Sample records for surface temperatures derived

  1. Global comparisons between the modified Pathfinder derived sea surface temperature and skin temperatures from the along-track scanning radiometer on board ERS-2: how close are we getting?

    NASA Technical Reports Server (NTRS)

    Vazquez, J.

    2001-01-01

    Sea Surface Temperatures (SST) as derived from the Pathfinder Sea Surface Temperature Data Set and the Along-Track Scanning Radiometer on-board the European Remote Sensing Satellite provide a unique opportunity for comparing two independent SST data sets.

  2. Comparison between AVHRR surface temperature data and in-situ weather station temperatures over the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Rezvanbehbahani, S.; Csatho, B. M.; Comiso, J. C.; Babonis, G. S.

    2011-12-01

    Advanced Very-High Resolution Radiometer (AVHRR) images have been exhaustively used to measure surface temperature time series of the Greenland Ice sheet. The purpose of this study is to assess the accuracy of monthly average ice sheet surface temperatures, derived from thermal infrared AVHRR satellite imagery on a 6.25 km grid. In-situ temperature data sets are from the Greenland Collection Network (GC-Net). GC-Net stations comprise sensors monitoring air temperature at 1 and 2 meter above the snow surface, gathered at every 60 seconds and monthly averaged to match the AVHRR temporal resolution. Our preliminary results confirm the good agreement between satellite and in-situ temperature measurements reported by previous studies. However, some large discrepancies still exist. While AVHRR provides ice surface temperature, in-situ stations measure air temperatures at different elevations above the snow surface. Since most in-situ data on ice sheets are collected by Automatic Weather Station (AWS) instruments, it is important to characterize the difference between surface and air temperatures. Therefore, we compared and analyzed average monthly AVHRR ice surface temperatures using data collected in 2002. Differences between these temperatures correlate with in-situ temperatures and GC-Net station elevations, with increasing differences at lower elevations and higher temperatures. The Summit Station (3199 m above sea level) and the Swiss Camp (1176 m above sea level) results were compared as high altitude and low altitude stations for 2002, respectively. Our results show that AVHRR derived temperatures were 0.5°K warmer than AWS temperature at the Summit Station, while this difference was 2.8°K in the opposite direction for the Swiss Camp with surface temperatures being lower than air temperatures. The positive bias of 0.5°K at the high altitude Summit Station (surface warmer than air) is within the retrieval error of AVHRR temperatures and might be in part due to atmospheric inversion. The large negative bias of 2.8°K at the low altitude Swiss Camp (surface colder than the air) could be caused by a combination of different factors including local effects such as more windy circumstances above the snow surface and biases introduced by the cloud-masking applied on the AVHRR images. Usually only satellite images acquired in clear-sky conditions are used for deriving monthly AVHRR average temperatures. Since cloud-free days are usually warmer, satellite derived temperatures tend to underestimate the real average temperatures, especially regions with frequent cloud cover, such as Swiss Camp. Therefore, cautions must be exercised while using ice surface temperatures derived from satellite imagery for glaciological applications. Eliminating the cloudy day's' temperature from the in-situ data prior to the comparison with AVHRR derived temperatures will provide a better assessment of AVHRR surface temperature measurement accuracy.

  3. Correcting the spectroscopic surface gravity using transits and asteroseismology. No significant effect on temperatures or metallicities with ARES and MOOG in local thermodynamic equilibrium

    NASA Astrophysics Data System (ADS)

    Mortier, A.; Sousa, S. G.; Adibekyan, V. Zh.; Brandão, I. M.; Santos, N. C.

    2014-12-01

    Context. Precise stellar parameters (effective temperature, surface gravity, metallicity, stellar mass, and radius) are crucial for several reasons, amongst which are the precise characterization of orbiting exoplanets and the correct determination of galactic chemical evolution. The atmospheric parameters are extremely important because all the other stellar parameters depend on them. Using our standard equivalent-width method on high-resolution spectroscopy, good precision can be obtained for the derived effective temperature and metallicity. The surface gravity, however, is usually not well constrained with spectroscopy. Aims: We use two different samples of FGK dwarfs to study the effect of the stellar surface gravity on the precise spectroscopic determination of the other atmospheric parameters. Furthermore, we present a straightforward formula for correcting the spectroscopic surface gravities derived by our method and with our linelists. Methods: Our spectroscopic analysis is based on Kurucz models in local thermodynamic equilibrium, performed with the MOOG code to derive the atmospheric parameters. The surface gravity was either left free or fixed to a predetermined value. The latter is either obtained through a photometric transit light curve or derived using asteroseismology. Results: We find first that, despite some minor trends, the effective temperatures and metallicities for FGK dwarfs derived with the described method and linelists are, in most cases, only affected within the errorbars by using different values for the surface gravity, even for very large differences in surface gravity, so they can be trusted. The temperatures derived with a fixed surface gravity continue to be compatible within 1 sigma with the accurate results of the infrared flux method (IRFM), as is the case for the unconstrained temperatures. Secondly, we find that the spectroscopic surface gravity can easily be corrected to a more accurate value using a linear function with the effective temperature. Tables 1 and 2 are available in electronic form at http://www.aanda.org

  4. Use of GLOBE Observations to Derive a Landsat 8 Split Window Algorithm for Urban Heat Island

    NASA Astrophysics Data System (ADS)

    Fagerstrom, L.; Czajkowski, K. P.

    2017-12-01

    Surface temperature has been studied to investigate the warming of urban climates, also known as urban heat islands, which can impact urban planning, public health, pollution levels, and energy consumption. However, the full potential of remotely sensed images is limited when analyzing land surface temperature due to the daunting task of correcting for atmospheric effects. Landsat 8 has two thermal infrared sensors. With two bands in the infrared region, a split window algorithm (SWA), can be applied to correct for atmospheric effects. This project used in situ surface temperature measurements from NASA's ground observation program, the Global Learning and Observations to Benefit the Environment (GLOBE), to derive the correcting coefficients for use in the SWA. The GLOBE database provided land surface temperature data that coincided with Landsat 8 overpasses. The land surface temperature derived from Landsat 8 SWA can be used to analyze for urban heat island effect.

  5. An Evaluation of Sea Surface Temperature as Measured by the Nimbus 1 High Resolution Infrared Radiometer

    NASA Technical Reports Server (NTRS)

    Allison, Lewis J.; Kennedy, James S.

    1967-01-01

    An analysis of Nimbus I HRIR data over various parts of the world indicated limited success in deriving sea surface temperatures to within 3 to 6 K of aircraft radiation measurements (8- 13 microns) and synoptic-climatological ship sea surface temperature data. The areas studied included the east, west and Gulf coasts of the United States, West Greenland, Nova Scotia, southern Japan, the eastern Mediterranean Sea, Caspian Sea, Persian Gulf, and the Indian Ocean. At night, thin clouds which may fill the radiometer's field of view make it difficult to interpret the absolute values of derived sea surface temperature. During the daytime, the HRIR data is unusable for oceanographic temperature analysis because the contamination by reflected solar radiation mixes with the emitted radiation. Future satellite instrumentation, consisting of a HFUR radiometer (10-11 microns) when used in conjunction with television. data, will delineate cloud free ocean areas and permit the daily derivation of sea surface temperatures from approximately 10 to 30 Percent of the world's oceanic regions.

  6. Synthetic temperature profiles derived from Geosat altimetry: Comparison with air-dropped expendable bathythermograph profiles

    NASA Astrophysics Data System (ADS)

    Carnes, Michael R.; Mitchell, Jim L.; de Witt, P. Webb

    1990-10-01

    Synthetic temperature profiles are computed from altimeter-derived sea surface heights in the Gulf Stream region. The required relationships between surface height (dynamic height at the surface relative to 1000 dbar) and subsurface temperature are provided from regression relationships between dynamic height and amplitudes of empirical orthogonal functions (EOFs) of the vertical structure of temperature derived by de Witt (1987). Relationships were derived for each month of the year from historical temperature and salinity profiles from the region surrounding the Gulf Stream northeast of Cape Hatteras. Sea surface heights are derived using two different geoid estimates, the feature-modeled geoid and the air-dropped expendable bathythermograph (AXBT) geoid, both described by Carnes et al. (1990). The accuracy of the synthetic profiles is assessed by comparison to 21 AXBT profile sections which were taken during three surveys along 12 Geosat ERM ground tracks nearly contemporaneously with Geosat overflights. The primary error statistic considered is the root-mean-square (rms) difference between AXBT and synthetic isotherm depths. The two sources of error are the EOF relationship and the altimeter-derived surface heights. EOF-related and surface height-related errors in synthetic temperature isotherm depth are of comparable magnitude; each translates into about a 60-m rms isotherm depth error, or a combined 80 m to 90 m error for isotherms in the permanent thermocline. EOF-related errors are responsible for the absence of the near-surface warm core of the Gulf Stream and for the reduced volume of Eighteen Degree Water in the upper few hundred meters of (apparently older) cold-core rings in the synthetic profiles. The overall rms difference between surface heights derived from the altimeter and those computed from AXBT profiles is 0.15 dyn m when the feature-modeled geoid is used and 0.19 dyn m when the AXBT geoid is used; the portion attributable to altimeter-derived surface height errors alone is 0.03 dyn m less for each. In most cases, the deeper structure of the Gulf Stream and eddies is reproduced well by vertical sections of synthetic temperature, with largest errors typically in regions of high horizontal gradient such as across rings and the Gulf Stream front.

  7. Estimating the Longwave Radiation Underneath the Forest Canopy in Snow-dominated Setting

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Kumar, M.; Link, T. E.

    2017-12-01

    Forest canopies alter incoming longwave radiation at the land surface, thus influencing snow cover energetics. The snow surface receives longwave radiation from the sky as well as from surrounding vegetation. The longwave radiation from trees is determined by its skin temperature, which shows significant heterogeneity depending on its position and morphometric attributes. Here our goal is to derive an effective tree temperature that can be used to estimate the longwave radiation received by the land surface pixel. To this end, we implement these three steps: 1) derive a relation between tree trunk surface temperature and the incident longwave radiation, shortwave radiation, and air temperature; 2) develop an inverse model to calculate the effective temperature by establishing a relationship between the effective temperature and the actual tree temperature; and 3) estimate the effective temperature using widely measured variables, such as solar radiation and forest density. Data used to derive aforementioned relations were obtained at the University of Idaho Experimental Forest, in northern Idaho. Tree skin temperature, incoming longwave radiation, solar radiation received by the tree surface, and air temperature were measured at an isolated tree and a tree within a homogeneous forest stand. Longwave radiation received by the land surface and the sky view factors were also measured at the same two locations. The calculated effective temperature was then compared with the measured tree trunk surface temperature. Additional longwave radiation measurements with pyrgeometer arrays were conducted under forests with different densities to evaluate the relationship between effective temperature and forest density. Our preliminary results show that when exposed to direct shortwave radiation, the tree surface temperature shows a significant difference from the air temperature. Under cloudy or shaded conditions, the tree surface temperature closely follows the air temperature. The effective tree temperature follows the air temperature in a dense forest stand, although it is significantly larger than the air temperature near the isolated tree. This discrepancy motivates us to explore ways to represent the effective tree temperature for stands with different densities.

  8. Asteroid Impacts, Microbes, and the Cooling of the Atmosphere

    NASA Technical Reports Server (NTRS)

    Oberbeck, Verne R.; Mancinelli, Rocco L.

    1994-01-01

    Earth's surface temperature constrained microbial evolution, according to Schwartzman et al. (1993). Their hypothesis states that the maximal temperature that extant organisms of a given type tolerate is the surface temperature occurring when that type of organism arose. Schwartzman and his colleagues concluded that the temperature changed from 100 C to 50 C between 3.75 billion years ago (BYA) and 1 BYA. These temperatures are consistent with those derived from oxygen isotope ratios in ancient sediments (Karhu and Epstein 1986, Knauth and Lowe 1978). The 100 C surface temperature they derive for 3.75 BYA is also the same as Earth's surface temperature 4.4 BYA (Kosting and Ackerman 1986). In this article, we address the cause of the delay in surface cooling until 3.75 BYA, and we explore the implications for microbial evolution of a high temperature on early Earth. We propose that three effects of the early heavy bombardment of Earth by asteroids and comets, until 3.8 BYA, could have delayed onset of surface cooling.

  9. Variability of AVHRR-Derived Clear-Sky Surface Temperature over the Greenland Ice Sheet.

    NASA Astrophysics Data System (ADS)

    Stroeve, Julienne; Steffen, Konrad

    1998-01-01

    The Advanced Very High Resolution Radiometer is used to derive surface temperatures for one satellite pass under clear skies over the Greenland ice sheet from 1989 through 1993. The results of these temperatures are presented as monthly means, and their spatial and temporal variability are discussed. Accuracy of the dry snow surface temperatures is estimated to be better than 1 K during summer. This error is expected to increase during polar night due to problems in cloud identification. Results indicate the surface temperature of the Greenland ice sheet is strongly dominated by topography, with minimum surface temperatures associated with the high elevation regions. In the summer, maximum surface temperatures occur during July along the western coast and southern tip of the ice sheet. Minimum temperatures are found at the summit during summer and move farther north during polar night. Large interannual variability in surface temperatures occurs during winter associated with katabatic storm events. Summer temperatures show little variation, although 1992 stands out as being colder than the other years. The reason for the lower temperatures during 1992 is believed to be a result of the 1991 eruption of Mount Pinatubo.

  10. Innovative approach to retrieve land surface emissivity and land surface temperature in areas of highly dynamic emissivity changes by using thermal infrared data

    NASA Astrophysics Data System (ADS)

    Heinemann, S.

    2015-12-01

    The land surface temperature (LST) is an extremely significant parameter in order to understand the processes of energetic interactions between Earth's surface and atmosphere. This knowledge is significant for various environmental research questions, particularly with regard to the recent climate change. This study shows an innovative approach to retrieve land surface emissivity (LSE) and LST by using thermal infrared (TIR) data from satellite sensors, such as SEVIRI and AATSR. So far there are no methods to derive LSE/LST particularly in areas of highly dynamic emissivity changes. Therefore especially for regions with large surface temperature amplitude in the diurnal cycle such as bare and uneven soil surfaces but also for regions with seasonal changes in vegetation cover including various surface areas such as grassland, mixed forests or agricultural land different methods were investigated to identify the most appropriate one. The LSE is retrieved by using the day/night Temperature-Independent Spectral Indices (TISI) method, and the Generalised Split-Window (GSW) method is used to retrieve the LST. Nevertheless different GSW algorithms show that equal LSEs lead to large LST differences. Additionally LSE is also measured using a NDVI-based threshold method (NDVITHM) to distinguish between soil, dense vegetation cover and pixel composed of soil and vegetation. The data used for this analysis were derived from MODIS TIR. The analysis is implemented with IDL and an intercomparison is performed to determine the most effective methods. To compensate temperature differences between derived and ground truth data appropriate correction terms by comparing derived LSE/LST data with ground-based measurements are developed. One way to calibrate LST retrievals is by comparing the canopy leaf temperature of conifers derived from TIR data with the surrounding air temperature (e.g. from synoptic stations). Prospectively, the derived LSE/LST data become validated with near infrared data obtained from an UVA with a TIR camera (TIRC) onboard, and also compared with ground-based measurements. This study aims to generate an appropriate method by integrating developed correction terms to eventually obtain a high correlation between all, LSE/LST, TIRC and ground truth data.

  11. Comparison of Near-Surface Air Temperatures and MODIS Ice-Surface Temperatures at Summit, Greenland (2008-2013)

    NASA Technical Reports Server (NTRS)

    Shuman, Christopher A.; Hall, Dorothy K.; DiGirolamo, Nicolo E.; Mefford, Thomas K.; Schnaubelt, Michael J.

    2014-01-01

    We have investigated the stability of the MODerate resolution Imaging Spectroradiometer (MODIS) infrared-derived ice surface temperature (IST) data from Terra for use as a climate quality data record. The availability of climate quality air temperature data (TA) from a NOAA Global Monitoring Division observatory at Greenlands Summit station has enabled this high temporal resolution study of MODIS ISTs. During a 5 year period (July 2008 to August 2013), more than 2500 IST values were compared with 3-minute average TA values derived from the 1-minute data from NOAAs primary 2 m air temperature sensor. These data enabled an expected small offset between air and surface temperatures at this the ice sheet location to be investigated over multiple annual cycles.

  12. Sea surface temperature measurements with AIRS

    NASA Technical Reports Server (NTRS)

    Aumann, H.

    2003-01-01

    The comparison of global sea surface skin temperature derived from cloud-free AIRS super window channel at 2616 cm-1 (sst2616) with the Real-Time Global Sea Surface Temperature for September 2002 shows surprisingly small standard deviation of 0.44K.

  13. Atmospheric effects on the mapping of Martian thermal inertia and thermally derived albedo

    NASA Technical Reports Server (NTRS)

    Hayashi, J. N.; Jakosky, B. M.; Haberle, R. M.

    1994-01-01

    The most widely used thermal inertia data for Mars assumes the atmospheric contribution is constant and equal to 2 percent of the maximum solar insolation. Haberle and Jakosky investigated the effect of including a dusty CO2 atmosphere and sensible heat exchange with the surface on thermal inertia. We recently utilized Haberle and Jakosky's coupled surface-atmosphere model to investigate the effects of such an atmosphere on the thermally derived albedo. The thermally derived albedo is the albedo which, together with the thermal inertia, provides model surface temperatures which best match the observed temperatures. New maps are presented of thermal inertia and thermally derived albedo which incorporate dust opacities derived from IRTM data.

  14. Satellite-derived, melt-season surface temperature of the Greenland Ice Sheet (2000-2005) and its relationship to mass balance

    USGS Publications Warehouse

    Hall, D.K.; Williams, R.S.; Casey, K.A.; DiGirolamo, N.E.; Wan, Z.

    2006-01-01

    Mean, clear-sky surface temperature of the Greenland Ice Sheet was measured for each melt season from 2000 to 2005 using Moderate-Resolution Imaging Spectroradiometer (MODIS)–derived land-surface temperature (LST) data-product maps. During the period of most-active melt, the mean, clear-sky surface temperature of the ice sheet was highest in 2002 (−8.29 ± 5.29°C) and 2005 (−8.29 ± 5.43°C), compared to a 6-year mean of −9.04 ± 5.59°C, in agreement with recent work by other investigators showing unusually extensive melt in 2002 and 2005. Surface-temperature variability shows a correspondence with the dry-snow facies of the ice sheet; a reduction in area of the dry-snow facies would indicate a more-negative mass balance. Surface-temperature variability generally increased during the study period and is most pronounced in the 2005 melt season; this is consistent with surface instability caused by air-temperature fluctuations.

  15. Surface spectral emissivity derived from MODIS data

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Sun-Mack, Sunny; Minnis, Patrick; Smith, William L.; Young, David F.

    2003-04-01

    Surface emissivity is essential for many remote sensing applications including the retrieval of the surface skin temperature from satellite-based infrared measurements, determining thresholds for cloud detection and for estimating the emission of longwave radiation from the surface, an important component of the energy budget of the surface-atmosphere interface. In this paper, data from the Terra MODIS (MODerate-resolution Imaging Spectroradiometer) taken at 3.7, 8.5, 10.8, 12.0 micron are used to simultaneously derive the skin temperature and the surface emissivities at the same wavelengths. The methodology uses separate measurements of the clear-sky temperatures that are determined by the CERES (Clouds and Earth's Radiant Energy System) scene classification in each channel during the daytime and at night. The relationships between the various channels at night are used during the day when solar reflectance affects the 3.7 micron data. A set of simultaneous equations is then solved to derive the emissivities. Global results are derived from MODIS. Numerical weather analyses are used to provide soundings for correcting the observed radiances for atmospheric absorption. These results are verified and will be available for remote sensing applications.

  16. Some Physical and Computational Issues in Land Surface Data Assimilation of Satellite Skin Temperatures

    NASA Astrophysics Data System (ADS)

    Mackaro, Scott M.; McNider, Richard T.; Biazar, Arastoo Pour

    2012-03-01

    Skin temperatures that reflect the radiating temperature of a surface observed by infrared radiometers are one of the most widely available products from polar orbiting and geostationary satellites and the most commonly used satellite data in land surface assimilation. Past work has indicated that a simple land surface scheme with a few key parameters constrained by observations such as skin temperatures may be preferable to complex land use schemes with many unknown parameters. However, a true radiating skin temperature is sometimes not a prognostic variable in weather forecast models. Additionally, recent research has shown that skin temperatures cannot be directly used in surface similarity forms for inferring fluxes. This paper examines issues encountered in using satellite derived skin temperatures to improve surface flux specifications in weather forecast and air quality models. Attention is given to iterations necessary when attempting to nudge the surface energy budget equation to a desired state. Finally, the issue of mathematical operator splitting is examined in which the surface energy budget calculations are split with the atmospheric vertical diffusion calculations. However, the high level of connectivity between the surface and first atmospheric level means that the operator splitting leads to high frequency oscillations. These oscillations may hinder the assimilation of skin temperature derived moisture fluxes.

  17. Surface Temperature Anomalies Derived from Night Time ASTER Data Corrected for Solar and Topographic Effects, Archuleta County

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This map shows areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled "very warm modeled surface temperature" are shown in red on the map. Areas that had temperatures between 1o and 2o were considered ASTER modeled "warm modeled surface temperature" are shown in yellow on the map. This map also includes the locations of shallow temperature survey points, locations of springs or wells with favorable geochemistry, faults, transmission lines, and areas of modeled basement weakness "fairways." Note: 'o' is used in this description to represent lowercase sigma.

  18. Surface Temperature Anomalies Derived from Night Time ASTER Data Corrected for Solar and Topographic Effects, San Miguel County, Colorado

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This map shows areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled "very warm modeled surface temperature" are shown in red on the map. Areas that had temperatures between 1o and 2o were considered ASTER modeled "warm modeled surface temperature" are shown in yellow on the map. This map also includes the locations of shallow temperature survey points, locations of springs or wells with favorable geochemistry, faults, transmission lines, and areas of modeled basement weakness "fairways." Note: 'o' is used in this description to represent lowercase sigma.

  19. Surface Temperature Anomalies Derived from Night Time ASTER Data Corrected for Solar and Topographic Effects, Fremont County, Colorado

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This map shows areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled "very warm modeled surface temperature" are shown in red on the map. Areas that had temperatures between 1o and 2o were considered ASTER modeled "warm modeled surface temperature" are shown in yellow on the map. This map also includes the locations of shallow temperature survey points, locations of springs or wells with favorable geochemistry, faults, transmission lines, and areas of modeled basement weakness "fairways." Note: 'o' is used in this description to represent lowercase sigma.

  20. Surface Temperature Anomalies Derived from Night Time ASTER Data Corrected for Solar and Topographic Effects, Routt County, Colorado

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This map shows areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled "very warm modeled surface temperature" are shown in red on the map. Areas that had temperatures between 1o and 2o were considered ASTER modeled"warm modeled surface temperature" are shown in yellow on the map. This map also includes the locations of shallow temperature survey points, locations of springs or wells with favorable geochemistry, faults, transmission lines, and areas of modeled basement weakness "fairways." Note: 'o' is used in this description to represent lowercase sigma.

  1. Surface Temperature Anomalies Derived from Night Time ASTER Data Corrected for Solar and Topographic Effects, Alamosa and Saguache Counties, Colorado

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This map shows areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled "very warm modeled surface temperature" are shown in red on the map. Areas that had temperatures between 1o and 2o were considered ASTER modeled "warm modeled surface temperature" are shown in yellow on the map. This map also includes the locations of shallow temperature survey points, locations of springs or wells with favorable geochemistry, faults, transmission lines, and areas of modeled basement weakness "fairways." Note: 'o' is used in this description to represent lowercase sigma.

  2. Surface Temperature Anomalies Derived from Night Time ASTER Data Corrected for Solar and Topographic Effects, Dolores County

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This map shows areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled "very warm modeled surface temperature" are shown in red on the map. Areas that had temperatures between 1o and 2o were considered ASTER modeled "warm modeled surface temperature" are shown in yellow on the map. This map also includes the locations of shallow temperature survey points, locations of springs or wells with favorable geochemistry, faults, transmission lines, and areas of modeled basement weakness "fairways." Note: 'o' is used in this description to represent lowercase sigma.

  3. Physical Properties of the MER and Beagle II Landing Sites on Mars

    NASA Astrophysics Data System (ADS)

    Jakosky, B. M.; Pelkey, S. M.; Mellon, M. T.; Putzig, N.; Martinez-Alonso, S.; Murphy, N.; Hynek, B.

    2003-12-01

    The ESA Beagle II and the NASA Mars Exploration Rover spacecraft are scheduled to land on the martian surface in December 2003 and January 2004, respectively. Mission operations and success depends on the physical properties of the surfaces on which they land. Surface structural characteristics such as the abundances of loose, unconsolidated fine material, of fine material that has been cemented into a duricrust, and of rocks affect the ability to safely land and to successfully sample and traverse the surface. Also, physical properties affect surface and atmospheric temperatures, which affect lander and rover functionality. We are in the process of analyzing surface temperature information for these sites, derived from MGS TES and Odyssey THEMIS daytime and nighttime measurements. Our approach is to: (i) remap thermal inertia using TES data at ~3-km resolution, to obtain the most complete coverage possible; (ii) interpret physical properties from TES coverage in conjunction with other remote-sensing data sets; (iii) map infrared brightness using daytime and nighttime THEMIS data at 100-m resolution, and do qualitative analysis of physical properties and processes; and (iv) derive thermal inertia from THEMIS nighttime data in conjunction with daytime albedo measurements derived from TES, THEMIS, and MOC observations. In addition, we will use measured temperatures and derived thermal inertia to predict surface temperatures for the periods of the missions.

  4. Global Validation of MODIS Atmospheric Profile-Derived Near-Surface Air Temperature and Dew Point Estimates

    NASA Astrophysics Data System (ADS)

    Famiglietti, C.; Fisher, J.; Halverson, G. H.

    2017-12-01

    This study validates a method of remote sensing near-surface meteorology that vertically interpolates MODIS atmospheric profiles to surface pressure level. The extraction of air temperature and dew point observations at a two-meter reference height from 2001 to 2014 yields global moderate- to fine-resolution near-surface temperature distributions that are compared to geographically and temporally corresponding measurements from 114 ground meteorological stations distributed worldwide. This analysis is the first robust, large-scale validation of the MODIS-derived near-surface air temperature and dew point estimates, both of which serve as key inputs in models of energy, water, and carbon exchange between the land surface and the atmosphere. Results show strong linear correlations between remotely sensed and in-situ near-surface air temperature measurements (R2 = 0.89), as well as between dew point observations (R2 = 0.77). Performance is relatively uniform across climate zones. The extension of mean climate-wise percent errors to the entire remote sensing dataset allows for the determination of MODIS air temperature and dew point uncertainties on a global scale.

  5. Application of the Coastal and Marine Ecological Classification Standard using Satellite-derived and Modeled Data Products for Pelagic Habitats in the Northern Gulf of Mexico

    EPA Science Inventory

    Satellite-derived data for sea surface temperature, salinity, chlorophyll; euphotic depth; and modeled bottom to surface temperature differences (Delta t) were evaluated to assess the utility of these products as proxies for in situ measurements. The data were used to classify su...

  6. Mapping Surface Temperatures on a Debris-Covered Glacier with an Unmanned Aerial Vehicle

    NASA Astrophysics Data System (ADS)

    Kraaijenbrink, Philip D. A.; Shea, Joseph M.; Litt, Maxime; Steiner, Jakob F.; Treichler, Désirée; Koch, Inka; Immerzeel, Walter W.

    2018-05-01

    A mantel of debris cover often accumulates across the surface of glaciers in active mountain ranges with exceptionally steep terrain, such as the Andes, Himalaya and New Zealand Alps. Such a supraglacial debris layer has a major influence on a glacier's surface energy budget, enhancing radiation absorption and melt when the layer is thin, but insulating the ice when thicker than a few cm. Information on spatially distributed debris surface temperature has the potential to provide insight into the properties of the debris, its effects on the ice below and its influence on the near-surface boundary layer. Here, we deploy an unmanned aerial vehicle (UAV) equipped with a thermal infrared sensor on three separate missions over one day to map changing surface temperatures across the debris-covered Lirung Glacier in the Central Himalaya. We present a methodology to georeference and process the acquired thermal imagery, and correct for emissivity and sensor bias. Derived UAV surface temperatures are compared with distributed simultaneous in situ temperature measurements as well as with Landsat 8 thermal satellite imagery. Results show that the UAV-derived surface temperatures vary greatly both spatially and temporally, with -1.4±1.8, 11.0 ±5.2 and 15.3±4.7 °C for the three flights (mean±sd), respectively. The range in surface temperatures over the glacier during the morning is very large with almost 50 °C. Ground-based measurements are generally in agreement with the UAV imagery, but considerable deviations are present that are likely due to differences in measurement technique and approach, and validation is difficult as a result. The difference in spatial and temporal variability captured by the UAV as compared with much coarser satellite imagery is striking and it shows that satellite derived temperature maps should be interpreted with care. We conclude that UAVs provide a suitable means to acquire surface temperature maps of debris-covered glacier surfaces at high spatial and temporal resolution, but that there are caveats with regard to absolute temperature measurement.

  7. Miocene Surface Temperature Estimates of the Southern Altiplano and Their Implications for Surface Uplift

    NASA Astrophysics Data System (ADS)

    Smith, J. J.; Garzione, C.; Higgins, P.; MacFadden, B.; Auerbach, D.; Croft, D.

    2008-12-01

    Surface temperature estimates derived from stable isotopes can be used to infer tectonic history and subsequent climate change of the Bolivian Altiplano. This study compares surface temperatures calculated from two fossil localities (Cerdas and Quehua) that span middle to late Miocene age in the southern Altiplano. Temperatures were calculated using the approach of Zanazzi et al. (2007) by comparing the stable isotopes of fossil tooth enamel and concurrent fossilized bones. The δ18O of the surface water is derived from fossil tooth enamel that mineralized at a known mammal body temperature. Surface water compositions are then used to calculate the temperature at which fossil bones were diagenetically altered, using the assumption that most alteration of fossil bones occurs within 20 to 50 thousand years of deposition. These surface temperature estimates can be used as a proxy for the amount of surface uplift based on modern temperature lapse rates. The vertical surface temperature gradient observed in the present-day Andes is about 4.66°C/km. Changes in surface elevations may explain large temperature changes reflected throughout the middle to late Miocene. Cerdas and Quehua, at modern elevations of ~3800m, have fossil records that include teeth and diagenetically altered bones that were deposited before and during a period of inferred rapid surface uplift of the northern Altiplano of 2.5 ± 1 km between ~10 to 6 Ma. Both sites have been dated by magnetostratigraphy and by 40Ar/39Ar dating of tuffs: Cerdas dates from 16.358 ± 0.071 to 15.105 ± 0.073 Ma, and Quehua ranges from 12.611 ± 0.034 to 6.844 ± 0.386 Ma. The close proximity and current elevation of Cerdas (21.9°S, 3800m) and Quehua (20.0°S, 3800m) allows for the assumption that their elevations were closely correlated through time. Thus the temperatures and elevation estimates derived from each location are assumed to reflect the larger extent of the southern Altiplano. If analysis of fossil enamel and bone from these locations shows a significant temperature decrease from middle to late Miocene, this would support the hypothesis of rapid regional surface uplift of the Altiplano during the late Miocene due to loss of the dense lower crust and/or lithospheric mantle.

  8. A modified integrated NDVI for improving estimates of terrestrial net primary production

    NASA Technical Reports Server (NTRS)

    Running, Steven W.

    1990-01-01

    Logic is presented for a time-integrated NDVI that is modified by an AVHRR derived surface evaporation resistance factor sigma, and truncated by temperatures that cause plant dormancy, to improve environmental sensitivity. With this approach, NDVI observed during subfreezing temperatures is not integrated. Water stress-related impairment in plant activity is incorporated by reducing the effective NDVI at each integration with sigma, which is derived from the slope of the surface temperature to NDVI ratio for climatically similar zones of the scene. A comparison of surface resistance before and after an extended drought period for a 1200 sq km region of coniferous forest in Montana is presented.

  9. Comparison of Satellite-Derived and In-Situ Observations of Ice and Snow Surface Temperatures over Greenland

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Box, Jason E.; Casey, Kimberly A.; Hook, Simon J.; Shuman, Christopher A.; Steffen, Konrad

    2008-01-01

    The most practical way to get a spatially broad and continuous measurements of the surface temperature in the data-sparse cryosphere is by satellite remote sensing. The uncertainties in satellite-derived LSTs must be understood to develop internally-consistent decade-scale land-surface temperature (LST) records needed for climate studies. In this work we assess satellite-derived "clear-sky" LST products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and LSTs derived from the Enhanced Thematic Mapper Plus (ETM+) over snow and ice on Greenland. When possible, we compare satellite-derived LSTs with in-situ air-temperature observations from Greenland Climate Network (GC-Net) automatic-weather stations (AWS). We find that MODIS, ASTER and ETM+ provide reliable and consistent LSTs under clear-sky conditions and relatively-flat terrain over snow and ice targets over a range of temperatures from -40 to 0 C. The satellite-derived LSTs agree within a relative RMS uncertainty of approx.0.5 C. The good agreement among the LSTs derived from the various satellite instruments is especially notable since different spectral channels and different retrieval algorithms are used to calculate LST from the raw satellite data. The AWS record in-situ data at a "point" while the satellite instruments record data over an area varying in size from: 57 X 57 m (ETM+), 90 X 90 m (ASTER), or to 1 X 1 km (MODIS). Surface topography and other factors contribute to variability of LST within a pixel, thus the AWS measurements may not be representative of the LST of the pixel. Without more information on the local spatial patterns of LST, the AWS LST cannot be considered valid ground truth for the satellite measurements, with RMS uncertainty approx.2 C. Despite the relatively large AWS-derived uncertainty, we find LST data are characterized by high accuracy but have uncertain absolute precision.

  10. Nonlinear dynamic model of a gear-rotor-bearing system considering the flash temperature

    NASA Astrophysics Data System (ADS)

    Gou, Xiangfeng; Zhu, Lingyun; Qi, Changjun

    2017-12-01

    The instantaneous flash temperature is an important factor for gears in service. To investigate the effect of the flash temperature of a tooth surface on the dynamics of the spur gear system, a modified nonlinear dynamic model of a gear-rotor-bearing system is established. The factors such as the contact temperature of the tooth surface, time-varying stiffness, tooth surface friction, backlash, the comprehensive transmission error and so on are considered. The flash temperature of a tooth surface of pinion and gear is formulated according to Blok's flash temperature theory. The mathematical expression of the contact temperature of the tooth surface varied with time is derived and the tooth profile deformation caused by the change of the flash temperature of the tooth surface is calculated. The expression of the mesh stiffness varied with the flash temperature of the tooth surface is derived based on Hertz contact theory. The temperature stiffness is proposed and added to the nonlinear dynamic model of the system. The influence of load on the flash temperature of the tooth surface is analyzed in the parameters plane. The variation of the flash temperature of the tooth surface is studied. The numerical results indicate that the calculated method of the flash temperature of the gear tooth surface is effective and it can reflect the rules for the change of gear meshing temperature and sliding of the gear tooth surface. The effects of frequency, backlash, bearing clearance, comprehensive transmission error and time-varying stiffness on the nonlinear dynamics of the system are analyzed according to the bifurcation diagrams, Top Lyapunov Exponent (TLE) spectrums, phase portraits and Poincaré maps. Some nonlinear phenomena such as periodic bifurcation, grazing bifurcation, quasi-periodic bifurcation, chaos and its routes to chaos are investigated and the critical parameters are identified. The results provide an understanding of the system and serve as a useful reference in designing such systems.

  11. Retrieval of land surface temperature (LST) from landsat TM6 and TIRS data by single channel radiative transfer algorithm using satellite and ground-based inputs

    NASA Astrophysics Data System (ADS)

    Chatterjee, R. S.; Singh, Narendra; Thapa, Shailaja; Sharma, Dravneeta; Kumar, Dheeraj

    2017-06-01

    The present study proposes land surface temperature (LST) retrieval from satellite-based thermal IR data by single channel radiative transfer algorithm using atmospheric correction parameters derived from satellite-based and in-situ data and land surface emissivity (LSE) derived by a hybrid LSE model. For example, atmospheric transmittance (τ) was derived from Terra MODIS spectral radiance in atmospheric window and absorption bands, whereas the atmospheric path radiance and sky radiance were estimated using satellite- and ground-based in-situ solar radiation, geographic location and observation conditions. The hybrid LSE model which is coupled with ground-based emissivity measurements is more versatile than the previous LSE models and yields improved emissivity values by knowledge-based approach. It uses NDVI-based and NDVI Threshold method (NDVITHM) based algorithms and field-measured emissivity values. The model is applicable for dense vegetation cover, mixed vegetation cover, bare earth including coal mining related land surface classes. The study was conducted in a coalfield of India badly affected by coal fire for decades. In a coal fire affected coalfield, LST would provide precise temperature difference between thermally anomalous coal fire pixels and background pixels to facilitate coal fire detection and monitoring. The derived LST products of the present study were compared with radiant temperature images across some of the prominent coal fire locations in the study area by graphical means and by some standard mathematical dispersion coefficients such as coefficient of variation, coefficient of quartile deviation, coefficient of quartile deviation for 3rd quartile vs. maximum temperature, coefficient of mean deviation (about median) indicating significant increase in the temperature difference among the pixels. The average temperature slope between adjacent pixels, which increases the potential of coal fire pixel detection from background pixels, is significantly larger in the derived LST products than the corresponding radiant temperature images.

  12. Global fields of soil moisture and land surface evapotranspiration derived from observed precipitation and surface air temperature

    NASA Technical Reports Server (NTRS)

    Mintz, Y.; Walker, G. K.

    1993-01-01

    The global fields of normal monthly soil moisture and land surface evapotranspiration are derived with a simple water budget model that has precipitation and potential evapotranspiration as inputs. The precipitation is observed and the potential evapotranspiration is derived from the observed surface air temperature with the empirical regression equation of Thornthwaite (1954). It is shown that at locations where the net surface radiation flux has been measured, the potential evapotranspiration given by the Thornthwaite equation is in good agreement with those obtained with the radiation-based formulations of Priestley and Taylor (1972), Penman (1948), and Budyko (1956-1974), and this provides the justification for the use of the Thornthwaite equation. After deriving the global fields of soil moisture and evapotranspiration, the assumption is made that the potential evapotranspiration given by the Thornthwaite equation and by the Priestley-Taylor equation will everywhere be about the same; the inverse of the Priestley-Taylor equation is used to obtain the normal monthly global fields of net surface radiation flux minus ground heat storage. This and the derived evapotranspiration are then used in the equation for energy conservation at the surface of the earth to obtain the global fields of normal monthly sensible heat flux from the land surface to the atmosphere.

  13. The impact of climatic and non-climatic factors on land surface temperature in southwestern Romania

    NASA Astrophysics Data System (ADS)

    Roşca, Cristina Florina; Harpa, Gabriela Victoria; Croitoru, Adina-Eliza; Herbel, Ioana; Imbroane, Alexandru Mircea; Burada, Doina Cristina

    2017-11-01

    Land surface temperature is one of the most important parameters related to global warming. It depends mainly on soil type, discontinuous vegetation cover, or lack of precipitation. The main purpose of this paper is to investigate the relationship between high LST, synoptic conditions and air masses trajectories, vegetation cover, and soil type in one of the driest region in Romania. In order to calculate the land surface temperature and normalized difference vegetation index, five satellite images of LANDSAT missions 5 and 7, covering a period of 26 years (1986-2011), were selected, all of them collected in the month of June. The areas with low vegetation density were derived from normalized difference vegetation index, while soil types have been extracted from Corine Land Cover database. HYSPLIT application was employed to identify the air masses origin based on their backward trajectories for each of the five study cases. Pearson, logarithmic, and quadratic correlations were used to detect the relationships between land surface temperature and observed ground temperatures, as well as between land surface temperature and normalized difference vegetation index. The most important findings are: strong correlation between land surface temperature derived from satellite images and maximum ground temperature recorded in a weather station located in the area, as well as between areas with land surface temperature equal to or higher than 40.0 °C and those with lack of vegetation; the sandy soils are the most prone to high land surface temperature and lack of vegetation, followed by the chernozems and brown soils; extremely severe drought events may occur in the region.

  14. A Methodology for Surface Soil Moisture and Vegetation Optical Depth Retrieval Using the Microwave Polarization Difference Index

    NASA Technical Reports Server (NTRS)

    Owe, Manfred; deJeu, Richard; Walker, Jeffrey; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    A methodology for retrieving surface soil moisture and vegetation optical depth from satellite microwave radiometer data is presented. The procedure is tested with historical 6.6 GHz brightness temperature observations from the Scanning Multichannel Microwave Radiometer over several test sites in Illinois. Results using only nighttime data are presented at this time, due to the greater stability of nighttime surface temperature estimation. The methodology uses a radiative transfer model to solve for surface soil moisture and vegetation optical depth simultaneously using a non-linear iterative optimization procedure. It assumes known constant values for the scattering albedo and roughness. Surface temperature is derived by a procedure using high frequency vertically polarized brightness temperatures. The methodology does not require any field observations of soil moisture or canopy biophysical properties for calibration purposes and is totally independent of wavelength. Results compare well with field observations of soil moisture and satellite-derived vegetation index data from optical sensors.

  15. Sea Temperature Fiducial Reference Measurements for the Validation and Data Gap Bridging of Satellite SST Data Products

    NASA Astrophysics Data System (ADS)

    Wimmer, Werenfrid

    2016-08-01

    The Infrared Sea surface temperature Autonomous Radiometer (ISAR) was developed to provide reference data for the validation of satellite Sea Surface Temperature at the Skin interface (SSTskin) temperature data products, particularly the Advanced Along Track Scanning Radiometer (AATSR). Since March 2004 ISAR instruments have been deployed nearly continuously on ferries crossing the English Channel and the Bay of Biscay, between Portsmouth (UK) and Bilbao/Santander (Spain). The resulting twelve years of ISAR data, including an individual uncertainty estimate for each SST record, are calibrated with traceability to national standards (National Institute of Standards and Technology, USA (NIST) and National Physical Laboratory, Teddigton, UK (NPL), Fiducial Reference Measurements for satellite derived surface temperature product validation (FRM4STS)). They provide a unique independent in situ reference dataset against which to validate satellite derived products. We present results of the AATSR validation, and show the use of ISAR fiducial reference measurements as a common traceable validation data source for both AATSR and Sea and Land Surface Temperature Radiometer (SLSTR). ISAR data were also used to review performance of the Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) Sea Surface Temperature (SST) analysis before and after the demise of ESA Environmental Satellite (Envisat) when AATSR inputs ceased This demonstrates use of the ISAR reference data set for validating the SST climatologies that will bridge the data gap between AATSR and SLSTR.

  16. Comparison of MODIS-derived land surface temperature with air temperature measurements

    NASA Astrophysics Data System (ADS)

    Georgiou, Andreas; Akçit, Nuhcan

    2017-09-01

    Air surface temperature is an important parameter for a wide range of applications such as agriculture, hydrology and climate change studies. Air temperature data is usually obtained from measurements made in meteorological stations, providing only limited information about spatial patterns over wide areas. The use of remote sensing data can help overcome this problem, particularly in areas with low station density, having the potential to improve the estimation of air surface temperature at both regional and global scales. Land Surface (skin) Temperatures (LST) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Terra and Aqua satellite platforms provide spatial estimates of near-surface temperature values. In this study, LST values from MODIS are compared to groundbased near surface air (Tair) measurements obtained from 14 observational stations during 2011 to 2015, covering coastal, mountainous and urban areas over Cyprus. Combining Terra and Aqua LST-8 Day and Night acquisitions into a mean monthly value, provide a large number of LST observations and a better overall agreement with Tair. Comparison between mean monthly LSTs and mean monthly Tair for all sites and all seasons pooled together yields a very high correlation and biases. In addition, the presented high standard deviation can be explained by the influence of surface heterogeneity within MODIS 1km2 grid cells, the presence of undetected clouds and the inherent difference between LST and Tair. However, MODIS LST data proved to be a reliable proxy for surface temperature and mostly for studies requiring temperature reconstruction in areas with lack of observational stations.

  17. Kinetics and the mass transfer mechanism of hydrogen sulfide removal by biochar derived from rice hull.

    PubMed

    Shang, Guofeng; Liu, Liang; Chen, Ping; Shen, Guoqing; Li, Qiwu

    2016-05-01

    The biochar derived from rice hull was evaluated for its abilities to remove hydrogen sulfide (H2S) from gas phase. The surface area and pH of the biochar were compared. The biochar derived from rice hull was evaluated for its abilities to remove hydrogen sulfide (H2S) from gas phase. The surface area and pH of the biochar were compared. The different pyrolysis temperature has great influence on the adsorption of H2S. At the different pyrolysis temperature, the H2S removal efficiency of rice hull-derived biochar was different. The adsorption capacities of biochar were 2.09 mg·g(-1), 2.65 mg·g(-1), 16.30 mg·g(-1), 20.80 mg·g(-1), and 382.70 mg·g(-1), which their pyrolysis temperatures were 100 °C, 200 °C, 300 °C, 400 °C and 500 °C respectively. Based on the Yoon-Nelson model, it analyzed the mass transfer mechanism of hydrogen sulfide adsorption by biochar. The paper focuses on the biochar derived from rice hull-removed hydrogen sulfide (H2S) from gas phase. The surface area and pH of the biochar were compared. The different pyrolysis temperatures have great influence on the adsorption of H2S. At the different pyrolysis temperatures, the H2S removal efficiency of rice hull-derived biohar was different. The adsorption capacities of biochar were 2.09, 2.65, 16.30, 20.80, and 382.70 mg·g(-1), and their pyrolysis temperatures were 100, 200, 300, 400, and 500 °C, respectively. Based on the Yoon-Nelson model, the mass transfer mechanism of hydrogen sulfide adsorption by biochar was analyzed.

  18. A note on the annual cycles of surface heat balance and temperature over a continent. [North America

    NASA Technical Reports Server (NTRS)

    Spar, J.; Crane, G.

    1974-01-01

    A surface heating function, defined as the ratio of the time derivative of the mean annual temperature curve to the surface heat balance, is computed from the annual temperature range and heat balance data for the North American continent. An annual cycle of the surface heat balance is then reconstructed from the surface heating function and the annual temperature curve, and an annual cycle of evaporative plus turbulent heat loss is recomputed from the annual cycles of radiation balance and surface heat balance for the continent. The implications of these results for long range weather forecasting are discussed.

  19. Quantifying the impact of human activity on temperatures in Germany

    NASA Astrophysics Data System (ADS)

    Benz, Susanne A.; Bayer, Peter; Blum, Philipp

    2017-04-01

    Human activity directly influences ambient air, surface and groundwater temperatures. Alterations of surface cover and land use influence the ambient thermal regime causing spatial temperature anomalies, most commonly heat islands. These local temperature anomalies are primarily described within the bounds of large and densely populated urban settlements, where they form so-called urban heat islands (UHI). This study explores the anthropogenic impact not only for selected cities, but for the thermal regime on a countrywide scale, by analyzing mean annual temperature datasets in Germany in three different compartments: measured surface air temperature (SAT), measured groundwater temperature (GWT), and satellite-derived land surface temperature (LST). As a universal parameter to quantify anthropogenic heat anomalies, the anthropogenic heat intensity (AHI) is introduced. It is closely related to the urban heat island intensity, but determined for each pixel (for satellite-derived LST) or measurement point (for SAT and GWT) of a large, even global, dataset individually, regardless of land use and location. Hence, it provides the unique opportunity to a) compare the anthropogenic impact on temperatures in air, surface and subsurface, b) to find main instances of anthropogenic temperature anomalies within the study area, in this case Germany, and c) to study the impact of smaller settlements or industrial sites on temperatures. For all three analyzed temperature datasets, anthropogenic heat intensity grows with increasing nighttime lights and declines with increasing vegetation, whereas population density has only minor effects. While surface anthropogenic heat intensity cannot be linked to specific land cover types in the studied resolution (1 km × 1 km) and classification system, both air and groundwater show increased heat intensities for artificial surfaces. Overall, groundwater temperature appears most vulnerable to human activity; unlike land surface temperature and surface air temperature, groundwater temperatures are elevated in cultivated areas as well. At the surface of Germany, the highest anthropogenic heat intensity with 4.5 K is found at an open-pit lignite mine near Jülich, followed by three large cities (Munich, Düsseldorf and Nuremberg) with annual mean anthropogenic heat intensities > 4 K. Overall, surface anthropogenic heat intensities > 0 K and therefore urban heat islands are observed in communities down to a population of 5,000.

  20. Validation of satellite-retrieved MBL cloud properties using DOE ARM AMF measurements at the Azores

    NASA Astrophysics Data System (ADS)

    Xi, B.; Dong, X.; Minnis, P.; Sun-Mack, S.

    2013-05-01

    Marine Boundary Layer (MBL) cloud properties derived for the Clouds and the Earth's Radiant Energy System (CERES) Project using Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) data are compared with observations taken at the Atmospheric Radiation Measurement (ARM) AMF AZORES site from June 2009 through December 2010. Retrievals from ARM surface-based data were averaged over a 1-hour interval centered at the time of each satellite overpass, and the CERES-MODIS Ed4 cloud properties were averaged within a 30-km x 30-km box centered on the ARM AZORES site. Two datasets were analyzed: all of the single-layered unbroken decks (SL) and those cases without temperature inversions. The CERES-MODIS cloud top/base heights were determined from cloud top/base temperature by using a lapse rate method normalized to the 24-h mean surface air temperature. The preliminary results show: for all SL MBL at daytime, they are, on average, 0.148 km (cloud top) and 0.087 km (cloud base) higher than the ARM radar-lidar observed cloud top and base, respectively. At nighttime, they are 0.446 km (cloud top) and 0.334 km (cloud base). For those cases without temperature inversions, the comparisons are close to their SL counterparts. For cloud temperatures, the MODIS-derived cloud-top and -base temperatures are 1.6 K lower and 0.4 K higher than the surface values with correlations of 0.92 during daytime. At nighttime, the differences are slightly larger and correlations are lower than daytime comparisons. Variations in the height difference are mainly caused by uncertainties in the surface air temperatures and lapse rates. Based on a total of 61 daytime and 87 nighttime samples (ALL SL cases), the temperature inversion layers occur about 72% during daytime and 83% during nighttime. The difference of surface-observed lapse rate and the satellite derived lapse rate can be 1.6 K/km for daytime and 3.3K/km for nighttime. From these lapse rates, we can further analyze the surface air temperature difference that used to calculate these lapse rate, which are ~3K difference between surface-observed and the satellite derived during the daytime and 5.1 K during nighttime. Further studies of the cause of the temperature inversions that may help the cloud heights retrievals by satellite. The preliminary comparisons in MBL microphysical properties have shown that the averaged CERES-MODIS derived MBL cloud-droplet effective radius is only 1.5 μm larger than ARM retrieval (13.2 μm), and LWP values are also very close to each other (112 vs. 124 gm-2) with a relative large difference in optical depth (10.6 vs. 14.4).

  1. Detection of surface temperature from LANDSAT-7/ETM+

    NASA Astrophysics Data System (ADS)

    Suga, Y.; Ogawa, H.; Ohno, K.; Yamada, K.

    2003-12-01

    Hiroshima Institute of Technology (HIT) in Japan has established a LANDSAT-7 Ground Station in cooperation with NASDA for receiving and processing the ETM+ data on March 15 th, 2000 in Japan. The authors performed a verification study on the surface temperature derived from thermal infrared band image data of LANDSAT 7/Enhanced Thematic Mapper Plus (ETM+) for the estimation of temperatures around Hiroshima city and bay area in the western part of Japan as a test site. As to the thermal infrared band, the approximate functions for converting the spectral radiance into the surface temperature are estimated by considering both typical surface temperatures measured by the simultaneous field survey with the satellite observation and the spectral radiance observed by ETM+ band 6 (10.40-12.50μm), and then the estimation of the surface temperature distribution around the test site was examined.In this study, the authors estimated the surface temperature distribution equivalent to the land cover categories around the test site for establishing a guideline of surface temperature detection by LANDSAT7/ETM+ data. As the result of comparison of the truth data and the estimated surface temperature, the correlation coefficients of the approximate function referred to the truth data are from 0.9821 to 0.9994, and the differences are observed from +0.7 to -1.5°C in summer, from +0.4 to -0.9 *C in autumn, from -1.6 to -3.4°C in winter and from +0.5 to -0.5C in spring season respectively. It is clearly found that the estimation of surface temperature based on the approximate functions for converting the spectral radiance into the surface temperature referred to the truth data is improved over the directly estimated surface temperature obtained from satellite data. Finally, the successive seasonal change of surface temperature distribution pattern of the test site is precisely detected with the temperature legend of 0 to 80'C derived from LANDSAT-7/ETM+ band 6 image data for the thermal environment monitoring. 2003 COSPAR. Published by Elsevier Ltd.

  2. Satellite Estimation of Daily Land Surface Water Vapor Pressure Deficit from AMSR- E

    NASA Astrophysics Data System (ADS)

    Jones, L. A.; Kimball, J. S.; McDonald, K. C.; Chan, S. K.; Njoku, E. G.; Oechel, W. C.

    2007-12-01

    Vapor pressure deficit (VPD) is a key variable for monitoring land surface water and energy exchanges, and estimating plant water stress. Multi-frequency day/night brightness temperatures from the Advanced Microwave Scanning Radiometer on EOS Aqua (AMSR-E) were used to estimate daily minimum and average near surface (2 m) air temperatures across a North American boreal-Arctic transect. A simple method for determining daily mean VPD (Pa) from AMSR-E air temperature retrievals was developed and validated against observations across a regional network of eight study sites ranging from boreal grassland and forest to arctic tundra. The method assumes that the dew point and minimum daily air temperatures tend to equilibrate in areas with low night time temperatures and relatively moist conditions. This assumption was tested by comparing the VPD algorithm results derived from site daily temperature observations against results derived from AMSR-E retrieved temperatures alone. An error analysis was conducted to determine the amount of error introduced in VPD estimates given known levels of error in satellite retrieved temperatures. Results indicate that the assumption generally holds for the high latitude study sites except for arid locations in mid-summer. VPD estimates using the method with AMSR-E retrieved temperatures compare favorably with site observations. The method can be applied to land surface temperature retrievals from any sensor with day and night surface or near-surface thermal measurements and shows potential for inferring near-surface wetness conditions where dense vegetation may hinder surface soil moisture retrievals from low-frequency microwave sensors. This work was carried out at The University of Montana, at San Diego State University, and at the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration.

  3. Porosity control in nanoporous carbide-derived carbon by oxidation in air and carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osswald, S.; Portet, C.; Gogotsi, Y., E-mail: gogotsi@drexel.ed

    2009-07-15

    Carbide-derived carbons (CDC) allow a precise control over the pore size through the selection of the carbide precursor and varying of the synthesis conditions. However, their pore volume is limited by the carbide stoichiometry. While activation of carbons derived from various organic precursors has been widely studied, this process may similarly be able to increase the pore volume and specific surface area of CDC. Oxidation of carbide-derived carbon in air and CO{sub 2} at different temperatures and times allows for significant increase in pore volume and specific surface area as well as control over average pore size with subnanometer accuracy.more » The effect of activation and associated changes in the pore volume and surface area on the hydrogen uptake are also discussed. - Graphical abstract: Carbide-derived carbons (CDC) provide great potential for sorption of toxicants and gas storage applications. Activation of CDC in air and CO{sub 2} at different temperatures and times is applied in order to maximize pore volume and specific surface area, and control the average pore size with subnanometer accuracy.« less

  4. Sea Ice Surface Temperature Product from the Moderate Resolution Imaging Spectroradiometer (MODIS)

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Key, Jeffrey R.; Casey, Kimberly A.; Riggs, George A.; Cavalieri, Donald J.

    2003-01-01

    Global sea ice products are produced from the Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS) on board both the Terra and Aqua satellites. Daily sea ice extent and ice-surface temperature (IST) products are available at 1- and 4-km resolution. Validation activities have been undertaken to assess the accuracy of the MODIS IST product at the South Pole station in Antarctica and in the Arctic Ocean using near-surface air-temperature data from a meteorological station and drifting buoys. Results from the study areas show that under clear skies, the MODIS ISTs are very close to those of the near-surface air temperatures with a bias of -1.1 and -1.2 K, and an uncertainty of 1.6 and 1.7 K, respectively. It is shown that the uncertainties would be reduced if the actual temperature of the ice surface were reported instead of the near-surface air temperature. It is not possible to get an accurate IST from MODIS in the presence of even very thin clouds or fog, however using both the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and the MODIS on the Aqua satellite, it may be possible to develop a relationship between MODIS-derived IST and ice temperature derived from the AMSR-E. Since the AMSR-E measurements are generally unaffected by cloud cover, they may be used to complement the MODIS IST measurements.

  5. A Microwave Technique for Mapping Ice Temperature in the Arctic Seasonal Sea Ice Zone

    NASA Technical Reports Server (NTRS)

    St.Germain, Karen M.; Cavalieri, Donald J.

    1997-01-01

    A technique for deriving ice temperature in the Arctic seasonal sea ice zone from passive microwave radiances has been developed. The algorithm operates on brightness temperatures derived from the Special Sensor Microwave/Imager (SSM/I) and uses ice concentration and type from a previously developed thin ice algorithm to estimate the surface emissivity. Comparisons of the microwave derived temperatures with estimates derived from infrared imagery of the Bering Strait yield a correlation coefficient of 0.93 and an RMS difference of 2.1 K when coastal and cloud contaminated pixels are removed. SSM/I temperatures were also compared with a time series of air temperature observations from Gambell on St. Lawrence Island and from Point Barrow, AK weather stations. These comparisons indicate that the relationship between the air temperature and the ice temperature depends on ice type.

  6. Regional studies using sea surface temperature fields derived from satellite infrared measurements

    NASA Technical Reports Server (NTRS)

    Strong, A. E.

    1972-01-01

    Three examples of sea surface temperature distributions over the western Atlantic are presented. These were detected by means of data from the scanning radiometer on the Improved Tiros Operational Satellite 1 (ITOS 1) under relatively clear sky conditions.

  7. Heat flow vs. atmospheric greenhouse on early Mars

    NASA Technical Reports Server (NTRS)

    Fanale, F. P.; Postawko, S. E.

    1991-01-01

    Researchers derived a quantitative relationship between the effectiveness of an atmospheric greenhouse and internal heat flow in producing the morphological differences between earlier and later Martian terrains. The derivation is based on relationships previously derived by other researchers. The reasoning may be stated as follows: the CO2 mean residence time in the Martian atmosphere is almost certainly much shorter than the total time span over which early climate differences are thought to have been sustained. Therefore, recycling of previously degassed CO2 quickly becomes more important than the ongoing supply of juvenile CO2. If so, then the atmospheric CO2 pressure, and thereby the surface temperature, may be approximated mathematically as a function of the total degassed CO2 in the atmosphere plus buried material and the ratio of the atmospheric and regolith mean residence times. The latter ratio can also be expressed as a function of heat flow. Hence, it follows that the surface temperature may be expressed as a function of heat flow and the total amount of available CO2. However, the depth to the water table can simultaneously be expressed as a function of heat flow and the surface temperature (the boundary condition). Therefore, for any given values of total available CO2 and regolith conductivity, there exist coupled independent equations which relate heat flow, surface temperature, and the depth to the water table. This means we can now derive simultaneous values of surface temperature and the depth of the water table for any value of the heat flow. The derived relationship is used to evaluate the relative importance of the atmospheric greenhouse effect and the internal regolith thermal gradient in producing morphological changes for any value of the heat flow, and to assess the absolute importance of each of the values of the heat flow which are thought to be reasonable on independent geophysical grounds.

  8. Infrared Observations of the Orion Capsule During EFT-1 Hypersonic Reentry

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.; Rufer, Shann J.; Schuster, David M.; Mendeck, Gavin F.; Oliver, A. Brandon; Schwartz, Richard J.; Verstynen, Harry A.; Mercer, C. David; Tack, Steven; Ingram, Ben; hide

    2016-01-01

    High-resolution infrared observations of the Orion capsule during its atmospheric reentry on December 5, 2015 were made from a US Navy NP-3D. This aircraft, equipped with a long-range optical sensor system, tracked the capsule from Mach 10 to 7 from a distance of approximately 60 nmi. Global surface temperatures of the capsule's thermal heatshield were derived from near infrared intensity measurements. The global surface temperature measurements complemented onboard instrumentation and were invaluable to the interpretation of the in-depth thermocouple measurements which rely on inverse heat transfer methods and material response codes to infer the desired surface temperature from the sub-surface measurements. The full paper will address the motivations behind the NASA Engineering Safety Center sponsored observation and highlight premission planning processes with an emphasis on aircraft placement, optimal instrument configuration and sensor calibrations. Critical aspects of mission operations coordinated from the NASA Johnson Spaceflight Center and integration with the JSC Flight Test Management Office will be discussed. A summary of the imagery that was obtained and processed to global surface temperature will be presented. At the capsule's point of closest approach relative to the imaging system, the spatial resolution was estimated to be approximately 15-inches per pixel and was sufficient to identify localized temperature increases associated with compression pad support hardware on the heatshield. The full paper will discuss the synergy of the quantitative imagery derived temperature maps with in-situ thermocouple measurements. Comparison of limited onboard surface thermocouple data to the image derived surface temperature will be presented. The two complimentary measurements serve as an example of the effective leveraging of resources to advance the understanding of high Mach number environments associated with an ablated heatshield and provide unique data for the validation of design tools and numerical flight simulation techniques. Collaborative opportunities and technology investments in support of planned observations of NASA's next Orion flight test in 2018 will be explored in the full manuscript.

  9. Constraining the Sensitivity of Amazonian Rainfall with Observations of Surface Temperature

    NASA Astrophysics Data System (ADS)

    Dolman, A. J.; von Randow, C.; de Oliveira, G. S.; Martins, G.; Nobre, C. A.

    2016-12-01

    Earth System models generally do a poor job in predicting Amazonian rainfall, necessitating the need to look for observational constraints on their predictability. We use observed surface temperature and precipitation of the Amazon and a set of 21 CMIP5 models to derive an observational constraint of the sensitivity of rainfall to surface temperature (dP/dT). From first principles such a relation between the surface temperature of the earth and the amount of precipitation through the surface energy balance should exist, particularly in the tropics. When de-trended anomalies in surface temperature and precipitation from a set of datasets are plotted, a clear linear relation between surface temperature and precipitation appears. CMIP5 models show a similar relation with relatively cool models having a larger sensitivity, producing more rainfall. Using the ensemble of models and the observed surface temperature we were able to derive an emerging constraint, reducing the dPdt sensitivity of the CMIP5 model from -0.75 mm day-1 0C-1 (+/- 0.54 SD) to -0.77 mm day-1 0C-1 with a reduced uncertainty of about a factor 5. dPdT from the observation is -0.89 mm day-1 0C-1 . We applied the method to wet and dry season separately noticing that in the wet season we shifted the mean and reduced uncertainty, while in the dry season we very much reduced uncertainty only. The method can be applied to other model simulations such as specific deforestation scenarios to constrain the sensitivity of rainfall to surface temperature. We discuss the implications of the constrained sensitivity for future Amazonian predictions.

  10. Analysis of Summer 2002 Melt Extent on the Greenland Ice Sheet using MODIS and SSM/I Data

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Williams, Richard S., Jr.; Steffen, Konrad; Chien, Y. L.; Foster, James L.; Robinson, David A.; Riggs, George A.

    2004-01-01

    Previous work has shown that the summer of 2002 had the greatest area of snow melt extent on the Greenland ice sheet ever recorded using passive-microwave data. In this paper, we compare the 0 degree isotherm derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument, with Special Sensor Microwave/Imager (SSM/I)-derived melt, at the time of the maximum melt extent in 2002. To validate the MODIS-derived land-surface temperatures (LSTs), we compared the MODIS LSTs with air temperatures from nine stations (using 11 different data points) and found that they agreed to within 2.3 plus or minus 2.09 C, with station temperatures consistently lower than the MODIS LSTs. According to the MODIS LST, the maximum surface melt extended to approximately 2300 m in southern Greenland; while the SSM/I measurements showed that the maximum melt extended to nearly 2700 m in southeastern Greenland. The MODIS and SSM/I data are complementary in providing detailed information about the progression of surface and near-surface melt on the Greenland ice sheet.

  11. Analysis of Summer 2002 Melt Extent on the Greenland Ice Sheet using MODIS and SSM/I Data

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Williams, Richard S.; Steffen, Konrad; Chien, Janet Y. L.

    2004-01-01

    Previous work has shown that the summer of 2002 had the greatest area of snow melt extent on the Greenland ice sheet ever recorded using passive-microwave data. In this paper, we compare the 0 deg. isotherm derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument, with Special Sensor Microwave/Imager (SSM/I)-derived melt, at the time of the maximum melt extent in 2002. To validate the MODIS derived land-surface temperatures (LSTs), we compared the MODIS LSTs with air temperatures from nine stations (using 11 different data points) and found that they agreed to within 2.3 +/- 2.09 C, with station temperatures consistently lower than the MODIS LSTs. According to the MODIS LST, the maximum surface melt extended to approx. 2300 m in southern Greenland; while the SSM/I measurements showed that the maximum melt extended to nearly 2700 m in southeastern Greenland. The MODIS and SSM/I data are complementary in providing detailed information about the progression of surface and near- surface melt on the Greenland ice sheet.

  12. Heat flux estimates over vegetation derived using radiometric surface temperatures and a boundary layer model in comparison with sodar-derived values. M.S. Thesis; [Rock Springs Agricultural Research Center, Pennsylvania

    NASA Technical Reports Server (NTRS)

    Cooper, J. N. (Principal Investigator)

    1981-01-01

    An attempt was made to validate a method that uses radiometric surface temperatures and a boundary layer model to estimate surface energy budgets and characteristics. Surface temperatures from a hand-held radiometer and sodar data were collected simultaneously on seven days between mid-July and mid-October 1980. The comparison of the RDMS and sodar heat fluxes proved disappointing. Free convection conditions, required to produce sodar-derived heat fluxes, were inhibited by a terrain-induced low level inversion. Only three out of seven cases produced meaningful sodar heat fluxes. Of those three cases, one had good agreement and the other two had sodar heat fluxes 15 to 45 w/sq m lower than the RDMS values. Since the RDMS method is relatively untested, it was impossible to conclusively determine its validity from the results. There was evidence that the true heat flux was not underestimated by the RDMS, so it could be concluded that the Bowen ratios over well-watered vegetation were likely to be quite small.

  13. Analysis of summer 2002 melt extent on the Greenland ice sheet using MODIS and SSM/I data

    USGS Publications Warehouse

    Hall, D.K.; Williams, R.S.; Steffen, K.; Chien, Janet Y.L.

    2004-01-01

    Previous work has shown that the summer of 2002 had the greatest area of snow melt extent on the Greenland ice sheet ever recorded using passive-microwave data. In this paper, we compare the 0?? isotherm derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument, with Special Sensor Microwave/Imager (SSM/I)-derived melt, at the time of the maximum melt extent in 2002. To validate the MODIS-derived land-surface temperatures (LSTs), we compared the MODIS LSTs with air temperatures from nine stations (using 11 different data points) and found that they agreed to within 2.3??2.09??C, with station temperatures consistently lower than the MODIS LSTs. According to the MODIS LST, the maximum surface melt extended to ???2300 m in southern Greenland; while the SSM/I measurements showed that the maximum melt extended to nearly 2700 m in southeastern Greenland. The MODIS and SSM/I data are complementary in providing detailed information about the progression of surface and near-surface melt on the Greenland ice sheet.

  14. Analysis of summer 2002 melt extent on the Greenland ice sheet using MODIS and SSM/I data

    USGS Publications Warehouse

    Hall, D. K.; Williams, R.S.; Steffen, K.; Chien, Janet Y.L.

    2004-01-01

    Previous work has shown that the summer of 2002 had the greatest area of snow melt extent on the Greenland ice sheet ever recorded using passive-microwave data. In this paper, we compare the 0deg isotherm derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument, with Special Sensor Microwave/Imager (SSM/I)-derived melt, at the time of the maximum melt extent in 2002. To validate the MODIS-derived land-surface temperatures (LSTs), we compared the MODIS LSTs with air temperatures from nine stations (using 11 different data points) and found that they agreed to within 2.3 plusmn 2.09 degC, with station temperatures consistently lower than the MODIS LSTs. According to the MODIS LST, the maximum surface melt extended to ~2300 m in southern Greenland; while the SSM/I measurements showed that the maximum melt extended to nearly 2700 m in southeastern Greenland. The MODIS and SSM/I data are complementary in providing detailed information about the progression of surface and near-surface melt on the Greenland ice sheet.

  15. Experience of the JPL Exploratory Data Analysis Team at validating HIRS2/MSU cloud parameters

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph; Haskins, Robert D.; Granger-Gallegos, Stephanie; Pursch, Andrew; Delgenio, Anthony

    1992-01-01

    Validation of the HIRS2/MSU cloud parameters began with the cloud/climate feedback problem. The derived effective cloud amount is less sensitive to surface temperature for higher clouds. This occurs because as the cloud elevation increases, the difference between surface temperature and cloud temperature increases, so only a small change in cloud amount is needed to effect a large change in radiance at the detector. By validating the cloud parameters it is meant 'developing a quantitative sense for the physical meaning of the measured parameters', by: (1) identifying the assumptions involved in deriving parameters from the measured radiances, (2) testing the input data and derived parameters for statistical error, sensitivity, and internal consistency, and (3) comparing with similar parameters obtained from other sources using other techniques.

  16. Three-dimensional solutions for the thermal buckling and sensitivity derivatives of temperature-sensitive multilayered angle-ply plates

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Burton, W. S.

    1992-01-01

    Analytic three-dimensional thermoelasticity solutions are presented for the thermal buckling of multilayered angle-ply composite plates with temperature-dependent thermoelastic properties. Both the critical temperatures and the sensitivity derivatives are computed. The sensitivity derivatives measure the sensitivity of the buckling response to variations in the different lamination and material parameters of the plate. The plates are assumed to have rectangular geometry and an antisymmetric lamination with respect to the middle plane. The temperature is assumed to be independent of the surface coordinates, but has an arbitrary symmetric variation through the thickness of the plate. The prebuckling deformations are accounted for. Numerical results are presented, for plates subjected to uniform temperature increase, showing the effects of temperature-dependent material properties on the prebuckling stresses, critical temperatures, and their sensitivity derivatives.

  17. Activated carbon derived from waste coffee grounds for stable methane storage.

    PubMed

    Kemp, K Christian; Baek, Seung Bin; Lee, Wang-Geun; Meyyappan, M; Kim, Kwang S

    2015-09-25

    An activated carbon material derived from waste coffee grounds is shown to be an effective and stable medium for methane storage. The sample activated at 900 °C displays a surface area of 1040.3 m(2) g(-1) and a micropore volume of 0.574 cm(3) g(-1) and exhibits a stable CH4 adsorption capacity of ∼4.2 mmol g(-1) at 3.0 MPa and a temperature range of 298 ± 10 K. The same material exhibits an impressive hydrogen storage capacity of 1.75 wt% as well at 77 K and 100 kPa. Here, we also propose a mechanism for the formation of activated carbon from spent coffee grounds. At low temperatures, the material has two distinct types with low and high surface areas; however, activation at elevated temperatures drives off the low surface area carbon, leaving behind the porous high surface area activated carbon.

  18. Activated carbon derived from waste coffee grounds for stable methane storage

    NASA Astrophysics Data System (ADS)

    Kemp, K. Christian; Baek, Seung Bin; Lee, Wang-Geun; Meyyappan, M.; Kim, Kwang S.

    2015-09-01

    An activated carbon material derived from waste coffee grounds is shown to be an effective and stable medium for methane storage. The sample activated at 900 °C displays a surface area of 1040.3 m2 g-1 and a micropore volume of 0.574 cm3 g-1 and exhibits a stable CH4 adsorption capacity of ˜4.2 mmol g-1 at 3.0 MPa and a temperature range of 298 ± 10 K. The same material exhibits an impressive hydrogen storage capacity of 1.75 wt% as well at 77 K and 100 kPa. Here, we also propose a mechanism for the formation of activated carbon from spent coffee grounds. At low temperatures, the material has two distinct types with low and high surface areas; however, activation at elevated temperatures drives off the low surface area carbon, leaving behind the porous high surface area activated carbon.

  19. Physical Retrieval of Surface Emissivity Spectrum from Hyperspectral Infrared Radiances

    NASA Technical Reports Server (NTRS)

    Li, Jun; Weisz, Elisabeth; Zhou, Daniel K.

    2007-01-01

    Retrieval of temperature, moisture profiles and surface skin temperature from hyperspectral infrared (IR) radiances requires spectral information about the surface emissivity. Using constant or inaccurate surface emissivities typically results in large retrieval errors, particularly over semi-arid or arid areas where the variation in emissivity spectrum is large both spectrally and spatially. In this study, a physically based algorithm has been developed to retrieve a hyperspectral IR emissivity spectrum simultaneously with the temperature and moisture profiles, as well as the surface skin temperature. To make the solution stable and efficient, the hyperspectral emissivity spectrum is represented by eigenvectors, derived from the laboratory measured hyperspectral emissivity database, in the retrieval process. Experience with AIRS (Atmospheric InfraRed Sounder) radiances shows that a simultaneous retrieval of the emissivity spectrum and the sounding improves the surface skin temperature as well as temperature and moisture profiles, particularly in the near surface layer.

  20. Pluto's atmosphere - Models based on refraction, inversion, and vapor-pressure equilibrium

    NASA Technical Reports Server (NTRS)

    Eshleman, Von R.

    1989-01-01

    Viking spacecraft radio-occultation measurements indicate that, irrespective of substantial differences, the polar ice cap regions on Mars have inversions similar to those of Pluto, and may also share vapor pressure equilibrium characteristics at the surface. This temperature-inversion phenomenon occurs in a near-surface boundary layer; surface pressure-temperature may correspond to the vapor-pressure equilibrium with CH4 ice, or the temperature may be slightly higher to match the value derived from IRAS data.

  1. Satellite-Derived Sea Surface Temperature: Workshop 1

    NASA Technical Reports Server (NTRS)

    Njoku, E. G.

    1983-01-01

    Satellite measurements of sea surface temperature are now possible using a variety of sensors. The present accuracies of these methods are in the range of 0.5 to 2.0 C. This makes them potentially useful for synoptic studies of ocean currents and for global monitoring of climatological anomalies. To improve confidence in the satellite data, objective evaluations of sensor accuracies are necessary, and the conditions under which these accuracies degrade need to be understood. The Scanning Multichannel Microwave Radiometer (SMMR) on the Nimbus-7 satellite was studied. Sea surface temperatures, derived from November 1979 SMMR data, were compared globally against ship measurements and climatology, using facilities of the JPL Pilot Ocean Data System. Methods for improved data analysis and plans for additional workshops to incorporate data from other sensors were discussed.

  2. Thermal behavior of horizontally mixed surfaces on Mars

    NASA Astrophysics Data System (ADS)

    Putzig, Nathaniel E.; Mellon, Michael T.

    2007-11-01

    Current methods for deriving thermal inertia from spacecraft observations of planetary brightness temperature generally assume that surface properties are uniform for any given observation or co-located set of observations. As a result of this assumption and the nonlinear relationship between temperature and thermal inertia, sub-pixel horizontal heterogeneity may yield different apparent thermal inertia at different times of day or seasons. We examine the effects of horizontal heterogeneity on Mars by modeling the thermal behavior of various idealized mixed surfaces containing differing proportions of either dust, sand, duricrust, and rock or slope facets at different angles and azimuths. Latitudinal effects on mixed-surface thermal behavior are also investigated. We find large (several 100 J m -2 K -1 s -1/2) diurnal and seasonal variations in apparent thermal inertia even for small (˜10%) admixtures of materials with moderately contrasting thermal properties or slope angles. Together with similar results for layered surfaces [Mellon, M.T., Putzig, N.E., 2007. Lunar Planet. Sci. XXXVIII. Abstract 2184], this work shows that the effects of heterogeneity on the thermal behavior of the martian surface are substantial and may be expected to result in large variations in apparent thermal inertia as derived from spacecraft instruments. While our results caution against the over-interpretation of thermal inertia taken from median or average maps or derived from single temperature measurements, they also suggest the possibility of using a suite of apparent thermal inertia values derived from single observations over a range of times of day and seasons to constrain the heterogeneity of the martian surface.

  3. Areas of Weakly Anomalous to Anomalous Surface Temperature in Chaffee County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Chaffee County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma.

  4. Areas of Weakly Anomalous to Anomalous Surface Temperature in Garfield County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Garfield County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1o and 2o were considered ASTER modeled warm surface exposures (thermal anomalies) Note: 'o' is used in this description to represent lowercase sigma.

  5. Areas of Weakly Anomalous to Anomalous Surface Temperature in Routt County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Routt County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1o and 2o were considered ASTER modeled warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma.

  6. Areas of Weakly Anomalous to Anomalous Surface Temperature in Dolores County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Dolores County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies) Note: 'o' is used in this description to represent lowercase sigma.

  7. Areas of Weakly Anomalous to Anomalous Surface Temperature in Archuleta County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Archuleta County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1o and 2o were considered ASTER modeled warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma.

  8. Menu driven heat treatment control of thin walled bodies

    DOEpatents

    Kothmann, Richard E.; Booth, Jr., Russell R.; Grimm, Noel P.; Batenburg, Abram; Thomas, Vaughn M.

    1992-01-01

    A process for controlling the heating of a thin-walled body according to a predetermined temperature program by means of electrically controllable heaters, comprising: disposing the heaters adjacent one surface of the body such that each heater is in facing relation with a respective zone of the surface; supplying heat-generating power to each heater and monitoring the temperature at each surface zone; and for each zone: deriving (16,18,20), on the basis of the temperature values obtained in the monitoring step, estimated temperature values of the surface at successive time intervals each having a first selected duration; generating (28), on the basis of the estimated temperature values derived in each time interval, representations of the temperature, THSIFUT, which each surface zone will have, based on the level of power presently supplied to each heater, at a future time which is separated from the present time interval by a second selected duration; determining (30) the difference between THSIFUT and the desired temperature, FUTREFTVZL, at the future time which is separated from the present time interval by the second selected duration; providing (52) a representation indicating the power level which sould be supplied to each heater in order to reduce the difference obtained in the determining step; and adjusting the power level supplied to each heater by the supplying step in response to the value of the representation provided in the providing step.

  9. Optical Fiber Chemical Sensor with Sol-Gel Derived Refractive Material as Transducer for High Temperature Gas Sensing in Clean Coal Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiquan Tao

    2006-12-31

    The chemistry of sol-gel derived silica and refractive metal oxide has been systematically studied. Sol-gel processes have been developed for preparing porous silica and semiconductor metal oxide materials. Micelle/reversed micelle techniques have been developed for preparing nanometer sized semiconductor metal oxides and noble metal particles. Techniques for doping metal ions, metal oxides and nanosized metal particles into porous sol-gel material have also been developed. Optical properties of sol-gel derived materials in ambient and high temperature gases have been studied by using fiber optic spectroscopic techniques, such as fiber optic ultraviolet/visible absorption spectrometry, fiber optic near infrared absorption spectrometry and fibermore » optic fluorescence spectrometry. Fiber optic spectrometric techniques have been developed for investigating the optical properties of these sol-gel derived materials prepared as porous optical fibers or as coatings on the surface of silica optical fibers. Optical and electron microscopic techniques have been used to observe the microstructure, such as pore size, pore shape, sensing agent distribution, of sol-gel derived material, as well as the size and morphology of nanometer metal particle doped in sol-gel derived porous silica, the nature of coating of sol-gel derived materials on silica optical fiber surface. In addition, the chemical reactions of metal ion, nanostructured semiconductor metal oxides and nanometer sized metal particles with gas components at room temperature and high temperatures have also been investigated with fiber optic spectrometric methods. Three classes of fiber optic sensors have been developed based on the thorough investigation of sol-gel chemistry and sol-gel derived materials. The first group of fiber optic sensors uses porous silica optical fibers doped with metal ions or metal oxide as transducers for sensing trace NH{sub 3} and H{sub 2}S in high temperature gas samples. The second group of fiber optic sensors uses sol-gel derived porous silica materials doped with nanometer particles of noble metals in the form of fiber or coating for sensing trace H{sub 2}, NH{sub 3} and HCl in gas samples at for applications ambient temperature. The third classes of fiber optic sensors use sol-gel derived semiconductor metal oxide coating on the surface of silica optical fiber as transducers for selectively sensing H{sub 2}, CH{sub 4} and CO at high temperature. In addition, optical fiber temperature sensors use the fluorescence signal of rare-earth metal ions doped porous silica optical fiber or the optical absorption signal of thermochromic metal oxide materials coated on the surface of silica optical fibers have also been developed for monitoring gas temperature of corrosive gas. Based on the results obtained from this project, the principle of fiber optic sensor techniques for monitoring matrix gas components as well as trace components of coal gasification derived syngas has been established. Prototype sensors for sensing trace ammonia and hydrogen sulfide in gasification derived syngas have been built up in our laboratory and have been tested using gas samples with matrix gas composition similar to that of gasification derived fuel gas. Test results illustrated the feasibility of these sensors for applications in IGCC processes.« less

  10. Areas of Anomalous Surface Temperature in Archuleta County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This layer contains areas of anomalous surface temperature in Archuleta County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma

  11. Areas of Anomalous Surface Temperature in Dolores County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This layer contains areas of anomalous surface temperature in Dolores County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma

  12. Areas of Anomalous Surface Temperature in Chaffee County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This layer contains areas of anomalous surface temperature in Chaffee County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma

  13. Areas of Anomalous Surface Temperature in Garfield County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This layer contains areas of anomalous surface temperature in Garfield County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma.

  14. Areas of Anomalous Surface Temperature in Routt County, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This layer contains areas of anomalous surface temperature in Routt County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma.

  15. Ground-based measurement of surface temperature and thermal emissivity

    NASA Technical Reports Server (NTRS)

    Owe, M.; Van De Griend, A. A.

    1994-01-01

    Motorized cable systems for transporting infrared thermometers have been used successfully during several international field campaigns. Systems may be configured with as many as four thermal sensors up to 9 m above the surface, and traverse a 30 m transect. Ground and canopy temperatures are important for solving the surface energy balance. The spatial variability of surface temperature is often great, so that averaged point measurements result in highly inaccurate areal estimates. The cable systems are ideal for quantifying both temporal and spatial variabilities. Thermal emissivity is also necessary for deriving the absolute physical temperature, and measurements may be made with a portable measuring box.

  16. Evaluation of a surface/vegetation parameterization using satellite measurements of surface temperature

    NASA Technical Reports Server (NTRS)

    Taconet, O.; Carlson, T.; Bernard, R.; Vidal-Madjar, D.

    1986-01-01

    Ground measurements of surface-sensible heat flux and soil moisture for a wheat-growing area of Beauce in France were compared with the values derived by inverting two boundary layer models with a surface/vegetation formulation using surface temperature measurements made from NOAA-AVHRR. The results indicated that the trends in the surface heat fluxes and soil moisture observed during the 5 days of the field experiment were effectively captured by the inversion method using the remotely measured radiative temperatures and either of the two boundary layer methods, both of which contain nearly identical vegetation parameterizations described by Taconet et al. (1986). The sensitivity of the results to errors in the initial sounding values or measured surface temperature was tested by varying the initial sounding temperature, dewpoint, and wind speed and the measured surface temperature by amounts corresponding to typical measurement error. In general, the vegetation component was more sensitive to error than the bare soil model.

  17. Real-time aerodynamic heating and surface temperature calculations for hypersonic flight simulation

    NASA Technical Reports Server (NTRS)

    Quinn, Robert D.; Gong, Leslie

    1990-01-01

    A real-time heating algorithm was derived and installed on the Ames Research Center Dryden Flight Research Facility real-time flight simulator. This program can calculate two- and three-dimensional stagnation point surface heating rates and surface temperatures. The two-dimensional calculations can be made with or without leading-edge sweep. In addition, upper and lower surface heating rates and surface temperatures for flat plates, wedges, and cones can be calculated. Laminar or turbulent heating can be calculated, with boundary-layer transition made a function of free-stream Reynolds number and free-stream Mach number. Real-time heating rates and surface temperatures calculated for a generic hypersonic vehicle are presented and compared with more exact values computed by a batch aeroheating program. As these comparisons show, the heating algorithm used on the flight simulator calculates surface heating rates and temperatures well within the accuracy required to evaluate flight profiles for acceptable heating trajectories.

  18. The Effect of Large Scale Climate Oscillations on the Land Surface Phenology of the Northern Polar Regions and Central Asia

    NASA Astrophysics Data System (ADS)

    de Beurs, K.; Henebry, G. M.; Owsley, B.; Sokolik, I. N.

    2016-12-01

    Land surface phenology metrics allow for the summarization of long image time series into a set of annual observations that describe the vegetated growing season. These metrics have been shown to respond to both large scale climatic and anthropogenic impacts. In this study we assemble a time series (2001 - 2014) of Moderate Resolution Imaging Spectroradiometer (MODIS) Nadir BRDF-Adjusted Reflectance data and land surface temperature data at 0.05º spatial resolution. We then derive land surface phenology metrics focusing on the peak of the growing season by fitting quadratic regression models using NDVI and Accumulated Growing Degree-Days (AGDD) derived from land surface temperature. We link the annual information on the peak timing, the thermal time to peak and the maximum of the growing season with five of the most important large scale climate oscillations: NAO, AO, PDO, PNA and ENSO. We demonstrate several significant correlations between the climate oscillations and the land surface phenology peak metrics for a range of different bioclimatic regions in both dryland Central Asia and the northern Polar Regions. We will then link the correlation results with trends derived by the seasonal Mann-Kendall trend detection method applied to several satellite derived vegetation and albedo datasets.

  19. Reevaluation of mid-Pliocene North Atlantic sea surface temperatures

    USGS Publications Warehouse

    Robinson, Marci M.; Dowsett, Harry J.; Dwyer, Gary S.; Lawrence, Kira T.

    2008-01-01

    Multiproxy temperature estimation requires careful attention to biological, chemical, physical, temporal, and calibration differences of each proxy and paleothermometry method. We evaluated mid-Pliocene sea surface temperature (SST) estimates from multiple proxies at Deep Sea Drilling Project Holes 552A, 609B, 607, and 606, transecting the North Atlantic Drift. SST estimates derived from faunal assemblages, foraminifer Mg/Ca, and alkenone unsaturation indices showed strong agreement at Holes 552A, 607, and 606 once differences in calibration, depth, and seasonality were addressed. Abundant extinct species and/or an unrecognized productivity signal in the faunal assemblage at Hole 609B resulted in exaggerated faunal-based SST estimates but did not affect alkenone-derived or Mg/Ca–derived estimates. Multiproxy mid-Pliocene North Atlantic SST estimates corroborate previous studies documenting high-latitude mid-Pliocene warmth and refine previous faunal-based estimates affected by environmental factors other than temperature. Multiproxy investigations will aid SST estimation in high-latitude areas sensitive to climate change and currently underrepresented in SST reconstructions.

  20. Thermal infrared data of active lava surfaces using a newly-developed camera system

    NASA Astrophysics Data System (ADS)

    Thompson, J. O.; Ramsey, M. S.

    2017-12-01

    Our ability to acquire accurate data during lava flow emplacement greatly improves models designed to predict their dynamics and down-flow hazard potential. For example, better constraint on the physical property of emissivity as a lava cools improves the accuracy of the derived temperature, a critical parameter for flow models that estimate at-vent eruption rate, flow length, and distribution. Thermal infrared (TIR) data are increasingly used as a tool to determine eruption styles and cooling regimes by measuring temperatures at high temporal resolutions. Factors that control the accurate measurement of surface temperatures include both material properties (e.g., emissivity and surface texture) as well as external factors (e.g., camera geometry and the intervening atmosphere). We present a newly-developed, field-portable miniature multispectral thermal infrared camera (MMT-Cam) to measure both temperature and emissivity of basaltic lava surfaces at up to 7 Hz. The MMT-Cam acquires emitted radiance in six wavelength channels in addition to the broadband temperature. The instrument was laboratory calibrated for systematic errors and fully field tested at the Overlook Crater lava lake (Kilauea, HI) in January 2017. The data show that the major emissivity absorption feature (around 8.5 to 9.0 µm) transitions to higher wavelengths and the depth of the feature decreases as a lava surface cools, forming a progressively thicker crust. This transition occurs over a temperature range of 758 to 518 K. Constraining the relationship between this spectral change and temperature derived from this data will provide more accurate temperatures and therefore, more accurate modeling results. This is the first time that emissivity and its link to temperature has been measured in situ on active lava surfaces, which will improve input parameters of flow propagation models and possibly improve flow forecasting.

  1. Global climatology and variability of potential new production estimated from remote sensing of sea-surface temperature

    NASA Technical Reports Server (NTRS)

    Dugdale, Richard C.; Wilkerson, Frances P.

    1995-01-01

    During this project we have collected numerous shipboard data-bases of oceanic nitrate and silicate versus temperature for both equatorial and coastal upwelling regions. These cruises all have accompanying N-15 measurements of new production. The inverse relationships between nutrients and temperatures have been determined and are being used to obtain surface nutrient fields from sea surface temperatures measured remotely by satellite borne sensors- i.e. AVHRR data from NOAA satellites contained in the MCSST data set for the world ocean provided by the University of Miami. The images and data derived from space in this way show the strong seasonal fluctuations and interannual el Nino fluctuations of the nitrate field. the nitrate data has been used to make estimates of new production for the equatorial pacific which are compared with shipboard measurements when available. The importance of silicate as a nutrient driving new production and the ratio of nitrate to silicate has been discovered to be crucial to better understand the causes of new production variability, so we have added these parameters to our study and have begun to make estimates of these for the equatorial Pacific, derived from the weekly averaged sea surface temperatures (SSTs).

  2. Processing Near-Infrared Imagery of the Orion Heatshield During EFT-1 Hypersonic Reentry

    NASA Technical Reports Server (NTRS)

    Spisz, Thomas S.; Taylor, Jeff C.; Gibson, David M.; Kennerly, Steve; Osei-Wusu, Kwame; Horvath, Thomas J.; Schwartz, Richard J.; Tack, Steven; Bush, Brett C.; Oliver, A. Brandon

    2016-01-01

    The Scientifically Calibrated In-Flight Imagery (SCIFLI) team captured high-resolution, calibrated, near-infrared imagery of the Orion capsule during atmospheric reentry of the EFT-1 mission. A US Navy NP-3D aircraft equipped with a multi-band optical sensor package, referred to as Cast Glance, acquired imagery of the Orion capsule's heatshield during a period when Orion was slowing from approximately Mach 10 to Mach 7. The line-of-sight distance ranged from approximately 65 to 40 nmi. Global surface temperatures of the capsule's thermal heatshield derived from the near-infrared intensity measurements complemented the in-depth (embedded) thermocouple measurements. Moreover, these derived surface temperatures are essential to the assessment of the thermocouples' reliance on inverse heat transfer methods and material response codes to infer the surface temperature from the in-depth measurements. The paper describes the image processing challenges associated with a manually-tracked, high-angular rate air-to-air observation. Issues included management of significant frame-to-frame motions due to both tracking jerk and jitter as well as distortions due to atmospheric effects. Corrections for changing sky backgrounds (including some cirrus clouds), atmospheric attenuation, and target orientations and ranges also had to be made. The image processing goal is to reduce the detrimental effects due to motion (both sensor and capsule), vibration (jitter), and atmospherics for image quality improvement, without compromising the quantitative integrity of the data, especially local intensity (temperature) variations. The paper will detail the approach of selecting and utilizing only the highest quality images, registering several co-temporal image frames to a single image frame to the extent frame-to-frame distortions would allow, and then co-adding the registered frames to improve image quality and reduce noise. Using preflight calibration data, the registered and averaged infrared intensity images were converted to surface temperatures on the Orion capsule's heatshield. Temperature uncertainties will be discussed relative to uncertainties of surface emissivity and atmospheric transmission loss. Comparison of limited onboard surface thermocouple data to the image derived surface temperature will be presented.

  3. Analysis of the surface heat balance over the world ocean

    NASA Technical Reports Server (NTRS)

    Esbenson, S. K.

    1981-01-01

    The net surface heat fluxes over the global ocean for all calendar months were evaluated. To obtain a formula in the form Qs = Q2(T*A - Ts), where Qs is the net surface heat flux, Ts is the sea surface temperature, T*A is the apparent atmospheric equilibrium temperature, and Q2 is the proportionality constant. Here T*A and Q2, derived from the original heat flux formulas, are functions of the surface meteorological parameters (e.g., surface wind speed, air temperature, dew point, etc.) and the surface radiation parameters. This formulation of the net surface heat flux together with climatological atmospheric parameters provides a realistic and computationally efficient upper boundary condition for oceanic climate modeling.

  4. An evaluation of the impact of biomass burning smoke aerosol particles on near surface temperature forecasts

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Reid, J. S.; Benedetti, A.; Christensen, M.; Marquis, J. W.

    2016-12-01

    Currently, with the improvements in aerosol forecast accuracies through aerosol data assimilation, the community is unavoidably facing a scientific question: is it worth the computational time to insert real-time aerosol analyses into numerical models for weather forecasts? In this study, by analyzing a significant biomass burning aerosol event that occurred in 2015 over the Northern part of the Central US, the impact of aerosol particles on near-surface temperature forecasts is evaluated. The aerosol direct surface cooling efficiency, which links surface temperature changes to aerosol loading, is derived from observational-based data for the first time. The potential of including real-time aerosol analyses into weather forecasting models for near surface temperature forecasts is also investigated.

  5. On estimating total daily evapotranspiration from remote surface temperature measurements

    NASA Technical Reports Server (NTRS)

    Carlson, Toby N.; Buffum, Martha J.

    1989-01-01

    A method for calculating daily evapotranspiration from the daily surface energy budget using remotely sensed surface temperature and several meteorological variables is presented. Vaules of the coefficients are determined from simulations with a one-dimensional boundary layer model with vegetation cover. Model constants are obtained for vegetation and bare soil at two air temperature and wind speed levels over a range of surface roughness and wind speeds. A different means of estimating the daily evapotranspiration based on the time rate of increase of surface temperature during the morning is also considered. Both the equations using our model-derived constants and field measurements are evaluated, and a discussion of sources of error in the use of the formulation is given.

  6. The influence of surface versus free-air decoupling on temperature trend patterns in the western United States

    Treesearch

    N.C. Pepin; C. Daly; J. Lundquist

    2011-01-01

    We analyzed temperature trends from 460 GHCNv2 weather stations in the western United States for 1948¨C2006 to determine whether the extent of decoupling of surface temperatures from the free atmosphere influences past change. At each location we derived monthly indices representative of anticyclonicity using NCEP/NCAR 700 hPa reanalysis pressure fields. The number of...

  7. Areas of Anomalous Surface Temperature in Alamosa and Saguache Counties, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This layer contains areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies) Note: 'o' is used in this description to represent lowercase sigma.

  8. Probabilistic Thermal Analysis During Mars Reconnaissance Orbiter Aerobraking

    NASA Technical Reports Server (NTRS)

    Dec, John A.

    2007-01-01

    A method for performing a probabilistic thermal analysis during aerobraking has been developed. The analysis is performed on the Mars Reconnaissance Orbiter solar array during aerobraking. The methodology makes use of a response surface model derived from a more complex finite element thermal model of the solar array. The response surface is a quadratic equation which calculates the peak temperature for a given orbit drag pass at a specific location on the solar panel. Five different response surface equations are used, one of which predicts the overall maximum solar panel temperature, and the remaining four predict the temperatures of the solar panel thermal sensors. The variables used to define the response surface can be characterized as either environmental, material property, or modeling variables. Response surface variables are statistically varied in a Monte Carlo simulation. The Monte Carlo simulation produces mean temperatures and 3 sigma bounds as well as the probability of exceeding the designated flight allowable temperature for a given orbit. Response surface temperature predictions are compared with the Mars Reconnaissance Orbiter flight temperature data.

  9. Titan's Thermal Emission: Analysis Of Near-surface Temperatures Via Mid-infrared Measurements

    NASA Astrophysics Data System (ADS)

    Sadino, Jeff; Parrish, P. D.; Orton, G. S.; Burl, M. C.; Davies, A. G.; Irwin, P. G.; Teanby, N. A.; Flasar, F. M.; Cassini/CIRS investigation Team

    2006-09-01

    After Courtin and Kim 2002, tropospheric and near-surface temperatures of Titan may be obtained by examining mid-infrared radiances at 300 and 500 wavenumbers (33 and 20 microns). Here, the measured radiance is (respectively) sensitive to the temperature near the tropopause and sufficient to discern variations in surface topography and emissivity. Our search, as a function of location and time, compares brightness temperatures derived from measurements by the Cassini Composite Infrared Spectrometer (CIRS) and variations of radiance as a function of Titan's rotation derived from ground-based measurements at NASA's Infrared Telescope Facility. Although the variation of the tropopause and zonal near-surface temperatures are fairly homogenous, similar to Courtin and Kim 2002, the meridional distribution of near-surface temperatures varies symmetrically from Equator to pole. While no significant thermal variations suggestive of localized hotspots have yet been observed, such diversity is suggestive of active surface geology, in support of other optical and near-infrared investigations. Although the spatial coverage of the CIRS dataset is severely limited, the approximately 10 degrees field of view (450km at the Equator) is de-convolved somewhat to extract meaningful, sub-pixel maps of Titan's surface. Courtin, R. and Kim, S. (2002). Planet. and Sp. Sci., 50: 309-321. The acquisition of data described here was accomplished through the coordinated effort of Cassini-Huygens project staff, Deep Space Network personnel and the CIRS instrument and science-planning teams with funding provided by the National Research Council, NASA/JPL and NASA/GSFC and the UK Particle Physics and Astronomy council.

  10. Hyperspectrally-Resolved Surface Emissivity Derived Under Optically Thin Clouds

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, L. Larrabee; Yang, Ping

    2010-01-01

    Surface spectral emissivity derived from current and future satellites can and will reveal critical information about the Earth s ecosystem and land surface type properties, which can be utilized as a means of long-term monitoring of global environment and climate change. Hyperspectrally-resolved surface emissivities are derived with an algorithm utilizes a combined fast radiative transfer model (RTM) with a molecular RTM and a cloud RTM accounting for both atmospheric absorption and cloud absorption/scattering. Clouds are automatically detected and cloud microphysical parameters are retrieved; and emissivity is retrieved under clear and optically thin cloud conditions. This technique separates surface emissivity from skin temperature by representing the emissivity spectrum with eigenvectors derived from a laboratory measured emissivity database; in other words, using the constraint as a means for the emissivity to vary smoothly across atmospheric absorption lines. Here we present the emissivity derived under optically thin clouds in comparison with that under clear conditions.

  11. Method for identifying anomalous terrestrial heat flows

    DOEpatents

    Del Grande, Nancy Kerr

    1977-01-25

    A method for locating and mapping the magnitude and extent of terrestrial heat-flow anomalies from 5 to 50 times average with a tenfold improved sensitivity over orthodox applications of aerial temperature-sensing surveys as used for geothermal reconnaissance. The method remotely senses surface temperature anomalies such as occur from geothermal resources or oxidizing ore bodies by: measuring the spectral, spatial, statistical, thermal, and temporal features characterizing infrared radiation emitted by natural terrestrial surfaces; deriving from these measurements the true surface temperature with uncertainties as small as 0.05 to 0.5 K; removing effects related to natural temperature variations of topographic, hydrologic, or meteoric origin, the surface composition, detector noise, and atmospheric conditions; factoring out the ambient normal-surface temperature for non-thermally enhanced areas surveyed under otherwise identical environmental conditions; distinguishing significant residual temperature enhancements characteristic of anomalous heat flows and mapping the extent and magnitude of anomalous heat flows where they occur.

  12. Effect of Temperature on the Physico-Chemical Properties of a Room Temperature Ionic Liquid (1-Methyl-3-pentylimidazolium Hexafluorophosphate) with Polyethylene Glycol Oligomer

    PubMed Central

    Wu, Tzi-Yi; Chen, Bor-Kuan; Hao, Lin; Peng, Yu-Chun; Sun, I-Wen

    2011-01-01

    A systematic study of the effect of composition on the thermo-physical properties of the binary mixtures of 1-methyl-3-pentyl imidazolium hexafluorophosphate [MPI][PF6] with poly(ethylene glycol) (PEG) [Mw = 400] is presented. The excess molar volume, refractive index deviation, viscosity deviation, and surface tension deviation values were calculated from these experimental density, ρ, refractive index, n, viscosity, η, and surface tension, γ, over the whole concentration range, respectively. The excess molar volumes are negative and continue to become increasingly negative with increasing temperature; whereas the viscosity and surface tension deviation are negative and become less negative with increasing temperature. The surface thermodynamic functions, such as surface entropy, enthalpy, as well as standard molar entropy, Parachor, and molar enthalpy of vaporization for pure ionic liquid, have been derived from the temperature dependence of the surface tension values. PMID:21731460

  13. Mapping of the Resistance of a Superconducting Transition Edge Sensor as a Function of Temperature, Current, and Applied Magnetic Field

    NASA Technical Reports Server (NTRS)

    Zhang, Shou; Eckart, Megan E.; Jaeckel, Felix; Kripps, Kari L.; McCammon, Dan; Zhou, Yu; Morgan, Kelsey M.

    2017-01-01

    We have measured the resistance R (T, I, B(sub ext) of a superconducting transition edge sensor over the entire transition region on a fine scale, producing a four-dimensional map of the resistance surface. The dimensionless temperature and current sensitivities (alpha equivalence partial derivative log R/partial derivative log T|(sub I) and beta equivalence partial derivative log R/partial derivative log I|(sub T) of the TES resistance have been determined at each point. alpha and beta are closely related to the sensor performance, but show a great deal of complex, large amplitude fine structure over large portions of the surface that is sensitive to the applied magnetic field. We discuss the relation of this structure to the presence of Josephson weak link fringes.

  14. Geothermal energy for greenhouses

    Treesearch

    Jacky Friedman

    2009-01-01

    Geothermal energy is heat (thermal) derived from the earth (geo). The heat flows along a geothermal gradient from the center of the earth to the surface. Most of the heat arrives at the surface of the earth at temperatures too low for much use. However, plate tectonics ensure that some of the heat is concentrated at temperatures and depths favorable for its commercial...

  15. Global Surface Temperature Change and Uncertainties Since 1861

    NASA Technical Reports Server (NTRS)

    Shen, Samuel S. P.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    The objective of this talk is to analyze the warming trend and its uncertainties of the global and hemi-spheric surface temperatures. By the method of statistical optimal averaging scheme, the land surface air temperature and sea surface temperature observational data are used to compute the spatial average annual mean surface air temperature. The optimal averaging method is derived from the minimization of the mean square error between the true and estimated averages and uses the empirical orthogonal functions. The method can accurately estimate the errors of the spatial average due to observational gaps and random measurement errors. In addition, quantified are three independent uncertainty factors: urbanization, change of the in situ observational practices and sea surface temperature data corrections. Based on these uncertainties, the best linear fit to annual global surface temperature gives an increase of 0.61 +/- 0.16 C between 1861 and 2000. This lecture will also touch the topics on the impact of global change on nature and environment. as well as the latest assessment methods for the attributions of global change.

  16. Titan Surface Temperatures as Measured by Cassini CIRS

    NASA Technical Reports Server (NTRS)

    Jennings, Donald E.; Flasar, F.M.; Kunde, V.G.; Nixon, C.A.; Romani, P.N.; Samuelson, R.E.; Coustenis, A.; Courtin, R.

    2009-01-01

    Thermal radiation from the surface of Titan reaches space through a spectral window of low opacity at 19-microns wavelength. This radiance gives a measure of the brightness temperature of the surface. Composite Infrared Spectrometer' (CIRS) observations from Cassini during its first four years at Saturn have permitted latitude mapping of zonally averaged surface temperatures. The measurements are corrected for atmospheric opacity using the dependence of radiance on emission angle. With the more complete latitude coverage and much larger dataset of CIRS we have improved upon the original results from Voyager IRIS. CIRS measures the equatorial surface brightness temperature to be 93.7+/-0.6 K, the same as the temperature measured at the Huygens landing site. The surface brightness temperature decreases by 2 K toward the south pole and by 3 K toward the north pole. The drop in surface temperature between equator and north pole implies a 50% decrease in methane saturation vapor pressure and relative humidity; this may help explain the large northern lakes. The H2 mole fraction is derived as a by-product of our analysis and agrees with previous results. Evidence of seasonal variation in surface and atmospheric temperatures is emerging from CIRS measurements over the Cassini mission.

  17. Influence of Lake Stratification Onset on Summer Surface Water Temperature

    NASA Astrophysics Data System (ADS)

    Woolway, R. I.; Merchant, C. J.

    2016-12-01

    Summer lake surface water temperatures (LSSWT) are sensitive to climatic warming and have previously been shown to increase at a faster rate than surface air temperatures in some lakes, as a response to thermal stratification occurring earlier in spring. We explore this relationship using a combination of in situ, satellite derived, and simulated temperatures from 144 lakes. Our results demonstrate that LSSWTs of high-latitude and large deep lakes are particularly sensitive to changes in stratification onset and can be expected to display an amplified response to climatic changes in summer air temperature. Climatic modification of LSSWT has numerous consequences for water quality and lake ecosystems, so quantifying this amplified response is important.

  18. Roughness induced transition and heat transfer augmentation in hypersonic environments

    NASA Astrophysics Data System (ADS)

    Wassel, A. T.; Shih, W. C. L.; Courtney, J. F.

    Boundary layer transition and surface heating distributions on graphite, fine weave carbon-carbon, and metallic nosetip materials were derived from surface temperature responses measured in nitrogen environments during both free-flight and track-guided testing in hypersonic environments. Innovative test procedures were developed, and heat transfer results were validated against established theory through experiments using a super-smooth tungsten model. Quantitative definitions of mean transition front locations were established by deriving heat flux distributions from measured temperatures, and comparisons made with existing nosetip transition correlations. Qualitative transition locations were inferred directly from temperature distributions to investigate preferred orientations on fine weave nosetips. Levels of roughness augmented heat transfer were generally shown to be below values predicted by state-of-the-art methods.

  19. Comment on the paper "Mars Express radio occultation data: A novel analysis approach" by Grandin et al. (2014)

    NASA Astrophysics Data System (ADS)

    Pätzold, M.; Bird, M. K.; Häusler, B.; Peter, K.; Tellmann, S.; Tyler, G. L.

    2016-10-01

    In their recent paper, Grandin et al. (2014) claim to have developed a novel approach, principally a ray tracing method, to analyze radio sounding data from occulted spacecraft signals by planetary atmospheres without the usual assumptions of the radio occultation inversion method of a stratified, layered, symmetric atmosphere. They apply their "new approach" to observations of the Mars Express Radio Science (MaRS) experiment and compare their resulting temperature, neutral number density, and electron density profiles with those from MaRS, claiming that there is good agreement with the observations. The fact is, however, that there are serious disagreements in the most important altitude ranges. Their temperature profile shows a 30 K shift or a 300σ (1σ standard deviation = 0.1 K for the MaRS profile near the surface) difference toward warmer temperatures at the surface when compared with MaRS, while the MaRS profile is in best agreement with the profile from the Mars Climate Data Base V5.0 (MCD V5.0). Their full temperature profile from the surface to 250 km altitude deviates significantly from the MCD V5.0 profile. Their ionospheric electron density profile is considerably different from that derived from the MaRs observations. Although Grandin et al. (2014) claim to derive the neutral number density and temperature profiles above 200 km, including the asymptotic exosphere temperature, it is simply not possible to derive this information from what is essentially noise.

  20. Validating Satellite-Derived Land Surface Temperature with in Situ Measurements: A Public Health Perspective

    PubMed Central

    Brines, Shannon J.; Brown, Daniel G.; Dvonch, J. Timothy; Gronlund, Carina J.; Zhang, Kai; Oswald, Evan M.; O’Neill, Marie S.

    2013-01-01

    Background: Land surface temperature (LST) and percent surface imperviousness (SI), both derived from satellite imagery, have been used to characterize the urban heat island effect, a phenomenon in which urban areas are warmer than non-urban areas. Objectives: We aimed to assess the correlations between LSTs and SI images with actual temperature readings from a ground-based network of outdoor monitors. Methods: We evaluated the relationships among a) LST calculated from a 2009 summertime satellite image of the Detroit metropolitan region, Michigan; b) SI from the 2006 National Land Cover Data Set; and c) ground-based temperature measurements monitored during the same time period at 19 residences throughout the Detroit metropolitan region. Associations between these ground-based temperatures and the average LSTs and SI at different radii around the point of the ground-based temperature measurement were evaluated at different time intervals. Spearman correlation coefficients and corresponding p-values were calculated. Results: Satellite-derived LST and SI values were significantly correlated with 24-hr average and August monthly average ground temperatures at all but two of the radii examined (100 m for LST and 0 m for SI). Correlations were also significant for temperatures measured between 0400 and 0500 hours for SI, except at 0 m, but not LST. Statistically significant correlations ranging from 0.49 to 0.91 were observed between LST and SI. Conclusions: Both SI and LST could be used to better understand spatial variation in heat exposures over longer time frames but are less useful for estimating shorter-term, actual temperature exposures, which can be useful for public health preparedness during extreme heat events. PMID:23777856

  1. Antarctic Surface Temperatures Using Satellite Infrared Data from 1979 Through 1995

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Stock, Larry

    1997-01-01

    The large scale spatial and temporal variations of surface ice temperature over the Antarctic region are studied using infrared data derived from the Nimbus-7 Temperature Humidity Infrared Radiometer (THIR) from 1979 through 1985 and from the NOAA Advanced Very High Resolution Radiometer (AVHRR) from 1984 through 1995. Enhanced techniques suitable for the polar regions for cloud masking and atmospheric correction were used before converting radiances to surface temperatures. The observed spatial distribution of surface temperature is highly correlated with surface ice sheet topography and agrees well with ice station temperatures with 2K to 4K standard deviations. The average surface ice temperature over the entire continent fluctuates by about 30K from summer to winter while that over the Antarctic Plateau varies by about 45K. Interannual fluctuations of the coldest interannual variations in surface temperature are highest at the Antarctic Plateau and the ice shelves (e.g., Ross and Ronne) with a periodic cycle of about 5 years and standard deviations of about 11K and 9K, respectively. Despite large temporal variability, however, especially in some regions, a regression analysis that includes removal of the seasonal cycle shows no apparent trend in temperature during the period 1979 through 1995.

  2. Do We Really Need Sinusoidal Surface Temperatures to Apply Heat Tracing Techniques to Estimate Streambed Fluid Fluxes?

    NASA Astrophysics Data System (ADS)

    Luce, C. H.; Tonina, D.; Applebee, R.; DeWeese, T.

    2017-12-01

    Two common refrains about using the one-dimensional advection diffusion equation to estimate fluid fluxes, thermal conductivity, or bed surface elevation from temperature time series in streambeds are that the solution assumes that 1) the surface boundary condition is a sine wave or nearly so, and 2) there is no gradient in mean temperature with depth. Concerns on these subjects are phrased in various ways, including non-stationarity in frequency, amplitude, or phase. Although the mathematical posing of the original solution to the problem might lead one to believe these constraints exist, the perception that they are a source of error is a fallacy. Here we re-derive the inverse solution of the 1-D advection-diffusion equation starting with an arbitrary surface boundary condition for temperature. In doing so, we demonstrate the frequency-independence of the solution, meaning any single frequency can be used in the frequency-domain solutions to estimate thermal diffusivity and 1-D fluid flux in streambeds, even if the forcing has multiple frequencies. This means that diurnal variations with asymmetric shapes, gradients in the mean temperature with depth, or `non-stationary' amplitude and frequency (or phase) do not actually represent violations of assumptions, and they should not cause errors in estimates when using one of the suite of existing solution methods derived based on a single frequency. Misattribution of errors to these issues constrains progress on solving real sources of error. Numerical and physical experiments are used to verify this conclusion and consider the utility of information at `non-standard' frequencies and multiple frequencies to augment the information derived from time series of temperature.

  3. [A method of temperature measurement for hot forging with surface oxide based on infrared spectroscopy].

    PubMed

    Zhang, Yu-cun; Qi, Yan-de; Fu, Xian-bin

    2012-05-01

    High temperature large forging is covered with a thick oxide during forging. It leads to a big measurement data error. In this paper, a method of measuring temperature based on infrared spectroscopy is presented. It can effectively eliminate the influence of surface oxide on the measurement of temperature. The method can measure the surface temperature and emissivity of the oxide directly using the infrared spectrum. The infrared spectrum is radiated from surface oxide of forging. Then it can derive the real temperature of hot forging covered with the oxide using the heat exchange equation. In order to greatly restrain interference spectroscopy through included in the received infrared radiation spectrum, three interference filter system was proposed, and a group of optimal gap parameter values using spectral simulation were obtained. The precision of temperature measurement was improved. The experimental results show that the method can accurately measure the surface temperature of high temperature forging covered with oxide. It meets the requirements of measurement accuracy, and the temperature measurement method is feasible according to the experiment result.

  4. Late Neogene Orbitally-Forced Sea Surface Temperature Variability in the Eastern Equatorial Pacific as Measured by Uk'37 and TEX86

    NASA Astrophysics Data System (ADS)

    Lawrence, K. T.; Pearson, A.; Castañeda, I. S.; Peterson, L.

    2017-12-01

    Key features of late Neogene climate remain uncertain due to conflicting records derived from different sea surface temperature (SST) proxies. To resolve these disputes, it is necessary to explore both the consistencies and differences between paleotemperature estimates from critical oceanographic regimes. Here, we report orbital-scale climate variability at ODP Site 846 in the Eastern Equatorial Pacific (EEP) in the interval from 5-6 Ma using alkenone and TEX86 temperature estimates. Results from both proxies are very similar in their secular trends and magnitude of long-term temperature change; and spectral analysis demonstrates that the records are coherent and in-phase or nearly in-phase in both the obliquity and precession bands. However, we find that the temperatures reconstructed by TEX86 are consistently offset towards colder values by 2ºC with orbital-scale variations approximately twice the amplitude of the Uk'37 derived estimates. Both temperature records are antiphased - i.e. "colder" - at higher sediment alkenone concentrations, a qualitative indicator of increased glacial productivity. Temperature differences between the proxies are accentuated during glacial intervals in contrasts to modern observations of EEP surface and subsurface temperatures, which show that thermocline temperatures are fairly stable, and thus by analogy, glacial cooling and/or enhanced upwelling should have reduced rather than accentuated temperature gradients in the upper water column. Therefore, arguments that Uk'37 corresponds to temperature variability in the surface, while TEX86 responds to the subsurface, may be too simplistic. Instead, it appears generally true that high-productivity environments, including the EEP, tend to have negative TEX86 anomalies. This may reflect a dual dependence of TEX86 records on both water column temperature and local productivity. Overall, our data suggest that in the EEP and likely in other upwelling zones, paleotemperature data derived from these proxies should not necessarily be used interchangeably and only Uk'37 is suitable for determining absolute SSTs. However, our data also suggest that TEX86 may be suitable for estimating long-term trends in SST and for spectral and phase analysis in upwelling regimes.

  5. Theoretical algorithms for satellite-derived sea surface temperatures

    NASA Astrophysics Data System (ADS)

    Barton, I. J.; Zavody, A. M.; O'Brien, D. M.; Cutten, D. R.; Saunders, R. W.; Llewellyn-Jones, D. T.

    1989-03-01

    Reliable climate forecasting using numerical models of the ocean-atmosphere system requires accurate data sets of sea surface temperature (SST) and surface wind stress. Global sets of these data will be supplied by the instruments to fly on the ERS 1 satellite in 1990. One of these instruments, the Along-Track Scanning Radiometer (ATSR), has been specifically designed to provide SST in cloud-free areas with an accuracy of 0.3 K. The expected capabilities of the ATSR can be assessed using transmission models of infrared radiative transfer through the atmosphere. The performances of several different models are compared by estimating the infrared brightness temperatures measured by the NOAA 9 AVHRR for three standard atmospheres. Of these, a computationally quick spectral band model is used to derive typical AVHRR and ATSR SST algorithms in the form of linear equations. These algorithms show that a low-noise 3.7-μm channel is required to give the best satellite-derived SST and that the design accuracy of the ATSR is likely to be achievable. The inclusion of extra water vapor information in the analysis did not improve the accuracy of multiwavelength SST algorithms, but some improvement was noted with the multiangle technique. Further modeling is required with atmospheric data that include both aerosol variations and abnormal vertical profiles of water vapor and temperature.

  6. MARSTHERM: A Web-based System Providing Thermophysical Analysis Tools for Mars Research

    NASA Astrophysics Data System (ADS)

    Putzig, N. E.; Barratt, E. M.; Mellon, M. T.; Michaels, T. I.

    2013-12-01

    We introduce MARSTHERM, a web-based system that will allow researchers access to a standard numerical thermal model of the Martian near-surface and atmosphere. In addition, the system will provide tools for the derivation, mapping, and analysis of apparent thermal inertia from temperature observations by the Mars Global Surveyor Thermal Emission Spectrometer (TES) and the Mars Odyssey Thermal Emission Imaging System (THEMIS). Adjustable parameters for the thermal model include thermal inertia, albedo, surface pressure, surface emissivity, atmospheric dust opacity, latitude, surface slope angle and azimuth, season (solar longitude), and time steps for calculations and output. The model computes diurnal surface and brightness temperatures for either a single day or a full Mars year. Output options include text files and plots of seasonal and diurnal surface, brightness, and atmospheric temperatures. The tools for the derivation and mapping of apparent thermal inertia from spacecraft data are project-based, wherein the user provides an area of interest (AOI) by specifying latitude and longitude ranges. The system will then extract results within the AOI from prior global mapping of elevation (from the Mars Orbiter Laser Altimeter, for calculating surface pressure), TES annual albedo, and TES seasonal and annual-mean 2AM and 2PM apparent thermal inertia (Putzig and Mellon, 2007, Icarus 191, 68-94). In addition, a history of TES dust opacity within the AOI is computed. For each project, users may then provide a list of THEMIS images to process for apparent thermal inertia, optionally overriding the TES-derived dust opacity with a fixed value. Output from the THEMIS derivation process includes thumbnail and context images, GeoTIFF raster data, and HDF5 files containing arrays of input and output data (radiance, brightness temperature, apparent thermal inertia, elevation, quality flag, latitude, and longitude) and ancillary information. As a demonstration of capabilities, we will present results from a thermophysical study of Gale Crater (Barratt and Putzig, 2013, EPSC abstract 613), for which TES and THEMIS mapping has been carried out during system development. Public access to the MARSTHERM system will be provided in conjunction with the 2013 AGU Fall Meeting and will feature the numerical thermal model and thermal-inertia derivation algorithm developed by Mellon et al. (2000, Icarus 148, 437-455) as modified by Putzig and Mellon (2007, Icarus 191, 68-94). Updates to the thermal model and derivation algorithm that include a more sophisticated representation of the atmosphere and a layered subsurface are presently in development, and these will be incorporated into the system when they are available. Other planned enhancements include tools for modeling temperatures from horizontal mixtures of materials and slope facets, for comparing heterogeneity modeling results to TES and THEMIS results, and for mosaicking THEMIS images.

  7. Comparison of Orbiter STS-2 development flight instrumentation data with thermal math model predictions

    NASA Technical Reports Server (NTRS)

    Norman, I.; Rochelle, W. C.; Kimbrough, B. S.; Ritrivi, C. A.; Ting, P. C.; Dotts, R. L.

    1982-01-01

    Thermal performance verification of Reusable Surface Insulation (RSI) has been accomplished by comparisons of STS-2 Orbiter Flight Test (OFT) data with Thermal Math Model (TMM) predictions. The OFT data was obtained from Development Flight Instrumentation RSI plug and gap thermocouples. Quartertile RSI TMMs were developed using measured flight data for surface temperature and pressure environments. Reference surface heating rates, derived from surface temperature data, were multiplied by gap heating ratios to obtain tile sidewall heating rates. This TMM analysis resulted in good agreement of predicted temperatures with flight data for thermocouples located in the RSI, Strain Isolation Pad, filler bar and structure.

  8. MMAB Operational Products

    Science.gov Websites

    Atlantic Real-Time Ocean Forecast System NOAA Wavewatch III® Ocean Wave Model Sea Ice Concentration Analysis Satellite Derived Ocean Surface Winds Daily Sea Surface Temperature Analysis Sea Ice Drift Model

  9. On the effect of surface emissivity on temperature retrievals. [for meteorology

    NASA Technical Reports Server (NTRS)

    Kornfield, J.; Susskind, J.

    1977-01-01

    The paper is concerned with errors in temperature retrieval caused by incorrectly assuming that surface emissivity is equal to unity. An error equation that applies to present-day atmospheric temperature sounders is derived, and the bias errors resulting from various emissivity discrepancies are calculated. A model of downward flux is presented and used to determine the effective downward flux. In the 3.7-micron region of the spectrum, emissivities of 0.6 to 0.9 have been observed over land. At a surface temperature of 290 K, if the true emissivity is 0.6 and unit emissivity is assumed, the error would be approximately 11 C. In the 11-micron region, the maximum deviation of the surface emissivity from unity was 0.05.

  10. Wettability Control of Gold Surfaces Modified with Benzenethiol Derivatives: Water Contact Angle and Thermal Stability.

    PubMed

    Tatara, Shingo; Kuzumoto, Yasutaka; Kitamura, Masatoshi

    2016-04-01

    The water wettability of Au surfaces has been controlled using various benzenethiol derivatives including 4-methylbenzenethiol, pentafluorobenzenethiol, 4-flubrobenzenethiol, 4-methoxy-benzenethiol, 4-nitrobenzenethiol, and 4-hydroxybenzenethiol. The water contact angle of the Au surface modified with the benzenethiol derivative was found to vary in the wide range of 30.9° to 88.3°. The contact angle of the modified Au films annealed was also measured in order to investigate their thermal stability. The change in the contact angle indicated that the modified surface is stable at temperatures below about 400 K. Meanwhile, the activation energy of desorption from the modified surface was estimated from the change in the contact angle. The modified Au surface was also examined using X-ray photoelectron spectroscopy.

  11. Global Land Surface Temperature From the Along-Track Scanning Radiometers

    NASA Astrophysics Data System (ADS)

    Ghent, D. J.; Corlett, G. K.; Göttsche, F.-M.; Remedios, J. J.

    2017-11-01

    The Leicester Along-Track Scanning Radiometer (ATSR) and Sea and Land Surface Temperature Radiometer (SLSTR) Processor for LAnd Surface Temperature (LASPLAST) provides global land surface temperature (LST) products from thermal infrared radiance data. In this paper, the state-of-the-art version of LASPLAST, as deployed in the GlobTemperature project, is described and applied to data from the Advanced Along-Track Scanning Radiometer (AATSR). The LASPLAST retrieval formulation for LST is a nadir-only, two-channel, split-window algorithm, based on biome classification, fractional vegetation, and across-track water vapor dependences. It incorporates globally robust retrieval coefficients derived using highly sampled atmosphere profiles. LASPLAST benefits from appropriate spatial resolution auxiliary information and a new probabilistic-based cloud flagging algorithm. For the first time for a satellite-derived LST product, pixel-level uncertainties characterized in terms of random, locally correlated, and systematic components are provided. The new GlobTemperature GT_ATS_2P Version 1.0 product has been validated for 1 year of AATSR data (2009) against in situ measurements acquired from "gold standard reference" stations: Gobabeb, Namibia, and Evora, Portugal; seven Surface Radiation Budget stations, and the Atmospheric Radiation Measurement station at Southern Great Plains. These data show average absolute biases for the GT_ATS_2P Version 1.0 product of 1.00 K in the daytime and 1.08 K in the nighttime. The improvements in data provenance including better accuracy, fully traceable retrieval coefficients, quantified uncertainty, and more detailed information in the new harmonized format of the GT_ATS_2P product will allow for more significant exploitation of the historical LST data record from the ATSRs and a valuable near-real-time service from the Sea and Land Surface Temperature Radiometers (SLSTRs).

  12. Estimating Turbulent Surface Fluxes from Small Unmanned Aircraft: Evaluation of Current Abilities

    NASA Astrophysics Data System (ADS)

    de Boer, G.; Lawrence, D.; Elston, J.; Cassano, J. J.; Mack, J.; Wildmann, N.; Nigro, M. A.; Ivey, M.; Wolfe, D. E.; Muschinski, A.

    2014-12-01

    Heat transfer between the atmosphere and Earth's surface represents a key component to understanding Earth energy balance, making it important in understanding and simulating climate. Arguably, the oceanic air-sea interface and Polar sea-ice-air interface are amongst the most challenging in which to measure these fluxes. This difficulty results partially from challenges associated with infrastructure deployment on these surfaces and partially from an inability to obtain spatially representative values over a potentially inhomogeneous surface. Traditionally sensible (temperature) and latent (moisture) fluxes are estimated using one of several techniques. A preferred method involves eddy-correlation where cross-correlation between anomalies in vertical motion (w) and temperature (T) or moisture (q) is used to estimate heat transfer. High-frequency measurements of these quantities can be derived using tower-mounted instrumentation. Such systems have historically been deployed over land surfaces or on ships and buoys to calculate fluxes at the air-land or air-sea interface, but such deployments are expensive and challenging to execute, resulting in a lack of spatially diverse measurements. A second ("bulk") technique involves the observation of horizontal windspeed, temperature and moisture at a given altitude over an extended time period in order to estimate the surface fluxes. Small Unmanned Aircraft Systems (sUAS) represent a unique platform from which to derive these fluxes. These sUAS can be small ( 1 m), lightweight ( 700 g), low cost ( $2000) and relatively easy to deploy to remote locations and over inhomogeneous surfaces. We will give an overview of the ability of sUAS to provide measurements necessary for estimating surface turbulent fluxes. This discussion is based on flights in the vicinity of the 1000 ft. Boulder Atmospheric Observatory (BAO) tower, and over the US Department of Energy facility at Oliktok Point, Alaska. We will present initial comparisons between UAS-derived turbulent fluxes and those derived from tower-based instrumentation and discuss differences in the context of sensor technology and flight patterns employed to collect data.

  13. Robust global ocean cooling trend for the pre-industrial Common Era

    NASA Astrophysics Data System (ADS)

    McGregor, Helen V.; Evans, Michael N.; Goosse, Hugues; Leduc, Guillaume; Martrat, Belen; Addison, Jason A.; Mortyn, P. Graham; Oppo, Delia W.; Seidenkrantz, Marit-Solveig; Sicre, Marie-Alexandrine; Phipps, Steven J.; Selvaraj, Kandasamy; Thirumalai, Kaustubh; Filipsson, Helena L.; Ersek, Vasile

    2015-09-01

    The oceans mediate the response of global climate to natural and anthropogenic forcings. Yet for the past 2,000 years -- a key interval for understanding the present and future climate response to these forcings -- global sea surface temperature changes and the underlying driving mechanisms are poorly constrained. Here we present a global synthesis of sea surface temperatures for the Common Era (CE) derived from 57 individual marine reconstructions that meet strict quality control criteria. We observe a cooling trend from 1 to 1800 CE that is robust against explicit tests for potential biases in the reconstructions. Between 801 and 1800 CE, the surface cooling trend is qualitatively consistent with an independent synthesis of terrestrial temperature reconstructions, and with a sea surface temperature composite derived from an ensemble of climate model simulations using best estimates of past external radiative forcings. Climate simulations using single and cumulative forcings suggest that the ocean surface cooling trend from 801 to 1800 CE is not primarily a response to orbital forcing but arises from a high frequency of explosive volcanism. Our results show that repeated clusters of volcanic eruptions can induce a net negative radiative forcing that results in a centennial and global scale cooling trend via a decline in mixed-layer oceanic heat content.

  14. Robust global ocean cooling trend for the pre-industrial Common Era

    USGS Publications Warehouse

    McGregor, Helen V.; Evans, Michael N.; Goosse, Hugues; Leduc, Guillaume; Martrat, Belen; Addison, Jason A.; Mortyn, P. Graham; Oppo, Delia W.; Seidenkrantz, Marit-Solveig; Sicre, Marie-Alexandrine; Phipps, Steven J.; Selvaraj, Kandasamy; Thirumalai, Kaustubh; Filipsson, Helena L.; Ersek, Vasile

    2015-01-01

    The oceans mediate the response of global climate to natural and anthropogenic forcings. Yet for the past 2,000 years — a key interval for understanding the present and future climate response to these forcings — global sea surface temperature changes and the underlying driving mechanisms are poorly constrained. Here we present a global synthesis of sea surface temperatures for the Common Era (CE) derived from 57 individual marine reconstructions that meet strict quality control criteria. We observe a cooling trend from 1 to 1800 CEthat is robust against explicit tests for potential biases in the reconstructions. Between 801 and 1800 CE, the surface cooling trend is qualitatively consistent with an independent synthesis of terrestrial temperature reconstructions, and with a sea surface temperature composite derived from an ensemble of climate model simulations using best estimates of past external radiative forcings. Climate simulations using single and cumulative forcings suggest that the ocean surface cooling trend from 801 to 1800 CE is not primarily a response to orbital forcing but arises from a high frequency of explosive volcanism. Our results show that repeated clusters of volcanic eruptions can induce a net negative radiative forcing that results in a centennial and global scale cooling trend via a decline in mixed-layer oceanic heat content.

  15. Evaluation and Analysis of Seasat a Scanning Multichannel Microwave Radiometer (SMMR) Antenna Pattern Correction (APC) Algorithm

    NASA Technical Reports Server (NTRS)

    Kitzis, S. N.; Kitzis, J. L.

    1979-01-01

    The accuracy of the SEASAT-A SMMR antenna pattern correction (APC) algorithm was assessed. Interim APC brightness temperature measurements for the SMMR 6.6 GHz channels are compared with surface truth derived sea surface temperatures. Plots and associated statistics are presented for SEASAT-A SMMR data acquired for the Gulf of Alaska experiment. The cross-track gradients observed in the 6.6 GHz brightness temperature data are discussed.

  16. Western Pacific Warm Pool expansion event during 2.0-1.5 Ma and its implications to global climate dynamics

    NASA Astrophysics Data System (ADS)

    Lo, L.; Chuang, C. K.; Wei, K. Y.; Shen, C. C.; Mii, H. S.; Chang, Y. P.

    2017-12-01

    In this study, we reconstruct surface and upper thermocline seawater temperatures by using planktonic foraminifera Globigerinoides sacculifer and Neogloboquadrina deutertrei in the southern Western Pacific Warm Pool (S-WPWP, ODP Site 1115B, 9o11'S, 151o34'E, water depth 1149 m) during past 2.2-1.1 million years (Ma). Significant S-WPWP surface warming in both glacial and interglacial periods during 1.86-1.55 Ma is accompanied with gradual upper thermocline cooling. S-WPWP sea surface temperature dropped 2.1oC from 1.50-1.21 Ma but upper thermocline temperature further decreased 1.1oC at this time period. WPWP expansion event is also supported by vertical foraminiferal Mg/Ca-derived temperature profile records in the central WPWP (ODP Site 806, Ford et al. 2015). Although foraminiferal Mg/Ca-derived temperature records from Eastern Equatorial Pacific suggests long-term cooling trend (Wara et al. 2005), alkenone undersaturation index (UK'37)-inferred surface temperature records suggest 1oC warming during 2.0-1.5 Ma (Fedorov et al. 2013). We argue that seasonal expansion of WPWP may be attributable to the meridional thermocline gradient increasing (Martinez-Garcia et al. 2010) during 2.0-1.5 Ma. Long-term extent variability of WPWP could have impact on cross-equatorial energy transportation and meridional precipitation belt movements (Lo et al., 2014).

  17. Cross-scale modeling of surface temperature and tree seedling establishment inmountain landscapes

    USGS Publications Warehouse

    Dingman, John; Sweet, Lynn C.; McCullough, Ian M.; Davis, Frank W.; Flint, Alan L.; Franklin, Janet; Flint, Lorraine E.

    2013-01-01

    Abstract: Introduction: Estimating surface temperature from above-ground field measurements is important for understanding the complex landscape patterns of plant seedling survival and establishment, processes which occur at heights of only several centimeters. Currently, future climate models predict temperature at 2 m above ground, leaving ground-surface microclimate not well characterized. Methods: Using a network of field temperature sensors and climate models, a ground-surface temperature method was used to estimate microclimate variability of minimum and maximum temperature. Temperature lapse rates were derived from field temperature sensors and distributed across the landscape capturing differences in solar radiation and cold air drainages modeled at a 30-m spatial resolution. Results: The surface temperature estimation method used for this analysis successfully estimated minimum surface temperatures on north-facing, south-facing, valley, and ridgeline topographic settings, and when compared to measured temperatures yielded an R2 of 0.88, 0.80, 0.88, and 0.80, respectively. Maximum surface temperatures generally had slightly more spatial variability than minimum surface temperatures, resulting in R2 values of 0.86, 0.77, 0.72, and 0.79 for north-facing, south-facing, valley, and ridgeline topographic settings. Quasi-Poisson regressions predicting recruitment of Quercus kelloggii (black oak) seedlings from temperature variables were significantly improved using these estimates of surface temperature compared to air temperature modeled at 2 m. Conclusion: Predicting minimum and maximum ground-surface temperatures using a downscaled climate model coupled with temperature lapse rates estimated from field measurements provides a method for modeling temperature effects on plant recruitment. Such methods could be applied to improve projections of species’ range shifts under climate change. Areas of complex topography can provide intricate microclimates that may allow species to redistribute locally as climate changes.

  18. Thermal inertias in the upper millimeters of the Martian surface derived using Phobos' shadow

    NASA Technical Reports Server (NTRS)

    Betts, Bruce H.; Murray, Bruce C.; Svitek, Tomas

    1995-01-01

    The first thermal images of Phobos' shadow on the surface of Mars, in addition to simultaneous visible images, were obtained by the Phobos'88 Termoskan instrument. The best observed shadow occurrence was on the flanks of Arsia Mons. For this occurrence, we combined the observed decrease in visible illumination of the surface with the observed decrease in brightness temperature to calculate thermal inertias of the Martian surface. The most realistic of our three models of eclipse cooling improves upon our preliminary model by including nonisothermal initial conditions and downward atmospheric flux. Most of our derived inertias fall within the range 38 to 59 J/(sq m s(exp 1/2) K), (0.9 to 1.4 x 10(exp -3) cal/(sq cm s(exp 1/2) K)) corresponding to dust-sized particles (for a homogeneous surface), consistent with previous theories of Tharsis as a current area of dust deposition. Viking infrared thermal mapper (IRTM) inertias are diurnally derived and are sensitive to centimeter depths, whereas the shadow-derived inertias sample the upper tenths of a millimeter of the surface. The shadow-derived inertias are lower than those derived from Viking IRTM measurements (84 to 147), however, uncertainties in both sets of derived inertias make conclusions about layering tenuous. Thus, near-surface millimeter versus centimeter layering may exist in this region, but if it does, it is likely not very significant. Both eclipse and diurnal inertias appear to increase near the eastern end of the shadow occurrence. We also analyzed a shadow occurrence near the crater Herschel that showed no observed cooling. This analysis was limited by cool morning temperatures and instrument sensitivity, but yielded a lower bound of 80 on eclipse inertias in that region. Based upon our results, we strongly recommend future spacecraft thermal observations of Phobos' shadow, and suggest that they will be most useful if they improve upon Terinoskan's geographic and temporal coverage and its accuracy.

  19. Seasonal Surface Spectral Emissivity Derived from Terra MODIS Data

    NASA Technical Reports Server (NTRS)

    Sun-Mack, Sunny; Chen, Yan; Minnis, Patrick; Young, DavidF.; Smith, William J., Jr.

    2004-01-01

    The CERES (Clouds and the Earth's Radiant Energy System) Project is measuring broadband shortwave and longwave radiances and deriving cloud properties form various images to produce a combined global radiation and cloud property data set. In this paper, simultaneous data from Terra MODIS (Moderate Resolution Imaging Spectroradiometer) taken at 3.7, 8.5, 11.0, and 12.0 m are used to derive the skin temperature and the surface emissivities at the same wavelengths. The methodology uses separate measurements of clear sky temperature in each channel determined by scene classification during the daytime and at night. The relationships between the various channels at night are used during the day when solar reflectance affects the 3.7- m radiances. A set of simultaneous equations is then solved to derive the emissivities. Global monthly emissivity maps are derived from Terra MODIS data while numerical weather analyses provide soundings for correcting the observed radiances for atmospheric absorption. These maps are used by CERES and other cloud retrieval algorithms.

  20. High-Performance Simulations of the Diffusion Characteristics of a Pentacene Derivative on Gold Surfaces

    NASA Astrophysics Data System (ADS)

    Miller, Ryan; Larson, Amanda; Pohl, Karsten

    Pentacene serves as a backbone for several molecules that provide attractive qualities for organic photovoltaic devices. One of these pentacene derivatives is 5 6,7-trithiapentacene-13-one (TTPO), which is unique in that it achieves its lowest energy configuration on Au(1 1 1) surfaces with the thiol group angled down towards the surface, allowing many molecules to pack closely together and form molecular nanowires. However, TTPO diffuses on flat surfaces, making it difficult for the self-assembly process to be initiated. With the help of the low-energy sites in surface defects and Au(7 8 8) step edges, TTPO molecules can be anchored in place on surfaces, allowing for chain formation to begin. By using high-performance Density Functional Theory based molecular dynamics calculations, the molecules can be shown to stay localized to these bonding sites and serve as a basis for chain formation. In addition, by simulating various temperatures with a Nose-Hoover thermostat, we can analyze how temperature affects anchoring ability and diffusion properties.

  1. Thermal transformation of bioactive caffeic acid on fumed silica seen by UV-Vis spectroscopy, thermogravimetric analysis, temperature programmed desorption mass spectrometry and quantum chemical methods.

    PubMed

    Kulik, Tetiana V; Lipkovska, Natalia O; Barvinchenko, Valentyna M; Palyanytsya, Borys B; Kazakova, Olga A; Dudik, Olesia O; Menyhárd, Alfréd; László, Krisztina

    2016-05-15

    Thermochemical studies of hydroxycinnamic acid derivatives and their surface complexes are important for the pharmaceutical industry, medicine and for the development of technologies of heterogeneous biomass pyrolysis. In this study, structural and thermal transformations of caffeic acid complexes on silica surfaces were studied by UV-Vis spectroscopy, thermogravimetric analysis, temperature programmed desorption mass spectrometry (TPD MS) and quantum chemical methods. Two types of caffeic acid surface complexes are found to form through phenolic or carboxyl groups. The kinetic parameters of the chemical reactions of caffeic acid on silica surface are calculated. The mechanisms of thermal transformations of the caffeic chemisorbed surface complexes are proposed. Thermal decomposition of caffeic acid complex chemisorbed through grafted ester group proceeds via three parallel reactions, producing ketene, vinyl and acetylene derivatives of 1,2-dihydroxybenzene. Immobilization of phenolic acids on the silica surface improves greatly their thermal stability. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Synthesis of octahedral like Cu-BTC derivatives derived from MOF calcined under different atmosphere for application in CO oxidation

    NASA Astrophysics Data System (ADS)

    Yang, Yiqiong; Dong, Han; Wang, Yin; He, Chi; Wang, Yuxin; Zhang, Xiaodong

    2018-02-01

    A series of octahedral structure Cu-BTC derivatives were successfully achieved through direct calcination of copper based metal organic framework Cu-BTC under different atmosphere (CO reaction gas, oxidizing gas O2, reducing gas H2, inert gas Ar). The Cu-BTC derivatives were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), laser Raman spectroscopy (LRS), N2 adsorption-desorption isotherm, element analysis, H2-temperature program reduction (H2-TPR) and X-ray photoelectron spectroscopic (XPS). It is found that Cu-BTC derivative derived from MOF calcined under reaction gas/O2 (Cu-BTC-CO/Cu-BTC-O) only retain Cu2O and CuO species. In addition, a weak Cu-BTC structure and Cu particles were observed on Cu-BTC derivative derived from MOF calcined under H2 (Cu-BTC-H). Obviously differently, Cu-BTC derivative derived from MOF calcined under Ar (Cu-BTC-Ar) still retains good MOF structure. The catalytic performance for CO oxidation over Cu-BTC derivatives was studied. It was found that Cu-BTC-CO showed a smaller specific surface area (8.0 m2/g), but presented an excellent catalytic performance, long-term stability and cycling stability with a complete CO conversion temperature (T100) of 140 °C, which was ascribed to the higher Cu2O/CuO ratio, good low temperature reduction behavior and a high quantity of surface active oxygen species.

  3. Analysis and Sizing for Transient Thermal Heating of Insulated Aerospace Vehicle Structures

    NASA Technical Reports Server (NTRS)

    Blosser, Max L.

    2012-01-01

    An analytical solution was derived for the transient response of an insulated structure subjected to a simplified heat pulse. The solution is solely a function of two nondimensional parameters. Simpler functions of these two parameters were developed to approximate the maximum structural temperature over a wide range of parameter values. Techniques were developed to choose constant, effective thermal properties to represent the relevant temperature and pressure-dependent properties for the insulator and structure. A technique was also developed to map a time-varying surface temperature history to an equivalent square heat pulse. Equations were also developed for the minimum mass required to maintain the inner, unheated surface below a specified temperature. In the course of the derivation, two figures of merit were identified. Required insulation masses calculated using the approximate equation were shown to typically agree with finite element results within 10%-20% over the relevant range of parameters studied.

  4. The Impact of Satellite-Derived Land Surface Temperatures on Numerical Weather Prediction Analyses and Forecasts

    NASA Astrophysics Data System (ADS)

    Candy, B.; Saunders, R. W.; Ghent, D.; Bulgin, C. E.

    2017-09-01

    Land surface temperature (LST) observations from a variety of satellite instruments operating in the infrared have been compared to estimates of surface temperature from the Met Office operational numerical weather prediction (NWP) model. The comparisons show that during the day the NWP model can underpredict the surface temperature by up to 10 K in certain regions such as the Sahel and southern Africa. By contrast at night the differences are generally smaller. Matchups have also been performed between satellite LSTs and observations from an in situ radiometer located in Southern England within a region of mixed land use. These matchups demonstrate good agreement at night and suggest that the satellite uncertainties in LST are less than 2 K. The Met Office surface analysis scheme has been adapted to utilize nighttime LST observations. Experiments using these analyses in an NWP model have shown a benefit to the resulting forecasts of near-surface air temperature, particularly over Africa.

  5. Regolith Properties of Asteroid 21 Lutetia Constrained by Combined Data Sets of the MIRO and VIRTIS Instruments During the Rosetta Spacecraft Flyby

    NASA Technical Reports Server (NTRS)

    Keihm, S.; Tosi, F.; Kamp, L.; Capaccioni, F.; Grassi, D.; Gulkis, S.; Coradini, A.

    2011-01-01

    During the July 10, 2010 flyby of Asteroid 21 Lutetia by the Rosetta spacecraft, maps of surface and subsurface temperatures were derived from the VIRTIS and MIRO instruments respectively. Both data sets indicated a porous surface layer with an extremely low, lunar-like thermal inertia. However, comparisons of the VIRTIS-measured and MIRO-modelled surface temperatures revealed offsets of 10- 30 K, indicative of self-heating or "beaming" effects that were not taken into account in the MIRO thermal modeling. Inclusion of a model of hemispherical craters at all scales 1 cm and larger, covering 50% of the surface, removes most of the offsets in the VIRTIS, MIRO surface temperature determinations.

  6. The 100,000-hour cyclic oxidation behavior at 815C (1500 F) of 33 high-temperature alloys

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.

    1977-01-01

    Commercial high-temperature Fe-, Ni-, and Co-base alloys were oxidized in air at 815 deg C for ten 1000-hour cycles. Specific weight change versus time curves were derived and the 10,000-hour surface oxides were analyzed by X-ray diffraction. The alloys were ranked by a combination of appearance and metal loss estimates derived from gravimetric data.

  7. Accuracy assessment of land surface temperature retrievals from Landsat 7 ETM + in the Dry Valleys of Antarctica using iButton temperature loggers and weather station data.

    PubMed

    Brabyn, Lars; Zawar-Reza, Peyman; Stichbury, Glen; Cary, Craig; Storey, Bryan; Laughlin, Daniel C; Katurji, Marwan

    2014-04-01

    The McMurdo Dry Valleys of Antarctica are the largest snow/ice-free regions on this vast continent, comprising 1% of the land mass. Due to harsh environmental conditions, the valleys are bereft of any vegetation. Land surface temperature is a key determinate of microclimate and a driver for sensible and latent heat fluxes of the surface. The Dry Valleys have been the focus of ecological studies as they arguably provide the simplest trophic structure suitable for modelling. In this paper, we employ a validation method for land surface temperatures obtained from Landsat 7 ETM + imagery and compared with in situ land surface temperature data collected from four transects totalling 45 iButtons. A single meteorological station was used to obtain a better understanding of daily and seasonal cycles in land surface temperatures. Results show a good agreement between the iButton and the Landsat 7 ETM + product for clear sky cases. We conclude that Landsat 7 ETM + derived land surface temperatures can be used at broad spatial scales for ecological and meteorological research.

  8. A Gravitational, Mathematical Model for the Energy, Emitted Power and Longevity of the Sun and Stars that does not use E=mc^2

    NASA Astrophysics Data System (ADS)

    Morse Kingsley, James

    2017-08-01

    A gravitational mathematical model for the energy, radiated power and lifetime of the sun and stars is derived that does not use E=mc^2. The speed of solar flares, 200 to 1000km/sec is used to derive the surface temperature of the sun as 1.4(10^6)degrees K. Optical radiation results as gamma rays leave the sun's surface and traverse and lose energy to the ~10^6km of the sun's corona. The corona is a result of solar flares with a speed component of 424km/sec parallel to the sun's surface placing their atoms into gravitational orbit about the sun. The temperature, density, and pressure of the sun are derived as a function of r, i.e. the distance from the center of the sun. The complete article is chapter 11 of my text that can be found on my website www.jmkingsleyiii.info

  9. A new method to measure Bowen ratios using high-resolution vertical dry and wet bulb temperature profiles

    NASA Astrophysics Data System (ADS)

    Euser, T.; Luxemburg, W. M. J.; Everson, C. S.; Mengistu, M. G.; Clulow, A. D.; Bastiaanssen, W. G. M.

    2014-06-01

    The Bowen ratio surface energy balance method is a relatively simple method to determine the latent heat flux and the actual land surface evaporation. The Bowen ratio method is based on the measurement of air temperature and vapour pressure gradients. If these measurements are performed at only two heights, correctness of data becomes critical. In this paper we present the concept of a new measurement method to estimate the Bowen ratio based on vertical dry and wet bulb temperature profiles with high spatial resolution. A short field experiment with distributed temperature sensing (DTS) in a fibre optic cable with 13 measurement points in the vertical was undertaken. A dry and a wetted section of a fibre optic cable were suspended on a 6 m high tower installed over a sugar beet trial plot near Pietermaritzburg (South Africa). Using the DTS cable as a psychrometer, a near continuous observation of vapour pressure and air temperature at 0.20 m intervals was established. These data allowed the computation of the Bowen ratio with a high spatial and temporal precision. The daytime latent and sensible heat fluxes were estimated by combining the Bowen ratio values from the DTS-based system with independent measurements of net radiation and soil heat flux. The sensible heat flux, which is the relevant term to evaluate, derived from the DTS-based Bowen ratio (BR-DTS) was compared with that derived from co-located eddy covariance (R2 = 0.91), surface layer scintillometer (R2 = 0.81) and surface renewal (R2 = 0.86) systems. By using multiple measurement points instead of two, more confidence in the derived Bowen ratio values is obtained.

  10. The annual and interannual variabilities of precipitable water, surface wind speed, and sea surface temperature over the tropical Pacific

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy

    1989-01-01

    The Nimbus-7 Scanning Multichannel Microwave Radiometer (SSMR) provided simultaneous measurements of three geophysical parameters, each of which describing a certain aspect of the evolution of the 1982-1983 ENSO: the sea-surface temperature (T), precipitable water (W), and surface-wind speed (U). In this paper, values derived from the SSMR were compared with in situ measurements from ships, research buoys, and operational island stations in the tropical Pacific between January 1980 and October 1983, demonstrating the temporal and spatial coherence of the SSMR measurements. The results show that the variabilities of the surface convergence, sea surface temperature, and precipitable water are related. It was found that W anomalies were not always colocated with T anomalies, and that W anomalies were often associated with negative U anomalies, interpreted as surface convergence.

  11. Rough-surface model for surface temperature calculations on Vesta

    NASA Astrophysics Data System (ADS)

    Palmer, E.; Sykes, M.

    2014-07-01

    We model observations by the Dawn Visual and Infrared spectrometer (VIR) [1] to reproduce the observed surface temperature of Vesta. The VIR instrument has collected over 3,700 spectral cubes of Vesta out to 5.1 microns. The observed surface temperature is derived by matching the irradiance near 5 microns with a grey body, the Planck function after removing a reflected-light component per previous procedures [2--5] with similar results. We noted that the observed surface temperatures are significantly hotter than what simple theoretical models would predict [2]. To better understand this, we used a high-resolution topographic model of Vesta [6] that provided exact phase, incidence, and emission angles for every VIR pixel. We assume an emissivity of 0.9, Bond albedo of between 0.16 and 0.22 [5], and a variety of thermal inertia values for a low-contrast, highly degraded, homogenous crater. We have created a ''rough-surface'' thermal model that takes into account how irregular grains create sub-pixel variations in the thermal spectrum and describe the effect it has on the observed surface temperatures of Vesta. We have applied this method to the VIR observations of Vesta, which produced a high level of agreement with the observed surface temperatures.

  12. Improved Surface Parameter Retrievals using AIRS/AMSU Data

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John

    2008-01-01

    The AIRS Science Team Version 5.0 retrieval algorithm became operational at the Goddard DAAC in July 2007 generating near real-time products from analysis of AIRS/AMSU sounding data. This algorithm contains many significant theoretical advances over the AIRS Science Team Version 4.0 retrieval algorithm used previously. Two very significant developments of Version 5 are: 1) the development and implementation of an improved Radiative Transfer Algorithm (RTA) which allows for accurate treatment of non-Local Thermodynamic Equilibrium (non-LTE) effects on shortwave sounding channels; and 2) the development of methodology to obtain very accurate case by case product error estimates which are in turn used for quality control. These theoretical improvements taken together enabled a new methodology to be developed which further improves soundings in partially cloudy conditions. In this methodology, longwave C02 channel observations in the spectral region 700 cm(exp -1) to 750 cm(exp -1) are used exclusively for cloud clearing purposes, while shortwave C02 channels in the spectral region 2195 cm(exp -1) 2395 cm(exp -1) are used for temperature sounding purposes. This allows for accurate temperature soundings under more difficult cloud conditions. This paper further improves on the methodology used in Version 5 to derive surface skin temperature and surface spectral emissivity from AIRS/AMSU observations. Now, following the approach used to improve tropospheric temperature profiles, surface skin temperature is also derived using only shortwave window channels. This produces improved surface parameters, both day and night, compared to what was obtained in Version 5. These in turn result in improved boundary layer temperatures and retrieved total O3 burden.

  13. Deriving a sea surface temperature record suitable for climate change research from the along-track scanning radiometers

    NASA Astrophysics Data System (ADS)

    Merchant, C. J.; Llewellyn-Jones, D.; Saunders, R. W.; Rayner, N. A.; Kent, E. C.; Old, C. P.; Berry, D.; Birks, A. R.; Blackmore, T.; Corlett, G. K.; Embury, O.; Jay, V. L.; Kennedy, J.; Mutlow, C. T.; Nightingale, T. J.; O'Carroll, A. G.; Pritchard, M. J.; Remedios, J. J.; Tett, S.

    We describe the approach to be adopted for a major new initiative to derive a homogeneous record of sea surface temperature for 1991 2007 from the observations of the series of three along-track scanning radiometers (ATSRs). This initiative is called (A)RC: (Advanced) ATSR Re-analysis for Climate. The main objectives are to reduce regional biases in retrieved sea surface temperature (SST) to less than 0.1 K for all global oceans, while creating a very homogenous record that is stable in time to within 0.05 K decade-1, with maximum independence of the record from existing analyses of SST used in climate change research. If these stringent targets are achieved, this record will enable significantly improved estimates of surface temperature trends and variability of sufficient quality to advance questions of climate change attribution, climate sensitivity and historical reconstruction of surface temperature changes. The approach includes development of new, consistent estimators for SST for each of the ATSRs, and detailed analysis of overlap periods. Novel aspects of the approach include generation of multiple versions of the record using alternative channel sets and cloud detection techniques, to assess for the first time the effect of such choices. There will be extensive effort in quality control, validation and analysis of the impact on climate SST data sets. Evidence for the plausibility of the 0.1 K target for systematic error is reviewed, as is the need for alternative cloud screening methods in this context.

  14. Thermophysical properties along Curiosity's traverse in Gale crater, Mars, derived from the REMS Ground Temperature Sensor

    NASA Astrophysics Data System (ADS)

    Vasavada, A. R.; Piqueux, S.

    2016-12-01

    The REMS instrument onboard the Mars Science Laboratory rover, Curiosity, has measured ground temperature nearly continuously at hourly intervals for two Mars years. Coverage of the entire diurnal cycle at 1 Hz is achieved every few martian days. We compare these measurements with predictions of surface-atmosphere thermal models to derive the apparent thermal inertia and thermally derived albedo along the rover's traverse, after accounting for the radiative effects of dust as well as atmospheric water ice during fall and winter, as is necessary to match the measured seasonal trend. The REMS measurements can distinguish between active sand, other loose materials, mudstone, and sandstone based on their thermophysical properties. However, the thermal inertias of bedrock-dominated surfaces ( 350-550 J m-2 K-1 s-½) are lower than expected. We use the detailed shape of the diurnal ground temperature curve to infer the effects of lateral mixing of different materials within the sensor footprint, as well as vertical heterogeneity. While results of this forward modeling approach are non-unique, we find surface configurations capable of creating the observed thermal responses that also are consistent with rover imagery. Bedrock thermal inertias isolated by this modeling are 1000-1900 J m-2 K-1 s-½ for mudstone and 700 J m-2 K-1 s-½ for sandstone. This methodology provides a better basis for inferring properties such as rock porosity, cement composition, and degree of cementation from the thermal inertia. These results highlight the advantages of deriving thermophysical properties from ground temperature records well-sampled in local time.

  15. Stable Au–C bonds to the substrate for fullerene-based nanostructures

    PubMed Central

    Chutora, Taras; Redondo, Jesús; de la Torre, Bruno; Švec, Martin

    2017-01-01

    We report on the formation of fullerene-derived nanostructures on Au(111) at room temperature and under UHV conditions. After low-energy ion sputtering of fullerene films deposited on Au(111), bright spots appear at the herringbone corner sites when measured using a scanning tunneling microscope. These features are stable at room temperature against diffusion on the surface. We carry out DFT calculations of fullerene molecules having one missing carbon atom to simulate the vacancies in the molecules resulting from the sputtering process. These modified fullerenes have an adsorption energy on the Au(111) surface that is 1.6 eV higher than that of C60 molecules. This increased binding energy arises from the saturation by the Au surface of the bonds around the molecular vacancy defect. We therefore interpret the observed features as adsorbed fullerene-derived molecules with C vacancies. This provides a pathway for the formation of fullerene-based nanostructures on Au at room temperature. PMID:28685108

  16. [Penetration of external thermal perturbations into homeothermic organisms, part I (author's transl)].

    PubMed

    Theves, B

    1978-03-20

    The general importance of the mean surface curvature for heat conduction problems is explained and a special symmetry with constant mean curvature on the isothermal surfaces is defined. The applicability for the body shapes of homeothermic organisms is demonstrated and the partial differential equation of heat conduction for this case is derived. The definition: heat release = real heat production + convective pseudoproduction eliminates the term of convective heat transfer through the blood stream and allows the reduction to a mere heat conduction problem. Formulas for the heat loss to the environment and for steady state temperature profiles are given. In case of sudden change of heat loss the partial differential equation is solved and a formula is derived, using dimensionless coordinates of time and distance. The mean surface curvature has strongest influence to the interior temperature field. The solution shows clearly the importance of thermal inertia of the homeothermic organism, for the external temperature wave penetrates into the body with a long phase displacement in time.

  17. Multiple Emission Angle Surface-Atmosphere Separations of MGS Thermal Emission Spectrometer Data

    NASA Technical Reports Server (NTRS)

    Bandfield, J. L.; Smith, M. D.

    2001-01-01

    Multiple emission angle observations taken by MGS-TES have been used to derive atmospheric opacities and surface temperatures and emissivities with increased accuracy and wavelength coverage. Martian high albedo region surface spectra have now been isolated. Additional information is contained in the original extended abstract.

  18. Improved Remote Sensing Retrieval of Land Surface Temperature in the Thermal Infrared (TIR) Using Visible/Short Wave Infrared (VSWIR) Imaging Spectrometer Estimated Water Vapor

    NASA Astrophysics Data System (ADS)

    Grigsby, S.; Hulley, G. C.; Roberts, D. A.; Scheele, C. J.; Ustin, S.; Alsina, M. M.

    2014-12-01

    Land surface temperature (LST) is an important parameter in many ecological studies, where processes such as evapotranspiration have impacts at temperature gradients less than 1 K. Current errors in standard MODIS and ASTER LST products are greater than 1 K, and for ASTER can be greater than 2 K in humid conditions due to incomplete atmospheric correction of atmospheric water vapor. Estimates of water vapor, either derived from visible-to-shortwave-infrared (VSWIR) remote sensing data or taken from weather simulation data such as NCEP, can be combined with coincident Thermal-Infrared (TIR) remote sensing data to yield improved accuracy in LST measurements. This study compares LST retrieval accuracies derived using the standard JPL MASTER Temperature Emissivity Separation (TES) algorithm, and the Water Vapor Scaling (WVS) atmospheric correction method proposed for the Hyperspectral Infrared Imager, or HyspIRI, mission with ground observations. The 2011 ER-2 Delano/Lost Hills flights acquired TIR data from the MODIS/ASTER Simulator (MASTER) and VSWIR data from Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) instruments flown concurrently. The TES and WVS retrieval methods are run with and without high spatial resolution AVIRIS-derived water vapor maps to assess the improvement using VSWIR water vapor estimates. We find improvement using VSWIR derived water vapor maps in both cases, with the WVS method being most accurate overall. For closed canopy agricultural vegetation we observed canopy temperature retrieval RMSEs of 0.49 K and 0.70 K using the WVS method on MASTER data with and without AVIRIS derived water vapor, respectively.

  19. Investigation and optimization of the depth of flue gas heat recovery in surface heat exchangers

    NASA Astrophysics Data System (ADS)

    Bespalov, V. V.; Bespalov, V. I.; Melnikov, D. V.

    2017-09-01

    Economic issues associated with designing deep flue gas heat recovery units for natural gas-fired boilers are examined. The governing parameter affecting the performance and cost of surface-type condensing heat recovery heat exchangers is the heat transfer surface area. When firing natural gas, the heat recovery depth depends on the flue gas temperature at the condenser outlet and determines the amount of condensed water vapor. The effect of the outlet flue gas temperature in a heat recovery heat exchanger on the additionally recovered heat power is studied. A correlation has been derived enabling one to determine the best heat recovery depth (or the final cooling temperature) maximizing the anticipated reduced annual profit of a power enterprise from implementation of energy-saving measures. Results of optimization are presented for a surface-type condensing gas-air plate heat recovery heat exchanger for the climatic conditions and the economic situation in Tomsk. The predictions demonstrate that it is economically feasible to design similar heat recovery heat exchangers for a flue gas outlet temperature of 10°C. In this case, the payback period for the investment in the heat recovery heat exchanger will be 1.5 years. The effect of various factors on the optimal outlet flue gas temperature was analyzed. Most climatic, economical, or technological factors have a minor effect on the best outlet temperature, which remains between 5 and 20°C when varying the affecting factors. The derived correlation enables us to preliminary estimate the outlet (final) flue gas temperature that should be used in designing the heat transfer surface of a heat recovery heat exchanger for a gas-fired boiler as applied to the specific climatic conditions.

  20. Exploring the potential of clumped isotope thermometry on coccolith-rich sediments as a sea surface temperature proxy

    NASA Astrophysics Data System (ADS)

    Drury, Anna Joy; John, Cédric M.

    2016-10-01

    Understanding past changes in sea surface temperatures (SSTs) is crucial; however, existing proxies for reconstructing past SSTs are hindered by unknown ancient seawater composition (foraminiferal Mg/Ca and δ18O) or reflect subsurface temperatures (TEX86) or have a limited applicable temperature range (U37k'). We examine clumped isotope (Δ47) thermometry to fossil coccolith-rich material as an SST proxy, as clumped isotopes are independent of original seawater composition and applicable to a wide temperature range and coccolithophores are widespread and dissolution resistant. The Δ47-derived temperatures from <63, <20, <10, and 2-5 μm size fractions of two equatorial Pacific late Miocene-early Pliocene sediment samples (c1; c2) range between ˜18 and 29°C, with c1 temperatures consistently above c2. Removing the >63 μm fraction removes most nonmixed layer components; however, the Δ47-derived temperatures display an unexpected slight decreasing trend with decreasing size fraction. This unexpected trend could partly arise because larger coccoliths (5-12 μm) are removed during the size fraction separation process. The c1 and <63 μm c2 Δ47-derived temperatures are comparable to concurrent U37k' SSTs. The <20, <10, and 2-5 μm c2 Δ47-derived temperatures are consistently cooler than expected. The Δ47-U37k' temperature offset is probably caused by abiotic/diagenetic calcite present in the c2 2-5 μm fraction (˜53% by area), which potentially precipitated at bottom water temperatures of ˜6°C. Our results indicate that clumped isotopes on coccolith-rich sediment fractions have potential as an SST proxy, particularly in tropical regions, providing that careful investigation of the appropriate size fraction for the region and time scale is undertaken.

  1. Thermal inertias in the upper millimeters of the Martian surace derived using Phobus' shadow

    NASA Technical Reports Server (NTRS)

    Betts, Bruce H.; Murray, Bruce C.; Svitek, Tomas

    1995-01-01

    The first thermal images of Phobos' shadow on the surface of Mars, in addition to simultaneous visible images, were obtained by the Phobus '88 Termoskan instrument. The best observed shadow occurence was on the flanks of Arsia Mons. For this occurence, we combined the observed decrease in visible illumination of the surface with the observed decrease in brightness temperature to calculate thermal inertias of the Martian surface. The most realistic of our three models of eclipse cooling improves upon our preliminary model by including nonisothermal initial conditions and downward atmospheric flux. Most of our derived inertias fall within the range 38 to 59 J/Sq m/S(exp 0.5)K (0.9 to 1.4 10(exp -3)Cal/Sq m/S(exp 0.5)/K), corresponding to dust-sized particles (for a homogeneous surface), consistent with previous theories of Tharsis as a currrent area of dust deposition. Viking infrared thermal mapper (IRTM) inertias are diurnally derived and are sensitive to centimeter depths, whereas the shadow-derived inertias sample the upper tenths of a millimeter of the surface. The shadow-derived inertias are lower than those derived from Viking IRTM measurements (84 to 147), however, uncertainties in both sets of derived inertias make conclusions about layering tenuous. Thus, near-surface millimeter versus centimeter layering may exist in this region, but if it does, it is likely not very significant. Both eclipse and diurnal inertias appear to increase near the eastern end of the shadow occurence. We also analyzed a shadow occurence near the crater Herschel that showed no observed cooling. This analysis was limited by cool morning temperatures and instrument sensitivity, but yielded a lower bound of 80 on eclipse inertias in that region. Based upon our results, we strongly recommend future spacecraft thermal observations of Phobus' shadow, and suggest that they will be most useful if they improve upon Termoskan's geographic and temporal coverage and its accuracy.

  2. Smoothed dissipative particle dynamics model for mesoscopic multiphase flows in the presence of thermal fluctuations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei, Huan; Baker, Nathan A.; Wu, Lei

    2016-08-05

    Thermal fluctuations cause perturbations of fluid-fluid interfaces and highly nonlinear hydrodynamics in multiphase flows. In this work, we develop a novel multiphase smoothed dissipative particle dynamics model. This model accounts for both bulk hydrodynamics and interfacial fluctuations. Interfacial surface tension is modeled by imposing a pairwise force between SDPD particles. We show that the relationship between the model parameters and surface tension, previously derived under the assumption of zero thermal fluctuation, is accurate for fluid systems at low temperature but overestimates the surface tension for intermediate and large thermal fluctuations. To analyze the effect of thermal fluctuations on surface tension,more » we construct a coarse-grained Euler lattice model based on the mean field theory and derive a semi-analytical formula to directly relate the surface tension to model parameters for a wide range of temperatures and model resolutions. We demonstrate that the present method correctly models the dynamic processes, such as bubble coalescence and capillary spectra across the interface.« less

  3. An objective algorithm for reconstructing the three-dimensional ocean temperature field based on Argo profiles and SST data

    NASA Astrophysics Data System (ADS)

    Zhou, Chaojie; Ding, Xiaohua; Zhang, Jie; Yang, Jungang; Ma, Qiang

    2017-12-01

    While global oceanic surface information with large-scale, real-time, high-resolution data is collected by satellite remote sensing instrumentation, three-dimensional (3D) observations are usually obtained from in situ measurements, but with minimal coverage and spatial resolution. To meet the needs of 3D ocean investigations, we have developed a new algorithm to reconstruct the 3D ocean temperature field based on the Array for Real-time Geostrophic Oceanography (Argo) profiles and sea surface temperature (SST) data. The Argo temperature profiles are first optimally fitted to generate a series of temperature functions of depth, with the vertical temperature structure represented continuously. By calculating the derivatives of the fitted functions, the calculation of the vertical temperature gradient of the Argo profiles at an arbitrary depth is accomplished. A gridded 3D temperature gradient field is then found by applying inverse distance weighting interpolation in the horizontal direction. Combined with the processed SST, the 3D temperature field reconstruction is realized below the surface using the gridded temperature gradient. Finally, to confirm the effectiveness of the algorithm, an experiment in the Pacific Ocean south of Japan is conducted, for which a 3D temperature field is generated. Compared with other similar gridded products, the reconstructed 3D temperature field derived by the proposed algorithm achieves satisfactory accuracy, with correlation coefficients of 0.99 obtained, including a higher spatial resolution (0.25° × 0.25°), resulting in the capture of smaller-scale characteristics. Finally, both the accuracy and the superiority of the algorithm are validated.

  4. Validation of a Climate-Data Record of the "Clear-Sky" Surface Temperature of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Box, Jason E.; Koenig, Lora S.; DiGirolamo, Nicolo E.; Comiso, Josefino C.; Shuman, Christopher A.

    2011-01-01

    Surface temperatures on the Greenland Ice Sheet have been studied on the ground, using automatic weather station (AWS) data from the Greenland-Climate Network (GC-Net), and from analysis of satellite sensor data. Using Advanced Very High Frequency Radiometer (AVHRR) weekly surface temperature maps, warming of the surface of the Greenland Ice Sheet has been documented since 1981. We extended and refined this record using higher-resolution Moderate-Resolution Imaging Spectroradiometer (MODIS) data from March 2000 to the present. We developed a daily and monthly climate-data record (CDR) of the "clear-sky" surface temperature of the Greenland Ice Sheet using an ice-surface temperature (1ST) algorithm developed for use with MODIS data. Validation of this CDR is ongoing. MODIS Terra swath data are projected onto a polar stereographic grid at 6.25-km resolution to develop binary, gridded daily and mean-monthly 1ST maps. Each monthly map also has a color-coded image map that is available to download. Also included with the monthly maps is an accompanying map showing number of days in the month that were used to calculate the mean-monthly 1ST. This is important because no 1ST decision is made by the algorithm for cells that are considered cloudy by the internal cloud mask, so a sufficient number of days must be available to produce a mean 1ST for each grid cell. Validation of the CDR consists of several facets: 1) comparisons between ISTs and in-situ measurements; 2) comparisons between ISTs and AWS data; and 3) comparisons of ISTs with surface temperatures derived from other satellite instruments such as the Thermal Emission and Reflection Radiometer (ASTER) and Enhanced Thematic Mapper Plus (ETM+). Previous work shows that Terra MODIS ISTs are about 3 C lower than in-situ temperatures measured at Summit Camp, during the winter of 2008-09 under clear skies. In this work we begin to compare surface temperatures derived from AWS data with ISTs from the MODIS CDR.

  5. Detection of surface temperature from LANDSAT-7/ETM+

    NASA Astrophysics Data System (ADS)

    Suga, Y.; Ogawa, H.; Ohno, K.; Yamada, K.

    Hiroshima Institute of Technology (HIT) in Japan has established LANDSAT-7 Ground Station in cooperated with NASDA for receiving and processing the ETM+ data on March 15t h , 2000 in Japan. The authors performed a verification study on the surface temperature derived from thermal infrared band image data of LANDSAT- 7/Enhanced Thematic Mapper Plus (ETM+) for the estimation of the thermal condition around Hiroshima City and Bay area in the western part of Japan as a test site. As to the thermal infrared band, the approximate functions for converting the spectral radiance into the surface temperature are estimated by considering both typical surface temperatures measured by the simultaneous field survey with the satellite observation and the spectral radiance observed by ETM+ band 6, and then the estimation of the surface temperature distribution around the test site was examined. In this paper, the authors estimated the surface temperature distribution equivalent to the land cover types around Hiroshima City and Bay area. For the further study, the authors performed the modification of approximate functions for converting the spectral radiance into the surface temperature by the field and satellite observation throughout a year and the development of various monitoring systems for the environmental issues such as the sea surface anomalies and heat island phenomena.

  6. Cooling effect of rivers on metropolitan Taipei using remote sensing.

    PubMed

    Chen, Yen-Chang; Tan, Chih-Hung; Wei, Chiang; Su, Zi-Wen

    2014-01-23

    This study applied remote sensing technology to analyze how rivers in the urban environment affect the surface temperature of their ambient areas. While surface meteorological stations can supply accurate data points in the city, remote sensing can provide such data in a two-dimensional (2-D) manner. The goal of this paper is to apply the remote sensing technique to further our understanding of the relationship between the surface temperature and rivers in urban areas. The 2-D surface temperature data was retrieved from Landsat-7 thermal infrared images, while data collected by Formosat-2 was used to categorize the land uses in the urban area. The land surface temperature distribution is simulated by a sigmoid function with nonlinear regression analysis. Combining the aforementioned data, the range of effect on the surface temperature from rivers can be derived. With the remote sensing data collected for the Taipei Metropolitan area, factors affecting the surface temperature were explored. It indicated that the effect on the developed area was less significant than on the ambient nature zone; moreover, the size of the buffer zone between the river and city, such as the wetlands or flood plain, was found to correlate with the affected distance of the river surface temperature.

  7. Cooling Effect of Rivers on Metropolitan Taipei Using Remote Sensing

    PubMed Central

    Chen, Yen-Chang; Tan, Chih-Hung; Wei, Chiang; Su, Zi-Wen

    2014-01-01

    This study applied remote sensing technology to analyze how rivers in the urban environment affect the surface temperature of their ambient areas. While surface meteorological stations can supply accurate data points in the city, remote sensing can provide such data in a two-dimensional (2-D) manner. The goal of this paper is to apply the remote sensing technique to further our understanding of the relationship between the surface temperature and rivers in urban areas. The 2-D surface temperature data was retrieved from Landsat-7 thermal infrared images, while data collected by Formosat-2 was used to categorize the land uses in the urban area. The land surface temperature distribution is simulated by a sigmoid function with nonlinear regression analysis. Combining the aforementioned data, the range of effect on the surface temperature from rivers can be derived. With the remote sensing data collected for the Taipei Metropolitan area, factors affecting the surface temperature were explored. It indicated that the effect on the developed area was less significant than on the ambient nature zone; moreover, the size of the buffer zone between the river and city, such as the wetlands or flood plain, was found to correlate with the affected distance of the river surface temperature. PMID:24464232

  8. Global Surface Dust Distribution Changes on Mars (MY24-33)

    NASA Astrophysics Data System (ADS)

    Piqueux, S.; Hayne, P. O.; Kleinboehl, A.; Edwards, C. S.; Elder, C. M.; Heavens, N. G.; Kass, D. M.; McCleese, D. J.; Schofield, J. T.; Shirley, J. H.; Smith, M. D.

    2016-12-01

    Telescopic and spacecraft observations document inter-annual and inter-seasonal changes of the Martian albedo that are interpreted to result from the redistribution of surface dust in response to atmospheric events such as global or regional dust storms, dust devil activity, or seasonal winds. Based on these observations and general circulation modeling, several authors have hypothesized that a necessary condition for global dust storm initiation and growth is the presence of strategically located surface dust reservoirs replenished during inter-storm periods. If this hypothesis is valid, the cyclical accumulation and removal of thermally thick (>50 μm) layers of dust at specific locations ought to produce a distinct temperature signature, since Martian dust exhibits extremely low thermal conductivity and thermal inertia values compared to sand, gravel, rocks, and bedrock. Characterizing dust movement using temperature data presents a major advantage over mapping relying solely on albedo changes: it yields dust layer thicknesses, whose spatial and temporal integration enables the derivation of surface dust fluxes. In this work, we use global (1° per pixel resolution) seasonal (10° Ls resolution, from MY24 to 33) maps of the Martian surface albedo, atmospheric dust opacity, and ground temperature (derived from TES, THEMIS, and MCS observations) to derive apparent variations of the thermal inertia, and thereby characterize surface changes consistent with the deposition or removal of dust. We show that changes in thermal inertia for some regions are consistent with dust accumulation; whereas others seem to lose dust. We compare these maps with published GCM dust lifting predictions, and with observations of past dust storm occurrence, thereby constraining the role of surface dust availability.

  9. A one-layer satellite surface energy balance for estimating evapotranspiration rates and crop water stress indexes.

    PubMed

    Barbagallo, Salvatore; Consoli, Simona; Russo, Alfonso

    2009-01-01

    Daily evapotranspiration fluxes over the semi-arid Catania Plain area (Eastern Sicily, Italy) were evaluated using remotely sensed data from Landsat Thematic Mapper TM5 images. A one-source parameterization of the surface sensible heat flux exchange using satellite surface temperature has been used. The transfer of sensible and latent heat is described by aerodynamic resistance and surface resistance. Required model inputs are brightness, temperature, fractional vegetation cover or leaf area index, albedo, crop height, roughness lengths, net radiation, air temperature, air humidity and wind speed. The aerodynamic resistance (r(ah)) is formulated on the basis of the Monin-Obukhov surface layer similarity theory and the surface resistance (r(s)) is evaluated from the energy balance equation. The instantaneous surface flux values were converted into evaporative fraction (EF) over the heterogeneous land surface to derive daily evapotranspiration values. Remote sensing-based assessments of crop water stress (CWSI) were also made in order to identify local irrigation requirements. Evapotranspiration data and crop coefficient values obtained from the approach were compared with: (i) data from the semi-empirical approach "K(c) reflectance-based", which integrates satellite data in the visible and NIR regions of the electromagnetic spectrum with ground-based measurements and (ii) surface energy flux measurements collected from a micrometeorological tower located in the experiment area. The expected variability associated with ET flux measurements suggests that the approach-derived surface fluxes were in acceptable agreement with the observations.

  10. Methods for computing comet core temperatures

    NASA Astrophysics Data System (ADS)

    McKay, C. P.; Squyres, S. W.; Reynolds, R. T.

    1986-06-01

    The temperature profile within the comet nucleus provides the key to an understanding of the history of the volatiles within a comet. Certain difficulties arise in connection with current cometary temperature models. It is shown that the constraint of zero net heat flow can be used to derive general analytical expressions which will allow for the determination of comet core temperature for a spherically symmetric comet, taking into account information about the surface temperature and the thermal conductivity. The obtained results are compared with the expression for comet core temperatures considered by Klinger (1981). Attention is given to analytical results, an example case, and numerical models. The formalization developed makes it possible to determine the core temperature on the basis of the numerical models of the surface temperature.

  11. Validation of AIRS V6 Surface Temperature over Greenland with GCN and NOAA Stations

    NASA Technical Reports Server (NTRS)

    Lee, Jae N.; Hearty, Thomas; Cullather, Richard; Nowicki, Sophie; Susskind, Joel

    2016-01-01

    This work compares the temporal and spatial characteristics of the AIRSAMSU (Atmospheric Infrared Sounder Advanced Microwave Sounding Unit A) Version 6 and MODIS (Moderate resolution Imaging Spectroradiometer) Collection 5 derived surface temperatures over Greenland. To estimate uncertainties in space-based surface temperature measurements, we re-projected the MODIS Ice Surface Temperature (IST) to 0.5 by 0.5 degree spatial resolution. We also re-gridded AIRS Skin Temperature (Ts) into the same grid but classified with different cloud conditions and surface types. These co-located data sets make intercomparison between the two instruments relatively straightforward. Using this approach, the spatial comparison between the monthly mean AIRS Ts and MODIS IST is in good agreement with RMS 2K for May 2012. This approach also allows the detection of any long-term calibration drift and the careful examination of calibration consistency in the MODIS and AIRS temperature data record. The temporal correlations between temperature data are also compared with those from in-situ measurements from GC-Net (GCN) and NOAA stations. The coherent time series of surface temperature evident in the correlation between AIRS Ts and GCN temperatures suggest that at monthly time scales both observations capture the same climate signal over Greenland. It is also suggested that AIRS surface air temperature (Ta) can be used to estimate the boundary layer inversion.

  12. Thermophysical Properties Along Curiosity's Traverse in Gale Crater, Mars, Derived from the REMS Ground Temperature Sensor

    NASA Technical Reports Server (NTRS)

    Vasavada, Ashwin R.; Piqueux, Sylvain; Lewis, Kevin W.; Lemmon, Mark T.; Smith, Michael Doyle

    2016-01-01

    The REMS instrument onboard the Mars Science Laboratory rover, Curiosity, has measured ground temperature nearly continuously at hourly intervals for two Mars years. Coverage of the entire diurnal cycle at 1 Hz is available every few martian days. We compare these measurements with predictions of surface atmosphere thermal models to derive the apparent thermal inertia and thermally derived albedo along the rovers traverse after accounting for the radiative effects of atmospheric water ice during fall and winter, as is necessary to match the measured seasonal trend. The REMS measurements can distinguish between active sand, other loose materials, mudstone, and sandstone based on their thermophysical properties. However, the apparent thermal inertias of bedrock dominated surfaces [approx. 350-550 J m(exp. -2) K(exp. -1 s(exp. -1/2 )] are lower than expected. We use rover imagery and the detailed shape of the diurnal ground temperature curve to explore whether lateral or vertical heterogeneity in the surface materials within the sensor footprint might explain the low inertias. We find that the bedrock component of the surface can have a thermal inertia as high as 650-1700 J m(exp. -2) K(exp. -1) s(exp. -1/2) for mudstone sites and approx. 700 J m(exp. -2) K(exp. -1) s(exp. - 1/2) for sandstone sites in models runs that include lateral and vertical mixing. Although the results of our forward modeling approach may be non-unique, they demonstrate the potential to extract information about lateral and vertical variations in thermophysical properties from temporally resolved measurements of ground temperature.

  13. Comparing AIRS/AMSU-A Satellite and MERRA/MERRA-2 Reanalysis products with In-situ Station Observations at Summit, Greenland

    NASA Astrophysics Data System (ADS)

    Hearty, T. J., III; Vollmer, B.; Wei, J. C.; Huwe, P. M.; Albayrak, A.; Wu, D. L.; Cullather, R. I.; Meyer, D. L.; Lee, J. N.; Blaisdell, J. M.; Susskind, J.; Nowicki, S.

    2017-12-01

    The surface air and skin temperatures reported by the Atmospheric Infrared Sounder (AIRS), the Modern-Era Retrospective analysis for Research and Applications (MERRA), and MERRA-2 at Summit, Greenland are compared with near surface air temperatures measured at National Oceanic and Atmospheric Administration (NOAA) and Greenland Climate Network (GC-Net) weather stations. Therefore this investigation requires familiarity with a heterogeneous set of swath, grid, and point data in several different formats, different granularity, and different sampling. We discuss the current subsetting capabilities available at the GES DISC (Goddard Earth Sciences Data Information Services Center) to perform the inter-comparisons necessary to evaluate the quality and trustworthiness of these datasets. We also explore potential future services which may assist users with this type of intercomparison. We find the AIRS Surface Skin Temperature (TS) is best correlated with the NOAA 2 m air temperature (T2M) but it tends to be colder than the station measurements. The difference may be the result of the frequent near surface temperature inversions in the region. The AIRS Surface Air Temperature (SAT) is also well correlated with the NOAA T2M but it has a warm bias with respect to the NOAA T2M during the cold season and a larger standard error than surface temperature. This suggests that the extrapolation of the temperature profile to the surface is not valid for the strongest inversions. Comparing the temperature lapse rate derived from the 2 stations shows that the lapse rate can increase closer to the surface. We also find that the difference between the AIRS SAT and TS is sensitive to near surface inversions. The MERRA-2 surface and near surface temperatures show improvements over MERRA but little sensitivity to near surface temperature inversions.

  14. LANDSAT 4 band 6 data evaluation

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Satellite data collected over Lake Ontario were processed to observed surface temperature values. This involved computing apparent radiance values for each point where surface temperatures were known from averaged digital count values. These radiance values were then converted by using the LOWTRAN 5A atmospheric propagation model. This model was modified by incorporating a spectral response function for the LANDSAT band 6 sensors. A downwelled radiance term derived from LOWTRAN was included to account for reflected sky radiance. A blackbody equivalent source radiance was computed. Measured temperatures were plotted against the predicted temperature. The RMS error between the data sets is 0.51K.

  15. Performance Technology Program (PTP-S 2). Volume 9: Evaluation of reentry vehicle nosetip transition and heat transfer in the AEDC hyperballistics track G

    NASA Astrophysics Data System (ADS)

    Wassel, A. T.; Shih, W. C. L.; Curtis, R. J.

    1981-01-01

    Boundary layer transition and surface heating distributions on graphite fine weave carbon-carbon, and metallic nosetip materials were derived from surface temperature responses measured in nitrogen environments during both free-flight and track-guided testing in the AEDC Hyperballistics Range/Track G. Innovative test procedures were developed, and heat transfer results were validated against established theory through experiments using a super-smooth tungsten model. Quantitative definitions of mean transition front locations were established by deriving heat flux distributions from measured temperatures, and comparisons made with existing nosetip transition correlations. Qualitative transition locations were inferred directly from temperature distributions to investigate preferred orientations on fine weave nosetips. Levels of roughness augmented heat transfer were generally shown to be below values predicted by state of the art methods.

  16. Evaluation of Skin Temperatures Retrieved from GOES-8

    NASA Technical Reports Server (NTRS)

    Suggs, Ronnie, J.; Jedlovec, G. J.; Lapenta, W. M.; Haines, S. L.

    2000-01-01

    Skin temperatures derived from geostationary satellites have the potential of providing the temporal and spatial resolution needed for model assimilation. To adequately assess the potential improvements in numerical model forecasts that can be made by assimilating satellite data, an estimate of the accuracy of the skin temperature product is necessary. A particular skin temperature algorithm, the Physical Split Window Technique, that uses the longwave infrared channels of the GOES Imager has shown promise in recent model assimilation studies to provide land surface temperatures with reasonable accuracy. A comparison of retrieved GOES-8 skin temperatures from this algorithm with in situ measurements is presented. Various retrieval algorithm issues are addressed including surface emissivity

  17. HCMM satellite follow-on investigation no. 25. Soil moisture and heat budget evalution in selected European zones of agricultural and environmental interest (TELLUS project)

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A simple procedure to evaluate actual evaporation was derived by linearizing the surface energy balance equation, using Taylor's expansion. The original multidimensional hypersurface could be reduced to a linear relationship between evaporation and surface temperature or to a surface relationship involving evaporation, surface temperature and albedo. This procedure permits a rapid sensitivity analysis of the surface energy balance equation as well as a speedy mapping of evaporation from remotely sensed surface temperatures and albedo. Comparison with experimental data yielded promising results. The validity of evapotranspiration and soil moisture models in semiarid conditions was tested. Wheat was the crop chosen for a continuous measurement campaign made in the south of Italy. Radiometric, micrometeorologic, agronomic and soil data were collected for processing and interpretation.

  18. Validation of a Climate-Data Record of the "Clear-Kky" Surface Temperature of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Box, Jason E.; Koenig, Lora S.; DiGirolamo, Nicolo E.; Comiso, Josefino C.; Shuman, Christopher A.

    2011-01-01

    Surface temperatures on the Greenland Ice Sheet have been studied on the ground, using automatic weather station (AWS) data from the Greenland-Climate Network (GC-Net), and from analysis of satellite sensor data. Using Advanced Very High Frequency Radiometer (AVHRR) weekly surface temperature maps, warming of the surface of the Greenland Ice Sheet has been documented since 1981. We extended and refined this record using higher-resolution Moderate-Resolution Imaging Spectroradiometer (MODIS) data from March 2000 to the present. We developed a daily and monthly climate-data record (CDR) of the "clear-sky" surface temperature of the Greenland Ice Sheet using an ice-surface temperature (1ST) algorithm developed for use with MODIS data. Validation of this CDR is ongoing. MODIS Terra swath data are projected onto a polar stereographic grid at 6.25-km resolution to develop binary, gridded daily and mean-monthly 1ST maps. Each monthly map also has a color-coded image map that is available to download. Also included with the monthly maps is an accompanying map showing number of days in the month that were used to calculate the mean-monthly 1ST. This is important because no 1ST decision is made by the algorithm for cells that are considered cloudy by the internal cloud mask, so a sufficient number of days must be available to produce a mean 1ST for each grid cell. Validation of the CDR consists of several facets: 1) comparisons between ISTs and in-situ measurements; 2) comparisons between ISTs and AWS data; and 3) comparisons of ISTs with surface temperatures derived from other satellite instruments such as the Thermal Emission and Reflection Radiometer (ASTER) and Enhanced Thematic Mapper Plus (ETM+). Previous work shows that Terra MODIS ISTs are about 3 C lower than in-situ temperatures measured at Summit Camp, during the winter of 2008-09 under clear skies. In this work we begin to compare surface temperatures derived from AWS data with ISTs from the MODIS CDR. The Greenland Ice Sheet 1ST CDR will be useful for monitoring surface-temperature trends and can be used as input or for validation of climate models. The CDR can be extended into the future using MODIS Terra, Aqua and NPOESS Preparatory Project Visible Infrared Imager Radiometer Suite (VII RS) data.

  19. Reaction pathways of model compounds of biomass-derived oxygenates on Fe/Ni bimetallic surfaces

    NASA Astrophysics Data System (ADS)

    Yu, Weiting; Chen, Jingguang G.

    2015-10-01

    Controlling the activity and selectivity of converting biomass-derivatives to fuels and valuable chemicals is critical for the utilization of biomass feedstocks. There are primarily three classes of non-food competing biomass, cellulose, hemicellulose and lignin. In the current work, glycolaldehyde, furfural and acetaldehyde are studied as model compounds of the three classes of biomass-derivatives. Monometallic Ni(111) and monolayer (ML) Fe/Ni(111) bimetallic surfaces are studied for the reaction pathways of the three biomass surrogates. The ML Fe/Ni(111) surface is identified as an efficient surface for the conversion of biomass-derivatives from the combined results of density functional theory (DFT) calculations and temperature programmed desorption (TPD) experiments. A correlation is also established between the optimized adsorption geometry and experimental reaction pathways. These results should provide helpful insights in catalyst design for the upgrading and conversion of biomass.

  20. The effects of the variations in sea surface temperature and atmospheric stability in the estimation of average wind speed by SEASAT-SASS

    NASA Technical Reports Server (NTRS)

    Liu, W. T.

    1984-01-01

    The average wind speeds from the scatterometer (SASS) on the ocean observing satellite SEASAT are found to be generally higher than the average wind speeds from ship reports. In this study, two factors, sea surface temperature and atmospheric stability, are identified which affect microwave scatter and, therefore, wave development. The problem of relating satellite observations to a fictitious quantity, such as the neutral wind, that has to be derived from in situ observations with models is examined. The study also demonstrates the dependence of SASS winds on sea surface temperature at low wind speeds, possibly due to temperature-dependent factors, such as water viscosity, which affect wave development.

  1. Multimodel Surface Temperature Responses to Removal of U.S. Sulfur Dioxide Emissions

    NASA Astrophysics Data System (ADS)

    Conley, A. J.; Westervelt, D. M.; Lamarque, J.-F.; Fiore, A. M.; Shindell, D.; Correa, G.; Faluvegi, G.; Horowitz, L. W.

    2018-03-01

    Three Earth System models are used to derive surface temperature responses to removal of U.S. anthropogenic SO2 emissions. Using multicentury perturbation runs with and without U.S. anthropogenic SO2 emissions, the local and remote surface temperature changes are estimated. In spite of a temperature drift in the control and large internal variability, 200 year simulations yield statistically significant regional surface temperature responses to the removal of U.S. SO2 emissions. Both local and remote surface temperature changes occur in all models, and the patterns of changes are similar between models for northern hemisphere land regions. We find a global average temperature sensitivity to U.S. SO2 emissions of 0.0055 K per Tg(SO2) per year with a range of (0.0036, 0.0078). We examine global and regional responses in SO4 burdens, aerosol optical depths (AODs), and effective radiative forcing (ERF). While changes in AOD and ERF are concentrated near the source region (United States), the temperature response is spread over the northern hemisphere with amplification of the temperature increase toward the Arctic. In all models, we find a significant response of dust concentrations, which affects the AOD but has no obvious effect on surface temperature. Temperature sensitivity to the ERF of U.S. SO2 emissions is found to differ from the models' sensitivity to radiative forcing of doubled CO2.

  2. Analysis of Viking infrared thermal mapping data of Mars. The effects of non-ideal surfaces on the derived thermal properties of Mars

    NASA Technical Reports Server (NTRS)

    Muhleman, D. O.; Jakosky, B. M.

    1979-01-01

    The thermal interia of the surface of Mars varies spatially by a factor of eight. This is attributable to changes in the average particle size of the fine material, the surface elevation, the atmospheric opacity due to dust, and the fraction of the surface covered by rocks and fine material. The effects of these non-ideal properties on the surface temperatures and derived thermal inertias are modeled, along with the the effects of slopes, CO2 condensed onto the surface, and layering of fine material upon solid rock. The non-ideal models are capable of producing thermal behavior similar to that observed by the Viking Infrared Thermal Mapper, including a morning delay in the post-dawn temperature rise and an enhanced cooling in the afternoon relative to any ideal, homogeneous model. The enhanced afternoon cooling observed at the Viking-1 landing site is reproduced by the non-ideal models while that atop Arsia Mons volcano is not, but may be attributed to the observing geometry.

  3. High performance miniature hygrometer and method thereof

    NASA Technical Reports Server (NTRS)

    VanZandt, Thomas R. (Inventor); Kaiser, William J. (Inventor); Kenny, Thomas W. (Inventor); Crisp, David (Inventor)

    1994-01-01

    An uncoated interdigitated transducer is cooled from a temperature above the dew point to a temperature below the dew point, while a parameter of a signal of the transducer is measured. The reduction in temperature causes a monotonic change in transducer signal because that signal is sensitive primarily to the water loading of the transducer surface as water forms on that surface due to the reduction in temperature. As the dew point is approached with temperature reduction, the slope of the curve of transducer signal with respect to temperature, remains relatively constant. However, as the dew point is reached the slope of that curve increases and because of changes in the structure of the water layer on the surface of the transducer, at the dew point the transducer responds with a clear shift in the rate at which the transducer signal changes. The temperature at which the second derivative of signal vs. temperature peaks can be readily used to identify with extreme accuracy, the precise dew point. The measurement technique employed by the present invention is relatively immune to surface contamination which remains significantly unchanged during the brief measurement period.

  4. Utilization of satellite remote sensing data on land surface characteristics in water and heat balance component modeling for vegetation covered territories

    NASA Astrophysics Data System (ADS)

    Muzylev, Eugene; Uspensky, Alexander; Startseva, Zoya; Volkova, Elena; Kukharsky, Alexander; Uspensky, Sergey

    2010-05-01

    The model of vertical water and heat transfer in the "soil-vegetation-atmosphere" system (SVAT) for vegetation covered territory has been developed, allowing assimilating satellite remote sensing data on land surface condition as well as accounting for heterogeneities of vegetation and meteorological characteristics. The model provides the calculation of water and heat balance components (such as evapotranspiration Ev, soil water content W, sensible and latent heat fluxes and others ) as well as vertical soil moisture and temperature distributions, temperatures of soil surface and foliage, land surface brightness temperature for any time interval within vegetation season. To describe the landscape diversity soil constants and leaf area index LAI, vegetation cover fraction B, and other vegetation characteristics are used. All these values are considered to be the model parameters. Territory of Kursk region with square about 15 thousands km2 situated in the Black Earth zone of Central Russia was chosen for investigation. Satellite-derived estimates of land surface characteristics have been constructed under cloud-free condition basing AVHRR/NOAA, MODIS/EOS Terra and EOS Aqua, SEVIRI/Meteosat-8, -9 data. The developed technologies of AVHRR data thematic processing have been refined providing the retrieval of surface skin brightness temperature Tsg, air foliage temperature Ta, efficient surface temperature Ts.eff and emissivity E, as well as derivation of vegetation index NDVI, B, and LAI. The linear regression estimators for Tsg, Ta and LAI have been built using representative training samples for 2003-2009 vegetation seasons. The updated software package has been applied for AVHRR data thematic processing to generate named remote sensing products for various dates of the above vegetation seasons. The error statistics of Ta, Ts.eff and Тsg derivation has been investigated for various samples using comparison with in-situ measurements that has given RMS errors in the range 2.0-2.6, 2.5-3.7, and 3.5-4.9°C respectively. The dataset of remote sensing products has been compiled on the base of special technology using Internet resources, that includes MODIS-based estimates of land surface temperature (LST) Tsg, E, NDVI, LAI for the region of interest and the same vegetation seasons. Two types of MODIS-based Тsg and E estimates have been extracted from LP DAAC web-site (for separate dates of 2003-2009 time period): LST/E Daily L3 product (MOD11В1) with spatial resolution ~ 4.8 km and LST/E 5-Min L2 product (MOD11_L2) with spatial resolution ~ 1 km. The verification of Tsg estimates has been performed via comparison with analogous and collocated AVHRR-based ones. Along with this the sample of SEVIRI-based Tsg and E estimates has been accumulated for the Kursk area and surrounding territories for the time interval of several days during 2009 vegetation season. To retrieve Тsg and Е from SEVIRI/Meteosat-8, -9 data the new method has been developed. Being designed as the combination of well-known Split Window Technique and Two Temperature Method algorithms it provides the derivation of Тsg from SEVIRI/Meteosat-9 measurements carried out at three successive times (classified as 100% cloud-free) and covering the region under consideration without accurate a priory knowledge of E. Comparison of the SEVIRI-based Tsg retrievals with the independent collocated Tsg estimates gives the values of RMS deviation in the range of 0.9-1.4°C and it proves (indirectly) the efficiency of proposed approach. To assimilate satellite-derived estimates of vegetation characteristics and LST in the SVAT model some procedures have been developed. These procedures have included: 1) the replacement of LAI and B ground and point-wise estimates by their AVHRR- or MODIS-based analogues. The efficiency of such approach has been proved through comparison between satellite-derived and ground-based seasonal time behaviors of LAI and B, between satellite-derived, modeled, and in-situ measured temperatures as well as through comparison the modeled and actual values of evapotranspiration Ev and soil water content W for one meter soil layer. The discrepancies between mentioned temperatures do not exceed the RMS errors of satellite-derived estimates Ta, Ts.eff and Tsg while the modeled and measured values of Ev and W have been found close to each other within their standard estimation error; 2) the treating AVHRR- or MODIS-based LST as the input model variable within the SVAT model instead their standard ground-based estimates if the satisfactory time-matching of satellite and ground-based observations takes place. The SEVIRI-derived Tsg can be also used for these aims. Permissibility of such replacement has been verified while comparing remote sensed, modeled and ground-based temperatures as well as calculated and measured values of W and Ev. The SEVIRI-based Tsg estimates were found to be very informative and useful due to their high temporal resolution. Moreover the approach has been developed to account for space variability of vegetation cover parameters and meteorological characteristics. This approach includes the development of algorithms and programs for entering AVHRR- and MODIS-derived LAI and B, all named satellite-based LSTs as well as ground-based precipitation, air temperature and humidity data prepared by Inverse Distance Weighted Average Method into the model in each calculation grid unit. The calculations of vertical water and heat fluxes, soil water and heat contents and other water and heat balance components for Kursk region have been carried out with the help of the SVAT model using fields of AVHRR/3- and MODIS-derived LAI and B and AVHRR/3-, MODIS, and SEVIRI-derived LST for various vegetation seasons of 2003-2009. The acceptable accuracy levels of above values assessment have been achieved under all scenarios of parameter and input model variable specification. Thus, the results of this study confirm the opportunity of using area distributed satellite-derived estimates of land surface characteristics for the model calculations of water and heat balance components for large territories especially under the lack of ground observation data. The present study was carried out with support of the Russian Foundation of Basic Researches - grant N 10-05-00807.

  5. The use of NOAA AVHRR data for assessment of the urban heat sland effect

    USGS Publications Warehouse

    Gallo, K.P.; McNab, A. L.; Karl, Thomas R.; Brown, Jesslyn F.; Hood, J. J.; Tarpley, J.D.

    1993-01-01

    A vegetation index and a radiative surface temperature were derived from satellite data acquired at approximately 1330 LST for each of 37 cities and for their respective nearby rural regions from 28 June through 8 August 1991. Urban–rural differences for the vegetation index and the surface temperatures were computed and then compared to observed urban–rural differences in minimum air temperatures. The purpose of these comparisons was to evaluate the use of satellite data to assess the influence of the urban environment on observed minimum air temperatures (the urban heat island effect). The temporal consistency of the data, from daily data to weekly, biweekly, and monthly intervals, was also evaluated. The satellite-derived normalized difference (ND) vegetation-index data, sampled over urban and rural regions composed of a variety of land surface environments, were linearly related to the difference in observed urban and rural minimum temperatures. The relationship between the ND index and observed differences in minimum temperature was improved when analyses were restricted by elevation differences between the sample locations and when biweekly or monthly intervals were utilized. The difference in the ND index between urban and rural regions appears to be an indicator of the difference in surface properties (evaporation and heat storage capacity) between the two environments that are responsible for differences in urban and rural minimum temperatures. The urban and rural differences in the ND index explain a greater amount of the variation observed in minimum temperature differences than past analyses that utilized urban population data. The use of satellite data may contribute to a globally consistent method for analysis of urban heat island bias.

  6. Spatial and Temporal Inter-Relationships between Anomalies and Trends of Temperature, Moisture, Cloud Cover, and OLR as Observed by AIRS/AMSU on Aqua

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2008-01-01

    AIRS/AMSU is the advanced IR/MW atmospheric sounding system launched on EOS Aqua in May 2002. Products derived from AIRS/AMSU by the AIRS Science Team include surface skin temperature and atmospheric temperature profiles; atmospheric humidity profiles, fractional cloud cover and cloud top pressure, and OLR. Products covering the period September 2002 through the present have been derived from AIRS/AMSU using the AIRS Science Team Version 5 retrieval algorithm. In this paper, we will show results covering the time period September 2006 - November 2008. This time period is marked by a substantial warming trend of Northern Hemisphere Extratropical land surface skin temperatures, as well as pronounced El Nino - La Nina episodes. These both influence the spatial and temporal anomaly patterns of atmospheric temperature and moisture profiles, as well as of cloud cover and Clear sky and All Sky OLR. The relationships between temporal and spatial anomalies of these parameters over this time period, as determined from AIRS/AMSU observations, will be shown, with particular emphasis on which contribute significantly to OLR anomalies in each of the tropics and extra-tropics. Results will also be shown to validate the anomalies and trends of temperature profiles and OLR as determined from analysis of AIRS/AMSU data. Global and regional trends during the 6 1/3 year period are not necessarily indicative of what has happened in the past, or what may happen in the future. Nevertheless, the inter-relationships of spatial and temporal anomalies of atmospheric geophysical parameters with those of surface skin temperature are indicative of climate processes, and can be used to test the performance of climate models when driven by changes in surface temperatures.

  7. Spatial and Temporal Inter-Relationship between Anomalies and Trends of Temperature, Moisture, Cloud Cover and OLR as Observed by AIRS/AMSU on Aqua

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Molnar, Gyula

    2009-01-01

    AIRS/AMSU is the advanced IR/MW atmospheric sounding system launched on EOS Aqua in May 2002. Products derived from AIRS/AMSU by the AIRS Science Team include surface skin temperature and atmospheric temperature profiled; atmospheric humidity profiles, fractional cloud clover and cloud top pressure, and OLR. Products covering the period September 2002 through the present have been derived from AIRS/AMSU using the AIRS Science Team Version 5 retrieval algorithm. In this paper, we will show results covering the time period September 2006 - November 2008. This time period is marked by a substantial warming trend of Northern Hemisphere Extra-tropical land surface skin temperatures, as well as pronounced El Nino - La Nina episodes. These both influence the spatial and temporal anomaly patterns of atmospheric temperature and moisture profiles, as well as of cloud cover and Clear Sky and All Sky OLR. The relationships between temporal and spatial anomalies of these parameters over this time period, as determined from AIRS/AMSU observations, will be shown with particular emphasis on which contribute significantly to OLR anomalies in each of the tropics and extra-tropics. Results will also be shown to evaluate the anomalies and trends of temperature profiles and OLR as determined from analysis of AIRS/AMSU data. Global and regional trends during the 6 1/3 year time period are not necessarily indicative of what has happened in the past, or what may happen in the future. Nevertheless, the inter-relationships of spatial and temporal anomalies of atmospheric geophysical parameters with those of surface skin temperature are indicative of climate processes, and can be used to test the performance of climate models when driven by changes in surface temperatures.

  8. Thermionic gas switch

    DOEpatents

    Hatch, George L.; Brummond, William A.; Barrus, Donald M.

    1986-01-01

    A temperature responsive thermionic gas switch having folded electron emitting surfaces. An ionizable gas is located between the emitter and an interior surface of a collector, coaxial with the emitter. In response to the temperature exceeding a predetermined level, sufficient electrons are derived from the emitter to cause the gas in the gap between the emitter and collector to become ionized, whereby a very large increase in current in the gap occurs. Due to the folded emitter surface area of the switch, increasing the "on/off" current ratio and adjusting the "on" current capacity is accomplished.

  9. In-flight boundary-layer measurements on a hollow cylinder at a Mach number of 3.0

    NASA Technical Reports Server (NTRS)

    Quinn, R. D.; Gong, L.

    1980-01-01

    Skin temperatures, shear forces, surface static pressures, boundary layer pitot pressures, and boundary layer total temperatures were measured on the external surface of a hollow cylinder that was 3.04 meters long and 0.437 meter in diameter and was mounted beneath the fuselage of the YF-12A airplane. The data were obtained at a nominal free stream Mach number of 3.0 (a local Mach number of 2.9) and at wall to recovery temperature ratios of 0.66 to 0.91. The local Reynolds number had a nominal value of 4,300,000 per meter. Heat transfer coefficients and skin friction coefficients were derived from skin temperature time histories and shear force measurements, respectively. In addition, boundary layer velocity profiles were derived from pitot pressure measurements, and a Reynolds analogy factor was obtained from the heat transfer and skin friction measurements. The measured data are compared with several boundary layer prediction methods.

  10. Near Surface Thermal Stratification during Summer at Summit, Greenland, and its Impact on MODIS-derived Surface Temperatures

    NASA Astrophysics Data System (ADS)

    Adolph, A. C.; Albert, M. R.; Hall, D. K.

    2017-12-01

    As rapid warming of the Arctic occurs, it is imperative that we monitor climate parameters such as temperature over large areas to understand and predict the extent of climate changes. Temperatures are often tracked using in-situ 2 m air temperatures, but in remote locations such as on the Greenland Ice Sheet, temperature can be studied more comprehensively using remote sensing techniques. Because of the presence of surface-based temperature inversions in ice-covered areas, differences between 2 m air temperature and skin temperature can be significant and are particularly relevant when considering validation and application of remote sensing temperature data. We present results from a field campaign at Summit Station in Greenland to study surface temperature using the following measurements: skin temperature measured by IR sensors, thermochrons, and thermocouples; 2 m air temperature measured by a NOAA meteorological station; and two different MODerate-resolution Imaging Spectroradiometer (MODIS) surface temperature products. We confirm prior findings that in-situ 2 m air temperature is often significantly higher in the summer than in-situ skin temperature when incoming solar radiation and wind speed are low. This inversion may account for biases in previous MODIS surface temperature studies that used 2 m air temperature for validation. As compared to the in-situ IR skin temperature measurements, the MOD/MYD11 Collection 6 surface-temperature standard product has an RMSE of 1.0°C, and that the MOD29 Collection 6 product has an RMSE of 1.5°C, spanning a range of temperatures from -35°C to -5°C. For our study area and time series, MODIS surface temperature products agree with skin temperatures better than many previous studies have indicated, especially at temperatures below -20°C where other studies found a significant cold bias. Further investigation at temperatures below -35°C is warranted to determine if this bias does indeed exist.

  11. Temperature dependence of interfacial structures and acidity of clay edge surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Xiandong; Lu, Xiancai; Cheng, Jun; Sprik, Michiel; Wang, Rucheng

    2015-07-01

    In the pursuit of a microscopic understanding of the effects of temperature on the surface reactivity of clay minerals, we conducted first principles molecular dynamics (FPMD) simulations to study the interfacial structures and acidity of clay edge surfaces at elevated temperatures. The common edge surfaces ((0 1 0) and (1 1 0) types) of phyllosilicates were investigated at 348 K and 423 K, and the results were compared with those previously derived at ambient conditions. We found that the stable surface sites are the same as at ambient conditions, including tbnd Al(OH2)2 (6-fold Al), tbnd Al(OH2) (5-fold Al) and tbnd Si(OH) on the (0 1 0) facet, and tbnd Al(OH2), tbnd Al(OH)Sitbnd and tbnd Si(OH) on the (1 1 0) surface. The FPMD-based vertical energy gap technique was applied to compute the acidity constants of edge sites and the resulting pKa values show a decreasing trend with temperature. The results demonstrate that although changes in the point of zero charge of the entire material are insignificant up to 348 K, the decrease in surface pKa can be 3 pKa units, while it can be as large as 6 pKa units up to 423 K. The derived interface structures and pKa values can be used in future experimental and modeling research, e.g., in interpreting experiments and predicting the surface complexation of metal cations and organics. This study therefore provides a physical basis for investigating the interfacial processes of clay minerals in environments that experience elevated P-T conditions, such as sedimentary basins and geological nuclear waste repositories.

  12. Surface temperatures in New York City: Geospatial data enables the accurate prediction of radiative heat transfer.

    PubMed

    Ghandehari, Masoud; Emig, Thorsten; Aghamohamadnia, Milad

    2018-02-02

    Despite decades of research seeking to derive the urban energy budget, the dynamics of thermal exchange in the densely constructed environment is not yet well understood. Using New York City as a study site, we present a novel hybrid experimental-computational approach for a better understanding of the radiative heat transfer in complex urban environments. The aim of this work is to contribute to the calculation of the urban energy budget, particularly the stored energy. We will focus our attention on surface thermal radiation. Improved understanding of urban thermodynamics incorporating the interaction of various bodies, particularly in high rise cities, will have implications on energy conservation at the building scale, and for human health and comfort at the urban scale. The platform presented is based on longwave hyperspectral imaging of nearly 100 blocks of Manhattan, in addition to a geospatial radiosity model that describes the collective radiative heat exchange between multiple buildings. Despite assumptions in surface emissivity and thermal conductivity of buildings walls, the close comparison of temperatures derived from measurements and computations is promising. Results imply that the presented geospatial thermodynamic model of urban structures can enable accurate and high resolution analysis of instantaneous urban surface temperatures.

  13. Development of methods for inferring cloud thickness and cloud-base height from satellite radiance data

    NASA Technical Reports Server (NTRS)

    Smith, William L., Jr.; Minnis, Patrick; Alvarez, Joseph M.; Uttal, Taneil; Intrieri, Janet M.; Ackerman, Thomas P.; Clothiaux, Eugene

    1993-01-01

    Cloud-top height is a major factor determining the outgoing longwave flux at the top of the atmosphere. The downwelling radiation from the cloud strongly affects the cooling rate within the atmosphere and the longwave radiation incident at the surface. Thus, determination of cloud-base temperature is important for proper calculation of fluxes below the cloud. Cloud-base altitude is also an important factor in aircraft operations. Cloud-top height or temperature can be derived in a straightforward manner using satellite-based infrared data. Cloud-base temperature, however, is not observable from the satellite, but is related to the height, phase, and optical depth of the cloud in addition to other variables. This study uses surface and satellite data taken during the First ISCCP Regional Experiment (FIRE) Phase-2 Intensive Field Observation (IFO) period (13 Nov. - 7 Dec. 1991, to improve techniques for deriving cloud-base height from conventional satellite data.

  14. Coordinated in situ and orbital observations of ground temperature by the Mars Science Laboratory Ground Temperature Sensor and Mars Odyssey Thermal Emission Imaging System: Implications for thermal modeling of the Martian surface

    NASA Astrophysics Data System (ADS)

    Hamilton, V. E.; Vasavada, A. R.; Christensen, P. R.; Mischna, M. A.; Team, M.

    2013-12-01

    Diurnal variations in Martian ground surface temperature probe the physical nature (mean particle size, lateral/vertical heterogeneity, cementation, etc.) of the upper few centimeters of the subsurface. Thermal modeling of measured temperatures enables us to make inferences about these physical properties, which in turn offer valuable insight into processes that have occurred over geologic timescales. Add the ability to monitor these temperature/physical variations over large distances and it becomes possible to infer a great deal about local- to regional scale geologic processes and characteristics that are valuable to scientific and engineering studies. The Thermal Emission Imaging System (THEMIS) instrument measures surface temperatures from orbit at a restricted range of local times (~3:00 - 6:00 am/pm). The Rover Environmental Monitoring Station Ground Temperature Sensor (REMS GTS) on the Mars Science Laboratory (MSL) acquires hourly temperature measurements in the vicinity of the rover. With the additional information that MSL's full diurnal coverage offers, we are interested in correlating the thermophysical properties inferred from these local-scale measurements with those obtained from MSL's visible images and orbital THEMIS measurements at only a few times of day. To optimize the comparisons, we have been acquiring additional REMS observations simultaneously with Mars Odyssey overflights during which THEMIS is able to observe MSL's location. We also characterize surface particle size distributions within the field of view of the GTS. We will present comparisons of the temperatures derived from GTS and THEMIS, focusing on eight simultaneous observations of ground temperature acquired between sols 100 and 360. These coordinated observations allow us to cross-check temperatures derived in situ and from orbit, and compare rover-scale observations of thermophysical and particle size properties to those made at remote sensing scales.

  15. Simulated Surface Energy Budgets Over the Southeastern US: The GHCC Satellite Assimilation System and the NCEP Early Eta

    NASA Technical Reports Server (NTRS)

    Lapenta, William M.; Suggs, Ron; McNider, Richard T.; Jedlovec, Gary

    1999-01-01

    A technique has been developed for assimilating GOES-derived skin temperature tendencies and insolation into the surface energy budget equation of a mesoscale model so that the simulated rate of temperature change closely agrees with the satellite observations. A critical assumption of the technique is that the availability of moisture (either from the soil or vegetation) is the least known term in the model's surface energy budget. Therefore, the simulated latent heat flux, which is a function of surface moisture availability, is adjusted based upon differences between the modeled and satellite-observed skin temperature tendencies. An advantage of this technique is that satellite temperature tendencies are assimilated in an energetically consistent manner that avoids energy imbalances and surface stability problems that arise from direct assimilation of surface shelter temperatures. The fact that the rate of change of the satellite skin temperature is used rather than the absolute temperature means that sensor calibration is not as critical. An advantage of this technique for short-range forecasts (0-48h) is that it does not require a complex land-surface formulation within the atmospheric model. As a result, we can avoid having to specify land surface characteristics such as vegetation resistances, green fraction, leaf area index, soil physical and hydraulic characteristics, stream flow, runoff, and the vertical and horizontal distribution of soil moisture.

  16. Derivation and evaluation of land surface temperature from the geostationary operational environmental satellite series

    NASA Astrophysics Data System (ADS)

    Fang, Li

    The Geostationary Operational Environmental Satellites (GOES) have been continuously monitoring the earth surface since 1970, providing valuable and intensive data from a very broad range of wavelengths, day and night. The National Oceanic and Atmospheric Administration's (NOAA's) National Environmental Satellite, Data, and Information Service (NESDIS) is currently operating GOES-15 and GOES-13. The design of the GOES series is now heading to the 4 th generation. GOES-R, as a representative of the new generation of the GOES series, is scheduled to be launched in 2015 with higher spatial and temporal resolution images and full-time soundings. These frequent observations provided by GOES Image make them attractive for deriving information on the diurnal land surface temperature (LST) cycle and diurnal temperature range (DTR). These parameters are of great value for research on the Earth's diurnal variability and climate change. Accurate derivation of satellite-based LSTs from thermal infrared data has long been an interesting and challenging research area. To better support the research on climate change, the generation of consistent GOES LST products for both GOES-East and GOES-West from operational dataset as well as historical archive is in great demand. The derivation of GOES LST products and the evaluation of proposed retrieval methods are two major objectives of this study. Literature relevant to satellite-based LST retrieval techniques was reviewed. Specifically, the evolution of two LST algorithm families and LST retrieval methods for geostationary satellites were summarized in this dissertation. Literature relevant to the evaluation of satellite-based LSTs was also reviewed. All the existing methods are a valuable reference to develop the GOES LST product. The primary objective of this dissertation is the development of models for deriving consistent GOES LSTs with high spatial and high temporal coverage. Proper LST retrieval algorithms were studied according to the characteristics of the imager onboard the GOES series. For the GOES 8-11 and GOES R series with split window (SW) channels, a new temperature and emissivity separation (TES) approach was proposed for deriving LST and LSE simultaneously by using multiple-temporal satellite observations. Two split-window regression formulas were selected for this approach, and two satellite observations over the same geo-location within a certain time interval were utilized. This method is particularly applicable to geostationary satellite missions from which qualified multiple-temporal observations are available. For the GOES M(12)-Q series without SW channels, the dual-window LST algorithm was adopted to derive LST. Instead of using the conventional training method to generate coefficients for the LST regression algorithms, a machine training technique was introduced to automatically select the criteria and the boundary of the sub-ranges for generating algorithm coefficients under different conditions. A software package was developed to produce a brand new GOES LST product from both operational GOES measurements and historical archive. The system layers of the software and related system input and output were illustrated in this work. Comprehensive evaluation of GOES LST products was conducted by validating products against multiple ground-based LST observations, LST products from fine-resolution satellites (e.g. MODIS) and GSIP LST products. The key issues relevant to the cloud diffraction effect were studied as well. GOES measurements as well as ancillary data, including satellite and solar geometry, water vapor, cloud mask, land emissivity etc., were collected to generate GOES LST products. In addition, multiple in situ temperature measurements were collected to test the performance of the proposed GOES LST retrieval algorithms. The ground-based dataset included direct surface temperature measurements from the Atmospheric Radiation Measurement program (ARM), and indirect measurements (surface long-wave radiation observations) from the SURFace RADiation Budget (SURFRAD) Network. A simulated dataset was created to analyse the sensitivity of the proposed retrieval algorithms. In addition, the MODIS LST and GSIP LST products were adopted to cross-evaluate the accuracy of the GOES LST products. Evaluation results demonstrate that the proposed GOES LST system is capable of deriving consistent land surface temperatures with good retrieval precision. Consistent GOES LST products with high spatial/temporal coverage and reliable accuracy will better support detections and observations of meteorological over land surfaces.

  17. Thermophysical properties of a highly superheated and undercooled Ni-Si alloy melt

    NASA Astrophysics Data System (ADS)

    Wang, H. P.; Cao, C. D.; Wei, B.

    2004-05-01

    The surface tension of superheated and undercooled liquid Ni-5 wt % Si alloy was measured by an electromagnetic oscillating drop method over a wide temperature range from 1417 to 1994 K. The maximum undercooling of 206 K (0.13TL) was achieved. The surface tension of liquid Ni-5 wt % Si alloy is 1.697 N m-1 at the liquidus temperature 1623 K, and its temperature coefficient is -3.97×10-4 N m-1 K-1. On the basis of the experimental data of surface tension, the other thermophysical properties such as the viscosity, the solute diffusion coefficient, and the density of liquid Ni-5 wt % Si alloy were also derived.

  18. The Spatial Coherence of Interannual Temperature Variations in the Antarctic Peninsula

    NASA Technical Reports Server (NTRS)

    King, John C.; Comiso, Josefino C.; Koblinsky, Chester J. (Technical Monitor)

    2002-01-01

    Over 50 years of observations from climate stations on the west coast of the Antarctic Peninsula show that this is a region of extreme interannual variability in near-surface temperatures. The region has also experienced more rapid warming than any other part of the Southern Hemisphere. In this paper we use a new dataset of satellite-derived surface temperatures to define the extent of the region of extreme variability more clearly than was possible using the sparse station data. The region in which satellite surface temperatures correlate strongly with west Peninsula station temperatures is found to be quite small and is largely confined to the seas just west of the Peninsula, with a northward and eastward extension into the Scotia Sea and a southward extension onto the western slopes of Palmer Land. Correlation of Peninsula surface temperatures with surface temperatures over the rest of continental Antarctica is poor confirming that the west Peninsula is in a different climate regime. The analysis has been used to identify sites where ice core proxy records might be representative of variations on the west coast of the Peninsula. Of the five existing core sites examined, only one is likely to provide a representative record for the west coast.

  19. Intercomparison Between in situ and AVHRR Polar Pathfinder-Derived Surface Albedo over Greenland

    NASA Technical Reports Server (NTRS)

    Stroeve, Julienne C.; Box, Jason E.; Fowler, Charles; Haran, Terence; Key, Jeffery

    2001-01-01

    The Advanced Very High Resolution (AVHRR) Polar Pathfinder Data (APP) provides the first long time series of consistent, calibrated surface albedo and surface temperature data for the polar regions. Validations of these products have consisted of individual studies that analyzed algorithm performance for limited regions and or time periods. This paper reports on comparisons made between the APP-derived surface albedo and that measured at fourteen automatic weather stations (AWS) around the Greenland ice sheet from January 1997 to August 1998. Results show that satellite-derived surface albedo values are on average 10% less than those measured by the AWS stations. However, the station measurements tend to be biased high by about 4% and thus the differences in absolute albedo may be less (e.g. 6%). In regions of the ice sheet where the albedo variability is small, such as the dry snow facies, the APP albedo uncertainty exceeds the natural variability. Further work is needed to improve the absolute accuracy of the APP-derived surface albedo. Even so, the data provide temporally and spatially consistent estimates of the Greenland ice sheet albedo.

  20. Satellite based assessment of recent permafrost extent and active layer trends over Alaska and Northwest Canada

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Kimball, J. S.; PARK, H.; Yi, Y.

    2017-12-01

    Climate change in the Boreal-Arctic region has experienced greater surface air temperature (SAT) warming than the global average in recent decades, which is promoting permafrost thawing and active layer deepening. Permafrost extent (PE) and active layer thickness (ALT) are key environmental indicators of recent climate change, and strongly impact other eco-hydrological processes including land-atmosphere carbon exchange. We developed a new approach for regional estimation and monitoring of PE using daily landscape freeze-thaw (FT) records derived from satellite microwave (37 GHz) brightness temperature (Tb) observations. ALT was estimated within the PE domain using empirical modeling of land cover dependent edaphic factors and an annual thawing index derived from MODIS land surface temperature (LST) observations and reanalysis based surface air temperatures (SAT). The PE and ALT estimates were derived over the 1980-2016 satellite record and NASA ABoVE (Arctic Boreal Vulnerability Experiment) domain encompassing Alaska and Northwest Canada. The baseline model estimates were derived at 25-km resolution consistent with the satellite FT global record. Our results show recent widespread PE decline and deepening ALT trends, with larger spatial variability and model uncertainty along the southern PE boundary. Larger PE and ALT variability occurs over heterogeneous permafrost subzones characterized by dense vegetation, and variable snow cover and organic layer conditions. We also tested alternative PE and ALT estimates derived using finer (6-km) scale satellite Tb (36.5 GHz) and FT retrievals from a calibrated AMSR-E and AMSR2 sensor record. The PE and ALT results were compared against other independent observations, including process model simulations, in situ measurements, and permafrost inventory records. A model sensitivity analysis was conducted to evaluate snow cover, soil organic layer, and vegetation composition impacts to ALT. The finer delineation of permafrost and active layer conditions provides enhanced regional monitoring of PE and ALT changes over the ABoVE domain, including heterogeneous permafrost subzones.

  1. Analytic Expressions for the Inner-rim Structure of Passively Heated Protoplanetary Disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueda, Takahiro; Okuzumi, Satoshi; Flock, Mario, E-mail: t_ueda@geo.titech.ac.jp

    We analytically derive the expressions for the structure of the inner region of protoplanetary disks based on the results from the recent hydrodynamical simulations. The inner part of a disk can be divided into four regions: a dust-free region with a gas temperature in the optically thin limit, an optically thin dust halo, an optically thick condensation front, and the classical, optically thick region, in order from the innermost to the outermost. We derive the dust-to-gas mass ratio profile in the dust halo using the fact that partial dust condensation regulates the temperature relative to the dust evaporation temperature. Beyondmore » the dust halo, there is an optically thick condensation front where all the available silicate gas condenses out. The curvature of the condensation surface is determined by the condition that the surface temperature must be nearly equal to the characteristic temperature ∼1200 K. We derive the midplane temperature in the outer two regions using the two-layer approximation, with the additional heating by the condensation front for the outermost region. As a result, the overall temperature profile is step-like, with steep gradients at the borders between the outer three regions. The borders might act as planet traps where the inward migration of planets due to gravitational interaction with the gas disk stops. The temperature at the border between the two outermost regions coincides with the temperature needed to activate magnetorotational instability, suggesting that the inner edge of the dead zone must lie at this border. The radius of the dead zone inner edge predicted from our solution is ∼2–3 times larger than that expected from the classical optically thick temperature.« less

  2. Analytic Expressions for the Inner-rim Structure of Passively Heated Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Ueda, Takahiro; Okuzumi, Satoshi; Flock, Mario

    2017-07-01

    We analytically derive the expressions for the structure of the inner region of protoplanetary disks based on the results from the recent hydrodynamical simulations. The inner part of a disk can be divided into four regions: a dust-free region with a gas temperature in the optically thin limit, an optically thin dust halo, an optically thick condensation front, and the classical, optically thick region, in order from the innermost to the outermost. We derive the dust-to-gas mass ratio profile in the dust halo using the fact that partial dust condensation regulates the temperature relative to the dust evaporation temperature. Beyond the dust halo, there is an optically thick condensation front where all the available silicate gas condenses out. The curvature of the condensation surface is determined by the condition that the surface temperature must be nearly equal to the characteristic temperature ˜1200 K. We derive the midplane temperature in the outer two regions using the two-layer approximation, with the additional heating by the condensation front for the outermost region. As a result, the overall temperature profile is step-like, with steep gradients at the borders between the outer three regions. The borders might act as planet traps where the inward migration of planets due to gravitational interaction with the gas disk stops. The temperature at the border between the two outermost regions coincides with the temperature needed to activate magnetorotational instability, suggesting that the inner edge of the dead zone must lie at this border. The radius of the dead zone inner edge predicted from our solution is ˜2-3 times larger than that expected from the classical optically thick temperature.

  3. Dynamics of plankton populations in upwelling areas

    NASA Technical Reports Server (NTRS)

    Szekielda, K. H. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Spectral properties of the upwelled waters off the NW coast of Africa were studied with observations derived from aircraft and Skylab. Results indicate that the two-channel, ratio approach is ineffective in determining surface chlorophyll concentrations. Ocean color boundaries and temperature gradients were found to be directly correlated with each other and also with fishing effort in the upwelling region. Photographic and scanner data derived from Skylab were effective in locating ocean boundaries and mapping temperature distributions.

  4. Characterizing the Diurnal Cycle of Land Surface Temperature and Evapotranspiration at High Spatial Resolution Using Thermal Observations from sUAS.

    NASA Astrophysics Data System (ADS)

    Dutta, D.; Drewry, D.; Johnson, W. R.

    2017-12-01

    The surface temperature of plant canopies is an important indicator of the stomatal regulation of plant water use and the associated water flux from plants to atmosphere (evapotranspiration (ET)). Remotely sensed thermal observations using compact, low-cost, lightweight sensors from small unmanned aerial systems (sUAS) have the potential to provide surface temperature (ST) and ET estimates at unprecedented spatial and temporal resolutions, allowing us to characterize the intra-field diurnal variations in canopy ST and ET for a variety of vegetation systems. However, major challenges exist for obtaining accurate surface temperature estimates from low-cost uncooled microbolometer-type sensors. Here we describe the development of calibration methods using thermal chamber experiments, taking into account the ambient optics and sensor temperatures, and applying simple models of spatial non-uniformity correction to the sensor focal-plane-array. We present a framework that can be used to derive accurate surface temperatures using radiometric observations from low-cost sensors, and demonstrate this framework using a sUAS-mounted sensor across a diverse set of calibration and vegetation targets. Further, we demonstrate the use of the Surface Temperature Initiated Closure (STIC) model for computing spatially explicit, high spatial resolution ET estimates across several well-monitored agricultural systems, as driven by sUAS acquired surface temperatures. STIC provides a physically-based surface energy balance framework for the simultaneous retrieval of the surface and atmospheric vapor conductances and surface energy fluxes, by physically integrating radiometric surface temperature information into the Penman-Monteith equation. Results of our analysis over agricultural systems in Ames, IA and Davis, CA demonstrate the power of this approach for quantifying the intra-field spatial variability in the diurnal cycle of plant water use at sub-meter resolutions.

  5. Validation of Infrared Azimuthal Model as Applied to GOES Data Over the ARM SGP

    NASA Technical Reports Server (NTRS)

    Gambheer, Arvind V.; Doelling, David R.; Spangenberg, Douglas A.; Minnis, Patrick

    2004-01-01

    The goal of this research is to identify and reduce the GOES-8 IR temperature biases, induced by a fixed geostationary position, during the course of a day. In this study, the same CERES LW window channel model is applied to GOES-8 IR temperatures during clear days over the Atmospheric Radiation Measurement-Southern Great Plains Central Facility (SCF). The model-adjusted and observed IR temperatures are compared with topof- the-atmosphere (TOA) estimated temperatures derived from a radiative transfer algorithm based on the atmospheric profile and surface radiometer measurements. This algorithm can then be incorporated to derive more accurate Ts from real-time satellite operational products.

  6. Modern average global sea-surface temperature

    USGS Publications Warehouse

    Schweitzer, Peter N.

    1993-01-01

    The data contained in this data set are derived from the NOAA Advanced Very High Resolution Radiometer Multichannel Sea Surface Temperature data (AVHRR MCSST), which are obtainable from the Distributed Active Archive Center at the Jet Propulsion Laboratory (JPL) in Pasadena, Calif. The JPL tapes contain weekly images of SST from October 1981 through December 1990 in nine regions of the world ocean: North Atlantic, Eastern North Atlantic, South Atlantic, Agulhas, Indian, Southeast Pacific, Southwest Pacific, Northeast Pacific, and Northwest Pacific. This data set represents the results of calculations carried out on the NOAA data and also contains the source code of the programs that made the calculations. The objective was to derive the average sea-surface temperature of each month and week throughout the whole 10-year series, meaning, for example, that data from January of each year would be averaged together. The result is 12 monthly and 52 weekly images for each of the oceanic regions. Averaging the images in this way tends to reduce the number of grid cells that lack valid data and to suppress interannual variability.

  7. Titan's surface from the Cassini RADAR radiometry data during SAR mode

    USGS Publications Warehouse

    Paganelli, F.; Janssen, M.A.; Lopes, R.M.; Stofan, E.; Wall, S.D.; Lorenz, R.D.; Lunine, J.I.; Kirk, R.L.; Roth, L.; Elachi, C.

    2008-01-01

    We present initial results on the calibration and interpretation of the high-resolution radiometry data acquired during the Synthetic Aperture Radar (SAR) mode (SAR-radiometry) of the Cassini Radar Mapper during its first five flybys of Saturn's moon Titan. We construct maps of the brightness temperature at the 2-cm wavelength coincident with SAR swath imaging. A preliminary radiometry calibration shows that brightness temperature in these maps varies from 64 to 89 K. Surface features and physical properties derived from the SAR-radiometry maps and SAR imaging are strongly correlated; in general, we find that surface features with high radar reflectivity are associated with radiometrically cold regions, while surface features with low radar reflectivity correlate with radiometrically warm regions. We examined scatterplots of the normalized radar cross-section ??0 versus brightness temperature, outlining signatures that characterize various terrains and surface features. The results indicate that volume scattering is important in many areas of Titan's surface, particularly Xanadu, while other areas exhibit complex brightness temperature variations consistent with variable slopes or surface material and compositional properties. ?? 2007.

  8. A biomarker perspective on dust, productivity, and sea surface temperature in the Pacific sector of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Jaeschke, Andrea; Wengler, Marc; Hefter, Jens; Ronge, Thomas A.; Geibert, Walter; Mollenhauer, Gesine; Gersonde, Rainer; Lamy, Frank

    2017-05-01

    In this study, we present a new multiproxy data set of terrigenous input, marine productivity and sea surface temperature (SST) from 52 surface sediment samples collected along E-W transects in the Pacific sector of the Southern Ocean. Allochthonous terrigenous input was characterized by the distribution of plant wax n-alkanes and soil-derived branched glycerol dialkyl glycerol tetraethers (brGDGTs). 230Th-normalized burial of both compound groups were highest close to the potential sources in Australia and New Zealand and are strongly related to lithogenic contents (232Th), indicating common sources and transport. Detection of both long-chain n-alkanes and brGDGTs at the most remote sites in the open ocean strongly suggests a primarily eolian transport mechanism to at least 110°W, i.e. by prevailing westerly winds. Two independent organic SST proxies were used, the U37K‧ based on alkenones, and the TEX86 based on isoprenoid GDGTs. Both, U37K‧ and TEX86 indices show robust relationships with temperature over a temperature range between 0.5 and 20 °C, likely implying different seasonal and regional imprints on the temperature signal. Alkenone-based temperature estimates best reflect modern summer SST in the study area when using the polar calibration of Sikes et al. (1997). In contrast, TEX86-derived temperatures may reflect a subsurface signal rather than surface. 230Th-normalized burial of alkenones is highest close to the Subtropical Front and is positively related to the deposition of lithogenic material throughout the study area. In contrast, highest isoGDGT burial south of the Antarctic Polar Front may be largely controlled by diatom blooms, and thus high opal fluxes during austral summer.

  9. Water surface temperature profiles for the Rhine River derived from Landsat ETM+ data

    NASA Astrophysics Data System (ADS)

    Fricke, Katharina; Baschek, Björn

    2013-10-01

    Water temperature influences physical and chemical parameters of rivers and streams and is an important parameter for water quality. It is a crucial factor for the existence and the growth of animal and plant species in the river ecosystem. The aim of the research project "Remote sensing of water surface temperature" at the Federal Institute of Hydrology (BfG), Germany, is to supplement point measurements of water temperature with remote sensing methodology. The research area investigated here is the Upper and Middle Rhine River, where continuous measurements of water temperature are already available for several water quality monitoring stations. Satellite imagery is used to complement these point measurements and to generate longitudinal temperature profiles for a better systematic understanding of the changes in river temperature along its course. Several products for sea surface temperature derived from radiances in the thermal infrared are available, but for water temperature from rivers less research has been carried out. Problems arise from the characteristics of the river valley and morphology and the proximity to the riverbank. Depending on the river width, a certain spatial resolution of the satellite images is necessary to allow for an accurate identification of the river surface and the calculation of water temperature. The bands from the Landsat ETM+ sensor in the thermal infrared region offer a possibility to extract the river surface temperatures (RST) of a sufficiently wide river such as the Rhine. Additionally, problems such as cloud cover, shadowing effects, georeferencing errors, different emissivity of water and land, scattering of thermal radiation, adjacency and mixed pixel effects had to be accounted for and their effects on the radiance temperatures will be discussed. For this purpose, several temperature data sets derived from radiance and in situ measurements were com- pared. The observed radiance temperatures are strongly influenced by the atmosphere. Without atmospheric correction, the absolute mean difference between RST and in situ measurements was 1.1°C with a standard devi- ation of 1.3°C. Thus, a correction of atmospheric influences on radiances measured at the top of the atmosphere was necessary and two different methods for atmospheric correction (ATCOR2 and the Atmospheric Correction Parameter Calculator) were applied. The correction results showed that for both methods, the correct choice of atmospheric profiles is very important. With the calculator, an absolute mean difference of 0.8 +/- 1.0°C and with the selected overall best scenes, an absolute mean difference of 0.5 ± 0.7°C was achieved. The selected corrected RST can be used to interpolate between in situ measurements available only for a limited number of points along the river course and longitudinal example profiles of the surface water temperature in the Upper and Middle Rhine could be calculated for different seasons. On the basis of these profiles, the increasing temperature gradient along the Upper Rhine could be identified and the possibility to detect heat or cooling discharge from tributaries and other sources is evaluated.

  10. Version 2 Goddard Satellite-Based Surface Turbulent Fluxes (GSSTF2)

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Nelkin, Eric; Ardizzone, Joe; Atlas, Robert M.; Shie, Chung-Lin; Starr, David O'C. (Technical Monitor)

    2002-01-01

    Information on the turbulent fluxes of momentum, moisture, and heat at the air-sea interface is essential in improving model simulations of climate variations and in climate studies. We have derived a 13.5-year (July 1987-December 2000) dataset of daily surface turbulent fluxes over global oceans from the Special Sensor Mcrowave/Imager (SSM/I) radiance measurements. This dataset, version 2 Goddard Satellite-based Surface Turbulent Fluxes (GSSTF2), has a spatial resolution of 1 degree x 1 degree latitude-longitude and a temporal resolution of 1 day. Turbulent fluxes are derived from the SSM/I surface winds and surface air humidity, as well as the 2-m air and sea surface temperatures (SST) of the NCEP/NCAR reanalysis, using a bulk aerodynamic algorithm based on the surface layer similarity theory.

  11. Measurement of Surface Interfacial Tension as a Function of Temperature Using Pendant Drop Images

    NASA Astrophysics Data System (ADS)

    Yakhshi-Tafti, Ehsan; Kumar, Ranganathan; Cho, Hyoung J.

    2011-10-01

    Accurate and reliable measurements of surface tension at the interface of immiscible phases are crucial to understanding various physico-chemical reactions taking place between those. Based on the pendant drop method, an optical (graphical)-numerical procedure was developed to determine surface tension and its dependency on the surrounding temperature. For modeling and experimental verification, chemically inert and thermally stable perfluorocarbon (PFC) oil and water was used. Starting with geometrical force balance, governing equations were derived to provide non-dimensional parameters which were later used to extract values for surface tension. Comparative study verified the accuracy and reliability of the proposed method.

  12. Composition and physical properties of Enceladus' surface

    USGS Publications Warehouse

    Brown, R.H.; Clark, R.N.; Buratti, B.J.; Cruikshank, D.P.; Barnes, J.W.; Mastrapa, R.M.E.; Bauer, J.; Newman, S.; Momary, T.; Baines, K.H.; Bellucci, G.; Capaccioni, F.; Cerroni, P.; Combes, M.; Coradini, A.; Drossart, P.; Formisano, V.; Jaumann, R.; Langavin, Y.; Matson, D.L.; McCord, T.B.; Nelson, R.M.; Nicholson, P.D.; Sicardy, B.; Sotin, Christophe

    2006-01-01

    Observations of Saturn's satellite Enceladus using Cassini's Visual and Infrared Mapping Spectrometer instrument were obtained during three flybys of Enceladus in 2005. Enceladus' surface is composed mostly of nearly pure water ice except near its south pole, where there are light organics, CO2, and amorphous and crystalline water ice, particularly in the region dubbed the "tiger stripes." An upper limit of 5 precipitable nanometers is derived for CO in the atmospheric column above Enceladus, and 2% for NH 3 in global surface deposits. Upper limits of 140 kelvin (for a filled pixel) are derived for the temperatures in the tiger stripes.

  13. A radiative transfer model for sea surface temperature retrieval for the along-track scanning radiometer

    NASA Astrophysics Data System (ADS)

    ZáVody, A. M.; Mutlow, C. T.; Llewellyn-Jones, D. T.

    1995-01-01

    The measurements made by the along-track scanning radiometer are now converted routinely into sea surface temperature (SST). The details of the atmospheric model which had been used for deriving the SST algorithms are given, together with tables of the coefficients in the algorithms for the different SST products. The accuracy of the retrieval under normal conditions and the effect of errors in the model on the retrieved SST are briefly discussed.

  14. Unpolarized infrared emissivity with shadow from anisotropic rough sea surfaces with non-Gaussian statistics.

    PubMed

    Bourlier, Christophe

    2005-07-10

    The emissivity of two-dimensional anisotropic rough sea surfaces with non-Gaussian statistics is investigated. The emissivity derivation is of importance for retrieval of the sea-surface temperature or equivalent temperature of a rough sea surface by infrared thermal imaging. The well-known Cox-Munk slope probability-density function, considered non-Gaussian, is used for the emissivity derivation, in which the skewness and the kurtosis (related to the third- and fourth-order statistics, respectively) are included. The shadowing effect, which is significant for grazing angles, is also taken into account. The geometric optics approximation is assumed to be valid, which means that the rough surface is modeled as a collection of facets reflecting locally the light in the specular direction. In addition, multiple reflections are ignored. Numerical results of the emissivity are presented for Gaussian and non-Gaussian statistics, for moderate wind speeds, for near-infrared wavelengths, for emission angles ranging from 0 degrees (nadir) to 90 degrees (horizon), and according to the wind direction. In addition, the emissivity is compared with both measurements and a Monte Carlo ray-tracing method.

  15. A two-step framework for reconstructing remotely sensed land surface temperatures contaminated by cloud

    NASA Astrophysics Data System (ADS)

    Zeng, Chao; Long, Di; Shen, Huanfeng; Wu, Penghai; Cui, Yaokui; Hong, Yang

    2018-07-01

    Land surface temperature (LST) is one of the most important parameters in land surface processes. Although satellite-derived LST can provide valuable information, the value is often limited by cloud contamination. In this paper, a two-step satellite-derived LST reconstruction framework is proposed. First, a multi-temporal reconstruction algorithm is introduced to recover invalid LST values using multiple LST images with reference to corresponding remotely sensed vegetation index. Then, all cloud-contaminated areas are temporally filled with hypothetical clear-sky LST values. Second, a surface energy balance equation-based procedure is used to correct for the filled values. With shortwave irradiation data, the clear-sky LST is corrected to the real LST under cloudy conditions. A series of experiments have been performed to demonstrate the effectiveness of the developed approach. Quantitative evaluation results indicate that the proposed method can recover LST in different surface types with mean average errors in 3-6 K. The experiments also indicate that the time interval between the multi-temporal LST images has a greater impact on the results than the size of the contaminated area.

  16. Remote estimation of the surface characteristics and energy balance over an urban-rural area and the effects of surface heat flux on plume spread and concentration. M.S. Thesis; [St. Louis, Missouri, the Land Between the Lakes, Kentucky and Clarksville, Tennessee

    NASA Technical Reports Server (NTRS)

    Dicristofaro, D. C. (Principal Investigator)

    1980-01-01

    A one dimensional boundary layer model was used in conjunction with satellite derived infrared surface temperatures to deduce values of moisture availability, thermal inertia, heat and evaporative fluxes. The Penn State satellite image display system, a sophisticated image display facility, was used to remotely sense these various parameters for three cases: St. Louis, Missouri; the Land Between the Lakes, Kentucky; and Clarksville, Tennessee. The urban centers displayed the maximum daytime surface temperatures which correspond to the minimum values of moisture availability. The urban center of St. Louis and the bodies of water displayed the maximum nighttime surface temperatures which correspond to the maximum thermal inertia values. It is shown that moisture availability and thermal inertia are very much responsible for the formation of important temperature variations over the urban rural complex.

  17. Homogenised daily lake surface water temperature data generated from multiple satellite sensors: A long-term case study of a large sub-Alpine lake

    PubMed Central

    Pareeth, Sajid; Salmaso, Nico; Adrian, Rita; Neteler, Markus

    2016-01-01

    Availability of remotely sensed multi-spectral images since the 1980’s, which cover three decades of voluminous data could help researchers to study the changing dynamics of bio-physical characteristics of land and water. In this study, we introduce a new methodology to develop homogenised Lake Surface Water Temperature (LSWT) from multiple polar orbiting satellites. Precisely, we developed homogenised 1 km daily LSWT maps covering the last 30 years (1986 to 2015) combining data from 13 satellites. We used a split-window technique to derive LSWT from brightness temperatures and a modified diurnal temperature cycle model to homogenise data which were acquired between 8:00 to 17:00 UTC. Gaps in the temporal LSWT data due to the presence of clouds were filled by applying Harmonic ANalysis of Time Series (HANTS). The satellite derived LSWT maps were validated based on long-term monthly in-situ bulk temperature measurements in Lake Garda, the largest lake in Italy. We found the satellite derived homogenised LSWT being significantly correlated to in-situ data. The new LSWT time series showed a significant annual rate of increase of 0.020 °C yr−1 (*P < 0.05), and of 0.036 °C yr−1 (***P < 0.001) during summer. PMID:27502177

  18. Who’s on top? SST proxy comparison from the Peru Margin Upwelling System

    NASA Astrophysics Data System (ADS)

    Chazen, C.; Herbert, T.; Altabet, M. A.

    2009-12-01

    The Peru Margin upwelling region is situated at the interface between the poleward Peru Undercurrent and the equatorward Peru Coastal current. Strong coastal winds force cold, nutrient-rich thermocline waters to the surface. Sea surface temperatures in this region fluctuate sub-annually with changes in the position of the Intertropical convergence zone (ITCZ) and sub-decadally with modifications in the strength of Walker Circulation. In contrast, the temperature of the Peru Margin thermocline is stable, isolated from surface winds and slow to respond to major perturbations in surface temperature. Using high resolution sampling (6-7 year) across an annually laminated sediment core from the heart of the Peru Margin upwelling system (15°S) we explore how Uk’37 temperatures compare with TEX86 temperatures across a 200-year interval in the Mid-late Holocene. Mean late Holocene Uk’37 temperatures, extracted from a high sedimentation rate core from the Peru Margin are similar to modern mean annual sea surface temperatures at 15°S. Multi-decadal-scale (50-100 year) Uk’37 temperature fluctuations oscillate about the mean by 1.5°C. These rapid temperature changes are coherent with fluctuations in surface productivity (C37total and Biogenic Silica) in addition to sub-surface denitrification (δ15N). In contrast, TEX86 temperatures derived from identical samples exhibit colder temperatures than modern mean annual conditions and virtually no temperature fluctuation. We posit that TEX86 values are recording temperatures below the photic zone near the mix-layer-thermocline boundary and may, on longer timescales provide invaluable information about thermocline temperature. With this interpretation in mind, we present a TEX86-based long-term thermocline reconstruction over the Holocene.

  19. Mapping the downwelling atmospheric radiation at the Earth's surface: A research strategy

    NASA Technical Reports Server (NTRS)

    Raschke, E.

    1986-01-01

    A strategy is presented along with background material for determining downward atmospheric radiation at the Earth's surface on a regional scale but over the entire globe, using available information on the temperature and humidity of the air near the ground and at cloud base altitudes. Most of these parameters can be inferred from satellite radiance measurements. Careful validation of the derived radiances will be required using ground-based direct measurements of radiances, to avoid systematic biases of these derived field quantities.

  20. Identifying anthropogenic anomalies in air, surface and groundwater temperatures in Germany.

    PubMed

    Benz, Susanne A; Bayer, Peter; Blum, Philipp

    2017-04-15

    Human activity directly influences ambient air, surface and groundwater temperatures. The most prominent phenomenon is the urban heat island effect, which has been investigated particularly in large and densely populated cities. This study explores the anthropogenic impact on the thermal regime not only in selected urban areas, but on a countrywide scale for mean annual temperature datasets in Germany in three different compartments: measured surface air temperature, measured groundwater temperature, and satellite-derived land surface temperature. Taking nighttime lights as an indicator of rural areas, the anthropogenic heat intensity is introduced. It is applicable to each data set and provides the difference between measured local temperature and median rural background temperature. This concept is analogous to the well-established urban heat island intensity, but applicable to each measurement point or pixel of a large, even global, study area. For all three analyzed temperature datasets, anthropogenic heat intensity grows with increasing nighttime lights and declines with increasing vegetation, whereas population density has only minor effects. While surface anthropogenic heat intensity cannot be linked to specific land cover types in the studied resolution (1km×1km) and classification system, both air and groundwater show increased heat intensities for artificial surfaces. Overall, groundwater temperature appears most vulnerable to human activity, albeit the different compartments are partially influenced through unrelated processes; unlike land surface temperature and surface air temperature, groundwater temperatures are elevated in cultivated areas as well. At the surface of Germany, the highest anthropogenic heat intensity with 4.5K is found at an open-pit lignite mine near Jülich, followed by three large cities (Munich, Düsseldorf and Nuremberg) with annual mean anthropogenic heat intensities >4K. Overall, surface anthropogenic heat intensities >0K and therefore urban heat islands are observed in communities down to a population of 5000. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Real-time first-principles simulations of thermionic emission from N-doped diamond surfaces

    NASA Astrophysics Data System (ADS)

    Shinozaki, Tomoki; Hagiwara, Satoshi; Morioka, Naoya; Kimura, Yuji; Watanabe, Kazuyuki

    2018-06-01

    We investigate thermionic emission from N-doped C(100) surfaces terminated with H or Li atoms using finite-temperature real-time density functional theory simulations. The current–temperature characteristics are found to follow the Richardson–Dushman (RD) equation, which was derived from a semiclassical theory. However, the Richardson constants are two orders of magnitude smaller than the ideal values from the RD theory. This considerable reduction is attributed primarily to the extremely low transmission probability of electrons from the surfaces toward the vacuum. The present method enables straightforward evaluation of the ideal efficiency of a thermionic energy converter.

  2. Determination of the density of surface states at the semiconductor-insulator interface in a metal-insulator-semiconductor structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulyamov, G., E-mail: Gulyamov1949@rambler.ru; Sharibaev, N. U.

    2011-02-15

    The temporal dependence of thermal generation of electrons from occupied surface states at the semiconductor-insulator interface in a metal-insulator-semiconductor structure is studied. It is established that, at low temperatures, the derivative of the probability of depopulation of occupied surface states with respect to energy is represented by the Dirac {delta} function. It is shown that the density of states of a finite number of discrete energy levels under high-temperature measurements manifests itself as a continuous spectrum, whereas this spectrum appears discrete at low temperatures. A method for processing the continuous spectrum of the density of surface states is suggested thatmore » method makes it possible to determine the discrete energy spectrum. The obtained results may be conducive to an increase in resolution of the method of non-stationary spectroscopy of surface states.« less

  3. Determination of cloud liquid water content using the SSM/I

    NASA Technical Reports Server (NTRS)

    Alishouse, John C.; Snider, Jack B.; Westwater, Ed R.; Swift, Calvin T.; Ruf, Christopher S.

    1990-01-01

    As part of a calibration/validation effort for the special sensor microwave/imager (SSM/I), coincident observations of SSM/I brightness temperatures and surface-based observations of cloud liquid water were obtained. These observations were used to validate initial algorithms and to derive an improved algorithm. The initial algorithms were divided into latitudinal-, seasonal-, and surface-type zones. It was found that these initial algorithms, which were of the D-matrix type, did not yield sufficiently accurate results. The surface-based measurements of channels were investigated; however, the 85V channel was excluded because of excessive noise. It was found that there is no significant correlation between the SSM/I brightness temperatures and the surface-based cloud liquid water determination when the background surface is land or snow. A high correlation was found between brightness temperatures and ground-based measurements over the ocean.

  4. Surface tension of substantially undercooled liquid Ti-Al alloy

    NASA Astrophysics Data System (ADS)

    Zhou, K.; Wang, H. P.; Chang, J.; Wei, B.

    2010-06-01

    It is usually difficult to undercool Ti-Al alloys on account of their high reactivity in the liquid state. This results in a serious scarcity of information on their thermophysical properties in the metastable state. Here, we report on the surface tension of a liquid Ti-Al alloy under high undercooling condition. By using the electromagnetic levitation technique, a maximum undercooling of 324 K (0.19 T L) was achieved for liquid Ti-51 at.% Al alloy. The surface tension of this alloy, which was determined over a broad temperature range 1429-2040 K, increases linearly with the enhancement of undercooling. The experimental value of the surface tension at the liquidus temperature of 1753 K is 1.094 N m-1 and its temperature coefficient is -1.422 × 10-4 N m-1 K-1. The viscosity, solute diffusion coefficient and Marangoni number of this liquid Ti-Al alloy are also derived from the measured surface tension.

  5. On the temperature derivative of the surface tension at a critical end point

    NASA Astrophysics Data System (ADS)

    Robert, M.; Tavan, P.

    1983-03-01

    It is shown that, according to the van der Waals theory of fluid interfaces, the surface tension of the interface between a This result holds for any number of phases and independently varying densities and is not restricted to classical values of the critical exponents.

  6. Near-surface temperature inversion during summer at Summit, Greenland, and its relation to MODIS-derived surface temperatures

    NASA Astrophysics Data System (ADS)

    Adolph, Alden C.; Albert, Mary R.; Hall, Dorothy K.

    2018-03-01

    As rapid warming of the Arctic occurs, it is imperative that climate indicators such as temperature be monitored over large areas to understand and predict the effects of climate changes. Temperatures are traditionally tracked using in situ 2 m air temperatures and can also be assessed using remote sensing techniques. Remote sensing is especially valuable over the Greenland Ice Sheet, where few ground-based air temperature measurements exist. Because of the presence of surface-based temperature inversions in ice-covered areas, differences between 2 m air temperature and the temperature of the actual snow surface (referred to as skin temperature) can be significant and are particularly relevant when considering validation and application of remote sensing temperature data. We present results from a field campaign extending from 8 June to 18 July 2015, near Summit Station in Greenland, to study surface temperature using the following measurements: skin temperature measured by an infrared (IR) sensor, 2 m air temperature measured by a National Oceanic and Atmospheric Administration (NOAA) meteorological station, and a Moderate Resolution Imaging Spectroradiometer (MODIS) surface temperature product. Our data indicate that 2 m air temperature is often significantly higher than snow skin temperature measured in situ, and this finding may account for apparent biases in previous studies of MODIS products that used 2 m air temperature for validation. This inversion is present during our study period when incoming solar radiation and wind speed are both low. As compared to our in situ IR skin temperature measurements, after additional cloud masking, the MOD/MYD11 Collection 6 surface temperature standard product has an RMSE of 1.0 °C and a mean bias of -0.4 °C, spanning a range of temperatures from -35 to -5 °C (RMSE = 1.6 °C and mean bias = -0.7 °C prior to cloud masking). For our study area and time series, MODIS surface temperature products agree with skin surface temperatures better than previous studies indicated, especially at temperatures below -20 °C, where other studies found a significant cold bias. We show that the apparent cold bias present in other comparisons of 2 m air temperature and MODIS surface temperature may be a result of the near-surface temperature inversion. Further investigation of how in situ IR skin temperatures compare to MODIS surface temperature at lower temperatures (below -35 °C) is warranted to determine whether a cold bias exists for those temperatures.

  7. A comprehensive data set of lake surface water temperature over the Tibetan Plateau derived from MODIS LST products 2001–2015

    PubMed Central

    Wan, Wei; Li, Huan; Xie, Hongjie; Hong, Yang; Long, Di; Zhao, Limin; Han, Zhongying; Cui, Yaokui; Liu, Baojian; Wang, Cunguang; Yang, Wenting

    2017-01-01

    Lake surface water temperature (LSWT) is sensitive to long-term changes in thermal structure of lakes and regional air temperature. In the context of global climate change, recent studies showed a significant warming trend of LSWT based on investigating 291 lakes (71% are large lakes, ≥50 km2 each) globally. However, further efforts are needed to examine variation in LSWT at finer regional spatial and temporal scales. The Tibetan Plateau (TP), known as ‘the Roof of the World’ and ‘Asia’s water towers’, exerts large influences on and is sensitive to regional and even global climates. Aiming to examine detailed changing patterns and potential driven mechanisms for temperature variations of lakes across the TP region, this paper presents the first comprehensive data set of 15-year (2001–2015) nighttime and daytime LSWT for 374 lakes (≥10 km2 each), using MODIS (Moderate Resolution Imaging Spectroradiometer) Land Surface Temperature (LST) products as well as four lake boundary shapefiles (i.e., 2002, 2005, 2009, and 2014) derived from Landsat/CBERS/GaoFen-1 satellite images. The data set itself reveals significant information on LSWT and its changes over the TP and is an indispensable variable for numerous applications related to climate change, water budget analysis (particularly lake evaporation), water storage changes, glacier melting and permafrost degradation, etc. PMID:28742066

  8. A comprehensive data set of lake surface water temperature over the Tibetan Plateau derived from MODIS LST products 2001-2015.

    PubMed

    Wan, Wei; Li, Huan; Xie, Hongjie; Hong, Yang; Long, Di; Zhao, Limin; Han, Zhongying; Cui, Yaokui; Liu, Baojian; Wang, Cunguang; Yang, Wenting

    2017-07-25

    Lake surface water temperature (LSWT) is sensitive to long-term changes in thermal structure of lakes and regional air temperature. In the context of global climate change, recent studies showed a significant warming trend of LSWT based on investigating 291 lakes (71% are large lakes, ≥50 km 2 each) globally. However, further efforts are needed to examine variation in LSWT at finer regional spatial and temporal scales. The Tibetan Plateau (TP), known as 'the Roof of the World' and 'Asia's water towers', exerts large influences on and is sensitive to regional and even global climates. Aiming to examine detailed changing patterns and potential driven mechanisms for temperature variations of lakes across the TP region, this paper presents the first comprehensive data set of 15-year (2001-2015) nighttime and daytime LSWT for 374 lakes (≥10 km 2 each), using MODIS (Moderate Resolution Imaging Spectroradiometer) Land Surface Temperature (LST) products as well as four lake boundary shapefiles (i.e., 2002, 2005, 2009, and 2014) derived from Landsat/CBERS/GaoFen-1 satellite images. The data set itself reveals significant information on LSWT and its changes over the TP and is an indispensable variable for numerous applications related to climate change, water budget analysis (particularly lake evaporation), water storage changes, glacier melting and permafrost degradation, etc.

  9. Surface tension measurement of undercooled liquid Ni-based multicomponent alloys

    NASA Astrophysics Data System (ADS)

    Chang, J.; Wang, H. P.; Zhou, K.; Wei, B.

    2012-09-01

    The surface tensions of liquid ternary Ni-5%Cu-5%Fe, quaternary Ni-5%Cu-5%Fe-5%Sn and quinary Ni-5%Cu-5%Fe-5%Sn-5%Ge alloys were determined as a function of temperature by the electromagnetic levitation oscillating drop method. The maximum undercoolings obtained in the experiments are 272 (0.15T L), 349 (0.21T L) and 363 K (0.22T L), respectively. For all the three alloys, the surface tension decreases linearly with the rise of temperature. The surface tension values are 1.799, 1.546 and 1.357 N/m at their liquidus temperatures of 1719, 1644 and 1641 K. Their temperature coefficients are -4.972 × 10-4, -5.057 × 10-4 and -5.385 × 10-4 N/m/K. It is revealed that Sn and Ge are much more efficient than Cu and Fe in reducing the surface tension of Ni-based alloys. The addition of Sn can significantly enlarge the maximum undercooling at the same experimental condition. The viscosity of the three undercooled liquid alloys was also derived from the surface tension data.

  10. Comparison of MTI Satellite-Derived Surface Water Temperatures and In-Situ Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurzeja, R.

    2001-07-26

    Temperatures of the water surface of a cold, mid-latitude lake and the tropical Pacific Ocean were determined from MTI images and from in situ concurrent measurements. In situ measurements were obtained at the time of the MTI image with a floating, anchored platform, which measured the surface and bulk water temperatures and relevant meteorological variables, and also from a boat moving across the target area. Atmospheric profiles were obtained from concurrent radiosonde soundings. Radiances at the satellite were calculated with the Modtran radiative transfer model. The MTI infrared radiances were within 1 percent of the calculated values at the Pacificmore » Ocean site but were 1-2 percent different over the mid-latitude lake.« less

  11. Full-spectrum multiwavelength pyrometry for nongray surfaces

    NASA Technical Reports Server (NTRS)

    Ng, Daniel; Williams, W. D.

    1992-01-01

    A full-spectrum (encompassing radiation on both sides of the Wien displacement peak) multiwavelength pyrometer was developed. It measures the surface temperature of arbitrary nongray ceramics by curve fitting a spectrum in this spectral region to a Planck function of temperature T. This function of T is modified by the surface spectral emissivity. The emissivity function was derived experimentally from additional spectra that were obtained by using an auxiliary radiation source and from application of Kirchhoff's law. This emissivity was verified by results that were obtained independently by using electromagnetic and solid-state theories. In the presence of interfering reflected radiation this general pyrometry improves the accuracy of the measured temperature by measuring an additional spectrum that characterizes the interfering radiation source.

  12. Areas with Surface Thermal Anomalies as Detected by ASTER and LANDSAT Data around Pinkerton Hot Springs, Colorado

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This map shows areas of anomalous surface temperature in northern Saguache Counties identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots.

  13. Areas with Surface Thermal Anomalies as Detected by ASTER and LANDSAT Data in Northwest Delta, Colorado

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This map shows areas of anomalous surface temperature in northern Saguache Counties identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots.

  14. Areas with Surface Thermal Anomalies as Detected by ASTER and LANDSAT Data in Ouray, Colorado

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This map shows areas of anomalous surface temperature in Ouray identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots.

  15. Areas with Surface Thermal Anomalies as Detected by ASTER and LANDSAT Data in Southwest Steamboat Springs, Garfield County, Colorado

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This map shows areas of anomalous surface temperature around south Steamboat Springs as identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots.

  16. Areas with Surface Thermal Anomalies as Detected by ASTER and LANDSAT Data in Northern Saguache County, Colorado

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This map shows areas of anomalous surface temperature in northern Saguache Counties identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots.

  17. Modelling dengue fever risk in the State of Yucatan, Mexico using regional-scale satellite-derived sea surface temperature.

    PubMed

    Laureano-Rosario, Abdiel E; Garcia-Rejon, Julian E; Gomez-Carro, Salvador; Farfan-Ale, Jose A; Muller-Karger, Frank E

    2017-08-01

    Accurately predicting vector-borne diseases, such as dengue fever, is essential for communities worldwide. Changes in environmental parameters such as precipitation, air temperature, and humidity are known to influence dengue fever dynamics. Furthermore, previous studies have shown how oceanographic variables, such as El Niño Southern Oscillation (ENSO)-related sea surface temperature from the Pacific Ocean, influences dengue fever in the Americas. However, literature is lacking on the use of regional-scale satellite-derived sea surface temperature (SST) to assess its relationship with dengue fever in coastal areas. Data on confirmed dengue cases, demographics, precipitation, and air temperature were collected. Incidence of weekly dengue cases was examined. Stepwise multiple regression analyses (AIC model selection) were used to assess which environmental variables best explained increased dengue incidence rates. SST, minimum air temperature, precipitation, and humidity substantially explained 42% of the observed variation (r 2 =0.42). Infectious diseases are characterized by the influence of past cases on current cases and results show that previous dengue cases alone explained 89% of the variation. Ordinary least-squares analyses showed a positive trend of 0.20±0.03°C in SST from 2006 to 2015. An important element of this study is to help develop strategic recommendations for public health officials in Mexico by providing a simple early warning capability for dengue incidence. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Suitability of temperature, hydraulic heads, and acesulfame to quantify wastewater-related fluxes in the hyporheic and riparian zone

    NASA Astrophysics Data System (ADS)

    Engelhardt, Irina; Prommer, Henning; Moore, Catherine; Schulz, Manoj; Schüth, Christoph; Ternes, Thomas A.

    2013-01-01

    Groundwater and surface water are in many cases closely linked components of the water cycle with respect to both quantity and quality. Bank filtrates may eventually be impacted by the infiltration of wastewater-derived micropollutants from surface waters. Artificial sweeteners such as acesulfame have recently been reported as a novel class of potentially valuable tracers to study the fate of wastewater-derived substances in groundwater and, in particular, to determine the (bio)degradability of micropollutants. In this paper, a model-based analysis of a field experiment within the hyporheic and riparian zone of a highly polluted German stream was performed to assess the physical and chemical behavior of the artificial sweetener acesulfame. In the first part of this study, a reliable flow and transport model was established by jointly using hydraulic heads, temperatures, and acesulfame concentrations as inverse model calibration constraints. The analysis confirmed the conservative behavior of acesulfame and, therefore, its usability as an indicator of sewage flux provenance. However, a comparison of the appropriateness of hydraulic head, temperature, and acesulfame concentrations revealed that the characterization of the surface water-groundwater flux data indicated diurnal temperature fluctuations are the best indicator in terms of characterizing the flow and transport behavior in the groundwater system.

  19. An Analysis of the Effect of Surface Heat Exchange on the Thermal Behavior of an Idealized Aquifer Thermal Energy Storage System

    NASA Astrophysics Data System (ADS)

    Güven, O.; Melville, J. G.; Molz, F. J.

    1983-06-01

    Analytical expressions are derived for the temperature distribution and the mean temperature of an idealized aquifer thermal energy storage (ATES) system, taking into account the heat exchange at the ground surface and the finite thickness of the overlying layer above the storage aquifer. The analytical expressions for the mean temperature may be used to obtain rough estimates of first-cycle recovery factors for preliminary evaluations of shallow confined or unconfined ATES systems. The results, which are presented in nondimensional plots, indicate that surface heat exchange may have a significant influence on the thermal behavior of shallow ATES systems. Thus it is suggested that the effects of surface heat exchange should be considered carefully and included in the detailed analyses of such ATES systems.

  20. Theoretical study of cathode surfaces and high-temperature superconductors

    NASA Technical Reports Server (NTRS)

    Mueller, Wolfgang

    1994-01-01

    The surface-dipole properties of model cathode surfaces have been investigated with relativistic scattered-wave cluster calculations. Work-function/coverage curves have been derived from these data by employing the depolarization model of interacting surface dipoles. Accurate values have been obtained for the minimum work functions of several low-work-function surfaces. In the series BaO on bcc W, hcp Os, and fcc Pt, BaO/Os shows a lower and BaO/Pt a higher work function than BaO/W, which is attributed to the different substrate crystal structures involved. Results are also presented on the electronic structure of the high-temperature superconductor YBa2Cu3O7, which has been investigated with fully relativistic calculations for the first time.

  1. Temperature history of the Caribbean mixed layer as derived from sclerosponges

    NASA Astrophysics Data System (ADS)

    Estrella, J.; Winter, A.; Sherman, C.; Mangini, A.; Ramírez, W.

    2011-12-01

    We present a high resolution record of the Caribbean mixed layer temperature at different depths derived from oxygen isotopic ratios obtained from the sclerosponge Ceratoporella nicholsoni. Sclerosponges precipitate their calcium carbonate skeleton in equilibrium with their surrounding environment and are capable of living at great depths (down to 200 m). The sponges for this project were collected off Puerto Rico and St. Croix in northeastern region of the Caribbean Sea. The record obtained closest to the surface (36 m) indicates a sudden rise in sea surface temperature that started in 1866 and ended in 1877 with a total rise of 0.5 °C. At this time the rise decelerated until it finally stopped in 1935. From there onwards the record shows a declining trend that lasts until present day. We found that up to 51 % of the temperature variability in this record can be attributed to the Atlantic Multidecadal Oscillation (Trenberth and Shea, 2006). Further work is taking place on sponges located at various depths to determine the rate of expansion of the mixed layer.

  2. Effect of pyrolysis temperature on characteristics and aromatic contaminants adsorption behavior of magnetic biochar derived from pyrolysis oil distillation residue.

    PubMed

    Li, Hao; Mahyoub, Samah Awadh Ali; Liao, Wenjie; Xia, Shuqian; Zhao, Hechuan; Guo, Mengya; Ma, Peisheng

    2017-01-01

    The magnetic biochars were easily fabricated by thermal pyrolysis of Fe(NO 3 ) 3 and distillation residue derived from rice straw pyrolysis oil at 400, 600 and 800°C. The effects of pyrolysis temperature on characteristics of magnetic biochars as well as adsorption capacity for aromatic contaminants (i.e., anisole, phenol and guaiacol) were investigated carefully. The degree of carbonization of magnetic biochars become higher as pyrolysis temperature increasing. The magnetic biochar reached the largest surface area and pore volume at the pyrolysis temperature of 600°C due to pores blocking in biochar during pyrolysis at 800°C. Based on batch adsorption experiments, the used adsorbent could be magnetically separated and the adsorption capacity of anisole on magnetic biochars was stronger than that of phenol and guaiacol. The properties of magnetic biochar, including surface area, pore volume, aromaticity, grapheme-like-structure and iron oxide (γ-Fe 2 O 3 ) particles, showed pronounced effects on the adsorption performance of aromatic contaminants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Thermodynamic foundations of applications of ab initio methods for determination of the adsorbate equilibria: hydrogen at the GaN(0001) surface.

    PubMed

    Kempisty, Pawel; Strąk, Paweł; Sakowski, Konrad; Kangawa, Yoshihiro; Krukowski, Stanisław

    2017-11-08

    Thermodynamic foundations of ab initio modeling of vapor-solid and vapor-surface equilibria are introduced. The chemical potential change is divided into enthalpy and entropy terms. The enthalpy path passes through vapor-solid transition at zero temperature. The entropy path avoids the singular point at zero temperature passing a solid-vapor transition under normal conditions, where evaporation entropy is employed. In addition, the thermal changes are calculated. The chemical potential difference contribution of the following terms: vaporization enthalpy, vaporization entropy, the temperature-entropy related change, the thermal enthalpy change and mechanical pressure is obtained. The latter term is negligibly small for the pressure typical for epitaxy. The thermal enthalpy change is two orders smaller than the first three terms which have to be taken into account explicitly. The configurational vaporization entropy change is derived for adsorption processes. The same formulation is derived for vapor-surface equilibria using hydrogen at the GaN(0001) surface as an example. The critical factor is the dependence of the enthalpy of evaporation (desorption energy) on the pinning of the Fermi level bringing a drastic change of the value from 2.24 eV to -2.38 eV. In addition it is shown that entropic contributions considerable change the hydrogen equilibrium pressure over the GaN(0001) surface by several orders of magnitude. Thus a complete and exact formulation of vapor-solid and vapor-surface equilibria is presented.

  4. In situ droplet surface tension and viscosity measurements in gas metal arc welding

    NASA Astrophysics Data System (ADS)

    Bachmann, B.; Siewert, E.; Schein, J.

    2012-05-01

    In this paper, we present an adaptation of a drop oscillation technique that enables in situ measurements of thermophysical properties of an industrial pulsed gas metal arc welding (GMAW) process. Surface tension, viscosity, density and temperature were derived expanding the portfolio of existing methods and previously published measurements of surface tension in pulsed GMAW. Natural oscillations of pure liquid iron droplets are recorded during the material transfer with a high-speed camera. Frame rates up to 30 000 fps were utilized to visualize iron droplet oscillations which were in the low kHz range. Image processing algorithms were employed for edge contour extraction of the droplets and to derive parameters such as oscillation frequencies and damping rates along different dimensions of the droplet. Accurate surface tension measurements were achieved incorporating the effect of temperature on density. These are compared with a second method that has been developed to accurately determine the mass of droplets produced during the GMAW process which enables precise surface tension measurements with accuracies up to 1% and permits the study of thermophysical properties also for metals whose density highly depends on temperature. Thermophysical properties of pure liquid iron droplets formed by a wire with 1.2 mm diameter were investigated in a pulsed GMAW process with a base current of 100 A and a pulse current of 600 A. Surface tension and viscosity of a sample droplet were 1.83 ± 0.02 N m-1 and 2.9 ± 0.3 mPa s, respectively. The corresponding droplet temperature and density are 2040 ± 50 K and 6830 ± 50 kg m-3, respectively.

  5. Hyperspatial Thermal Imaging of Surface Hydrothermal Features at Pilgrim Hot Springs, Alaska using a small Unmanned Aerial System (sUAS)

    NASA Astrophysics Data System (ADS)

    Haselwimmer, C. E.; Wilson, R.; Upton, C.; Prakash, A.; Holdmann, G.; Walker, G.

    2013-12-01

    Thermal remote sensing provides a valuable tool for mapping and monitoring surface hydrothermal features associated with geothermal activity. The increasing availability of low-cost, small Unmanned Aerial Systems (sUAS) with integrated thermal imaging sensors offers a means to undertake very high spatial resolution (hyperspatial), quantitative thermal remote sensing of surface geothermal features in support of exploration and long-term monitoring efforts. Results from the deployment of a quadcopter sUAS equipped with a thermal camera over Pilgrim Hot Springs, Alaska for detailed mapping and heat flux estimation for hot springs, seeps, and thermal pools are presented. Hyperspatial thermal infrared imagery (4 cm pixels) was acquired over Pilgrim Hot Springs in July 2013 using a FLIR TAU 640 camera operating from an Aeryon Scout sUAS flying at an altitude of 40m. The registered and mosaicked thermal imagery is calibrated to surface temperature values using in-situ measurements of uniform blackbody tarps and the temperatures of geothermal and other surface pools acquired with a series of water temperature loggers. Interpretation of the pre-processed thermal imagery enables the delineation of hot springs, the extents of thermal pools, and the flow and mixing of individual geothermal outflow plumes with an unprecedented level of detail. Using the surface temperatures of thermal waters derived from the FLIR data and measured in-situ meteorological parameters the hot spring heat flux and outflow rate is calculated using a heat budget model for a subset of the thermal drainage. The heat flux/outflow rate estimates derived from the FLIR data are compared against in-situ measurements of the hot spring outflow rate recorded at the time of the thermal survey.

  6. Heat source reconstruction from noisy temperature fields using an optimised derivative Gaussian filter

    NASA Astrophysics Data System (ADS)

    Delpueyo, D.; Balandraud, X.; Grédiac, M.

    2013-09-01

    The aim of this paper is to present a post-processing technique based on a derivative Gaussian filter to reconstruct heat source fields from temperature fields measured by infrared thermography. Heat sources can be deduced from temperature variations thanks to the heat diffusion equation. Filtering and differentiating are key-issues which are closely related here because the temperature fields which are processed are unavoidably noisy. We focus here only on the diffusion term because it is the most difficult term to estimate in the procedure, the reason being that it involves spatial second derivatives (a Laplacian for isotropic materials). This quantity can be reasonably estimated using a convolution of the temperature variation fields with second derivatives of a Gaussian function. The study is first based on synthetic temperature variation fields corrupted by added noise. The filter is optimised in order to reconstruct at best the heat source fields. The influence of both the dimension and the level of a localised heat source is discussed. Obtained results are also compared with another type of processing based on an averaging filter. The second part of this study presents an application to experimental temperature fields measured with an infrared camera on a thin plate in aluminium alloy. Heat sources are generated with an electric heating patch glued on the specimen surface. Heat source fields reconstructed from measured temperature fields are compared with the imposed heat sources. Obtained results illustrate the relevancy of the derivative Gaussian filter to reliably extract heat sources from noisy temperature fields for the experimental thermomechanics of materials.

  7. Spatial and Temporal Inter-Relationships Between Anomalies of Temperature, Moisture, Cloud Cover, and OLR as Observed by AIRS/AMSU on Aqua

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2008-01-01

    AIRS/AMSU is the advanced IR/MW atmospheric sounding system launched on EOS Aqua in May 2002. Products derived from AIRS/AMSU include surface skin temperature and atmospheric temperature profiles; atmospheric humidity profiles, percent cloud cover and cloud top pressure, and OLR. Near real time products, stating with September 2002, have been derived from AIRS/AMSU using the AIRS Science Team Version 5 retrieval algorithm. Results in this paper included products through April 2008. The time period studied is marked by a substantial warming trend of Northern Hemisphere Extropical land surface skin temperatures, as well as pronounced El Nino - La Nina episodes. These both influence the spatial and temporal anomaly patterns of atmospheric temperature and moisture profiles, as well as of cloud cover and Clear Sky and All Sky OLR The relationships between temporal and spatial anomalies of these parameters over this time period, as determined from AIRS/AMSU observations, are shown below, with particular emphasis on which contribute significantly to OLR anomalies in each of the tropics and extra-tropics. The ability to match this data represents a good test of a model's response to El Nino.

  8. Improving Satellite Retrieved Infrared Sea Surface Temperatures in Aerosol-Contaminated Regions

    NASA Astrophysics Data System (ADS)

    Luo, B.; Minnett, P. J.; Szczodrak, G.; Kilpatrick, K. A.

    2017-12-01

    Infrared satellite observations of sea surface temperature (SST) have become essential for many applications in meteorology, climatology, and oceanography. Applications often require high accuracy SST data: for climate research and monitoring an absolute uncertainty of 0.1K and stability of better than 0.04K per decade are required. Tropospheric aerosol concentrations increase infrared signal attenuation and prevent the retrieval of accurate satellite SST. We compare satellite-derived skin SST with measurements from the Marine-Atmospheric Emitted Radiance Interferometer (M-AERI) deployed on ships during the Aerosols and Ocean Science Expeditions (AEROSE) and with quality-controlled drifter temperatures. After match-up with in-situ SST and filtering of cloud contaminated data, the results indicate that SST retrieved from MODIS (Moderate Resolution Imaging Spectroradiometer) aboard the Terra and Aqua satellites have negative (cool) biases compared to shipboard radiometric measurements. There is also a pronounced negative bias in the Saharan outflow area that can introduce SST errors >1 K at aerosol optical depths > 0.5. In this study, we present a new method to derive night-time Saharan Dust Index (SDI) algorithms based on simulated brightness temperatures at infrared wavelengths of 3.9, 10.8 and 12.0 μm, derived using RTTOV. We derived correction coefficients for Aqua MODIS measurements by regression of the SST errors against the SDI. The biases and standard deviations are reduced by 0.25K and 0.19K after the SDI correction. The goal of this study is to understand better the characteristics and physical mechanisms of aerosol effects on satellite retrieved infrared SST, as well as to derive empirical formulae for improved accuracies in aerosol-contaminated regions.

  9. Semiclassical multi-phonon theory for atom-surface scattering: Application to the Cu(111) system

    NASA Astrophysics Data System (ADS)

    Daon, Shauli; Pollak, Eli

    2015-05-01

    The semiclassical perturbation theory of Hubbard and Miller [J. Chem. Phys. 80, 5827 (1984)] is further developed to include the full multi-phonon transitions in atom-surface scattering. A practically applicable expression is developed for the angular scattering distribution by utilising a discretized bath of oscillators, instead of the continuum limit. At sufficiently low surface temperature good agreement is found between the present multi-phonon theory and the previous one-, and two-phonon theory derived in the continuum limit in our previous study [Daon, Pollak, and Miret-Artés, J. Chem. Phys. 137, 201103 (2012)]. The theory is applied to the measured angular distributions of Ne, Ar, and Kr scattered from a Cu(111) surface. We find that the present multi-phonon theory substantially improves the agreement between experiment and theory, especially at the higher surface temperatures. This provides evidence for the importance of multi-phonon transitions in determining the angular distribution as the surface temperature is increased.

  10. Near Surface Stoichiometry in UO 2 : A Density Functional Theory Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Jianguo; Valderrama, Billy; Henderson, Hunter B.

    2015-01-01

    The mechanisms of oxygen stoichiometry variation in UO 2at different temperature and oxygen partial pressure are important for understanding the dynamics of microstructure in these crystals. However, very limited experimental studies have been performed to understand the atomic structure of UO 2near surface and defect effects of near surface on stoichiometry in which the system can exchange atoms with the external reservoir. In this study, the near (110) surface relaxation and stoichiometry in UO 2have been studied with density functional theory (DFT) calculations. On the basis of the point-defect model (PDM), a general expression for the near surface stoichiometric variationmore » is derived by using DFT total-energy calculations and atomistic thermodynamics, in an attempt to pin down the mechanisms of oxygen exchange between the gas environment and defected UO 2. By using the derived expression, it is observed that, under poor oxygen conditions, the stoichiometry of near surface is switched from hyperstoichiometric at 300 K with a depth around 3 nm to near-stoichiometric at 1000 K and hypostoichiometric at 2000 K. Furthermore, at very poor oxygen concentrations and high temperatures, our results also suggest that the bulk of the UO 2prefers to be hypostoichiometric, although the surface is near-stoichiometric.« less

  11. Near surface stoichiometry in UO 2: A density functional theory study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Jianguo; Valderrama, Billy; Henderson, Hunter B.

    2015-08-01

    The mechanisms of oxygen stoichiometry variation in UO 2 at different temperature and oxygen partial pressure are important for understanding the dynamics of microstructure in these crystals. However, very limited experimental studies have been performed to understand the atomic structure of UO 2 near surface and defect effects of near surface on stoichiometry in which the system can exchange atoms with the external reservoir. In this study, the near (110) surface relaxation and stoichiometry in UO 2 have been studied with density functional theory (DFT) calculations. On the basis of the point-defect model (PDM), a general expression for the nearmore » surface stoichiometric variation is derived by using DFT total-energy calculations and atomistic thermodynamics, in an attempt to pin down the mechanisms of oxygen exchange between the gas environment and defected UO 2. By using the derived expression, it is observed that, under poor oxygen conditions, the stoichiometry of near surface is switched from hyperstoichiometric at 300 K with a depth around 3 nm to near-stoichiometric at 1000 K and hypostoichiometric at 2000 K. Furthermore, at very poor oxygen concentrations and high temperatures, our results also suggest that the bulk of the UO 2 prefers to be hypostoichiometric, although the surface is near-stoichiometric.« less

  12. Surface design of antibody-immobilized thermoresponsive cell culture dishes for recovering intact cells by low-temperature treatment.

    PubMed

    Kobayashi, Jun; Hayashi, Masaki; Ohno, Takahiro; Nishi, Masanori; Arisaka, Yoshinori; Matsubara, Yoshinori; Kakidachi, Hiroshi; Akiyama, Yoshikatsu; Yamato, Masayuki; Horii, Akihiro; Okano, Teruo

    2014-11-01

    Antibody-immobilized thermoresponsive poly(N-isopropylacrylamide-co-2-carboxyisopropylacrylamide) [poly(IPAAm-co-CIPAAm)]-grafted cell culture surfaces were designed to enhance both the initial adhesion of weakly adhering cells and the ability of cells to detach in response to low temperature through the regulation of affinity binding between immobilized antibodies and antigens on the cellular surface. Ty-82 cells and neonatal normal human dermal fibroblasts (NHDFs), which express CD90 on the cell surface, adhered to anti-CD90 antibody-immobilized thermoresponsive surfaces at 37°C, a condition at which the grafted thermoresponsive polymer chains shrank. Adherent Ty-82 cells were detached from the surfaces by lowering the temperature to 20°C and applying external forces, such as pipetting, whereas cultured NHDF sheets spontaneously detached themselves from the surface in response to reduced temperature alone. When the temperature was decreased to 20°C, the swelling of grafted thermoresponsive polymer chains weakened the affinity binding between immobilized antibody and antigen on the cells due to the increasing steric hindrance of the polymer chains around the antigen-recognition site of the immobilized antibodies. No contamination was detected on cells harvested from covalently immobilized antibodies on the culture surfaces by low-temperature treatment, whereas a carryover of the antibody and avidin from the avidin-biotin binding surface was observed. Furthermore, the initial adhesion of adipose tissue-derived cells, which adhere weakly to PIPAAm-grafted surfaces, was enhanced on the antibody-immobilized thermoresponsive surfaces. © 2013 Wiley Periodicals, Inc.

  13. METRIC model for the estimation and mapping of evapotranspiration in a super intensive olive orchard in Southern Portugal

    NASA Astrophysics Data System (ADS)

    Pôças, Isabel; Nogueira, António; Paço, Teresa A.; Sousa, Adélia; Valente, Fernanda; Silvestre, José; Andrade, José A.; Santos, Francisco L.; Pereira, Luís S.; Allen, Richard G.

    2013-04-01

    Satellite-based surface energy balance models have been successfully applied to estimate and map evapotranspiration (ET). The METRICtm model, Mapping EvapoTranspiration at high Resolution using Internalized Calibration, is one of such models. METRIC has been widely used over an extensive range of vegetation types and applications, mostly focusing annual crops. In the current study, the single-layer-blended METRIC model was applied to Landsat5 TM and Landsat7 ETM+ images to produce estimates of evapotranspiration (ET) in a super intensive olive orchard in Southern Portugal. In sparse woody canopies as in olive orchards, some adjustments in METRIC application related to the estimation of vegetation temperature and of momentum roughness length and sensible heat flux (H) for tall vegetation must be considered. To minimize biases in H estimates due to uncertainties in the definition of momentum roughness length, the Perrier function based on leaf area index and tree canopy architecture, associated with an adjusted estimation of crop height, was used to obtain momentum roughness length estimates. Additionally, to minimize the biases in surface temperature simulations, due to soil and shadow effects, the computation of radiometric temperature considered a three-source condition, where Ts=fcTc+fshadowTshadow+fsunlitTsunlit. As such, the surface temperature (Ts), derived from the thermal band of the Landsat images, integrates the temperature of the canopy (Tc), the temperature of the shaded ground surface (Tshadow), and the temperature of the sunlit ground surface (Tsunlit), according to the relative fraction of vegetation (fc), shadow (fshadow) and sunlit (fsunlit) ground surface, respectively. As the sunlit canopies are the primary source of energy exchange, the effective temperature for the canopy was estimated by solving the three-source condition equation for Tc. To evaluate METRIC performance to estimate ET over the olive grove, several parameters derived from the algorithm were tested against data collected in the field, including eddy covariance ET, surface temperature over the canopy and soil temperature in shaded and sunlit conditions. Additionally, the results were also compared with results published in the literature. The information obtained so far revealed very interesting perspectives for the use of METRIC in the estimation and mapping of ET in super intensive olive orchards. Thereby, this approach might constitute a useful tool towards the improvement of the efficiency of irrigation water management in this crop. The study described is still under way, and thus further applications of METRIC algorithm to a larger number of images and to olive groves with different tree density are planned.

  14. Modelling of surface-water temperature for the estimation of the Czech fishery productivity under the climate change

    NASA Astrophysics Data System (ADS)

    Svobodová, Eva; Trnka, Miroslav; Kopp, Radovan; Mareš, Jan; Dubrovský, Martin; Spurný, Petr; Žalud, Zděněk

    2015-04-01

    Freshwater fish production is significantly correlated with water temperature which is expected to increase under the climate change. This study is dealing with the estimation of the change of water temperature in productive ponds and its impact on the fishery in the Czech Republic. Calculation of surface-water temperature which was based on three-day mean of the air temperature was developed and tested in several ponds in three main fish production areas. Output of surface-water temperature model was compared with measured data and showed that the lower range of model accuracy is surface-water temperature 3°C, under this temperature threshold the model loses its predictive competence. In the expecting of surface-water temperature above the temperature 3°C the model has proved the well consistence between observed and modelled surface-water temperature (R 0.79 - 0.96). Verified model was applied in the conditions of climate change determined by the pattern scaling method, in which standardised scenarios were derived from five global circulation models MPEH5, CSMK3, IPCM4, GFCM21 and HADGEM. Results were evaluated with regard to thresholds which characterise the fish species requirements on water temperature. Used thresholds involved the upper temperature threshold for fish survival and the tolerable number of days in continual period with mentioned threshold surface-water temperature. Target fish species were Common carp (Cyprinus carpio), Maraene whitefish (Coregonus maraena), Northern whitefish (Coregonus peled) and Rainbow trout (Oncorhynchus mykis). Results indicated the limitation of the Czech fish-farming in terms of i) the increase of the length of continual periods with surface-water temperature above the threshold appropriate to given fish species toleration, ii) the increase of the number of continual periods with surface-water temperature above the threshold, both appropriate to given fish species toleration, and iii) the increase of overall number of days within the continual period with temperature above the threshold tolerated by given fish species. ACKNOWLEDGEMENTS: This study was funded by project "Building up a multidisciplinary scientific team focused on drought" No. CZ.1.07/2.3.00/20.0248.

  15. Determination of the thermal stress wave propagation in orthotropic hollow cylinder based on classical theory of thermoelasticity

    NASA Astrophysics Data System (ADS)

    Shahani, Amir Reza; Sharifi Torki, Hamid

    2018-01-01

    The thermoelasticity problem in a thick-walled orthotropic hollow cylinder is solved analytically using finite Hankel transform and Laplace transform. Time-dependent thermal and mechanical boundary conditions are applied on the inner and the outer surfaces of the cylinder. For solving the energy equation, the temperature itself is considered as boundary condition to be applied on both the inner and the outer surfaces of the orthotropic cylinder. Two different cases are assumed for solving the equation of motion: traction-traction problem (tractions are prescribed on both the inner and the outer surfaces) and traction-displacement (traction is prescribed on the inner surface and displacement is prescribed on the outer surface of the hollow orthotropic cylinder). Due to considering uncoupled theory, after obtaining temperature distribution, the dynamical structural problem is solved and closed-form relations are derived for radial displacement, radial and hoop stress. As a case study, exponentially decaying temperature with respect to time is prescribed on the inner surface of the cylinder and the temperature of the outer surface is considered to be zero. Owing to solving dynamical problem, the stress wave propagation and its reflections were observed after plotting the results in both cases.

  16. Titan's surface from Cassini RADAR SAR and high resolution radiometry data of the first five flybys

    USGS Publications Warehouse

    Paganelli, F.; Janssen, M.A.; Stiles, B.; West, R.; Lorenz, R.D.; Lunine, J.I.; Wall, S.D.; Callahan, P.; Lopes, R.M.; Stofan, E.; Kirk, R.L.; Johnson, W.T.K.; Roth, L.; Elachi, C.; ,

    2007-01-01

    The first five Titan flybys with Cassini's Synthetic Aperture RADAR (SAR) and radiometer are examined with emphasis on the calibration and interpretation of the high-resolution radiometry data acquired during the SAR mode (SAR-radiometry). Maps of the 2-cm wavelength brightness temperature are obtained coincident with the SAR swath imaging, with spatial resolution approaching 6 km. A preliminary calibration shows that brightness temperature in these maps varies from 64 to 89 K. Surface features and physical properties derived from the SAR-radiometry maps and SAR imaging are strongly correlated; in general, we find that surface features with high radar reflectivity are associated with radiometrically cold regions, while surface features with low radar reflectivity correlate with radiometrically warm regions. We examined scatterplots of the normalized radar cross-section ??0 versus brightness temperature, finding differing signatures that characterize various terrains and surface features. Implications for the physical and compositional properties of these features are discussed. The results indicate that volume scattering is important in many areas of Titan's surface, particularly Xanadu, while other areas exhibit complex brightness temperature variations consistent with variable slopes or surface material and compositional properties. ?? 2007 Elsevier Inc.

  17. Evaluation of geophysical parameters measured by the Nimbus-7 microwave radiometer for the TOGA Heat Exchange Project

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Mock, Donald R.

    1986-01-01

    The data distributed by the National Space Science Data Center on the Geophysical parameters of precipitable water, sea surface temperature, and surface-level wind speed, measured by the Scanning Multichannel Microwave Radiometer (SMMR) on Nimbus-7, are evaluated with in situ measurements between Jan. 1980 and Oct. 1983 over the tropical oceans. In tracking annual cycles and the 1982-83 E1 Nino/Southern Oscillation episode, the radiometer measurements are coherent with sea surface temperatures and surface-level wind speeds measured at equatorial buoys and with precipitable water derived from radiosonde soundings at tropical island stations. However, there are differences between SMMR and in situ measurements. Corrections based on radiosonde and ship data were derived supplementing correction formulae suggested in the databook. This study is the initial evaluation of the data for quantitative description of the 1982-83 E1 Nino/Southern Oscillation episode. It paves the way for determination of the ocean-atmosphere moisture and latent heat exchanges, a priority of the Tropical Ocean and Global Atmosphere (TOGA) Heat Exchange Program.

  18. Biomass-derived oxygenate reforming on Pt(111): A demonstration of surface science using D-glucose and its model surrogate glycolaldehyde

    NASA Astrophysics Data System (ADS)

    McManus, Jesse R.; Yu, Weiting; Salciccioli, Michael; Vlachos, Dionisios G.; Chen, Jingguang G.; Vohs, John M.

    2012-12-01

    Molecules derived from cellulosic biomass, such as glucose, represent an important renewable feedstock for the production of hydrogen and hydrocarbon-based fuels and chemicals. Development of efficient catalysts for their reformation into useful products is needed; however, this requires a detailed understanding of their adsorption and reaction on catalytically active transition metal surfaces. In this paper we demonstrate that the standard surface science techniques routinely used to characterize the reaction of small molecules on metals are also amenable for use in studying the adsorption and reaction of complex biomass-derivatives on single crystal metal surfaces. In particular, Temperature Programmed Desorption (TPD) and High Resolution Electron Energy Loss Spectroscopy (HREELS) combined with Density Functional Theory (DFT) calculations were used to elucidate the adsorption configuration of D-glucose and glycolaldehye on Pt(111). Both molecules were found to adsorb in an η1 aldehyde configuration partially validating the use of simple, functionally-equivalent model compounds for surface studies of cellulosic oxygenates.

  19. Surface confined ionic liquid as a stationary phase for HPLC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qian; Baker, Gary A; Baker, Sheila N

    Trimethoxysilane ionosilane derivatives of room temperature ionic liquids based on alkylimidazolium bromides were synthesized for attachment to silica support material. The derivatives 1-methyl-3-(trimethoxysilylpropyl)imidazolium bromide and 1-butyl-3-(trimethoxysilylpropyl)imidazolium bromide were used to modify the surface of 3 {micro}m diameter silica particles to act as the stationary phase for HPLC. The modified particles were characterized by thermogravimetric analysis (TGA) and {sup 13}C and {sup 29}Si NMR spectroscopies. The surface modification procedure rendered particles with a surface coverage of 0.84 {micro}mol m{sup -2} for the alkylimidazolium bromide. The ionic liquid moiety was predominantly attached to the silica surface through two siloxane bonds of themore » ionosilane derivative (63%). Columns packed with the modified silica material were tested under HPLC conditions. Preliminary evaluation of the stationary phase for HPLC was performed using aromatic carboxylic acids as model compounds. The separation mechanism appears to involve multiple interactions including ion exchange, hydrophobic interaction, and other electrostatic interactions.« less

  20. Thermal inertia and surface heterogeneity on Mars

    NASA Astrophysics Data System (ADS)

    Putzig, Nathaniel E.

    Thermal inertia derived from temperature observations is critical for understanding surface geology and assessing potential landing sites on Mars. Derivation methods generally assume uniform surface properties for any given observation. Consequently, horizontal heterogeneity and near-surface layering may yield apparent thermal inertia that varies with time of day and season. To evaluate the effects of horizontal heterogeneity, I modeled the thermal behavior of surfaces containing idealized material mixtures (dust, sand, duricrust, and rocks) and differing slope facets. These surfaces exhibit diurnal and seasonal variability in apparent thermal inertia of several 100 tiu, 1 even for components with moderately contrasting thermal properties. To isolate surface effects on the derived thermal inertia of Mars, I mapped inter- annual and seasonal changes in albedo and atmospheric dust opacity, accounting for their effects in a modified derivation algorithm. Global analysis of three Mars years of MGS-TES 2 data reveals diurnal and seasonal variations of ~200 tiu in the mid-latitudes and 600 tiu or greater in the polar regions. Correlation of TES results and modeled apparent thermal inertia of heterogeneous surfaces indicates pervasive surface heterogeneity on Mars. At TES resolution, the near-surface thermal response is broadly dominated by layering and is consistent with the presence of duricrusts over fines in the mid-latitudes and dry soils over ground ice in the polar regions. Horizontal surface mixtures also play a role and may dominate at higher resolution. In general, thermal inertia obtained from single observations or annually averaged maps may misrepresent surface properties. In lieu of a robust heterogeneous- surface derivation technique, repeat coverage can be used together with forward-modeling results to constrain the near-surface heterogeneity of Mars. 1 tiu == J m -2 K -1 s - 2 Mars Global Surveyor Thermal Emission Spectrometer

  1. Precipitation Discrimination from Satellite Infrared Temperatures over the CCOPE Mesonet Region.

    NASA Astrophysics Data System (ADS)

    Weiss, Mitchell; Smith, Eric A.

    1987-06-01

    A quantitative investigation of the relationship between satellite-derived cloud-top temperature parameters and the detection of intense convective rainfall is described. The area of study is that of the Cooperative Convective Precipitation Experiment (CCOPE), which was held near Miles City, Montana during the summer of 1981. Cloud-top temperatures, derived from the GOES-West operational satellite, were used to calculate a variety of parameters for objectively quantifying the convective intensity of a storm. A dense network of rainfall provided verification of surface rainfall. The cloud-top temperature field and surface rainfall data were processed into equally sized grid domains in order to best depict the individual samples of instantaneous precipitation.The technique of statistical discriminant analysis was used to determine which combinations of cloud-top temperature parameters best classify rain versus no-rain occurrence using three different rain-rate cutoffs: 1, 4, and 10 mm h1. Time lags within the 30 min rainfall verification were tested to determine the optimum time delay associated with rainfall reaching the ground.A total of six storm cases were used to develop and test the statistical models. Discrimination of rain events was found to be most accurate when using a 10 mm h1 rain-rate cutoff. Use parameters designated as coldest cloud-top temperature, the spatial mean of coldest cloud-top temperature, and change over time of mean coldest cloud-top temperature were found to be the best classifiers of rainfall in this study. Combining both a 10-min time lag (in terms of surface verification) with a 10 mm h1 rain-rate threshold resulted in classifying over 60% of all rain and no-rain cases correctly.

  2. Assimilation of Goes-Derived Skin Temperature Tendencies into Mesoscale Models to Improve Forecasts of near Surface Air Temperature and Mixing Ratio

    NASA Technical Reports Server (NTRS)

    Lapenta, William M.; McNider, Richard T.; Suggs, Ron; Jedlovec, Gary; Robertson, Franklin R.

    1998-01-01

    A technique has been developed for assimilating GOES-FR skin temperature tendencies into the surface energy budget equation of a mesoscale model so that the simulated rate of temperature chance closely agrees with the satellite observations. A critical assumption of the technique is that the availability of moisture (either from the soil or vegetation) is the least known term in the model's surface energy budget. Therefore, the simulated latent heat flux, which is a function of surface moisture availability, is adjusted based upon differences between the modeled and satellite-observed skin temperature tendencies. An advantage of this technique is that satellite temperature tendencies are assimilated in an energetically consistent manner that avoids energy imbalances and surface stability problems that arise from direct assimilation of surface shelter temperatures. The fact that the rate of change of the satellite skin temperature is used rather than the absolute temperature means that sensor calibration is not as critical. An advantage of this technique for short-range forecasts (0-48 h) is that it does not require a complex land-surface formulation within the atmospheric model. As a result, the need to specify poorly known soil and vegetative characteristics is eliminated. The GOES assimilation technique has been incorporated into the PSU/NCAR MM5. Results will be presented to demonstrate the ability of the assimilation scheme to improve short- term (0-48h) simulations of near-surface air temperature and mixing ratio during the warm season for several selected cases which exhibit a variety of atmospheric and land-surface conditions. In addition, validation of terms in the simulated surface energy budget will be presented using in situ data collected at the Southern Great Plains (SGP) Cloud And Radiation Testbed (CART) site as part of the Atmospheric Radiation Measurements Program (ARM).

  3. Parameter variation effects on temperature elevation in a steady-state, one-dimensional thermal model for millimeter wave exposure of one- and three-layer human tissue.

    PubMed

    Kanezaki, Akio; Hirata, Akimasa; Watanabe, Soichi; Shirai, Hiroshi

    2010-08-21

    The present study describes theoretical parametric analysis of the steady-state temperature elevation in one-dimensional three-layer (skin, fat and muscle) and one-layer (skin only) models due to millimeter-wave exposure. The motivation of this fundamental investigation is that some variability of warmth sensation in the human skin has been reported. An analytical solution for a bioheat equation was derived by using the Laplace transform for the one-dimensional human models. Approximate expressions were obtained to investigate the dependence of temperature elevation on different thermal and tissue thickness parameters. It was shown that the temperature elevation on the body surface decreases monotonically with the blood perfusion rate, heat conductivity and heat transfer from the body to air. Also revealed were the conditions where maximum and minimum surface temperature elevations were observed for different thermal and tissue thickness parameters. The surface temperature elevation in the three-layer model is 1.3-2.8 times greater than that in the one-layer model. The main reason for this difference is attributed to the adiabatic nature of the fat layer. By considering the variation range of thermal and tissue thickness parameters which causes the maximum and minimum temperature elevations, the dominant parameter influencing the surface temperature elevation was found to be the heat transfer coefficient between the body surface and air.

  4. Recent surface temperature trends in the interior of East Antarctica from borehole firn temperature measurements and geophysical inverse methods

    USGS Publications Warehouse

    Muto, A.; Scambos, T.A.; Steffen, K.; Slater, A.G.; Clow, G.D.

    2011-01-01

    We use measured firn temperatures down to depths of 80 to 90 m at four locations in the interior of Dronning Maud Land, East Antarctica to derive surface temperature histories spanning the past few decades using two different inverse methods. We find that the mean surface temperatures near the ice divide (the highest-elevation ridge of East Antarctic Ice Sheet) have increased approximately 1 to 1.5 K within the past ???50 years, although the onset and rate of this warming vary by site. Histories at two locations, NUS07-5 (78.65S, 35.64E) and NUS07-7 (82.07S, 54.89E), suggest that the majority of this warming took place in the past one or two decades. Slight cooling to no change was indicated at one location, NUS08-5 (82.63S, 17.87E), off the divide near the Recovery Lakes region. In the most recent decade, inversion results indicate both cooler and warmer periods at different sites due to high interannual variability and relatively high resolution of the inverted surface temperature histories. The overall results of our analysis fit a pattern of recent climate trends emerging from several sources of the Antarctic temperature reconstructions: there is a contrast in surface temperature trends possibly related to altitude in this part of East Antarctica. Copyright 2011 by the American Geophysical Union.

  5. MEASUREMENT OF WIND SPEED FROM COOLING LAKE THERMAL IMAGERY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrett, A; Robert Kurzeja, R; Eliel Villa-Aleman, E

    2009-01-20

    The Savannah River National Laboratory (SRNL) collected thermal imagery and ground truth data at two commercial power plant cooling lakes to investigate the applicability of laboratory empirical correlations between surface heat flux and wind speed, and statistics derived from thermal imagery. SRNL demonstrated in a previous paper [1] that a linear relationship exists between the standard deviation of image temperature and surface heat flux. In this paper, SRNL will show that the skewness of the temperature distribution derived from cooling lake thermal images correlates with instantaneous wind speed measured at the same location. SRNL collected thermal imagery, surface meteorology andmore » water temperatures from helicopters and boats at the Comanche Peak and H. B. Robinson nuclear power plant cooling lakes. SRNL found that decreasing skewness correlated with increasing wind speed, as was the case for the laboratory experiments. Simple linear and orthogonal regression models both explained about 50% of the variance in the skewness - wind speed plots. A nonlinear (logistic) regression model produced a better fit to the data, apparently because the thermal convection and resulting skewness are related to wind speed in a highly nonlinear way in nearly calm and in windy conditions.« less

  6. A Temperature-Stable Cryo-System for High-Temperature Superconducting MR In-Vivo Imaging

    PubMed Central

    Lin, In-Tsang; Yang, Hong-Chang; Chen, Jyh-Horng

    2013-01-01

    To perform a rat experiment using a high-temperature superconducting (HTS) surface resonator, a cryostat is essential to maintain the rat's temperature. In this work, a compact temperature-stable HTS cryo-system, keeping animal rectal temperature at 37.4°C for more than 3 hours, was successfully developed. With this HTS cryo-system, a 40-mm-diameter Bi2Sr2Ca2Cu3Ox (Bi-2223) surface resonator at 77 K was demonstrated in a 3-Tesla MRI system. The proton resonant frequency (PRF) method was employed to monitor the rat's temperature. Moreover, the capacity of MR thermometry in the HTS experiments was evaluated by correlating with data from independent fiber-optic sensor temperature measurements. The PRF thermal coefficient was derived as 0.03 rad/°C and the temperature-monitoring architecture can be implemented to upgrade the quality and safety in HTS experiments. The signal-to-noise ratio (SNR) of the HTS surface resonator at 77 K was higher than that of a professionally made copper surface resonator at 300 K, which has the same geometry, by a 3.79-fold SNR gain. Furthermore, the temperature-stable HTS cryo-system we developed can obtain stable SNR gain in every scan. A temperature-stable HTS cryo-system with an external air-blowing circulation system is demonstrated. PMID:23637936

  7. Ice surface temperature retrieval from AVHRR, ATSR, and passive microwave satellite data: Algorithm development and application

    NASA Technical Reports Server (NTRS)

    Key, Jeff; Maslanik, James; Steffen, Konrad

    1994-01-01

    During the first half of our second project year we have accomplished the following: (1) acquired a new AVHRR data set for the Beaufort Sea area spanning an entire year; (2) acquired additional ATSR data for the Arctic and Antarctic now totaling over seven months; (3) refined our AVHRR Arctic and Antarctic ice surface temperature (IST) retrieval algorithm, including work specific to Greenland; (4) developed ATSR retrieval algorithms for the Arctic and Antarctic, including work specific to Greenland; (5) investigated the effects of clouds and the atmosphere on passive microwave 'surface' temperature retrieval algorithms; (6) generated surface temperatures for the Beaufort Sea data set, both from AVHRR and SSM/I; and (7) continued work on compositing GAC data for coverage of the entire Arctic and Antarctic. During the second half of the year we will continue along these same lines, and will undertake a detailed validation study of the AVHRR and ATSR retrievals using LEADEX and the Beaufort Sea year-long data. Cloud masking methods used for the AVHRR will be modified for use with the ATSR. Methods of blending in situ and satellite-derived surface temperature data sets will be investigated.

  8. Observational Evidence for Desert Amplification Using Multiple Satellite Datasets.

    PubMed

    Wei, Nan; Zhou, Liming; Dai, Yongjiu; Xia, Geng; Hua, Wenjian

    2017-05-17

    Desert amplification identified in recent studies has large uncertainties due to data paucity over remote deserts. Here we present observational evidence using multiple satellite-derived datasets that desert amplification is a real large-scale pattern of warming mode in near surface and low-tropospheric temperatures. Trend analyses of three long-term temperature products consistently confirm that near-surface warming is generally strongest over the driest climate regions and this spatial pattern of warming maximizes near the surface, gradually decays with height, and disappears in the upper troposphere. Short-term anomaly analyses show a strong spatial and temporal coupling of changes in temperatures, water vapor and downward longwave radiation (DLR), indicating that the large increase in DLR drives primarily near surface warming and is tightly associated with increasing water vapor over deserts. Atmospheric soundings of temperature and water vapor anomalies support the results of the long-term temperature trend analysis and suggest that desert amplification is due to comparable warming and moistening effects of the troposphere. Likely, desert amplification results from the strongest water vapor feedbacks near the surface over the driest deserts, where the air is very sensitive to changes in water vapor and thus efficient in enhancing the longwave greenhouse effect in a warming climate.

  9. Improving Hurricane Heat Content Estimates From Satellite Altimeter Data

    NASA Astrophysics Data System (ADS)

    de Matthaeis, P.; Jacob, S.; Roubert, L. M.; Shay, N.; Black, P.

    2007-12-01

    Hurricanes are amongst the most destructive natural disasters known to mankind. The primary energy source driving these storms is the latent heat release due to the condensation of water vapor, which ultimately comes from the ocean. While the Sea Surface Temperature (SST) has a direct correlation with wind speeds, the oceanic heat content is dependent on the upper ocean vertical structure. Understanding the impact of these factors in the mutual interaction of hurricane-ocean is critical to more accurately forecasting intensity change in land-falling hurricanes. Use of hurricane heat content derived from the satellite radar altimeter measurements of sea surface height has been shown to improve intensity prediction. The general approach of estimating ocean heat content uses a two-layer model representing the ocean with its anomalies derived from altimeter data. Although these estimates compare reasonably well with in-situ measurements, they are generally about 10% under-biased. Additionally, recent studies show that the comparisons are less than satisfactory in the Western North Pacific. Therefore, our objective is to develop a methodology to more accurately represent the upper ocean structure using in-situ data. As part of a NOAA/ USWRP sponsored research, upper ocean observations were acquired in the Gulf of Mexico during the summers of 1999 and 2000. Overall, 260 expendable profilers (XCTD, XBT and XCP) acquired vertical temperature structure in the high heat content regions corresponding to the Loop Current and Warm Core Eddies. Using the temperature and salinity data from the XCTDs, first the Temperature-Salinity relationships in the Loop Current Water and Gulf Common water are derived based on the depth of the 26° C isotherm. These derived T-S relationships compare well with those inferred from climatology. By means of these relationships, estimated salinity values corresponding to the XBT and XCP temperature measurements are calculated, and used to derive continuous profiles of density. Ocean heat content is then estimated from these profiles, and compared to that derived from altimeter data, showing - as mentioned earlier - a consistent bias. Using a procedure that conserves density in the vertical, these density profiles are discretized into five isopycnic layers representative of the upper ocean in the Gulf of Mexico. Statistical correlations are then derived between the altimetric sea surface height anomalies and the thickness of these layers in the region. Using these correlations, a higher resolution upper ocean structure is derived from the altimeter data. Withholding observations from one snapshot of data in the correlations, and comparing the estimated ocean heat content with in-situ values, will allow us to quantify errors in this approach. This methodology will then be extended to the Western Pacific using Argo data, and results will be presented.

  10. A comparison of surface temperature derived from HCMM infrared measurements with field data

    NASA Technical Reports Server (NTRS)

    Vukovich, F. M.

    1984-01-01

    The satellite for the Heat Capacity Mapping Mission (HCMM) was launched on April 26, 1978. The HCMM had the objective to collect data in support of studies concerned with the feasibility of using infrared temperature data to compute the thermal inertia from the earth's surface. The HCMM radiometer had a channel for reflected radiation in the 0.5 to 1.1 micron waveband, and a channel for the infrared radiation in the 10.5 to 12.5 micron band. However, difficulties developed in connection with changes in the characteristics of the radiometer. The present investigation is concerned with a comparison of HCMM infrared temperatures with in situ data from the Mississippi River in the St. Louis, Missouri, area and with sea-surface temperatures collected in the Nantucket Shoals and Gulf of Mexico regions. It was found that, on the average, the difference between satellite in situ data was -4.6 C.

  11. Coral-Derived Western Pacific Tropical Sea Surface Temperatures During the Last Millennium

    NASA Astrophysics Data System (ADS)

    Chen, Tianran; Cobb, Kim M.; Roff, George; Zhao, Jianxin; Yang, Hongqiang; Hu, Minhang; Zhao, Kuan

    2018-04-01

    Reconstructions of ocean temperatures prior to the industrial era serve to constrain natural climate variability on decadal to centennial timescales, yet relatively few such observations are available from the west Pacific Warm Pool. Here we present multiple coral-based sea surface temperature reconstructions from Yongle Atoll, in the South China Sea over the last 1,250 years (762-2013 Common Era [CE]). Reconstructed coral Sr/Ca-sea surface temperatures indicate that the "Little Ice Age (1711-1817 CE)" period was 0.7°C cooler than the "Medieval Climate Anomaly (913-1132 CE)" and that late 20th century warming of the western Pacific is likely unprecedented over the past millennium. Our findings suggest that the Western Pacific Warm Pool may have expanded (contracted) during the Medieval Climate Anomaly (Little Ice Age), leading to a strengthening (weakening) of the Asian summer monsoon, as recorded in Chinese stalagmites.

  12. Three-dimensional turbulent-mixing-length modeling for discrete-hole coolant injection into a crossflow

    NASA Technical Reports Server (NTRS)

    Wang, C. R.; Papell, S. S.

    1983-01-01

    Three dimensional mixing length models of a flow field immediately downstream of coolant injection through a discrete circular hole at a 30 deg angle into a crossflow were derived from the measurements of turbulence intensity. To verify their effectiveness, the models were used to estimate the anisotropic turbulent effects in a simplified theoretical and numerical analysis to compute the velocity and temperature fields. With small coolant injection mass flow rate and constant surface temperature, numerical results of the local crossflow streamwise velocity component and surface heat transfer rate are consistent with the velocity measurement and the surface film cooling effectiveness distributions reported in previous studies.

  13. Three-dimensional turbulent-mixing-length modeling for discrete-hole coolant injection into a crossflow

    NASA Astrophysics Data System (ADS)

    Wang, C. R.; Papell, S. S.

    1983-09-01

    Three dimensional mixing length models of a flow field immediately downstream of coolant injection through a discrete circular hole at a 30 deg angle into a crossflow were derived from the measurements of turbulence intensity. To verify their effectiveness, the models were used to estimate the anisotropic turbulent effects in a simplified theoretical and numerical analysis to compute the velocity and temperature fields. With small coolant injection mass flow rate and constant surface temperature, numerical results of the local crossflow streamwise velocity component and surface heat transfer rate are consistent with the velocity measurement and the surface film cooling effectiveness distributions reported in previous studies.

  14. Fullerene-derivative PC61BM forms three types of phase-pure monolayer on the surface of Au(111)

    NASA Astrophysics Data System (ADS)

    Li, Wen-Jie; Du, Ying-Ying; Zhang, Han-Jie; Chen, Guang-Hua; Sheng, Chun-Qi; Wu, Rui; Wang, Jia-Ou; Qian, Hai-Jie; Ibrahim, Kurash; He, Pi-Mo; Li, Hong-Nian

    2016-12-01

    We have studied the packing structures of C60-derivative PC61BM on the surface of Au(111) in ultrahigh vacuum using scanning tunneling microscopy. The Au(111) has a triangle-like reconstructed surface, which results in some packing structures different from those reported for low coverages. PC61BM can form three types of phase-pure monolayer, namely, the compact straight molecular double-row monolayer, the hexagonal-packing monolayer and the glassy monolayer. The different types of monolayer form for different molecular densities and different annealing temperatures. In addition to the already known inter-molecular interactions (Van de Waals interaction and hydrogen bond), the steric effect of the phenyl-butyric-acid-methyl-ester side tail plays conspicuous role in the molecular self-assembly at high coverages. The steric effect makes it difficult to prepare a hexagonal-packing monolayer at room temperature and decides the instability of the hexagonal-packing monolayer prepared by thermal annealing.

  15. Spontaneous formation of linearly arranged microcraters on sol-gel-derived silica-poly(vinylpyrrolidone) hybrid films induced by Bénard-Marangoni convection.

    PubMed

    Uchiyama, Hiroaki; Mantani, Yuto; Kozuka, Hiromitsu

    2012-07-10

    Complex, sophisticated surface patterns on micrometer and nanometer scales are obtained when solvent evaporates from solutions containing nonvolatile solutes dropped on a solid substrate. Such evaporation-driven pattern formation has been utilized as a fabrication process of highly ordered patterns in thin films. Here, we suggested the spontaneous pattern formation induced by Bénard-Marangoni convection triggered by solvent evaporation as a novel patterning process of sol-gel-derived organic-inorganic hybrid films. Microcraters of 1.0-1.5 μm in height and of 100-200 μm in width were spontaneously formed on the surface of silica-poly(vinylpyrrolidone) hybrid films prepared via temperature-controlled dip-coating process, where the surface patterns were linearly arranged parallel to the substrate withdrawal direction. Such highly ordered micropatterns were achieved by Bénard-Marangoni convection activated at high temperatures and the unidirectional flow of the coating solution on the substrate during dip-coating.

  16. Multi-temporal analysis of land surface temperature in highly urbanized districts

    NASA Astrophysics Data System (ADS)

    Kaya, S.; Celik, B.; Sertel, E.; Bayram, B.; Seker, D. Z.

    2017-12-01

    Istanbul is one of the largest cities around the world with population over 15 million and it has 39 districts. Due to high immigration rate after the 1980s, parallel to the urbanization rapid population increase has occurred in some of these districts. Thus, a significant increase in land surface temperature were monitored and this subject became one of the most popular subject of different researches. Natural landscapes transformed into residential areas with impervious surfaces that causes rise in land surface temperatures which is one of the component of urban heat islands. This study focuses on determining the land use/land cover changes and land surface temperature in highly urbanized districts for last 32 years and examining the relationship between these two parameters using multi-temporal optical and thermal remotely sensed data. In this study, Landsat5 Thematic Mapper and Landsat8 OLI/TIR imagery with acquisition dates June 1984 and June 2016 were used. In order to assess the land use/cover change between 1984 and 2016, Vegetation Impervious Surface-soil (V-I-S) model is used. Each end-member spectra are extracted from ASTER spectral library. Additionally, V-I-S model, NDVI, NDBI and NDBaI indices have been derived for further investigation of land cover changes. The results of the study, presented that in the last 32 years, the amount of impervious surfaces substantially increased along with land surface temperatures.

  17. Aerothermal test results from the first flight of the Pegasus air-launched space booster

    NASA Technical Reports Server (NTRS)

    Noffz, Gregory K.; Curry, Robert E.; Haering, Edward A., Jr.; Kolodziej, Paul

    1991-01-01

    A survey of temperature measurements at speeds through Mach 8.0 on the first flight of the Pegasus air-launched booster system is discussed. In addition, heating rates were derived from the temperature data obtained on the fuselage in the vicinity of the wing shock interaction. Sensors were distributed on the wing surfaces, leading edge, and on the wing-body fairing or fillet. Side-by-side evaluations were obtained for a variety of sensor installations. Details of the trajectory reconstruction through first-stage separation are provided. Given here are indepth descriptions of the sensor installations, temperature measurements, and derived heating rates along with interpretations of the results.

  18. Satellite-Derived Sea Surface Temperature: Workshop-2

    NASA Technical Reports Server (NTRS)

    Njoku, E. G.

    1984-01-01

    Global accuracies and error characteristics of presently orbiting satellite sensors are examined. The workshops are intended to lead to a better understanding of present capabilities for sea surface temperature measurement and to improve measurement concepts for the future. Data from the Advanced Very High Resolution Radiometer AVHRR and Scanning Multichannel Microwave Radiometer is emphasized. Some data from the High Resolution Infrared Sounder HIRS and AVHRR are also examined. Comparisons of satellite data with ship and eXpendable BathyThermograph XBT measurement show standard deviations in the range 0.5 to 1.3 C with biases of less than 0.4 C, depending on the sensor, ocean region, and spatial/temporal averaging. The Sea Surface Temperature SST anomaly maps show good agreement in some cases, but a number of sensor related problems are identified.

  19. Preliminary analysis of STS-2 entry flight data

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A preliminary analysis of the data obtained during the entry of the STS-2 flight was completed. The stability and control derivatives from STS-2 were examined. Questions still remain throughout the flight envelope and the area below Mach 3 needs more study. With three controls operating in a high gain feedback system, it is difficult to separate the individual effects of each of the controls. Analysis of the aerothermal data shows that wing structural-temperature measurements are generally repeatable and consistent with the trajectories. The measured wing upper surface temperatures are in reasonable agreement with Dryden predictions but wing lower surface temperatures are higher than Dryden predictions. Heating and heat transfer models will be adjusted to improve the temperature prediction capability for future trajectories.

  20. Use of thermal inertia determined by HCMM to predict nocturnal cold prone areas in Florida. [Everglades agricultural area and the west north central peninsula

    NASA Technical Reports Server (NTRS)

    Allen, L. H., Jr. (Principal Investigator); Chen, E.; Martsolf, J. D.; Jones, P. H.

    1981-01-01

    Surface temperatures derived from HCMM data were compared with to those obtained by GOES satellite and the apparent thermal inertia (ATI) calculated. For two dates, the HCMM temperatures appear to be about 5 C lower than the GOES temperatures. The ATI for excessively-drained to well-drained mineral soils was greater than for drained organic soils possibly because of long periods of low rainfall during late 1980 and early 1981. Organic soils cropped to sugar cane showed lower ATI after a severe killing freeze. With dead leaves, there was less transpiration and more solar radiation probably reached the dark soil surface. This would explain the larger diurnal temperature amplitude observed.

  1. Quantum tunneling of oxygen atoms on very cold surfaces.

    PubMed

    Minissale, M; Congiu, E; Baouche, S; Chaabouni, H; Moudens, A; Dulieu, F; Accolla, M; Cazaux, S; Manicó, G; Pirronello, V

    2013-08-02

    Any evolving system can change state via thermal mechanisms (hopping a barrier) or via quantum tunneling. Most of the time, efficient classical mechanisms dominate at high temperatures. This is why an increase of the temperature can initiate the chemistry. We present here an experimental investigation of O-atom diffusion and reactivity on water ice. We explore the 6-25 K temperature range at submonolayer surface coverages. We derive the diffusion temperature law and observe the transition from quantum to classical diffusion. Despite the high mass of O, quantum tunneling is efficient even at 6 K. As a consequence, the solid-state astrochemistry of cold regions should be reconsidered and should include the possibility of forming larger organic molecules than previously expected.

  2. Fast surface temperature measurement of Teflon propellant-in-pulsed ablative discharges using HgCdTe photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Antonsen, Erik L.; Burton, Rodney L.; Reed, Garrett A.; Spanjers, Gregory G.

    2006-10-01

    High-speed mercury cadmium telluride photovoltaic detectors, sensitive to infrared emission, are investigated as a means of measuring surface temperature on a microsecond time frame during pulsed ablative discharges with Teflon™ as the ablated material. Analysis is used to derive a governing equation for detector output voltage for materials with wavelength dependent emissivity. The detector output voltage is experimentally calibrated against thermocouples embedded in heated Teflon. Experimental calibration is performed with Teflon that has been exposed to ˜200 pulsed discharges and non-plasma-exposed Teflon and is compared to theoretical predictions to analyze emissivity differences. The diagnostic capability is evaluated with measurements of surface temperature from the Teflon propellant of electric micropulsed plasma thrusters. During the pulsed current discharge, there is insufficient information to claim that the surface temperature is accurately measured. However, immediately following the discharge, the postpulse cooling curve is measured. The statistical spread of postpulse surface temperature from shot to shot, most likely due to arc constriction and localization, is investigated to determine an operational envelope for postpulse temperature and mass ablation. This information is useful for determining postpulse ablation contributions to mass loss as well as evaluation of theoretical discharge models currently under development.

  3. Greenhouse Effect Detection Experiment (GEDEX). Selected data sets

    NASA Technical Reports Server (NTRS)

    Olsen, Lola M.; Warnock, Archibald, III

    1992-01-01

    This CD-ROM contains selected data sets compiled by the participants of the Greenhouse Effect Detection Experiment (GEDEX) workshop on atmospheric temperature. The data sets include surface, upper air, and/or satellite-derived measurements of temperature, solar irradiance, clouds, greenhouse gases, fluxes, albedo, aerosols, ozone, and water vapor, along with Southern Oscillation Indices and Quasi-Biennial Oscillation statistics.

  4. Derivation of martian surface slope characteristics from directional thermal infrared radiometry

    NASA Astrophysics Data System (ADS)

    Bandfield, Joshua L.; Edwards, Christopher S.

    2008-01-01

    Directional thermal infrared measurements of the martian surface is one of a variety of methods that may be used to characterize surface roughness and slopes at scales smaller than can be obtained by orbital imagery. Thermal Emission Spectrometer (TES) emission phase function (EPF) observations show distinct apparent temperature variations with azimuth and emission angle that are consistent with the presence of warm, sunlit and cool, shaded slopes at typically ˜0.1 m scales. A surface model of a Gaussian distribution of azimuth independent slopes (described by θ-bar) is combined with a thermal model to predict surface temperature from each viewing angle and azimuth of the TES EPF observation. The models can be used to predict surface slopes using the difference in measured apparent temperature from 2 separate 60-70° emission angle observations taken ˜180° in azimuth relative to each other. Most martian surfaces are consistent with low to moderate slope distributions. The slope distributions display distinct correlations with latitude, longitude, and albedo. Exceptionally smooth surfaces are located at lower latitudes in both the southern highlands as well as in high albedo dusty terrains. High slopes are associated with southern high-latitude patterned ground and north polar sand dunes. There is little apparent correlation between high resolution imagery and the derived θ-bar, with exceptions such as duneforms. This method can be used to characterize potential landing sites by assuming fractal scaling behavior to meter scales. More precisely targeted thermal infrared observations from other spacecraft instruments are capable of significantly reducing uncertainty as well as reducing measurement spot size from 10s of kilometers to sub-kilometer scales.

  5. Low-temperature formation of magnetic iron oxides

    NASA Technical Reports Server (NTRS)

    Koch, Chr. Bender; Madsen, M. B.

    1992-01-01

    Elemental analysis and magnetic measurements of the surface of Mars have indicated the presence of an iron oxide with a considerable magnetic moment. Identification of the oxide phase(s) is an important subject as this may be used to identify the process of weathering on the martian surface as well as the composition of the Mars regolith itself. Consequently, interest was in evidence of new formation of strongly magnetic phases (e.g., magnetite, maghemite, feroxyhyte) in terrestrially derived Mars sample analogs. Within the group of Mars sample analogs derived from low-temperature weathering of basalts in Arctic regions, evidence of magnetic oxides formed at the outermost weathering rind was never observed. However, in one instance where the weathering products accumulating in a crack of a basaltic stone were investigated, evidence of magnetite was found. The experimental details are presented.

  6. An approach of surface coal fire detection from ASTER and Landsat-8 thermal data: Jharia coal field, India

    NASA Astrophysics Data System (ADS)

    Roy, Priyom; Guha, Arindam; Kumar, K. Vinod

    2015-07-01

    Radiant temperature images from thermal remote sensing sensors are used to delineate surface coal fires, by deriving a cut-off temperature to separate coal-fire from non-fire pixels. Temperature contrast of coal fire and background elements (rocks and vegetation etc.) controls this cut-off temperature. This contrast varies across the coal field, as it is influenced by variability of associated rock types, proportion of vegetation cover and intensity of coal fires etc. We have delineated coal fires from background, based on separation in data clusters in maximum v/s mean radiant temperature (13th band of ASTER and 10th band of Landsat-8) scatter-plot, derived using randomly distributed homogeneous pixel-blocks (9 × 9 pixels for ASTER and 27 × 27 pixels for Landsat-8), covering the entire coal bearing geological formation. It is seen that, for both the datasets, overall temperature variability of background and fires can be addressed using this regional cut-off. However, the summer time ASTER data could not delineate fire pixels for one specific mine (Bhulanbararee) as opposed to the winter time Landsat-8 data. The contrast of radiant temperature of fire and background terrain elements, specific to this mine, is different from the regional contrast of fire and background, during summer. This is due to the higher solar heating of background rocky outcrops, thus, reducing their temperature contrast with fire. The specific cut-off temperature determined for this mine, to extract this fire, differs from the regional cut-off. This is derived by reducing the pixel-block size of the temperature data. It is seen that, summer-time ASTER image is useful for fire detection but required additional processing to determine a local threshold, along with the regional threshold to capture all the fires. However, the winter Landsat-8 data was better for fire detection with a regional threshold.

  7. Solid-phase equilibria on Pluto's surface

    NASA Astrophysics Data System (ADS)

    Tan, Sugata P.; Kargel, Jeffrey S.

    2018-03-01

    Pluto's surface is covered by volatile ices that are in equilibrium with the atmosphere. Multicomponent phase equilibria may be calculated using a thermodynamic equation of state and, without additional assumptions, result in methane-rich and nitrogen-rich solid phases. The former is formed at temperature range between the atmospheric pressure-dependent sublimation and condensation points, while the latter is formed at temperatures lower than the sublimation point. The results, calculated for the observed 11 μbar atmospheric pressure and composition, are consistent with recent work derived from observations by New Horizons.

  8. Senegalese land surface change analysis and biophysical parameter estimation using NOAA AVHRR spectral data

    NASA Technical Reports Server (NTRS)

    Vukovich, Fred M.; Toll, David L.; Kennard, Ruth L.

    1989-01-01

    Surface biophysical estimates were derived from analysis of NOAA Advanced Very High Spectral Resolution (AVHRR) spectral data of the Senegalese area of west Africa. The parameters derived were of solar albedo, spectral visible and near-infrared band reflectance, spectral vegetative index, and ground temperature. Wet and dry linked AVHRR scenes from 1981 through 1985 in Senegal were analyzed for a semi-wet southerly site near Tambacounda and a predominantly dry northerly site near Podor. Related problems were studied to convert satellite derived radiance to biophysical estimates of the land surface. Problems studied were associated with sensor miscalibration, atmospheric and aerosol spatial variability, surface anisotropy of reflected radiation, narrow satellite band reflectance to broad solar band conversion, and ground emissivity correction. The middle-infrared reflectance was approximated with a visible AVHRR reflectance for improving solar albedo estimates. In addition, the spectral composition of solar irradiance (direct and diffuse radiation) between major spectral regions (i.e., ultraviolet, visible, near-infrared, and middle-infrared) was found to be insensitive to changes in the clear sky atmospheric optical depth in the narrow band to solar band conversion procedure. Solar albedo derived estimates for both sites were not found to change markedly with significant antecedent precipitation events or correspondingly from increases in green leaf vegetation density. The bright soil/substrate contributed to a high albedo for the dry related scenes, whereas the high internal leaf reflectance in green vegetation canopies in the near-infrared contributed to high solar albedo for the wet related scenes. The relationship between solar albedo and ground temperature was poor, indicating the solar albedo has little control of the ground temperature. The normalized difference vegetation index (NDVI) and the derived visible reflectance were more sensitive to antecedent rainfall amounts and green vegetation changes than were near-infrared changes. The information in the NDVI related to green leaf density changes primarily was from the visible reflectance. The contribution of the near-infrared reflectance to explaining green vegetation is largely reduced when there is a bright substrate.

  9. Regional and Coastal Prediction with the Relocatable Ocean Nowcast/Forecast System

    DTIC Science & Technology

    2014-09-01

    and those that may be resolved with a suite of satellite altimeters when several are present and operational (~ 100 km). The altimeter data provide...September 2014 47 The observational data used for assimilation include satellite sea surface temperature (SST), satellite altimeter sea surface height...anomaly (SSHA), satellite microwave-derived sea ice concentration, and in situ surface and profile data from sensors on ships; drifters; fixed buoys

  10. Superconducting surface impedance under radiofrequency field

    DOE PAGES

    Xiao, Binping P.; Reece, Charles E.; Kelley, Michael J.

    2013-04-26

    Based on BCS theory with moving Cooper pairs, the electron states distribution at 0K and the probability of electron occupation with finite temperature have been derived and applied to anomalous skin effect theory to obtain the surface impedance of a superconductor under radiofrequency (RF) field. We present the numerical results for Nb and compare these with representative RF field-dependent effective surface resistance measurements from a 1.5 GHz resonant structure.

  11. Event-scale relationships between surface velocity, temperature and chlorophyll in the coastal ocean, as seen by satellite

    NASA Technical Reports Server (NTRS)

    Strub, P. Ted

    1991-01-01

    The overall goal of this project was to increase our understanding of processes which determine the temporally varying distributions of surface chlorophyll pigment concentration and surface temperature in the California Current System (CCS) on the time-scale of 'events', i.e., several days to several weeks. We also proposed to investigate seasonal and regional differences in these events. Additionally, we proposed to evaluate methods of estimating surface velocities and horizontal transport of pigment and heat from sequences of AVHRR and CZCS images. The four specific objectives stated in the original proposal were to: (1) test surface current estimates made from sequences of both SST and color images using variations of the statistical method of Emery et al. (1986) and estimate the uncertainties in these satellite-derived surface currents; (2) characterize the spatial and temporal relationships of chlorophyll and temperature in rapidly evolving features for which adequate imagery exist and evaluate the contribution of these events to monthly and seasonal averages; (3) use the methods tested in (1) to determine the nature of the velocity fields in the CCS; and (4) compare the currents, temperature, and currents in different seasons and in different geographic regions.

  12. Detecting Changes of Thermal Environment over the Bohai Coastal Region by Spectral Change Vector Analysis

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Jia, G.

    2009-12-01

    Change vector analysis (CVA) is an effective approach for detecting and characterizing land-cover change by comparing pairs of multi-spectral and multi-temporal datasets over certain area derived from various satellite platforms. NDVI is considered as an effective detector for biophysical changes due to its sensitivity to red and near infrared signals, while land surface temperature (LST) is considered as a valuable indicator for changes of ground thermal conditions. Here we try to apply CVA over satellite derived LST datasets to detect changes of land surface thermal properties parallel to climate change and anthropogenic influence in a city cluster since 2001. In this study, monthly land surface temperature datasets from 2001-2008 derived from MODIS collection 5 were used to examine change pattern of thermal environment over the Bohai coastal region by using spectral change vector analysis. The results from principle component analysis (PCA) for LST show that the PC 1-3 contain over 80% information on monthly variations and these PCA components represent the main processes of land thermal environment change over the study area. Time series of CVA magnitude combined with land cover information show that greatest change occurred in urban and heavily populated area, featured with expansion of urban heat island, while moderate change appeared in grassland area in the north. However few changes were observed over large plain area and forest area. Strong signals also are related to economy level and especially the events of surface cover change, such as emergence of railway and port. Two main processes were also noticed about the changes of thermal environment. First, weak signal was detected in mostly natural area influenced by interannual climate change in temperate broadleaf forest area. Second, land surface temperature changes were controlled by human activities as 1) moderate change of LST happened in grassland influenced by grazing and 2) urban heat island was intensifier in major cities, such as Beijing and Tianjin. Further, the continual drier climate combined with human actions over past fifties years have intensified land thermal pattern change and the continuation will be an important aspects to understand land surface processes and local climate change. Land surface temperature trends from 2000-2008 over the Bohai coastal region

  13. Effect of surface condition on the formation of solid lubricating films at high temperatures

    NASA Technical Reports Server (NTRS)

    Hanyaloglu, Bengi; Graham, E. E.

    1992-01-01

    Solid films were produced on active metal or ceramic surfaces using lubricants (such as tricresyl phosphate) delivered as a vapor at high temperatures, and the lubricity of these deposits under different dynamic wear conditions was investigated. A method is described for chemically activating ceramic surfaces resulting in a surface that could promote the formation of lubricating polymeric derivative of TCP. Experiments were carried out to evaluate the wear characteristics of unlubricated cast iron and of Sialon ceramic at 25 and 280 C, and lubricated with a vapor of TCP at 280 C. It is shown that continuous vapor phase lubrication of chemically treated Sialon reduced its coefficient of friction from 0.7 to less than 0.1.

  14. Sensitivity of Land Surface Parameters on Thunderstorm Simulation through HRLDAS-WRF Coupling Mode

    NASA Astrophysics Data System (ADS)

    Kumar, Dinesh; Kumar, Krishan; Mohanty, U. C.; Kisore Osuri, Krishna

    2016-07-01

    Land surface characteristics play an important role in large scale, regional and mesoscale atmospheric process. Representation of land surface characteristics can be improved through coupling of mesoscale atmospheric models with land surface models. Mesoscale atmospheric models depend on Land Surface Models (LSM) to provide land surface variables such as fluxes of heat, moisture, and momentum for lower boundary layer evolution. Studies have shown that land surface properties such as soil moisture, soil temperature, soil roughness, vegetation cover, have considerable effect on lower boundary layer. Although, the necessity to initialize soil moisture accurately in NWP models is widely acknowledged, monitoring soil moisture at regional and global scale is a very tough task due to high spatial and temporal variability. As a result, the available observation network is unable to provide the required spatial and temporal data for the most part of the globe. Therefore, model for land surface initializations rely on updated land surface properties from LSM. The solution for NWP land-state initialization can be found by combining data assimilation techniques, satellite-derived soil data, and land surface models. Further, it requires an intermediate step to use observed rainfall, satellite derived surface insolation, and meteorological analyses to run an uncoupled (offline) integration of LSM, so that the evolution of modeled soil moisture can be forced by observed forcing conditions. Therefore, for accurate land-state initialization, high resolution land data assimilation system (HRLDAS) is used to provide the essential land surface parameters. Offline-coupling of HRLDAS-WRF has shown much improved results over Delhi, India for four thunder storm events. The evolution of land surface variables particularly soil moisture, soil temperature and surface fluxes have provided more realistic condition. Results have shown that most of domain part became wetter and warmer after assimilation of soil moisture and soil temperature at the initial condition which helped to improve the exchange fluxes at lower atmospheric level. Mixing ratio were increased along with elevated theta-e at lower level giving a signature of improvement in LDAS experiment leading to a suitable condition for convection. In the analysis, moisture convergence, mixing ratio and vertical velocities have improved significantly in terms of intensity and time lag. Surface variables like soil moisture, soil temperature, sensible heat flux and latent heat flux have progressed in a possible realistic pattern. Above discussion suggests that assimilation of soil moisture and soil temperature improves the overall simulations significantly.

  15. Effects of diurnal adjustment on biases and trends derived from inter-sensor calibrated AMSU-A data

    NASA Astrophysics Data System (ADS)

    Chen, H.; Zou, X.; Qin, Z.

    2018-03-01

    Measurements of brightness temperatures from Advanced Microwave Sounding Unit-A (AMSU-A) temperature sounding instruments onboard NOAA Polarorbiting Operational Environmental Satellites (POES) have been extensively used for studying atmospheric temperature trends over the past several decades. Intersensor biases, orbital drifts and diurnal variations of atmospheric and surface temperatures must be considered before using a merged long-term time series of AMSU-A measurements from NOAA-15, -18, -19 and MetOp-A.We study the impacts of the orbital drift and orbital differences of local equator crossing times (LECTs) on temperature trends derivable from AMSU-A using near-nadir observations from NOAA-15, NOAA-18, NOAA-19, and MetOp-A during 1998-2014 over the Amazon rainforest. The double difference method is firstly applied to estimation of inter-sensor biases between any two satellites during their overlapping time period. The inter-calibrated observations are then used to generate a monthly mean diurnal cycle of brightness temperature for each AMSU-A channel. A diurnal correction is finally applied each channel to obtain AMSU-A data valid at the same local time. Impacts of the inter-sensor bias correction and diurnal correction on the AMSU-A derived long-term atmospheric temperature trends are separately quantified and compared with those derived from original data. It is shown that the orbital drift and differences of LECTamong different POESs induce a large uncertainty in AMSU-A derived long-term warming/cooling trends. After applying an inter-sensor bias correction and a diurnal correction, the warming trends at different local times, which are approximately the same, are smaller by half than the trends derived without applying these corrections.

  16. Using SMOS observations in the development of the SMAP level 4 surface and root-zone soil moisture project

    USDA-ARS?s Scientific Manuscript database

    The Soil Moisture and Ocean Salinity (SMOS; [1]) mission was launched by ESA in November 2009 and has since been observing L-band (1.4 GHz) upwelling passive microwaves. Along with these brightness temperature observations, ESA also disseminates retrievals of surface soil moisture that are derived ...

  17. A Climate-Data Record (CDR) of the "Clear-Sky" Surface Temperature of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Comiso, Josefino C.; DiGirolamo, Nocolo E.; Shuman, Christopher A.

    2011-01-01

    We have developed a climate-data record (CDR) of "clear-sky" ice-surface temperature (IST) of the Greenland Ice Sheet using Moderate-Resolution Imaging Spectroradiometer (MODIS) data. The CDR provides daily and monthly-mean IST from March 2000 through December 2010 on a polar stereographic projection at a resolution of 6.25 km. The CDR is amenable to extension into the future using Visible/Infrared Imager Radiometer Suite (VIIRS) data. Regional "clear-sky" surface temperature increases since the early 1980s in the Arctic, measured using Advanced Very High Resolution Radiometer (AVHRR) infrared data, range from 0.57 +/- 0.02 to 0.72 +/- 0.1 c per decade. Arctic warming has important implications for ice-sheet mass balance because much of the periphery of the Greenland Ice Sheet is already near O C during the melt season, and is thus vulnerable to rapid melting if temperatures continue to increase. An increase in melting of the ice sheet would accelerate sea-level rise, an issue affecting potentially billions of people worldwide. The IST CDR will provide a convenient data set for modelers and for climatologists to track changes of the surface temperature of the ice sheet as a whole and of the individual drainage basins on the ice sheet. The daily and monthly maps will provide information on surface melt as well as "clear-sky" temperature. The CDR will be further validated by comparing results with automatic-weather station data and with satellite-derived surface-temperature products.

  18. A second-order Budkyo-type parameterization of landsurface hydrology

    NASA Technical Reports Server (NTRS)

    Andreou, S. A.; Eagleson, P. S.

    1982-01-01

    A simple, second order parameterization of the water fluxes at a land surface for use as the appropriate boundary condition in general circulation models of the global atmosphere was developed. The derived parameterization incorporates the high nonlinearities in the relationship between the near surface soil moisture and the evaporation, runoff and percolation fluxes. Based on the one dimensional statistical dynamic derivation of the annual water balance, it makes the transition to short term prediction of the moisture fluxes, through a Taylor expansion around the average annual soil moisture. A comparison of the suggested parameterization is made with other existing techniques and available measurements. A thermodynamic coupling is applied in order to obtain estimations of the surface ground temperature.

  19. THEMIS high-resolution digital terrain: Topographic and thermophysical mapping of Gusev Crater, Mars

    USGS Publications Warehouse

    Cushing, G.E.; Titus, T.N.; Soderblom, L.A.; Kirk, R.L.

    2009-01-01

    We discuss a new technique to generate high-resolution digital terrain models (DTMs) and to quantitatively derive and map slope-corrected thermophysical properties such as albedo, thermal inertia, and surface temperatures. This investigation is a continuation of work started by Kirk et al. (2005), who empirically deconvolved Thermal Emission Imaging System (THEMIS) visible and thermal infrared data of this area, isolating topographic information that produced an accurate DTM. Surface temperatures change as a function of many variables such as slope, albedo, thermal inertia, time, season, and atmospheric opacity. We constrain each of these variables to construct a DTM and maps of slope-corrected albedo, slope- and albedo-corrected thermal inertia, and surface temperatures across the scene for any time of day or year and at any atmospheric opacity. DTMs greatly facilitate analyses of the Martian surface, and the MOLA global data set is not finely scaled enough (128 pixels per degree, ???0.5 km per pixel near the equator) to be combined with newer data sets (e.g., High Resolution Imaging Science Experiment, Context Camera, and Compact Reconnaissance Imaging Spectrometer for Mars at ???0.25, ???6, and ???20 m per pixel, respectively), so new techniques to derive high-resolution DTMs are always being explored. This paper discusses our technique of combining a set of THEMIS visible and thermal infrared observations such that albedo and thermal inertia variations within the scene are eliminated and only topographic variations remain. This enables us to produce a high-resolution DTM via photoclinometry techniques that are largely free of albedo-induced errors. With this DTM, THEMIS observations, and a subsurface thermal diffusion model, we generate slope-corrected maps of albedo, thermal inertia, and surface temperatures. In addition to greater accuracy, these products allow thermophysical properties to be directly compared with topography.

  20. Global Surface Thermal Inertia Derived from Dawn VIR Observations

    NASA Astrophysics Data System (ADS)

    Titus, T. N.; Becker, K. J.; Anderson, J.; Capria, M.; Tosi, F.; Prettyman, T. H.; De Sanctis, M. C.; Palomba, E.; Grassi, D.; Capaccioni, F.; Ammannito, E.; Combe, J.; McCord, T. B.; Li, J. Y.; Russell, C. T.; Raymond, C. A.

    2012-12-01

    Comparisons of surface temperatures, derived from Dawn [1] Visible and Infrared Mapping Spectrometer (VIR-MS) [2] observations , to thermal models suggest that Vesta generally has a low-thermal-inertia surface, between 25 and 35 J m^-2 K^-1 s^-½, consistent with a thick layer of fine-grain material [3]. Temperatures were calculated using a Bayesian approach to nonlinear inversion as described by Tosi et al. [4]. In order to compare observed temperatures of Vesta to model calculations, several geometric and photometric parameters must be known or estimated. These include local mean solar time, latitude, local slope, bond bolometric albedo, and the effective emissivity at 5μm. Local time, latitude, and local slope are calculated using the USGS ISIS software system [5]. We employ a multi-layered thermal-diffusion model called 'KRC' [6], which has been used extensively in the study of Martian thermophysical properties. This thermal model is easily modified for use with Vesta by replacing the Martian ephemeris input with the Vesta ephemeris and disabling the atmosphere. This model calculates surface temperatures throughout an entire Vesta year for specific sets of slope, azimuth, latitude and elevation, and a range of albedo and thermal-inertia values. The ranges of albedo and thermal inertia values create temperature indices that are closely matched to the dates and times observed by VIR. Based on observed temperatures and best-fit KRC thermal models, estimates of the annual mean surface temperatures were found to range from 176 K - 188 K for flat zenith-facing equatorial surfaces, but these temperatures can drop as low as 112 K for polar-facing slopes at mid-latitudes. [7] In this work, we will compare observed temperatures of the surface of Vesta (using data acquired by Dawn VIR-MS [2] during the approach, survey, high-altitude mapping and departure phases) to model temperature results using the KRC thermal model [5]. Where possible, temperature observations from multiple times of day or seasons will be used to better constrain the thermal inertia. The authors gratefully acknowledge the support of the Dawn Instrument, Operations, and Science Teams. This work was funded by the Dawn at Vesta Participating Science Program. [1] C.T. Russell et al. (2004) P&SS, 52, 465-489. [2] M.C. De Sanctis et al. (2011) SSRv 163, 329. [3] M.T. Capria et al. (2012) LPSC XLIII #1863 [4] F. Tosi et al. (2012) LPSC XLIII #1886. [5] J. Anderson et al. (2011) AGU Fall Meeting, #U31A-0009. [6] H.H. Kieffer H., et al. (1977) JGR, 82, 4249-4291. [7] Titus et al. (2012) EPSC, #800.

  1. A 7.5-Year Dataset of SSM/I-Derived Surface Turbulent Fluxes Over Global Oceans

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Shie, Chung-Lin; Atlas, Robert M.; Ardizzone, Joe; Nelkin, Eric; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The surface turbulent fluxes of momentum, latent heat, and sensible heat over global oceans are essential to weather, climate and ocean problems. Wind stress is the major forcing for driving the oceanic circulation, while Evaporation is a key component of hydrological cycle and surface heat budget. We have produced a 7.5-year (July 1987-December 1994) dataset of daily, individual monthly-mean and climatological (1988-94) monthly-mean surface turbulent fluxes over the global oceans from measurements of the Special Sensor Microwave/Imager (SSM/I) on board the US Defense Meteorological Satellite Program F8, F10, and F11 satellites. It has a spatial resolution of 2.0x2.5 latitude-longitude. Daily turbulent fluxes are derived from daily data of SSM/I surface winds and specific humidity, National Centers for Environmental Prediction (NCEP) sea surface temperatures, and European Centre for Medium-Range Weather Forecasts (ECMWF) air-sea temperature differences, using a stability-dependent bulk scheme. The retrieved instantaneous surface air humidity (with a 25-km resolution) IS found to be generally accurate as compared to the collocated radiosonde observations over global oceans. The surface wind speed and specific humidity (latent heat flux) derived from the F10 SSM/I are found to be -encrally smaller (larger) than those retrieved from the F11 SSM/I. The F11 SSM/I appears to have slightly better retrieval accuracy for surface wind speed and humidity as compared to the F10 SSM/I. This difference may be due to the orbital drift of the F10 satellite. The daily wind stresses and latent heat fluxes retrieved from F10 and F11 SSM/Is show useful accuracy as verified against the research quality in si -neasurerrients (IMET buoy, RV Moana Wave, and RV Wecoma) in the western Pacific warm pool during the TOGA COARE Intensive observing period (November 1992-February 1993). The 1988-94 seasonal-mean turbulent fluxes and input variables derived from FS and F11 SSM/Is show reasonable patterns related to seasonal variations of atmospheric general circulation. This dataset of SSM/I-derived turbulent fluxes is useful for climate studies, forcing of ocean models, and validation of coupled ocean-atmosphere global models and can be accessed through the NASA/GSFC Distributed Active Archive Center.

  2. Compositions and sorptive properties of crop residue-derived chars

    USGS Publications Warehouse

    Chun, Y.; Sheng, G.; Chiou, G.T.; Xing, B.

    2004-01-01

    Chars originating from the burning or pyrolysis of vegetation may significantly sorb neutral organic contaminants (NOCs). To evaluate the relationship between the char composition and NOC sorption, a series of char samples were generated by pyrolyzing a wheat residue (Triticum aestivum L) for 6 h at temperatures between 300 ??C and 700 ??C and analyzed for their elemental compositions, surface areas, and surface functional groups. The samples were then studied for their abilities to sorb benzene and nitrobenzene from water. A commercial activated carbon was used as a reference carbonaceous sample. The char samples produced at high pyrolytic temperatures (500-700 ??C) were well carbonized and exhibited a relatively high surface area (>300 m2/g), little organic matter (20% oxygen). The char samples exhibited a significant range of surface acidity/basicity because of their different surface polar-group contents, as characterized by the Boehm titration data and the NMR and FTIR spectra. The NOC sorption by high-temperature chars occurred almost exclusively by surface adsorption on carbonized surfaces, whereas the sorption by low-temperature chars resulted from the surface adsorption and the concurrent smaller partition into the residual organic-matter phase. The chars appeared to have a higher surface affinity for a polar solute (nitrobenzene) than for a nonpolar solute (benzene), the difference being related to the surface acidity/basicity of the char samples.

  3. Validation of the MODIS "Clear-Sky" Surface Temperature of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Koenig, L. S.; DiGirolamo, N. E.; Comiso, J.; Shuman, C. A.

    2011-01-01

    Surface temperatures on the Greenland Ice Sheet have been studied on the ground, using automatic weather station (AWS) data from the Greenland-Climate Network (GC-Net), and from analysis of satellite sensor data. Using Advanced Very High Frequency Radiometer (AVHRR) weekly surface temperature maps, warming of the surface of the Greenland Ice Sheet has been documented from 1981 to present. We extend and refine this record using higher-resolution Moderate-Resolution Imaging Spectroradiometer (MODIS) data from March 2000 to the present. To permit changes to be observed over time, we are developing a well-characterized monthly climate-data record (CDR) of the "clear-sky" surface temperature of the Greenland Ice Sheet using data from both the Terra and Aqua satellites. We use the MODIS ice-surface temperature (IST) algorithm. Validation of the CDR consists of several facets: 1) comparisons between the Terra and Aqua IST maps; 2) comparisons between ISTs and in-situ measurements; 3) comparisons between ISTs and AWS data; and 4) comparisons of ISTs with surface temperatures derived from other satellite instruments such as the Thermal Emission and Reflection Radiometer. In this work, we focus on 1) and 2) above. Surface temperatures on the Greenland Ice Sheet have been studied on the ground, using automatic weather station (AWS) data from the Greenland-Climate Network (GC-Net), and from analysis of satellite sensor data. Using Advanced Very High Frequency Radiometer (AVHRR) weekly surface temperature maps, warming of the surface of the Greenland Ice Sheet has been documented from 1981 to present. We extend and refine this record using higher-resolution Moderate-Resolution Imaging Spectroradiometer (MODIS) data from March 2000 to the present. To permit changes to be observed over time, we are developing a well-characterized monthly climate-data record (CDR) of the "clear-sky" surface temperature of the Greenland Ice Sheet using data from both the Terra and Aqua satellites. We use the MODIS ice-surface temperature (IST) algorithm. Validation of the CDR consists of several facets: 1) comparisons between the Terra and Aqua IST maps; 2) comparisons between ISTs and in-situ measurements; 3) comparisons between ISTs and AWS data; and 4) comparisons of ISTs with surface temperatures derived from other satellite instruments such as the Thermal Emission and Reflection Radiometer. In this work, we focus on 1) and 2) above. First we provide comparisons between Terra and Aqua swath-based ISTs at approximately 14:00 Local Solar Time, reprojected to 12.5 km polar stereographic cells. Results show good correspondence when Terra and Aqua data were acquired within 2 hrs of each other. For example, for a cell centered over Summit Camp (72.58 N, 38.5 W), the average agreement between Terra and Aqua ISTs is 0.74 K (February 2003), 0.47 K (April 2003), 0.7 K (August 2003) and 0.96 K (October 2003) with the Terra ISTs being generally lower than the Aqua ISTs. More precise comparisons will be calculated using pixel data at the swath level, and correspondence between Terra and Aqua IST is expected to be closer. (Because of cloud cover and other considerations, only a few common cloud-free swaths are typically available for each month for comparison.) Additionally, previous work comparing land-surface temperatures (LSTs) from the standard MODIS LST product and in-situ surface-temperature data at Summit Camp on the Greenland Ice Sheet show that Terra MODIS LSTs are about 3 K lower than in-situ temperatures at Summit Camp, during the winter of 2008-09. This work will be repeated using both Terra and Aqua IST pixel data (in place of LST data). In conclusion, we demonstrate that the uncertainties in the CDR will be well characterized as we work through the various facets of its validation.

  4. A normalisation framework for (hyper-)spectral imagery

    NASA Astrophysics Data System (ADS)

    Grumpe, Arne; Zirin, Vladimir; Wöhler, Christian

    2015-06-01

    It is well known that the topography has an influence on the observed reflectance spectra. This influence is not compensated by spectral ratios, i.e. the effect is wavelength dependent. In this work, we present a complete normalisation framework. The surface temperature is estimated based on the measured surface reflectance. To normalise the spectral reflectance with respect to a standard illumination geometry, spatially varying reflectance parameters are estimated based on a non-linear reflectance model. The reflectance parameter estimation has one free parameter, i.e. a low-pass function, which sets the scale of the spatial-variance, i.e. the lateral resolution of the reflectance parameter maps. Since the local surface topography has a major influence on the measured reflectance, often neglected shading information is extracted from the spectral imagery and an existing topography model is refined to image resolution. All methods are demonstrated on the Moon Mineralogy Mapper dataset. Additionally, two empirical methods are introduced that deal with observed systematic reflectance changes in co-registered images acquired at different phase angles. These effects, however, may also be caused by the sensor temperature, due to its correlation with the phase angle. Surface temperatures above 300 K are detected and are very similar to a reference method. The proposed method, however, seems more robust in case of absorptions visible in the reflectance spectrum near 2000 nm. By introducing a low-pass into the computation of the reflectance parameters, the reflectance behaviour of the surfaces may be derived at different scales. This allows for an iterative refinement of the local surface topography using shape from shading and the computation reflectance parameters. The inferred parameters are derived from all available co-registered images and do not show significant influence of the local surface topography. The results of the empirical correction show that both proposed methods greatly reduce the influence of different phase angles or sensor temperatures.

  5. Areas with Surface Thermal Anomalies as Detected by ASTER and LANDSAT Data around South Canyon Hot Springs, Garfield County, Colorado

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This map shows areas of anomalous surface temperature around South Canyon Hot Springs as identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots.

  6. Comparison of eastern tropical Pacific TEX86 and Globigerinoides ruber Mg/Ca derived sea surface temperatures: Insights from the Holocene and Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Hertzberg, Jennifer E.; Schmidt, Matthew W.; Bianchi, Thomas S.; Smith, Richard W.; Shields, Michael R.; Marcantonio, Franco

    2016-01-01

    The use of the TEX86 temperature proxy has thus far come to differing results as to whether TEX86 temperatures are representative of surface or subsurface conditions. In addition, although TEX86 temperatures might reflect sea surface temperatures based on core-top (Holocene) values, this relationship might not hold further back in time. Here, we investigate the TEX86 temperature proxy by comparing TEX86 temperatures to Mg/Ca temperatures of multiple species of planktonic foraminifera for two sites in the eastern tropical Pacific (on the Cocos and Carnegie Ridges) across the Holocene and Last Glacial Maximum. Core-top and Holocene TEX86H temperatures at both study regions agree well, within error, with the Mg/Ca temperatures of Globigerinoides ruber, a surface dwelling planktonic foraminifera. However, during the Last Glacial Maximum, TEX86H temperatures are more representative of upper thermocline temperatures, and are offset from G. ruber Mg/Ca temperatures by 5.8 °C and 2.9 °C on the Cocos Ridge and Carnegie Ridge, respectively. This offset between proxies cannot be reconciled by using different TEX86 temperature calibrations, and instead, we suggest that the offset is due to a deeper export depth of GDGTs at the LGM. We also compare the degree of glacial cooling at both sites based on both temperature proxies, and find that TEX86H temperatures greatly overestimate glacial cooling, especially on the Cocos Ridge. This study has important implications for applying the TEX86 paleothermometer in the eastern tropical Pacific.

  7. Mechanical properties and fractal analysis of the surface texture of sputtered hydroxyapatite coatings

    NASA Astrophysics Data System (ADS)

    Bramowicz, Miroslaw; Braic, Laurentiu; Azem, Funda Ak; Kulesza, Slawomir; Birlik, Isil; Vladescu, Alina

    2016-08-01

    This aim of this work is to establish a relationship between the surface morphology and mechanical properties of hydroxyapatite coatings prepared using RF magnetron sputtering at temperatures in the range from 400 to 800 °C. The topography of the samples was scanned using atomic force microscopy, and the obtained 3D maps were analyzed using fractal methods to derive the spatial characteristics of the surfaces. X-ray photoelectron spectroscopy revealed the strong influence of the deposition temperature on the Ca/P ratio in the growing films. The coatings deposited at 600-800 °C exhibited a Ca/P ratio between 1.63 and 1.69, close to the stoichiometric hydroxyapatite (Ca/P = 1.67), which is crucial for proper osseointegration. Fourier-transform infrared spectroscopy showed that the intensity of phosphate absorption bands increased with increasing substrate temperature. Each sample exhibited well defined and sharp hydroxyapatite band at 566 cm-1, although more pronounced for the coatings deposited above 500 °C. Both the hardness and elastic modulus of the coated samples decrease with increasing deposition temperature. The surface morphology strongly depends on the deposition temperature. The sample deposited at 400 °C exhibits circular cavities dug in an otherwise flat surface. At higher deposition temperatures, these cavities increase in size and start to overlap each other so that at 500 °C the surface is composed of closely packed peaks and ridges. At that point, the characteristics of the surface turns from the dominance of cavities to grains of similar size, and develops in a similar manner at higher temperatures.

  8. New correlation for the temperature-dependent viscosity for saturated liquids

    NASA Astrophysics Data System (ADS)

    Tian, Jianxiang; Zhang, Laibin

    2016-11-01

    Based on the recent progress on both the temperature dependence of surface tension [H. L. Yi, J. X. Tian, A. Mulero and I. Cachading, J. Therm. Anal. Calorim. 126 (2016) 1603, and the correlation between surface tension and viscosity of liquids [J. X. Tian and A. Mulero, Ind. Eng. Chem. Res. 53 (2014) 9499], we derived a new multiple parameter correlation to describe the temperature-dependent viscosity of liquids. This correlation is verified by comparing with data from NIST Webbook for 35 saturated liquids including refrigerants, hydrocarbons and others, in a wide temperature range from the triple point temperature to the one very near to the critical temperature. Results show that this correlation predicts the NIST data with high accuracy with absolute average deviation (AAD) less than 1% for 21 liquids and more than 3% for only four liquids, and is clearly better than the popularly used Vogel-Fulcher-Tamman (VFT) correlation.

  9. Highly efficient adsorption of dyes by biochar derived from pigments-extracted macroalgae pyrolyzed at different temperature.

    PubMed

    Chen, Yi-di; Lin, Yen-Chang; Ho, Shih-Hsin; Zhou, Yan; Ren, Nan-Qi

    2018-07-01

    Biochar is known to efficiently adsorb dyes from wastewater. In this study, biochar was derived from macroalgae residue by pyrolysis, and the influence of varying temperature (from 400 °C to 800 °C) on biochar characteristics was investigated. Among the biochar samples tested, macroalgae-derived biochar possessing highly porous structure, special surface chemical behavior and high thermal stability was found to be efficient in removing malachite green, crystal violet and Congo red. The biochar derived by pyrolysis at 800 °C showed the highest adsorption capacity for malachite green (5306.2 mg g -1 ). In this study, the transformation of microalgae residue into a highly efficient dye adsorbent is a promising procedure for economic and environmental protection. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Sol-gel derived sorbents

    DOEpatents

    Sigman, Michael E.; Dindal, Amy B.

    2003-11-11

    Described is a method for producing copolymerized sol-gel derived sorbent particles for the production of copolymerized sol-gel derived sorbent material. The method for producing copolymerized sol-gel derived sorbent particles comprises adding a basic solution to an aqueous metal alkoxide mixture for a pH.ltoreq.8 to hydrolyze the metal alkoxides. Then, allowing the mixture to react at room temperature for a precalculated period of time for the mixture to undergo an increased in viscosity to obtain a desired pore size and surface area. The copolymerized mixture is then added to an immiscible, nonpolar solvent that has been heated to a sufficient temperature wherein the copolymerized mixture forms a solid upon the addition. The solid is recovered from the mixture, and is ready for use in an active sampling trap or activated for use in a passive sampling trap.

  11. Novel applications of the temporal kernel method: Historical and future radiative forcing

    NASA Astrophysics Data System (ADS)

    Portmann, R. W.; Larson, E.; Solomon, S.; Murphy, D. M.

    2017-12-01

    We present a new estimate of the historical radiative forcing derived from the observed global mean surface temperature and a model derived kernel function. Current estimates of historical radiative forcing are usually derived from climate models. Despite large variability in these models, the multi-model mean tends to do a reasonable job of representing the Earth system and climate. One method of diagnosing the transient radiative forcing in these models requires model output of top of the atmosphere radiative imbalance and global mean temperature anomaly. It is difficult to apply this method to historical observations due to the lack of TOA radiative measurements before CERES. We apply the temporal kernel method (TKM) of calculating radiative forcing to the historical global mean temperature anomaly. This novel approach is compared against the current regression based methods using model outputs and shown to produce consistent forcing estimates giving confidence in the forcing derived from the historical temperature record. The derived TKM radiative forcing provides an estimate of the forcing time series that the average climate model needs to produce the observed temperature record. This forcing time series is found to be in good overall agreement with previous estimates but includes significant differences that will be discussed. The historical anthropogenic aerosol forcing is estimated as a residual from the TKM and found to be consistent with earlier moderate forcing estimates. In addition, this method is applied to future temperature projections to estimate the radiative forcing required to achieve those temperature goals, such as those set in the Paris agreement.

  12. Soil Water and Temperature System (SWATS) Instrument Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, David R.

    2016-04-01

    The soil water and temperature system (SWATS) provides vertical profiles of soil temperature, soil-water potential, and soil moisture as a function of depth below the ground surface at hourly intervals. The temperature profiles are measured directly by in situ sensors at the Central Facility and many of the extended facilities of the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) site. The soil-water potential and soil moisture profiles are derived from measurements of soil temperature rise in response to small inputs of heat. Atmospheric scientists use the data in climate models tomore » determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil.« less

  13. IR spectral properties of dust and ice at the Mars south polar cap

    NASA Astrophysics Data System (ADS)

    Titus, T. N.; Kieffer, H. H.

    2001-11-01

    Removal of atmospheric dust effects is required to derive surface IR spectral emissivity. Commonly, the atmospheric-surface separation is based on radiative transfer (RT) spectral inversion methods using nadir-pointing observations. This methodology depends on a priori knowledge of the spectral shape of each atmospheric aerosol (e.g. dust or water ice) and a large thermal contrast between the surface and atmosphere. RT methods fail over the polar caps due to low thermal contrast between the atmosphere and the surface. We have used multi-angle Emission Phase Function (EPF) observations to estimate the opacity spectrum of dust over the springtime south polar cap and the underlying surface radiance, and thus, the surface emissivity. We include a few EPFs from Hellas Basin as a basis for comparisons between the spectral shape of polar and non-polar dust. Surface spectral emissivities over the seasonal cap are compared to CO2 models. Our results show that the spectral shape of the polar dust opacity is not constant, but is a two-parameter family that can be characterized by the 9 um and 20 um opacities. The 9 um opacity varies from 0.15 to 0.45 and characterizes the overall atmospheric conditions. The 9 um to 20 um opacity ratio varies from 2.0 to 5.1, suggesting changes in dust size distribution over the polar caps. Derived surface temperatures from the EPFs confirm that the slightly elevated temperatures (relative to CO2 frost temperature) observed in ``cryptic'' regions are a surface effect, not atmospheric. Comparison of broad-band reflectivity and surface emissivities to model spectra suggest the bright regions (e.g. perennial cap, Mountains of Mitchell) have higher albedos due to a thin surface layer of fine-grain CO2 (perhaps either frost or fractured ice) with an underlying layer of either coarse grain or slab CO2 ice.

  14. Development and evaluation of an empirical diurnal sea surface temperature model

    NASA Astrophysics Data System (ADS)

    Weihs, R. R.; Bourassa, M. A.

    2013-12-01

    An innovative method is developed to determine the diurnal heating amplitude of sea surface temperatures (SSTs) using observations of high-quality satellite SST measurements and NWP atmospheric meteorological data. The diurnal cycle results from heating that develops at the surface of the ocean from low mechanical or shear produced turbulence and large solar radiation absorption. During these typically calm weather conditions, the absorption of solar radiation causes heating of the upper few meters of the ocean, which become buoyantly stable; this heating causes a temperature differential between the surface and the mixed [or bulk] layer on the order of a few degrees. It has been shown that capturing the diurnal cycle is important for a variety of applications, including surface heat flux estimates, which have been shown to be underestimated when neglecting diurnal warming, and satellite and buoy calibrations, which can be complicated because of the heating differential. An empirical algorithm using a pre-dawn sea surface temperature, peak solar radiation, and accumulated wind stress is used to estimate the cycle. The empirical algorithm is derived from a multistep process in which SSTs from MTG's SEVIRI SST experimental hourly data set are combined with hourly wind stress fields derived from a bulk flux algorithm. Inputs for the flux model are taken from NASA's MERRA reanalysis product. NWP inputs are necessary because the inputs need to incorporate diurnal and air-sea interactive processes, which are vital to the ocean surface dynamics, with a high enough temporal resolution. The MERRA winds are adjusted with CCMP winds to obtain more realistic spatial and variance characteristics and the other atmospheric inputs (air temperature, specific humidity) are further corrected on the basis of in situ comparisons. The SSTs are fitted to a Gaussian curve (using one or two peaks), forming a set of coefficients used to fit the data. The coefficient data are combined with accumulated wind stress and peak solar radiation to create an empirical relationship that approximates physical processes such as turbulence and heating memory (capacity) of the ocean. Weaknesses and strengths of the model, including potential spatial biases, will be discussed.

  15. Sensitivity of Satellite-Based Skin Temperature to Different Surface Emissivity and NWP Reanalysis Sources Demonstrated Using a Single-Channel, Viewing-Angle-Corrected Retrieval Algorithm

    NASA Astrophysics Data System (ADS)

    Scarino, B. R.; Minnis, P.; Yost, C. R.; Chee, T.; Palikonda, R.

    2015-12-01

    Single-channel algorithms for satellite thermal-infrared- (TIR-) derived land and sea surface skin temperature (LST and SST) are advantageous in that they can be easily applied to a variety of satellite sensors. They can also accommodate decade-spanning instrument series, particularly for periods when split-window capabilities are not available. However, the benefit of one unified retrieval methodology for all sensors comes at the cost of critical sensitivity to surface emissivity (ɛs) and atmospheric transmittance estimation. It has been demonstrated that as little as 0.01 variance in ɛs can amount to more than a 0.5-K adjustment in retrieved LST values. Atmospheric transmittance requires calculations that employ vertical profiles of temperature and humidity from numerical weather prediction (NWP) models. Selection of a given NWP model can significantly affect LST and SST agreement relative to their respective validation sources. Thus, it is necessary to understand the accuracies of the retrievals for various NWP models to ensure the best LST/SST retrievals. The sensitivities of the single-channel retrievals to surface emittance and NWP profiles are investigated using NASA Langley historic land and ocean clear-sky skin temperature (Ts) values derived from high-resolution 11-μm TIR brightness temperature measured from geostationary satellites (GEOSat) and Advanced Very High Resolution Radiometers (AVHRR). It is shown that mean GEOSat-derived, anisotropy-corrected LST can vary by up to ±0.8 K depending on whether CERES or MODIS ɛs sources are used. Furthermore, the use of either NOAA Global Forecast System (GFS) or NASA Goddard Modern-Era Retrospective Analysis for Research and Applications (MERRA) for the radiative transfer model initial atmospheric state can account for more than 0.5-K variation in mean Ts. The results are compared to measurements from the Surface Radiation Budget Network (SURFRAD), an Atmospheric Radiation Measurement (ARM) Program ground station, and NOAA ESRL high-resolution Optimum Interpolation SST (OISST). Precise understanding of the influence these auxiliary inputs have on final satellite-based Ts retrievals may help guide refinement in ɛs characterization and NWP development, e.g., future Goddard Earth Observing System Data Assimilation System versions.

  16. Capacitance, charge dynamics, and electrolyte-surface interactions in functionalized carbide-derived carbon electrodes

    DOE PAGES

    Dyatkin, Boris; Mamontov, Eugene; Cook, Kevin M.; ...

    2015-12-24

    Our study analyzed the dynamics of ionic liquid electrolyte inside of defunctionalized, hydrogenated, and aminated pores of carbide-derived carbon supercapacitor electrodes. The approach tailors surface functionalities and tunes nanoporous structures to decouple the influence of pore wall composition on capacitance, ionic resistance, and long-term cyclability. Moreover, quasi-elastic neutron scattering probes the self-diffusion properties and electrode-ion interactions of electrolyte molecules confined in functionalized pores. Room-temperature ionic liquid interactions in confined pores are strongest when the hydrogen-containing groups are present on the surface. This property translates into higher capacitance and greater ion transport through pores during electrochemical cycling. Aminated pores, unlike hydrogenatedmore » pores, do not favorably interact with ionic liquid ions and, subsequently, are outperformed by defunctionalized surfaces.« less

  17. Modelling the Relationship Between Land Surface Temperature and Landscape Patterns of Land Use Land Cover Classification Using Multi Linear Regression Models

    NASA Astrophysics Data System (ADS)

    Bernales, A. M.; Antolihao, J. A.; Samonte, C.; Campomanes, F.; Rojas, R. J.; dela Serna, A. M.; Silapan, J.

    2016-06-01

    The threat of the ailments related to urbanization like heat stress is very prevalent. There are a lot of things that can be done to lessen the effect of urbanization to the surface temperature of the area like using green roofs or planting trees in the area. So land use really matters in both increasing and decreasing surface temperature. It is known that there is a relationship between land use land cover (LULC) and land surface temperature (LST). Quantifying this relationship in terms of a mathematical model is very important so as to provide a way to predict LST based on the LULC alone. This study aims to examine the relationship between LST and LULC as well as to create a model that can predict LST using class-level spatial metrics from LULC. LST was derived from a Landsat 8 image and LULC classification was derived from LiDAR and Orthophoto datasets. Class-level spatial metrics were created in FRAGSTATS with the LULC and LST as inputs and these metrics were analysed using a statistical framework. Multi linear regression was done to create models that would predict LST for each class and it was found that the spatial metric "Effective mesh size" was a top predictor for LST in 6 out of 7 classes. The model created can still be refined by adding a temporal aspect by analysing the LST of another farming period (for rural areas) and looking for common predictors between LSTs of these two different farming periods.

  18. Was That Assumption Necessary? Reconsidering Boundary Conditions for Analytical Solutions to Estimate Streambed Fluxes

    NASA Astrophysics Data System (ADS)

    Luce, Charles H.; Tonina, Daniele; Applebee, Ralph; DeWeese, Timothy

    2017-11-01

    Two common refrains about using the one-dimensional advection diffusion equation to estimate fluid fluxes and thermal conductivity from temperature time series in streambeds are that the solution assumes that (1) the surface boundary condition is a sine wave or nearly so, and (2) there is no gradient in mean temperature with depth. Although the mathematical posing of the problem in the original solution to the problem might lead one to believe these constraints exist, the perception that they are a source of error is a fallacy. Here we develop a mathematical proof demonstrating the equivalence of the solution as developed based on an arbitrary (Fourier integral) surface temperature forcing when evaluated at a single given frequency versus that derived considering a single frequency from the beginning. The implication is that any single frequency can be used in the frequency-domain solutions to estimate thermal diffusivity and 1-D fluid flux in streambeds, even if the forcing has multiple frequencies. This means that diurnal variations with asymmetric shapes or gradients in the mean temperature with depth are not actually assumptions, and deviations from them should not cause errors in estimates. Given this clarification, we further explore the potential for using information at multiple frequencies to augment the information derived from time series of temperature.

  19. Response to "The Iris Hypothesis: A Negative or Positive Cloud Feedback?"

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah; Lindzen, Richard S.; Hou, Arthur Y.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Based on radiance measurements of Japan's Geostationary Meteorological Satellite, Lindzen et al. found that the high-level cloud cover averaged over the tropical western Pacific decreases with increasing sea surface temperature. They further found that the response of high-level clouds to the sea surface temperature had an effect of reducing the magnitude of climate change, which is referred as a negative climate feedback. Lin et al. reassessed the results found by Lindzen et al. by analyzing the radiation and clouds derived from the Tropical Rainfall Measuring Mission Clouds and the Earth's Radiant Energy System measurements. They found a weak positive feedback between high-level clouds and the surface temperature. We have found that the approach taken by Lin et al. to estimating the albedo and the outgoing longwave radiation is incorrect and that the inferred climate sensitivity is unreliable.

  20. Dielectric properties of Asteroid Vesta's surface as constrained by Dawn VIR observations

    NASA Astrophysics Data System (ADS)

    Palmer, Elizabeth M.; Heggy, Essam; Capria, Maria T.; Tosi, Federico

    2015-12-01

    Earth and orbital-based radar observations of asteroids provide a unique opportunity to characterize surface roughness and the dielectric properties of their surfaces, as well as potentially explore some of their shallow subsurface physical properties. If the dielectric and topographic properties of asteroid's surfaces are defined, one can constrain their surface textural characteristics as well as potential subsurface volatile enrichment using the observed radar backscatter. To achieve this objective, we establish the first dielectric model of asteroid Vesta for the case of a dry, volatile-poor regolith-employing an analogy to the dielectric properties of lunar soil, and adjusted for the surface densities and temperatures deduced from Dawn's Visible and InfraRed mapping spectrometer (VIR). Our model suggests that the real part of the dielectric constant at the surface of Vesta is relatively constant, ranging from 2.3 to 2.5 from the night- to day-side of Vesta, while the loss tangent shows slight variation as a function of diurnal temperature, ranging from 6 × 10-3 to 8 × 10-3. We estimate the surface porosity to be ∼55% in the upper meter of the regolith, as derived from VIR observations. This is ∼12% higher than previous estimation of porosity derived from previous Earth-based X- and S-band radar observation. We suggest that the radar backscattering properties of asteroid Vesta will be mainly driven by the changes in surface roughness rather than potential dielectric variations in the upper regolith in the X- and S-band.

  1. Flow-field measurements in the windward surface shock layer of space shuttle orbiter configurations at Mach number 8. [wind tunnel tests of scale models

    NASA Technical Reports Server (NTRS)

    Martindale, W. R.; Carter, L. D.

    1975-01-01

    Pitot pressure and total-temperature measurements were made in the windward surface shock layer of two 0.0175-scale space shuttle orbiter models at simulated re-entry conditions. Corresponding surface static pressure measurements were also made. Flow properties at the edge of the model boundary layer were derived from these measurements and compared with values calculated using conventional methods.

  2. Diviner lunar radiometer observations of cold traps in the moon's south polar region

    USGS Publications Warehouse

    Paige, D.A.; Siegler, M.A.; Zhang, J.A.; Hayne, P.O.; Foote, E.J.; Bennett, K.A.; Vasavada, A.R.; Greenhagen, B.T.; Schofield, J.T.; McCleese, D.J.; Foote, M.C.; DeJong, E.; Bills, B.G.; Hartford, W.; Murray, B.C.; Allen, C.C.; Snook, K.; Soderblom, L.A.; Calcutt, S.; Taylor, F.W.; Bowles, N.E.; Bandfield, J.L.; Elphic, R.; Ghent, R.; Glotch, T.D.; Wyatt, M.B.; Lucey, P.G.

    2010-01-01

    Diviner Lunar Radiometer Experiment surface-temperature maps reveal the existence of widespread surface and near-surface cryogenic regions that extend beyond the boundaries of persistent shadow. The Lunar Crater Observation and Sensing Satellite (LCROSS) struck one of the coldest of these regions, where subsurface temperatures are estimated to be 38 kelvin. Large areas of the lunar polar regions are currently cold enough to cold-trap water ice as well as a range of both more volatile and less volatile species. The diverse mixture of water and high-volatility compounds detected in the LCROSS ejecta plume is strong evidence for the impact delivery and cold-trapping of volatiles derived from primitive outer solar system bodies.

  3. Cloud Properties Derived From GOES-7 for Spring 1994 ARM Intensive Observing Period Using Version 1.0.0 of ARM Satellite Data Analysis Program

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Smith, William L., Jr.; Garber, Donald P.; Ayers, J. Kirk; Doelling, David R.

    1995-01-01

    This document describes the initial formulation (Version 1.0.0) of the Atmospheric Radiation Measurement (ARM) program satellite data analysis procedures. Techniques are presented for calibrating geostationary satellite data with Sun synchronous satellite radiances and for converting narrowband radiances to top-of-the-atmosphere fluxes and albedos. A methodology is documented for combining geostationary visible and infrared radiances with surface-based temperature observations to derive cloud amount, optical depth, height, thickness, temperature, and albedo. The analysis is limited to two grids centered over the ARM Southern Great Plains central facility in north-central Oklahoma. Daytime data taken during 5 Apr. - 1 May 1994, were analyzed on the 0.3 deg and 0.5 deg latitude-longitude grids that cover areas of 0.9 deg x 0.9 deg and 10 deg x 14 deg, respectively. Conditions ranging from scattered low cumulus to thin cirrus and thick cumulonimbus occurred during the study period. Detailed comparisons with hourly surface observations indicate that the mean cloudiness is within a few percent of the surface-derived sky cover. Formats of the results are also provided. The data can be accessed through the World Wide Web computer network.

  4. The Relationship Between Temperature and Gas Concentration Fluctuation Rates at an Air-Water Interface

    NASA Astrophysics Data System (ADS)

    Asher, W. E.; Jessup, A. T.; Liang, H.; Zappa, C. J.

    2008-12-01

    The air-sea flux, F, of a sparingly soluble nonreactive gas can be expressed as F = kG(CS-CW), where kG is the gas transfer velocity, CS is the concentration of gas that would be expected in the water if the system were in Henry's Gas Law equilibrium, and CW is the gas concentration in the bulk water. An analogous relationship for the net heat flux can also be written using the heat transfer velocity, kH, and the bulk-skin temperature difference in the aqueous phase. Surface divergence theory for the air-water transfer of gas and heat predicts that kG and kH will scale as the square root of the surface divergence rate, r. However, because of the interaction between diffusivity and the scale depth of the surface divergences, the scale factor for heat is likely to be different from the scale factor for gases. Infrared imagery was used to measure the timescales of variations in temperature at a water surface and laser-induced fluorescence (LIF) was used to measure temporal fluctuations in aqueous-phase concentrations of carbon dioxide (CO2) at a water surface. The rate at which these temperature and concentration fluctuations occur is then assumed to be related to r. The divergence rates derived for temperature from the IR images can be compared to the rates for gas derived from the LIF measurements to understand how r estimated from the two measurements differ. The square root of r is compared to concurrently measured kG for helium and sulfur hexafluoride to test the assumption that r1/2 scales with kG. Additionally, we measured kH using the active controlled flux technique, and those heat transfer velocities can also be used to test for a r1/2 dependence. All measurements reported here were made in the APL-UW synthetic jet array facility.

  5. An insight into Newton's cooling law using fractional calculus

    NASA Astrophysics Data System (ADS)

    Mondol, Adreja; Gupta, Rivu; Das, Shantanu; Dutta, Tapati

    2018-02-01

    For small temperature differences between a heated body and its environment, Newton's law of cooling predicts that the instantaneous rate of change of temperature of any heated body with respect to time is proportional to the difference in temperature of the body with the ambient, time being measured in integer units. Our experiments on the cooling of different liquids (water, mustard oil, and mercury) did not fit the theoretical predictions of Newton's law of cooling in this form. The solution was done using both Caputo and Riemann-Liouville type fractional derivatives to check if natural phenomena showed any preference in mathematics. In both cases, we find that cooling of liquids has an identical value of the fractional derivative of time that increases with the viscosity of the liquid. On the other hand, the cooling studies on metal alloys could be fitted exactly by integer order time derivative equations. The proportionality constant between heat flux and temperature difference was examined with respect to variations in the depth of liquid and exposed surface area. A critical combination of these two parameters signals a change in the mode of heat transfer within liquids. The equivalence between the proportionality constants for the Caputo and Riemann-Liouville type derivatives is established.

  6. Lunar Polar Cold Traps: Spatial Distribution and Temperatures

    NASA Astrophysics Data System (ADS)

    Paige, David A.; Siegler, M.; Lawrence, D. J.

    2006-09-01

    We have developed a ray-tracing and radiosity model that can accurately calculate lunar surface and subsurface temperatures for arbitrary topography. Using available digital elevation models for the lunar north and south polar regions derived from Clementine laser altimeter and image data, as well as ground-based radar data, we have calculated lunar surface and subsurface temperatures at 2 km resolution that include full effects of indirect solar and infrared radiation due to topography. We compare our thermal model results with maps of epithermal neutron flux measured by Lunar Prospector. When we use the ray tracing and thermal model to account for the effects of temperature and topography on the neutron measurements, our results show that the majority of the moon's polar cold traps are not filled with water ice.

  7. An Optimal Estimation Method to Obtain Surface Layer Turbulent Fluxes from Profile Measurements

    NASA Astrophysics Data System (ADS)

    Kang, D.

    2015-12-01

    In the absence of direct turbulence measurements, the turbulence characteristics of the atmospheric surface layer are often derived from measurements of the surface layer mean properties based on Monin-Obukhov Similarity Theory (MOST). This approach requires two levels of the ensemble mean wind, temperature, and water vapor, from which the fluxes of momentum, sensible heat, and water vapor can be obtained. When only one measurement level is available, the roughness heights and the assumed properties of the corresponding variables at the respective roughness heights are used. In practice, the temporal mean with large number of samples are used in place of the ensemble mean. However, in many situations the samples of data are taken from multiple levels. It is thus desirable to derive the boundary layer flux properties using all measurements. In this study, we used an optimal estimation approach to derive surface layer properties based on all available measurements. This approach assumes that the samples are taken from a population whose ensemble mean profile follows the MOST. An optimized estimate is obtained when the results yield a minimum cost function defined as a weighted summation of all error variance at each sample altitude. The weights are based one sample data variance and the altitude of the measurements. This method was applied to measurements in the marine atmospheric surface layer from a small boat using radiosonde on a tethered balloon where temperature and relative humidity profiles in the lowest 50 m were made repeatedly in about 30 minutes. We will present the resultant fluxes and the derived MOST mean profiles using different sets of measurements. The advantage of this method over the 'traditional' methods will be illustrated. Some limitations of this optimization method will also be discussed. Its application to quantify the effects of marine surface layer environment on radar and communication signal propagation will be shown as well.

  8. A comparison of all-weather land surface temperature products

    NASA Astrophysics Data System (ADS)

    Martins, Joao; Trigo, Isabel F.; Ghilain, Nicolas; Goettche, Frank-M.; Ermida, Sofia; Olesen, Folke-S.; Gellens-Meulenberghs, Françoise; Arboleda, Alirio

    2017-04-01

    The Satellite Application Facility on Land Surface Analysis (LSA-SAF, http://landsaf.ipma.pt) has been providing land surface temperature (LST) estimates using SEVIRI/MSG on an operational basis since 2006. The LSA-SAF service has since been extended to provide a wide range of satellite-based quantities over land surfaces, such as emissivity, albedo, radiative fluxes, vegetation state, evapotranspiration, and fire-related variables. Being based on infra-red measurements, the SEVIRI/MSG LST product is limited to clear-sky pixels only. Several all-weather LST products have been proposed by the scientific community either based on microwave observations or using Soil-Vegetation-Atmosphere Transfer models to fill the gaps caused by clouds. The goal of this work is to provide a nearly gap-free operational all-weather LST product and compare these approaches. In order to estimate evapotranspiration and turbulent energy fluxes, the LSA-SAF solves the surface energy budget for each SEVIRI pixel, taking into account the physical and physiological processes occurring in vegetation canopies. This task is accomplished with an adapted SVAT model, which adopts some formulations and parameters of the Tiled ECMWF Scheme for Surface Exchanges over Land (TESSEL) model operated at the European Center for Medium-range Weather Forecasts (ECMWF), and using: 1) radiative inputs also derived by LSA-SAF, which includes surface albedo, down-welling fluxes and fire radiative power; 2) a land-surface characterization obtained by combining the ECOCLIMAP database with both LSA-SAF vegetation products and the H(ydrology)-SAF snow mask; 3) meteorological fields from ECMWF forecasts interpolated to SEVIRI pixels, and 4) soil moisture derived by the H-SAF and LST from LSA-SAF. A byproduct of the SVAT model is surface skin temperature, which is needed to close the surface energy balance. The model skin temperature corresponds to the radiative temperature of the interface between soil and atmosphere, which is assumed to have no heat storage. The modelled skin temperatures are in fair agreement with LST directly estimated from SEVIRI observations. However, in contrast to LST retrievals from SEVIRI/MSG (or other infrared sensors) the SVAT model solves the energy budget equation under all-sky conditions. The SVAT surface skin temperature is then used to fill gaps in LST fields caused by clouds. Since under cloudy conditions the direct incoming solar radiation is greatly reduced, thermal balance at the surface is more easily achieved and directional effects are also less important. Therefore, a better performance of the model skin temperature may be expected. In contrast, under clear skies the satellite LST showed to be more reliable, since the SVAT model shows biases in the daily amplitude of the skin temperature. In the context of the GlobTemperature project (http://www.globtemperature.info/), all-weather LST datasets using AMSR-E microwave radiances were produced, which are compared here to the SVAT-based LST. Both products were validated against in situ data - particularly from Gobabeb & Farm Heimat (Namibia), and Évora (Portugal) - to show that under cloudy conditions the agreement between in-situ LST and modelled skin temperature is acceptable. Compared to the SVAT-based LST, AMSR-E LST is closer to satellite observations (level 2 product); the complementarity of the two approaches is assessed.

  9. A first-principles study of methyl lactate adsorption on the chiral Cu (643) surface

    NASA Astrophysics Data System (ADS)

    Yuk, Simuck F.; Asthagiri, Aravind

    2014-11-01

    We used dispersion-corrected density function theory (DFT) to investigate the enantiospecific adsorption of R- and S-methyl lactate on the chiral Cu (643)R surface. Initial study of methyl lactate adsorbed on the Cu (111) surface revealed that the most strongly bound states are associated with interaction of the hydroxyl and alkoxide group with the surface. Using dispersion-corrected DFT-derived pre-factors and desorption energies within the Redhead analysis predicts peak temperatures that are in relatively good agreement with experimental values for molecular methyl lactate desorption from both the Cu (111) and Cu (643)R surface. The global minimum of S-methyl lactate is more firmly bound by 9.5 kJ/mol over its enantiomer on the Cu (643)R surface, with a peak temperature difference of 25 K versus an experimental value of 12 K.

  10. Lithium storage in structurally tunable carbon anode derived from sustainable source

    DOE PAGES

    Lim, Daw Gen; Kim, Kyungho; Razdan, Mayuri; ...

    2017-09-01

    Here, a meticulous solid state chemistry approach has been developed for the synthesis of carbon anode from a sustainable source. The reaction mechanism of carbon formation during pyrolysis of sustainable feed-stock was studied in situ by employing Raman microspectroscopy. No Raman spectral changes observed below 160°C (thermally stable precursor) followed by color change, however above 280°C characteristic D and G bands of graphitic carbon are recorded. Derived carbon particles exhibited high specific surface area with low structural ordering (active carbons) to low specific surface area with high graphitic ordering as a function of increasing reaction temperature. Carbons synthesized at 600°Cmore » demonstrated enhanced reversible lithiation capacity (390 mAh g -1), high charge-discharge rate capability, and stable cycle life. On the contrary, carbons synthesized at higher temperatures (>1200°C) produced more graphite-like structure yielding longer specific capacity retention with lower reversible capacity.« less

  11. Tailoring of Boehmite-Derived Aluminosilicate Aerogel Structure and Properties: Influence of Ti Addition

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.; Guo, Haiquan; Sheets, Erik J.; Miller, Derek R.; Newlin, Katy N.

    2010-01-01

    Aluminosilicate aerogels offer potential for extremely low thermal conductivities at temperatures greater than 900 C, beyond where silica aerogels reach their upper temperature limits. Aerogels have been synthesized at various Al:Si ratios, including mullite compositions, using Boehmite (AlOOH) as the Al source, and tetraethoxy orthosilicate as the Si precursor. The Boehmite-derived aerogels are found to form by a self-assembly process of AlOOH crystallites, with Si-O groups on the surface of an alumina skeleton. Morphology, surface area and pore size varies with the crystallite size of the starting Boehmite powder, as well as with synthesis parameters. Ternary systems, including Al-Si-Ti aerogels incorporating a soluble Ti precursor, are possible with careful control of pH. The addition of Ti influences sol viscosity, gelation time pore structure and pore size distribution, as well as phase formation on heat treatment.

  12. Extension of Gibbs-Duhem equation including influences of external fields

    NASA Astrophysics Data System (ADS)

    Guangze, Han; Jianjia, Meng

    2018-03-01

    Gibbs-Duhem equation is one of the fundamental equations in thermodynamics, which describes the relation among changes in temperature, pressure and chemical potential. Thermodynamic system can be affected by external field, and this effect should be revealed by thermodynamic equations. Based on energy postulate and the first law of thermodynamics, the differential equation of internal energy is extended to include the properties of external fields. Then, with homogeneous function theorem and a redefinition of Gibbs energy, a generalized Gibbs-Duhem equation with influences of external fields is derived. As a demonstration of the application of this generalized equation, the influences of temperature and external electric field on surface tension, surface adsorption controlled by external electric field, and the derivation of a generalized chemical potential expression are discussed, which show that the extended Gibbs-Duhem equation developed in this paper is capable to capture the influences of external fields on a thermodynamic system.

  13. Biomechanics of ant adhesive pads: frictional forces are rate- and temperature-dependent.

    PubMed

    Federle, Walter; Baumgartner, Werner; Hölldobler, Bert

    2004-01-01

    Tarsal adhesive pads enable insects to hold on to smooth plant surfaces. Using a centrifuge technique, we tested whether a "wet adhesion" model of a thin film of liquid secreted between the pad and the surface can explain adhesive and frictional forces in Asian Weaver ants (Oecophylla smaragdina). When forces are acting parallel to the surface, pads in contact with the surface can slide smoothly. Force per unit pad contact area was strongly dependent on sliding velocity and temperature. Seemingly consistent with the effect of a thin liquid film in the contact zone, (1) frictional force linearly increased with sliding velocity, (2) the increment was greater at lower temperatures and (3) no temperature dependence was detected for low-rate perpendicular detachment forces. However, we observed a strong, temperature-independent static friction that was inconsistent with a fully lubricated contact. Static friction was too large to be explained by the contribution of other (sclerotized) body parts. Moreover, the rate-specific increase of shear stress strongly exceeded predictions derived from estimates of the adhesive liquid film's thickness and viscosity. Both lines of evidence indicate that the adhesive secretion alone is insufficient to explain the observed forces and that direct interaction of the soft pad cuticle with the surface ("rubber friction") is involved.

  14. Using satellite data on meteorological and vegetation characteristics and soil surface humidity in the Land Surface Model for the vast territory of agricultural destination

    NASA Astrophysics Data System (ADS)

    Muzylev, Eugene; Startseva, Zoya; Uspensky, Alexander; Vasilenko, Eugene; Volkova, Elena; Kukharsky, Alexander

    2017-04-01

    The model of water and heat exchange between vegetation covered territory and atmosphere (LSM, Land Surface Model) for vegetation season has been developed to calculate soil water content, evapotranspiration, infiltration of water into the soil, vertical latent and sensible heat fluxes and other water and heat balances components as well as soil surface and vegetation cover temperatures and depth distributions of moisture and temperature. The LSM is suited for utilizing satellite-derived estimates of precipitation, land surface temperature and vegetation characteristics and soil surface humidity for each pixel. Vegetation and meteorological characteristics being the model parameters and input variables, correspondingly, have been estimated by ground observations and thematic processing measurement data of scanning radiometers AVHRR/NOAA, SEVIRI/Meteosat-9, -10 (MSG-2, -3) and MSU-MR/Meteor-M № 2. Values of soil surface humidity has been calculated from remote sensing data of scatterometers ASCAT/MetOp-A, -B. The case study has been carried out for the territory of part of the agricultural Central Black Earth Region of European Russia with area of 227300 km2 located in the forest-steppe zone for years 2012-2015 vegetation seasons. The main objectives of the study have been: - to built estimates of precipitation, land surface temperatures (LST) and vegetation characteristics from MSU-MR measurement data using the refined technologies (including algorithms and programs) of thematic processing satellite information matured on AVHRR and SEVIRI data. All technologies have been adapted to the area of interest; - to investigate the possibility of utilizing satellite-derived estimates of values above in the LSM including verification of obtained estimates and development of procedure of their inputting into the model. From the AVHRR data there have been built the estimates of precipitation, three types of LST: land skin temperature Tsg, air temperature at a level of vegetation cover (taken for vegetation temperature) Ta and efficient radiation temperature Ts.eff, as well as land surface emissivity E, normalized difference vegetation index NDVI, vegetation cover fraction B, and leaf area index LAI. The SEVIRI-based retrievals have included precipitation, LST Tls and Ta, E at daylight and nighttime, LAI (daily), and B. From the MSU-MR data there have been retrieved values of all the same characteristics as from the AVHRR data. The MSU-MR-based daily and monthly sums of precipitation have been calculated using the developed earlier and modified Multi Threshold Method (MTM) intended for the cloud detection and identification of its types around the clock as well as allocation of precipitation zones and determination of instantaneous maximum rainfall intensities for each pixel at that the transition from assessing rainfall intensity to estimating their daily values is a key element of the MTM. Measurement data from 3 IR MSU-MR channels (3.8, 11 i 12 μm) as well as their differences have been used in the MTM as predictors. Controlling the correctness of the MSU-MR-derived rainfall estimates has been carried out when comparing with analogous AVHRR- and SEVIRI-based retrievals and with precipitation amounts measured at the agricultural meteorological station of the study region. Probability of rainfall zones determination from the MSU-MR data, to match against the actual ones, has been 75-85% as well as for the AVHRR and SEVIRI data. The time behaviors of satellite-derived and ground-measured daily and monthly precipitation sums for vegetation season and yeaŗ correspondingly, have been in good agreement with each other although the first ones have been smoother than the latter. Discrepancies have existed for a number of local maxima for which satellite-derived precipitation estimates have been less than ground-measured values. It may be due to the different spatial scales of areal satellite-derived and point ground-based estimates. Some spatial displacement of the satellite-determined rainfall maxima and minima regarding to ground-based data can be explained by the discrepancy between the cloud location on satellite images and in reality at high angles of the satellite sightings and considerable altitudes of the cloud tops. Reliability of MSU-MR-derived rainfall estimates at each time step obtained using the MTM has been verified by comparing their values determined from the MSU-MR, AVHRR and SEVIRI measurements and distributed over the study area with similar estimates obtained by interpolation of ground observation data. The MSU-MR-derived estimates of temperatures Tsg, Ts.eff, and Ta have been obtained using computational algorithm developed on the base of the MTM and matured on AVHRR and SEVIRI data for the region under investigation. Since the apparatus MSU-MR is similar to radiometer AVHRR, the developed methods of satellite estimating Tsg, Ts.eff, and Ta from AVHRR data could be easily transferred to the MSU-MR data. Comparison of the ground-measured and MSU-MR-, AVHRR- and SEVIRI-derived LSTs has shown that the differences between all the estimates for the vast majority of observation terms have not exceed the RMSE of these quantities built from the AVHRR data. The similar conclusion has been also made from the results of building the time behavior of the MSU-MR-derived value of LAI for vegetation season. Satellite-based estimates of precipitation, LST, LAI and B have been utilized in the model with the help of specially developed procedures of replacing these values determined from observations at agricultural meteorological stations by their satellite-derived values taking into account spatial heterogeneity of their fields. Adequacy of such replacement has been confirmed by the results of comparing modeled and ground-measured values of soil moisture content W and evapotranspiration Ev. Discrepancies between the modeled and ground-measured values of W and Ev have been in the range of 10-15 and 20-25 %, correspondingly. It may be considered as acceptable result. Resulted products of the model calculations using satellite data have been spatial fields of W, Ev, vertical sensible and latent heat fluxes and other water and heat regime characteristics for the region of interest over the year 2012-2015 vegetation seasons. Thus, there has been shown the possibility of utilizing MSU-MR/Meteor-M №2 data jointly with those of other satellites in the LSM to calculate characteristics of water and heat regimes for the area under consideration. Besides the first trial estimations of the soil surface moisture from ASCAT scatterometers data for the study region have been obtained for the years 2014-2015 vegetation seasons, their comparison has been performed with the results of modeling for several agricultural meteorological stations of the region that has been carried out utilizing ground-based and satellite data, specific requirements for the obtained information have been formulated. To date, estimates of surface moisture built from ASCAT data can be used for the selection of the model soil parameter values and the initial soil moisture conditions for the vegetation season.

  15. Wave propagation in fluid-conveying viscoelastic carbon nanotubes under longitudinal magnetic field with thermal and surface effect via nonlocal strain gradient theory

    NASA Astrophysics Data System (ADS)

    Zhen, Yaxin; Zhou, Lin

    2017-03-01

    Based on nonlocal strain gradient theory, wave propagation in fluid-conveying viscoelastic single-walled carbon nanotubes (SWCNTs) is studied in this paper. With consideration of thermal effect and surface effect, wave equation is derived for fluid-conveying viscoelastic SWCNTs under longitudinal magnetic field utilizing Euler-Bernoulli beam theory. The closed-form expressions are derived for the frequency and phase velocity of the wave motion. The influences of fluid flow velocity, structural damping coefficient, temperature change, magnetic flux and surface effect are discussed in detail. SWCNTs’ viscoelasticity reduces the wave frequency of the system and the influence gets remarkable with the increase of wave number. The fluid in SWCNTs decreases the frequency of wave propagation to a certain extent. The frequency (phase velocity) gets larger due to the existence of surface effect, especially when the diameters of SWCNTs and the wave number decrease. The wave frequency increases with the increase of the longitudinal magnetic field, while decreases with the increase of the temperature change. The results may be helpful for better understanding the potential applications of SWCNTs in nanotechnology.

  16. Sea surface and remotely sensed temperatures off Cape Mendocino, California

    NASA Technical Reports Server (NTRS)

    Breaker, L. C.; Arvesen, J. C.; Frydenlund, D.; Myers, J. S.; Short, K.

    1985-01-01

    During September 3 to 5, 1979, a multisensor oceanographic experiment was conducted off Cape Mendocino, California. The purpose of this experiment was to validate the use of remote sensing techniques over an area along the U.S. west coast where coasted upwelling is known to be intense. Remotely sensed mutlispectral data, including thermal infrared imagery, were collected above an upwelling feature off Cape Mendocino. Data were acquired from the TIRNOS-N and NOAA-6 polar orbiting satellites, the NASA Ames Research Center's high altitude U-2 aircraft, and a U.S. Coast Guard C-130 aircraft. Supporting surface truth data over the same feature were collected aboard the National Oceanic and Atmospheric Administration (NOAA) ship, OCEANOGRAPHER. Atmospheric soundings were also taken aboard the ship. The results indicate that shipboard measurements of sea surface temperatures can be reproduction within 1 C or better through remote observation of absolute infrared radiance values (whether measured aboard the NOAA polar orbiting satellite, the U-2 aircraft, or the Coast Guard aircraft) by using appropriate atmospheric corrections. Also, the patterns of sea surface temperature which were derived independently from the various remote platforms provide a consistent interpretation of the surface temperature field.

  17. Removal of hexavalent Cr by coconut coir and derived chars--the effect of surface functionality.

    PubMed

    Shen, Ying-Shuian; Wang, Shan-Li; Tzou, Yu-Min; Yan, Ya-Yi; Kuan, Wen-Hui

    2012-01-01

    The Cr(VI) removal by coconut coir (CC) and chars obtained at various pyrolysis temperatures were evaluated. Increasing the pyrolysis temperature resulted in an increased surface area of the chars, while the corresponding content of oxygen-containing functional groups of the chars decreased. The Cr(VI) removal by CC and CC-derived chars was primarily attributed to the reduction of Cr(VI) to Cr(III) by the materials and the extent and rate of the Cr(VI) reduction were determined by the oxygen-containing functional groups in the materials. The contribution of pure Cr(VI) adsorption to the overall Cr(VI) removal became relatively significant for the chars obtained at higher temperatures. Accordingly, to develop a cost-effective method for removing Cr(VI) from water, the original CC is more advantageous than the carbonaceous counterparts because no pyrolysis is required for the application and CC has a higher content of functional groups for reducing Cr(VI) to less toxic Cr(III). Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Using SMOS brightness temperature and derived surface-soil moisture to characterize surface conditions and validate land surface models.

    NASA Astrophysics Data System (ADS)

    Polcher, Jan; Barella-Ortiz, Anaïs; Piles, Maria; Gelati, Emiliano; de Rosnay, Patricia

    2017-04-01

    The SMOS satellite, operated by ESA, observes the surface in the L-band. On continental surface these observations are sensitive to moisture and in particular surface-soil moisture (SSM). In this presentation we will explore how the observations of this satellite can be exploited over the Iberian Peninsula by comparing its results with two land surface models : ORCHIDEE and HTESSEL. Measured and modelled brightness temperatures show a good agreement in their temporal evolution, but their spatial structures are not consistent. An empirical orthogonal function analysis of the brightness temperature's error identifies a dominant structure over the south-west of the Iberian Peninsula which evolves during the year and is maximum in autumn and winter. Hypotheses concerning forcing-induced biases and assumptions made in the radiative transfer model are analysed to explain this inconsistency, but no candidate is found to be responsible for the weak spatial correlations. The analysis of spatial inconsistencies between modelled and measured TBs is important, as these can affect the estimation of geophysical variables and TB assimilation in operational models, as well as result in misleading validation studies. When comparing the surface-soil moisture of the models with the product derived operationally by ESA from SMOS observations similar results are found. The spatial correlation over the IP between SMOS and ORCHIDEE SSM estimates is poor (ρ 0.3). A single value decomposition (SVD) analysis of rainfall and SSM shows that the co-varying patterns of these variables are in reasonable agreement between both products. Moreover the first three SVD soil moisture patterns explain over 80% of the SSM variance simulated by the model while the explained fraction is only 52% of the remotely sensed values. These results suggest that the rainfall-driven soil moisture variability may not account for the poor spatial correlation between SMOS and ORCHIDEE products. Other reasons have to be sought to explain the poor agreement in spatial patterns between satellite derived and modelled SSM. This presentation will hopefully contribute to the discussion of how SMOS and other observations can be used to prepare, carry-out and exploit a field campaign over the Iberian Peninsula which aims at improving our understanding of semi-arid land surface processes.

  19. Forest fire danger index based on modifying Nesterov Index, fuel, and anthropogenic activities using MODIS TERRA, AQUA and TRMM satellite datasets

    NASA Astrophysics Data System (ADS)

    Suresh Babu, K. V.; Roy, Arijit; Ramachandra Prasad, P.

    2016-05-01

    Forest fire has been regarded as one of the major causes of degradation of Himalayan forests in Uttarakhand. Forest fires occur annually in more than 50% of forests in Uttarakhand state, mostly due to anthropogenic activities and spreads due to moisture conditions and type of forest fuels. Empirical drought indices such as Keetch-Byram drought index, the Nesterov index, Modified Nesterov index, the Zhdanko index which belongs to the cumulative type and the Angstrom Index which belongs to the daily type have been used throughout the world to assess the potential fire danger. In this study, the forest fire danger index has been developed from slightly modified Nesterov index, fuel and anthropogenic activities. Datasets such as MODIS TERRA Land Surface Temperature and emissivity (MOD11A1), MODIS AQUA Atmospheric profile product (MYD07) have been used to determine the dew point temperature and land surface temperature. Precipitation coefficient has been computed from Tropical Rainfall measuring Mission (TRMM) product (3B42RT). Nesterov index has been slightly modified according to the Indian context and computed using land surface temperature, dew point temperature and precipitation coefficient. Fuel type danger index has been derived from forest type map of ISRO based on historical fire location information and disturbance danger index has been derived from disturbance map of ISRO. Finally, forest fire danger index has been developed from the above mentioned indices and MODIS Thermal anomaly product (MOD14) has been used for validating the forest fire danger index.

  20. Reproducibility of Clathromorphum compactum coralline algal Mg/Ca ratios and comparison to high-resolution sea surface temperature data

    NASA Astrophysics Data System (ADS)

    Hetzinger, S.; Halfar, J.; Kronz, A.; Simon, K.; Adey, W. H.; Steneck, R. S.

    2018-01-01

    The potential of crustose coralline algae as high-resolution archives of past ocean variability in mid- to high-latitudes has only recently been recognized. Few comparisons of coralline algal proxies, such as temperature-dependent algal magnesium to calcium (Mg/Ca) ratios, with in situ-measured surface ocean data exist, even rarer are well replicated records from individual sites. We present Mg/Ca records from nine coralline algal specimens (Clathromorphum compactum) from a single site in the Gulf of Maine, North Atlantic. Sections from algal mounds were analyzed using Laser Ablation-Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) yielding individual Mg/Ca records of up to 30 years in length. We first test intra- and intersample signal replication and show that algal Mg/Ca ratios are reproducible along several transects within individual sample specimens and between different samples from the same study site. In addition, LA-ICP-MS-derived Mg/Ca ratios are compared to electron microprobe (EMP) analyzed data on the longest-lived specimens and were found to be statistically commensurable. Second, we evaluate whether relationships between algal-based SST reconstructions and in situ temperature data can be improved by averaging Mg/Ca records from multiple algal specimens (intersample averages). We found that intersample averages yield stronger relationships to sea surface temperature (SST) data than Mg/Ca records derived from individual samples alone. Thus, Mg/Ca-based paleotemperature reconstructions from coralline algae can benefit from using multiple samples per site, and can expand temperature proxy precision from seasonal to monthly.

  1. Satellite Data Sets in the Polar Regions

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Busalacchi, Antonio J. (Technical Monitor)

    2000-01-01

    We have generated about two decades of consistently derived geophysical parameters in the polar regions. The key parameters are sea ice concentration, surface temperature, albedo, and cloud cover statistics. Sea ice concentrations were derived from the Scanning Multichannel Microwave Radiometer (SMMR) data and the Special Scanning Cl Microwave Imager (SSM/I) data from several platforms using the enhanced Bootstrap Algorithm for the period 1978 through 1999. The new algorithm reduces the errors associated with spatial and temporal variations in the emissivity and surface temperatures of sea ice. Also, bad data at ocean/land interfaces are identified and deleted in an unsupervised manner. Surface ice temperature, albedo and cloud cover statistics are derived simultaneously from the Advanced Very High Resolution Radiometer (AVHRR) data from 1981 through 1999 and mapped at a higher resolution but the same format as the ice concentration data. The technique makes use these co-registered ice concentration maps to enable cloud masking to be done separately for open ocean, sea ice and land areas. The effect of inversion is minimized by taking into consideration the expected changes in the effect of inversion with altitude, especially in the Antarctic. A technique for ice type regional classification has also been developed using multichannel cluster analysis and a neural network. This provide a means to identify large areas of thin ice, first year ice, and older ice types. The data sets have been shown to be coherent with each other and provide a powerful tool for in depth studies of the currently changing Arctic and Antarctic environment.

  2. Evolution of the Cerro Prieto geothermal system as interpreted from vitrinite reflectance under isothermal conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barker, C.E.; Pawlewicz, M.J.; Bostick, N.H.

    1981-01-01

    Temperature estimates from reflectance data in the Cerro Prieto system correlate with modern temperature logs and temperature estimates from fluid inclusion and oxygen isotope geothermometry indicating that the temperature in the central portion of the Cerro Prieto System is now at its historical maximum. Isoreflectance lines formed by contouring vitrinite reflectance data for a given isothermal surface define an imaginary surface that indicates an apparent duration of heating in the system. The 250/sup 0/C isothermal surface has a complex dome-like form suggesting a localized heat source that has caused shallow heating in the central portion of this system. Isoreflectance linesmore » relative to this 250/sup 0/C isothermal surface define a zone of low reflectance roughly corresponding to the crest of the isothermal surface. Comparison of these two surfaces suggest that the shallow heating in the central portion of Cerro Prieto is young relative to the heating (to 250/sup 0/C) on the system margins. Laboratory and theoretical models of hydrothermal convection cells suggest that the form of the observed 250/sup 0/C isothermal surface and the reflectance surface derived relative to it results from the convective rise of thermal fluids under the influence of a regional hydrodynamic gradient that induces a shift of the hydrothermal heating effects to the southwest.« less

  3. A global monthly sea surface temperature climatology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shea, D.J.; Trenberth, K.E.; Reynolds, R.W.

    1992-09-01

    The paper presents a new global 2 deg x 2 deg monthly sea surface temperature (SST) climatology, referred here to as the Shea-Trenberth-Reynolds (STR) climatology, which was derived by modifying a 1950-1979-based SST climatology from the Climate Analysis Center (CAC), by using data from the Comprehensive Ocean-Atmosphere Data Set to improve the SST estimates in the regions of the Kuroshio and the Gulf Stream. A comparison of the STR climatology with the Alexander and Mobley SST climatology showed that the STR climatology is warmer in the Northern Hemisphere, and colder poleward of 45 deg S. 22 refs.

  4. Geographical Distribution of Thundersnow and their Properties from GPM Ku-band Radar

    NASA Astrophysics Data System (ADS)

    Adhikari, A.; Liu, C.

    2017-12-01

    Lightning in snow and freezing rain are relatively uncommon, compared to the warm season thunderstorm. These events can be identified by lightning with the surface temperature colder than 0oC, or named as "cold lightning", A six-years of "cold lightning" characteristics and climatology, including seasonal, diurnal, and surface temperature distribution, are generated after collocating WWLLN and NLDN lightning with ERA-Interim 2 meter temperature. The thundersnow cases are further identified with all vertical temperature profile below 0oC, and the freezing rain cases have temperature warmer than 4oC somewhere in the column above the freezing surface. The statistics of thundersnow events from WWLLN and NLDN are compared over the United States (US). Though with different detection efficiency, WWLLN and NLDN demonstrate almost identical geographical distribution of thundersnow over the US. Taking the full advantage of the Global Precipitation Measuring Mission (GPM) Ku band radar, Thunder Snow Features (TSFs) are defined with contiguous area of non-zero near surface snow precipitation derived from Ku radar along with the collocated WWLLN lightning strikes. Though only a small number of TSFs are identified with three year GPM data, all TSFs have maximum radar reflectivity above 30 dBZ at temperature colder than -10oC, which indicates the importance of non-inductive charging in these events.

  5. Closing the Seasonal Ocean Surface Temperature Balance in the Eastern Tropical Oceans from Remote Sensing and Model Reanalyses

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Clayson, Carol A.

    2012-01-01

    The Eastern tropical ocean basins are regions of significant atmosphere-ocean interaction and are important to variability across subseasonal to decadal time scales. The numerous physical processes at play in these areas strain the abilities of coupled general circulation models to accurately reproduce observed upper ocean variability. Furthermore, limitations in the observing system of important terms in the surface temperature balance (e.g., turbulent and radiative heat fluxes, advection) introduce uncertainty into the analyses of processes controlling sea surface temperature variability. This study presents recent efforts to close the surface temperature balance through estimation of the terms in the mixed layer temperature budget using state-of-the-art remotely sensed and model-reanalysis derived products. A set of twelve net heat flux estimates constructed using combinations of radiative and turbulent heat flux products - including GEWEX-SRB, ISCCP-SRF, OAFlux, SeaFlux, among several others - are used with estimates of oceanic advection, entrainment, and mixed layer depth variability to investigate the seasonal variability of ocean surface temperatures. Particular emphasis is placed on how well the upper ocean temperature balance is, or is not, closed on these scales using the current generation of observational and model reanalysis products. That is, the magnitudes and spatial variability of residual imbalances are addressed. These residuals are placed into context within the current uncertainties of the surface net heat fluxes and the role of the mixed layer depth variability in scaling the impact of those uncertainties, particularly in the shallow mixed layers of the Eastern tropical ocean basins.

  6. Development of a Climate-Data Record (CDR) of the Surface Temperature of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Hall, Dorthy K.; Comiso, Josefino C.; Shuman, Christopher A.; DiGirolamo, Nicolo E.; Stock, Larry V.

    2010-01-01

    Regional "clear sky" surface temperature increases since the early 1980s in the Arctic, measured using Advanced Very High Resolution Radiometer (AVHRR) infrared data, range from 0.57+/-0.02 deg C to 72+/-0.10 deg C per decade. Arctic warming has important implications for ice-sheet mass balance because much of the periphery of the Greenland Ice Sheet is already near 0 deg C during the melt season, and is thus vulnerable to rapid melting if temperatures continue to increase. An increase in melting of the ice sheet would accelerate sea-level rise, an issue affecting potentially billions of people worldwide. To quantify the ice-surface temperature (IST) of the Greenland Ice Sheet, and to provide an IST dataset of Greenland for modelers that provides uncertainties, we are developing a climate-data record (CDR) of daily "clear-sky" IST of the Greenland Ice Sheet, from 1982 to the present using AVHRR (1982 - present) and Moderate-Resolution Imaging Spectroradiometer (MODIS) data (2000 - present) at a resolution of approximately 5 km. Known issues being addressed in the production of the CDR are: time-series bias caused by cloud cover (surface temperatures can be different under clouds vs. clear areas) and cross-calibration in the overlap period between AVHRR instruments, and between AVHRR and MODIS instruments. Because of uncertainties, mainly due to clouds, time-series of satellite IST do not necessarily correspond with actual surface temperatures. The CDR will be validated by comparing results with automatic-weather station data and with satellite-derived surface-temperature products and biases will be calculated.

  7. Analysis of turbulence and surface growth models on the estimation of soot level in ethylene non-premixed flames

    NASA Astrophysics Data System (ADS)

    Yunardi, Y.; Munawar, Edi; Rinaldi, Wahyu; Razali, Asbar; Iskandar, Elwina; Fairweather, M.

    2018-02-01

    Soot prediction in a combustion system has become a subject of attention, as many factors influence its accuracy. An accurate temperature prediction will likely yield better soot predictions, since the inception, growth and destruction of the soot are affected by the temperature. This paper reported the study on the influences of turbulence closure and surface growth models on the prediction of soot levels in turbulent flames. The results demonstrated that a substantial distinction was observed in terms of temperature predictions derived using the k-ɛ and the Reynolds stress models, for the two ethylene flames studied here amongst the four types of surface growth rate model investigated, the assumption of the soot surface growth rate proportional to the particle number density, but independent on the surface area of soot particles, f ( A s ) = ρ N s , yields in closest agreement with the radial data. Without any adjustment to the constants in the surface growth term, other approaches where the surface growth directly proportional to the surface area and square root of surface area, f ( A s ) = A s and f ( A s ) = √ A s , result in an under- prediction of soot volume fraction. These results suggest that predictions of soot volume fraction are sensitive to the modelling of surface growth.

  8. Dielectric and thermal modeling of Vesta's surface

    NASA Astrophysics Data System (ADS)

    Palmer, E. M.; Heggy, E.; Capria, M. T.; Tosi, F.; Russell, C. T.

    2013-09-01

    We generate a dielectric model for the surface of Vesta from thermal observations by Dawn's Visible and Infrared (VIR) mapping spectrometer. After retrieving surface temperatures from VIR data, we model thermal inertia, and derive a theoretical temperature map of Vesta's surface at a given UTC. To calculate the real part of the dielectric constant (ɛ') and the loss tangent (tg δ) we use the dielectric properties of basaltic lunar regolith as a first-order analog, assuming surface density and composition consistent with fine basaltic lunar dust. First results indicate that for the majority of the surface, ɛ' ranges from 2.0 to 2.1 from the night to day side respectively, and tg δ ranges from 1.05E-2 to 1.40E-2. While these regions are consistent with a basaltic, desiccated ~55% porous surface, we also find anomalies in the thermal inertia that may correspond to a variation in local surface density relative to the global average, and a consequent variation in the local dielectric properties.

  9. Evaluation of near-surface temperature, humidity, and equivalent temperature from regional climate models applied in type II downscaling

    NASA Astrophysics Data System (ADS)

    Pryor, S. C.; Schoof, J. T.

    2016-04-01

    Atmosphere-surface interactions are important components of local and regional climates due to their key roles in dictating the surface energy balance and partitioning of energy transfer between sensible and latent heat. The degree to which regional climate models (RCMs) represent these processes with veracity is incompletely characterized, as is their ability to capture the drivers of, and magnitude of, equivalent temperature (Te). This leads to uncertainty in the simulation of near-surface temperature and humidity regimes and the extreme heat events of relevance to human health, in both the contemporary and possible future climate states. Reanalysis-nested RCM simulations are evaluated to determine the degree to which they represent the probability distributions of temperature (T), dew point temperature (Td), specific humidity (q) and Te over the central U.S., the conditional probabilities of Td|T, and the coupling of T, q, and Te to soil moisture and meridional moisture advection within the boundary layer (adv(Te)). Output from all RCMs exhibits discrepancies relative to observationally derived time series of near-surface T, q, Td, and Te, and use of a single layer for soil moisture by one of the RCMs does not appear to substantially degrade the simulations of near-surface T and q relative to RCMs that employ a four-layer soil model. Output from MM5I exhibits highest fidelity for the majority of skill metrics applied herein, and importantly most realistically simulates both the coupling of T and Td, and the expected relationships of boundary layer adv(Te) and soil moisture with near-surface T and q.

  10. Testing for the Possible Influence of Unknown Climate Forcings upon Global Temperature Increases from 1950-2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Bruce T.; Knight, Jeff R.; Ringer, Mark A.

    2012-10-15

    Global-scale variations in the climate system over the last half of the twentieth century, including long-term increases in global-mean near-surface temperatures, are consistent with concurrent human-induced emissions of radiatively active gases and aerosols. However, such consistency does not preclude the possible influence of other forcing agents, including internal modes of climate variability or unaccounted for aerosol effects. To test whether other unknown forcing agents may have contributed to multidecadal increases in global-mean near-surface temperatures from 1950 to 2000, data pertaining to observed changes in global-scale sea surface temperatures and observed changes in radiatively active atmospheric constituents are incorporated into numericalmore » global climate models. Results indicate that the radiative forcing needed to produce the observed long-term trends in sea surface temperatures—and global-mean near-surface temperatures—is provided predominantly by known changes in greenhouse gases and aerosols. Further, results indicate that less than 10% of the long-term historical increase in global-mean near-surface temperatures over the last half of the twentieth century could have been the result of internal climate variability. In addition, they indicate that less than 25%of the total radiative forcing needed to produce the observed long-term trend in global-mean near-surface temperatures could have been provided by changes in net radiative forcing from unknown sources (either positive or negative). These results, which are derived from simple energy balance requirements, emphasize the important role humans have played in modifying the global climate over the last half of the twentieth century.« less

  11. Marangoni instability in a thin film heated from below: Effect of nonmonotonic dependence of surface tension on temperature

    NASA Astrophysics Data System (ADS)

    Sarma, Rajkumar; Mondal, Pranab Kumar

    2018-04-01

    We investigate Marangoni instability in a thin liquid film resting on a substrate of low thermal conductivity and separated from the surrounding gas phase by a deformable free surface. Considering a nonmonotonic variation of surface tension with temperature, here we analytically derive the neutral stability curve for the monotonic and oscillatory modes of instability (for both the long-wave and short-wave perturbations) under the framework of linear stability analysis. For the long-wave instability, we derive a set of amplitude equations using the scaling k ˜(Bi) 1 /2 , where k is the wave number and Bi is the Biot number. Through this investigation, we demonstrate that for such a fluid layer upon heating from below, both monotonic and oscillatory instability can appear for a certain range of the dimensionless parameters, viz., Biot number (Bi ) , Galileo number (Ga ) , and inverse capillary number (Σ ) . Moreover, we unveil, through this study, the influential role of the above-mentioned parameters on the stability of the system and identify the critical values of these parameters above which instability initiates in the liquid layer.

  12. Evidence of Lunar Phase Influence on Global Surface Air Temperatures

    NASA Technical Reports Server (NTRS)

    Anyamba, Ebby; Susskind, Joel

    2000-01-01

    Intraseasonal oscillations appearing in a newly available 20-year record of satellite-derived surface air temperature are composited with respect to the lunar phase. Polar regions exhibit strong lunar phase modulation with higher temperatures occurs near full moon and lower temperatures at new moon, in agreement with previous studies. The polar response to the apparent lunar forcing is shown to be most robust in the winter months when solar influence is minimum. In addition, the response appears to be influenced by ENSO events. The highest mean temperature range between full moon and new moon in the polar region between 60 deg and 90 deg latitude was recorded in 1983, 1986/87, and 1990/91. Although the largest lunar phase signal is in the polar regions, there is a tendency for meridional equatorward progression of anomalies in both hemispheres so that the warning in the tropics occurs at the time of the new moon.

  13. Soil and surface temperatures at the Viking landing sites

    NASA Technical Reports Server (NTRS)

    Kieffer, H. H.

    1976-01-01

    The annual temperature range for the Martian surface at the Viking lander sites is computed on the basis of thermal parameters derived from observations made with the infrared thermal mappers. The Viking lander 1 (VL1) site has small annual variations in temperature, whereas the Viking lander 2 (VL2) site has large annual changes. With the Viking lander images used to estimate the rock component of the thermal emission, the daily temperature behavior of the soil alone is computed over the range of depths accessible to the lander; when the VL1 and VL2 sites were sampled, the daily temperature ranges at the top of the soil were 183 to 263 K and 183 to 268 K, respectively. The diurnal variation decreases with depth with an exponential scale of about 5 centimeters. The maximum temperature of the soil sampled from beneath rocks at the VL2 site is calculated to be 230 K. These temperature calculations should provide a reference for study of the active chemistry reported for the Martian soil.

  14. Soil and surface temperatures at the viking landing sites.

    PubMed

    Kieffer, H H

    1976-12-11

    The annual temperature range for the martian surface at the Viking lander sites is computed on the basis of thermal parameters derived from observations made with the infrared thermal mappers. The Viking lander 1 (VL1) site has small annual variations in temperature, whereas the Viking lander 2 (VL2) site has large annual changes. With the Viking lander images used to estimate the rock component of the thermal emission, the daily temperature behavior of the soil alone is computed over the range of depths accessible to the lander; when the VL1 and VL2 sites were sampled, the daily temperature ranges at the top of the soil were 183 to 263 K and 183 to 268 K, respectively. The diurnal variation decreases with depth with an exponential scale of about 5 centimeters. The maximum temperature of the soil sampled from beneath rocks at the VL2 site is calculated to be 230 K. These temperature calculations should provide a reference for study of the active chemistry reported for the martian soil.

  15. Evaluation of the Precision of Satellite-Derived Sea Surface Temperature Fields

    NASA Astrophysics Data System (ADS)

    Wu, F.; Cornillon, P. C.; Guan, L.

    2016-02-01

    A great deal of attention has been focused on the temporal accuracy of satellite-derived sea surface temperature (SST) fields with little attention being given to their spatial precision. Specifically, the primary measure of the quality of SST fields has been the bias and variance of selected values minus co-located (in space and time) in situ values. Contributing values, determined by the location of the in situ values and the necessity that the satellite-derived values be cloud free, are generally widely separated in space and time hence provide little information related to the pixel-to-pixel uncertainty in the retrievals. But the main contribution to the uncertainty in satellite-derived SST retrievals relates to atmospheric contamination and because the spatial scales of atmospheric features are, in general, large compared with the pixel separation of modern infra-red sensors, the pixel-to-pixel uncertainty is often smaller than the accuracy determined from in situ match-ups. This makes selection of satellite-derived datasets for the study of submesoscale processes, for which the spatial structure of the upper ocean is significant, problematic. In this presentation we present a methodology to characterize the spatial precision of satellite-derived SST fields. The method is based on an examination of the high wavenumber tail of the 2-D spectrum of SST fields in the Sargasso Sea, a low energy region of the ocean close to the track of the MV Oleander, a container ship making weekly roundtrips between New York and Bermuda, with engine intake temperatures sampled every 75 m along track. Important spectral characteristics are the point at which the satellite-derived spectra separate from the Oleander spectra and the spectral slope following separation. In this presentation a number of high resolution 375 m to 10 km SST datasets are evaluated based on this approach.

  16. Stability of peatland carbon to rising temperatures

    DOE PAGES

    Wilson, R. M.; Hopple, A. M.; Tfaily, M. M.; ...

    2016-12-13

    Peatlands contain one-third of soil carbon (C), mostly buried in deep, saturated anoxic zones (catotelm). The response of catotelm C to climate forcing is uncertain, because prior experiments have focused on surface warming. Here, we show that deep peat heating of a 2 m-thick peat column results in an exponential increase in CH 4 emissions. But, this response is due solely to surface processes and not degradation of catotelm peat. Incubations show that only the top 20–30 cm of peat from experimental plots have higher CH 4 production rates at elevated temperatures. Radiocarbon analyses demonstrate that CH 4 and COmore » 2 are produced primarily from decomposition of surface-derived modern photosynthate, not catotelm C. Furthermore, there are no differences in microbial abundances, dissolved organic matter concentrations or degradative enzyme activities among treatments. Our results suggest that although surface peat will respond to increasing temperature, the large reservoir of catotelm C is stable under current anoxic conditions.« less

  17. Stability of peatland carbon to rising temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, R. M.; Hopple, A. M.; Tfaily, M. M.

    Peatlands contain one-third of soil carbon (C), mostly buried in deep, saturated anoxic zones (catotelm). The response of catotelm C to climate forcing is uncertain, because prior experiments have focused on surface warming. Here, we show that deep peat heating of a 2 m-thick peat column results in an exponential increase in CH 4 emissions. But, this response is due solely to surface processes and not degradation of catotelm peat. Incubations show that only the top 20–30 cm of peat from experimental plots have higher CH 4 production rates at elevated temperatures. Radiocarbon analyses demonstrate that CH 4 and COmore » 2 are produced primarily from decomposition of surface-derived modern photosynthate, not catotelm C. Furthermore, there are no differences in microbial abundances, dissolved organic matter concentrations or degradative enzyme activities among treatments. Our results suggest that although surface peat will respond to increasing temperature, the large reservoir of catotelm C is stable under current anoxic conditions.« less

  18. Gasification Characteristics of Coal/Biomass Mixed Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Reginald

    2014-09-01

    A research project was undertaken that had the overall objective of developing the models needed to accurately predict conversion rates of coal/biomass mixtures to synthesis gas under conditions relevant to a commercially-available coal gasification system configured to co-produce electric power as well as chemicals and liquid fuels. In our efforts to accomplish this goal, experiments were performed in an entrained flow reactor in order to produce coal and biomass chars at high heating rates and temperatures, typical of the heating rates and temperatures fuel particles experience in real systems. Mixed chars derived from coal/biomass mixtures containing up to 50% biomassmore » and the chars of the pure coal and biomass components were subjected to a matrix of reactivity tests in a pressurized thermogravimetric analyzer (TGA) in order to obtain data on mass loss rates as functions of gas temperature, pressure and composition as well as to obtain information on the variations in mass specific surface area during char conversion under kinetically-limited conditions. The experimental data were used as targets when determining the unknown parameters in the chemical reactivity and specific surface area models developed. These parameters included rate coefficients for the reactions in the reaction mechanism, enthalpies of formation and absolute entropies of adsorbed species formed on the carbonaceous surfaces, and pore structure coefficients in the model used to describe how the mass specific surface area of the char varies with conversion. So that the reactivity models can be used at high temperatures when mass transport processes impact char conversion rates, Thiele modulus – effectiveness factor relations were also derived for the reaction mechanisms developed. In addition, the reactivity model and a mode of conversion model were combined in a char-particle gasification model that includes the effects of chemical reaction and diffusion of reactive gases through particle pores and energy exchange between the particle and its environment. This char-particle gasification model is capable of predicting the average mass loss rates, sizes, apparent densities, specific surface areas, and temperatures of the char particles produced when co-firing coal and biomass to the type environments established in entrained flow gasifiers operating at high temperatures and elevated pressures.« less

  19. Constraining Water Vapor Abundance on Mars using a Coupled Heat-Water Transport Model and Seasonal Frost Observations

    NASA Astrophysics Data System (ADS)

    Bapst, J.; Byrne, S.

    2016-12-01

    The stability of water ice on Mars' surface is determined by its temperature and the density of water vapor at the bottom of the atmosphere. Multiple orbiting instruments have been used to study column-integrated water abundance in the martian atmosphere, resolving the global annual water cycle. However, poor knowledge of the vertical distribution of water makes constraining its abundance near the surface difficult. One must assume a mixing regime to produce surface vapor density estimates. More indirectly, one can use the appearance and disappearance of seasonal water frost, along with ice stability models, to estimate this value. Here, we use derived temperature and surface reflectance data from MGS TES to constrain a 1-D thermal diffusion model, which is coupled to an atmospheric water transport model. TES temperatures are used to constrain thermal properties of our modeled subsurface, while changes in TES albedo can be used to determine the timing of water frost. We tune the density of water vapor in the atmospheric model to match the observed seasonal water frost timing in the northern hemisphere, poleward of 45°N. Thus, we produce a new estimate for the water abundance in the lower atmosphere of Mars and how it varies seasonally and geographically. The timing of water frost can be ambiguous in TES data, especially at lower latitudes where the albedo contrast between frosted and unfrosted surfaces is lower (presumably due to lesser areal coverage of water frost). The uncertainty in frost timing with our approach is <20° LS ( 40 sols), and will be used to define upper and lower bounds in our estimate of vapor density. The implications of our derived vapor densities on the stability of surface and subsurface water ice will be discussed.

  20. Effects of Fine-Scale Landscape Variability on Satellite-Derived Land Surface Temperature Products Over Sparse Vegetation Canopies

    NASA Astrophysics Data System (ADS)

    Powell, R. L.; Goulden, M.; Peterson, S.; Roberts, D. A.; Still, C. J.

    2015-12-01

    Temperature is a primary environmental control on biological systems and processes at a range of spatial and temporal scales, from controlling biochemical processes such as photosynthesis to influencing continental-scale species distribution. The Landsat satellite series provides a long record (since the mid-1980s) of relatively high spatial resolution thermal infrared (TIR) imagery, from which we derive land surface temperature (LST) grids. Here, we investigate fine spatial resolution factors that influence Landsat-derived LST over a spectrally and spatially heterogeneous landscape. We focus on paired sites (inside/outside a 1994 fire scar) within a pinyon-juniper scrubland in Southern California. The sites have nearly identical micro-meteorology and vegetation species composition, but distinctly different vegetation abundance and structure. The tower at the unburned site includes a number of in-situ imaging tools to quantify vegetation properties, including a thermal camera on a pan-tilt mount, allowing hourly characterization of landscape component temperatures (e.g., sunlit canopy, bare soil, leaf litter). We use these in-situ measurements to assess the impact of fine-scale landscape heterogeneity on estimates of LST, including sensitivity to (i) the relative abundance of component materials, (ii) directional effects due to solar and viewing geometry, (iii) duration of sunlit exposure for each compositional type, and (iv) air temperature. To scale these properties to Landsat spatial resolution (~100-m), we characterize the sub-pixel composition of landscape components (in addition to shade) by applying spectral mixture analysis (SMA) to the Landsat Operational Land Imager (OLI) spectral bands and test the sensitivity of the relationships established with the in-situ data at this coarser scale. The effects of vegetation abundance and cover height versus other controls on satellite-derived estimates of LST will be assessed by comparing estimates at the burned vs. unburned sites across multiple seasons (~30 dates).

  1. Enhanced-Resolution Satellite Microwave Brightness Temperature Records for Mapping Boreal-Arctic Landscape Freeze-Thaw Heterogeneity

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Du, J.; Kimball, J. S.

    2017-12-01

    The landscape freeze-thaw (FT) status derived from satellite microwave remote sensing is closely linked to vegetation phenology and productivity, surface energy exchange, evapotranspiration, snow/ice melt dynamics, and trace gas fluxes over land areas affected by seasonally frozen temperatures. A long-term global satellite microwave Earth System Data Record of daily landscape freeze-thaw status (FT-ESDR) was developed using similar calibrated 37GHz, vertically-polarized (V-pol) brightness temperatures (Tb) from SMMR, SSM/I, and SSMIS sensors. The FT-ESDR shows mean annual spatial classification accuracies of 90.3 and 84.3 % for PM and AM overpass retrievals relative surface air temperature (SAT) measurement based FT estimates from global weather stations. However, the coarse FT-ESDR gridding (25-km) is insufficient to distinguish finer scale FT heterogeneity. In this study, we tested alternative finer scale FT estimates derived from two enhanced polar-grid (3.125-km and 6-km resolution), 36.5 GHz V-pol Tb records derived from calibrated AMSR-E and AMSR2 sensor observations. The daily FT estimates are derived using a modified seasonal threshold algorithm that classifies daily Tb variations in relation to grid cell-wise FT thresholds calibrated using ERA-Interim reanalysis based SAT, downscaled using a digital terrain map and estimated temperature lapse rates. The resulting polar-grid FT records for a selected study year (2004) show mean annual spatial classification accuracies of 90.1% (84.2%) and 93.1% (85.8%) for respective PM (AM) 3.125km and 6-km Tb retrievals relative to in situ SAT measurement based FT estimates from regional weather stations. Areas with enhanced FT accuracy include water-land boundaries and mountainous terrain. Differences in FT patterns and relative accuracy obtained from the enhanced grid Tb records were attributed to several factors, including different noise contributions from underlying Tb processing and spatial mismatches between Tb retrievals and SAT calibrated FT thresholds.

  2. The impact of heat waves on surface urban heat island and local economy in Cluj-Napoca city, Romania

    NASA Astrophysics Data System (ADS)

    Herbel, Ioana; Croitoru, Adina-Eliza; Rus, Adina Viorica; Roşca, Cristina Florina; Harpa, Gabriela Victoria; Ciupertea, Antoniu-Flavius; Rus, Ionuţ

    2017-07-01

    The association between heat waves and the urban heat island effect can increase the impact on environment and society inducing biophysical hazards. Heat stress and their associated public health problems are among the most frequent. This paper explores the heat waves impact on surface urban heat island and on the local economy loss during three heat periods in Cluj-Napoca city in the summer of 2015. The heat wave events were identified based on daily maximum temperature, and they were divided into three classes considering the intensity threshold: moderate heat waves (daily maximum temperature exceeding the 90th percentile), severe heat waves (daily maximum temperature over the 95th percentile), and extremely severe heat waves (daily maximum temperature exceeding the 98th percentile). The minimum length of an event was of minimum three consecutive days. The surface urban heat island was detected based on land surface temperature derived from Landsat 8 thermal infrared data, while the economic impact was estimated based on data on work force structure and work productivity in Cluj-Napoca derived from the data released by Eurostat, National Bank of Romania, and National Institute of Statistics. The results indicate that the intensity and spatial extension of surface urban heat island could be governed by the magnitude of the heat wave event, but due to the low number of satellite images available, we should consider this information only as preliminary results. Thermal infrared remote sensing has proven to be a very efficient method to study surface urban heat island, due to the fact that the synoptic conditions associated with heat wave events usually favor cloud free image. The resolution of the OLI_TIRS sensor provided good results for a mid-extension city, but the low revisiting time is still a drawback. The potential economic loss was calculated for the working days during heat waves and the estimated loss reached more than 2.5 mil. EUR for each heat wave day at city scale, cumulating more than 38 mil. EUR for the three cases considered.

  3. Influence of pyrolysis temperature on lead immobilization by chemically modified coconut fiber-derived biochars in aqueous environments.

    PubMed

    Wu, Weidong; Li, Jianhong; Niazi, Nabeel Khan; Müller, Karin; Chu, Yingchao; Zhang, Lingling; Yuan, Guodong; Lu, Kouping; Song, Zhaoliang; Wang, Hailong

    2016-11-01

    Biochar has received widespread attention as an eco-friendly and efficient material for immobilization of toxic heavy metals in aqueous environments. In the present study, three types of coconut fiber-derived biochars were obtained by pyrolyzing at three temperatures, i.e., 300, 500, and 700 °C. In addition, nine types of biochars were prepared by chemical modification with ammonia, hydrogen peroxide, and nitric acid, respectively, which were used to investigate changes in physico-chemical properties by inter alia, Fourier transformation infrared spectrophotometry (FTIR), scanning electron microscope (SEM), and BET specific surface area analysis. Batch sorption experiments were carried out to determine the sorption capacity of the biochars for lead (Pb) in aqueous solutions. Results showed that the cation exchange capacity of biochar pyrolyzed at 300 °C and modified with nitric acid increased threefold compared to the control. Loosely corrugated carbon surface and uneven carbon surface of the biochar pyrolyzed at 300 °C were produced during ammonia and nitric acid modifications. Removal rate of Pb by the coconut biochar pyrolyzed at 300 °C and modified with ammonia was increased from 71.8 to 99.6 % compared to the untreated biochar in aqueous solutions containing 100 mg L -1 Pb. However, chemical modification did not enhance adsorption of Pb of the biochars pyrolyzed at higher temperatures (e.g., 500 or 700 °C), indicating that resistance of biochars to chemical treatment increased with pyrolysis temperature.

  4. Thermal elastoplastic structural analysis of non-metallic thermal protection systems

    NASA Technical Reports Server (NTRS)

    Chung, T. J.; Yagawa, G.

    1972-01-01

    An incremental theory and numerical procedure to analyze a three-dimensional thermoelastoplastic structure subjected to high temperature, surface heat flux, and volume heat supply as well as mechanical loadings are presented. Heat conduction equations and equilibrium equations are derived by assuming a specific form of incremental free energy, entropy, stresses and heat flux together with the first and second laws of thermodynamics, von Mises yield criteria and Prandtl-Reuss flow rule. The finite element discretization using the linear isotropic three-dimensional element for the space domain and a difference operator corresponding to a linear variation of temperature within a small time increment for the time domain lead to systematic solutions of temperature distribution and displacement and stress fields. Various boundary conditions such as insulated surfaces and convection through uninsulated surface can be easily treated. To demonstrate effectiveness of the present formulation a number of example problems are presented.

  5. Tracking the Polar Front south of New Zealand using penguin dive data

    NASA Astrophysics Data System (ADS)

    Sokolov, Serguei; Rintoul, Stephen R.; Wienecke, Barbara

    2006-04-01

    Nearly 36,000 vertical temperature profiles collected by 15 king penguins are used to map oceanographic fronts south of New Zealand. There is good correspondence between Antarctic Circumpolar Current (ACC) front locations derived from temperatures sampled in the upper 150 m along the penguin tracks and front positions inferred using maps of sea surface height (SSH). Mesoscale features detected in the SSH maps from this eddy-rich region are also reproduced in the individual temperature sections based on dive data. The foraging strategy of Macquarie Island king penguins appears to be influenced strongly by oceanographic structure: almost all the penguin dives are confined to the region close to and between the northern and southern branches of the Polar Front. Surface chlorophyll distributions also reflect the influence of the ACC fronts, with the northern branch of the Polar Front marking a boundary between low surface chlorophyll to the north and elevated values to the south.

  6. Results of soil moisture flights during April 1974

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.; Blanchard, B. J.; Burke, W. J.; Paris, J. F.; Swang, J. R.

    1976-01-01

    The results presented here are derived from measurements made during the April 5 and 6, 1974 flights of the NASA P-3A aircraft over the Phoenix, Arizona agricultural test site. The purpose of the mission was to study the use of microwave techniques for the remote sensing of soil moisture. These results include infrared (10-to 12 micrometers) 2.8-cm and 21-cm brightness temperatures for approximately 90 bare fields. These brightness temperatures are compared with surface measurements of the soil moisture made at the time of the overflights. These data indicate that the combination of the sum and difference of the vertically and the horizontally polarized brightness temperatures yield information on both the soil moisture and surface roughness conditions.

  7. Tularosa Basin Play Fairway Analysis: Weights of Evidence; Mineralogy, and Temperature Anomaly Maps

    DOE Data Explorer

    Adam Brandt

    2015-11-15

    This submission has two shapefiles and a tiff image. The weights of evidence analysis was applied to data representing heat of the earth and fracture permeability using training sites around the Southwest; this is shown in the tiff image. A shapefile of surface temperature anomalies was derived from the statistical analysis of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) thermal infrared data which had been converted to surface temperatures; these anomalies have not been field checked. The second shapefile shows outcrop mineralogy which originally mapped by the New Mexico Bureau of Geology and Mineral Resources, and supplemented with mineralogic information related to rock fracability risk for EGS. Further metadata can be found within each file.

  8. Impacts of land cover transitions on surface temperature in China based on satellite observations

    NASA Astrophysics Data System (ADS)

    Zhang, Yuzhen; Liang, Shunlin

    2018-02-01

    China has experienced intense land use and land cover changes during the past several decades, which have exerted significant influences on climate change. Previous studies exploring related climatic effects have focused mainly on one or two specific land use changes, or have considered all land use and land cover change types together without distinguishing their individual impacts, and few have examined the physical processes of the mechanism through which land use changes affect surface temperature. However, in this study, we considered satellite-derived data of multiple land cover changes and transitions in China. The objective was to obtain observational evidence of the climatic effects of land cover transitions in China by exploring how they affect surface temperature and to what degree they influence it through the modification of biophysical processes, with an emphasis on changes in surface albedo and evapotranspiration (ET). To achieve this goal, we quantified the changes in albedo, ET, and surface temperature in the transition areas, examined their correlations with temperature change, and calculated the contributions of different land use transitions to surface temperature change via changes in albedo and ET. Results suggested that land cover transitions from cropland to urban land increased land surface temperature (LST) during both daytime and nighttime by 0.18 and 0.01 K, respectively. Conversely, the transition of forest to cropland tended to decrease surface temperature by 0.53 K during the day and by 0.07 K at night, mainly through changes in surface albedo. Decreases in both daytime and nighttime LST were observed over regions of grassland to forest transition, corresponding to average values of 0.44 and 0.20 K, respectively, predominantly controlled by changes in ET. These results highlight the necessity to consider the individual climatic effects of different land cover transitions or conversions in climate research studies. This short-term analysis of land cover transitions in China means our estimates should represent local temperature effects. Changes in ET and albedo explained <60% of the variation in LST change caused by land cover transitions; thus, additional factors that affect surface climate need consideration in future studies.

  9. 10-Year Observations of Cloud and Surface Longwave Radiation at Ny-Ålesund, Svalbard

    NASA Astrophysics Data System (ADS)

    Yeo, H.; Kim, S. W.; Kim, B. M.; Kim, J. H.; Shiobara, M.; Choi, T. J.; Son, S. W.; Kim, M. H.; Jeong, J. H.; Kim, S. J.

    2015-12-01

    Arctic clouds play a key role in surface radiation budget and may influence sea ice and snow melting. In this study, 10-year (2004-2013) observations of cloud from Micro-Pulse Lidar (MPL) and surface longwave (LW) radiation at Ny-Ålesund, Svalbard are analyzed to investigate cloud radiative effect. The cloud fraction (CF) derived from MPL shows distinct monthly variation, having higher CF (0.90) in summer and lower CF (0.79) in winter. Downward longwave radiation (DLW) during wintertime (Nov., Dec., Jan., and Feb.) decreases as cloud base height (CBH) increases. The DLW for CBH < 1km (264.7±35.4 W m-2) is approximately 1.46 times larger than that for cloud-free (181.8±25.8 W m-2) conditions. The temperature difference (ΔT) and DLW difference (ΔDLW), which are calculated as the difference of monthly mean temperature and DLW between all-sky and cloud-free conditions, are positively correlated (R2 = 0.83). This implies that an increase of DLW may influence surface warming, which can result in snow and sea ice melting. However, dramatic changes in surface temperature, cloud and DLW are observed with a time scale of a few days. The averaged surface temperature on the presence of low-level clouds (CBH < 2km) and under cloud-free conditions are estimated to be -6.9±6.1°C and -14.5±5.7°C, respectively. The duration of low-level clouds, showing relatively high DLW and high surface temperature, is about 2.5 days. This suggests that DLW induced by low-level clouds may not have a critical effect on surface temperature rising and sea ice melting.

  10. Behavioral responses of Atlantic cod to sea temperature changes.

    PubMed

    Freitas, Carla; Olsen, Esben Moland; Moland, Even; Ciannelli, Lorenzo; Knutsen, Halvor

    2015-05-01

    Understanding responses of marine species to temperature variability is essential to predict impacts of future climate change in the oceans. Most ectotherms are expected to adjust their behavior to avoid extreme temperatures and minimize acute changes in body temperature. However, measuring such behavioral plasticity in the wild is challenging. Combining 4 years of telemetry-derived behavioral data on juvenile and adult (30-80 cm) Atlantic cod (Gadus morhua), and in situ ocean temperature measurements, we found a significant effect of sea temperature on cod depth use and activity level in coastal Skagerrak. During summer, cod were found in deeper waters when sea surface temperature increased. Further, this effect of temperature was stronger on larger cod. Diel vertical migration, which consists in a nighttime rise to shallow feeding habitats, was stronger among smaller cod. As surface temperature increased beyond ∼15°C, their vertical migration was limited to deeper waters. In addition to larger diel vertical migrations, smaller cod were more active and travelled larger distances compared to larger specimens. Cold temperatures during winter tended, however, to reduce the magnitude of diel vertical migrations, as well as the activity level and distance moved by those smaller individuals. Our findings suggest that future and ongoing rises in sea surface temperature may increasingly deprive cod in this region from shallow feeding areas during summer, which may be detrimental for local populations of the species.

  11. Behavioral responses of Atlantic cod to sea temperature changes

    PubMed Central

    Freitas, Carla; Olsen, Esben Moland; Moland, Even; Ciannelli, Lorenzo; Knutsen, Halvor

    2015-01-01

    Understanding responses of marine species to temperature variability is essential to predict impacts of future climate change in the oceans. Most ectotherms are expected to adjust their behavior to avoid extreme temperatures and minimize acute changes in body temperature. However, measuring such behavioral plasticity in the wild is challenging. Combining 4 years of telemetry-derived behavioral data on juvenile and adult (30–80 cm) Atlantic cod (Gadus morhua), and in situ ocean temperature measurements, we found a significant effect of sea temperature on cod depth use and activity level in coastal Skagerrak. During summer, cod were found in deeper waters when sea surface temperature increased. Further, this effect of temperature was stronger on larger cod. Diel vertical migration, which consists in a nighttime rise to shallow feeding habitats, was stronger among smaller cod. As surface temperature increased beyond ∼15°C, their vertical migration was limited to deeper waters. In addition to larger diel vertical migrations, smaller cod were more active and travelled larger distances compared to larger specimens. Cold temperatures during winter tended, however, to reduce the magnitude of diel vertical migrations, as well as the activity level and distance moved by those smaller individuals. Our findings suggest that future and ongoing rises in sea surface temperature may increasingly deprive cod in this region from shallow feeding areas during summer, which may be detrimental for local populations of the species. PMID:26045957

  12. Emergence of new hydrologic regimes of surface water resources in the conterminous United States under future warming

    DOE PAGES

    Leng, Guoyong; Huang, Maoyi; Voisin, Nathalie; ...

    2016-10-25

    Emergence of significant changes in surface water PDF is detected across CONUS. Such emergence can be derived using global temperature increments at the national scale independent of emission scenarios but the relationship does not hold at sub-basin scale. The emergence of significant changes are due to changes in interannual variability rather than seasonal mean.

  13. A physically based model of global freshwater surface temperature

    NASA Astrophysics Data System (ADS)

    Beek, Ludovicus P. H.; Eikelboom, Tessa; Vliet, Michelle T. H.; Bierkens, Marc F. P.

    2012-09-01

    Temperature determines a range of physical properties of water and exerts a strong control on surface water biogeochemistry. Thus, in freshwater ecosystems the thermal regime directly affects the geographical distribution of aquatic species through their growth and metabolism and indirectly through their tolerance to parasites and diseases. Models used to predict surface water temperature range between physically based deterministic models and statistical approaches. Here we present the initial results of a physically based deterministic model of global freshwater surface temperature. The model adds a surface water energy balance to river discharge modeled by the global hydrological model PCR-GLOBWB. In addition to advection of energy from direct precipitation, runoff, and lateral exchange along the drainage network, energy is exchanged between the water body and the atmosphere by shortwave and longwave radiation and sensible and latent heat fluxes. Also included are ice formation and its effect on heat storage and river hydraulics. We use the coupled surface water and energy balance model to simulate global freshwater surface temperature at daily time steps with a spatial resolution of 0.5° on a regular grid for the period 1976-2000. We opt to parameterize the model with globally available data and apply it without calibration in order to preserve its physical basis with the outlook of evaluating the effects of atmospheric warming on freshwater surface temperature. We validate our simulation results with daily temperature data from rivers and lakes (U.S. Geological Survey (USGS), limited to the USA) and compare mean monthly temperatures with those recorded in the Global Environment Monitoring System (GEMS) data set. Results show that the model is able to capture the mean monthly surface temperature for the majority of the GEMS stations, while the interannual variability as derived from the USGS and NOAA data was captured reasonably well. Results are poorest for the Arctic rivers because the timing of ice breakup is predicted too late in the year due to the lack of including a mechanical breakup mechanism. Moreover, surface water temperatures for tropical rivers were overestimated, most likely due to an overestimation of rainfall temperature and incoming shortwave radiation. The spatiotemporal variation of water temperature reveals large temperature differences between water and atmosphere for the higher latitudes, while considerable lateral transport of heat can be observed for rivers crossing hydroclimatic zones, such as the Nile, the Mississippi, and the large rivers flowing to the Arctic. Overall, our model results show promise for future projection of global surface freshwater temperature under global change.

  14. The Derivation Of A CO2 Fugacity Climatology From SOCAT's Global In SITU Data

    NASA Astrophysics Data System (ADS)

    Goddijn-Murphy, L. M.; Woolf, D. K.; Land, P. E.; Shutler, J. D.

    2013-12-01

    The Surface Ocean CO2 Atlas (SOCAT) has made millions of global underway sea surface measurements of CO2 publicly available, all in a uniform format and presented as fugacity, fCO2. However, these fCO2 values are valid strictly only for the instantaneous temperature at measurement and are not ideal for climatology. We recomputed these fCO2 values for the measurement month to be applicable to climatological sea surface temperatures, extrapolated to reference year 2010. The data were then spatially interpolated on a 1°×1° grid of the global oceans to produce 12 monthly fCO2 distributions. Our climatology data will be shared with the science community.

  15. Sources and transport of microbial tetraether membrane lipids in Karst Systems

    NASA Astrophysics Data System (ADS)

    Jex, C.; Blyth, A. J.; McDonald, J.; Woltering, M.; Khan, S.; Baker, A.

    2014-12-01

    Speleothems preserve organic biomarkers, proxies for surface climate. Microbial-derived lipids, specifically glycerol dialkyl glycerol tetraetheral (GDGT) lipids have been identified in cave deposits and shown to correlate well with surface air temperature using the archaea-derived isoprenoid '(i)GDGT' index of TEX86 and the bacteria derived branched '(b)GDGT' index of MBT/CBT of modern speleothems [1]. Two competing sources for GDGTs in karst systems have been suggested: 1) A soil derived microbial signal dominated by bGDGTs; and 2) An in situ signal dominated by iGDGTs, representative of archaea existing within the cave or overlying bedrock [2]. These findings are yet to be thoroughly tested by characterising the seasonal nature of GDGTs in caves to establish the source and transport pathways within these complex fractured rock systems. Here, we address this and present the results of a yearlong monitoring campaign of GDGTs within two contrasting cave sites from the Yarrangobilly Caves in Kosciuszko national park, SE Australia. The caves are located at a high altitude, semi-arid site. Harriewood cave is dominated by discrete infiltration events throughout the year. Above the cave there are thin soils consisting of loose shallow scree, steep slopes and sparse shrub vegetation. The surface above Jillabenan is characterised by thick red clays of moderate to no slope and Eucalypt dominated forest. As such, these caves provide ideal test sites to characterise the variability in GDGT signals that may be a result of non-temperature related factors, including varying inputs (groundwater vs. in situ growth) or site-specific hydrological conditions. We present data obtained from within the cave: drip waters and in situ collection of GDGTs formed on filter papers left inside the cave throughout the year, and externally sourced signals from soils and their leachates. We also identify key differences in soil pH and cave air temperatures that are best predicted by using cave specific GDGT calibrations of [1]. [1] Blyth et al. 2013. Calibrating the glycerol dialkyl glycerol tetraether temperature signal in speleothems. Geochim Cosmochim Ac. 109, 312-328. [2] Blyth et al. 2014. Contrasting distributions of glycerol dialkyl glycerol tetraethers (GDGTs) in speleothems and associated soils, Org Geochem, 69, 1-10.

  16. Ice core age dating and paleothermometer calibration based on isotope and temperature profiles from deep boreholes at Vostok Station (East Antarctica)

    NASA Astrophysics Data System (ADS)

    Salamatin, Andrey N.; Lipenkov, Vladimir Y.; Barkov, Nartsiss I.; Jouzel, Jean; Petit, Jean Robert; Raynaud, Dominique

    1998-04-01

    An interpretation of the deuterium profile measured along the Vostok (East Antarctica) ice core down to 2755 m has been attempted on the basis of the borehole temperature analysis. An inverse problem is solved to infer a local "geophysical metronome," the orbital signal in the surface temperature oscillations expressed as a sum of harmonics of Milankovich periods. By correlating the smoothed isotopic temperature record to the metronome, a chronostratigraphy of the Vostok ice core is derived with an accuracy of ±3.0-4.5 kyr. The developed timescale predicts an age of 241 kyr at a depth of 2760 m. The ratio δD/δTi between deuterium content and cloud temperature fluctuations (at the top of the inversion layer) is examined by fitting simulated and measured borehole temperature profiles. The conventional estimate of the deuterium-temperature slope corresponding to the present-day spatial ratio (9 per mil/°C) is confirmed in general. However, the mismatch between modeled and measured borehole temperatures decreases noticeably if we allow surface temperature, responsible for the thermal state of the ice sheet, to undergo more intensive precession oscillations than those of the inversion temperature traced by isotope record. With this assumption, we obtain the long-term temporal deuterium-temperature slope to be 5.8-6.5 per mil/°C which implies that the glacial-interglacial temperature increase over central Antarctica was about 15°C in the surface temperature and 10°C in the inversion temperature. Past variations of the accumulation rate and the corresponding changes in the ice-sheet surface elevation are simultaneously simulated.

  17. Downscaling Surface Temperature Image with TsHARP

    USDA-ARS?s Scientific Manuscript database

    Daily evapotranspiration (ET) maps would significantly improve assessing crop water requirements, especially in the Texas High Plains (THP) where the supply of irrigation water is limited. Evapotranspireation maps derived from satellite data with daily coverage such as MODIS (Moderate Resolution Ima...

  18. Comparison of in-situ measurements and satellite-derived surface emissivity over Italian volcanic areas

    NASA Astrophysics Data System (ADS)

    Silvestri, Malvina; Musacchio, Massimo; Cammarano, Diego; Fabrizia Buongiorno, Maria; Amici, Stefania; Piscini, Alessandro

    2016-04-01

    In this work we compare ground measurements of emissivity collected during dedicated fields campaign on Mt. Etna and Solfatara of Pozzuoli volcanoes and acquired by means of Micro-FTIR (Fourier Thermal Infrared spectrometer) instrument with the emissivity obtained by using single ASTER data (Advanced Spaceborne Thermal Emission and Reflection Radiometer, ASTER 05) and the ASTER emissivity map extract from ASTER Global Emissivity Database (GED), released by LP DAAC on April 2, 2014. The database was developed by the National Aeronautics and Space Administration's (NASA) Jet Propulsion Laboratory (JPL), California Institute of Technology. The database includes land surface emissivity derived from ASTER data acquired over the contiguous United States, Africa, Arabian Peninsula, Australia, Europe, and China. Through this analysis we want to investigate the differences existing between the ASTER-GED dataset (average from 2000 to 2008 seasoning independent) and fall in-situ emissivity measurement. Moreover the role of different spatial resolution characterizing ASTER and MODIS, 90mt and 1km respectively, by comparing them with in situ measurements, is analyzed. Possible differences can be due also to the different algorithms used for the emissivity estimation, Temperature and Emissivity Separation algorithm for ASTER TIR band( Gillespie et al, 1998) and the classification-based emissivity method (Snyder and al, 1998) for MODIS. Finally land surface temperature products generated using ASTER-GED and ASTER 05 emissivity are also analyzed. Gillespie, A. R., Matsunaga, T., Rokugawa, S., & Hook, S. J. (1998). Temperature and emissivity separation from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Transactions on Geoscience and Remote Sensing, 36, 1113-1125. Snyder, W.C., Wan, Z., Zhang, Y., & Feng, Y.-Z. (1998). Classification-based emissivity for land surface temperature measurement from space. International Journal of Remote Sensing, 19, 2753-2574.

  19. An Integrated Approach to Estimate Instantaneous Near-Surface Air Temperature and Sensible Heat Flux Fields during the SEMAPHORE Experiment.

    NASA Astrophysics Data System (ADS)

    Bourras, Denis; Eymard, Laurence; Liu, W. Timothy; Dupuis, Hélène

    2002-03-01

    A new technique was developed to retrieve near-surface instantaneous air temperatures and turbulent sensible heat fluxes using satellite data during the Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiment, which was conducted in 1993 under mainly anticyclonic conditions. The method is based on a regional, horizontal atmospheric temperature advection model whose inputs are wind vectors, sea surface temperature fields, air temperatures around the region under study, and several constants derived from in situ measurements. The intrinsic rms error of the method is 0.7°C in terms of air temperature and 9 W m2 for the fluxes, both at 0.16° × 0.16° and 1.125° × 1.125° resolution. The retrieved air temperature and flux horizontal structures are in good agreement with fields from two operational general circulation models. The application to SEMAPHORE data involves the First European Remote Sensing Satellite (ERS-1) wind fields, Advanced Very High Resolution Radiometer (AVHRR) SST fields, and European Centre for Medium-Range Weather Forecasts (ECMWF) air temperature boundary conditions. The rms errors obtained by comparing the estimations with research vessel measurements are 0.3°C and 5 W m2.

  20. Estimating spatially distributed turbulent heat fluxes from high-resolution thermal imagery acquired with a UAV system

    PubMed Central

    Brenner, Claire; Thiem, Christina Elisabeth; Wizemann, Hans-Dieter; Bernhardt, Matthias; Schulz, Karsten

    2017-01-01

    ABSTRACT In this study, high-resolution thermal imagery acquired with a small unmanned aerial vehicle (UAV) is used to map evapotranspiration (ET) at a grassland site in Luxembourg. The land surface temperature (LST) information from the thermal imagery is the key input to a one-source and two-source energy balance model. While the one-source model treats the surface as a single uniform layer, the two-source model partitions the surface temperature and fluxes into soil and vegetation components. It thus explicitly accounts for the different contributions of both components to surface temperature as well as turbulent flux exchange with the atmosphere. Contrary to the two-source model, the one-source model requires an empirical adjustment parameter in order to account for the effect of the two components. Turbulent heat flux estimates of both modelling approaches are compared to eddy covariance (EC) measurements using the high-resolution input imagery UAVs provide. In this comparison, the effect of different methods for energy balance closure of the EC data on the agreement between modelled and measured fluxes is also analysed. Additionally, the sensitivity of the one-source model to the derivation of the empirical adjustment parameter is tested. Due to the very dry and hot conditions during the experiment, pronounced thermal patterns developed over the grassland site. These patterns result in spatially variable turbulent heat fluxes. The model comparison indicates that both models are able to derive ET estimates that compare well with EC measurements under these conditions. However, the two-source model, with a more complex treatment of the energy and surface temperature partitioning between the soil and vegetation, outperformed the simpler one-source model in estimating sensible and latent heat fluxes. This is consistent with findings from prior studies. For the one-source model, a time-variant expression of the adjustment parameter (to account for the difference between aerodynamic and radiometric temperature) that depends on the surface-to-air temperature gradient yielded the best agreement with EC measurements. This study showed that the applied UAV system equipped with a dual-camera set-up allows for the acquisition of thermal imagery with high spatial and temporal resolution that illustrates the small-scale heterogeneity of thermal surface properties. The UAV-based thermal imagery therefore provides the means for analysing patterns of LST and other surface properties with a high level of detail that cannot be obtained by traditional remote sensing methods. PMID:28515537

  1. Estimating spatially distributed turbulent heat fluxes from high-resolution thermal imagery acquired with a UAV system.

    PubMed

    Brenner, Claire; Thiem, Christina Elisabeth; Wizemann, Hans-Dieter; Bernhardt, Matthias; Schulz, Karsten

    2017-05-19

    In this study, high-resolution thermal imagery acquired with a small unmanned aerial vehicle (UAV) is used to map evapotranspiration (ET) at a grassland site in Luxembourg. The land surface temperature (LST) information from the thermal imagery is the key input to a one-source and two-source energy balance model. While the one-source model treats the surface as a single uniform layer, the two-source model partitions the surface temperature and fluxes into soil and vegetation components. It thus explicitly accounts for the different contributions of both components to surface temperature as well as turbulent flux exchange with the atmosphere. Contrary to the two-source model, the one-source model requires an empirical adjustment parameter in order to account for the effect of the two components. Turbulent heat flux estimates of both modelling approaches are compared to eddy covariance (EC) measurements using the high-resolution input imagery UAVs provide. In this comparison, the effect of different methods for energy balance closure of the EC data on the agreement between modelled and measured fluxes is also analysed. Additionally, the sensitivity of the one-source model to the derivation of the empirical adjustment parameter is tested. Due to the very dry and hot conditions during the experiment, pronounced thermal patterns developed over the grassland site. These patterns result in spatially variable turbulent heat fluxes. The model comparison indicates that both models are able to derive ET estimates that compare well with EC measurements under these conditions. However, the two-source model, with a more complex treatment of the energy and surface temperature partitioning between the soil and vegetation, outperformed the simpler one-source model in estimating sensible and latent heat fluxes. This is consistent with findings from prior studies. For the one-source model, a time-variant expression of the adjustment parameter (to account for the difference between aerodynamic and radiometric temperature) that depends on the surface-to-air temperature gradient yielded the best agreement with EC measurements. This study showed that the applied UAV system equipped with a dual-camera set-up allows for the acquisition of thermal imagery with high spatial and temporal resolution that illustrates the small-scale heterogeneity of thermal surface properties. The UAV-based thermal imagery therefore provides the means for analysing patterns of LST and other surface properties with a high level of detail that cannot be obtained by traditional remote sensing methods.

  2. Determining the impact of urban components on land surface temperature of Istanbul by using remote sensing indices.

    PubMed

    Bektaş Balçik, Filiz

    2014-02-01

    For the past 60 years, Istanbul has been experiencing an accelerated urban expansion. This urban expansion is leading to the replacement of natural surfaces by various artificial materials. This situation has a critical impact on the environment due to the alteration of heat energy balance. In this study, the effect upon the urban heat island (UHI) of Istanbul was analyzed using 2009 dated Landsat 5 Thematic Mapper (TM) data. An Index Based Built-up Index (IBI) was used to derive artificial surfaces in the study area. To produce the IBI index, Soil-Adjusted Vegetation Index, Normalized Difference Built-up Index, and Modified Normalized Difference Water Index were calculated. Land surface temperature (LST) distribution was derived from Landsat 5 TM images using a mono-window algorithm. In addition, 24 transects were selected, and different regression models were applied to explore the correlation between LST and IBI index. The results show that artificial surfaces have a positive exponential relationship with LST rather than a simple linear one. An ecological evaluation index of the region was calculated to explore the impact of both the vegetated land and the artificial surfaces on the UHI. Therefore, the quantitative relationship of urban components (artificial surfaces, vegetation, and water) and LST was examined using multivariate statistical analysis, and the correlation coefficient was obtained as 0.829. This suggested that the areas with a high rate of urbanization will accelerate the rise of LST and UHI in Istanbul.

  3. Geochemical Ecology of a High Latitude Coral: Plesiastrea versipora a new Paleo-Environmental Archive

    NASA Astrophysics Data System (ADS)

    Burgess, S. N.; McCulloch, M. M.; Ward, T.

    2005-12-01

    Corals growing in high latitude waters in Southern Australia are considered to be sensitive to changes in climate, including seasonal fluctuations in sea surface temperature. The annual nature of density bands of Plesiastrea versipora were verified using U/Th ages derived from multi-collector ICP-MS analyses and the resulting extension rates varied from an average of 1.2 mm yr -1 to 9 mm yr -1 for different colonies ranging in age from 120 - 300 years, located within the same reef. High resolution laser-ablation ICP-MS analyses of established paleo-temperature proxies including B/Ca, Mg/Ca, Sr/Ca and U/Ca were obtained from several cores of P. versipora from Gulf St Vincent (34.5°S) and Spencer Gulf (35°S), South Australia. Elemental compositions were compared to in situ sea surface temperature (SST) and satellite (IGOSS) records, and demonstrate significant covariance between Ba/Ca and temperature. Barium may not have been recognised as a temperature proxy in previous studies due to the smaller temperature range for lower latitude environments (~ 5°C versus 12°C for this study) and other factors contributing to the Ba signal such as terrestrially-derived or upwelled sources. Other trace elements analysed gave an indication of both the nutrient availability (P and Mn) and terrestrially derived pollutants (V, Y, Mo, Sn and Pb) correlating strongly with luminescent bands. Several of the stronger luminescent bands coincide temporally with known oil spills at a nearby port refinery and research is ongoing to determine if this is the point source of pollution. These data taken together suggest that P. versipora can provide valuable paleoclimate information in high-latitude environments, recording large seasonal variation in both temperature and productivity regimes with high fidelity and may also be employed to reconstruct anthropogenic activity.

  4. Satellite-derived vertical profiles of temperature and dew point for mesoscale weather forecast

    NASA Astrophysics Data System (ADS)

    Masselink, Thomas; Schluessel, P.

    1995-12-01

    Weather forecast-models need spatially high resolutioned vertical profiles of temperature and dewpoint for their initialisation. These profiles can be supplied by a combination of data from the Tiros-N Operational Vertical Sounder (TOVS) and the imaging Advanced Very High Resolution Radiometer (AVHRR) on board the NOAA polar orbiting sate!- lites. In cloudy cases the profiles derived from TOVS data only are of insufficient accuracy. The stanthrd deviations from radiosonde ascents or numerical weather analyses likely exceed 2 K in temperature and 5Kin dewpoint profiles. It will be shown that additional cloud information as retrieved from AVHIRR allows a significant improvement in theaccuracy of vertical profiles. The International TOVS Processing Package (ITPP) is coupled to an algorithm package called AVHRR Processing scheme Over cLouds, Land and Ocean (APOLLO) where parameters like cloud fraction and cloud-top temperature are determined with higher accuracy than obtained from TOVS retrieval alone. Furthermore, a split-window technique is applied to the cloud-free AVHRR imagery in order to derive more accurate surface temperatures than can be obtained from the pure TOVS retrieval. First results of the impact of AVHRR cloud detection on the quality of the profiles are presented. The temperature and humidity profiles of different retrieval approaches are validated against analyses of the European Centre for Medium-Range Weatherforecasts.

  5. PERSPECTIVE Working towards a community-wide understanding of satellite skin temperature observations

    NASA Astrophysics Data System (ADS)

    Shreve, Cheney

    2010-12-01

    With more than sixty free and publicly available high-quality datasets, including ecosystem variables, radiation budget variables, and land cover products, the MODIS instrument and the MODIS scientific team have contributed significantly to scientific investigations of ecosystems across the globe. The MODIS instrument, launched in December 1999, has 36 spectral bands, a viewing swath of 2330 km, and acquires data at 250 m, 500 m, and 1000 m spatial resolution every one to two days. Radiation budget variables include surface reflectance, skin temperature, emissivity, and albedo, to list a few. Ecosystem variables include several vegetation indices and productivity measures. Land cover characteristics encompass land cover classifications as well as model parameters and vegetation classifications. Many of these products are instrumental in constraining global climate models and climate change studies, as well as monitoring events such as the recent flooding in Pakistan, the unprecedented oil spill in the Gulf of Mexico, or phytoplankton bloom in the Barents Sea. While product validation efforts by the MODIS scientific team are both vigorous and continually improving, validation is unquestionably one of the most difficult tasks when dealing with remotely derived datasets, especially at the global scale. The quality and availability of MODIS data have led to widespread usage in the scientific community that has further contributed to validation and development of the MODIS products. In their recent paper entitled 'Land surface skin temperature climatology: benefitting from the strengths of satellite observations', Jin and Dickinson review the scientific theory behind, and demonstrate application of, a MODIS temperature product: surface skin temperature. Utilizing datasets from the Global Historical Climatological Network (GHCN), daily skin and air temperature from the Atmospheric Radiation Measurement (ARM) program, and MODIS products (skin temperature, albedo, land cover, water vapor, cloud cover), they show that skin temperature is clearly a different physical parameter from air temperature and varies from air temperature in magnitude, response to atmospheric conditions, and diurnal phase. Although the accuracy of skin temperature (Tskin) algorithms has improved to within 0.5-1°C for field measurements and clear-sky satellite observations (Becker and Li 1995, Goetz et al 1995, Wan and Dozier 1996), general confusion regarding the physical definition of 'surface temperature' and how it can be used for climate studies has persisted throughout the scientific community and limited the applications of these data (Jin and Dickinson 2010). For example, satellite sea surface temperature was used as evidence of global climate change instead of skin temperature in the IPCC 2001 and 2007 reports (Jin and Dickinson 2010). This work provides clarity in the theoretical definition of temperature variables, demonstrates the difference between air and skin temperature, and aids the understanding of the MODIS Tskin product, which could be very beneficial for future climate studies. As outlined by Jin and Dickinson, 'surface temperature' is a vague term commonly used in reference to air temperature, aerodynamic temperature, and skin temperature. Air temperature (Tair), or thermodynamic temperature, is measured by an in situ instrument usually 1.5-2 m above the ground. Aerodynamic temperature (Taero) refers to the temperature at the height of the roughness length of heat. Satellite derived skin temperature (Tskin) is the radiometric temperature derived from the inverse of Planck's function. While these different temperature variables are typically correlated, they differ as a result of environmental conditions (e.g. land cover and sky conditions; Jin and Dickinson 2010). With an extensive network of Tair measurements, some have questioned the benefits of using Tskin at all (Peterson et al 1997, 1998). Tskin and Tair can vary depending on land cover or sky conditions and variations may be large, e.g., for sparsely vegetated areas where net radiation is largely balanced by sensible heat flux (Hall et al 1992, Sun and Mahrt 1995, Jin et al 1997). Tskin can be higher than Taero at midday and lower at night (Sun and Mahrt 1995) and some models use Taero to approximate surface radiative temperature (Hubband and Monteith 1986). One of the strengths of the MODIS instrument is the simultaneous collection of surface and atmospheric conditions. By incorporating a range of MODIS variables in their comparison to Tskin, the authors examine the relationship of Tskin to atmospheric and surface conditions. Results from their global evaluation of Tskin highlight its variability on an inter-annual basis, its variation with solar zenith angle, and diurnal variations, which are not achievable with Tair measurements. Comparison with land cover type illustrates the seasonality of Tskin for different land covers. Comparison with the enhanced vegetation index (EVI) suggests more vegetation reduces skin temperature. Using the MODIS albedo, they demonstrate a clear relationship between yearly averaged Tskin and land surface albedo. Lastly, their examination of water vapor and cloud cover in comparison to Tskin suggests similar seasonality between these two variables. The MODIS Tskin product is not without uncertainty; retrieving Tskin requires a calculation of radiative transfer to account for atmospheric emission and molecular absorption, which is time and resource intensive (Jin and Dickinson 2010). Additionally, surface emissivity, instrument noise, and view angle geometry contribute to error in Tskin estimations (Jin and Dickinson 2010). The transparency of the scientific theory underlying this work, and the clear demonstration of the distinction between temperature measures on varying scales, demonstrates the usefulness of Tskin despite the uncertainties. Perhaps equally as important is the tone; in a time when the controversy surrounding climate change is peaking and the very ethics of the scientific community are being questioned, it is more critical than ever to be transparent in one's work and to assist the scientific community in understanding the tools we have available to us for investigating climate change. References Becker F and Li Z-L 1995 Surface temperature and emissivity at different scales: definition, measurement and related problems Remote Sensing Rev. 12 225-53 Goetz S J, Halthore R, Hall F G and Markham B L 1995 Surface temperature retrieval in a temperate grassland with multi-resolution sensors J. Geophys. Res. Atmos. 100 25397-410 Hall F G, Huemmrich K F, Goetz P J, Sellers P J and Nickeson J E 1992 Satellite remote sensing of the surface energy balance: success, failures and unresolved issues in FIFE J. Geophys. Res. Atmos. 97 19061-90 Jin M and Dickinson R E 2010 Land surface skin temperature climatology: benefitting from the strengths of satellite observations Environ. Res. Lett. 5 044004 Jin M, Dickinson R E and Vogelmann A M 1997 A comparison of CCM2/BATS skin temperature and surface-air temperature with satellite and surface observations J. Climate 10 1505-24 Hubband N D S and Monteith J L 1986 Radiative surface temperature and energy balance of a wheat canopy Boundary Layer Meteorol. 36 107-16 Peterson T C and Vose R S 1997 An overview of the Global Historical Climatology Network temperature data base Bull. Am. Meteorol. Soc. 78 2837-49 Peterson T C, Karl T R, Jamason P F, Knight R and Easterling D R 1998 The first difference method: maximizing station density for the calculation of long-term global temperature change J. Geophys. Res. Atmos. 103 25967-74 Sun J and Mahrt L 1995 Determination of surface fluxes from the surface radiative temperature Atmos. Sci. 52 1096-106 Wan Z and Dozier J 1996 A generalized split-window algorithm for retrieving land-surface temperature from space IEEE Trans. Geosci. Remote Sensing 34 892-905

  6. Application of spatially gridded temperature and land cover data sets for urban heat island analysis

    USGS Publications Warehouse

    Gallo, Kevin; Xian, George Z.

    2014-01-01

    Two gridded data sets that included (1) daily mean temperatures from 2006 through 2011 and (2) satellite-derived impervious surface area, were combined for a spatial analysis of the urban heat-island effect within the Dallas-Ft. Worth Texas region. The primary advantage of using these combined datasets included the capability to designate each 1 × 1 km grid cell of available temperature data as urban or rural based on the level of impervious surface area within the grid cell. Generally, the observed differences in urban and rural temperature increased as the impervious surface area thresholds used to define an urban grid cell were increased. This result, however, was also dependent on the size of the sample area included in the analysis. As the spatial extent of the sample area increased and included a greater number of rural defined grid cells, the observed urban and rural differences in temperature also increased. A cursory comparison of the spatially gridded temperature observations with observations from climate stations suggest that the number and location of stations included in an urban heat island analysis requires consideration to assure representative samples of each (urban and rural) environment are included in the analysis.

  7. Satellite-derived temperature data for monitoring water status in a floodplain forest of the Upper Sabine River, Texas

    USGS Publications Warehouse

    Lemon, Mary Grace T.; Allen, Scott T.; Edwards, Brandon L.; King, Sammy L.; Keim, Richard F.

    2016-01-01

    Decreased water availability due to hydrologic modifications, groundwater withdrawal, and climate change threaten bottomland hardwood (BLH) forest communities. We used satellite-derived (MODIS) land-surface temperature (LST) data to investigate spatial heterogeneity of canopy temperature (an indicator of plant-water status) in a floodplain forest of the upper Sabine River for 2008–2014. High LST pixels were generally further from the river and at higher topographic locations, indicating lower water-availability. Increasing rainfall-derived soil moisture corresponded with decreased heterogeneity of LST between pixels but there was weaker association between Sabine River stage and heterogeneity. Stronger dependence of LST convergence on rainfall rather than river flow suggests that some regions are less hydrologically connected to the river, and vegetation may rely on local precipitation and other contributions to the riparian aquifer to replenish soil moisture. Observed LST variations associated with hydrology encourage further investigation of the utility of this approach for monitoring forest stress, especially with considerations of climate change and continued river management.

  8. The Role of Atmospheric Pressure on Surface Thermal Inertia for Early Mars Climate Modeling

    NASA Astrophysics Data System (ADS)

    Mischna, M.; Piqueux, S.

    2017-12-01

    On rocky bodies such as Mars, diurnal surface temperatures are controlled by the surface thermal inertia, which is a measure of the ability of the surface to store heat during the day and re-radiate it at night. Thermal inertia is a compound function of the near-surface regolith thermal conductivity, density and specific heat, with the regolith thermal conductivity being strongly controlled by the atmospheric pressure. For Mars, current best maps of global thermal inertia are derived from the Thermal Emission Spectrometer (TES) instrument on the Mars Global Surveyor (MGS) spacecraft using bolometric brightness temperatures of the surface. Thermal inertia is widely used in the atmospheric modeling community to determine surface temperatures and to establish lower boundary conditions for the atmosphere. Infrared radiation emitted from the surface is key in regulating lower atmospheric temperatures and driving overall global circulation. An accurate map of surface thermal inertia is thus required to produce reasonable results of the present-day atmosphere using numerical Mars climate models. Not surprisingly, thermal inertia is also a necessary input into climate models of early Mars, which assume a thicker atmosphere, by as much as one to two orders of magnitude above the present-day 6 mb mean value. Early Mars climate models broadly, but incorrectly, assume the present day thermal inertia surface distribution. Here, we demonstrate that, on early Mars, when pressures were larger than today's, the surface layer thermal inertia was globally higher because of the increased thermal conductivity driven by the higher gas pressure in interstitial pore spaces within the soil. Larger thermal inertia reduces the diurnal range of surface temperature and will affect the size and timing of the modeled seasonal polar ice caps. Additionally, it will globally alter the frequency of when surface temperatures are modeled to exceed the liquid water melting point, and so results may need to be reassessed in light of lower `peak' global temperatures. We shall demonstrate the consequences of using properly calibrated thermal inertia maps for early Mars climate simulations, and propose simplified thermal inertia maps for use in such climate models.

  9. Surface Heat Budgets and Sea Surface Temperature in the Pacific Warm Pool During TOGA COARE

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Zhao, Wenzhong; Chou, Ming-Dah

    1998-01-01

    The daily mean heat and momentum fluxes at the surface derived from the SSM/I and Japan's GMS radiance measurements are used to study the temporal and spatial variability of the surface energy budgets and their relationship to the sea surface temperature during the COARE intensive observing period (IOP). For the three time legs observed during the IOP, the retrieved surface fluxes compare reasonably well with those from the IMET buoy, RV Moana Wave, and RV Wecoma. The characteristics of surface heat and momentum fluxes are very different between the southern and northern warm pool. In the southern warm pool, the net surface heat flux is dominated by solar radiation which is, in turn, modulated by the two Madden-Julian oscillations. The surface winds are generally weak, leading to a shallow ocean mixed layer. The solar radiation penetrating through the bottom of the mixed layer is significant, and the change in the sea surface temperature during the IOP does not follow the net surface heat flux. In the northern warm pool, the northeasterly trade wind is strong and undergoes strong seasonal variation. The variation of the net surface heat flux is dominated by evaporation. The two westerly wind bursts associated with the Madden-Julian oscillations seem to have little effect on the net surface heat flux. The ocean mixed layer is deep, and the solar radiation penetrating through the bottom of the mixed layer is small. As opposed to the southern warm pool, the trend of the sea surface temperature in the northern warm pool during the IOP is in agreement with the variation of the net heat flux at the surface.

  10. Lignin-derived oxygenate reforming on a bimetallic surface: The reaction of benzaldehyde on Zn/Pt(111)

    NASA Astrophysics Data System (ADS)

    Shi, Daming; Vohs, John M.

    2016-08-01

    Temperature programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS) were used to characterize the adsorption and reaction of benzaldehyde (C6H5CHO) on hydrogen-covered Pt(111) and Zn-modified Pt(111) surfaces. Benzaldehyde was found to interact with Pt(111) via both the phenyl ring and carbonyl of the aldehyde group. This bonding configuration facilitates unselective decomposition of the benzaldehyde to produce CO, H2, and small hydrocarbon fragments at relatively low temperatures. On the other hand, benzaldehyde was found to bond to Zn-decorated Pt(111) surface exclusively via the carbonyl group in an η2(C, O) configuration, with the phenyl ring tilted away from the surface. This configuration weakens Csbnd O bond in the carbonyl facilitating its cleavage and helps prevent hydrogenation of the phenyl ring.

  11. Probing the Active Surface Sites for CO Reduction on Oxide-Derived Copper Electrocatalysts

    DOE PAGES

    Verdaguer-Casadevall, Arnau; Li, Christina W.; Johansson, Tobias P.; ...

    2015-07-30

    CO electroreduction activity on oxide-derived Cu (OD-Cu) was found to correlate with metastable surface features that bind CO strongly. OD-Cu electrodes prepared by H 2 reduction of Cu 2O precursors reduce CO to acetate and ethanol with nearly 50% Faradaic efficiency at moderate overpotential. Temperature-programmed desorption of CO on OD-Cu revealed the presence of surface sites with strong CO binding that are distinct from the terraces and stepped sites found on polycrystalline Cu foil. After annealing at 350 °C, the surface-area corrected current density for CO reduction is 44-fold lower and the Faradaic efficiency is less than 5%. These changesmore » are accompanied by a reduction in the proportion of strong CO binding sites. Here, we propose that the active sites for CO reduction on OD-Cu surfaces are strong CO binding sites that are supported by grain boundaries. Uncovering these sites is a first step toward understanding the surface chemistry necessary for efficient CO electroreduction.« less

  12. Temperature and heat in informal settlements in Nairobi

    PubMed Central

    Misiani, Herbert; Okoth, Jerrim; Jordan, Asha; Gohlke, Julia; Ouma, Gilbert; Arrighi, Julie; Zaitchik, Ben F.; Jjemba, Eddie; Verjee, Safia; Waugh, Darryn W.

    2017-01-01

    Nairobi, Kenya exhibits a wide variety of micro-climates and heterogeneous surfaces. Paved roads and high-rise buildings interspersed with low vegetation typify the central business district, while large neighborhoods of informal settlements or “slums” are characterized by dense, tin housing, little vegetation, and limited access to public utilities and services. To investigate how heat varies within Nairobi, we deployed a high density observation network in 2015/2016 to examine summertime temperature and humidity. We show how temperature, humidity and heat index differ in several informal settlements, including in Kibera, the largest slum neighborhood in Africa, and find that temperature and a thermal comfort index known colloquially as the heat index regularly exceed measurements at the Dagoretti observation station by several degrees Celsius. These temperatures are within the range of temperatures previously associated with mortality increases of several percent in youth and elderly populations in informal settlements. We relate these changes to surface properties such as satellite-derived albedo, vegetation indices, and elevation. PMID:29107977

  13. Temperature and heat in informal settlements in Nairobi.

    PubMed

    Scott, Anna A; Misiani, Herbert; Okoth, Jerrim; Jordan, Asha; Gohlke, Julia; Ouma, Gilbert; Arrighi, Julie; Zaitchik, Ben F; Jjemba, Eddie; Verjee, Safia; Waugh, Darryn W

    2017-01-01

    Nairobi, Kenya exhibits a wide variety of micro-climates and heterogeneous surfaces. Paved roads and high-rise buildings interspersed with low vegetation typify the central business district, while large neighborhoods of informal settlements or "slums" are characterized by dense, tin housing, little vegetation, and limited access to public utilities and services. To investigate how heat varies within Nairobi, we deployed a high density observation network in 2015/2016 to examine summertime temperature and humidity. We show how temperature, humidity and heat index differ in several informal settlements, including in Kibera, the largest slum neighborhood in Africa, and find that temperature and a thermal comfort index known colloquially as the heat index regularly exceed measurements at the Dagoretti observation station by several degrees Celsius. These temperatures are within the range of temperatures previously associated with mortality increases of several percent in youth and elderly populations in informal settlements. We relate these changes to surface properties such as satellite-derived albedo, vegetation indices, and elevation.

  14. The Effect of Lake Temperatures and Emissions on Ozone Exposure in the Western Great Lakes Region

    Treesearch

    Jerome D. Fast; Warren E. Heilman

    2003-01-01

    A meteorological-chemical model with a 12-km horizontal grid spacing was used to simulate the evolution of ozone over the western Great Lakes region during a 30-day period in the summer of 1999. Lake temperatures in the model were based on analyses derived from daily satellite measurements. The model performance was evaluated using operational surface and upper-air...

  15. Impact of Satellite Remote Sensing Data on Simulations of ...

    EPA Pesticide Factsheets

    We estimated surface salinity flux and solar penetration from satellite data, and performed model simulations to examine the impact of including the satellite estimates on temperature, salinity, and dissolved oxygen distributions on the Louisiana continental shelf (LCS) near the annual hypoxic zone. Rainfall data from the Tropical Rainfall Measurement Mission (TRMM) were used for the salinity flux, and the diffuse attenuation coefficient (Kd) from Moderate Resolution Imaging Spectroradiometer (MODIS) were used for solar penetration. Improvements in the model results in comparison with in situ observations occurred when the two types of satellite data were included. Without inclusion of the satellite-derived surface salinity flux, realistic monthly variability in the model salinity fields was observed, but important inter-annual variability wasmissed. Without inclusion of the satellite-derived light attenuation, model bottom water temperatures were too high nearshore due to excessive penetration of solar irradiance. In general, these salinity and temperature errors led to model stratification that was too weak, and the model failed to capture observed spatial and temporal variability in water-column vertical stratification. Inclusion of the satellite data improved temperature and salinity predictions and the vertical stratification was strengthened, which improved prediction of bottom-water dissolved oxygen. The model-predicted area of bottom-water hypoxia on the

  16. Land surface temperature distribution and development for green open space in Medan city using imagery-based satellite Landsat 8

    NASA Astrophysics Data System (ADS)

    Sulistiyono, N.; Basyuni, M.; Slamet, B.

    2018-03-01

    Green open space (GOS) is one of the requirements where a city is comfortable to stay. GOS might reduce land surface temperature (LST) and air pollution. Medan is one of the biggest towns in Indonesia that experienced rapid development. However, the early development tends to neglect the GOS existence for the city. The objective of the study is to determine the distribution of land surface temperature and the relationship between the normalized difference vegetation index (NDVI) and the priority of GOS development in Medan City using imagery-based satellite Landsat 8. The method approached to correlate the distribution of land surface temperature derived from the value of digital number band 10 with the NDVI which was from the ratio of groups five and four on satellite images of Landsat 8. The results showed that the distribution of land surface temperature in the Medan City in 2016 ranged 20.57 - 33.83 °C. The relationship between the distribution of LST distribution with NDVI was reversed with a negative correlation of -0.543 (sig 0,000). The direction of GOS in Medan City is therefore developed on the allocation of LST and divided into three priority classes namely first priority class had 5,119.71 ha, the second priority consisted of 16,935.76 ha, and third priority of 6,118.50 ha.

  17. Modeling the Surface Energy Balance of the Core of an Old Mediterranean City: Marseille.

    NASA Astrophysics Data System (ADS)

    Lemonsu, A.; Grimmond, C. S. B.; Masson, V.

    2004-02-01

    The Town Energy Balance (TEB) model, which parameterizes the local-scale energy and water exchanges between urban surfaces and the atmosphere by treating the urban area as a series of urban canyons, coupled to the Interactions between Soil, Biosphere, and Atmosphere (ISBA) scheme, was run in offline mode for Marseille, France. TEB's performance is evaluated with observations of surface temperatures and surface energy balance fluxes collected during the field experiments to constrain models of atmospheric pollution and transport of emissions (ESCOMPTE) urban boundary layer (UBL) campaign. Particular attention was directed to the influence of different surface databases, used for input parameters, on model predictions. Comparison of simulated canyon temperatures with observations resulted in improvements to TEB parameterizations by increasing the ventilation. Evaluation of the model with wall, road, and roof surface temperatures gave good results. The model succeeds in simulating a sensible heat flux larger than heat storage, as observed. A sensitivity comparison using generic dense city parameters, derived from the Coordination of Information on the Environment (CORINE) land cover database, and those from a surface database developed specifically for the Marseille city center shows the importance of correctly documenting the urban surface. Overall, the TEB scheme is shown to be fairly robust, consistent with results from previous studies.

  18. Effect of degassing temperature on specific surface area and pore volume measurements of biochar

    NASA Astrophysics Data System (ADS)

    Sigmund, Gabriel; Hüffer, Thorsten; Kah, Melanie; Hofmann, Thilo

    2017-04-01

    Specific surface area, pore volume, and pore size distribution are key biochar properties that have been related to water and nutrient cycling, microbial activity as well as sorption potential for organic compounds. Specific surface area and pore volume are commonly determined by measurement of physisorption of N2 and/or CO2. The measurement requires prior degassing of the samples, which may change the structure of the materials. Information on degassing temperature is rarely reported in literature, and recommendations differ considerably between existing guidelines for biochar characterization. Therefore, the influence of degassing temperature on N2 and CO2physisorption measurements was investigated by systematically degassing a range of materials, including four biochars, Al2O3 and carbon nanotubes at different temperatures (105 ˚ C, 150 ˚ C, 200 ˚ C, 250 ˚ C and 300 ˚ C for ≥ 14 h each). Measured specific surface area and pore volume increased with increasing degassing temperature for all biochars. Additional surface area and pore volume may have become available as components in biochars volatilized during the degassing phase. The results of our study showed that (i) degassing conditions change material properties, and influence physisorption measurements for biochar (ii) comparison between parameters derived from different degassing protocols may not be appropriate, and (iii) degassing protocols should be harmonized in the biochar community [1]. [1] Sigmund, et al. (2016), "Biochar total surface area and total pore volume determined by N2 and CO2 physisorption are strongly influenced by degassing temperature", STOTEN, doi: http://dx.doi.org/10.1016/j.scitotenv.2016.12.023.

  19. Thermal Band Atmospheric Correction Using Atmospheric Profiles Derived from Global Positioning System Radio Occultation and the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Holekamp, Kara; Stewart, Randy; Vaughan, Ronald D.

    2006-01-01

    This Rapid Prototyping Capability study explores the potential to use atmospheric profiles derived from GPS (Global Positioning System) radio occultation measurements and by AIRS (Atmospheric Infrared Sounder) onboard the Aqua satellite to improve surface temperature retrieval from remotely sensed thermal imagery. This study demonstrates an example of a cross-cutting decision support technology whereby NASA data or models are shown to improve a wide number of observation systems or models. The ability to use one data source to improve others will be critical to the GEOSS (Global Earth Observation System of Systems) where a large number of potentially useful systems will require auxiliary datasets as input for decision support. Atmospheric correction of thermal imagery decouples TOA radiance and separates surface emission from atmospheric emission and absorption. Surface temperature can then be estimated from the surface emission with knowledge of its emissivity. Traditionally, radiosonde sounders or atmospheric models based on radiosonde sounders, such as the NOAA (National Oceanic & Atmospheric Administration) ARL (Air Resources Laboratory) READY (Real-time Environmental Application and Display sYstem), provide the atmospheric profiles required to perform atmospheric correction. Unfortunately, these types of data are too spatially sparse and too infrequently taken. The advent of high accuracy, global coverage, atmospheric data using GPS radio occultation and AIRS may provide a new avenue for filling data input gaps. In this study, AIRS and GPS radio occultation derived atmospheric profiles from the German Aerospace Center CHAMP (CHAllenging Minisatellite Payload), the Argentinean Commission on Space Activities SAC-C (Satellite de Aplicaciones Cientificas-C), and the pair of NASA GRACE (Gravity Recovery and Climate Experiment) satellites are used as input data in atmospheric radiative transport modeling based on the MODTRAN (MODerate resolution atmospheric TRANsmittance) radiative transport software to separate out the atmospheric component of measured top of atmosphere radiance. Simulated water bodies across a variety of MODTRAN model atmospheres including desert, mid-latitude, tropical and sub-artic conditions provide test bed conditions. Atmospherically corrected radiance and surface temperature results were compared to those obtained using traditional radiosonde balloon data and models. In general, differences between the different techniques were less than 2 percent indicating the potential value satellite derived atmospheric profiles have to atmospherically correct thermal imagery.

  20. Impact of Vegetation Cover Fraction Parameterization schemes on Land Surface Temperature Simulation in the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Lv, M.; Li, C.; Lu, H.; Yang, K.; Chen, Y.

    2017-12-01

    The parameterization of vegetation cover fraction (VCF) is an important component of land surface models. This paper investigates the impacts of three VCF parameterization schemes on land surface temperature (LST) simulation by the Common Land Model (CoLM) in the Tibetan Plateau (TP). The first scheme is a simple land cover (LC) based method; the second one is based on remote sensing observation (hereafter named as RNVCF) , in which multi-year climatology VCFs is derived from Moderate-resolution Imaging Spectroradiometer (MODIS) NDVI (Normalized Difference Vegetation Index); the third VCF parameterization scheme derives VCF from the LAI simulated by LSM and clump index at every model time step (hereafter named as SMVCF). Simulated land surface temperature(LST) and soil temperature by CoLM with three VCF parameterization schemes were evaluated by using satellite LST observation and in situ soil temperature observation, respectively, during the period of 2010 to 2013. The comparison against MODIS Aqua LST indicates that (1) CTL produces large biases for both four seasons in early afternoon (about 13:30, local solar time), while the mean bias in spring reach to 12.14K; (2) RNVCF and SMVCF reduce the mean bias significantly, especially in spring as such reduce is about 6.5K. Surface soil temperature observed at 5 cm depth from three soil moisture and temperature monitoring networks is also employed to assess the skill of three VCF schemes. The three networks, crossing TP from West to East, have different climate and vegetation conditions. In the Ngari network, located in the Western TP with an arid climate, there are not obvious differences among three schemes. In Naqu network, located in central TP with a semi-arid climate condition, CTL shows a severe overestimates (12.1 K), but such overestimations can be reduced by 79% by RNVCF and 87% by SMVCF. In the third humid network (Maqu in eastern TP), CoLM performs similar to Naqu. However, at both Naqu and Maqu networks, RNVCF shows significant overestimation in summer, perhaps due to RNVCF ignores the growing characteristics of vegetation (mainly grass) in these two regions. Our results demonstrate that VCF schemes have significant influence on LSM performance, and indicate that it is important to consider vegetation growing characteristics in VCF schemes for different LCs.

  1. Seasonal and Interannual Variations of Ice Sheet Surface Elevation at the Summit of Greenland: Observed and Modeled

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Jun, Li; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Observed seasonal and interannual variations in the surface elevation over the summit of the Greenland ice sheet are modeled using a new temperature-dependent formulation of firn-densification and observed accumulation variations. The observed elevation variations are derived from ERS (European Remote Sensing)-1 and ERS-2 radar altimeter data for the period between April 1992 and April 1999. A multivariate linear/sine function is fitted to an elevation time series constructed from elevation differences measured by radar altimetry at orbital crossovers. The amplitude of the seasonal elevation cycle is 0.25 m peak-to-peak, with a maximum in winter and a minimum in summer. Inter-annually, the elevation decreases to a minimum in 1995, followed by an increase to 1999, with an overall average increase of 4.2 cm a(exp -1) for 1992 to 1999. Our densification formulation uses an initial field-density profile, the AWS (automatic weather station) surface temperature record, and a temperature-dependent constitutive relation for the densification that is based on laboratory measurements of crystal growth rates. The rate constant and the activation energy commonly used in the Arrhenius-type constitutive relation for firn densification are also temperature dependent, giving a stronger temperature and seasonal amplitudes about 10 times greater than previous densification formulations. Summer temperatures are most important, because of the strong non-linear dependence on temperature. Much of firn densification and consequent surface lowering occurs within about three months of the summer season, followed by a surface build-up from snow accumulation until spring. Modeled interannual changes of the surface elevation, using the AWS measurements of surface temperature and accumulation and results of atmospheric modeling of precipitation variations, are in good agreement with the altimeter observations. In the model, the surface elevation decreases about 20 cm over the seven years due to more compaction driven by increasing summer temperatures. The minimum elevation in 1995 is driven mainly by a temporary accumulation decrease and secondarily by warmer temperatures. However, the overall elevation increase over the seven years is dominated by the accumulation increase in the later years.

  2. Submesoscale-selective compensation of fronts in a salinity-stratified ocean.

    PubMed

    Spiro Jaeger, Gualtiero; Mahadevan, Amala

    2018-02-01

    Salinity, rather than temperature, is the leading influence on density in some regions of the world's upper oceans. In the Bay of Bengal, heavy monsoonal rains and runoff generate strong salinity gradients that define density fronts and stratification in the upper ~50 m. Ship-based observations made in winter reveal that fronts exist over a wide range of length scales, but at O(1)-km scales, horizontal salinity gradients are compensated by temperature to alleviate about half the cross-front density gradient. Using a process study ocean model, we show that scale-selective compensation occurs because of surface cooling. Submesoscale instabilities cause density fronts to slump, enhancing stratification along-front. Specifically for salinity fronts, the surface mixed layer (SML) shoals on the less saline side, correlating sea surface salinity (SSS) with SML depth at O(1)-km scales. When losing heat to the atmosphere, the shallower and less saline SML experiences a larger drop in temperature compared to the adjacent deeper SML on the salty side of the front, thus correlating sea surface temperature (SST) with SSS at the submesoscale. This compensation of submesoscale fronts can diminish their strength and thwart the forward cascade of energy to smaller scales. During winter, salinity fronts that are dynamically submesoscale experience larger temperature drops, appearing in satellite-derived SST as cold filaments. In freshwater-influenced regions, cold filaments can mark surface-trapped layers insulated from deeper nutrient-rich waters, unlike in other regions, where they indicate upwelling of nutrient-rich water and enhanced surface biological productivity.

  3. Factorial-based response-surface modeling with confidence intervals for optimizing thermal-optical transmission analysis of atmospheric black carbon.

    PubMed

    Conny, J M; Norris, G A; Gould, T R

    2009-03-09

    Thermal-optical transmission (TOT) analysis measures black carbon (BC) in atmospheric aerosol on a fibrous filter. The method pyrolyzes organic carbon (OC) and employs laser light absorption to distinguish BC from the pyrolyzed OC; however, the instrument does not necessarily separate the two physically. In addition, a comprehensive temperature protocol for the analysis based on the Beer-Lambert Law remains elusive. Here, empirical response-surface modeling was used to show how the temperature protocol in TOT analysis can be modified to distinguish pyrolyzed OC from BC based on the Beer-Lambert Law. We determined the apparent specific absorption cross sections for pyrolyzed OC (sigma(Char)) and BC (sigma(BC)), which accounted for individual absorption enhancement effects within the filter. Response-surface models of these cross sections were derived from a three-factor central-composite factorial experimental design: temperature and duration of the high-temperature step in the helium phase, and the heating increase in the helium-oxygen phase. The response surface for sigma(BC), which varied with instrument conditions, revealed a ridge indicating the correct conditions for OC pyrolysis in helium. The intersection of the sigma(BC) and sigma(Char) surfaces indicated the conditions where the cross sections were equivalent, satisfying an important assumption upon which the method relies. 95% confidence interval surfaces defined a confidence region for a range of pyrolysis conditions. Analyses of wintertime samples from Seattle, WA revealed a temperature between 830 degrees C and 850 degrees C as most suitable for the helium high-temperature step lasting 150s. However, a temperature as low as 750 degrees C could not be rejected statistically.

  4. Surface emissivity and temperature retrieval for a hyperspectral sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borel, C.C.

    1998-12-01

    With the growing use of hyper-spectral imagers, e.g., AVIRIS in the visible and short-wave infrared there is hope of using such instruments in the mid-wave and thermal IR (TIR) some day. The author believes that this will enable him to get around using the present temperature-emissivity separation algorithms using methods which take advantage of the many channels available in hyper-spectral imagers. A simple fact used in coming up with a novel algorithm is that a typical surface emissivity spectrum are rather smooth compared to spectral features introduced by the atmosphere. Thus, a iterative solution technique can be devised which retrievesmore » emissivity spectra based on spectral smoothness. To make the emissivities realistic, atmospheric parameters are varied using approximations, look-up tables derived from a radiative transfer code and spectral libraries. One such iterative algorithm solves the radiative transfer equation for the radiance at the sensor for the unknown emissivity and uses the blackbody temperature computed in an atmospheric window to get a guess for the unknown surface temperature. By varying the surface temperature over a small range a series of emissivity spectra are calculated. The one with the smoothest characteristic is chosen. The algorithm was tested on synthetic data using MODTRAN and the Salisbury emissivity database.« less

  5. Model development for MODIS thermal band electronic cross-talk

    NASA Astrophysics Data System (ADS)

    Chang, Tiejun; Wu, Aisheng; Geng, Xu; Li, Yonghong; Brinkmann, Jake; Keller, Graziela; Xiong, Xiaoxiong (Jack)

    2016-10-01

    MODerate-resolution Imaging Spectroradiometer (MODIS) has 36 bands. Among them, 16 thermal emissive bands covering a wavelength range from 3.8 to 14.4 μm. After 16 years on-orbit operation, the electronic crosstalk of a few Terra MODIS thermal emissive bands develop substantial issues which cause biases in the EV brightness temperature measurements and surface feature contamination. The crosstalk effects on band 27 with center wavelength at 6.7 μm and band 29 at 8.5 μm increased significantly in recent years, affecting downstream products such as water vapor and cloud mask. The crosstalk issue can be observed from nearly monthly scheduled lunar measurements, from which the crosstalk coefficients can be derived. Most of MODIS thermal bands are saturated at moon surface temperatures and the development of an alternative approach is very helpful for verification. In this work, a physical model was developed to assess the crosstalk impact on calibration as well as in Earth view brightness temperature retrieval. This model was applied to Terra MODIS band 29 empirically for correction of Earth brightness temperature measurements. In the model development, the detector nonlinear response is considered. The impacts of the electronic crosstalk are assessed in two steps. The first step consists of determining the impact on calibration using the on-board blackbody (BB). Due to the detector nonlinear response and large background signal, both linear and nonlinear coefficients are affected by the crosstalk from sending bands. The crosstalk impact on calibration coefficients was calculated. The second step is to calculate the effects on the Earth view brightness temperature retrieval. The effects include those from affected calibration coefficients and the contamination of Earth view measurements. This model links the measurement bias with crosstalk coefficients, detector nonlinearity, and the ratio of Earth measurements between the sending and receiving bands. The correction of the electronic crosstalk can be implemented empirically from the processed bias at different brightness temperature. The implementation can be done through two approaches. As routine calibration assessment for thermal infrared bands, the trending over select Earth scenes is processed for all the detectors in a band and the band averaged bias is derived for certain time. In this case, the correction of an affected band can be made using the regression of the model with band averaged bias and then corrections of detector differences are applied. The second approach requires the trending for individual detectors and the bias for each detector is used for regression with the model. A test using the first approach was made for Terra MODIS band 29 with the biases derived from long-term trending of sea surface temperature and Dome-C surface temperature.

  6. Heat transfer through particulated media in stagnant gases model and laboratory measurements: Application to Mars

    NASA Astrophysics Data System (ADS)

    Piqueux, Sylvain Loic Lucien

    The physical characterization of the upper few centimeters to meters of the Martian surface has greatly benefited from remote temperature measurements. Typical grain sizes, rock abundances, subsurface layering, soil cementation, bedrock exposures, and ice compositions have been derived and mapped using temperature data in conjunction with subsurface models of heat conduction. Yet, these models of heat conduction are simplistic, precluding significant advances in the characterization of the physical nature of the Martian surface. A new model of heat conduction for homogeneous particulated media accounting for the grain size, porosity, gas pressure and composition, temperature, and the effect of any cementing phase is presented. The incorporation of the temperature effect on the bulk conductivity results in a distortion of the predicted diurnal and seasonal temperatures when compared to temperatures predicted with a temperature-independent conductivity model. Such distortions have been observed and interpreted to result from subsurface heterogeneities, but they may simply be explained by a temperature-dependency of the thermal inertia, with additional implications on the derived grain sizes. Cements are shown to significantly increase the bulk conductivity of a particulated medium and bond fractions <5% per volume are consistent with Martian thermal inertia data previously hypothesized to correspond to a global duricrust. A laboratory setup has been designed, built, calibrated and used to measure the thermal conductivity of particulated samples in order to test and refine the models mentioned above. Preliminary results confirm the influence of the temperature on the bulk conductivity, as well as the effect of changing the gas composition. Cemented samples are shown to conduct heat more efficiently than their uncemented counterparts.

  7. Local Effects of Ice Floes on Skin Sea Surface Temperature in the Marginal Ice Zone from UAVs

    NASA Astrophysics Data System (ADS)

    Zappa, C. J.; Brown, S.; Emery, W. J.; Adler, J.; Wick, G. A.; Steele, M.; Palo, S. E.; Walker, G.; Maslanik, J. A.

    2013-12-01

    Recent years have seen extreme changes in the Arctic. Particularly striking are changes within the Pacific sector of the Arctic Ocean, and especially in the seas north of the Alaskan coast. These areas have experienced record warming, reduced sea ice extent, and loss of ice in areas that had been ice-covered throughout human memory. Even the oldest and thickest ice types have failed to survive through the summer melt period in areas such as the Beaufort Sea and Canada Basin, and fundamental changes in ocean conditions such as earlier phytoplankton blooms may be underway. Marginal ice zones (MIZ), or areas where the "ice-albedo feedback" driven by solar warming is highest and ice melt is extensive, may provide insights into the extent of these changes. Airborne remote sensing, in particular InfraRed (IR), offers a unique opportunity to observe physical processes at sea-ice margins. It permits monitoring the ice extent and coverage, as well as the ice and ocean temperature variability. It can also be used for derivation of surface flow field allowing investigation of turbulence and mixing at the ice-ocean interface. Here, we present measurements of visible and IR imagery of melting ice floes in the marginal ice zone north of Oliktok Point AK in the Beaufort Sea made during the Marginal Ice Zone Ocean and Ice Observations and Processes EXperiment (MIZOPEX) in July-August 2013. The visible and IR imagery were taken from the unmanned airborne vehicle (UAV) ScanEagle. The visible imagery clearly defines the scale of the ice floes. The IR imagery show distinct cooling of the skin sea surface temperature (SST) as well as a intricate circulation and mixing pattern that depends on the surface current, wind speed, and near-surface vertical temperature/salinity structure. Individual ice floes develop turbulent wakes as they drift and cause transient mixing of an influx of colder surface (fresh) melt water. The upstream side of the ice floe shows the coldest skin SST, and downstream the skin SST is mixed within the turbulent wake over 10s of meters. We compare the structure of circulation and mixing of the influx of cold skin SST driven by surface currents and wind. In-situ temperature measurements provide the context for the vertical structure of the mixing and its impact on the skin SST. Furthermore, comparisons to satellite-derived sea surface temperature of the region are presented. The accuracy of satellite derived SST products and how well the observed skin SSTs represent ocean bulk temperatures in polar regions is not well understood, due in part to lack of observations. Estimated error in the polar seas is relatively high at up to 0.4 deg. C compared to less than 0.2 deg. C for other areas. The goal of these and future analyses of the MIZOPEX data set is to elucidate a basic question that is significant for the entire Earth system. Have these regions passed a tipping point, such that they are now essentially acting as sub-Arctic seas where ice disappears in summer, or instead whether the changes are transient, with the potential for the ice pack to recover?

  8. Improved Surface and Tropospheric Temperatures Determined Using Only Shortwave Channels: The AIRS Science Team Version-6 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2011-01-01

    The Goddard DISC has generated products derived from AIRS/AMSU-A observations, starting from September 2002 when the AIRS instrument became stable, using the AIRS Science Team Version-5 retrieval algorithm. The AIRS Science Team Version-6 retrieval algorithm will be finalized in September 2011. This paper describes some of the significant improvements contained in the Version-6 retrieval algorithm, compared to that used in Version-5, with an emphasis on the improvement of atmospheric temperature profiles, ocean and land surface skin temperatures, and ocean and land surface spectral emissivities. AIRS contains 2378 spectral channels covering portions of the spectral region 650 cm(sup -1) (15.38 micrometers) - 2665 cm(sup -1) (3.752 micrometers). These spectral regions contain significant absorption features from two CO2 absorption bands, the 15 micrometers (longwave) CO2 band, and the 4.3 micrometers (shortwave) CO2 absorption band. There are also two atmospheric window regions, the 12 micrometer - 8 micrometer (longwave) window, and the 4.17 micrometer - 3.75 micrometer (shortwave) window. Historically, determination of surface and atmospheric temperatures from satellite observations was performed using primarily observations in the longwave window and CO2 absorption regions. According to cloud clearing theory, more accurate soundings of both surface skin and atmospheric temperatures can be obtained under partial cloud cover conditions if one uses observations in longwave channels to determine coefficients which generate cloud cleared radiances R(sup ^)(sub i) for all channels, and uses R(sup ^)(sub i) only from shortwave channels in the determination of surface and atmospheric temperatures. This procedure is now being used in the AIRS Version-6 Retrieval Algorithm. Results are presented for both daytime and nighttime conditions showing improved Version-6 surface and atmospheric soundings under partial cloud cover.

  9. Glacier albedo change and its relationship to surface temperature change from MODIS data: Queen Elizabeth Islands, Arctic Canada, 2001-2015

    NASA Astrophysics Data System (ADS)

    Mortimer, C.; Sharp, M. J.

    2016-12-01

    Glacier and ice cap surface albedo change over the Canadian High Arctic is assessed using measurements from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors for the period 2001-2015. Mean summer black-sky broadband surface albedo (MCD43A3 v05) over all glaciated surfaces in the Queen Elizabeth Islands south of 80°N decreased at a rate of 0.0038 ± 0.0037 yr-1 over that period. The bulk of this albedo decrease occurred from 2008 to 2012 when mean summer albedo was anomalously low. Albedo declines were greatest in the west of the QEI and at lower elevations on the ice caps. The period 2005-2012 included some of the warmest summers in the region since at least the 1950s. Between 2001 and 2015, mean summer glacier surface temperatures for the QEI (south of 80°N), derived from MODIS data (MOD11A2 v05), increased at a rate of 0.034 ± 0.037 °C yr-1. Net shortwave energy is modulated by changes in the surface albedo and is the largest source of summer melt energy in the QEI. During 2001-2015, the summer albedo record was negatively correlated with the mean summer glacier surface temperature record across 91% of the region; clusters of positive correlations between surface temperature and albedo were observed at high elevations in eastern Ellesmere Island.

  10. Impacts of Wind Farms on Local Land Surface Temperature

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Tian, Y.; Baidya Roy, S.; Thorncroft, C.; Bosart, L. F.; Hu, Y.

    2012-12-01

    The U.S. wind industry has experienced a remarkably rapid expansion of capacity in recent years and this rapid growth is expected to continue in the future. While converting wind's kinetic energy into electricity, wind turbines modify surface-atmosphere exchanges and transfer of energy, momentum, mass and moisture within the atmosphere. These changes, if spatially large enough, may have noticeable impacts on local to regional weather and climate. Here we present observational evidence for such impacts based on analyses of satellite derived land surface temperature (LST) data at ~1.1 km for the period of 2003-2011 over a region in West-Central Texas, where four of the world's largest wind farms are located. Our results show a warming effect of up to 0.7 degrees C at nighttime for the 9-year period during which data was collected, over wind farms relative to nearby non wind farm regions and this warming is gradually enhanced with time, while the effect at daytime is small. The spatial pattern and magnitude of this warming effect couple very well with the geographic distribution of wind turbines and such coupling is stronger at nighttime than daytime and in summer than winter. These results suggest that the warming effect is very likely attributable to the development of wind farms. This inference is consistent with the increasing number of operational wind turbines with time during the study period, the diurnal and seasonal variations in the frequency of wind speed and direction distribution, and the changes in near-surface atmospheric boundary layer conditions due to wind farm operations. Figure 1: Nighttime land surface temperature (LST, C) differences between 2010 and 2003 (2010 minus 2003) in summer (June-July-August). Pixels with plus symbol have at least one wind turbine. A regional mean value (0.592 C) was removed to emphasize the relative LST changes at pixel level and so the resulting warming or cooling rate represents a change relative to the regional mean value. The LST data were derived from MODIS (Moderate Imaging Spectroradiometer) instruments on NASA's Aqua and Terra satellites. Note that LST measures the radiometric temperature of the Earth's surface itself - It has a larger diurnal variation than surface air temperature used in daily weather reports.

  11. Late Quaternary surface circulation in the east equatorial South Atlantic: Evidence from Alkenone sea surface temperatures

    NASA Astrophysics Data System (ADS)

    Schneider, Ralph R.; Müller, Peter J.; Ruhland, GöTz

    1995-04-01

    Angola Basin and Walvis Ridge records of past sea surface temperatures (SST) derived from the alkenone Uk37 index are used to reconstruct the surface circulation in the east equatorial South Atlantic for the last 200,000 years. Comparison of SST estimates from surface sediments between 5° and 20°S with modern SST data suggests that the alkenone temperatures represent annual mean values of the surface mixed layer. Alkenone-derived temperatures for the warm climatic maxima of the Holocene and the penultimate interglacial are 1 to 4°C higher than latest Holocene values. All records show glacial to interglacial differences of about 3.5°C in annual mean SST, which is about 1.5°C greater than the difference estimated by CLIMAP (1981) for the eastern Angola Basin. At the Walvis Ridge, significant SST variance is observed at all of the Earth's orbital periodicities. SST records from the Angola Basin vary predominantly at 23- and 100-kyr periodicities. For the precessional cycle, SST changes at the Walvis Ridge correspond to variations of boreal summer insolation over Africa and lead ice volume changes, suggesting that the east equatorial South Atlantic is sensitive to African monsoon intensity via trade-wind zonality. Angola Basin SST records lag those from the Walvis Ridge and the equatorial Atlantic by about 3 kyr. The comparison of Angola Basin and Walvis Ridge SST records implies that the Angola-Benguela Front (ABF) (currently at about 14-16°S) has remained fairly stationary between 12° and 20°S (the limits of our cores) during the last two glacial-interglacial cycles. The temperature contrast associated with the ABF exhibits a periodic 23-kyr variability which is coherent with changes in boreal summer insolation over Africa. These observations suggest that surface waters north of the present ABF have not directly responded to monsoon-modulated changes in the trade-wind vector, that the central field of zonally directed trades in the southern hemisphere was not shifted or extended northward by several degrees of latitude during glacials, and that a cyclonic gyre circulation has existed in the east equatorial South Atlantic over the last 200,000 years. This scenario contradicts former assumptions of glacial intensification of the Benguela Current into the eastern Angola Basin and increased coastal upwelling off Angola.

  12. Climatology and interannual variability of dynamic variables in multiple reanalyses evaluated by the SPARC Reanalysis Intercomparison Project (S-RIP)

    NASA Astrophysics Data System (ADS)

    Long, Craig S.; Fujiwara, Masatomo; Davis, Sean; Mitchell, Daniel M.; Wright, Corwin J.

    2017-12-01

    Two of the most basic parameters generated from a reanalysis are temperature and winds. Temperatures in the reanalyses are derived from conventional (surface and balloon), aircraft, and satellite observations. Winds are observed by conventional systems, cloud tracked, and derived from height fields, which are in turn derived from the vertical temperature structure. In this paper we evaluate as part of the SPARC Reanalysis Intercomparison Project (S-RIP) the temperature and wind structure of all the recent and past reanalyses. This evaluation is mainly among the reanalyses themselves, but comparisons against independent observations, such as HIRDLS and COSMIC temperatures, are also presented. This evaluation uses monthly mean and 2.5° zonal mean data sets and spans the satellite era from 1979-2014. There is very good agreement in temperature seasonally and latitudinally among the more recent reanalyses (CFSR, MERRA, ERA-Interim, JRA-55, and MERRA-2) between the surface and 10 hPa. At lower pressures there is increased variance among these reanalyses that changes with season and latitude. This variance also changes during the time span of these reanalyses with greater variance during the TOVS period (1979-1998) and less variance afterward in the ATOVS period (1999-2014). There is a distinct change in the temperature structure in the middle and upper stratosphere during this transition from TOVS to ATOVS systems. Zonal winds are in greater agreement than temperatures and this agreement extends to lower pressures than the temperatures. Older reanalyses (NCEP/NCAR, NCEP/DOE, ERA-40, JRA-25) have larger temperature and zonal wind disagreement from the more recent reanalyses. All reanalyses to date have issues analysing the quasi-biennial oscillation (QBO) winds. Comparisons with Singapore QBO winds show disagreement in the amplitude of the westerly and easterly anomalies. The disagreement with Singapore winds improves with the transition from TOVS to ATOVS observations. Temperature bias characteristics determined via comparisons with a reanalysis ensemble mean (MERRA, ERA-Interim, JRA-55) are similarly observed when compared with Aura HIRDLS and Aura MLS observations. There is good agreement among the NOAA TLS, SSU1, and SSU2 Climate Data Records and layer mean temperatures from the more recent reanalyses. Caution is advised for using reanalysis temperatures for trend detection and anomalies from a long climatology period as the quality and character of reanalyses may have changed over time.

  13. Estimating the urban bias of surface shelter temperatures using upper-air and satellite data. Part 2: Estimation of the urban bias

    NASA Technical Reports Server (NTRS)

    Epperson, David L.; Davis, Jerry M.; Bloomfield, Peter; Karl, Thomas R.; Mcnab, Alan L.; Gallo, Kevin P.

    1995-01-01

    A methodology is presented for estimating the urban bias of surface shelter temperatures due to the effect of the urban heat island. Multiple regression techniques were used to predict surface shelter temperatures based on the time period 1986-89 using upper-air data from the European Centre for Medium-Range Weather Forecasts (ECMWF) to represent the background climate, site-specific data to represent the local landscape, and satellite-derived data -- the normalized difference vegetation index (NDVI) and the Defense Meteorological Satellite Program (DMSP) nighttime brightness data -- to represent the urban and rural landscape. Local NDVI and DMSP values were calculated for each station using the mean NDVI and DMSP values from a 3 km x 3 km area centered over the given station. Regional NDVI and DMSP values were calculated to represent a typical rural value for each station using the mean NDVI and DMSP values from a 1 deg x 1 deg latitude-longitude area in which the given station was located. Models for the United States were then developed for monthly maximum, mean, and minimum temperatures using data from over 1000 stations in the U.S. Cooperative (COOP) Network and for monthly mean temperatures with data from over 1150 stations in the Global Historical Climate Network (GHCN). Local biases, or the differences between the model predictions using the observed NDVI and DMSP values, and the predictions using the background regional values were calculated and compared with the results of other research. The local or urban bias of U.S. temperatures, as derived from all U.S. stations (urban and rural) used in the models, averaged near 0.40 C for monthly minimum temperatures, near 0.25 C for monthly mean temperatures, and near 0.10 C for monthly maximum temperatures. The biases of monthly minimum temperatures for individual stations ranged from near -1.1 C for rural stations to 2.4 C for stations from the largest urban areas. The results of this study indicate minimal problems for global application once global NDVI and DMSP data become available.

  14. The effects of sea surface temperature anomalies on oceanic coral reef systems in the southwestern tropical Atlantic

    NASA Astrophysics Data System (ADS)

    Ferreira, B. P.; Costa, M. B. S. F.; Coxey, M. S.; Gaspar, A. L. B.; Veleda, D.; Araujo, M.

    2013-06-01

    In 2010, high sea surface temperatures that were recorded in several parts of the world and caused coral bleaching and coral mortality were also recorded in the southwest Atlantic Ocean, between latitudes 0°S and 8°S. This paper reports on coral bleaching and diseases in Rocas Atoll and Fernando de Noronha archipelago and examines their relationship with sea surface temperature (SST) anomalies recorded by PIRATA buoys located at 8°S30°W, 0°S35°W, and 0°S23°W. Adjusted satellite data were used to derive SST climatological means at buoy sites and to derive anomalies at reef sites. The whole region was affected by the elevated temperature anomaly that persisted through 2010, reaching 1.67 °C above average at reef sites and 1.83 °C above average at buoys sites. A significant positive relationship was found between the percentage of coral bleaching that was observed on reef formations and the corresponding HotSpot SST anomaly recorded by both satellite and buoys. These results indicate that the warming observed in the ocean waters was followed by a warming at the reefs. The percentage of bleached corals persisting after the subsidence of the thermal stress, and disease prevalence increased through 2010, after two periods of thermal stress. The in situ temperature anomaly observed during the 2009-2010 El Niño event was equivalent to the anomaly observed during the 1997-1998 El Niño event, explaining similar bleaching intensity. Continued monitoring efforts are necessary to further assess the relationship between bleaching severity and PIRATA SST anomalies and improve the use of this new dataset in future regional bleaching predictions.

  15. The MASCOT Radiometer MARA for the Hayabusa 2 Mission

    NASA Astrophysics Data System (ADS)

    Grott, M.; Knollenberg, J.; Borgs, B.; Hänschke, F.; Kessler, E.; Helbert, J.; Maturilli, A.; Müller, N.

    2017-07-01

    The MASCOT radiometer MARA is a multi-spectral instrument which measures net radiative flux in six wavelength bands. MARA uses thermopile sensors as sensing elements, and the net flux between the instrument and the surface in the 18° field of view is determined by evaluating the thermoelectric potential between the sensors' absorbing surface and the thermopile's cold-junction. MARA houses 4 bandpass channels in the spectral range of 5.5-7, 8-9.5, 9.5-11.5, and 13.5-15.5 μm, as well as one long-pass channel, which is sensitive in the >3 μm range. In addition, one channel is similar to that used by the Hayabusa 2 orbiter thermal mapper, which uses a wavelength range of 8-12 μm. The primary science objective of the MARA instrument it the determination of the target asteroid's surface brightness temperature, from which surface thermal inertia can be derived. In addition, the spectral bandpass channels will be used to estimate the spectral slope of the surface in the thermal infrared wavelength range. The instrument has been calibrated using a cavity blackbody, and the temperature uncertainty is 1 K in the long pass channel for target temperatures of >173 K. Measurement uncertainty in the spectral bandpasses is 1 K for target temperatures above 273 K.

  16. An Analysis and Procedure for Determining Space Environmental Sink Temperatures With Selected Computational Results

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    2001-01-01

    The purpose of this report was to analyze the heat-transfer problem posed by the determination of spacecraft temperatures and to incorporate the theoretically derived relationships in the computational code TSCALC. The basis for the code was a theoretical analysis of the thermal radiative equilibrium in space, particularly in the Solar System. Beginning with the solar luminosity, the code takes into account these key variables: (1) the spacecraft-to-Sun distance expressed in astronomical units (AU), where 1 AU represents the average Sun-to-Earth distance of 149.6 million km; (2) the angle (arc degrees) at which solar radiation is incident upon a spacecraft surface (ILUMANG); (3) the spacecraft surface temperature (a radiator or photovoltaic array) in kelvin, the surface absorptivity-to-emissivity ratio alpha/epsilon with respect to the solar radiation and (alpha/epsilon)(sub 2) with respect to planetary radiation; and (4) the surface view factor to space F. Outputs from the code have been used to determine environmental temperatures in various Earth orbits. The code was also utilized as a subprogram in the design of power system radiators for deep-space probes.

  17. Observational Constraints on the Water Vapor Feedback Using GPS Radio Occultations

    NASA Astrophysics Data System (ADS)

    Vergados, P.; Mannucci, A. J.; Ao, C. O.; Fetzer, E. J.

    2016-12-01

    The air refractive index at L-band frequencies depends on the air's density and water vapor content. Exploiting these relationships, we derive a theoretical model to infer the specific humidity response to surface temperature variations, dq/dTs, given knowledge of how the air refractive index and temperature vary with surface temperature. We validate this model using 1.2-1.6 GHz Global Positioning System Radio Occultation (GPS RO) observations from 2007 to 2010 at 250 hPa, where the water vapor feedback on surface warming is strongest. Current research indicates that GPS RO data sets can capture the amount of water vapor in very dry and very moist air more efficiently than other observing platforms, possibly suggesting larger water vapor feedback than previously known. Inter-comparing the dq/dTs among different data sets will provide us with additional constraints on the water vapor feedback. The dq/dTs estimation from GPS RO observations shows excellent agreement with previously published results and the responses estimated using Atmospheric Infrared Sounder (AIRS) and NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) data sets. In particular, the GPS RO-derived dq/dTs is larger by 6% than that estimated using the AIRS data set. This agrees with past evidence that AIRS may be dry-biased in the upper troposphere. Compared to the MERRA estimations, the GPS RO-derived dq/dTs is 10% smaller, also agreeing with previous results that show that MERRA may have a wet bias in the upper troposphere. Because of their high sensitivity to fractional changes in water vapor, and their inherent long-term accuracy, current and future GPS RO observations show great promise in monitoring climate feedbacks and their trends.

  18. Modeling of Firn Compaction for Estimating Ice-Sheet Mass Change from Observed Ice-Sheet Elevation Change

    NASA Technical Reports Server (NTRS)

    Li, Jun; Zwally, H. Jay

    2011-01-01

    Changes in ice-sheet surface elevation are caused by a combination of ice-dynamic imbalance, ablation, temporal variations in accumulation rate, firn compaction and underlying bedrock motion. Thus, deriving the rate of ice-sheet mass change from measured surface elevation change requires information on the rate of firn compaction and bedrock motion, which do not involve changes in mass, and requires an appropriate firn density to associate with elevation changes induced by recent accumulation rate variability. We use a 25 year record of surface temperature and a parameterization for accumulation change as a function of temperature to drive a firn compaction model. We apply this formulation to ICESat measurements of surface elevation change at three locations on the Greenland ice sheet in order to separate the accumulation-driven changes from the ice-dynamic/ablation-driven changes, and thus to derive the corresponding mass change. Our calculated densities for the accumulation-driven changes range from 410 to 610 kg/cu m, which along with 900 kg/cu m for the dynamic/ablation-driven changes gives average densities ranging from 680 to 790 kg/cu m. We show that using an average (or "effective") density to convert elevation change to mass change is not valid where the accumulation and the dynamic elevation changes are of opposite sign.

  19. Nonlinear Transient Thermal Analysis by the Force-Derivative Method

    NASA Technical Reports Server (NTRS)

    Balakrishnan, Narayani V.; Hou, Gene

    1997-01-01

    High-speed vehicles such as the Space Shuttle Orbiter must withstand severe aerodynamic heating during reentry through the atmosphere. The Shuttle skin and substructure are constructed primarily of aluminum, which must be protected during reentry with a thermal protection system (TPS) from being overheated beyond the allowable temperature limit, so that the structural integrity is maintained for subsequent flights. High-temperature reusable surface insulation (HRSI), a popular choice of passive insulation system, typically absorbs the incoming radiative or convective heat at its surface and then re-radiates most of it to the atmosphere while conducting the smallest amount possible to the structure by virtue of its low diffusivity. In order to ensure a successful thermal performance of the Shuttle under a prescribed reentry flight profile, a preflight reentry heating thermal analysis of the Shuttle must be done. The surface temperature profile, the transient response of the HRSI interior, and the structural temperatures are all required to evaluate the functioning of the HRSI. Transient temperature distributions which identify the regions of high temperature gradients, are also required to compute the thermal loads for a structural thermal stress analysis. Furthermore, a nonlinear analysis is necessary to account for the temperature-dependent thermal properties of the HRSI as well as to model radiation losses.

  20. [Properties of maize stalk biochar produced under different pyrolysis temperatures and its sorption capability to naphthalene].

    PubMed

    Huang, Hua; Wang, Ya-Xiong; Tang, Jing-Chun; Tang, Jing-Chun; Zhu, Wen-Ying

    2014-05-01

    Biochar was made from maize stalk under three different temperatures of 300, 500 and 700 degreeC. The elemental composition of biochar was measured by elemental analyzer. Scanning electron microscope (SEM) was used to measure the surface morphology. Sorption of naphthalene to biochar was researched by batch sorption experiments. Results showed that, with the increase of temperature, C content increased from 66. 79% to 76. 30% , H and O contents decreased from 4.92% and 19. 25% to 3. 18% and 9.53%, respectively; H/C, O/C, (O + N)/C, aromaticity and hydrophobicity increased, and polarity decreased. SEM results showed that maize stalk biochar was platy particles, and its roughness of surface increased with increasing temperature. The sorption of naphthalene on biochar followed the Lagergren pseudo-second order dynamic sorption model. Initial sorption rate and equilibrium sorption capacity increased as preparation temperatures increased at the same initial concentration of naphthalene. The isotherm sorption behavior can be described by the Freundlich model, which indicated that, as pyrolysis temperature increased, the sorption capacity of biochar increased, and nonlinearity increased first and then decreased. Biochar derived from maize stalk had distinct features when compared with other feedstocks, and its elemental composition, surface features and sorption behaviors were significantly influenced by pyrolysis temperature.

  1. Comparison of elevation and remote sensing derived products as auxiliary data for climate surface interpolation

    USGS Publications Warehouse

    Alvarez, Otto; Guo, Qinghua; Klinger, Robert C.; Li, Wenkai; Doherty, Paul

    2013-01-01

    Climate models may be limited in their inferential use if they cannot be locally validated or do not account for spatial uncertainty. Much of the focus has gone into determining which interpolation method is best suited for creating gridded climate surfaces, which often a covariate such as elevation (Digital Elevation Model, DEM) is used to improve the interpolation accuracy. One key area where little research has addressed is in determining which covariate best improves the accuracy in the interpolation. In this study, a comprehensive evaluation was carried out in determining which covariates were most suitable for interpolating climatic variables (e.g. precipitation, mean temperature, minimum temperature, and maximum temperature). We compiled data for each climate variable from 1950 to 1999 from approximately 500 weather stations across the Western United States (32° to 49° latitude and −124.7° to −112.9° longitude). In addition, we examined the uncertainty of the interpolated climate surface. Specifically, Thin Plate Spline (TPS) was used as the interpolation method since it is one of the most popular interpolation techniques to generate climate surfaces. We considered several covariates, including DEM, slope, distance to coast (Euclidean distance), aspect, solar potential, radar, and two Normalized Difference Vegetation Index (NDVI) products derived from Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS). A tenfold cross-validation was applied to determine the uncertainty of the interpolation based on each covariate. In general, the leading covariate for precipitation was radar, while DEM was the leading covariate for maximum, mean, and minimum temperatures. A comparison to other products such as PRISM and WorldClim showed strong agreement across large geographic areas but climate surfaces generated in this study (ClimSurf) had greater variability at high elevation regions, such as in the Sierra Nevada Mountains.

  2. Reintroducing radiometric surface temperature into the Penman-Monteith formulation

    NASA Astrophysics Data System (ADS)

    Mallick, Kaniska; Boegh, Eva; Trebs, Ivonne; Alfieri, Joseph G.; Kustas, William P.; Prueger, John H.; Niyogi, Dev; Das, Narendra; Drewry, Darren T.; Hoffmann, Lucien; Jarvis, Andrew J.

    2015-08-01

    Here we demonstrate a novel method to physically integrate radiometric surface temperature (TR) into the Penman-Monteith (PM) formulation for estimating the terrestrial sensible and latent heat fluxes (H and λE) in the framework of a modified Surface Temperature Initiated Closure (STIC). It combines TR data with standard energy balance closure models for deriving a hybrid scheme that does not require parameterization of the surface (or stomatal) and aerodynamic conductances (gS and gB). STIC is formed by the simultaneous solution of four state equations and it uses TR as an additional data source for retrieving the "near surface" moisture availability (M) and the Priestley-Taylor coefficient (α). The performance of STIC is tested using high-temporal resolution TR observations collected from different international surface energy flux experiments in conjunction with corresponding net radiation (RN), ground heat flux (G), air temperature (TA), and relative humidity (RH) measurements. A comparison of the STIC outputs with the eddy covariance measurements of λE and H revealed RMSDs of 7-16% and 40-74% in half-hourly λE and H estimates. These statistics were 5-13% and 10-44% in daily λE and H. The errors and uncertainties in both surface fluxes are comparable to the models that typically use land surface parameterizations for determining the unobserved components (gS and gB) of the surface energy balance models. However, the scheme is simpler, has the capabilities for generating spatially explicit surface energy fluxes and independent of submodels for boundary layer developments. This article was corrected on 27 AUG 2015. See the end of the full text for details.

  3. Evaluation of the performance of hydrological variables derived from GLDAS-2 and MERRA-2 in Mexico

    NASA Astrophysics Data System (ADS)

    Real-Rangel, R. A.; Pedrozo-Acuña, A.; Breña-Naranjo, J. A.

    2017-12-01

    Hydrological studies have found in data assimilation systems and global reanalysis of land surface variables (e.g soil moisture, streamflow) a wide range of applications, from drought monitoring to water balance and hydro-climatology variability assessment. Indeed, these hydrological data sources have led to an improvement in developing and testing monitoring and prediction systems in poorly gauged regions of the world. This work tests the accuracy and error of land surface variables (precipitation, soil moisture, runoff and temperature) derived from the data assimilation reanalysis products GLDAS-2 and MERRA-2. Validate the performance of these data platforms must be thoroughly evaluated in order to consider the error of hydrological variables (i.e., precipitation, soil moisture, runoff and temperature) derived from the reanalysis products. For such purpose, a quantitative assessment was performed at 2,892 climatological stations, 42 stream gauges and 44 soil moisture probes located in Mexico and across different climate regimes (hyper-arid to tropical humid). Results show comparisons between these gridded products against ground-based observational stations for 1979-2014. The results of this analysis display a spatial distribution of errors and accuracy over Mexico discussing differences between climates, enabling the informed use of these products.

  4. Development of a poly(dimethylacrylamide) based matrix material for solid phase high density peptide array synthesis employing a laser based material transfer

    NASA Astrophysics Data System (ADS)

    Ridder, Barbara; Foertsch, Tobias C.; Welle, Alexander; Mattes, Daniela S.; von Bojnicic-Kninski, Clemens M.; Loeffler, Felix F.; Nesterov-Mueller, Alexander; Meier, Michael A. R.; Breitling, Frank

    2016-12-01

    Poly(dimethylacrylamide) (PDMA) based matrix materials were developed for laser-based in situ solid phase peptide synthesis to produce high density arrays. In this specific array synthesis approach, amino acid derivatives are embedded into a matrix material, serving as a ;solid; solvent material at room temperature. Then, a laser pulse transfers this mixture to the target position on a synthesis slide, where the peptide array is synthesized. Upon heating above the glass transition temperature of the matrix material, it softens, allowing diffusion of the amino acid derivatives to the synthesis surface and serving as a solvent for peptide bond formation. Here, we synthesized PDMA six-arm star polymers, offering the desired matrix material properties, using atom transfer radical polymerization. With the synthesized polymers as matrix material, we structured and synthesized arrays with combinatorial laser transfer. With densities of up to 20,000 peptide spots per cm2, the resolution could be increased compared to the commercially available standard matrix material. Time-of-Flight Secondary Ion Mass Spectrometry experiments revealed the penetration behavior of an amino acid derivative into the prepared acceptor synthesis surface and the effectiveness of the washing protocols.

  5. A Multiyear Dataset of SSM/I-Derived Global Ocean Surface Turbulent Fluxes

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Shie, Chung-Lin; Atlas, Robert M.; Ardizzone, Joe; Nelkin, Eric; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The surface turbulent fluxes of momentum, latent heat, and sensible heat over global oceans are essential to weather, climate and ocean problems. Evaporation is a key component of the hydrological cycle and the surface heat budget, while the wind stress is the major forcing for driving the oceanic circulation. The global air-sea fluxes of momentum, latent and sensible heat, radiation, and freshwater (precipitation-evaporation) are the forcing for driving oceanic circulation and, hence, are essential for understanding the general circulation of global oceans. The global air-sea fluxes are required for driving ocean models and validating coupled ocean-atmosphere global models. We have produced a 7.5-year (July 1987-December 1994) dataset of daily surface turbulent fluxes over the global oceans from the Special Sensor microwave/Imager (SSM/I) data. Daily turbulent fluxes were derived from daily data of SSM/I surface winds and specific humidity, National Centers for Environmental Prediction (NCEP) sea surface temperatures, and European Centre for Medium-Range Weather Forecasts (ECMWF) air-sea temperature differences, using a stability-dependent bulk scheme. The retrieved instantaneous surface air humidity (with a 25-km resolution) validated well with that of the collocated radiosonde observations over the global oceans. Furthermore, the retrieved daily wind stresses and latent heat fluxes were found to agree well with that of the in situ measurements (IMET buoy, RV Moana Wave, and RV Wecoma) in the western Pacific warm pool during the TOGA COARE intensive observing period (November 1992-February 1993). The global distributions of 1988-94 seasonal-mean turbulent fluxes will be presented. In addition, the global distributions of 1990-93 annual-means turbulent fluxes and input variables will be compared with those of UWM/COADS covering the same period. The latter is based on the COADS (comprehensive ocean-atmosphere data set) and is recognized to be one of the best climatological analyses of fluxes derived from ship observations.

  6. Land Surface Data Assimilation and the Northern Gulf Coast Land/Sea Breeze

    NASA Technical Reports Server (NTRS)

    Lapenta, William M.; Blackwell, Keith; Suggs, Ron; McNider, Richard T.; Jedlovec, Gary; Kimball, Sytske; Arnold, James E. (Technical Monitor)

    2002-01-01

    A technique has been developed for assimilating GOES-derived skin temperature tendencies and insolation into the surface energy budget equation of a mesoscale model so that the simulated rate of temperature change closely agrees with the satellite observations. A critical assumption of the technique is that the availability of moisture (either from the soil or vegetation) is the least known term in the model's surface energy budget. Therefore, the simulated latent heat flux, which is a function of surface moisture availability, is adjusted based upon differences between the modeled and satellite observed skin temperature tendencies. An advantage of this technique is that satellite temperature tendencies are assimilated in an energetically consistent manner that avoids energy imbalances and surface stability problems that arise from direct assimilation of surface shelter temperatures. The fact that the rate of change of the satellite skin temperature is used rather than the absolute temperature means that sensor calibration is not as critical. The sea/land breeze is a well-documented mesoscale circulation that affects many coastal areas of the world including the northern Gulf Coast of the United States. The focus of this paper is to examine how the satellite assimilation technique impacts the simulation of a sea breeze circulation observed along the Mississippi/Alabama coast in the spring of 2001. The technique is implemented within the PSU/NCAR MM5 V3-4 and applied on a 4-km domain for this particular application. It is recognized that a 4-km grid spacing is too coarse to explicitly resolve the detailed, mesoscale structure of sea breezes. Nevertheless, the model can forecast certain characteristics of the observed sea breeze including a thermally direct circulation that results from differential low-level heating across the land-sea interface. Our intent is to determine the sensitivity of the circulation to the differential land surface forcing produced via the assimilation of GOES skin temperature tendencies. Results will be quantified through statistical verification techniques.

  7. Application of Land Surface Data Assimilation to Simulations of Sea Breeze Circulations

    NASA Technical Reports Server (NTRS)

    Mackaro, Scott; Lapenta, William M.; Blackwell, Keith; Suggs, Ron; McNider, Richard T.; Jedlovec, Gary; Kimball, Sytske

    2003-01-01

    A technique has been developed for assimilating GOES-derived skin temperature tendencies and insolation into the surface energy budget equation of a mesoscale model so that the simulated rate of temperature change closely agrees with the satellite observations. A critical assumption of the technique is that the availability of moisture (either from the soil or vegetation) is the least known term in the model's surface energy budget. Therefore, the simulated latent heat flux, which is a function of surface moisture availability, is adjusted based upon differences between the modeled and satellite- observed skin temperature tendencies. An advantage of this technique is that satellite temperature tendencies are assimilated in an energetically consistent manner that avoids energy imbalances and surface stability problems that arise from direct assimilation of surface shelter temperatures. The fact that the rate of change of the satellite skin temperature is used rather than the absolute temperature means that sensor calibration is not as critical. The sea/land breeze is a well-documented mesoscale circulation that affects many coastal areas of the world including the northern Gulf Coast of the United States. The focus of this paper is to examine how the satellite assimilation technique impacts the simulation of a sea breeze circulation observed along the Mississippi/Alabama coast in the spring of 2001. The technique is implemented within the PSUNCAR MM5 V3-5 and applied at spatial resolutions of 12- and 4-km. It is recognized that even 4-km grid spacing is too coarse to explicitly resolve the detailed, mesoscale structure of sea breezes. Nevertheless, the model can forecast certain characteristics of the observed sea breeze including a thermally direct circulation that results from differential low-level heating across the land-sea interface. Our intent is to determine the sensitivity of the circulation to the differential land surface forcing produced via the assimilation of GOES skin temperature tendencies. Results will be quantified through statistical verification techniques.

  8. Thermal remote sensing of surface soil water content with partial vegetation cover for incorporation into climate models

    NASA Technical Reports Server (NTRS)

    Gillies, Robert R.; Carlson, Toby N.

    1995-01-01

    This study outlines a method for the estimation of regional patterns of surface moisture availability (M(sub 0)) and fractional vegetation (Fr) in the presence of spatially variable vegetation cover. The method requires relating variations in satellite-derived (NOAA, Advanced Very High Resolution Radiometer (AVHRR)) surface radiant temperature to a vegetation index (computed from satellite visible and near-infrared data) while coupling this association to an inverse modeling scheme. More than merely furnishing surface soil moisture values, the method constitues a new conceptual and practical approach for combining thermal infrared and vegetation index measurements for incorporating the derived values of M(sub 0) into hydrologic and atmospheric prediction models. Application of the technique is demonstrated for a region in and around the city of Newcastle upon Tyne situated in the northeast of England. A regional estimate of M(sub 0) is derived and is probabbly good for fractional vegetation cover up to 80% before errors in the estimated soil water content become unacceptably large. Moreover, a normalization scheme is suggested from which a nomogram, `universal triangle,' is constructed and is seen to fit the observed data well. The universal triangle also simplifies the inclusion of remotely derived M(sub 0) in hydrology and meteorological models and is perhaps a practicable step toward integrating derived data from satellite measurements in weather forecasting.

  9. Characterization of bio char derived from tapioca skin

    NASA Astrophysics Data System (ADS)

    Hasnan, F. I.; Iamail, K. N.; Musa, M.; Jaapar, J.; Alwi, H.; Hamid, K. K. K.

    2018-03-01

    Pyrolysis of tapioca skin was conducted to produce bio chars in the range between 500°C–800°C. Surface modification treatment were performed on bio chars by using chemicals within 24 hours at 30°C and hot water within 1 hour to enhance the bio char’s adsorption properties according to surface area, pore volume, pore size, crystallinity structure and functional groups. The samples were characterized by using BET, XRD, FTIR and Methylene Blue adsorption. Based on BET result, it showed the surface area increased as the pyrolysis temperature increased followed by pore volume and pore size for S0. The optimum temperature for SNaOH, SHW and SMeOH was at 600°C, 700°C and 800°C with the surface area of 75.9874, 274.5066 and 351.5531 m2/g respectively compared to S0 while SP3HO4 has the worst result since it felt on macroporous structure. The percentage of MB adsorption was followed the size of bio chars surface area. Based on FTIR result, at temperature 500°C to 700°C, the bio chars still have functional groups while at 800°C, many functional groups were diminished due to high temperature struck on them. XRD result showed all the bio chars were amorphous. In conclusion, the best surface modification treatment was by Methanol followed by hot water and Sodium Hydroxide at temperature of 700°C and 800°C while Ortho-Phosphoric acid was the worst one and was not suitable for bio char’s surface modification for adsorption purpose.

  10. Comparison of Surface Ground Temperature from Satellite Observations and the Off-Line Land Surface GEOS Assimilation System

    NASA Technical Reports Server (NTRS)

    Yang, R.; Houser, P.; Joiner, J.

    1998-01-01

    The surface ground temperature (Tg) is an important meteorological variable, because it represents an integrated thermal state of the land surface determined by a complex surface energy budget. Furthermore, Tg affects both the surface sensible and latent heat fluxes. Through these fluxes. the surface budget is coupled with the atmosphere above. Accurate Tg data are useful for estimating the surface radiation budget and fluxes, as well as soil moisture. Tg is not included in conventional synoptical weather station reports. Currently, satellites provide Tg estimates globally. It is necessary to carefully consider appropriate methods of using these satellite data in a data assimilation system. Recently, an Off-line Land surface GEOS Assimilation (OLGA) system was implemented at the Data Assimilation Office at NASA-GSFC. One of the goals of OLGA is to assimilate satellite-derived Tg data. Prior to the Tg assimilation, a thorough investigation of satellite- and model-derived Tg, including error estimates, is required. In this study we examine the Tg from the n Project (ISCCP DI) data and the OLGA simulations. The ISCCP data used here are 3-hourly DI data (2.5x2.5 degree resolution) for 1992 summer months (June, July, and August) and winter months (January and February). The model Tg for the same periods were generated by OLGA. The forcing data for this OLGA 1992 simulation were generated from the GEOS-1 Data Assimilation System (DAS) at Data Assimilation Office NASA-GSFC. We examine the discrepancies between ISCCP and OLGA Tg with a focus on its spatial and temporal characteristics, particularly on the diurnal cycle. The error statistics in both data sets, including bias, will be estimated. The impact of surface properties, including vegetation cover and type, topography, etc, on the discrepancies will be addressed.

  11. GPS-derived estimates of surface mass balance and ocean-induced basal melt for Pine Island Glacier ice shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Shean, David E.; Christianson, Knut; Larson, Kristine M.; Ligtenberg, Stefan R. M.; Joughin, Ian R.; Smith, Ben E.; Stevens, C. Max; Bushuk, Mitchell; Holland, David M.

    2017-11-01

    In the last 2 decades, Pine Island Glacier (PIG) experienced marked speedup, thinning, and grounding-line retreat, likely due to marine ice-sheet instability and ice-shelf basal melt. To better understand these processes, we combined 2008-2010 and 2012-2014 GPS records with dynamic firn model output to constrain local surface and basal mass balance for PIG. We used GPS interferometric reflectometry to precisely measure absolute surface elevation (zsurf) and Lagrangian surface elevation change (Dzsurf/ Dt). Observed surface elevation relative to a firn layer tracer for the initial surface (zsurf - zsurf0') is consistent with model estimates of surface mass balance (SMB, primarily snow accumulation). A relatively abrupt ˜ 0.2-0.3 m surface elevation decrease, likely due to surface melt and increased compaction rates, is observed during a period of warm atmospheric temperatures from December 2012 to January 2013. Observed Dzsurf/ Dt trends (-1 to -4 m yr-1) for the PIG shelf sites are all highly linear. Corresponding basal melt rate estimates range from ˜ 10 to 40 m yr-1, in good agreement with those derived from ice-bottom acoustic ranging, phase-sensitive ice-penetrating radar, and high-resolution stereo digital elevation model (DEM) records. The GPS and DEM records document higher melt rates within and near features associated with longitudinal extension (i.e., transverse surface depressions, rifts). Basal melt rates for the 2012-2014 period show limited temporal variability despite large changes in ocean temperature recorded by moorings in Pine Island Bay. Our results demonstrate the value of long-term GPS records for ice-shelf mass balance studies, with implications for the sensitivity of ice-ocean interaction at PIG.

  12. Predicting Individual Tree and Shrub Species Distributions with Empirically Derived Microclimate Surfaces in a Complex Mountain Ecosystem in Northern Idaho, USA

    NASA Astrophysics Data System (ADS)

    Holden, Z.; Cushman, S.; Evans, J.; Littell, J. S.

    2009-12-01

    The resolution of current climate interpolation models limits our ability to adequately account for temperature variability in complex mountainous terrain. We empirically derive 30 meter resolution models of June-October day and nighttime temperature and April nighttime Vapor Pressure Deficit (VPD) using hourly data from 53 Hobo dataloggers stratified by topographic setting in mixed conifer forests near Bonners Ferry, ID. 66%, of the variability in average June-October daytime temperature is explained by 3 variables (elevation, relative slope position and topographic roughness) derived from 30 meter digital elevation models. 69% of the variability in nighttime temperatures among stations is explained by elevation, relative slope position and topographic dissection (450 meter window). 54% of variability in April nighttime VPD is explained by elevation, soil wetness and the NDVIc derived from Landsat. We extract temperature and VPD predictions at 411 intensified Forest Inventory and Analysis plots (FIA). We use these variables with soil wetness and solar radiation indices derived from a 30 meter DEM to predict the presence and absence of 10 common forest tree species and 25 shrub species. Classification accuracies range from 87% for Pinus ponderosa , to > 97% for most other tree species. Shrub model accuracies are also high with greater than 90% accuracy for the majority of species. Species distribution models based on the physical variables that drive species occurrence, rather than their topographic surrogates, will eventually allow us to predict potential future distributions of these species with warming climate at fine spatial scales.

  13. Saturn's icy satellites investigated by Cassini-VIMS. IV. Daytime temperature maps

    NASA Astrophysics Data System (ADS)

    Filacchione, Gianrico; D'Aversa, Emiliano; Capaccioni, Fabrizio; Clark, Roger N.; Cruikshank, Dale P.; Ciarniello, Mauro; Cerroni, Priscilla; Bellucci, Giancarlo; Brown, Robert H.; Buratti, Bonnie J.; Nicholson, Phillip D.; Jaumann, Ralf; McCord, Thomas B.; Sotin, Christophe; Stephan, Katrin; Dalle Ore, Cristina M.

    2016-06-01

    The spectral position of the 3.6 μm continuum peak measured on Cassini-VIMS I/F spectra is used as a marker to infer the temperature of the regolith particles covering the surfaces of Saturn's icy satellites. This feature is characterizing the crystalline water ice spectrum which is the dominant compositional endmember of the satellites' surfaces. Laboratory measurements indicate that the position of the 3.6 μm peak of pure water ice is temperature-dependent, shifting towards shorter wavelengths when the sample is cooled, from about 3.65 μm at T=123 K to about 3.55 μm at T=88 K. A similar method was already applied to VIMS Saturn's rings mosaics to retrieve ring particles temperature (Filacchione, G., Ciarniello, M., Capaccioni, F., et al., 2014. Icarus, 241, 45-65). We report here about the daytime temperature variations observed on the icy satellites as derived from three different VIMS observation types: (a) a sample of 240 disk-integrated I/F observations of Saturn's regular satellites collected by VIMS during years 2004-2011 with solar phase in the 20°-40° range, corresponding to late morning-early afternoon local times. This dataset is suitable to exploit the temperature variations at hemispherical scale, resulting in average temperature T <88 K for Mimas, T ≪88 K for Enceladus, T <88 K for Tethys, T=98-118 K for Dione, T=108-128 K for Rhea, T=118-128 K for Hyperion, T=128-148 and T > 168 K for Iapetus' trailing and leading hemispheres, respectively. A typical ±5 K uncertainty is associated to the temperature retrieval. On Tethys and Dione, for which observations on both leading and trailing hemispheres are available, in average daytime temperatures higher of about 10 K on the trailing than on the leading hemisphere are inferred. (b) Satellites disk-resolved observations taken at 20-40 km pixel-1 resolution are suitable to map daytime temperature variations across surfaces' features, such as Enceladus' tiger stripes and Tethys' equatorial dark lens. These datasets allow to disentangle solar illumination conditions from temperature distribution when observing surface's features with strong thermal contrast. (c) Daytime average maps covering large regions of the surfaces are used to compare the inferred temperature with geomorphological features (impact craters, chasmatae, equatorial radiation lenses and active areas) and albedo variations. Temperature maps are built by mining the complete VIMS dataset collected in years 2004-2009 (pre-equinox) and in 2009-2012 (post equinox) by selecting pixels with max 150 km pixel-1 resolution. VIMS-derived temperature maps allow to identify thermal anomalies across the equatorial lens of Mimas and Tethys. A temperature T > 115K is measured above Enceladus' Damascus and Alexandria sulci in the south pole region. VIMS has the sensitivity to follow seasonal temperature changes: on Tethys, Dione and Rhea higher temperature are measured above the south hemisphere during pre-equinox and above the north hemisphere during post-equinox epochs. The measured temperature distribution appears correlated with surface albedo features: in fact temperature increases on low albedo units located on Tethys, Dione and Rhea trailing hemispheres. The thermal anomaly region on Rhea's Inktomi crater detected by CIRS (Howett, C. J. A., Spencer, J. R., Hurford, T., et al., 2014. Icarus, 241, 239-247) is confirmed by VIMS: this area appears colder with respect to surrounding terrains when observed at the same local solar time.

  14. Heavy doping effects in high efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.; Neugroschel, A.

    1986-01-01

    The temperature dependence of the emitter saturation current for bipolar devices was studied by varying the surface recombination velocity at the emitter surface. From this dependence, the value was derived for bandgap narrowing that is in better agreement with other determinations that were obtained from the temperature dependence measure on devices with ohmic contacts. Results of the first direct measurement of the minority-carrier transit time in a transparent heavily doped emitter layer were reported. The value was obtained by a high-frequency conductance method recently developed and used for doped Si. Experimental evidence is presented for significantly greater charge storage in highly excited silicon near room temperature than conventional theory would predict. These data are compared with various data for delta E sub G in heavily doped silicon.

  15. Soil Temperature and Moisture Profile (STAMP) System Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, David R.

    The soil temperature and moisture profile system (STAMP) provides vertical profiles of soil temperature, soil water content (soil-type specific and loam type), plant water availability, soil conductivity, and real dielectric permittivity as a function of depth below the ground surface at half-hourly intervals, and precipitation at one-minute intervals. The profiles are measured directly by in situ probes at all extended facilities of the SGP climate research site. The profiles are derived from measurements of soil energy conductivity. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are alsomore » useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil. The STAMP system replaced the SWATS system in early 2016.« less

  16. SHERMAN, a shape-based thermophysical model. I. Model description and validation

    NASA Astrophysics Data System (ADS)

    Magri, Christopher; Howell, Ellen S.; Vervack, Ronald J.; Nolan, Michael C.; Fernández, Yanga R.; Marshall, Sean E.; Crowell, Jenna L.

    2018-03-01

    SHERMAN, a new thermophysical modeling package designed for analyzing near-infrared spectra of asteroids and other solid bodies, is presented. The model's features, the methods it uses to solve for surface and subsurface temperatures, and the synthetic data it outputs are described. A set of validation tests demonstrates that SHERMAN produces accurate output in a variety of special cases for which correct results can be derived from theory. These cases include a family of solutions to the heat equation for which thermal inertia can have any value and thermophysical properties can vary with depth and with temperature. An appendix describes a new approximation method for estimating surface temperatures within spherical-section craters, more suitable for modeling infrared beaming at short wavelengths than the standard method.

  17. Greenhouse models of the atmosphere of Titan.

    NASA Technical Reports Server (NTRS)

    Pollack, J. B.

    1973-01-01

    The greenhouse effect is calculated for a series of Titanian atmosphere models with different proportions of methane, hydrogen, helium, and ammonia. A computer program is used in temperature-structure calculations based on radiative-convective thermal transfer considerations. A brightness temperature spectrum is derived for Titan and is compared with available observational data. It is concluded that the greenhouse effect on Titan is generated by pressure-induced transitions of methane and hydrogen. The helium-to-hydrogen ratio is found to have a maximum of about 1.5. The surface pressure is estimated to be at least 0.4 atm, with a daytime temperature of about 155 K at the surface. The presence of methane clouds in the upper troposphere is indicated. The clouds have a significant optical depth in the visible, but not in the thermal, infrared.

  18. Estimating Expressed Temperature and Fractional Area of Hot Lava at the Kilauea Vent with AVIRIS Spectral Measurements

    NASA Technical Reports Server (NTRS)

    Green, Robert O.

    2001-01-01

    Imaging spectroscopy offers a framework based in physics and chemistry for scientific investigation of a wide range of phenomena of interest in the Earth environment. In the scientific discipline of volcanology knowledge of lava temperature and distribution at the surface provides insight into the volcano status and subsurface processes. A remote sensing strategy to measure surface lava temperatures and distribution would support volcanology research. Hot targets such as molten lava emit spectral radiance as a function of temperature. A figure shows a series of Planck functions calculated radiance spectra for hot targets at different temperatures. A maximum Lambertian solar reflected radiance spectrum is shown as well. While similar in form, each hot target spectrum has a unique spectral shape and is distinct from the solar reflected radiance spectrum. Based on this temperature-dependent signature, imaging spectroscopy provides an innovative approach for the remote-sensing-based measurement of lava temperature. A natural site for investigation of the measurement of lava temperature is the Big Island of Hawaii where molten lava from the Kilauea vent is present at the surface. In the past, Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data sets have been used for the analysis of hot volcanic targets and hot burning fires. The research presented here builds upon and extends this earlier work. The year 2000 Hawaii AVIRIS data set has been analyzed to derive lava temperatures taking into account factors of fractional fill, solar reflected radiance, and atmospheric attenuation of the surface emitted radiance. The measurements, analyses, and current results for this research are presented here.

  19. Constraining the Rheologic Properties of Channelized Basaltic Flows on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Ramsey, M. S.; Harris, A. J. L.; Crown, D. A.

    2015-12-01

    Basaltic volcanism is ubiquitous on the terrestrial planets and is the most common form of extrusive activity on Earth, with over half of the world's volcanoes consisting largely of basalt. Recently, new eruptions (or new phases of ongoing eruptions) have occurred at Tolbachik in Russia (2012-2013); Bardarbunga in Iceland (2014); Etna in Italy (2014); and Kilauea in Hawaii (2014-2015) emphasizing both the hazard potential and volumetric production of basaltic activity. Furthermore, new high-resolution data of flows on Arsia Mons volcano (Mars) show very similar features. Therefore, this style of effusive volcanism and especially its surface manifestation (lava flows) warrants continued study both from a fundamental science as well as a hazard mitigation point of view. Monitoring flow propagation direction and velocity are critical in these situations and a number of models have evolved over time focused on heat loss and down-flow topography to predict flow advance. In addition to topography, the dominant (internal) factors controlling flow propagation are the discharge rate combined with cooling and increasing viscosity. However, all these models rely on accurate temperature measurements derived from the cooling glassy surface using infrared (IR) non-contact instruments. New laboratory and field-based studies are attempting to characterize the cooling, formation, and dynamics of basaltic surfaces using IR data. Preliminary results are focused on resolving inconsistencies in the derived flow temperature, composition, texture and silicate structure, which can all impact the surface-leaving heat flux. Improved accuracy in these retrievals increases our ability to constrain and model flow surface and interior temperatures. The impact of this improved accuracy has now been assessed using flow model simulations of active terrestrial and well-preserved Martian flows, Results are improving our understanding of the initial eruption conditions of these channelized basaltic lava flows on both planets.

  20. Thermal selectivity of intermolecular versus intramolecular reactions on surfaces

    PubMed Central

    Cirera, Borja; Giménez-Agulló, Nelson; Björk, Jonas; Martínez-Peña, Francisco; Martin-Jimenez, Alberto; Rodriguez-Fernandez, Jonathan; Pizarro, Ana M.; Otero, Roberto; Gallego, José M.; Ballester, Pablo; Galan-Mascaros, José R.; Ecija, David

    2016-01-01

    On-surface synthesis is a promising strategy for engineering heteroatomic covalent nanoarchitectures with prospects in electronics, optoelectronics and photovoltaics. Here we report the thermal tunability of reaction pathways of a molecular precursor in order to select intramolecular versus intermolecular reactions, yielding monomeric or polymeric phthalocyanine derivatives, respectively. Deposition of tetra-aza-porphyrin species bearing ethyl termini on Au(111) held at room temperature results in a close-packed assembly. Upon annealing from room temperature to 275 °C, the molecular precursors undergo a series of covalent reactions via their ethyl termini, giving rise to phthalocyanine tapes. However, deposition of the tetra-aza-porphyrin derivatives on Au(111) held at 300 °C results in the formation and self-assembly of monomeric phthalocyanines. A systematic scanning tunnelling microscopy study of reaction intermediates, combined with density functional calculations, suggests a [2+2] cycloaddition as responsible for the initial linkage between molecular precursors, whereas the monomeric reaction is rationalized as an electrocyclic ring closure. PMID:26964764

  1. Enhancement of Chlorophyll Concentration and Growing Harmful Algal Bloom Along the California Coast

    NASA Astrophysics Data System (ADS)

    Aceves, Joselyn; Singh, Ramesh

    2016-07-01

    We have carried out detailed analysis of satellite and ground data at different locations, Cal Poly, Goleta, Newport, Santa Monica, and Scripps piers and Monterey, Stearns and Santa Cruz wharfs along the California coast for the period 2008-2015. The sea surface temperature and chlorophyll concentrations derived from satellite data are analyzed together with ground observations of nitrogen, phosphorus, domoic acids and harmful algal blooms. The frequency of harmful algal blooms are found to increase in recent years depending upon the enhancement of chlorophyll concentrations and the discharges along the coast and dynamics of the sea surface temperature. The frequency of harmful algal blooms is higher in the northern California compared to southern California. The anthropogenic activities along the coast have increased which are associated with the forest fires and long range transport of dusts from Asia. The aerosol optical depth derived from satellite data during summer months seems to play an important role in the frequency of harmful algal blooms.

  2. Evaluation of clumped isotope paleotemperatures across carbon isotope excursions from lacustrine strata of the Aptian Xiagou Formation, China

    NASA Astrophysics Data System (ADS)

    Suarez, M. B.; Gonzalez, L. A.; Ludvigson, G. A.; You, H.

    2014-12-01

    Carbon cycle perturbations associated with Ocean Anoxic Event 1a have been implicated in global climate and environmental changes in the Early Aptian, in particular evidence for high sea surface temperatures (SST) and carbonate platform drowning. Records of environmental changes in the terrestrial realm remain sparse. This study provides additional data on clumped isotope derived temperatures (T(Δ47)) from lacustrine carbonates of the Xiagou Formation, Gansu Province, China. In addition, Vitrinite reflectance and the Rock-Eval parameter Tmax were used to evaluate the potential for 13C-18O bonds in the carbonates to have experienced reordering. Clumped isotope derived temperatures range from 28.8 °C to 45.9°C. Vitrinite reflectance values range from 0.67 to 0.72 and Tmax ranges from 429 °C to 443 °C. The warmest temperature, derived from a very fine-grained calcareous sandstone, is at the upper limit of known modern Earth surface temperatures, and prompts concern that the T(Δ47) may be shifted to warmer temperatures as a result of burial diagenesis. Vitrinite reflectance and Tmax values indicate the samples have reached early maturity for oil generation (oil window from 60 °C to 150°C), so may have reached the lower end of temperatures for bond reordering to have occurred (~100 °C for ~100 million years). Despite this, the T(Δ47) are consistent with summer temperatures in a warm Cretaceous. In addition, temperature variations are similar to TEX86 records, especially from SST of the tropical Pacific. Two temperature increases and decreases occur, with the first peak in temperature occurring at the negative carbon isotope excursion (C3) associated with the initiation of the Selli Event (OAE1a). This study provides evidence that climate variations occurring during the Selli Event were experienced in terrestrial environments, and provides maximum summer temperatures for this part of the Asian continent during the Cretaceous. While it was intended that thermal maturity parameters such as vitrinite reflectance and Tmax would help to rule out alteration due to burial diagenesis, the results are somewhat ambiguous. More rigorous data will be needed in future studies to screen clumped isotope samples for burial diagenesis.

  3. Water Ice Cloud Opacities and Temperatures Derived from the Viking IRTM Data Set

    NASA Technical Reports Server (NTRS)

    TamppariL. K.; Zurek, R. W.; Paige, D. A.

    1999-01-01

    The degree to which water ice clouds play a role in the Mars climate is unknown. Latent heating of water ice clouds is small and since most hazes appeared to be thin (tau less than or = 1) their radiative effects have been neglected. Condensation likely limits the vertical extent of water vapor in the water column and a lowering of the condensation altitude, as seen in the northern spring and summer, could increase the seasonal exchange of water between the atmosphere and the surface. It has been suggested that water ice cloud formation is more frequent and widespread in the aphelic hemisphere (currently the northern). This may limit water to the northern hemisphere through greater exchange with the regolith and through restricted southward transport of water vapor by the Mars Hadley circulation. In addition, it has been suggested that water ice cloud formation also controls the vertical distribution of atmospheric dust in some seasons. This scavenging of dust may Continuing from the IRTM cloud maps, derived cloud opacities and cloud temperatures for several locations and seasons will be presented. Sensitivities to cloud particle sizes, surface temperature, and dust opacity will be discussed.

  4. Global discrimination of land cover types from metrics derived from AVHRR pathfinder data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeFries, R.; Hansen, M.; Townshend, J.

    1995-12-01

    Global data sets of land cover are a significant requirement for global biogeochemical and climate models. Remotely sensed satellite data is an increasingly attractive source for deriving these data sets due to the resulting internal consistency, reproducibility, and coverage in locations where ground knowledge is sparse. Seasonal changes in the greenness of vegetation, described in remotely sensed data as changes in the normalized difference vegetation index (NDVI) throughout the year, have been the basis for discriminating between cover types in previous attempts to derive land cover from AVHRR data at global and continental scales. This study examines the use ofmore » metrics derived from the NDVI temporal profile, as well as metrics derived from observations in red, infrared, and thermal bands, to improve discrimination between 12 cover types on a global scale. According to separability measures calculated from Bhattacharya distances, average separabilities improved by using 12 of the 16 metrics tested (1.97) compared to separabilities using 12 monthly NDVI values alone (1.88). Overall, the most robust metrics for discriminating between cover types were: mean NDVI, maximum NDVI, NDVI amplitude, AVHRR Band 2 (near-infrared reflectance) and Band 1 (red reflectance) corresponding to the time of maximum NDVI, and maximum land surface temperature. Deciduous and evergreen vegetation can be distinguished by mean NDVI, maximum NDVI, NDVI amplitude, and maximum land surface temperature. Needleleaf and broadleaf vegetation can be distinguished by either mean NDVI and NDVI amplitude or maximum NDVI and NDVI amplitude.« less

  5. Sea Ice and Ice Temperature Variability as Observed by Microwave and Infrared Satellite Data

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Recent reports of a retreating and thinning sea ice cover in the Arctic have pointed to a strong suggestion of significant warming in the polar regions. It is especially important to understand what these reports mean in light of the observed global warning and because the polar regions are expected to be most sensitive to changes in climate. To gain insight into this phenomenon, co-registered ice concentrations and surface temperatures derived from two decades of satellite microwave and infrared data have been processed and analyzed. While observations from meteorological stations indicate consistent surface warming in both regions during the last fifty years, the last 20 years of the same data set show warming in the Arctic but a slight cooling in the Antarctic. These results are consistent with the retreat in the Arctic ice cover and the advance in the Antarctic ice cover as revealed by historical satellite passive microwave data. Surface temperatures derived from satellite infrared data are shown to be consistent within 3 K with surface temperature data from the limited number of stations. While not as accurate, the former provides spatially detailed changes over the twenty year period. In the Arctic, for example, much of the warming occurred in the Beaufort Sea and the North American region in 1998 while slight cooling actually happened in parts of the Laptev Sea and Northern Siberia during the same time period. Big warming anomalies are also observed during the last five years but a periodic cycle of about ten years is apparent suggesting a possible influence of the North Atlantic Oscillation. In the Antarctic, large interannual and seasonal changes are also observed in the circumpolar ice cover with regional changes showing good coherence with surface temperature anomalies. However, a mode 3 is observed to be more dominant than the mode 2 wave reported in the literature. Some of these spatial and temporal changes appear to be influenced by the Antarctic Circumpolar Wave (ACW) and changes in coastal polynya activities.

  6. Theoretical and experimental emittance measurements for a thin liquid sheet flow

    NASA Technical Reports Server (NTRS)

    Englehart, Amy N.; Mcconley, Marc W.; Chubb, Donald L.

    1995-01-01

    Surface tension forces at the edges of a thin liquid (approximately 200 microns) sheet flow result in a triangularly shaped sheet. Such a geometry is ideal for an external flow radiator. Since the fluid must have very low vapor pressure, Dow Corning 705 silicone oil was used and the emittance of a flowing sheet of oil was determined by two methods. The emittance was derived as a function of the temperature drop between the top of the sheet and the coalescence point of the sheet, the sink temperature, the volumetric flow and the length of the sheet. the emittance for the oil was also calculated using an extinction coefficient determined from spectral transmittance data of the oil. The oil's emittance ranges from .67 to .87 depending on the sheet thickness and sheet temperature. The emittance derived from the temperature drop was slightly less than the emittance calculated from transmittance data. An investigation of temperature fluctuation upstream of the slit plate was also done. The fluctuations were determined to be negligible, not affecting the temperature drop which was due to radiation.

  7. Super Clausius-Clapeyron scaling of extreme hourly precipitation and its relation to large-scale atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Lenderink, Geert; Barbero, Renaud; Loriaux, Jessica; Fowler, Hayley

    2017-04-01

    Present-day precipitation-temperature scaling relations indicate that hourly precipitation extremes may have a response to warming exceeding the Clausius-Clapeyron (CC) relation; for The Netherlands the dependency on surface dew point temperature follows two times the CC relation corresponding to 14 % per degree. Our hypothesis - as supported by a simple physical argument presented here - is that this 2CC behaviour arises from the physics of convective clouds. So, we think that this response is due to local feedbacks related to the convective activity, while other large scale atmospheric forcing conditions remain similar except for the higher temperature (approximately uniform warming with height) and absolute humidity (corresponding to the assumption of unchanged relative humidity). To test this hypothesis, we analysed the large-scale atmospheric conditions accompanying summertime afternoon precipitation events using surface observations combined with a regional re-analysis for the data in The Netherlands. Events are precipitation measurements clustered in time and space derived from approximately 30 automatic weather stations. The hourly peak intensities of these events again reveal a 2CC scaling with the surface dew point temperature. The temperature excess of moist updrafts initialized at the surface and the maximum cloud depth are clear functions of surface dew point temperature, confirming the key role of surface humidity on convective activity. Almost no differences in relative humidity and the dry temperature lapse rate were found across the dew point temperature range, supporting our theory that 2CC scaling is mainly due to the response of convection to increases in near surface humidity, while other atmospheric conditions remain similar. Additionally, hourly precipitation extremes are on average accompanied by substantial large-scale upward motions and therefore large-scale moisture convergence, which appears to accelerate with surface dew point. This increase in large-scale moisture convergence appears to be consequence of latent heat release due to the convective activity as estimated from the quasi-geostrophic omega equation. Consequently, most hourly extremes occur in precipitation events with considerable spatial extent. Importantly, this event size appears to increase rapidly at the highest dew point temperature range, suggesting potentially strong impacts of climatic warming.

  8. Analytical model of radiation-induced precipitation at the surface of dilute binary alloy

    NASA Astrophysics Data System (ADS)

    Pechenkin, V. A.; Stepanov, I. A.; Konobeev, Yu. V.

    2002-12-01

    Growth of precipitate layer at the foil surface of an undersaturated binary alloy under uniform irradiation is treated analytically. Analytical expressions for the layer growth rate, layer thickness limit and final component concentrations in the matrix are derived for coherent and incoherent precipitate-matrix interfaces. It is shown that the high temperature limit of radiation-induced precipitation is the same for both types of interfaces, whereas layer thickness limits are different. A parabolic law of the layer growth predicted for both types of interfaces is in agreement with experimental data on γ '-phase precipitation at the surface of Ni-Si dilute alloys under ion irradiation. Effect of sputtering on the precipitation rate and on the low temperature limit of precipitation under ion irradiation is discussed.

  9. Jumps in electric potential and in temperature at the electrode surfaces of the solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Kjelstrup, S.; Bedeaux, D.

    1997-02-01

    The electric potential profile and the temperature profile across a formation cell have been derived for the first time, using irreversible thermodynamics for bulk and surface systems. The method was demonstrated with the solid oxide fuel cell. The expression for the cell potential reduces to the classical formula when we assume equilibrium for polarized oxygen atoms across the electrolyte. Using data from the literature, we show for some likely assumptions, how the cell potential is generated at the anode, and how the energy is dissipated throughout the cell. The thermal gradient amounts to 5 × 10 8 Km -1 when the current density is 10 4 Am -2 and the thermal resistance of the surface scales like the electrical resistance.

  10. Structural and surface properties of CuO-ZnO-Cr{sub 2}O{sub 3} catalysts and their relationship with selectivity to higher alcohol synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campos-Martin, J.M.; Fierro, J.L.G.; Guerrero-Ruiz, A.

    1995-10-01

    A series of copper-zinc-chromium catalysts of different compositions and calcination temperatures has been prepared, characterized by several techniques (BET specific surface area, XRD, gravimetric TPR, TPD-CO, and XPS), and tested under high alcohol synthesis (HAS) conditions. CO hydrogenation was carried out at reaction temperatures of 523-598 K and 50 bar total pressure. The influence of catalyst composition, calcination temperature, and surface characteristics on the HAS selectivity was studied. The optimum HAS yields were found in the low Cr content region, but chromium was needed. Although chromium oxide does not seem to be involved in the catalytic site, its presence inmore » the catalyst composition is essential, owing to the larger specific surfaces and catalyst stability obtained at the highest reaction temperatures. For low Cr content composition, the temperature-programmed reduction (TPR) profiles were shifted to higher temperatures and simultaneously larger CO{sub 2} amounts were found in the temperature-programmed desorption profiles of adsorbed CO (TPD-CO). Photoelectron spectra (XPS) revealed that the oxidation state of copper is Cu{sup 2+} in the calcined catalysts and Cu{sup O} in the reduced ones; Cu{sup +} was only stabilized in a CuCr{sub 2}O{sub 4} spinel in the Cr-rich catalysts. These features derived from catalyst characterization are discussed in the framework of the catalytic behaviour for HAS synthesis. 53 refs., 7 figs., 4 tabs.« less

  11. Terrestrial Observations from NOAA Operational Satellites.

    PubMed

    Yates, H; Strong, A; McGinnis, D; Tarpley, D

    1986-01-31

    Important applications to oceanography, hydrology, and agriculture have been developed from operational satellites of the National Oceanic and Atmospheric Administration and are currently expanding rapidly. Areas of interest involving the oceans include sea surface temperature, ocean currents, and ocean color. Satellites can monitor various hydrological phenomena, including regional and global snow cover, river and sea ice extent, and areas of global inundation. Agriculturally important quantities derived from operational satellite observations include precipitation, daily temperature extremes, canopy temperatures, insolation, and snow cover. This overview describes the current status of each area.

  12. Analyzing land surface temperature variations during Fogo Island (Cape Verde) 2014-2015 eruption with Landsat 8 images

    NASA Astrophysics Data System (ADS)

    Vieira, D.; Teodoro, A.; Gomes, A.

    2016-10-01

    Land Surface Temperature (LST) is an important parameter related to land surface processes that changes continuously through time. Assessing its dynamics during a volcanic eruption has both environmental and socio-economical interest. Lava flows and other volcanic materials produced and deposited throughout an eruption transform the landscape, contributing to its heterogeneity and altering LST measurements. This paper aims to assess variations of satellite-derived LST and to detect patterns during the latest Fogo Island (Cape Verde) eruption, extending from November 2014 through February 2015. LST data was obtained through four processed Landsat 8 images, focused on the caldera where Pico do Fogo volcano sits. QGIS' plugin Semi-Automatic Classification was used in order to apply atmospheric corrections and radiometric calibrations. The algorithm used to retrieve LST values is a single-channel method, in which emissivity values are known. The absence of in situ measurements is compensated by the use of MODIS sensor-derived LST data, used to compare with Landsat retrieved measurements. LST data analysis shows as expected that the highest LST values are located inside the caldera. High temperature values were also founded on the south-facing flank of the caldera. Although spatial patterns observed on the retrieved data remained roughly the same during the time period considered, temperature values changed throughout the area and over time, as it was also expected. LST values followed the eruption dynamic experiencing a growth followed by a decline. Moreover, it seems possible to recognize areas affected by lava flows of previous eruptions, due to well-defined LST spatial patterns.

  13. Accuracy of sea ice temperature derived from the advanced very high resolution radiometer

    NASA Technical Reports Server (NTRS)

    Yu, Y.; Rothrock, D. A.; Lindsay, R. W.

    1995-01-01

    The accuracy of Arctic sea ice surface temperatures T(sub s) dericed from advanced very high resolution radiometer (AVHRR) thermal channels is evaluated in the cold seasons by comparing them with surface air temperatures T(sub air) from drifting buoys and ice stations. We use three different estimates of satellite surface temperatures, a direct estimate from AVHRR channel 4 with only correction for the snow surface emissivity but not for the atmosphere, a single-channel regression of T(sub s) with T(sub air), and Key and Haefliger's (1992) polar multichannel algorithm. We find no measurable bias in any of these estimates and few differences in their statistics. The similar performance of all three methods indicates that an atmospheric water vapor correction is not important for the dry winter atmosphere in the central Arctic, given the other sources of error that remain in both the satellite and the comparison data. A record of drifting station data shows winter air temperature to be 1.4 C warmer than the snow surface temperature. `Correcting' air temperatures to skin temperature by subtracting this amount implies that satellite T(sub s) estimates are biased warm with respect to skin temperature by about this amount. A case study with low-flying aircraft data suggests that ice crystal precipitation can cause satellite estimates of T(sub s) to be several degrees warmer than radiometric measurements taken close to the surface, presumably below the ice crystal precipitation layer. An analysis in which errors are assumed to exist in all measurements, not just the satellite measurements, gives a standard deviation in the satellite estimates of 0.9 C, about half the standard deviation of 1.7 C estimated by assigning all the variation between T(sub s) and T(sub air) to errors in T(sub s).

  14. Polylayer Adsorption on Rough Surfaces of Nanoaerosols Obtained via the Rapid Cooling of Droplets

    NASA Astrophysics Data System (ADS)

    Zaitseva, E. S.; Tovbin, Yu. K.

    2018-05-01

    An approach is developed for studying polymolecular adsorption on the modeled rough surface of a small aerosol obtained from a liquid droplet on its rapid cooling. A way of estimating the specific surface of adsorbent droplets with rough surfaces is proposed, and the temperature and size dependences of the specific surface are established. Isotherms of N2 and Ar polymolecular adsorption on a heterogeneous surface of small spherical particles of SiO2 are derived. The possibility of using this approach to describe an experiment is demonstrated. Comparison to the experimental isotherms reveals agreement with isotherms of argon and nitrogen on silica surfaces, with an error of up to 4.5%.

  15. Assimilation of GOES Land Surface Data into a Mesoscale Models

    NASA Technical Reports Server (NTRS)

    Lapenta, William M.; Suggs, Ron; McNider, Richard T.; Jedlovec, Gary; Dembek, Scott; Goodman, H. Michael (Technical Monitor)

    2001-01-01

    A technique has been developed for assimilating Geostationary Operational Environmental Satellite (GOES)-derived skin temperature tendencies and insolation into the surface energy budget equation of a mesoscale model so that the simulated rate of temperature change closely agrees with the satellite observations. A critical assumption of the technique is that the availability of moisture (either from the soil or vegetation) is the least known term in the model's surface energy budget. Therefore, the simulated latent heat flux, which is a function of surface moisture availability, is adjusted based upon differences between the modeled and satellite-observed skin temperature tendencies. An advantage of this technique is that satellite temperature tendencies are assimilated in an energetically consistent manner that avoids energy imbalances and surface stability problems that arise from direct assimilation of surface shelter temperatures. The fact that the rate of change of the satellite skin temperature is used rather than the absolute temperature means that sensor calibration is not as critical. The assimilation technique has been applied to the Oklahoma-Kansas region during the spring-summer 2000 time period when dynamic changes in vegetation cover occur. In April, central Oklahoma is characterized by large NDVI associated with winter wheat while surrounding areas are primarily rangeland with lower NDVI. In July the vegetation pattern reverses as the central wheat area changes to low NDVI due to harvesting and the surrounding rangeland is greener than it was in April. The goal of this study is to determine if assimilating satellite land surface data can improve simulation of the complex spatial distribution of surface energy and water fluxes across this region. The PSU/NCAR NM5 V3 system is used in this study. The grid configuration consists of a 36-km CONUS domain and a 12-km nest over the area of interest. Bulk verification statistics (BIAS and RMSE) of surface air temperature and dewpoint indicates that assimilation of the satellite data results reduces both the bias and RMSE for both state variables. In addition, comparison of model data with ARM/CART EBBR flux observations reveals that the assimilation technique adjusts the bowen ratio in a realistic fashion.

  16. SMOS after 2 YEARS and a half in orbit

    NASA Astrophysics Data System (ADS)

    Kerr, Y.; Richaume, P.; Wigneron, J.-P.; Waldteufel, P.; Mecklenburg, S.; Cabot, F.; Boutin, J.; Font, J.; Reul, N.

    2012-04-01

    The SMOS (Soil Moisture and Ocean Salinity) satellite was successfully launched in November 2009. This ESA led mission for Earth Observation is dedicated to provide soil moisture over continental surface (with an accuracy goal of 0.04 m3/m3) and ocean salinity. These two geophysical features are important as they control the energy balance between the surface and the atmosphere. Their knowledge at a global scale is of interest for climatic and weather researches in particular in improving models forecasts. The purpose of this communication is to present the mission results after more than two years in orbit as well as some outstanding results already obtained. A special attention will be devoted to level 2 products. Modeling multi-angular brightness temperatures is not straightforward. The radiative model transfer model L-MEB (L-band Microwave Emission) is used over land while different models with different approaches as to the modeling of sea surface roughness are used over ocean surfaces. Over land the approach is based on semi-empirical relationships, adapted to different type of surface. The model computes a dielectric constant leading to surface emissivity. Surface features (roughness, vegetation) are also considered in the models. However, considering SMOS spatial resolution a wide area is seen by the instrument with strong heterogeneity. The L2 soil moisture retrieval scheme takes this into account. Brightness temperatures are computed for every classes composing a working area. A weighted function is applied for the incidence angle and the antenna beam. Once the brightness temperature is computed for the entire working area, the minimizing process starts. If no soil moisture is derived (not attempted or process failed) a dielectric constant is still derived from an simplified modeled (the cardioid model). SMOS data enabled very quickly to infer Sea surface salinity fields. As salinity retrieval is quite challenging, retrieving it enable to assess very finely the characteristics of the complete system in terms of stability, drift etc. Some anomalies such as the ascending descending temperature differences, temporal drifts or land sea contamination were used to infer issues and improve data quality. The modeling has to account for several perturbing factors 'galactic reflection, sea state, atmospheric path and Faraday rotation etc…as the useful signal is quite small when compared to the perturbing factors impact as well as the instrument sensitivity. Over sea ice several studies showed that it was possible to infer thin ice (first year ice, 50 cm or less) from SMOS measurements. Other studies focused on the Antarctic plateau with also very interesting new results. This presentation will show in detail the SMOS in flight results. The retrieval schemes have been developed to reach science requirements, that is to derive the surface soil moisture over continental surface with an accuracy better than 0,04m3/m3. Over the ocean the goals are not yet satisfied but results are already getting close to the requirements.

  17. An improved empirical dynamic control system model of global mean sea level rise and surface temperature change

    NASA Astrophysics Data System (ADS)

    Wu, Qing; Luu, Quang-Hung; Tkalich, Pavel; Chen, Ge

    2018-04-01

    Having great impacts on human lives, global warming and associated sea level rise are believed to be strongly linked to anthropogenic causes. Statistical approach offers a simple and yet conceptually verifiable combination of remotely connected climate variables and indices, including sea level and surface temperature. We propose an improved statistical reconstruction model based on the empirical dynamic control system by taking into account the climate variability and deriving parameters from Monte Carlo cross-validation random experiments. For the historic data from 1880 to 2001, we yielded higher correlation results compared to those from other dynamic empirical models. The averaged root mean square errors are reduced in both reconstructed fields, namely, the global mean surface temperature (by 24-37%) and the global mean sea level (by 5-25%). Our model is also more robust as it notably diminished the unstable problem associated with varying initial values. Such results suggest that the model not only enhances significantly the global mean reconstructions of temperature and sea level but also may have a potential to improve future projections.

  18. Double-diffusive boundary layers along vertical free surfaces

    NASA Astrophysics Data System (ADS)

    Napolitano, L. G.; Viviani, A.; Savino, R.

    1992-05-01

    This paper deals with double-diffusive (or thermosolutal) combined free convection, i.e., free convection due to buoyant forces (natural convection) and surface tension gradients (Marangoni convection), which are generated by volume differences and surface gradients of temperature and solute concentration. Attention is focused on boundary layers that form along a vertical liquid-gas interface, when the appropriately defined nondimensional characteristic transport numbers are large enough, in problems of thermosolutal natural and Marangoni convection, such as buoyancy and surface tension driven flows in differentially heated open cavities and liquid bridges. Classes of similar solutions are derived for each class of convection on the basis of a rigorous order of magnitude analysis. Velocity, temperature and concentration profiles are reported in the similarity plane; flow and transport properties at the liquid-gas interface (interfacial velocity, heat and mass transfer bulk coefficients) are obtained for a wide range of Prandtl and Schmidt numbers and different values of the similarity parameter.

  19. An updated global grid point surface air temperature anomaly data set: 1851--1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sepanski, R.J.; Boden, T.A.; Daniels, R.C.

    1991-10-01

    This document presents land-based monthly surface air temperature anomalies (departures from a 1951--1970 reference period mean) on a 5{degree} latitude by 10{degree} longitude global grid. Monthly surface air temperature anomalies (departures from a 1957--1975 reference period mean) for the Antarctic (grid points from 65{degree}S to 85{degree}S) are presented in a similar way as a separate data set. The data were derived primarily from the World Weather Records and the archives of the United Kingdom Meteorological Office. This long-term record of temperature anomalies may be used in studies addressing possible greenhouse-gas-induced climate changes. To date, the data have been employed inmore » generating regional, hemispheric, and global time series for determining whether recent (i.e., post-1900) warming trends have taken place. This document also presents the monthly mean temperature records for the individual stations that were used to generate the set of gridded anomalies. The periods of record vary by station. Northern Hemisphere station data have been corrected for inhomogeneities, while Southern Hemisphere data are presented in uncorrected form. 14 refs., 11 figs., 10 tabs.« less

  20. Analysis of Long-Term Cloud Cover, Radiative Fluxes, and Sea Surface Temperature in the Eastern Tropical Pacific

    NASA Technical Reports Server (NTRS)

    Simpson, J. J.; Frouin, R.

    1996-01-01

    Grant activities accomplished during this reporting period are summarized. The contributions of the principle investigator are reported under four categories: (1) AHVRR (Advanced Very High Resolution Radiometer) data; (2) GOES (Geostationary Operational Environ Satellite) data; (3) system software design; and (4) ATSR (Along Track Scanning Radiometer) data. The contributions of the associate investigator are reported for:(1) longwave irradiance at the surface; (2) methods to derive surface short-wave irradiance; and (3) estimating PAR (photo-synthetically active radiation) surface. Several papers have resulted. Abstracts for each paper are provided.

  1. Surface Structure of Bi(111) from Helium Atom Scattering Measurements. Inelastic Close-Coupling Formalism

    PubMed Central

    2015-01-01

    Elastic and inelastic close-coupling (CC) calculations have been used to extract information about the corrugation amplitude and the surface vibrational atomic displacement by fitting to several experimental diffraction patterns. To model the three-dimensional interaction between the He atom and the Bi(111) surface under investigation, a corrugated Morse potential has been assumed. Two different types of calculations are used to obtain theoretical diffraction intensities at three surface temperatures along the two symmetry directions. Type one consists of solving the elastic CC (eCC) and attenuating the corresponding diffraction intensities by a global Debye–Waller (DW) factor. The second one, within a unitary theory, is derived from merely solving the inelastic CC (iCC) equations, where no DW factor is necessary to include. While both methods arrive at similar predictions for the peak-to-peak corrugation value, the variance of the value obtained by the iCC method is much better. Furthermore, the more extensive calculation is better suited to model the temperature induced signal asymmetries and renders the inclusion for a second Debye temperature for the diffraction peaks futile. PMID:26257838

  2. Reference manual for the Thermal Analyst's Help Desk Expert System

    NASA Technical Reports Server (NTRS)

    Ormsby, Rachel A.

    1994-01-01

    This document provides technical information and programming guidance for the maintenance and future development of the Thermal Analyst's Help Desk. Help Desk is an expert system that operates within the EXSYSTM expert system shell, and is used to determine first approximations of thermal capacity for spacecraft and instruments. The five analyses supported in Help Desk are: (1) surface area required for a radiating surface, (2) equilibrium temperature of a surface, (3) enclosure temperature and heat loads for a defined position in orbit, (4) enclosure temperature and heat loads over a complete orbit and, (5) selection of appropriate surface properties. The two geometries supported by Help Desk are a single flat plate and a rectangular box enclosure. The technical information includes the mathematical approach and analytical derivations used in the analyses such as: radiation heat balance, view factor calculation, and orbit determination with coordinate transformation. The programming guide for developers describes techniques for enhancement of Help Desk. Examples are provided showing the addition of new features, user interface development and enhancement, and external program interfaces.

  3. Towards a study of synoptic-scale variability of the California current system

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A West Coast satellite time series advisory group was established to consider the scientific rationale for the development of complete west coast time series of imagery of sea surface temperature (as derived by the Advanced Very High Resolution Radiometer on the NOAA polar orbiter, and near-surface phytoplankton pigment concentrations (as derived by the Coastal Zone Color Scanner on Nimbus 7). The scientific and data processing requirements for such time series are also considered. It is determined that such time series are essential if a number of scientific questions regarding the synoptic-scale dynamics of the California Current System are to be addressed. These questions concern both biological and physical processes.

  4. Boundary conditions, dimensionality, topology and size dependence of the superconducting transition temperature

    NASA Astrophysics Data System (ADS)

    Fink, Herman J.; Haley, Stephen B.; Giuraniuc, Claudiu V.; Kozhevnikov, Vladimir F.; Indekeu, Joseph O.

    2005-11-01

    For various sample geometries (slabs, cylinders, spheres, hypercubes), de Gennes' boundary condition parameter b is used to study its effect upon the transition temperature Tc of a superconductor. For b > 0 the order parameter at the surface is decreased, and as a consequence Tc is reduced, while for b < 0 the order parameter at the surface is increased, thereby enhancing Tc of a specimen in zero magnetic field. Exact solutions, derived by Fink and Haley (Int. J. mod. Phys. B, 17, 2171 (2003)), of the order parameter of a slab of finite thickness as a function of temperature are presented, both for reduced and enhanced transition (nucleation) temperatures. At the nucleation temperature the order parameter approaches zero. This concise review closes with a link established between de Gennes' microscopic boundary condition and the Ginzburg-Landau phenomenological approach, and a discussion of some relevant experiments. For example, applying the boundary condition with b < 0 to tin whiskers elucidates the increase of Tc with strain.

  5. Comparison of kinetic models for atom recombination on high-temperature reusable surface insulation

    NASA Technical Reports Server (NTRS)

    Willey, Ronald J.

    1993-01-01

    Five kinetic models are compared for their ability to predict recombination coefficients for oxygen and nitrogen atoms over high-temperature reusable surface insulation (HRSI). Four of the models are derived using Rideal-Eley or Langmuir-Hinshelwood catalytic mechanisms to describe the reaction sequence. The fifth model is an empirical expression that offers certain features unattainable through mechanistic description. The results showed that a four-parameter model, with temperature as the only variable, works best with data currently available. The model describes recombination coefficients for oxygen and nitrogen atoms for temperatures from 300 to 1800 K. Kinetic models, with atom concentrations, demonstrate the influence of atom concentration on recombination coefficients. These models can be used for the prediction of heating rates due to catalytic recombination during re-entry or aerobraking maneuvers. The work further demonstrates a requirement for more recombination experiments in the temperature ranges of 300-1000 K, and 1500-1850 K, with deliberate concentration variation to verify model requirements.

  6. Using Machine learning method to estimate Air Temperature from MODIS over Berlin

    NASA Astrophysics Data System (ADS)

    Marzban, F.; Preusker, R.; Sodoudi, S.; Taheri, H.; Allahbakhshi, M.

    2015-12-01

    Land Surface Temperature (LST) is defined as the temperature of the interface between the Earth's surface and its atmosphere and thus it is a critical variable to understand land-atmosphere interactions and a key parameter in meteorological and hydrological studies, which is involved in energy fluxes. Air temperature (Tair) is one of the most important input variables in different spatially distributed hydrological, ecological models. The estimation of near surface air temperature is useful for a wide range of applications. Some applications from traffic or energy management, require Tair data in high spatial and temporal resolution at two meters height above the ground (T2m), sometimes in near-real-time. Thus, a parameterization based on boundary layer physical principles was developed that determines the air temperature from remote sensing data (MODIS). Tair is commonly obtained from synoptic measurements in weather stations. However, the derivation of near surface air temperature from the LST derived from satellite is far from straight forward. T2m is not driven directly by the sun, but indirectly by LST, thus T2m can be parameterized from the LST and other variables such as Albedo, NDVI, Water vapor and etc. Most of the previous studies have focused on estimating T2m based on simple and advanced statistical approaches, Temperature-Vegetation index and energy-balance approaches but the main objective of this research is to explore the relationships between T2m and LST in Berlin by using Artificial intelligence method with the aim of studying key variables to allow us establishing suitable techniques to obtain Tair from satellite Products and ground data. Secondly, an attempt was explored to identify an individual mix of attributes that reveals a particular pattern to better understanding variation of T2m during day and nighttime over the different area of Berlin. For this reason, a three layer Feedforward neural networks is considered with LMA algorithm. Considering the different relationships between T2m and LST for different land types enable us to improve better parameterization for determination of the best non-linear relation between LST and T2m over Berlin during day and nighttime. The results of the study will be presented and discussed.

  7. Analysis of Ultra High Resolution Sea Surface Temperature Level 4 Datasets

    NASA Technical Reports Server (NTRS)

    Wagner, Grant

    2011-01-01

    Sea surface temperature (SST) studies are often focused on improving accuracy, or understanding and quantifying uncertainties in the measurement, as SST is a leading indicator of climate change and represents the longest time series of any ocean variable observed from space. Over the past several decades SST has been studied with the use of satellite data. This allows a larger area to be studied with much more frequent measurements being taken than direct measurements collected aboard ship or buoys. The Group for High Resolution Sea Surface Temperature (GHRSST) is an international project that distributes satellite derived sea surface temperatures (SST) data from multiple platforms and sensors. The goal of the project is to distribute these SSTs for operational uses such as ocean model assimilation and decision support applications, as well as support fundamental SST research and climate studies. Examples of near real time applications include hurricane and fisheries studies and numerical weather forecasting. The JPL group has produced a new 1 km daily global Level 4 SST product, the Multiscale Ultrahigh Resolution (MUR), that blends SST data from 3 distinct NASA radiometers: the Moderate Resolution Imaging Spectroradiometer (MODIS), the Advanced Very High Resolution Radiometer (AVHRR), and the Advanced Microwave Scanning Radiometer ? Earth Observing System(AMSRE). This new product requires further validation and accuracy assessment, especially in coastal regions.We examined the accuracy of the new MUR SST product by comparing the high resolution version and a lower resolution version that has been smoothed to 19 km (but still gridded to 1 km). Both versions were compared to the same data set of in situ buoy temperature measurements with a focus on study regions of the oceans surrounding North and Central America as well as two smaller regions around the Gulf Stream and California coast. Ocean fronts exhibit high temperature gradients (Roden, 1976), and thus satellite data of SST can be used in the detection of these fronts. In this case, accuracy is less of a concern because the primary focus is on the spatial derivative of SST. We calculated the gradients for both versions of the MUR data set and did statistical comparisons focusing on the same regions.

  8. Adsorption and dynamics of Si atoms at the monolayer Pb/Si(111) surface

    NASA Astrophysics Data System (ADS)

    Kumar, Rakesh; Fang, Chuang-Kai; Lee, Chih-Hao; Hwang, Ing-Shouh

    2017-06-01

    In this work, we studied the adsorption behavior of deposited Si atoms along with their diffusion and other dynamic processes on a Pb monolayer-covered Si(111) surface from 125 to 230 K using a variable-temperature scanning tunneling microscope. The Pb-covered Si(111) surface forms a low-symmetry rowlike (√{7 }×√{3 } ) structure in this temperature range and the Si atoms bind favorably to two specific on-top sites (T1 A and T1 B) on the trimer row after deposition at the sample temperature of ˜125 K . The Si atoms were immobile at low temperatures and started to switch between the two neighboring T1 A and T1 B sites within the same trimer when the temperature was raised to ˜150 K . When the temperature was raised above ˜160 K , the adsorbed Si atoms could hop to other trimers along the same trimer row. Below ˜170 K , short hops to adjacent trimers dominated, but long hops dominated at temperatures above ˜170 K . The activation energy and prefactor for the Si atoms diffusion were derived through analysis of continuous-time imaging at temperatures from 160 to 174 K. In addition, irreversible aggregation of single Si atoms into Si clusters started to occur at the phase boundaries or defective sites at temperatures above ˜170 K . At temperature above ˜180 K , nearly all Si atoms aggregated into clusters, which may have important implications for the atomic mechanism of epitaxial growth of Si on the Pb-covered Si(111) surface. In addition, our study provides strong evidence for breaking in the mirror symmetry in the (√{7 }×√{3 } )-Pb structure, which has implications for the atomic model of this controversial structure.

  9. Climate reconstruction from borehole temperatures influenced by groundwater flow

    NASA Astrophysics Data System (ADS)

    Kurylyk, B.; Irvine, D. J.; Tang, W.; Carey, S. K.; Ferguson, G. A. G.; Beltrami, H.; Bense, V.; McKenzie, J. M.; Taniguchi, M.

    2017-12-01

    Borehole climatology offers advantages over other climate reconstruction methods because further calibration steps are not required and heat is a ubiquitous subsurface property that can be measured from terrestrial boreholes. The basic theory underlying borehole climatology is that past surface air temperature signals are reflected in the ground surface temperature history and archived in subsurface temperature-depth profiles. High frequency surface temperature signals are attenuated in the shallow subsurface, whereas low frequency signals can be propagated to great depths. A limitation of analytical techniques to reconstruct climate signals from temperature profiles is that they generally require that heat flow be limited to conduction. Advection due to groundwater flow can thermally `contaminate' boreholes and result in temperature profiles being rejected for regional climate reconstructions. Although groundwater flow and climate change can result in contrasting or superimposed thermal disturbances, groundwater flow will not typically remove climate change signals in a subsurface thermal profile. Thus, climate reconstruction is still possible in the presence of groundwater flow if heat advection is accommodated in the conceptual and mathematical models. In this study, we derive a new analytical solution for reconstructing surface temperature history from borehole thermal profiles influenced by vertical groundwater flow. The boundary condition for the solution is composed of any number of sequential `ramps', i.e. periods with linear warming or cooling rates, during the instrumented and pre-observational periods. The boundary condition generation and analytical temperature modeling is conducted in a simple computer program. The method is applied to reconstruct climate in Winnipeg, Canada and Tokyo, Japan using temperature profiles recorded in hydrogeologically active environments. The results demonstrate that thermal disturbances due to groundwater flow and climate change must be considered in a holistic manner as opposed to isolating either perturbation as was done in prior analytical studies.

  10. Vegetation greenness impacts on maximum and minimum temperatures in northeast Colorado

    USGS Publications Warehouse

    Hanamean, J. R.; Pielke, R.A.; Castro, C. L.; Ojima, D.S.; Reed, Bradley C.; Gao, Z.

    2003-01-01

    The impact of vegetation on the microclimate has not been adequately considered in the analysis of temperature forecasting and modelling. To fill part of this gap, the following study was undertaken.A daily 850–700 mb layer mean temperature, computed from the National Center for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) reanalysis, and satellite-derived greenness values, as defined by NDVI (Normalised Difference Vegetation Index), were correlated with surface maximum and minimum temperatures at six sites in northeast Colorado for the years 1989–98. The NDVI values, representing landscape greenness, act as a proxy for latent heat partitioning via transpiration. These sites encompass a wide array of environments, from irrigated-urban to short-grass prairie. The explained variance (r2 value) of surface maximum and minimum temperature by only the 850–700 mb layer mean temperature was subtracted from the corresponding explained variance by the 850–700 mb layer mean temperature and NDVI values. The subtraction shows that by including NDVI values in the analysis, the r2 values, and thus the degree of explanation of the surface temperatures, increase by a mean of 6% for the maxima and 8% for the minima over the period March–October. At most sites, there is a seasonal dependence in the explained variance of the maximum temperatures because of the seasonal cycle of plant growth and senescence. Between individual sites, the highest increase in explained variance occurred at the site with the least amount of anthropogenic influence. This work suggests the vegetation state needs to be included as a factor in surface temperature forecasting, numerical modeling, and climate change assessments.

  11. Microphysics of Air-Sea Exchanges

    DTIC Science & Technology

    2003-09-30

    intensities of the three color components at each point of the image . The ISG imaged an area of the water surface of up to 45 cm (downwind) x 30 cm...notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not...satellite-derived sea-surface temperature (SST) fields into meaningful climatologies and to more physically-based applications of satellite data to studies

  12. Ammonia adsorption capacity of biomass and animal-manure derived biochars

    USDA-ARS?s Scientific Manuscript database

    The objective of this research was to characterize and investigate ammonia and hydrogen sulfide gas adsorption capacities of low- and high-temperature biochars made from wood shavings and chicken litter. The biochar samples were activated with steam or phosphoric acid. The specific surface areas and...

  13. A robust empirical seasonal prediction of winter NAO and surface climate.

    PubMed

    Wang, L; Ting, M; Kushner, P J

    2017-03-21

    A key determinant of winter weather and climate in Europe and North America is the North Atlantic Oscillation (NAO), the dominant mode of atmospheric variability in the Atlantic domain. Skilful seasonal forecasting of the surface climate in both Europe and North America is reflected largely in how accurately models can predict the NAO. Most dynamical models, however, have limited skill in seasonal forecasts of the winter NAO. A new empirical model is proposed for the seasonal forecast of the winter NAO that exhibits higher skill than current dynamical models. The empirical model provides robust and skilful prediction of the December-January-February (DJF) mean NAO index using a multiple linear regression (MLR) technique with autumn conditions of sea-ice concentration, stratospheric circulation, and sea-surface temperature. The predictability is, for the most part, derived from the relatively long persistence of sea ice in the autumn. The lower stratospheric circulation and sea-surface temperature appear to play more indirect roles through a series of feedbacks among systems driving NAO evolution. This MLR model also provides skilful seasonal outlooks of winter surface temperature and precipitation over many regions of Eurasia and eastern North America.

  14. Development of Advanced Thermal and Environmental Barrier Coatings Using a High-Heat-Flux Testing Approach

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2003-01-01

    The development of low conductivity, robust thermal and environmental barrier coatings requires advanced testing techniques that can accurately and effectively evaluate coating thermal conductivity and cyclic resistance at very high surface temperatures (up to 1700 C) under large thermal gradients. In this study, a laser high-heat-flux test approach is established for evaluating advanced low conductivity, high temperature capability thermal and environmental barrier coatings under the NASA Ultra Efficient Engine Technology (UEET) program. The test approach emphasizes the real-time monitoring and assessment of the coating thermal conductivity, which initially rises under the steady-state high temperature thermal gradient test due to coating sintering, and later drops under the cyclic thermal gradient test due to coating cracking/delamination. The coating system is then evaluated based on damage accumulation and failure after the combined steady-state and cyclic thermal gradient tests. The lattice and radiation thermal conductivity of advanced ceramic coatings can also be evaluated using laser heat-flux techniques. The external radiation resistance of the coating is assessed based on the measured specimen temperature response under a laser- heated intense radiation-flux source. The coating internal radiation contribution is investigated based on the measured apparent coating conductivity increases with the coating surface test temperature under large thermal gradient test conditions. Since an increased radiation contribution is observed at these very high surface test temperatures, by varying the laser heat-flux and coating average test temperature, the complex relation between the lattice and radiation conductivity as a function of surface and interface test temperature may be derived.

  15. The Gephyrocapsa Sea Surface Paleothermometer Put To The Test: Comparison With Alkenone and Foraminifera Proxies Off NW Africa

    NASA Astrophysics Data System (ADS)

    Henderiks, J.; Bollmann, J.

    In Holocene deep-sea sediments, the relative abundance of different morphotypes within the coccolithophore genus Gephyrocapsa is closely correlated with sea sur- face temperature (Bollmann, 1997). Based on this relationship, a regional temperature transfer function was established using a set of 35 Holocene sediments from the NE Atlantic, covering a temperature range from 14C to 24C. Using this approach, ab- solute annual mean sea surface temperatures for a given location can be calculated from the relative abundance of two Gephyrocapsa morphotypes, Gephyrocapsa Cold and Gephyrocapsa Equatorial, with a standard deviation of +/-1.06C. A global regres- sion model (N=110) was applied as well, which calculates absolute mean sea surface temperatures from the relative abundance of three Gephyrocapsa morphotypes, with a standard deviation of +/-1.78C. Using both calibration models, we have estimated sea surface temperatures during the Last Glacial Maximum in a dispersed set of eigh- teen well-dated gravity cores off NW Africa (16-35N; 20-8W). The regional model revealed that annual mean temperatures during the LGM were 4 to 6C colder than today in the Canary Islands region, with lowest temperatures (14-15.5C) off-shore Morocco and south of the volcanic islands, likely due to intensified upwelling related to stronger trade winds. These values are consistent with estimates from the CLIMAP Project (1981) and other paleotemperature reconstructions for the same region. In con- trast, offshore Cape Blanc, our temperature estimates for the LGM are significantly warmer (Ttoday -LGM <4C) than proposed by CLIMAP (Ttoday -LGM 6-10C). Nevertheless, our results support temperature reconstructions based on alkenones that also indicate rather small temperature changes (Ttoday -LGM <3C) in this area (e.g. Zhao et al., 2000). Glacial sea surface temperature estimates derived from the global calibration are on average 1C warmer than those derived from the regional model. However, the overall geographic patterns and temperature gradients for both reconstructions are very similar. To compare our Gephyrocapsa proxy with other pa- leotemperature proxies, we investigated a down-core record off Cape Blanc (GeoB 1048; 2055 N, 1943 W) in the vicinity of BOFS core 31K (1900 N, 2010 W). For the latter core, a detailed multiproxy paleotemperature record already exists based on alkenones, Mg/Ca ratios in foraminiferal calcite and planktic foraminifera assem- 1 blages (Chapman et al., 1996; Elderfield Ganssen, 2000). Here, we show an especially good and consistent correspondence between our new proxy and alkenones, reflecting the fact that both proxies originated from the phytoplankton community. References Bollmann, Marine Micropaleontology 29 (3/4), 319-350 (1997). Chapman et al. Paleoceanography 11, 343-357 (1996). Elderfield Ganssen. Nature 405, 442-445 (2000). Zhao et al. Organic Geochemistry 31, 919-930 (2000). 2

  16. Image processing of HCMM-satellite thermal images for superposition with other satellite imagery and topographic and thematic maps. [Upper Rhine River Valley and surrounding highlands Switzerland, Germany, and France

    NASA Technical Reports Server (NTRS)

    Gossmann, H.; Haberaecker, P. (Principal Investigator)

    1980-01-01

    The southwestern part of Central Europe between Basal and Frankfurt was used in a study to determine the accuracy with which a regionally bounded HCMM scene could be rectified with respect to a preassigned coordinate system. The scale to which excerpts from HCMM data can be sensibly enlarged and the question of how large natural structures must be in order to be identified in a satellite thermal image with the given resolution were also examined. Relief and forest and population distribution maps and a land use map derived from LANDSAT data were digitalized and adapted to a common reference system and then combined in a single multichannel data system. The control points for geometrical rectification were determined using the coordinates of the reference system. The multichannel scene was evaluated in several different manners such as the correlation of surface temperature and relief, surface temperature and land use, or surface temperature and built up areas.

  17. Using GPS radio occultations to infer the water vapor feedback

    NASA Astrophysics Data System (ADS)

    Vergados, Panagiotis; Mannucci, Anthony J.; Ao, Chi O.; Fetzer, Eric J.

    2016-11-01

    The air refractive index at L-band frequencies depends on the air's water vapor content and density. Exploiting this relationship, we derive for the first time a theoretical model to infer the specific humidity response to surface temperature variations, dq/dTs, given knowledge of how the air refractive index and temperature vary with surface temperature. We validate this model by using 1.2-1.6 GHz Global Positioning System Radio Occultation (GPS RO) observations from 2007 to 2010 at 250 hPa, where the water vapor feedback on surface warming is strongest. The dq/dTs estimation from GPS RO observations shows excellent agreement with previously published results and the responses estimated by using the Atmospheric Infrared Sounder and the NASA's Modern-Era Retrospective Analysis for Research and Applications data sets. Because of their high sensitivity to fractional changes in water vapor, current and future GPS RO observations show great promise in monitoring climate feedback and their trends.

  18. Energy flux parametrization as an opportunity to get Urban Heat Island insights: The case of Athens, Greece (Thermopolis 2009 Campaign).

    PubMed

    Loupa, G; Rapsomanikis, S; Trepekli, A; Kourtidis, K

    2016-01-15

    Energy flux parameterization was effected for the city of Athens, Greece, by utilizing two approaches, the Local-Scale Urban Meteorological Parameterization Scheme (LUMPS) and the Bulk Approach (BA). In situ acquired data are used to validate the algorithms of these schemes and derive coefficients applicable to the study area. Model results from these corrected algorithms are compared with literature results for coefficients applicable to other cities and their varying construction materials. Asphalt and concrete surfaces, canyons and anthropogenic heat releases were found to be the key characteristics of the city center that sustain the elevated surface and air temperatures, under hot, sunny and dry weather, during the Mediterranean summer. A relationship between storage heat flux plus anthropogenic energy flux and temperatures (surface and lower atmosphere) is presented, that results in understanding of the interplay between temperatures, anthropogenic energy releases and the city characteristics under the Urban Heat Island conditions.

  19. Rapid and highly variable warming of lake surface waters around the globe

    USGS Publications Warehouse

    O'Reilly, Catherine; Sharma, Sapna; Gray, Derek; Hampton, Stephanie; Read, Jordan S.; Rowley, Rex J.; Schneider, Philipp; Lenters, John D.; McIntyre, Peter B.; Kraemer, Benjamin M.; Weyhenmeyer, Gesa A.; Straile, Dietmar; Dong, Bo; Adrian, Rita; Allan, Mathew G.; Anneville, Orlane; Arvola, Lauri; Austin, Jay; Bailey, John L.; Baron, Jill S.; Brookes, Justin D; de Eyto, Elvira; Dokulil, Martin T.; Hamilton, David P.; Havens, Karl; Hetherington, Amy L.; Higgins, Scott N.; Hook, Simon; Izmest'eva, Lyubov R.; Jöhnk, Klaus D.; Kangur, Külli; Kasprzak, Peter; Kumagai, Michio; Kuusisto, Esko; Leshkevich, George; Livingstone, David M.; MacIntyre, Sally; May, Linda; Melack, John M.; Mueller-Navara, Doerthe C.; Naumenko, Mikhail; Noges, Peeter; Noges, Tiina; North, Ryan P.; Plisnier, Pierre-Denis; Rigosi, Anna; Rimmer, Alon; Rogora, Michela; Rudstam, Lars G.; Rusak, James A.; Salmaso, Nico; Samal, Nihar R.; Schindler, Daniel E.; Schladow, Geoffrey; Schmid, Martin; Schmidt, Silke R.; Silow, Eugene A.; Soylu, M. Evren; Teubner, Katrin; Verburg, Piet; Voutilainen, Ari; Watkinson, Andrew; Williamson, Craig E.; Zhang, Guoqing

    2015-01-01

    In this first worldwide synthesis of in situ and satellite-derived lake data, we find that lake summer surface water temperatures rose rapidly (global mean = 0.34°C decade−1) between 1985 and 2009. Our analyses show that surface water warming rates are dependent on combinations of climate and local characteristics, rather than just lake location, leading to the counterintuitive result that regional consistency in lake warming is the exception, rather than the rule. The most rapidly warming lakes are widely geographically distributed, and their warming is associated with interactions among different climatic factors—from seasonally ice-covered lakes in areas where temperature and solar radiation are increasing while cloud cover is diminishing (0.72°C decade−1) to ice-free lakes experiencing increases in air temperature and solar radiation (0.53°C decade−1). The pervasive and rapid warming observed here signals the urgent need to incorporate climate impacts into vulnerability assessments and adaptation efforts for lakes.

  20. Effective Surface Passivation of InP Nanowires by Atomic-Layer-Deposited Al2O3 with POx Interlayer.

    PubMed

    Black, L E; Cavalli, A; Verheijen, M A; Haverkort, J E M; Bakkers, E P A M; Kessels, W M M

    2017-10-11

    III/V semiconductor nanostructures have significant potential in device applications, but effective surface passivation is critical due to their large surface-to-volume ratio. For InP such passivation has proven particularly difficult, with substantial depassivation generally observed following dielectric deposition on InP surfaces. We present a novel approach based on passivation with a phosphorus-rich interfacial oxide deposited using a low-temperature process, which is critical to avoid P-desorption. For this purpose we have chosen a PO x layer deposited in a plasma-assisted atomic layer deposition (ALD) system at room temperature. Since PO x is known to be hygroscopic and therefore unstable in atmosphere, we encapsulate this layer with a thin ALD Al 2 O 3 capping layer to form a PO x /Al 2 O 3 stack. This passivation scheme is capable of improving the photoluminescence (PL) efficiency of our state-of-the-art wurtzite (WZ) InP nanowires by a factor of ∼20 at low excitation. If we apply the rate equation analysis advocated by some authors, we derive a PL internal quantum efficiency (IQE) of 75% for our passivated wires at high excitation. Our results indicate that it is more reliable to calculate the IQE as the ratio of the integrated PL intensity at room temperature to that at 10 K. By this means we derive an IQE of 27% for the passivated wires at high excitation (>10 kW cm -2 ), which constitutes an unprecedented level of performance for undoped InP nanowires. This conclusion is supported by time-resolved PL decay lifetimes, which are also shown to be significantly higher than previously reported for similar wires. The passivation scheme displays excellent long-term stability (>7 months) and is additionally shown to substantially improve the thermal stability of InP surfaces (>300 °C), significantly expanding the temperature window for device processing. Such effective surface passivation is a key enabling technology for InP nanowire devices such as nanolasers and solar cells.

  1. Effective Surface Passivation of InP Nanowires by Atomic-Layer-Deposited Al2O3 with POx Interlayer

    PubMed Central

    2017-01-01

    III/V semiconductor nanostructures have significant potential in device applications, but effective surface passivation is critical due to their large surface-to-volume ratio. For InP such passivation has proven particularly difficult, with substantial depassivation generally observed following dielectric deposition on InP surfaces. We present a novel approach based on passivation with a phosphorus-rich interfacial oxide deposited using a low-temperature process, which is critical to avoid P-desorption. For this purpose we have chosen a POx layer deposited in a plasma-assisted atomic layer deposition (ALD) system at room temperature. Since POx is known to be hygroscopic and therefore unstable in atmosphere, we encapsulate this layer with a thin ALD Al2O3 capping layer to form a POx/Al2O3 stack. This passivation scheme is capable of improving the photoluminescence (PL) efficiency of our state-of-the-art wurtzite (WZ) InP nanowires by a factor of ∼20 at low excitation. If we apply the rate equation analysis advocated by some authors, we derive a PL internal quantum efficiency (IQE) of 75% for our passivated wires at high excitation. Our results indicate that it is more reliable to calculate the IQE as the ratio of the integrated PL intensity at room temperature to that at 10 K. By this means we derive an IQE of 27% for the passivated wires at high excitation (>10 kW cm–2), which constitutes an unprecedented level of performance for undoped InP nanowires. This conclusion is supported by time-resolved PL decay lifetimes, which are also shown to be significantly higher than previously reported for similar wires. The passivation scheme displays excellent long-term stability (>7 months) and is additionally shown to substantially improve the thermal stability of InP surfaces (>300 °C), significantly expanding the temperature window for device processing. Such effective surface passivation is a key enabling technology for InP nanowire devices such as nanolasers and solar cells. PMID:28885032

  2. Deriving meteorological variables across Africa for the study and control of vector-borne disease: a comparison of remote sensing and spatial interpolation of climate

    PubMed Central

    Hay, S. I.; Lennon, J. J.

    2012-01-01

    Summary This paper presents the results of an investigation into the utility of remote sensing (RS) using meteorological satellites sensors and spatial interpolation (SI) of data from meteorological stations, for the prediction of spatial variation in monthly climate across continental Africa in 1990. Information from the Advanced Very High Resolution Radiometer (AVHRR) of the National Oceanic and Atmospheric Administration’s (NOAA) polar-orbiting meteorological satellites was used to estimate land surface temperature (LST) and atmospheric moisture. Cold cloud duration (CCD) data derived from the High Resolution Radiometer (HRR) on-board the European Meteorological Satellite programme’s (EUMETSAT) Meteosat satellite series were also used as a RS proxy measurement of rainfall. Temperature, atmospheric moisture and rainfall surfaces were independently derived from SI of measurements from the World Meteorological Organization (WMO) member stations of Africa. These meteorological station data were then used to test the accuracy of each methodology, so that the appropriateness of the two techniques for epidemiological research could be compared. SI was a more accurate predictor of temperature, whereas RS provided a better surrogate for rainfall; both were equally accurate at predicting atmospheric moisture. The implications of these results for mapping short and long-term climate change and hence their potential for the study and control of disease vectors are considered. Taking into account logistic and analytical problems, there were no clear conclusions regarding the optimality of either technique, but there was considerable potential for synergy. PMID:10203175

  3. Deriving meteorological variables across Africa for the study and control of vector-borne disease: a comparison of remote sensing and spatial interpolation of climate.

    PubMed

    Hay, S I; Lennon, J J

    1999-01-01

    This paper presents the results of an investigation into the utility of remote sensing (RS) using meteorological satellites sensors and spatial interpolation (SI) of data from meteorological stations, for the prediction of spatial variation in monthly climate across continental Africa in 1990. Information from the Advanced Very High Resolution Radiometer (AVHRR) of the National Oceanic and Atmospheric Administration's (NOAA) polar-orbiting meteorological satellites was used to estimate land surface temperature (LST) and atmospheric moisture. Cold cloud duration (CCD) data derived from the High Resolution Radiometer (HRR) on-board the European Meteorological Satellite programme's (EUMETSAT) Meteosat satellite series were also used as a RS proxy measurement of rainfall. Temperature, atmospheric moisture and rainfall surfaces were independently derived from SI of measurements from the World Meteorological Organization (WMO) member stations of Africa. These meteorological station data were then used to test the accuracy of each methodology, so that the appropriateness of the two techniques for epidemiological research could be compared. SI was a more accurate predictor of temperature, whereas RS provided a better surrogate for rainfall; both were equally accurate at predicting atmospheric moisture. The implications of these results for mapping short and long-term climate change and hence their potential for the study and control of disease vectors are considered. Taking into account logistic and analytical problems, there were no clear conclusions regarding the optimality of either technique, but there was considerable potential for synergy.

  4. The condensation and vaporization behavior of ices containing SO2, H2S, and CO2 - Implications for Io

    NASA Astrophysics Data System (ADS)

    Sandford, Scott A.; Allamandola, Louis J.

    1993-12-01

    The present compilation of measurements of the physical and IR spectral properties of ices whose molecular compositions are relevant to the case of Io encompasses ice systems containing SO2, H2S, and CO2. Surface-binding energies used to calculate the residence times of molecules on a surface as a function of temperature furnish crucially important parameters for models attending to the transport of such molecules to the surface of Io. The values thus derived show that SO2 frosts anneal rapidly.

  5. A Simple Downscaling Algorithm for Remotely Sensed Land Surface Temperature

    NASA Astrophysics Data System (ADS)

    Sandholt, I.; Nielsen, C.; Stisen, S.

    2009-05-01

    The method is illustrated using a combination of MODIS NDVI data with a spatial resolution of 250m and 3 Km Meteosat Second Generation SEVIRI LST data. Geostationary Earth Observation data carry a large potential for assessment of surface state variables. Not the least the European Meteosat Second Generation platform with its SEVIRI sensor is well suited for studies of the dynamics of land surfaces due to its high temporal frequency (15 minutes) and its red, Near Infrared (NIR) channels that provides vegetation indices, and its two split window channels in the thermal infrared for assessment of Land Surface Temperature (LST). For some applications the spatial resolution in geostationary data is too coarse. Due to the low statial resolution of 4.8 km at nadir for the SEVIRI sensor, a means of providing sub pixel information is sought for. By combining and properly scaling two types of satellite images, namely data from the MODIS sensor onboard the polar orbiting platforms TERRA and AQUA and the coarse resolution MSG-SEVIRI, we exploit the best from two worlds. The vegetation index/surface temperature space has been used in a vast number of studies for assessment of air temperature, soil moisture, dryness indices, evapotranspiration and for studies of land use change. In this paper, we present an improved method to derive a finer resolution Land Surface Temperature (LST). A new, deterministic scaling method has been applied, and is compared to existing deterministic downscaling methods based on LST and NDVI. We also compare our results from in situ measurements of LST from the Dahra test site in West Africa.

  6. Submesoscale-selective compensation of fronts in a salinity-stratified ocean

    PubMed Central

    Spiro Jaeger, Gualtiero; Mahadevan, Amala

    2018-01-01

    Salinity, rather than temperature, is the leading influence on density in some regions of the world’s upper oceans. In the Bay of Bengal, heavy monsoonal rains and runoff generate strong salinity gradients that define density fronts and stratification in the upper ~50 m. Ship-based observations made in winter reveal that fronts exist over a wide range of length scales, but at O(1)-km scales, horizontal salinity gradients are compensated by temperature to alleviate about half the cross-front density gradient. Using a process study ocean model, we show that scale-selective compensation occurs because of surface cooling. Submesoscale instabilities cause density fronts to slump, enhancing stratification along-front. Specifically for salinity fronts, the surface mixed layer (SML) shoals on the less saline side, correlating sea surface salinity (SSS) with SML depth at O(1)-km scales. When losing heat to the atmosphere, the shallower and less saline SML experiences a larger drop in temperature compared to the adjacent deeper SML on the salty side of the front, thus correlating sea surface temperature (SST) with SSS at the submesoscale. This compensation of submesoscale fronts can diminish their strength and thwart the forward cascade of energy to smaller scales. During winter, salinity fronts that are dynamically submesoscale experience larger temperature drops, appearing in satellite-derived SST as cold filaments. In freshwater-influenced regions, cold filaments can mark surface-trapped layers insulated from deeper nutrient-rich waters, unlike in other regions, where they indicate upwelling of nutrient-rich water and enhanced surface biological productivity. PMID:29507874

  7. Mapping the surface characteristics of the Mojave with remote sensing for terrestrial habitat modeling

    NASA Astrophysics Data System (ADS)

    Nowicki, S. A.; Skuse, R. J.

    2012-12-01

    High-resolution ecological and climate modeling requires quantification of surface characteristics such as rock abundance, soil induration and surface roughness at fine-scale, since these features can affect the micro and macro habitat of a given area and ultimately determine the assemblage of plant and animal species that may occur there. Our objective is to develop quantitative data layers of thermophysical properties of the entire Mojave Desert Ecoregion for applications to habitat modeling being conducted by the USGS Western Ecological Research Center. These research efforts are focused on developing habitat models and a better physical understanding of the Mojave Desert, which have implications the development of solar and wind energy resources, military installation expansion and residential development planned for the Mojave. Thus there is a need to improve our understanding of the mechanical composition and thermal characteristics of natural and modified surfaces in the southwestern US at as high-resolution as possible. Since the Mojave is a sparsely-vegetated, arid landscape with little precipitation, remote sensing-based thermophysical analyses using Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) day and nighttime imagery are ideal for determining the physical properties of the surface. New mosaicking techniques for thermal imagery acquired at different dates, seasons and temperatures have allowed for the highest-resolution mosaics yet generated at 100m/pixel for thermal infrared wavelengths. Among our contributions is the development of seamless day and night ASTER mosaics of land surface temperatures that are calibrated to Moderate Resolution Imaging Spectroradiometer (MODIS) coincident observations to produce both a seamless mosaic and quantitative temperatures across the region that varies spectrally and thermophysically over a large number of orbit tracks. Products derived from this dataset include surface rock abundance, apparent thermal inertia, and diurnal/seasonal thermal regime. Additionally, the combination of moderate and high-resolution thermal observations are used to map the spatial and temporal variation of significant rain storms that intermittently increase the surface moisture. The resulting thermally-derived layers are in the process of being combined with composition, vegetation and surface reflectance datasets to map the Mojave at the highest VNIR resolution (20m/pixel) and compared to currently-available lower-resolution datasets.

  8. Calculations of atmospheric transmittance in the 11 micrometer window for estimating skin temperature from VISSR infrared brightness temperatures

    NASA Technical Reports Server (NTRS)

    Chesters, D.

    1984-01-01

    An algorithm for calculating the atmospheric transmittance in the 10 to 20 micro m spectral band from a known temperature and dewpoint profile, and then using this transmittance to estimate the surface (skin) temperature from a VISSR observation in the 11 micro m window is presented. Parameterizations are drawn from the literature for computing the molecular absorption due to the water vapor continuum, water vapor lines, and carbon dioxide lines. The FORTRAN code is documented for this application, and the sensitivity of the derived skin temperature to variations in the model's parameters is calculated. The VISSR calibration uncertainties are identified as the largest potential source of error.

  9. Dependence of Lunar Surface Charging on Solar Wind Plasma Conditions and Solar Irradiation

    NASA Technical Reports Server (NTRS)

    Stubbs, T. J.; Farrell, W. M.; Halekas, J. S.; Burchill, J. K.; Collier, M. R.; Zimmerman, M. I.; Vondrak, R. R.; Delory, G. T.; Pfaff, R. F.

    2014-01-01

    The surface of the Moon is electrically charged by exposure to solar radiation on its dayside, as well as by the continuous flux of charged particles from the various plasma environments that surround it. An electric potential develops between the lunar surface and ambient plasma, which manifests itself in a near-surface plasma sheath with a scale height of order the Debye length. This study investigates surface charging on the lunar dayside and near-terminator regions in the solar wind, for which the dominant current sources are usually from the pohotoemission of electrons, J(sub p), and the collection of plasma electrons J(sub e) and ions J(sub i). These currents are dependent on the following six parameters: plasma concentration n(sub 0), electron temperature T(sub e), ion temperature T(sub i), bulk flow velocity V, photoemission current at normal incidence J(sub P0), and photo electron temperature T(sub p). Using a numerical model, derived from a set of eleven basic assumptions, the influence of these six parameters on surface charging - characterized by the equilibrium surface potential, Debye length, and surface electric field - is investigated as a function of solar zenith angle. Overall, T(sub e) is the most important parameter, especially near the terminator, while J(sub P0) and T(sub p) dominate over most of the dayside.

  10. HYTHIRM Radiance Modeling and Image Analyses in Support of STS-119, STS-125 and STS-128 Space Shuttle Hypersonic Re-entries

    NASA Technical Reports Server (NTRS)

    Gibson, David M.; Spisz, Thomas S.; Taylor, Jeff C.; Zalameda, Joseph N.; Horvath, Thomas J.; Tomek, Deborah M.; Tietjen, Alan B.; Tack, Steve; Bush, Brett C.

    2010-01-01

    We provide the first geometrically accurate (i.e., 3-D) temperature maps of the entire windward surface of the Space Shuttle during hypersonic reentry. To accomplish this task we began with estimated surface temperatures derived from CFD models at integral high Mach numbers and used them, the Shuttle's surface properties and reasonable estimates of the sensor-to-target geometry to predict the emitted spectral radiance from the surface (in units of W sr-1 m-2 nm-1). These data were converted to sensor counts using properties of the sensor (e.g. aperture, spectral band, and various efficiencies), the expected background, and the atmosphere transmission to inform the optimal settings for the near-infrared and midwave IR cameras on the Cast Glance aircraft. Once these data were collected, calibrated, edited, registered and co-added we formed both 2-D maps of the scene in the above units and 3-D maps of the bottom surface in temperature that could be compared with not only the initial inputs but also thermocouple data from the Shuttle itself. The 3-D temperature mapping process was based on the initial radiance modeling process. Here temperatures were guessed for each node in a well-resolved 3-D framework, a radiance model was produced and compared to the processed imagery, and corrections to the temperature were estimated until the iterative process converged. This process did very well in characterizing the temperature structure of the large asymmetric boundary layer transition the covered much of the starboard bottom surface of STS-119 Discovery. Both internally estimated accuracies and differences with CFD models and thermocouple measurements are at most a few percent. The technique did less well characterizing the temperature structure of the turbulent wedge behind the trip due to limitations in understanding the true sensor resolution. (Note: Those less inclined to read the entire paper are encouraged to read an Executive Summary provided at the end.)

  11. Surface-Wind Anomalies in North-Atlantic and North Pacific from SSM/I Observations: Influence on Temperature of Adjoining Land Regions

    NASA Technical Reports Server (NTRS)

    Otterman, Joseph; Atlas, R.; Ingraham, J.; Ardizzone, J.; Starr, D.; Terry, J.

    1998-01-01

    Surface winds over the oceans are derived from Special Sensor Microwave Imager (SSM/I) measurements, assigning direction by Variational Analysis Method (VAM). Validations by comparison with other measurements indicate highly-satisfactory data quality. Providing global coverage from 1988, the dataset is a convenient source for surface-wind climatology. In this study, the interannual variability of zonal winds is analyzed concentrating on the westerlies in North Atlantic and North Pacific, above 30 N. Interannual differences in the westerlies exceeding 10 m sec (exp -1) are observed over large regions, often accompanied by changes of the same magnitude in the easterlies below 30 N. We concentrate on February/March, since elevated temperatures, by advancing snow-melt, can produce early spring. The extremely strong westerlies in 1997 observed in these months over North Atlantic (and also North Pacific) apparently contributed to large surface-temperature anomalies in western Europe, on the order of +3 C above the climatic monthly average for England and France. At these latitudes strong positive anomalies extended in a ring around the globe. We formulated an Index of South westerlies for the North Atlantic, which can serve as an indicator for day-by-day advection effects into Europe. In comparing 1997 and 1998 with the previous years, we establish significant correlations with the temperature anomalies (one to five days later, depending on the region, and on the season). This variability of the ocean-surface winds and of the temperature anomalies on land may be related to the El Nino/La Nina oscillations. Such large temperature fluctuations over large areas, whatever the cause, can be regarded as noise in attempts to assess long-term trends in global temperature.

  12. Contribution of ground surface altitude difference to thermal anomaly detection using satellite images: Application to volcanic/geothermal complexes in the Andes of Central Chile

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Francisco J.; Lemus, Martín; Parada, Miguel A.; Benavente, Oscar M.; Aguilera, Felipe A.

    2012-09-01

    Detection of thermal anomalies in volcanic-geothermal areas using remote sensing methodologies requires the subtraction of temperatures, not provided by geothermal manifestations (e.g. hot springs, fumaroles, active craters), from satellite image kinetic temperature, which is assumed to correspond to the ground surface temperature. Temperatures that have been subtracted in current models include those derived from the atmospheric transmittance, reflectance of the Earth's surface (albedo), topography effect, thermal inertia and geographic position effect. We propose a model that includes a new parameter (K) that accounts for the variation of temperature with ground surface altitude difference in areas where steep relief exists. The proposed model was developed and applied, using ASTER satellite images, in two Andean volcanic/geothermal complexes (Descabezado Grande-Cerro Azul Volcanic Complex and Planchón-Peteroa-Azufre Volcanic Complex) where field data of atmosphere and ground surface temperature as well as radiation for albedo calibration were obtained in 10 selected sites. The study area was divided into three zones (Northern, Central and Southern zones) where the thermal anomalies were obtained independently. K value calculated for night images of the three zones are better constrained and resulted to be very similar to the Environmental Lapse Rate (ELR) determined for a stable atmosphere (ELR > 7 °C/km). Using the proposed model, numerous thermal anomalies in areas of ≥ 90 m × 90 m were identified that were successfully cross-checked in the field. Night images provide more reliable information for thermal anomaly detection than day images because they record higher temperature contrast between geothermal areas and its surroundings and correspond to more stable atmospheric condition at the time of image acquisition.

  13. Associating Land Surface Temperature Retrieved From Satellite and Unmanned Aerial Vehicle Data With Urban Cover and Topography in Aburrá Valley

    NASA Astrophysics Data System (ADS)

    Guzmán, G.; Hoyos Ortiz, C. D.

    2017-12-01

    Urban heat island effect commonly refers to temperature differences between urban areas and their countrysides due to urbanization. These temperature differences are evident at surface, and within the canopy and the boundary layer. This effect is heterogeneous within the city, and responds to urban morphology, prevailing materials, amount of vegetation, among others, which are also important in the urban balance of energy. In order to study the relationship between land surface temperature (LST) and urban coverage over Aburrá Valley, which is a narrow valley locate at tropical Andes in northern South America, Landsat 8 mission products of LST, density of vegetation (normalized difference vegetation index, NDVI), and a proxy of soil humidity are derived and used. The results are analyzed from the point of view of dominant urban form and settlement density at scale of neighborhoods, and also from potential downward solar radiation received at the surface. Besides, specific sites were chosen to obtain LST from thermal imaging using an unmanned aerial vehicle to characterize micro-scale patterns and to validate Landast retrievals. Direct relationships between LST, NDVI, soil humidity, and duration of insolation are found, showing the impact of the current spatial distribution of land uses on surface temperature over Aburrá Valley. In general, the highest temperatures correspond to neighborhoods with large, flat-topped buildings in commercial and industrial areas, and low-rise building in residential areas with scarce vegetation, all on the valley bottom. Landsat images are in the morning for the Aburrá Valley, for that reason the coldest temperatures are prevalent at certain orientation of the hillslope, according with the amount of radiation received from sunrise to time of data.

  14. Clear-Sky Longwave Irradiance at the Earth's Surface--Evaluation of Climate Models.

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.

    2001-04-01

    An evaluation of the clear-sky longwave irradiance at the earth's surface (LI) simulated in climate models and in satellite-based global datasets is presented. Algorithm-based estimates of LI, derived from global observations of column water vapor and surface (or screen air) temperature, serve as proxy `observations.' All datasets capture the broad zonal variation and seasonal behavior in LI, mainly because the behavior in column water vapor and temperature is reproduced well. Over oceans, the dependence of annual and monthly mean irradiance upon sea surface temperature (SST) closely resembles the observed behavior of column water with SST. In particular, the observed hemispheric difference in the summer minus winter column water dependence on SST is found in all models, though with varying seasonal amplitudes. The analogous behavior in the summer minus winter LI is seen in all datasets. Over land, all models have a more highly scattered dependence of LI upon surface temperature compared with the situation over the oceans. This is related to a much weaker dependence of model column water on the screen-air temperature at both monthly and annual timescales, as observed. The ability of climate models to simulate realistic LI fields depends as much on the quality of model water vapor and temperature fields as on the quality of the longwave radiation codes. In a comparison of models with observations, root-mean-square gridpoint differences in mean monthly column water and temperature are 4-6 mm (5-8 mm) and 0.5-2 K (3-4 K), respectively, over large regions of ocean (land), consistent with the intermodel differences in LI of 5-13 W m2 (15-28 W m2).

  15. High-resolution surface analysis for extended-range downscaling with limited-area atmospheric models

    NASA Astrophysics Data System (ADS)

    Separovic, Leo; Husain, Syed Zahid; Yu, Wei; Fernig, David

    2014-12-01

    High-resolution limited-area model (LAM) simulations are frequently employed to downscale coarse-resolution objective analyses over a specified area of the globe using high-resolution computational grids. When LAMs are integrated over extended time frames, from months to years, they are prone to deviations in land surface variables that can be harmful to the quality of the simulated near-surface fields. Nudging of the prognostic surface fields toward a reference-gridded data set is therefore devised in order to prevent the atmospheric model from diverging from the expected values. This paper presents a method to generate high-resolution analyses of land-surface variables, such as surface canopy temperature, soil moisture, and snow conditions, to be used for the relaxation of lower boundary conditions in extended-range LAM simulations. The proposed method is based on performing offline simulations with an external surface model, forced with the near-surface meteorological fields derived from short-range forecast, operational analyses, and observed temperatures and humidity. Results show that the outputs of the surface model obtained in the present study have potential to improve the near-surface atmospheric fields in extended-range LAM integrations.

  16. The effect of precipitation and calcination parameters on oxalate derived ThO2 pellets

    NASA Astrophysics Data System (ADS)

    Wangle, Tadeas; Tyrpekl, Vaclav; Cagno, Simone; Delloye, Thierry; Larcher, Olivier; Cardinaels, Thomas; Vleugels, Jozef; Verwerft, Marc

    2017-11-01

    Thorium oxalate is easy to prepare, but the derived oxide powders retain the platelet morphology of the primary oxalate. This negatively impacts packing and sintering. If powder milling is to be avoided, powder synthesis needs to be optimized. That is the goal of this paper, where different precipitation strategies were used and their effect on powder characteristics and pellet synthesis was investigated. Oxalates prepared by adding a thorium nitrate solution to an oxalic acid solution proved most promising. Further optimizing of the calcination temperature revealed that with increasing calcination temperature the packing density improved significantly. This came at the cost of decreased early stage sintering and a higher frequency of end-capping during compaction. The calcination temperature at which the highest final density can be reached was dependent on the sintering cycle. Furthermore, the ThO2 powders had less surface area and thus adsorbed less gases during storage when calcined at higher temperatures.

  17. Satellite-derived ice data sets no. 2: Arctic monthly average microwave brightness temperatures and sea ice concentrations, 1973-1976

    NASA Technical Reports Server (NTRS)

    Parkinson, C. L.; Comiso, J. C.; Zwally, H. J.

    1987-01-01

    A summary data set for four years (mid 70's) of Arctic sea ice conditions is available on magnetic tape. The data include monthly and yearly averaged Nimbus 5 electrically scanning microwave radiometer (ESMR) brightness temperatures, an ice concentration parameter derived from the brightness temperatures, monthly climatological surface air temperatures, and monthly climatological sea level pressures. All data matrices are applied to 293 by 293 grids that cover a polar stereographic map enclosing the 50 deg N latitude circle. The grid size varies from about 32 X 32 km at the poles to about 28 X 28 km at 50 deg N. The ice concentration parameter is calculated assuming that the field of view contains only open water and first-year ice with an ice emissivity of 0.92. To account for the presence of multiyear ice, a nomogram is provided relating the ice concentration parameter, the total ice concentration, and the fraction of the ice cover which is multiyear ice.

  18. Interaction between perylene-derivated molecules observed by low temperature scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Vernisse, Loranne; Guillermet, Olivier; Gourdon, André; Coratger, Roland

    2018-03-01

    Derivative perylene molecules deposited on Ag(111) and on NaCl(001) ultrathin layers have been investigated using low temperature STM and NC-AFM. When the metallic substrate is held at ambient temperature during evaporation, the molecules form characteristic trimers on the Ag(111) surface and interact through their polar groups. Close to the steps, the molecules form linear structures and seems to stand side by side. On the other hand, after deposition on a substrate cooled at liquid helium temperature, single molecules are observed both on metal and on NaCl. On the ultrathin insulator layers, the STM images present characteristic contrasts related to the molecular orbitals which favors the localization of aldehyde groups. In this case, the lateral molecular interactions may induce the formation of small assemblies in which the electronic levels are slightly shifted. A possible interpretation of this phenomenon is to take into account polar interactions and charge transfer between neighboring molecules.

  19. Breakdown of a gas on a metallic surface by CO2 laser pulses of 10-1000 microsec duration

    NASA Astrophysics Data System (ADS)

    Kovalev, A. S.; Popov, A. M.; Rakhimov, A. T.; Seleznev, B. V.; Khropov, S. M.

    1985-04-01

    The formation of a plasma on the surface of a metal target under direct exposure to a CO2 laser is studied theoretically. A classical kinetic equation is derived to calculate the critical radiation intensity of several metallic target materials. Experimental measurements of the time to the development of optical breakdown are found to agree with the theoretical results. It is shown that the breakdown discontinuity of the target shifts to the front of the laser pulse if the temperature of the radiation exceeds the critical temperature. No relation was found between the breakdown discontinuity and the boiling point of the metallic target materials.

  20. Similar solutions of double-diffusive dissipative layers along free surfaces

    NASA Astrophysics Data System (ADS)

    Napolitano, L. G.; Viviani, A.; Savino, R.

    1990-10-01

    Free convection due to buoyant forces (natural convection) and surface tension gradients (Marangoni convection) generated by temperature and concentration gradients is discussed together with the formation of double-diffusive boundary layers along liquid-gas interfaces. Similarity solutions for each class of free convection are derived and the resulting nonlinear two-point problems are solved numerically using the quasi-linearization method. Velocity, temperature, concentration profiles, interfacial velocity, heat and mass transfer bulk coefficients for various Prandtl and Schmidt numbers, and different values of the similarity parameters are determined. The convective flows are of particular interest because they are considered to influence the processes of crystal growth, both on earth and in a microgravity environment.

  1. Production of activated carbons from waste tyres for low temperature NOx control.

    PubMed

    Al-Rahbi, Amal S; Williams, Paul T

    2016-03-01

    Waste tyres were pyrolysed in a bench scale reactor and the product chars were chemically activated with alkali chemical agents, KOH, K2CO3, NaOH and Na2CO3 to produce waste tyre derived activated carbons. The activated carbon products were then examined in terms of their ability to adsorb NOx (NO) at low temperature (25°C) from a simulated industrial process flue gas. This study investigates the influence of surface area and porosity of the carbons produced with the different alkali chemical activating agents on NO capture from the simulated flue gas. The influence of varying the chemical activation conditions on the porous texture and corresponding NO removal from the flue gas was studied. The activated carbon sorbents were characterized in relation to BET surface area, micropore and mesopore volumes and chemical composition. The highest NO removal efficiency for the waste tyre derived activated carbons was ∼75% which was obtained with the adsorbent treated with KOH which correlated with both the highest BET surface area and largest micropore volume. In contrast, the waste tyre derived activated carbons prepared using K2CO3, NaOH and Na2CO3 alkali activating agents appeared to have little influence on NO removal from the flue gases. The results suggest problematic waste tyres, have the potential to be converted to activated carbons with NOx removal efficiency comparable with conventionally produced carbons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Characterization of oxidized coal surfaces: Quarterly report, May 1987-July 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hercules, D.M.

    1987-01-01

    Work has progressed in the areas of (1) exploration or derivatization reactions for ambient temperature in-situ derivatization of aldehydes, ketones, and phenols on carbon surfaces; (2) analysis of these derivatives by secondary ion mass spectrometry (SIMS) and laser mass spectrometry (LMS); (3) derivatization and analysis of a naturally weathered coal; (4) construction of a reactor for controlled low temperature oxidation of coal; and (5) design of a protocol for handling coal samples. Specific derivatization reactions studied in this period included reactions of Girard's reagent, 2,4-dinitrophenylhydrazine and bisulfite with aldehydes and ketones and 4-triethylammonium-2-butene (TAB), trimethylsilyl ethers (TMS) and dimethylsilyl ethersmore » (DMS) with phenols and alcohols. Positive ion SIMS analysis of Girard's reagent derivatives and TAB derivatives on a silver support yielded molecular ion species (e.g., cations from the salts) for a wide range of carbonyl and phenolic compounds, respectively. Comparison of negative ion LMS spectra of naturally weathered Illinois No. 6 coal before and after treatment with 2,4-dinitrophenylhydrazine reveals the presence of two high mass ions in the spectrum of treated coal that are not present in the spectra of either the untreated coal or the derivatizing reagent. This provides both evidence for carbonyl functionality on the surface of naturally weathered Illinois No. 6 coal and support for the feasibility of in-situ derivatization and analysis of organic components in the coal matrix. 5 refs.« less

  3. A Methodology for Soil Moisture Retrieval from Land Surface Temperature, Vegetation Index, Topography and Soil Type

    NASA Astrophysics Data System (ADS)

    Pradhan, N. R.

    2015-12-01

    Soil moisture conditions have an impact upon hydrological processes, biological and biogeochemical processes, eco-hydrology, floods and droughts due to changing climate, near-surface atmospheric conditions and the partition of incoming solar and long-wave radiation between sensible and latent heat fluxes. Hence, soil moisture conditions virtually effect on all aspects of engineering / military engineering activities such as operational mobility, detection of landmines and unexploded ordinance, natural material penetration/excavation, peaking factor analysis in dam design etc. Like other natural systems, soil moisture pattern can vary from completely disorganized (disordered, random) to highly organized. To understand this varying soil moisture pattern, this research utilized topographic wetness index from digital elevation models (DEM) along with vegetation index from remotely sensed measurements in red and near-infrared bands, as well as land surface temperature (LST) in the thermal infrared bands. This research developed a methodology to relate a combined index from DEM, LST and vegetation index with the physical soil moisture properties of soil types and the degree of saturation. The advantage in using this relationship is twofold: first it retrieves soil moisture content at the scale of soil data resolution even though the derived indexes are in a coarse resolution, and secondly the derived soil moisture distribution represents both organized and disorganized patterns of actual soil moisture. The derived soil moisture is used in driving the hydrological model simulations of runoff, sediment and nutrients.

  4. Sea Surface Temperature and Seawater Oxygen Isotope Variability Recorded in a Madagascar Coral Record

    NASA Astrophysics Data System (ADS)

    Zinke, J.; Dullo, W. Chr; Eisenhauer, A.

    2003-04-01

    We analysed a 336 year coral oxygen isotope record off southwest Madagascar in the Mozambique Channel. Based on temporal variability of skeletal oxygen isotopes annual mean sea surface temperatures are reconstructed for the period from 1659 to 1995. Sr/Ca ratios were measured for selected windows with monthly resolution (1973 to 1995, 1863 to 1910, 1784 to 1809, 1688 to 1710) to validate the SST reconstructions derived from oxygen isotopes. The coral proxy data were validated against gridded SST data sets. The coral oxygen isotope record is coherent with Kaplan-SST and GISST2.3b on an interdecadal frequency of 17 years, which is the most prominent frequency band observed in this region. The Sr/Ca-SST agree well with SST observations in the validation period (1863 to 1910), whereas the d18O derived SST show largest discrepencies during this time interval. By taking into account the SST values derived from coral Sr/Ca, we were able to reconstruct d18O seawater variability. This indicates that d18O seawater variations contributed significantly to interannual and interdecadal variations in coral d18O. We propose that the local surface-ocean evaporation-precipitation balance and remote forcing by ENSO via South Equatorial Current and/or Indonesian throughflow variability may contribute to observed d18O variability. Our results indicate that coral d18O may be used to reconstruct temporal variations in the fresh water balance within the Indian Ocean on interannual to interdecadal time scales.

  5. Thermal inertia mapping of Mars from 60°S to 60°N

    USGS Publications Warehouse

    Palluconi, Frank Don; Kieffer, Hugh H.

    1981-01-01

    Twenty-micrometer brightness temperatures are used to derive the thermal inertia for 81% of the Martian surface between latitudes ±60°. These data were acquired by the two Viking Infrared Thermal Mappers in 1977 and 1978 following the two global dust storms of 1977. The spatial resolution used is 2° in latitude by 2° in longitude and the total range in derived inertia is . The distribution of thermal inertia is strongly bimodal with all values of thermal inertia less than  being associated with three disjoint bright regions mostly in the northern hemisphere. Sufficient dust is raised in global storms to provide fine material adequate to produce these low-inertia areas but the specific deposition mechanism has not been defined. At the low resolution used, no complete exposures of clean rock were found. There is some tendency for darker material to be associated with higher thermal inertia, although the trend is far from one to one. The distribution of high- and low-inertia areas is sufficiently nonrandom to produce a variation in whole-disk brightness temperature with central meridian longitude. This variation and the change in surface kinetic temperature associated with dust storms are factors in establishing the whole-disk brightness temperature at radio and infrared wavelengths and will be important for those who use Mars as a calibration source.

  6. Does the Boltzmann Principle Need a Dynamical Correction?

    NASA Astrophysics Data System (ADS)

    Adib, Artur B.

    2004-11-01

    In an attempt to derive thermodynamics from classical mechanics, an approximate expression for the equilibrium temperature of a finite system has been derived (M. Bianucci, R. Mannella, B. J. West and P. Grigolini, Phys. Rev. E 51: 3002 (1995)) which differs from the one that follows from the Boltzmann principle S = kln Ω( E) via the thermodynamic relation 1/ T=∂ S / ∂ E by additional terms of "dynamical" character, which are argued to correct and generalize the Boltzmann principle for small systems (here Ω( E) is the area of the constant-energy surface). In the present work, the underlying definition of temperature in the Fokker-Planck formalism of Bianucci et al., is investigated and shown to coincide with an approximate form of the equipartition temperature. Its exact form, however, is strictly related to the "volume" entropy S = k ln Ф( E) via the thermodynamic relation above for systems of any number of degrees of freedom ( Ф( E) is the phase space volume enclosed by the constant-energy surface). This observation explains and clarifies the numerical results of Bianucci et al., and shows that a dynamical correction for either the temperature or the entropy is unnecessary, at least within the class of systems considered by those authors. Explicit analytical and numerical results for a particle coupled to a small chain ( N~10) of quartic oscillators are also provided to further illustrate these facts.

  7. Assimilation of GOES Land Surface Data Within a Rapid Update Cycle Format: Impact on MM5 Warm Season QPF

    NASA Technical Reports Server (NTRS)

    Lapenta, William M.; Suggs, Ron; Jedlovec, Gary; McNider, Richard T.; Dembek, Scott; Arnold, James E. (Technical Monitor)

    2001-01-01

    A technique has been developed for assimilating GOES-derived skin temperature tendencies and insolation into the surface energy budget equation of a mesoscale model so that the simulated rate of temperature change closely agrees with the satellite observations. A critical assumption of the technique is that the availability of moisture (either from the soil or vegetation) is the least known term in the model's surface energy budget. Therefore, the simulated latent heat flux, which is a function of surface moisture availability, is adjusted based upon differences between the modeled and satellite-observed skin temperature tendencies. An advantage of this technique is that satellite temperature tendencies are assimilated in an energetically consistent manner that avoids energy imbalances and surface stability problems that arise from direct assimilation of surface shelter temperatures. The fact that the rate of change of the satellite skin temperature is used rather than the absolute temperature means that sensor calibration is not as critical. The focus of this paper is to examine how the satellite assimilation technique impacts simulations of near-surface meteorology on the 0-to 12-hour time scale when implemented within a local rapid update cycle (LRUC) format. The PSU/NCAR MM5 V34 is used and configured with a 36-km CONUS domain and a 12-km nest centered over the southeastern US. The LRUC format consists of a sequence of 12-hour forecasts initialized every hour between 12 and 18 UTC seven days a week. GOES skin temperature tendencies and solar insolation are assimilated in a 1-hour period prior to the start of each twelve-hour forecast. A unique aspect of the LRUC is the satellite assimilation and the continuous recycling of the adjusted moisture availability field from one forecast cycle to the next. Preliminary results for a seven-day trial period indicate that hourly LST tendencies assimilated in a 1 hour LRUC showed improved simulated air and dewpoint temperatures for all cycles on each day. The LRUC will be used during the 2001 summer months to identify the impact of the assimilation on warm season QPF Results will be presented at the meeting.

  8. Temperature-programmed desorption study of NO reactions on rutile TiO2(110)-1×1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Boseong; Dohnálek, Zdenek; Szanyi, János

    2016-10-01

    Systematic temperature-programmed desorption (TPD) studies of NO adsorption and reactions on rutile TiO2(110)-1×1 surface reveal several distinct reaction channels in a temperature range of 50 – 500 K. NO readily reacts on TiO2(110) to form N2O which desorbs between 50 and 200 K (LT N2O channels), which leaves the TiO2 surface populated with adsorbed oxygen atoms (Oa) as a byproduct of N2O formation. In addition, we observe simultaneous desorption peaks of NO and N2O at 270 K (HT1 N2O) and 400 K (HT2 N2O), respectively, both of which are attributed to reaction-limited processes. No N-derived reaction product desorbs from TiO2(110)more » surface above 500 K or higher, while the surface may be populated with Oa’s and oxidized products such as NO2 and NO3. The adsorbate-free TiO2 surface with oxygen vacancies can be regenerated by prolonged annealing at 850 K or higher. Detailed analysis of the three N2O desorption yields reveals that the surface species for the HT channels are likely to be various forms of NO dimers.« less

  9. Temperature-programmed desorption study of NO reactions on rutile TiO 2(110)-1×1

    DOE PAGES

    Kim, Boseong; Dohnalek, Zdenek; Szanyi, Janos; ...

    2016-02-24

    In this study, systematic temperature-programmed desorption (TPD) studies of NO adsorption and reactions on rutile TiO 2(110)-1 × 1 surface reveal several distinct reaction channels in a temperature range of 50–500 K. NO readily reacts on TiO 2(110) to form N 2O, which desorbs between 50 and 200 K (LT N 2O channels), which leaves the TiO 2 surface populated with adsorbed oxygen atoms (O a) as a by-product of N 2O formation. In addition, we observe simultaneous desorption peaks of NO and N 2O at 270 K (HT1 N 2O) and 400 K (HT2 N 2O), respectively, both ofmore » which are attributed to reaction-limited processes. No N-derived reaction product desorbs from TiO 2(110) surface above 500 K or higher, while the surface may be populated with Oa's and oxidized products such as NO 2 and NO 3. The adsorbate-free TiO 2 surface with oxygen vacancies can be regenerated by prolonged annealing at 850 K or higher. Detailed analysis of the three N 2O desorption yields reveals that the surface species for the HT channels are likely to be various forms of NO dimers.« less

  10. On the assimilation of satellite derived soil moisture in numerical weather prediction models

    NASA Astrophysics Data System (ADS)

    Drusch, M.

    2006-12-01

    Satellite derived surface soil moisture data sets are readily available and have been used successfully in hydrological applications. In many operational numerical weather prediction systems the initial soil moisture conditions are analysed from the modelled background and 2 m temperature and relative humidity. This approach has proven its efficiency to improve surface latent and sensible heat fluxes and consequently the forecast on large geographical domains. However, since soil moisture is not always related to screen level variables, model errors and uncertainties in the forcing data can accumulate in root zone soil moisture. Remotely sensed surface soil moisture is directly linked to the model's uppermost soil layer and therefore is a stronger constraint for the soil moisture analysis. Three data assimilation experiments with the Integrated Forecast System (IFS) of the European Centre for Medium-range Weather Forecasts (ECMWF) have been performed for the two months period of June and July 2002: A control run based on the operational soil moisture analysis, an open loop run with freely evolving soil moisture, and an experimental run incorporating bias corrected TMI (TRMM Microwave Imager) derived soil moisture over the southern United States through a nudging scheme using 6-hourly departures. Apart from the soil moisture analysis, the system setup reflects the operational forecast configuration including the atmospheric 4D-Var analysis. Soil moisture analysed in the nudging experiment is the most accurate estimate when compared against in-situ observations from the Oklahoma Mesonet. The corresponding forecast for 2 m temperature and relative humidity is almost as accurate as in the control experiment. Furthermore, it is shown that the soil moisture analysis influences local weather parameters including the planetary boundary layer height and cloud coverage. The transferability of the results to other satellite derived soil moisture data sets will be discussed.

  11. A Wetness Index Using Terrain-Corrected Surface Temperature and Normalized Difference Vegetation Index Derived from Standard MODIS Products: An Evaluation of Its Use in a Humid Forest-Dominated Region of Eastern Canada

    PubMed Central

    Hassan, Quazi K.; Bourque, Charles P.-A.; Meng, Fan-Rui; Cox, Roger M.

    2007-01-01

    In this paper we develop a method to estimate land-surface water content in a mostly forest-dominated (humid) and topographically-varied region of eastern Canada. The approach is centered on a temperature-vegetation wetness index (TVWI) that uses standard 8-day MODIS-based image composites of land surface temperature (TS) and surface reflectance as primary input. In an attempt to improve estimates of TVWI in high elevation areas, terrain-induced variations in TS are removed by applying grid, digital elevation model-based calculations of vertical atmospheric pressure to calculations of surface potential temperature (θS). Here, θS corrects TS to the temperature value to what it would be at mean sea level (i.e., ∼101.3 kPa) in a neutral atmosphere. The vegetation component of the TVWI uses 8-day composites of surface reflectance in the calculation of normalized difference vegetation index (NDVI) values. TVWI and corresponding wet and dry edges are based on an interpretation of scatterplots generated by plotting θS as a function of NDVI. A comparison of spatially-averaged field measurements of volumetric soil water content (VSWC) and TVWI for the 2003-2005 period revealed that variation with time to both was similar in magnitudes. Growing season, point mean measurements of VSWC and TVWI were 31.0% and 28.8% for 2003, 28.6% and 29.4% for 2004, and 40.0% and 38.4% for 2005, respectively. An evaluation of the long-term spatial distribution of land-surface wetness generated with the new θS-NDVI function and a process-based model of soil water content showed a strong relationship (i.e., r2 = 95.7%). PMID:28903212

  12. Carbonates in the Martian meteorite Allan Hills 84001 formed at 18 ± 4 °C in a near-surface aqueous environment

    PubMed Central

    Halevy, Itay; Fischer, Woodward W.; Eiler, John M.

    2011-01-01

    Despite evidence for liquid water at the surface of Mars during the Noachian epoch, the temperature of early aqueous environments has been impossible to establish, raising questions of whether the surface of Mars was ever warmer than today. We address this problem by determining the precipitation temperature of secondary carbonate minerals preserved in the oldest known sample of Mars’ crust—the approximately 4.1 billion-year-old meteorite Allan Hills 84001 (ALH84001). The formation environment of these carbonates, which are constrained to be slightly younger than the crystallization age of the rock (i.e., 3.9 to 4.0 billion years), has been poorly understood, hindering insight into the hydrologic and carbon cycles of earliest Mars. Using “clumped” isotope thermometry we find that the carbonates in ALH84001 precipitated at a temperature of approximately 18 °C, with water and carbon dioxide derived from the ancient Martian atmosphere. Furthermore, covarying carbonate carbon and oxygen isotope ratios are constrained to have formed at constant, low temperatures, pointing to deposition from a gradually evaporating, subsurface water body—likely a shallow aquifer (meters to tens of meters below the surface). Despite the mild temperatures, the apparently ephemeral nature of water in this environment leaves open the question of its habitability. PMID:21969543

  13. Initializing numerical weather prediction models with satellite-derived surface soil moisture: Data assimilation experiments with ECMWF's Integrated Forecast System and the TMI soil moisture data set

    NASA Astrophysics Data System (ADS)

    Drusch, M.

    2007-02-01

    Satellite-derived surface soil moisture data sets are readily available and have been used successfully in hydrological applications. In many operational numerical weather prediction systems the initial soil moisture conditions are analyzed from the modeled background and 2 m temperature and relative humidity. This approach has proven its efficiency to improve surface latent and sensible heat fluxes and consequently the forecast on large geographical domains. However, since soil moisture is not always related to screen level variables, model errors and uncertainties in the forcing data can accumulate in root zone soil moisture. Remotely sensed surface soil moisture is directly linked to the model's uppermost soil layer and therefore is a stronger constraint for the soil moisture analysis. For this study, three data assimilation experiments with the Integrated Forecast System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF) have been performed for the 2-month period of June and July 2002: a control run based on the operational soil moisture analysis, an open loop run with freely evolving soil moisture, and an experimental run incorporating TMI (TRMM Microwave Imager) derived soil moisture over the southern United States. In this experimental run the satellite-derived soil moisture product is introduced through a nudging scheme using 6-hourly increments. Apart from the soil moisture analysis, the system setup reflects the operational forecast configuration including the atmospheric 4D-Var analysis. Soil moisture analyzed in the nudging experiment is the most accurate estimate when compared against in situ observations from the Oklahoma Mesonet. The corresponding forecast for 2 m temperature and relative humidity is almost as accurate as in the control experiment. Furthermore, it is shown that the soil moisture analysis influences local weather parameters including the planetary boundary layer height and cloud coverage.

  14. Simulating future water temperatures in the North Santiam River, Oregon

    NASA Astrophysics Data System (ADS)

    Buccola, Norman L.; Risley, John C.; Rounds, Stewart A.

    2016-04-01

    A previously calibrated two-dimensional hydrodynamic and water-quality model (CE-QUAL-W2) of Detroit Lake in western Oregon was used in conjunction with inflows derived from Precipitation-Runoff Modeling System (PRMS) hydrologic models to examine in-lake and downstream water temperature effects under future climate conditions. Current and hypothetical operations and structures at Detroit Dam were imposed on boundary conditions derived from downscaled General Circulation Models in base (1990-1999) and future (2059-2068) periods. Compared with the base period, future air temperatures were about 2 °C warmer year-round. Higher air temperature and lower precipitation under the future period resulted in a 23% reduction in mean annual PRMS-simulated discharge and a 1 °C increase in mean annual estimated stream temperatures flowing into the lake compared to the base period. Simulations incorporating current operational rules and minimum release rates at Detroit Dam to support downstream habitat, irrigation, and water supply during key times of year resulted in lower future lake levels. That scenario results in a lake level that is above the dam's spillway crest only about half as many days in the future compared to historical frequencies. Managing temperature downstream of Detroit Dam depends on the ability to blend warmer water from the lake's surface with cooler water from deep in the lake, and the spillway is an important release point near the lake's surface. Annual average in-lake and release temperatures from Detroit Lake warmed 1.1 °C and 1.5 °C from base to future periods under present-day dam operational rules and fill schedules. Simulated dam operations such as beginning refill of the lake 30 days earlier or reducing minimum release rates (to keep more water in the lake to retain the use of the spillway) mitigated future warming to 0.4 and 0.9 °C below existing operational scenarios during the critical autumn spawning period for endangered salmonids. A hypothetical floating surface withdrawal at Detroit Dam improved temperature control in summer and autumn (0.6 °C warmer in summer, 0.6 °C cooler in autumn compared to existing structures) without altering release rates or lake level management rules.

  15. The Climatological Annual Cycle of Satellite-derived Phytoplankton Pigments in the Alboran Sea: A Physical Interpretation

    NASA Technical Reports Server (NTRS)

    Garcia-Gorriz, E.; Carr, M. E.

    1998-01-01

    The circulation and upwelling processes (coastal and gyre-induced) that control the phytoplankton distribution in the Alboran sea are examined by analyzing monthly climatological patterns of Coastal Zone Color Scanner (CZCS) pigment concentrations, sea surface temperatures, winds, and seasonal geostrophic fields.

  16. SINTERING OF NASCENT CALCIUM OXIDE

    EPA Science Inventory

    The paper discusses the measurement of the sintering rate of CaO in a nitrogen atmosphere at temperatures of 700-1100 C. CaO prepared from ultrapure CaCO3 was compared with an impure CaO derived from limestone. Both materials yielded an initial surface area of 104 sq m/g. The rat...

  17. Fugitive gas adsorption capacity of biomass and animal-manure derived biochars

    USDA-ARS?s Scientific Manuscript database

    This research characterized and investigated ammonia and hydrogen sulfide gas adsorption capacities of low- and high-temperature biochars made from wood shavings and chicken litter. The biochar samples were activated with steam or phosphoric acid. The specific surface areas and pore volumes of the a...

  18. Application of Landsat Thematic Mapper data for coastal thermal plume analysis at Diablo Canyon

    NASA Technical Reports Server (NTRS)

    Gibbons, D. E.; Wukelic, G. E.; Leighton, J. P.; Doyle, M. J.

    1989-01-01

    The possibility of using Landsat Thematic Mapper (TM) thermal data to derive absolute temperature distributions in coastal waters that receive cooling effluent from a power plant is demonstrated. Landsat TM band 6 (thermal) data acquired on June 18, 1986, for the Diablo Canyon power plant in California were compared to ground truth temperatures measured at the same time. Higher-resolution band 5 (reflectance) data were used to locate power plant discharge and intake positions and identify locations of thermal pixels containing only water, no land. Local radiosonde measurements, used in LOWTRAN 6 adjustments for atmospheric effects, produced corrected ocean surface radiances that, when converted to temperatures, gave values within approximately 0.6 C of ground truth. A contour plot was produced that compared power plant plume temperatures with those of the ocean and coastal environment. It is concluded that Landsat can provide good estimates of absolute temperatures of the coastal power plant thermal plume. Moreover, quantitative information on ambient ocean surface temperature conditions (e.g., upwelling) may enhance interpretation of numerical model prediction.

  19. LakeSST: Lake Skin Surface Temperature in French inland water bodies for 1999-2016 from Landsat archives

    NASA Astrophysics Data System (ADS)

    Prats, Jordi; Reynaud, Nathalie; Rebière, Delphine; Peroux, Tiphaine; Tormos, Thierry; Danis, Pierre-Alain

    2018-04-01

    The spatial and temporal coverage of the Landsat satellite imagery make it an ideal resource for the monitoring of water temperature over large territories at a moderate spatial and temporal scale at a low cost. We used Landsat 5 and Landsat 7 archive images to create the Lake Skin Surface Temperature (LakeSST) data set, which contains skin water surface temperature data for 442 French water bodies (natural lakes, reservoirs, ponds, gravel pit lakes and quarry lakes) for the period 1999-2016. We assessed the quality of the satellite temperature measurements by comparing them to in situ measurements and taking into account the cool skin and warm layer effects. To estimate these effects and to investigate the theoretical differences between the freshwater and seawater cases, we adapted the COARE 3.0 algorithm to the freshwater environment. We also estimated the warm layer effect using in situ data. At the reservoir of Bimont, the estimated cool skin effect was about -0.3 and -0.6 °C most of time, while the warm layer effect at 0.55 m was negligible on average, but could occasionally attain several degrees, and a cool layer was often observed in the night. The overall RMSE of the satellite-derived temperature measurements was about 1.2 °C, similar to other applications of satellite images to estimate freshwater surface temperatures. The LakeSST data can be used for studies on the temporal evolution of lake water temperature and for geographical studies of temperature patterns. The LakeSST data are available at https://doi.org/10.5281/zenodo.1193745.

  20. Effects of adding ethanol to KOH electrolyte on electrochemical performance of titanium carbide-derived carbon

    NASA Astrophysics Data System (ADS)

    Xu, Jiang; Zhang, Ruijun; Chen, Peng; Ge, Shanhai

    2014-01-01

    Porous carbide-derived carbons (CDCs) are synthesized from TiC at different chlorination temperatures as electrode materials for electrochemical capacitors. It is found that the microstructure of the produced CDCs has significant influence on both the hydrophilicity in aqueous KOH electrolyte and the resultant electrochemical performance. Because the TiC-CDC synthesized at higher temperature (e.g. 1000 °C) contains well-ordered graphite ribbons, it shows lower hydrophilicity and specific capacitance. It is also found that addition of a small amount of ethanol to KOH electrolyte effectively improves the wettability of the CDCs synthesized at higher temperature and the corresponding specific capacitance. Compared with the CDC synthesized at 600 °C, the CDC synthesized at 1000 °C shows fast ion transport and excellent capacitive behavior in KOH electrolyte with addition of ethanol because of the existences of mesopores and high specific surface area.

Top