may be formed by bacterial growth on the vessel surface; alternatively, it may be the result of defects in the vessel wall such as thin regions or pin holes or cracks. The detection of leaks through the vessel wall may be enhanced by applying a pressure differential or a temperature differential across the vessel wall; the testing for leaks may be performed with the vessel full or empty, and from the inside or the outside.

  10. A fundamental approach to adhesion: Synthesis, surface analysis, thermodynamics and mechanics

    NASA Technical Reports Server (NTRS)

    Dwight, D. W.; Wightman, J. P.

    1977-01-01

    The effects of composites as adherends was studied. Several other variables were studied by fractography: aluminum powder adhesive filler, fiber glass cloth scrim or adhesive carrier, new adhesives PPQ-413 and LARC-13, and strength-test temperature. When the new results were juxtaposed with previous work, it appeared that complex interactions between adhesive, adherend, bonding, and testing conditions govern the observed strength and fracture-surface features. The design parameters likely to have a significant effect upon strength-test results are listed.

  11. Impacts of land cover changes on climate trends in Jiangxi province China.

    PubMed

    Wang, Qi; Riemann, Dirk; Vogt, Steffen; Glaser, Rüdiger

    2014-07-01

    Land-use/land-cover (LULC) change is an important climatic force, and is also affected by climate change. In the present study, we aimed to assess the regional scale impact of LULC on climate change using Jiangxi Province, China, as a case study. To obtain reliable climate trends, we applied the standard normal homogeneity test (SNHT) to surface air temperature and precipitation data for the period 1951-1999. We also compared the temperature trends computed from Global Historical Climatology Network (GHCN) datasets and from our analysis. To examine the regional impacts of land surface types on surface air temperature and precipitation change integrating regional topography, we used the observation minus reanalysis (OMR) method. Precipitation series were found to be homogeneous. Comparison of GHCN and our analysis on adjusted temperatures indicated that the resulting climate trends varied slightly from dataset to dataset. OMR trends associated with surface vegetation types revealed a strong surface warming response to land barrenness and weak warming response to land greenness. A total of 81.1% of the surface warming over vegetation index areas (0-0.2) was attributed to surface vegetation type change and regional topography. The contribution of surface vegetation type change decreases as land cover greenness increases. The OMR precipitation trend has a weak dependence on surface vegetation type change. We suggest that LULC integrating regional topography should be considered as a force in regional climate modeling.

  12. Multidimensional effects in the thermal response of fuel rod simulators. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dabbs, R.D.; Ott, L.J.

    1980-01-01

    One of the primary objectives of the Oak Ridge National Laboratory Pressurized-Water Reactor Blowdown Heat Transfer Separate-Effects Program is the determination of the transient surface temperature and surface heat flux of fuel pin simulators (FPSs) from internal thermocouple signals obtained during a loss-of-coolant experiment (LOCE) in the Thermal-Hydraulics Test Facility. This analysis requires the solution of the classical inverse heat conduction problem. The assumptions that allow the governing differential equation to be reduced to one dimension can introduce significant errors in the computed surface heat flux and surface temperature. The degree to which these computed variables are perturbed is addressedmore » and quantified.« less

  13. Surface atmospheric extremes (Launch and transportation areas)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The effects of extreme values of surface and low altitude atmospheric parameters on space vehicle design, tests, and operations are discussed. Atmospheric extremes from the surface to 150 meters for geographic locations of interest to NASA are given. Thermal parameters (temperature and solar radiation), humidity, pressure, and atmospheric electricity (lighting and static) are presented. Weather charts and tables are included.

  14. Wear reduction in ceramic bearings by surface generated pyrolytic carbon continuously replenished by ethylene gas

    NASA Technical Reports Server (NTRS)

    Lauer, J. L.; Davis, L. C.

    1993-01-01

    Sliding tests with a pin-on-disc tribometer and both sliding and rolling tests with a modified four-ball tester at bulk temperatures of about 500 C and contact pressures of about 2.2 GPa have demonstrated up to 80% reductions of friction and wear with silicon nitride surfaces when a stream of ethylene is directed into the conjunction region. The effects are even more pronounced when the ethylene is prenucleated by a flow over a coil of nichrome wire electrically heated to about 800 C and located about 30 cm upstream of the exit nozzle. Steel and Ni-plated steel are lubricated by this method even more efficiently at lower temperatures.

  15. Natural Convection Heat Transfer in a Rectangular Liquid Metal Pool With Bottom Heating and Top Cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Il S.; Yu, Yong H.; Son, Hyoung M.

    2006-07-01

    An experimental study is performed to investigate the natural convection heat transfer characteristics with subcooled coolant to create engineering database for basic applications in a lead alloy cooled reactor. Tests are performed in the ALTOS (Applied Liquid-metal Thermal Operation Study) apparatus as part of MITHOS (Metal Integrated Thermo Hydrodynamic Operation System). A relationship is determined between the Nusselt number Nu and the Rayleigh number Ra in the liquid metal rectangular pool. Results are compared with correlations and experimental data in the literature. Given the similar Ra condition, the present test results for Nu of the liquid metal pool with topmore » subcooling are found to be similar to those predicted by the existing correlations or experiments. The current test results are utilized to develop natural convection heat transfer correlations applicable to low Prandtl number Pr fluids that are heated from below and cooled by the external coolant above. Results from this study are slated to be used in designing BORIS (Battery Optimized Reactor Integral System), a small lead cooled modular fast reactor for deployment at remote sites cycled with MOBIS (Modular Optimized Brayton Integral System) for electricity generation, tied with NAVIS (Naval Application Vessel Integral System) for ship propulsion, joined with THAIS (Thermochemical Hydrogen Acquisition Integral System) for hydrogen production, and coupled with DORIS (Desalination Optimized Reactor Integral System) for seawater desalination. Tests are performed with Wood's metal (Pb-Bi-Sn-Cd) filling a rectangular pool whose lower surface is heated and upper surface cooled by forced convection of water. The test section is 20 cm long, 11.3 cm high and 15 cm wide. The simulant has a melting temperature of 78 deg. C. The constant temperature and heat flux condition was realized for the bottom heating once the steady state had been met. The test parameters include the heated bottom surface temperature of the liquid metal pool, the input power to the bottom surface of the section, and the coolant temperature. (authors)« less

  16. Development and Test Evaluations for Ni-DOBDC Metal Organic Framework (MOF) Engineered Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troy G. Garn; Mitchell Greenhalgh

    2013-07-01

    A joint effort to prepare engineered forms of a Ni-DOBDC metal organic framework (MOF) was completed with contributions from PNNL, SNL and the INL. Two independent methods were used at INL and SNL to prepare engineered form (EF) sorbents from Ni-DOBDC MOF powder developed and prepared at PNNL. Xe and Kr capacity test evaluations were performed at ambient temperature with the cryostat experimental setup at INL. The initial INL EF MOF test results indicated a Xe capacity of 1.6 mmol/kg sorbent and no Kr capacity. A large loss of surface area also occurred during minimal testing rendering the INL EFmore » MOF unusable. Four capacity tests were completed using the SNL EF MOF at ambient temperature and resulted in Xe capacities of 1.4, 4.2, 5.0 and 3.8 mmol/kg sorbent with no Kr capacity observed in any ambient temperature tests. Two additional capacity tests were performed at 240 K to further evaluate SNL EF MOF performance. Xe capacities of 50.7 and 49.3 mmol/kg of sorbent and Kr capacities of 0.77 and 0.69 mmol/kg of sorbent were obtained, respectively. Following the adsorption evaluations, the SNL EF MOF material had lost about 40 % of the initial mass and 40 % of the initial surface area. In general, the Xe capacity results at ambient temperature for the INL and SNL EF Ni-DOBDC MOF’s were lower than 9.8 mmol Xe/kg sorbent test results reported by INL in FY-12 using PNNL’s inital EF supplied material.« less

  17. On the Development of a Unique Arc Jet Test Apparatus for Control Surface Seal Evaluations

    NASA Technical Reports Server (NTRS)

    Finkbeiner, Joshua R.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Robbie, Malcolm; Baker, Gus; Erker, Arthur

    2004-01-01

    NASA Glenn has developed a unique test apparatus capable of evaluating control surface seal and flap designs under simulated reentry heating conditions in NASA Johnson's arc jet test facility. The test apparatus is capable of testing a variety of seal designs with a variety of control surface materials and designs using modular components. The flap angle can be varied during testing, allowing modification of the seal environment while testing is in progress. The flap angle is varied using an innovative transmission system which limits heat transfer from the hot flap structure to the motor, all while keeping the components properly aligned regardless of thermal expansion. A combination of active and passive cooling is employed to prevent thermal damage to the test fixture while still obtaining the target seal temperature.

  18. 49 CFR 173.137 - Class 8-Assignment of packing group.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Resistance Test (TER)” (IBR, see § 171.7 of this subchapter) or Number 431, “In Vitro Skin Corrosion: Human... aluminum surfaces exceeding 6.25 mm (0.25 inch) a year at a test temperature of 55 °C (130 °F) when tested...

  19. 49 CFR 173.137 - Class 8-Assignment of packing group.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Resistance Test (TER)” (IBR, see § 171.7 of this subchapter) or Number 431, “In Vitro Skin Corrosion: Human... aluminum surfaces exceeding 6.25 mm (0.25 inch) a year at a test temperature of 55 °C (130 °F) when tested...

  20. Comparison of Blackbody Sources for Low-Temperature IR Calibration

    NASA Astrophysics Data System (ADS)

    Ljungblad, S.; Holmsten, M.; Josefson, L. E.; Klason, P.

    2015-12-01

    Radiation thermometers are traditionally mostly used in high-temperature applications. They are, however, becoming more common in different applications at room temperature or below, in applications such as monitoring frozen food and evaluating heat leakage in buildings. To measure temperature accurately with a pyrometer, calibration is essential. A problem with traditional, commercially available, blackbody sources is that ice is often formed on the surface when measuring temperatures below 0°C. This is due to the humidity of the surrounding air and, as ice does not have the same emissivity as the blackbody source, it biases the measurements. An alternative to a traditional blackbody source has been tested by SP Technical Research Institute of Sweden. The objective is to find a cost-efficient method of calibrating pyrometers by comparison at the level of accuracy required for the intended use. A disc-shaped blackbody with a surface pyramid pattern is placed in a climatic chamber with an opening for field of view of the pyrometer. The temperature of the climatic chamber is measured with two platinum resistance thermometers in the air in the vicinity of the disc. As a rule, frost will form only if the deposition surface is colder than the surrounding air, and, as this is not the case when the air of the climatic chamber is cooled, there should be no frost or ice formed on the blackbody surface. To test the disc-shaped blackbody source, a blackbody cavity immersed in a conventional stirred liquid bath was used as a reference blackbody source. Two different pyrometers were calibrated by comparison using the two different blackbody sources, and the results were compared. The results of the measurements show that the disc works as intended and is suitable as a blackbody radiation source.

  1. Ceramic Strain Gages for Use at Temperatures up to 1500 Celsius

    NASA Technical Reports Server (NTRS)

    Gregory, Otto; Fralick, Gustave (Technical Monitor)

    2003-01-01

    Indium-tin-oxide (ITO) thin film strain gages were successfully demonstrated at temperatures beyond 1500 C. High temperature static strain tests revealed that the piezoresistive response and electrical stability of the ceramic sensors depended on the thickness of the ITO films comprising the active strain elements. When 2.5 microns-thick ITO films were employed as the active strain elements, the piezoresistive response became unstable at temperatures above 1225 C. In contrast to this, ceramic sensors prepared with 5 microns-thick ITO were stable beyond 1430 C and sensors prepared with 8 microns-thick ITO survived more than 20 hr of operation at 1481 C. Very thick (10 microns) ITo strain gages were extremely stable and responsive at 1528 C. ESCA depth profiles confirmed that an interfacial reaction between the ITO strain gage and alumina substrate was responsible for the high temperature electrical stability observed. Similar improvements in high temperature stability were achieved by doping the active ITO strain elements with aluminum. Several Sic-Sic CMC constant strain beams were instrumented with ITO strain gages and delivered to NASA for testing. Due to the extreme surface roughness of the CMC substrates, new lithography techniques and surface preparation methods were developed. These techniques relied heavily on a combination of Sic and A12O3 cement layers to provide the necessary surface finish for efficient pattern transfer. Micro-contact printing using soft lithography and PDMS stamps was also used to successfully transfer the thin film strain gage patterns to the resist coated CMC substrates. This latter approach has considerable potential for transferring the thin film strain gage patterns to the extremely rough surfaces associated with the CMC's.

  2. Testing of a Miniature Loop Heat Pipe Using a Thermal Electrical Cooler for Temperature Control

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Jeong, Soeng-II; Butler, Dan

    2004-01-01

    This paper describes the design and testing of a miniature LHP having a 7 mm O.D. evaporator with an integral CC. The vapor line and liquid line are made of 1.6mm stainless steel tubing. The evaporator and the CC are connected on the outer surface by a copper strap and a thermoelectric (TEC) is installed on the strap. The TEC is used to control the CC temperature by applying an electrical current for heating or cooling. Tests performed in ambient included start-up, power cycle, sink temperature cycle, and CC temperature control using TEC. The LHP demonstrated very robust operation in all tests where the heat load varied between 0.5W and 1OOW, and the sink temperature varied between 243K and 293K. The heat leak from the evaporator to the CC was extremely small. The TEC was able to control the CC temperature within +/-0.3K under all test conditions, and the required control heater power was less than 1W.

  3. Modeling electrochemical resistance with coal surface properties in a direct carbon fuel cell based on molten carbonate

    NASA Astrophysics Data System (ADS)

    Eom, Seongyong; Ahn, Seongyool; Kang, Kijoong; Choi, Gyungmin

    2017-12-01

    In this study, a numerical model of activation and ohmic polarization is modified, taking into account the correlation function between surface properties and inner resistance. To investigate the correlation function, the surface properties of coal are changed by acid treatment, and the correlations between the inner resistance measured by half-cell tests and the surface characteristics are analyzed. A comparison between the model and experimental results demonstrates that the absolute average deviations for each fuel are less than 10%. The numerical results show that the sensitivities of the coal surface properties affecting polarization losses change depending on the operating temperature. The surface oxygen concentrations affect the activation polarization and the sensitivity decreased with increasing temperature. The surface ash of coal is an additional index to be considered along with ohmic polarization and it has the greatest effect on the surface properties at 973 K.

  4. Thermoelastic vibration test techniques

    NASA Technical Reports Server (NTRS)

    Kehoe, Michael W.; Snyder, H. Todd

    1991-01-01

    The structural integrity of proposed high speed aircraft can be seriously affected by the extremely high surface temperatures and large temperature gradients throughout the vehicle's structure. Variations in the structure's elastic characteristics as a result of thermal effects can be observed by changes in vibration frequency, damping, and mode shape. Analysis codes that predict these changes must be correlated and verified with experimental data. The experimental modal test techniques and procedures used to conduct uniform, nonuniform, and transient thermoelastic vibration tests are presented. Experimental setup and elevated temperature instrumentation considerations are also discussed. Modal data for a 12 by 50 inch aluminum plate heated to a temperature of 475 F are presented. These data show the effect of heat on the plate's modal characteristics. The results indicated that frequency decreased, damping increased, and mode shape remained unchanged as the temperature of the plate was increased.

  5. Separating vegetation and soil temperature using airborne multiangular remote sensing image data

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Yan, Chunyan; Xiao, Qing; Yan, Guangjian; Fang, Li

    2012-07-01

    Land surface temperature (LST) is a key parameter in land process research. Many research efforts have been devoted to increase the accuracy of LST retrieval from remote sensing. However, because natural land surface is non-isothermal, component temperature is also required in applications such as evapo-transpiration (ET) modeling. This paper proposes a new algorithm to separately retrieve vegetation temperature and soil background temperature from multiangular thermal infrared (TIR) remote sensing data. The algorithm is based on the localized correlation between the visible/near-infrared (VNIR) bands and the TIR band. This method was tested on the airborne image data acquired during the Watershed Allied Telemetry Experimental Research (WATER) campaign. Preliminary validation indicates that the remote sensing-retrieved results can reflect the spatial and temporal trend of component temperatures. The accuracy is within three degrees while the difference between vegetation and soil temperature can be as large as twenty degrees.

  6. Development and Evaluation of High Temperature Gaskets for Hypersonic and Reentry Applications

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Shpargel, Tarah

    2007-01-01

    A wide variety of flexible gasket compositions were developed and tested at high temperatures. The gasket material system has high temperature capability. GRABER sealants were very effective in sealing machined ACC-4 composite surfaces. The gasket composition do not bond strongly with the ACC-4 substrate materials. The density of gasket materials can be tailored to show appropriate compressibility.

  7. OXIDATION OF INCONEL 718 IN AIR AT TEMPERATURES FROM 973K TO 1620K.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GREENE,G.A.; FINFROCK,C.C.

    2000-10-01

    As part of the APT project, it was necessary to quantify the release of tungsten from the APT spallation target during postulated accident conditions in order to develop accident source terms for accident consequence characterization. Experiments with tungsten rods at high temperatures in a flowing steam environment characteristic of postulated accidents revealed that considerable vaporization of the tungsten occurred as a result of reactions with the steam and that the aerosols which formed were readily transported away from the tungsten surfaces, thus exposing fresh tungsten to react with more steam. The resulting tungsten release fractions and source terms were undesirablemore » and it was decided to clad the tungsten target with Inconel 718 in order to protect it from contact with steam during an accident and mitigate the accident source term and the consequences. As part of the material selection criteria, experiments were conducted with Inconel 718 at high temperatures to evaluate the rate of oxidation of the proposed clad material over as wide a temperature range as possible, as well as to determine the high-temperature failure limit of the material. Samples of Inconel 718 were inserted into a preheated furnace at temperatures ranging from 973 K to 1620 K and oxidized in air for varying periods of time. After oxidizing in air at a constant temperature for the prescribed time and then being allowed to cool, the samples would be reweighed to determine their weight gain due to the uptake of oxygen. From these weight gain measurements, it was possible to identify three regimes of oxidation for Inconel 718: a low-temperature regime in which the samples became passivated after the initial oxidation, an intermediate-temperature regime in which the rate of oxidation was limited by diffusion and exhibited a constant parabolic rate dependence, and a high-temperature regime in which material deformation and damage accompanied an accelerated oxidation rate above the parabolic regime. At temperatures below 1173 K, the rate of oxidation of the Inconel 718 surface was found to decrease markedly with time; the parabolic oxidation rate coefficient was not a constant but decreased with time. This was taken to indicate that the oxide film on the surface was having a passivating effect on oxygen transport through the oxide to the underlying metal. For temperatures in the range 1173 K to 1573 K, the time-dependent rate of oxidation as determined once again by weight-gain measurements was found to display the classical parabolic rate behavior, indicating that the rate of transport of reactants through the oxide was controlled by diffusion through the growing oxide layer. Parabolic rate coefficients were determined by least-squares analysis of time-dependent mass-gain data at 1173 K, 1273 K, 1373 K, 1473 K and 1573 K. At temperatures above 1540 K, post test examination of the oxidized samples revealed that the Inconel 718 began to lose strength and to deform. At 1540 K, samples which were suspended from their ends during testing began to demonstrate axial curvature as they lost strength and bowed under their own weight. As the temperatures of the tests were increased, rivulets were seen to appear on the surfaces of the test specimens; damage became severe at 1560 K. Although melting was never observed in any of these tests even up to. 1620 K, it was concluded from these data that the Inconel 718 clad should not be expected to protect the underlying tungsten at temperatures above 1540 K.« less

  8. Ice nucleation onto Arizona test dust at cirrus temperatures: effect of temperature and aerosol size on onset relative humidity.

    PubMed

    Kanji, Z A; Abbatt, J P D

    2010-01-21

    The University of Toronto Continuous Flow Diffusion Chamber (UT-CFDC) was used to study ice formation onto monodisperse Arizona Test Dust (ATD) particles. The onset relative humidity with respect to ice (RH(i)) was measured as a function of temperature in the range 251-223 K for 100 nm ATD particles. It was found that for 0.1% of the particles to freeze, water saturation was required at all temperatures except 223 K where particles activated at RH(i) below water saturation. At this temperature, where deposition mode freezing is occurring, we find that the larger the particle size, the lower the onset RH(i). We also demonstrate that the total number of particles present may influence the onset RH(i) observed. The surface area for ice activation, aerosol size, and temperature must all be considered when reporting onset values of ice formation onto ATD mineral dust particles. In addition, we calculate nucleation rates and contact angles of ice germs with ATD aerosols which indicate that there exists a range of active sites on the surface with different efficiencies for activating ice formation.

  9. Thermal control unit for long-time survival of scientific instruments on lunar surface

    NASA Astrophysics Data System (ADS)

    Ogawa, Kazunori; Iijima, Yuichi; Tanaka, Satoshi

    A thermal control unit (lunar survival module) is being developed for scientific instruments placed on the lunar surface. This unit is designed to be used on the future Japanese lunar landing mission SELENE-2. The lunar surface is a severe environment for scientific instruments. The absence of convective cooling by an atmosphere makes the ground surface temperature variable in the wide range of -200 to 100 degC, an environment in which space electronics can hardly survive. The surface elements must have a thermal control structure to maintain the inner temperature within the operable ranges of the instruments for long-time measurements, such as 1 month or longer beyond the lunar nights. The objectives of this study are to develop a thermal control unit for the SELENE-2 mission. So far, we conducted the concept design of the lunar survival module, and estimated its potential by a thermal mathematical model on the assumption of using a lunar seismometer designed for SELENE-2. The basic structure of the thermal module is rather simple in that a heat insulating shell covers the scientific instruments. The concept is that the conical insulator retains heat in the regolith soil in the daylight, and it can keep the device warm in the night. Results of the model calculations indicated the high potential of long-time survival. A bread board model (BBM) was manufactured, and its thermal-vacuum tests were conducted in order to estimate the validity of some thermal parameters assumed in the computed thermal model. The thermal condition of the lunar surface was simulated by glass beads paved in a vacuum chamber, and a temperature-controlled container. Temperature variations of the BBM in thermal cycling tests were compared to a thermal mathematical model, and the thermal parameters were finally assessed. Feeding the test results back into the thermal model for the lunar surface, some thermal parameters were updated but there was no critical effect on the survivability. The experimental results indicated a sufficient survivability potential of the concept of our thermal control system.

  10. Investigation of critical burning of fuel droplets

    NASA Technical Reports Server (NTRS)

    Allison, C. B.; Canada, G. S.; Faeth, G. M.

    1972-01-01

    Measurements were made on the burning of liquid hydrazine, MMH, and UDMH in a combustion gas environment. The experimental range of these tests involved gas temperatures of 1660-2530 K, oxygen concentrations of 0-42% by mass and droplet diameters (employing both droplets and porous spheres) of 0.11-1.91 cm. at atmospheric pressure. A simplified hybrid combustion theory was developed which was found to correlate the present results as well as the experimental measurements of other investigators. Measurements were also made of the monopropellant strand burning rates and liquid surface temperatures of a number of nitrate ester fuels and hydrazine at elevated pressures. The temperature measurements for the nitrate esters were found to be in good agreement with a theoretical model which allowed for gas solubility in the liquid phase at high pressures. Experimental results were also obtained on the burning rates and liquid surface temperatures of a number of paraffin and alcohol fuels burning in air pressures up to 72 atm. For these tests, the fuels were burned from porous spheres in a natural convection environment. Initial findings on a pressurized flat flame burner are also described as well as the design of an oscillatory combustion apparatus to test the response of burning liquid fuels.

  11. One-dimensional soil temperature assimilation experiment based on unscented particle filter and Common Land Model

    NASA Astrophysics Data System (ADS)

    Fu, Xiao Lei; Jin, Bao Ming; Jiang, Xiao Lei; Chen, Cheng

    2018-06-01

    Data assimilation is an efficient way to improve the simulation/prediction accuracy in many fields of geosciences especially in meteorological and hydrological applications. This study takes unscented particle filter (UPF) as an example to test its performance at different two probability distribution, Gaussian and Uniform distributions with two different assimilation frequencies experiments (1) assimilating hourly in situ soil surface temperature, (2) assimilating the original Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST) once per day. The numerical experiment results show that the filter performs better when increasing the assimilation frequency. In addition, UPF is efficient for improving the soil variables (e.g., soil temperature) simulation/prediction accuracy, though it is not sensitive to the probability distribution for observation error in soil temperature assimilation.

  12. Facile Quantification and Identification Techniques for Reducing Gases over a Wide Concentration Range Using a MOS Sensor in Temperature-Cycled Operation.

    PubMed

    Schultealbert, Caroline; Baur, Tobias; Schütze, Andreas; Sauerwald, Tilman

    2018-03-01

    Dedicated methods for quantification and identification of reducing gases based on model-based temperature-cycled operation (TCO) using a single commercial MOS gas sensor are presented. During high temperature phases the sensor surface is highly oxidized, yielding a significant sensitivity increase after switching to lower temperatures (differential surface reduction, DSR). For low concentrations, the slope of the logarithmic conductance during this low-temperature phase is evaluated and can directly be used for quantification. For higher concentrations, the time constant for reaching a stable conductance during the same low-temperature phase is evaluated. Both signals represent the reaction rate of the reducing gas on the strongly oxidized surface at this low temperature and provide a linear calibration curve, which is exceptional for MOS sensors. By determining these reaction rates on different low-temperature plateaus and applying pattern recognition, the resulting footprint can be used for identification of different gases. All methods are tested over a wide concentration range from 10 ppb to 100 ppm (4 orders of magnitude) for four different reducing gases (CO, H₂, ammonia and benzene) using randomized gas exposures.

  13. Facile Quantification and Identification Techniques for Reducing Gases over a Wide Concentration Range Using a MOS Sensor in Temperature-Cycled Operation

    PubMed Central

    Schultealbert, Caroline; Baur, Tobias; Schütze, Andreas; Sauerwald, Tilman

    2018-01-01

    Dedicated methods for quantification and identification of reducing gases based on model-based temperature-cycled operation (TCO) using a single commercial MOS gas sensor are presented. During high temperature phases the sensor surface is highly oxidized, yielding a significant sensitivity increase after switching to lower temperatures (differential surface reduction, DSR). For low concentrations, the slope of the logarithmic conductance during this low-temperature phase is evaluated and can directly be used for quantification. For higher concentrations, the time constant for reaching a stable conductance during the same low-temperature phase is evaluated. Both signals represent the reaction rate of the reducing gas on the strongly oxidized surface at this low temperature and provide a linear calibration curve, which is exceptional for MOS sensors. By determining these reaction rates on different low-temperature plateaus and applying pattern recognition, the resulting footprint can be used for identification of different gases. All methods are tested over a wide concentration range from 10 ppb to 100 ppm (4 orders of magnitude) for four different reducing gases (CO, H2, ammonia and benzene) using randomized gas exposures. PMID:29494545

  14. Postflight aerothermodynamic analysis of Pegasus(tm) using computational fluid dynamic techniques

    NASA Technical Reports Server (NTRS)

    Kuhn, Gary D.

    1992-01-01

    The objective was to validate the computational capability of the NASA Ames Navier-Stokes code, F3D, for flows at high Mach numbers using comparison flight test data from the Pegasus (tm) air launched, winged space booster. Comparisons were made with temperature and heat fluxes estimated from measurements on the wing surfaces and wing-fuselage fairings. Tests were conducted for solution convergence, sensitivity to grid density, and effects of distributing grid points to provide high density near temperature and heat flux sensors. The measured temperatures were from sensors embedded in the ablating thermal protection system. Surface heat fluxes were from plugs fabricated of highly insulative, nonablating material, and mounted level with the surface of the surrounding ablative material. As a preflight design tool, the F3D code produces accurate predictions of heat transfer and other aerodynamic properties, and it can provide detailed data for assessment of boundary layer separation, shock waves, and vortex formation. As a postflight analysis tool, the code provides a way to clarify and interpret the measured results.

  15. In-flight transition measurement on a 10 deg cone at Mach numbers from 0.5 to 2.0

    NASA Technical Reports Server (NTRS)

    Fisher, D. F.; Dougherty, N. S., Jr.

    1982-01-01

    Boundary layer transition measurements were made in flight on a 10 deg transition cone tested previously in 23 wind tunnels. The cone was mounted on the nose of an F-15 aircraft and flown at Mach numbers room 0.5 to 2.0 and altitudes from 1500 meters (5000 feet) to 15,000 meters (50,000 feet), overlapping the Mach number/Reynolds number envelope of the wind tunnel tests. Transition was detected using a traversing pitot probe in contact with the surface. Data were obtained near zero cone incidence and adiabatic wall temperature. Transition Reynolds number was found to be a function of Mach number and of the ratio of wall temperature to adiabatic all temperature. Microphones mounted flush with the cone surface measured free-stream disturbances imposed on the laminar boundary layer and identified Tollmien-Schlichting waves as the probable cause of transition. Transition Reynolds number also correlated with the disturbance levels as measured by the cone surface microphones under a laminar boundary layer as well as the free-stream impact.

  16. Influence of ultraviolet irradiation treatment on porcelain bond strength of titanium surfaces.

    PubMed

    Kumasaka, Tomonari; Ohno, Akinori; Hori, Norio; Hoshi, Noriyuki; Maruo, Katsuichiro; Kuwabara, Atsushi; Seimiya, Kazuhide; Toyoda, Minoru; Kimoto, Katsuhiko

    2018-01-26

    To determine the effect of titanium (Ti) surface modification by ultraviolet irradiation (UVI) on the bond strength between Ti and porcelain. Grade 2 Ti plates were allotted to five groups: sandblasted (SA), 15 min UVI (UV), SA+5 min UVI (SA+UV5), SA+10 min UVI (SA+UV10), and SA+15 min UVI (SA+UV15). After surface treatment, porcelain was added. A precious metal (MC) was used for comparison with Ti. The effects of 24-h storage at room temperature versus thermal cycling only at 5 and 55°C in water were evaluated. Subsequently, the tensile strength of each sample was tested. Data were analyzed using one-way analysis of variance and the Tukey test. In both the room temperature and thermal cycling groups, the MC and SA+15 min UVI samples showed significantly greater bond strengths than the other samples (p<0.05). UVI processing efficiently increases the bond strength between porcelain and the Ti surface.

  17. Evaluation of two transport aircraft and several ground test vehicle friction measurements obtained for various runway surface types and conditions. A summary of test results from joint FAA/NASA Runway Friction Program

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.; Vogler, William A.; Baldasare, Paul

    1990-01-01

    Tests with specially instrumented NASA Boeing 737 and 727 aircraft together with several different ground friction measuring devices were conducted for a variety of runway surface types and conditions. These tests are part of joint FAA/NASA Aircraft/Ground Vehicle Runway Friction Program aimed at obtaining a better understanding of aircraft ground handling performance under adverse weather conditions and defining relationships between aircraft and ground vehicle tire friction measurements. Aircraft braking performance on dry, wet, snow and ice-covered runway conditions is discussed as well as ground vehicle friction data obtained under similar runway conditions. For a given contaminated runway surface condition, the correlation between ground vehicles and aircraft friction data is identified. The influence of major test parameters on friction measurements such as speed, test tire characteristics, type and amount of surface contaminant, and ambient temperature are discussed. The effect of surface type on wet friction levels is also evaluated from comparative data collected on grooved and ungrooved concrete and asphalt surfaces.

  18. Thermal Management Techniques for Oil-Free Turbomachinery Systems

    NASA Technical Reports Server (NTRS)

    Radil, Kevin; DellaCorte, Chris; Zeszotek, Michelle

    2006-01-01

    Tests were performed to evaluate three different methods of utilizing air to provide thermal management control for compliant journal foil air bearings. The effectiveness of the methods was based on bearing bulk temperature and axial thermal gradient reductions during air delivery. The first method utilized direct impingement of air on the inner surface of a hollow test journal during operation. The second, less indirect method achieved heat removal by blowing air inside the test journal to simulate air flowing axially through a hollow, rotating shaft. The third method emulated the most common approach to removing heat by forcing air axially through the bearing s support structure. Internal bearing temperatures were measured with three, type K thermocouples embedded in the bearing that measured general internal temperatures and axial thermal gradients. Testing was performed in a 1 atm, 260 C ambient environment with the bearing operating at 60 krpm and supporting a load of 222 N. Air volumetric flows of 0.06, 0.11, and 0.17 cubic meters per minute at approximately 150 to 200 C were used. The tests indicate that all three methods provide thermal management but at different levels of effectiveness. Axial cooling of the bearing support structure had a greater effect on bulk temperature for each air flow and demonstrated that the thermal gradients could be influenced by the directionality of the air flow. Direct air impingement on the journal's inside surface provided uniform reductions in both bulk temperature and thermal gradients. Similar to the direct method, indirect journal cooling had a uniform cooling effect on both bulk temperatures and thermal gradients but was the least effective of the three methods.

  19. Laboratory evaluation of the Design Analysis Associates DAA H-3613i radar water-level sensor—Results of temperature, distance, and SDI-12 tests

    USGS Publications Warehouse

    Carnley, Mark V.

    2016-09-30

    The Design Analysis Associates (DAA) DAA H-3613i radar water-level sensor (DAA H-3613i), manufactured by Xylem Incorporated, was evaluated by the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility (HIF) for conformance to manufacturer’s accuracy specifications for measuring a distance throughout the sensor’s operating temperature range, for measuring distances from 3 to 15 feet at ambient temperatures, and for compliance with the SDI-12 serial-to-digital interface at 1200-baud communication standard. The DAA H-3613i is a noncontact water-level sensor that uses pulsed radar to measure the distance between the radar and the water surface from 0.75 to 131 feet over a temperature range of −40 to 60 degrees Celsius (°C). Manufacturer accuracy specifications that were evaluated, the test procedures that followed, and the results obtained are described in this report. The sensor’s accuracy specification of ± 0.01 feet (± 3 millimeters) meets USGS requirements for a primary water-stage sensor used in the operation of a streamgage. The sensor met the manufacturer’s stated accuracy specifications for water-level measurements during temperature testing at a distance of 8 feet from the target over its temperature-compensated operating range of −40 to 60 °C, except at 60 °C. At 60 °C, about half the measurements exceeded the manufacturer’s accuracy specification by not more than 0.005 feet.The sensor met the manufacturer’s stated accuracy specifications for water-level measurements during distance-accuracy testing at the tested distances from 3 to 15 feet above the water surface at the HIF.

  20. Design of a new reactor-like high temperature near ambient pressure scanning tunneling microscope for catalysis studies.

    PubMed

    Tao, Franklin Feng; Nguyen, Luan; Zhang, Shiran

    2013-03-01

    Here, we present the design of a new reactor-like high-temperature near ambient pressure scanning tunneling microscope (HT-NAP-STM) for catalysis studies. This HT-NAP-STM was designed for exploration of structures of catalyst surfaces at atomic scale during catalysis or under reaction conditions. In this HT-NAP-STM, the minimized reactor with a volume of reactant gases of ∼10 ml is thermally isolated from the STM room through a shielding dome installed between the reactor and STM room. An aperture on the dome was made to allow tip to approach to or retract from a catalyst surface in the reactor. This dome minimizes thermal diffusion from hot gas of the reactor to the STM room and thus remains STM head at a constant temperature near to room temperature, allowing observation of surface structures at atomic scale under reaction conditions or during catalysis with minimized thermal drift. The integrated quadrupole mass spectrometer can simultaneously measure products during visualization of surface structure of a catalyst. This synergy allows building an intrinsic correlation between surface structure and its catalytic performance. This correlation offers important insights for understanding of catalysis. Tests were done on graphite in ambient environment, Pt(111) in CO, graphene on Ru(0001) in UHV at high temperature and gaseous environment at high temperature. Atom-resolved surface structure of graphene on Ru(0001) at 500 K in a gaseous environment of 25 Torr was identified.

  1. A simple test procedure for evaluating low temperature crack resistance of asphalt concrete : executive summary report.

    DOT National Transportation Integrated Search

    2009-03-01

    Low temperature cracking is one of the major : distress modes in asphalt pavement and is : disastrous to pavement performance and service : life. A poor riding surface leads to an increase in : maintenance and eventual early replacement of : the pave...

  2. Characterizing the Physical and Thermal Properties of Planetary Regolith at Low Temperatures

    NASA Technical Reports Server (NTRS)

    Mantovani, James G.; Swanger, Adam; Townsend, Ivan I., III; Sibille, Laurent; Galloway, Gregory

    2014-01-01

    The success or failure of in-situ resource utilization for planetary surface exploration-whether for science, colonization, or commercialization-relies heavily on the design and implementation of systems that can effectively process planetary regolith and exploit its potential benefits. In most cases, this challenge necessarily includes the characterization of regolith properties at low temperatures (cryogenic). None of the nearby solar system destinations of interest, such as the moon, Mars and asteroids, possess a sufficient atmosphere to sustain the consistently "high" surface temperatures found on Earth. Therefore, they can experience permanent cryogenic temperatures or dramatic cyclical changes in surface temperature. Characterization of physical properties (e.g., specific heat, thermal and electrical conductivity) over the entire temperature profile is important when planning a mission to a planetary surface; however, the impact on mechanical properties due to the introduction of icy deposits must also be explored in order to devise effective and robust excavation technologies. The Granular Mechanics and Regolith Operations Laboratory and the Cryogenics Test Laboratory at NASA Kennedy Space Center are developing technologies and experimental methods to address these challenges and to aid in the characterization of the physical and mechanical properties of regolith at cryogenic temperatures. This paper will review the current state of knowledge concerning planetary regolith at low temperature, including that of icy regolith, and describe efforts to manipulate icy regolith through novel penetration and excavation techniques.

  3. Experimental Study of the Stability of Aircraft Fuels at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Vranos, A.; Marteney, P. J.

    1980-01-01

    An experimental study of fuel stability was conducted in an apparatus which simulated an aircraft gas turbine fuel system. Two fuels were tested: Jet A and Number 2 Home Heating oil. Jet A is an aircraft gas turbine fuel currently in wide use. No. 2HH was selected to represent the properties of future turbine fuels, particularly experimental Reference Broad Specification, which, under NASA sponsorship, was considered as a possible next-generation fuel. Tests were conducted with varying fuel flow rates, delivery pressures and fuel pretreatments (including preheating and deoxygenation). Simulator wall temperatures were varied between 422K and 672K at fuel flows of 0.022 to 0.22 Kg/sec. Coking rate was determined at four equally-spaced locations along the length of the simulator. Fuel samples were collected for infrared analysis. The dependence of coking rate in Jet A may be correlated with surface temperature via an activation energy of 9 to 10 kcal/mole, although the results indicate that both bulk fluid and surface temperature affect the rate of decomposition. As a consequence, flow rate, which controls bulk temperature, must also be considered. Taken together, these results suggest that the decomposition reactions are initiated on the surface and continue in the bulk fluid. The coking rate data for No. 2 HH oil are very highly temperature dependent above approximately 533K. This suggests that bulk phase reactions can become controlling in the formation of coke.

  4. Ester oxidation on an aluminum surface using chemiluminescence

    NASA Technical Reports Server (NTRS)

    Jones, William R., Jr.; Meador, Michael A.; Morales, Wilfredo

    1986-01-01

    The oxidation characteristics of a pure ester (trimethyolpropane triheptanoate) were studied by using a chemiluminescence technique. Tests were run in a thin film microoxidation apparatus with an aluminum alloy catalyst. Conditions included a pure oxygen atmosphere and a temperature range of 176 to 206 C. Results indicated that oxidation of the ester (containing .001 M diphenylanthracene as an intensifier) was accompanied by emission of light. The maximum intensity of light emission was a function of the amount of ester, the concentration of intensifier, and the test temperature. The induction period, or the time to reach one-half of maximum intensity was inversely proportional to test temperature. Decreases in light emission at the later stages of a test were caused by depletion of the intensifier.

  5. Surface Tension Driven Convection Experiment (STDCE)

    NASA Technical Reports Server (NTRS)

    Ostrach, Simon; Kamotani, Y.; Pline, A.

    1994-01-01

    Results are reported of the Surface Tension Driven Convection Experiment (STDCE) aboard the USML-1 (first United States Microgravity Laboratory) Spacelab which was launched on June 25, 1992. In the experiment 10 cSt silicone oil was placed in an open circular container which was 10 cm wide by 5 cm deep. The fluid was heated either by a cylindrical heater (1.11 cm dia.) located along the container centerline or by a CO2 laser beam to induce thermocapillary flow. The flow field was studied by flow visualization. Several thermistor probes were placed in the fluid to measure the temperature distribution. The temperature distribution along the liquid free surface was measured by an infrared imager. Tests were conducted over a range of heating powers, laser beam diameters, and free surface shapes. In conjunction with the experiments an extensive numerical modeling of the flow was conducted. In this paper some results of the velocity and temperature measurements with flat and curved free surfaces are presented and they are shown to agree well with the numerical predictions.

  6. The utility of surface temperature measurements for the remote sensing of surface soil water status

    NASA Technical Reports Server (NTRS)

    Idso, S. B.; Jackson, R. D.; Reginato, R. J.; Schmugge, T. J.

    1975-01-01

    Experiments carried out on an Avondale loam soil indicated that the thermal inertia concept of soil water content detection is reasonably sound. The volumetric water contents of surface soil layers between 2 and 4 cm thick were found to be linear functions of the amplitude of the diurnal surface soil temperature wave for clear day-night periods. They were also found to be linear functions of the daily maximum value of the surface soil-air-temperature differential. Tests on three additional soils ranging from sandy loam to clay indicated that the relations determined for Avondale loam could not be accurately applied to these other soil types. When the moisture characteristic curves of each soil were used to transform water contents into pressure potentials, however, it was found that soil water pressure potential could be determined without prior knowledge of soil type, and thus its value as a potential soil water status survey tool was significantly enhanced.

  7. Spatial and temporal variability of soil temperature, moisture and surface soil properties

    NASA Technical Reports Server (NTRS)

    Hajek, B. F.; Dane, J. H.

    1993-01-01

    The overall objectives of this research were to: (l) Relate in-situ measured soil-water content and temperature profiles to remotely sensed surface soil-water and temperature conditions; to model simultaneous heat and water movement for spatially and temporally changing soil conditions; (2) Determine the spatial and temporal variability of surface soil properties affecting emissivity, reflectance, and material and energy flux across the soil surface. This will include physical, chemical, and mineralogical characteristics of primary soil components and aggregate systems; and (3) Develop surface soil classes of naturally occurring and distributed soil property assemblages and group classes to be tested with respect to water content, emissivity and reflectivity. This document is a report of studies conducted during the period funded by NASA grants. The project was designed to be conducted over a five year period. Since funding was discontinued after three years, some of the research started was not completed. Additional publications are planned whenever funding can be obtained to finalize data analysis for both the arid and humid locations.

  8. General Procedure for Protective Cooling and Equipment Evaluations Relative to Heat and Cold Stress

    DTIC Science & Technology

    2008-09-01

    climatic chamber housing the manikin. The most widely accepted test procedures for the operation of a TM are published by the American Society for...describes measurement of the clo value of a complete clothing ensemble. It requires a TM surface temperature of 35ºC and a climatic chamber controlled...Clothing Using a Sweating Manikin” (1) measures the im of a complete clothing ensemble. It requires a TM surface temperature of 35ºC and a climatic

  9. Cooling Different Body Surfaces during Upper-and-Lower Body Exercise.

    DTIC Science & Technology

    1986-09-01

    exercise (02 uptake, 1.2 lmin -) tests in a hot environment. (ambient temperature - 38*C, relative humidity - 30%) while dressed in a clothing ... exercise (02 uptake, 1.2 l’min-) t,sts in a hot environment (ambient temperature a 380C, relative humidity = 30%) while , - dressed in a clothing ...AD-A173 328 COOLING DIFFERENT BODY SURFACES DURING UPPER-AND-LONEi 1i/I BODY EXERCISE (U) ARMY RESEARCH INST OF ENYVIONMENTAL MEDICINE NATICK MR A J

  10. Infrared ocular thermography in dogs with and without keratoconjunctivitis sicca.

    PubMed

    Biondi, Flávia; Dornbusch, Peterson T; Sampaio, Manuella; Montiani-Ferreira, Fabiano

    2015-01-01

    Infrared thermography was used to measure temperature differences of the corneal surface between nasal and temporal limbus regions and central cornea of normal dogs and dogs with keratoconjunctivitis sicca (KCS), in order to establish temperature values in normal canine eyes and in patients with decreased Schirmer tear tests (STT) values. Dogs investigated were all either patients seen at the Veterinary Teaching Hospital of Federal University of Paraná or normal dogs that belonged to the same institution. STT were performed in all eyes. A total of 40 control eyes (STT ≥15 mm/min) and 20 eyes with low STT values (STT ≤14 mm/min) were examined. The mean STT value for eyes with normal STT values was 22.9 ± 3.9 mm/min (mean ± standard deviation), and the mean STT value for eyes with low STT value was 7.2 ± 4.8 mm/min. The mean corneal temperature was significantly lower in eyes with low STT values than in control eyes (P < 0.0001). The following significant correlations were found: (i) Schirmer and breakup time (BUT) (P = 0.0001, r = 0.5); (ii) STT values and corneal surface temperature (P = 0.001, r = 0.256); (iii) STT values and age (P = 0.0001, r = -0.448); (iv) age and corneal surface temperature (P = 0.0001, r = -0.281); and (v) BUT and corneal surface temperature (P = 0.0001, r = 0.36). Thermography is a method that can differentiate between eyes with normal and abnormal STT values. In the future, thermography might be incorporated as part of the ophthalmic examination and perhaps become a popular ancillary test for the diagnoses of ocular surface disorders. © 2013 American College of Veterinary Ophthalmologists.

  11. Smart sensing of aviation structures with fiber optic Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Trutzel, Michael N.; Wauer, Karsten; Betz, Daniel; Staudigel, Lothar; Krumpholz, Oskar; Muehlmann, Hans-Christian; Muellert, Thomas; Gleine, Wolfgang

    2000-06-01

    We developed a surface mounting technique where fiber-optic Bragg grating (FBG) sensors are glued to the surface of structures and tested the technique on the surface of a CFRP- wing at the DASA Airbus test center Hamburg for over one year. The FBG sensors were interrogated with a measurement system capable of determining the Bragg wavelength in a few seconds over a spectral range of 60 nm (around 1.53 μm) with an absolute accuracy better than 1 pm. A polarization scrambler was used to account for polarization effects. Excellent consistence between the values of electrical strain gauges and the FBG sensors were found during all measurements. However because this method shows drawbacks in a harsher environment such as a flight test, we are currently investigating the possibilities of integrating FBG sensors into the varnish of the structures. For reasons of their better mechanical performance we use FBG sensors produced on the fiber draw-tower with a special UV-curable coating. The sensors are integrated into an original Airbus varnish build- up. We observed linear strain sensitivities in a temperature range between -50 and +100 °C. Furthermore, at negative temperatures we found a vanish- induced polarization dependence which could be used to differentiate between strain and temperature effects.

  12. Prototype thin-film thermocouple/heat-flux sensor for a ceramic-insulated diesel engine

    NASA Technical Reports Server (NTRS)

    Kim, Walter S.; Barrows, Richard F.

    1988-01-01

    A platinum versus platinum-13 percent rhodium thin-film thermocouple/heat-flux sensor was devised and tested in the harsh, high-temperature environment of a ceramic-insulated, low-heat-rejection diesel engine. The sensor probe assembly was developed to provide experimental validation of heat transfer and thermal analysis methodologies applicable to the insulated diesel engine concept. The thin-film thermocouple configuration was chosen to approximate an uninterrupted chamber surface and provide a 1-D heat-flux path through the probe body. The engine test was conducted by Purdue University for Integral Technologies, Inc., under a DOE-funded contract managed by NASA Lewis Research Center. The thin-film sensor performed reliably during 6 to 10 hr of repeated engine runs at indicated mean surface temperatures up to 950 K. However, the sensor suffered partial loss of adhesion in the thin-film thermocouple junction area following maximum cyclic temperature excursions to greater than 1150 K.

  13. Effects of service environments on aluminum-brazed titanium (ABTi)

    NASA Technical Reports Server (NTRS)

    Cotton, W. L.

    1978-01-01

    Aluminum brazed titanium (ABTi) structures were evaluated during prolonged exposure to extreme environments: elevated temperature exposure to airline service fluids, hydraulic fluid, and seawater, followed by laboratory corrosion tests. Solid-face and perforated face honeycomb sandwich panel specimens, stressed panel assemblies, and faying surface brazed joints were tested. The corrosion resistance of ABTi is satisfactory for commercial airline service. Unprotected ABTi proved inherently resistant to attack by all of the extreme service aircraft environments except: seawater at 700 K (800 F) and above, dripping phosphate ester hydraulic fluid at 505 K (450 F), and a marine environment at ambient temperature. The natural oxides and deposits present on titanium surfaces in airline service provide protection against hot salt corrosion pitting. Coatings are required to protect titanium dripping phosphate ester fluid at elevated temperatures and to protect exposed acoustic honeycomb parts against corrosion in a marine environment.

  14. Candidate materials for advanced fire-resistant photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Sugimura, R. S.; Otth, D. H.; Ross, R. G., Jr.; Arnett, J. C.; Samuelson, G.

    1985-01-01

    A cooperative, cost-sharing research effort to develop a technology base required to construct fire-ratable photovoltaic modules has resulted in the identification of several high-temperature, back-surface candidate materials capable of raising the fire-resistance of modules using hydrocarbon encapsulants to Class A and B levels. Advanced experimental module configurations have been developed using back surfaces consisting of Kapton, Tedlar laminates, metal-foils, and fiberglass materials with high-temperature coatings. Test results (October 1984; March 1985; May 1985; and October 1985) indicate that several of these advanced module configurations are capable of achieving Class B fire-resistance levels, while a few configurations can achieve Class A levels. The paper summarizes activities to date, discussing flammability failure mechanisms, time-temperature profiles, and results of Block V environmental exposure tests of a candidate material suitable for both Class B and Class A fire-resistance levels.

  15. An experimental summary of plasma arc exposures of space shuttle high-temperature reusable surface insulation tile array with a single missing tile (conducted at the Ames Research Center)

    NASA Technical Reports Server (NTRS)

    Galanter, S. A.

    1975-01-01

    A space shuttle high temperature reusable surface insulation (HRSI) tile array with a single missing or lost tile was exposed to a hot gas simulated reentry environment to investigate the heating conditions in and around the vicinity of the missing HRSI tile. Heat flux and pressure data for the lost tile condition were obtained by the use of a water cooled lost tile calibration model. The maximum aluminum substrate temperature obtained during the simulated reentry was 128 C (263 F). The lost tile calibration data indicated a maximum heat flux in the lost tile cavity region of 63 percent of the upstream reference value. This test was conducted at the Ames Research Center in the 20 MW semielliptical thermal protection system (TPS) pilot plasma arc test facility.

  16. The resistance of the lichen Circinaria gyrosa (nom. provis.) towards simulated Mars conditions—a model test for the survival capacity of an eukaryotic extremophile

    NASA Astrophysics Data System (ADS)

    Sánchez, F. J.; Mateo-Martí, E.; Raggio, J.; Meeßen, J.; Martínez-Frías, J.; Sancho, L. G.a..; Ott, S.; de la Torre, R.

    2012-11-01

    The "Planetary Atmospheres and Surfaces Chamber" (PASC, at Centro de Astrobiología, INTA, Madrid) is able to simulate the atmosphere and surface temperature of most of the solar system planets. PASC is especially appropriate to study irradiation induced changes of geological, chemical, and biological samples under a wide range of controlled atmospheric and temperature conditions. Therefore, PASC is a valid method to test the resistance potential of extremophile organisms under diverse harsh conditions and thus assess the habitability of extraterrestrial environments. In the present study, we have investigated the resistance of a symbiotic organism under simulated Mars conditions, exemplified with the lichen Circinaria gyrosa - an extremophilic eukaryote. After 120 hours of exposure to simulated but representative Mars atmosphere, temperature, pressure and UV conditions; an unaltered photosynthetic performance demonstrated high resistance of the lichen photobiont.

  17. Convective Enhancement of Icing Roughness Elements in Stagnation Region Flows

    NASA Technical Reports Server (NTRS)

    Hughes, Michael T.; McClain, Stephen T.; Vargas, Mario; Broeren, Andy

    2015-01-01

    To improve existing ice accretion simulation codes, more data regarding ice roughness and its effects on convective heat transfer are required. To build on existing research on this topic, this study used the Vertical Icing Studies Tunnel (VIST) at NASA Glenn Research to model realistic ice roughness in the stagnation region of a NACA 0012 airfoil. Using the VIST, a test plate representing the leading 2% chord of the airfoil was subjected to flows of 7.62 m/s (25 ft/s), 12.19 m/s (40 ft/s), and 16.76 m/s (55 ft/s). The test plate was fitted with 3 surfaces, each with a different representation of ice roughness: 1) a control surface with no ice roughness, 2) a surface with ice roughness with element height scaled by 10x and streamwise rough zone width from the stagnation point scaled by 10x, and 3) a surface with ice roughness with element height scaled by 10x and streamwise rough zone width from the stagnation point scaled by 25x. Temperature data from the tests were recorded using an infrared camera and thermocouples imbedded in the test plate. From the temperature data, a convective heat transfer coefficient map was created for each case. Additional testing was also performed to validate the VIST's flow quality. These tests included five-hole probe and hot-wire probe velocity traces to provide flow visualization and to study boundary layer formation on the various test surfaces. The knowledge gained during the experiments will help improve ice accretion codes by providing heat transfer coefficient validation data and by providing flow visualization data helping understand current and future experiments performed in the VIST.

  18. The use of reflective and permeable pavements as a potential practice for heat island mitigation and stormwater management

    NASA Astrophysics Data System (ADS)

    Li, H.; Harvey, J. T.; Holland, T. J.; Kayhanian, M.

    2013-03-01

    To help address the built environmental issues of both heat island and stormwater runoff, strategies that make pavements cooler and permeable have been investigated through measurements and modeling of a set of pavement test sections. The investigation included the hydraulic and thermal performance of the pavements. The permeability results showed that permeable interlocking concrete pavers have the highest permeability (or infiltration rate, ˜0.5 cm s-1). The two permeable asphalt pavements showed the lowest permeability, but still had an infiltration rate of ˜0.1 cm s-1, which is adequate to drain rainwater without generating surface runoff during most typical rain events in central California. An increase in albedo can significantly reduce the daytime high surface temperature in summer. Permeable pavements under wet conditions could give lower surface temperatures than impermeable pavements. The cooling effect highly depends on the availability of moisture near the surface layer and the evaporation rate. The peak cooling effect of watering for the test sections was approximately 15-35 °C on the pavement surface temperature in the early afternoon during summer in central California. The evaporative cooling effect on the pavement surface temperature at 4:00 pm on the third day (25 h after watering) was still 2-7 °C lower compared to that on the second day, without considering the higher air temperature on the third day. A separate and related simulation study performed by UCPRC showed that full depth permeable pavements, if designed properly, can carry both light-duty traffic and certain heavy-duty vehicles while retaining the runoff volume captured from an average California storm event. These preliminarily results indicated the technical feasibility of combined reflective and permeable pavements for addressing the built environment issues related to both heat island mitigation and stormwater runoff management.

  19. In-Flight Validation of Mid and Thermal Infrared Remotely Sensed Data Using the Lake Tahoe and Salton Sea Automated Validation Sites

    NASA Technical Reports Server (NTRS)

    Hook, Simon J.

    2008-01-01

    The presentation includes an introduction, Lake Tahoe site layout and measurements, Salton Sea site layout and measurements, field instrument calibration and cross-calculations, data reduction methodology and error budgets, and example results for MODIS. Summary and conclusions are: 1) Lake Tahoe CA/NV automated validation site was established in 1999 to assess radiometric accuracy of satellite and airborne mid and thermal infrared data and products. Water surface temperatures range from 4-25C.2) Salton Sea CA automated validation site was established in 2008 to broaden range of available water surface temperatures and atmospheric water vapor test cases. Water surface temperatures range from 15-35C. 3) Sites provide all information necessary for validation every 2 mins (bulk temperature, skin temperature, air temperature, wind speed, wind direction, net radiation, relative humidity). 4) Sites have been used to validate mid and thermal infrared data and products from: ASTER, AATSR, ATSR2, MODIS-Terra, MODIS-Aqua, Landsat 5, Landsat 7, MTI, TES, MASTER, MAS. 5) Approximately 10 years of data available to help validate AVHRR.

  20. Locust displacing winds in eastern Australia reassessed with observations from an insect monitoring radar

    NASA Astrophysics Data System (ADS)

    Hao, Zhenhua; Drake, V. Alistair; Sidhu, Leesa; Taylor, John R.

    2017-12-01

    Based on previous investigations, adult Australian plague locusts are believed to migrate on warm nights (with evening temperatures >25 °C), provided daytime flight is suppressed by surface winds greater than the locusts' flight speed, which has been shown to be 3.1 m s-1. Moreover, adult locusts are believed to undertake briefer `dispersal' flights on nights with evening temperature >20 °C. To reassess the utility of these conditions for forecasting locust flight, contingency tests were conducted comparing the nights selected on these bases (predicted nights) for the months of November, January, and March and the nights when locust migration were detected with an insect monitoring radar (actual nights) over a 7-year period. In addition, the wind direction distributions and mean wind directions on all predicted nights and actual nights were compared. Observations at around 395 m above ground level (AGL), the height at which radar observations have shown that the greatest number of locusts fly, were used to determine the actual nights. Tests and comparisons were also made for a second height, 990 m AGL, as this was used in the previous investigation. Our analysis shows that the proposed criteria are successful from predicting migratory flight only in March, when the surface temperature is effective as a predicting factor. Surface wind speed has no predicting power. It is suggested that a strong daytime surface wind speed requirement should not be considered and other meteorological variables need to be added to the requirement of a warm surface temperature around dusk for the predictions to have much utility.

  1. Kinetics study of the CN + CH4 hydrogen abstraction reaction based on a new ab initio analytical full-dimensional potential energy surface.

    PubMed

    Espinosa-Garcia, Joaquin; Rangel, Cipriano; Suleimanov, Yury V

    2017-07-26

    We have developed an analytical full-dimensional potential energy surface, named PES-2017, for the gas-phase hydrogen abstraction reaction between the cyano radical and methane. This surface is fitted using high-level ab initio information as input. Using the PES-2017 surface, a kinetics study was performed via two theoretical approaches: variational transition-state theory with multidimensional tunnelling (VTST-MT) and ring polymer molecular dynamics (RPMD). The results are compared with the experimental data. In the whole temperature range analysed, 300-1500 K, both theories agree within a factor of <2, reproducing the experimental behaviour taking into account the experimental uncertainties. At high temperatures, where the recrossing effects dominate and the RPMD theory is exact, both theories differ by a factor of about 20%; while at low temperatures this difference is larger, 45%. Note that in this temperature regime, the tunnelling effect is negligible. The CN + CH 4 /CD 4 kinetic isotope effects are important, reproducing the scarce experimental evidence. The good agreement with the ab initio information used in the fitting process (self-consistency test) and with the kinetic behaviour in a wide temperature range gives confidence and strength to the new surface.

  2. Biomechanics of ant adhesive pads: frictional forces are rate- and temperature-dependent.

    PubMed

    Federle, Walter; Baumgartner, Werner; Hölldobler, Bert

    2004-01-01

    Tarsal adhesive pads enable insects to hold on to smooth plant surfaces. Using a centrifuge technique, we tested whether a "wet adhesion" model of a thin film of liquid secreted between the pad and the surface can explain adhesive and frictional forces in Asian Weaver ants (Oecophylla smaragdina). When forces are acting parallel to the surface, pads in contact with the surface can slide smoothly. Force per unit pad contact area was strongly dependent on sliding velocity and temperature. Seemingly consistent with the effect of a thin liquid film in the contact zone, (1) frictional force linearly increased with sliding velocity, (2) the increment was greater at lower temperatures and (3) no temperature dependence was detected for low-rate perpendicular detachment forces. However, we observed a strong, temperature-independent static friction that was inconsistent with a fully lubricated contact. Static friction was too large to be explained by the contribution of other (sclerotized) body parts. Moreover, the rate-specific increase of shear stress strongly exceeded predictions derived from estimates of the adhesive liquid film's thickness and viscosity. Both lines of evidence indicate that the adhesive secretion alone is insufficient to explain the observed forces and that direct interaction of the soft pad cuticle with the surface ("rubber friction") is involved.

  3. Intrapulpal temperatures during pulsed Nd:YAG laser treatment of dentin, in vitro.

    PubMed

    White, J M; Fagan, M C; Goodis, H E

    1994-03-01

    Lasers are being used for soft tissue removal, caries removal, and treatment of root surface sensitivity. One concern for laser safety is that the heat produced at the irradiated root surface may diffuse to the pulp causing irreversible pulpal damage. To test this heat diffusion, copper-constantan thermocouples were inserted into the radicular pulp canals of extracted teeth. Simulating direct exposure which might occur during gingival excision, superficial caries removal, and modification of the dentin surface for treatment of root surface sensitivity, a 2 mm2 area of the external root surface was uniformly irradiated with a pulsed Nd:YAG laser using a 320 microns diameter fiber optic contact probe. Power was varied from 0.3 to 3.0 W with frequencies of 10 and 20 Hz. Temperature changes during cavity preparations using a high speed handpiece with air coolant were also recorded. Repeated measures ANOVA (P < or = 0.05) indicated that intrapulpal temperatures increased as a function of power, frequency, and time. Intrapulpal temperatures decreased as remaining dentin thickness (0.2 to 2.0 mm) increased for each laser parameter. Irradiation of dentin using a Nd:YAG pulsed laser, within the treatment times, powers, and frequencies with adequate remaining dentin thickness, as outlined in this paper, should not cause devitalizing intrapulpal temperature rises.

  4. Development of a high efficiency thin silicon solar cell. [fabrication and stability tests

    NASA Technical Reports Server (NTRS)

    Lindmayer, J.

    1976-01-01

    One hundred thin (120 microns to 260 microns) silicon-aluminum solar cells were fabricated and tested. Silicon slices were prepared, into which an aluminum alloy was evaporated over a range of temperatures and times. Antireflection coatings of tantalum oxide were applied to the cells. Reflectance of the silicon-aluminum interfaces was correlated to alloy temperature (graphs are shown). Optical measurements of the rear surface-internal reflectance of the cells were performed using a Beckman spectrophotometer. An improved gridline pattern was evaluated and stability tests (thermal cycling tests) were performed. Results show that: (1) a high-index, high-transmittance antireflection coating was obtained; (2) the improved metallization of the cells gave a 60 percent rear surface-internal reflectance, and the cells displayed excellent fill factors and blue response of the spectrum; (3) an improved gridline pattern (5 micron linewidths compared to 13 micron linewidths) resulted in a 1.3 percent improvement in short circuit currents; and (4) the stability tests showed no change in cell properties.

  5. Heat pipe fatigue test specimen: Metallurgical evaluation

    NASA Technical Reports Server (NTRS)

    Walak, Steven E.; Cronin, Michael J.; Grobstein, Toni

    1992-01-01

    An innovative creep/fatigue test was run to simulate the temperature, mechanical load, and sodium corrosion conditions expected in a heat pipe designed to supply thermal energy to a Stirling cycle power converter. A sodium-charged Inconel 718 heat pipe with a Nickel 200 screen wick was operated for 1090 hr at temperatures between 950 K (1250 F) and 1050 K (1430 F) while being subjected to creep and fatigue loads in a servo-hydraulic testing machine. After testing, the heat pipe was sectioned and examined using optical microscopy, scanning electron microscopy, and electron microprobe analysis with wavelength dispersive x-ray spectroscopy. The analysis concentrated on evaluating topographic, microstructural, and chemical changes in the sodium exposed surfaces of the heat pipe wall and wick. Surface changes in the evaporator, condenser, and adiabatic sections of the heat pipe were examined in an effort to correlate the changes with the expected sodium environment in the heat pipe. This report describes the setup, operating conditions, and analytical results of the sodium heat pipe fatigue test.

  6. Spallation modeling in the Charring Material Thermal Response and Ablation (CMA) computer program

    NASA Astrophysics Data System (ADS)

    Sullivan, J. M.; Kobayashi, W. S.

    1987-06-01

    It has been observed during tests of certain laminated composite materials exposed to relatively high continuous wave laser irradiation, that the heated surface will spall. To model this phenomenon, the Charring Material Thermal Response and Ablation code has been updated. In addition to temperature response, in-depth decomposition, and surface recession, thermal and mechanical stresses are calculated. Spall is modeled as a discrete mass removal event occurring when the stresses exceed the ultimate strength of the char through a critical depth. Comparisons are made with test data for a carbon phenolic cylinder exposed to a shock tube environment and for a flat plate Kevlar epoxy test specimen exposed to high intensity laser irradiation. Good agreement is shown; however, the results indicate a requirement for more comprehensive elevated-temperature material properties for further validation.

  7. Thermal-Structural Evaluation of TD Ni-20Cr Thermal Protection System Panels

    NASA Technical Reports Server (NTRS)

    Eidinoff, H. L.; Rose, L.

    1974-01-01

    The results of a thermal-structural test program to verify the performance of a metallic/radiative Thermal Protection System (TPS) under reentry conditions are presented. This TPS panel is suitable for multiple reentry, high L/D space vehicles, such as the NASA space shuttle, having surface temperatures up to 1200 C (2200 F). The TPS panel tested consists of a corrugation-stiffened, beaded-skin TD Ni-20Cr metallic heat shield backed by a flexible fibrous quartz and radiative shield insulative system. Test conditions simulated the critical heating and aerodynamic pressure environments expected during 100 repeated missions of a reentry vehicle. Temperatures were measured during each reentry cycle; heat-shield flatness surveys to measure permanent set of the metallic components were made every 10 cycles. The TPS panel, in spite of localized surface failures, performed its designated function.

  8. Surface sulfonamide modification of poly(N-isopropylacrylamide)-based block copolymer micelles to alter pH and temperature responsive properties for controlled intracellular uptake.

    PubMed

    Cyphert, Erika L; von Recum, Horst A; Yamato, Masayuki; Nakayama, Masamichi

    2018-06-01

    Two different surface sulfonamide-functionalized poly(N-isopropylacrylamide)-based polymeric micelles were designed as pH-/temperature-responsive vehicles. Both sulfadimethoxine- and sulfamethazine-surface functionalized micelles were characterized to determine physicochemical properties, hydrodynamic diameters, zeta potentials, temperature-dependent size changes, and lower critical solution temperatures (LCST) in both pH 7.4 and 6.8 solutions (simulating both physiological and mild low pH conditions), and tested in the incorporation of a proof-of-concept hydrophobic antiproliferative drug, paclitaxel. Cellular uptake studies were conducted using bovine carotid endothelial cells and fluorescently labeled micelles to evaluate if there was enhanced cellular uptake of the micelles in a low pH environment. Both variations of micelles showed enhanced intracellular uptake under mildly acidic (pH 6.8) conditions at temperatures slightly above their LCST and minimal uptake at physiological (pH 7.4) conditions. Due to the less negative zeta potential of the sulfamethazine-surface micelles compared to sulfadimethoxine-surface micelles, and the proximity of their LCST to physiological temperature (37°C), the sulfamethazine variation was deemed more amenable for clinically relevant temperature and pH-stimulated applications. Nevertheless, we believe both polymeric micelle variations have the capacity to be implemented as an intracellular drug or gene delivery system in response to mildly acidic conditions. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1552-1560, 2018. © 2018 Wiley Periodicals, Inc.

  9. Strengthening silicon carbide by quenching

    NASA Technical Reports Server (NTRS)

    Gruver, R. M.; Platts, D. R.; Kirchner, H. P.

    1974-01-01

    Quenching was used to form compressive surface layers in hot-pressed silicon carbide. The presence of the compressive stresses was verified by slotted rod tests. The slotted rod tip deflection was retained at temperatures to at least 1380 C, showing that the stresses are not relieved immediately at elevated temperatures. The flexural strength and impact resistance of specimens quenched from moderate temperatures (2000 C) were increased. Frequently, specimens quenched from higher temperatures were weakened by thermal shock damage.

  10. Thermal Conductivity and Elastic Modulus Evolution of Thermal Barrier Coatings under High Heat Flux Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1999-01-01

    Laser high heat flux test approaches have been established to obtain critical properties of ceramic thermal barrier coatings (TBCs) under near-realistic temperature and thermal gradients that may he encountered in advanced engine systems. Thermal conductivity change kinetics of a thin ceramic coating were continuously monitored in real time at various test temperatures. A significant thermal conductivity increase was observed during the laser simulated engine heat flux tests. For a 0.25 mm thick ZrO2-8%Y2O3 coating system, the overall thermal conductivity increased from the initial value of 1.0 W/m-K to 1. 15 W/m-K, 1. 19 W/m-K and 1.5 W/m-K after 30 hour testing at surface temperatures of 990C, 1100C, and 1320C. respectively. Hardness and modulus gradients across a 1.5 mm thick TBC system were also determined as a function of laser testing time using the laser sintering/creep and micro-indentation techniques. The coating Knoop hardness values increased from the initial hardness value of 4 GPa to 5 GPa near the ceramic/bond coat interface, and to 7.5 GPa at the ceramic coating surface after 120 hour testing. The ceramic surface modulus increased from an initial value of about 70 GPa to a final value of 125 GPa. The increase in thermal conductivity and the evolution of significant hardness and modulus gradients in the TBC systems are attributed to sintering-induced micro-porosity gradients under the laser-imposed high thermal gradient conditions. The test techniques provide a viable means for obtaining coating data for use in design, development, stress modeling, and life prediction for various thermal barrier coating applications.

  11. Phase Transformation and Creep Behavior in Ti50Pd30Ni20 High Temperature Shape Memory Alloy in Compression

    NASA Technical Reports Server (NTRS)

    Kumar, Parikshith K.; Desai, Uri; Monroe, James; Lagoudas, Dimitris C.; Karaman, Ibrahim; Noebe, Ron; Bigelow, Glenn

    2010-01-01

    The creep behavior and the phase transformation of Ti50Pd30Ni20 High Temperature Shape Memory Alloy (HTSMA) is investigated by standard creep tests and thermomechanical tests. Ingots of the alloy are induction melted, extruded at high temperature, from which cylindrical specimens are cut and surface polished. A custom high temperature test setup is assembled to conduct the thermomechanical tests. Following preliminary monotonic tests, standard creep tests and thermally induced phase transformation tests are conducted on the specimen. The creep test results suggest that over the operating temperatures and stresses of this alloy, the microstructural mechanisms responsible for creep change. At lower stresses and temperatures, the primary creep mechanism is a mixture of dislocation glide and dislocation creep. As the stress and temperature increase, the mechanism shifts to predominantly dislocation creep. If the operational stress or temperature is raised even further, the mechanism shifts to diffusion creep. The thermally induced phase transformation tests show that actuator performance can be affected by rate independent irrecoverable strain (transformation induced plasticity + retained martensite) as well as creep. The rate of heating and cooling can adversely impact the actuators performance. While the rate independent irrecoverable strain is readily apparent early in the actuators life, viscoplastic strain continues to accumulate over the lifespan of the HTSMA. Thus, in order to get full actuation out of the HTSMA, the heating and cooling rates must be sufficiently high enough to avoid creep.

  12. Effect of polymer properties and adherend surfaces on adhesion

    NASA Technical Reports Server (NTRS)

    Dwight, D. W.; Wightman, J. P.

    1976-01-01

    High temperature polymer surface characteristics associated with joint strength were evaluated. Selected samples represented composite adherends, aluminum filler and fiber glass carrier cloth. Detailed analysis of fractured joint surfaces revealed unique characteristics typical of the specific adhesive formulations and test conditions. A fracture mechanism model was developed for correlating macroscopic shear strength and microstructure of fracture surfaces. Applications were made to unpublished data on polyimides and fluoropolymers.

  13. Reactor for simulation and acceleration of solar ultraviolet damage

    NASA Technical Reports Server (NTRS)

    Laue, E.; Gupta, A.

    1979-01-01

    An environmental test chamber providing acceleration of UV radiation and precise temperature control (+ or -)1 C was designed, constructed and tested. This chamber allows acceleration of solar ultraviolet up to 30 suns while maintaining temperature of the absorbing surface at 30 C - 60 C. This test chamber utilizes a filtered medium pressure mercury arc as the source of radiation, and a combination of selenium radiometer and silicon radiometer to monitor solar ultraviolet (295-340 nm) and total radiant power output, respectively. Details of design and construction and operational procedures are presented along with typical test data.

  14. Leakage and Power Loss Test Results for Competing Turbine Engine Seals

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.; Delgado, Irebert R.

    2004-01-01

    Advanced brush and finger seal technologies offer reduced leakage rates over conventional labyrinth seals used in gas turbine engines. To address engine manufacturers concerns about the heat generation and power loss from these contacting seals, brush, finger, and labyrinth seals were tested in the NASA High Speed, High Temperature Turbine Seal Test Rig. Leakage and power loss test results are compared for these competing seals for operating conditions up to 922 K (1200 F) inlet air temperature, 517 KPa (75 psid) across the seal, and surface velocities up to 366 m/s (1200 ft/s).

  15. In Situ Optical Creep Observation of Joint-Scale Tin-Silver-Copper Solder Shear Samples

    NASA Astrophysics Data System (ADS)

    Herkommer, Dominik; Reid, Michael; Punch, Jeff

    2009-10-01

    In this paper the creep behavior of lead-free 96.5Sn-3.0Ag-0.5Cu solder is evaluated. A series of creep tests at different stress/temperature and strain rate/temperature pairs has been conducted. The tests were observed in situ with a high-magnification camera system. Optical observation results are presented from selected tests, showing the occurrence of surface effects such as shear bands, voiding, and rumpling. From these observations the main deformation mechanisms were derived and compiled in terms of their dependence on the test conditions.

  16. Diamond thin film temperature and heat-flux sensors

    NASA Technical Reports Server (NTRS)

    Aslam, M.; Yang, G. S.; Masood, A.; Fredricks, R.

    1995-01-01

    Diamond film temperature and heat-flux sensors are developed using a technology compatible with silicon integrated circuit processing. The technology involves diamond nucleation, patterning, doping, and metallization. Multi-sensor test chips were designed and fabricated to study the thermistor behavior. The minimum feature size (device width) for 1st and 2nd generation chips are 160 and 5 micron, respectively. The p-type diamond thermistors on the 1st generation test chip show temperature and response time ranges of 80-1270 K and 0.29-25 microseconds, respectively. An array of diamond thermistors, acting as heat flux sensors, was successfully fabricated on an oxidized Si rod with a diameter of 1 cm. Some problems were encountered in the patterning of the Pt/Ti ohmic contacts on the rod, due mainly to the surface roughness of the diamond film. The use of thermistors with a minimum width of 5 micron (to improve the spatial resolution of measurement) resulted in lithographic problems related to surface roughness of diamond films. We improved the mean surface roughness from 124 nm to 30 nm by using an ultra high nucleation density of 10(exp 11)/sq cm. To deposit thermistors with such small dimensions on a curved surface, a new 3-D diamond patterning technique is currently under development. This involves writing a diamond seed pattern directly on the curved surface by a computer-controlled nozzle.

  17. A Moessbauer spectrometer for the mineralogical analysis of the Mars surface: First temperature dependent tests of the detector and drive system

    NASA Technical Reports Server (NTRS)

    Held, P.; Teucher, R.; Klingelhoefer, G.; Foh, J.; Jaeger, H.; Kankeleit, E.

    1993-01-01

    Part of the scientific payload of the Mars-96 mission is a Fe-(57)Mossbauer (MB) spectrometer installed on a small rover to be placed on the surface of Mars. The instrument is under development at the University of Darmstadt. This instrument, with some modifications, is also included in the scientific payload of the proposed MARSNET mission of the European Space Agency (ESA). A similar instrument is currently under development in the US. The reason for developing a Mossbauer spectrometer for space applications is the high abundance of the element iron, especially on the surface of Mars. The elemental composition of Martian soil was determined during the Viking mission in 1976 but not it's mineralogical composition. One believes that it is composed mainly of iron-rich clay minerals, with an iron content of about 14 (plus or minus 2) wt-percent, partly magnetic. Of extremely great interest are the oxidation state of the iron, the magnetic phases and the mineral composition of the Mars surface. To these questions MB spectroscopy can provide important information, which are not available by other methods. We report on first tests of the experimental setup in the temperature range plus 20 C to -70 C, roughly corresponding to the temperature range on the surface of Mars. Also questions concerning the signal/noise ratio (S/N) are discussed.

  18. Oxidation and low cycle fatigue life prediction

    NASA Technical Reports Server (NTRS)

    Oshida, Y.; Liu, H. W.

    1984-01-01

    When a metallic material is exposed to a high temperature in an ambient atmosphere, oxidation takes place on the metallic surface. The formed oxides (both surface and grain boundary oxides) are mechanically brittle so that if the stress is high enough the oxides will be cracked. The grain boundary oxide formation in TAZ-8A nickel-base superalloy was studied. The effect of oxide crack nucleus on low cycle fatigue life will be analyzed. The TAZ-8A was subjected to high temperature oxidation tests in air under the stress-free condition. The oxidation temperatures were 600, 800, and 1000 C. The oxidation time varies from 10 to 1000 hours.

  19. The determination of temperature stability of silver nanotubes by the molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Filatov, O.; Soldatenko, S.; Soldatenko, O.

    2018-04-01

    Molecular dynamics simulation using the embedded-atom method is applied to study thermal stability of silver nanotubes and its coefficient of linear thermal expansion. The correspondence of face centered cubic structure potential for this task is tested. Three types of nanotubes are modelled: scrolled from graphene-like plane, scrolled from plane with cubic structure and cut from cylinder. It is established that only the last two of them are stable. The last one describes in details. There is critical temperature when free ends of the nanotube close but the interior surface retains. At higher temperatures, the interior surface collapses and the nanotube is unstable.

  20. An imaging system for quantitive surface temperature mapping using two-color thermographic phosphors

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M.

    1988-01-01

    A technique for obtaining detailed quantitative temperature distributions on test models in hypersonic wind tunnels is presented. This technique is based on the ratio of blue to green (450, 520 nm) emission from an UV (365 nm) excited phosphor coating. Separately filtered images are recorded from a three-tube color camera, utilizing off-the-shelf front-end video optics to discriminate wavelengths. Two demonstration studies in a 31-inch Mach 10 tunnel are discussed. One study presents the windward surface temperature-time history for a transatmospheric vehicle, and the other illustrates nosetip heating on a spherically blunted slender cone.

  1. Rapid high temperature field test method for evaluation of geothermal calcite scale inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asperger, R.G.

    1982-08-01

    A test method is described which allows the rapid field testing of calcite scale inhibitors in high- temperature geothermal brines. Five commercial formulations, chosen on the basis of laboratory screening tests, were tested in brines with low total dissolved solids at ca 500 F. Four were found to be effective; of these, 2 were found to be capable of removing recently deposited scale. One chemical was tested in the full-flow brine line for 6 wks. It was shown to stop a severe surface scaling problem at the well's control valve, thus proving the viability of the rapid test method. (12more » refs.)« less

  2. Surface tension of dilute alcohol-aqueous binary fluids: n-Butanol/water, n-Pentanol/water, and n-Hexanol/water solutions

    NASA Astrophysics Data System (ADS)

    Cheng, Kuok Kong; Park, Chanwoo

    2017-07-01

    Surface tension of pure fluids, inherently decreasing with regard to temperature, creates a thermo-capillary-driven (Marangoni) flow moving away from a hot surface. It has been known that few high-carbon alcohol-aqueous solutions exhibit an opposite behavior of the surface tension increasing with regard to temperature, such that the Marangoni flow moves towards the hot surface (self-rewetting effect). We report the surface tensions of three dilute aqueous solutions of n-Butanol, n-Pentanol and n-Hexanol as self-rewetting fluids measured for ranges of alcohol concentration (within solubility limits) and fluid temperatures (25-85 °C). A maximum bubble pressure method using a leak-tight setup was used to measure the surface tension without evaporation losses of volatile components. It was found from this study that the aqueous solutions with higher-carbon alcohols exhibit a weak self-rewetting behavior, such that the surface tensions remain constant or slightly increases above about 60 °C. These results greatly differ from the previously reported results showing a strong self-rewetting behavior, which is attributed to the measurement errors associated with the evaporation losses of test fluids during open-system experiments.

  3. Non-Invasive Blood Perfusion Measurements Using a Combined Temperature and Heat Flux Surface Probe

    PubMed Central

    Ricketts, Patricia L.; Mudaliar, Ashvinikumar V.; Ellis, Brent E.; Pullins, Clay A.; Meyers, Leah A.; Lanz, Otto I.; Scott, Elaine P.; Diller, Thomas E.

    2009-01-01

    Non-invasive blood perfusion measurement systems have been developed and tested in a phantom tissue and an animal model. The probes use a small sensor with a laminated flat thermocouple to measure the heat transfer and temperature response to an arbitrary thermal event (convective or conductive) imposed on the tissue surface. Blood perfusion and thermal contact resistance are estimated by comparing heat flux data with a mathematical model of the tissue. The perfusion probes were evaluated for repeatability and sensitivity using both a phantom tissue test stand and exposed rat liver tests. Perfusion in the phantom tissue tests was varied by controlling the flow of water into the phantom tissue test section, and the perfusion in the exposed liver tests was varied by temporarily occluding blood flow through the portal vein. The phantom tissue tests indicated that the probes can be used to detect small changes in perfusion (0.005 ml/ml/s). The probes qualitatively tracked the changes in the perfusion of the liver model due to occlusion of the portal vein. PMID:19885372

  4. The total hemispheric emissivity of painted aluminum honeycomb at cryogenic temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuttle, J.; Canavan, E.; DiPirro, M.

    NASA uses high-emissivity surfaces on deep-space radiators and thermal radiation absorbers in test chambers. Aluminum honeycomb core material, when coated with a high-emissivity paint, provides a lightweight, mechanically robust, and relatively inexpensive black surface that retains its high emissivity down to low temperatures. At temperatures below about 100 Kelvin, this material performs much better than the paint itself. We measured the total hemispheric emissivity of various painted honeycomb configurations using an adaptation of an innovative technique developed for characterizing thin black coatings. These measurements were performed from room temperature down to 30 Kelvin. We describe the measurement technique and comparemore » the results with predictions from a detailed thermal model of each honeycomb configuration.« less

  5. Testing of two source energy balance model under irrigated and dryland conditions using high resolution airborne imagery

    USDA-ARS?s Scientific Manuscript database

    Two Source Model (TSM) calculates the heat and water exchange and interaction between soil-atmosphere and vegetation-atmosphere separately. This is achieved through decomposition of radiometric surface temperature to soil and vegetation component temperatures either from multi-angular remotely sense...

  6. Precipitation Discrimination from Satellite Infrared Temperatures over the CCOPE Mesonet Region.

    NASA Astrophysics Data System (ADS)

    Weiss, Mitchell; Smith, Eric A.

    1987-06-01

    A quantitative investigation of the relationship between satellite-derived cloud-top temperature parameters and the detection of intense convective rainfall is described. The area of study is that of the Cooperative Convective Precipitation Experiment (CCOPE), which was held near Miles City, Montana during the summer of 1981. Cloud-top temperatures, derived from the GOES-West operational satellite, were used to calculate a variety of parameters for objectively quantifying the convective intensity of a storm. A dense network of rainfall provided verification of surface rainfall. The cloud-top temperature field and surface rainfall data were processed into equally sized grid domains in order to best depict the individual samples of instantaneous precipitation.The technique of statistical discriminant analysis was used to determine which combinations of cloud-top temperature parameters best classify rain versus no-rain occurrence using three different rain-rate cutoffs: 1, 4, and 10 mm h1. Time lags within the 30 min rainfall verification were tested to determine the optimum time delay associated with rainfall reaching the ground.A total of six storm cases were used to develop and test the statistical models. Discrimination of rain events was found to be most accurate when using a 10 mm h1 rain-rate cutoff. Use parameters designated as coldest cloud-top temperature, the spatial mean of coldest cloud-top temperature, and change over time of mean coldest cloud-top temperature were found to be the best classifiers of rainfall in this study. Combining both a 10-min time lag (in terms of surface verification) with a 10 mm h1 rain-rate threshold resulted in classifying over 60% of all rain and no-rain cases correctly.

  7. Methodology and results of calculating central California surface temperature trends: Evidence of human-induced climate change?

    USGS Publications Warehouse

    Christy, J.R.; Norris, W.B.; Redmond, K.; Gallo, K.P.

    2006-01-01

    A procedure is described to construct time series of regional surface temperatures and is then applied to interior central California stations to test the hypothesis that century-scale trend differences between irrigated and nonirrigated regions may be identified. The procedure requires documentation of every point in time at which a discontinuity in a station record may have occurred through (a) the examination of metadata forms (e.g., station moves) and (b) simple statistical tests. From this "homogeneous segments" of temperature records for each station are defined. Biases are determined for each segment relative to all others through a method employing mathematical graph theory. The debiased segments are then merged, forming a complete regional time series. Time series of daily maximum and minimum temperatures for stations in the irrigated San Joaquin Valley (Valley) and nearby nonirrigated Sierra Nevada (Sierra) were generated for 1910-2003. Results show that twentieth-century Valley minimum temperatures are warming at a highly significant rate in all seasons, being greatest in summer and fall (> +0.25??C decade-1). The Valley trend of annual mean temperatures is +0.07?? ?? 0.07??C decade-1. Sierra summer and fall minimum temperatures appear to be cooling, but at a less significant rate, while the trend of annual mean Sierra temperatures is an unremarkable -0.02?? ?? 0.10??C decade-1. A working hypothesis is that the relative positive trends in Valley minus Sierra minima (>0.4??C decade-1 for summer and fall) are related to the altered surface environment brought about by the growth of irrigated agriculture, essentially changing a high-albedo desert into a darker, moister, vegetated plain. ?? 2006 American Meteorological Society.

  8. Surface slope characteristics from Thermal Emission Spectrometer emission phase function observations

    NASA Astrophysics Data System (ADS)

    Edwards, C. S.; Bandfield, J. L.; Christensen, P. R.

    2006-12-01

    It is possible to obtain surface roughness characteristics, by measuring a single surface from multiple emission angles and azimuths in the thermal infrared. Surfaces will have different temperatures depending on their orientation relative to the sun. A different proportion of sunlit versus shaded surfaces will be in the field of view based on the viewing orientation, resulting in apparent temperature differences. This difference in temperature can be utilized to calculate the slope characteristics for the observed area. This technique can be useful for determining surface slope characteristics not resolvable by orbital imagery. There are two main components to this model, a surface DEM, in this case a synthetic, two dimensional sine wave surface, and a thermal model (provided by H. Kieffer). Using albedo, solar longitude, slope, azimuth, along with several other parameters, the temperature for each cell of the DEM is calculated using the thermal model. A temperature is then predicted using the same observation geometries as the Thermal Emission Spectrometer (TES) observations. A temperature difference is calculated for the two complementary viewing azimuths and emission angles from the DEM. These values are then compared to the observed temperature difference to determine the surface slope. This method has been applied to TES Emission Phase Function (EPF) observations for both the spectrometer and bolometer data, with a footprint size of 10s of kilometers. These specialized types of TES observations measure nearly the same surface from several angles. Accurate surface kinetic temperatures are obtained after the application of an atmospheric correction for the TES bolometer and/or spectrometer. Initial results include an application to the northern circumpolar dunes. An average maximum slope of ~33 degrees has been obtained, which makes physical sense since this is near the angle of repose for sand sized particles. There is some scatter in the data from separate observations, which may be due to the large footprint size. This technique can be better understood and characterized by correlation with high resolution imagery. Several different surface maps will also be tested in addition to the two dimensional sine wave surface. Finally, by modeling the thermal effects on different particle sizes and land forms, we can further interpret the scale of these slopes.

  9. Effect of environmental stress on the ability of Listeria monocytogenes Scott A to attach to food contact surfaces.

    PubMed

    Smoot, L M; Pierson, M D

    1998-10-01

    Attachment of Listeria monocytogenes Scott A to Buna-N rubber and stainless steel under different temperature and pH conditions at the time of cell growth or at the time of attachment was investigated. All experiments were conducted using sterile phosphate buffer to avoid cell growth during exposure to the test surfaces. Numbers of attached cells increased with increasing attachment temperature (10 to 45 degrees C) and exposure time for both test surfaces. Maximum levels of attached cells were obtained when cell growth occurred at 30 degrees C. Downward, but not upward, shifts in the cell suspension holding temperature prior to attachment to Buna-N rubber resulted in reduced adhered cell populations. Maximum levels of adhered cells to Buna-N rubber were not affected by adjustments of the attachment medium pH between 4 and 9. However, after short contact times (i.e., less than 30 min), levels of attached cells were lower when attachment occurred under alkaline conditions. Growth pH was also found to affect the levels of adhered cell populations to Buna-N rubber. L. monocytogenes Scott A attached to stainless steel at higher levels for all temperature and pH parameters evaluated in this study.

  10. Single-ended retroreflection sensors for absorption spectroscopy in high-temperature environments

    NASA Astrophysics Data System (ADS)

    Melin, Scott T.; Wang, Ze; Neal, Nicholas J.; Rothamer, David A.; Sanders, Scott T.

    2017-04-01

    Novel single-ended sensor arrangements are demonstrated for in situ absorption spectroscopy in combustion and related test articles. A single-ended optical access technique based on back-reflection from a polished test article surface is presented. H2O vapor absorption spectra were measured at 10 kHz in a homogeneous-charge compression-ignition engine using a sensor of this design collecting back-reflection from a polished piston surface. The measured spectra show promise for high-repetition-rate measurements in practical combustion devices. A second sensor was demonstrated based on a modification to this optical access technique. The sensor incorporates a nickel retroreflective surface as back-reflector to reduce sensitivity to beam steering and misalignment. In a propane-fired furnace, H2O vapor absorption spectra were obtained over the range 7315-7550 cm- 1 at atmospheric pressure and temperatures up to 775 K at 20 Hz using an external-cavity diode laser spectrometer. Gas properties of temperature and mole fraction were obtained from this furnace data using a band-shape spectral fitting technique. The temperature accuracy of the band-shape fitting was demonstrated to be ±1.3 K for furnace measurements at atmospheric pressure. These results should extend the range of applications in which absorption spectroscopy sensors are attractive candidates.

  11. Validation of the filament winding process model

    NASA Technical Reports Server (NTRS)

    Calius, Emilo P.; Springer, George S.; Wilson, Brian A.; Hanson, R. Scott

    1987-01-01

    Tests were performed toward validating the WIND model developed previously for simulating the filament winding of composite cylinders. In these tests two 24 in. long, 8 in. diam and 0.285 in. thick cylinders, made of IM-6G fibers and HBRF-55 resin, were wound at + or - 45 deg angle on steel mandrels. The temperatures on the inner and outer surfaces and inside the composite cylinders were recorded during oven cure. The temperatures inside the cylinders were also calculated by the WIND model. The measured and calculated temperatures were then compared. In addition, the degree of cure and resin viscosity distributions inside the cylinders were calculated for the conditions which existed in the tests.

  12. Investigation of the reaction of 5Al-2.5Sn titanium with hydrogen at subzero temperature

    NASA Technical Reports Server (NTRS)

    Williams, D. N.; Wood, R. A.

    1972-01-01

    An investigation of the effect of temperature on the surface hydriding reaction of 5Al-2.5Sn titanium exposed to hydrogen at 250 psig was made. The temperature range studied extended from 160 F to -160 F. Reaction conditions were controlled so as to expose a vacuum-cleaned, oxide-free alloy surface to an ultrapure hydrogen atmosphere. Reaction times up to 1458 hours were studied. The hydriding reaction was extremely sensitive to experimental variables and the reproducibility of reaction behavior was poor. However, it was demonstrated that the reaction proceeded quite rapidly at 160 F; as much as 1 mil surface hydriding being observed after exposure for 162 hours. The amount of hydriding appeared to decrease with decreasing temperature at 75 F, -36 F, and -76 F. No surface hydriding was detected either by vacuum fusion analysis or by metallographic examination after exposure for 1458 hours at -110 F or -160 F. Tensile properties were unaffected by surface hydriding of the severity developed in this program (up to 1 mil thick) as determined by slow strain rate testing of hydrided sheet tensile samples.

  13. Rational nanostructuring of surfaces for extraordinary icephobicity

    NASA Astrophysics Data System (ADS)

    Eberle, Patric; Tiwari, Manish K.; Maitra, Tanmoy; Poulikakos, Dimos

    2014-04-01

    Icing of surfaces is commonplace in nature, technology and everyday life, bringing with it sometimes catastrophic consequences. A rational methodology for designing materials with extraordinary resistance to ice formation and adhesion remains however elusive. We show that ultrafine roughnesses can be fabricated, so that the ice nucleation-promoting effect of nanopits on surfaces is effectively counteracted in the presence of an interfacial quasiliquid layer. The ensuing interface confinement strongly suppresses the stable formation of ice nuclei. We explain why such nanostructuring leads to the same extremely low, robust nucleation temperature of ~-24 °C for over three orders of magnitude change in RMS size (~0.1 to ~100 nm). Overlaying such roughnesses on pillar-microtextures harvests the additional benefits of liquid repellency and low ice adhesion. When tested at a temperature of -21 °C, such surfaces delayed the freezing of a sessile supercooled water droplet at the same temperature by a remarkable 25 hours.Icing of surfaces is commonplace in nature, technology and everyday life, bringing with it sometimes catastrophic consequences. A rational methodology for designing materials with extraordinary resistance to ice formation and adhesion remains however elusive. We show that ultrafine roughnesses can be fabricated, so that the ice nucleation-promoting effect of nanopits on surfaces is effectively counteracted in the presence of an interfacial quasiliquid layer. The ensuing interface confinement strongly suppresses the stable formation of ice nuclei. We explain why such nanostructuring leads to the same extremely low, robust nucleation temperature of ~-24 °C for over three orders of magnitude change in RMS size (~0.1 to ~100 nm). Overlaying such roughnesses on pillar-microtextures harvests the additional benefits of liquid repellency and low ice adhesion. When tested at a temperature of -21 °C, such surfaces delayed the freezing of a sessile supercooled water droplet at the same temperature by a remarkable 25 hours. Electronic supplementary information (ESI) available: Thermodynamic framework and statistical methods for data analyses; details of ice nucleation delay measurements and prediction of the delays around the median nucleation temperature; additional SEM and AFM images not shown in the main paper and complete contact angle characterization; derivation of the nanoscale interface confinement effect; an error assessment, detailed results of droplet impact experiments on hydrophilic and hydrophobic substrates; methods for surface preparation and characterization; description of the experimental set-up and protocols; five videos supporting the text. See DOI: 10.1039/c3nr06644d

  14. Accelerated test techniques for micro-circuits: Evaluation of high temperature (473 k - 573 K) accelerated life test techniques as effective microcircuit screening methods

    NASA Technical Reports Server (NTRS)

    Johnson, G. M.

    1976-01-01

    The application of high temperature accelerated test techniques was shown to be an effective method of microcircuit defect screening. Comprehensive microcircuit evaluations and a series of high temperature (473 K to 573 K) life tests demonstrated that a freak or early failure population of surface contaminated devices could be completely screened in thirty two hours of test at an ambient temperature of 523 K. Equivalent screening at 398 K, as prescribed by current Military and NASA specifications, would have required in excess of 1,500 hours of test. All testing was accomplished with a Texas Instruments' 54L10, low power triple-3 input NAND gate manufactured with a titanium- tungsten (Ti-W), Gold (Au) metallization system. A number of design and/or manufacturing anomalies were also noted with the Ti-W, Au metallization system. Further study of the exact nature and cause(s) of these anomalies is recommended prior to the use of microcircuits with Ti-W, Au metallization in long life/high reliability applications. Photomicrographs of tested circuits are included.

  15. Thermal Changes During Guided Flapless Implant Site Preparation: A Comparative Study.

    PubMed

    Sannino, Gianpaolo; Gherlone, Enrico F

    To compare intrabony thermal changes induced by two different protocols for guided implant surgery during the whole drilling procedure. Two protocols for guided implant placement were evaluated in vitro using artificial bone cylinders. The control protocol provided traditional metal sleeves and a standard drilling sequence composed of four cylindrical triflute drills (cutting surface length = 16 mm). The test protocol provided a three-slot polyurethane sleeve and two cylindrical drills (second drill cutting surface length = 4 mm). Forty automated intermittent and graduated osteotomies (depth = 14 mm) were performed under external irrigation. Temperatures were measured in real time by three sensors at different depths (2, 8, and 13 mm). The temperature changes generated by the final drill of each protocol during the shearing and withdrawing processes were recorded as experimental results and subjected to the Student t test. Maximum temperature increases were recorded during the process of withdrawing in both protocols. In the control group, the mean thermal changes were 10.18°C, 8.61°C, and 5.78°C at depths of 2, 8, and 13 mm, respectively. In the test group, the mean thermal changes were 1.44°C, 4.46°C, and 3.58°C at depths of 2, 8, and 13 mm, respectively. The control group revealed statistically significantly (P < .0001) higher thermal changes than the test group, both in the superficial and deeper bone areas. An appropriate irrigation system could be crucial for thermal lowering during a guided implant osteotomy mainly in the coronal and middle third of the implant site. Copious irrigation should be provided during the withdrawing process since greater thermal increases could be expected. Lower temperature increases could be achieved, reducing drill-to-bone contact, ie, cutting surface length, due to short frictional force exposure.

  16. Optimization of outgassing bake-out temperatures and duration of space systems

    NASA Technical Reports Server (NTRS)

    Scialdone, J. J.

    1986-01-01

    Satellite components, e.g., solar panels, were subjected to bake-out tests to model outgassing characteristics and to identify methods for minimizing the bake-out time. Bake-out removes gases and particulates that are trapped at the surfaces of components during manufacture, storage, transit and handling. The tests covered temperatures from 45-85 C for up to 200 hr. Measurements of the mass loss rates were used to model the process as a function of the temperature, time and mass. Data sampling with a quartz crystal microbalance was found to be an effective means for ascertaining the mass loss rate and the activation energy of the release. The tests showed that the duration of the bake-out depends on the amount of material which must be removed and the type of outgassing which occurs. Materials which are resistant to high temperatures can be baked at the highest feasible temperatures to accelerate the outgassing process.

  17. Compression, bend, and tension studies on forged Al67Ti25Cr8 and Al66Ti25Mn(g) L1(2) compounds

    NASA Technical Reports Server (NTRS)

    Kumar, K. S.; Brown, S. A.; Whittenberger, J. D.

    1991-01-01

    Cast, homogenized, and isothermally forged aluminum-rich L1(2) compounds Al67Ti25Cr8 and Al66Ti25Mn(g) were tested in compression as a function of temperature and as a function of strain rate at elevated temperatures (1000 K and 1100 K). Three-point bend specimens were tested as a function of temperature in the range 300 K to 873 K. Strain gages glued on the tensile side of the ambient and 473 K specimens enabled direct strain measurements. A number of 'buttonhead' tensile specimens were electro-discharge machined, fine polished, and tested between ambient and 1073 K for yield strength and ductility as a function of temperature. Scanning electron microscope (SEM) examination of fracture surfaces from both the bend and tensile specimens revealed a gradual transition from transgranular cleavage to intergranular failure with increasing temperature.

  18. Land Surface Temperature Measurements from EOD MODIS Data

    NASA Technical Reports Server (NTRS)

    Wan, Zheng-Ming

    1998-01-01

    We made more tests of the version 2.0 daily Level 2 and Level 3 Land-Surface Temperature (LST) code (PGE 16) jointly with the MODIS Science Data Support Team (SDST). After making minor changes a few times, the PGE16 code has been successfully integrated and tested by MODIS SDST, and recently has passed the inspection at the Goddard Distributed Active Archive Center (DAAC). We conducted a field campaign in the area of Mono Lake, California on March 10, 1998, in order to validate the MODIS LST algorithm in cold and dry conditions. Two MODIS Airborne Simulator (MAS) flights were completed during the field campaign, one before noon, and another around 10 pm PST. The weather condition for the daytime flight was perfect: clear sky, the column water vapor measured by radiosonde around 0.3 cm, and wind speed less than a half meter per second. The quality of MAS data is good for both day and night flights. We analyzed the noise equivalent temperature difference (NE(delta)T) and the calibration accuracy of the seven MAS thermal infrared (TIR) bands, that are used in the MODIS day/night LST algorithm, with daytime MAS data over four flat homogeneous study areas: two on Grant Lake (covered with ice and snow, respectively), one on Mono Lake, and another on the snow field site where we made field measurements. NE(delta)T ranges from 0.2 to 0.6 k for bands 42, 45, 46, and 48. It ranges from 0.8 to 1.1 K for bands 30-32. The day and night MAS data have been used to retrieve surface temperature and emissivities in these bands. A simple method to correct the effect of night thin cirrus has been incorporated into the day/night LST algorithm in dry atmospheric conditions. We compared the retrieved surface temperatures with those measured with TIR spectrometer, radiometers and thermistors in the snow test site, and the retrieved emissivity images with topographic map. The daytime LST values match well within 1 K. The night LST retrieved from MAS data is 3.3 K colder than those from field measurements most likely because of the effect of haze at night. The good agreement among the regional averaged surface temperatures obtained from LST values retrieved at different resolutions increased our confidence in the MODIS day/night LST algorithm.

  19. Evaluation of hydrogen radical treatment for indium surface oxide removal and analysis of re-oxidation behavior

    NASA Astrophysics Data System (ADS)

    Furuyama, Kohta; Yamanaka, Kazuyuki; Higurashi, Eiji; Suga, Tadatomo

    2018-02-01

    Indium is a commonly used metal for sealing, bonding, and soldering due to its good malleability and ductility even at cryogenic temperatures. The effects of hydrogen radical treatment on indium surface oxide removal were evaluated by the spreading ratio test of indium balls (diameter, 300 µm purity, 99.99%). It was found that hydrogen radical treatment longer than 20 s at temperatures higher than 170 °C results in successful surface oxide removal. X-ray photoelectron spectroscopy analysis was carried out to study the re-oxidation behavior after treatment, and it was found that hydrogen radical treatment slows down the re-oxidation of indium compared with surface oxide removal realized by physical bombardment with an argon fast atom beam.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ritchie, IAltenberger, RKNalla, YSano LWagner, RO

    The effect of surface treatment on the stress/life fatigue behavior of a titanium Ti-6Al-4V turbine fan blade alloy is investigated in the regime of 102 to 106 cycles to failure under fully reversed stress-controlled isothermal push-pull loading between 25? and 550?C at a frequency of 5 Hz. Specifically, the fatigue behavior was examined in specimens in the deep-rolled and laser-shock peened surface conditions, and compared to results on samples in the untreated (machined and stress annealed) condition. Although the fatigue resistance of the Ti-6Al-4V alloy declined with increasing test temperature regardless of surface condition, deep-rolling and laser-shock peening surface treatmentsmore » were found to extend the fatigue lives by factors of more than 30 and 5-10, respectively, in the high-cycle and low-cycle fatigue regimes at temperatures as high as 550?C. At these temperatures, compressive residual stresses are essentially relaxed; however, it is the presence of near-surface work hardened layers, with a nanocystalline structure in the case of deep-rolling and dense dislocation tangles in the case of laser-shock peening, which remain fairly stable even after cycling at 450?-550?C, that provide the basis for the beneficial role of mechanical surface treatments on the fatigue strength of Ti-6Al-4V at elevated temperatures.« less

  1. Investigation of critical burning of fuel droplets

    NASA Technical Reports Server (NTRS)

    Allison, C. B.; Canada, G. S.

    1972-01-01

    Fuel droplets were simulated by porous spheres having diameters in the range 0.63 to 1.9 cm and combustion tests were conducted at pressures up to 78 atm in a quiescent cold air environment. Measurements were made of the burning rate and liquid surface temperature during steady combustion. A high pressure flat flame burner apparatus is under development in order to allow testing of high pressure droplet burning in a combustion gas environment. Work was continued on the high pressure strand combustion characteristics of liquid fuels, with the major emphasis on hydrazine. Data was obtained on the burning rate and liquid surface temperatures at pressures in the range 7 to 500 psia. The response of a burning liquid monopropellant to imposed pressure oscillations is being investigated.

  2. Nonequilibrium Ablation of Phenolic Impregnated Carbon Ablator

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Chen, Yih K.; Gokcen, Tahir

    2012-01-01

    In previous work, an equilibrium ablation and thermal response model for Phenolic Impregnated Carbon Ablator was developed. In general, over a wide range of test conditions, model predictions compared well with arcjet data for surface recession, surface temperature, in-depth temperature at multiple thermocouples, and char depth. In this work, additional arcjet tests were conducted at stagnation conditions down to 40 W/sq cm and 1.6 kPa. The new data suggest that nonequilibrium effects become important for ablation predictions at heat flux or pressure below about 80 W/sq cm or 10 kPa, respectively. Modifications to the ablation model to account for nonequilibrium effects are investigated. Predictions of the equilibrium and nonequilibrium models are compared with the arcjet data.

  3. Tracking Internal Temperature and Structural Dynamics during Nail Penetration of Lithium-Ion Cells

    DOE PAGES

    Finegan, Donal P.; Tjaden, Bernhard; M. M. Heenan, Thomas; ...

    2017-10-31

    Mechanical abuse of lithium-ion batteries is widely used during testing to induce thermal runaway, characterize associated risks, and expose cell and module vulnerabilities. But, the repeatability of puncture or 'nail penetration' tests is a key issue as there is often a high degree of variability in the resulting thermal runaway process. Here, the failure mechanisms of 18650 cells punctured at different locations and orientations are characterized with respect to their internal structural degradation, and both their internal and surface temperature, all of which are monitored in real time. The initiation and propagation of thermal runaway is visualized via high-speed synchrotronmore » X-ray radiography at 2000 frames per second, and the surface and internal temperatures are recorded via infrared imaging and a thermocouple embedded in the tip of the penetrating nail, respectively. The influence of the nail, as well as how and where it penetrates the cell, on the initiation and propagation of thermal runaway is described and the suitability of this test method for representing in-field failures is discussed.« less

  4. Laser cleaning of works of art: evaluation of the thermal stress induced by Er:YAG laser

    NASA Astrophysics Data System (ADS)

    De Cruz, A.; Andreotti, A.; Ceccarini, A.; Colombini, M. P.

    2014-06-01

    The Er:YAG laser has proven particularly efficient in cleaning procedures of works of art. The removal of the superficial deposits is achieved through melting, thermal decomposition and evaporation. However, the energy absorbed by vibrational modes is dissipated as heat, increasing the temperature of the surface coating that could cause damage on the object. The aim of this study was to evaluate the temperature increase induced by a Er:YAG MonaLaser (LLC., Orlando, FL, USA). To that purpose, we designed a dedicated device to perform the tests in an inert atmosphere or with a wetting agent, to measure the radiant energy per laser pulse. Tests were carried out both on graphite, which absorbs IR radiation and showed a very intense flash emission, and on different kind of samples representative of materials with different levels of conductivity and thermal diffusivity. Results obtained showed that the temperature increase in the irradiated surface depends on the substrate but never causes the damage of the organic and inorganic material. The use of a solvent as wetting agent has been also tested.

  5. Development and Preliminary Evaluation of a Spray Deposition Sensing System for Improving Pesticide Application.

    PubMed

    Kesterson, Melissa A; Luck, Joe D; Sama, Michael P

    2015-12-17

    An electronic, resistance-based sensor array and data acquisition system was developed to measure spray deposition from hydraulic nozzles. The sensor surface consisted of several parallel tin plated copper traces of varying widths with varying gap widths. The system contained an embedded microprocessor to monitor output voltage corresponding to spray deposition every second. In addition, a wireless module was used to transmit the voltage values to a remote laptop. Tests were conducted in two stages to evaluate the performance of the sensor array in an attempt to quantify the spray deposition. Initial tests utilized manual droplet placement on the sensor surface to determine the effects of temperature and droplet size on voltage output. Secondary testing utilized a spray chamber to pass nozzles at different speeds above the sensor surface to determine if output varied based on different application rates or spray droplet classification. Results from this preliminary analysis indicated that manual droplets of 5 and 10 μL resulted in significantly different values from the sensors while temperature did not consistently affect output. Spray chamber test results indicated that different application rates and droplet sizes could be determined using the sensor array.

  6. Development and Preliminary Evaluation of a Spray Deposition Sensing System for Improving Pesticide Application

    PubMed Central

    Kesterson, Melissa A.; Luck, Joe D.; Sama, Michael P.

    2015-01-01

    An electronic, resistance-based sensor array and data acquisition system was developed to measure spray deposition from hydraulic nozzles. The sensor surface consisted of several parallel tin plated copper traces of varying widths with varying gap widths. The system contained an embedded microprocessor to monitor output voltage corresponding to spray deposition every second. In addition, a wireless module was used to transmit the voltage values to a remote laptop. Tests were conducted in two stages to evaluate the performance of the sensor array in an attempt to quantify the spray deposition. Initial tests utilized manual droplet placement on the sensor surface to determine the effects of temperature and droplet size on voltage output. Secondary testing utilized a spray chamber to pass nozzles at different speeds above the sensor surface to determine if output varied based on different application rates or spray droplet classification. Results from this preliminary analysis indicated that manual droplets of 5 and 10 μL resulted in significantly different values from the sensors while temperature did not consistently affect output. Spray chamber test results indicated that different application rates and droplet sizes could be determined using the sensor array. PMID:26694417

  7. Analysis and Design of the NASA Langley Cryogenic Pressure Box

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Stevens, Jonathan C.; Vause, R. Frank; Winn, Peter M.; Maguire, James F.; Driscoll, Glenn C.; Blackburn, Charles L.; Mason, Brian H.

    1999-01-01

    A cryogenic pressure box was designed and fabricated for use at NASA Langley Research Center (LaRC) to subject 72 in. x 60 in. curved panels to cryogenic temperatures and biaxial tensile loads. The cryogenic pressure box is capable of testing curved panels down to -423 F (20K) with 54 psig maximum pressure on the concave side, and elevated temperatures and atmospheric pressure on the convex surface. The internal surface of the panel is cooled by high pressure helium as that is cooled to -423 F by liquid helium heat exchangers. An array of twelve independently controlled fans circulate the high pressure gaseous helium to provide uniform cooling on the panel surface. The load introduction structure, consisting of four stainless steel load plates and numerous fingers attaching the load plates to the test panel, is designed to introduce loads into the test panel that represent stresses that will he observed in the actual tank structure. The load plates are trace cooled with liquid nitrogen to reduce thermal gradients that may result in bending the load plates, and thus additional stresses in the test panel. The design of the cryogenic systems, load introduction structure, and control system are discussed in this report.

  8. Multispectral pyrometry for surface temperature measurement of oxidized Zircaloy claddings

    NASA Astrophysics Data System (ADS)

    Bouvry, B.; Cheymol, G.; Ramiandrisoa, L.; Javaudin, B.; Gallou, C.; Maskrot, H.; Horny, N.; Duvaut, T.; Destouches, C.; Ferry, L.; Gonnier, C.

    2017-06-01

    Non-contact temperature measurement in a nuclear reactor is still a huge challenge because of the numerous constraints to consider, such as the high temperature, the steam atmosphere, and irradiation. A device is currently developed at CEA to study the nuclear fuel claddings behavior during a Loss-of-Coolant Accident. As a first step of development, we designed and tested an optical pyrometry procedure to measure the surface temperature of nuclear fuel claddings without any contact, under air, in the temperature range 700-850 °C. The temperature of Zircaloy-4 cladding samples was retrieved at various temperature levels. We used Multispectral Radiation Thermometry with the hypothesis of a constant emissivity profile in the spectral ranges 1-1.3 μm and 1.45-1.6 μm. To allow for comparisons, a reference temperature was provided by a thermocouple welded on the cladding surface. Because of thermal losses induced by the presence of the thermocouple, a heat transfer simulation was also performed to estimate the bias. We found a good agreement between the pyrometry measurement and the temperature reference, validating the constant emissivity profile hypothesis used in the MRT estimation. The expanded measurement uncertainty (k = 2) of the temperature obtained by the pyrometry method was ±4 °C, for temperatures between 700 and 850 °C. Emissivity values, between 0.86 and 0.91 were obtained.

  9. Monitoring changes in body surface temperature associated with treadmill exercise in dogs by use of infrared methodology.

    PubMed

    Rizzo, Maria; Arfuso, Francesca; Alberghina, Daniela; Giudice, Elisabetta; Gianesella, Matteo; Piccione, Giuseppe

    2017-10-01

    The aim of this study was to evaluate the influence of moderate treadmill exercise session on body surface and core temperature in dog measured by means of two infrared instruments. Ten Jack Russell Terrier/Miniature Pinscher mixed-breed dogs were subjected to 15min of walking, 10min of trotting and 10min of gallop. At every step, body surface temperature (T surface ) was measured on seven regions (neck, shoulder, ribs, flank, back, internal thigh and eye) using two different methods, a digital infrared camera (ThermaCam P25) and a non-contact infrared thermometer (Infrared Thermometer THM010-VT001). Rectal temperature (T rectal ) and blood samples were collected before (T0) and after exercise (T3). Blood samples were tested for red blood cell (RBC), hemoglobin concentration (Hb) and hematocrit (Hct). A significant effect of exercise in all body surface regions was found, as measured by both infrared methods. The temperature obtained in the eye and the thigh area were higher with respect to the other studied regions throughout the experimental period (P<0.0001). RBC, Hb, Hct and T rectal values were higher at T3 (P<0.05). Statistically significant higher temperature values measured by infrared thermometer was found in neck, shoulder, ribs, flank, back regions respect to the values obtained by digital infrared camera (P<0.0001). The results obtained in this study showed that both internal and surface temperatures are influenced by physical exercise probably due to muscle activity and changes in blood flow in dogs. Both infrared instruments used in this study have proven to be useful in detecting surface temperature variations of specific body regions, however factors including type and color of animal hair coat must be taken into account in the interpretation of data obtained by thermography methodology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Super Clausius-Clapeyron scaling of extreme hourly precipitation and its relation to large-scale atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Lenderink, Geert; Barbero, Renaud; Loriaux, Jessica; Fowler, Hayley

    2017-04-01

    Present-day precipitation-temperature scaling relations indicate that hourly precipitation extremes may have a response to warming exceeding the Clausius-Clapeyron (CC) relation; for The Netherlands the dependency on surface dew point temperature follows two times the CC relation corresponding to 14 % per degree. Our hypothesis - as supported by a simple physical argument presented here - is that this 2CC behaviour arises from the physics of convective clouds. So, we think that this response is due to local feedbacks related to the convective activity, while other large scale atmospheric forcing conditions remain similar except for the higher temperature (approximately uniform warming with height) and absolute humidity (corresponding to the assumption of unchanged relative humidity). To test this hypothesis, we analysed the large-scale atmospheric conditions accompanying summertime afternoon precipitation events using surface observations combined with a regional re-analysis for the data in The Netherlands. Events are precipitation measurements clustered in time and space derived from approximately 30 automatic weather stations. The hourly peak intensities of these events again reveal a 2CC scaling with the surface dew point temperature. The temperature excess of moist updrafts initialized at the surface and the maximum cloud depth are clear functions of surface dew point temperature, confirming the key role of surface humidity on convective activity. Almost no differences in relative humidity and the dry temperature lapse rate were found across the dew point temperature range, supporting our theory that 2CC scaling is mainly due to the response of convection to increases in near surface humidity, while other atmospheric conditions remain similar. Additionally, hourly precipitation extremes are on average accompanied by substantial large-scale upward motions and therefore large-scale moisture convergence, which appears to accelerate with surface dew point. This increase in large-scale moisture convergence appears to be consequence of latent heat release due to the convective activity as estimated from the quasi-geostrophic omega equation. Consequently, most hourly extremes occur in precipitation events with considerable spatial extent. Importantly, this event size appears to increase rapidly at the highest dew point temperature range, suggesting potentially strong impacts of climatic warming.

  11. Study of changes in properties of solar sail materials from radiation exposure

    NASA Technical Reports Server (NTRS)

    Smith, T.

    1977-01-01

    Techniques for monitoring changes in preparation of solar sail materials resulting from space radiation simulation, stressing (e.g., thermal, mechanical) and exposure to terrestrial environments are developed. The properties of interest are: metallic coating deterioration, polymeric film deterioration, interfacial debonding and possible metallic coating diffusion into the polymeric film. Four accelerated tests were devised to simulate the possible degradation processes mentioned above. These four tests are: a thermal shock test to simulate the wide variation of temperature expected in space (260 C to -100 C), a cyclic temperature test to stimulate the 6 minute temperature cycle anticipated in space, a mechanical vibration test to simulate mechanical bonding, folding and handling, and a humidity test to simulate terrestrial environment effects. The techniques for monitoring property changes are: visual and microscopic examination, ellipsometry, surface potential difference (SPD), photoelectron emission (PEE), and water contact angles.

  12. Evaluation of Foaming Performance of Bitumen Modified with the Addition of Surface Active Agent

    NASA Astrophysics Data System (ADS)

    Chomicz-Kowalska, Anna; Mrugała, Justyna; Maciejewski, Krzysztof

    2017-10-01

    The article presents the analysis of the performance of foamed bitumen modified using surface active agents. Although, bitumen foaming permits production of asphalt concrete and other asphalt mix types without using chemical additives in significantly reduced temperatures, the decrease in processing temperatures still impacts the adhesion performance and bitumen coating of aggregates in final mixes. Therefore, in some cases it may be feasible to incorporate adhesion promoters and surface active agents into warm and half-warm mixes with foamed bitumen to increase their service life and resilience. Because of the various nature of the available surface active agents, varying bitumen compatibility and their possible impact on the rheological properties of bitumen, the introduction of surface active agents may significantly alter the bitumen foaming performance. The tests included basic performance tests of bitumen before and after foaming. The two tested bitumen were designated as 35/50 and 50/70 penetration grade binders, which were modified with a surface active agent widely used for improving mixture workability, compactibility and adhesion in a wide range of asphalt mixes and techniques, specifically Warm Mix Asphalt. Alongside to the reference unmodified bitumen, binders with 0.2%, 0.4% and 0.6% surface active agent concentration were tested. The analysis has shown a positive influence of the modifier on the foaming performance of both of the base bitumen increasing their maximum expansion ratio and bitumen foam halflife. In the investigations, it was found that the improvement was dependent on the bitumen type and modifier content. The improved expansion ratio and foam half-life has a positive impact on the aggregate coating and adhesion, which together with the adhesion promoting action of the modifier will have a combined positive effect on the quality of produced final asphalt mixes.

  13. Tensile and Creep Testing of Sanicro 25 Using Miniature Specimens

    PubMed Central

    Dymáček, Petr; Jarý, Milan; Dobeš, Ferdinand; Kloc, Luboš

    2018-01-01

    Tensile and creep properties of new austenitic steel Sanicro 25 at room temperature and operating temperature 700 °C were investigated by testing on miniature specimens. The results were correlated with testing on conventional specimens. Very good agreement of results was obtained, namely in yield and ultimate strength, as well as short-term creep properties. Although the creep rupture time was found to be systematically shorter and creep ductility lower in the miniature test, the minimum creep rates were comparable. The analysis of the fracture surfaces revealed similar ductile fracture morphology for both specimen geometries. One exception was found in a small area near the miniature specimen edge that was cut by electro discharge machining, where an influence of the steel fracture behavior at elevated temperature was identified. PMID:29337867

  14. The Effects of Hot Corrosion Pits on the Fatigue Resistance of a Disk Superalloy

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Telesman, Jack; Hazel, Brian; Mourer, David P.

    2009-01-01

    The effects of hot corrosion pits on low cycle fatigue life and failure modes of the disk superalloy ME3 were investigated. Low cycle fatigue specimens were subjected to hot corrosion exposures producing pits, then tested at low and high temperatures. Fatigue lives and failure initiation points were compared to those of specimens without corrosion pits. Several tests were interrupted to estimate the fraction of fatigue life that fatigue cracks initiated at pits. Corrosion pits significantly reduced fatigue life by 60 to 98 percent. Fatigue cracks initiated at a very small fraction of life for high temperature tests, but initiated at higher fractions in tests at low temperature. Critical pit sizes required to promote fatigue cracking were estimated, based on measurements of pits initiating cracks on fracture surfaces.

  15. Additional experiments on flowability improvements of aviation fuels at low temperatures, volume 2

    NASA Technical Reports Server (NTRS)

    Stockemer, F. J.; Deane, R. L.

    1982-01-01

    An investigation was performed to study flow improver additives and scale-model fuel heating systems for use with aviation hydrocarbon fuel at low temperatures. Test were performed in a facility that simulated the heat transfer and temperature profiles anticipated in wing fuel tanks during flight of long-range commercial aircraft. The results are presented of experiments conducted in a test tank simulating a section of an outer wing integral fuel tank approximately full-scale in height, chilled through heat exchange panels bonded to the upper and lower horizontal surfaces. A separate system heated lubricating oil externally by a controllable electric heater, to transfer heat to fuel pumped from the test tank through an oil-to-fuel heat exchanger, and to recirculate the heated fuel back to the test tank.

  16. What caused the Extreme Storm Season over the North Atlantic and the UK in Winter 2013-14?

    NASA Astrophysics Data System (ADS)

    Leckebusch, G. C.; Wild, S.; Befort, D. J.

    2015-12-01

    In winter 2013-2014, the UK experienced exceptional stormy and rainy weather conditions. Concurrently, surface temperatures over large parts of central North America fell to near record minimum values. One potential driver for these cold conditions is discussed to be the increasingly warm surface waters of the tropical west Pacific. It has been suggested these increasing sea surface temperatures could also be the cause for extreme weather over the British Isles. Testing this hypothesis, we investigate mechanisms linking the tropical west Pacific and European wind storm activity. We focus on two research questions. Firstly: Was a chain of anomaly patterns with origin in the west Pacific present in the winter 2013-14? And secondly: Can centres of action along such a chain be identified with a strong interannual relationship in the recent past? Our results, using primarily ERA-Interim Reanalysis from 1979 to 2014, show an absolute maximum of wind storm frequency over the northeast Atlantic and the British Isles in winter 2013-14. We also find absolute minimum surface temperatures in central North America and increased convective activity over the tropical west Pacific in the same season. The winter 2013-14 was additionally characterized by anomalous warm sea surface temperatures over the subtropical northwest Atlantic. Although the interannual variability of wind storms in the northeast Atlantic and surface temperatures in North America are significantly anti-correlated, we cannot directly relate wind storm frequency with tropical west Pacific anomalies. We thus conclude that the conditions over the Pacific in winter 2013-14 were favourable but not sufficient to explain the record number of wind storms in this season. Instead, we suggest that warm north Atlantic sea surface temperature anomalies in combination with cold surface temperatures over North America played a more important role for generating higher wind storm counts over the northeast Atlantic and the UK.

  17. Development of thermal stratification and destratification scaling concepts. Volume 1: Definition of thermal stratification scaling parameters and experimental investigations

    NASA Technical Reports Server (NTRS)

    Lovrich, T. N.; Schwartz, S. H.

    1975-01-01

    The dimensionless parameters associated with the thermal stratification and pressure history of a heated container of liquid and its vapor were examined. The Modified Grashof number, the Fourier number, and an Interface number were parameterized using a single test liquid, Freon 113. Cylindrical test tanks with spherical dome end caps were built. Blanket heaters covered the tanks and thermocouples monitored the temperatures of the liquid, the ullage, the tank walls, and the foam insulation encapsulating the tank. A centrifuge was used for the 6 inch tank to preserve the same scaling parameter values between it and the larger tanks. Tests were conducted over a range of Gr* values and the degree of scaling was checked by comparing the dimensionless pressures and temperatures for each scaled pair of tests. Results indicate that the bulk liquid temperature, the surface temperature of the liquid, and the tank pressure can be scaled with the three dimensionless parameters. Some deviation was, however, found in the detailed temperature profiles between the scaled pairs of tests.

  18. Examination of the influence of coatings on thin superalloy sections. Volume 2: Detailed procedures and data. [corrosion resistance

    NASA Technical Reports Server (NTRS)

    Kaufman, M.

    1974-01-01

    The effects of an aluminide coating, Codep B-1, and of section thickness were investigated on two cast nickel base superalloys, Rene 80 and Rene 120. Cast section thicknesses ranged from 0.038 cm to 0.15 cm. Simulated engine exposures for 1000 hours at 899C or 982C in a jet fuel burner rig with cyclic air cooling were studied, as were the effects of surface machining before coating and re-machining and re-coating after exposures. The properties evaluated included tensile at room temperature., 871C and 982C, stress rupture at 760C, 871C, 982C and 1093C, high cycle mechanical fatigue at room temperature., and thermal fatigue with a 1093C peak temperature. Thin sections had tensile strengths similar to standard size bars up to 871C and lower strengths at 982C and above, with equivalent elongation, and stress rupture life was lower for thin sections at all test conditions. The aluminide coating lowered tensile and rupture strengths up to 871C, with greater effects on thinner specimens. Elevated temperature exposure lowered tensile and rupture strengths of thinner specimens at the lower test temperatures. Surface machining had little effect on properties, but re-machining after exposure reduced thickness and increased metallurgical changes enough to lower properties at most test conditions.

  19. Measurement of frost characteristics on heat exchanger fins. Part 1: Test facility and instrumentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, L.; Chen, H.; Besant, R.W.

    1999-07-01

    A special test facility was developed to characterize frost growing on heat exchanger fins where the cold surfaces and the air supply conditions were similar to those experienced in freezers, i.e., cold surface temperatures ranging from {minus}35 C to {minus}40 C, air supply temperatures from {minus}10 C to {minus}20 C, and 80% to 100% relative humidity (RH). This test facility included a test section with removable fins to measure the frost height and mass concentration. Frost height on heat exchanger fins was measured using a new automated laser scanning system to measure the height of frost and its distribution onmore » selected fins. The increase in air pressure loss resulting from frost growth on the fins was measured directly in the test loop. The frost mass accumulation distribution was measured for each test using special pre-etched fins that could be easily subdivided and weighed. The total heat rate was measured using a heat flux meter. These frost-measuring instruments were calibrated and the uncertainty of each is stated.« less

  20. Temperature-Sensitive Coating Sensor Based on Hematite

    NASA Technical Reports Server (NTRS)

    Bencic, Timothy J.

    2011-01-01

    A temperature-sensitive coating, based on hematite (iron III oxide), has been developed to measure surface temperature using spectral techniques. The hematite powder is added to a binder that allows the mixture to be painted on the surface of a test specimen. The coating dynamically changes its relative spectral makeup or color with changes in temperature. The color changes from a reddish-brown appearance at room temperature (25 C) to a black-gray appearance at temperatures around 600 C. The color change is reversible and repeatable with temperature cycling from low to high and back to low temperatures. Detection of the spectral changes can be recorded by different sensors, including spectrometers, photodiodes, and cameras. Using a-priori information obtained through calibration experiments in known thermal environments, the color change can then be calibrated to yield accurate quantitative temperature information. Temperature information can be obtained at a point, or over an entire surface, depending on the type of equipment used for data acquisition. Because this innovation uses spectrophotometry principles of operation, rather than the current methods, which use photoluminescence principles, white light can be used for illumination rather than high-intensity short wavelength excitation. The generation of high-intensity white (or potentially filtered long wavelength light) is much easier, and is used more prevalently for photography and video technologies. In outdoor tests, the Sun can be used for short durations as an illumination source as long as the amplitude remains relatively constant. The reflected light is also much higher in intensity than the emitted light from the inefficient current methods. Having a much brighter surface allows a wider array of detection schemes and devices. Because color change is the principle of operation, the development of high-quality, lower-cost digital cameras can be used for detection, as opposed to the high-cost imagers needed for intensity measurements with the current methods. Alternative methods of detection are possible to increase the measurement sensitivity. For example, a monochrome camera can be used with an appropriate filter and a radiometric measurement of normalized intensity change that is proportional to the change coating temperature. Using different spectral regions yields different sensitivities and calibration curves for converting intensity change to temperature units. Alternatively, using a color camera, a ratio of the standard red, green, and blue outputs can be used as a self-referenced change. The blue region (less than 500 nm) does not change nearly as much as the red region (greater than 575 nm), so a ratio of color intensities will yield a calibrated temperature image. The new temperature sensor coating is easy to apply, is inexpensive, can contour complex shape surfaces, and can be a global surface measurement system based on spectrophotometry. The color change, or relative intensity change, at different colors makes the optical detection under white light illumination, and associated interpretation, much easier to measure and interpret than in the detection systems of the current methods.

Top